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CHAPTER 1: INTRODUCTION AND 

LITERATURE REVIEW

1.1 Introduction

The construction industry faces the challenge of dealing with projects with substantial 

long durations. These projects, which include infrastructure projects such as highways, 

subways, large-scale storm water facilities and sewer line systems, involve a large 

amount of risk and uncertainty due to lengthy project duration and the variations in 

indoor and outdoor conditions, either physical or virtual. These factors have either 

positive or negative effects on project execution, and most significantly, a large 

number of them are time-related or time-sensitive to a certain degree. This 

characteristic becomes even more pronounced as the project duration grows longer.

Infrastructure project capital planning is now capturing more and more attention from 

the industry and the academic arena. This area of engineering application normally 

deals with the study of potential project requirements from medium to long range. A 

great deal of effort is invested in the analysis of risk and uncertainty associated with 

changes to project conditions along the time axis. A basic approach to predict future 

conditions is the use of forecasting methodologies, a group of qualitative or 

quantitative methods for the estimation of future outcomes. These methodologies 

provide deterministic forecasts for future periods at the accuracy associated with 

different methods in their applicable areas. However, in terms of quality analysis of 

future conditions for capital planning purpose, the level of accuracy obtained and the 

lack of risk analysis are unsatisfied and unacceptable.

The accuracy and suitability problems mentioned above can be attributed to the 

existence of inherent limitations in the current methods and the ignorance of more 

advanced methods that have better adaptability but more technical difficulties in their

1
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implementation. Therefore, a detailed application study to verify the applicability of 

these advanced methods and identify the solutions to overcome the implementation 

problems is necessary. Additionally, research must be conducted in order to develop 

an approach that provides the required risk analysis functionalities.

Boskers (2002) describes the use of Box Jenkins methodologies to provide more 

accurate and objective forecasts for future inflation rate prediction. These forecasts 

were then used to perform a simulation-based cash flow analysis for a transportation 

project with a five-year execution period. The success of Boskers (2002) has shown 

that the implementation of advanced forecasting methods, such as Box Jenkins 

methodologies, can improve the quality of forecasting results for long-term projects 

where the historical data is complex. However, the implementation of Box Jenkins 

methods described in Boskers (2002) does not solve the problem of integrating the 

implementation tools and the automation of the modeling process. Average users are 

thus prohibited from employing these methodologies in a simplified way. Additionally 

the risk and uncertainty associated with the forecasting were not considered for the 

Box Jenkins methodologies application.

Based on the previous research described above, it is necessary to perform some work 

to solve these problems. The related algorithms and methodologies need to be studied 

and the implementation tools must be designed for implementation purposes. The 

developed methodologies should also be verified with data from industry in the forms 

of validation tests and case studies.

1.2 Infrastructure System Capital Planning (ISCP)

1.2.1 Concepts

An infrastructure system comprises the whole set of public facilities at both urban and 

suburban levels. This set typically includes bridges, roads, highways, hospitals, 

schools, and subways. Transportation systems, which require large amounts of funding

2
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to construct and maintain and which last for a long time period, are the most 

frequently studied items in capital planning.

Capital planning and budgeting refers to the high-level study and management of 

capital investments over a medium or long term. Canada et al. (1996) define capital 

planning as “a function that takes place at the highest levels of management, such as 

Office of the Controller or corporate executive committee.” Proper capital planning 

and budgeting, and management represent the top management functions of an 

enterprise or government and are crucial process to the maintenance of an enterprise’ 

welfare or to a community’s development and improvement.

1.2.2 Practices and Problems

Capital Planning and Budgeting involve several decision procedures. Canada, et al. 

(1996) list the following general procedures:

1. How the money is acquired and from what sources,

2. How individual capital project opportunities (and combination of 

opportunities) are identified and evaluated,

3. How minimum requirements of acceptability are set

4. How final project selections are made and

5. How post-mortem reviews are conducted.

According to the above procedures, it is certain that capital planning is performed on 

the condition of availability of sufficient funds. However, a number of researchers and 

professional groups have documented the decline of federal capital outlays for 

infrastructure. Woodridge et al. (2001), for example, stated that the requisite capital 

costs greatly exceed existing direct public funding mechanisms. Declining federal 

capital over the past 30 years has resulted in an increasingly constrained budget 

available for infrastructure revitalization. Hastak et al. (2001) emphasized that the 

shortage of adequate funds has imposed serious constraints on how projects are

3
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planned, designed, constructed, operated, and maintained. Based on these comments, 

it is evident that decision-makers at the government level must have reliable 

information regarding future conditions so that the limited available funding can be 

directed in a reasonable manner and to the maximum degree.

It is obvious that, in view of shrinking infrastructure budget, the capital planning of 

infrastructure systems relies heavily on the prediction and estimation of future 

outcomes. Uncertainty associated with such factors as future transportation needs, 

future economic developments, and future market condition variations, must be 

estimated in sufficient detail to ensure that related planning can be founded upon a 

realistic and reasonable base.

Much research on capital planning systems has been conducted primarily by 

government organizations or research institutes. Several successful systems have 

strongly supported decision-making in annual infrastructure capital planning. The 

Infrastructure Systems Development Research Group at MIT (Massachusetts Institute 

of Technology), for example, is currently engaged in a long-term effort of developing 

computerized decision support system. “CHOICES,” a decision support tool using 

engineering systems integration concepts, has been implemented through this project 

and has proven to be a successful tool (Garvin et al. 2000). In this system, estimation 

and forecasting are integral to the overall functionality. Historical data about 

government revenues, infrastructure system operating expenses are analyzed and then 

projected to further five to ten years. Related trend or seasonality is analyzed for 

further analysis. Cash flow projection for various scenarios are plotted in order to 

perform cost and revenue comparisons. In general, long range forecasting comprises 

the major part of estimating work.

There are several challenges involved in forecasting and estimation for capital 

planning. Canada et al. (1996) mention three: first, the unavoidability of forecasting of 

critical elements associated with the development of a project, second, the inherent 

uniqueness of each project, which makes the process of estimating unique to each

4
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project, and third, little information is available from the previous forecasting work. In 

response to the aforementioned challenges, however, information about past outcomes 

in similar and related projects may be used to estimate potential outcomes. 

Furthermore, the data gathered from other projects may be used to adjust project 

information and to assume future conditions. Many different techniques could be 

employed for collecting and projecting estimation data for subsequently making 

probabilistic estimates.

1.3 Review of the State-of-the-art Forecasting Methodologies
for ISCP

1.3.1 Introduction

Successful capital planning of infrastructure systems relies heavily on the estimation 

of future social and economic conditions. This procedure should be an integral part of 

a comprehensive planning procedure (Canada et al. 1996) because it provides basic 

information about future outcomes. Although this procedure is very cost and time- 

consuming, it ultimately proves to be necessary for complete and successful planning.

Just as mentioned earlier, a big assumption in estimation and forecasting is that history 

will repeat itself in the future. Future outcomes must been deemed to follow certain 

trends that are found in the historical data as well. Much research has been organized 

to determine an optimal methodology for data collection and techniques for improving 

the quality of forecasts in order to increase the level of confidence decision-makers 

can have in the forecasts. Regardless of the estimation source, users should recognize 

that the estimate would be errorous to a certain extent; estimates and forecasts are 

evaluations of incomplete evidence.

Canada et al. (1996) summarized the following factors that determine the level of 

detail and accuracy of an estimate:

5
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■ The estimatability of that which is to be estimated

■ Methods or techniques employed

■ Qualifications of estimators

■ Time and effort available and justified by the importance of the study

■ Relevance of study results to the particular estimate

The following review summarizes the forecasting methodologies for infrastructure 

system capital planning, including their advantages and limitations in terms of 

accuracy and usability. Research representing the state-of-the-art methodologies 

studies will also be summarized, evaluated, and commented, in order to explain why 

this research is needed.

1.3.2 Current Methodologies

1.3.2.1 General Summary

Both qualitative and quantitative methodologies must be employed in order to ensure a 

high degree of forecast accuracy. An accurate decision must be made based upon 

expert judgment of the analysis results. Three technique categories have been 

identified as available:

1. Time-series techniques;

2. Subjective techniques; and

3. Cost engineering techniques.

The first group includes the most frequently used numerical methods in the forecasting 

and estimation analysis of capital planning. Among the methods available, Box 

Jenkins methodologies deserve particular attention because of their ability to deal with 

complex situations and to provide uncertainty analysis functionality. This group of 

methods will be explained in detail in the following paragraphs.

6
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Subjective techniques, as the second group, represent the easiest methods of 

forecasting, but largely depend on the forecasters’s qualification and experience , in 

order to generate satisfactory results. These methods, basically, utilize decision 

makers’ personal experience and intuition to reach rough predictions about future 

outcomes. Therefore, these methods need to be employed together with numerical 

methods.

Cost Engineering techniques involve several cost estimation methods, which are used 

in construction industry. In general, they utilize several economic factors or indexes to 

predict project cost in early stage of planning considering the influence of time, 

geography and economic conditions. Since most conditions which influence capital 

system planning have a close relationship with time, it is still necessary to employ 

certain time-series techniques to quantity these influence, in order to come up with 

those factors to be used in cost engineering techniques.

1.3.2.2 Time Series Techniques

Time Series Forecasting

Forecasting attempts to predict events and conditions by examining data gathered from 

past projects. The intent is that by examining this information, certain descriptive 

patterns will emerge, informing the analyst of standard and cyclical indicative areas. 

The analysis of past data may be based on experience, judgements, or opinions of 

experts in the given field. However, the preferred means of analysis employs 

mathematical and statistical models. Ultimately, the primary assumption behind all 

forecasting techniques is that “the item to be forecast is affected by another variable, 

such as time, or by several variables, such as those that measure the overall economic 

conditions of a region” (Gaynor and Kirkpatrick. 1994).

Time-series forecasting models are based on an analysis of a chronological sequence 

of observations of a particular variable (Gaynor and Kirkpatrick. 1994), hence these

7
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models are called univariate models. An intrinsic feature of time-series forecasting is 

the dependency of adjacent observations.

Historical data plays an important role in time-series analysis, as the data collection 

methods will determine, to some degree, the quality of subsequent forecasts. 

Unreliable data can render the most sophisticated statistical techniques and forecasting 

models.

Gaynor and Kirkpatrick (1994) summarized various methods related to time-series 

forecasting as follows:

Table 1-1: Time-series Methods

Method Description

Moving Averages
Recent values of forecasting variables are averaged to predict 

future outcomes

Exponential Smoothing

An estimate for the coming period based on the weighted 

combination of the originally forecast for the previous period 

and the most recent outcome.

Adaptive Filtering
A derivation of a weighted combination of actual and estimated 

outcomes, systematically altered to reflect data pattern changes

Time-series Extrapolation

A prediction of outcomes derived from the future extension of 

a least-square function fitted to a data series using time as the 

independent variable.

Time-series Decomposition

A prediction of expected outcomes from trend, seasonal 

cyclical, and random components, which are isolated from a 

data series.

Box Jenkins

A complex, computer-based iterative procedure that produces 

an autoregressive, integrated moving average model, adjusts 

for seasonal and trend factors, estimates appropriate weighting 

parameters, tests the model, and repeats the cycle as 

appropriate.

8
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It should be clear that there is not an established guideline for selecting suitable time- 

series models for a certain practical problem. Several elements must be considered 

including forecasting accuracy requirement, the availability of data, the cost of 

collecting the data, the availability of computer programs, the time frame involved, the 

type of forecast desired, and, most importantly, the different mathematical 

assumptions each model must meet. It is obvious that a balance must be made between 

listed factors and the importance of the modeller’s experience in making the selection 

should be recognized.

Time-series Simulation

Time-series simulation technologies are a functional extension of time-series 

forecasting. The Futures Group (1994) notes that “in simulation modeling, an attempt 

is made to duplicate the system being modeled in the form of equations (statistical 

model), not solely by drawing on statistical relationships among variables, but rather 

by logic and inference about how the system works.” Arsham (1994) also pointed out 

that “System Simulation is the mimicking of the operation of a real system, such as the 

day-to-day operation of a bank, or the value of a stock portfolio over a time period. By 

advancing the simulation-run into the future, managers can quickly find out how the 

system might behave in the future, therefore making decisions, as they deem 

appropriate.”

Generally, simulation techniques are divided into two main branches according to the 

manner in which they perform input modeling: time-independent simulation and 

stochastic process simulation. For review purposes, a concise illustration about time- 

series simulation, which represents stochastic process simulation, will be given 

through the discussion of their similarities and exclusive characteristics. Because time- 

series simulation employs similar terminologies to other simulation techniques, a basic 

knowledge of simulation technologies from the readers is helpful. The readers can 

refer to Chapter 3 for further information on specific theories, formulas, assumptions,
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and hypotheses, in order to fully understand the developed risk-based Box Jenkins 

forecasting model.

Time-series simulation collects and analyzes time-series data, which have a naturally 

dependent quality. Therefore, the raw data are not organized randomly but ranked in a 

chronological sequence. This characteristic prevents users from deleting or adding raw 

data points based solely on subjective rationale. Any data pre-processing should be 

performed with the continuity and completeness of a data set.

Different from time-independent simulation, in which input modeling attempts to fit 

raw data into a stochastic distribution, simulation input modeling based on time-series 

data considers the interdependence of data points and their sequence along a time-axis. 

A linear or non-linear time-series process, such as ARTA (Autoregressive to 

Anything) (Biller and Nelson 2002) or ARIMA (AutoRegressive Integrated Moving 

Average), may, therefore, provide a more suitable model for data fitting. Additionally, 

a standard stochastic distribution of random data, which is generated from data fitting, 

may combine with former time-series models to become input modeling results. These 

two will be input into the simulation environment finally as the random time-series 

process models.

Thus far, the simulation execution for both simulation techniques is similar.

Traditional or enhanced Monte Carlo simulation techniques (Li and Winker 2000) are 

normally employed to generate the simulated output data after a certain amount of 

iterations. For time-series simulation, special consideration has been given to ensure 

that the technique is well adapted to the time-series data. In Chapter 3, readers can 

refer to the developed time-series simulation algorithms for these considerations.

Regarding output analysis, basic performance measures such as confidence level, 

probability, CDF and PDF, and percentile analysis are used by both techniques.

Certain output analysis methodologies have been developed with the assumption that
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output data follow normal distribution. However, research studies on non-normal 

distributions for output analysis have been undertaken to explore more generic output 

analysis methods.

1.3.3 Methodology Study

This literature review indicates that several basic time-series forecasting methods, 

such as correlation and regression analysis, exponential smoothing, and moving 

average are still among the most popular tools for forecasting and estimating analysis 

in capital planning and continue to provide relatively satisfactory results.

Leslie and Minkarah (1997) recommended using extrapolating method to predict the 

yearly renewal costs of an infrastructure renewal project based on historical data; 

Wilmot and Cheng (2003) built a multi-regression model to predict future highway 

construction costs; this model was considered superior to both the unit price method 

and the extrapolation method for the purpose of long frame forecasting.

In studying several infrastructure capital-planning systems developed by various 

governmental organizations and research institutes, the author also noticed the 

presence of most basic time-series methods for providing time-related forecasting or 

estimation. Advanced techniques, such as Box Jenkins methodologies, multi

regression, and neural networks, are seldom identified or are not employed to a full 

degree.

Many researchers also noticed the limitations related to typical forecasting approaches. 

Salem et al. (2003) criticized the weakness of deterministic projection of service life 

of the infrastructure unit. Their research recommended a risk-based approach using 

probability theory and data input modeling for predicting the probability that different 

life-cycle costs associated with the construction rehabilitation of an infrastructure unit 

will occur. Wilmot and Cheng (2003) commented that the Unit Method failed to
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provide reliable highway construction cost forecasts due to its inability to address the 

variation of site conditions.

In a research performed by the Futures Group (1994), it was concluded that time- 

series analysis could fit historical data to a linear or non-linear function and then 

extend the data into the future using the function. However, this analysis cannot 

provide a description of how these data behave over time nor can it explicate the 

actual system operating beneath these data.

Hastak and Bairn (2001) summarized different risk factors affecting the management 

and maintenance cost of urban infrastructure. They pointed out that errors in the 

forecasting and calculation process can lead to inadequate design criteria and may 

have a considerable impact upon management and maintenance costs. They 

recommended that risk analysis could improve the quality of information available for 

decision making by revealing and clarifying the implications of uncertainty through 

technical analysis.

A number of researchers have studied the forecasting features of Box Jenkins 

methodologies. Several successful application studies have been performed proving 

Box Jenkins methods to be a flexible and powerful tool for short and long range 

forecasting tasks. It is necessary to emphasize that these studies on Box Jenkins 

methodologies are typically found in economics, financial, and social sciences areas; 

these areas are more academic and advanced in application. In the area of engineering, 

a literature review identified a few studies on the use of Box Jenkins methodologies. 

These studies concern primarily hydraulic engineering and ecological engineering.

Sun and Koch (2001), for example, built a Box Jenkins ARIMA model to analyze and 

forecast salinity in Apalachicola Bay, Florida. Li et al. (2003) employed Box Jenkins 

models to predict an index of soil dryness in the southwest of Western Australia.
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Boskers (2002) applied Box Jenkins forecasting methodologies in his study of 

uncertainty in capital construction project planning in order to predict future inflation 

rates so that related cash flow analyses can be performed accurately with more 

trustworthy inputs on future estimation than those which were based solely on 

assumptions from experience.

In spite of these advancements, risk analysis associated with forecasting and 

estimation has not been identified and explored to its full extent by the academic or 

industrial communities with regards to capital planning for infrastructure system. 

However, several researchers in other areas of engineering have employed general 

time-series simulation concepts to analyze risks associated with practical problems.

Harding and Walski (1996) combine time-series analysis and simulation analysis to 

study contamination in the water distribution system of a major city. They found that 

time-series analysis provided a continuous representation of the conditions but, 

without the application of simulation, the time-series analysis cannot lend itself 

effectively to statistical analysis, especially when these analyses extend to a long time. 

Bashford et al. (2003) tested an Even Flow production methodology for the U.S. 

Housing Industry with the assistance of time-series simulation. A Simphony SPS 

template was developed for the purpose of implementing purpose. Enright and 

Frangopol (1998) performed a Monte-Carlo simulation based on time-series data to 

find the probability of a cumulative-time system failure for deteriorating concrete 

bridges.

1.3.4 Limitations of Current Methodologies

A literature review of infrastructure capital planning practices and current 

methodologies for the quantitative forecasting and estimation of infrastructure capital 

planning indicated several limitations, which have seriously hindered scientific 

forecasts and uncertainty analysis from becoming a basis for successful capital
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planning. These limitations have already affected the overall management of 

infrastructure systems in an adverse manner.

1.3.4.1 Theoretical Limitations

Current methodologies for forecasting and estimating in capital planning emphasize 

the simplification of algorithms, while are incapable of providing accurate and 

meaningful forecasts with associated risk analysis. This problem is partially attributed 

to the limitations of current methods in adaptability and accuracy. Another reason is 

that current methods are incapable of producing risk analysis information due to the 

limitation of their mathematical and statistical algorithms. From the literature review, 

some limitations associated with current methods are summarized as follows:

Regressive analysis is deemed to be a powerful tool for predicting future outcomes 

based on independent influencing factors. However, regressive analysis requires a 

pre-defined function format as the default relationship model and uses sample data to 

verify it. Thus this approach proves to be a subjective method. Similar research 

endeavor has failed to find a suitable function because the parameters related to the 

function are either difficult or impossible to estimate. Although sample data can be 

used to verify a function, the results may still fail to represent a general condition. Any 

outliers existing among the sample data can nullify the whole estimate. The model that 

results from a regressive analysis often loses its usability when compared with 

objective judgments. Another weakness of the regression model is that it assumes 

statistically independent data, whereas time-series data often possess an interrelated 

quality.

Exponential smoothing is superior to other basic methods in its accuracy. It is also 

more sensitive to future change than linear regression (Canada et al. 1996). However, 

it uses data inefficiently for initial modeling. It also assumes that data to be used are 

statistically independent. For dealing with actually dependent, time related data, this 

method is not appropriate.
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Sample moving average method provides the worst accuracy (Armstrong 1985). It 

also uses the data inefficiently for initial modeling. Similar to exponential smoothing 

in basic algorithms, it also only applies to only independent data, which are seldom 

identified in most capital planning work.

Regarding the mathematical and statistical algorithms of current methods, the author 

noticed that current methods have not provided well-developed risk analysis function 

to support forecasting. The author believes that this problem results from the difficulty 

in functionality extension due to the low level algorithms associated with current 

methods and the lack of related research endeavors.

1.3.4.2 Practical Limitations

This literature review found that current methodologies, although frequently used for 

forecasting and estimation tasks, perform poorly overall as they did not provide 

sufficient information to meet the requirements of current complex and comprehensive 

decision supporting. Deterministic point estimates or simple range estimates constitute 

the extent of the information that these basic methods can provide. More statistics and 

uncertainty analyses are required from the industry. To implement this, current 

methods should be refined or new advanced methods should be explored. However, a 

practical limitation associated with some advanced forecasting methods, such as Box 

Jenkins, is that these methods are seldom used due to the complexity involved in 

implementation.

One of the reasons for their limited use is that the application of advanced methods 

requires more mathematical and statistical knowledge than the basic methods. Average 

engineers, however, may not possess this knowledge. Another reason is that advanced 

methods normally need more time and effort than basic methods. Often, specialized 

modeling experience is also needed.
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Both the industry and the academy have recognized the importance of time-series 

simulation in analyzing uncertainty problems associated with forecasting tasks. 

However, until now, no mature simulation modeling methodologies had been 

developed that could provide engineers with a generic approach for simulation 

analysis based on time-series data. Although other modeling methodologies in areas 

such as finance, economics, social sciences, have been successfully explored and 

implemented, neither their time-series process models, nor their modeling 

methodologies have gotten proved to be applicable in engineering.

1.4 Research Objectives and Methodology

In order to not only solve the practical problems of advanced forecasting 

methodologies, but also contribute to the academic state-of-the-art in the field, the 

following research objectives will be followed:

• A detailed application study on Box Jenkins methodologies will be performed 

and an integrated, robust, and automated Box Jenkins modeling tool will be 

developed in the Simphony simulation-modeling environment as a SPS 

(Special Purpose Simulation) template.

• A whole set of input modeling methodologies for univariate random process 

modeling, represented by univariate time series process simulation modeling, 

will be developed along with associated implementation tools.

• The incorporation of risk analysis functionalities into forecasting 

methodologies will be studied. Risk-based forecasting analysis will also be 

implemented in the developed methodology.

In order to achieve these objectives, this research work is broken down into the 

following steps:

• Advanced forecasting methodologies, specifically Box Jenkins methods, will 

be studied in detail with a focus on its application to capital planning of
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infrastructure system. It is also essential to automate and integrate the 

modeling process.

• The risk and uncertainty will be studied and overcome by incorporating risk 

analysis functionalities in the proposed forecasting model.

• Univariate random process modeling, specifically univariate time series will be 

studied and developed to support risk analysis for forecasting methodologies.

1.5 Conclusion
The execution of civil projects with a lengthy duration is problematic for the 

construction industry because the risk and uncertainty inherent to these projects is 

normally larger than other projects. To solve this problem, construction management 

professionals can employ forecasting methodologies to better understand future 

outcomes. However, the methods, that are currently available, do not provide a 

satisfactory level of accuracy for complex project environments and attempts to 

implement more adaptable and powerful methods have proven to be very difficult. 

More importantly, expected risk and uncertainty analysis is seldom identified or even 

carried out. In short, the requirements from the industry cannot be satisfied using the 

existing forecasting methods.

This chapter reviewed the concepts and practices of the current level of infrastructure 

system capital planning and related forecasting methodologies. It also gave special 

attention to one group of methodologies, that is, time-series techniques, through a brief 

introduction to time-series forecasting and time-series simulation. A review of the 

state-of-the-art in research on forecasting methodologies in infrastructure system 

capital planning helps to identify the limitations that exist at both academic and 

practical levels. This review demonstrates expressly the importance of the accurate 

estimation about future outcomes for successful capital planning. The insufficient 

application of advanced forecasting methodologies, however, may also inhibit the 

delivery of satisfactory estimation data and disable potential future planning and 

budgeting.
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This research, therefore, aims to solve these problems and provide usable 

implementation tools to the industry. It also has the objective of providing a 

theoretical framework to solve the problem using input modeling algorithms for 

univariate time series process for simulation modeling.
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CHAPTER 2: AUTOMATED BOX JENKINS 

FORECASTING MODELING

2.1 Review of Box Jenkins Methodologies

Before a detailed introduction may be undertaken, some basic Box Jenkins concepts 

and theories must be reviewed. The explanation of a series of standard notations will 

help to facilitate the comprehension of the following illustrations.

F: original time-series data;

T: time, from one to n;

e t : random error in time period t,t=  1 to n (also called white-noise forecast error);

Z: stationary time-series data;

[X : the constant coefficients ARIMA model function;

© ,: moving average coefficients, i = 1 to q\

: autoregressive coefficients, j= l to p;

p: order of autoregressive model; 

q\ order of moving average model; and 

8 : constant value

In theory, Box Jenkins models can only process stationary time-series data. A 

stationary time-series is a series of univariate data that does not contain trends or 

seasonality, that is, it fluctuates around a constant mean. However, the original data 

collected from real jobsites are virtually non-stationary. Therefore, certain 

transformation methods should be applied in order to transform original data into 

stationary data. Frequently used transformation methods include n-order normal 

differencing, n representing the order of differencing, n-order seasonal differencing, n 

representing the order of seasonal differencing. Natural logarithms transformation is 

another transformation to reduce the variation in variance. There have been other
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transformation methods besides these three, however, which are seldom used in 

engineering problems.

After an iterative transformation process on the original data, one can obtain 

statistically stationary time-series data. Subsequently, in most cases, a fitted ARIMA 

model should be identified to represent the linear or non-linear relationship within the 

current situation and among past situations, including past forecasting errors. The 

following function shows the ARIMA model:

Z t = S  + ^ Z t_j + 02Z(_2 + 03Z;_3 H b £t -  -  ®2£t- 2  (Equation 2-1)

Where:

Z( = the present stationary observation; and

ZH>Z _ 2 £ ,^ , £ ,~ 2  ,•••= the past observations and forecasting error for the

stationary time series (not original time series); and

£t = the present forecasting error (the expected value is set equal to 0).

Depending on the complexity of the real system under analysis, the above ARIMA 

function may be formulated as simple or complicated, which means that less or more 

past observations or forecast errors will be included in order to calculate the current 

condition.

After identifying the above function for a specific problem and estimating all potential 

model parameters, one will arrive at a deterministic relationship function. Moving the 

point in time one unit ahead, a relationship is obtained among future conditions and 

current available information. Thus, the fitted ARIMA model function can be used to 

forecast future outcomes.
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It should be noted that an estimated future value comes from a calculation using 

stationary time-series data. Therefore, this is an estimate not a real future value. To 

retrieve the original value, which concerns a series of back-transformations must be 

performed. These operations mirror the operations of former transformation 

endeavours.

In the ARIMA model function, et , the present forecasting error will be transformed 

to et+l when the time point is moved one unit ahead. In this situation, it is assumed that 

the error is approximately equal to zero when one wants to get point estimate value. 

Therefore, for the calculation of future value, one must replace et+l with zero.

All above content comprises the basic theories and methodologies of Box Jenkins 

Forecasting. To understand the research involved in automating Box Jenkins 

forecasting modeling, and the following proposed risk-based Box Jenkins forecasting 

model discussed in Chapter 3, interested readers can refer to literature on Box Jenkins 

methodologies. Both Forecasting with Univariate Box Jenkins Models-Concepts and 

Cases (Pankratz 1983) and Time Series Analysis - Forecasting and Control (Box et al. 

1994) provide a helpful general review about time-series techniques, which include 

Box Jenkins methods.

2.2 Rationale for Selecting Box Jenkins Methodologies

In order to fully comprehend a discussion of the research, it is first necessary to 

explain why Box Jenkins methodologies, in particular, were chosen for detailed study 

and the overall rationale behind this selection.

Based on an analysis of the limitations found in current methodologies, as discussed in 

Chapter 1, the author determined the necessity for exploring more advanced methods 

of forecasting and estimation. The criteria, by which the author ultimately selected the 

Box Jenkins methodologies, included:
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• The capability of dealing with complex situations;

•  The adaptability of processing dependent time-series data;

• The level of advancement in mathematical and statistical backgrounds;

•  The existence of a risk and uncertainty analysis functionality; and

• The simplicity of its implementation.

Box Jenkins methodologies often produce, in a great many cases, the most accurate 

forecasting models for any set of data (Gaynor and Kirkpatrick 1994). These methods 

also provide a more systematic approach to building, analyzing, and forecasting time- 

series models. Armstrong’s comparison test (Armstrong 1985) on the ranking of 

extrapolation methods (from the highest rank as 1 to the lowest rank as 5) in terms of 

cost, understandability, and forecast accuracy for both short range and long range 

ranked Box Jenkins methods as 1.5 for short-range forecasting accuracy and 2 for 

long-range forecasting accuracy.

Box Jenkins models are capable of dealing with those dependent time-series data. 

These data, in theory, are not suitable for other methods. For example, a regression 

model has a standard assumption that the error term should be statistically 

independent. In reality, much time-related data are dependent or have an 

autocorrelation among them.

Generally, Box Jenkins methodologies use the most recent observations as starting 

values and then analyze recent forecasting errors to determine the proper adjustments 

for future periods. In doing so, they allow timely adjustments of error levels and 

provide a more flexible imitation of a particular complex trend or seasonality.

From the following research discussed in Chapter 3, it is observed that Box Jenkins 

methodologies can be extended to incorporate risk analysis functionality into 

traditional forecasting functionality using time-series simulation technology. This
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feature enables the Box Jenkins methodologies to overcome the problems that exist 

with deterministic point forecasts and simple range forecasts, by providing more 

statistical results, such as percentile analysis and probability estimation. Thus the 

uncertainty associated with point forecasts and simple range forecasts can be analyzed 

in a more systematic and comprehensive way.

Questions may arise regarding the methodology’s usability and simplicity for use in 

solving engineering problems. These questions arise out of a belief that a successful 

forecasting support model should be advanced and theoretically founded, yet 

practically easy-to-use for average users. Box Jenkins methodologies prove to be 

among the most advanced and useful univariate forecasting models. This methodology 

can also be simplified according to the specific requirements of a certain application 

area such as capital planning and can, therefore, be implemented by a specially 

designed and developed computer program, as discussed in the following sections.

The application of these complicated methodologies, therefore, can be easy for 

engineering professionals. The author’s research about the automation of the Box 

Jenkins modeling process using computer simulation technologies has solved this 

problem.

2.3 Implementation Problems Associated with Box Jenkins 

Forecasting Modeling

Thus far, previous research has shown that Box Jenkins methodologies are superior to 

other forecasting methods because of their comparably excellent estimation accuracy 

for short and medium range (one to three years) forecasting and their exclusive 

functionality in risk and uncertainty analysis, which becomes increasingly important 

for complex forecasting and planning work. However, according to the author’s 

literature review, there are several significant problems in using this method, which 

still prohibit extensive application of the method in the engineering domain.
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1. Box Jenkins methodologies are more complicated and involve several 

iterative procedures, which require cumbersome calculations, compared with 

other methods. There is no automated procedure to facilitate the modeling 

procedures.

2. Box Jenkins methodologies comprise a family of Autoregression and 

Moving Average Integration (ARIMA) models, from which the user chooses 

the model most suitable to their projects. They allow for a high degree of 

flexibility in the selection of a model. However, they also call for much 

subjectivity on the part of the analyst. This requirement means more 

experience and subjective decision-making will be needed.

3. It is difficult to update a fitted Box Jenkins model. As new data are acquired, 

the model must be rebuilt, which means a sharp increase in the amount of 

modeling work.

Several researchers have commented upon these problems specifically in terms of 

their concerns regarding the application of this method. In Armstrong’s study on 

extrapolation methods (1985), he summarized that Box Jenkins procedures are still 

more difficult to understand than other methods because of their complexity even with 

the rapid development of computer technologies. Tang et al. (2003) compared Box 

Jenkins models with other methods used in forecasting Annual Average Daily Traffic 

(AADT) in Hong Kong. They also mentioned that the ARIMA modeling requires 

extensive data calibration.

2.4 Automating Box Jenkins Forecasting Modeling
With the advance of computer technologies, much of the reasoning and logical 

thinking, originally undertaken by humans, can be replaced by computer programs. 

Tedious and iterative data manipulations can be executed at an astonishing speed by 

computers. It is obvious, therefore, that through a careful study of the methodologies 

and creative programming, the Box Jenkins forecasting modeling process, which is 

often quite challenging to average users, can be performed automatically with little to
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no difficulty using a computer program specially designed for that purpose in 

particular.

In general, the automation and integration of Box Jenkins modeling processes are 

achieved by a successful simplification of classical Box Jenkins methodologies for 

specific engineering areas and with the aid of computer technology. This approach 

arose came partly from a thorough study of Box Jenkins methodologies, including 

classical concepts and theories, modeling procedures, currently available commercial 

software, and other similar works, and partly from the analysis of engineering-related 

problems, including issues dealing with particular engineering characteristics, data 

types, case studies, and research reviews.

It should be stated that a universal and generic solution is, thus far, an impossible task 

in theory: Box Jenkins forecasting methodologies are impossible to be automatically 

executed in full. Difficulties exist within the theories themselves and as a result of the 

necessity for human input during the iterative process. It is obvious that human 

experience and judgments cannot be simulated completely, which precludes an 

absolutely automated process without any human involvements.

In order to deal with the problems involved in implementing Box Jenkins forecasting 

and to provide a systematic and automatic modeling tool that does not require too 

much human involvement or experience, a summer project was initiated at the 

beginning of May 2003 in Construction Engineering and Management (CEM) group 

of University of Alberta to perform research on the automation of Box Jenkins 

modeling processes. This project aimed at exploring solutions for overcoming the 

weaknesses mentioned above; to study the modeling procedures involved in discrete- 

event simulation; and finally to develop a Special Purpose Simulation (SPS) template 

to simulate and automate the modeling process in Simphony, a simulation 

environment.
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Much research and many case studies have been reviewed in an effort to put together 

the experiences and pitfalls of the modeling process. The statistical and mathematical 

theories of these methodologies have been checked to determine ways of simplifying 

modeling procedures. A pilot SPS template was developed using Simphony. Several 

artificial case studies were conducted to verify the functionality of this template and 

the results of these studies prove that this template is capable of performing, to a 

satisfactory degree, automatic Box Jenkins modeling process.

The foundational ideas of this template are as followings and the author assumes 

readers’ knowledge of Simphony and SPS development terminologies and techniques.

1. Original data processing operations, such as normal differencing, seasonal 

differencing, and natural logarithm transformation, can be performed by 

computer programs. All related calculations and graphical representations 

can be performed using Simphony SPS template with interrelated functional 

elements.

2. One of the most difficult and time-consuming modeling procedures, the 

identification of the stationarity of time-series data can be simulated by 

developed computer codes using an iterative judgment mechanism.

The literature review shows that for average time-series data, normal 

differencing with 3 or less order, seasonal differencing in 4, 6, 12 and 24 lags 

and natural logarithm transformation, are mostly capable of processing the 

raw data to stationary data with satisfied performance. In this template, all 

possible combinations of the processing methods mentioned above will be 

attempted. T test statistics for Autoregressive Correlation Function (ACF) 

and Partial Autoregressive Correlation Function (PACF) for a processed time 

series using each combination of methods will be calculated to compare with 

predetermined critical values. Theoretically, the results of comparison
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between T test statistics and predetermined critical values will determine the 

point of termination for the raw time-series data processing procedure.

3. A suitable ARIMA model identification process can be simplified through 

enumeration methods.

Many articles written about Box Jenkins modeling summarize that the orders 

of Autoregressive model and Moving Average model, named p and q are 

usually less than or equal to two (Gaynor and Kirkpatrick 1994). The author, 

therefore, make the assumption that, for most cases, when Box Jenkins 

methodologies are used, fitted ARIMA models do not have more than three 

order of AutoRegressive model (AR) and three order of Moving Average 

model (MA). With this assumption in mind, it is easy to simplify the process 

by enumerating all possible combinations of ARIMA models with p and q as 

less than 3. The total number of possible combinations -  ARIMA ip , q), p, q 

=0 to 3 but p and q cannot be zero at the same time -  is calculated as 15. 

After estimating the parameters for each model and performing the necessary 

diagnostic checks on them, one should be able to determine the most suitable 

model, which has, in its simplest form, the least Root Mean Square Error 

(RMSE) and passes all diagnostic checks, which will be introduced in the 

following sections.

4. After the ARIMA model has been identified, forecasting, including the 

required reverse processing of forecasts values, can be performed by 

developed computer codes. Those codes can be designed as interrelated 

functional elements within the Simphony SPS template.

These ideas can be implemented in an integrated way by developing the necessary

algorithms within a Simphony SPS template. This template contains all the functional
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elements for the different available modeling procedures. The expected integrated and 

automatic Box Jenkins forecasting modeling can then be realized.

2.5 Implementation of Automated Box Jenkins Forecasting 

Modeling

A contribution of this research to the state of the art in time-series forecasting 

techniques was the development of the integrated automatic Box Jenkins forecasting 

modeling system. Using this system, average users can employ the method without the 

hassle of comprehending complex mathematical and statistical knowledge or the 

requirement of extensive modeling experience. The most valuable gain emerging from 

this research is that the total time and cost spent on the complete modeling process and 

in subsequent forecasting work can now be dramatically decreased.

In general, this system employs the powerful computing capabilities of MATLAB- 

based computer programs in order to realize the algorithms associated with Box 

Jenkins methodologies. These programs are integrated into a computer-modeling tool, 

which is represented by a SPS simulation template in Simphony. All the elements in 

this template can be used together or independently to accommodate specific modeling 

requirements. In this way, the traditional manual modeling can be simulated by a 

highly efficient computer simulation program resulting in better performance with less 

cost and in a shorter time period.

2.5.1 Core Algorithms Design and Programs Development

The required algorithms associated a complete execution of Box Jenkins forecasting 

modeling are identified and summarized as following:

• Natural logarithm transformation

• Normal differencing

• Seasonal differencing
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• ACF calculation

• PACF calculation

• T test

• Q test

• Parameters estimation

• Forecasting

• Inverse normal differencing

• Inverse seasonal differencing

• Inverse natural logarithm transformation

Detailed explanations regarding the above algorithms can be found in the available 

literature on Box Jenkins forecasting methodologies.

To realize the computerized modeling process, one must determine a way, first, to 

execute these algorithms in a computer environment. Second, the algorithms must be 

implemented with computer codes and an interface for communication between 

algorithms must be designed. In this way, the algorithms can work together to generate 

the expected results.

The above algorithms were coded using MATLAB programming language. The 

selection of MATLAB as the development platform was due mainly to the experience 

MATLAB has in packaging many mature mathematical and statistical algorithms in 

different application areas.

All MATLAB programming codes for those algorithms can be referred to in Appendix 

C, which also provides simple explanations of the codes. In order to understand these 

codes, certain details are necessary regarding MATLAB programming, the algorithms 

themselves, including the input and output, and Box Jenkins methodologies. Complete 

explanations, however, on these topics are beyond the scope of this thesis.
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2.5.2 Program Integration -  Development of Automated Modeling Tool

The computerized execution of Box Jenkins forecasting algorithms can be realized 

through the research discussed in the previous section. The traditional manual 

modeling process can be assisted by these programs. In this process, however, there is 

still a lot of time spent on the iterative selection of the best ARIMA model and upon 

an iterative judgement of time-series stationarity, during which extensive human 

experience and judgements are employed to facilitate the execution.

The following Figure 2-1 illustrates the traditional modeling process. Based on the 

analysis of this process, two modeling procedures -  time-series stationary 

transformation and best ARIMA model identification - prove to occupy the most 

portion of modeling time.
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It is obvious from an analysis of this diagram that there exists the possibility of 

integrating all these algorithms in order to realize a more automatic and timesaving 

modeling procedure if a special integration system is developed. Based on the 

discussion of foundational ideas of a proposed SPS template, the following 

simplifications and modifications to rational modeling methodologies are developed to 

facilitate the development.

I. Time-series Stationary Judgement

Based on the foundational ideas discussed in Section 2.4, developed MATLAB 

programs for data transformation and for hypothesis test are utilized to perform 

computerized stationary judgement. Instead of applying all available transformation 

methods, this template will use a specifically selected set of methods with limited 

method parameters to perform data transformation process. After each transformation, 

a certain hypothesis test will be applied to test the stationarity of time-series data, in 

order to decide whether to terminate the judgement process or not. All these 

procedures can be integrated by proper computer programming.

II. Best ARIMA Model Identification

Best ARIMA Model Identification, can be described as the identification of a fitted 

ARIMA model and the estimation of model parameters. This process, therefore, 

involve the application of many mathematical and statistical methods, much modeling 

experience from modellers, and highly involvement of human judgement. However, 

from the perspective of automated forecasting modeling, traditional methods should be 

modified to facilitate the implementation of this procedure in a timesaving and robust 

approach.

Traditional methods emphasize the identification of an individual model. A suitable 

ARIMA model is identified through a time consuming and iterative cycle of selection, 

estimation, judgement and reselection. This approach causes time inefficiency and 

trouble for the implementation in the computer program.
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Biller and Nelson (2002) undertook research on the development of input modeling 

algorithms for the fitting of time-series input processes for a simulation experiment. 

They experienced a similar problem associated with the implementation of fitting an 

individual ART A (Autoregressive To Anything), which is a time-series model similar 

to ARIMA model, onto a Johnson translation system. If the traditional approach is 

taken, then all family members of the Johnson translation system should be fitted and 

the associated goodness of the fits should be performed by each trial. They observed 

that this approach works only when the autocorrelation among samples is relatively 

weak, and when the size of the samples is large enough. However, when the strength 

of the autocorrelation increases, they observed a significant bias and variability in the 

higher sample moments, increasing the likelihood of identifying the wrong model. 

Thus, they adopted an approach that would fit all of the models and compare the 

goodness of fits.

This creative approach inspired and verified the author’s thinking in the selection of a 

suitable ARIMA model. Similarly, the author operates based on the assumption that 

ARIMA models with an autoregressive order less than three and a moving average 

order less than three are able to represent nearly every real system found in 

engineering problems. This assumption was verified by an analysis of average 

construction management problems and suggestions from experienced forecasters and 

from simulators. Gaynor and Kirkpatrick (1994) also supported this assumption by 

demonstrating that in most cases the autoregressive order and moving average order 

are not more than two.

Considering all possible combinations of these two sub-models, the total number of 

ARIMA models is 15. Our approach, in short, fits all 15 ARIMA models to stationary 

time-series data, then estimates the parameters and employs a fitting procedure, 

described as follows, to determine the most suitable model. This approach, although it 

involves more calculations than the traditional individual model approach, creates an 

effective solution for computer implementation. Furthermore, the increases in
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calculations are addressed immediately using a computer familiar in dealing with 

repetitive and iterative calculations. This finding, therefore, greatly facilitates the 

developing of automatic modeling algorithms.

The detailed mathematical and statistical algorithms for the estimation of model 

parameters are quite complex, involving the employment of several tools, which 

include Maximum Likelihood Estimating (MLE), non-linear optimization, matrix - 

based calculation, and matrix manipulation. A detailed development of algorithms was 

performed using MATLAB 13.0. This program was chosen as the development 

platform due to its history in designing and packaging algorithms using powerful and 

customizable toolboxes.

A constrained non-linear optimization is performed in order to estimate the ARIMA 

model parameters. This algorithm needs a vector of initial parameter estimates in order 

to start the iterative calculations; otherwise, convergence problems may arise. Gaynor 

et al., (1994) recommended the following start values for ARIMA model parameters:

For ,<j>2, 0 j , 0 2: use 0.1 as the preliminary estimate;

H : an estimate of //  is p, = Z , where Z is the mean of the stationary time 

series;
S\ A A A. A,

S : an estimate oft? is 8 - p  (1 -$  ~(j>2 -  •■•)> where <px, <p2.... =0.1.

There are two conditions related to the selection and calculation of parameters.

Stationarity Condition: the sum of the coefficients or of the parameters of the 

AR model should be less than one.

Invertibility Condition: the sum of the coefficients or of the parameters of 

the MA model should be less than 1.
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These two conditions apply for both the initial parameter estimates as well as for the 

final estimates. An explanation of the initial parameter values is easier to understand 

with this in mind,

A detailed explanation regarding fitting algorithms, however, is beyond the scope of 

this thesis. Further information about each algorithm can be found in the references 

literature. In the following chapter, the developments of MATLAB programs for all 

the algorithms are discussed and complete MATLAB Syntaxes for the performing of 

ARIMA model fitting are listed in an appendix. The programs associated with the data 

fitting are packaged into the developed SPS Simphony template and represented by a 

template element. This element can perform automatic data fitting, which reduces the 

overall workload. The related development details and computer codes are also 

provided in the following chapter and in the appendix.

III. Diagnostic Checking

Diagnostic checking is a complicated procedure in Box Jenkins forecasting modeling. 

Some conditions applied in this procedure are also employed to test the stationarity of 

time-series data. Therefore, to successfully modify or simplify this procedure will 

contribute a lot to the development of an automated modeling tool.

Normally, one performs the following procedures to check the fitted ARIMA models:

• The iterative process must converge.

This requirement refers to the minimization of Sum of Squared Error (SSE) during 

the estimation step. If there are no other parameters (with a relative change of less 

than 0.001) yielding a smaller SSE, then the data fitting process is deemed to 

converge. This condition checking can be implemented using the developed 

MATLAB-based computer program -  Parameters Estimation -  discussed in Section 

2.5.1
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• The invertibility and stationarity conditions should be satisfied.

The above computer program can implement the checking of these two conditions 

too.

• The residuals or forecasting errors should be random and approximately of 

normal distribution.

For this condition, one either analyzes the residuals by plotting the ACF and PACF 

of residual series to observe whether these functions are statistically equal to zero 

or not, or perform certain hypothesis tests to assist in this diagnostic check. 

Modified Box-Pierce statistics, for example, can be used for this purpose.

To facilitate an automated checking process and reduce as much as possible 

human involvement, this checking is implemented by the developed MATLAB 

program -  Q test, which is discussed in Section 2.5.1. In addition, the following 

simplification is made:

Usually this statistic is computed for lags 12, 24, 36, and 48. In order to simplify, 

however, the check on Q statistics for lag k=12 or k=24 is sufficient.

•  AH estim ates of parameters should be significantly different from zero 

(significant t-ratios).

Using the same concept in regression analysis, the significance of each parameter 

must be checked. The test of significance is the f-test:

point estimate of parameter
t  =  ------------------- i------------------------------  (Equation 2-2)

standard error of estimate
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If the t ratio for a parameter is significantly greater than a predetermined critical 

value (usually |f| >2, for a  =0.05), it is retained. Otherwise, the ratio ought not to 

be employed and the model requires a recalculation using the remaining terms.

This condition checking is implemented by a developed MATLAB program -  

Parameters Estimation.

•  The model should be presented in its simplest form

Past research and application studies have proven that the best Box Jenkins model 

always has the least number of parameters. This paradigm arises not only due to 

the ease in fitting and explanation of simple models, but also since parsimonious 

models avoid the problem of parameter redundancy.

This condition applies when a traditional individual model identification approach 

is used to select ARIMA models. Since in this case, only 15 low order ARIMA 

models are chosen for real data fitting and for the parameters estimating, and since 

these models are already in simplified form, a diagnostic check of this condition is, 

therefore, not needed.

• The model should have a small Root Mean Square Error (RMSE)

Several good models can be generated even after all of the above checks are 

completed. To identify the best of them, one should check the RMSE. The model 

with the smallest RMSE is the best model.
n

SSE = ^  e f --------------------------------------------------------------- (Equation 2-3)
;=i
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RMSE= =^Jm S E ------------------------------------------(Equation 2-4)
V ~ nP

Where:

n=the number of data points in the stationary time-series; 

np=the number of parameter estimates in the model; and 

et =the forecast error in time period t.

This condition regarding the significance of the smallest RMSE is used in our 

approach as the final criteria for terminating the iterative model identification process. 

This consideration is very important for designing automatic computer modeling. The 

selected ARIMA model, which will be among the 15 tentative models and which 

passes all the diagnostic checks, should have the smallest RMSE.

Based on the above modifications and simplifications, a more robust and easy-to-use 

computer system, operating with simulation technologies in order to mimic the 

original time-consuming manual modeling, was developed in Simphony, in an effort to 

explore this possibility. The central objective of this development is to integrate all the 

algorithms into one SPS template with interrelated functional elements, so that the 

modeling process can be performed automatically using a pre-designed simulation 

experiment. These functional elements are represented by virtual simulation elements, 

within the Simphony simulation environment.

The following paragraphs introduce the conceptual development of this SPS template.

Template Structure Design

The Simphony SPS template was developed for special purposes in simulation 

experimentation. To facilitate the use of the SPS template in a simulation 

environment, the template will usually adopt a basic father/child hierarchical structure,
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and package all the functional elements under one father element. In this way, the 

management of the developed simulation model is simplified and the structure is given 

an aesthetic order.

The developed SPS template for integrated and automatic Box Jenkins forecasting 

modeling has a father element, “UBJ (Univariate Box Jenkins) Forecasting Root”, 

which serves as a gate for original time-series inputs to enter and from which Box 

Jenkins forecasts may emerge. The simulator can input historical data and specify 

forecasting requirements, such as the number of periods to forecasts. The forecasts 

originate in the child model, which is constituted by child elements, thus the father 

element also serves as the medium for the display and storage of forecasts from the 

child model.

The child elements have four members in total. They serve different functions, which 

in Box Jenkins forecasting terms, consist of different modeling procedures. During the 

modeling process, these four elements communicate with each other and transfer data 

and information back and forth in order to realize the iterative process.

The following table demonstrates the corresponding relationship between element and 

functionality:

Table 2-1: Child Elements and Corresponding Functionality

Element Functionality

UBJ Forecasting Root Element
Historical Data Input and Forecasts 

Display and Storage

Data Processing Element Data Transformation

Parameters Estimation Element Models Parameters Estimation

Diagnostic Check Element Selection of Best Model

Forecasting Element Forecasts Generation
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Algorithms’ Design and Reference

As mentioned above, each of the five elements has a specific functionality. All the 

elements can be used together to constitute a Box Jenkins Forecasting Model for 

performing an automatic modeling process. The most important part of this 

development, therefore, is to design a template for the realization of these 

functionalities and to facilitate the communication and cooperation among these 

elements.

In Simphony SPS template development, Simphony uses Sax Basic as its programming 

language. This language has the similar syntax to Visual Basic, another advanced 

programming language; thus in theory, any functionality can be realized through 

proper Visual Basic programming.

In order to realize the functionalities for automatic Box Jenkins forecasting modeling, 

the programmer must design programs for each of the algorithms summarized in the 

previous sections. The computerized design of algorithms proves to be difficult even 

for the professional mathematician. In this research, therefore, the author adopted a 

straightforward process in which, that is, the algorithms were designed using MATLAB 

programming language and integrated these algorithms into a Simphony SPS template. 

The most difficult stage of the programming can be performed by a third party tool. 

The remainder of the work involves seeking a means of referencing these algorithm 

programs in Simphony and how to facilitate the communication among them.

The solution for these problems is to package and compile all the MATLAB algorithms 

into a third party Type Library file and design the Simphony codes to refer to these 

library files for the realization of these algorithms. The implementation of this solution 

is not as difficult as one initially supposed, due to the powerful toolbox offered in 

MATLAB 13.0, which has the exact functionality one required for the packaging and 

compilation of algorithms programs. MATLAB COM Builder, which is a special
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toolbox used for the creation of stand-alone computing programs, was provided with 

MATLAB 13 Version 0. This toolbox uses a simple operation interface to facilitate 

complicated COM file compiling process, in order to enable the non-professional 

programmer to create COM files in a professional way.

In the previous section, the author indicated the choice to design all the algorithms in 

MATLAB programming language for Box Jenkins forecasting modeling. As a result, 

the MATLAB COM Builder toolbox may be used to package these algorithms files into 

one deployable COM file. All the algorithms, after compiling, will become built-in 

functions to which Simphony development codes will refer.

The detailed instructions for the usage of this toolbox and for referencing the compiled 

COM files for the Visual Basic programming environment are provided in the 

MATLAB 13.0 Products Help files. Example codes can be found in Appendix C.

Template Development and Programming

The SPS template for automatic Box Jenkins forecasting modeling was developed 

with the help of the “Simphony Developer’ Guide ” and “Simphony User’s Guide”. All 

programming codes comply with Sax Basic programming standard, which are similar 

to those in Visual Basic programming. The complete program codes, however, are not 

attached because of the page limits requirements. Interested readers refer to the SPS 

template for detailed coding and explanations. Figure 2-1, illustrated in the previous 

section, demonstrates the general data flow and related algorithms.

In order to facilitate communication and cooperation between different elements in 

this template, certain public variables are set up for storaging the interim results from 

each element. These results occur when a certain kind of operation or calculation is 

performed. They are retrieved from these public variables when needed by a successor 

element for its modeling procedure.
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Appendix E provides a concise User’s Manual of this template and should assist in 

enhancing one’s overall understanding of the development and usage of this template.

2.6 Conclusion

This chapter discussed in detail the research on the development of automated Box 

Jenkins forecasting modeling and the implementation of this modeling using 

developed Simphony SPS template. The discussion initiated from the concise review 

of Box Jenkins forecasting methodologies. An examination regarding reasons for 

choosing Box Jenkins methodologies followed. Research ideas and different concerns 

and issues were introduced and explored thoroughly to provide necessary background 

knowledge in order to facilitate the understanding of the research.

In order to implement the proposed automatic Box Jenkins forecasting modeling, the 

core algorithms associated with the modeling are coded in MATLAB programming 

language. The implementation can, therefore, be realized in a computer environment. 

The integration of the automatic modeling is performed by the packaging and 

compiling elements of MATLAB programs. These elements employ core algorithms 

and a developed Simphony SPS template to facilitate the automatic execution of the 

Box Jenkins modeling process.
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CHAPTER 3: RISK-BASED BOX JENKINS 
FORECASTING

3.1 Problems with Traditional Time Series Forecasting
Previous research has verified the applicability of basic forecasting methods, such as 

moving average, regression and exponential smoothing, in predicting future outcomes 

with a certain degree of accuracy. The predictions can serve as baseline information 

for decision-making or other detailed analysis. However, several researchers also 

noticed inevitable problems associated with forecasting methodologies and these 

problems have been identified and summarized in Chapter 1.

Based on the concerns of academic researchers on forecasting methodologies, it is 

obvious that a risk-based approach, which can work with time-series forecasting 

methodologies and perform risk and uncertainty analysis, should be proposed in order 

to overcome the problems inherent in the present system and to develop a more 

effective and powerful forecasting method.

3.2 Risk-based Box Jenkins Forecasting Approach
As mentioned in Chapter 1, the combination of time-series analysis and a simulation 

approach is still an area of development for engineering applications. Motivated by a 

lack of related research in the engineering area and by the need for the necessity of 

risk analysis-based forecasting methods, research was conducted with the aim of 

generating the specific methodologies for forecasting on capital planning using time- 

series simulation.

During this research, a wide range of literature on simulation technologies, Monte 

Carlo simulation methodologies, time-series process input modeling, and other related 

case studies were reviewed. The author attempted to summarize the contemporary 

research progress and to extract from it certain basic ideas for the development of 

algorithms and methodologies for engineering applications. However, considering the
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amount of available time, the research scope focused mainly on the study of input 

modeling methodologies and implementation methods.

Time-series simulation methodologies must have a time-series model as their basic 

numerical model, from which a simulation-based extension is created, in order to 

introduce the risk and uncertainty analyses. In this research, several similar studies 

were reviewed and finally Box Jenkins methodologies were determined to be the most 

suitable models for the required purpose.

3.2.1 Simulation Technologies in General

Before discussing time-series simulation technologies, the basic information about 

simulation as a general analytical tool should be covered.

Shannon (1975) defines simulation as “the process of designing a model of a real 

system and conducting experiments with this model for the purpose either of 

understanding the behaviour of the system or of evaluating various strategies (within 

the limits imposed by a criterion or set of criteria) for the operation of the system.”

Simulation experiments are normally performed by computer. According to Page’s 

PhD dissertation (1994), digital computer simulation may be divided into three 

categories: (1) Monte Carlo, (2) continuous, and (3) discrete event. Monte Carlo 

simulation is a method by which an inherently non-probabilistic problem is solved 

using a stochastic process. An explicit representation of time is not required. In a 

continuous simulation, the variables within the simulation are continuous functions, 

for example, a system of differential equations. If value changes to program variables 

occur at precise points in simulation time (that is, the variables are “piecewise linear”), 

the simulation is discrete event.

This thesis mainly deals with Monte Carlo simulation since this type of simulation is a 

suitable risk analysis tool in capital planning and budgeting for engineering and
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management. The basic concept and methodologies of Monte Carlo simulation can be 

illustrated by the following descriptions.

Canada (1996) noted that Monte Carlo simulation “is an especially useful means of 

analyzing situations involving risk to obtain approximate answers when a physical 

experiment or the use of analytical approaches is either too burdensome or not 

feasible.”

Monte Carlo simulation involves, first, the random selection of an outcome for each 

variable of interest; second, the combining of these outcomes with any fixed amounts; 

and, third, the calculation, if necessary, to obtain one trial outcome producing the 

desired answer. Repeated simulations will result in enough trial outcomes to obtain a 

sufficiently close approximation of the mean, variance, distribution shape, or other 

characteristic of the desired answer.

Figure 3-1, taken from Canada’s (1996) Capital Investment Analysis fo r  Engineering 

and Management, illustrates the process as it is applied to investment project analysis. 

Other details about Monte Carlo Simulation lie outside the scope of this thesis, which 

is concentrated primarily with the application of this technology in time-series 

simulation analysis. Interested readers are referred to Project Management: 

Techniques in Planning and Controlling Construction Projects, 2nd Edition (Ahuja et 

al. 1994) for detailed information.
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Figure 3-1: Schematic Illustration of Monte Carlo Simulation Process -  “Capital Investment 
Analysis for Engineering and Management”, Canada (1996)
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3.2.2 Concerns about Simulation Input Modeling

Normally, simulation analysis includes input modeling, simulation execution, and 

output analysis as the three major procedures, which comprise a complete analysis. 

Research will focus, accordingly, on the development of input modeling algorithms, 

on the development of simulation execution, or on the development of output analysis 

methodologies. This research attempted to develop and to test the specific input 

modeling methods for solving engineering problems, especially in the constmction 

engineering and management area. The other two procedures employed a variety of 

established methodologies and research.

A simulation study will require an input modeling method to mimic the probabilistic 

nature of the system under consideration. A close match between the input model and 

the true underlying probabilistic mechanism associated with the system is necessary 

for successful input modeling (Leemis, 2001).

Appropriate input modeling proves to be very important to the success of a simulation 

experiment. Normally, input modeling involves the random selection of an outcome of 

variables, which are supposed to be risk factors. Nevertheless, simulators, frequently, 

assume that independent input variables are dominant so they do not consider the 

correlations between each random sampling when performing simulation calculations.

However, several researchers noticed the serious problems associated with an 

ignorance of dependences in simulation input modeling for special cases.

Biller and Nelson (2002) urged for the existence of dependent time-series input 

processes in the simulation of many service communication and manufacturing 

systems. They gave examples found in a continuous-flow production line and the sales 

of a large vehicle manufacturer. These data were recorded at fixed time intervals and 

their time-series plot revealed a strong dependence. Therefore, it was determined that
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an ignorance of these dependences in simulation could lead to performance measures 

that are seriously in error and towards a significant distortion within the simulated 

system.

Cario (1996) also identified several dependent processes in many real systems such as 

the temperature in a steel mill oven, as measured over time, the breadth of demands 

upon an inventory system, the daily reserve levels in a blood bank. These real systems 

are all likely to be autocorrelated. He noted that the prevalence of dependent input 

processes, as well as the potential error in the simulation output if dependences are 

ignored, will motivate the need ultimately, for simulation input models that represent 

autocorrelated time-series.

Leemis’s (2001) review study on the use of input modeling techniques for discrete 

event simulation summarized the input modeling taxonomy demonstrated in Figure 3-

2. This figure clearly demonstrates that input models can be classified into two 

branches according to their functionality in considering time dependency. The bottom 

branch can be further classified into several sub-branches or sub-sub-branches. Using 

this system of categorization, the author’s attention will follow this progression:

Input Models->Stochastic Processes->Discrete-time->Continuous-state->Stationary 

or Not stationary-> ARIMA (p, q) or ARIMA (p, d, q).

The Box Jenkins-based simulation approach is based on Box Jenkins forecasting 

methodologies. It employs ARIMA modeling to build a linear or non-linear 

relationship between current values and past values, or current values and past 

forecasting errors, or the combination of both. In this way, the appropriate 

dependency between different time points can be incorporated and future forecasts can 

be offered and sampled dependently.
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The Box Jenkins based simulation approach is thought to be an effective approach to 

incorporating dependency considerations into input modeling. It accounts for the 

dependency between sampling variables along the timeline on discrete time points. 

Our research has verified that this approach can provide a comparably simple solution 

for performing time-dependent input modeling for Monte Carlo simulation.
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Figure 3-2: Taxonomy of Input Models (Leemis 2001)
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3.2.3 Box Jenkins-based Monte Carlo Simulation Procedure

In the above paragraphs for the review of Box Jenkins methodologies, a generic 

ARIMA function was provided to represent the relationship between current values 

and past values, as well as with past forecasting errors.

Z t = S  + + <p̂ Lt_2 + ^3Z r_3 + • • • + £, — ~ ®2 £t- 2  (Equation 3-1)

If we manipulate the above function and move the time point one unit ahead, we can 

get a linear function for the description of future values with current values and past 

values, as well as with future and past forecasting errors. This function provides us a 

mean with which to study the future outcomes.

Z/+i = 3  + <PQZ t + 0\Z t_x + (j>̂ Lt_2 H t- £l+l — © 0£, — © i£t-i (Equation 3-2)

Equation 3-2 clearly has iterative characteristics. One may explain these 

characteristics by imaging that, with all the estimates of model parameters and current

z z z zavailable values ' ,  t~1, ‘~z ..., it is simple to estimate 1+1, which is the future

value. If one assumes that, this forecast is the real future outcome. Moving the time

2
point one unit ahead, another future value, 1+2, can also be obtained. If one continues

Zto employ this iterative calculation, any length of ' can be obtained.

£
It should be stated that in the above deterministic forecasts, ' is assumed to be equal

£
to zero. However, in simulation approach, ' must be considered as a randomly

C
determined factor, which enable Monte Carlo simulation iterations to be executed. ‘ 

is normally assumed to be a normally distributed random variate and as such, it is 

sometimes called white noise residual. It has a predetermined mean of zero and a 

variance of one (Pankratz, 1983).
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In Box Jenkins-based Monte Carlo simulation, several sample paths of simulated time- 

series data with predetermined lengths are generated and the mechanism of this 

generation operates using the following iterative procedures:

1. Move time point one unit ahead by transforming Equation 3-1 into Equation 3- 

2;

2. A pseudo-random number is generated that is uniformly distributed on the 

interval (0,1);

3. This random number is transformed into a normally distributed number with a 

mean of 0 and a variance of 1, by a transformation method such as Box-Muller 

of Inverse Method;

4. This normally distributed variate is deemed as a white noise error or residual 

and it is included in the ARIMA model (Equation 3-2) for the calculation of 

future values (other values are available as starting values);

5. Repeat Step 1 to 4 to generate other future values, assuming that the last 

estimated future value is the real observation, until all sampling values with 

length t have been generated;

6. Repeat Step 1 to 5 to continue with another iteration, until the predetermined 

iterations have been performed for Monte Carlo simulation analysis;

7. The output analysis can be performed on a large number of simulated future 

values on discrete future time points.

It is important for successful Monte Carlo simulation of the Box Jenkins time series 

model that the simulation calculation be based on the independent sample path. This 

requirement means that each sample path should be statistically independent in order 

to mimic the real system to the utmost degree. Therefore, the algorithm used for 

generating a random number is especially desired.

These basic algorithms are developed with a fitted ARIMA model using pre-sample 

data. Therefore, several assumptions and preliminary requirements must be established 

to enable the use of this approach:
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1. The fitted ARIMA model is ready and all the estimates of model parameters 

have been obtained;

2. Original time-series data is processed as stationary and is ready to serve as 

starting values for simulation calculations;

3. The ARIMA model, together with those estimated parameters, is assumed to 

be comparably constant for extrapolation operations;

4. The system being studied is univariate and a fitted ARIMA model is adequate 

to represent the complex numerical relationship operating beneath the system.

5. The simulated future values basically follow a normal distribution when the 

number of simulation iteration or the number of simulated future values is 

large enough that a stable converge maybe obtained.

3.2.4 Box Jenkins-based Monte Carlo Simulation Methodologies

Considering the importance of simulation modeling methods and the inadequacy of 

related research on Box Jenkins-based Monte Carlo simulation, we developed a 

number of trial modeling methodologies. These methodologies follow the basic 

practices of simulation modeling procedures and consider the required concerns 

associated with the application. Certain methods came from the modification of 

similar work and improved upon the current methodologies.

AbouRizk and Halpin (1990) researched a number of simulation studies on repetitive 

construction processes. They proposed a complete set of algorithms and 

methodologies for simulation input modeling techniques and output analysis methods, 

including necessary verification and validation methods. They recommended several 

points, which the simulator should ensure for the success of the simulation experiment 

for the construction applications:

• Proper input in the form of statistical models;

• Proper analysis of the output; and
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• Validation and verification of the model

Inspired and motivated by their research approach, this research gave special attention 

to the development of simulation modeling methodologies for Box Jenkins-based 

Monte Carlo simulation analysis. A complete set of methodologies are collected and 

summarized as follows, with a specific purpose to process time-series data using Box 

Jenkins technologies.

I. Data Collection

Proper data collection and related data processing methods are very important for 

successful time-series input modeling. Forecasting and simulation are only as accurate 

as the data used to generate summary statistics and forecasts. The most sophisticated 

statistical techniques and forecasting model will be useless if they are applied to 

unreliable data.

Normally, for successful input modeling, Box Jenkins methodologies require 50 to 

100 data points to build a good model. Box and Jenkins (1976) suggested that about 

50 observations is the minimum required number of data points. Other analysts 

mentioned that if using a smaller sample size, an interpretation of the results should be 

made with caution. A large sample data set is desirable particularly when one is 

working with seasonal data.

Three traditional types of problems may come with collected data. Therefore, certain 

methods should be employed to process original data into modeling data acceptable to 

Box Jenkins methodologies.

Missing data: may be caused by missing observations in a data series. Another kind 

of missing data is caused by the subjective deletion of outlets. Several methods can be 

applied in dealing with missing data. The following list contains four basic methods:
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■ Replace missing data with the mean of a series;

■ Replace missing data with a naive forecast;

■ Replace missing data with a simple trend forecast, or

■ Replace missing data with an average of the last two known observations,

which bound the missing observations.

These methods have their own degrees of applicability and their own limitations. In 

most cases, the fourth method is the easiest and most feasible method to employ.

Existence of outlets: should be removed from the original data set before any further 

processing. These irregular data points are caused by the influence of outside events, 

which are unpredictable. The existence of such outlets will damage the original data 

and cause impact on the further analysis. It should be noted that the removal of these 

outlets also results in missing data.

Data frequency problem: A specific problem associated with Box Jenkins-based 

simulation analysis is frequency. Often, time-series data are not presented in a manner 

conducive to the research being undertaken. Box Jenkins methodologies, however, 

require time-series data collection with high frequencies. This conflict requires the 

application of one of the following frequency conversion methods.

■ Repetition

■ The equal-step method

■ Linear or non-linear growth

The equal-step method is the most simple of the three and most capable of capturing 

the upturn or downturn in time-series data.

All these problems can be identified using graphical presentation methods. These 

methods are frequently used throughout the whole process of input modeling for the
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observation of time-series data, for the graphical presentation of statistical analysis, 

and for the performance of a hypothesis test. However, they also offer the most 

challenges for simulators when human judgements are needed.

■ Single-scale plot of a time-series:

■ Scatter Diagram

■ Bar Graphs

The detailed discussions on the above methodologies are beyond the limit of this 

thesis. Interested readers are referred to literatur on time-series forecasting 

methodologies for related information.

II. Data Stationarity Transformation

Original time series data, which are collected in a proper way, that is, which undergo 

necessary processing if required, constitute the basis for further analysis, may go 

through several transformation procedures in order to remove certain specific 

components, which may do harm to the input modeling. Basically, Box Jenkins-based 

input modeling requires continually sequenced, statistically stationary, and high 

frequency time-series data. However, in natural situations, these kinds of data are rare; 

original data, therefore, need to be processed in order to achieve these standards.

This achievement requires the identification of several characteristics pertaining to 

time-series data:

• Trend: a persistent upward or downward movement of data over a long period 

of time. This component demonstrates that data are not stationary in mean 

value.

• Seasonal Variations: a pattern of change in the data, which completes itself 

within a calendar year and is then repeated on a yearly basis. This component 

shows that data are influenced by certain seasonal factors.
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• Cycle: the upward and downward change in the data pattern that occurs over a 

duration of two to ten years or longer. Cycle is one of the most difficult 

characteristics to forecast because of its longer time frame.

• Irregular or error fluctuations: sometime called “white noise” or “outlets”. 

This characteristic should be removed from the original data set. Otherwise, 

related analysis will be extremely inaccurate.

Normally original time-series data can contain a combination of these four 

characteristics, which demonstrates the complex variation along the time axis. A 

simple solution for identifying these characteristics is to observe the data visually 

through the graphical presentations methods mentioned in the above section.

After the observation of a characteristics or combination of these characteristics, a 

series of transformation methods can be applied to remove these components. To 

clearly illustrate these methods, the concepts of stationarity and the several basic types 

of unstationarity should be defined.

Stationarity means that there is no growth or decline in the data. The data must remain 

roughly horizontal along the time axis. In other words, the data fluctuate around a 

constant mean, independent of time, and the variance of the fluctuation remains 

essentially constant over time. Three kinds of unstationarity, according to the 

description of stationarity, exist with original time-series data. They are:

•  Unstationarity in the mean

This kind of unstationarity exists when the time-series plot shows a change in the 

mean over time.

• Unstationarity with variance

When the time-series plot demonstrates an obvious change in the variance over 

time, it refers to unstationarity in the variance.

• Unstationarity with seasonality
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If the time series plot shows seasonal up and down over time, it is called seasonal 

unstationarity.

Normally, real time series data contain one or more of the above unstationarity, 

thereby affecting the plot of time-series data in a simple or complex way. Therefore, it 

is difficult to identify the unstationarity of data from the very beginning.

Several transformation methods have proven to be effective in offsetting these 

characteristics. They can be used independently or together for addressing single or 

combined unstationarity components.

• N-order Normal Differencing

• Seasonal Differencing

• Natural logarithm transformation

Much literature has introduced methods of judging the stationarity of time-series data. 

These methods can be classified into two branches: graphical methods and numerical 

methods. Due to the scope of this thesis, general summaries about these methods 

should suffice as explanations and these are provided along with discussion of an 

automatic transformation method.

• Graphical judgement methods

Simple plotting of time-series data, whether original or processed, is a direct and quick 

way to examine the stationarity. A certain trend or seasonality can be identified 

through visual observation. Related transformation methods can then be applied.

ACF and PACF are two measurements for the examination of correlations within the 

time-series data. Barcharts based on their measurements over a lag-time should be 

used on the original data and processed data after each processing is done.
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• Numerical judgement methods

Sometimes it is difficult to identify graphically the stationarity of data based on a 

nonstationary time-series, therefore, more accurate numerical methods should be 

employed.

Currently available numerical methods apply a hypothesis test as an efficient way to 

examine the stationarity. In theory, if a time-series is stationary without seasonality, 

the autocorrelations (ACF and PACF) should all be zero or else they will differ from 

zero only for the first few lags. For large samples, in order to test whether the 

autocorrelations are statistically equal to zero, one should use t-statistic, associated 

with ACF or PACF and compare them with predetermined critical values. In this way, 

the stationarity of time-series data can be judged numerically.

In theory, Mest for ACF and PACF must be rigidly obeyed in order to assure the 

stationarity of time-series data. However, in reality, as the number of sample data 

increases, the probability of rejecting at least one true null also increases. Thus to 

facilitate the testing, the condition is usually relaxed in order to allow one or two t- 

statistics in the first lag or first two lags to be larger than the acceptable critical level. 

This compromise proves to be feasible and practical in real modeling practices.

The objective of data transformation is quite straightforward. Stationary time series 

data is obtained in order to meet the assumptions of Box Jenkins methodologies. 

Time-series data should be statistically stationary in mean and variance, without 

seasonality and trend, in order for different transformation methods to be applied 

according to both graphical and numerical judgements. Modeling experience proves 

that a certain application sequence should be followed in order to obtain the 

stationarity quickly. Basically, the sequence follows Natural Logarithm 

Transformation first, if necessary, then seasonal differencing, if necessary, and normal 

differencing.

III. ARIMA Model Fitting
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ARIMA Model fitting for Box Jenkins-based Monte Carlo simulation can be described 

as the identification of a fitted ARIMA model and the estimation of model parameters. 

Therefore, the methodologies for model fitting share the most similarity with Best 

ARIMA Model Idenfication for Box Jenkins forecasting modeling.

All the methodologies for can be referred from literature about Box Jenkins 

forecasting modeling. Since ARIMA model fitting is also a time consuming and 

iterative procedure, the proposed automated Box Jenkins forecasting modeling tool in 

Chapter 2 applies as well in facilitating ARIMA model fitting. In the following section 

about implementation of Box Jenkins-based Monte Carlo simulation, readers will find 

this tool is utilized to perform input modeling.

IV. Input Modeling Finalization

Once these procedures have been completed and the best fitted ARIMA model is 

obtained, it is necessary to finalize the input modeling procedures and prepare for the 

Monte Carlo simulation.

The following results should be collected and recorded:

• Best fitted ARIMA model, along with all estimated parameters;

• Stationary time-series data based on the transformation of original-time series 

data;

• Original time-series data;

• Final order of normal differencing;

• Final lag of seasonal differencing; and

• Binary information regarding whether or not natural logarithm transformation has 

been performed.
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3.2.5 Box Jenkins-based Monte Carlo Simulation Execution and 

Output Analysis

After input modeling is finished, the resulting ARIMA model and related data can be 

fed into the Monte Carlo simulator for iterative execution.

Although the iterative execution is not complex, it is time-consuming. Basically, 

simulators must specify the number of iterations and the number of periods of time to 

extrapolate based on a current position in time.

The following figure illustrates the Box Jenkins-based Monte Carlo simulation 

execution:
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Figure 3-3: Box Jenkins-based Monte Carlo Simulation Algorithms

The results from Box Jenkins-based Monte Carlo simulation consist of a huge matrix 

of simulated future variates in which the number of random paths of observations 

corresponds to the row amount, while the number of periods to extrapolate 

corresponds to the column amount. All the results should then be inversely processed
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based on stationary time-series data into unstationary time-series data, based on the 

transformation information recorded in the input modeling finalization procedure. 

Three related inverse processing methods are identified:

• Unnormal differencing;

• Unseasonal differencing; and

• Unnatural logarithm transformation.

The algorithms of these methods are easy to understand and to implement if one 

knows how to perform the original transformations.

In theory, a large number of iterations are recommended because the Monte Carlo 

simulator requires a large number of replications to be generated, from which 

empirical distribution of extrapolated sampling data points can be created in order to 

approximate an actual distribution.

The number of periods should be selected with extreme caution. In Chapter 2, it was 

mentioned that Box Jenkins methodologies, as foundational to Box Jenkins-based 

Monte Carlo Simulation, are more reliable in short or medium-range forecasting. 

Certain researchers, therefore, recommended that no more than five periods would 

constitute a reliable selection if the ARIMA model is perfectly fitted (Gaynor and 

Kirkpatrick 1994).

It should be clarified, however, that even with the limitation in long range forecasting, 

Box Jenkins-based Monte Carlo simulations still behave better than the simple 

forecasting approach. The traditional forecasting approach only provides point 

estimates or range estimates with a certain degree of confidence level. The Box 

Jenkins-based approach, however, is able to provide stochastic analysis with more 

statistical information and more risk analysis results. In terms of available and
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pertinent information on the uncertainty in the future, Box Jenkins-based Monte Carlo 

simulation is considerably more helpful than the traditional approach.

After a large number of replications are obtained for each future period, the output 

analysis for the simulation experiment can be performed. As mentioned before, we 

believe that the simulated variates from Box Jenkins-based Monte Carlo simulation 

should follow a normal distribution because these variates are actually the summation 

of deterministic forecasts and randomly generated white noise or forecasting error, 

which is believed to follow a standard normal distribution. With this in mind, we are, 

therefore, able to employ established research findings on simulation output analysis 

in order to perform this analysis.

AbouRizk and Halpin’s research on “Probabilistic Simulation Studies for Repetitive 

Construction Processes” (1990) introduced methods of performing output analysis for 

simulation experiments where the resulting random variates are normally distributed.

Estimating Mean

X  = I V  X ,  (Equation 3-17)
n i=i

Where X  is the simulated variate and n is the number of simulated variates. 

Estimating Variance

S 2 = —!—Y (X ,. - X ) 2 ------------------------------------------------------ (Equation 3-18)
n - 1 f=1

Where S is the variance and n is the number of simulated variates.

Estimating Arbitrary Quantitile Points

X q = X  + zqS ------------------------------------------------------------------- (Equation 3-19)

where Xq is the qth quantitle point of the random variates, zq is the critical value from 

the standard normal distribution at the specified cut-off value q, and S is the MLE of
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the sample standard deviation, which is obtained from the square of S2 (from Eq. 3-18) 

multiplied by (n-1 )/n.

Estimating Probabilities

Pr(X < x) = <&(———) ...........................................................................(Equation 3-20)
S

Where Pr(X<x) is the probability that the output X  does not exceed a particular fixed 

value of x.

Other classic output analysis methods like Cumulative Distribution Function (CDF) 

and Probability Distribution Function (PDF) and the methodologies for descriptive 

statistics can be easily referred to in the many articles on Engineering Statistics.

3.3 Risk-based Box Jenkins Forecasting Implementation
Box Jenkins-based Monte Carlo simulation is actually an extension of Box Jenkins 

forecasting functionalities. The implementation of Box Jenkins-based Monte Carlo 

simulation, therefore, shares certain techniques with the implementation of Box 

Jenkins forecasting.

As mentioned in Chapter 3, Box Jenkins forecasting outputs, that is, the fitted ARIMA 

model and various transformation parameters, together with the original time-series 

data and stationary time-series data become the input model for the Monte Carlo 

simulation experiment. Thus, the implementation of a Box Jenkins-based Monte Carlo 

simulation can actually use the same tool associated with automated Box Jenkins 

forecasting modeling for its input modeling.

An implementation of Box Jenkins-based Monte Carlo simulation will include three 

procedures:

• Input modeling;

• Monte Carlo simulation execution; and
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• Output analysis.

Methods or algorithms, related to this implementation, except those already mentioned 

in Box Jenkins forecasting modeling, include:

• Box Jenkins-based Monte Carlo sampling;

• Empirical CDF plotting;

• Histogram plotting;

• Descriptive statistics analysis;

• Percentile points estimation; and

• Probability estimation.

Section 3.2.3 gives a thorough introduction of Box Jenkins-based Monte Carlo 

sampling. This particular method is implemented by a computer program coded in 

MATLAB programming language. For reference purposes, the completed computer 

codes are included in Appendix C.

Other methods of implementation, such as output analysis methods, are similar to the 

basic methods for general simulation experiments. In Section 3.2.5, there was an 

extensive discussion of the theories underlying these methods. Based on this 

information, the implementation can be realized in a spreadsheet program, such as 

Microsoft Excel.

As mentioned above, the developed automatic Box Jenkins forecasting modeling tool 

can be used as an input-modeling tool for Box Jenkins-based simulation. In a 

simulation experiment, however, the simulator should pay more attention to the fitted 

ARIMA model than to the Box Jenkins-based forecasts. In addition, information 

regarding the processing of original time-series, such as the order of normal 

differencing or the seasonal lag of seasonal differencing and the processing of the
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resulting stationary time-series data will become components of the input modeling 

data.

3.4 Conclusion

This chapter discussed in detail the research on Risk-based Box Jenkins forecasting, 

that is, Box Jenkins based Monte Carlo simulation. The research included a summary 

of problems regarding traditional time-series forecasting in the first place. Then to 

solve these problems, a risk-based Box Jenkins forecasting approach was proposed by 

the introduction of background knowledge for reference purpose.

Box Jenkins-based Monte Carlo simulation can be implemented by employing the 

developed SPS template as an input-modeling tool, along with the designed MATLAB 

programs for the simulation execution. All related output analysis could be conducted 

by spreadsheet software such as Microsoft Excel, since the detailed methods and 

related equations are well established by past research work.
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CHAPTER 4: MODEL VALIDATION AND CASE 

STUDY

4.1 Model Validation
Model validation proves to be an important task in defending and verifying 

methodologies. Any qualitative statement regarding the advantages or strengths of a 

methodology is not as convincing as a scientific validation test using data collected 

from an actual situation.

To verify that Box Jenkins forecasting methodologies are superior to other methods 

and to test the developed automatic modeling tool, a validation test for Box Jenkins 

forecasting methodologies was performed with the assistance of a developed 

Simphony SPS template. Another validation test was used to verify the functionality of 

Box Jenkins-based Monte Carlo simulation in risk and uncertainty analysis and to test 

the extension of forecasting functionalities. These two tests use testing data from 

public data resources to perform an analysis of the capital planning forecasting task. 

The basic validation methodology is to perform a comparative analysis between 

traditional methodologies and our proposed methodologies; the validation conclusions 

can then draw upon this comparison in terms of accuracy, functionality, and usability.

4.1.1 Introduction

In order to validate Box Jenkins methodologies using economic or technical data 

associated with the capital planning of infrastructure system, the testing data are 

carefully chosen within the domain of capital investment analysis. The data is selected 

to provide statistics for either the provincial or federal government level. Several 

criteria are identified:

1. The data are original, without artificial manipulation or processing;

2. The data are construction engineering and management related;
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3. The overall summary of the data occurs at a high level of management;

4. The data are frequently collected with an identical interval; and

5. There are more than 50 data points collected, in total.

Criteria 1, 4 and 5 are considered based on the perspective of a statistical modeling 

algorithm. Criterion 5 is especially recommended by Box Jenkins methodologies. 

Other criteria are chosen because the author’s focus is on construction engineering and 

management at high levels. The data that meet these criteria are highly suitable for 

related analyses.

Finally, a whole set of data was identified and selected from the website of the U.S. 

Census Bureau, Construction Section (http://www.census.gov/const/www/). Based on 

the above considerations, the author selected data from the U. S. Federal Construction 

Spending on Non-residential Projects, which focused primarily on infrastructure 

system spending. These data were collected monthly from January 1993 until July 

2003 without seasonal adjustments. The total number of data points is 127 and the 

basic unit of the data is millions of dollars. All these data are tabulated and plotted in 

Table 4-1 and Figure 4-1.
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Table 4-1: Tabulated Validation Data from US Census Bureau

Year  ̂ I ,  ...I.. J . , J ,
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Figure 4-1: Time-series Plot of Validation Data from US Census Bureau

4.1.2 Validation of Automated Box Jenkins Forecasting

In order to validate the forecasting functionality, the author began by generating a 

time-series based on the original data set used for testing. The monthly data from 

January 1993 to July 2003 were organized as time-series data, situating the most 

recent data set collected (July 2003) as the last data point and the oldest data collected 

(Jan 1993) as the first point. In this way, an original time-series can be generated.
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Based on the graphical observation of original time-series data, one identified a strong 

seasonality that appeared to control, to a certain degree, the fluctuation of monthly 

spending along a time axis. A slight upward trend is also present which may point to a 

continuous increase in the federal construction investment on non-residential projects 

over subsequent years. No irregular data points were identified other than those 

involved in the upward trend; therefore, the whole data set is suitable for further 

analysis.

Following similar practices of model validation, one need to choose part of the 

original data as a testing set and leave the remainder for modeling purposes. 

Considering the aforementioned characteristics of the original data, one decided to 

choose data points from September 2002 to July 2003 (a total of 11 data points) as the 

testing data. The remaining 116 data points will be used for forecasting modeling. For 

time-series data, it should be noted that the selection of testing data must not damage 

the continuity of a time-series; testing data, therefore, should be continuously selected 

from the most recent period.

The objective of this project is to verify the forecasting functionality of Box Jenkins 

methodologies through a comparison of its forecasts with those provided by other 

forecasting methods. Three forecasting methods are selected for the comparison: 

Moving Average, Regression, and Exponential Smoothing. These three methods are 

currently the most popular numerical methods available for forecasting and estimation 

in capital planning. These methods are easier to use and more understandable 

theoretically than Box Jenkins methodologies. Two graphical representations 

comparing the forecasting performance of all four methods are provided to summarize 

the test. Table 4-2 tabulates the original testing data against the forecasts for each 

method and; MAPE (Mean of Absolute Percentage Error) is tabulated as the key 

comparison criteria. Figure 4-2 is the graphical representation of the comparison of 

forecasts for all methods using original data as a baseline.
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From these representations, one can easily observe the difference between four 

forecasting methods in terms of forecasting accuracy and fitting quality.

Other than the method using Box Jenkins methodologies, the methods all fail to grasp 

the complex variation of an original time-series, especially the seasonal fluctuation 

cycle that occurs each September.

In terms of forecasting errors level, the regression method gives the worst 

performance. Exponential smoothing and moving average methods provide similar 

error levels. By contrast, the Box Jenkins method offers the best forecasting accuracy 

and fitting quality. It excels in grasping the seasonal fluctuation mentioned above as 

well as in short-range forecasting (1-5 forecasting periods). The results of this method 

follow nearly the same variation pattern as the original time-series. For long-range 

forecasting as well, it provides the most accurate forecasts available for monthly 

spending from February 2003 to July 2003.

More modeling details can be found in Appendix A. An observation of the comparison 

results yielded the following conclusions:

• The moving average method fails because it is not capable of analyzing 

seasonality. Compared with the complexity of original time-series, its 

algorithm seems too simple;

• The exponential smoothing method relies heavily on former forecasts. This 

characteristic prohibits it from providing fast, long-range forecasts;

• The regression method proves to be unsuccessful in dealing with univariate 

time-series data. Since no data for independent factors can be identified, only 

time is regressed against the original data.

In general, this validation test shows that Box Jenkins methodologies have the best 

performance when dealing with complicated, seasonal, and non-linear time-series 

data. Box Jenkins methodologies can provide excellent short and medium-range
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forecasts. Long range forecasting, is also more effective than with other basic 

methods, especially in terms of accuracy and quality of data fitting.
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Mar-03 1,279 1,325 • 1240.482929 : K ' 1390.8363 , - 1419.8358 t

Apr-03 1,434 1,326 ; 1240.721144 1390.8363 1391.301 :

IVfeyOS 1,466 1,329 ' 1240.959358 * - 1390.8363 ' 14827662
Jurr-03 1,535 1,326 ! 1241.197572 ■ 1390.8363 1464.2313 ■

Jul-03 1,449 1,323 1241.435787 1390.8363 1476.6965 ■

MAPE

Table 4-2: Comparison of Four Forecasting Methods In Terms of Accuracy



4.1.3 Validation of Risk-based Box Jenkins Forecasting

Box Jenkins-based simulation is especially advantageous in its ability to provide risk 

and uncertainty analysis to traditional forecasting. Its ability to incorporate 

dependency in random variable sampling also transcends traditional sampling 

techniques. The validation test aims to verify these two strengths through an 

implementation of functionalities.

4.1.3.1 Test on Risk and Uncertainty Analysis Functionality

This research demonstrates that Box Jenkins methodologies not only provide excellent 

forecasting accuracy in short and medium range forecasting, but can also be extended 

to incorporate a risk and uncertainty analysis through the use of simulation analysis. 

Simulation analysis can be used to obtain rich and comprehensive statistics; this 

information will improve our confidence in the future variations.

A standard Box Jenkins-based Monte Carlo simulation was performed using the same 

testing data used for testing the forecasting functionality. The results were 

summarized, tabulated, and compared with the results gathered from Box Jenkins 

forecasting. This method allowed us to observe difference between Box Jenkins 

forecasting and Box Jenkins-based simulation in terms of the availability of rich 

statistics, which are required for risk and uncertainty analysis.

Figure 4-3 shows the results of 100 simulated observation paths along a time axis with 

time points situated between September 2002 and July 2003. These simulated 

observations are used for risk and uncertainty analysis. The related methodologies and 

implementation methods were discussed in Chapter 3 and the previous sections.

Figure 4-4 shows the empirical CDF and Histogram for simulated observations of four 

example time points (September 2002 to December 2002). Descriptive statistics were
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collected for the four example time points and associated Rank and Percent Analysis 

was performed. These results were tabulated in Table 4-3 and Table 4-4.

All the above analyses constitute a basic Monte Carlo simulation Output Analysis. For 

demonstration purposes, only 100 iterations of the calculations were executed and all 

analyses were performed on the four example time points. A complete simulation 

experiment could require a higher number of iterations to be executed and the 

simulation output analysis would have to be done on all related future periods.
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Figure 4-3: Time-series Plot for 100 Simulation Paths
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Descriptive Statistical Analysis (Box Jenkins Methodologies)
Sep-02 Oct-02 Nov-02 Dec-02

.w w w n M , t . ■ J * : 1 % l 9 V I 5 ? 1 r 1 ̂  . . " V *  i "Myi m l  .......
Mean 1917.9407 Mean 1185.5325 Mean 1265.4054 Mean 1290.4273
Standard Error 15.758964 Standard Error 14.936416 Standard Error 15.245037 Standard Error 17.317154
Median 1930.1176 Median 1176.7401 Median 1266.9581 Median 1272.8412
Mode #N/A Mode m/A Mode #N/A Mode #N/A
Standard Deviation 157.58964 Standard Deviation 149.36416 Standard Deviation 152.45037 Standard Deviation 173.17154
Sample Variance 24834.496 Sample Variance 22309.651 Sample Variance 23241.117 Sample Variance 29988.383
Kurtosis 0.1909275 Kurtosis -0.518866 Kurtosis -0.226686 Kurtosis -0.203338
Skewness -0.046192 Skewness -0.038403 Skewness 0.1006718 Skewness 0.1164927
Range 849.039 Range 692.69593 Range 710.80433 Range 811.18355
Minimum 1550.1458 Minimum 810.84117 Minimum 949.91297 Minimum 863.18515
Maximum 2399.1848 Maximum 1503.5371 Maximum 1660.7173 Maximum 1674.3687
Sum 191794.07 Sam 118553.25 Sum 126540.54 Sum 129042.73
Count 100 Count 100 Count 100 Count 100

Table 4-3: Descriptive Statistics for Four Example Time Points
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Rank and Percent Analysis for Four Example Time Points
S ep-02 Rank Percent 0ct-02 Rank Percent N ov-02 Rank Percent Dec-02 Rank Percent

2399.1848 1 100.00% 1503.5371 1 100.00% 1660.7173 1 100.00% 1674.3687 1 100.00%
2248.5992 2 98.90% 1479.2859 2 98.90% 1588.7155 2 98.90% 1649.8183 2 98.90%
2244.1319 3 97.90% 1454.2146 3 97.90% 1580.0367 3 97.90% 1644.5688 3 97.90%
2154.3490 4 96.90% 1453.5372 4 96.90% 1563.3920 4 96.90% 1636.4744 4 96.90%
2148.1117 5 95.90% 1448.6491 5 95.90% 1561.2406 5 95.90% 1631.2147 5 95.90%
2145.5587 6 94.90% 1433.4321 6 94.90% 1520.4515 6 94.90% 1625.1280 6 94.90%
2124.9173 7 93.90% 1408.7689 7 93.90% 1508.7441 7 93.90% 1576.8919 7 93.90%
2115.8108 8 92.90% 1404.1067 8 92.90% 1489.5273 8 92.90% 1564.7098 8 92.90%
2112.8077 9 91.90% 1402.6425 9 91.90% 1483.2375 9 91.90% 1531.0378 9 91.90%
2108.6558 10 90.90% 1400.5430 10 90.90% 1470.2289 10 90.90% 1520.5421 10 90.90%
2104.1730 11 89.80% 1391.3967 11 89.80% 1457.1007 11 89.80% 1510.2469 11 89.80%
2097.0092 12 88.80% 1386.3231 12 88.80% 1448.9989 12 88.80% 1500.5309 12 88.80%
2096.6233 13 87.80% 1348.5399 13 87.80% 1444.9197 13 87.80% 1492.6218 13 87.80%
2089.2286 14 86.80% 1348.3856 14 86.80% 1415.6474 14 86.80% 1485.5570 14 86.80%
2081.8505 15 85.80% 1346.2904 15 85.80% 1411.9825 15 85.80% 1482.7274 15 85.80%
2069.1526 16 84.80% 1344.6560 16 84.80% 1409.9294 16 84.80% 1481.4798 16 84.80%
2047.7430 17 83.80% 1329.4892 17 83.80% 1401.1176 17 83.80% 1467.5210 17 83.80%
2042.6299 18 82.80% 1327.6801 18 82.80% 1400.2596 18 82.80% 1465.0617 18 82.80%
2042.5557 19 81.80% 1324.4815 19 81.80% 1396.7727 19 81.80% 1462.1615 19 81.80%
2037.7027 20 80.80% 1320.8941 20 80.80% 1395.3467 20 80.80% 1461.5086 20 80.80%
2036.4661 21 79.70% 1319.9508 21 79.70% 1383.0417 21 79.70% 1441.9163 21 79.70%
2027.3088 22 78.70% 1318.1305 22 78.70% 1368.5057 22 78.70% 1438.8181 22 78.70%
2027.0276 23 77.70% 1316.8911 23 77.70% 1361.9912 23 77.70% 1436.1051 23 77.70%
2026.6187 24 76.70% 1311.9695 24 76.70% 1360.9562 24 76.70% 1421.9344 24 76.70%
2023.1031 25 75.70% 1300.3182 25 75.70% 1351.4798 25 75.70% 1419.3281 25 75.70%
2016.5138 26 74.70% 1299.9751 26 74.70% 1346.0339 26 74.70% 1410.6672 26 74.70%
2011.9008 27 73.70% 1298.9094 27 73.70% 1345.8044 27 73.70% 1402.2406 27 73.70%
2006.7938 28 72.70% 1289.3740 28 72.70% 1343.1764 28 72.70% 1378.1006 28 72.70%
2003.1215 29 71.70% 1286.5543 29 71.70% 1339.6519 29 71.70% 1374.0263 29 71.70%
2003.0901 30 70.70% 1280.8910 30 70.70% 1337.8112 30 70.70% 1371.7709 30 70.70%
2002.3432 31 69.60% 1279.4482 31 69.60% 1336.9853 31 69.60% 1367.6193 31 69.60%
2000.4539 32 68.60% 1278.0378 32 68.60% 1335.5058 32 68.60% 1362.0561 32 68.60%
1998.5901 33 67.60% 1267.2253 33 67.60% 1333.3336 33 67.60% 1359.6705 33 67.60%
1998.0460 34 66.60% 1264.3622 34 66.60% 1331.0984 34 66.60% 1357.3176 34 66.60%
1997.7559 35 65.60% 1251.9779 35 65.60% 1324.9403 35 65.60% 1352.1584 35 65.60%
1991.8251 36 64.60% 1250.7405 36 64.60% 1323.5831 36 64.60% 1350.7988 36 64.60%
1989.3225 37 63.60% 1234.0127 37 63.60% 1322.5840 37 63.60% 1344.7058 37 63.60%
1988.7913 38 62.60% 1226.9065 38 62.60% 1316.6162 38 62.60% 1330.2230 38 62.60%
1984.0368 39 61.60% 1222.3721 39 61.60% 1314.4741 39 61.60% 1325.8418 39 61.60%
1982.0567 40 60.60% 1216.9710 40 60.60% 1312.1473 40 60.60% 1325.5866 40 60.60%
1968.4720 41 59.50% 1215.8908 41 59.50% 1311.8168 41 59.50% 1308.9349 41 59.50%
1960.0757 42 58.50% 1212.0240 42 58.50% 1311.0666 42 58.50% 1305.7167 42 58.50%
1956.1408 43 57.50% 1209.1947 43 57.50% 1308.4127 43 57.50% 1304.5460 43 57.50%
1954.4670 44 56.50% 1207.0856 44 56.50% 1307.7760 44 56.50% 1302.9287 44 56.50%
1951.7166 45 55.50% 1190.7247 45 55.50% 1301.9945 45 55.50% 1289.4410 45 55.50%
1949.7812 46 54.50% 1186.9082 46 54.50% 1282.0010 46 54.50% 1285.6289 46 54.50%
1948.2293 47 53.50% 1186.4310 47 53.50% 1281.2290 47 53.50% 1282.4250 47 53.50%
1938.4020 48 52.50% 1182.4775 48 52.50% 1279.1704 48 52.50% 1281.9975 48 52.50%
1936.1530 49 51.50% 1181.4186 49 51.50% 1277.8333 49 51.50% 1278.2191 49 51.50%
1932.6064 50 50.50% 1180.4886 50 50.50% 1271.8848 50 50.50% 1277.6947 50 50.50%

Table 4-4: Rank and Percent Analysis
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Comparing these results with those from traditional forecasting, as provided in the 

previous section, one finds that Box Jenkins-based simulation provides much more 

information about future outcomes than traditional forecasting. Box Jenkins-based 

simulation also extends the forecasting functionalities into a new area. The following 

comparative table (Table 4-5) shows the differences:

Table 4-5: Comparison between Traditional Forecasting and Box Jenkins Simulation

Performance

Criteria
Traditional Forecasting Box Jenkins Simulation

Forecasts
Point estimate and range 

estimate
Mean, STD, Variance, Max, Min, etc.

Uncertainty

Analysis
None

Risk and Uncertainty Analysis 

information, such as empirical CDF, 

histogram, percentile, probability.

4.1.3.2 Test on Dependent Simulation Input Modeling

The input modeling algorithms of Box Jenkins-based simulation is quite different from 

traditional statistical distribution-based input modeling. For statistical distribution- 

based input modeling, random variables are sampled from pre-fitted statistical 

distributions independently, without special considerations of the correlation between 

different sampling. As mentioned before, the wilful ignorance towards dependency in 

input modeling may cause a number of errors in the results. The proposed Box 

Jenkins-based simulation input modeling, therefore, does consider dependency by 

using a Box Jenkins time-series model as the input model.

To validate Box Jenkins-based simulation in providing dependent input modeling, the 

author performed a comparative test between traditional statistical distribution-based 

input modeling and Box Jenkins-based dependent input modeling. Graphical 

representations are used extremely to demonstrate the supposed dependency, which 

the traditional method does not consider but that the Box Jenkins based method 

successfully captures.
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The following group of Scatter plot figures (Figure 4-5) show the correlations between 

variables with different lag (lag 1,2, and 3 for examples) for an original time-series, 

traditional sampled variables, and Box Jenkins sampled variables. The top three 

figures demonstrate the presence of a positive correlation in the original time-series. 

The simulation sampling based on the original data should, therefore, reflect the same 

correlation. The middle three figures are used to demonstrate a correlation among the 

simulated variates with different lag as generated using a traditional sampling 

technique. Obviously, however, there is not a strong correlation identified by these 

figures; therefore, it is clear that this technique fails in sampling dependent time-series 

data. The bottom three figures clearly show the same positive correlation among 

simulated variates with different lag as generated by Box Jenkins-based sampling 

technique as in the original time-series. Box Jenkins-based sampling is, therefore, 

capable of capturing the dependence.

Figure 4-6 shows a simple time-series plot for traditional method input modeling. 

Table 4-6 lists the tabulated descriptive statistics of simulation output analysis for 

traditional method of input modeling. If one compares Figure 4-3 with Figure 4-6 and 

Table 4-3 with Table 4-6, one will easily conclude that traditional distribution-based 

input modeling can neither generate dependent time-series data, nor produce an 

accurate estimation of future outcomes. The corresponding simulation analysis must, 

therefore, be incorrect and unreliable.
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Figure 4-5: Scatterplot of Correlation between Observations with Different Lag (1,2, and 3)
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Descriptive Statistical Anaiysis(Traditional IVfethodriogies)
Sep-02 Oct-02 Nov-02 Dec-02

'■ ■ !r ; •" , I t restaM i ■ ;\ I'lSllM (KtfluslVil • . . . A : r* a.:'.' 1
Mean 1207.601 Mean 1228.454 IVfean 1253.075 IVfean 1234.630
Standard Bror 16.35276332 Standard Error 24.67043744 Standard Error 19.91750311 Standard Error 17.97987422
Median 1196.625977 IVfedian 1163.759338 IVfedian 1193.232117 IVfedian 1203.792358
Mode #MA Mode #N/A Mode m /A Mode m a
Standard Deviation 163.5276332 Standard Deviation 246.7043744 Standard Deviation 199.1750311 Standard Deviation 179.7987422
Sample Variance 26741.28681 Sample Variance 60863.04834 Sample Variance 39670.69302 Sample Variance 32327.58768
Kurtosis 3.02521661 Kurtosis 19.91492554 Kurtosis 0.841162171 Kurtosis 2.175341675
Skewness 1.065673294 Sfewness 3.636387573 Skewness 0.994403729 Skewness 1.10503487
Range 996.5276489 Range 1942.511353 Range 1049.356628 Range 1108.510681
Mniraim 926.4338989 Mnirrum 922.2613525 Minimum 920.2954712 Mnimum 875.046814
Maximim 1922.961548 Maximum 2864.772705 Maximum 1969.6521 Maximum 1983.557495
Sum 120760.0513 Sum 122845.4246 Sum 125307.4521 Sum 123463.009
Count 100 Count 100 Count 100 Count 100

Table 4-6: Descriptive Statistical Analysis (Traditional Methodologies)



4.2 Case Study

4.2.1 Introduction
The previous chapters have illustrated the details of Box Jenkins-based forecasting and 

simulation methodologies. Two validation tests have been conducted to verify the 

developed algorithms and methodologies. In order to demonstrate the strengths of Box 

Jenkins-based forecasting and simulation for dealing with the time related risk and 

uncertainty associated with engineering applications, a real project case was selected 

for study.

The City of Edmonton initialized the cost planning and budgeting of the South LRT 

Extension Project long before they started substantial site construction in 2003. The 

construction of the Section 1A project involves the tunnelling of underground railway 

and the installation of stations, utilities, and facilities. An Edmonton based engineering 

consulting company, the construction manager of this project, based on Edmonton, 

Alberta, identified the necessity of performing accurate medium-range cash flow 

prediction for this multi-disciplinary construction project. This type of prediction can 

serve not only as the basis for project planning and scheduling, but it can also provide 

a good reference for the project owner, the City of Edmonton, to well plan the capital 

budget for this project, which is collaborately funded by the City of Edmonton, 

Government of Alberta, and Government of Canada.

This consulting company has not managed this kind of project since the early stage 

LRT project was constructed in Edmonton. The available engineering data, therefore, 

dated back to more than 20 years ago. A proper inflation calculation must be applied 

to update these data for current cost conditions. Based on the information collected 

from tendering documents and from the construction site of the Section 1A project, 

This company created an annual cash flow prediction for the Section IB project. The 

construction of this project will begin in March 2005.
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This case study employed the proposed Box Jenkins forecasting and Box Jenkins- 

based Monte Carlo simulation methodologies to reattempt the prediction. The 

objective of this application is to verify the original forecasting with a comparison 

between original prediction results and those offered by Box Jenkins forecasting and 

simulation methodologies. The verification results were submitted to Stantec for 

comments and suggestions. The feedback can then serve as the basis for future 

research.

4.2.2 Problem Identification and Tentative Solution

The original cash flow prediction was based on a lump sum cost estimation of the 

Section IB project. The whole project was then broken down into several sub-items, 

which are scheduled for construction in the following five years, according to project 

scheduling and the proposed capital budget.

To consider the timing characteristic of project cost along a five years time frame, the 

original cash flow analysis adopted a Future Worth Method (FWM) to convert present 

worth (i.e., worth in 2003) into real future worth. This method is sometimes called the 

Compound Inflation Method, insofar as the compound inflation rate is incorporated 

into the calculation of future value in order to include the fluctuation in money value 

along a time-axis.

The following equations show the compounded calculation of present value to future 

value:

Where P  is the present value, F  is the future value, i is the annual inflation rate, and N  

is the number of years under consideration. When i is equal annually, Equation 4-1 is 

used; otherwise, Equation 4-2 should be applied.

di+0" .{Equation 4 -1 ) 

{Equation 4 - 2 )
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Three categories of cost inflation identified are supposed to vary over time. Three 

deterministic inflation rates were used to calculate the compounded rate. Future values 

for each year were obtained using the FWM. These values are summarized in Table 4-

7.

Table 4-7: Inflation Rates for three Cost Items (Original Analysis)

Inflation Item Inflation Rate

Construction Inflation 5%

Land Inflation 3%

Engineering Inflation 5%

The above calculations are based on an assumption that the inflation rate for each 

inflation item remains constant over time. This assumption and the corresponding 

practice within inflation calculation remains in popular use within the construction 

industry due to its simplicity and easy-of-use. In reality, inflation rates fluctuate 

considerably from year to year, so ignorance of this variation is not appropriate.

To solve this problem, a Box Jenkins-based forecasting and simulation model was 

built to estimate future inflation rates numerically and scientifically. A necessary risk 

analysis was performed to provide more information about future outcomes to assist in 

decision-making.

Inflation rate for a given time period can be calculated using the following formula 

(Boskers 2002):

CPI
e  = ------ ———— - 1 ------------------------------------------------------------------------ (Equation

CPI previous

4-3)

Where C P lcurrent is the current period index, and CPIprevious is the previous period 

index.
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The estimation of inflation rates can, therefore, be conducted by forecasting the cost 

indexes for the corresponding inflation item within a five-year time frame. Three cost 

indexes are chosen to represent selected inflation items. The corresponding 

relationships are illustrated in Table 4-8.

Table 4-8: Selection of Cost Index for Corresponding Cost Inflation Item

Cost Index Corresponding Cost Inflation Item

Construction Cost Index for 20 North 

American Cities Average (ENR)
Construction Cost Inflation

Engineering Cost Index for Total Engineering 

Cost, Alberta (Statistics Canada)
Engineering Cost Inflation

Landing Cost Index for Edmonton, Alberta 

(Statistics Canada)
Landing Cost Inflation

Due to the lack of specific and localized cost data, the above index data, which are 

collected annually by different organizations for construction industry, are chosen to 

represent the Province of Alberta or Edmonton capital region in terms of cost 

variation. However, these data reflect only the variation of corresponding cost item for 

general construction projects on average level. The author expected there would be a 

certain degree of errors by using these index data.

Three independent Box Jenkins forecasting and simulation analyses are performed 

based on the methodologies and algorithms introduced in previous chapters. The 

forecasting analysis is performed with the aid of a developed Simphony SPS template. 

The resulting ARIMA models, which include parameters used for simulation input 

modeling, performed 100 iterations of the simulation calculations. Those simulated 

variates generated by this simulation analysis, in the author’s opinion, should reflect 

the real variation at a certain degree of accuracy.
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4.2.3 Implementation and Results

The implementation of the case study was executed using a developed SPS template 

and MATLAB programs. Some output analysis was done using Microsoft Excel.

The following figures show the simulated random variates for three cost indexes along 

a time-line from 2004 to 2008. The total number of iterations is 100.

Box Jenkins Sim ulation Analysis for Construction Cost Index (2004-2008)
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Figure 4-7: Simulated Random Variates for Construction Cost Index
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Box Jenkins Simulation Analysis for Land Index Forecasting (2004-2008)
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Figure 4-8: Simulated Random Variate for Landing Cost Index

Box Jenkins S im ulation Ana lysis for Engineering Cost Index
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Figure 4-9: Simulated Random Variates for Engineering Cost Index
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Based on the above-simulated random variates for the three cost indexes, the equations 

for the inflation rate calculation and the compounded future value method, a risk- 

based cash flow prediction was obtained.

The following tables (Table 4-9 and Table 4-10) tabulate the comparative analysis 

results between inflation figure estimations by the original forecasting and those by 

the risk-based Box Jenkins forecasting. Figure 4-10 through Figure 4-13 demonstrate 

the comparison graphically. For the purpose of confidentiality, the displayed annual 

cash flow data are scaled to hide the real data.

Table 4-9: Comparison of Inflation Rate Estimation

Comparison of Inflation Rate Estimation
Original Inflation Rate Estimation

2004 2005 2006 2007 2008
Construction Inflation 5.00% 5.00% 5.00% 5.00% 5.00%
Land Inflation 3.00% 3.00% 3.00% 3.00% 3.00%
Engineering Inflation 5.00% 5.00% 5.00% 5.00% 5.00%

Box Jenkins-based Inflation Rate Estimation
50th Percentile

Construction Inflation 1.85% 2.07% 2.17% 2.17% 2.16%
Land Inflation 3.06% 3.35% 2.64% 3.09% 3.23%
Engineering Inflation 1.72% 0.13% 1.76% 1.23% -0.36%

60th Percentile
Construction Inflation 2.05% 2.33% 2.38% 2.36% 2.37%
Land Inflation 3.59% 4.32% 3.51% 3.71% 3.58%
Engineering Inflation 1.71% 0.89% 2.11% 1.66% 0.20%

80th Percentile
Construction Inflation 2.52% 2.93% 2.88% 2.80% 2.83%
Land Inflation 4.83% 6.56% 5.45% 5.05% 4.32%
Engineering Inflation 1.70% 2.61% 2.90% 2.60% 1.41%

90th Percentile
Construction Inflation 2.88% 3.37% 3.25% 3.11% 3.17%
Land Inflation 5.75% 8.19% 6.82% 5.97% 4.82%
Engineering Inflation 1.68% 3.87% 3.46% 3.26% 2.24%

95th Percentile
Construction Inflation 3.17% 3.73% 3.55% 3.37% 3.44%
Land Inflation 6.52% 9.52% 7.90% 6.68% 5.20%
Engineering Inflation 1.67% 4.90% 3.91% 3.79% 2.90%
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Table 4-10: Comparison of Annual Cash Flow Estimation 

 Comparison of Cash Flow Estimation (Scaled)
Original Annual Cash Flow Estimation

2004 2005 2006 2007 2008 Total
Subjective Forecasts $15,380 $79,214 $117,115 $201,264 $186,177 $599,149

Box Jenkins-based Annual Cash Flow Estimation
Statistical Forecasts 2004 2005 2006 2007 2008 Total

50th Percentile $14,993 $78,190 $108,717 $183,770 $167,004 $552,674
60th Percentile $15,007 $78,720 $109,367 $185,072 $168,417 $556,584
80th Percentile $15,053 $79,959 $110,936 $188,155 $171,755 $565,858
90th Percentile $15,077 $80,873 $112,059 $190,406 $174,195 $572,610
95th Percentile $15,098 $81,626 $112,983 $192,261 $176,204 $578,172

Comparison of Construction Cost Inflation Rate Forecasting
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Figure 4-10: Comparison of Construction Cost Inflation Rate Forecasting
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Comparison of Landing Cost Inflation Rate Forecasting

—♦— Subjective 

— 5 0 % Percentile 

60% Percentile 

--X— 80% Percentile 

— 9 0 % Percentile 

—• — 95% Percentile

2003 2004 2005 2006 2007 2008 2009

Y ear

Figure 4-11: Comparison of Landing Cost Inflation Rate Forecasting
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It is clear that Box Jenkins-based forecasting and simulation methods provide a more 

scientific estimation of the inflation rate variations and cash flow fluctuation than in 

the original analysis. It not only generated deterministic point forecasts, revealing that 

the cost inflation rates do not remain constant over time, but also provided risk 

analysis data such as the Maximum, Minimum, Mean, and Standard Deviation, in 

order to enrich the information already obtained. It provided a helpful risk analysis to 

the decision-maker involved in the capital planning task, in the form of the Arbitrary 

Quantile Points. With this information, project management professionals can perform 

risk-based analyses, such as scenario analysis. This scenario analysis will incorporate 

questions concerning the probability of meeting the projected cost requirements in 

2004 if the total project budget for fiscal year 2004 is a particular amount and the 

minimum budget requirement if the decision-maker tolerates an 80% probability of 

project failure.

The above benefits arise from a unique risk analysis provided by Box Jenkins-based 

Monte Carlo simulation. Without simulation analysis, decision-makers will not have
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access to the same high level of information, which will render the decision-making 

process much more difficult and potentially inaccurate.

To get feedback from the industry about the case study, the analysis results were 

submitted to Stantec for comments and suggestions. The project manager of the South 

LRT extension project from this consulting company thoroughly reviewed the results 

and gave the following comments:

• Cash flow forecasting at the 90th percentile point is more useful than other 

percentile points for the purpose of project planning.

• The forecasted construction cost inflation rate is lower than the anticipated rate. 

The original one should be more realistic considering the specific market for 

underground subway construction in the Edmonton area, which fluctuate much 

more than the general construction market.

• The forecasted land cost inflation rate makes more sense than the original analysis. 

Accordingly an increase of the land cost inflation rate to 4% to 5% on average 

instead of the original 3% will be considered by Stantec.

• The forecasted engineering cost inflation rate is lower than the one that had been 

in use. This consulting company normally charges 5% for engineering cost 

inflation, which is more than the average level in the engineering industry. This 

charge rate is based on certain company business strategies.

In general, the project manager felt satisfied about the submitted analysis results and 

agreed that the objective of this case study, the verification of original cash flow 

forecasting was achieved.

4.3 Conclusion
This chapter discusses the research work on the verification of proposed automated 

Box Jenkins forecasting modeling tool and risk-based Box Jenkins forecasting model. 

The whole verification started from performing several validation tests on expected
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functionalities expected from the proposed modeling tool and the forecasting model, 

then an industry case study was utilized to test the applicability of proposed 

forecasting model in dealing with real capital planning problems.

The validation tests are performed in order to verify the superiority of Box Jenkins 

methodologies in forecasting functionality and simulation functionality. Comparative 

tests are conducted between Box Jenkins forecasting and other forecasting 

methodologies to show the advantages with regards to accuracy of Box Jenkins 

forecasting in providing short and medium-range forecasting. Box Jenkins-based 

simulation also proves to be more powerful in providing rich risk and uncertainty 

analysis information about the future outcomes than traditional forecasting method. As 

an academic contribution, Box Jenkins-based input modeling proves to be more 

adaptable in providing dependent sampling than traditional statistical distribution- 

based input modeling.

This case study applied Box Jenkins-based forecasting and simulation technologies to 

perform cash flow prediction and risk analysis for the City of Edmonton South LRT 

Section IB Project. The analysis results were used to verify and improve the original 

cash flow prediction for project planning purposes. Compared to the original analysis 

from the local engineering consulting company, the new analysis derived the variation 

of project cost inflation from historical data, instead of from personal experience. It 

provided unique risk-based statistical information for project planning and scenario 

analysis, which enabled it to verify and improve upon the original analysis.
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CHAPTER 5: CONCLUSIONS

5.1 Summary of Research
Generally, the capital planning of an infrastructure system is necessary due to 

shrinking project budget and an increased complexity of infrastructure projects. It is 

very difficult to be accurate in planning due to the high uncertainty of future outcomes 

and as a result of time and cost constraints. As one of the steps, which capital planning 

analysis should undertake, forecasting and estimating proves to be the most important, 

albeit the most expensive, step to acquire input information for further analysis. Based 

on a literature review, one of the reasons for which forecasting and estimating is 

expensive to perform, is that powerful, easy-to-use, and economical analysis tools are 

difficult to obtain despite the development of technologies.

This research was initialized to study the consequences of implementing advanced 

forecasting methodologies, such as Box Jenkins forecasting method, and to explore the 

possibility of simplifying these methodologies by automating originally manual 

modeling technique in the form of integrated computerized modeling. The research, 

subsequently determined the need for incorporating risk and uncertainty analysis into 

the existing method and to extend traditional forecasting into risk-based forecasting.

The development of Box Jenkins-based methodologies, which incorporates the 

automation of advanced forecasting modeling and the extension of current 

functionalities to include risk analysis, improves current analysis tools by offsetting 

the limitations of single forecasting particularly in accuracy and adaptability. It also 

employs simulation technologies to provide terms of risk-based statistical analysis for 

future estimation. The methodology has also proven to be, especially easy to use with 

the assistance of the developed automatic and integrated modeling tool and other 

proposed computer programs. This practical aspect is an important concern for 

average users in the construction industry.
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All the theories and algorithms associated with this research are coded and tested 

using MATLAB 13.0. The related computer codes were developed in order to facilitate 

the implementation of these methodologies by average users. The automation of Box 

Jenkins forecasting methodologies is realized by the application of a SPS template 

developed in Simphony. This template also becomes a part of the implementation tools 

for Box Jenkins-based Monte Carlo simulation.

The necessary validation tests for the proposed methodologies were performed using 

actual engineering data. A comparative analysis between traditional methodologies 

and Box Jenkins-based methodologies strongly demonstrated the advantage of Box 

Jenkins forecasting and simulation in providing accurate forecasts and unique risk 

analysis. Comparative testing also proved that Box Jenkins-based simulation input 

modeling provides a feasible solution for dependent input modeling, which traditional 

statistical distribution-based input modeling is unable to provide.

The South LRT Extension Section IB project annual cash flow prediction was studied 

to demonstrate the adaptability of Box Jenkins forecasting and simulation technologies 

in a real construction management case. Based on an analysis of the results, one can 

clearly observe the difference between the original analysis and the new analysis in 

terms of the increased availability of accurate estimation and risk analysis information. 

The feedback from the industry, regarding the analysis results, verified that these 

technologies provided a more scientific and risk-based prediction. The suggestions 

also emphasized the importance of using more customized and localized historical 

data for analyses specifically designed for a particular geographical area in a particular 

period of time.

In general, Box Jenkins-based forecasting and simulation technologies provide more 

advanced and generic estimation tools for capital planning problems.
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5.2 Research Contributions

Contributions to the state of the art in capital system planning

The currently available methodologies for capital system planning were discussed in 

Chapter 2; the several limitations associated with these methodologies were listed. 

This research enabled the objectives that initiated this project to be achieved 

successfully. The applicable risk-based forecasting techniques, using Box Jenkins 

methodologies, are provided for short and medium-range capital planning tasks. These 

methodologies also prove effective for long-range capital planning tasks, particularly 

as compared to the available methodologies.

Two specific contributions to the state of the arts in capital system planning are 

identified:

• The simplification and automation of complex and advanced forecasting 
methodology applications for solving engineering problems for non-professionals.

This contribution resulted in a significant reduction of overall time and cost spent in 

the application of Box Jenkins-based methodologies as a result of using the developed 

Simphony SPS Template.

•  The combination of advanced forecasting methodologies with simulation 
technologies to incorporate risk and uncertainty analysis into traditional 
forecasting analysis.

This research provides a good starting point for continued research and development 

of the combination of forecasting method and simulation technologies.
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Contributions to the academic research on construction simulation technologies

• This research work developed the input modeling algorithms for univariate 
random process modeling with time series data

A complete set of input modeling algorithms, including all the methodologies, 

modeling procedures, and implementation tools were developed for the application of 

Box Jenkins-based Monte Carlo simulation input modeling, simulation execution, and 

output analysis.

• The research developed dependent input modeling algorithms for univariate time- 
series data.

This research provided an applicable solution for proposed dependent random 

sampling, using Box Jenkins forecasting models. Compared with traditional statistical 

distribution-based random sampling, this solution has the ability to adapt to dependent 

time-series data.

5.3 Limitations of Research and Related Future Work
This research was initialized under the topic of Univariate Random Process Input 

Modeling, and focused on capital planning using Box Jenkins methodologies. A 

complete set of input modeling algorithms for univariate time-series data has already 

been established and the related software for its implementation has been developed. 

In a real situation, however, there are always several time-related factors. These 

factors vary over time and interact among themselves, making the risk and uncertainty 

associated with the correlation more complex than situations that involve only a single 

factor. Accordingly, this research has the limitation of focusing on unvariate input 

modeling without any consideration of the multivariate cases that might present 

unforeseen influencing factors or of assuming a single factor will dominate an entire 

situation in a particular case.
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Another limitation exists with the output analysis that follows input modeling and 

simulation calculations in a complete simulation analysis. In this research, the author 

employed the output analysis methods established by AbouRizk and Halpin (1990) for 

traditional statistical distribution-based input modeling methodologies. These methods 

are not tested for the adaptability of them on Box Jenkins-based input modeling 

methodologies. The results, therefore, are immature and vulnerable to in-depth study. 

In the view of the time constraints, this research only focuses on the study of input 

modeling and the development of related algorithms and methodologies. The 

established output analysis methods were taken for granted. It is still necessary to 

perform a detailed study on output analysis methodologies for Box Jenkins-based 

Monte Carlo simulation experiments.

A third limitation exists with the implementation of Box Jenkins-based Monte Carlo 

Simulation. Although the input modeling has been automated using the developed 

Simphony SPS template, the simulation execution and output analysis still require 

users to operate several computer programs developed in the MATLAB 13.0 

environment.

These limitations indicate the direction that future research may take, which are 

summarized as follows:

• Multi-variate input modeling algorithms for time-series data must be studied 

and associated implementation methods must likewise be developed. A 

correlation analysis between different time-series and the impact of correlation 

on simulation output analysis may prove to be a helpful topic for research.

• The output analysis for Box Jenkins-based Monte Carlo simulation should be 

studied in detail and associated methodologies should be established.

• The automation of a complete Box Jenkins-based Monte Carlo simulation 

should be realized along with the development of an integrated computer 

simulation system.
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APPENDIX A: Validation Study for Box Jenkins 

Forecasting Methodologies
In order to validate the usability and adaptability of Box Jenkins forecasting 

methodologies, four basic forecasting methods are selected for a comparative analysis. 

The detailed modeling procedures of each method are attached below for reference:

1. Moving Average

Based on the introduction about moving average method from Time-series Modeling 

and Forecasting in Business and Economics (Gaynor and Kirkpatrick 1994), this 

method is a basic methodology to forecast the future outcomes through the averaging 

of most recent values. The methodology, therefore, is not difficult to be understood 

and be implemented. However, the selection of how many most recent periods 

(numbered by k) to utilized in computing the moving average is determined by the 

users. Normally, this number is determined by trial and error method in order to 

choose the ^-period moving average forecast that generates the smallest error.

In this test, a collection of 12 data points from a testing data set was selected for the 

identification of k  value. Tentative k values from three to thirteen are attempted and 

the resulting forecasts for these 12 periods through moving average method are 

compared. The following Table A -l demonstrates the comparison.

Based on the content of Table A -l, it is obvious that moving average forecasts for the 

selected 12 data points using k value as 12 produce the most accurate estimation and 

therefore k value as 12 was selected to be used in the following formal forecasting.

The final forecasts on the succeeding 11 periods (September 2002 to July 2003) 

through moving average method were provided in Chapter 3. The following time-
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series plot (Figure A -l) shows the original values against the forecasts along the time 

axis.
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Table A-l: Table for the selection of K  value for moving average method

P e r io d O rig in a l K APE K APE K APE K APE K APE K APE K APE K APE
3 4 5 6 7 8 12 13

Sep-01 1814.2 1280.6 29.4% 1272 .2 29.9% 1254.3 30.9% 1249.8 31 .1% 1231.4 32.1% 1223.9 32.5% 1237.3 31.8% 1241.4 31 .6%
Oct-01 1073 1273.4 18.7% 1278.5 19.1% 1268.6 18.2% 1253.6 16.8% 1247.2 16.2% 1230.5 14.7% 1199.4 11.8% 1237 .6 15.3%
Nov-01 1188 1475.8 24.2% 1408.1 18.5% 1384.9 16.6% 1359.4 14.4% 1333.3 12.2% 1318.0 10.9% 1264.0 6 .4% 1246.7 4 .9%
Dec-01 1213 1454.3 19.9% 1408.8 16.1% 1362.4 12.3% 1348.1 11.1% 1329.9 9.6% 1309 .6 8.0% 1258.4 3.7% 1253.0 3.3%
Ja n -0 2 1144 1238.4 8.3% 1371 .0 19.8% 1355.5 18.5% 1327.2 16.0% 1321.0 15.5% 1309.2 14.4% 1260.4 10.2% 1252.1 9.5%
F eb-02 1264 1213.1 4.0% 1211.2 4.2% 1328.7 5.1% 1325.9 4 .9% 1307.0 3.4% 1304.9 3.2% 1264.0 0 .0% 1256 .3 0 .6 %
M ar-02 1313 1190.0 9.4% 1189.1 9.4% 1189.3 9.4% 1293.0 1.5% 1297.0 1.2% 1284 .6 2.2% 1266.3 3.6% 1254.5 4 .5%
Apr-02 1283 1199.3 6.5% 1202.5 6.3% 1199.7 6.5% 1195.8 6.8% 1284.7 0.1% 1290.1 0.6% 1269.5 1.1% 1265.4 1.4%

M ay-02 1373 1258.8 8.3% 1230 .9 10.4% 1226.7 10.7% 1219.6 11.2% 1211.4 11.8% 1287 .4 6.2% 1280.6 6 .7% 1272.8 7 .3%
Ju n -0 2 1353 1284.9 5.0% 1272.7 5.9% 1246.1 7.9% 1239.4 8.4% 1230.9 9.0% 1220 .7 9.8% 1284.5 5 .1% 1281.1 5 .3%
Jul-02 1364 1313.6 3.7% 1310.4 3.9% 1295.8 5.0% 1269.4 6.9% 1260.1 7.6% 1249 .8 8.4% 1290.8 5 .4% 1291.4 5.3%

A ug-02 1404 1346.5 4.1% 1329 .9 5.3% 1323.6 5.7% 1309.2 6.7% 1284.3 8.5% 1274.1 9.3% 1304.1 7.1% 1296.1 7.7%
MAPE 11.8% 12.4% 12.2% 11.3% 10.6% 10.0% 7.7% 8.1%

Simple Moving Average Forecasting

2,000

1,900

1,800

1,700

1,600
Original
Forecasts

1,500

1,400

1,300

1,200

1,100

1,000
Jun-03Sep-02 Oct-02 Dec-02 Jan-03 Aug-03

Month

Figure A-l: Moving Average Forecasts against Original Data



2. Regression

The essence of regression method is to identify independent factors for dependent factor, 

thus a linear or non-linear regression function can be established between independent 

factors and dependent factor.

However, in this case, the author found that it is difficult to identify what kinds of 

independent factors can cause the variation of federal monthly non-residential spending 

based on the currently available information. It is also impossible to get the historical 

data for these factors even if some factors are artificially figured out because these factors 

may not have numerical forms.

The author, therefore, chose the simple trend forecasts, which means one can use time as 

an independent factor in the regression relationship function and the federal monthly non- 

residential spending as the left hand side dependent factor. In this way, a simple linear 

regression function can be established:

Y( = a  + fit + Et ---------------------------------------------------------------------------- (EquationA-1)

Where Y( = actual values for the time series variable; 

t = time (l,2,3,...,n);

a , -  coefficients for the regression function; and 

s t = random error in time period t.

The forecasts values for Y y are determined by estimating of the regression coefficients 

for a  and f l  and then by solving the equation for each value of t.

I l l
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The coefficient estimation results are tabulated as follows:

Table A-2: Summary of Trend Regression Analysis

SUMMARY O U T PU T
1

Repression Statistics
Multiple R 0 .0 3 9 1 4 6 8 9 6
R S q u a re 0 .0 0 1 5 3 2 4 7 9
A djusted  R S q u a re -0 .007226008
S tan d a rd  E rror 205 .3 8 3 4 1 1 5
O b se rv a tio n s 116

ANOVA
d f S S MS F ipnificance F

R e g ress io n 1 7 3 8 0 .6 7 9 7 3 8 0 .6 7 9 0.174971 0 .6 7 6 5 1 8
R esidual 114 4 8 0 8 7 8 7 42182 .35
Total 115 4 8 1 6 1 6 8

Coefficients andard Err tS ta t P-value Lower 95% Upper 95% ower 95.0° Ipper95.0°/
In tercep t 1211 .182564 38 .3 8 6 6 7 3 1 .5 5 2 1 7 3 .68E -58 1135 .139 1287 .2 2 6 1135 .139 1287 .226
X V ariable 1 0 .2 3 8 2 1 4 3 5 4 0 .5 6 9 4 8 9 0 .41 8 2 9 5 0 .67 6 5 1 8 -0 .8 8 9 9 3 9 1 .366368 -0 .889939 1.366368

From the above table, one can observe the bad performance of regression method in 

fitting the original data. The R  square, which is used as a major performance index for 

fitting quality, is just about 0.1%. This value is unacceptable based on forecasting 

requirements. The following figure (Figure A-2) can also demonstrate the bad fitting 

performance. The resulting forecasts have been provided in the related discussion in 

Chapter 3.

R e g r e s s io n  F o reca stin g  Line Fit Plot

2,100

1 ,9 0 0

1 ,7 0 0

1 ,5 0 0
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1 ,3 0 0

1,100

9 0 0

7 0 0

20 4 0 6 0 100 120 1 4 0

Time Point

Figure A-2 Data Fitting for Trend Regression Method
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3. Exponential Smoothing

There is no big difference between basic exponential smoothing and moving average 

in terms of foundational mathematical calculation. As an improvement on 

methodology, exponential smoothing gives different weights on different recent 

values in considering the different degree of effects of recent values on future 

outcomes when performing the averaging operations.

The basic exponential smoothing model one use is as follows:

S, = CC x t + (1 — a  )St_x ( 0 < a  < 1 ) ------------------------------------------- (Equation A-2)

Or

(Forecast for period t+1, made in period t)= a  (Actual data point in period t) + (1+ 

a  )(Forecast for period t, made in period t-1)-------------------------------- (Equation A-3)

Based on the rule of thumb for the selection of a  (Smoothing Constant) or (1- a  ) 

(Damping Factor), a  should lie between 0.01 and 0.3. In this case, the author 

chooses 1 - a  = 0.3.

Exponential smoothing has proven incapable of providing the accurate forecasts for 

the testing time-series data. The reason, based on the study on the forecasting, is that 

during the weighted averaging calculation process, there is no further real 

observation, which can be obtained to modify the forecast and offset the error, 

therefore one can only assume a current forecast is the approximation of a real 

observation. Ultimately the forecasting error is accumulated and the resulting 

forecasts, accordingly, are far way from the real values.

The following figure (Figure A-3) demonstrates the original data against the forecasts 

through exponential smoothing method.
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Exponential Smoothing Forecasting

000

9 0 0  - Original f

F o re c a s ts  (Dampling F acto r= 0 .3  j~8 0 0

7 0 0  -

6 0 0  -

5 0 0  -

4 0 0 * -

3 0 0

200  -

100
S e p -0 2  O ct-02  D ec-02  Ja n -0 3  M ar-03 M ay-03 Ju n -0 3  A ug-03

Month

Ju l-02

Figure A-3: Forecasts from Exponential Smoothing Method

4. Box Jenkins

The execution of Box Jenkins forecasting methodologies is assisted using the developed 

SPS Simphony template. The detailed instruction of this template can be referred to from 

Appendix D.

The following series of figures illustrate the automatic modeling process progressively. 

These pictures come from the screenshot of the executed simulation model using the 

developed SPS template under Simphony environment.
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1) Data Input
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Figure A-4: Screenshot of Data Input Window

2) Modeling Initialization
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Figure A-5: Screenshot of Modeling Initialization Window
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3) Judgement of Stationary
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Figure A-6: Screenshot of ACF Plot Window
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Figure A-7: Screenshot of PACF Plot Window
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4) Modeling Parameters Updating
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Figure A-8: Screenshot of Modeling Parameters Updating Window

5) Forecasts output
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Figure A-9: Screenshot of Modeling Termination Window
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Value
TABULAR DATA
GRAPHICAL DATA

>02
1172.50989786555 3.85683726611031E-02
1288.97507737692 3.85683726611031 E-02
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1369.370615911 3.85683726611031 E-02
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1476.69651346781 3.85683726611031 E-02
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Figure A-10: Screenshot of Forecasts Output Window
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Figure A - l l :  Screenshot of Forecasts in Time-series Plot Window
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APPENDIX B: Box Jenkins-based Monte Carlo 
Simulation Validation
The following tables tabulate the data collection of all resulting simulated observations 

for the testing eleven periods using Box Jenkins-based Monte Carlo simulation. These 

sampled data are employed to perform basic simulation output analyses, which 

methodologies have been discussed briefly in Chapter 3. The time-series plot of these 

simulated observations is also provided in Chapter 3.

It is noted that the Box Jenkins-based Monte Carlo simulation is executed by 100 

iterations for demonstration purpose. Theoretically, it is recommended that as many as 

possible iterations should be attempted to make the simulation calculation stably 

converge in order to mimic the real complex variation of the data being studied.
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Sep-02 Oct-02 Nov-02 Dec-02 Jan-03 Feb-03 Mar-03 Apr-03 May-03 Jun-03 Jul-03
Original 1901.00 1188.00 1354.00 1373.00 1276.00 1261.00 1279.00 1434.00 1466.00 1535,00 1449.00

Iteration 1 1658.69 1115.12 1262.03 1083.55 1318.93 1494.80 1413.24 1438.49 1521.76 1456.27 1598.97
Iteration 2 2244.13 1251.98 1400.26 1576.89 1405.08 1505.69 1439.71 1544.36 1401.31 1633.34 1816.90
Iteration 3 2042.56 1402.64 1143.50 1120.04 1292.43 1292.41 1490.30 1512.55 1625.68 1727.79 1704.92
Iteration 4 1729.14 1114.30 1209.03 1008.14 1150.11 1083.55 1461.48 1160.18 1417.58 1376.25 1225.19
Iteration 5 1903.04 1016.06 1333.33 1371.77 1507.75 1539.40 1429.17 1526.85 1424.42 1510.09 1517.29
Iteration 6 1863.69 1324.48 1039.59 1330.22 1353.45 1490.98 1551.71 1467.93 1658.11 1654.20 1567.35
Iteration 7 1867.04 934.54 1172.08 1241.42 1209.19 1516.80 1360.56 1464.10 1610.92 1650.64 1412.27
Iteration 8 1948.23 1030.14 1140.76 1410.67 1208.18 1402.92 1425.36 1290.82 1364.66 1473.04 1293.89
Iteration 9 1998.59 1073.64 1236.97 1110.97 834.59 1339.99 1206.81 1283.16 1375.45 1335.33 1192.80

Iteration 10 1855.09 974.94 1056.74 1419.33 1203.88 1134.26 1307.74 1111.95 1118.02 1203.07 1388.30
Iteration 11 2011.90 1025.01 1195.44 1230.90 1006.71 1056.32 1388.57 1262.84 1254.98 1427.52 1389.65
Iteration 12 2115.81 1278.04 1588.72 1631.21 1338.75 1336.36 1512.94 1441.86 1440.12 1586.90 1772.91
Iteration 13 1783.24 1096.17 1339.65 1165.77 1006.22 1237.04 1290.31 1342.52 1291.87 1313.81 1276.04
Iteration 14 2145.56 1150.73 1126.66 1367.62 1112.79 1335.68 1286.88 1406.43 1525.13 1416.89 1138.51
Iteration 15 2154.35 1400.54 1168.45 1350.80 1187.93 1225.95 1197.47 1343.96 1339.45 1375.00 1325.58
iteration 16 1968.47 1300.32 1660.72 1256.39 1177.46 1565.41 1446.35 1249.11 1535.27 1719.49 1674.67
Iteration 17 1988.79 1479.29 1346.03 1235.22 1256.62 1581.56 1335.82 1522.47 1454.98 1584.16 1370.79
Iteration 18 1607.13 1005.49 1244.61 1173.17 1327.82 1221.93 985.75 1016.83 1399.68 1251.80 1333.98
Iteration 19 1589.50 977.11 1054.92 1001.31 1014.22 1386.38 1269.46 1431.71 1286.91 1343.47 1236.04
Iteration 20 1873.83 1234.01 1401.12 1344.71 1420.74 1799.04 1684.04 1597.99 1829,61 1722.60 1560.73
Iteration 21 1911.28 1130.26 1470.23 1644.57 1299.64 1492.34 1408.96 1569.71 1229.23 1612.44 1553.04
Iteration 22 2096.62 1186.43 1311.82 1159.16 973.51 1164.65 1332.56 1191.87 1137.97 1424.24 1214.46
Iteration 23 1911.92 1134.53 1337.81 1282.00 989.39 1131.07 1327.79 1082.30 1254.41 1129.56 1063.34
iteration 24 1850.95 1180.49 1260.85 1461.51 1243.63 1160.32 1373.44 1354.73 1486.76 1510.64 1664.43
Iteration 25 1951.72 1182.48 1212.08 1625.13 1291.51 1225.93 1695.36 1528.34 1415.01 1609.69 1749.42
iteration 26 1932.61 1157.57 1111.83 1441.92 1246.31 1450.98 1335.52 1283.36 1492.27 1456.59 1738.85
Iteration 27 2248.60 1503.54 1163.92 1141.34 1165.05 1319.16 1390.72 1488.55 1381.25 1329.68 1388.18
Iteration 28 1954.47 1346.29 1444.92 1139.07 1363.54 1534.38 1595.45 1698.61 1700.69 1545.04 1606.27
Iteration 29 1984.04 1212.02 1226.16 1215.81 1053.43 1282.41 1395.65 1276.57 1327.08 1356.17 1345.87
Iteration 30 2108.66 1298.91 1563.39 1378.10 1193.26 1556.39 1527.35 1379.41 1537.63 1222.99 1613.69
Iteration 31 1807.32 1344.66 1180.55 1240.79 1140.11 1561.71 1452.45 1250.88 1286.11 1651.03 1773.86
Iteration 32 1721.00 1082.38 1191.26 1285.63 1098.38 1131.92 1218.25 1401.77 1739.22 1503.56 1451.12
Iteration 33 1837.88 1433.43 1520.45 1242.63 1203.58 1600.16 1567.24 1557.28 1347.29 1544.75 1637.31
Iteration 34 1759.54 1098.25 1074.10 1201.63 1184.16 1484.87 1416.83 1286.75 1684.36 1617.79 1577.71
Iteration 35 1834.76 1279.45 1345,80 1438.82 1145.59 1611.89 1565.33 1199.04 1565.60 1691.00 1665.25
Iteration 36 2112.81 1094.76 957.11 1500.53 1302.46 1385.51 1372.07 1153.18 1441.33 1190.21 1220.99
Iteration 37 2027.03 1264.36 1136.27 1531.04 1311.10 1713.60 1381.51 1362.33 1420.20 1466.85 1342.08
Iteration 38 1550.15 935.80 1180.43 1151.60 1078.10 1199.57 1288.09 1165.42 1202.87 1336.51 1230.98
Iteration 39 1766.09 1106.25 1351.48 1163.41 1211.61 1282.39 1346.45 1271.39 1084.91 1265.20 1504.85
Iteration 40 1854.68 1054.59 1279.17 1220.86 1113.67 1299.69 1534.98 989.96 1438.04 1204.05 1467.21
Iteration 41 1878.00 1171.07 1216.78 1257.47 981.33 1092.17 1138.29 1252.08 1215.46 1493.03 1363.52
Iteration 42 1842.96 1052.47 1253.91 1235.84 1149.29 1188.80 1307.37 1066.04 1404.01 1119.12 1171.52
Iteration 43 1949.78 1172.24 1561.24 1649.82 1505.31 1574.20 1492.07 1479.14 1405.74 1479.56 1460.17
Iteration 44 2026.62 1216.97 1282.00 1352.16 1392.37 1772.71 1635.33 1703.40 1806.51 1800.21 1906.11
Iteration 45 1918.76 1126.75 1311.07 1465.06 1476.62 1386.40 1633.26 1481.66 1540.30 1639.82 1736.56
Iteration 46 1684.09 1096.06 1301.99 1282.43 1445.98 1349.59 1556.13 1323.77 1306.45 1523.48 1253.30
Iteration 47 1820.01 918.31 1277.83 1202.79 967.93 1091.65 1086.41 1151.76 883.55 1015.84 890.41
Iteration 48 2003.09 1222.37 1307.78 944.20 1160.79 1145.98 1249.14 1198.97 1149.04 1341.76 1329.08
Iteration 49 2047.74 1453.54 1233.81 1374.03 1140.31 1493.94 1540.74 1380.40 1441.74 1368.01 1601.31
iteration 50 1889.25 974.21 1271.88 1674.37 1365.17 1239.44 1478.56 1205.42 1471.97 1180.12 1481.80

Table B-l: Simulated Observations for Testing Period of Time (Iteration 1-50)
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Sep-02 Oct-02 Nov-02 Dec-02 Jan-03 Feb-03 Mar-03 Apr-03 May-03 Jun-03 Jul-03

Iteration 51 2148.11 1454.21 1308.41 1482.73 1506.77 1368.09 1563.32 1629.39 1443.89 1417.21 1649.26
Iteration 52 1991.83 1404.11 1449.00 1304.55 1434.99 1451.20 1395.24 1771.92 1653.17 1483.55 1692.27
Iteration 53 2002.34 1319.95 1368.51 1359.67 1441.45 1440.80 1523.43 1406.77 1449.90 1463.34 1323.55
Iteration 54 1927.63 1170.98 949.91 1137.39 1162.02 1313.17 1351.68 1298.45 1149.99 1353.36 1309.84
Iteration 55 2003.12 1186.91 1361.99 1302.93 1221.94 1319.49 1265.55 1373.80 1628.35 1390.62 1388.24
Iteration 56 1918.05 1408.77 1102.79 1152.68 1078.76 1612.40 1497.36 1355.49 1498.65 1428.91 1623.64
Iteration 57 2036.47 1316.89 1323.58 1357.32 1321.32 1307.60 1406.67 1389.87 1335.19 1567.94 1308.68
Iteration 58 1734.15 1280.89 1180.70 1016.92 1256.37 1510.80 1510.38 1431.54 1377.53 1335.86 1615.26
Iteration 59 1819.56j 1267.23 1331.10 1277.69 1123.26 1376.73 1120.06 1045.42 1610.56 1367.00 1787.00
Iteration 60 1938.40 1320.89 1312.15 1278.22 1483.91 1320.94 1586.65 1394.68 1653.47 1684.94 1481.12
Iteration 61 2069.15 1059.90 1343.18 1325.59 1075.22 1285.23 1340.50 1164.19 1073.48 1124.15 1232.36
Iteration 62 2104.17 1139.16 1005.45 1267.99 1414.96 1386.49 1455.96 1406.14 1526.86 1624.08 1570.58
Iteration 63 1989.32 1215.89 1360.96 1208.17 1101.42 1321.16 1426.92 1224.65 1534.67 1446.55 1862.89
Iteration 64 1713.26 1170.90 1322.58 1218.30 1240.75 1246.33 1363.45 1396.51 1624.61 1596.88 1125.22
Iteration 65 2037.70 1209.19 1457.10 1510.25 1559.07 1729.16 1794.64 1412.62 1529.16 1720.05 1511.45
Iteration 66 2016.51 1207.09 1483.24 1192.73 1340.56 1162.56 1167.12 1336.49 1375.40 1199.84 1287.86
Iteration 67 1775.70 1169.18 1032.65 1265.01 856.14 1273.15 1319.68 1370.00 1275.69 1434.10 1211.18
Iteration 68 1589.10 1118.36 1093.04 1079.75 1117.45 1171.55 1405.46 1257.51 1514.53 1316.04 1389.48
Iteration 69 2081.85 1318.13 1324.94 1173.30 1147.13 1391.89 1255.36 1377.12 1606.04 1507.18 1518.72
Iteration 70 2097.01 1448.65 1255.35 1421.93 1422.16 1440.92 1898.99 1735.63 1606.75 1802.09 1834.84
Iteration 71 1651.49 1327.68 1036.03 1402.24 1048.07 1346.03 1502.37 1495.80 1505.99 1342.66 1436.45
Iteration 72 1658.78 958.97 1260.66 1308.93 1119.39 1294.35 1407.83 1360.99 1470.49 1741.11 1186.19
Iteration 73 1956.14 1286.55 1244.33 1467.52 1331.84 1564.17 1671.08 1741.27 1682.55 1871.18 1778.45
Iteration 74 1889.27 1088.83 995.90 1142.51 1025.77 1322.19 1347.73 1417.44 1458.38 1387.51 1401.80
Iteration 75 2089.23 1348.54 1173.22 1362.06 1247.89 1479.91 1424.00 1599.88 1543.60 1320.95 1701.48
Iteration 76 1998.05 1092.96 1409.93 1007.50 1344.56 1349.20 1154.24 1110.28 1363.80 1356.84 1192.81
Iteration 77 2124.92 1166.48 1336.99 1481.48 1465.52 1512.71 1302.24 1195.21 1526.77 1350.56 1527.26
Iteration 78 1982.06 1289.37 1396.77 1228.76 1216.03 1441.59 1203.23 1236.90 1238.94 1487.31 1656.40
Iteration 79 1798.28 1172.99 1231.15 1151.56 1227.23 1328.68 1195.14 1183.03 1304.78 1415.36 1168.39
Iteration 80 1838.76 1299.98 1580.04 1636.47 1556.03 1630.37 1656.71 1392.65 1579.79 1602.47 1651.92
Iteration 81 1810.95 1226.91 1103.30 1138.04 1194.09 1520.26 1247.63 1426.01 1329.71 1348.20 1302.36
Iteration 82 2042.63 891.68 1176.84 1325.84 962.77 1218.10 1225.78 1317.55 1224.10 1310.21 1234.85
Iteration 83 1853.59 1085.21 1205.98 1217.58 940.40 1397.04 1532.70 1344.29 1337.06 1429.32 1358.16
Iteration 84 1644.63 1348.39 1335.51 1436.11 1535.70 1173.31 1329.95 1407.19 1560.24 1401.50 1518.09
Iteration 85 1883.19 1117.91 1411.98 1255.68 1107.73 1189.13 1376.79 1205.20 1619.78 1518.30 1518.55
Iteration 86 1960.08 1391.40 1024.75 1485.56 1223.14 1385.18 1569.94 1536.05 1320.11 1244.30 1503.71
Iteration 87 1663.91 1043.00 1137.13 1029.17 916.16 1199.71 928.74 1303.08 1356.11 1225.06 1263.24
Iteration 88 1753.29 1181.42 1395.35 1520.54 1297.68 1526.00 1808.99 1917.39 1711.27 2072.88 1823.38
Iteration 89 1997.76 1190.72 1489.53 1492.62 1119.33 944.66 1399.07 1159.65 1496.40 1622.11 1317.59
Iteration 90 1936.15 1090.51 1508.74 1289.44 1463.54 1695.53 1260.02 1902.01 1886.49 1883.65 1667.90
Iteration 91 1703.37 916.71 1031.68 1242.80 1392.99 1523.79 1356.37 1048.78 1407.57 1252.00 1071.90
Iteration 92 2000.45 1329.49 1314.47 1305.72 1251.22 1368.02 1470.10 1674.65 1605.42 1673.16 1932.92
Iteration 93 2023.10 1250.74 1206.82 938.04 777.76 1099.22 1093.53 1067.79 987.28 1153.64 1173.62
Iteration 94 2027.31 957.35 1087.58 1188.01 949.69 1396.66 1543.49 1392.10 1244.89 1475.72 1029.32
Iteration 95 2399.18 1386.32 1281.23 1564.71 1359.89 1668.94 1553.94 1768.29 1870.68 1777.53 1721.76
Iteration 96 1883.02 1151.72 1383.04 1214.01 1109.19 1314.61 1255.32 1077.20 1459.40 1308.01 1110.38
Iteration 97 1890.16 810.84 968.73 863.19 1157.09 1139.22 1374.04 1312.39 1417.23 1244.54 1372.51
Iteration 98 1801.92 1038.34 1255.47 987.84 899.85 1198.78 1451.74 1322.90 1308.09 1329.19 1358.64
Iteration 99 1900.96 1311.97 1316.62 1229.70 1294.30 1542.90 1228.51 1210.80 1388.95 1461.27 1283.95

iteration  100 2006.79 998.02 1415.65 1462.16 1205.22 1495.31 1672.52 1554.39 1743.20 1652.94 1654.26

Table B-2: Simulated Observations for Testing Period of Time (Iteration 51-100)
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APPENDIX C: Developed Computing Codes for Box 

Jenkins Forecasting and Box Jenkins-based Monte 

Carlo Simulation
The developed computer codes for the implementation of Box Jenkins forecasting and 

Box Jenkins-based Monte Carlo simulation are written in the format of MATLAB M files. 

The resulting computing algorithms can be executed in MATLAB execution environment 

and eventually be compiled into standalone (Dynamic Link Library) DLL files. The 

resulting DLL files can be employed by other computer programs, which are coded by 

other programming languages, such as Visual Basic, C++, through the execution of 

specially designed computer codes.

The following sections will list the developed MATLAB codes of most related algorithms 

for Box Jenkins forecasting and Box Jenkins-based Monte Carlo simulation. Certain brief 

explanations will be provided to facilitate the comprehension and all the codes have been 

tested and executed in MATLAB 13.0 environment.

• Natural Logarithm Transformation

This algorithm is simple to be implemented. Therefore corresponding MATLAB codes are not 
developed.

• Normal Differencing 

Function y=differencing (x, n)
% This function performs N order differencing transformation on input matrix.
% Input:
% x: input matrix
% n: Order of differencing
% Output:
% y: differenced matrix 

[rows, columns] = size(x);
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If (rows ~= 1) & (columns ~= 1)

error(' Input "Series" must be a vector.'); 

end

y=diff(x,n,l);

• Seasonal Differencing

Function [NonSeasonalSeries]=seasonaldiff(Series Jag)

% This function performs seasonal differencing transformation on input matrix. 

% Input:

% Series: input matrix with m row and 1 column

% Lag: seasonal differencing lag, for example 4,6,8,12,24

% Output:

% NonSeasonalSeries: output matrix with m-p row and 1 column

[r,c]=size(Series); 

if lag>0 & lag<r 

for i=l:r-lag

NonSeasonalSeries(i,c)=Series(i+lag)-Series(i);

end

else

error('Invalid Lag!');

NonSeasonalSeries=Series;

end

• ACF Calculation

Function [ACF, Lags, Bounds] = ACF (Series)

% This function calculates ACF for input series 

% Input:

% Series: input series 

% Output:

% ACF: ACF for input series

% Lags: ACF Lags

% Bounds: ACF bounds

[ACF, Lags, Bounds]=autocorr (Series);
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Lags = Lags (2:length(Lags));

ACF=ACF (2:length(ACF));

• PACF Calculation

Function [PACF, Lags, bounds] = PACF(Series)

% This function calculates PACF for input series 

% Input:

% Series: input series 

% Output:

% PACF: PACF for input series

% Lags: PACF Lags

% bounds: PACF bounds

[partialACF, Lags , bounds]=parcorr(Series); 

PACF=partialACF(2:length(partialACF));

Lags = Lags(2:length(Lags));

• T test

Function [h,stats,size] = ttest(x,n,flag)

% This function calculates t-test statistics for input matrix x and 

% performs t-test hypothesis test.

% Input:

% x: input matrix

% n: total number of original series data

% flag:0 for ACF and 1 for PACF

% Output:

% h: binary value for the result of t-test. 0 pass, 1 not pass.

% stats: t-test statistics

% size: total number of t-test statistics

if nargin < 1,

error('Requires at least one input argument.'); 

end

[ml, nl] = size(x); 

if (ml ~= 1 & nl ~= 1)
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error('First argument has to be a vector.'); 
end
x = x(~isnan(x)); 
size = length(x); 
if flag==0

rootsum=zeros(size, 1); 
for i=2:size 

for j=l:i-l
rootsum(i)=rootsum(i)+x(j )A2; 

end 
end
stats = x.*sqrt(n)./sqrt(l+2.*rootsum); 

else
stats=x.*sqrt(n);

end
% Rule of Thumb for critical level of t-test 
crit = 2;

% Determine if the actual significance exceeds the desired significance
h = 0;
n=0;
for i=2:size

if abs(stats(i))>=crit 
n=n+l; 

end 
end 
if n>0 

h=l; 
end

• Q test

Function [H, pValue, Qstatistic, criticalValue] = qtest(Series)
% This function perform Q test for input series 
% Input:
% Series: input series
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% Output:

% H: binary value for Q test. 1 pass and 0 not pass

% pValue: significance levels

% Qstatistic: Q test statistics

% criticalValue: critical value

[H, pValue, Qstatistic, criticalValue] = lbqtest(Series); 

if H==0 

H=l; 

else 

H=0; 

end

•  Param eters Estimation

Function[Parameters,SEE,Innovations,ISCondition,Converge]=estimating(ROrder,MOrder,S 

eries)

% This function calculate the parameters for ARIMA models and output the 

% parameter sets, warning message and other useful information 

% Input:

% ROrder: order of AR model

% MOrder: order of MA model

% Series: input series

% Output:

% Parameters: fitted ARIMA model parameters 

% SEE: squared estimation error

% Innovations: estimation residuals

% ISCondition: binary value for Stationarity/Invertiblity conditions.

% 0 satisfied 1 not satisfied

% Converge: binary value for converge condition. 1 converge 0 not

% converge

if ROrder==0 

MtAR=[]; 

else
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for i=l:ROrder

MtAR(i)=0.1;

end

end

if MOrder==0 

InitMA=[]; 

else

for i=l:MOrder 

InitMA(i)=0.1; 

end 

end

[r,c]=size(Series);

MtConstant=mean(Series, 1 )*( 1 -0.1 *ROrder);

spec=garchset('R',ROrder,'M',MOrder,'C',InitConstant,'AR',InitAR,'MA',InitMA,'DisplayVOf

f);
[Coeff, Errors, LLF, Innovations, Sigma, Summary]=garchfit(spec, Series); 

if ROrder==0 

for i=l:3 

RPara(i)=0; 

end 

else

RPara=garchget(Coeff,'AR'); 

for i=ROrder+l:3 

RPara(i)=0; 

end 

end

if MOrder=0 

for i=l:3 

MPara(i)=0; 

end

else

MPara=garchget(Coeff,'MA');
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for i=MOrder+l:3 

MPara(i)=0; 

end 

end

Constant=garchget(Coeff,’C); 

Parameters=[Constant,RPara,MPara];

Converge=0;

if Summary.converge— 'Function Converged to a Solution' 

Converge=l; 

end

ISCondition=0;

if Summary.waming=='No Warnings'

ISCondition=l;

end

if ROrder==0 

for i=l:3 

RParaSEE(i)=0; 

end 

else

RParaSEE=Errors.AR; 

for i=ROrder+ l :3 

RParaSEE(i)=0; 

end 

end

if MOrder==0 

for i=l:3

MParaSEE(i)=0;

end

else

MParaSEE=Errors .MA; 

for i=MOrder+l:3 

MParaSEE(i)=0; 

end
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end

ConstantSEE=Errors .C;

SEE=[ConstantSEE,RParaSEE,MParaSEE];

•  F orecasting

Function[MeanForecast,MeanRMSE]=forecasting(ROrder,MOrder,Constant,AR,MA,Series, 

NumPeriods)

% This function forecast predetermined periods of future outcomes according 

% to fitted ARIMA model 

% Input:

% ROrder: order of fitted AR model

% MOrder: order of fitted MA model

% Constant: fitted constant

% AR: fitted AR model parameters

% MA: fitted MA model parameters

% Series: input series

% NumPeriods: input periods of future time 

% Output:

% MeanForecast: mean forecast

% MeanRMSE: mean RMSE

if ROrder==0 

AR=[]; 

end

if MOrder==0 

MA=[]; 

end

Spec=garchset('R',ROrder,'M',MOrder,'C,Constant, AR',AR,'MA',MA,'K',0.001,'P',0,'Q',0,'Di 

splay',Off);

[SigmaForecast, MeanForecast, SigmaTotal, MeanRMSE] = garchpred(Spec, Series, 

NumPeriods);

• Inverse Norm al Differencing

function [NewSeries]=invdifferencing(SeriesBeforeDiff,ForecastSeries,Order)

% This function transform the differenced series back to raw series
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% Input:

% SeriesBeforeDiff: series before normal differencing processing 

% ForecastSeries: forecasts series

% Order: order of normal differencing

% Output:

% NewSeries: Un-differenced series

[r 1 ,c 1 ]=size(Serie$BeforeDiff);

[r3,c3]=size(ForecastSeries);

NewSeries=SeriesBeforeDiff; 

switch Order 

case 0

NewSeries=[NewSeries ;ForecastSeries]; 

case 1 

for i=l:r3

NewSeries(i+r 1 ,c 1 )=ForecastSeries(i,c3)+NewSeries(i+r 1-1,cl); 

end 

case 2 

for i=l:r3

NewSeries(i+r 1 ,c l)=ForecastSeries(i,c3)+2*NewSeries(i+r 1-1 ,c l)-NewSeries(i+r 1-

2, cl); 

end 

case 3 

for i=l:r3

NewSeries(i+r 1 ,c 1 )=ForecastSeries(i,c3)+3 *NewSeries(i+r 1 -1 ,c 1)- 

3 *NewSeries(i+r 1-2,cl )+NewSeries(i+r 1-3,cl); 

end

otherwise

error('Cannot process Series with differencing order more than 3!');

end

• Inverse Seasonal Differencing

Function[NewSeries]=invseasonaldiff(SeriesBeforeSeasonaIDiff,NonSeasonalSeries,Lag) 

% This function performs reverse seasonal differencing on input series 

% Input:
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% SeriesBeforeSeasonalDiff: series before seasonal differencing

% NonSeasonalSeries: seasonal differenced series

% Lag: seasonal differencing lag

% Output:

% NewSeries:reverse seasonal differenced series

[r 1 ,c 1 ]=size(SeriesBeforeSeasonalDiff);

[r2,c2]=size(NonSeasonalSeries); 

if Lag==0 

NewSeries=NonSeasonalSeries; 

else

point=rl-Lag;

NewSeries=SeriesBeforeSeasonalDiff; 

for i=l:r2-point

NewSeries(rl+i,cl)=NewSeries(rl+i-Lag,cl)+NonSeasonalSeries(point+i,c2);

end

end

• Inverse Natural Logarithm Transformation

This algorithm is easy to be implemented so no specific MATLAB codes are developed.

• Box Jenkins based Monte Carlo Sampling

Function [ySim]=Simulation(ROrder,MOrder,Series,Horizon,nPaths)

% This function perform a Monte Carlo Simulation for specified ARIMA models 

% and output the simulated series paths.

% Input:

% ROrder: fitted AR model order

% MOrder: fitted MA model order

% Series: input series 

% Horizon: Periods of future time

% nPaths: Number of iterations 

% Output:

% ySim: simulated future outcomes in matrix

if ROrder==0
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InitAR=[]; 

else 

for i=l:ROrder

MitAR(i)=0.1;

end

end

if MOrder==0 

MtMA=[]; 

else

for i=l:MOrder 

InitMA(i)=0.1; 

end 

end

[r,c]=size(Series);

InitConstant=mean(Series, 1)*(1-0.1 *ROrder);

spec=garchset(R',ROrder,'M',MOrder,'C’,InitConstant,'AR',InitAR,'MA',InitMA,'Display','0

ff);
[Coeff,Errors,LLF,eFit,sFit]=garchfit(spec,Series);

[eSim, sSim,ySim] = garchsim(Coeff,Horizon,nPaths, [] 

eFit,sFit,Series);
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APPENDIX D: Box Jenkins Forecasting SPS Template 

User Manual

D.l: Overview
The Box Jenkins forecasting SPS template is a tool for automating Box Jenkins 

forecasting modeling process and providing Box Jenkins-based Monte Carlo simulation 

input modeling. The template, in one aspect, allows average users to employ Box Jenkins 

forecasting method in an easy and timesaving approach, without damaging the powerful 

features of Box Jenkins methodologies in providing accurate short and medium range 

forecasts for complex situations. In another aspect, it provides a convenient tool to 

perform time series data fitting and parameters estimation, which are essential to Box 

Jenkins-based Monte Carlo simulation.

This template was developed in Simphonoy with SPS template development language. 

The structure of this template follows the basic format of a traditional SPS template, that 

is, one father element on the top and several child elements underneath. Basically, the 

father element executes the function of collecting inputs and storing global variables, 

while the child elements, collectively perform the functionalities, which Box Jenkins 

forecasting modeling requires.

The template provides the user with one father element and four child elements: (1) UBJ 

Forecasting Root, which is the highest element in the hierarchy of elements, (2) Data 

Processing, which represent the data processing functionality, (3) Parameter Estimating, 

which represent the parameter estimation functionality, (4) Diagnostic Check, which 

represent the diagnostic check functionality, and (5) Forecasting, which represent the 

calculation of forecasts functionality.

D.2: Procedures of creating a Box Jenkins forecasting Model
To create a new Box Jenkins forecasting model using the developed SPS template, the 

following steps can be followed:
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1. Create a UBJ Forecasting Root;

2. Define the input parameters of the UBJ Forecasting Root, that is, input the historical 

data series and specify the forecasting parameters;

3. Create a New Entity element from Common template in child window as the source 

of new entity through the whole simulation model;

4. Create and link all four child elements after the New Entity element by the sequence 

of: Data Processing element-> Parameters Estimating element->Diagnostic Check 

element-> Forecasting element;

5. Define the input parameters for Data Processing element or leave them as default;

6. Link all the five elements in child window by collecting the connecting points from 

left to right;

7. Check the proper connection among elements and start the simulation;

8. Check the pop-up window for initial processing information or processing alert and 

take proper actions to refine the inputs for Data Processing element; and

9. Repeat Step 8 until successful completion information is displayed.

The following sections describe the details of using each element in the template.

D.3: Box Jenkins Forecasting Element

UBJ Forecasting Root

This element allows the initialization of Box Jenkins forecasting modeling. Users can 

input the original time series data, specify the desired periods of forecasting, and choose 

the method of data updating.

It is necessary to know that original time series data should be in the form of n rows time 

2 columns. Here n refers to the number of data points, which is unlimited in theory. The 

first column is for the time period information and the second column is for the data 

related to the period.
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Because Box Jenkins forecasting model is sensitive to the change of time series data, it is 

crucial to consider the updating of raw data when new data points are available. This 

template allows the flexibility of switching between manual data set updating and 

automatic data set updating. For automatic data set updating, it is assumed that the newest 

data point from the forecasting model is equal to the real data so it can be added to the 

end of raw data set for data updating.

Input:

Description of Time Series: text description for the raw data

Raw Time Series: original time series data for analysis

Periods of Forecasting: number of period of forecasting

Time Series Auto-Updated: Yes/No switch for data updating methods

...—...........  v
Parameters Output® j Statistics

j Parameter
^  j Description of Time Series

Value
Sample Time Series

□ : ?

]Raw Time Series TABULAR DATA c4 k->|
j  Periods of Forecasting 4.00
J T ime S eries Auto-U pdated? No f f f f f

Figure D-l: Inputs Windows for UBJ Root Element

Outputs:

Forecasting Results: the calculated forecasting results for the periods of forecasting 

specified in the input windows.

Statistics:

None.

JD ata Processing

Data processing element performs the basic data transformation and processing 

operations for analysis purpose. These operations include normal differencing, seasonal
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differencing and natural logarithm transformation. The final product by these operations 

is a stationary time series data for next procedure of modeling.

Inputs:

Perform Auto-Processing: Yes/No switch between hand modeling and automatic 

modeling.

Natural Logarithm Transformation: Yes/No switch for Natural Logarithm 

Transformation, only valid for hand modeling.

Seasonal Differencing Lag: Lag for seasonal differencing Lag, only valid for hand 

modeling.

Normal Differencing Order: Order for normal differencing, min 0 and max 3. only valid 

for hand modeling.

fly' - - . , Tn-,r-T'-rlir-w-,-w.,
Parameters :____________(O u tp u ts ________  j_____________ Statistics

P  Parameter Value |
► j Perform Auto-Processing? Yes

j Natural Logarithm Transformation? o "ajjOj
1 Seasonal Differencing Lag 0.00
j Normal Differencing Order r1.00 wM

Figure D-2: Inputs Windows for Data Processing Element

Outputs:

Plot for Raw Series: two dimensional x y plot for raw data.

Plot for Processed Series: two dimensional x y plot for processed data.

Autoregressive Correlation Function (Processed Series): ACF for processed data, 

represented by column plot.

T-test Statistics (ACF): T-test statistics values for ACF.

Partial Autoregressive Correlation Function (Processed Series): PACF for processed data. 

T-test Statistics (PACF): T-test statistics values for PACF.

Stationary Condition Satisfied: Yes/No switch showing the stationary condition status.
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I T M  U B J .  I d e n h i i L d i i o i

Parameters f  Outputs Statistics

I Output V a lu e
► 1 Plot for Raw Series g r a p h ic a l  d ata

Plot for Processed Series GRAmHCArDATA
1 Autoregressive Correlation Function (Processed Series) ■g r a p h ic a l  DATA “*
1 T-test Statistics (ACF) TABULAR d a ta

j Partial Autoregressive Correlation Function (Processed Series) GRAPHICAL DATA
IT-test Statistics (PACF) TABULAR DATA 1
j Stationary Condition Satisfied? No

Figure D-3: Outputs Windows For Data Processing Element

Statistics:

None.

Parameters Estimation

This element performs the estimation calculation of model parameters for each tentative 

ARIMA model. It uses MLE (Maximum Likelihood Estimation) method to calculate the 

constant, parameters for each ARIMA components. The estimation errors are also 

provided for reference.

Inputs:

None.

Outputs:

Estimated Parameters Table: calculated model parameters and model specification. 

Parameters Estimation Errors Table: calculated model parameters estimation errors.

P aram ete r | * O u tp u ts  ; Statistics

f | Output V alu e
I F .  j Estimated Parameters Table TABULAR DATA
j j Parameters E stimation E rrors T able TABULAR DATA

Figure D-4: Outputs Windows For Parameters Estimation Element
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Statistics;

None.

Diagnostic Check

This element performs the completed diagnostic checks. An array table displays the 

checks results, in which zero value represents Failure and one represents Pass.

All the good models from tentative models will be identified but the Best ARIMA model 

will be chosen for real forecasting.

Inputs:

None.

Outputs:

Diagnostic Check Results: Array table shows the check results. Note: 0 Failure, 1 Pass. 

Good ARIMA Models: Array table shows the ARIMA models who pass all the check 

items.

Best ARIMA Models: best ARIMA model with the least RMSE compared with other 

good models.

M n U U f r  ' Ir .. " "" ' 1 ■'•S,
Parameters

{ ................................ v " .............
[ O u tp u ts Statistics

O u tp u t **"~ ~ ~ ““ "“"1
► Diagnostic Check Results TABULAR DATA

Good ARIMA Models 1TABULAR DATA
Best ARIMA Model TABULAR DATA

Figure D-5: Outputs Windows for Diagnostic Checks Element

Statistics:

None.
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Forecasting
This element uses the best model identified by Diagnostic Check element to perform 

forecasting operation. Period of forecasting will be read from parent element and 

forecasting values will be displayed as an array table. A two-dimensional x y plot will be 

display to extend original time series to new periods.

Inputs:

None.

Outputs:

Forecasting Results: Array table to show the forecasting results. These values will be sent 

up to the parent element too.

Forecasting Plot: two-dimensional x y plot to show the new time series with forecasting 

values.

' Parameters Outputs | Statistics

Output " V a l u e  1
► |Forecasting Results TABULAR DATA 1

| Forecasting Plot GRAPHICAL DATA |

Figure D-6: Outputs Windows for Forecasting Element

Statistics:

None.
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