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We have not succeeded in answering all your problems. The answers that we have 
found only serve to raise a whole new set of questions. In some ways we feel we 

are as confused as ever, but we believe we are confused on a higher level, and 
about more important things. (From the final report of an anonymous industrial 

consultant, quoted by A.T. Winfree in “When Time Breaks Down”.)
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Chapter 1

Introduction

1.1 The Central Dogma of Molecular Biology
In 1958, Francis Crick presented two revolutionary ideas to the British Society of 
Experimental Biology [29]. The ‘Sequence Hypothesis’ is the idea that the simple 
4-letter alphabet of a DNA string (see Table 1.1) encodes the information neces
sary for the huge variety of proteins that form the structure and active components 
of life. The ‘Central Dogma of Molecular Biology’ is the idea that genetic infor
mation flows from DNA to RNA to protein. These concepts changed the way we 
look at life. Crick’s proposals introduced a new paradigm to molecular biology -  a 
paradigm with biological sequences at the core. The impact of this shift in thinking 
has extended beyond the field of molecular biology to reshape the way we see all of 
biology, medicine, disease, heredity and many other aspects of our everyday lives.

DNA, the genetic blueprint, contains the information in its simple sequence to 
encode the stunning variety of structural and catalytic molecules that are the stuff 
of life. DNA is transcribed into RNA, another sequence polymer that, among other 
things, may be processed and translated into an amino acid sequence (see Figure
1.1 and Table 1.2). The amino acid sequence is then folded1 and processed to form 
an incredible variety of proteins, the main functional components of living cells.

Crick [29] underscored the importance of understanding how the simplicity of 
sequence information could be transformed into astounding structural and func
tional diversity.

‘In the protein molecule, Nature has devised an instrument in which

'A s a protein is created, the amino acids are extended in a string or sequence. This is the protein’s 
primary structure. The amino acid sequence then becomes folded into a series o f helices, sheets and 
coils called the secondary structure. These helices, sheets and coils are then further folded into the 
higher level or tertiary structure. Figure 1.5 shows how the helices and coils (secondary structure) 
o f a potassium channel protein are organized relative to each other in order to form the tertiary 
structure. Quaternary structure defines the overall structure of groups of proteins that work together 
as a unit.

1
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Table 1.1: The Nucleic Acids

The 4-letter DNA and 4-letter RNA alphabets. The nucleic acids are linear polymers. They are 
made up of sequences of bases that are connected by a backbone o f deoxyribose sugars (ribose in 
the case of RNA) and phosphates. They naturally pair with the other bases, A with T/U and C with 
G.

DNA Base Symbol
Adenine A
Cytosine C
Guanine G
Thymine T

RNA Base Symbol
Adenine A
Cytosine C
Guanine G
Uracil U

Figure 1.1: The Central Dogma

An illustration o f the flow o f information from DNA to RNA to protein, coined by Francis Crick as 
the ‘Central Dogma o f Molecular B iology’. The image is courtesy o f the U.S. Department of 
Energy Human Genome Program.
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an underlying simplicity is used to express great subtlety and versatil
ity; it is impossible to see molecular biology in proper perspective until 
this peculiar combination of virtues has been clearly grasped.’

Proteins are the machinery of life. Proteins make up structural and active el
ements of living cells. To eliminate proteins and their functions would be to end 
life as we know it. It is astonishing that so much of the complexity we see and ex
perience in life can be encoded by relatively simple sequences of DNA, RNA and 
protein. The purpose of this work is to predict protein function from each protein’s 
amino acid sequence.

1.2 Protein Sequence, Structure, and Function
Protein function has traditionally been determined through experimental means. 
The human and laboratory resources required to characterize the function of a sin
gle protein are substantial. When considering the vast number of proteins that are 
of potential research interest, these resource demands become prohibitive. Fortu
nately, there are other methods through which we can establish protein function for 
many new proteins.

The regions of biological sequences that are most important for life tend to 
be most conserved. Evolutionary pressure maintains the most essential patterns 
in DNA, RNA, and protein sequences while less crucial sequence regions tend to 
allow mutations to accumulate. In some cases, sequence regions that are not well 
conserved may be important for function but may also be flexible enough to allow 
some changes (the changes may even be beneficial). In most cases, these regions 
are less important for proper function and can be changed over generations without 
significant decrease in the fitness of the organisms in which they exist. For these 
reasons, conserved patterns in biological sequences can be important predictors of 
function.

Protein sequences in particular offer a wealth of information about cellular func
tion. Proteins are the cell’s main functional units. As a protein’s function is deter
mined by its structure and its structure is largely determined by its sequence, protein 
sequence patterns are very closely related to protein function. Because of this, se
quence analysis can allow us to ascertain much of protein function by comparison 
of new sequences to those that have already been characterized.

In recent history, the amount of biological sequence information known has in
creased dramatically. The progress of sequencing technology and the many genome 
projects have generated vast amounts of DNA and RNA sequences. With that has 
come a flood of related protein information and in the ‘post-genomic era’ more 
and more attention now turns to proteins and their sequences. The recent growth 
of protein sequence databases shows the difficulty in keeping up with the increase

3
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Table 1.2: The Amino Acids and the Genetic Code

The 20 amino acids used to make proteins are each indicated by a single letter code. Each amino 
acid corresponds to one or more triplet codons of DNA. The remaining triplets (TAA, TAG, and 
TGA) are ‘stop’ codons that signal the termination of the amino acid sequence.

Amino Acid Symbol Genetic Code
Alanine A GCT, GCC, GCA, GCG
Arginine R AGA, AGG, CGT, CGC, CGA, CGG
Asparagine N AAT, AAC
Aspartic acid (Aspartate) D GAT, GAC
Cystine C TGT, TGC
Glutamine Q CAA, CAG
Glutamic acid (Glutamate) E GAA, GAG
Glycine G GGT, GGC, GGA, GGG
Histidine H CAT, CAC
Isoleucine I ATT, ATC, ATA
Leucine L CTT, CTC, CTA, CTG, TTA, TTG
Lysine K AAA, AAG
Methionine M ATG (start)
Phenylalanine F TTT, TTC
Proline P CCT, CCC, CCA, CCG
Serine S AGT, AGC, TCT, TCC, TCA, TCG
Threonine T ACT, ACC, ACA, ACG
Tryptophan W TGG
Tyrosine Y TAT, TAC
Valine V GTT, GTC, GTA, GTG
Ambiguous Symbols Symbol
Aspartic acid or Asparagine B
Glutamic acid or Glutamine Z
Any Amino Acid X

4
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Figure 1.2: Growth of Protein Sequence Databases

The SwissProt and TrEMBL databases (now UniProt [9]) have quickly increased in size since their 
inception in 1986. The SwissProt database is a human annotated protein database, while the 
TrEMBL database is an automatically annotated supplement to SwissProt.
It is clear that the human annotators cannot keep up with the huge amount of protein sequences that 
have been added to the TrEMBL database. Automated annotation is required to make better use of 
the sequence information that is available.
Data courtesy o f the NIAS DNA Bank (National Institute of Agrobiological Sciences, Japan).

Growth of Protein Sequence Databases
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in protein data (see Figure 1.2). The growth levels of human-annotated databases 
such as SwissProt cannot keep up with the pace of TrEMBL and GenPept. For this 
reason, highly automated methods of sequence analysis for protein classification 
are needed in order to obtain useful knowledge from these mountains of data. We 
need automatic and high-throughput sequence analysis methods in order to reduce 
the impact of the human annotation bottleneck.

Machine learning involves the task of learning from data in order to predict 
some characteristic of interest on new data. Through the use of machine learning 
techniques, we can utilize the large amounts of characterized proteins that are al
ready described in scientific databases to learn patterns that correlate with protein 
function. The learned patterns can then be used to predict the functions of pro
teins that are yet to be characterized. These machine learning techniques have been 
developed to allow very automated analysis, greatly reducing the human input re
quired in the process. Many of these techniques have also been designed to be very

5
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efficient, lending themselves to high-throughput classification tasks.
It is the goal of this work to examine the use of machine learning methods 

to allow accurate, automatic, and high-throughput classification of proteins from 
sequence data. By this, we hope to reduce the bottleneck of ‘wet lab’ work and 
human resources where scientists characterize a protein’s function through a series 
of painstaking and expensive experiments. Where accurate predictions are possi
ble, resources will be freed for the more interesting and difficult characterizations. 
By being able to make many predictions at once, we also enable investigators to 
view larger groups of proteins in ways they previously have not and perhaps find 
associations that were not previously known to exist.

We will compare current protein function prediction techniques in the context of 
the high-throughput and automated classification task. A recently developed prob
abilistic model called the probabilistic suffix tree (PST) will be further developed. 
The current work presents an alternative representation of PSTs, as well as results 
using an efficient implementation of the model. The results will show the promise 
of this new tool for automatic and high-throughput protein function prediction.

1.3 Protein Classes
Protein classes or families are defined by common characteristics among groups of 
proteins. These commonalities may be of almost any type and vary according to 
the research perspective of those studying the proteins in question. There are many 
classification systems in place and there is potential for many more.

Classification systems may differ greatly in their structure. Some are hierarchi
cal in nature, defining groups and subgroups of classification. Others are relatively 
flat and define no relationship between the various classes. Some classes are mu
tually exclusive while others are allowed to overlap. It should also be recognized 
that the use of terminology within the scientific community changes between re
searchers and over time. Because of this, classification systems also evolve over 
time. Differences in the classification systems and the biological realities they re
flect may impact upon the way in which class prediction is done. A small sample 
of these classification systems follows.

Gene Ontology The Gene Ontology [28] (GO) is a large hierarchical classifi
cation system (see Figure 1.3) that attempts to unify classification from diverse re
search interests. There are three hierarchies defined for Gene Ontology -  Molecular 
Function, Cellular Process, and Cellular Component. The hierarchies include both 
high-level classes such as ‘catalytic activity’ (G0:0003824) and very specific low- 
level classes such as ‘pre-mRNA branch point binding’ (G0:0045131). We will 
focus mainly on the higher-level part of the Molecular Function hierarchy in this

6
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Figure 1.3: The Gene Ontology

The first three levels o f the Gene Ontology Molecular Function Hierarchy are shown. The selected 
sample of Gene Ontology classes used for classification in this work is shown in Figure 1.4.

molecular function 
|GO:0003674)
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Figure 1.4: A Gene Ontology Sample

The hierarchy shows the relationships in the selected sample of Gene Ontology classes used for 
classification in this work. A class name is shown with the unique GO identifier in brackets.
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work (see Figure 1.4), as well as some elements related to the Cellular Component 
hierarchy.

Subcellular Location The subcellular location of a protein is the cellular com
partment in which it exists. The compartment in which a protein exists is usually 
determined by experimental means. The Cellular Component hierarchy of the Gene 
Ontology describes subcellular location.

The subcellular locations that are available differ according to the organism in 
which the proteins are found. Prokaryotic organisms, for example, lack the nucleus 
found in all eukaryotic organisms and do therefore have ‘nucleus’ as a possible 
subcellular location.

Although the definition of subcellular location is relatively straightforward, some 
variation in the assignment of subcellular location of specific proteins still exists. 
Many proteins pass through other cellular compartments on their way to the loca
tion at which they perform their function. In addition, some proteins function at the 
interface between two compartments or in multiple compartments. It is hoped that 
the conventions used for assigning subcellular location will be consistent within a 
classification scheme.
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Figure 1.5: Voltage-Gated Potassium (K +) Channel Structure

A diagram representing the structure of a voltage-gated potassium channel. Two potassium ions 
can be seen in the core of the protein. Image from the PDB [18).

Pfam The Pfam database [13] is a ‘large collection of multiple sequence align
ments and hidden Markov models covering many common protein domains and 
families’. These are a mix of both structurally and functionally defined protein 
families. Membership in each family in the database is determined by the use of 
hidden Markov models (HMMs) that are created from sequences in the database. A 
protein may belong to multiple families and thus match multiple HMMs2.

SCOP The SCOP database [73] is a ‘Structural Classification Of Proteins’. The 
goal of the database is to describe the folds, families, and super-families that exist 
in proteins. Recent versions contain all proteins that are found in the PDB [18] 
protein data bank of protein structures.

EC The enzyme classification system [60] by the Enzyme Commission (EC) is a 
hierarchical classification system for enzymes by their activity.

Potassium ( K +) Channel Proteins Voltage-gated potassium ( K +) channels (see 
Figure 1.5) are proteins that facilitate the transfer of potassium across membranes 
and are critical for the maintenance and regulation of membrane potential for many

2Each family is defined independently of the other families in the database except that no amino 
acid residue (at a particular location) in a protein can belong to two families.

9

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



important processes in physiology. These proteins have been divided into four 
classes in a dataset from Warren Gallin [59] at the University of Alberta and repre
sent a typical small classification scheme that might be the focus of an individual 
research lab. The sequences are fairly well conserved within the classes and there 
is also much sequence similarity among the classes. This small set of proteins is 
useful in illustrating the methods developed in this work.

1.4 Related Work In Protein Function Prediction

1.4.1 Protein Function Determination
The determination of protein function has initially been the domain of experimental 
methods. These methods study protein expression, function, and activity through a 
variety of means. These methods include microscopic images, genetic experiments, 
biochemical tests, protein-protein interaction tests, subcellular location determina
tion, function determination, NMR and mass spectrometry studies, and many oth
ers. While these techniques have historically been quite labour-intensive and slow, 
many automatic and high-throughput improvements have been developed. Despite 
these improvements, the availability of sequence data far outpaces the resources 
available to determine the function of proteins via these techniques.

1.4.2 Protein Function Prediction
Function prediction from sequence information is needed to supplement the labora
tory work of protein function determination so that researchers can direct resources 
to the proteins of most interest. For example, protein function prediction can help 
select the most likely research targets from the huge number of proteins that have 
potential therapeutic uses in medicine. The selected protein candidates can then be 
studied using more expensive and rigorous ‘wet lab’ procedures.

Prediction methods seek to take advantage of the hard won results of years of bi
ological experiments. They predict the function of proteins based on the most easily 
determined protein properties, allowing other resources to be directed to questions 
that cannot yet be answered in automated and high-throughput ways. This work will 
focus on data that has been obtained in the form of protein sequence information.

Each sequence analysis seeks to find regions of sequence similarity or patterns. 
The most common measure of similarity is by sequence alignment, but many other 
pattern types are used (as discussed in Chapter 3).

Two of the most significant current techniques for high-throughput protein func
tion prediction are sequence alignment (BLAST [4]) and hidden Markov models 
(Pfam [ 131 and HMMer [35]). In addition, there are two notable function prediction
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systems, InterProScan [8] and Proteome Analyst [90, 91 ], that incorporate multiple 
prediction technologies.

Sequence Alignments

The most common method of protein function prediction via sequence analysis 
has been through the use of sequence alignments (see Section 3.2.3). The score 
of a sequence alignment measures the similarity between sequences. In addition, 
the alignment produced shows common sequence regions and enables qualitative 
assessment of the similarities. Typically, researchers will find the most similar se
quence in a database of annotated proteins and, if the similarity is sufficient, assume 
that the unannotated protein has the same function ‘by similarity’. This type of 
nearest-neighbor prediction (see Section 2.4.1) is used extensively in both manual 
and automated annotations. The most commonly used alignment search program, 
BLAST [4], has become such an essential tool for molecular biology that it has 
attained the status of a verb (BLAST your sequence, for example).

Hidden Markov Models

Sequence patterns are also used to make function predictions. Patterns are often 
characterized as deterministic or probabilistic. One of the most commonly used 
types of pattern for representing sequence commonalities are probabilistic patterns 
called hidden Markov models (HMMs). Many HMMs have been designed for use 
with particular protein families. The most well-known database of these patterns 
is the Pfam database [13], where each protein family is represented by an HMM. 
These HMMs are usually more sensitive than BLAST searches and may be used 
to find members of protein classes that are divergent in many parts of the sequence 
except the most functionally important regions.

Pattern Databases

Groups of previously characterized patterns can be used for function prediction. 
InterProScan [8] has been developed as a tool to predict protein classification for 
the Gene Ontology and InterPro classification schemes by combining many pattern 
based prediction tools and databases into a single application. Each of the patterns 
corresponds to some GO or InterPro [71] class. After scanning new sequences with 
each pattern finding tool, classifications are assigned to the sequence according to 
each pattern matched.

1 1
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Proteome Analyst

Proteome Analyst [90, 91] (PA) predicts protein function prediction from protein 
sequence information. PA allows prediction using user-specified classification schemes 
or predefined Gene Ontology and Subcellular Location classification schemes [631.

Each sequence that is processed by Proteome Analyst is matched (via BLAST) 
to the SwissProt database [19]. The SwissProt database is a very reliable source of 
protein annotations for a large variety of proteins spanning functional classes and 
organisms. The annotations of the sequences that are most similar to the sequences 
being processed by PA are extracted from the database. Keywords obtained from 
these annotations are then used by a classifier (produced by a machine learning 
algorithm -  see Chapter 2) to predict the function of the sequence. The keywords 
contain a variety of functional information about the matched sequences, including 
information about Pfam and other pattern matches.

The Proteome Analyst system provides a publicly available, high-throughput, 
web-based system for predicting various properties of each protein in a given set of 
proteins (which could be an entire proteome -  the set of all proteins in an organism). 
Each prediction is also accompanied by an explanation of the data and reasoning 
behind the prediction.

1.4.3 Limitations
The computational methods discussed above have greatly improved the state-of- 
the-art in automatic protein function prediction in a variety of ways.

•  BLAST decreased the time required for protein sequence alignment to the 
point that one of the first things that researchers do after obtaining a protein 
sequence is to quickly perform a BLAST search.

•  HMMs have greatly increased the sensitivity in searching for more diverged 
protein domains and families.

•  InterProScan incorporates a variety of useful tools and databases available for 
making automated predictions based on widely-used classification schemes.

• Proteome Analyst allows function prediction with a user-defined classifica
tion system and explains the rationale behind the prediction.

These techniques do not, however, address all that we might hope for in an 
automatic high-throughput protein classification system. The following weaknesses 
of these techniques limit their utility.

•  Limited Coverage: BLAST is limited to sequences in an annotated database 
that have a high scoring sequence alignment (see Section 5.3.1). Proteome
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Figure 1.6: The Research Goal

The goal of this research is to use the information from classified proteins to determine the 
classifications of new proteins. We seek to do this in a high-throughput way.
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Analyst has this same limitation with the additional constraint that matches 
must be in the SwissProt database. Pfam and InterProScan are limited to 
domains and patterns that have been discovered and annotated. To this point, 
these patterns do not cover all the known proteins.

•  Static Classification Systems: Pfam and InterProScan do not allow flexible 
definition of user-defined classification schemes. BLAST, however, does not 
explicitly make a prediction and is not specific to any classification scheme.
As Proteome Analyst allows custom classification [90, 91], it is not limited 
to static pre-defined classification systems either.

•  Time/CPU Intensive: Although BLAST and many pattern scanning tools 
have improved over recent years, their computational demands for high-throughput 
prediction are still very high. As Proteome Analyst uses BLAST, it has the 
same efficiency limitations that BLAST does. Although scanning with many 
pattern analysis tools such as Pfam is computationally expensive, the creation
of the patterns is typically more expensive still.

1.5 Research Goal
The goal of this research is to develop techniques that will support automated high- 
throughput protein function prediction. In order for a function prediction system to 
work, it should have a number of characteristics.
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• Accuracy: The system should be able to accurately predict function. The 
number of both false positive and false negative predictions should be mini
mized.

•  Efficiency: The system should be able to predict quickly and scale up to effi
ciently predict function for upwards of tens of thousands of proteins.

•  Flexibility: Because each research question is slightly different, the system 
should allow prediction using a user-defined classification system.

•  Transparency: Given a prediction, the reasoning behind the prediction should 
be apparent to the interested user. The predictor should not be a ‘black box’.

The purpose of this work is to develop sequence analysis methods that will help 
better achieve these goals.

A recently described and potentially very efficient probabilistic model, the prob
abilistic suffix tree (PST) will be evaluated as a candidate method for finding pat
terns in protein sequences. The potential of PSTs will be explored for use in auto
mated and high-throughput protein function prediction. An alternate representation 
and implementation of PSTs will be developed that allows better realization of the 
above goals. We will seek to reduce the dependence on alignment-based methods to 
avoid coverage problems and to also reduce the dependence on less computationally 
efficient models such as HMMs.

It is intended that this work will be integrated into systems such as Proteome 
Analyst to improve both coverage and efficiency.

1.6 Summary
This work will examine prior research in protein sequence analysis in the context of 
high-throughput and automated protein function prediction. The utility and limita
tions of state-of-the-art techniques will be discussed. A promising new probabilistic 
model, the probabilistic suffix tree, will be discussed. A new formulation and im
plementation of that model will be demonstrated. Future directions for PSTs and 
related prediction tools will then be examined in the context of high-throughput and 
automatic protein function prediction.

We hope that by accelerating the classification of proteins, both computational 
and laboratory resources might be more efficiently utilized and that scientific progress 
might also be accelerated. The purpose of this thesis is to demonstrate the effective
ness of current techniques for high-throughput protein function prediction based on 
sequence information and to show that probabilistic suffix trees offer a method of 
increasing the efficiency of these predictions.
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Chapter 2 

Machine Learning

2.1 Introduction
Machine learning [70, 42, 53] deals with the problem of learning automatically 
from data. Despite concerns raised by science fiction about learning machines1, 
machine learning involves the relatively innocuous task of analyzing patterns or 
associations in data. Those patterns may be examined in either a supervised or un
supervised manner. The goal of the supervised learning problem is to learn patterns 
from labeled training data in order to predict labels for previously unseen (and un
labeled) test data. The goal of the unsupervised learning problem is to group or 
cluster unlabeled data based on observed patterns or associations. Both supervised 
and unsupervised learning are used extensively in bioinformatics research. The fol
lowing overview will focus on machine learning as relating to the protein function 
prediction problem. A variety of references cover general machine learning topics 
in more depth than is possible here [70,42, 53].

'The Terminator [26], a machine from the year 2029, summarized some fears about learning 
machines.

The Terminator:The Skynet Funding Bill is passed. The system goes on-line Au
gust 4th, 1997. Human decisions are removed from strategic defense. Skynet begins 
to learn at a geometric rate. It becomes self-aware at 2:14 a.m. Eastern time, August 
29th. In a panic, they try to pull the plug.

Sarah Connor: And Skynet fights back.

Fortunately, through the efforts o f Sarah and John Connor and the protection of the Terminator, 
the demise of the human race is delayed for at least another movie. In addition, no known machine 
learning algorithms have yet developed the ability to become self-aware, nor is that a goal o f machine 
learning research.
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2.2 The Classification Problem
The problem of protein function prediction in sequences is predominantly a clas
sification task2. Classification problems are supervised learning tasks in which 
the classifier3 learns patterns from a labeled training set. A training set T  = 
(.X , Y ) consists of a vector of instances X  =  (x1 . . .  x n) and a vector of corre
sponding class labels Y  — {y1 . . .  yn). For example, each instance of the train
ing set ( x f  y i)  may correspond to an individual protein x-7 and its known function 
y f  Each protein instance may be represented as a vector of features or attributes 
x j = { x \ , x \ , . . . ,  xJm). The learning process returns a classifier /(•)  that can subse
quently be used to make a label prediction yj for each instance x j of an unlabeled 
test s e t . This process is illustrated diagrammatically in Figure 2.1.

A classifier may be as simple as a threshold for a single continuous attribute 
where values that are higher than the threshold value indicate a positive label and 
values that are equal to or lower than the threshold indicate a negative label (see Fig
ure 2.3). As there is not usually a single feature that allows separation of the pos
itive and negative classes, more complicated classifier models that consider more 
complex relationships between features and classes are often required.

2.3 Model Selection
For each application we want to select the appropriate model for the task. We 
typically want the model that will give us the best classification performance.

2.3.1 Performance and Error
Classification performance typically means that we want to be ‘right’ as often as 
possible. In other words, we would like to select a prediction model that minimizes 
the expected classification error on independent test data (given that the data is 
drawn from the same distribution). This is the prediction error, also known as the 
test error or generalization error .

Unfortunately, we cannot really know the true prediction error beforehand be
cause we will not have seen the true test set (in our case protein sequences that have 
not yet been discovered). Instead, we try to estimate the prediction error. One way 
to try to estimate the test error is by evaluating the training error (or resubstitution 
error). This is the error rate obtained by using the classifier to classify instances 
of the training set that was used to create it and by then comparing the predicted

C lassification and regression are both supervised learning problems. Classification predicts a
label (qualitative, discrete), while regression predicts a value (quantitative, continuous).

3This and many of the terms that follow are defined in Kohavi and Provost’s Machine Learning
Glossary of Terms[53].
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Figure 2.1: The Training and Classification Processes
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labels to the known labels. Unfortunately, training error tends to be an optimistic, 
and thus poor, estimate of the true prediction error [42],

2.3.2 Hold-Out and Cross-Validation
To estimate the prediction error and overfitting, hold-out training data (or validation 
sets) are commonly used to simulate unknown test data. Training is performed on 
the training set with the exception of the hold-out data. The classifier is then used 
to predict labels for the hold-out set and the predicted labels are compared to the 
known labels in order to evaluate performance. Validation compares the results 
of the predicted label ip with the known label yP Performance measures such as 
accuracy are calculated in terms of these results.

Although the use of hold-out test sets for estimating classifier performance is 
an attractive idea, data is typically costly and we would like to make maximal use 
of the data available to us. Cross-validation is a technique that allows us to get a 
reasonable estimate of the prediction error while using all of the data available for 
both training and testing.

In A;-fold cross-validation, the training data is split into k folds where k £ 
{ 2 ,3 , . . . ,  n}. There are then k iterations of testing on each fold with a classifier 
that has been trained on the remaining k — 1 folds. For example, given a training 
set with 9 instances (a;1, x2, . . . ,  x 9), a 3-fold cross-validation would first partition 
the set into 3 folds -  say (x1, x 4, x 7), (x2, x 5, x8), (x3, x6, x9) -  and perform three 
iterations of testing:

1. Train on folds 2 and 3, test on fold 1.
Testing Training

1 4 /rp  r p A  rp  *
JU  ̂ Ju  ̂ ib rp  2 /Vi5 ~,8 rp  3 /Vi6 f p  9 ib  ̂ JU y JU } JU  ̂ JU  ̂ JU

2. Train on folds 1 and 3, test on fold 2.
Training Testing Training
r p i  s p 4  r p 7  
JU  ̂ lb  ̂ 4/ „ 2  „ 5  „ 8

JU •) dU y JU
~ 3  „ 6  „ 9
JU j JU j Ju

3. Train on folds 1 and 2, test on fold 3.
Training

rp 1 /y.4 ~»7 ~,2 ™5 ™8
J j   ̂ J j   ̂ J j   ̂ tU y J j   ̂ l b

Testing
„3 „6 „9
J j   ̂ J j   ̂ 4 /

The performance measures of all folds are combined to obtain overall estimates 
of the performance of the classifier. Typical values for k are 5 or 10. Leave-one-out 
cross-validation is also used (where k = n = the size of the training set). In general, 
the size of k may be changed depending on factors such as the classifier’s sensitivity 
to the size of the training set and the cost of each cross-validation iteration. Leave- 
one-out cross-validation may give a very accurate measure of the error but may

18

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 2.2: Overfitting

As model complexity increases, training error tends to decrease. Prediction error does not, 
however, decrease perpetually with decreasing training error. Prediction error decreases until the 
increasing model complexity begins to overfit the training data. This situation is also framed in the 
context of the bias-variance tradeoff. This figure was adapted from Hastie et al. [42].
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also be prohibitively expensive. If the classifier is reliable, the results should be 
comparable for each of the k folds.

2.3.3 Overfitting
Overfitting is a typical problem in many machine learning applications. With many 
types of models the training error can be decreased by simply allowing the complex
ity of the model to increase until it can correctly classify all the training data. This 
scenario often results in overfitting - a situation in which the model fits the training 
data very well but will not generalize well to independent test data. With increasing 
model complexity the training error may continue to decrease but the prediction 
error may plateau or actually increase (see Figure 2.2). One way of explaining this 
effect is by the bias-variance tradeoff. The bias, the average amount by which the 
best model in the class differs from reality, tends to decrease as the model com
plexity increases. The variance -  that is, the expected deviation of a model (learned 
from a data sample) from its average -  tends to increase with model complexity for 
a fixed data sample. An increase in model complexity is worthwhile if the reduc-
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tion in the (squared) bias offsets the increase in variance. See Hastie, Tibshirani and 
Friedman [42] for a complete discussion of this tradeoff. When the training process 
returns a model that closely fits the training set (low bias) but does not generalize 
well (high variance), overfitting is being observed. Beyond some point in training, 
it is possible that bias and variance cannot both be improved simultaneously -  one 
may have to be sacrificed for the other. Overfitting4 is of particular concern when 
estimating the parameters of probabilistic models.

2.3.4 Performance Measures
In general, we want to evaluate performance (and error5) in a way that is appro
priate to the application for which the classifier is intended. For this reason, the 
simple performance measures of accuracy and error (equal to 1 minus the accu
racy) may not always provide enough useful information about the effectiveness of 
our classifier. There are cases, for example, in which some errors are more costly 
than others. In these cases, it is not sufficient to simply reduce error. In other cases, 
imbalanced data sets (where there are many more instances of one class than others) 
may give misleading results6. Many performance metrics have been devised to deal 
with these different [53] situations.

Each of the performance metrics can weight errors to reflect their cost. In binary 
(two-class) classification problems, there are two types of error. Type I error is the 
error due to false positives. In our context this is the case where we predict that 
a protein has a certain function that it does not, in fact, have. Type II errors are 
false negatives. In this case a false negative would involve predicting that a protein 
does not have a certain function when, in fact, it does. These errors may have 
different costs. For example, if we classify a protein as being a potential target for 
a cancer cure and it turns out not to be successful (false positive), the cost is that 
of performing the experiments on that protein. On the other hand, if we classify

4Another view o f the issue of generalization is seen through the minimum description length 
principle  (MDL) and O ccam ’s Razor. While the principles of MDL heuristics are discussed else
where [42 ,70], Occam’s razor [1] is a useful summary of the idea. In the 14th century a Franciscan 
friar named William of Ockam wrote Pluralitas non est ponenda sine neccesitate, which translates 
as ‘Plurality should not be posited without necessity’. Today, the principle is often stated as ‘Of two 
equivalent theories or explanations, all other things being equal, the simpler one is to be preferred.’

5For many algorithms, the concept of a loss function  is used as a generalization of error. The 
loss function may be defined simply as the error rate or as a modified function of the error. Either 
way, the algorithm or the model selection process may be tuned to minimize loss rather than simply 
error. The concept o f minimizing loss is similar to minimizing cost or maximizing utility.

6Consider a classification problem with 900 positive instances and 100 negative instances. If we 
used a classifier that predicted the majority class (positive) every time, we would get an accuracy 
o f 900/1000  =  0.90 =  90%. Although this seems much better than the 50% we would get from a 
random classifier, this classifier has obviously not done much ‘learning’ and accuracy is a misleading 
indication of performance.
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a protein as not being a potential target for a cancer cure and in reality it is (false 
negative), the cost is that of not being able to cure cancer (and, of course, missed 
revenues for the pharmaceutical company involved). Because false positives are 
much less costly than false negatives in this case, pharmaceutical companies are 
willing to screen many proteins for therapeutic properties in the hopes that some 
will be successful.

True positives (TP), true negatives (TN), false positives (FP), and false negatives 
(FN) are defined in terms of the predicted label yj and the known label yj as shown 
below.

T P ( y J , y J) =

T N ( y 3 , y J) =

1 if yi — true  and yj  =  true
0 otherwise

1 if yi — fa lse  and yj — fa lse
0 otherwise

1 if yi — fa lse  and yj = true
0 otherwise

1 if yi = true  and yj  =  fa lse  
0 otherwise

(2 . 1) 

(2 .2)

(2.3)

(2.4)

(2.5)

When the sum is taken over all the training instances, these measures are used 
to define various measures of classifier performance.

T P  = ]T  T P ( y j , y j ) (2.6)
jE lns tances

T N  — £  T N ( y j ,yj) (2.7)
jE ln s ta nces

F P  = F P ( y j , y j ) (2.8)
j£ ln s ta n c e s

F N  =  £  F N ( y j  ,yj ) (2.9)
j fz lnstances

The errors, along with true positives and true negatives, may be displayed in a 
table called a confusion matrix (see Table 2.1 and Figure 2.3).

The following performance measures have been used for a variety of situations 
in machine learning, data mining, information retrieval, medicine, and statistics 
[53|.7

7It is also possible to weight these performance measures according to the importance of par
ticular classes or instances for a cost-sensitive evaluation measure. The only cost-related parameter 
considered here will be the one used in the F-measure to prioritize precision or recall.
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Figure 2.3: Confusion in a Diagnostic Test

Diagnostic tests often give a numeric value as a result. A classifier may define a threshold such that 
values above the threshold are considered positive and values below the threshold are considered 
negative. The top chart shows data that is separable by a threshold given the test value. The bottom 
chart shows data that is not separable given the test value. In this case, false positives and/or false 
negatives are inevitable for a single threshold value. A s the threshold is varied the true positive and 
true negative rates vary, leading to tradeoffs such as those observed between precision and recall or 
sensitivity and specificity.
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Table 2.1: Confusion Matrix

This is a simple 2x2 confusion matrix that results from the prediction of a binary classification. 
Confusion matrices can also be extended to use with multiple (usually mutually exclusive) classes.

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Accuracy This is the most common measure of performance in which both F P  
and F N  are weighted equally. Accuracy is often used when a single number is 
desired to assess performance.

T P  +  T N
ACa,raCV = T P  + T N  + F P  + F N  <2' 10)

Precision Of those instances that are predicted to be positive, precision shows the 
fraction that are actually positive.

T P
Precision  =  ——---- —— (2.11)

T P +  F P  v '

Recall (Sensitivity or True Positive Rate) Of those instances that are actually 
positive, recall shows the fraction that are predicted to be positive.

T P
Recall =  ——---- —— (2.12)

T P  +  F N

Specificity (True Negative Rate) Of those instances that are actually negative, 
specificity shows the fraction that are predicted to be negative.

T N
Speci f ic i t y  =  T N  F p  (2.13)

False Positive Rate Of those instances that are actually negative, the false positive 
rate is the fraction that are predicted to be positive.

F P
FalsePosi t iveRate  = ——---- -— (2.14)

T N  +  F P
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False Negative Rate Of those instances that are actually positive, the false nega
tive rate is the fractions that are predicted to be negative.

FalseNegativeRate  =  (2.15)

F-measure To acknowledge the tradeoff between precision and recall and the dif
ference in cost between false positives and false negative, the F-measure [50] has 
been used in information retrieval as a combined measure of performance. The 
weight placed on precision or recall varies with the value of the parameter /3(see 
Equation 2.16). When ( 3 = 1 ,  precision and recall are weighted equally. Recall is 
favored when (3 < 1 and precision is favored when (3 > 1.

((3 +  1) x Precision  x Recall
F measure = ■ - ------------------- ——---- -—  (2.16)

/31 x Precision  +  Recall

Receiver Operating Characteristic (ROC) curves ROC curves [99, 3] are com
monly used to display the tradeoff between sensitivity and specificity for a variety 
of classification parameters. They were first used to evaluate electronic signal de
tection and are now often used in medical diagnosis [64] and many other fields. 
The false positive rate (1-specificity) is plotted against sensitivity (see Figure 2.4). 
A curve is obtained by plotting the false positive rates and sensitivities for a variety 
of parameter values. The varying parameter may actually be a parameter for the 
learning process or a threshold on a continuous result value. The area under the 
resulting ROC curve (AUC) may be used as a measure of the overall performance 
of the classifier. Greater area under the curve indicates a more discriminating clas
sifier.

Sensitivity/Specificity Plots The tradeoff between sensitivity and specificity is 
often plotted against certain changing model parameters in order to allow intelligent 
parameter selection.

Multiple Classes The evaluation of performance used for binary classification 
tasks can be generalized to classification using multiple classes. There are two 
cases of multi-class classification. The classes are either 1) mutually exclusive or 
2) overlapping (an instance may be assigned more than one class label). Some 
classification techniques are able to handle multiple (usually mutually exclusive) 
classes while some are only able to handle binary classification.

For mutually exclusive classes, a confusion matrix (see Table 2.2) allows mis- 
classification rates and trends to be observed and analyzed.
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Figure 2.4: ROC Curves

An example of a Receiving Operator Characteristic (ROC) curve. The curve shows the tradeoff 
between classifier sensitivity and specificity. The Area Under the Curve (AUC) is a measure of 
overall classifier performance. A diagonal curve from the bottom left corner of the plot to the top 
right shows the performance o f a random classifier. The curves of other classifiers are often 
compared to (and should be above) this curve.

increasing 
Area Under 
the Curve,

~~ Curve for 
Random 

Classification

0.5
False Positive Rate (1 - specificity)

Table 2.2: Multi-class Confusion Matrix

Multiple classes that are mutually exclusive can be displayed in a confusion matrix. In the 
example, it can be seen that the classifier often misclassifies class A as either B or C. Classes B and 
C are rarely misclassified. These errors decrease the recall o f prediction on class A and decrease 
the precision of prediction on classes B and C.

Predicted A Predicted B Predicted C
Actual A 10 5 5
Actual B 0 20 2
Actual C 3 0 15
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For the classification tasks considered in this work, the classes will not be con
sidered mutually exclusive and each class will be predicted independently (ie. a 
single instance may have multiple labels that we represent as a vector of binary 
values yj =  ( y{ , y i ,  ■ ■ ■, y 3m) where m  is the total number of possible class labels. 
In this case, the information presented in a confusion matrix becomes ‘confusing’, 
so other ways to present overall performance may be used.

For the problems considered in this work, we will consider both class-wise and 
overall performance. Predictions are evaluated as binary yes / no predictions y  for 
each class label c on each instance (xj , yi). The class-wise results (TP, TN, FP, FN) 
and performance measures (precision, recall, etc.) are defined for each class as for 
a binary classification (above). The overall results are calculated as the sum of the 
results over all the classes.

T  Poverall =  ^ 2  T  ? c
c^Classes

T  N overau =
ctzClasses

P  Poverall =  ^  F  ̂
cEClasses

P  N overa ll =
c&Classes

The overall performance measures are then calculated 
Equations 2.10 to 2.16).

Coverage A classifier may opt to return no prediction when there is insufficient 
evidence. In such circumstances the coverage may be defined to be the number of 
predictions made out of the total number of predictions requested of the classifier. 
When performance measures are calculated the number of ‘no prediction’s may be 
either incorporated or ignored (since they are already considered when reporting 
coverage). In the present work, results without predictions will be incorporated 
into the performance measures. For this, ‘no prediction’ results that are known to 
be positive (NPP) will be differentiated from ‘no prediction’ results that are known 
to be negative (NPN). This leads to the redefinition of accuracy and recall (precision 
is not affected).

(2 .21 ) 

(2 .22) 

(2.23)
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T P  + T N  + F P  + F N  
overage -  T p  + T N  + F p  + F N  + N p p  +  N p N

T P  + T N. l  r  - f - 1 7 V

ccuracy -  T p  + T N  + F p +  p N  + N p p  +  N p N

T P
Recall = ——---- —--------------

T P  + F N  + N P P

(2.17)

(2.18)

(2.19)

(2.20)

as defined above (see
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Figure 2.5: Nearest-Neighbor Classification

The predicted class of test instance t is negative -  the majority class of the 3 nearest neighbors 
(shown in gray).

3-neighborhood ( + )

2.4 Examples of Classification Techniques
Many classification techniques have been used in machine learning. Each has in
herent advantages and disadvantages given the nature of the features and patterns 
of features in the data set. Classifiers may vary in their accuracy, robustness, or 
time and memory requirements. The examples below are a small sample of the 
classification techniques available.

One should be aware that preprocessing techniques, including the filtering, com
bining, and discretizing of features may be crucial to the improvement of classifier 
performance. Exploration tools such as WEKA [98] allow users to experiment with 
a wide range of techniques and select the one that performs best for the target data 
set.

2.4.1 Nearest-Neighbor
Nearest-neighbor classification classifies a test instance based on its ‘neighbor
hood’, or the nearest instances from the training set. The concept of ‘nearness’ 
(or similarity) requires a metric that defines the distance between two instances. 
For example, if the features are in Euclidean space then the metric may be the Eu
clidean distance. In order to increase the robustness of the method to noisy data, the 
^-neighborhood is often considered. Here, the average of the k nearest neighbors is
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Figure 2.6: A Decision Tree

The following decision tree represents the concept of positive or negative for signaling function 
based on the fictional data from Table 2.3.

membrane nucleus cytoplasm

signaling
region

subcellular
location

transferase
activity

no y es  no yes

d & d &

used to label the test instance (see an example of 3-nearest neighbor classification 
in Figure 2.5).

A common way to measure the distance between two protein sequences is by the 
BLAST alignment score [4] (see Section 3.2.3). Smaller BLAST E-value scores in
dicate decreasing distance and increasing similarity between sequences. The neigh
borhood of a test sequence may be obtained by performing BLAST alignments 
against each sequence in the training set. If the majority of the neighbors in the 
^-neighborhood of the test protein has a particular class label then the test protein 
is predicted to also have that label. Molecular biologists use BLAST scores and 
databases routinely on new protein sequences to identify potential functions. As 
such, a nearest-neighbor BLAST classifier may be considered the default classifi
cation technique for biological sequences.

The time requirements of nearest-neighbor classification depend mainly on the 
time required to evaluate the distance measure. Although nearest-neighbor classifi
cation may often have high accuracy and be relatively intuitive, it does not provide 
a single model afterward that can be interpreted as a pattern. The pattern is as 
complex as the training data because the pattern is the training data.

2.4.2 Decision Trees
A decision tree [79] allows classification of test instances by following a series of 
decisions from the root to a leaf of the tree. The choice of which branch to follow 
at each decision node is made on the basis of the the value of an instance attribute. 
The classification returned for an instance is found as the decision process reaches 
a leaf node containing the appropriate classification label.
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Table 2.3: Example Machine Learning Data

The table contains fictional data for a protein function prediction task. In this fictitious example, 
the features will be used to predict whether or not a certain protein has signaling function.

Protein
ID

Subcellular
Location

%
Proline

Transferase
Activity

Potential 
Signal Region

Signaling
Function

1 membrane high no yes -

2 membrane high no no -

3 nucleus high no yes +
4 cytoplasm med no yes +
5 cytoplasm low yes yes +
6 cytoplasm low yes no -
7 nucleus low yes no +
8 membrane med no yes -

9 membrane low yes yes +
10 cytoplasm med yes yes +
11 membrane med yes no +
12 nucleus med no no +
13 nucleus high yes yes +
14 cytoplasm med no no -
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Consider the following example (see Figure 2.6), adapted for protein function 
classification from examples by Quinlan [79] and Mitchell [70], The training data in 
this fictional example (seen in Table 2.3) can be used to build the decision tree that 
can then be used to predict whether or not a protein will have ‘Signaling Function’. 
The features are known characteristics of the protein and the class label is either 
positive or negative for signaling function. The features in this example resemble 
the words (extracted from the protein annotations of similar sequences) that might 
be used for classification by Proteome Analyst [90, 91].

By following the tree from the root to the leaves, a protein x  that has the features 
(‘Subcellular Location’ = ‘membrane’,‘% Proline’ = ‘high’, ‘Transferase Activity’ 
= ‘no’, ‘Potential Signal Region’ = ‘no’) would be classified as negative (y = —) 
for ‘Signaling Function’ by considering decisions along the left side of the tree. The 
features ‘% Proline’ and ‘Potential Signal Region’ would not affect the classifica
tion. In fact, we can see from this tree that the ‘% Proline’ feature is not be used in 
any classifications concerning ‘Signaling Function’.

A decision tree is built by selecting features upon which to base the next deci
sion node in a greedy manner. The feature that has the next highest score according 
to some splitting criteria is chosen as for the next node. A common splitting criteria 
is based on information gain. Based on the principle of entropy from information 
theory, the feature that gives the greatest information gain is the one that most re
duces the remaining uncertainty about the classification. Given a training set T  and 
a set of possible Classes  (+  and —) and Features  (‘Subcellular Location’, 
Proline’, ‘Transferase Activity’, and ‘Potential Signal Region’), V {Feature) is the 
set of values for the given Feature  (for example, V{Subcell)  =  {+ , —}) and Tv 
is the portion of the training set that has the value v. Information gain is defined in 
terms of entropy below. Note that when pc{T) = 0 the value of 0 log 0 is defined to 
be 0. Thus, when all the members of a set belong to the same class the entropy will 
be 0.

I T  I
Gain{T , Feature) = Entropy{T)  — ^  Entropy (T„)(2.24)

vdV (F ea ture)  ' '

where
T, x f 1 if condition =  trueKcan&Uon)  =  j  Q (2.25)

Pc(T) =  =  c> (2.26)
E j e r  1

Entropy {T) = ^  - p c{T)log2{pc{T)) (2.27)
cdClasses

The information gain can be calculated and compared for each of the features
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so that the feature with the highest information gain in the training data (see Table 
2.3) can be used as the top node in the (sub)tree.

V  (Pot. Signal Region) — {yes, no}
T  = [9+, 5—]

T p 0t.Sig.Reg.=yes [6T , 2 ]

Tpot.S ig .R eg .= no  ~  [3Tj 3—]
IT I

Gain(T, Pot. Signal Region) =  Entropy(T) — ^  ~ - E n t r o p y ( T v)
v&{yes,no} ' '

= Entropy(T)  — (8/14) Entropy (Tyes)
- (6 /1 4 )  Entropy  (Tno)

=  0.940 -  (8/14)0.811 -  (6/14)1.00 

=  0.048

{yes, no}
[9+, 5—]
[6+, 1- ]

[3+14—]

Entropy(T)  -  J 2  j d EntroPy(Tv)
v&{yes,no} ' I

Entropy(T)  — (7/14 ) Entropy (Tyes)
-  (7/14) Entropy  (Tno)
0.940 -  (7/14)0.592 -  (7/14)0.985 
0.151

In this example, ‘Transferase Activity’ gives more information gain than ‘Po
tential Signal Region’ and would thus be selected first (out of these two features) to 
represent a node in the tree. The tree is continually grown from the root until either 
there are no more features upon which the tree can branch or some other stopping 
criteria is reached.

There are many other issues to consider in building decision trees such as split
ting, stopping, and pruning criteria. Other references contain more complete dis
cussions of these issues [70].

In practice, decision trees provide very transparent and easily interpretable pre
dictions. They do suffer from the inability to represent many relationships between
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T  =

T T rans .A c t .= yes  

Txrans.Act.^no ~

G ain(T ,Trans  f  eraseActivity) =
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the features and the class (once again, see Mitchell [70] and other texts for a dis
cussion of this). Decision trees are also relatively inefficient to train. Scalability 
problems prevent us from using decision trees in high-throughput tasks unless the 
feature space is sufficiently small or the classifier performance is significantly better 
than other techniques.

2.4.3 Naive Bayes
The naive Bayes classifier predicts the most likely class label given the features. 
In using a naive Bayes classifier we make the assumption that, given the class, 
each feature is independent of all others. Because of this assumption, the naive 
Bayes predictions can be calculated in the following way for classes C  and features 
(xi, X2, ■ ■ ■, xn) of any instance x:

The independence assumption is key in moving from Equation 2.30 to Equation

Consider the example sequences from Table 2.3 for the example in Section 
2.4.2. Given a new protein x  where x  =  ( ‘Subcellular Location’ = ‘membrane’, ‘% 
Proline’ = ‘low’, ‘Transferase Activity’ = ‘no’, ‘Potential Signal Region’ = ‘no’), a 
naive Bayes classifier that is first trained on the example data would predict

PredictedClass(x) = argmaxc€cP{c) Y[p(* i \c )

We can calculate the probabilities of each class from counting the occurrences 
in the training data.

PredictedClass(x) = argmaxcecP(c \x i ,  X2, • • •, x n) (2.28)

=  argmaxceCP {c )P {x \ |c ) . . .  P ( x n \c) 

=  argmaxceCP{c) J J  P ( x i\c)

argmaxc£C ^7----------
P { x i , x 2, ■

(2.30)
(2.31)
(2.32)

(2.29)

2.31.

=  argmaxcecP{c)P(Subcell.Loc.  = mem.\c) 
■P(%Pro. = low\c)P (Trans.  Act. = no\c) 
■P(Pot.SignalRegion — no\c)

P(Signall ingFunct ion  =  yes ) — 9/14 «  0.64 
P(Signall ingFunct ion  =  no) = 5/14 «  0.36
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We can also estimate the conditional probabilities by counting occurrences.

P(Pot.S ignalRegion = no\Signalling Function = yes ) =  3/9 =  0.33
P  (Pot. Signal Region = no\Signalling Funct ion  =  no) = 3/5  =  0.60

These values allow us calculate the probabilities for each class given the feature 
vector. First, we compute

P ( S F  = y e s )P (S L  = m e m . \ S F  = yes)
■P(%Pro = low\SF = ye s )P (T A  — no \S F  = yes)

■P(PSR = no \SF  — yes) — 0.0053
P ( S F  = n o )P (SL  = m e m . \ S F  = no)

■P(%Pro = low\SF = n o )P (T A  =  n o \SF  = no)
• P ( P S R  = n o \S F  = no) — 0.0206

Thus, a new protein where ( ‘Subcellular Location’ = ‘membrane’, ‘% Proline’ 
= ‘low’, ‘Transferase Activity’ = ‘no’, ‘Potential Signal Region’ = ‘no’) would be 
classified as not having signaling function. In addition, we can determine the con
ditional probability of the prediction by normalizing (0.0206/(0.0206 +  0.0053) =  
0.795).

This technology is used as the basis for the classifier of the Proteome Analyst 
[90, 91] protein classification system. In the case of Proteome Analyst, the features 
for each protein are keywords describing protein characteristics. Each keyword is 
either present or absent for each instance. The keywords are obtained from the 
database annotations of the nearest protein neighbors of the protein instance to be 
classified as determined by the BLAST algorithm. Once the keywords have been 
obtained, the naive Bayes learning algorithm is used to create a classifier and predict 
the class labels of subsequent proteins.

The naive Bayes algorithm performs surprisingly well despite using the strong 
independence assumption (which is typically wrong) and so it is often used in prac
tice. Given reasonable classification performance, one of the next most attractive 
aspects of naive Bayes classification is its efficiency and scalability. In addition, 
the classification can be easily interpreted in terms of the probabilities used by the 
model. Naive Bayes classification is a popular technology for these reasons and it 
has been used in many applications such as spam filtering and, more importantly 
for our goal, Proteome Analyst.

33

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 2.7: A Separating Hyperplane

The hyperplane shown separates the two classes. The distance (or margins) from the separating 
hyperplane to the support vectors is maximized.

2.4.4 Support Vector Machines
Support vector machines [42, 87] (SVMs) are state-of-the-art classifiers. A good 
tutorial on this challenging topic has been given by Cristianini [30] and some of 
that material will be echoed here.

SVMs optimize the separation of labeled classes by constructing an optimal 
decision boundary between them. This decision boundary is learned from labeled 
training instances and can be applied to classify new test instances. Given an in
stance with a label y3 and feature vector x3, classification is based upon the hyper
plane defined by the weight vector w e  ffl1 and the offset b e  3?. The prediction y3 
is given8 by

The training process finds the optimal hyperplane that maximizes the margin 
between the classes (see Figure 2.7). As an aside, the solution for the weight vector 
w, where a? is a weight assigned to each of the training points (a 3 >  0), is given 
(without loss of generality) by

y3 = sign((w, x3) + b) (2.33)

w (2.34)

8(a, b) is the inner-product of the vectors a and b, defined as (a, b) =  JT
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Table 2.4: Example SVM Data

The table contains a mapping of the fictional data from Table 2.3. In this fictitious example, the 
features will be used to predict whether or not a certain protein has signaling function. The data 
have been converted from multi-value attributes to binary attributes for use with an SVM.

Protein Subcellular % Transferase Pot. Sig. Signal
ID Location Proline Activity Region Function

mem nuc cyt high med low no yes yes no
1 l 0 0 1 0 0 l 0 1 0 0
2 l 0 0 1 0 0 l 0 0 1 0
3 0 1 0 1 0 0 l 0 1 0 1
4 0 0 1 0 1 0 l 0 1 0 1
5 0 0 1 0 0 1 0 i 1 0 1
6 0 0 1 0 0 1 0 l 0 1 0
7 0 1 0 0 0 1 0 l 0 1 1
8 1 0 0 0 1 0 1 0 1 0 0
9 1 0 0 0 0 1 0 1 1 0 1
10 0 0 1 0 1 0 0 1 1 0 1
11 1 0 0 0 1 0 0 1 0 1 1
12 0 1 0 0 1 0 1 0 0 1 1
13 0 1 0 1 0 0 0 1 1 0 1
14 0 0 1 0 1 0 1 0 0 1 0
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Those instances j  with weights ct-7 having non-zero values are informative and 
define the support vectors (since the prediction is expressed in terms of, or sup
ported by those instances).

For our example, we might find that we get the following values9 (for the cal
culated values w and b, not for the weights a J).

" -0.5955 '
1.1905

-0 .595
-0.3572

0.5477w — -0.1905 
-0.8095 

0.8095
0.4523 

-0.4523 _ 
b =  0.5239

To compute the prediction y, this can be written as

( -0 .5955 * Subcell Locmem
+ 1.1905 * Subcell Locnuc
+ -0 .595 * SubcellLoccyt
+ -0.3572 * Prol inehigh
+ 0.5477 * Prolinemed
+ -0.1905 * Prolineiow
+ -0.8095 * Trans  fe ra se no
+ 0.8095 * Trans  fe ra se yes
+ 0.4523 * Signal Regionyes
+ -0.4523 * Signal Regionno

V + 0.5239

Thus, a new protein where x  = ( ‘Subcellular Location’ = ‘membrane’, ‘% Pro
line’ = ‘low’, ‘Transferase Activity’ = ‘no’, ‘Potential Signal Region’ = ‘no’) would 
be classified as negative using the calculation below. The binary values are grouped 
by feature for clarity, but each digit is a separate value.

y =  sign((w,  [100 001 10 01]) +  b)
=  s i g n ( - 0.5995 +  -0 .1905 +  -0.8095 +  -0.4523 +  0.5239)
=  sign( —1.5279) =  ( - )

9Actual values obtained from the SMO implementation of SVMs in WEKA [98] using the test 
data in Table 2.4.
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One of the surprising and useful characteristics of support vector machines is 
their dual representation. The prediction can be expressed in two ways. Given the 
previous definition of w above we see that

y3 =  sign({w,x3) +  b) (2.35)
=  s ig n ( Y ^ a 3y3 (x3 , X )  + b) (2.36)

i

This means that we no longer require the original set of features x3 for every 
instance j  in order to perform training and classification. We only need the dot 
product (x3 , x 3) for all instances i , j  6 |V |. We can also (as with most machine 
learning algorithms) use some function of the features <fi(x3).

y3 =  s ign((w ,x3) +  b) (2.37)

=  s ig n ( ^ 2 a 3y3((f)(x3),4>(X)) + b) (2.38)

Since the dot product (4){x3), 4>{X)) is not dependent on anything else, we can 
define a kernel such that

K ( x j , x k) =  < 0 (F ),0 (x fc)) (2.39)

Over the data set X  the kernel function K  defines a \X\  by \X\  kernel matrix
(or gram matrix). The kernel matrix (which must be symmetric positive definite) 
contains all the information that is needed for the learning algorithm.

The kernel function has great implications for the modularity and efficiency of 
SVMs (for a full discussion of the implications see the references above). The ker
nel function can allow the use of SVMs to classify data that may not have the typical 
structure of features x  = ( x i , . . . , x n). This enables the definition, for example, of 
a kernel function that might be defined for protein sequences. In this way we can 
take advantage of SVM technology for the protein function prediction task.

Two examples of kernels that have been defined for sequence analysis include 
the Fisher kernel for HMMs [47] and mismatch string kernels for sequences [57],
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Chapter 3 

Sequence Patterns

Alfred Whitehead said, ‘Art is the imposing of a pattern on experience, and our 
aesthetic enjoyment is recognition of the pattern.’1 In the current context, ‘the im
posing of a pattern on experience’ is also science. The patterns we will deal with 
occur in protein sequences and are learned from the experience of characterized 
proteins. ‘The recognition of the pattern’ enables us to predict protein function.

3.1 Sequence Patterns and Protein Function
To the extent that protein sequence determines protein structure and function, se
quence patterns may be used to predict protein function.

Two tasks must be successfully completed in order to make use of sequence 
patterns. We must be able to

1. learn patterns that are correlated with a particular function and

2. recognize those patterns in new sequences.

With the increasing size of the protein databases it is not only crucial that we be 
able to accomplish these tasks, but that we accomplish them efficiently. This is 
particularly important for high-throughput automatic protein function prediction.

The efficiency of these tasks can vary widely between pattern types and also 
depends on both the size and complexity of the pattern. The size of sequence pat
terns may vary from small signal motifs of only a few amino acids in length to large 
structural domains that dominate the entire length of a sequence. The complexity 
of these patterns may vary from simple consensus sequences to complex groups of 
interdependent sub-patterns.

Many computational tools have been developed for the analysis of sequence 
patterns. Each technique is an effort to model or approximate the ‘true’ pattern

'Alfred North Whitehead, British philosopher, in Dialogues on June 10, 1943.
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Figure 3.1: Example Protein Sequences

These fictitious protein sequence fragments are shorter than the typical protein sequences which 
can be from about tens to thousands of amino acids in length. There are five sequences in the 
example set. Each sequence is preceded by a single tag line that starts with a “> ’ character and 
contains identifying information about the sequence. All lines that do not have the ‘> ’ symbol 
contain sequence information. These sequences will be used in examples throughout the chapter.

> s e q u e n c e  1
QIKDLLVSSSTDLDTTLVLRENVATLPAEKMKPFFINDAF 
THEKWPATTERNSFHVTILELKYFQESKPVMPQMMCNS 
> s e q u e n c e  2
RRVKVYLPQMKIEEKYNLTSVLMALGMTDLFIPSANLTFI 
NDMFTHEEDPATTERNSKISQAGSSAESLIGVIEDIKHSP 
> s e q u e n c e  3
ISEEYISYGGEKKILAIQGALEKALRWASGESFIELSNHK 
FDRMFINDRKTHEKLPATTERNSSAKFRRFT 
> s e q u e n c e  4
AKLAEQAERYDDNLLSVAYKNVVGARRSSWRVISSIEQKT 
ERNEKKQQMGKEYREKIEAELQDICNDVLELLDKFINDMK 
THEKLPATTERNSYLIPNRSQPESKVFYLKMKGDYFRYLS 
EVASGDNKQTVSNSQQAYQEAFEISKKEMQPT 
> s e q u e n c e  5
MITILEKISAIESEMARTQKNKATSAHLGGGGTGEAGFEV 
AKTGDARVGFVGFPSVGKSTLLSNLAGVFINDANTHELRP 
ATTERNSYSEVAAYEFTTLTTVPGCIKYKGAKIQLLDLPG 
IIEGAKDGKGRGRQVIAVARTC
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that confers the biological structure or function in which we are interested. As 
George Box [20] asserted, ‘All models are wrong but some are useful.’ By necessity, 
protein sequence models abstract away many of the details relating to the actual 
expression, structure, and function of a protein. By using only protein sequences 
we also ignore other details that might otherwise be available to us. For example, 
protein sequences do not have any inherent encoding of the placement of amino 
acids in three-dimensional space2. The DNA sequence that encodes the template for 
the protein sequence supplies much more potential information about the expression 
and genetic background of the protein in question. In both of these cases, taking into 
account this additional information makes the pattern recognition task much more 
difficult. As more information is added, more noise is added. Simplifications often 
allow us to both ignore superfluous information and create efficient (and potentially 
more ‘useful’) solutions. Doolittle (as quoted by Gusfield [40], pg. 390) has gone 
so far as to say,

Translate those DNA sequences! Some beginning sequence com
parers are under the impression there is more to be gained by searching 
the actual DNA sequence rather than the amino acid sequence derived 
from it. Such a course is greatly mistaken...

Although many of the techniques discussed here are useful for or may have origi
nated from DNA sequence analysis techniques, this discussion will focus on protein 
sequences.

For most sequence analysis tasks each protein is represented as a simple se
quence of symbols (representing amino acids). Each of the 20 amino acids used in 
proteins is represented by a single letter (see Figure 1.2), and they are collectively 
organized in strings that vary from tens or hundreds to thousands of amino acids in 
length. These strings are usually stored as text, as in the commonly used FASTA 
sequence file format (seen in Figure 3.1). Patterns in the protein sequences are then 
represented simply as patterns in the strings of symbols.

A typical example of the relationship between a sequence pattern and protein 
function is the zinc finger (see Figure 3.2). The zinc finger is a DNA-binding struc
ture that is found in many proteins. The amino acid sequence that becomes the 
zinc finger structure is well conserved among these proteins (Figure 3.3 shows an 
example sequence with annotated structure that corresponds to Figure 3.2). This 
sequence pattern -  which matches many proteins that have the zinc finger structure 
-  can be expressed by the following regular expression3 (pattern PS00028 from the 
PROSITE database).

2Although primary sequence does lead to 3D structure, current technology does not allow us to 
easily predict structure given only sequence information.

3This regular expression corresponds to the following pattern: C, 2 to 4  positions o f any amino 
acids, C, 3 positions of any amino acids, any of LIVMFYWC, 8 positions of any amino acids, H, 3 
to 5 positions of any amino acids, and H
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Figure 3.2: Zinc Finger Structure 

The Zinc finger C2H2 type domain structure from PDBsum [551.

C . {2  , 4 } C . { 3 }  [ LIVMFYWC ] . { 8 } H . {3  , 5}H

Conserved patterns or motifs in proteins can be represented in different ways 
that capture different information about the pattern discovered. These patterns can 
be largely divided into those that are probabilistic and those that are deterministic. 
In addition, there are many patterns that are hybrids of the two approaches. They 
may use some probabilistic principles without fully invoking a probabilistic model 
(such as alignments and some early position-specific scoring matrices).

There is a large literature on both deterministic and probabilistic sequence pat
terns. The topics and techniques discussed here will be those that most pertain to 
the goal of high-throughput sequence analysis and do not represent an exhaustive 
covering of sequence pattern research.

The simple patterns (shown in italics and larger font in Figure 3.4) contained in 
the example sequences may be represented using various types of patterns.

3.1.1 Deterministic Patterns
Deterministic patterns [22] are defined by an exact pattern. A given sequence either 
matches or does not match a deterministic pattern. A common class of deterministic
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Figure 3.3: Zinc Finger Sequence

The Zinc finger C2H2 type domain from PDBsum [55]. The helices annotated in the sequence 
correspond to the barrels seen in the structure from Figure 3.2.

K  P Y A C P V B S C D R R  ! • ' S D S  S N I . T R H  i  R  ! H  T C K J K P F Q C R  1 C M R  N  F  S  R  S  DM L T T H  I R T H T G  

103 110 ! 15 120 125 130 135 140 145 150 155 160

163 170 175 180 185

Figure 3.4: Patterns in Example Sequences

> s e q u e n c e  1
QIKDLLVS SSTDLDTTLVLRENVATLPAEKMKPF/^Z/VDa F
77/Z skwPA 7T £7?A ^’f h v t il e l k y f q e s k p v m p q m m c n s  
> s e q u e n c e  2
r r v k v y l p q m k i e e k y n l t s v l m a l g m t d l f i p s a n l t F /  
N D mfT H E e d P A T T E R N S k i s q a g s s a e s IjIGVi e d i k e s 'p 
> s e q u e n c e  3
ISEEYISYGGEKKILAIQGALEKALRWASGESFIELSNHK
f  d r flPINDkkTHEklPATTERNSs a k f r r f t  
> s e q u e n c e  4
AKLAEQAERYDDNLLSVAYKNVVGARRSSWRVISSIEQKT
e r n e k k q q m g k e y r e k ie a e l q d ic n d v l e l l d k F //V D mk

T//£KLPArr£7?A^YLIPNRSQPESKVFYLKMKGDYFRYLS 
EVASGDNKQTVSNSQQAYQEAFEISKKEMQPT 
> s e q u e n c e  5
MITILEKISAIESEMARTQKNKATSAHLGGGGTGEAGFEV
AKTGDARVGFVGFPSVGKSTLLSNLAGVF/M)AN77ffi’LRP
A T T ^ ^ y s e v a a y e f t t l t t v p g c ik y k g a k iq l l d l p g

IIEGAKDGKGRGRQVIAVARTC
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pattern is regular patterns, that can be expressed as regular expressions. Regular 
expressions allow

•  exact matches (e.g. FINDAFTHEKWPATTERNS),

•  wild-card matches (e.g. F IN D . .T H E . .PATTERNS),

• alternate matches (e.g. FIND [ AMR ] [ FKN ] THE [ KEL ] [WDLR] PATTERNS),

• variable-length matches (e.g. F IN D . {1 , 2}THE [ KELR ] { 1 , 2}PATTERNS) 
and

• arbitrary-length matches (e.g. F IN D [N ] *THE. * PATTERNS).

Other more powerful classes of deterministic patterns can be expressed by context- 
free grammars or Turing-equivalent languages. These classes of patterns have more 
power of expression than regular patterns but are also very computationally expen
sive to learn and recognize. Their biological significance may also be more difficult 
to interpret because of their complexity. The deterministic patterns discussed here 
will be restricted to a subset of regular patterns.

3.1.2 Probabilistic Patterns
Probabilistic sequence patterns [34] may be of basically the same structures as de
terministic patterns except that they define the probability of a match rather than an 
explicit boolean match. The probability of a match between a protein sequence and 
the pattern is typically built up from the combination of the probabilities of a par
ticular amino acid matching a particular part of the pattern. As with deterministic 
patterns, increased pattern power and complexity brings increased computational 
expense.

The main probabilistic pattern classes involve

•  fixed-length matches,

• variable-length matches, and

•  regular-expression equivalent matches.

Probabilistic patterns are often viewed as portions of sequences that are gen
erated from a probabilistic model or distribution. We might view the majority of 
proteins as being generated from a ‘background’ distribution and the proteins with 
the function of interest being generated from a specific pattern distribution. Our 
goal in pattern recognition can be viewed as the task of determining with high con
fidence which distribution is most likely to have ‘generated’ the sequence. In the
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Figure 3.5: Common Substrings 

Common substrings from the example sequences.

FIND THE PATTERNS

ideal case, the statistical significance of a sequence belonging to a particular dis
tribution would be diagnostic for the associated protein function (ie. the positive 
and negative groups would be completely separated into high and low probabilities 
when matched to the pattern model).

3.2 Deterministic Sequence Patterns

3.2.1 Common Substrings
Common substrings are the simplest form of sequence pattern (see Figure 3.5). 
The problem is conceptually very simple and relatively well-studied. As common 
subsequences are also very useful for a variety of applications outside of biological 
sequence analysis, many efficient solutions are available [40].

Many efficient algorithms exist for substring matching problems, including the 
Boyer-Moore [21], Knuth-Morris-Pratt [52], and Aho-Corasick [2] algorithms.

Suffix trees are of particular interest in exact string matching. Suffix trees (dis
cussed in detail in Section 4.1 and very well developed by Gusfield [40]) are data 
structures that allow the acceleration of many string processing and pattern finding 
tasks (when applicable, these will be mentioned below). Of particular interest is the 
fact that suffix trees may be used to find the longest common subsequence of a set 
of sequences in time that is linear in the total number of symbols in the sequences. 
This algorithm and variations on it allow signature substrings to be found quickly 
in sequence families. Tree structures in general are often used as indices in order to 
accelerate a variety of lookup tasks on many algorithms such as database searches.

Although common substrings can be very useful patterns that are easily inter
pretable and efficient to work with, they have practical limitations. As biological 
sequences tend to mutate, there are very few patterns that are maintained as com
mon substrings without noise. Very efficient wildcard and /c-mismatch variations 
of suffix tree algorithms have been developed to deal with approximate matching
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Figure 3.6: Consensus Sequences

A consensus sequence derived from the example sequences. In the 10th position, K is the 
consensus symbol as it occurs more than any other amino acid at that position (2/5 times) in the 
example sequences. The consensus sequence does not exactly match any of the example sequences.

C o n s e n s u s  FINDAFTHEKLPATTERNS 
P o s i t i o n  1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

[40|. Suffix tree algorithms have also been applied to a wider set of parameterized 
string matching4 problems [40, 65],

3.2.2 Consensus Sequences
Consensus sequences are another simple form of sequence pattern that are closely 
related to string matching. Consensus sequences are substrings where each po
sition holds the most frequently occurring symbol at that position in the pattern. 
Consensus sequences encode neither the frequency of the consensus symbol nor 
the frequencies of any other symbols at a given position (see Figure 3.6). Despite 
their appealing simplicity and widespread use [58], these pattern representations 
have been argued to be misleading and error-prone [83].

One example of the use of consensus sequences is the ‘TATAA box’, a pro
moter region in bacterial DNA sequences. This pattern was recognized by David 
Pribnow in 1975 [78] and has been cited often since that time [58], As discussed 
by Schneider [83], the frequencies at the ‘TAA’ positions of the consensus are 0.49, 
0.58, and 0.54. By requiring exact matching at the ‘T ’ position, at least 51% of 
the known sequences would be missed in error (false negatives). By using the full 
sequence ‘TATAAT’ for exact string matching, only 14 of 291 documented occur
rences would be found. In practice, partial matches to the consensus may be allowed 
to reduce the problems of an overly exclusive consensus.

Given a set of example sequences, the consensus can be calculated very effi
ciently. Matches or partial matches to the consensus sequence can also be found 
very efficiently. The exact and approximate string matching algorithms mentioned 
above (Section 3.2.1) may be used. Slightly modified scoring algorithms may be

4Parameterized approximate string matching involves finding all occurrences of a pattern that 
are within a threshold distance (defined by some distance measure) of a string.
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applied to partial matches. Suffix trees have also been used to find slightly more 
flexible consensus patterns with variable gaps and mismatches |67|.

3.2.3 Alignments
Sequence alignments allow more flexible representation of sequence patterns. Align
ments may be considered in terms of minimizing the ‘edit distance’ -  the amount 
of change required to make one sequence identical to another. The allowed changes 
are mismatches, insertions, and deletions. Each alignment scheme assigns a cost for 
each change and optimizes the alignment so that the total edit cost is minimized.

Although sequence alignment algorithms incorporate both deterministic and 
probabilistic elements, they will be presented here because of the natural similarity 
to exact and approximate string matching algorithms.

Similarities between two sequences may be shown by pairwise alignments (see 
Figure 3.7). Similarities between three or more sequences are represented by mul
tiple alignments (see Figure 3.8).

Pairwise Alignments

Needleman and Wunsch [74] created the first automated global alignment algorithm 
that optimizes the alignment over the entire length of the two sequences. Numer
ous variations and improvements have occurred since that time [40]. Smith and 
Waterman introduced local sequence alignments [86] which find more highly con
served subsequences. Improvements in performance with respect to time [39] and 
space [69, 46] have also been published. Scoring schemes have been refined to 
include affine gaps [39] and amino acid substitution matrices. Affine gaps assign 
non-linear penalties to gaps based on the idea that inserting a gap ‘costs’ more than 
extending that gap. Amino acid substitution matrices, such as those developed by 
Dayhoff [31] and Henikoff and Henikoff [43] assign different penalties for substi
tuting amino acids that are similar than for substituting amino acids that are very 
different. These matrices, although not explicit probabilities, are based on proba
bilistic principles [34].

BLAST In addition to developments in optimal sequence alignment, work on ap
proximate alignments has been very important for practical use. The FASTA [61] 
and BLAST [4] algorithms both advanced the practicality of searching sequence 
databases for local alignments because of greatly increased search speed over op
timal alignments. Both work on the principle of heuristic exclusion of sequence 
regions that are unlikely to produce good local alignments. BLAST has been the 
dominant sequence alignment program almost since it was first released because 
of its superior speed and a well-developed statistical interpretation of the results.
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Figure 3.7: Pairwise Alignment

A global pairwise alignment of subsequences of example sequences 1 and 2 is shown below. In this 
simple alignment, matching amino acid residues get a score of 3, mismatches a score of -3, and 
gaps a score o f -2.

S u b s e q u e n c e  1 FTHEKWPATTERNSFHVT 
S u b s e q u e n c e  2 ANLTFINDMFTHEEDPATTERNSK

------------------ FTHEKWPATTERNSFHVT

I I I  M I N I M
ANLTFINDMFTHEEDPATTERNS K

A l i g n m e n t  L e n g t h  = 27  
A l i g n m e n t  S c o r e  = 3

Modifications to the algorithm, such as PSI-BLAST [5], have also been significant 
for finding more distantly related sequences.

BLAST returns the best alignments it can make between the query sequences 
and sequences in a database. The best alignments have high bit-scores and low 
Expectation Values (E-values). The lower the E-value, the less likely it is that an 
alignment as good as the one seen would occur by random chance.

Suffix trees have been used to accelerate pairwise alignments, especially in the 
case of ^-difference inexact matching [40].

Genomic Alignments As genomic data has become available, whole genome 
alignments have become of interest. Slightly different alignment methods are used 
for these very large-scale problems. MUMmer [54], for example, uses suffix trees 
to allow the very efficient alignment of genomic DNA.

Multiple Alignments

Multiple sequence alignment is useful for displaying the commonalities in a family 
of sequences that may have common structure or function (see Figure 3.8). Al
though pairwise alignment may provide some of this information, it does not opti
mize the comparison across all the sequences in the family. Arthur Lesk (as quoted

47

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 3.8: Multiple Alignment

This is a multiple alignment of the example sequences as performed by the ClustalW program. 
symbols represent gaps that have been inserted as part of the alignment.

1  Q IK -D L L V S S S T D L D T T L V L R E --------------

3  IS E E Y IS Y G G E K K -IL A IQ G A L E K A L R W A S G E --------------
4  A K L A E Q A E R Y D D N L LSV A Y K N W G A R R SSW R V ISSIEQ K TER N EK K Q Q M G K E
2   R R V K V Y L P-Q M K IE E K Y N L T SV L M A L G --------------
5  M IT IL E K IS A IE S E M A R T Q K N K A T S A H L G G G G T G E A G F E V A K T G D A R V G F V G F P --------------

1 -------NVATLPAEKMKPF— FINDAFTHEKWPATTERNSFHV-----------TILELK
3 -------SFIELSNHKFDRM— FINDRKTHEKLPATTERN--------------- SSAKFR
4 YREKIEAELQDICNDVLELLDKFINDMKTHEKLPATTERNSYLIPNRSQPESKVFYLKMK
2 --------MTDLFIPSANLT— FINDMFTHEEDPATTERN--------------- SKISQA
5 --------SVGKSTLLSNLAGVFINDANTHELRPATTERNSYS------------ EVAAYE

* * * * * * * * * * * * * * *

1 — YFQESKPVMP---- QMMCNS---------------------------
3 — RFT---------------------------------------------
4 GDYFRYLSEVASGDNKQTVSNSQQAYQEAFEISKKEMQPT-------
2 GSSAESLIGVIE---- DIKHSP--------------------------
5 FTTLTTVPGCIKYKGAKIQLLDLPGIIEGAKDGKGRGRQVIAVARTC

by Gusfield [40]) said, ‘One or two homologous sequences whisper ... a full multi
ple alignment shouts out loud’.

Optimal multiple sequence alignment is extremely costly (NP-hard for scoring 
schemes used by biologists [96]) and most practical methods use a variety of heuris
tics to perform multiple alignments. As with pairwise alignments, many variations 
and improvements have been made to multiple alignment methods [40]. Many other 
patterns, such as consensus sequences or HMMs [34], utilize multiple alignments 
as a preprocessing step.

ClustalW ClustalW [92] is a popular multiple sequence alignment program that 
illustrates the type of approximation algorithms that may be used to speed up the 
alignment. ClustalW first performs pairwise alignments between all the pairs of 
sequences to be aligned. The similarity scores are used to create a tree by clustering 
more similar sequences together. The sequences are then progressively aligned 
starting with the most similar sequences. Sequences are merged into profiles that 
can then be merged with other sequences or profiles. A variety of other heuristic 
refinements improve the performance of the algorithm.

By observing the aligned portion of the sequences, many patterns can be easily 
observed. The disadvantage of these patterns is that although a multiple alignment 
may assist in viewing a pattern in the sequences, it may still be difficult to define 
the pattern so that it may be found in other sequences. Some progressive alignment
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methods allow the incorporation of a new sequence into a previous alignment.

Other Multiple Alignment Methods Gibbs sampling techniques have been used 
to accelerate multiple alignment [56]. This method is commonly used to find short 
local alignments that are motifs (see Section 3.3.1) in relatively divergent groups 
of sequences. Hidden Markov models may also be used for multiple sequence 
alignment 134].

3.2.4 Regular Languages
Although alignments are extensively used and intuitively satisfying, the importance 
of other types of patterns has been underscored. R.F. Doolittle stated (as quoted in 
the PROSITE user manual [84]),

There are many short sequences that are often (but not always) di
agnostics of certain binding properties or active sites. These can be set 
into a small sub-collection and searched against your sequence.

A.M. Lesk (also quoted in the PROSITE user manual [84]) mentioned,

In some cases, the structure and function of an unknown protein 
which is too distantly related to any protein of known structure to de
tect its affinity by overall sequence alignment may be identified by its 
possession of a particular cluster of residues types classified as a mo
tifs. The motifs, or templates, or fingerprints, arise because of partic
ular requirements of binding sites that impose very tight constraint on 
the evolution of portions of a protein sequence.

For these reasons, other pattern types are also important for sequence analysis. 
Regular languages handle variation in biological sequences through the use of wild 
cards, equivalent sets of residues, and variable length gaps.

PROSITE The PROSITE [84] database and pattern matching tools find both de
terministic patterns and probabilistic profiles. Deterministic PROSITE patterns take 
the form of regular-expression-like strings. They vary slightly from standard regu
lar expression in notation, but retain most of the power. PROSITE patterns include 
the subset of regular expressions that allow

•  exact matches 
(e.g. F - I -N -D ) ,

•  alternate matches
(e.g. F - I - N - D -  [ TG ] -  [ KM ] -T -H -E ) ,
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Figure 3.9: PROSITE Output

Some PROSITE motifs found in the example sequences are shown below. Motifs occurring more 
than once have been removed for brevity.

>Seq 1 : PS00005 PKC_PHOSPHO_SITE Protein kinase C phosphorylation site.
49 - 51 TeR

>Seq 1 : PS0Q006 CK2_PH0SPH0_SITE Casein kinase II phosphorylation site.
9 - 1 2  SstD 

1 1 - 1 4  TdlD 
57 - 60 TilE

>Seq 2 : PS00001 ASN_GLYCOSYLATION N-glycosylation site.
17 - 20 NLTS 
36 - 39 NLTF

>Seq 3 : PS00004 CAMP_PHOSPHO_SITE cAMP- and cGMP-dependent protein kinase phosphorylation site. 
68 - 71 RRfT

>Seq 4 : PS00003 SULFATION Tyrosine sulfation site.
3 - 1 7  laeqaerYddnllsv

>Seq 4 : PS00007 TYR_PHOSPHO_SITE Tyrosine kinase phosphorylation site.
110 - 118 KmkgDyfrY

>Seq 4 : PS00008 MYRISTYL N-myristoylation site.
2 4 - 2 9  GArrSS

>Seq 5 : PS00017 ATP_GTP_A ATP/GTP-binding site motif A (P-loop).
52 - 59 GfpsvGKS 

>Seq 5 j PS00905 GTP1_0BG GTP1/OBG family signature.
117 - 130 DLPGIIEGAkdGkG

•  wild-card matches
(e.g. F - I - N - D - x  ( 2 ) -T -H -E -x  ( 2 ) -P -A -T -T -E -R -N -S ) , and

•  fixed-range variable-length matches
(e.g. T -H -E -x  ( 2 , 5 )  -P -A -T -T -E -R -N -S ) .

PROSITE patterns are created manually through the observation of functional 
regions (typically well-known) in multiple alignments of protein sequences. As 
a result, the database is fairly small in size (about 1300 pattern entries) but still 
useful for identifying a number of common protein patterns. A simple tool such as 
ScanProsite [38] searches a given set of protein sequences for PROSITE patterns 
by converting the pattern to a regular expression and using programs such as Perl 
[95] to perform the search. Figure 3.9 shows some of the results obtained from 
PROSITE on our example sequences. The numbers of the form P S # # # # #  are 
PROSITE accession numbers.

TEIRESIAS TEIRESIAS [80] is a combinatorial pattern discovery algorithm de
veloped and patented by researchers at IBM. It discovers fixed-length patterns with
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Figure 3.10: TEIRESIAS Output 

TEIRESIAS run on the example sequences using the options shown.

Using the default options: Pattern Length=10, Template Length=12, Mini
mum Support=5 and Convolution Length=5.
T H E . . P A T T E R N  

H E . . P A T T E R N S

Using the options: Pattern Length=3, Template Length=3, Minimum Support=5 
and Convolution Length=2.
PA T T E R N S
TERN
F IN D
THE

Using the options: Pattern Length=3, Template Length=5, Minimum Support=5 
and Convolution Length=2.

F I N D . .T H E . . P A T T E R N S  
TERN 
E K . .A  
T .  .N S

wild-cards. Although used for a variety of sequence types, it has been used with 
biological sequences to efficiently find and report patterns.

The concept underlying the TEIRESIAS algorithm is the a priori principle from 
association-rule data mining techniques [41]. The algorithm first finds frequently 
occurring smaller ‘elementary’ patterns of a user specified length (the ‘scanning’ 
phase). Then, longer patterns are built up by combining (or ‘convoluting’) com
patible shorter patterns into progressively longer ones until the support (number of 
occurrences) for the new longer patterns would be less than for the shorter ones 
(the ‘convolution’ phase). In this way the algorithm ensures the greatest pattern 
specificity while including all possible occurrences within the training set.

The algorithm outputs the patterns and the positions of the occurrences of those 
patterns in the training sequences. These patterns are fixed-length patterns that 
allow only specific amino acid residues or wild-card characters at each position 
of the pattern. As such, they are quite inflexible and small amounts of ‘noise’ or 
variation in a pattern will often generate a number of very similar patterns. Users 
must specify the number of non-wild-card characters in the pattern, the maximum 
extent of an elementary (ungapped) pattern, the minimum allowed support for a 
pattern, and the number of overlapping symbols in the convolved pattern.

The TEIRESIAS output can be very sensitive to the search parameters. Using
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Figure 3.11: PRATT Output

Best Patterns (after refinement phase):
fitness hits(seqs) Pattern

A 1: 62.5508 5( 5) F-I-N-D-x(2)-T-H-E-x(2)-P-A-T-T-E-R-N-S
B 2: 58.3807 5( 5) I-N-D-x(2)-T-H-E-x(2)-P-A-T-T-E-R-N-S
C 3: 54.2107 5( 5) N-D-x(2)-T-H-E-x(2)-P-A-T-T-E-R-N-S

the defaults, for example, it does not achieve optimal results on our example data 
set. Figure 3.10 shows various results obtained on our example sequences by chang
ing the algorithm parameters. With some parameter tuning, the algorithm recovers 
the expected patterns. In general, however, we do not know the patterns we would 
like to discover. This makes parameter choice more difficult in practice.

Although TEIRESIAS runs quickly compared to many previous algorithms of 
this type, the running time increases proportionally with the size of the output. For 
less stringent parameter settings, the output size can grow very quickly (more than 
linear in size of the training data). In addition, proper parameter selection is crucial 
for good results. For these reasons, TEIRESIAS is not well suited to automated 
prediction.

PRATT PRATT [49,48] is a graph-based pattern discovery algorithm. It supports 
the discovery of regular-expression-like patterns that are capable of expressing ex
act matches, alternate matches, and wild-card matches of variable length. The two 
stage process involves an initial discovery phase and a second evaluation and pat
tern refinement phase. In the discovery phase, very simple fixed-length patterns 
with occurrences in the training sequences are found. This is done by extending 
very short patterns discovered with wildcard and amino acid symbols and counting 
the number of occurrences. A graph structure is used to accelerate the search. Pat
terns that are given a high score by the algorithm are then passed to the refinement 
stage in which they are combined in cases where the resulting combination (through 
the addition of ambiguous symbols) has a higher fitness score.

The output is a set of patterns that are equivalent to PROSITE patterns and may 
be used in the same way.

Figure 3.11 shows the results of PRATT on the example sequences. With the 
default parameters PRATT finds the pattern F IN D . . THE. . PATTERNS.

Pratt discovers many patterns that, despite the refinement phase, contain many
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redundant results (as seen in Figure 3.11). PRATT is very computationally expen
sive and also sensitive to the input parameters (though not as inflexible as TEIRE
SIAS).

SPLASH The patterns discovered by the SPLASH [25] algorithm include those 
found by PRATT. SPLASH additionally allows more flexibility by using symbol 
similarity metrics rather than exact matches. In the case where identity (exact 
matching) is used, SPLASH has been shown to be much faster and more scalable 
(sub-linear time complexity in the size of the database) than PRATT (super-linear 
time complexity with the size of the database). Where similarity metrics are al
lowed, the discovered patterns have been shown to be more sensitive than those 
obtained with exact matching.

SPLASH and TEIRESIAS are both proprietary IBM algorithms.

3.3 Probabilistic Sequence Patterns

3.3.1 Probabilistic Profiles
Position-specific scoring matrices (PSSMs) are common probabilistic models of se
quence patterns. These profiles are fixed-length patterns represented by a scoring 
matrix (see Figure 3.12). The columns in the matrix correspond to sequence posi
tions and rows correspond to particular symbols. The score at row i and column j  of 
the matrix represents the score given if amino acid % occurs at position j  of the pat
tern. The pattern score is evaluated at each position of the sequence by moving the 
pattern over the sequence and reevaluating the score at each position. Each position 
in the sequence is assigned a score by this moving window. Scores above a certain 
threshold are considered to be matches. The scores are typically derived from prob
abilities and may be smoothed or scaled for practical reasons. Log ratios are often 
used to make the calculation more efficient and to avoid floating point underflow 
errors. Figure 3.12 shows typical example calculations for creating the PSSM (used 
in the MEME/MAST system [10, 12, 11]). PSSMs for other applications may be 
calculated in slightly different ways.

Figure 3.13 illustrates some example calculations of scores along the example 
sequences. The scores obtained from the PSSM at each point in the sequence can 
also be converted to p-values which indicate the probability that a random sequence 
(from the background probabilities) would have an equal or greater score.

An approximation of the PSSM from Figure 3.12 can be illustrated by the fol
lowing multi-level consensus (with second-most common residues also shown).

FINDAF 
A MN
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Figure 3.12: Position-Specific Scoring Matrix (PSSM)

The position-specific probability matrix is calculated from counts of the amino acids seen at motif 
occurrences in the training sequences (see Figure B .l). These counts are used to calculate a 
position-specific probability matrix (top). The position-specific scoring matrix (bottom) is 
calculated from the position-specific probability matrix by taking the base 2 log of the ratio of the 
probability of the symbol in the motif (from the PSPM) and the probability o f the symbol in the 
background (not shown). Each entry is then multiplied by 100 and rounded to the nearest integer. 
This output is the result o f using MEME 110] on the training sequences (see Figure B .l)  with 
patterns similar to those found in the example sequences.

Position-Specific Probability Matrix
1 2 3 4 5 6

A 0.166 0 0.333 0 0.5 0
D 0 0 0 1.000 0 0
F 0.833 0 0 0 0.166 0.5
I 0 0.833 0 0 0 0

M 0 0 0 0 0.333 0.166
N 0 0.166 0.666 0 0 0.333

Position-Specific Scoring Matrix
1 2 3 4 5 6

A -151 -291 142 -347 230 -243
C -123 -171 -124 -266 -25 -111
D -381 -320 -98 449 -309 -274
E -468 -415 -279 -149 -344 -346
F 431 -237 -380 -417 134 351
G -436 -416 -210 -373 -251 -353
H -292 -296 -102 -194 -175 -113
I -234 345 -371 -420 -77 -138
K -470 -371 -282 -422 -321 -314
L -129 -28 -371 -414 -44 -86
M -205 -83 -344 -399 281 181
N -405 -32 368 -89 -280 196
P -335 -367 -263 -395 -276 -298
Q -410 -330 -211 -321 -236 -240
R -422 -347 -269 -367 -263 -271
S -318 -327 -135 -330 -162 -260
T -388 -261 -208 -386 -172 -241
V -214 119 -268 -352 -25 -106
w -59 -220 -262 -277 -102 -14
Y -38 -266 -322 -359 -154 26
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Figure 3.13: Using a Position-Specific Scoring Matrix

The PSSM from Figure 3.12 is used to scan the sequences and calculate the scores at each position. 
Given a score threshold of 0, the top calculation results in a match to the PSSM at the position 
shown. The bottom calculation does not result in a match to the PSSM in Figure 3.12.

FINDMF

M I N I
GMTDLFIPSANLTFINDMFTHEEDPATTERN

P S S M ( F I N D M F )  = P S S M ( F ,  1) +  P S S M ( 1 , 2) +  P S S M ( N , 3)
+ P S S M ( D , 4) +  P S S M { M , 5) +  P S S M ( F ,  6) 

=  431 +  345 +  368 +  449 +  281 +  351 
=  2225

GIADRK

I I I I II
NHKFDRMGIADRKTEKLGMTDLFIFINDMFT

P S S M  ( G I A D R K )  =  P S S M ( G , 1) +  P S S M ( 1 , 2) +  P S S M ( A , 3)
+ P S S M ( D ,  4) +  P S S M ( R ,  5) +  P S S M ( K ,  6) 

=  -4 3 6  +  345 +  142 +  449 +  -2 6 3  +  -3 1 4  
=  -7 7
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Suffix trees (see Section 4.1) have been used to accelerate predictions using 
PSSMs [33],

PROSITE Profiles PROSITE profiles [84] are simple PSSMs that have been cre
ated from multiple sequence alignments. They are considerably more computa
tionally expensive to recognize than PROSITE patterns. Each profile is developed 
through extensive human involvement.

BLOCKS The BLOCKS [44] database contains a series of multiple alignments 
representing highly conserved representatives of sequences matching the PROSITE 
database. The regions are selected automatically and then calibrated against the 
SwissProt database 119] to determine the probability of obtaining a random match.

M EM E The MEME [10] tool discovers a PSSM from a set of unaligned se
quences. MEME was used to find the example PSSM in Figures 3.12 and 3.13.

MEME applies the expectation maximization (EM) algorithm (which is de
scribed in machine learning texts [42, 70]). The EM algorithm is used to separate 
instances from two unknown probabilistic distributions. In this case, two distribu
tions are the ‘m otif’ distribution (which ‘generates’ occurrences of the motif) and 
the ‘background’ distribution (which ‘generates’ all other amino acid residues in the 
training set). Given a user-specified motif width w, MEME creates a list of all the 
substrings of width w  in the training sequences. Each substring must be assigned to 
either the ‘motif’ model or the ‘background’ model. The expectation maximization 
is used to iteratively update in two phases, E  and M.

• the E-step: Calculates the assignments (‘motif’ or ‘background’) of the sub
strings given the current model parameters and

• the M-step: Updates the model parameters given the substring assignments.

Through repeated iterations of the two phases, the algorithm converges on a motif 
model and substrings that match it. Motifs of various lengths can be found by re
running the algorithm for each possible motif width. Multiple motifs can be found 
by masking out regions that match motifs that have already been found and rerun
ning the algorithm. In this way, if is possible (although computationally expensive) 
for MEME to find a specified number of patterns in a specified range of widths.

PSI-BLAST PSI-BLAST [5] augments the search for homologous sequences by 
using a PSSM that is automatically created from a multiple alignment of high- 
scoring BLAST alignments. The PSSM is then iteratively realigned to the sequence 
database and the values are refined by the high scoring alignments from each iter
ation. This Position-Specific Iterative (PSI) approach to BLAST allows increased
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sensitivity in finding related sequences as it assigns more weight to highly con
served regions and less weight to regions with significant sequence divergence.

Gibbs Sampling The Gibbs sampler [56, 93] finds motifs by using a statistical 
sampling technique, Gibbs sampling, to efficiently find fixed-length motifs. Gibbs 
sampling can be seen as a stochastic variation of the expectation maximization (EM) 
algorithm (above).

3.3.2 Markov Models 
Markov Chains

Classical Markov chains have been used for many sequence analysis applications. 
Markov chains are used to define the probability of the next symbol in a sequence 
given the preceding symbols (or history). The model is simplified by assuming that 
the distribution has a ‘short memory’ -  that is, it is not necessary to keep statistics 
for histories beyond a certain length. This is the ‘Markov assumption’. Markov 
first proposed the technique to predict whether the next letter in Pushkin’s Eugene 
Onegin would be a vowel or a consonant [66].

Markov chains have been used for a variety of applications. For example, N- 
gram techniques which have long been used in natural language processing are 
simple Markov chains [50]. N-gram models make use of the probability of a word 
occurring in a text given the N  previous words. Markov chains are used in biologi
cal sequence analysis in a manner similar to Markov’s technique - we make use of 
the probability of a certain symbol given the previous symbols [34]. The order of 
the model is equal to the number of preceding symbols used.

For use in classification of sequences, we can use the following first-order 
Markov chain to define the probability of the sequence x — x \ . . .  x m.

P(x)  =  P{xxx2 ■ ■ • x m- i x m) (3.1)

=  P ( x 1)P (x 2\x1) P ( x 3\x1x 2) . . .
P ( x m-1 \ x i . . .  x m^ 2) P (x m\ x i . . .  (3.2)

=  P ( x 1)P (x 2\x i )P (x3\x2) . . .

P{%m— 1 l-̂ rra—2)P{p^m |*̂ m—l) (3.3)
m

= P ( x 1) Y [ P ( x i \xi- i )  (3.4)
i- 2

The simplification step from Equation 3.2 to Equation 3.3 is possible because 
of a first-order Markov assumption. We estimate the values of P ( x , |x i . . .  Xj_i) 
by assuming that only the previous symbol Xj_i is important to the distribution of
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the current symbol x,. Although this may seem an outrageous assumption in a 
biological context, it allows us a simple and efficient model for classification that 
can be useful in some cases.

To use a first-order Markov chain for classification of a given protein function y, 
we calculate the probability of a sequence x  given the positive and negative training 
sequences. The sequences that are known to have the function being modeled are 
used to obtain the positive (+) model parameters and the sequences that are known 
to not have the function are used to obtain the negative (—) model parameters. 
These parameters are estimated by the count C(a ) of the number of occurrences of 
the substring a in the training data.

P(xi \x i^ i)  =  Pp Xl ^  (3.5)
P { % i - 1 )

C{Xi-iXi)
= -pr, r- (3.6)

An example set of model parameters is found in Table 3.1. The parameters 
were generated from the example training sequences in Figure B.2 (found in Ap
pendix B). In this example we convert the example protein sequences to a smaller 
alphabet5. The mapped training sequences are found in Figure B.3. Mapping of the 
amino acid alphabet to simpler alphabets based on physical similarities has been 
fruitful in a variety of applications [72, 6] (and reduces the space required for this 
example).

Given the model parameters and a test sequence x, we may calculate the likeli
hood of the sequence given the positive model P+(x) and the negative model P_ (x). 
These values are often combined into a single score as a log-odds ratio.

log-odds ratio — log ( I (3.7)

For convenience, we can build a single discriminative model by combining the 
parameters of the positive and negative models into log-odds ratios (as in the bot
tom of Table 3.1). A log-odds ratio can be determined for each position x, of the 
sequence x  and the sum of these ratios is equal to the total log-odds ratio for the 
sequence.

position log-odds ratio =  log ( ^ >+̂x ^ Xz 1M (3.8)

5In this particular alphabet [72], L represent the hydrophobic amino acids (LVIMC), F represents 
the hydrophobic/aromatic side chains (FYW), A represents the polar amino acids (AGSTP), and E 
represents the hydrophilic amino acids (EDNQKRH). Example mappings can be seen in Table B .l.

58

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 3.1: Markov Chain Probabilities

The probabilities found in the following tables were calculated from the training sequences in 
Figure B.2. The parameters for the top, middle, and bottom matrices are for the positive, negative, 
and combined discriminative models respectively.

Positive Training Data
p +m P+ (■ E) P+{-W) p +m

A 18/37 13/50 4/11 5/18
E 12/37 28/50 0/11 8/18
F 6/37 2/50 1/11 3/18
L 1/37 7/50 6/11 2/18

Negative Training Data
p ~ m P-( ' \E ) P-( ' \P) p ~ m

A 44/125 36/144 5/29 42/99
E 46/125 53/144 14/29 29/99
F 10/125 13/144 3/29 3/99
L 25/125 42/144 7/29 25/99

Log-odds Ratios
log PP ']A)iU & P-(- \A) log p+('|p) log P+('|P)P _ ( - |F ) log P+(’|L)

A 0.3236 0.0392 0.7463 -0.4235
E -0.1263 0.4197 —oo 0.4169
F 0.7066 -0.8140 -0.1292 1.7047
L -2.0015 -0.7340 0.8152 -0.8210
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log-odds ratio

(3.10)

(3.9)

The log-odds ratio gives a score at each position that allows us to better observe 
the contribution of each amino acid in the sequence to the overall classification.

We can predict whether a protein is in the positive or negative class by using 
the calculated probabilities. Consider the test sequence ‘K PFF/M M P’, which is 
mapped to ‘EAFFLEEAF’. To calculate the log odds of this sequences, we calculate

+lo(E\L)  +  lo(E\E) +  lo(A\E)  +  lo(F\A)
=  0.0392 +  0.7066 + -0 .1 2 9 2  +  0.8152 

+0.4169 +  0.4197 +  0.0392 +  0.7066)
=  3.0142

Because the log-odds score is greater than 0, this sequence is more likely to 
have been generated by the positive model and will be predicted to be positive. 
Now consider another test sequence ‘ISEEYF which is mapped to ‘LAEEFL’.

As the log-odds score for this sequence is less than 0, it is more likely to have 
been generated by the negative model and will be classified as such.

These examples illustrate a global prediction (across the entire sequence). We 
may also have reason to believe that only part of our sequence matches the positive 
model. For this problem we would like a local prediction.

We calculate the results for the example sequences from Figure 3.1. Figure 3.14 
displays the log-odds ratios for example sequence 1. The top plot shows the log- 
odds ratio at each residue. From that plot we get little clear indication of which

lo(A\E)  +  lo(F\A) +  lo{F\F)  +  lo(L\F)

lo(A\L) +  lo(E\A)  +  lo(E\E)

+lo(F\E)  +  lo(F\L)

-0.4235 + - 0 .1 2 6 3 +  0.4197 
+  -0 .8 1 4 0  +  0.8152 

-0.1289
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Figure 3.14: Example Markov Chain Predictions

A  positive log-odds score for a particular position or region means that it is more likely to have the 
function than not.
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model the sequence matches better. The bottom plot shows the cumulative log- 
odds ratio over the entire sequence. It appears from the cumulative (global) score 
that this sequence matches the negative model more closely than the positive model. 
The middle plot, however, displays the sum of log-odds ratios at each position over 
the previous 10 amino acids. This visualization helps us select a region of the 
sequence which does appear to match the positive model. The residues that have 
a positive score over a 10-window are the residues 34-52 in example sequence 1. 
This region corresponds to the string ‘FINDAFTHEKWPATTERNS’ in the original 
sequence. As illustrated by this example, Markov chains can be used for both global 
(entire sequence) and local (partial sequence) discrimination. The results provide 
some intuition about which regions are most likely to be responsible for the protein 
function of interest.

Many extensions have been made to first-order Markov chains shown here. 
Higher order Markov chains have been used for a variety of purposes. Combina
tions of Markov models of various orders (Inhomogeneous, Interpolated Markov 
Models or IMMs) have been used very effectively in the GLIMMER [32] pro
gram for prokaryotic gene prediction. The very similar Variable Memory Markov 
(VMM) models [16] have been used to select a variable history length (or model 
order) depending on the residues preceding the current amino acid (the ‘context’ 
of the current amino acid). Probabilistic suffix trees [16] have been used to both 
reduce memory requirements and accelerate the speed of VMMs. Both VMMs and 
PSTs are discussed in more detail in Section 4.2.

Because of the simple interpretable model and speed with which predictions 
can be made, Markov chains have potential as models for high-throughput protein 
function prediction. Unfortunately, they have not been developed for ‘pattern dis
covery’ and so require that training data be labeled globally. In addition, the local 
prediction demonstrated above requires prediction scoring using a sliding window 
of a fixed size. The optimal window size may vary from one functional pattern to 
another. Despite these limitations, Variable Memory Markov models are attractive 
for the protein function prediction task, especially as their time requirements can be 
minimized when they are implemented as PSTs.

Hidden Markov Models

Hidden Markov models (HMMs) are powerful and popular predictive models. HMMs 
are equivalent to probabilistic regular expressions and allow more sensitivity than 
exact regular expression matching. They also add more flexibility than fixed length 
position-specific scoring matrices (PSSMs). While we will try to provide some 
intuition for the use of HMMs in the following section, interested readers should 
consult a more complete treatment of the topic (such as Durbin et al. [34|).

While HMMs make use of the same Markov assumption as simpler Markov
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chains, they also incorporate the notion of state. For an example of state, we may 
consider each position observed in a protein sequence x, to be associated with a 
state 7Tj. Here, the state can take either of two values 7̂  6E { + ,—}, a functionally 
important region (+) or a functionally unimportant region (—). As we see in the 
example sequence below, each position corresponds to a state and an amino acid 
symbol.

Sequence x  AELQDICNDVLELLDKFINDMKTHEKLPATTERNSYLIP

The Markov assumption applies because the probability of reaching the current 
state 7Tj is dependent only upon the previous state 7T;_i. This conditional probability 
is called the transition probability.

The amino acid symbols at each position Xj are then emitted with a certain 
probability that is dependent only on the state 7r* at that position. These conditional 
probabilities are called emission probabilities.

These states, transition probabilities, and emission probabilities can be com
bined into a single model called a hidden Markov model (HMM). A simple model 
for our example situation is shown in Figure 3.15. The model structure -  consisting 
of the states, symbols, and their associated probabilities -  are very specific to each 
application (Figures 3.16 and 3.17 show two other more complex model structures).

When given a new protein sequence, we can see the amino acid Xi at each 
position i but we cannot observe the corresponding state 7r*. It is these states that are 
‘hidden’ and that we seek to predict by using the HMM. In our example, we would 
like to predict which regions are functionally important (‘+’ states) and which are 
not states)6.

The parameters of the model for the transition and emission probabilities can 
be learned in several ways. They are most easily learned when we are provided 
with a set of training sequences for which the symbols and corresponding states are 
completely specified. In the example, we might obtain training sequences that have

6Some readers may correctly object that our simple HMM in Figure 3.15 is very unlikely to 
repeatedly produce ordered symbols of the form ‘FIND..THE..PATTERNS’. Despite this, we will 
use this pattern as an instructional example for continuity. Profile HMMs, which are discussed later, 
do take advantage of positional information within the motif and are able to better model this type 
of motif.

transition (3.11)

e m iss io n P(Xi\TTi) (3.12)

63

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 3.15: An Example HMM

The positive and negative sequence positions each correspond to a state in the model (+ or -). The 
amino acids are emitted with different probabilities for each state.
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<V 9  PS v- o<V (S CO <5>

0.03

0.97

0.10

F L

^ CO
0 3  co 

O ' 0

i  t
A E

c c?
■9 ^

F L

0.90

Emission Probabilities

been labeled according to the results of biological testing. Although this simplifies 
the learning process, training data is not always available in this way. The Baum- 
Welch algorithm, an application of expectation maximization (EM), can be used to 
train on unlabeled training data. A variation on this, called Viterbi training, may 
also be used. For biological sequences, multiple alignments of relevant sequence 
regions can provide the needed information for parameter estimation. These tech
niques are discussed elsewhere. Much of the current discussion is based on Durbin 
et al. [34].

Once we have obtained the transition and emission probabilities that define the 
model, we can define the joint probability for an entire sequence of symbols and 
states.

L

P ( X ,  7r) =  P (7Ti|7r0) J]  ̂P ( x i \Ki)P('Ki \'Ki^i)  (3.13)
2= 1

With this knowledge, the HMM may be used to calculate information about the 
sequence which is crucial to the protein function prediction task.

The Most Probable State Path The most probable state path 7r* is the single 
most probable path of states ir through the model given the sequence x. The calcu-
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lation of the most probable state path arises from our definition of the joint proba
bility of symbols and states for the sequence in Equation 3.13.

7r* — argmax7tP(x,-jr) (3.14)

Although the number of possible paths increases exponentially with the length 
of the sequence, we can efficiently calculate the most probable state path 7 r *  using 
dynamic programming. By defining the probability of the most probable state path 
ending at a certain position i with a specific state k  we can calculate the probability 
of the most probable path ending at the next position i +  1 in a certain state I.

vi(i +  1) =  P{x l+i\'Ki+i =  l )m axk {vk(i)P(ni+i =  l\i\i = k)}  (3.15)

The Viterbi algorithm uses this recursive equation to calculate the most probable 
path ending at each point in the sequence with a current state k. By taking the 
most probable path ending at the last position of the sequence we can obtain the 
most probable path of states through the entire sequence without evaluating every 
possible path individually. An example of this calculation (without numbers) for 
the sequence fragm ent. . .  x i 6x n  . . .  =  . . .  K F . . .  follows.

i 16 17
X x ie =  K >-

* -q ii

v + ( i ) u+(16) ^ u+(17) =  P {F \+ )m ax  j  1 ^

v - ( i ) v_(16) ^ f-(1 7 ) =  P ( F \ - ) m a x  j j ^
After calculating the Viterbi values vk(i) in the forward direction, the algorithm 

traces back over the sequence through pointers that indicate from which state the 
maximum value was obtained at each step. The path back through the states starting 
at the maximum vk(i) at the end of the sequence is the Most Probable State Path 
(MPSP) path. In the example below, D  is the final amino acid and the maximum 
vk is v+. The traceback through states is indicated by parentheses and the most 
probable state path is indicated below.

i 16 17 18 19 20
X K F I N D

v+(i) v+ v+ K ) M  -* K )
v_(i) (*>-) -> ( v - ) y V - V _ V _

M P S P — — + + +
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Probability of a Sequence For protein function prediction we often want to know 
the probability that each sequence in a test set belongs to a family of proteins. If we 
have an HMM representing that sequence family, we can calculate the probability 
of each sequence given the model.

p ( x )  =  ( 3 - 1 6 )  

7T

Although the number of possible state paths n  through the model increases ex
ponentially with the length of the sequence, we can again use dynamic program
ming to calculate this probability efficiently. The forward algorithm defines the 
probability of being in a specific state A: at a certain position i given the symbols up 
to and including this position.

f k(i) = P(xi , . . . ,Xi ,TTi = k) (3.17)

In order to calculate the probability of the entire sequence, we can recursively 
calculate /*.(*) using the following equation which incorporates the emission and 
transition probabilities.

fi(i  + 1) =  P ( x i+i\TTi+1 = l)Ylfk(i)P(Tri+i = l\Tri = k) (3.18)
k

The forward values /*,(*) are calculated during a forward pass through the se
quence in a manner similar to the Viterbi algorithm, except that the sum over the 
previous states is taken rather than the maximum.

% 16 17
X x 16 =  K x 17 = F

/+(*) / + ( 16) ^ f  ('17') _  p t p i ,  \  (  /+ (1 6 )P (+ |+ )  A — ►
/+ (  ) -  ( l + ) ( + / _ ( 16) P ( + |- )  J \

f - ( i ) / — (16) ^ \ (  f+(16)p ( - \ + )  \  Z 1 
-  P ( F H  [ + / _ (i 6 )p (_ |_ )  J _

Using this equation, the probability of the sequence x  of a certain length L  
can be calculated. It is the final result of the forward algorithm at the end  of the 
sequence.

p ix ) =  Y l f k { L )P { e n d \x k) (3.19)
k
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The probability can be calculated in this forward direction (1. . .  L) or in the 
backward direction ( L . . .  1) using the analogous (but not exactly equal) backward 
algorithm and its definition.

bi{i) = P(x i+i , . . . , x L\iti = k) (3.20)

=  ^ (^ i+ iK + i =  k)bk(i +  l ) P ( n i+i =  k\7Ti = I) (3.21)
k

The computation follows in the backward direction.

i 16 17
X x 16 = K x 17 = F

b+(i) h t m - l  p ( F \+ ) h ( i7 ) P ( + \+ )  \
S  ^ +  p ( iP |_ )6_ ( i7 ) p ( _ |+ ) J y  *+(17)

6_(i) ^  b ( m ) - (  P(F\+)b+( l 7 ) P ( + \ - )  \  
^ +  P (F | —)fe_(17)P(—| — ) )

^  *-(17)

Similarly, the result of the backward computation at the start  of the sequence 
is the probability of the sequence.

F ( x ) — P(s tar t \x i )P (x i \n i  — k)bk(l)  (3.22)
k

Most Probable State Given the sequence, we may be concerned about the most 
probable state of a particular amino acid at a certain position. Is that amino acid 
functionally important or not? This may be different from the states given by the 
most probable state path as calculated by the Viterbi algorithm above. We want 
to know the probability of having a certain state k  at position % given the entire 
sequence x. It turns out that this can be determined by using the calculations from 
the forward and backward algorithms.

P{*< = k\x) =  P ( X u . . . , X i , n  = k )P ( x l+u . . . ,X L \ * i  = k)
P{x)

= ^  ̂  (3.24)
P(x)

We can use the values obtained from forward and backward sweeps through the 
sequence to calculate the most probable state at each position in the sequence.
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Figure 3.16: HMMer Architecture.

This model structure of a profile HMM incorporates several types of hidden states. Diamonds 
indicate insert ( / )  states, circles indicate delete (D ) states, squares indicate match (M ) states.

M1 M2 M3 M4

D2 D3

i 16 17 18 19 20
X K F / N

/+(*) /+(16) u m u m u m
/-(* ) /-(1 6 ) /-(1 7 ) /-(1 8 ) /-(1 9 )
b+(i) M 16) M 17) M i s ) M 19)
&_(*) M 16) 6_( 17) M 18) 6_(19)

P{lXi = +\x) /+(16)M16)
P ( X )

/+(17)&+(17)
P ( X )

/+(18)6+(18)
P( X)

/+(19)6+(19)
P ( X)

maxkP(  7Tfc|x) i T T T
P ^ i  =  —|:r) /_ (16)6- (16) 

P( X)
/_ (17)6—(I?) 

P ( X )
/_ (18)6_ (18) 

P( X)
/_ (19)6-(19) 

P ( X)
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Note that the states obtained by this example calculation are different than those 
obtained for the most probable state path through the Viterbi algorithm.

HMMer HMMer [35 ] is an implementation of profile hidden Markov models 
[34]. Profile HMMs are HMMs that have been designed to represent protein se
quence families. These models take positional information along the sequence into 
account in a manner analogous to PSSMs, but the power of hidden states also al
lows them to deal with patterns of flexible lengths (through deletion and insertion 
states that are analogous to deletions and insertions in sequence alignments). The 
parameters of each model are typically built up from a multiple sequence alignment 
of the family of sequences.
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The model structure of the profile HMMs used by HMMer is seen in Figure 
3.16. The M  states are match states. The I  states are insertion states. Match states 
and insertion states both have associated emission probabilities for each amino acid. 
The D  states are deletion states that do not emit symbols. Since deletion states 
are ‘silent’, a sequence might correspond to a path through the model which may 
essentially skip an amino acid by passing through a deletion state instead of a match 
state. The length of the center portion of the model (including M , I,  and D  states) 
is variable and is built to reflect the typical length of the sequence domain or family 
being modeled.

Consider how the pattern ‘FIND’ in the example sequences might be modeled 
using the profile HMM structure shown in Figure 3.16. As this pattern is of length 
4, each letter in the pattern might correspond to match states in the model — ‘F’ to 
M l, ‘I’ to M 2, ‘N ’ to M3, and ‘D ’ to M4. Given training data that contains slightly 
noisy variations of the pattern ‘FIND’, each of these states from M l to M 4 may 
emit any amino acid -  but they each will emit the residues matching the pattern 
with the highest probability. The sequence ‘FIND’ will be assigned the highest 
possible probability given a model that has been trained on sequences containing 
this pattern. The most probable state path traced through the model in matching 
‘FIND’ will pass directly through the 4 match (M ) states. A sequence ‘FUND’ may 
still match the pattern, but with a lower probability than ‘FIND’. Insertion states 
also emit amino acids. When insertions are included, the sequence ‘FOIND’ might 
also match the pattern with the ‘O ’ matching state I I ,  although this would also 
have a lower probability than ‘FIND’. A sequence may also have a path through the 
HMM that passes through the silent delete states. The sequence ‘FID’ may match 
the model with a path through the delete state D3, again with a lower probability 
than the perfect match ‘FIND’. Thus, the match, insertion, and deletion states in 
profile HMMs provides much greater flexibility than that afforded by PSSMs or 
exact matching models.

HMMer is one of the most commonly used HMM tools for protein families and 
is the basis for the Pfam database of protein families (see below). Despite their 
advantages over other techniques such as exact regular expressions and PSSMs, 
HMMs also have some drawbacks. Profile HMMs typically require a very compu
tationally expensive multiple sequence alignment. In addition, they are not designed 
to represent large heterogeneous families of sequences.

Other HMM Predictors Other HMM predictors have been used for a variety of 
very specific tasks. Among the many examples, TMHMM [88] is used to predict 
transmembrane helices and SignalP-HMM [77] is used to predict signal peptide 
cleavage sites. GENSCAN [24] uses an HMM to predict gene regions in DNA. 
Model architectures can vary widely by task and are often designed to mirror the 
biological structure of the sequences being modeled. Figure 3.17 shows part of
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Figure 3.17: GENSCAN HMM Architecture.

GENSCAN is used to identify genes in eukaryotic DNA. The states in the model reflect biological 
realities and complexities in the sequence. The E  states represent exons, the part o f a gene that is 
‘expressed’ and later translated to amino acids. The I  states represent introns which occur between 
the exons.

T+
(3‘ UTR)(5' UTR)

(pro
m oter),

F o rw a rc J  {+) s t r a n d

Reverse (-) strand

the HMM architecture of GENSCAN that is designed to model genes in DNA se
quences. The E  states model exons and the I  states model introns. The triple intron 
and exon states at the top of the diagram reflect the nature of DNA codon triplets. 
Although it is unnecessary to understand the details of this structure for our discus
sion, it is interesting to note the biological realities and complexities which may be 
reflected in hidden Markov models. As the model structure in each case is designed 
specifically for the intended prediction task, the performance of these HMMs tends 
to be better than using the more generic program (such as HMMer).

PFAM Pfam [13] is a database of profile hidden Markov models [34] and their 
associated multiple alignments for a large number of protein families (over 7000). 
These profile HMMs have a relatively restricted architecture (as defined by HMMer 
and seen in Figure 3.16) that has been developed to represent a wide variety of 
protein families. Pfam contains HMMs that can model either entire sequences or 
smaller domains and motifs. The database can be searched using the HMMer [35] 
software.

As an example of a Pfam entry, the Pfam profile HMM P F 00516  models the 
GP120 envelope glycoproteins of the HIV virus that causes AIDS. The GP120 enve
lope proteins are responsible for attachment of the HIV virus to human white blood
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Figure 3.18: Pfam Domains of the HIV Protein GP120

Figure 3.19: Structure of the HIV Protein GP120
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cells. The profile HMM probabilistically describes the two main larger domains 
of the proteins and the few smaller domains (shown by rectangles of various sizes 
along the sequence in Figure 3.18). A protein that has a sequence that matches the 
profile HMM for the GP120 family is very likely to also have a three-dimensional 
structure that is similar to that of the GP120 family (seen in Figure 3.19). A new 
protein sequence with functionality similar to that of GP120 might be recognized 
by a high-scoring match (low E-value) to one or more of these domains.

Figure 3.20 displays some example Pfam results as run on the third and fourth 
sequences of the example set.

Although Pfam families have been designed for specific tasks, they may also 
be of some use for situations in which no single Pfam family exactly matches our 
protein family of interest. Given that building custom classifiers for each family can 
be expensive, we may wish to use well-established protein families that have some 
relation to the protein class we wish to identify and classify new proteins based on 
some combination of the patterns representing that family.

3.4 Kernel Methods
Support vector machines (see Section 2.4.4) allow interesting ways of comparing 
sequences that may make use of some of the sequence patterns above. By defining 
a string kernel, we can classify sequences using complex patterns in the sequence 
data. Although simple information such as common substrings or substring fre
quencies might be used by a kernel, it may represent almost any arbitrary measure 
of the similarity between two sequences (subject to the constraints mentioned in 
Section 2.4.4). This kernel may be optimized for classification performance for a 
specific protein function. Algorithmic methods also allow very efficient computa
tion for some tasks. Two examples of kernels that have been defined for sequence 
analysis include the Fisher kernel for HMMs [47] and mismatch string kernels 
[57]. Although current string kernel methods are relatively inefficient for high- 
throughput prediction, this is a very promising area of future research.

3.5 Summary
There is a wide variety of pattern types that may be used for predicting protein 
function. Both deterministic and probabilistic methods may be used. Patterns vary 
in their classification performance and computational requirements. There is of
ten a trade-off between sensitivity and computational requirements. The computa
tional requirements are also very different for training and classification. We would 
ideally like to utilize a technique that is robust and efficient for both training and 
testing.
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Figure 3.20: Example Pfam Results

Query sequence: 3 
Accession: [none}
Description: [none}

Scores for sequence family classification (score includes all domains):
Model Description Score E-value

14-3-3 14-3-3 protein 191.2 1 .4e-54
PolC_DP2 DNA polymerase II large subunit DP2 2.2 0.0085
C0_dh CO dehydrogenase beta subunit/acetyl-Co 1.7 1.7
CAT_RBD CAT RNA binding domain 3.1 1.9
Orbi_VP5 Orbivirus outer capsid protein VP5 -0.2 2.2
Ribosomal S14 Ribosomal protein S14p/S29e 0.2 7.4

Model Domain seq-f seq-t hmm-f hrnrn-t score E-value

14-3-3 1/3 1 12 [ 8 19 .. 3.5 0.33
14-3-3 2/3 13 76 . 40 105 .. 106.7 3.8e-30
Ribosomal S14 1/1 18 30 . 89 102 .] 0.2 7.4
Orbi_VP5 1/1 41 59 . 176 194 . . -0.2 2.2
PolC_DP2 1/1 51 64 . 1 14 [. 2.2 0.0085
14-3-3 3/3 92 152 .] 102 163 . . 81.1 5.5e-23
CAT_RBD 1/1 105 118 . 49 62 . ] 3.1 1.9
C0_dh 1/1 114 123 . 171 180 . ] 1.7 1.7

Query sequence: 4 
Accession: (none}
Description: [none]

Scores for sequence family classification (score includes all domains): 
Model Description Score E-value

GTPl_0BG GTP1/0BG family
ArgK ArgK protein
MMR_HSR1 GTPase of unknown function
FeoB Ferrous iron transport protein B
DnaB_C DnaB-like helicase C terminal domain
ABC_tran ABC transporter
FrhB_FdhB_C Coenzyme F420 hydrogenase/dehydrogenase, 
MCR_beta_N Methyl-coenzyme M reductase beta subunit, 
PGK Phosphoglycerate kinase

170.

6 . 0
3.6

- 0 . 2
0.8

- 0 . 2
-0.9
-1.4

3. 5e-48 
0.0068 

0.13 
0.16
2.9 

4
5.9 
6 . 8
7.9

Parsed for 
Model

domains: 
Domain seq-f seq-t hmm-f hmm-t score E-value

GTP1J0BG 1/3 2 29 . 1 28 [. 35.7 6.6e-10
GTP1_0BG 2/3 30 68 . 51 92 .. 42.1 1 .2e-ll
ArgK 1/1 41 65 . 28 53 .. 9.7 0.0068
FrhB_FdhB_C 1/1 44 54 . 1 11 [. -0.2 5.9
ABC_tran 1/1 45 67 . 1 23 [. 0.8 4
MMR_HSR1 1/1 47 62 . 133 148 .. 6.0 0.13
FeoB 1/1 50 67 . 1 18 [. 3.6 0.16
DnaB_C 1/1 54 66 . 31 43 . . -0.2 2.9
PGK 1/1 62 73 . 161 172 . . -1.4 7.9
GTPl_OBG 3/3 88 142 .} 93 149 . . 92.2 1. 4e-25
MCR_beta N 1/1 106 124 . 167 186 . ] -0.9 6.8
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Chapter 4 

Probabilistic Suffix Trees

‘A tree’s a tree. How many more do you need to look at?’1
The following chapter will introduce suffix trees, their construction, and their 

use. Two implementations of probabilistic suffix trees will then be presented with 
some discussion of their properties.

4.1 Suffix Trees
Suffix trees are data structures that represent strings in a way that allows very ef
ficient manipulation and analysis. By representing all the suffixes of a string in a 
tree, the internal structure of the string can be quickly analyzed. Much of the in
formation in this section is adapted from Gusfield [40], where readers may find a 
complete discussion of suffix trees and their variations.

The suffixes of the word ‘gattaca’ [76] are ‘gattaca’, ‘attaca’, ‘ttaca’, ‘taca’, 
‘aca’, ‘ca’, ‘a’, and Notice that the string itself and the empty string are both 
considered suffixes in this context. Each suffix is represented in the suffix tree by 
a path from the root to a leaf (see Figure 4.1). The unique path for each suffix is 
labeled with the letters of the suffix. Note that each edge exiting a node must begin 
with a different symbol than all other edges leaving that node.

This data structure allows us to quickly answer questions about the sequence 
represented by the suffix tree. We might ask, ‘Is the query string “aca” a substring 
of “gattaca”?’ A naive method of answering this question would scan along the 
word ‘gattaca’ for a match to the first letter ‘a’ of the query. When an ‘a ’ is found, 
we might check for a match to the remainder of the letters in ‘aca’. We would find 
that the first match to ‘a’ is followed by a ‘t’, so we must continue our scan. At the 
second ‘a’ we find a match that allows us to match the complete ‘aca’. In total, we 
would use 8 comparisons to establish that ‘aca’ is found in ‘gattaca’. By using a

'Ronald Reagan, U.S. President, in a speech delivered on Sept. 12, 1965 and quoted in the 
Sacramento Bee (California, Mar. 12, 1966). Reagan later denied having made this statement.
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Figure 4.1: A Suffix Tree

A suffix tree representing the word ‘gattaca’. Each suffix of the word can be traced along edges 
from the root node (filled with black) to a leaf node. The edges without labels represent the empty 
string.

ca

ttaca ►O

ca

gattaca

aca ►O

taca
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suffix tree, we can follow the path from the root along the path marked ‘aca’. Since 
there is such a path in the suffix tree, we know that ‘aca’ is in at least one of the 
suffixes of ‘gattaca’ and thus must be in the word itself. Following this path by 
checking each edge alphabetically for a match in the example tree would require 
5 comparisons. The time required to check for ‘aca’ in the naive way increases 
with the length m  of the target string ‘gattaca’ and length n  of the query string 
‘aca’ (0 ( n m ) in the worst case). The time required to check by using a suffix tree 
increases linearly with respect to the length of the query string (0 (n )). Although 
the savings made by using a suffix tree are small for this simple example, they 
become very large over longer strings such as DNA or protein sequences.

4.1.1 Building and Using Suffix Trees
Let us consider a protein x  consisting of a sequence of amino acids (£1 . . .  xm$ -  
here the symbol S indicates the end of the sequence). Assume that there are only 
two symbols in this protein alphabet {A, Y }  with ‘A’ representing all hydrophobic 
amino acids and ‘Y’ representing all hydrophilic amino acids. Given a sequence 
‘YAYYAYA’, we would like to construct a suffix tree T.  One way to construct a 
suffix tree for the sequence is by inserting each suffix into the tree in turn, from 
the longest ( x i . . .  xm$) to the shortest ($ -  the empty string). With the insertion 
of each string, we follow edges where characters are already in place and create 
new nodes and edges where needed (see Figure 4.2). The time required by this 
procedure grows quadratically with the length of the sequence 0 (m2).

After construction of the tree we can perform many types of analysis efficiently. 
We can quickly determine the number of occurrences of the string ‘YA’ in the se
quence by following the path marked ‘YA’ and then counting the number of leaf 
nodes below that point (three leaf nodes, as seen in Figure 4.3). We can also quickly 
determine the locations of each ‘YA’ occurrence since the distance from the ‘YA’ 
node to the leaf nodes equals the distance from each occurrence to the end of the 
sequence.

The basic suffix tree algorithms can be extended in many ways (as demonstrated 
by Gusfield [40]). Multiple strings can be contained within a single suffix tree. The 
data structure is then called a generalized suffix tree (see Figure 4.4). This struc
ture leads to solutions to common substring problems. We can, for example, very 
quickly determine the longest common substring in a set of sequences by finding 
the deepest node with leaves representing each sequence in the set. We can also use 
relatively few comparisons to count the number of occurrences of all the substrings 
in a set of sequences in 0 ( m )  time (also see Figure 4.4). This ability will be key to 
efficiently calculating conditional probabilities for variable-length Markov chains 
(see Section 4.3).
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Figure 4.2: Building a Suffix Tree

Building a suffix tree representing the sequence ‘YAYYAYA’ by adding each suffix sequentially 
from longest to shortest. The symbol $ indicates the end of the sequence. The black filled node is 
the root.

a d d  YAYYAVA$

7
YAYYAYAS -

a d d  AYYAYA

V
AYYAYA$

v ayyayas

I
a d d  YYAYA
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m an y  s te p s

YAYA$
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Figure 4.3: Counting Substring Occurrences with a Suffix Tree

The suffix tree representing the sequence ‘YAYYAYA’ can be used to count the number of 
occurrences of the substring ‘YA’ by following the path (indicated in bold) from the root and then 
counting the number of leaf nodes below the point reached in the tree. The $ symbol indicates the 
end of the sequence.

YAYA$ -

Figure 4.4: A Generalized Suffix Tree

The generalized suffix tree representing the sequences ‘YAYYAYA’ and ‘AYYAYY’ with the 
unique symbols “$ ’ and ‘@ ’ terminating the respective sequences. The root node is filled with 
black. Each node contains the number of leaf nodes at or below that node. This indicates the 
number of occurrences of the string represented by the path from the root. These numbers can be 
calculated efficiently with a depth-first traversal o f the tree.

Sf

/®4
/ ( D J D J D
/  @ @

A$ ■
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4.1.2 Linear Time Construction of Suffix Trees
Although we can see above that suffix trees allow very efficient operations over 
sequences, we have neglected to include the cost of creating the tree in our per
formance analysis. The 0 ( m 2) algorithm for suffix tree construction shown above 
requires significant computational resources and would prevent our use of suffix 
trees for many applications. It is fortunate — and somewhat surprising — that 
suffix trees can be built in linear time 0 (m)  with respect to the length m  of the 
sequence2. An algorithm for building suffix trees in linear time was first presented 
by Weiner [97] in 19733, followed by a more space-efficient algorithm from Mc- 
Creight [68] in 1976. Almost 20 years later, Ukkonen [94] published a version of 
the algorithm that, although equivalent to the algorithms of McCreight and Weiner 
in time complexity, has some distinct advantages. The main advantage is that it is 
much simpler to understand. Ukkonen’s algorithm is fully developed elsewhere and 
we will focus on only a few highlights that are particularly relevant to this work. For 
a complete discussion of linear time construction of suffix trees, interested readers 
should refer to Gusfield [40].

The following three details of Ukkonen’s algorithm (as elucidated by Gusfield) 
will be important for our later discussion of efficient probabilistic suffix trees.

Online construction Ukkonen’s algorithm builds the tree in order from the be
ginning to the end of the input sequence X  = x i . . .  x m . After each character Xi 
is processed, the tree T  contains the entire set of suffixes for the sequence X \ . . .  x^  
There is no requirement of having the entire sequence x \ . . .  X i . . .  x m before pro
cessing (as in McCreight’s algorithm) or even knowing the length m  of the sequence 
beforehand.

Edge-label compression An edge between nodes in the suffix tree may represent 
one or more symbols (as shown in the Figures 4.1 and 4.2). To allow the linear 
time algorithm, these symbols along the edges are represented by a pointer to the 
symbols in the original sequence. This is necessary because the storing copies of 
each symbol in the tree would require a quadratic increase 0 (m2) in the space 
needed to store the tree. A quadratic increase in space would immediately negate 
the possibility of a linear time algorithm as a quadratic amount of data cannot be 
copied in a linear amount of time. Because of edge-label compression, the traversal 
of an edge can be done in one step (constant time 0 (1)) regardless of length.

2We acknowledge that the time and space bounds for this algorithm (and the many subsequent 
suffix tree algorithms presented here) are actually dependent on the size of the alphabet E such 
that the time bound becomes 0 (m |E |) .  Since the size of the protein alphabets will be constant for 
protein function prediction problems we will ignore the contribution of this component.

3Knuth is claimed to have called this ‘the algorithm of 1973’ [40, p.90|.

79

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 4.5: Suffix Links

The dotted lines represent suffix links in this partial suffix tree.

X
A

Y A
A

X  Y 
suf(AAY) = AY x *0

Y
\  suf(AY) = Y

> r °
A

\
Y

Suffix links The immediate suffix suf(-)  of a string ‘X s ’ is that same string with
out the first symbol X .

s u f ( X s )  =  s (4.1)

Suffix links are pointers from each node in a suffix tree representing a string s to 
the node representing the immediate suffix s u f ( s )  of that string. Each internal node 
(non-leaf) of the suffix tree has a suffix link to the node that represents its immediate 
suffix. Figure 4.5 illustrates how suffix links appear in the tree. For internal nodes 
that represent only a single symbol, the suffix link will be to the root node which 
represents the empty string. Suffix links allow one step traversal of the tree from 
any string represented by a node to its immediate suffix.

Although the details will not be presented here, it is also possible to jump from 
a path that ends in the middle of an edge to its immediate suffix by using the nearest 
suffix link above that position. Gusfield calls this the skip/count trick. Although the 
skip/count trick is slightly more computationally expensive than simply following 
a suffix link, it does not affect the overall linear time bound.

A full description of Ukkonen’s algorithm as well as additional details required
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for the linear time construction of suffix trees is developed by Gusfield [40|.

4.2 Probabilistic Suffix Trees

4.2.1 Variable Length Markov Models (VMMs)
The principles that apply to the use of first-order Markov chains for classification 
(discussed in Section 3.3.2) may be extended to higher-order Markov chains. As 
a &>order Markov chain requires a history of length k for each conditional proba
bility, the storage requirements of a complete higher-order Markov chain increase 
exponentially with the order k. This exponential memory requirement is prohibitive 
for many practical applications.

The space requirements are not the only obstacle to using higher-order Markov 
chains. As the order increases, so does the amount of training data needed to give 
good parameter estimates. Given a &-order Markov chain we might estimate the 
probability of a symbol given its history x ^ \ , . . . ,  by counting the occur
rences (C'(-)) over the training data (maximum likelihood estimation).

Pix i lx i -k . - .X i -x )  = Ĉ 1 k ' " Xl ^  (4.2)
C' t i—fc ‘ • ‘ i— 1J

With smaller counts the estimated probabilities are less likely to accurately rep
resent the population of sequences that might be observed. Counts of zero also 
present problems. If there are no occurrences of the sequence x ^ k  ■ ■ ■ %i-\Xi in 
the data then the assigned probability will be zero, which cannot reflect the true 
distribution if an occurrence of x ^ ^  . . .  Xi-iXi is possible in the test set. An even 
worse case may occur if there are no occurrences of the sequence . . .  x;_i in 
the training sequences because the probability calculation then involves division by 
zero and is undefined. With increasing history length, the training data becomes 
more sparse in the model and parameter estimation problems become increasingly 
prevalent.

Variable length Markov Models (VMMs) have been proposed to deal with both 
space and parameter-estimation limitations by utilizing longer or shorter histories 
for prediction as needed. This flexibility helps deal with the space problems en
countered with complete higher-order Markov models because only the parameters 
that are needed are stored. VMMs can also avoid some of the problems associated 
with lack of training data. For example, where sufficient training data is not avail
able for a higher-order prediction, the model may approximate that value by using 
a lower-order parameter. The criteria used for selecting Markov order, or context, is 
not necessarily restricted to the availability of data. The context selection algorithm
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may be based on any criteria that may improve the classification performance of the 
model.

After a VMM is created from a set of training sequences it may be used to 
predict the chance that a test sequence belongs to the family of training sequences. 
The predictions obtained from a VMM are very similar to those obtained from a 
simple Markov chain (see Section 3.3.2). The probability of the entire sequence is 
calculated as the product of the probabilities of each amino acid given those that 
precede it.

P{x) = P ( x i . . .Xm)  (4.3)
=  P ( x 1) P ( x 2\x1) P ( x 3\x1x 2) . . .

P ( x m- i \ x i . . . X m - 2) P ( X m \ x i  . .. x m- i )  (4.4)

=  P v M m { X i ) P v M m ( x 2 \ x i ) P v m m ( x 3 \ x i X 2 )  ■ ■ ■

PvMM{xm-l \Xl ■ • • Xm_2)PvMM{Xm\Xl • ■ ■ Xm—i) (4.5)

Instead of obtaining a probability that is dependent on a fixed history, the VMM 
selects which conditional probability to use based on the context of the amino acid. 
An arbitrary context function k (-) can select the history length based on the context
X\ . . . Xi—\Xi.

PvMM{Xi\X\ . . . £j_i) =
P { x i \ x i- 2X i - i )
P(Xi\Xi-i)
P ( X i )

if k (x i . . . X i ) =  i
if k (x i . . . X i ) =  i — 1

if k (xi  . . . X i ) =  2
if k (x i . . . X i ) -  1
if k (x \ . ■■Xi ) =  0

(4.6)

The idea of selecting context is similar to the idea of backoff as used in Markov 
chains for natural language processing [50]. In general, it is not necessary to select 
a single conditional probability. Some weighted combination of the parameters may 
be used. Related concepts that have been used to deal with parameter estimation 
issues in Markov chains [50] include smoothing and deleted interpolation. We will 
address the topic of smoothing later.

The literature on VMMs originated in information theory and data compression 
in 1983 [81]. The principles have been used in natural language applications with 
variable length N-grams [75]. VMMs were introduced to the computational biology 
literature in the form of probabilistic suffix trees (PSTs). Various statistical proper
ties of VMMs (also known as Variable Length Markov Chains - VLMCs) and some 
context selection techniques have also been examined [23]. There has been work to
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generalize probabilistic suffix trees through sparse Markov transducers [37] which 
allow wildcards in the training set.

4.2.2 Probabilistic Suffix Trees
Probabilistic suffix trees (PSTs) were introduced by Ron, Singer, and Tishby [82]. 
Bejerano and Yona [16, 17] further developed this work and brought it to the molec
ular biology community. PSTs (also known as prediction suffix trees) are vari
able length Markov models (VMMs) that are designed for efficient prediction. As 
VMMs, they avoid the exponential space requirements and parameter estimation 
problems of higher-order Markov chains. A PST is pruned during training to con
tain only the required parameters.

An example PST fragment as described by Bejerano [15] is seen in Figure 4.6. 
This PST was created and pruned using the training sequence ‘0100100100111101- 
01100010111’. As the following discussion will refer to the PSTs presented by 
Bejerano and Yona [16] (and implemented by Bejerano [15]), we will refer to the 
models as bPSTs.

bPSTs differ from classical suffix trees (as discussed in Section 4.1) in that 
they are not used to represent the training sequences. bPSTs instead represent the 
histories used for prediction in the tree. Since the histories are represented with the 
rightmost symbols (reading the symbols in the sequence from left to right) closer to 
the root, the tree is drawn with the root on the right. An example of how to read the 
history ‘001’ from the tree is illustrated in Figure 4.6.

We will discuss first how bPSTs are used in prediction and then how they are 
constructed.

Prediction with a bPST

The conditional probability Pbpsr(x i\x i • • ■ x i - i) is obtained from the bPST by 
tracing a path from the root that matches the amino acid residues preceding the 
current residue. The parameters 7  that estimate the conditional probabilities are 
stored at each node in the bPST.

7history (a) «  P(a\history)  (4.7)

During prediction, the longest available context that matches the history of the 
current amino acid is used.

PbPST(xi\x i-i ,  ■ ■ ■ ,Xi)  =  Y z i . (27) (4.8)
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Figure 4.6: Bejerano and Yona’s Probabilistic Suffix Tree

This example bPST fragment is reproduced from Bejerano [15] with modifications for clarity. Note 
that the root is represented on the right (in contrast to the left for classical suffix trees presented 
earlier). The path to the node representing the history ‘001 ’ is shown in bold. The corresponding 
subsequences in the training sequence are noted by arrows. Note that of the 4  occurrences, 3 are 
followed by a ‘0 ’ and 1 is followed by a ‘1 giving rise to the calculated probabilities shown at 
node ‘0 0 1 ’.

P(OIOO)=1/5 
P(1 IOO)=4/5

P(0I0)=5/13 
0 _ P(110)=8/13

'0

© * "
P(OI001)=3/4 
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P(1101 )=3/8

101

P(0l101)=1/3  
P(11101 )=2/3
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1 r P(1 )=14/27
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Ixi (xi) if *n bPST ,  else 
I x i J i - A x i )  if in bPST ,  else

=  ' ' (4.9)
Ix^Xi^x  { Xi )  lf in bPST ,  else
7 ^ -i ( x i )  i f in bPST ,  else

, l(Xi)

The longest history can be found quickly by tracing back through the PST along 
a path which matches the amino acids immediately preceding the current residue. 
For example, given the bPST in Figure 4.6 and the sequence ‘01001’ we can obtain 
the predictions for each amino acid by tracing back through the tree. The underlined 
characters in the calculation below indicate those characters that will be used as 
the history for each prediction. The predictions marked 7 *  use truncated histories 
because the full history was not found in the tree.

P(01001) =  P(0)P(1 |0)P(0 |01)P(0 |010)P(1 |0100)

= 7(0)7o(l)7oi(0)7o(0)7oo(l)
=  (13 /27) ( 8 /1 3 ) (5 /8 ) (5 /1 3 )  (4 /5 )

=  10400/182520 =  0.057

In this way, each prediction for the conditional probability of each residue can 
be done in linear time O(L)  with respect to the maximum history length L  of the 
model. The worst-case time taken by the entire prediction increases with the length 
of the sequence m  and the history length (order) L  of the model 0(m L ) .

The global prediction of the probability of the entire sequence is useful for many 
tasks. Often, however, we have biological reasons to believe that the regions which 
are important for defining the protein class do not span the entire sequence. For 
this reason, local predictions over some shorter sequence length may be beneficial. 
Local predictions using PSTs have been done in a manner identical to that used 
for Markov chains (see Section 3.3.2). The product of the prediction probabilities 
is calculated for a fixed-length window. The product for the sliding window is 
calculated for each point in the sequence. Sun and Deogun [89] have worked with 
some other methods of local prediction that extend the sliding window approach. 
They automatically select the best window size over a range of potential sizes and 
obtain modest improvements in classification performance.

Ron et al. [82] proposed a method that allows for linear time prediction using 
the information from a bPST by building an equivalent Probabilistic Finite Automa
ton (PFA). The conversion to a PFA from a bPST costs 0 ( L m 2) time where m  is 
the total combined length of the training set.
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Building a bPST

The bPST is built by progressively adding the histories from the training data to the 
tree [16|. All the substrings of the training sequences are possible histories. The 
histories that are added to the tree must be smaller than the maximum history L  of 
the tree and must occur more frequently than some threshold Pmin. The substrings 
are added in order of length from smallest to largest. The histories are added to the 
tree in reverse (with the rightmost symbols of the subsequence added first starting 
at the root). The possible histories are the reversed strings of all the substrings 
of the training sequences. The string s is only added to the tree if the resulting 
conditional probability (of a symbol given its history) at the node to be created will 
be greater than the minimum prediction probability 7min +  a  and the probability 
for the prefix of the string is different (with some ratio r) from the probability 
assigned to the next shortest substring s u f ( s )  (that is already in the tree). After 
all the substrings are added to the tree, the probabilities are smoothed according 
to the parameter 7min G [0,1], The smoothing probability 7history (a) for a symbol 
a given its history  (as calculated by the equation below) prevents any probability 
from being less than 7m;n. E is the size of the alphabet and P  is a probability 
estimated from occurrences in the training set.

Ihistory(a) = (1 -  \T,\'ymin)P(a\history)  + - f min (4.10)

This building process requires 0 ( L m 2) time [7], where L  is the maximum his
tory length of the tree and m  is the total combined length of the training set. The 
building process requires the all the training sequences at once (in order to get all 
the reverse substrings) and cannot be done online (the bPST cannot be built incre
mentally as the training data is encountered).

Bejerano and Yona [16] also suggested an alternate smoothing technique which 
utilizes pseudocounts that have been chosen based on the amino acid frequencies 
of well-studied protein databases. In their experiments, the performance improve
ments due to this smoothing were minimal. Other authors [51], however, have used 
smoothing and backoff methods similar to those used for natural language process
ing [50] to some advantage.

4.2.3 PSTs vs HMMs

PSTs have been compared to HMMs and BLAST as predictors of protein families 
[16, 51, 89]. The classification performance has not been shown to exceed HMMs 
for classification on the Pfam or SCOP databases, but the results have been very 
encouraging. Although PSTs are not as flexible and powerful as HMMs in their 
representation of sequence classes, they have been shown to perform as well as
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HMMs for many protein families. The incremental improvements which have been 
suggested in smoothing [51] and local scoring [89] have improved the results signif
icantly. Further evaluation of PSTs using a combination of the previously suggested 
improvements may yield results that exceed HMM classification performance for 
some problems. The main advantage of PSTs over HMMs is that the training and 
prediction time requirements of PSTs are much less than for the equivalent HMMs 
(see Section 5.5). A large part of the computational cost of HMMs is due to the 
requirement of a multiple sequence alignment. These multiple alignments also of
ten require further tuning by researchers -  an additional resource cost. PSTs are 
completely alignment free and do not require expert tuning. It should also be noted 
that when the expectation maximization (EM) algorithm is used to train an HMM 
there is a danger of the parameters reaching a poor local minimum. Overall, the 
reduced resource demands of PSTs make them an attractive alternative to HMMs 
despite a potential loss in classification performance.

4.3 Linear Time Construction and Prediction with 
PSTs

Shortly after the initial publication of bPST results, Apostolico and Bejerano [7] 
presented theoretical results for linear time construction of suffix trees and linear 
time prediction using suffix trees. These theoretical results support the construction 
of the tree in linear time 0 (m) with respect to the total combined length of the 
training sequences m.  They also present a method of prediction that is linear 0 (n )  
in time with respect to the length of the sequence being tested. The method involves 
building a suffix tree to represent the training sequences (in contrast to a tree that 
represents the histories, as bPSTs do). This suffix tree is then used to efficiently 
count the number of occurrences of the subsequences of the training set. The tree 
may then be pruned by the same criteria used by Bejerano and Yona in their previous 
work [16], although the pruning algorithm differs. The resulting suffix tree may 
be used for linear time prediction by using the suffix links as failure points. The 
resulting model structure is similar to Aho and Corasick’s prior work with Multiple 
Pattern Matching Machines (MPMMs) [2],

Despite the statement at the conclusion of Apostolico and Bejerano’s paper [7] 
that, ‘...one of the main hinges along the way of a computational tool to become 
practicable by the bioinformatics community is its run time requirements,’ there 
is no evidence of an implementation of this algorithm. Indeed, Bejerano’s recent 
public release of his PST implementation [15] contains only the quadratic time 
algorithms of the earlier papers. No results for an implementation of this algorithm 
have been available until recently [89], coincident with the development of this 
work. The authors of that paper do not, however, made any implementation publicly
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available. The training time of that implementation is noted to be about 180 times 
faster than Bejerano’s. No comparison of prediction performance is mentioned.

With high-throughput protein function prediction as a motivation, the theoret
ical efficiencies of PSTs are very attractive. The linear time 0 ( m )  training and 
linear time prediction 0 (n )  characteristics would make the use of PSTs practical 
for a much larger range of protein function prediction tasks. The current work 
offers a presentation of the linear time training and prediction algorithms. This 
presentation is in many ways equivalent to the algorithm of Apostolico and Bejer
ano [7], Differences in approach are due to independent development and slightly 
different research motivation. Various improvements to the technique will also be 
touched upon. The presentation leads to an implementation of the algorithm and 
the associated results (see Chapter 5).

Bejerano’s recently published [15] PST implementation (bPSTs) does not take 
advantage of the full potential of suffix trees to efficiently train and predict VMMs. 
The current presentation of PSTs (which we will call efficient PSTs or ePSTs) will 
illustrate the linear time construction and use of PSTs for protein function predic
tion. Other notes and variations on this method are also developed by Apostolico 
and Bejerano [7],

4.3.1 Building an Efficient PST

bPSTs have been implemented in order to efficiently look up probabilities for each 
history in a VMM by storing the histories of the training sequences in the PST. Ef
ficient PSTs (ePSTs) gain efficiency by instead representing the training sequences 
themselves in the PST. An example ePST is shown in Figure 4.7 which has been 
constructed from the training sequences ‘AYAAYAY’, ‘AYYAAYAA’, and ‘YAYY- 
AYY’. To reduce the size and complexity of the example, the tree has been pruned 
to a maximum history of 2 (see Section 4.3.3 on pruning). The conditional proba
bility estimates are unsmoothed (see Section 4.3.4 on smoothing).

Given knowledge of the algorithms for building a classical suffix tree, the con
struction of the ePST is a natural extension of that prior work. In order to build 
the ePST, a generalized suffix tree is built from the training sequences (as in Figure 
4.4). Using Ukkonen’s algorithm, this tree can be built in linear time and space 
O(m)  with respect to the total length m  of the training sequences. In a single 
depth-first traversal of the tree (also 0 ( m ) time) the number of occurrences of each 
substring represented by each node in the tree can be counted. This corresponds to 
the number of leaves found below the node in the unpruned suffix tree4.

4Note that since the number of nodes in the tree increase linearly with the total length of the 
training sequences, we can store single values at each node without affecting the overall linear space 
or linear time requirements of the algorithm (although the practical time and space requirements 
may be affected).
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Figure 4.7: An Efficient Probabilistic Suffix Tree

The diagram shows an ePST which has been constructed from the training sequences ‘AYAAYAY’, 
‘AYYAAYAA’, and ‘YAYYAYY’. For brevity, the tree shown has been pruned to a maximum 
history o f 2 amino acids. Counts of subsequences which occur in the training sequence are 
displayed within each node. Note that these counts are not equal to the number of leaves below 
each node because the tree has been pruned. The counts are equal to the number of leaves below 
the node in the complete suffix tree. Conditional probabilities which result from the counts are also 
displayed. The suffix links are not shown. The *$’ character indicates the end of each string.
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Recall from Section 4.2.1 that the conditional probabilities needed for predic
tion can be calculated from the counts of the subsequences (for convenience, Equa
tion 4.2 is repeated here).

P { x i \ x ^ k . . . x ^ i )  =  Ĉ 1 k ' " Xl (4.11)
E \Xi—k ■ ■ ■ %i—1)

The number of occurrences of the substring x  =  Xi_k . . .  x t can be obtained 
by starting from the root of the tree and following the path matching the string 
(see Figure 4.7). The number of occurrences of the immediate prefix of that string 
Xi-k ■ ■ ■ Xi-i  is the parent of the node reached. As such, the conditional probability 
for each residue given its history can be calculated by dividing by the count at its 
parent (again see Figure 4.7).

C(xi^k ■ ■ ■ Xi) =  count(node(xi_k ■ ■ ■ Xi)) (4.12)
node(xi-h ■ ■ ■ Xi_i) = parent(node(xi^k . . .  Xi)) (4.13)
~ count(node(xi-k . . .  Xi^iXi))

PlxAxi^k  ■ ■ ■ Xi-1) =  ---------^ (4. 14)
count(node(xi-k ■ ■ ■ £ j-i))

This can be done for the entire suffix tree with another linear time traversal. 
Each probability can be stored in the node associated with it using an overall lin
ear amount of extra space. Following this traversal, we are left with an efficient 
PST (see Figure 4.7). For the compressed branches that contain more than one 
symbol along an arc, the counts for all symbols along the arc are the same. No 
additional information needs to be stored for these symbols. In a compressed edge 
the unsmoothed probability of each symbol after the first must be 1.0 because all 
the symbols in that edge must have the same count (otherwise, the edge would not 
be compressed).

4.3.2 Prediction with an Efficient PST
Prediction of the probability of a sequence using an efficient PST is possible in 
linear time with respect to the length of the test sequence. The probabilities are 
obtained for each position by simply following the path representing the sequence 
from the root of the ePST (see Figure 4.8). The conditional probabilities are stored 
at the location reached with each position. When at a node, the conditional proba
bility is equal to the precalculated value. When in an arc, the conditional probability 
is equal to 1. If the entire sequence is found in the tree, the traversal follows a sim
ple path. If the next symbol is not found in the tree, however, it is still possible 
that the symbol can be found with a shorter history. The next shortest history of a
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Figure 4.8: Prediction with an ePST

The predicted probability of the sequence ‘AYYYA’ is shown as calculated from the ePST in Figure 
4.7. The path followed by the algorithm is shown in bold. The suffix links are shown where 
necessary for the calculation. Note that when following a suffix link the algorithm does not 
advance along the sequence.
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substring is its immediate suffix suf(-) .  Fortunately, the suffix tree contains suffix 
links which allow us to move to the next shortest history in constant time. These 
suffix links can be thought of as backoff or failure links which allow us to move 
quickly to the next shortest history when the current history fails to satisfy certain 
criteria.

Figure 4.8 demonstrates how to predict the probability of the sequence ‘AYY
YA’ given the ePST from Figure 4.7. A path corresponding to the test sequence is 
followed through the tree. Suffix links are followed where data is not available. In 
this example, suffix links are followed twice when a ‘Y ’ is not available. The first 
time occurs as the prediction reaches the maximum history of the tree. A suffix link 
is followed a second time when the probability for a ‘Y’ given the history is still 
not found.

As a side effect of the linear time prediction algorithm, once some part of the 
sequence history is forgotten (by making a Markov assumption), it is forgotten 
forever. For example, the conditional probability of the amino acid at position 5 
might be calculated using the 2 previous residues P ( x 5\x3X4) rather than the full 
history P ( x 5\x1x 2x 3x 4). At this point, we’ve made the Markov assumption that the 
conditional probability at position 5 is independent of the first two residues x i x 2. 
As a result, the conditional probability of the amino acid at position 6 cannot use 
any history that is further back than x 3. The maximum history length that the next 
amino acid x e can use is P ( x e\x3x 4x 5) as x 2 and xi  have already been ‘forgotten’ 
by a Markov assumption. This property is a direct result of the ePST linear time 
prediction algorithm. This independence assumption may or may not hold in real 
biological sequences.

4.3.3 Pruning
Pruning is used with both bPSTs and ePSTs to reduce the memory requirements of 
the model. Pruning is used to eliminate nodes that are either beyond a maximum 
history length L  or are not needed for prediction (as determined by some criteria 
such as requiring a certain number of training examples or a certain probability 
threshold).

With bPSTs, pruning is guided by a variety of parameters (as discussed briefly in 
Section 4.2.2 and more extensively by Apostolico and Bejerano (7)). This pruning 
occurs in two phases. Pruning by the history length parameter L  and the minimum 
probability parameter Pmin is done by discarding sequences during the selection of 
strings that are to be placed in the tree. Pruning according to the ratio criteria r 
and the minimum conditional probability 7min occurs during the tree construction. 
With the PST variant suggested by Apostolico and Bejerano [71, the entire tree 
representing the sequences is constructed in one phase. Each node is then marked 
if it satisfies the required criteria for remaining in the tree as defined by the pruning
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parameters. All the pruning is performed in a subsequent step that trims all edges 
from the tree that are immediately below the deepest unmarked node along each 
path.

In the current work, pruning by history length L  and the minimum probability 
Pmin may also be done by trimming the tree post-construction5. Pruning which oc
curs after the counting of substring occurrences has been finished does not interfere 
with either the probability calculations or the prediction process. Practical experi
ence with the potentially huge space requirements of representing the entire training 
set in a suffix tree, however, has prompted an improvement in pruning which allows 
the linear time algorithm to be used in computers with limited memory. For auto
matic high-throughput protein function prediction, it is particularly essential that 
training with large sets be practical.

The current work allows for online pruning of nodes and edges beyond the user- 
specified history length L. As this pruning takes place on the fly, the complete 
suffix tree for all the training sequences is never built in memory. The tree which 
is constructed by this online pruning process is equivalent to a tree which has been 
obtained by post-construction pruning.

The pruning modification involves a change to the manner in which the suffix 
tree is extended during Ukkonen’s algorithm. It is not necessary to describe Ukko- 
nen’s entire algorithm in order to explain the pruning process. It is sufficient to 
mention that the appropriate paths (nodes or edges) in the suffix tree are extended 
with the addition of each symbol of the sequence. We are concerned with exten
sions beyond the maximum history length L. This corresponds to a tree depth limit 
of L + 1. There are only two possible extension cases when the algorithm has 
reached the limit L  +  1. The extension will occur at either a node or an edge. For 
each case the solution is reasonably simple. (The counts at each node are initialized 
to zero as they are created.)

1. If the extension would have occurred at a node of depth L  + 1, increment the 
count of the current node and follow the node’s suffix link to the immediate 
suffix (a node of depth L)  and continue the algorithm.

2. If the extension would have occurred along an edge at depth L  +  1, then 
increment the count of the last node above the edge and use the skip/count 
trick (see Section 4.1.2) to move to the immediate suffix of the edge.

After the construction of the tree, the counting procedure is a linear time traver
sal of the tree in which the number of leaves below each node is stored in that node. 
When pruning has occurred, the counting procedure does not descend beyond nodes 
which already have counts due to the modified pruning steps above. The counts at

5The current work on ePSTs does not prune according to the parameters r  or 7 min.
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those nodes are considered to be the number of leaves that would have occurred 
below it in the tree. The traversal of the tree uses these nodes as if they had already 
been counted and continues in a depth-first fashion as in the non-pruned tree.

The online pruning procedure does not change the overall time requirements of 
the algorithm because the number of suffix links followed in this way is bounded by 
the overall length of the sequence6. This pruning method allows for the selection of 
L  so that the memory requirements of the training algorithm can be reduced. This 
relatively simple but apparently novel pruning method is a contribution to the use 
of suffix trees for a variety of applications.

The online pruning is used only for satisfying the memory limit parameter L. 
Pruning based on other criteria is left until after tree construction and may be per
formed as mentioned above, by testing each node, marking those that should remain 
in the tree, and pruning the appropriate nodes in a single step.

Although most pruning is typically done during the training phase of ePST con
struction, it is also possible to defer some pruning decisions to the testing phase. A 
pruning decision that is made during testing simply results in the algorithm follow
ing a suffix link to the next shortest history. Pruning criteria that can be tested in 
constant time do not affect the overall time bounds of the training or testing algo
rithms. In practice, however, it may be beneficial to move these tests to one phase 
or the other depending on the desired computational properties of the testing and 
training.

4.3.4 Smoothing
When using Markov chains -  especially those of higher-order -  the question arises 
of how to deal with zero or near-zero counts for parameter estimation [50]. Al
though PSTs automatically prune away all zero counts, small non-zero counts still 
tend to give poor parameters with maximum likelihood estimation. Although the 
estimates may be poor, we may not want to prune them away completely. Smooth
ing provides a method by which the negative effect of small training sets and small 
counts can be mitigated.

A simple approach to smoothing is to define a minimum probability for any 
event. This approach, taken by Bejerano and Yona [17], ensures that no conditional 
probability 7  given from a bPST is less than 7min. Their algorithm ensures the 
minimum probability via a combination of pruning any string which would result 
in a conditional probability of 7  +  a  and smoothing those probabilities which do 
remain in the tree (according to Equation 4.10). Bejerano and Yona also present a 
slightly different procedure that smoothes by using pseudocounts that correspond to

6Each symbol followed increases our depth in the tree by 1. Each suffix link followed reduces 
our depth in the tree by 1. The number of suffix links followed by the algorithm cannot exceed the 
length o f the sequence.
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the frequencies of amino acids in large protein databases rather than a single value
rymin■

A large variety of smoothing methods have been developed for Markov chains 
|50], Kermorvant and Dupont [51] argue that the simple smoothing procedures 
used by Bejerano and Yona can be improved upon by using backoff smoothing 
[50]. They show results which indicate the advantage of backoff smoothing over 
the smoothing used in bPSTs. The current work also utilizes backoff smoothing, al
though with small differences from the work of Kermorvant and Dupont, especially 
where their suggestions would alter the time complexity of the overall training and 
prediction algorithms.

Backoff smoothing [50] is used to ensure, as bPST smoothing does, that rare 
but possible events are assigned an appropriate probability even though they may 
not occur in the training set. Smoothing removes some of the probability mass 
which maximum likelihood estimation assigns to events which do occur and moves 
that probability mass to unseen events. Backoff helps to reassign that probability 
mass in a more intelligent way by weighting the reassigned mass according to the 
probabilities of a lower-order conditional probability estimate.

The unsmoothed probabilities are obtained from maximum likelihood estimates. 
The following is repeated for convenience from Equation 4.2.

C^Xi—k ■ ■ ■ %i—\%i)
C ( x ^ k • • .Z i-i)

(4.15)

Backoff smoothing splits the probability estimates into those cases where the 
count C(-) is non-zero and those cases where the count is zero. A small probability 
is taken from the non-zero cases and added to the zero count cases. The probability 
is based on a pseudocount d which is added to the count for each amino acid.

Ps{Xi\Xi-k . . .Xi^x)

C ( x j _ k . . . X j )  + d
C { x ^ k .. . x ^ i )  +  d\T,\

^ ■ { X i — k  ■ ■ ■ X i — i)
'Ps {xi\xi—k+1 ■ ■ ■ Xi—i)

(4.16)

otherwise

Since the conditional probabilities for all values of Xi must sum to 1, we can 
calculate A, the total amount discounted by the pseudocount d from the non-zero 
cases. We need a definition for a. The full derivation is found in Appendix C. The 
following definition will suffice to show that a  is dependent only on the history
X%—k ■ . . X i — i .
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1 Y  Pa(a\xi-k . . . Xi-i)

■ ■ ■ %i~l)
a£T,,C(xi-k ...Xi—ia)>0

(4.17)
1 ^ ' Psi.Q'l'X'i—k+l ■ ■ ■ •Ei — l)

a e £ , C ( x j _ f c . . . i c ; _ i a ) > 0

This smoothed probability has several attractive properties. It is defined recur
sively and is valid for any history length k. The pseudocount d is basically a prior 
on the probabilities. The strength of the prior is increased with the size of the pseu
docount. In the case shown here, the prior is uniform across all the possible symbols 
in the alphabet (usually all the amino acids). This could be altered in future work to 
weight the prior based on the relative frequencies of the amino acids in large protein 
databases. The smoothing parameters depend only on the next shortest history and 
can be calculated efficiently. The backoff criteria are flexible and could be changed 
to backoff under more stringent conditions. The smoothing and backoff method 
presented here has been implemented in the current work [36]. One of the draw
backs of this type of smoothing is that the calculations for the parameter a  cannot 
be cached in the ePST using linear space. This is because the values in Equation 
4.17 may be different for different residues along an edge in the tree. Since we 
cannot cache different values along the edge and maintain the constant space of an 
edge in memory, this would require greater than linear space, and thus greater than 
linear time with respect to the total length of the training sequences. The smoothing 
values can still be calculated during prediction and this can be done in linear time 
with respect to the length of the test sequence. The computation required to do this, 
however, is significant.

4.3.5 Equivalence of PST Implementations
The two implementations of PSTs are able to represent the same information. In 
essence, following the path of a history in a bPST is equivalent to following the 
suffix links of an ePST in reverse. Apostolico and Bejerano [7] have also discussed 
the equivalence of the PST implementations.

Although the following illustration is not rigorous, it will serve to provide some 
intuition about the equivalence of the PSTs. The pruned ePST in Figure 4.9 may 
be used to make the same predictions as the bPST in Figure 4.6. We will diagram- 
matically demonstrate the conversion from an ePST to a bPST. Most of the steps in 
the conversion involve only the rearrangement of the nodes in the graph, with the 
exception of a final step which shows where bPSTs lack the additional structural 
information that ePSTs maintain.

In order to diagrammatically convert a fragment of the ePST to a bPST, we will 
follow the steps below. Conversion of the entire tree as shown in Figures 4.9 and 
4.6 is demonstrated in Figure B.4.
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Figure 4.9: Another Efficient Probabilistic Suffix Tree

This ePST represents the same training sequence data as Bejerano’s example [15] which is 
reproduced in Figure 4.6.
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1. Show the suffix links (dotted lines) of the ePST. Note the original probabil
ities from the ePST. We will see them again in the final bPST. The addition 
of the suffix links to the Figure is done in two steps for clarity. The transition 
from Figure 4.10-1 to Figure 4.10-2 shows the addition of the first three suffix 
links. Figure 4.10-3 shows the remaining suffix links.

2. Rearrange the nodes and edges such that the suffix links determine the place
ment of the nodes in the graph structure. The suffix links become the sig
nificant (hard) edges and the other arcs bend as needed. This rearrangement 
occurs between Figures 4.10-3 and 4.10-4.

3. Flip the tree along the horizontal axis. Figure 4.10-4 to Figure 4.11-5.

4. Calculate the probabilities corresponding to each internal node. Figure 4.11- 
5 to Figure 4.11-6. These probabilities are the same as those that we noted in 
the corresponding ePST from the first step.

5. Remove the edges (solid lines) of the ePST and prune extra nodes. Figure 
4.11-6 to Figure 4.11-7.

It can be seen that the remaining edges that now make up the bPST are the 
reverse suffix links of the ePST. bPSTs lack the edges which enable the ePSTs to 
be used for training and prediction in linear time.
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Figure 4.10: Conversion of an ePST to a bPST

This step-wise conversion of an ePST to a bPST is described in the text. Although not a rigorous 
proof, this example shows how the suffix links (dotted lines) in the ePST are equivalent to (but 
reversals of) the branches in a bPST.
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Figure 4.11: Efficient Probabilistic Suffix Tree
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Chapter 5

Experiments for Efficient Protein 
Function Prediction

It has been written that the axe is laid unto the root of the trees: every tree there
fore which bringeth not forth good fruit is hewn down, and cast into the fire’.1 The 
following experiments will evaluate various tools for protein function prediction, 
including probabilistic suffix trees. The utility of each method will be determined 
by its classification performance and computational efficiency.

5.1 Datasets
In order to evaluate the classification performance of various methods for high- 
throughput protein function prediction, each was assessed on a variety of test sets. 
Each test set is composed of sequences and their associated class labels. The test 
sets have been chosen from data sources where the confidence of correct labelings 
is relatively high. Despite this, the datasets contain biological data that has been 
annotated by a number of different researchers and methods. As such, some noise, 
inconsistency, and missing information is expected in the data and the labels.

Each of the following datasets was selected in order to compare and contrast the 
properties of protein function prediction methods on problems of biological interest.

•  pkinase and metallothio Pfam Families — There are many specific protein 
functions that are of biological interest to many researchers. Two families of 
the Pfam database [13], one numerous and one with fewer members, were 
selected as examples of specific protein function prediction. The families 
are the pkinase protein family (PF00069) and the metallothio protein family 
(PF00131). The pkinase family is a large group of eukaryotic proteins (Pfam

'Luke 3:9
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notes more than 10 000 examples) which are protein kinases2. The metal
lothio family is a much smaller group (about 170 examples noted by Pfam) 
of metallothioneins3. The two families were chosen in part because of their 
performance differences with regard to PSTs. As evaluated by Bejerano and 
Yona [17], the pkinase family was classified poorly with bPSTs and very well 
with HMMs [17]. In the same set of experiments, the metallothio family was 
distinguished well by bPSTs but more poorly by HMMs. The families were 
also combined for some tests to observe performance from mixed classes4. 
The three Pfam test sets (pkinase, metallothio, and the pkinase I metallothio 
mixed class) are all generated from a random selection of about 1/4, or 25912 
sequences, of the SwissProt database [19] (version 42, also see below). The 
positively labeled instances from the training set are those that are designated 
by Pfam as being in the ‘full’ set of family sequences (as opposed to the 
‘seed’ set which consists of a small subset of sequences that is representative 
of the family).

•  K + Channels — The voltage-gated potassium channels test set is composed 
of 77 proteins selected from 4 mutually exclusive classes of potassium chan
nels. The classes ‘K v l’, ‘Kv2’, ‘Kv3’, and ‘Kv4’ each have slightly different 
functional properties and have been labeled by Warren Gallin [59]. They are 
typical of sequence sets that a single lab or research group might work with.

•  Gram- Subcell — The Gram negative bacteria Subcellular location test set 
is composed of 3960 sequences from SwissProt [19] (version 42) and their 
associated subcellular locations as annotated in that database. The available 
subcellular locations include ‘cytoplasm’, ‘extracellular’, ‘inner membrane’, 
‘outer membrane’, and ‘periplasm’. Almost every protein has a single sub
cellular location. There are a few proteins, however, that have multiple sub
cellular locations — usually when they perform their function at the interface 
between two subcellular compartments.

•  GO on SwissProt 1/4 — The high-level Gene Ontology [28] data set is made 
up of a randomly selected group of 25912 sequences from SwissProt ver

2Protein kinases attach phosphate groups to proteins, usually resulting in a change o f shape that 
influences protein function. Protein kinases are often involved in regulating protein activity.

3Metallothioneins are small proteins that bind heavy metals. They often consist o f high amounts 
of cysteine residues and low numbers of aromatic amino acids. They are important for metal ion 
transport.

4Mixed protein classes containing distinct protein types may arise for a variety of reasons. The 
class may be a high-level class that contains several subclasses. The sequences might be contami
nated with another class o f proteins that shares some properties but are functionally different. An
notation errors and noisy data may also result in mixed classes. In any case, the robustness of a 
classification method depends on the ability to function under noisy conditions.
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sion 42 (about 110 000 sequences). The Gene Ontology (GO) class labels 
have been taken from EBI’s Gene Annotation [27]5. The Gene Ontology 
classes used in this data set have been selected from high-level categories 
of the GO Molecular Function hierarchy (see Figure 1.4). The classes (and 
their associated GO numbers) are ‘binding (0005488),’ ‘catalytic activity 
(0003824),’ ‘hydrolase activity (0016787),’ ‘lyase activity (0016829),’ ‘metal 
ion binding (0046872),’ ‘nucleic acid binding (0003676),’ ‘nucleotide bind
ing (0000166),’ ‘oxidoreductase activity (0016491),’ ‘signal transducer activ
ity (0004871),’ ‘structural molecule activity (0005198),’ ‘transferase activity 
(0016740),’ and ‘transporter activity (0005215).’ These classes all have many 
examples in the SwissProt database. Some classes are subclasses of others 
(see Figure 1.4). Each protein may be a member of one or more GO classes.

These data sets come with an important caveat. In addition to empirical evi
dence, much of the training data has been acquired and labeled based on sequence 
analysis using BLAST and HMMs, two of the techniques that we are evaluating. 
For example, the annotation of new proteins for SwissProt is made much easier 
when high-scoring BLAST alignments and Pfam HMMs are available. This gives 
BLAST and HMMer an inherent advantage in the analysis and should be remem
bered when comparing the results of the classification techniques.

5.2 Evaluation
For each data set the classes are treated as independent classification tasks. When a 
data set has more than one class, the results are reported for each class individually 
and then as an overall result for all classes (see Section 2.3.4) using 5-fold cross- 
validation results (see Section 2.3.2). Due to space limitations, detailed results for 
the individual classes of each data set have often been placed in Appendix A as 
referenced.

Accuracy can be a very misleading measure of performance, especially where 
the class distributions are very imbalanced (where some classes are large while 
others are very small). Consider a protein family with few members in a very large 
data set. If that family has 100 positive matches in a data set of 1000, a classifier 
which predicts that a single true member of the class is positive and that one of the 
proteins which is not in the class is positive (and all other 998 proteins are negative) 
will yield an accuracy of 90% (1 true positive, 899 true negatives, 1 false positive, 
99 false negatives). The precision would be 50% and the recall would be 1% -  
obviously poor performance. Consider a second classifier which correctly predicts 
that all the 100 true members of the family are positive but incorrectly predicts an

d ow n load ed  January 2004.
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Table 5.1: Majority Classification

Protein Class Performance

pkinase Pfam Precision Recall

0.000
A ccuracy

0.985

metallothio Pfam Precision Recall

0.000
A ccuracy

0.998

mixed Pfams Precision Recall

0.000
A ccuracy

0.984

K + Channels (Table A .l) Precision Recall

0.000
Accuracy

0.750

Gram- Subcell (Table A.2)
Precision

0.628
Recall

0.620
Accuracy

0.848

GO on SwissProt 1/4 (Table A.3) Precision

0.594
Recall

0.253
A ccuracy

0.820

additional 100 as positive. The precision would be 50% and the recall would be 
100% -  apparently a better classifier than the first. The accuracy, however, would 
again be 90%. When accuracy is used for an imbalanced data set (as often occurs 
in many protein function prediction tasks -  including those that we will consider 
here) the precision and recall are often crucial measures of performance. Precision, 
recall, coverage, and accuracy will all be reported here.

The overall performance measures may also seem misleading for the multiple 
class data sets (K + Channels, Gram- Subcell, and GO on SwissProt 1/4 ) since 
the'issues arising from imbalanced class distributions are multiplied in the overall 
accuracy. Again, readers may wish to focus more on precision and recall than 
accuracy. In addition, the complete results for each class are included in Appendix 
A and may be referred to for detailed outcomes where necessary.

For each classification task it is important to compare to a baseline classifier. A 
classifier that randomly predicts positive or negative for each class with an equal 
probability for each (0.5) will be expected to obtain 50% accuracy on average. We 
certainly expect our classifiers to exceed this threshold. As each protein function 
class is typically much less than 50% of the data set, we recognize that a classifier 
that simply predicts the label of the majority of the data set will achieve better than 
50% accuracy. We will use this ‘majority classifier’ as a simple baseline for the 
results our data sets. The performance of majority classification for each data set
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can be seen in Table 5.1 and is far above the 50% accuracy that would be obtained 
by a random classifier.

The evaluation of computational efficiency was done using simple randomly 
generated data sets. The runs were times on a single processor of a two-processor 
2.0 GHz Apple Power Mac G5 with 3.5 GB of RAM running Mac OS X Version 
10.3.3. All times are reported in seconds.

5.3 Alignment-Based Methods

5.3.1 BLAST
As BLAST nearest-neighbor classification is the most commonly used classifica
tion scheme (especially for biologists using non-automated sequence analysis), we 
consider the results of using BLAST over the given datasets. To evaluate BLAST as 
a classifier, the test set is aligned against the training set. For each test sequence we 
predict the class label to be the label of the sequence with the best scoring (smallest 
E-value) alignment match in the training set. When no alignment can be made with 
an E-value of less than 10, no prediction is made. The results for using BLAST 
as the distance measure for a 1-nearest-neighbor classifier are found in Table 5.2. 
Experiments with 3-nearest-neighbor classification (data not shown) gave almost 
identical results.

BLAST is able to predict the correct classification for the vast majority of the 
proteins in these training sets. In some cases there were no predictions given for 
a significant number of proteins because no BLAST hits were found below the 
E-value threshold. Given the very permissive E-value threshold, we expect a rela
tively high number of spurious alignments (unrelated sequences which score well 
by chance). A high E-value threshold also gives better coverage. By changing the 
E-value threshold we can hope to increase precision at the expense of decreased 
coverage. For example, Figure 5.1 displays how the coverage of the GO with Swis
sProt 1/4 data set responds to various E-value thresholds. This cross-validation 
coverage shows that there are a considerable number of proteins in the SwissProt 
database that have very similar sequences within the data set. About 20% of our 
data set aligns to other sequences with E-value scores smaller than 10~170 (almost 
identical). Although this plot tells us how coverage responds to E-value, we would 
really like to know what E-value to select for optimal classifier performance.

Figures 5.2 and 5.3 show how coverage, precision, recall, and accuracy respond 
to changes in E-value for the Gram- Subcell and GO with SwissProt 1/4 data sets. 
Precision is affected very little for E-value thresholds smaller than 10-10. The ‘local 
precision’ (the precision over all sequences finding a neighbor within the immediate 
range -  10-n-5 to lCT") drops most precipitously for E-values greater than 10-5 .
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Table 5.2: BLAST Nearest-Neighbor

The following data are obtained by 5-fold cross-validation over the given training sets. Alignments 
with an E-value o f greater than 10 were counted as ‘no predictions’.

Protein Class Performance

pkinase Pfam Precision

0.848
Rccal 1

0.989
A ccuracy

0.990
Coverage

0.992

metallothio Pfam Precision

0.950
Recall

0.974
Accuracy

0.992
Coverage

0.992

mixed Pfams
Precision

0.856
Recall

0.988
Accuracy

0.990
Coverage

0.992

K + Channels (Table A.4)
Precision

1.000
Recall

1.000
Accuracy

1.000
Coverage

1.000

Gram- Subcell (Table A.5) Precision

0.931
Recall

0.900
A ccuracy

0.964
C overage

0.996

GO on SwissProt 1/4 (Table A.6)
Precision

0.934
Recall

0.934
A ccuracy

0.968
Coverage

0.992

Figure 5.1: BLAST Coverage for 5-fold Cross-Validation, SwissProt 114

The following graph shows the coverage achieved with 5-fold cross-validation with test sets against 
training sets for BLAST scores.
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Figure 5.2: BLAST Nearest-Neighbor Performance Response to Varying E-value
Threshold, Gram- Subcell

The response of performance measures to changing E-value thresholds is shown in the plot. As the 
E-value is made less stringent (larger) the recall increases and the precision decreases. The local 
precision at an E-value of 10n is the precision of those classifications which are made when a 
nearest neighbor is found within the immediate range of measurement (1 0 ~ " “ 5 to 10 - n , marked 
by tics on the scale).
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Figure 5.3: BLAST Nearest-Neighbor Performance Response to Varying E-value
Threshold, GO with SwissProt 1/4

The response of performance measures to changing E-value thresholds is shown in the plot. As the 
E-value is made less stringent (larger) the recall increases and the precision decreases. The local 
precision at an E-value of 10n is the precision of those classifications which are made when a 
nearest neighbor is found within the immediate range of measurement (10- n - 5  to 10” ", marked 
by tics on the scale).
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Figure 5.4: BLAST Coverage of SwissProt for Various Organisms

The chart displays the number of sequences which can be aligned to a sequence in SwissProt with a 
score better than the given threshold. Some organisms are well represented in SwissProt and obtain 
many exact matches (E-value of 10“ 180 or better). The number of similar sequences which occur 
in SwissProt is much higher for well-studied organisms.

180 -160 -140 -120 -100 -80 -60 “40 -20
E-value Threshold

— i—  SwissProt Random 1/4 --A — E. cuniculi
— x—  A. thaliana --A.-- . G. theta

A. tumefaciens — v— H. sapiens
a B. anthracis --T-- M. musculus

— m— B. subtilis - -O M. thermoautotrophicum
— o— d . melanogaster .... ♦.... P. falciparum
. . . . . . . .  e  coli — —Q--- S. cerevisiae

The coverage is greatly reduced over the entire range of decreasing E-values. For 
these classification problems, performance may be optimized by choosing an E- 
value threshold somewhere in the range of 10~10 to 10°, depending on the relative 
importances of coverage and precision for the task at hand.

These cross-validation results indicate that BLAST will have excellent perfor
mance for predicting subcellular location and Gene Ontology categories. It is im
portant to remember the caveat mentioned above -  many label annotations have 
been made using BLAST alignment information. Thus, many of the sequences in 
SwissProt have similar sequences which are already in the database (as we observe 
in Figure 5.4) and the BLAST results may in some cases only confirm annotations 
that were done using BLAST. We hope that as SwissProt is manually curated that 
the effects of this will be small.

If we believe that the precision of a BLAST nearest-neighbor classification will 
hold according to the results observed in Figures 5.2 and 5.3, we will feel rela-

109

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



tively confident about predictions based on neighbors that have an alignment with 
an E-value better than 10-5. To develop an intuition about how well using BLAST 
nearest-neighbor with SwissProt as a labeled training set will work in general, we 
can examine the coverage of the method on various protein sets for entire organisms 
(proteomes).

Figure 5.4 shows how coverage responds to E-value threshold over proteomes 
from a variety of completely sequenced organisms. Each proteome was aligned to 
the SwissProt database by BLAST and the number of sequences with at least one 
BLAST hit better than each E-value threshold are recorded. The BLAST coverage 
of our Random 1/4 of SwissProt against SwissProt is also plotted. We observe stark 
contrasts between organisms. This figure shows that the coverage of commonly 
used model organisms such as E. coli and S. cerevisiae is very high in SwissProt. 
It is very likely, however, that researchers will desire to predict protein function 
on proteomes that have been less studied, such as P. falciparum  and E. cuniculi. 
These organisms have comparatively low coverage for an E-value of 10~5. As 
such, BLAST nearest-neighbor prediction is much less likely to work well for these 
relatively unstudied organisms. Because of the severity of the coverage problem, 
it is important to study methods that can work around this issue. One way we 
can do this is to try to increase the robustness of BLAST nearest-neighbor when 
coverage is reduced (Proteome Analyst uses some techniques which accomplish 
this). We will also examine methods which do not rely on sequence alignment for 
the prediction. There are a variety of sequence patterns such as HMMs and PSTs 
which offer alignment-free predictions.

5.3.2 Proteome Analyst
Proteome Analyst (PA) [90,91,63,62] is a variation of the BLAST nearest-neighbor 
approach which strives to use additional information to increase precision and cov
erage. PA aligns the training sequences against the sequences in the SwissProt 
database and selects a small group of the nearest neighbors (usually three). The 
annotations of these neighbors are then extracted from the SwissProt database, re
sulting in a group of keywords that are related to those sequences. These keywords 
are typically related to protein function and properties. These keywords become a 
vector of features that can be used by a classifier such as naive Bayes (see Section 
2.4.3). Once a classifier has been created using the keywords from the training set, 
the process of obtaining BLAST alignments against SwissProt is repeated for the 
test sequences. The SwissProt keywords are again extracted, creating a feature vec
tor for each test protein. A naive Bayes classifier which has been built using the 
features of the training set is then used to predict the class of the each test protein 
given its feature vector. The results of using Proteome Analyst on the data sets are 
seen in Table 5.3. Since the proteins in many of the data sets are drawn from Swis-
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Table 5.3: Proteome Analyst

The follow ing data are obtained by 5-fold  cross-validation over the given training sets.

Protein Class Performance

pkinase Pfam Precision

0.937
Recall

0.903
A ccuracy

0.997
Coverage

0.999

K + Channels (Table A.7) Precision

1.000
Recall

1.000
Accuracy

1.000
Coverage

1.000

Gram- Subcell (Table A.8) Precision

0.960
Recall

0.978
Accuracy

0.987
Coverage

1.000

GO on SwissProt 1/4 (Table A.9) Precision

0.919
Recall

0.956
A ccuracy

0.970
Coverage

0.994

sProt, PA simulates the case where these proteins are not in SwissProt by ignoring 
the best BLAST hit (which is assumed to be the sequence itself).

The use of the SwissProt annotations allows Proteome Analyst to use a slightly 
more permissive E-value threshold (10~3 vs. 1CT5) than a higher-precision BLAST 
search while still obtaining very precise results. This increases the coverage of 
the method without sacrificing precision. Alternately, the same E-value threshold 
may be used (as with BLAST nearest-neighbor) to increase the precision without 
sacrificing recall. In addition to increased classification performance, PA also al
lows a very intuitive explanation of each protein’s classification through the use of 
keywords from the SwissProt annotations. This explanation facility does not im
prove the performance of the classification, but it does increase the transparency for 
biologists who would like to understand how each protein was classified.

Although the Proteome Analyst approach improves results over a BLAST nearest- 
neighbor classifier, it still does not address the more difficult coverage issue of deal
ing with proteomes that have very few alignment matches to the SwissProt database. 
For this, we turn our focus to pattern-based methods.

5.4 Pattern-based methods

5.4.1 HMMer

HMMs (Section 3.3.2) provide probabilistic modeling of protein families. They 
have been shown to be very useful for relatively small and well-characterized pro
tein families, as demonstrated by the popularity of the Pfam database. The training
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Table 5.4: HMMer

The fo llow ing data are obtained by 5-fold  cross-validation over the given training sets.

Protein Class Performance

pkinase Pfam Precision

0.992
Recall

0.992
A ccuracy

1.000
Coverage

1.000

metallothio Pfam
Precision

1.000
Recall

1.000
A ccuracy

1.000
Coverage

1.000

mixed Pfams
Precision

0.906
Recall

0.906
Accuracy

0.997
Coverage

1.000

K + Channels (Table A. 10)
Precision

1.000
Recall

1.000
Accuracy

1.000
Coverage

1.000

Gram- Subcell (Table A .l 1)
Precision

0.592
Recall

0.592
Accuracy

0.835
Coverage

1.000
GO with SwissProt 1/4 Did not finish.

sequences in each training set were multiply aligned using ClustalW [92]. In order 
to simulate high-throughput and automatic protein function prediction, no further 
refinements of the multiple sequence alignment was made6. The multiple sequence 
alignment is then passed to HMMer [35] software (hmmbuild) which creates an 
HMM corresponding to the alignment. The HMM is then matched (using hmmp- 
fam) against each test protein and a score is assigned. The test proteins are then 
evaluated against the known labels.

Since no score threshold is defined beforehand for determining which instances 
are positive or negative, the threshold is determined by the isopoint criteria [17]. 
The isopoint is determined by sorting the proteins according to score. The proteins 
which have HMM scores that are better than a certain threshold are considered 
matches. The performance of the classifier is evaluated at each possible threshold 
(as in an ROC curve, Section 2.3.4). The threshold at which the number of false 
positives is equal to the number of false negatives is the isopoint.

The results of HMM classification for the the various data sets are seen in Table 
5.4. The performance measures for each are reported at the isopoint.

HMMs perform extremely well on the Pfam families. This is to be expected, 
as Pfam families are defined by HMMer hidden Markov models. HMMs are par
ticularly well suited to protein families for which a good multiple alignment can 
be built. Notably, the performance of HMMs exceeds that of the alignment-based

A lignm ents used in the Pfam database may be refined and optimized for performance.
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Table 5.5: Pfam and PROSITE with Naive Bayes 

The following data are obtained by 5-fold cross-validation over the given training sets.

Protein Class Performance

K + Channels (Table A. 12) Precision

0.987
Recall

1.000
A ccuracy

0.997
Coverage

1.000

Gram- Subcell (Table A. 13)
Precision

0.899
Recall

0.793
A ccuracy

0.913
Coverage

0.972

GO with SwissProt 1/4 (Table A. 14)
Precision

0.919
Recall

0.878
A ccuracy

0.928
Coverage

0.961

methods for these protein classes.
The mixed Pfam families demonstrate how profile HMMs deal with mixed pro

tein classes. In essence, the smaller metallothio family is not modeled in the HMM 
since a multiple sequence alignment which represents both the pkinase and metal
lothio families well cannot be made. The problem of modeling multiple families is 
exacerbated in the Gram- Subcell and GO with SwissProt 1/4 data sets. It is appar
ent that HMMs are not well suited to modeling larger and more divergent families 
such as those in the Gram- Subcell and GO with SwissProt 1/4 training sets. It is un
clear what a multiple sequence alignment or the corresponding HMM represents in 
these cases. In addition to poor classification performance on these sets, the com
putational requirements of the multiple sequence alignment (using ClustalW) are 
excessive for very large protein classes (see Section 5.5 for more discussion of this 
topic). For the largest classification problem, GO with SwissProt 1/4, the alignment 
process was prohibitive7. Despite these limitations, we can use HMMs in alterna
tive way. In the following results, groups of HMMs representing smaller protein 
classes are used in combination to predict larger, more general protein classes.

5.4.2 Pfam and PROSITE Pattern Databases
Although finding HMMs and regular patterns for very large families of sequences 
can be prohibitively expensive for high-throughput classification tasks (see Sections 
5.4.1 and 3.2.4), databases of previously identified patterns can be used to avoid 
this expense. Using databases of this type allows us to take advantage of large 
amounts of prior knowledge in protein classification. The Pfam [13] and PROSITE

7ClustalW ran for longer than two days using more than a gigabyte of memory without finishing 
the alignment. The run was eventually terminated before completion.
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Table 5.6: Pfam and PROSITE with SVM

The following data are obtained by 5-fold cross-validation over the given training sets.

Protein Class Performance

K + Channels (Table A. 15) Precision

0.987
Recall

0.974
A ccuracy

0.990
Coverage

1.000

Gram- Subcell (Table A. 16) Precision

0.972
Recall

0.865
A ccuracy

0.946
Coverage

0.972

GO with SwissProt 1/4 (Table A. 17) Precision

0.963
Recall

0.907
Accuracy

0.942
Coverage

0.961

[84] databases contain patterns for a large variety of protein families. Although 
these protein families have been designed for classification tasks that may be quite 
different from a user-defined classification task, they can still be very useful for 
classification. It is possible to use the patterns in a way which is more robust than 
simple rule-based approaches such as InterProScan [8] by incorporating well known 
machine-learning approaches (see Section 2.4).

Each sequence in the data set is run against the Pfam and PROSITE pattern 
databases to find all patterns that match the protein. The matching patterns form 
a feature vector for that instance. The feature vectors of the training set can then 
be used by a machine learning technique to create a classifier. This classifier is 
used to predict the class of a test sequence based on its feature vector of matched 
patterns. Because the processing time required to run Pfam and PROSITE against 
the larger Gram- Subcell and GO with SwissProt 1/4 data sets is extensive and each 
sequence from these sets is found in the SwissProt database, the matching patterns 
for these sets were extracted from the SwissProt annotations for each sequence. 
The resultant data is equivalent to the procedure described above, but is much less 
computationally expensive.

The results of using the Pfam and PROSITE database are seen for the data sets 
using a nat've Bayes classifier in Table 5.5. The same set of features can be used for 
other machine learning techniques such as the support vector machines (SVMs). 
The results seen in Table 5.6 were obtained using the SMO implementation of 
SVMs in the WEKA machine learning suite [98], The Pfam data sets were not 
run using this specific method as it is apparent from the previous results that the 
individual HMMs for the respective families perform very well for these sets.

The use of pattern databases and machine-learning classifiers returns promising 
results on the data sets. As with alignment-based techniques, some coverage prob-
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lems arise where some of the sequences match no patterns. Where this happens, 
the classification is conservative and makes no prediction. Unfortunately, we are 
left relatively powerless to increase the coverage for a particular dataset except by 
discovering and contributing new protein families to the databases. Despite the fact 
that the coverage of the Pfam database has increased significantly in recent years 
and continues to increase, it is unlikely that the coverage will be complete for all 
new families of sequences which we may want to classify. In order to deal with 
the low coverage of these pattern databases and to tune the families for specific 
tasks, we would still like to use a technology which will allow us to quickly build 
a pattern that represents an entire protein family. We have seen the limitations of 
HMMs in that regard. PSTs (see Section 4.2) are possible models that may facilitate 
high-throughput and automatic prediction.

5.4.3 Probabilistic Suffix Trees
PSTs (Section 4.2) are probabilistic models that can be used for a variety of se
quence prediction tasks. Like HMMs, they can be built to represent relatively well 
conserved sequence families [17]. In contrast to HMMs, however, they do not re
quire a multiple sequence alignment.

bPSTs

Bejerano [15] has recently released an implementation of PSTs (here called ‘bP- 
STs’). This implementation allows the use of PSTs for protein function prediction. 
A bPST is built from the positive instances of the training set. Given a test se
quence, the bPST calculates the probability of that sequence for both the PST and a 
null (random) model. The result is a log-odds score for each sequence. To eliminate 
any dependence on the length of the sequences, the log-odds scores are normalized 
by dividing by the sequence length. The predictions for each sequence are then 
sorted and evaluated at the log-odds score which defines the isopoint (as described 
above for HMMs). Table 5.7 shows the results of using Bejerano’s PST program 
over the data sets. The parameters used are exactly those which were previously 
published for Pfam prediction [17] and confirmed by Bejerano to be the most rea
sonable parameter settings [14].

The results using bPSTs are mixed. As found by Bejerano and Yona [17], bPSTs 
perform well for the metallothio family (approaching that of HMMs) but not for the 
pkinase family. The results for the mixed family is essentially a weighted average 
of the two families and the poor performance mainly echoes the results for the 
larger pkinase family. The results for Gram- Subcell are encouraging, exceeding 
both HMMs and the classifiers that use the Pfam and PROSITE databases. The 
bPSTs had not only better classification performance but better time performance
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Table 5.7: bPST

The fo llow in g  data are obtained by 5-fold  cross-validation over the given training sets.

Protein Class Performance

pkinase Pfam Precision

0.517
Recall

0.517
Accuracy

0.986
Coverage

1.000

metallothio Pfam Precision

0.974
Recall

0.974
Accuracy

1.000
Coverage

1.000

mixed Pfams
Precision

0.553
Recall

0.553
Accuracy

0.986
Coverage

1.000

K + Channels (Table A. 18) Precision

1.000
Recall

1.000
Accuracy

1.000
Coverage

1.000

Gram- Subcell (Table A. 19) Precision

0.796
Recall

0.796
Accuracy

0.917
Coverage

1.000

GO with SwissProt 1/4 (Table A.20) Precision

0.555
Recall

0.555
A ccuracy

0.826
Coverage

1.000

as well. The time required for bPSTs on this data set was much less than for the 
other techniques (see Section 5.5 for related results). The GO with SwissProt 1/4 
results, however, are poorer than classifiers using the Pfam and PROSITE databases 
and barely above the performance of a random classification. bPSTs are better than 
HMMs for this task, if only because they were able to finish the classification. 
Alignment-based methods still far exceed the classification performance of bPSTs, 
but only when close alignments can be found.

bPSTs show some promise for high-throughput function prediction. Classifica
tion performance is excellent in some cases. They are able to represent a large set of 
sequences as a single probabilistic pattern where HMMs cannot. The time require
ments are much less than for the competing pattern and alignment-based methods. 
bPSTs still exhibit weaknesses, however. Although some examples of classification 
performance are good, others remain poor. This may be the result of poorly tuned 
parameters, but a search of the parameter space for each protein family would likely 
negate any benefits of improved time performance.

ePSTs

Although bPSTs have shown some encouraging results for protein function pre
diction, we would like to improve both the classification and time performance of 
PSTs.
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Table 5.8: ePST

The following data are obtained by 5-fold cross-validation over the given training sets. The 
prediction method is global and evaluated at the isopoint.

Protein Class Performance

pkinase Pfam Precision

0.594
Recall

0.594
Accuracy

0.988
Coverage

1.000

metal lothio Pfam Precision

0.897
Recall

0.897
Accuracy

1.000
Coverage

1.000

mixed Pfams Precision

0.649
Recall

0.649
Accuracy

0.989
Coverage

1.000

K + Channels (Table A.21) Precision

1.000
Recall

1.000
A ccuracy

1.000
Coverage

1.000

Gram- Subcell (Table A.22) Precision

0.849
Recall

0.849
A ccuracy

0.939
Coverage

1.000

GO with SwissProt 1/4 (Table A.23) Precision

0.765
Recall

0.765
A ccuracy

0.908
Coverage

1.000

Recent publications suggest that the classification performance can be improved 
by better smoothing [51] and better scoring (through the use of local predictions 
[89]). Although Bejerano and Yona [17] suggest and test some cases of local pre
diction with promising results, it is not implemented directly in Bejerano’s pro
gram. The implementation of local prediction implemented by Sun and Deogun is 
not publicly available. Kermorvant and Dupont’s improved smoothing techniques 
have not been implemented in a PST.

There have also been suggestions for a great improvement in the theoretical 
computational requirements of the PST algorithm. Although Apostolico and Be
jerano [7] present linear time methods of training and prediction, they make no 
program available for doing this. Sun and Deogun [89] mention an implementa
tion of this technique, but do not make it available. For an implementation of these 
ideas, we turn to the efficient PST (ePST) implementation developed in the course 
of the current work.

The current implementation of ePSTs (see Section 4.3) implements smoothing 
similar to that which has been used in Markov chains for natural language process
ing [50] and which has also been suggested by Kermorvant and Dupont [51]. Prun
ing is less aggressive than that implemented by bPSTs and allows all parameters 
that do not exceed the maximum history length L  and have at least one occurrence
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in the training set to remain in the tree. Simple local prediction was tested using 
cumulative log-odds scores over various window sizes. The more complex local 
predictions of Sun and Deogun were not tested.

Training an ePST proceeds as for HMMs and bPSTs -  by building an ePST from 
the training sequences. Predictions result in a ePST score for each test sequence 
which is compared to a random model (a 0-th order Markov model based on the 
negative training data) for each sequence position. To obtain global scores, the 
scores at each position are added to give a cumulative log-odds score over the entire 
sequence, which is then divided by the sequence length to reduce sequence-length 
effects (as for bPSTs). For a local prediction at a specific amino acid, the log-odds 
scores are cumulated over a fixed length window of preceding residues. This local 
prediction can be done for each position over the entire sequence in linear time 
and the maximum local prediction score becomes the score assigned to the entire 
sequence. For evaluation, each sequence is sorted by score and performance is 
measured at the isopoint (as for HMMs and bPSTs above).

The results of global prediction using ePSTs are seen in Table 5.8. ePSTs out
perform bPSTs in every case except for the metallothio proteins. Although ePSTs 
are equivalent to bPSTs in general, the implementations of pruning and smoothing 
differ between the two programs tested here. The less aggressive pruning and more 
advanced smoothing of the ePST implementation may be responsible for the perfor
mance differences. It is also likely that parameter selection could be tuned to obtain 
better results for each of the algorithms. Due to the time requirements of running 
bPSTs, an exhaustive parameter search was not done. The ePST implementation 
performs well enough to approach that of pattern databases in combination with the 
naive Bayes and SVM classifiers (and exceed it in the case of the Gram- Subcell 
data set). ePSTs still cannot meet the classification performance of the alignment- 
based methods but are able to achieve 100% coverage. ePSTs also require much 
less computational time than alignments.

ePSTs were also examined using local predictions. The results when using a 
window of 40 amino acids can be seen in Table 5.9. Local prediction improved 
classification performance in some cases (such as GO with SwissProt 1/4 and de
creased it in others (such as Gram- Subcell). For prediction on the more conserved 
Pfam families the selection of the right window length can improve performance. 
The change from a window length of 40 to a window length of 200 makes a sig
nificant difference. It is difficult, however, to select a window length that will im
prove classification over all the classes involved in the more general classification 
schemes.

Comparisons that demonstrate the performance at the isopoint do not necessar
ily show classification performance in all circumstances. Many researchers may 
prefer more precision at the expense of recall. Alignment-based methods such as 
BLAST and Proteome Analyst tend to be more conservative predictors in this way.
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Table 5.9: ePST Local Predictions

The following data are obtained by 5-fold cross-validation over the given training sets. A length of 
40 amino acids was used for the scoring window in each case except where noted otherwise.

Protein Class Performance

pkinase Pfam
Precision

0.674
R ecall

0.674
Accuracy

0.991
C overage

1.000

pkinase Pfam (window length 200)
Precision

0.745
R ecall

0.745
Accuracy

0.993
C overage

1.000

metal lothio Pfam Precision

0.897
R ecall

0.897
Accuracy

1.000
C overage

1.000

mixed Pfams
Precision

0.726
Recall

0.726
Accuracy

0.991
Coverage

1.000

K + Channels (Table A.24)
Precision

0.961
Recal 1

0.961
Accuracy

0.981
Coverage

1.000

Gram- Subcell (Table A.25)
Precision

0.821
Recall

0.821
Accuracy

0.927
Coverage

1.000

GO with SwissProt 1/4 (Table A.26) Precision

0.780
Recall

0.780
Accuracy

0.914
Coverage

1.000
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Table 5.10: ePSTs Evaluated at Maximum F-measure

The following data are obtained by 5-fold cross-validation over the given training sets. The 
evaluation is taken at the point that maximized the F-measure with the parameter j3 =  1.

Protein Class Performance

pkinase Pfam
Precision

0.667
Recall

0.772
A ccuracy

0.991
C overage

1.000

metallothio Pfam
Precision

0.907
Recall

1.000
A ccuracy

1.000
C overage

1.000

mixed Pfams
Precision

0.691
Recall

0.810
A ccuracy

0.991
C overage

1.000

K + Channels (Table A.27) Precision

0.963
Recall

1.000
A ccuracy

0.990
Coverage

1.000

Gram- Subcell (Table A.28) Precision

0.937
Recall

0.797
A ccuracy

0.948
Coverage

1.000

GO with SwissProt 1/4 (Table A.29)
Precision

0.848
Recall

0.753
Accuracy

0.925
Coverage

1.000

In order to view the tradeoff between precision and recall, ePSTs were also eval
uated with a threshold that maximizes the F-measure (see Section 2.3.4, Equation
2.16) having an (3 parameter of l 8. These results can be seen in Table 5.10. The F- 
measure tends to select a more conservative threshold on the larger datasets, which 
results in better performance for Gram- Subcell and GO with SwissProt 1/4. With 
more conservative thresholds, ePSTs have classification performance that rivals the 
use of pattern databases in combination with machine learning classifiers. A less 
conservative threshold is chosen for the smaller datasets and gives no significant 
improvement in results.

Smoothing affects classification performance. Table 5.119 shows the results of 
using a pseudocount parameter of 0. This parameter setting effectively eliminates 
smoothing and the resulting classification performance is very poor.

Pruning affects both speed and classification performance. A longer maximum 
history length may increase classification performance at the expense of longer 
training time. Tables 5.12 and 5.13 show the results for classification using a max
imum history length of 2 and 3 (in contrast to the default length of 10 used in

8A (3 parameter of 1 is designed to give ‘equal’ weighting to precision and recall, but the inter
pretation is not completely clear.

9For brevity, the detail tables for the results on pruning and smoothing are not included in the 
current work.
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Table 5.11: ePST Local without Smoothing

These results use a smoothing pseudocount of 0  rather than the default (0.01). The following data 
are obtained by 5-fold cross-validation over the given training sets. A length of 40  amino acids was 
used for the scoring window in each case except where noted otherwise.

Protein Class Performance

pkinase Pfam Precision

0.072
Recall

0.072
Accuracy

0.973
Coverage

1.000

metal lothio Pfam
P recision

0.077
Recall

0.077
Accuracy

0.997
Coverage

1.000

mixed Pfams P recision

0.062
Recall

0.062
Accuracy

0.970
Coverage

1.000

K + Channels
Precision

0.610
Recall

0.610
Accuracy

0.805
Coverage

1.000

Gram- Subcell Precision

0.519
Recall

0.519
Accuracy

0.805
Coverage

1.000

GO with SwissProt 1/4 Precision

0.361
Recall

0.361
Accuracy

0.750
C overage

1.000
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Table 5.12: ePST Local with Shorter History Length

These results use a maximum history length o f 2 rather than the default (10). The following data 
are obtained by 5-fold cross-validation over the given training sets. A length o f 40  amino acids was 
used for the scoring window in each case except where noted otherwise.

Protein Class Performance

pkinase Pfam
Precision

0.379
Recall

0.379
Accuracy

0.982
Coverage

1.000

metal lothio Pfam
Precision

0.923
Recall

0.923
Accuracy

1.000
Coverage

1.000

mixed Pfams Precision

0.430
Recall

0.430
Accuracy

0.982
C overage

1.000

K + Channels Precision

0.961
Recall

0.961
Accuracy

0.981
C overage

1.000

Gram- Subcell
Precision

0.789
Recall

0.789
Accuracy

0.915
Coverage

1.000

GO with SwissProt 1/4 Precision

0.518
Recall

0.518
Accuracy

0.811
Coverage

1.000
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Table 5.13: ePST Local with Shorter History Length

These results use a maximum history length of 3 rather than the default pruning (10). The 
following data are obtained by 5-fold cross-validation over the given training sets. A  length of 40  
amino acids was used for the scoring window in each case except where noted otherwise.

Protein Class Performance

pkinase Pfam Precision

0.637
Recall

0.637
A ccuracy

0.989
Coverage

1.000

metallothio Pfam Precision

0.795
Recall

0.795
A ccuracy

0.999
Coverage

1.000

mixed Pfams
Precision

0.673
Recall

0.673
A ccuracy

0.990
Coverage

1.000

K + Channels
Precision

0.961
Recall

0.961
Accuracy

0.981
Coverage

1.000

Gram- Subcell Precision

0.798
Recall

0.798
Accuracy

0.918
Coverage

1.000

GO with SwissProt 1/4
Precision

0.652
Recall

0.652
A ccuracy

0.864
Coverage

1.000
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these experiments). The importance of a history length can be seen in these results. 
Although longer history length is typically beneficial, there are some cases where 
performance is better with a shorter history length (as with the Gram- Subcell data 
set). This results correlates with the idea that much of a protein’s subcellular loca
tion is determined by short regions of ‘signaling’ sequence. It was also found that 
there are diminishing returns as the maximum history length increases. A history 
length of 20 does not give any appreciable difference in performance compared to 
the default length of 10 (data not shown). This is likely because the parameters 
which use a history length beyond length 10 are very sparse and are not used very 
often in prediction.

It is apparent that the parameters of ePSTs have much to do with the perfor
mance on various data sets. The results shown here do not represent an exhaustive 
parameter search. These result do show that PSTs show some promise as predic
tors under certain circumstances where other methods fail. ePSTs may be useful 
where similar sequences cannot be found by alignment-based methods but this is 
difficult to verify since many of the data sets that we obtain for testing have largely 
been labeled through sequence similarity as determined by sequence alignment. 
PSTs (bPSTs or ePSTs) and HMMs can be helpful when no existing pattern (such 
those from Pfam or PROSITE) is known which corresponds to the particular protein 
family. HMMs, however, do not perform well with large or heterogeneous groups 
of proteins where a reasonable multiple sequence alignment is not possible. Under 
these circumstances, ePSTs are likely to have better classification performance than 
previous methods.

5.5 Comparison of Time Requirements
Although we usually want to use the technique with the best classification perfor
mance, this is not always possible due to limited resources. Tradeoffs between 
classification performance and time requirements may be acceptable in some cases. 
ePSTs are theoretically far more computationally efficient than the other techniques 
examined in this work. The following results compare the practical time require
ments of each method. This information can be considered together with the infor
mation about classification performance in the previous section in order to select 
the best classification method for a particular protein function prediction task.

Comparisons were done for only the BLAST, HMM, and PST methods. Pro- 
teome Analyst is based on BLAST and has basically the same time requirements 
with some additional machine learning time. The use of the Pfam database is es
sentially the same as using multiple HMMs. As such, the use of Proteome Analyst 
and the scanning of the Pfam and PROSITE databases were excluded from this 
comparison.
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Table 5.14: Comparison of Training Time Requirements Dependent on Training 
Set Size

All times are in seconds.

training BLAST HMM HMM bPST ePST
seqs formatdb clustalw hmmbuild train pst
10 0.02 0.63 0.46 23.86 0.01
20 0.02 2.06 0.50 93.76 0.02
30 0.01 4.15 0.47 210.65 0.03
40 0.00 7.13 0.42 6.35 0.04
50 0.02 10.33 0.38 9.62 0.05
60 0.01 14.26 0.42 13.51 0.07
70 0.02 19.73 0.49 18.74 0.07
80 0.02 26.10 0.50 11.69 0.08
90 0.01 30.98 0.49 14.01 0.10
100 0.02 38.52 0.52 18.15 0.11
200 0.02 148.52 0.74 28.05 0.23
300 0.03 327.24 1.31 39.44 0.35
400 0.02 586.77 2.19 55.29 0.48
500 0.05 932.79 3.43 66.30 0.64
600 0.04 1334.39 4.79 76.70 0.79
700 0.03 1875.28 5.98 89.10 0.93
800 0.04 2438.56 7.22 105.79 1.06
900 0.04 3255.01 9.92 115.97 1.20
1000 0.05 3876.15 6.78 126.36 1.33

For the following results, each of the programs was run using the same param
eter setting that were used in the comparisons of classification performance (except 
where noted). The sequences used in each case were simulated sequences from the 
protein kinase Pfam family {pkinase, PF00069). They were randomly generated 
from the Pfam HMM using the hiranem it program and have an average length of 
about 280 amino acids.

The training time requirements of each classification method were compared 
across various numbers of training sequences. Since prediction time may be depen
dent on both the size of the testing set and the size of the training instance(s), the 
testing (prediction) time requirements were compared for various sizes of both sets.

The dependency of the training time for each method based on the size of the 
training set is shown in Table 5.14 and Figure 5.5. The dependency of prediction
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Figure 5.5: Comparison of Training Time Requirements Dependent on Training Set 
Size

Data from Table 5.14 is plotted in this chart. All times are in seconds.
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Table 5.15: Comparison of Prediction Time Requirements Dependent on Training 
Set Size

A ll times are in seconds.

training
seqs

testing
seqs

BLAST
blastall

HMM
hmmpfam

bPST
predict

ePST
pst

100 1000 112.22 15.71 0.39 1.01
200 1000 218.41 14.42 0.29 1.27
300 1000 316.40 16.44 0.29 1.35
400 1000 406.49 15.18 0.35 1.45
500 1000 496.83 16.77 0.33 1.46
600 1000 521.57 14.84 0.37 1.52
700 1000 551.37 21.99 0.33 1.46
800 1000 576.70 18.77 0.34 1.50
900 1000 604.73 21.33 0.33 1.49
1000 1000 631.92 24.16 0.33 1.43
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Table 5.16: Comparison of Prediction Time Requirements Dependent on Test Set 
Size

All times are in seconds.

training
seqs

testing
seqs

BLAST
blastall

HMM
hmmpfam

bPST
predict

ePST
pst

ePST 
no a

1000 1000 635.19 24.43 0.32 0.23 0.22
1000 2000 1273.76 48.88 0.58 2.65 0.55
1000 3000 1919.37 73.51 0.81 3.94 0.82
1000 4000 2545.99 97.02 1.05 5.20 1.09
1000 5000 3251.30 122.63 1.20 6.63 1.36
1000 6000 3855.68 146.05 1.45 7.96 1.61
1000 7000 4499.40 170.81 1.71 9.29 1.87
1000 8000 5096.30 193.47 1.90 10.65 2.14
1000 9000 5709.05 218.05 2.09 11.68 2.40
1000 10000 6350.49 242.77 2.33 12.94 2.68

Figure 5.6: Comparison of Testing Time Requirements Dependent on Testing Set 
Size

The data from Table 5.16 is plotted in this chart. All times are in seconds.
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time based on the size of the training set is shown in Table 5.15. The dependency 
of prediction time based on the size of the test set is shown in Table 5.16 and Figure 
5.6.

It can be seen that BLAST nearest-neighbor has essentially no training time. 
The ‘classifier’ is the set of training sequences. Considerable time is spent in the 
prediction phase finding the nearest neighbor (the top BLAST hit). A BLAST 
nearest-neighbor classifier is a relatively slow prediction method when compared 
to the others tested. The testing time seems to increase linearly with both the num
ber of training and testing sequences.

HMMs require much more training time than BLAST. The training time is al
most entirely due to the multiple sequence alignment. Unfortunately, the time re
quired for this alignment increases more than linearly with the size of the training 
set. This characteristic explosion in processing time for multiple sequence align
ment makes HMMs much less attractive for large classes of proteins when speed is 
required. The prediction times for HMMs, however, show little dependency on the 
size of the training set, so if the same HMM will be used many times (as those in the 
Pfam database are used) the expense of training the HMM one time may be accept
able. The prediction time for matching against HMMs is much less than BLAST for 
a single HMM. The prediction time for matching against the entire Pfam database, 
however, would be much more expensive since it contains more than 7300 families. 
Because each HMM is a different size, each one will require a different amount of 
time to run (up to 10X difference), but these results suffice to give some intuition of 
the time that would required if we were to use the entire Pfam database (possibly 
using a machine learning classifier for a prediction based on the Pfam matches).

The training time for bPSTs increases much more slowly than that of HMMs10. 
There is an interesting non-monotonic increase in the training time that appears to 
be dependent on the minimum probability required for placing a history in the tree 
(Pmin)• In Table 5.14 and Figure 5.14 two unexpected drops can be seen in the bPST 
training time -  at 40 and 80 sequences. When using less than 40 training sequences 
with the published parameters (Pmin =  0.0001) the training time is greater than for 
training with more than 1000 sequences. To examine this effect the bPST training 
was repeated where the parameter Pmin was doubled and halved. The results of 
this testing can be seen in Table 5.17. Even though the value of Pmin significantly 
changes the training time for bPSTs, that time would still be expected to be less than 
required for clustalw (it will increase more slowly for larger values) and greater than 
that required for ePSTs.

When using the default parameters, the testing time for bPSTs is very fast and 
does not appear to depend upon the size of the training set. This is likely because

*°It should be noted that HMMs and PSTs may both be updated -  a new sequence may be added 
to the family without recontructing the entire model from the start. This kind of updating is not 
considered in the current analysis.
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Table 5.17: Non-Monotonic Increase in bPST Training Time Requirements Depen
dent on Training Set Size

All times are in seconds.

training
seqs

bPST
Pmin = 0.00020

bPST
Pmin ~  0.00010

bPST ePST
Pmin =  0.00005 pSt

10 23.57 23.86 23.57 0.01
20 1.49 93.76 93.04 0.02
30 3.56 210.65 205.17 0.03
40 2.66 6.35 353.39 0.04
50 4.58 9.62 570.89 0.05
60 4.19 13.51 824.43 0.07
70 5.51 18.74 1067.78 0.08
80 5.25 11.69 23.98 0.09
90 7.06 14.01 30.46 0.11

the agressive pruning of bPSTs greatly limits the size of the tree regardless of the 
size of the training set. A check of the bPST predictions across the tests shown 
revealed that the average history length used was about 3 amino acids, regardless of 
the training set size (with the exception of the smallest training set of 10 sequences, 
for which the average was a little more than 2). This very short average history 
(despite the maximum history length of 20) likely allows the majority of the tree to 
fit in memory cache -  and much faster memory access times. This characteristic 
does not change the theoretical attributes of the algorithm but may greatly contribute 
to the very fast prediction times for bPSTs.

The ePSTs have essentially the same classification performance as bPSTs. The 
small differences observed in classification performance are likely due to differ
ences in pruning and smoothing which with experimentation could be better opti
mized for both algorithms. As classification performance is comparable for the two 
methods, differences in compute time are of interest.

The training time for ePSTs is much faster than for bPSTs (roughly lOOx faster 
for 1000 training sequences). This difference in training time makes ePSTs more 
suitable to high-throughput protein function prediction tasks where many classifiers 
must be trained for many protein classes.

Surprisingly, the efficiency of ePSTs for prediction does not exceed that of bP
STs. This was examined and found to be due to differences in pruning and smooth
ing. A significant portion of the prediction time for ePSTS was used for calculating 
the backoff probabilities (specifically the value a). When the calculation of the
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Table 5.18: Dependence of ePST Testing Time on Maximum History Length

All times are in seconds. In all o f the runs shown below, the a  calculation is made. The maximum 
history length L  is shown for each run.

training
seqs

testing
seqs

ePST
L  =  0

ePST
L  =  1

ePST
L  =  2

ePST
L =  3

ePST
L =  10

ePST
L = 20

1000 1000 0.02 0.02 0.06 0.21 0.22 0.21
1000 2000 0.04 0.05 0.11 1.31 2.60 2.59
1000 3000 0.06 0.07 0.17 1.97 3.89 3.89
1000 4000 0.08 0.10 0.22 2.62 5.21 5.19
1000 5000 0.10 0.12 0.28 3.25 6.49 6.48
1000 6000 0.13 0.15 0.35 3.94 7.78 7.78
1000 7000 0.15 0.17 0.41 4.59 9.06 9.07
1000 8000 0.17 0.20 0.47 5.24 10.38 10.36
1000 9000 0.19 0.22 0.51 5.87 11.64 11.63
1000 10000 0.21 0.25 0.57 6.55 12.94 13.10

backoff smoothing value a  was removed (as shown in the last column of Table
5.16), the prediction calculation was much faster, although still not better than bP
STs. A second reason that ePSTs were not faster than bPSTs for prediction is related 
to the size of the tree. Although the theoretical analysis of the linear time algorithm 
suggests that this should not be the case, practical processing considerations have 
some influence. A small memory footprint for the tree may allow most of the mem
ory access to occur in the on-chip memory cache, which is much more efficient than 
main memory access. Some additional experimental results demonstrate the effect 
of the size of the tree’s memory footprint on the prediction speed.

Tables 5.18 and 5.19 and Figure 5.7 show some results for experiments with 
various values for the maximum history length L. Table 5.18 shows these results 
with the calculation of the backoff smoothing value a  and Table 5.19 shows the 
same results without the expensive a  calculation. It can be seen that for history 
lengths of 3 (matching the effective history length of the bPST with the published 
settings) or less, the ePST algorithm calculates the prediction probabilities much 
more quickly than bPSTs. Surprisingly, the calculation of the backoff value a  has 
very little effect on the speed of the calculation for trees of these sizes. It appears 
from this preliminary investigation that the ePST tree can be mostly contained in the 
memory cache of the test system for maximum history lengths of 3 or less given this 
training data. It is likely that bPSTs with less stringent pruning criteria would show 
similarly slower prediction times with larger trees (as they extend beyond memory
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Figure 5.7: Comparison of Testing Time Requirements Dependent on Testing Set 
Size and Tree Size

Data from Tables 5.16 and 5.18 is plotted in this chart. All times are in seconds. *The default value 
for L is 10 (including results found in Table 5.16) unless specified.
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Table 5.19: Dependence of ePST Testing Time on Maximum History Length with
out the a  Calculation

All times are in seconds. In all of the runs shown below, no a  calculation is made. The maximum  
history length L  is shown for each run.

training
seqs

testing
seqs

ePST
L = 0

ePST
L  =  1

ePST
L = 2

ePST
L = 3

ePST
L  =  10

ePST
L = 20

1000 1000 0.02 0.03 0.06 0.21 0.21 0.21
1000 2000 0.05 0.05 0.12 0.44 0.54 0.54
1000 3000 0.07 0.08 0.17 0.67 0.83 0.81
1000 4000 0.10 0.10 0.23 0.89 1.09 1.08
1000 5000 0.12 0.13 0.30 1.12 1.35 1.36
1000 6000 0.14 0.16 0.37 1.34 1.60 1.65
1000 7000 0.17 0.18 0.41 1.56 1.88 1.89
1000 8000 0.20 0.21 0.51 1.79 2.14 2.19
1000 9000 0.22 0.23 0.52 2.02 2.40 2.46
1000 10000 0.24 0.26 0.61 2.23 2.66 2.67

cache). Further work is required to confirm these assertions. It has been noted 
earlier that the ePST with a maximum history length of L  =  3 still has better clas
sification performance than bPSTs on the majority of the test sets (the metallothio 
Pfam family and the K + Channels being the exceptions for which ePSTs are only 
slightly behind). These results confirm that the ePST algorithm is much faster than 
the bPST algorithm as suggested by the theoretical analysis. They also warn, how
ever, that implementation details and parameter selection can have a large influence 
on computational performance.

5.6 Summary
These results demonstrate the time requirements of various algorithms for protein 
function prediction. Although it is clear that PSTs are the most efficient methods 
for training and prediction, they do not have the best classification performance for 
all tasks. The ideal classifier for protein function prediction is very dependent on 
factors such as

• the type of pattern which best defines the particular protein class,

•  the classification performance required,

132

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



• the computational resources available,

• the time available,

• the number of training sequences to be used, and

• the number of predictions to be made.

For each classification task the choice of the best tool will require some knowledge 
of the conditions under which it will be used.
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Chapter 6 

Conclusion

6.1 Discussion of Results
Francis Crick1 has restated the Central Dogma in the following way: ‘Once infor
mation has passed into protein, it cannot get out again.’ The current work has shown 
that once information has passed into protein sequence, at least, there is still much 
information which can be extracted from it.

Biological sequences contain a plethora of information about biological sys
tems. The content of this work has illustrated that the amino acid sequences of 
proteins provide sufficient information to predict many protein properties, includ
ing function. Many tools are available for protein function prediction based on 
sequence information. Each takes advantage of different types of sequence pat
terns and is appropriate for different prediction tasks. No single method excels at 
all tasks. It is crucial that those who intend to computationally analyze protein 
sequences select the best tool for the particular task of interest.

A protein function prediction tool for automated and high-throughput protein 
function prediction should be

•  accurate,

•  efficient,

•  flexible, and

•  transparent.

The properties of several methods have been examined with respect to these char
acteristics.

'Francis Crick passed away on July 28, 2004 — about a month before the submission of this 
work. As biological sequences are threaded through the machinery of life, so is his work threaded 
through the study of it.
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Alignment-based methods have been shown to be very accurate predictors for a 
wide range of tasks. Nearest neighbor prediction based on BLAST scores also pro
vides biological intuition for the prediction function based on alignments. BLAST 
is very efficient compared to earlier algorithms, but still requires significant com
putational resources. One of the key problems with alignment-based methods is 
the inability to predict when similar sequences cannot be found (low coverage). 
Proteome Analyst improves on the BLAST nearest neighbor predictor by utilizing 
machine learning and the information from well-annotated protein databases. Al
though the interpretability of the prediction is also excellent due to an explanation 
facility, the time requirements of the method are not improved. The problem of 
coverage is reduced, but not removed.

Hidden Markov models are very accurate predictors of conserved protein fam
ilies. When a multiple sequence alignment and corresponding model can be made 
for a protein family, HMMs perform better than sequence alignments or PST s. They 
do not appear to be able to represent well a protein class composed of several het
erogeneous subclasses. The training time requirements for large classes can be pro
hibitively expensive. The prediction time for a single protein family is better than 
for using nearest-neighbor sequence alignment. HMM predictions, although not as 
simple to understand as alignments, can give also some intuition about matches to 
the conserved pattern in the sequence family.

Pattern databases, some of which include HMMs, are useful for a variety of 
tasks. They are very useful when the desired protein class has been studied previ
ously and a corresponding pattern is found in the database. Even when the particular 
group of proteins is not identified by a particular pattern in the databases, combina
tions of other patterns may be used effectively in concert with a machine learning 
classifier. The time required to match against these databases exceeds both the time 
required to match a single HMM and the time required to find the most similar 
sequences by alignment.

Probabilistic suffix trees show some promise as more efficient and flexible al
ternatives to HMMs. They can be used to predict much more efficiently than any 
previous method. They are an alignment free method and have much lesser train
ing time requirements. The coverage problems seen with alignments do not affect 
PSTs but the predictions of PSTs are not as reliable as alignments where similar 
sequences can be found. They approach the accuracy of HMMs for some protein 
families but not all. They can, however, be used for larger protein classes for which 
HMMs cannot. PSTs are conceptually more simple than HMMs and the results of 
their predictions, although very similar to the predictions of HMMs, may be eas
ier to interpret. The current work introduced an efficient implementation of PSTs 
that can be trained in linear time with respect to the total length of the training se
quences. The training time is more than one hundred times faster than the previous 
implementations (bPSTs). The prediction time for ePSTs is linear with respect to
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the length of the test sequence. This can lead to much faster prediction times than 
bPSTs. In practice, however, the expense of the improved backoff smoothing calcu
lation and the slightly larger memory footprint due to less aggressive pruning may 
lead to a situation in which a short bPST may still be found to be faster than ePSTs.

Overall, PSTs show promise for high-throughput and automatic protein function 
prediction. Although alignment-based methods and HMMs still give the best clas
sification performance for most conditions, there are circumstances under which 
neither BLAST nor HMMs can be easily applied. PSTs will greatly enhance per
formance in these cases.

6.2 Future Work
The current work points to a variety of future work which may be done in protein 
function prediction. Future work includes further experimentation with current PST 
implementations, improvement to PST implementations, and development of new 
methods which may be able to take advantage of some lessons learned from PSTs.

6.2.1 Experimentation with PSTs
PSTs have been show to approximate the performance of HMMs for many classes, 
but have not been investigated as thoroughly as HMMs for protein function predic
tion. Further investigations into selection of pruning and smoothing criteria may 
improve classification performance. It will be particularly important that the selec
tion of better performing criteria be automated in some way so that non-expert users 
may still find PSTs useful. More sophisticated pruning might also make better use 
of the bias-variance tradeoff.

We have seen that PSTs may be used for reasonable classification performance 
on both large and small protein classes. This leads naturally to applications in 
hierarchical classification where both large and small classes must be classified. 
Combinations of PSTs that represent protein classes and subclasses may also be 
very useful in concert. Because of their efficiency they are well suited to classifi
cation of large databases of protein sequences with numerous classes. Future work 
may focus especially on Gene Ontology prediction for newly sequenced proteins 
-  especially those that have no good sequence alignments against current protein 
databases. Groups of PSTs may also be useful for many other non-hierarchical 
classification tasks.

A PST database would be useful for classes of proteins that are well represented 
by PST models. Such a database would allow very efficient scanning and prediction 
of established protein classes.

Because of the very efficient training and prediction capabilities of PSTs, they
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may be useful as heuristic filters for other techniques such as HMMs. This would 
be analogous to the manner in which BLAST alignments are started from promis
ing seeds that are heuristically and efficiently selected and then investigated with 
more computationally expensive and accurate calculations. Such a tool might be 
particularly useful for accelerating searches of HMM databases such as Pfam.

Because of their flexibility and efficiency, PSTs may be included as tools for 
integrated methods such as Proteome Analyst and InterProScan without greatly af
fecting the time requirements of these systems. When PSTs are used in conjunction 
with other methods such as HMMs and BLAST, the other methods will be expected 
to dominate the computational time.

PSTs may also have further application to other sequence analysis tasks such as 
processing of natural language texts.

6.2.2 Improvements to PSTs
The PST model has been shown in this context as a generative model. Work is in 
progress with regard to representing both positive and negative training data in a 
single ePST. The tree would then be pruned and smoothed to select the parameters 
which best aid in discriminating between the classes. The work of using PSTs 
as discriminative models could also be extended to multi-class problems. Some 
preliminary work has begun on this topic with VMMs[85],

In this work we examined some improvements on pruning, smoothing, and 
backoff. It is apparent from the results that pruning and smoothing can have a 
significant effect on classification performance and it is possible that other ideas 
from other Markov chains such as deleted interpolation be done more efficiently 
with PSTs. Some parameter selection using EM or Gibbs sampling might also be 
of interest.

It was also seen that the calculation of the backoff smoothing value a  was quite 
expensive in ePSTs. A simpler approximation to this value which could be cached 
in the tree at build time would improve the prediction speed of the ePST algorithms.

This work has shown that a smaller memory footprint of the PST drastically 
increases performance. A decrease in the memory footprint of the ePST application 
may yield practical performance benefits.

The question of introducing more flexibility into the PST model is also open. 
Allowing mismatches has been examined to some degree[37] but further investiga
tion is warranted.

The local predictions of Sun and Deogun[89] were not fully examined in this 
work. It is likely that those ideas be implemented and improved upon in ePSTs. 
The incorporation of bidirectional prediction may improve local PST prediction of 
pattern occurrences as well.

Probabilistic suffix trees do not currently have a good visualization which allows
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users to have some global representation of the protein family represented by the 
tree. It might be particularly useful to visually present and highlight portions of the 
tree where predictions either depart widely from their expected values or contribute 
highly to a given classification.

6.2.3 New Methods Related to PSTs
String kernels for classification are a promising area of research for protein function. 
They provide a discriminative model which may be used directly on sequences. 
Because of the rich sequence information which can be calculated efficiently with 
suffix trees, they are a natural fit for string kernel development[57J. The basic 
suffix tree implementation developed here can be used to test various string kernel 
architectures. The principles developed with PSTs and discriminative VMMs may 
also be useful in this domain. There may be an opportunity for developing a kernel 
similar to the Fisher kernel for HMMs[47],

As string kernels introduce the notion of similarity between sequences, suffix 
trees and PSTs may also be used to define a clustering model that may help automate 
the process of dealing with hierarchically related proteins.

6.3 Summary
This work has provided an in-depth analysis of the classification performance and 
time requirements of several techniques for protein function prediction. In addi
tion, an efficient implementation of a relatively new pattern model, probabilistic 
suffix trees, was introduced. The tradeoffs between speed and accuracy were exam
ined, as well as the circumstances for which each function prediction technique is 
best suited. Automatic and high-throughput protein function prediction is a task for 
which many tools are needed. A knowledge of the appropriate tool for each classi
fication task is essential to success in computational analysis of proteins. Through 
better use of these sequence analysis tools we will be better able to take advantage 
of the large volume of available sequence information and organize it into profitable 
knowledge about living systems.

This work has demonstrated the effectiveness of current techniques for various 
high-throughput protein function prediction tasks based on sequence information. 
It has also shown that probabilistic suffix trees offer a method of greatly increasing 
the efficiency of these predictions.
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Table A .l: Results for K + Channels, Majority Classifier

5-fold cross-validation results.

Protein Class Results Performance

K v l
T P 0 FN 24 Precision Recall Accuracy

FP 0 TN 53 - 0.000 0.688

Kv2
T P 0 FN 17 Precision Recall A ccuracy

FP 0 TN 60 - 0.000 0.779

Kv3
T P 0 FN 17 Precision Recall A ccuracy

FP 0 TN 60 - 0.000 0.779

K v4
TP 0 FN 19 Precision Recall A ccuracy

FP 0 T N 58 - 0.000 0.753

O V E R A L L
T P 0 FN 77 Precision Recall A ccuracy

FP 0 TN 231 - 0.000 0.750

Table A.2: Results for Gram- Subcell, Majority Classifier 

5-fold cross-validation results.

Protein Class Results Performance

c y to p la s m
t p  2487 FN 0 Precision

0.628

Recall

1.000
Accuracy

0.628f p  1473 TN 0

e x tra c e l lu la r
TP 0 FN 204 Precision Recall

0.000
Accuracy

0.948FP 0 t n  3756

in n e r  m e m b ra n e
TP 0 f n  606 Precision Recall

0.000
A ccuracy

0.847FP 0 t n  3354

o u te r  m e m b ra n e
TP 0 f n  288 Precision Recall

0.000
A ccuracy

0.927FP 0 t n  3672

p e r ip la s m
TP 0 FN 429 Precision Recall

0.000
Accuracy

0.892FP 0 t n  3531

O V E R A L L
t p  2487 f n  1527 Precision

0.628

Recall

0.620

A ccuracy

0.848fp  1473 t n  14313
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Table A.3: Results for GO with SwissProt 1/4, Majority Classifier 

5-fold cross-validation results.

Protein Class Results Performance

binding (0005488)
T P 0 FN 12947 Precision Recall Accuracy

FP 0 TN 12965 - 0.000 0.500

cataly tic  activity  (0003824)
TP 15379 FN 0 Precision Recall A ccuracy

FP 10533 TN  0 0.594 1.000 0.594

hydrolase activ ity  (0016787)
T P 0 FN 4347 Precision Recall A ccuracy

FP 0 TN 21565 - 0.000 0.832

lyase activ ity  (0016829)
T P 0 FN 1444 Precision Recall Accuracy

FP 0 TN 24468 _ 0.000 0.944

m etal ion  b inding (0046872)
T P 0 FN 2527 Precision Recall A ccuracy

FP 0 TN 23385 - 0.000 0.902

nucleic acid  b inding  (0003676)
T P 0 FN 5335 Precision Recall A ccuracy

FP 0 TN 20577 - 0.000 0.794

nucleotide b inding  (0000166)
TP 0 FN 4054 Precision Recall Accuracy

FP 0 TN 21858 - 0.000 0.844

oxidoreductase  activ ity  (0016491)
T P 0 FN 2732 Precision Recall Accuracy

FP 0 TN 23180 - 0.000 0.895

signal transducer activ ity  (0004871)
T P 0 FN 2028 Precision Recall A ccuracy

FP 0 TN 23884 - 0.000 0.922

structural m olecu le  activ ity  (0005198)
T P 0 FN 1986 Precision Recall Accuracy

FP 0 TN 23926 - 0.000 0.923

transferase  activity  (0016740)
T P 0 FN 4488 Precision Recall Accuracy

FP 0 TN 21424 - 0.000 0.827

transporter activity  (0005215)
T P 0 FN 3604 Precision Recall Accuracy

FP 0 TN 22308 - 0.000 0.861

O V E R A L L
TP 15379 FN 45492 Precision Recall Accuracy

FP 10533 t n  239540 0.594 0.253 0.820
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Table A.4: Results for K + Channels, BLAST Nearest-Neighbor

5-fold  cross-validation results. A  BLA ST E-value threshold o f 10 was used. Coverage is 1.0.

Protein Class Results Performance

K v l
TP 24 FN 0 Precision Recall Accuracy

FP 0 TN 53 1.000 1.000 1.000

Kv2
TP 17 FN 0 Precision Recall Accuracy

FP 0 TN 60 1.000 1.000 1.000

Kv3
T P 17 FN 0 Precision Recall A ccuracy

FP 0 TN 60 1.000 1.000 1.000

K v4
TP 19 FN 0 Precision Recall Accuracy

FP 0 TN 58 1.000 1.000 1.000

O V E R A L L
TP 60 FN 0 Precision Recall A ccuracy

FP 0 TN 231 1.000 1.000 1.000

Table A.5: Results for Gram- Subcell, BLAST Nearest Neighbor 

5-fold cross-validation results. A BLAST E-value threshold of 10 was used. Coverage is 0.996.

Protein Class Results Performance

cytoplasm
TP 2397 FN 86 NPP 4 Precision Recall Accuracy

FP 146 TN 1317 NPN 10 0.943 0.964 0.938

ex tracellu lar
T P 153 FN 48 NPP 3 Precision Recall A ccuracy

FP 31 TN 3714 NPN 11 0.832 0.750 0.977

in n er m em brane
TP 506 FN 94 NPP 6 Precision Recall A ccuracy

FP 29 TN 3317 NPN 8 0.946 0.835 0.965

o u te r m em brane
T P 255 FN 32 NPP 1 Precision Recall Accuracy

FP 23 TN 3636 NPN 13 0.917 0.885 0.983

perip lasm
T P 303 FN 124 NPP 2 Precision Recall Accuracy

FP 39 TN 3480 NPN 12 0.886 0.706 0.955

O V E R A L L
TP 3614 FN 3 8 4 NPP 16 Precision Recall Accuracy

FP 268 TN 15464 NPN 54 0.931 0.900 0.964
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Table A.6: Results for GO with SwissProt 1/4, BLAST Nearest-Neighbor

5-fold cross-validation results. A  BLAST E-value threshold of 10 was used. The following results 
were obtained by 1-nearest-neighbor classification on selected Gene Ontology categories over a 
random selection of 25912 sequences from the SwissProt database. 2- and 3-nearest-neighbor 
classifications gave nearly identical results. Coverage is 0.992.

Protein Class Results
T P FN NPP

FP TN NPN

binding (0005488)
12227 612 108 Precision Recall Accuracy

1016 11862 87 0.923 0.944 0.930

cataly tic  activity  (0003824)
14960 357 62 Precision Recall Accuracy

669 9731 133 0.957 0.973 0.953

hydrolase activity  (0016787)
3940 387 20 Precision Recall Accuracy

328 21062 175 0.923 0.906 0.965

lyase activity  (0016829)
1334 107 3 Precision Recall Accuracy

60 24216 192 0.957 0.924 0.986

m etal ion binding  (0046872)
2173 340 14 Precision Recall Accuracy

332 22872 181 0.867 0.860 0.967

nucleic acid b inding (0003676)
4825 468 42 Precision Recall Accuracy

393 20031 153 0.925 0.904 0.959

nucleotide  binding  (0000166)
3945 104 5 Precision Recall Accuracy

402 21266 190 0.908 0.973 0.973

oxidoreductase  activity  (0016491)
2503 212 17 Precision Recall Accuracy

152 22850 178 0.943 0.916 0.978

signal transducer activity  (0004871)
1732 261 35 Precision Recall Accuracy

149 23575 160 0.921 0.854 0.977

structural m olecule  activity  (0005198)
1861 101 24 Precision Recall Accuracy

42 23713 171 0.978 0.937 0.987

transferase  activity (0016740)
4153 323 12 Precision Recall Accuracy

288 20953 183 0.935 0.925 0.969

transporter activity  (0005215)
3200 379 25 Precision Recall Accuracy

185 21953 170 0.945 0.888 0.971

O V E R A L L
56853 3651 367 Precision Rccal 1 Accuracy

4016 244084 1973 0.934 0.934 0.968
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Table A.7: Results for K + Channels, Proteome Analyst

Coverage is 1.000.

Protein Class Results Performance

K vl
T P 24 FN 0 Precision Recall Accuracy

FP 0 TN 53 1.000 1.000 1.000

Kv2
T P 17 FN 0 Precision Recall Accuracy

FP 0 TN 60 1.000 1.000 1.000

Kv3
T P 17 FN 0 Precision Recall Accuracy

FP 0 TN 60 1.000 1.000 1.000

Kv4
T P 19 FN 0 Precision Recall A ccuracy

FP 0 TN 58 1.000 1.000 1.000

O V ER A LL
T P 60 FN 0 Precision Recall A ccuracy

FP 0 T N 231 1.000 1.000 1.000

Table A.8: Results for Gram- Subcell, Proteome Analyst 

Coverage is 1.000.

Protein Class Results Performance

cytoplasm
TP 2436 FN 51 Precision Recall A ccuracy

FP 3 TN 1470 0.999 0.979 0.986

extracellu lar
TP 198 FN 6 Precision Recall Accuracy

FP 7 0 TN 3686 0.739 0.971 0.981

inner m em brane
T P 593 FN 13 Precision Recall Accuracy

FP 29 TN 3325 0.953 0.979 0.989

outer m em brane
TP 281 FN 7 Precision Recall Accuracy

FP 15 TN 3656 0.949 0.976 0.994

periplasm
T P 41 8 FN 11 Precision Recall A ccuracy

FP 48 TN 3483 0.897 0.974 0.985

O V ER A LL
T P 3926 FN 88 Precision Recall Accuracy

FP 165 TN 15621 0.960 0.978 0.987
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Table A.9: Results for GO with SwissProt 1/4, Proteome Analyst

The following results were obtained by Proteome Analyst on selected Gene Ontology categories 
over a random selection of 25912 sequences from the SwissProt database. Coverage is 0.994.

Protein Class Results
T P FN NPP

FP TN NPN

binding (0005488)
11962 903 82 Precision Recall A ccuracy

601 12299 65 0.952 0.924 0.936

catalytic activity  (0003824)
14927 393 20 Precision Recall A ccuracy

307 10138 127 0.980 0.973 0.967

hydrolase activity  (0016787)
4170 154 23 Precision Recall A ccuracy

582 20859 124 0.878 0.959 0.966

lyase activity  (0016829)
1398 41 5 Precision Recall A ccuracy

183 24143 142 0.884 0.968 0.986

m etal ion binding (0046872)
2343 174 10 Precision Recall A ccuracy

780 22468 137 0.750 0.927 0.958

nucleic acid b inding  (0003676)
5137 178 20 Precision Recall A ccuracy

693 19757 127 0.881 0.963 0.961

nucleotide binding (0000166)
3952 94 8 Precision Recall Accuracy

182 21537 139 0.956 0.975 0.984

oxidoreductase activ ity  (0016491)
2674 44 14 Precision Recall A ccuracy

394 22653 133 0.872 0.979 0.977

signal transducer activity  (0004871)
1883 107 38 Precision Recall Accuracy

525 23250 109 0.782 0.929 0.970

structural m olecule  activity  (0005198)
1902 65 19 P recision Recall A ccuracy

60 23738 128 0.969 0.958 0.990

transferase activ ity  (0016740)
4357 124 7 Precision Recall A ccuracy

251 21033 140 0.946 0.971 0.980

transporter activity  (0005215)
3 470 124 10 Precision Recall Accuracy

570 21601 137 0.859 0.963 0.968

O V ER A LL
58175 2401 295 Precision Recall A ccuracy

5128 243476 1469 0.919 0.956 0.970
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Table A. 10: Results for K + Channels, HMMer

Protein Class Results Performance

K v l
T P 23 FN 0 Precision Recall A ccuracy

FP 0 TN 4 9 1.000 1.000 1.000

Kv2
T P 14 FN 0 Precision Recall Accuracy

FP 0 TN 5 8 1.000 1.000 1.000

Kv3
T P 17 FN 0 Precision Recall Accuracy

FP 0 TN 41 1.000 1.000 1.000

K v4
T P 18 FN 0 Precision Recall Accuracy

FP 0 TN 54 1.000 1.000 1.000

O V E R A L L
T P 72 FN 0 Precision Recall Accuracy

FP 0 TN 202 1.000 1.000 1.000
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Table A .ll: Results for Gram- Subcell, HMMer

Protein Class Results Performance

cytoplasm
TP 2057 FN 430 Precision Recall A ccuracy

FP 430 TN 1043 0.827 0.827 0.783

ex tracellu lar
T P 56 FN 148 Precision Recall Accuracy

FP 148 TN 3608 0.275 0.275 0.925

inner m em brane
T P 110 FN 496 Precision Recall Accuracy

FP 496 TN 2858 0.182 0.182 0.749

ou ter m em brane
TP 127 FN 161 Precision Recall Accuracy

FP 161 TN 3511 0.441 0.441 0.919

perip lasm
T P 27 FN 402 Precision Recall Accuracy

FP 402 TN 3129 0.063 0.063 0.797

O V E R A L L
T P 2377 FN 1637 Precision Recall Accuracy

FP 1637 TN 14149 0.592 0.592 0.835

Table A. 12: Results for K + Channels, Pfam and PROSITE with Naive Bayes 

Coverage is 100%. 20 PROSITE patterns. 379 Pfam families.

Protein Class Results Performance

K v l
T P 23 FN 0 Precision Recall Accuracy

FP 1 TN 53 0.960 1.000 0.987

Kv2
T P 17 FN 0 Precision Recall A ccuracy

FP 0 TN 60 1.000 1.000 1.000

Kv3
TP 17 FN 0 Precision Recall A ccuracy

FP 0 TN 60 1.000 1.000 1.000

K v4
TP 19 FN 0 Precision Recall A ccuracy

FP 0 TN 58 1.000 1.000 1.000

O V E R A L L
TP 76 FN 0 Precision Recall A ccuracy

FP 1 TN 231 0.987 1.000 0.997
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Table A. 13: Results for Gram- Subcell, Pfam and PROSITE with Naive Bayes 

Coverage is 97.2%. No predictions are done on proteins without pattern matches.

Protein Class Results Performance

c y to p la s m
TP 2284 FN 182 NPP 21 Precision Recall A ccuracy

FP 13 TN 1371 NPN 89 0.994 0.918 0.923

e x tra c e l lu la r
TP 77 FN 110 N PP 17 Precision Recall A ccuracy

FP 40 TN 3623 NPN 93 0.658 0.377 0.934

in n e r  m e m b ra n e
TP 450 FN 133 NPP 23 Precision Recall A ccuracy

FP 150 TN 3117 NPN 87 0.750 0.743 0.901

o u te r  m e m b ra n e
TP 144 FN 127 NPP 17 Precision Recall Accuracy

FP 71 TN 3508 NPN 93 0.670 0.500 0.922

p e r ip la s m
TP 230 FN 158 N PP 41 Precision Recall Accuracy

FP 85 TN 3377 NPN 69 0.730 0.536 0.911

O V E R A L L
T P 3185 FN 710 N PP 119 Precision Recall A ccuracy

FP 359 TN 14996 NPN 550 0.899 0.793 0.913
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Table A. 14: Results for GO with SwissProt 1/4, Pfam and PROSITE with Naive 
Bayes

Coverage is 96.1% for each class (although the positives and negatives not covered varies by class). 
Combined 5-fold cross-validation training and classification was about 240s per class. NOTE: 
these results need to be rerun with removal of the ones wich we can’t say anything about, find the 
numbers of positives and negatives left out.

Protein Class Results
T P FN NPP

Performance
FP TN NPN

binding (0005488)
11416 1068 463 Precision

0.957

Recall

0.882

Accuracy

0.900508 11910 547

cataly tic  activ ity  (0003824)
14609 302 468 Precision

0.963

Recall

0.950

Accuracy

0.928555 9436 542

hydrolase activity  (0016787)
3730 480 137 Precision

0.911

Recall

0.858

A ccuracy

0.928364 20328 873

lyase activ ity  (0016829)
952 467 25 Precision

0.782

Recall

0.659

A ccuracy

0.933266 23217 985

m etal ion binding (0046872)
1874 612 41 Precision

0.775

Recall

0.742

A ccuracy

0.916544 21872 969

nucleic acid b inding  (0003676)
4637 513 185 Precision

0.924

Recall

0.869

A ccuracy

0.927380 19372 825

nucleotide  binding (0000166)
3631 298 125 Precision

0.936

Recall

0.896

A ccuracy

0.940249 20724 885

oxidoreductase  activity (0016491)
2338 301 93 Precision

0.866

Recall

0.856

A ccuracy

0.935361 21902 917

signal transducer activity  (0004871)
1544 387 97 Precision

0.799

Recall

0.761

A ccuracy

0.931389 22582 913

structural m olecule activity (0005198)
1760 175 51 Precision

0.843

Recall

0.886

A ccuracy

0.942328 22639 959

transferase  activity  (0016740)
3890 440 158 Precision

0.906

Recall

0 .867

A ccuracy

0.928403 20169 852

transporter activity  (0005215)
3056 399 149 Precision

0.886

Recall

0 .848

A ccuracy

0.930392 21055 861

O V ER A LL
53437 5442 1992 Precision

0.919

Recall

0 .878

A ccuracy

0.9284739 235206 10128
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Table A. 15: Results for K + Channels, Pfam and PROSITE with SVM

Coverage is 100%. 20  PROSITE patterns. 379  Pfam fam ilies.

Protein Class Results Performance

K vI
T P 23 FN 0 Precision Recall Accuracy

FP 1 TN 53 0.958 1.000 0.987

Kv2
T P 15 FN 2 Precision Recall Accuracy

FP 0 TN 60 1.000 0.882 0.974

Kv3
T P 17 FN 0 Precision Recall Accuracy

FP 0 TN 60 0.944 1.000 0.987

Kv4
T P 19 FN 0 Precision Recall A ccuracy

FP 0 TN 58 1.000 1.000 1.000

O V ER A LL
T P 7 4 FN 2 Precision Recall A ccuracy

F P  1 TN 231 0.987 0.974 0.990

Table A. 16: Results for Gram- Subcell, Pfam and PROSITE with SVM 

Coverage is 97.2%. No predictions are done on proteins without pattern matches.

Protein Class Results Performance

cytoplasm
T P 2297 FN 169 N PP 21 Precision Recall Accuracy

FP 29 TN 1355 NPN 89 0.988 0.924 0.922

extracellu lar
T P 143 FN 4 4 NPP 17 Precision Recall Accuracy

FP 16 TN 3647 NPN 93 0.899 0.701 0.957

inner m em brane
T P 481 FN 102 NPP 23 Precision Recall A ccuracy

FP 14 TN 3253 NPN 87 0.972 0.794 0.943

ou ter m em brane
T P 239 FN 32 NPP 17 Precision Recall A ccuracy

FP 9 TN 3570 NPN 93 0.964 0.830 0.962

periplasm
T P 311 FN 77 NPP 41 Precision Recall A ccuracy

FP 32 TN 3430 NPN 69 0.907 0.725 0.945

O V E R A L L
TP 3471 FN 424 NPP 119 Precision Recall Accuracy

FP 100 TN 15255 NPN 431 0.972 0.865 0.946
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Table A. 17: Results for GO with SwissProt 1/4, Pfam and PROSITE with SVM

Coverage is 96.1% for each class (although the positives and negatives not covered varies by class). 
Combined 5-fold cross-validation training and classification was about 240s per class. NOTE: 
these results need to be rerun with removal of the ones wich we can’t say anything about, find the 
numbers of positives and negatives left out.

Protein Class
T P FN NPP

FP TN NPN

binding (0005488)
11603 881 463 Precision Recall A ccuracy

465 11953 547 0.961 0.896 0.909

cataly tic activity  (0003824)
14658 253 468 Precision Recall Accuracy

587 9404 542 0.961 0.953 0.929

hydrolase activity  (0016787)
3871 339 137 Precision Recall A ccuracy

165 20527 873 0.959 0.890 0.942

lyase activity  (0016829)
1312 107 25 Precision Recall A ccuracy

48 23435 985 0.965 0.909 0.955

m etal ion  b inding  (0046872)
2046 440 41 Precision Recall Accuracy

215 22201 969 0.905 0.810 0.936

nucleic acid b inding  (0003676)
4763 387 185 Precision Recall A ccuracy

185 19567 825 0.963 0.893 0.939

nucleotide binding  (0000166)
3792 137 125 Precision Recall A ccuracy

74 20899 885 0.981 0.935 0.953

oxidoreductase  activity  (0016491)
2472 167 93 Precision Recall A ccuracy

108 22155 917 0.958 0.905 0.950

signal transducer activity  (0004871)
1682 249 97 Precision Recall A ccuracy

51 22920 913 0.971 0.829 0.949

structural m olecule activity  (0005198)
1856 79 51 Precision Recall A ccuracy

19 22948 959 0.990 0.935 0.957

transferase activity  (0016740)
4028 302 158 Precision Recall A ccuracy

122 20450 852 0.971 0.898 0.945

transporter activity  (0005215)
3135 320 149 Precision Recall A ccuracy

87 21360 861 0.973 0.870 0.945

O V ER A LL
55218 3661 1992 Precision Recall A ccuracy

2126 237819 10128 0.963 0.907 0.942
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Table A. 18: Results for K + Channels, bPST

Coverage is 100%. Compare with BLAST nearest-neighbor results in Table A.4. These results 
were obtained using Bejerano’s published parameters.

Protein Class Results Performance

K v l
T P 24 FN 0 Precision Recall A ccuracy

FP 0 TN 53 1.000 1.000 1.000

K v2
TP 17 FN 0 Precision Recall A ccuracy

FP 0 TN 60 1.000 1.000 1.000

Kv3
TP 17 FN 0 Precision Recall A ccuracy

FP 0 TN 45 1.000 1.000 1.000

K v4
T P 19 FN 0 Precision Recall Accuracy

FP 0 TN 58 1.000 1.000 1.000

O V E R A L L
T P 77 FN 0 Precision Recall A ccuracy

FP 0 TN 216 1.000 1.000 1.000
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Table A. 19: Results for Gram- Subcell, bPST

Protein Class Results Performance

cytoplasm
TP 2176 FN 311 Precision Recall Accuracy

FP 311 TN 1162 0.875 0.875 0.843

ex tracellu lar
T P 128 FN 76 Precision Recall Accuracy

FP 76 TN 3680 0.627 0.627 0.962

inner m em brane
T P 446 FN 160 Precision Recall Accuracy

FP 160 TN 3194 0.736 0.736 0.919

ou ter m em brane
T P 203 FN 85 Precision Recall A ccuracy

FP 85 TN 3587 0.705 0.705 0.957

perip lasm
T P 244 FN 185 Precision Recall Accuracy

FP 185 TN 3346 0.569 0.569 0.907

O V E R A L L
T P 3197 FN 817 Precision Recall Accuracy

FP 817 TN 14969 0.796 0.796 0.917
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Table A.20: Results for GO with SwissProt 1/4, bPST

Protein Class
T P FN NPP

Performancei \ v b U l l k ! )

FP TN NPN

binding (0005488)
8029 4918 Precision

0.620

Recall

0.620

A ccuracy

0.6204918 8047

cataly tic activ ity  (0003824)
10389 4990 Precision

0.676

Recall

0.676

Accuracy

0.6154990 5543

hydrolase activ ity  (0016787)
1461 2886 Precision

0.336

Recall

0.336

A ccuracy

0.7772886 18679

lyase activity  (0016829)
770 674 Precision

0.533

Recall

0.533

A ccuracy

0.948674 23794

m etal ion b inding (0046872)
992 1535 Precision

0.393

Recall

0.393

Accuracy

0.8821535 21850

nucleic acid  b inding (0003676)
2797 2538 Precision

0.524

Recall

0.524

Accuracy

0.8042538 18039

nucleotide b inding  (0000166)
2020 2034 Precision

0.498

Recall

0.498

Accuracy

0.8432034 19824

oxidoreductase  activity  (0016491)
1334 1398 Precision

0.488

R ecall

0.488

A ccuracy

0.8921398 21782

signal transducer activity  (0004871)
945 1083 Precision

0.466

R ecall

0.466

A ccuracy

0.9161083 22801

structural m olecu le  activity  (0005198)
1432 554 Precision

0.721

R ecall

0.721

A ccuracy

0.957554 23372

transferase  activity  (0016740)
1797 2691 Precision

0.400

R ecall

0.400

A ccuracy

0.7922691 18733

transporter activity  (0005215)
1843 1761 Precision

0.511

Recall

0.511

A ccuracy

0.8641761 20547

O V E R A L L
33809 27062 Precision

0.555

Recall

0.555

A ccuracy

0.82627062 223011
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Table A.21: Results for K + Channels, Global ePST at Isopoint

C overage is 100%.

Protein Class Results Performance

K vl
T P 24 FN 0 Precision Recall Accuracy

FP 0 TN 53 1.000 1.000 1.000

Kv2
T P 17 FN 0 Precision Recall Accuracy

FP 0 TN 60 1.000 1.000 1.000

Kv3
T P 17 FN 0 Precision Recall Accuracy

FP 0 TN 60 1.000 1.000 1.000

K v4
T P 19 FN 0 Precision Recall Accuracy

FP 0 TN 58 1.000 1.000 1.000

O V ER A LL
TP 77 FN 0 Precision Recall Accuracy

FP 0 TN 231 1.000 1.000 1.000

Table A.22: Results for Gram- Subcell, Global ePST at Isopoint

Coverage is 100%.

Protein Class Results Performance

cytoplasm
T P 2285 FN 202 Precision Recall A ccuracy

FP 202 TN 1271 0.919 0.919 0.898

extracellu lar
T P 138 FN 66 Precision Recall A ccuracy

FP 66 TN 3690 0.676 0.676 0.967

inner m em brane
T P 455 FN 151 Precision Recall A ccuracy

FP 151 TN 3203 0.751 0.751 0.924

ou ter m em brane
T P 227 FN 61 Precision Recall A ccuracy

FP 61 TN 3611 0.788 0.788 0.969

periplasm
T P 301 FN 128 Precision Recall Accuracy

FP 128 TN 3403 0.702 0.702 0.935

O V E R A L L
T P 3 406 FN 608 Precision Recall Accuracy

FP 608 TN 15178 0.849 0.849 0.939
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Table A.23: Results for GO with SwissProt 1/4, Global ePST at Isopoint

Coverage is 100%.

Protein Class Results
TP FN NPP

Performance
FP TN NPN

binding (0005488)
10384 2563 Precision

0.802

Recall

0.802

A ccuracy

0.8022563 10402

cataly tic  activity  (0003824)
12525 2854 Precision

0.814

Recall

0.814

A ccuracy

0.7802854 7679

hydrolase activity (0016787)
2917 1430 Precision

0.671

Recall

0.671

A ccuracy

0.8901430 20135

lyase activity  (0016829)
1107 337 Precision

0.767

Recall

0.767

A ccuracy

0.974337 24131

m etal ion binding  (0046872)
1740 787 Precision

0.689

Recall

0.689

A ccuracy

0.939787 22598

nucleic acid binding (0003676)
3913 1422 Precision

0.733

R ecall

0.733

A ccuracy

0.8901422 19155

nucleotide binding (0000166)
3141 913 Precision

0.775

Recall

0.775

A ccuracy

0.930913 20945

oxidoreductase activity  (0016491)
2109 623 Precision

0.772

Recall

0.772

A ccuracy

0.952623 22557

signal transducer activity  (0004871)
1402 626 Precision

0.691

Recall

0.691

A ccuracy

0.952626 23258

structural m olecule activ ity  (0005198)
1635 351 Precision

0.823

Recall

0.823

A ccuracy

0.973351 23575

transferase activity (0016740)
3210 1278 Precision

0.715

Recall

0.715

A ccuracy

0.9011278 20146

transporter activity  (0005215)
2476 1128 Precision

0.687

Recall

0.687

Accuracy

0.9131128 21180

O V ER A LL
46559 14312 Precision

0.765

Recall

0.765

Accuracy

0.90814312 235761
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Table A.24: Results for K + Channels, ePST at Isopoint

Coverage is 100%.

Protein Class Results Performance

K v l
TP 23 FN 1 Precision Recall Accuracy

FP  1 TN 52 0.958 0.958 0.974

Kv2
T P 16 FN 1 Precision Recall A ccuracy

FP  1 TN 59 0.941 0.941 0.974

Kv3
TP 16 FN 1 Precision Recall A ccuracy

FP 1 TN 59 0.941 0.941 0.974

K v4
T P 19 FN 0 Precision Recall A ccuracy

FP 0 TN 58 1.000 1.000 1.000

O V E R A L L
TP 74 FN 3 Precision Recall A ccuracy

FP 3 TN 228 0.961 0.961 0.981

Table A.25: Results for Gram- Subcell, ePST at Isopoint 

Coverage is 100%.

Protein Class Results Performance

cytoplasm
T P 2240 FN 247 Precision Recall A ccuracy

FP 247 TN 1226 0.901 0.901 0.875

extracellu lar
T P 136 FN 68 Precision Recall A ccuracy

FP 68 TN 3688 0.667 0.667 0.966

inner m em brane
T P 417 FN 189 Precision Recall A ccuracy

FP 189 TN 3165 0.688 0.688 0.905

ou ter m em brane
T P 226 FN 62 Precision Recall Accuracy

FP 62 TN 3610 0.785 0.785 0.969

periplasm
T P 276 FN 153 Precision Recall A ccuracy

FP 153 TN 3378 0.643 0.643 0.923

O V E R A L L
T P 3295 FN 719 Precision Recall Accuracy

FP 719 TN 15067 0.821 0.821 0.927
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Table A.26: Results for GO with SwissProt 1/4, ePST at Isopoint

Coverage is 100%.

Protein Class
T P FN NPP

Performance
FP TN NPN

binding (0005488)
10404 2543 Precision

0.804

Recall

0.804

Accuracy

0.8042543 10422

catalytic activ ity  (0003824)
12856 2523 Precision

0.836

Recall

0.836

Accuracy

0.8052523 8010

hydrolase activity  (0016787)
3118 1229 Precision

0.717

Recall

0.717

Accuracy

0.9051229 20336

lyase activity  (0016829)
1145 299 Precision

0.793

Recall

0.793

Accuracy

0.977299 24169

m etal ion b inding  (0046872)
1803 724 Precision

0.713

Recall

0.713

Accuracy

0.944724 22661

nucleic acid b ind ing  (0003676)
3929 1406 Precision

0.736

Recall

0.736

Accuracy

0.8911406 19171

nucleotide b inding  (0000166)
3413 641 Precision

0.842

Recall

0.842

A ccuracy

0.951641 21217

oxidoreductase activ ity  (0016491)
2153 579 Precision

0.78B

Recall

0.788

A ccuracy

0.955579 22601

signal transducer activ ity  (0004871)
1381 647 Precision

0.681

R ecall

0.681

A ccuracy

0.950647 23237

structural m olecu le  activ ity  (0005198)
1470 516 Precision

0.740

Recall

0.740

Accuracy

0.960516 23410

transferase activ ity  (0016740)
3374 1114 Precision

0.752

Recall

0.752

Accuracy

0.9141114 20310

transporter activ ity  (0005215)
2427 1177 Precision

0.673

Recall

0.673

A ccuracy

0.9091177 21131

O V ER A LL
47473 13398 Precision

0.780

Recall

0.780

Accuracy

0.91413398 236675
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Table A.27: Results for K + Channels, ePST at FMAX 40

Coverage is 100%. Compare with BLAST nearest-neighbor results in Table A.4.

Protein Class Results Performance

K vl
T P 2 4 FN 0 Precision Recall A ccuracy

FP 1 TN 52 0.960 1.000 0.987

Kv2
T P 17 FN 0 Precision Recall Accuracy

FP 1 TN 59 0.944 1.000 0.987

Kv3
TP 17 FN 0 Precision Recall A ccuracy

FP t TN 59 0.944 1.000 0.987

K v4
TP 19 FN 0 Precision Recall Accuracy

FP 0 TN 58 1.000 1.000 1.000

O V E R A L L
TP 77 FN 0 Precision Recall A ccuracy

FP 3 TN 228 0.963 1.000 0.990

Table A.28: Results for Gram- Subcell, Pfam and PROSITE with ePST FMAX 40

Coverage is 100%.

Protein Class Results Performance

cytoplasm
TP 2174 FN 313 Precision Recall Accuracy

FP 33 TN 1440 0.985 0.874 0.913

ex tracellu lar
TP 132 FN 72 Precision Recall A ccuracy

FP 10 TN 3746 0.930 0.647 0.979

in n er m em brane
T P 417 FN 189 Precision Recall Accuracy

FP 144 T N 3210 0.743 0.688 0.916

ou ter m em brane
T P 223 FN 65 Precision Recall Accuracy

FP 15 TN 3657 0.937 0.774 0.980

perip lasm
T P 255 FN 174 Precision Recall Accuracy

FP 15 TN 3516 0.944 0.594 0.952

O V E R A L L
TP 3201 FN 813 Precision Recall A ccuracy

FP 217 TN 15569 0.937 0.797 0.948
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Table A.29: Results for GO with SwissProt 1/4, ePST at FMAX 40 

Coverage is 100%. Compare with BLAST nearest-neighbor results in Table A.4.

Protein Class T P FN NPP

FP TN NPN

binding (0005488)
TP 9780 FN 3167 Precision Recall Accuracy

FP 1330 TN 11635 0.880 0.755 0.826

cataly tic  activ ity  (0003824)
T P 12581 FN 2798 Precision Recall Accuracy

FP 2015 TN 8518 0.862 0.818 0.814

hydrolase activ ity  (0016787)
T P 3008 FN 1339 Precision Recall A ccuracy

FP 821 TN 20744 0.786 0.692 0.917

lyase activ ity  (0016829)
T P 1097 FN 347 Precision Rccal 1 Accuracy

FP 169 TN 24299 0.867 0.760 0.980

m etal ion  binding  (0046872)
T P 1689 FN 838 Precision Recall Accuracy

FP 408 TN 22977 0.805 0.668 0.952

nucleic acid b inding  (0003676)
T P 3663 FN 1672 Precision R ecall Accuracy

FP 570 TN 20007 0.865 0.687 0.913

nucleotide binding  (0000166)
T P 3340 FN 714 Precision Recall Accuracy

FP 445 TN 21413 0.882 0.824 0.955

oxidoreductase  activity  (0016491)
T P 2040 FN 692 Precision Recall Accuracy

FP 174 TN 23006 0.921 0.747 0.967

signal transducer activ ity  (0004871)
T P 1301 FN 727 Precision Recall Accuracy

FP 386 TN 23498 0.771 0.642 0.957

structural m olecu le  activity  (0005198)
T P 1407 FN 579 Precision Recall A ccuracy

FP 272 TN 23654 0.838 0.708 0.967

transferase  activity  (0016740)
T P 3168 FN 1320 Precision Recall A ccuracy

FP 558 TN 20866 0.850 0.706 0.928

transporte r activity  (0005215)
T P 2232 FN 1372 Precision Recall A ccuracy

FP 408 TN 21900 0.845 0.619 0.931

O V E R A L L
T P 45306 FN 15565 Precision Recall Accuracy

FP 7556 TN 242517 0.857 0.744 0.926
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Table A.30: Results for GO with SwissProt 1/4, ePST without Smoothing

Coverage is 100%.

Protein Class
TP FN NPP

Performance
FT TN NPN

binding (0005488)
TP 10083 FN 2864 Precision Recall A ccuracy

FP 1666 TN 11299 0.858 0.779 0.825

cataly tic activity  (0003824)
T P 12562 FN 2817 Precision Recall A ccuracy

FP 1903 TN 8630 0.868 0.817 0.818

hydrolase activity  (0016787)
T P 3031 FN 1316 Precision Recall Accuracy

FP 850 TN 20715 0.781 0.697 0.916

lyase activ ity  (0016829)
T P 1124 FN 320 Precision Recall A ccuracy

FP 215 TN 24253 0.839 0.778 0.979

m etal ion binding  (0046872)
T P 1724 FN 803 Precision Recall A ccuracy

FP 479 TN 22906 0.783 0.682 0.951

nucleic acid  binding (0003676)
T P 3 794 FN 1541 Precision Recall Accuracy

FP 720 TN 19857 0.840 0.711 0.913

nucleotide binding  (0000166)
T P 3356 FN 698 Precision Recall Accuracy

FP 466 TN 21392 0.878 0.828 0.955

oxidoreductase  activity  (0016491)
T P 2067 FN 665 Precision Recall Accuracy

FP 226 TN 22954 0.901 0.757 0.966

signal transducer activity  (0004871)
T P 1279 FN 749 Precision Recall Accuracy

FP 352 TN 23532 0.784 0.631 0.958

structural m olecule activity  (0005198)
T P 1428 FN 558 Precision Recall Accuracy

FP 3 4 4 TN 23582 0.806 0.719 0.965

transferase activity  (0016740)
T P 3188 FN 1300 Precision Recall Accuracy

FP 560 TN 20864 0.851 0.710 0.928

transporter activity  (0005215)
T P 2226 FN 1378 Precision Recall Accuracy

FP 446 TN 21862 0.833 0.618 0.930

O V ER A LL
T P 45862 FN 15009 Precision Recall A ccuracy

FP 8227 TN 241846 0.848 0.753 0.925
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Table A.31: Comparison over pkinase Pfam Family

Protein Class Results Performance

H M M er
T P 374 FN 3 Precision Recall Accuracy Coverage

FP 3 TN 25532 0.992 0.992 1.000 1.000

bPST
T P 195 FN 182 Precision Recall Accuracy Coverage

FP 182 TN 25353 0.517 0.517 0.986 1.000

ePST  Global
T P 224 FN 153 Precision Recall Accuracy Coverage

FP 153 TN 25382 0.594 0.594 0.988 1.000

ePST  Local 40
T P 254 FN 123 Precision Recall Accuracy Coverage

FP 123 TN 25412 0.674 0.674 0.991 1.000

ePST  Local 200
T P 281 FN 96 Precision Recall Accuracy Coverage

FP 96 TN 25439 0.745 0.745 0.993 1.000

Table A.32: Comparison over metallothio Pfam Family

Protein Class Results Performance

H M M er
T P 39 FN 0 Precision Recall A ccuracy Coverage

FP 0 TN 25873 1.000 1.00 0 1.000 1.000

bPST
T P 38 FN 1 Precision Recall A ccuracy Coverage

FP  I TN 25872 0.974 0.974 1.000 1.000

ePST G lobal
T P 35 FN 4 Precision Recall Accuracy Coverage

FP 4 TN 25869 0.897 0.897 1.000 1.000

ePST Local 40
T P 35 FN 4 Precision Recall Accuracy Coverage

FP 4 TN 25869 0.897 0.897 1.000 1.000

171

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table A.33: Comparison of Mixed pkinase and metallothio Pfam Families

Protein Class Results Performance

H M M
T P 377 FN 39 Precision Recall Accuracy Coverage

FP 39 TN 25457 0.906 0.906 0.997 1.000

bPST
T P 230 FN 186 Precision Recall Accuracy Coverage

FP 186 TN 25310 0.553 0.553 0.986 1.000

ePST  G lobal
T P 270 FN 146 Precision Recall Accuracy Coverage

FP 146 TN 25350 0.649 0.649 0.989 1.000

ePST  Local 40
T P 302 FN 114 P recision Recall Accuracy Coverage

FP 114 TN 25382 0.726 0.726 0.991 1.000
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Supplementary Tables and Figures
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Figure B.l: Example Training Sequences - PSSM

> s e q u e n c e l
QIKDLLVSSSTDLDTTLVLRENVATLPAEKMKPAINDAFE
KWPATESFHVTILELKYFQESKPVMPQMMCNS
> s e q u e n c e 2
RRVKVYLPQMKIEEKYNLTSVLMALGMTDLFIPSANLTFI
ADMFTEETTERNSKISQAGSSAESLIGVIEDIKHSP
> s e q u e n c e 3
ISEEYISYGGEKKILAIQGALEKALRWASGESFIELSNHK
FDRMFINDFMTHEKLPAERSSAKFRRFT
> s e q u e n c e 4
AKLAEQAERYDDNLLSVAYKNVVGARRSSWRVISSIEQKT 
ERNEKKQQMGKEYREKIEAELQDICNDVLELLDKFINDMF 
THEKLPATRNSYLIPNRSQPESKVFYLKMKGDYFRYLSEV 
ASGDNKQTVSNSQQAYQEAFEISKKEMQPT 
> s e q u e n c e 5
MITILEKISAIESEMARTQKNKATSAHLGGGGTGEAGFEV
AKTGDARVGFVGFPSVGKSTLLSNLAGVMFIADANTHELR
PATN S Y S EVAAYE FTTLTTVPGCIKYKGAKIQLLDLPGII
EGAKDGKGRGRQVIAVARTC
> s e q u e n c e 6
QFINKNKTAETSPAHLERNGGGGTGEAGGVGFPSVGKSTL
SNLGVFNNDANHELRAERNSYSEAAYEFTTLTTVPGCIKY
KGAKIQLLDLPGIIEGAKDGKGRGRQVIAVART
> s e q u e n c e 3
ISEEYISYGGEKDINEKILAIQGALEKALRWASGESFIEL
SNHKFDRMDINDRKTHEKLSSAKFRRFT
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Figure B.2: Example Training Sequences - Markov Chain

> p o s i t i v e  1
KPFFINDAFTHEKWPATTERNSF 
> p o s i t i v e  2
LTFINDMFTHEEDPATTERNSK 
> p o s i t i v e  3
RMFINDRKTHEKLPATTERNSSA 
> p o s i t i v e  4
ELLDKFINDMKTHEKLPATTERNSYLIP 
> p o s i t i v e  5
LAGVFINDANTHELRPATTERNSYS 
> n e g a t i v e  1
HVTILELKYFQESKPVMPQMMCNSQIKDLLVSSSTDLDTT
LVLRENVATLPAEKM
> n e g a t i v e  2
RRVKVYLPQMKIEEKYNLTSVLMALGMTDLFIPSANISQA
GSSAESLIGVIEDIKHSP
> n e g a t i v e  3
ISEEYISYGGEKKILAIQGALEKALRWASGESFIELSNHK
FDKFRRFT
> n e g a t i v e  4
AKLAEQAERYDDNLLSVAYKNWGARRS SWRVISSIEQKT 
E RNE KKQQMGKE YRE KIEAELQDICNDVLNRSQPE SKVFY 
LKMKGDYFRYLSEVASGDNKQTVSNSQQAYQEAFEISKKE 
MQPT
> n e g a t i v e  5
MITILEKISAIESEMARTQKNKATSAHLGGGGTGEAGFEV 
AKTGDARVGFVGFPSVGKSTLLSNEVAAYEFTTLTTVPGC 
IKYKGAKIQLLDLPGIIEGAKDGKGRGRQVIAVARTC
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Table B.l: The 20 Amino Acids and Mappings to Smaller Alphabets.

From Murphy et a l [72, 45J. For the 10 letter alphabet the L, S, F, E, and K symbols indicate the 
large hydrophibic, polar, hydrophobic/aromatic sidechained, charged/polar, and long-chain 
positively charged amino acids respectively. For the 2 letter alphabet, P and E indicate the 
hydrophobic and hydrophilic amino acids respectively.

Amino Acid Code 10 Letter Alphabet 2 Letter Alphabet
Alanine A A P
Arginine R K E
Asparagine N E E
Aspartic acid (Aspartate) D E E
Cystine C C P
Glutamine Q E E
Glutamic acid (Glutamate) E E E
Glycine G G P
Histidine H H E
Isoleucine I L P
Leucine L L P
Lysine K K E
Methionine M L P
Phenylalanine F F P
Proline P P P
Serine S S P
Threonine T S P
Tryptophan W F P
Tyrosine Y F P
Valine V L P
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Figure B.3: Mapped Example Training Sequences

> p o s i t i v e  1
EAFFLEEAFAEEEFAAAAEEEAF 
> p o s i t i v e  2
LAFLEELFAEEEEAAAAEEEAE 
> p o s i t i v e  3
ELFLEEEEAEEELAAAAEEEAAA 
> p o s i t i v e  4
ELLEEFLEELEAEEELAAAAEEEAFLLA 
> p o s i t i v e  5
LAALFLEEAEAEELEAAAAEEEAFA 
> n e g a t i v e  1
ELALLELEFFEEAEALLAELLLEAELEELLLAAAAELEAA
LLLEEELAALAAEEL
> n e g a t i v e  2
EELELFLAELELEEEFELAALLLALALAELFLAAAELAEA 
AAAAEALLALLE E LE EAA 
> n e g a t i v e  3
LAEEFLAFAAEEELLALEAALEEALEFAAAEAFLELAEEE
FEEFEEFA
> n e g a t i v e  4
AELAEEAEEFEEELLALAFEELLAAEEAAFELLAALEEEA
EEEEEEEELAEEFEEELEAELEELLEELLEEAEAEAELFF
LELEAEFFEFLAELAAAEEEEALAEAEEAFEEAFELAEEE
LEAA
> n e g a t i v e  5
LLALLEELAALEAELAEAEEEEAAAAELAAAAAAEAAFEL
AEAAEAELAFLAFAALAEAALLAEELAAFEFAALAALAAL
LEFEAAELELLELAALLEAAEEAEAEAEELLALAEAL
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Figure B.4: Conversion of an ePST to a bPST
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Appendix C 

Backoff Smoothing

Assume the following definition of the smoothed conditional probabilities, we wish 
to obtain a definition of the parameter a.

C{Xi—k ■ ■ ■ Xj—iXj) d 
C ( X i - k  ■ ■ ■ x i - l )  +  ^ | £ |

if C (xi_fc . . . X i ) > 0

i —k • • • 1)
■Pa(xi\x i-1, . . .  jii-fc+i) otherwise

(C .l)

Since the conditional probabilities for all values of Xi must sum to 1, we can 
calculate A, the total amount discounted by the pseudocount d from the non-zero 
cases. We need a definition for a.

1 =  Y .  P s ( a \X i - k  ■ ■ ■ X i - l )
ae£

=  Y  Ps(a\xi-k . ■ . £j_i)
a € S ,C ( x ,_  a) > 0

+  Y  P 3( a \ X i - k ■ ■ ■ X i - i )
a6E,C(ij_fc...Xi_ia)=0

=  Y  Ps{a\xi-.k Xi-i) + A
aES,C(a:i_fc...Xi_ia)>0

(C.2)

(C.3)

(C.4)

We now see delta as the amount which has been discounted from the non-zero 
cases and donated to the zero cases.

A — 'y  ̂ Ps(̂ Q,\xi—k ■ ■ ■ (C.5)
a6E,C(xj_(;...Xi_ia)=0

=  y   ̂ oc{xi—k . . .  . . .  Xi—i ) (C.6)
a€'£,C(xi- k ...xi- i a )= 0
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(d|Xj—A:+1 • • • x i—l) (C.V)
a e S ,C (a : ,_ fc . . . i i_ ia )= 0

We can rearrange this to get a value for a.

A
a ( x i - k ■ ■ .E i-i) =  —----------------------------------------------------\ Ĉ '8^

L a e S , C ( x i _ f e . . . a ; j - i « ) = 0  -* s  W p i - f c + l  • • • x i-l)

This is expressed in terms of the zero counts. We can express the denominator 
in terms of the non-zero counts.

A
a ( x i - k . .. Xi-l) =  ---- —------------------------- ——j r (C.9)

AaeS,C(xi_fc...Xi_ia)>0 *s\a \x i—k+1 • • • x i—l)

We also know from above the A can be expressed in terms of non-zero counts.

A =  1 -  £  P3{a\xi-k • • ■ Xi-i)  (C.10)
a€E,C(Xi_k---Xi-ia)>0

We can replace this in the above equation to get a full definition of a.

1 -  £  Ps(a\xi„k .. .Xi-i)
/ \ (l£S,C(2)j—\z • • .3?̂ — 1 fl) ̂ 0 . i i \

OL{Xi-k---Xi-\) =  ------------------------------ 777-; 7 (C .ll)
1 /  . Ps\fl\x i—k+\ ■ ■ ■ x i—l)

a £ E , C ( x i - ) i . . . X i - i a . ) > 0

 ̂ • ■ • x i—Xx i) T  d

a e - Z , C { X i ^ . . X i - i a ) > 0  C ( x ^  • • • +  d l S l

1 -  E
C ( x i _ k+ 1 . . .  X i - i X i )  +  ( / C ‘ 1 2 ^
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