INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with smali overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

UMI

NOTE TO USERS

This reproduction is the best copy available.

University of Alberta

AN EFFICIENT SCHEME TO REMOVE CRAWLER TRAFFIC FROM THE
INTERNET

Xiaoqin Yuan @

A thesis submirtted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton. Alberta
Spring 2002

l*l National Library Bibliothéque nationale

of Canada du Canada
Ot ON K14 084 Outmn ON K1 04
Canada Canada
Your @9 Vore niddrence
Owr fis Nove siééeunce
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-69783-5

Canada

University of Alberta

Library Release Form

Name of Author: Xiaogin Yuan

Title of Thesis: An Efficient Scheme to Remove Crawler Traffic from the
Internet

Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private. scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis. and except as herein before provided. neither the
thesis nor any subsrantial portion thereof may be printed or otherwise re-
produced in any material form whatever without the author’s prior written
permission.

Liaopm Ypan
Xiaoqin p\'uan 0

Department of Computing Science
232 Athabasca Hall

University of Alberta

Edmonton. AB

Canada. T6G 2ES8

ob, 2uv?l
Date: /\/Lﬁpf

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certifv that they have read. and recommend to the Faculty
of Graduate Studies and Research for acceptance. a thesis entitled An Effi-
cient Scheme to Remove Crawler Traffic from the Internet submitted
by Niaoqin Yuan in partial fulfillment of the requirements for the degree of
Master of Science.

L b G

Dr. Mike H. MacGregor
Supervisor

Q A J‘/QVA P]

Dr. Janelle Harms
Co-Supervisor

Dr. Geral aubl
External Eyaminer

Date: {\/L;fclng 2002

Abstract

One of the first things that any I[nternet ‘neophyte’ learns is how to search
for information using search engines. Search engines tackle the daunting task
of categorizing myriads of documents on the Web by using web crawlers -
search agents’. This method. however. has been shown to place a significant
load on the Web servers as well as tax the underlying network infrastrucrure.
We address the aforementioned problem by introducing an efficient indexing
svstem based on active networks. Our approach employs strategically placed
active routers that constantly monitor passing Internet traffic. analyvze it. and
then transmit the index data o a dedicated back-end repository. Therefore.
our proposal obviates the need for Web crawlers and effectively eliminates
their adverse effect on Web servers and nerwork resources. Our simulations
have shown that our active indexing system is up to 30% more efficient than
current web crawler based techniques. It is also shown that. given a limited
network bandwidth. our svstem achieves a better throughput introduced by
human clients and clients get responses more quickly since more bandwidth is

made available to human requests.

Acknowledgements

First and foremost. [must thank my two supervisors: Dr. Mike H. MacGregor
and Dr. Janelle Harms. During the whole course of the project. Mike is always
there to provide suggestions when ['mi at a loss. and sometimes a kind reminder
when [need a motivation. Thanks. Mike. There is no way [can do enough
for whar vou have done to me. Similarly. the discussions with Janelle about
the simulation benefit me a lot. [trulv appreciate her going over myv thesis
several times and the invaluable suggestions. [would also like to thank Dr.
Gerald Haubl for being the external examiner.

Special thanks to my husband for the encouragement. the support and the
company of so many nights on the other side of the cyvberspace.

Finally. I would like to thank my parents and sister for their support and

their long waiting for my return home.

Contents

()

Introduction

1.1 Problem Description

1.2 Overview of the Active Networks

1.3 Contributiono
1.3.1 Overview
1.3.2 Significance

Traditional Web with Crawlers

21 WebClients
21,1 Browser
212 Crawlers oo
213 Agents ..o L L L L e e
22 WebServers L
2.2.1 Steps in handling a client request
222 Server Architecture
23 HTTPmessages
231 HTTPrequests
232 HTTPresponses
2.3.3 Status Code Definitions
2.4 Pipelining on Persistent Connections
25 WebCaching
25.1 Cache Coherency,
2.6 The Application of Crawlers in Indexing
26.1 Crawlingthe Web
26.2 Indexing
2.7 Summary ... L. L L e e e e

Active Indexing

3.1 Introduction
3.2 The Load Imposed by Crawlers on Servers
33 OQurApproach
3.3.1 Introduction
3.3.2 Placement of activerouters

3.3.3 Architecture of Our Indexing System

3.3.4 Distributed inverted index organization

3355 Encodingo
3.3.6 Communication Mode between Gateways and the Backend
3.3.7 Gathering Statisticso

3.4 A Case Study of Network Programming Using PLAN
3.0 SUmMMAry e e e e e e e e e e e

4 Simulation Implementation
4.1 Introductiono
4.2 Simulation Methodologyo o000
4.2.1 Simulation Model
4.2.2 Transient Removal
4.2.3 Variance Estimation
4.3 Simulation Implementationo
4.3.1 Newwork topologyo oL
4.3.2 Newwork configuration00
1.3.3 Simulation Parameters
1.3.4 Performance Metrics
4.3.5 Routing in the simulation
4.4 Experimental results and analysis
4.3 Summary ... L. e e e e
5 Conclusions and Future Work
3.1 Conclusions
3.2 Future Worko o
Bibliography
A The Ocaml code that implements all the services:
B The Wrapper which maps service names to their correspond-
ing functions
C A PLAN packet that invokes service "saveDestHsh”

47

ot

(ST IRRSY BT ST BN
[I IV B S UL A

[or I I
— O

0

63

List of Tables

4.1

Different Steady State Points 33

Comparison among client throughput in 40% with-crawler. ¥%
active indexing and 0% active indexing case(T represents client
throughput) e e e e e o080

List of Figures

—
[—

19 1 19 19 19 19
’ 4
SO de W

[V V]

w

O W~ O Cdm O~

3.10
3.11

4.1
4.2
1.3
4.4
1.5
1.6
4.7
4.8
1.9
4.10
1.11

Active node architecture

Steps in a browser session L.
Breadth first search sequence
Depth first search sequence
Asample HTTP request
A sample HTTP response
Timeline of a pipelining on a persistent connection versus a
single request-response exchange on a short-lived connection

General search engine architecture
An inverted file built on a sample text

An example logentrv inalogfile
Crawler requests and Total requests per min.
Crawler bytes per sec. vs. total bvtes persec.
Crawler hit and byte percentages
Average response length vs. average crawler response length
high level architecture of the indexing system
Connectivity of the Web represented as a Graph (/23])
overview of indexing system
Mixed list storage encoding scheme vs. Full list encoding scheme
45
Fraction of pages with given average interval of change
Collect document frequency

Throughput against Time T,
Transit-Stub Study Network
Client throughput vs. timeline
different index receiving times for all 3% active indexing cases
different index receiving times for all 7% active indexing cases
Client Throughput in All Cases
Client Throughput in Active Indexing cases
Client Throughput in With-crawler Cases.
Crawler Throughput in With-crawler Cases
Average Client Request Delay in All Cases
Average Client Request Delay in Active Indexing Cases

46
49

56
60
66
67
67
69
vl
2
3

IE!

4.12 Average Client Request Delay in With-crawler Cases
4.13 Average Crawler Request Delayv vs. Total Crawler Request Ar-

rival Rate in With-crawler Cases
4.14 Average Crawler Request Delay vs. Total Request Arrival Rate
4.15 Completed Client Request Rate in All Cases

Chapter 1

Introduction

1.1 Problem Description

The Web has been growing at a remarkable pace since the introduction of
the first Web browser and server in 1991{15]. By the end of 1993 the Web
accounted for 14 of the traffic on the Internet. However. with the explosion
of the number of Web users and Web sites. the Web was already responsible
for around 73% of Internet traffic in terms of bytes by 1998/5]. Conserva-
tive estimates suggest that the number of Uniform Resource Locators (URLs)
available to the public has grown bevond a billion. This fact means that trving
to find some information among a billion pages is tantamount to looking for a
needle in a hayvstack. Search engines make it possible. given a set of strings. to
find individual pages on the Web while Portal sites can be used to find general
information about a topic at a coarser level of granularity.

Search engines gather pages from all over the world with the aid of crawlers.
Crawlers behind a search engine go out to retrieve Web pages periodically
no matter whether pages have been modified or not. Generally speaking. it
takes the crawlers of a search engine anywhere from 2 weeks to one month
to update its database of Web pages. However. studies show that a large
percentage of pages remain unchanged for more than 4 months. which implies
that an unchanged page could be fetched a few times by crawlers of the same
search engine. Currently there are more than one thousand search engines in
the world. Therefore. it is possible for a page to be retrieved a few thousand

times by crawlers within a short time period. Eventually. it is the underlying

network that takes the responsibility to deliver the retrieved Web pages from a
Web server to a crawler. Crawlers have the potential to swamp the network by
generating excess traffic on the Internet. This work proposes a novel network
architecture based on active networks. aimed to eliminate the traffic caused by
crawlers from the Internet and to build the indexing data that search engines

require at the same time.

1.2 Overview of the Active Networks

The ability to quickly create. deplov and manage new services in response to
user demands is the primary motivation behind active networking[6]. With
current networks. the introduction of new services is a challenging task and
involves considerable service-specific computation and switching. Active net-
working is a new framework in which the network is designed not only to
forward packets. but also to be dvnamically programmed in order to support
per-user services{7]. In active networks. users can supply both data and code
to the network. and the network transports data between end systems and
may execute user code. whereas in traditional networks. user programs exe-
cute only at the end systems and the network transports user data between
end systems.

An active network is composed of a set of connected nodes which may be
not all active nodes{8|. The functionaliry of an active node is divided into three
major components: the Node Operating Svstem (NodeQS). the Execution
Environment (EEs). and the Active Applications(AAs). The architecture of
an active node is illustrated in Figure 1.1. Each active node runs a NodeOS
and one or more EEs. The NodeOS is responsible for the allocation and
scheduling of the node’s resources such as link bandwidth. CPU cvcles and
storage. It hides from EEs the details of resource management and the effects
of the existence of other EEs. An EE exports a programming interface or
implenients a virtual machine that interprets active packets it receives. Thus.
an EE acts like a shell program in a general-purpose computing system. An AA

is a program which implements an end-to-end service using a combination of

Active

Application
Execution
Environmenis
Mgmt
gE P

Node OS

secunty
entoreemt
engine

— poticy OB

channels store

Figure 1.1: Active node architecture

packet forwarding and computation. It is the AA that implements customized

services for end-users.

1.3 Contribution

1.3.1 Overview

To relieve Web servers and the Internet of the excessive load placed by \Web
crawlers. we introduce an efficient indexing system based on active networks.
Our approach employs strategically placed active routers that constantly mon-
itor passing Internet traffic. analyvze it. and then transmit the resultant index
data to a dedicated back-end repositoryv. Therefore. our proposal obviates the
need for Web crawlers and effectively eliminates their adverse effect on Web
servers and the underlyving network infrastructure. In order to see how much
improvement is made by using our indexing scheme. We simulate two types of
networks: the traditional network with crawler traffic and the active network
without crawler traffic. but with the index data the active routers generate.

We compare the network performance of the two systems.

1.3.2 Significance

First of all. by removing the need for Web crawlers. our scheme effectively
removes the crawler tratfic from the Internet and at the same time. builds
the indexing information that search engines need in response to user queries.
Given a limited network bandwidth. more bandwidth is made available to a
-ariety of human clients and less congestion will happen. Therefore. the user-
perceived latency is reduced since the Web traffic is moved faster between
human visitors and Web servers. CPU cycles on the server side are also saved
so that the server is dedicated to processing human clients’ requests more
efficiently.

The Web resources gathered by our system tend to be more complete than
by crawlers. Currently. whether a Web page gets a chance to be fetched by
crawlers relies on the link structure of the Web. Due to the strategic locations
of gateway routers. all the Web pages get a chance to be captured by the
svstem regardless of its link relation to other pages. This issue is further
discussed in Section 3.3.1.

In addition to the backlink count and the inverse document frequency which
are common statistical metrics used in ranking a user query’s results. our
svstem also can gather document visiting frequency. the number of times per
unit time a page has been seen by its gateway. It gives us a dyvnamic behavior
of a Web page. This statistic. if used in combination with static statistics such

as backlink count. should make a user’s desired results ranked higher.

Chapter 2

Traditional Web with Crawlers

Web clients and Web servers are two major software components of the Welb.
This chapter begins with a discussion of three different Web clients: a browser
as the most popular form of a Web client. a spider which plays a kev role in
Web searching. and the less well known agent software{15]. Then we describe
the operations of Web servers: the steps taken by a server to handle a request
and three kinds of server architectures in use today: event-driven. process-
driven. and hybrid server architecture. A server and a client communicate
with each other using the Hypertext Transfer Protocol (HTTP). We will dis-
cuss two kinds of messages that HTTP carries: HTTP requests and HTTP
responses. The current version of the HTTP protocol is HTTP/1.1 evolving
from HTTP/1.0. There are many syutactic differences between HTTP/1.0
and HTTP/1.1 in terms of methods. headers and response codes. but we will
only address the pipelining on persistent connections. the improvement in
connection management introduced in HTTP/1.1. With the rapid increase of
traffic on the Web. Web caching was the first technique designed to reduce
user-perceived latency and reduce transmission of redundant traffic on the In-
ternet. \We describe the relevant header fields to maintain cache coherency in
Section 3. As stated earlier. crawlers play a kev part in searching. Section 6

discusses how crawlers are applied in indexing.

2.1 Web Clients

A Web client is a piece of software. [t constructs a properly formatted Web
request. establishes a connection and communicates with a Web server over a

reliable transport-level connection.

2.1.1 Browser

Among the three forms of a client. the browser is the closest form to the user of
the Internet. As a Web client. it constructs and sends an HTTP request. After
receiving the response. it parses and tailors its display according to the user’s
configurations. Figure 2.1 demonstrates the various steps taken by a tvpical
browser involved in a Web request{13]. In our example. we assume a user
enters the Uniform Resource Locator (URL) http://wunw.cnn.com/inder.htmnl

to the browser.

e The browser extracts the domain name www.cnn.com from the URL.

e The browser contacts one of the local DNS servers to convert www.cnn.com
into an [P address. DNS(Domain Name Syvstem) translates hostnames

into IP addresses and IP addresses into hostnames.

e After getting the destination IP address from the DNS server. the browser

makes a TCP connection to port 80 on the destination \Web server.

e The browser sends an HTTP request with the URL to the destination

server to obtain the response.

e The browser parses the response and may set up additional connections
to fetch embedded images if there are any. The additional connections

may be established in parallel.

Not all the above steps are necessary for all requests due to caching and
the implementation of persistent connections in HTTP/1.1. A cache is a local
store of messages used to reduce the user’s perceived latency in obtaining a

response from a server. In the browser. we have two common kinds of caching.

ONS server

1 DNS querry

_URL 2 TCP Connection

3 HTTP Request

4 HTTP Response

S Optional paraliei connections

Figure 2.1: Steps in a browser session

A cache can be either stored in a part of memory of the running process or
a part of the file svstem’s disk space dedicated to caching. In HTTP/1.0. a
separate TCP connection is established to fetch a single URL. If a Web page
contains inline images. multiple connections are required to send requests to
the server. which imposes extra load on both the server and the Internet. As
oppused to HTTP/1.0. in HTTP/1.1. unless indicated in a HEADER field of
the response from the server. the client assumes the server will maintain a
persistent connection. Thus substantial resources are saved on both routers
and hosts after the additional setups of the TCP connections are eliminated. In
Section 4 of this chapter. we will address pipelining on persistent connections.

an important feature in HTTP/1.1.

2.1.2 Crawlers

Crawlers are programs that follow links on Web sites to gather resources for
search engines. \We may see different names in the literature for crawlers such
as spiders. robots. wanderers. gatherers. Search engines have become one of
the most popular Web applications recently. The application of crawlers in
search engines is the primary motivation for the creation of the Web crawlers.
The resources the crawler gathers are used to generate indexing data. How

crawlers are applied in the indexing will be explored in further depth in Sec-

-

tion 6 of this chapter. Like any other Web client. crawlers construct an HTTP
request to access resources at a site and parse the responses. The primary
differences between a crawler and a browser are the dramatically higher num-
ber of sites contacted and requests sent and the absence of any display of the
responses. Also. in practice. depending on the application the crawler is used
for. only a portion of the resources might be fetched. Many crawlers ignore
image or multimedia resources if the resources obtained are used to construct

a searchable index of textual resources only.

How Crawlers Follow Links to Find Pages

e Breadth-First Crawling Breadth-first crawling obtains the starting
page of a site and examines all the embedded hypertext references in it.
For each of the references. it could fetch the corresponding page. All the
links on the starting page will be retrieved before going further away.
This is the most common way the crawlers follow links. Concurrent
threads can implemented so that one thread is used to access one Web
site and other threads go to other Web sites. Thus several pages are
processed in parallel and the load is distributed among several hosts.
Figure 2.2 shows the order of links to be followed when a breadth-first
crawler indexes a site. In the graph. a small circle indicates a link.
So if there are two circles in a rectangle. there are two links in the

corresponding page.

e Depth-First Crawling An alternative approach. depth-first crawling.
follows all the links from the first link on the starting page. then the
first link on the second page. and so on. Once it has indexed the first
link on each page. it indexes all the links on the last page. Then it
backbtracks to the second last page and indexes the second link on that
page. Backtracking happens when there is no deeper link to follow. It
follows all the links from the second link on the second last page. It
continues recursively until all the links following the first link on the

starting page have been indexed. [t then goes on to the second link and

9]
9]
C
(
{

Figure 2.2: Breadth first search sequence

~

.

[
v

Figure 2.3: Depth first search sequence

subsequent links of the first page. Figure 2.3 shows the sequence of the
links to be traversed when a depth-first crawler indexes a site.

Both breadth-first searching and depth-first-searching limit their depth
of searching to a fixed number to save space and to ensure most valuable
resources have been indexed. During the course of following links. if a
crawler runs into a link which has been indexed. it will not index it again

in order to avoid a loop.

Communicating with Crawlers

Some \Web sites do not want to be bothered by crawlers. although some sites
may benefit from indexing. However. it's difficult for a server to distinguish

between clients since everv request from a client is viewed as an independent

9

request. There are tyvpically two conventions that are followed by sites to have

some control over crawlers visiting them([12].

e Robots.txt The first convention is at a site level. The Web site admin-
istrator maintains a plain text file called robots.trt. It has the access rules
to be followed by a well-behaved crawler. This file is written according
to the Robot Exclusion Standard{16]. This file contains a list of directo-
ries which should not be followed by crawlers and specific crawlers which
should not visit the site. For example. consider the following robots. trt
file:

User-agent: ArchitertSpider. Lycos_Spider
Disallow: /cyi-bin/
Disallow: /Private/

The file indicates that crawlers ArchitertSpider and Lycos_Spider should
not visit the site for the purpose of indexing. Directories /cgi-bin and
/Private should not be traversed by crawlers. The Robot Exclusion
Standard are for well-behaved crawlers to follow. A server itself can not

enforce those restrictions.

¢ Robots META Tag The second convention is at a page level. via the
Robots META tag placed in the HTML <HEAD> section of a page.

Suppose there is a tag in the <HEAD> section:

<META NAME="ROBOTS” CONTENT="NOINDEX <NOFOLLOW ™ >>
Then the current page should not be indexed and none of the links in the
page should be followed. When parsing the HTML document. crawlers
should notice the META tag and check the CONTENT field to recognize
that thex are not supposed to index the current page or to follow any
link in the page. Again. this is not enforced by the server and is onlyv

abided by well-behaved crawlers.

10

2.1.3 Agents

Agents are programs that execute searches. assemble results and present them
to the user in a manner tailored to fit a user’s profile{15]. One popular appli-
cation of agents is a meta-search engine. \Meta-search engines and other search
agents implement basic capabilities of a Web client. They still send normal
HTTP requests like any other client except that the requests are onlyv queries
on behalf of one or more users and the requests are sent to a collection of
origin servers.

A meta-search engine sends a user-specified request on behalf of the user ro
several search engines. The results are either concatenated or grouped together
according to the user’s profile. The user can make decisions between various
ranking algorithms and capabilities of individual search engines. However.
meta-search engines have not achieved the popularity level of ordinary search
engines. Users tend to stick to the search engines thev are familiar with. rather
than sort different results from a few search engines. Furthermore. additional
load is imposed on the network in sending requests to several search engines.
Longer delayvs are also caused by the meta-search engine waiting for several
search engines to return results. A popular meta-search engine in use today
is metacrawler. which utilizes results generated by AltaVista. Ercite. Google.

Webcrawler. vtc.

2.2 Web Servers

A Web server is a program that handles HTTP requests. generates and trans-

mits responses back to clients.

2.2.1 Steps in handling a client request

A Web server usually proceeds through 3 steps to process a request from a

client:

e Convert the requested URL into a file name

First the server reads and parses the request headers to extract some

11

header fields such as the requested URL. request method. etc. Then the
server translates the URL into the corresponding file name if there is one
existing in its file svstem. Each server has a configurable base directoryv

where \Web files are located.

Determine whether the request is authorized

The server may limit some resources to certain users. To control access
to Web resources. the server has an access control list to enumerate
the users granted or denied access to the resources. After finding the
requested file. the server will check its access control list to determine if

the host name or [P address of the client is allowed the access to the file.

Generate and transmit a response

If the requested file is simply static content. the server invokes svstem
calls to get the file size and the last modification time to put in the
response header. together with the response status. the identity of the
server and current time. After constructing the response header. the
server transmits the header and the contents of the file to the requesting
client. For dvnamically generated responses. the requested URL corre-
sponds to a script rather than a document. Those URLs tvpically include
a =7 character or a string such as “cgi”. “cgi-bin”. or “cgibin”. If the
access permissions assigned to the script permit execution. the script is
executed at the server. The server relays input data such as environment
variables to the script. In processing the request. the script may contact
other servers or interact with its backend database. After the completion
of the script. the server receives output and may include some metadata
about the resource in the response header before forwarding the response
to the client. At some point before or after transmitting the response
message. the server may create a log entry in a log file. A response may

span several [P packets and would often fit in 10 packets.

12

2.2.2 Server Architecture

When a Web server handles multiple client requests at the same time. these
requests must share access to the processor. disk. memory. and network in-
terface at the server. In terms of allocating system resources among client

requests. there are three types of server architectures[15].

Event-driven server architecture

An event-driven server has a process that alternates between handling different
requests. The process periodically performs a small amount of work on behalf
of each request. The switch from one request to another happens while the
server waits for an operation to complete. Servicing different requests through
one process allows the server to serialize operations that operate on the same
data. which facilitates the sharing of data across different requests. However.
the server may take a long time to execute some scripts. This will cause large
delayvs for other requests. Also. alternating between requests requires all the
intermediary results for each request to be stored. which introduces complexity
into the server software design. As a result. most high-end Web servers do not

employ the event-driven model.

Process-driven server architecture

In a process-driven architecture. a separate process is devoted to each request
and each process performs all the necessaryv steps to handle a single request.
It depends on the underlying operating system to switch between the various
requests. Process-driven servers typically have a master process to listen for
new connections from clients. For each new connection. the master process
forks a separate process to handle the connection. After parsing the request
and transmitting the response. the process terminates. To reduce the overhead
of creating and terminating a process for each connection. the master process
creates an initial set of processes. Upon the arrival of a new connection. the
master process assigns an idle process to the connection. The server terminates

a process after it has handled a certain number of requests to protect the

13

svstem from the gradual consumption of more memoryv due to memory leaks
in the code. The currently popular Unix-based Apache 1.3.3 server follows the

process-driven model[20].
Hybrid server architecture

There are three approaches combining the strengths of the event-driven and
process-driven models. In the first approach. the process-driven model is gen-
eralized so that each process handles a small set of requests. Thus. each
process actually becomes an event-driven server that alternates between its
small set of requests. The second approach reduces the overhead of switch-
ing between processes in the first approach by using a single process that has
multiple threads. Each thread is a sequential flow of execution in the shared
address space of the containing process. The multi-threaded Web server as-
signs a thread to each request. The overhead of switching between threads is
lower than the overhead of switching between processes because threads share
a common address space. The third approach combines the salient features
of both event-driven and process-driven models. The event-driven approach
is well suited to handling requests that do not perform significant processing
or disk access. In this model. the hyvbrid server uses a main event-driven pro-
cess to handle the first stages of each request. If the request needs significant
computation or a disk access. the main process asks a separate helper process
to perform the time-consuming operations. The main process then transmits

the completed response to the client.

2.3 HTTP messages

An HTTP message is a sequence of octets that are sent over a transport
connection{13]. An HTTP message can be either a request sent from a client

o a server Or a response from a server to a client.

14

GET Andex.html HTTP/.1 ! Request line

Date: Wed, 17 Oct 2001 02:02:23 GMT General neagers
Pragma: No—-cache

From: abc@inventec.com : Request headers
User-Agent: Mozilia/4.03 1

<no entity body>

Figure 2.4: A sample HTTP request

2.3.1 HTTP requests

An HTTP request message. shown in Figure 2.4. has the following syntactic
form:

Request-Line

General/Request/Entity Header(s)

CRLF

Optional Message Body

A request message begins with a request line and is followed by a set
of optional headers. carriage return-linefeed pair (CRLF). and optional mes-
sage body. The request line consists of a request method. the URI (Uniform
Resource Identifier) being requested. and the protocol version of the client.
Optional headers include general headers. request headers and entity headers.
General headers can be found both in requests and responses. Request head-
ers only appear in requests and entity headers can be present in requests and
responses. In the Figure 2.4. the request method is GET. the request source
is /inder.html. and the client’s protocol is HTTP/1.1. General header Date
indicates the date and time of the message origination. and Pragma: No-cache

informs proxies in the path not to return a cached copy. Request header From

lets the user includes his/her e-mail address as an identification and User-
Agent is used to include information about the version of the browser software

and the client machine’s operating system. It has no message body.

Common Request Methods

The HTTP protocol defines a set of extensible request methods that are used
by a client to perform operations such as requesting. altering. creating. or
deleting a Web resource. A request method notifies a Web server what kind
of action should be performed on the resource identified by the Request-
URI(Uniform Resource [dentifier). A Request-URI is the URI specified in
the request line. A URI is a combination of a URL (Uniform Resource Loca-
tor) and a URN(Uniform Resource Name) and can be represented by either
or by both. A URN provides a globally unique identifier for a resource. which
may reside in one or more locations identified by URLs. For example a re-
source may be accessible by different protocols such as FTP. HTTP. There-
fore. multiple URLs indicate the same resource identified by a globally unique
URN. We may have a resource which can be accessed with either FTP URL
ftp://ftp.abc.com/a.html or HTTP URL http://www.abc.com/a.html.

Below are some common methods.

e GET

The GET method is the most widelv-used method todayv. It retrieves
whatever information is identified by the request-URI. The GET method
has no request body. It changes to a conditional GET if the request
includes an [f-Modified-Since. [f-Unmodified-Since. If-Match. If-None-
Match. or If-Range header. In that case. the entity will be transferred

only if the conditions in the header are met.

e HEAD

The HEAD method is used to fetch metadata about a resource. without
a message body being sent. The metadata returned is identical to the

information sent in response to a GET request. This method is usually

16

used to verifv the validity of cached data. If some new values in fields
such as Content-Length, Content-MD35, ETag or Last-Modified

are different from the old ones. it indicates that the cached data are stale.

e POST

The POST method is used to update an existing resource or provide in-
put to a process. It requests the origin server to accept the data enclosed
in the request body as a new subordinate of the resource identified by
request-URI in the Request-Line. Its major functions include posting
a message to a bulletin board. newsgroup. mailing list and providing a

block of data to a data-handling process.

e PUT

The PUT method is similar to POST in the sense that both of them
would result in a different version of the resource identified by the request-
URI The request-URI will be updated if there is one existing on the
server. Otherwise it will be created. The primary difference between the
POST and PUT is the different meanings of Request-URI. The Request-
URI in the POST method identifies the resource that will handle the
message body enclosed in the request. whereas the Request-URI in a

PUT request identifies the enclosed entity in the request.

e DELETE

The DELETE method is used to delete the resource identified by the
Request-URI 1n the request. This method provides a convenient way to

delete resources remotely-

2.3.2 HTTP responses

A response message adopts the following syntactic format:
Status-Line
Generul/Response/Entity Header(s)
CRLF
Optional Message Body

17

© HTTPN.1200 OK Status une

Oate: Wed, 17 Oct 2001 02:02:24 GMT . Ganerat neacar
| Server: Netscape-Enterprise/d.0 | Response neacer
. Content-Length: 25 Entty neacer

Weicome 10 My Homepage Ennty poay

Figure 2.53: A sample HTTP response

A response message starts with a status line. followed by optional General
and response headers. carriage return-linefeed pair (CRLF). and an optional
message body. Figure 2.5 shows the response message for a GET request.
The status line in the response indicates that the protocol the server supports
is HTTP/1.1 and the response code is 200 OK. which means that the re-
quest succeeded. The message also includes Date General header and Server

Response header. Content-Length indicates the length of the entity body.

2.3.3 Status Code Definitions

Each HTTP response message begins with the Status-Line. which include three
fields: the server’s protocol version number. the response code. and a natural
language reason phrase. The server groups various kinds of responses into 3
response classes. each of which has several response codes. Each response code

is a three-digit integer.
Success Class Responses

This class of status code informs the client that the request has been accepted.

understood or fulfilled.

e 200 OK: This response is returned if the request has succeeded. The

information returned is dependent on the request method. In the case

18

of a GET request. an entity corresponding to the requested resource is
sent to the client. If a HEAD method was used. only the metadata is

returned.

e 201 Created: This response status is returned if the request has been
successfully performed and a new resource was created as a result of a

POST method or a PUT method.

e 202 Accepted: The 201 Accepted is sent if the request has been
accepted and was vet to be completed. [ts purpose is to let user’s agent
continue its task without waiting for the process on the server to be

completed.

e 204 No Content: The server sends 204 No Content response if the
request has been fulfilled and no entitv-body is needed to send to the
client. For instance. if the user clicks on an inactive part of a imagemap
maintained on the origin server. there should be no change ro whart is
displayved to the user. The server then sends back a 204 No Content.

which the browser interprets as no change required.

Redirection Class Responses

This class of status code indicates that further actions need to be taken in

order to complete the request.

e 300 Multiple Choices: Unless a HEAD method was used. the 300
Multiple Choices response includes an entity containing multiple re-
source locations from which the client can make a choice. If a HEAD
method was used. no resource locations need to be included in the entity

since no response body is returned as a result of a HEAD request.

e 301 Moved Permanently: This response indicates that the requested
resource has been assigned a new URI. For a GET or HEAD request.
the user agent automatically redirects the request to the new site while
an explicit confirmation from the user is required for a POST request.

This response is cacheable by default.

19

e 302 Moved Temporarily: This response is returned if the requested
resource has been moved temporarily. The client should continue to use

the old URI. The response is not cacheable unless indicated otherwise.

e 304 Not Modified: This response is sent if the client has performed
a conditional GET and the resource has not changed since the last
modification time indicated in the request. No entitv-body is included

in the respounse.

Client Error Class Responses

This class of status code identifies the errors which are assumed to have been

made by the client.

e 400 Bad Request: This response informs the client that there are
svntactical errors in the request and hence it is not recognizable by the

server.

e 401 Unauthorized: The server returns this response to indicate lack of
authorization information or the invalidity of authorization information

if present in the request.

e 403 Forbidden: The server understood the request. but refuses to fulfill
it. The reason for the refusal may be included in the entitv-body if it
was not a HEAD request. If it was a HEAD request. no reason will be

included in the entitv-body.

e 404 Not Found: The response is returned if the server could not locate

anything matching the client’s Request-URI.
Server Error Class Responses

The server return this class of status code when it is aware of the errors in

itself or can not fulfill the client’s request.

e 500 Internal Server Error: The server encountered an internal error

which prevented it from performing the request.

20

e 501 Not Implemented: The server returns this response if it does
not support the functionality required to fulfill the request. This may

happen when the server does not implement the method in the request.

e 502 Bad Gateway: If a server. acting as a gateway or proxy. received
an invalid response from another server. it will send this response to the

client indicating it is not the source of the error.

e 503 Service Unavailable: A 503 Service Unavailable response is
used if the server is temporarily unable to handle the request due to an
overloading or maintenance of the server. But this is only a temporary

condition and the client may retry the request some time later.

2.4 Pipelining on Persistent Connections

Usually the transfer of HTTP messages depends on the Transmission Control
Protocol(TCP) as the underlying transport protocol. However. the setup of a
TCP connection involves a three-way handshake and the teardown of a con-
nection recuires a four-way handshake. A response of 10 packets follows the
connection setup overhead of 3 packets and is followed by connection teardown
overhead of 4 packets. Therefore. T out of the total 17 packets are overhead.
As the Web's popularity increases. more embedded images are included in \Web
pages. In HTTP/1.0. downloading both the text and images in a page requires
multiple TCP connections although some implementations of the protocol in-
clude a Connection: Keep-Alive request header to request the connection to
remain open after the current request. Multiple TCP connections would result
in considerable user-perceived latency and extra load on both the server and
the Internet. In HTTP/1.1. persistent connections are the default behavior
of any HTTP connection. An HTTP/1.1 server or client should assume that
the other HTTP/1.1 side intends to maintain a persistent connection unless a
Connection: close header was sent in the message. which is equivalent to the
inclusion of the header Connection: Keep-Alive in each HTTP/1.0 message.

A client supporting persistent connections may send several requests with-

21

out waiting for each response. This is called pipelining. The server must
send its responses in the order of the requests it received. A comparison of
pipelining of requests on a persistent connection and a single request-response
exchange on a short-lived connection is illustrated in Figure 2.6. In the exam-
ple of a pipelining on a persistent connection. the client sends HTTP request
1 following a three-way handshake. Before receiving the response for request
L. the client sends request 2. The server must handle the requests in the order
thev were received. However. in the second example in Figure 2.6. for every
request the client makes with the server. there are three packets required to
establish a connection and four packets to close the connection. From this
example. we can see that the round-trip delay for each response is substan-
tially reduced by use of pipelining on the persistent connection. Despite the
overhead of multiple connection setups and teardowns. many clients. proxies.
and servers on the Web are still using HTTP/1.0 and a significant portion of

the traffic on the Internet is in HTTP/1.0.

2.5 Web Caching

Web caching is the storage of response messages for later re-use at a point
closer to end users in order to reduce response time and network bandwidth

consumption; 13;. It is probably the most widely studied issue on the Web.

2.5.1 Cache Coherency

A cache may have to ensure a cached response is still fresh before returning
it to a requesting client. The origin server can only decide the freshness of
a cached response. A cached response is fresh only if it is identical to what
is stored on the origin server. otherwise. it is deemed stale. The HTTP/1.1

provides several useful headers for caches to maintain their coherency.

e Expiration time The expiration time of a cached response is assigned
by the origin server as the time after which the cache must revalidate
the response with the origin server before returning it as a response. If

the origin server does not explicitly set an expiration time. a cache may

22

SYN

S et \
e oo o "_"__,l_l]':l'l!. ----------- ! HTTP-respouise’Y ™
<vespotise T HTTP request? —— sesponse’ T
.............. (e -se.f_‘:: = __”__.,,,.tu'puuse{""
JI'FFPY&iﬁfn_;c:j- _resp mse > //m——‘
R Xtk

‘—/m-/ EIN
S
—Cck M

‘W/ " HTTPrequest2. ..
TR response’?
--oe response 2- -

. _—
Client Server v

Client Server

Figure 2.6: Timeline of a pipelining on a persistent connection versus a single
request-response exchange on a short-lived connection

23

assign a heuristic time to the cached response. The heuristic expiration
time could be based on the value of Last-Modified header associated
with the resource. Thus the cache can add a fix amount of time to the

Last-Modified value to get an expiration time.

e Last-Modified A cache can initiate a conditional GET request by putting
the value of Last-Modified header into If-Modified-Since header. If the
response has not been changed since then. the server will send back a
304 Not Modified response without a response body. If the last modified
time of the resource is newer than the one specified in the request. the

server will usually return 200 OK with a full response body.

e ETag Entity tags (ETag) were introduced in HTTP/1.1 and are primar-
ily used to compare a cached entity against a possible newer version. If a
resource has different versions. then each version should have a distinct
entity tag. An entity tag is alwavs associated with a specific resource
and will never be used to distinguish among different resources. Con-
sequently. for the same resource. if entity tags are identical. then the
versions of the resource are the same. Otherwise theyv are differnt ver-

sions of the resource.

2.6 The Application of Crawlers in Indexing

Nowadays. some users begin to surf the Internet through portal sites such as
Yahoo!. whereas many others use a search engine to start their browsing on
the Web. In a search engine. a user typically types in a set of keyv words. called
a query. and a list of pages containing kevwords will be returned to the user.
Those pages are usually ranked from the most relevant to the least.

Figure 2.7 presents a high level view of a general search engine architec-
ture. Each search either relies on its own crawlers or dedicated crawlers to
provide resources for its operation. The crawler module is first given a start-
ing set of URLs. and it retrieves their corresponding pages from the Web. The

crawlers then extract all the URLs appearing in the retrieved pages following

24

N .
Quenies © Kesults

Inciexes

i vage teedbhack

Figure 2.7: General search engine architecture

rthe breadth-first crawling to find URLs and pass them to the crawler control
module. This module determines which URLs to visit next. A page repository
holds the retrieved pages.

The inderer module extracts all the meaningful words from each page
and records the URL where each word occurs. The result is a huge “lookup
table” so that for each word there is a list of URLs where the word appears
(the text inder in Figure 2.7). The inderer module also creates a structure
indez. which reflects the links between pages and used to calculate each page’s
backlink count. The utility inder. created by the collection analyvsis module.
may provide pages of a given length or pages of a certain importance. The
query module is responsible for receiving and fulfilling search requests from
users while the ranking module to filters a significant number of irrelevant
pages out of the search results and sorts the results so that results near the

top are probably most relevant to user’s query.

25

2.6.1 Crawling the Web

Page Selection

Crawlers start off with an initial set of URLs called seed URLs. The pages
those URLs point to are of more general popularity. A search engine might
use the backlink count. the number of Web URLs that point to a page. to rank
user query results. The term backlink is used for links that point to a given
page. Thus a Web page P’s backlinks are the set of all the links on pages
other than P . which point to P. If the crawlers can not visit all pages. then
it is better to visit those with a high backlink count. since this will give the
end-user higher ranking results.

This type of “citation count”™ has been applied extensively to evaluate the
impact of published papers. Currently. PageRank used in the most popular
search engine Google. extends this idea by not counting links from all pages
PageRank

recursively defines the importance of a page to be the weighted sum of the

equally and by normalizing by the number of links on a page[14]

backlinks to it. PageRank is defined as below:

o Assume page A has pages T1...Tn pointing to it. Let C(A) be the number
of links going out of paged. The parameter d is a dummping factor which
can be set between 0 and 1. In this case. it is set to (.85. Then the

PuageRank of a page A is given by:
o PR(A) =1(1-d} + d(PR(T!1)/C(T!) + ... + PR(Tn)/C(Tn))

e The equations can be solved iteratively, starting with all PR values equal
to 1. At each step. the new PR(A) value is computed fromn the old PR(T:)
values until the values converge. The PageRanks form a probability dis-
tribution over web pages. so the sum of all web pages™ PageRanks will be

1.

Page Refresh Strategy

After crawlers have selected downloaded “important™ pages. thev have to pe-

riodically revisit those pages to keep the downloaded pages up-to-date. By

26

up-to-date or fresh. we mean the downloaded pages are identical to their coun-
terparts in real life. Two strategies have been proposed for crawlers to update

the pages:

e Uniform refresh policy: The crawler revisits all pages at the same

frequency. regardless of how often theyv change.

e Proportional refresh policy: The frequency at which the crawler re-
visits a page is proportional to the change rate of the page. For example.
if page PI changes 5 times more often than page P2. the crawler revisits

P11 5 times more often than P2.

Given limited crawler resources. i.e.. crawlers can only download a limited
number of pages wirhin a certain period. which one of these two strategies
give us higher “freshness™? We may have an instinct that if a page changes
more often. we should update that page more often to keep it up-to-date.
However. it has been proven in [2]. that with limited crawler resources. the
uniform policy will give us higher freshness then the proportional one for any
nutnber of pages. change frequencies. and refresh rate. If there are limited
crawler resources. pages that change too frequently should be penalized and

not visited very frequently.

2.6.2 Indexing

Among various indexing techniques. inverted files or inverted inderes have
traditionally been the index structure of choice on the Web. An inverted file{or
inverted index) is a word-oriented mechanism for indexing a text collection
in order to speed up the searching task. The text collection in our case is
a collection of Web pages. The inverted file structure is composed of two
elements: the vocabularv and the occurrences. The vocabulary is the set of
all different words in the collection. For each word. there is a list of positions
or locations where the word appears in the collection. The set of all those lists
is called occurrences or locations. An example of an inverted index built on a

sample text is shown in Figure 2.8. In our example. those positions only refer

1 6 911 1719 24 28 33 40 46 S0 55 60
This is a text. a text has many words. Words are made from letters.

Text File
Vocabulary Occurrences
letters 60 ...
made 50 ...
many 28 ...
text 11.19..
words 33.40...

Inverted File

Figure 2.8: An inverted file built on a sample text

to character positions in a file. For a whole collection of Web pages. a location
consists of a page identifier and the position of the word within the page.
Sometimes. positions of a word are not tracked and a location only includes
a page identifier (optionally followed by a count of the number of vccurrences
of that word in the page) in order to save space. Given an index term w. and
a corresponding location [the pair <w. [> is referred to as a posting for w-.
At a very high level. building an inverted index over a collection of Web pages
involves processing each page to extract postings. sorting the postings first on
index terms and then on locations. and finally flushing out the sorted postings
as an inverted index over the collection on disk.

The inderer in Figure 2.7 builds a text index and a structure(or link index).
Using these two indexes and the pages in the repository. the collection analysis

module builds some other useful indexes.

2.7 Summary

Among the three different forms of a Web client. a browser fetches and renders
resources on behalf of users. With the decentralization of the Web. there is no
central database of URLs and their associated contents. Crawlers help in gath-

ering pages to assist in searching. Agents execute searches. collate results. and

present them in a way tailored to fit a user’s profile. In processing a request.
a Web server associates the URL in the request with a specific file and decides
whether the request is authorized. The server may retrieve the requested file
from the disk or invoke a script to generate a response. Although some \Web
browsers and many Web servers have migrated to HTTP/1.1. HTTP/1.0 is
still in wide use today and a significant fraction of the Internet traffic is in
HTTP/1.0[15].

Chapter 3

Active Indexing

3.1 Introduction

[n this chapter. we first examine the load caused by crawlers on servers. Some
experiments were conducted on the logfiles of a department server to sub-
stantiate this. Crawlers are used to fetch Web resources to build indexing
information for search engines. We developed an efficient mechanism to re-
move the traffic generated by crawlers from the Internet and at the same time.
build the indexing data that search engines need. \We propose the use of the
active network on which active routers monitor the passing traffic and build
indexing data out of the traffic. Then this indexing data is delivered to a
dedicated repository via the Internet. After a high level view of our approach
is presented about how \Web pages are indexed. we explain the architecture of
our indexing system in detail. The details include how to process all kinds of
[P packets into HTTP messages. which in turn are parsed to generate inverted
files (indexing data). and how to send them to the repository. How to orga-
nize the distribution of the inverted files in the repositoryv is also described.
The gathering of useful global statistics is discussed. At last we illustrate a
case study of network programming in PLAN. a Packet Language for Active

Networks developed at University of Pennsyvlvania.

crawlé.googlebot.com - - [02/Jan/2002:00:00:34 -0700]
“GET /~yuan/courses/114/99fall/lectures/4syntax/tsldo4
7.htm HTTP/1.0" 304 - *-" “Googlebot/2.1 (+http://www.
googlebot.com/bot .html)*® =-*

Figure 3.1: An example log entry in a log file

Crawler requests per min. vs. Total requests per min.

imhmmwnn«m
B crawler raqueats per men

B

[

Crawler requests or Total requests per min
]
T

Figure 3.2: Crawler requests and Total requests per min.
3.2 The Load Imposed by Crawlers on Servers

Crawlers play an important role in Web searching, by providing the raw ma-
terial from which indexes can be built. However. crawlers. like Web browsers.
may use multiple connections to read data from the Web server. This can
overwhelm servers and force them to respond to crawler requests to the detri-
ment of human visitors[12]. Although some crawlers use multi-threads to open
connections with multiple servers simultaneously in order to put less load on
servers while Web pages are retrieved at a fast enough pace. crawlers still im-
pose considerable workload on Web servers. Some server administrators claim
that up to 50 percent of server hits are from crawlers.

To study the load of crawlers. several experiments were conducted using the

log files for the week from June 29. 2001 to July 3. 2001. for the Web server in

31

Crawier bytes per sec. vs. Total bytes per sec.

16000 -
. | =3 ot oytes per sac. |
. ! Bl crawier Dytes per sec
: '
14000~ -
o
2 :
@ +2000+ N
« :
=8
a .
<. 10000+
a :
=
S
= 8000+
<)
3
<. so000k
o
-
2
2 1000~
-
Q
200G~

Figure 3.3: Crawler byvtes per sec. vs. total byvtes per sec.

Crawier hit percentage vs. Crawier byte percentage

345 T
| 23 crawier vt percentage
@l crawier byte percaniage
oar 7o ~

Q15~

crawler hil or crawler byte percentage
o
v

o
B
P

Figure 3.4: Crawler hit and byte percentages

32

average response length vs. average crawier response length
" T i) TEZ average respores lengih !|
|

i

10000 -

PR VR WY DU

2000+
.

average reponse length or average crawler response lengih
v

o

Figure 3.3: Average response length vs. average crawler response length

the Computing Science Department at the University of Alberta. When pro-
cessing client requests. a \Web server generates a log entry in a log file. Each
log entry corresponds to an HTTP request processed by the server. including
information abourt the requesting client. the request time. and the request and
response messages. An example of a log entry is shown in Figure 3.1. The
first field “crawlf.googlebot.com™ identifies the client’s hostname. The server
has to perform a DNS lookup to convert the client’s [P address gained from
the socket associated with the HTTP request into a hostname. If the DNS
query fails. the server records the remote host’s IP address in this field. The
02/ Jan/2002:00:00:34 indicates the time when the server processed the re-
quest and the -0700 indicates that local time is seven hours behind Greenwich
Mean Time. The "GET / yuan/courses/114/99fall/lectures/4syntac/tsld047.htm
HTTP/1.0" indicates the request method. the Request-URI. and the client’s
protocol version included in the first line of the HTTP request header. The 304
corresponds to the response code included in the HTTP response header. In
this case since the response does not include an entity body (304 Vot Modified).
the content length field is "-". The "Googlebot/2.1 (+http://www.googlebot.com/bot.html)”
reports the value of the User-Agent request header corresponding to the name

and version number of the software responsible for the request.

33

In order to figure out whether a request was made by a Web crawler or a
human client. we utilized the remote host field. the first field in a log entry. We
gathered the names of Web crawlers available on the Web and built a database
of crawlers in the form of either hostname or IP address. Given an entrv in a
log file. if its remote host field can be found in the database. we determine the
request was initiated by a crawler. otherwise it is from a human visitor.

Figure 3.2 shows the number of requests per minute caused by crawlers and
the number of total requests per minute. Total requests include the requests
initiated by both a variety of clients and crawlers. The number of requests
from crawlers hits a maximum of 30 per minute with the average over the week
of around 16 per minute. whereas the average of total requests per minute is
50. Figure 3.3 demonstrates that the number of total bytes per second the
server transmitted in response to all kinds of requests and the number of the
bytes transmitted by the server in handling requests from crawlers. [t indicates
that the server sent an average of about 2500 bytes per second to crawlers.
Figure 3.4 illustrates the ratio of crawler hits to the total hits caused by both
human visitors and crawlers and the ratio of bytes fetched by crawlers to the
total bytes for the week. The average hit and byte percentages are 27.3% aud
20.9% respectively. The hit percentage has a maximum of 40.6%. The byte
percentage reaches 29.5%. and the byte percentage is always smaller than the
hit percentage. The reasons are explained in the next paragraph.

Figure 3.5 shows the comparison between the average respouse length (in
bits) and the average crawler response length. From the graph. we can clearly
see that the average response length caused by crawlers is alwavs less than
the overall average response length. There are two reasons for this. First.
crawlers only fetch standard HTML pages and ignore all other media and
document types. such as PDFs. images. and sounds. which are usually larger
than standard HTML pages. Secondly. crawlers from some services use the
HTTP HEAD command to get meta information about a page before actually
fetching it. In such a case. the crawler will only fetch pages that have been
changed.

Due to the incompleteness of our database of Web crawlers. there could

34

be logs on our server that were caused by crawlers. but were not recognized
as such. Also. the server of our department only hosts a subsidiary site
(www.cs.ualberta.ca) of a main site (www.ualberta.ca). Many more requests
by crawlers would go to the main site as crawlers usually start off with "im-
portant” URLs. The site www.ualberta.ca is obviously more “important™ than
www.cs. walberta.ca. Considering the above two factors. the real workload im-
posed by crawlers on servers would likely be more than what we measured on

our server.

3.3 Owur Approach
3.3.1 Introduction

The load imposed on Web servers will also finally be put on the network since
it is the underlving network that is responsible for transmitting responses
generated by servers to clients. In this chapter. we propose the use of a novel
network architecture - an active network - to remove the need for crawler traffic
from the Internet. and incidentally from the Web servers themselves. In an
active network. the routers or switches of the network can perform customized
computations on the messages flowing through them. These networks are
active in the sense that nodes can perferin computations on. and modifv the
contents of. the packets flowing through them([17]. In rraditional networks.
user programs execute only at the end svstems and the network passively
transports user data between these end svstems. In active networks. users can
supply both data and code to the network. and the network mayv execute user
code on one or more intermediate nodes while transporting packets between
endpoints.

Our proposal is to install a packet monitor and indexer on active routers.
These modules would be distributed to the routers using the capabilities of the
active network. Once installed. the monitor looks for all Web pages passing by.
The indexer then processes those Web pages out of a bunch of ip packets to
produce an inverted index. The inverted index is compressed. using an efficient

storage scheme such as the mixed-list scheme. The compressed inverted index

35

——— e | I —
-— Somtor -—— Momitor -—— Monitor .
L e—— ~—— ! L ——— !
' ' : H . T .
ety S T S QU B SR

~——H N— b~
Inverted ilaverted i i imverted
. Files ¢ ! Files Files |
N— — b SN—

[—_— [
\ctive Router Active Router Active Router

ATl the inverted Hles v Active Rewters will bbe
7 ent s the backemd repmitiry irvugh the INTERNET :

Bachend reponitney

Figure 3.6: high level architecture of the indexing syvstem

is then transferred to a dedicated backend repository via the Internet and
merged there with inverted indices from other routers. We present a high
level architecture of the indexing svstem in Figure 3.6. This approach would
generate traffic from the active routers to the repository in the form of indexing
information for pages fetched by normal clients.

There are some issues with the current implementation of crawlers. Follow-
ing analysis in {23]. the Web. represented as a graph. can be divided into five
main components: a central strongly connected core(SCC). OUT consisting
of a set of pages that can be reached from the core but do not connect back
to it. LV consisting of a set of pages that can reach the core but cannot be
reached from it. TENDRILS containing pages that cannot reach the core and
cannot be reached from the core and disconnected components as shown in
Figure 3.7. A crawler tvpically starts with a base list of popular sites known
as seed URLs and follows links within the sites{14]. The pages in SCC are
relatively popular ones since all of them can reach one another along directed
links. Therefore. crawlers are more likely to start off with nodes in SCC. Ac-
cording to the definition of each component. the nodes in SCC and OUT can

be easily captured. But it is hard for those nodes in IN and TENDRILS to

36

ouT

<44 Mtiicn nexdes 44 Mitllicn scxles|

Figure 3.7: Connectivity of the Web represented as a Graph (/23])

be visited and even harder for those in DISCONNECTED to be touched as a
result of the unique characteristic of the Web graph. Pages in IN. TENDRILS
and DISCONNECTED are not reachable from SCC and whose links do or do
not exist somewhere on the Web. They are “hidden™ from crawlers. Secondly.
current crawlers cannot generate queries or fill out forms. so they cannot visit
“dynamic” contents. This problem will get worse over time. as more and more
sites generate their Web pages dyvnamically from databases. However. these
problems can be fixed via active indexing since active routers will index what-
ever pages pass by. including static and dynamic pages as well as “hidden”
pages. In this sense. the indexes generated this way will be more complete
than those generated via crawlers because the Web pages which cannot be
reached from the seed URLs or by links in the seed pages will probably never
be indexed. Furthermore. if all crawlers can be removed. the total load on
both the Web servers and the Internet will be reduced considerably.

Active indexing is also capable of providing a “dynamic”™ view of the Web.

by building up statistics on dvnamic behavior such as the number of times per

37

hour a particular page has been fetched. These statistics could be used during
index generation in combination with other common indexing factors such as
the inverse document frequency and citation count. In contrast. crawling the
Web gives us only a static picture of its contents. Statistics such as the number
of times a particular page is linked to by other pages can be used to weight
the importance of a page. but that is only a proxy for how many times thar
particular page is actually fetched. Thus. active indexing gives us not only the
static statistics about a Web page. such as the number of times it is linked to
by other pages. but also the dynamic statistics including the number of times
per unit time it is seen on a router. Consequently. these features of a page can
be combined to generate a query result. which tends to be more accurate.

[n our scheme. active routers passively wait for traffic to come. For those
recently updated Web pages or new pages which have not been visited by
human visitors. our active routers are not able to capture them. The index
data of those pages which have been indexed before would have the potential
to be out-of-date and the index data of new pages might not be existing in the

database. We will further address this issue in our future work in Section 3.2.

3.3.2 Placement of active routers

The Internet can be viewed as a collection of subnetworks connected by back-
bone routers. For each subnetwork. there is a gateway router to connect it to
a backbone router. Usually there will be more than one intermediate router
between a client and a Web server. However. each packet should only be in-
dexed once on the way to its destination. One of the following 3 strategies

could be used in deciding where to place the active indexing:

e trace HTTP traffic on backbone routers

The first option is to monitor HTTP traffic on backbone core routers.
The core routers between the client and server see both the HTTP re-
quests and responses. Thus most HTTP traffic traveling through the
network will be indexed - only those connections where both the server

and client are in the same stub network will be missed. This scheme

38

has several disadvantages. Firstly. if there is more than one core router
between the client and server. each page will be indexed multiple times.
Secondly. even if each page fetched is only indexed once. it is very likely
that a particular Web page will be fetched via multiple backbone routers.
since Web sites are usually visited by users all over the world. As a con-
sequence. several core routers would all index the same page. Sending
the inverted index for each replica to the backend repository will waste
bandwidth. Thirdly. core routers are heavily taxed just in their normal
role of forwarding packets: any additional CPU load on these machines

Is verv unwelcome.

trace HTTP traffic on routers one hop away from servers

Due to asvmmetric routing in the Internet. it is verv unlikelv that a
router will see both an HTTP request and its matching response unless
the router is exactly one hop from the Web client or Web server. To
avoid congestion on busy links. we could select one route randomly from
among the first few shortest paths to the closest backbone router. The
node one hop away from the server on that route would be selected as
the monitoring node. The drawbacks of this scheme are that there will
be as many monitoring nodes as there are servers. and that not all tratfic

from a particular server will be seen.

trace HTTP traffic on gateway routers

To overcome the drawbacks of the first two schemes. we can index Web
pages on the gateway routers of the stub networks connected to rhe
network core. Since there will be more than one server on each stub
network. there will be fewer monitoring nodes than servers. The gateway
routers. by definition. see all traffic between their network and the rest
of the world. so all traffic will be indexed. Additional processing load
on the gateways will be much more easily accommodated than on the
core routers. Duplicate indexing is ameliorated by having each gateway

node only take charge of monitoring the Web servers in its adjacent stub

39

pa—-g
TS
\ ¢
. | Pt
ST A G
" /':?‘
-~ . .
¥ <k
. ‘ . - . N
3 _.‘ “‘t:\ -
o ; - -
R AMon:or -P packe:s
: . -»-g and irom
. Web servers
P packe:s =
oo o romand 10 - ‘ndexer .
’Backend Core Roucer T o
Reposiory

Figure 3.8: overview of indexing system

nerwork. However. compared to indexing on core routers. there will be
many more indexing nodes. We deploy this strategy due to its flexibility

and the benefits we will gain.

3.3.3 Architecture of Our Indexing System

Our syvstem for building inverted indexes is based on the Internet model. All
the gateway routers compose a distributed shared-nothing architecture. Fig-
ure 3.8 demonstrates the indexing svstem from the view of the Internet. We

recognize the following three types of nodes in our indexing syvstem(as shown

in Figure 3.8):

e Web servers These nodes store a collection of resources to be indexed.
If some resource on a server is fetched from outside and passes through

the server’s gateway router. it will be indexed on the gateway router.

e Gateway routers Each gateway is installed with two processes - packet

monitor and indexer. The packet monitor watches all the traffic passing

40

bv. If the Web traffic is of interest. then it will be saved and indexed

later on.

e Backend Repository The inverted indexes built on gateway routers
are sent to the backend repository and merged there with indexing data

from other routers.

The input to the packet monitor on a gateway is a sequence of IP packets
of all types. Thev could contain any type of TCP packets or UDP datagrams.
The outpur consists of filtered IP packets which are only the enclosed HTTP
message packets. which in turn. are the input to the indexer. The output of
the indexer is the compressed data of the inverted file. The inverted file covers
the documents on the servers in the stub network. which have been seen on
the gateway. A resource on a Web server will be indexed if and only if it is
requested and passes through the server’s gateway. The monitoring process
at the gateway monitors all the passing traffic. but only keeps HTTP requests
headed for the servers in its stub network and HTTP responses originating
from the servers. The monitor filters out any other traffic including HTTP
request packets from within its stub network and HTTP response packet from
outside. What the monitor receives are [P packets which mav or mayv not be
complete Web pages. which are what crawlers fetch. These [P packets are de-
multiplexed into integral pages. These pages are processed to generate inverted

indexes. Thus we require gateway routers to have the following capabilities:

e Each gateway knows the [P addresses of all the servers in its stub net-

work.

e The packet monitor on a gatewayv is capable of distinguishing between
a HTTP request packet and a HTTP response packet. Together with
the knowledge of its servers. the gateway is able to tell if the current
packet is a request packet destined for its stub network or a response
from a server inside the stub network. All the packets of other tyvpes are
filtered out and dropped. To monitor HTTP traffic. the packet monitor

can consider traffic traveling to or from the well-known port 80. although

41

some \Web sites choose to use an unreserved port such as 8000 or 8080
instead. In order to distinguish between requests and responses. we
will parse the [P packets and extract their IP and TCP headers. The
source [P address and port number in the request will appear as the
destination IP address and port number in the response. We can use
this feature to find a pair of communication parties: the client and the
server. Then. given all the request packets and the response packets
between the two communication parties. we should associate each request
with its corresponding response. Since the HTTP response is the first
data that the server sends back to the client and will acknowledge the
last byte of the HTTP request. the first sequence number of the HTTP
response should be equal to the acknowledgment number of the request.
Consequently. the match can be done based on a match between sequence

numbers and acknowledgment numbers.

The indexer divides its procedure into two stages. In the first stage.
individual [P packets are processed to reconstruct HT TP messages. The
reconstruction of HTTP messages involves handling out-of-order. cor-
rupted. and duplicated packets. First we may demultiplex packets ac-
cording to their source and destination [P address. and then reorder
packets according to TCP sequence numbers and eliminate duplicates[18].
With all the HTTP requests and responses. we need to associate each
response with its corresponding request since the URL is not present in
response headers. HTTP requests are matched with responses by com-
paring sequence numbers and acknowledgment numbers. In the second
stage. for all URLs produced in the first stage. a hash table is used to
hash URLs into page identifiers for the convenience of quick location of a
URL. Then each page is parsed to remove HT ML tagging. tokenized into
individual terms. postings(term-location pairs) are extracted to build an
inverted file. The inverted file is compressed using a so far most effi-
cient compression scheme. called mixed-list storage scheme[21]. We will

explore this compression scheme further in Section 3.5 in this chapter.

42

The indexer builds an inverted file of all the index terms along with their
associated statistics. The inverted index is compressed using the mixed-list
storage scheme. Then the compressed data is shipped to a backend repository

via the Internet.

3.3.4 Distributed inverted index organization

I[n a distributed environment. there are basically two strategies for partitioning
the inverted index across a collection node in a repository.

The local inverted file [22] organization partitions the document collection
so that each query server stores a disjoint subset of documents in the collection.
A query server or query engine receives and fulfills user queries. A search query
would be broadcast to all the query servers. each of which would return disjoint
lists of document identifiers containing the search terms.

The global inverted file [22] partitions based on index terms so that a query
server stores inverted lists only for a subset of the index terms in the collection.
For example. in a svstem with two query servers 4 and B. A could store the
inverted lists for all index terms that begin with characters in the range /u-
q/ whereas B could host the inverted lists for the remaining index terms.
Therefore. a query that asks for document containing the term “procedure”
would only involve A.

In the global inverted file organization. when a query server that stores
some set of index terms fails. search queries dealing with that set of index
terms can not be answered. On the other hand. a similar failure on a single
query server in a local inverted file organization does not prevent most search
queries from being answered. though the results might not contain all the rele-
vant documents in the collection. Performance studies in [19] also indicate that
this organization processes search queries effectively and provide good query
throughput in most cases. Considering the above analysis. we can deploy the
local inverted file organization in our backend repository. The repository con-
sists of a collection of nodes connected by a local area network. We distribute
the inverted index across different nodes so that each node is responsible for

a disjoint subset of documents. Each node receives inverted indexes from a

43

small disjoint set of gateways. Since each gateway only indexes sources on a
disjoint subset of servers. each node in the repository save inverted indexes for

a mutually disjoint sub collection of documents.

3.3.5 Encoding

Before being sent to the backend repository. the inverted files are compressed
in order ro minimize the volume of transferred data. thus make better use
of the network bandwidth. Inverted files can either be stored as Full list or
Single payload as sets of (key. value) pairs. In the Full list scheme. the key
is an index term. and the velue is the complete inverted list for that term.
Since an inverted file is a text index composed of a vocabulary and a list of
occurrences. it is the most natural way to store an inverted file according to
the definition. On the other hand. inverted files are also quite amenable to
compression. This is because the lists of occurrences or inverted list are in
increasing order of text position. Therefore. an obvious choice is to represent
the differences between the previous position and the current one. In 211 a
Mired List scheme was proposed. In this scheme. the kev is a posting. i.e.. an
index term and a location. The value contains a number of successive postings
in sorted order. including different index terms. The postings in the value field
are compressed and in every value field. the number of postings is chosen to
make the length of the field approximately the same. For those terms which
have a long inverted lists. it is possible to have their inverted list be spread
across multiple (key. value) pairs.

Figure 3.9 illustrates the full list scheme and the mixed-list scheme. The
top half of the figure depicts the full list for four consecutive words and the
bottom half shows how they are stored in the mixed-list scheme. As indicated
in the figure. the keys part contains the postings (low. 200). (low. 349). (low-
liness. 252) and the postings in the values part are compressed by using prefix
compression for the index terms and by representing successive location iden-
tifiers in terms of their numerical difference. For example. the posting (lower.
235) is represented by the sequence of entries 3 er 235. where 2 is the length

of the common prefix between low and lower. er is the remaining suffix for

44

low 200. 204. 225, 137, 349, 356. 411

lower 235. 291
fow hiness pahd Full lists
fowly 27562
prefix leagth 20-4-200 225-2(04
\;4\/ d
I l i
low | 200 [T 4[:[:\1 3l sfnx
T T

low | 349 | i *I Mel23s s sd Mixed list
i]
i lowhiness . 252 ! 4' _\i:n f <|n|l

Kevs values

Figure 3.9: Mixed list storage encoding scheme vs. Full list encoding scheme

lower. and 243 is the location.

Studies in [21] indicate that the mixed-list storage scheme scales very well
to large collections. The resulting index size is consistently about 74 the size
of the input HTMIL rext. This is so far reported the most efficient compression
scheme for inverted files. So if the indexer on a gateway builds indexing data
on all the input it receives and the generated inverted index is compressed by
using the mixed-list scheme. the final compressed data which will be sent to
the backend repository is roughly 7% the size of the original HTML text.

However. although many resources on the Web change rapidly. chances are
that a resource just indexed on a gareway is still up-to-date when the same
resource passes through the gateway the next time. [3] studied the average
change interval of a page. Figure 3.10 shows the statistics collected over all
domains. In the figure. the horizontal axis represents the average change
interval of pages. and the vertical axis shows the fraction of pages changed
at the given average interval. For instance. for the third bar we can see that
15% of the pages have a change interval longer than a week and shorter than a
month. If we assume that the pages in the first bar change everv day and the
pages in the fifth bar change everyv vear. the overall average change interval of

a Web page is about 4 months. The changes of Web pages follow a Poisson

45

change itenval

<= [day »lday >bweek >lmonth >hinonths
<=lweek ~= Lionth <=dinonths

Figure 3.10: Fraction of pages with given average interval of change

process[3]. A Poisson process is usually used to model a sequence of rundom
events that happen independently with fixed rate over time.

\We only need to reindex stale pages when thev are seen again on gatewayvs
and therefore. do not need to reindex all the information fetched by indexers
on gatewavs in order to use the indexing svstem efficiently. To implement
this. a hash table is used on each gateway to associate a URL with a page
identifier. Page identifiers of all the pages seen by a gateway are saved in the
hashtable. For each identifier. we store the value of the Last-Modified field.
If a document was previously fetched by the gateway and the Last-Modified
header in the more recently fetched file is newer than the old value. the file is
reindexed and the Last-Vodified in the hashtable is updated. If it has been
indexed. and the two Last-Modified values match. the file is dropped and nor
reindexed. If it has never been seen by the gatewayv. a new entry is created
in the hashtable. Besides the Last-Modified header. other headers including
Erpires and ETay can also be used to compare an old document against a
possibly newer one. By not indexing all the files gathered by the indexer. the
final index size sent to the repository should be far below 7% of the size of the
original HT ML text and considerable system resources and network bandwidth
can be saved.

By building distributed indexing data across gateway nodes and forwarding

them into the backend. we smoothly remove the need for crawlers and thus

16

remove the traffic caused by crawlers from the Internet. By this means. we
believe the extra traffic in terms of byvtes imposed on the network is up to 7%
in the worst case. which compared to the average extra workload of 25% from

crawlers 1s trivial.

3.3.6 Communication Mode between Gateways and the
Backend

The partial indexing results. which are distributed on gatewavs. are delivered
to the backend repository and assembled to generate the inverted index over

the whole collection. There are two options of the delivery mode.

Dribble Mode

In the dribble mode. the indexing traffic is constantly sent to the repository.
Whenever a gateway sees a fresher page. the inverted index for the page will
be delivered to the repository almost immediately. In this way information
in the repository is maintained up-to-date to the maximum. Bur this mode
does not take into consideration the current condition of the network. If the
network is already overloaded. the extra indexing traffic will deteriorate the
situation. In our simulation. we use dribble mode to forward the indexing data

to the repository.
Batch Mode

In batch mode. a batch of indexing traffic is forwarded to the repository once
in a while. This mode takes into account the current network situation. A
gateway will not transmit any indexing traffic until it observes the traffic is not
heavy in the network. But in the worst case. if the network has been busy for
a long time and the accumulated indexing results have been kept in gateways.

many pages in the repository will become out-of-date.

3.3.7 Gathering Statistics

In our indexing system. we gather two important global statistical metrics: in-

verse document frequency for indexing terms and document visiting frequency

47

for documents.

Inverse Document Frequency

Given a specific term or word. the inverse document frequency or idf is the
reciprocal of the number of documents where the term appears. The motiva-
tion for usage of an idf factor is that terms which appear in many documents
are not very useful for distinguishing a relevant document from a non-relevant
one. Used in ranking the query results. it helps return documents near the
top which tend to be relevant to a user’s query. To gain the df factror for a
particular term. we have to get the document frequency first.

Only inverted indexes are produced on gateways to save syvstem resources
and network bandwidth. However. besides inverted indexes. we also need ro
create a lexicon that lexicon lists all the index terms in the inverted file along
with their associated statistics in the repository. The associated statistic. in
our case. is document frequency in the repository. Each node in the repository
stores inverted files. a subset of documents in the collection. The inverted tiles
only tell local information about document frequency for a term. A dedicated
statistician is needed to aggregate all local information. Figure 3.11 illustrates
how document frequency statistics are collected for each term. In Figure 3.11.
the statistician summarizes and merges inverted lists from different nodes. The
output is a sorted stream of global document frequencies for each term which
is sent back to each node. Only statistics about terms present at a local node
are sent back to that node. In the example. statistics about “raspberry”™ are

not sent back to node 1 since the term is not present in the local collection.

Document Visiting Frequency

Document Visiting Frequency (duf) is the number of times per unit time a page
has been seen by the monitoring process on a gateway. [t gives us a dynamic
view of the Web. As opposed to the static statistics citation count used by
some search engine currently. duf factor. when used in ranking documents.
tends to result in a higher rank for a user’s desired results. We gather this

data on gateways. In the hashtable associating a URL with a page identifier.

48

blackberry (1.3
3.2 blackberry:
blueberry:

12 a2 82

blueberry: 13.1)
node ! LY struwberry:
strawberry: 16.8) tblackberry. 2)
Apgreganon o (blueberry. 3)
process i traspberry.)
blueberry: 14.9) / tstr awberry, 2) blueberry.

raspberry
strawberny

14 10

ruspberry: (5.2)
node 2 3.3)
strawberry (35

Stanstician

caggrezated lexicon sent
amerted indey stored buch 10 nodes)
1n dirfferent nodes

Figure 3.11: Collect document frequency

besides the lust-modified field. a duf field is also added. For a document
fetched by the indexer. whether it is fresh or stale if previously indexed. the dof
counter for the document is alwavs increased by 1. These data are periodically
transferred to the repository to be used in generating queries. [f rwo documenrts
contain a query kevword. the one with the bigger duf is ranked higher. It
also can be combined with with idf factor in answering a search querv. Due
to strategic locations of gateways. a gateway sees all the traffic between its
adjacent stub-network and the rest of the world. For a Web resource located
within a stub-network. its gateway is always able to caprure the resource as
long as it is visited by clients from outside of the stub-network. although other
gateway routers may also see the resource. In this sense. the duof counter for

a document is global.

3.4 A Case Study of Network Programming
Using PLAN

A number of research groups have been actively designing and developing ac-
tive network prototvpes. Among them. a new Packet Language for Active
Networks(PLAN). developed at University of Pennsylvania. is a scripting lan-
guage whose programs are intended to be carried in packets and executed on
routers or hosts through which the packets pass[9]. PLAN was attempted to
fit within an architecture that balances flexibility. safety. security. and perfor-

mance. For example. all PLAN programs must terminate in order to protect

19

the network while making it available to users. and may not access information
private to the router or other programs.

PLANet. an internetwork. uses active packets written in PLAN and imple-
ments network layer services directly on top of the link layer. independent of
the existing [P infrastructure{10]. A PLAN program may invoke node-resident
services writren in OCaml[11]. a dialect of the ML(MetaLanguage) program-
ming language. These services are dvnamically loaded into a PLANet node
and only implement essential functionality to operate the network. like address
resolution. routing. DNS. etc. Therefore. PLAN packets. coupled with general-
purpose services form a two-level active network architecture for PLANert.

We built a small application in PLAN. An active packet contains a desti-
nation address. When an active packet passes through an intermediate router
on the way to its destination. a key is generated to identifv individual packets.
and then the key is saved on the node together with the destination address.
To implement this. a small scale active network was constructed. and on each
node of the network. an empty hash table was allocated. The code segment in
Ocaml for the definitions and allocation of the hashtable is shown as follows:

(= Configuration constants =)

let index.store_size = 200 (* max num packets to keep track of =)

Define the hashtable:

type index_info =

{ mutable keynumber: Activehost.activehost * int; (*packet idx)
mutable dests: Activehost.activehost (* destination host =)
rwl : Rwlock.t }

Allocate a hashtable with size 200 on each node:

let itbl: (Activehost.activehost, index_info) Hashtbl.t = Hashtbl.create
index_store_size

let itbl_rwl: Rwlock.t = Rwlock.create() (* lock for the hash
table itself =)

When an active packet goes through an intermediate node. the packet will
be saved in the hashtable on the node provided that no packet with the same

destination address has been stored on the node. A read/write lock is also

30

created at the same time in order for the hash table not to be accessed by
other processes. The code segment is shown as below:

let savehsh(mykey, dest) =

try(

with_read itbl_rwl

(function _ -> Hashtbl.find itbl dest) (); false)
with Not_found ->(

with_write itbl.rwl

(function . ->

Hashtbl.add itbl dest {keynumber = mykey;

dests = dest; rwl = Rwlock.create()}

) O

true)

After we map the string. “saveDestHsh™. defining the name of the PLAN
service to the function that implements that service. savehsh(). the services
must be installed in the PLAN router. The program file of mapping service
names to functions is included in Appendix B. We then can inject into a
specified active router an active packet carrving programs written in PLAN
that invoke the router-resident service we implemented. An example of PLAN
packet that invokes the service “saveDestHsh™ is shown in Appendix C.

In addition to the service of saving data into the hash table on an active
router. we also implemented other services including retrieving the data from
the hash table. deleting some specific entry and empty the hash table. \We
include all the Ocaml code that implements all these services in Appendix A.

According to our experience. Ocaml. as a functional language. supports
programming in a functional style and emphasizes the evaluation of expres-
sions. [t works with the evaluation of expressions rather than statements which
are used in imperative languages such as C. C++ and Java. It is all about
erpression since evervthing reduces to expression. In an extreme case. one
program could be one expression. Functions are often passed around within
a program in much the same way as other variables. Recursions are heavily

employved in Ocaml as a primary control structure. as opposed to loops in im-

51

perative languages. The resultant codes are often much shorter and reliable
than their equivalent imperative codes. However. it requires a fairly abstract
thinking stvle. heavily influenced by mathemartical principles and codes are
often far from readable to a layvman programmer. All these fearures make
Ocaml more like a research language and prevent it from being widely used in

industry.

3.5 Summary

The experiment results on the logfiles of a department Web server gives us
a vivid picture of the workload imposed by crawlers on the Web servers and
the Internet. Then we give a detailed description of our indexing svstem.
Unlike search engines contingent on crawlers actively retrieving \Web pages.
our indexing svstem accesses Web pages by passive monitoring in order not
to put extra load on the Internet. Due to the unique feature of the graph
structure in the Web. there are always pages unspotted by crawlers if theyv
fall into components such as disconnected components. Our syvstem is capable
of gathering more complete statistics by allocating monitoring nodes in all
stategic places on the [nternet. In addition to static statistics like the citation
count of each page and Inverse Document Frequency. our scheme also can
gather dvnamic statistical data about a page such as global Document Visiting
Frequency. Both static and dynamic statistics of a page can be combined by

search engines to answer a user query.

Chapter 4

Simulation Implementation

4.1 Introduction

Simulation is used to evaluate the performance of computer systems and pro-
vides an easy way to predict the performance or compare several alternatives{4].
This chapter begins with the methodology we used in our simulation. One of
the greatest challenges in conducting computer simulations is identifyving and
measuring correctly the metrics of interest. That involves the removal of the
transient state and the best estimation of our system’s response in the steady
state. The simulation implementation is then discussed including network con-
figuration. simulation parameters as well as performance metrics. The chapter

is concluded with our experimental results and analvsis.

4.2 Simulation Methodology

4.2.1 Simulation Model

We use the discrete-event simulation model. which is used in computer svstems
since the state of the syvstem is described by the number of jobs arriving at
different devices. Our experiments were conducted on SMURPH({1]. a simula-
tor oriented toward investigating medium access control{ MAC) level protocols
in communication networks. It hides the simulation details from the user. All
simulation-related operations like creating and scheduling individual events
and maintaining a consistent notion of time. are covered by a high-level in-

terface presented as a collection of abstract objects. methods. and functions.

33

A program of a protocol description in SMURPH is executed on hypothet-
ical communication hardware. The user extends some standard data tvpes
and interrupt-driven processes structured like finite-state machines to build
the program of a specific protocol. Since we do not counter the increasing
processing time for increasing queue length. we allow infinite queue in our

simulation.

4.2.2 Transient Removal

The key to conducting proper computer simulations is the deceptively simple
task of determining when to actually start taking measurements. Tvpically.
a computer simulation does not immediately reach its equilibrium point (or
steady state). but only after a certain amount of simulation time has elapsed.
The response of our system prior to equilibrium corresponds to the transient
part of our simulation. It is important to employ proper simulation techniques
to correctly identify and phase out the effect of the transient part (transient
removal) and measure metrics only during the steady state.

A characteristic of the steadyv state is the fact that the response of our
syvstem exhibits very low variance when equilibrium is reached[4]. In other
words. the rate of change of our metrics approaches zero. In our simulations
we employ the throughput of our system to determine steady state. At fixed
time intervals we obtain a sample of the system’s throughput. throughput,.
In order to ascertain whether our system has reached equilibrium or not. we
utilize three consecutive samples of the syvstem throughput and calculate their
relative differences as tollows:

. throughput,_, — throughput,_,
dif ferencel = wroughput,_, roughput;_»

throughput;_»
throughput, — throughput,_,

dif ference2 =
s e throughput,_,

If both differencel and difference? are less than a pre-specified value. which
we chose to be 1%. we then determine that the simulation has entered the
steady state. We follow the aforementioned transient removal procedure for

all different network loads. Thus. we make sure our system is in steady state

54

Request Inter-Arrival Time(tick) | Steady State Point(tick)
12000 2.46e+11
L3000 2.55e =11
: 18000 3.58e+11 |
19000 3.62e+11
20000 3.21le+11
21000 1.26e+11
22000 0.74e+11
23000 0.85e+11
27000 0.8le+11
! 30000 0.91e+11
410000 0.96e-+11
: 30000 0.92e+11 ‘
| 100000 1.29e+11
| 200000 0.49e+11

Table 4.1: Different Steady State Points

before we start monitoring and fetching the passing HTTP messages to gen-
erate indexing information for those HTTP messages. Figure 4.1 shows the
response of our svstem versus simulation time for different network loads. Ta-
ble 4.1 illustrates different simulation times when simulation cases reach their
corresponding steady state. From both the table and the figure. it is evi-
dent that at time Je+11. all the simulations cases have reached steady starte.

Therefore. we start accumulating indexing traffic at time fe+11.

4.2.3 Variance Estimation

The output of our system at steady state is dependent upon the initial seeds for
the pseudo-random number generator. In order to minimize the effect of our
initial seed selection and obtain a relatively accurate estimate of the svstem'’s
response. we repeat each experiment several times using several sets of seeds.
For each case. all replications of an experiment consist of a complete run of the
simulation with the same set of input parameter values. The replications differ
only in the seed values used for the random-number generators. OQur method
consists of conducting 8 replications for each case. However. it is not possible

to get a perfect estimate from a limited number of samples. A confidence

ot

Client Response Throughput vs. Simulation Time

250 L] T v L9 L L] . 11 n T LY
- Client nter arrval tme s * 2008

Client inter arrival ime i1s 18000
it

= e s e e e G m s e Rt ceere vt aest g s e ST ewe
=l
=
2 4
a Client inter arnval ume 1s 22000 - - -
c el
§ Clientinter arrvai ame s S000C
H . S e
C 50 b7 e T Client inter arrval nme 1s 50000 - .
: ’ R A A L IS e NN AT G LT ST
; 3
=]
g
E 100 -
o .
0
g
a
o
2
= 50Fr_ -
5]

0 A i i L L N 's 1 L 1

o} 1e+11 2e+11 3e+1! de+11 Se+11 8Se+11 7e+11 B8e+11 ZGe+11 1e+12 1 1e-12

Simulation Time - (tck)
Figure 4.1: Throughput against Time T,

interval represents an interval that a specified random variable will fall within
with a given level of confidence. For example. suppose X is a random variable.
Then a 95% confidence interval would consist of an interval such that there is
a 95% probability that X will fall within that interval. We take the following
steps to get the confidence interval.

1. First for any result r, (1<i<m} we produce. we need 1o compute a mean

l
F=— E . (4.3
Tt ’ 4-3)

1<:<m

for all replications:

where m 1s equal to 8 in our simulation.

2. Calculate the variance for the mean of the replications:
Var(r) = —— . —T)° A
ar(f) = ——= 3 (=T (44)

where m is equal to 8.

3. Then the 100(1 — a)% confidence interval for the mean value is given
by

T £ itn_a/2m-11V Var(T) (4.3)

56

where t:1_, 2.n—1: 15 the 1 — a/2th quantile of a ¢ distribution variate. We
compute the 95% confidence interval for each mean value. Thus a is equal to
0.05 and z,_,.» is the 0.975th quantile of a ¢ distribution variate. which equals

2.306.

4.3 Simulation Implementation

In order to evaluate our proposal we first studied the response of a traditional
network. which was subjected to the network load generated by crawlers. We
then compared its behavior to the one of our proposed active network with
packet monitoring and page indexing on active gateway routers.

As described in Section 3.2. the crawler request hit percentage averages
27.3% and reaches 40.64 on the Web server of our department. So for a
traditional network. we simulated systems with 0% crawler traffic. 20% crawler
traffic and 40% crawler traffic. By 40% crawler traffic. we mean the load caused
by crawlers is 10% of the total network load in terms of the request arrival
rate. Our simulation is based on the assumption that the network load is
only comprised of the crawler load and the client load which is generated by
a variety of Web clients from all over the world. So on a network with 40%
crawler traffic. crawler load is around 40%/(100%-40%)=66.7% of the client
load. By comparison among 0%. 20% and 40% cases. we will see how much the
system behavior is affected when exposed to different rates of crawler traffic.

We assume that there is only one gateway for each stubnetwork. The gate-
wayv sees all the traffic between its stubnetwork and the rest of the world.
However in reality. there should be more than one gateway for each stubnet-
work. each gatewayv monitors the traffic between the stubnetwork and part of
the world. Therefore. it is possible for a Web page to be indexed on the mul-
tiple gateways of the same stubnetwork and the removal of duplicated pages
must involve the cooperation among the gateways. In this wayv. the index-
ing data delivered to the repository would be still at most 7% of the original
HT)MIL files and the network bandwidth is saved.

In Section 3.3.5. we showed that if active routers index all passing by HTTP

(1]

traffic. then the compressed inverted file that is sent to the repository is only
about 7% of the size of the original HTML documents. For all the passing
HTTP messages. we only need to index those pages which have been modified
since thev were last indexed and new pages. Therefore. the extra indexing
data sent to the repository should be considerably less than 7% of the size
of the original HTTP messages. Thus. for the case of the active network. we
simulated svstems with 0% overhead. 3% overhead and 7% overhead. By over-
head. we mean the bvtes generated by indexing as a fraction of the number of
bytes in the passing Web pages. Note that the 0% /3% /7% values in the active
indexing case represents the efficiency of indexing. whereas the 0% /20% /40%
values in the with-crawler case indicate traffic intensity. In the cases of the
0% active indexing and the 0% with-crawler. the workloads generated by all
human clients are identical and no other traffic is imposed on the network.
Therefore. although we implement these two cases in different simulations.
thev should have the same performance. For other cases. active indexing cases
should have overall better performnance than those of the with-crawler cases.
We will see in Section 4 of this chapter how much the performance is affected

by comparing all the active indexing cases with all the with-crawler cases.

4.3.1 Network topology

We chose the transit-stub model generated using the Georgia Tech Internet
Topology Generator(GT ITM) [24] to create a network that resembles the
structure of the Internet. The transit-stub model is composed of intercon-
nected transit and stub domains. A transit domain comprises a set of highly
connected backbone nodes. represented by squares in Figure 4.2. A backbone
node is either connected to some stub domains or other transit domains. A
stub domain usually has one or more gateway nodes. which have links to tran-
sit domains. The Internet is regarded as a collection of interconnected routing
domains. which are groups of nodes that are under the same administration
and share routing information. The topology generator follows the following

routing rules:

e The path connecting two nodes in a domain stavs entirelyv within the

domain.

e The shortest path between node u in stub domain ' and node ¢ in stub
domain V" goes from U through one or more transit domains to 17 and

does not go through any other stub domains.

e [f rwo srub domains are connecred directly by a stub-stub edge. the parh
berween nodes in the two domains may go through that edge and does

not pass through any transit domains.

The following steps are taken to construct the model. First. the topology
generator construct a connected random graph where each node represents a
transit domain. It then replaces each node in the graph with another con-
nected graph to represent a transit domain. For each node in the rransit
domains generate a number of connected random graphs to represent stub do-
mains attached the transit node. Finally additional edges are added to connect
transit nodes to their corresponding stub domains and for some stub domains.
to connect two stub domains together.

Once the graph is completed. integer edge weights are assigned in such a
way that the path between any two nodes in the same domain will remain
within the domain.

As shown in Figure 4.2. we use a graph which consists of one transit domain
of 4 nodes. Each node in the transit domain has a number of stub networks
connected to it. There are no edges between any two of the stub domains.

The topology contains 100 nodes with an overall average node degree of 3.74.

4.3.2 Network configuration

Both the traditional and active networks utilize the same topology. which is
depicted in Figure 4.2. On the former tvpe of network. we define five kinds of
nodes: core routers. gateways. crawlers. servers and clients. The four transit

nodes represent core routers. Each stub domain contains a gateway to the

39

(> S-ub doma:n
-2 Trans:: doma.n

Corz Rouzer
asway Roulsr

Web Clen:

Web Server

Craw.er Rouer

Repos.:ory Craw.zsr

B+ w0 b

Figure 4.2: Transit-Stub Study Network

60

transit domain. Each gateway node forwards packets out of and into its stub
domain. The node allocation for the traditional network is illustrated in Fig-
ure 4.2. We have 12 gateway nodes since there are 12 stub domains in the
topology. Four crawlers are located in the four different stub domains. Finallv
20 servers and 60 clients are distributed among stub domains.

For the active networks case. the four crawlers are replaced by three regular
routers and one backend repository. Regular routers are different than core
routers in the sense that the link speed between core routers is much faster
than the one between regular routers and their adjacent nodes. The difference
between regular routers and clients is that regular routers only forward packets
whereas clients initiate HT TP requests and route packets as well. The backend
repository receives and stores indexing data sent by gatewavs. Gateways on the
active network not only forward packets. but also generate extra indexing data
periodically. which is bound for the backend repository. The node allocation

for the active network is also shown in Figure 4.2

4.3.3 Simulation Parameters

Session and Client Request Arrivals

The series of requests made by a single user to a single site is viewed as a
logical session. In the course of a session. the user may perform one or more
clicks to ask for Web pages. A click triggers the browser to issue a HTTP re-
quest for a resource and subsequently more requests if there are anv embedded
resources referenced in that page. Studies have shown that the session inter-
arrival times follow an exponential distribution[26]. Exponential interarrival
times correspond to a Poisson process. where users arrive independently of one
another. In our simulation model. we made the assumption that there is only
one request issued throughout a session. Therefore. HTTP request arrivals
are also modeled after an exponential distribution. We vary the mean client
request interarrival time to impose different workloads on the network.

The total client requests are the total client requests generated by all 60

clients until the time when the simulation terminates. Let total client request

61

arrival rate be clientdrrivalRate and total client requests be totalClientRe-

quests. The clientArrivalRate is given by:

totalClient Requests
totalSimulationT ime

clientArrival Rute = (4.6)

Request Sizes

Each HTTP request packet size is approximately lognormal distributed with
mean=2880 bits and standard deviation=848 bits[27]. The simplest way to
generate a lognormal distribution is to use a normal one. If Y is normally
distributed. then X = exp(Y) is lognormally distributed. Since [27] gives
the mean and standard deviation of the lognormal distribution. if we want to
generate the lognormal through a normal distribution. we need to figure out rthe
mean and standard deviation of the corresponding normal distribution. Since

we know if Y is normally distributed with mean p and standard deviation d.

then the mean p; and standard deviation d; of X is expressed as:

pup = €473 (4.7)
d 2 = Hemd _gued (4.8)
£
pr = e7F
—————— >;L—Ln(/,1L)—T {4.9)
qu — ez(u_d.‘) _ llL.)
therefore. we have
s
In(p,) = T
In(dy? + per? .
n(de” +pr”) _ b+ d?
2
use (4.9) to replace u
& = In(p/*+d;*) —2In(p,)
d 2
= In(—= +1)
pr?

62

finally. we have

d 2
d = \/ln(Lo+ 1) (4.10)
=
[.’
po= ln(;t.r.)—(—,)—
In(%) |
= In(pr) - —5— (4.11)

Crawler Request Arrivals and Total Crawler Request Arrival Rate

Crawler request interarrival times also follow an exponential distribution since
crawlers are just more heavy demand clients. Let crawlerMIT be the mean
crawler request interarrival time. clientMIT be mean client request interarrival
time and crawlerRate be crawler traffic rate on the network. There are 4
crawlers and G0 clients in the traditional network. The crawlerMIT is given

by the following formula:

4
crawler MIT 9
i - 60 (41-)
crawler MIT ' clientMIT

crawler Rate =

client MIT = (1 — crawler Rute)

—— > crawlerMIT =
crawler 13 = crawler Rate

(4.13)

The total crawler requests are the total requests generated by all 4 crawlers
until the end of the simulation. Similarly. each crawler generates requests
following an exponential distribution with mean crawler request interarrival
time. crawlerMIT. Let total crawler request arrival rate be crawlerdArricalRate
and total crawler requests be totalCrawlerRequests. then crawlerdArrivalRate
is given by:

totalCrawler Requests
crawler Arrival Rate = quests

41.14)
totalSimulationT ime ()

Response Sizes

The response sizes can be represented as a combination of lognormal distri-

bution and a heavy-tailed distribution[15]. The body of the distribution is

63

represented by a lognormal distribution and the tail fits a heavy-tailed dis-
tribution. The heavy tail refers to how slowly F(r) decrease for larger values
of r. However. in our simulation. we only represent the response sizes as a
lognormal distribution with Mean = 80.000 bits and standard deviation(SD)
= 200.000 bits{27]. Given the Mean and SD. we can use the same method
used to compute request sizes to calculate the response size for each response
a server generates. The great variability in sizes of different tyvpes of content

results in the large standard deviation for response sizes.

Indexing Message Sizes and Inter-departure Times

The indexing message length is fixed with the length=10.000bits. The message
inter-departure time is unique for each gateway on a specific simulation case.
Since we send the indexing traffic to the backend repository constantly with the
dribble mode. theoretically gateways should spend the same time to transmit
the indexing data as what was used to accumulate them. Although each
gateway generates different amount of indexing traffic within a given time
period. we make sure thev are sent in the same fixed time. We balance the
index accumulating time and the index delivery time so that there is no extra
index data left on gatewayvs. We could also vary the index transmission time
according to the current network condition. We will address this in the future
work of Chapter 5. So each gateway should send the indexing data with its own
inter-departure rate which is proportional to the volume of its accumulated
indexing traffic. In our simulation. at time Je+11 all gateways begin to gather
the passing HTTP messages to produce indexing information until time Je+11.
from which point to time 6e+11. theyv deliver the indexing data to the backend

repository.
Link Speeds

Due to the characteristics of the Internet. backbone routers are usually high-
speed devices while most of the stub nodes are regular hosts. We set different
link speeds for different tvpes of links. The link speed is represented as trans-

mission rates of the two ports attached to the link. The port transmission

64

rates for a link are the same. The transmission rate of the ports attached to
the core links is set to 100Mbps. the transmission rate of the ports attached
to the links between gatewavs and core routers is defined as 10)Mbps. and we

set the trausmission rate of the ports attached to the stub links to 1Mbps.

4.3.4 Performance Metrics
Throughput

We distinguish throughput caused by normal clients and throughput resulting
from crawlers. Client throughput is the number of bits of responses received
by normal clients per simulation time. Similarly. Crawler throughput is the

number of bits of respounses arriving at crawlers per simulation time.

e Client throughput [n active indexing. the throughput we computed is
called active throughput. In the cases of 3% and 7% overhead. we calcu-
late the average throughput over a period from the point when gatewavs
start sending the indexing traffic until all the indexing traffic has been
received in the repository. For all cases of different request arrival rates.
gatewayvs start transmitting indexing traffic at the same time. at time
Je+11. and stop the transmission at 6e+11. In the case of 0% overhead.
since no extra traffic is generated and the simulation has long reached
the steady state at time e+ (in Figure 4.1). we measure the average
throughput from the time jSe+1! until the simulate terminates at time
10e+11. In the with-crawlers cases. in order to compare different perfor-
mance. we calculate the average client throughput between time Je+11
and time [0e+1! when the simulation ends. The different time periods
over which the client throughput is computed for the simulation cases

are illustrated in Figure 4.3.

Although in all 3% and 7% active indexing cases. the gateways spend
the same amount of time to send the indexing data. the time when all
the indexing traffic have been received should vary according to request
interarrival rate. The simulation times against different percentages of

received index for 3% and 7% cases are illustrated in Figure 4.4 and

65

Client throughput

o7, 200 W%
with=craw ler Ccases

Client throughput

0% active indeung

Client throughput
untl all index recerved

3. T& achve indeuny

ceii lewit et weil Seeld LT3N ceid weil Neil ol simulstion time

Trinsient intersal ' Stop transmutting tndex

start sending index

start accumulating

Figure 4.3: Client throughput vs. timeline

Figure 1.5 respectively. From the two figures. we can see that in the
cases with relatively small request arrival rate. the indexing tratfic are
all received shortly after gatewayvs stop the transmission at 6e+1/ and
the index receiving times are linear to the percentage of received index.
However. after the request arrival rate reaches some threshold. the index
receiving times increase exponentially with only a portion of total index
data received when the simulation terminates. In these cases. it is hard

to estimate when all the index data will be received.

In active indexing. we accumulate the indexing data over a long time
period. and deliver the data to the repository in the nexr same amount
of time period. We run 8 independent runs for each of our calculated
data points. For each experiment. we observed the commonly accepted
simulation methodology [4] ensuring proper transient removal and ter-
mination of our simulation. Due to the limited computational resources
at our disposal. we opted for repeating our sets of experiments several
times instead of conducting fewer runs for a veryv long period of time.
Both methods are considered equivalent in the [4] as far as their accu-

racy is concerned. Also. our measured 95% confidence intervals were less

66

Be+11 T T T L T T T T T
7e+11 b
x 6e+11
S
2 Se«tt b
=
x .
B destt : : ror amval rate 1 with 3% indexing tratfic 4
‘o ; arrival rate 2 with 3% indexing traffic ---=---
> . arnval rate 3 with 3% indexing tratic = «
3 o arnval rate 4 with 3% indexing trattic ~ ©
@ Je-11p ’ o amval rate 5 with 3% ingexing traffic - -@ -]
=] arnval rate 6 with 3% indexing trattic - -¢ -
g . armvai rate 7 with 3% indexing tratfic - e
E 2e-11 b . arnval rate 8 with 3% indexing traffic < - |
= i ' arval rate 9 with 3% indexing traffic - -
. arnval rate 10 with 3% indexing traftic ——
: b arnval rate 11 with 3% indexing traffic ---v---
1e+11 . . ! . arnval rate 12 with 3% indexing traffic - 9~ 4
' ! amval rate 13 with 3% indexing traffic o
! | arnval rate 14 with 3% indexing traffic - -o -
i l# arnval rate 15 with 3% ingexing tratfic - -e -
0 . & L 'l 1 L e .
Q 10 20 30 20 50 60 70 80 90 100

% ot compieted indexing traffic

Figure 4.4: different index receiving times for all 3% active indexing cases

ge-11 v T T T T T T T T
L
Tes11 + & -
z 6e-11
2 Se«1t |
=
3
B de-11 arrival rate 1 with 7% indexing tratfic ~
o arrivatcage 2 with 7% indexing tratfic ---x---
> amival rate 3 with 7% indexing traffic ---=- -
3 armval rate 4:with 7% indexing traffic -2
2 3e-11 - armval rate 5 ‘with 7% indexing traffic - -®@ -
=] amval rate 6 with-2% indexing tratfic - -o- -
e arrival rate 7 with 7%-indexing tratfic e
Z 28e11 F amval rate 8 with 7% indexing tratfic - - |
arnval rate 9 with 7% indéxing tratfic - s~
arrival rate 10 with 7% indexing fraffic —e—
arnval rate 11 with 7% indexing ratfic ---v---
1e-11 + amval rate 12 with 7% indexing traffic, --o--- 4
amval rate 13 with 7% indexing traffic e
armmval rate 14 with 7% indexing traffic - -o.-
: : amval rate 15 with 7% indexing tratfic - -e >
o] 4 - s s . = = —a
Q 10 20 30 20 50 60 70 80 90 100

% of completed indexing traffic

Figure 4.5: different index receiving times for all ¥% active indexing cases

than 5% indicating that our estimated means are accurate. The use of
several runs lessens the dependence of our results on the initial seeds
for the pseudo-random number generator. Furthermore. even in the 0%
active indexing case with the smallest request arrival rate. the number
of rotal requests reaches 30210. Therefore. there are about 3000 requests
generated from time Je+11 to time Ge+11. one tenth of the total simu-
lation time when the index data are gathered. Therefore. the volume of
the accumulated index data is not trivial. From all the arguments given
above. several independent repeated runs are at least as good as. if not

better than. one or more longer runs.

e Crawler throughput In the with-crawlers cases. we also compute the
throughput of responses generated by crawlers. The average crawler

throughput is artained in the period from time Je+1/ to rime [0e+11.

Average Request Delay

We are more interested in what clients see after they issued a request. The
Average Request Delay is the average number of simulation time units from
the point of a request’s generation until its corresponding response has been
received. We compute average client request delay. in the with-crawlers cases
as well as average crawler request delay over the period between time Je+1/

and time [0Ue+[].

Request Completion Rate

Request completion rate is the total completed requests divided by total gen-
erated requests. The complete rate is equal to 1 if all generated requests have

been served and the responses have been delivered back to clients.

4.3.5 Routing in the simulation

When a router receives a new packet. it always dynamically calculates the
total lengths of possible paths to find an idle output port with the minimum

value of the cost rank in terms of the link length for a given destination. If

68

Ctient Throughput vs. Total Client Request Arnval Rate

220 r : ' | ,
200 |
< 180]
Q
B
o 160 |
L]
a
g 4 |) i)
g 0 — ;
é g :
To120 |
: .-
g e
£ 100t |
s > -3 adop e "% - o .
E 8o} . |
3
° o 0% active indexing case —— -
3% active indexing case ---=---
7% active indexing case - e
or 0% with-crawler case < 4
/ 20% with-crawler case - -® -
L 40% with-crawler case - o -
20 I L I I N X » f ;

[} 00005 000t 00015 0002 00025 Q003 00035 0004 00045 0005 Q0055
Total Client Request Armval Rate —- (# ot Client Requests/tick)

Figure 4.6: Client Throughput in All Cases

there is more than one port with the same least cost. one of them must be
chosen at random so that no port is privileged or discriminated against. If all
the output ports are occupied. then the packet will be queued until an output

port is available.

4.4 Experimental results and analysis

As described before. we simulated the active network with 0%. 3% and 7%
extra indexing data respectively and the traditional network with 0%. 20%
and 40% extra traffic initiated by crawlers. At 3% indexing data. we should
see the routers generating (and the repository receiving) 3% of the byte rate
received by the clients in the with-crawler case at 0% crawler activity. At 7.
we should see the routers generating. and the repository receiving. 74 of the
byte rate received by the clients in the with-crawler case at 0% crawler activity.
We will compare the network performance in terms of the number of bits per
unit time that are received by clients. how quickly a request is met (average
request delay) and the completed client request(the ratio of completed requests

to all the requests).

69

Figure 1.6 illustrates the different client throughputs on both the tradi-
tional network and the active network. Figure 1.7 only makes a comparison
about throughput among active network cases while Figure 4.8 shows different
throughputs on the traditional network. In these figures. the horizontal axis
represents the total client request arrival rate. i.e.. the number of tortal client
requests generated on the network per simulation time unit. and the vertical
axis shows the throughput - the number of bits of responses received by all the
clients per simulation time unit. From Figure 4.6. we can see the throughput
for the 0% active indexing matches the one for 0% with-crawler case. This ver-
ifies that the simulations for 0% active indexing case and for 0% with-crawler
case should have the same performance. Both of them achieve the same peak
throughput at about 222 bits/rick. after which point. the throughput drops
down quickly when the svstems becomes saturated. After the systems get
overloaded. the throughput remains steady at about 140 bits/tick whatever
the client request arrival rate is.

We define the maximum supported client arrival rate as the client request
arrival rate at the point where the client throughput reaches the maximum
alue. In Figure 4.7. compared with the 0% active indexing case. the 3% active
indexing case reaches its threshold slightly earlier. which means the maximum
client request arrival rate the active network with 3% indexing traffic can
support is slightly smaller than that of the active network with 0% indexing
traffic. Thus. we show that the client throughput for the 0% active indexing
case is slightly larger than the 3% active indexing case. With indexing traffic
rate increasing to 7%. the maximum supported client arrival rate decreases.

Also in Figure 4.6. compared with the active network. the traditional net-
works with crawler rate 20 and 40% have much less maximum supported
client arrival rate. The reason is that although we add some indexing traffic
to the network after the crawler traffic is removed. the overall network traffic is
still much less than that of the traditional network since the traffic introduced
by the crawler constitute a large part of the total network load. Also. we can
find that as the crawler rate increases. the maximum supported client arrival

rate decreases.

Client Throughput vs. Total Client Request Armval Rate
220 T T T T T

— T T T T
200 |]
180 e
160 p“ 4

140 b -

-- (Response Bustick)

120 ' -

Chent Thioughput -

TFe actve iNCexirg Cuase - b

o« 7o active incexing case -
20 ;e 1 i’ L - i 1 2. - b

o} 00005 Q001 QOQ01S 0002 Q00025 0003 00035 00084 00045 0005 00055
Total Chient Request Arrival Rate --- (# of Client Requasts/tick)

Figure 4.7: Client Throughput in Active Indexing cases

It is also shown in Figure 4.6 that 3% and 7% active indexing cases have
a maximum client throughput that is a little bit smaller than that of the 0%
active indexing while the 40% with-crawler case attains the least maximum
client throughput among all the cases.

Figure 4.9 shows the crawler throughput in the 20% and 40% with-crawler
cases. The verrical axis represents the number of bits of responses per simu-
lation time unit received by crawlers and the horizontal axis shows the total
request arrival rate which is the number of requests generated per unit time by
both human visitors and crawlers. It is illustrated in the graph that crawler
throughput in the 40% case is overall twice that in the 20% case. In the 40%
case. the crawler load is 66.7% of the traffic generated by a variety of human
visitors while in the 20% case. the crawler load weighs 25% of the client traffic.
So the crawler load in 40% is 66.7%/25.%=2.64 times the crawler load in the
20% case. However. the 40% case achieves overall worse performance. in our
case worse throughput. than the 20% case. That explains why the crawler
throughput of the 40% case is only about twice rather than 2.64 times that

in the 20% case. Also in the Figure 1.9. the 40% case reaches the maximum

Client Throughput in with-crawier cases vs. Total Client Request Armival Rate
220 L} L] T L) k3

~ T T T T Y

200 ' ' 4

--- (Response Bnsmck)

Client Throughput
[]
.

S wnth-craaier Zuse - B

« 40°% with-crawler case -
: : L 2 » :

Q 0000S 0001 Q0015 0002 00025 0003 00035 Q003 00035 0005 00055
Total Chient Request Arrival Rate — (# of Client Requests/tick)

Figure 4.8: Client Throughput in With-crawler Cases

crawler throughput slightly earlier than the 20% case. This is also because the
0% case is more overloaded. thus the network gets saturated earlier.

Figure 4.10 demonstrates the average client request delay for all the with-
crawler and without-crawler cases. Figure 4.11 and Figure 4.12 show the
average client request delay corresponding to with-crawler cases and active
indexing cases respectively. The vertical axis shows the average number of
simulation time units for a client to wait to receive a response after it sends
a request. The horizontal axis is the number of total requests per time unit
generated by human visitors. In Figure 4.10. we can find that the curve corre-
sponding to the 0% active indexing case is coincident with the one associated
with the 0% with-crawler case.

[t is shown from Figure 4.10 that for a low-loaded network (when the client
arrival rate is small). the average client request delays for the 3 active indexing
cases are almost the same at the same client request arrival rate. However.
the traditional network with 20% or 40% crawler traffic still has slightly longer
average delay than that of the active network. That tells us that the traditional

network has more overall network traffic for a certain client arrival rate than

--- {Rasponse Bismick)

Crawler Response Throughput

e {tich)

Average Clent Request Delay

Traditonal network CrawlerResponse throughput vs. Total Request Arnval Rate

T T Lt T T T T T T

-

i
* Tragitional network with crawler rate=20% ———
Tramtional network with crawler rate=30% - -« |

-

o] Q001 0002 0.003 0nos 0.005 Q008 0007 0 008 30008
Total Request Armval Rate - (# of Crawier « Client Requests/tick)

Figure 4.9: Crawler Throughput in With-crawler Cases

Average Clent Request Delay vs Total Client Request Arnval Rate

: k] 13 B
1e-07 & -
r 3
1e-06 & ﬂg o
: f
[
.1
100000 = -
£ 0% active indexing case
{ 3% active indexing case
| 7% active indexing case
0% with-crawler case :
1 20% with-crawiler case - -® -
40% with-crawier case - -9 -
1m '’ i L L - - 1 o i

o] Q0005 0.001 00015 0002 00025 0003 00035 0.004 0.0045 0005 0.0055
Tatal Client Request Amval Rate -— (# of Client Reguests/tick)

Figure 4.10: Average Client Request Delay in All Cases

Average Client Request Delay vs. Total Client Request Armval Rate

1 3 I j ' i ' 4 T T T T
g el
T te-07 b P — |
= e
> L
3
[} r
e .
2
F t1e-06 | . -
S 3
c :
F L
o -
>
oy . »
5 100000 F & -e—c o weE -
<
STl achve 1@ewng ase -
7% active Ingexing case =

s} Q0005 000T 00015 0002 00025 0003 00035 0004 00045 0005 00055
Totat Client Request Arnval Rate — (# of Client Requests/tick)

Figure 4.11: Average Client Request Delay in Active Indexing Cases

Average Client Request Delay vs. Total Chent Request Arnval Rate

1e+-08 3 T T T T — T Y T T
4
a
L d
= - -
3 a = e
g 1e-07 b . T -mor — -
O
3
-]
Q
7]
2
F le-06 p
2 4
o8
]
o
&
3 - * e
2 100000 + @A - T T -
< E
o wnth-ravaer ase - o
40% wrth-crawler case -
1m A i A - 1 L o e

o] 0.0005 0.001 Q0015 0002 0.0025 0003 0.0035 0004 00045 Q.005 0.0055
Total Client Request Armval Rate — (# of Client Requests/tick)

Figure 4.12: Average Client Request Delay in With-crawler Cases

Average Crawier Request Delay vs. Total Crawier Request Ammval Rate

1e+-08 3 T T T T T T
.
-
- -
- .
S te-07 et E
. 4 -« *
>
=
2
]
]
S les08 p 5
= 4
3
2
Jd
(&)
)
<4 . ‘
$ 100000 p . -
<
VT aRtoc S P VS Lo h
40% with-crawier case -
10000 ~ L -

0 0 00as 0.001 0.0015 0002 0.0025 0003 00035
Total Chent Request Arnval Rate — (# of Crawler Requests'ick)

Figure 4.13: Average Crawler Request Delay vs. Total Crawler Request Ar-
rival Rate in With-crawler Cases

the active network. On the low-loaded network. since the svstem has enough
bandwidrh. the indexing traffic will hardly affect the performance since it is
ignorable compared with the bandwidth. Since there is relatively more traffic
introduced by crawlers. the average delavs for the traditional network are
slightly longer. Only at a verv low client arrival rate(the first point in all the
curves). do the six cases have the same average delay.

With the client request arrival rate increasing. the average delay begins to
soar at different client request arrival rates with the 40% with-crawler case the
least and both the 0% with-crawler case and the 0% active indexing case the
most. After the network load becomes saturated. the 40% with-crawler case
has the longest average delay and the 0% with-crawler case and the 0% active
indexing case have the shortest average delay.

Figure 4.13 illustrates the average crawler request delay. i.e. the average
number of simulation times for a crawler to wait to receive a response after
sending a request. The x axis represents the total crawler request arrival rate.
The graph may gives us a first impression that the 20% with-crawler case

has a higher average request delay than the 10% with-crawler case for the

Average Crawler Request Delay vs. Total Request Ammival Rate

Te-08 E ' v v T T T T T
4
-
-
- . N
g Ko lmemmm e
:_%, 1e~07 ¢ F:c"".“.'."'"— i
IS
S
-3
Q
L
=
e
2 1e-06 b |
(3
@
2
g x
3 .
c .
3
-
.‘% 100000 ¢ —— e]
Q 4
0% with-crawler case ———
2C% with-crawler case ---=---
0000 10% with-crawler case -
1 , . T

0 o] e o)} 0002 0003 0004 G 005 0006 0007 G oo8 0 00s
Total Requeast Arrval Rate (Chent - Crawler) — (# of Requests/'tick)

Figure 4.14: Average Crawler Request Delay vs. Total Request Arrival Rate

same crawler request arrival rate. However if there are 10 crawler requests
generated in a given time period. the number of total requests initiated is 30
in the 20% with-crawler system and 235 in the 40% with-crawler svstem. At
the same crawler request rate. the 209 with-crawler system should be much
more loaded than the 404 with-crawler svstem. That explains why the curve
for the 20 case seems steeper than the curve for the 10% case. \We base our
simulation on the same total client request rate. So the largest crawler arrival
rate in the 40% case is 0.0033 which is around 2.64 times 0.00125 the largest
crawler arrival rate in the 20% case.

Figure 4.14 shows the average crawler request delav versus the total re-
quests arrival rate. From the graph. we can see that the two curves are nearly
identical. This is because we are comparing the svstem performance when the
total load for the 20% case is identical to the one for the 10% case. \When
the total loads for the two systems are the same. the performance. crawler
request average delay in our case. should be the same. Then 20% of the total
load should have the same performance as 40% of the total load. although the

crawler request rates are different in the two cases.

Completed Client Request Rate vs. Total Client Request Armval Rate

1.1 r r . r .
Q% active indexing case ——
3% active indexing case ---u---
1F ﬁ—-*_..._.__..___.c_..__..‘— 7% active indexing case - & -]
. ‘e ® 0% with-crawler case &
' : *_\ 20% with-crawler case - -@ -
’ \ 40% with-crawler case - -9 -
09 Sy i
a 3
c i
€ osf i
3
2
g
& o07r 4
2
Q 06 . 4
k-4
2 &
2
g osf = 4
<
Q
03 i
03 4
02 - L I : P
o] 0001 0002 0.003 0.004 0.005 0.006

Total Client Request Arnival Rate - (# of Client Requests/tick)
Figure 4.15: Completed Client Request Rate in All Cases

Figure 4.15 illustrates the ratio of completed client requests to all the client
requests. From the graph. we can see that almost all the requests are satisfied
when the request arrival rate is small. When the syvstems get overloaded at
some point. the completed request rates begin to decrease. The rate starts to
drop down at different client request rates for different svstems and it declines
earliest in the 40% with-crawler svstem and latest in both the 04 with-crawler

and 0% active indexing systems.

4.5 Summary

We simulated two different systems: the traditional network with crawlers and
the active network without crawlers. but with indexing data sent from gate-
ways to the backend repository. From the simulation results. we achieved sig-
nificant gains in terms of the user perceived latency and the syvstem throughpur
caused by human visitors. Even in its worst case when the volume of indexing
information is 7% size of original HTML documents. the effect of the indexing
data sent to the repository is trivial compared with all the with-crawler cases.

The removal of the crawler traffic enables \Web servers to deal with human

requests more efficiently. It relieves the underlying network of the extra traf-
fic from crawlers and the rest of the data on the network can be transmitted

faster.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis. we propose a more efficient indexing syvstem than what is cur-
rently being used by search engines. Search engines rely on crawlers to collect
Web pages for their database. whereas our system uses packet monitoring on
strategic nodes on the Internet to gather information and eliminate crawler
traffic. Our approach gains significant advantages over the current one de-
ploved by search engines. Firstly. by removing the crawler traffic. the nerwork
bandwidth is saved and made available to human requests. Given the limited
bandwidth of the Internet. fewer packets will be dropped because of conges-
tion. The network will be more efficiently utilized and move the rest of the
data faster from sources to destinations. Furthermore. servers’ resources such
as CPU cycles are saved so that the servers can be dedicated to processing a
-ariety of human requests more quickly. which leads to the reduction of user
perceived latency and improves the throughput of responses introduced by
human visitors.

Table 5.1 illustrates the comparison among the client throughput in the
40% with-crawler case. the 7% active indexing case. and 0% active indexing
case with various client request rates. From the experiments on the logfiles
of our department Web server. the crawler percentage hits has a maximum
of 40.6%. so we use the 40% with-crawler case for the comparison. Table 5.1
gives us the absolute impact of both crawlers and the active indexing. A few

observations can be made from the table. Firstly. the maximum throughput

9

Client Request Rate | T in 40% with-crawler | T in 7% active | T in 0% active !
0.005000 83.417839 131.05 137.655348
0.004006 89.440071 134.20 136.615479
0.003343 92.806702 131.60 136.252182
0.003150 92.1456474 129.05 1.39.020096
0.003002 90.604248 129.90 139.023026
0.002858 89.466873 193.75 214.858551 |
0.002785 89.761986 196.05 208.978912 |
0.002721 89.966042 204.5 217.786285
0.002612 88.931145 208.4 208.285995
0.002220 87.637299 177.190292 177410156
0.002000 87.518570 159.425034 159.633148
0.001502 119.749161 119.910873 119.79900-
0.001200 95.726089 95.754204 95.773140
0.000601 17.996319 17.847134 17.957947
0.000298 23.989302 23.839081 23.906977

Table 5.1: Comparison among client throughput in 40% with-crawler. 7%
active indexing and 0% active indexing case(T represents client throughput)

in the with-crawler cases. 119 bits/tick. is much smaller than the one in the
0% active indexing cases. 217 bits/tick. The table also shows that. when the
client request rate is larger than 0.001502. all the client throughputs in the
with-crawler cases are considerably less than the ones in the active indexing
cases. \When the network is lightly loaded. the extra load caused by crawlers
does not have much impact on the network performance. in this case the
speed at which clients receive their responses back. However. with the client
request rate increasing. the network gets more congested with more responses
generated by \Web servers to be transported. The situation is deteriorated
by the excess traffic resulted from crawlers. Now let us look at the difference
between the throughput in the 7% and the 0% active indexing cases. Table 5.1
shows that the maximum throughput in 7% the active indexing cases. 208
bits/tick. is slightly smaller than the one in the 0% active indexing cases. 217
bits/tick. When the client request rate is larger than the threshold - 0.002612 -
at which point the throughput reaches the maximum in the 7% active indexing
cases. the throughput in the 7% active indexing cases is a little bit smaller than

the one in the 0% active indexing cases. Therefore. although a small amount

80

of additional index data is levied on the Internet. it does not influence the
network performance much compared to the crawler traffic. With the removal
of crawler traffic from the [nternet. it is capable of moving the Web traffic faster
caused by various human users and the user’s requests are. hence. served more
quickly.

In addition. due to the strategic location of gateway routers watching out
for passing traffic. our system can index Web pages more exhaustively than
crawlers do. Crawlers follow links on the Web to find new pages. As explained
in Section 3.3.1. the chance of a page being fetched crawlers is contingent on
its link relation to other pages and the link structure of the Web. Therefore.
soute pages are never captured. [n our scheme. each gateway takes charge of
pages on the servers in its adjacent stub networks. Therefore. each page on
the Internet has an opportunity to be retrieved regardless of its link relation
to other pages.

Apart from the existing statistical data used in responding to a user query
by search engines. our approach also can fetch dynamic data about a page.
such as the number of visiting times globally per unit time. The dvnamic data
about a page. can be used in conjunction with the existing statistics to rank
the query results. In this way. the results ranked on the top tend to be of most
interest to users.

Finally. although our indexing svstem obviates the need of crawlers. hence
removes the crawler traffic from the Internet. the system is not able to capture
two types of Web resources. One type is new pages which have not been visited
by human clients. The other one is those pages which have been indexed
before. but have been modified and have not been requested by clients since

the modification.

5.2 Future Work

There are several issues we want to address about future work. We use dribble
mode to deliver the indexing data from gateways to the backend repository.

The indexing data is transmitted at a rate so that gatewavs use the same

81

amount time to send the indexing traffic as what has elapsed to accumulate
it. To put it briefly. gateways constantly forward indexing information to the
repository. When the network is lightlyv loaded. the constant extra traffic does
not pose a significant load to the network. However. if the network is already
overloaded. the extra traffic may deteriorate the situation. In real life. the traf-
fic load on the Internet varies from time to time. One possible future research
venue is to adjust the transmission rate according to the current condition of
the network. During the periods of low network load. gateways could send the
indexing data at a higher rate. If the traffic gets heavier. gateways would not
send data or send data at a lower rate until the network becomes uncongested
again. Under different network conditions. it might be possible for gateways to
optimize the transmission rate of indexing information both in theory and in
practice. Factors taken into account include current network workload. desired
updating rate of the database. the volume of the indexing data to be delivered
and how much the network performance would be degenerated. Therefore. we
could make a good trade-off between the deterioration of network performance
as a result of immediate transmission of indexing data by gateways and the
freshness of our collection about Web resources.

In order to see how much achievement has been gained by using our ac-
tive indexing syvstem. our experiments were conducted on a simulation tool -
SMURPH rather than on a real-world network. It would be interesting to do
experiments on real networks. \We could either set up a small scale network or
use the current Internet backbone as our testbed.

In Chapter 3. we described a novel indexing system. But we only simu-
lated the traffic volume in different cases and gave our analysis about network
performance. The real implementation of the whole svstem was not done. such
as the construction of HTTP messages from actual IP packets. building the
inverted index from Web pages. gathering statistical data about Web pages.
and so on. It would be desirable to implement and test the whole system
under real-life conditions.

Our scheme is only able to keep up-to-date those pages which have been

seen by gateways after its most recent modification. If some pages have been

82

modified recently after thev were last seen by gateways. the indexing system
will not realize those pages in the database are already out-of-date. Also for
those new pages which just appeared on servers and have not been requested
by human visitors. gateways will not be able to catch these kinds of resources.
To solve these problems. in addition to gateways passively watching out for
passing traffic. each gateway could actively issue queries regularly to the servers
in its stub-network and ask them to send new and recently modified pages
to the gateway. Of course. this would involve closed cooperation between a
gateway and its corresponding servers. In this wayv. we combine the passive
monitoring of gateways and the active queries with servers to maintain our
database as up-to-dare as possible. We call this kind of scheme a hyvbrid
approach.

Section 3.3.5 shows that if we build an index for all the passing pages
whether thev have been modified or not. the resultant indexing data is abour
7% the size of original HTML documents. Usually a Web page should be
visited more than once in its life span. Hence. if we onlyv index a page once
before it gers updated. the resulting index data should be less than 790 the
size of Web resources in HTML. However. we do not know how much less than
7% of the original size it will be. Also from Section 3.3.3. we already know
the average change frequency of a page in its category. If we can find out the
average number of hits for a page in its life span and the distribution. we would
be able to model our simulation more accurately and ascertain how exactly

efficient our indexing scheme is.

83

Bibliography

[10]

P. Gburzyuski. "Protocol design for local and metropolitan area net-
works™. Prentice Hall. 1996.

| J. Cho. H. Garcia-NMolina. "Synchronizing a database to improve fresh-

ness . In Proceedings of the International Conference on Management of
Data. 2000. hetp: //www-diglib.stanford.edu/cgi-bin/get /SIDL-\WP-1999-
(116.

J. Cho and H. Garcia-Molina. " The evolution of the web and implications
for an incremental crawler™. In Proc. of 26th Int. Conf. on Very Large Data
Bases. pages 117-128. September 2000.

R. Jain. "The Art of Computer Syvstems Performance Analvsis: Tech-
niques for Experimental Design. Measurement. Simulation. and Model-
ing.” Wilev-Interscience. New York. NY. April 1991.

K. Claffy. G. Miller. and K. Thompson. The Nature of the Beast: Re cent
Traffic Measurements from an Internet Backbone. In Proc. INET. .July
1998.

A. T. Campbell. H. G. De Meer. M. E. Kounavis. K. Miki. J. B. Vin-
cente. and D. Villela. " A survey of programmable networks. © Computer
Communication Review. vol. 29. no. 2. pp. 7-23. Apr. 1999.

S. Bharttacharjee. Active Networks: Architecrures.
Composition. and Applications. Ph.D dissertation.
hetp://www.cc.gatech.edu/projects/canes/bo bby/dissertation.html.

K. Calvert. editor. Architecture Framework for Active Networks. h
ttp://www.cc.gatech.edu/projects/canes/papers/arch-1-0.pdf.

M. Hicks. P. Kakkar. J. T. Moore. C. A. Gunter. and S. Nettles. Ne
twork Programming Using PLAN. http://www.cis.upenn.edu/ switch-
ware/papers/progpl an.ps.

M. Hicks. J. T. Moore. D. S. Alexander. C. A. Gunter. and S. M. N
ettles. PLANet: An Active Internetwork. [EEE INFOCOM!. New York.
1999. http://ww w.cis.upenn.edu/ switchware/papers/planet.ps.

84

[11]
[12]

13]

[16]

[18]

[19]

“"Caml home page.” pauillac.inria.fr/caml/index-eng.html.

A. Rappaport. Robots. Spiders and Crawlers. how Web
and Int ranet search engines follow links to build inderes.
htep://www.inktomi.com/prod ucts/search/support/docs/wp-
spider/default.htm.

R. Fielding. Hpertexrt Transfer Protocol - HTTP/1.1. RFC 2 616. June.
1999.

ftp://ftp.isi.edu/in-notes/rfc2616.txt

S. Brin. L. Page. The Anatomy of a Large-Scale Hypertertual Web Search
Engine. WWW7T /Computer Networks 30(1-7): 107-117(1998).

5] B. Krishnamurthy. J. Rexford. Web Protocols and Practice. HTTP/1.1.

Networking Protocols. Caching. and Traffic Measurement. July 2001.
ISBN 0-201-71088-9.

A Standard for Robot Erclusion.

htep://info.webcrawler.com/mak/projects/robots/norobots.html.

7] D. L. Tennenhouse. .J. M. Smith. W. D. Sincoskie. D. J. Wetherall. G.

J. Minden. A Survey of Active Network Research. IEEE Communications
Ma gazine. Vol. 35. No. 1. pp. 80-86. January 1997.

A. Feldmaun. BLT: Bi-Layer Tracing of HTTP and TCP/IP. WWW9 /
Computer Networks 33(1-6): 321-335. 2000.

A. Tomasic and H. Garcia-Molina. Performance of inverted ind ices in
shared-nothing distributed tert document information retrieval systems.
Proceedings of the 2nd International Conference on Parallel and Dis-
tributed Inf ormation Systems. pages 8-17. January 1993.

Apache Software Foundation. http://www.apache.org.

S. Melnik. S. Raghavan. B. Yang, H. Garcia-Molina. Building a Dis-
tributed Full-Tert Inder for the Web. WWW10. pp. 396 - 406. NMay 2-5.
2001 . Hong Kong.

2] B. Ribeiro-Neto and R. Barbosa. Query performance for tightl y coupled

distributed digital libraries. Proceedings of the Third ACMI Internati onal
Conference on Digital Libraries. pages 182-190. June 1998.

] A. Broder. R. Kumar. F. Maghoul. P. Raghava. S. Rajagopalan. R. St

ata. A. Tomkins. J. Wiener. Graph structure in the web. \W\WWO_ 2000.
http: //www9.org/w9cdrom/160/160.html.

24]

E. W. Zegura. K. L. Calvert. S. Bhattacharjee. How to Mod el an [nter-
netiwork. INFOCOMI'96. Fifteenth Annual Joint Conference of the [EEE
C omputing Societies. Networking Next Generation.. Proceedings IEEE.
Vol.2. 1996.

P. Gburzynski. Protocol Design for Local and Metropolitan Area Ne
tworks. Prentice Hall. 1996.

Z. Liu. N. Niclausse. and C. Jalpa-Villanueva. Web Truf-
fie M odeling and Performance Comparison Between HTTPIL.0
and HTTPI.l. In System Perfo rmance Evaluation: Method-
ologies and Applications. August 1999. htrp://www.-sop. in-
ria.fr/mistral /personnel/Zhen.Liu/Papers/wagon_perf99.ps.gz.

| H. Choi. J. Limb. A Behavioral Model of Web Truffic. Proce edings of

the Seventh Annual International Conference on Network Protocols. 1999
hetep://users.ece.gatech.edu/ hkchoi/model.pdf.

86

Appendix A

The Ocaml code that
implements all the services:

open Hashtbl
open Rwlock
open Activehost
open Indextbl
open Basis

(= Configuration constants *)
let index_store_size = 200 (* max num packets to keep track of =)

(* indexing table located on the router =)
let itbl: (Activehost.activehost, index_info) Hashtbl.t =
Hashtbl.create index_store_size

(* lock for the index table itself =)
let itbl_rwl: Rwlock.t = Rwlock.create()

let savehsh(mykey, dest) =
try(
with_read itbl_rwl
(function _ -> Hashtbl.find itbl dest) (); false
)
with Not_found ->(

with_write itbl_rwl
(function _ ->
Hashtbl.add itbl dest {keynumber = mykey;
dests = dest; rwl = Rwlock.create()}

87

) O;

true)

let get_index_hsh () =
let indice = ref [] in
with_read itbl_rwl

(function _ -> Hashtbl.iter (function _ ->
function ide -> with_read ide.rwl
(function _ ->
indice := (ide.keynumber, ide.dests)::(!indice)
0)) itbl) O;
!indice

let delete dest =
with_write itbl_rwl
(function _ -> Hashtbl.remove itbl dest) ()

let empty_indextbl() =
Hashtbl.clear itbl

38

Appendix B

The Wrapper which maps
service names to their
corresponding functions

open Activehost
open Basis

open Eval

open Services
open PlanExn
open Indextbl
open Rwlock

(= interface function =)
let save_dest_hsh (p,l) =
match 1 with
(Key(h,i); Host dest] ->
Bool(Savehsh.savehsh((h,i),dest))
| . -> typecheck_args "saveDestHsh" 1 [KeyType; HostTypel]; Unit

let get_index_hsh(p,1l) =
match 1 with
g -
VList (List.map
(function((h,i), ho) -> VTuple [Key(h,i); Host hol)
(Savehsh.get_index_hsh()))

| . -> raise (ExecException(ArgMismatch("getIndexHsh", List.map
(function v -> Val v) 1, 0)))
let delete_dest(p,l) =
match 1 with
[(Host h] ->

89

(try
Savehsh.delete(h);
Unit
with Not_found ->
raise (PLANException "NotFound"))
| _ -> typecheck_args "delete" 1 [HostTypel; Unit

let empty_indextbl(p,l) =
match 1 with
(J -> Savehsh.empty_indextbl(); Unit
| _ -> typecheck_args "emptyIndextbl" 1 []; Unit
let register_svecs() =
register_svc("saveDestHsh" 6 save_dest_hsh,Some "(key, host) -> bool");
register_svc("getIndexHsh", get_index_hsh, Some "void -> (key * host) list")
register_svc('delete", delete_dest, Some "host -> unit");
register_svc("emptyIndextbl", empty_indextbl, Some "void -> unit")

90

Appendix C

A PLAN packet that invokes
service ’saveDestHsh”

(* save the destination in the index table on the intermediate nodes =)
fun pp(s, where) =

(print(s);

print(where);

print("!\n")

)

svc generateKey: void -> key
svc saveDestHsh: (key , host) -> bool
svc getIndexHsh : void -> (key * host) list

fun savedest(dest:host) =
(if (thisHostIs (dest)) then ()
else (
let val keyl = generateKey()
val nextdev = defaultRoute(dest) in
(
(if (saveDestHsh(keyl,dest)) then
OnRemote(|ppl ("the destination has been saved on ",
thisHostOf (getSrcDev())), getSrc(), getRB()/10, defaultRoute)
else OnRemote(|ppl("The same entry exists on ",
thisHostOf (getSrcDev())), getSrc(), getRB()/10, defaultRoute));
OnNeighbor(|savedest| (dest), fst nextdev, getRB(),
snd nextdev)
) end
)

91

