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Abstract

Multiuser multiple-input multiple-output (MU-MIMO) antenna techniques and

heterogeneous network (HetNet) layouts are two promising approaches to dra-

matically increase throughput in future cellular networks to meet the exploding

demand for ever higher data rates. HetNets increase capacity of cellular sys-

tems by employing dense layouts of various types of base stations (BSs) in the

coverage area. MU-MIMO techniques increase spectral efficiency by enabling spa-

tial multiplexing of data streams transmitted to/from different users. However,

effective MIMO spatial multiplexing is achievable only at relatively high signal-to-

interference-plus-noise ratios (SINRs). To maximize their capacity, conventional

cellular networks are designed to operate at low SINRs. Hence, mitigation of

inter-cell interference is required to obtain the benefits of MIMO spatial multi-

plexing. The most promising approach to achieve it is network coordination.

In this thesis, downlink transmission in a coordinated MU-MIMO HetNet is

considered. We investigate the application of simulated annealing (SA) and parti-

cle swarm (PS) algorithms to perform user scheduling in a cluster of coordinated

network nodes. Our proposed SA and PS algorithms are able to perform in dis-

crete value search space to select users and determine their encoding order for

various precoding methods. Moreover, a hybrid algorithm combining the traits

of PS and a greedy scheduler is also proposed. We demonstrate that performance

of the proposed algorithms, in terms of the achievable sum rate, is close to that

of the optimal search at much lower complexity.

To mitigate inter-cluster interference, we develop a rotating clustering scheme,

which increases average achievable throughput to cluster-edge users. Considering

two different cellular layouts, different rotating patterns of clusters are introduced
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and the performance of the network with the proposed clustering patterns is in-

vestigated. Our simulations demonstrate the effectiveness of the proposed cluster

rotation approach and determine the speed of rotation, beyond which any further

performance gains become negligible.

Lastly, we investigate the behaviour of our proposed user scheduling algo-

rithms with temporally correlated channel gains. We further develop our user

scheduling algorithms to take advantage of temporal correlation of channel gains

to improve their convergence rate and achievable throughput. Our user schedul-

ing algorithms designed specifically for temporally correlated channels perform

very close to the optimal exhaustive search at significantly reduced complexity.
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Chapter 1

Introduction

Basic ideas of cellular radiotelephony go back to 1950s and 1960s by considering

the concept of cellular that is by breaking the coverage area into non-overlapping

cells (i.e. subareas) to enable frequency reuse to overcome the problem of insuf-

ficient availability of the useful radio frequency spectrum [1, 2]. The first com-

mercial cellular telephone system, the NTT system, was introduced in Japan in

1979 [1, 3], as the first one in the first generation (1G) of cellular systems. This

system was analog and provided only voice service. Digital cellular system in-

troduced in second generation (2G) with improved capacity and more reliable

services [1,3]. The first 2G system was GSM (a European standard first deployed

commercially in Finland 1991), which became dominant globally. Integrating

multimedia services in third generation (3G) standards and beyond including

a combination of text, audio, images, data, and video streams into the cellu-

lar system provides adequate services to the users. But multimedia needs high

data rates and more bandwidth should be specified to a specific communication

link. The forth generation (4G) has been developed to increase the capacity

and decrease the network latency by introducing multiple-input multiple-output

(MIMO) techniques, heterogeneous networks (HetNets), coordination techniques,

etc. Long-term evolution (LTE) of 3G standard [4] (introduced in late 2009) and
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Figure 1.1: Global mobile data traffic [6]

its later enhancement, LTE-Advanced, were introduced and completed by 3GPP

by 2011 [5]. LTE-Advanced standard meets or exceeds the requirements specified

by ITU in the IMT-Advanced set of requirements for 4G cellular system.

The wireless networks experience ever-increasing demands for data services.

In 2015, global mobile data traffic grew an estimated 74% and global mobile de-

vices and connections grew to 7.9 billion. The mobile data traffic is expected to

grow at a compound annual growth rate (CAGR) of 53% from 2015 to 2020 [6]

(see Fig. 1.1), approaching 30.6 exabytes per month by 2020 (an eightfold in-

crease over 2015). It is also expected that the global mobile devices and con-

nections grow to 11.6 billion by 2020; there will be 8.2 billion personal mobile

devices (which mostly will be smart phones) and 3.2 billion machine-to-machine

(M2M) connections (e.g., GPS systems in cars, or medical applications making

patient records, etc.) [6]. Smart phones will share nearly 50% of total devices

and connections, and M2M mobile connections will reach 26% by 2020 [6]. More

than proliferation of smart phones, which enables various high data traffic load

applications, and M2M connections, the other reasons for this huge increase in
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data traffic are such as the increase in traffic load of video applications, inter-

net of things, and so many unforeseen expected applications. Exploding demand

for ever-higher data throughputs in cellular networks is one of the main drivers

behind their current evolution toward the 5th generation (5G) [7]. All these in-

cremental improvements and possibly the use of new spectrum require advanced

radio resource management (RRM). The objective of RRM is to utilize the lim-

ited radio resources as efficiently as possible, which is a major challenge in the

design of modern cellular networks.

1.1 Heterogeneous MIMO Cellular Networks

Multiple antenna transmitters and receivers introduce spatial degrees of free-

dom in addition to frequency and time resources in data transmission, and have

been an essential part of current cellular network standards such as LTE [4] and

LTE-Advanced [5]. MIMO techniques provide diversity (improve link reliability)

and spatial multiplexing (increase spectral efficiency) gains by exploiting rich

scattering in radio channel [8, 9]. In a single-user MIMO (SU-MIMO) with N

transmitting and M receiving antennas, the capacity is scaled linearly by the

min(N,M) compared to the capacity of a single antenna transmission (known

as single-input single-output or SISO) [9]. The high spectral efficiency gains

achievable with MIMO spatial multiplexing are primarily achievable in the high

signal-to-interference-plus-noise-ratio (SINR) regime and rich scattering propa-

gation environment.

Multi-user MIMO (MU-MIMO) systems are able to simultaneously serve mul-

tiple users each equipped with a single or multiple antennas (it increases capacity

by exploiting multi-user diversity) [10]. In a cellular system with multiple users,

using MU-MIMO can significantly improve the spectral efficiency of cellular net-

work. However, some requirements should be considered. First, users cannot
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cooperate with each other to receive their signals in downlink. Thus, precoding

at the transmitters is required to minimize the multi-user interference (MUI) so

that the downlinks can operate in high SINR regime. In MU-MIMO cellular

system, there is a large pool of users requesting service, and the system cannot

support simultaneous and interference-free transmissions to unlimited number of

users. Hence, scheduling of transmissions is necessary, as the second requirement.

By nature of the design of cellular networks, the system performance is in-

herently interference-limited, meaning that inter-cell interference is a very serious

problem in the design of these systems. Multi-antenna base stations (BSs) are par-

ticularly adversely affected by this problem, thus this inter-cell interference must

be mitigated. As a solution to mitigate the inter-cell interference, coordinated

multi-point (CoMP) transmission/reception, also known as network MIMO, has

been investigated in the literature, in which several BSs of a cellular system can

transmit in a coordinated manner to reduce the inter-cell interference [11–14].

CoMP techniques are classified into coordinated scheduling/beamforming, joint

transmission (JP), and dynamic cell selection; they are described in detail in

Section 2.4. The joint transmission can achieve the highest throughput perfor-

mance among all these three [13]. Any cooperating subset of BSs among all BSs

of the network is defined as a cluster. To achieve the most possible throughput,

antennas of multiple BSs of this cluster are able to transmit jointly as a single

antenna array. Each mobile may receive useful signals from several nearby BSs

that employ joint precoding and user (or data stream) scheduling [13–16].

Traditional cellular networks are homogeneous networks in which all BSs are

identical with similar transmission features like transmitted signal power, approx-

imately similar cell sizes, etc. Traditionally, macro BSs provide network coverage

to a geographic area. With ever increasing demands for higher rates of data ser-

vices, the existing cellular designs are approaching their limits rapidly. Further

improvement in spectral efficiency gain is possible with increasing the density of
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BSs and imposing various changes on the design of their deployments. Increasing

the number of macro BSs, specifically in already dense networks, is very difficult

due to expensive costs and lack of available sites [17]. Besides, large number of

users demanding very high levels of data traffic is another challenge for operators

to face with [17].

To solve these challenges, the utilization of low-power BSs, such as pico and/or

femto BSs, is suggested in the literature [17–22], as a component of dense hetero-

genuous networks (HetNets) [17, 19–21]. HetNets include cells of widely varying

sizes with different transmitted powers and possibly overlapping, from macro-

cells to pico and femto BSs, relays, and/or remote radio heads (RRH), operating

within the same frequency band [17–22]. Each different network tier (or type

of cell) may also experience different conditions, such as path loss exponents,

various geographical distributions, different transmitting powers, etc. As an ex-

ample, the macro BS transmission power is usually in ranges from 5 W to 40

W, for the low-power low-cost pico BS for outdoor applications it ranges from

250 mW to about 2 W, and indoor femto BSs are transmitting at less than 100

mW [17,19]. Femto BSs are usually installed by users in their own premises and

have no installation/maintenance fees for service providers.

Utilizing different transmitting powers, BSs create challenges like imbalance

between uplink and downlink [19]. Also, a mixture of open and closed subscriber

access nodes requires to establish new strategies to use time and/or frequency re-

sources shared with macro BSs to avoid of creating lacking coverage; the strategies

can assign same or different frequency bands for macros and other low-power ele-

ments as well as manage the time-frequency resource block assignment [19]. The

deployment of a HetNet, in which all various types of BSs are working in the same

frequency band, is known as co-channel deployment [18,19]. This is the favoured

deployment option, because it does not require additional radio frequency spec-

trum, requires low-cost low-power BSs as well as lower cost user devices to be

5



Figure 1.2: Illustration of two different layout deployments for cellular HetNet
(a) deterministic hexagonal grid model (b) random spatial model. (cf. [18])

used [19]. Thus, the inter-cell interference coordination techniques are especially

important for HetNet, because of their potential ability to reduce interference.

To model the deployment of BSs in a HetNet, two approaches usually used: de-

terministic (e.g. hexagonal grid model) and spatially random models, as depicted

in Fig.1.2. In deterministic approach, the location of BSs and their corresponding

distances, the number of each type of BSs in the network and other parameters

are known and fixed. The hexagonal cell shape design is a common method to

model the coverage area of BSs to tile whole network area. While the network

is getting more dense, the cell design is becoming more irregular specially with

low power nodes overlaid on the macro-cell area possibly with opportunistic dis-

tribution [18]. Thus, stochastic geometry tools have been introduced to model

multi-tier HetNets.

MIMO spatial multiplexing is very desirable to increase the area spectral ef-

ficiency of HetNets. However, implementation of MIMO techniques in HetNets

requires mitigation of interference, which is a serious problem in HetNets. Net-

work coordination is a promising approach to achieve that; however, effective
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implementation of it in MIMO HetNets is very challenging. A combination of

CoMP and/or MIMO in HetNets, named as coordinated MIMO HetNets, is a

research topic of interest [22–25], and these types of networks are inevitable so-

lutions for future networks.

1.2 Radio Resource Management

Radio resources; e.g. bandwidth and power, are very limited and need to be suit-

ably allocated and managed to maximize throughput and quality of service. The

strategies and algorithms to control intra-cell interference, such as user sceduling

and precoding, the inter-cell interference, such as clustering, in addition to the

other radio transmission characteristics like transmit power, data rates, etc. in

wireless communication is named as radio resource management (RRM). The ob-

jective of RRM is to utilize the limited frequency spectrum as efficiently as possi-

ble and it is a very important topic in wireless communication research [16,26–34].

The RRM techniques in terms of reduced-complexity user scheduling algorithms

and clustering approaches to increase the throughput of the network MIMO Het-

Net cellular system are also of interest.

1.2.1 Precoding

In downlink of MU-MIMO system, sum rate capacity is achieved by using dirty

paper coding (DPC) precoding [35,36] and transmitting to multiple users and re-

moving interference on each user it encodes, successively. Hence, an encoded user

will not experience any interference from other encoded users. This method re-

quires perfect channel state information (CSI) of users and non-causal knowledge

of each of the encoded users’ signals at the transmitters. Using DPC, transmit-

ter can determine the optimal power covariance matrices for each user to reduce

the MUI. Thus, DPC is an optimal precoding method; however, it is extremely
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complex and difficult to implement, and lower complexity precoding methods are

desired.

Linear precoding methods are significantly less complex, though suboptimal,

compared to DPC method. In linear precoding, also known as beamforming, the

signal of each user is independently multiplied by a certain beamforming weight

vector(s) across the multiple antenna transmitter(s). We discuss the technical

aspects of various linear precoding methods in more detail in Chapter 2.

1.2.2 User Scheduling

As we already mentioned, multiple users can be served simultaneously in MU-

MIMO system; however, the upper limit to the number of users that the trans-

mitter can transmit simultaneously is relatively low, and it is usually related to

the number of transmit antennas; i.e. N (when using DPC). Since in most prac-

tical multi-user cellular systems the pool of users requesting service is usually too

large, that limit is very likely to be reached. Moreover, using multiple antenna to

eliminate MUI decreases the number of simultaneously served users. Hence, the

scheduling of users’ transmissions at BSs is further necessitates for practical MU-

MIMO cellular systems to guarantee that all users can receive the data service in

optimized fashion.

An exhaustive search over all possible subsets of users is the optimal user

scheduling method, but it is extraordinarily complex and rapidly becomes infea-

sible as the number of users increases. Furthermore, some precoding methods are

sensitive to the order in which users are encoded, and complexity of exhaustive

search will further increase, since all the possible encoding orders must also be

searched. Thus, reduced complexity user scheduling algorithms, capable of pro-

viding performance close to that of an exhaustive search, are required. Design of

reduced complexity user scheduling algorithm is a complex precess and requires to

consider various factors, which are discussed in Chapter 2, and more specifically
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Figure 1.3: Clustering methods (a) fixed cluster, (b) dynamic cluster at sample
time t.

in Chapter 3 and Chapter 5.

1.2.3 Clustering Approaches

In practical cellular system, the number of BSs in the system is very large and they

are usually distributed in a large wide area (like a city); thus, it is unnecessary

and impractical to coordinate transmissions of all BSs of the system altogether.

Thus, the clusters of BSs are formed to employ CoMP transmissions. Various

clustering patterns can be created using different methods.

In a fixed pattern, the sets of BSs that form clusters are static [11]. This

method has comparatively low complexity and overhead, which is presented in

Fig.1.3(a). While clustering BSs generally improves the SINR, poor conditions

previously experienced by cell-edge users are not completely removed, but instead

translated to cluster-edge users, and these users are still suffer from inter-cluster

interference (ICI) and achieve low throughputs. Beyond this, in dynamic cluster-

ing [37–41] the size and/or shape of the clusters and their constituent BSs change

over time (Fig.1.3(b) depicts this method for a sample time t). Of course, this

method has high complexity of processing and signalling between the BSs as the

9



clusters are formed, but it can vastly improve the performance of the system by

introducing variability of clustering patterns in time.

1.3 Thesis Objectives and Organization

1.3.1 Motivation and Objectives

Network MIMO HetNets are a promising approach to meet ever-increasing de-

mands and performance expectations of the next generation of cellular networks,

as mentioned. Considering the heavier traffic load typically seen in cellular net-

works on the downlink compared to the uplink, and also the more challenging

features of the downlink like the need to have precoding and user scheduling, this

work focuses on the downlink of network MIMO HetNets. In this thesis, joint

transmission coordination on the downlink of multi-cell MU-MIMO cellular Het-

Nets is considered. However, the combination of joint transmission and MIMO

technique in cellular network with various types of BSs becomes even more chal-

lenging. Interference is a very important factor which affects the performance of

these systems severely. The design and development of practical techniques to

mitigate interference is one important aspect of RRM techniques. Some of these

challenges are briefly discussed in previous sections.

User scheduling in MU-MIMO systems has been investigated to some extent

in literature, but generally developing reduced-complexity and high-performance

algorithms, which are able to perform close to exhaustive search with faster search

speed, is of high interest. More specifically, developing efficient RRM techniques

for coordinated multi-cell multi-user MIMO HetNets attracted interest of the

research community recently; however, many limitations and research gaps in

design, analysis, and other issues are yet remained and required to be addressed.

A cluster of HetNet BSs coordinates user scheduling, precoding, and trans-

missions from their antennas as a single virtual array, reducing the intra-cell in-
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terference for users within the cluster. However, interference of transmissions in

different clusters degrade the performance throughput of these networks, and be-

come very challenging. Existing clustering methods, which are static or dynamic,

have mostly been investigated for homogeneous cellular networks, in which all

BSs have similar transmission characteristics. The clustering methods for coordi-

nated HetNet, which can reduce ICI with reduced complexity, are also of interest,

but their design and analysis are required to be addressed.

This thesis targets these problems, and attempts to exploit different RRM

techniques such as introducing proper user scheduling algorithm or clustering

technique to achieve closer to the full potential of multi-user multi-cell MIMO

HetNets under variety of conditions. A goal of this research is to further investi-

gate scheduling methods. Another goal of this research is targeting the clustering

methods in multi-user multi-cell MIMO HetNets. The objective of this thesis is

three-fold:

• Proposing reduced complexity user scheduling algorithms for coordinated

HetNets designed to operate in the discrete-valued search space of user

indices, which are capable of scheduling different encoding orders for the

selected users.

• Proposing new cluster formation approach, cluster rotation, and its inves-

tigation for different network layouts, analysing its performance, and eval-

uating the possibility of adapting the cluster rotation to various network

layouts.

• Investigation of the proposed user scheduling algorithms for temporally cor-

related channel; investigation of whether the correlation can be exploited to

help the user scheduler make its decisions, improve its performance in terms

of achievable sum rates, reduce complexity of the algorithm by decreasing

the required number of iterations, etc.
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1.3.2 Thesis Outline and Contributions

In this thesis, we focus on different RRM methods to improve the performance of

the downlink of a multi-cell multi-user MIMO HetNet in terms of the achievable

throughput. The background on MIMO techniques, precoding methods, user

scheduling algorithms, and other related topics is covered in Chapter 2. The

main contributions of this research are presented in Chapter 3 – Chapter 5. In

Chapter 6, we present the concluding remarks and future research directions.

• In Chapter 3, we propose different reduced complexity user scheduling algo-

rithm based on simulated annealing (SA) and particle swarm (PS) for down-

link of coordinated heterogeneous MIMO network. We investigate how the

algorithms behave using different parameters to control the algorithm, such

as convergence parameters or having memory in the algorithm. Similarly,

we propose the hybrid greedy-PS (HGPS) user scheduling method, combin-

ing the traits of greedy and PS algorithms to benefit from the properties of

both methods. These algorithms are evaluated for successive zero-forcing

(SZF), successive zero-forcing dirty paper coding (SZF-DPC), and block di-

agonalizatin (BD) precoding in terms of the maximum achievable sum rate

and their performance compared with that of exhaustive search and with

each other to investigate the best match between a user scheduling method

and a precoding method in the examined system model. All algorithms

are designed to operate in the discrete-valued search space of user indices

when selecting multiple users for simultaneous transmission (whereas a typ-

ical PS or SA algorithm more commonly operates in a continuous-valued

space). The algorithms are also capable of evaluating different encoding

orders for the selected users, an important aspect when used in systems

employing precoding methods which are sensitive to the order in which

users are encoded (i.e. successive precoding methods).
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• Using coordinated transmissions in a cluster, the users located near the

border of each cluster suffer poorer performance compared to those in the

middle of it. This problem can be alleviated by using the cluster rotation

schemes. Therefore, users have the opportunity to be located in the inte-

rior of the cluster at least for a portion of time. In Chapter 4, we propose

a rotating clustering scheme for the downlink of a coordinated multi-cell

multi-user multiple-input multiple-output system. Two layouts are inves-

tigated in this chapter: regular hexagonal cell layout with 6 sectors, and

the clover-leaf-shaped cell pattern with 3 sectors. Because of the closer re-

semblance between the cellular contour and the actual coverage pattern in

clover-leaf-shaped layout, it is more often used in modeling practical cellular

systems than the simple hexagonal layout pattern, and it is recommended

by ITU-R for IMT-Advanced as described in [42, 43]. With both layouts,

we attempt to find a suitable set of rotating patterns, which can improve

the performance of coordinated MIMO HetNets. As a general result, we

try to extend this rotating cluster idea to any possible form of cell patterns

and investigate their performance under this method. The performance im-

provement of this scheme, in terms of the maximum achievable throughput,

is analysed with both maximum throughput (MT) and proportionally fair

(PF) metrics.

• In many theoretical analyses, the block fading1 (or quasi-static) channels

are modeled as independent and identically distributed (i.i.d.) [44,45]; how-

ever, in physical reality they are temporally correlated [46–51]. Finally in

Chapter 5, considering temporally correlated (TC) channel gains, we are

interested to extend our analysis of proposed user scheduling algorithms to

1For simplicity in analysis, the fading channels are usually assumed as quasi static in each
transmission interval and named as block fading channels. In block fading channel model, it
is assumed that the channel is constant in each transmission interval, and the channels vary
independently within different blocks of transmission.
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account for the effect of the temporal correlations on their performance.

The performance of the proposed user scheduling algorithms are analiyzed

with both MT and PF metrics, in this chapter. Investigating the effect of

TC channels on the output of the user scheduler, we are interested to see

how this correlation can help the scheduler to improve its achievable sum

rates and/or to reduce its complexity. In TC channels, the channel samples

of two consecutive scheduling intervals are relatively similar to each other,

depending on the severity of the correlation of the channel. In this chapter,

we proposed techniques and some updates into our proposed user schedul-

ing algorithms to get the most advantage of TC channels in their search

process to achieve throughput even closer to exhaustive search with more

reduced-complexity. The proposed upgrades attempt to exploit the TC

characteristics of the channel gains into the user scheduler’s search process

to improve its performance.
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Chapter 2

Background

2.1 Wireless Propagation Channel Modeling

Radio signals in wireless channels between transmitter and receiver propagate

through various mechanisms including reflection, diffraction and scattering. As

a result, the wireless channels can be modeled based on various phenomena such

as path loss, shadowing, and multipath fading [3].

Path Loss: The attenuation in the power of the signal is path loss, which

is usually a function of the distance between transmitter and receiver. Path

loss is commonly modeled as being proportional to d−α, where d is the physical

distance between user and BS, and α is the path loss exponent in the range of 1.6

to 6 [1, 3]. Empirical path loss models also include additional attenuation effects

depending on the propagation environment, e.g. the carrier frequency, the heights

of buildings and antennas, the spacing between buildings, building penetration

losses, etc. [3].

Shadowing: There are usually large objects like buildings and hills in the

cellular mobile propagation environment, which cause deviations in the average

channel power gain that one would anticipate from the path loss alone. These

deviations are named as shadowing or shadow fading, which is a random variable
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(e.g. ρ) most typically modeled by a log-normal distribution [3]. Depending

on the model, the shadowing between nearby locations in the environment may

simply be considered independent, or it may have spatial correlation.

Multipath Fading: The transmitted signal propagates along multiple paths

caused by reflection, diffraction and scattering, and various copies of this signal

arrive at the receiver from many different directions with various amplitudes and

phases. The constructive or destructive combination of these copies causes rapid

fluctuations in the amplitude and the phase of received signal, which is known as

multipath fading or small-scale fading. If all frequency components of the received

signal experience the same amplitude and phase changes, the fading is called flat

fading; otherwise, it is known as frequency selective fading (various frequency

components of the signal encounter different changes in amplitude and phase).

The multipath flat fading is usually represented by a complex random variable

(e.g. z). In a rich scattering environment with no significant line-of-sight (LoS)

components, the fading amplitude is modeled by a Rayleigh distribution [3] and

thus known as Rayleigh fading. Other fading models include Rician fading (which

includes a LoS component), and Nakagami fading (which can model varying levels

of severity of the small-scale fading) [3].

Thus, the radio link between BS and user in a multipath flat fading channel

considering path loss and shadowing can be expressed as

h ∝ z
√
d−αρ (2.1)

In each transmission interval, the complex downlink channel signal strength co-

effcient h is a random variable, wherein the small-scale fading can be considered

as i.i.d. between transmission intervals. However, in reality, the channel may

exhibit temporal correlation. The characteristics of the wireless radio channels

depend on various factors such as operating frequency, propagation environment,

16



mobility of the users, etc. In a typical cellular system, the macro BSs are usually

installed on high towers to cover large cells (the radius of a macrocell is typically

about 500 m to 1 km) with their antennas usually above the local scatterers.

However, users are typically surrounded by local scatterers. Since the distance

between user and macro BS is generally large, the radio propagation is usually

assumed as a two-dimensional plane wave [3]. Due to the mobility of the users

or surrounding scatterers, the channel gains may be correlated with each other.

2.2 MIMO Techniques and Challenges

A point-to-point link between one transmitter and one receiver, each with mul-

tiple antennas, is modeled by an SU-MIMO channel. The quasi-static MIMO

channel is modeled by the channel matrix H ∈ CM×N , where N and M are,

respectively, the number of transmitting and receiving antennas. Each element

of H is given by hm,n, where it characterizes the channel between nth transmit-

ting antenna and mth receiving antenna. Transmissions through this channel

experience multi-path fading caused by movements of transmitter, receiver, or

their surrounding scatterers (known as small-scale fading). Considering the cen-

tral limit theorem, the combination of multi-path signals can be modeled with

a complex Gaussian random variable with rich scattering environment. If the

antennas of the transmitter (similarly, for antennas of the receiver) are spaced

sufficiently far apart (at least half of the wavelength), the elements of H can be

modeled as uncorrelated (for complex Gaussian random variables, it is also con-

sidered as independent variables). Thus, the elements of H are modeled by i.i.d.

complex Gaussian random variables with zero mean and unit variance. Assuming

a total transmitting power constraint P , a lower bound of SU-MIMO capacity is

achieved by sending independent data streams with the same power from each

of the transmit antennas, sometimes known as isotropic input [52]. When CSI is
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not available at the transmitter (but the receiver has perfect CSI), the isotropic

input is the good choice, and the achievable rate of this transmission is given

as [52]

log2

∣∣∣∣IM +
P

Nσ2
HHH

∣∣∣∣ (2.2)

where σ2 is the variance of the additive circularly symmetric complex Gaussian

noise.

According to information theory, the maximum spectral efficiency can be ob-

tained by having perfect CSI at both the transmitter and receiver [8, 9], i.e.,

CSIT and CSIR, respectively. The data streams are spatially multiplexed and

sent on r independent subchannels, where r is the rank of the MIMO channel1

H. The maximum SU-MIMO capacity is achieved by maximizing the sum rate

of r streams subject to the sum power allocation constraint and is given as [52]

max
Pi:

∑
i Pi=P

r∑
i=1

log2

(
1 +

Piλ
2
i

σ2

)
(2.3)

where λi, i = 1, · · · , r are singular values of H and Pi is the power allocated to

the ith eigenmode of the channel. The optimum values of Pi (i = 1, 2, · · · , r)
are obtained through waterfiling power allocation over the singular values of the

channel matrix, i.e., λi, when CSIT is available. At low signal-to-noise ratio

(SNR), all the transmit power is allocated to the strongest eigenmode (P opt
j = P ,

where j = argmaxi λi) [52]. By increasing the SNR, other eigenmodes will be

some portion of the transmit power and thus become activated. When the SNR

is sufficiently high, all r available data streams will be allocated some non-zero

power Pi subject to the sum-power constraint that appears in (2.3), where Pi is

constraint to the
∑

i Pi = P . When the system is at a very high level of SNR, the

power is allocated more or less equally among all r streams. Thus, MIMO spatial

multiplexing is most effective at sufficiently high SNR (or sufficiently high levels

1Assuming H is full rank, the rank of the MIMO channel is min(M,N).
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of SINR, when the interference from other transmissions is also considered).

At low SNR and using isotropic input, the average capacity scales linearly

with M ; thus, multiple transmitting antennas do not improve the capacity in

this case [52]. When CSI is available at both the transmitter and receiver, the

average capacity at low SNR scales with E(λ2
max(H)) [52]. In i.i.d. Rayleigh

channels, E(λ2
max(H)) is larger than or equal to max(N,M). This analysis clearly

reveals the importance of perfect CSIT to achieve high promising gains of MIMO.

An important metric characterizing MIMO spatial multiplexing is the multiplex-

ing gain, which is defined as the asymptotic MIMO capacity, when the SNR

approaches infinity [52]

lim
P/σ2−→∞

CMIMO(N,M,P/σ2)

log2 P/σ
2

(2.4)

This formula describes the number of simultaneous data streams (or interference-

free subchannels in which the streams for single user do not interfere with each

other) that can be employed to improve the capacity, by using MIMO spatial

multiplexing with no additional power or bandwidth. At high SNR, the multi-

plexing gain is given by min(N,M) regardless of CSIT availability (despite the

advantage of CSIT, the multiplexing gain at high SNR is the same with or with-

out it) [52]. This result reveals that employing multiple antennas at both the

transmitter and receiver is necessary to achieve multiplexing gain at high SNR.

It is necessary to mention that the improvement in SU-MIMO capacity due to the

availability of CSIT is usually small, whereas it becomes much more significant

in MU-MIMO [52].

The spatial multiplexing gain of SU-MIMO is limited to data streams of a sin-

gle user. In high-rank SU-MIMO transmission, this gain is limited by the number

of antennas on the user’s device [53]. In MU-MIMO systems, data streams from or

to multiple users are multiplexed and transmitted simultaneously, and the achiev-
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able rates of all users are limited by the K-dimensional capacity region, where K

is the number of users. Thus, higher throughputs are achievable with MU-MIMO

compared to SU-MIMO. The uplink and downlink channels of MU-MIMO are

modeled as the Gaussian MIMO multiple-access channel (MAC) and broadcast

channel (BC), respectively. Since in this work our focus is on the downlink, we

describe the analysis of the downlink in this part. The K-dimensional BC rate

region is given as [52]

Rπ =

{
(Rπ1 , · · · , RπK

) : Rπk
= log2

|σ2IM +Hπk

∑K
i=k Qπi

HH
πk
|

|σ2IM +Hπk

∑K
i=k+1 Qπi

HH
πk
|

}
(2.5)

where πk is the user encoded kth in the ordered permutation π of the K users,

Hπk
is the channel matrix between user πk and the transmitter, Qπk

is that user’s

corresponding transmit covariance matrix and is defined as Qπk
:= E(sπk

sHπk
), sπk

is the transmitted signal vector for the kth encoded user, and the system is subject

to the sum-power constraint
∑K

j=1 Tr(Qj) ≤ P . It is noteworthy that this rate

region is achievable using DPC precoding [35, 36, 54]. The sum-rate capacity is

the maximum possible total achievable throughput obtained by all K users and

it is given as

CMIMO(N, (K,M), P/σ2) = max
π∈S

max
Qπk

:Qπk
�0,∑K

j=1 Tr(Qj)≤P

K∑
k=1

Rπk
(2.6)

where S is the set of all possible ordered subsets among K users. The rate

Rπk
in (2.6) is obtained by using (2.5). At low SNR, the average sum rate is

expressed as O(EHk
maxk[λ

2
max(Hk)]), which means that on the BC, the MIMO

system transmits only to the user with the largest λ among all K users [52]. This

implies that the more users, the more improvement in average sum rate due to

multi-user diversity. At high SNR, the multiplexing gain achieves asymptotically

the value of min(N,KM). If CSIT is not available, then the BS cannot multiplex
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the multiple users’ signals effectively.

In an MU-MIMO network, the MUI is handled in part by the multiple an-

tennas, which in addition to providing per-link spatial diversity, also give the

degrees of freedom necessary for spatial separation of the users. According to in-

formation theory, the optimum transmit strategy for the downlink of MU-MIMO

includes MUI cancellation combined with optimized user scheduling and power

allocation [10]. MU-MIMO systems face two important challenges. First, due

to the lack of cooperation among users on the downlink, the transmitted signals

need to be precoded at the transmitter(s) to mitigate multi-user interference and

enable spatial multiplexing gains of MIMO. By exploiting CSIT, precoding ma-

trices are generated, which mitigate the MUI within the cell. Second, with a very

large number of users requesting data services, user scheduling is a necessity for

any multi-user MIMO system to guarantee that all users can receive data in an

optimized fashion with less MUI. After satisfying these requirements and assum-

ing K served users in the system, the spatial multiplexing gain of min(N,KM)

becomes achievable at high SINR.

All the above analyses indicate that the downlink of MU-MIMO can achieve

its promising gains, if it has perfect CSIT and high levels of SINR. However, in

practical systems, these requirements are not available very readily.

2.3 Precoding on Downlink of MU-MIMO

As mentioned already, the transmissions on the downlink of an MU-MIMO sys-

tem should be precoded to help to reduce the interference between users. The

multi-user MIMO BC capacity can be achieved by using DPC [35,36,54]. Stem-

ming from Costa’s research [54], if the transmitter knows about the interference

caused by previously encoded users, channel capacity would be the same as the

case that there were no interference from those users. This is an optimal and non-
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linear encoding technique to achieve the MU-MIMO broadcast channel capacity

(it requires non-causal knowledge of each user’s signal at the transmitter). How-

ever, DPC is a very complex technique which is not practically implementable.

Hence, suboptimal precoding methods with reduced complexity are of interest to

alleviate MUI. Precoding is divided into linear and non-linear techniques. In ap-

plications with multiple-antenna users, several suboptimal precoding techniques

have been introduced in the literature such as BD [55,56], SZF and SZF-DPC [30].

Suboptimal precoding techniques for single-antenna user applications have also

been investigated like zero-forcing or minimum mean-square error [10, 30].

In an MU-MIMO system with K users, the received signal yk for user k is

given by

yk = Hk

K∑
j=1

Wjsj + nk. (2.7)

where Wk ∈ CN×M is the precoding matrix and nk is the complex additive white

Gaussian noise vector with zero mean and σ2IM covariance matrix. The sum-

mation in the first term in (2.7), i.e. x =
∑K

j=1 Wjsj, is the transmitted signal.

The precoding matrices are designed to remove some or all interference between

users. In zero-forcing precoding [36], the transmitted signal is x = H†s, where s

is the data vector of all K users, and the aggregate precoding matrix is defined

by H†, the Moore-Penrose pseudoinverse of H, given by H† = HH
(
HHH

)−1
,

where H =
[
HT

1 ,H
T
2 , · · · ,HT

K

]T
is the aggregate channel matrix of all users.

The precoding matrix Wk is the kth column of H†. The aggregate precod-

ing matrix of the minimum mean-square error precoding method is defined by

HH
(
HHH+ K

SNR
IM
)−1

[57]. These two methods are sensitive to the channel esti-

mation errors, and with increasing SNR, the capacity gap between these methods

and DPC increases [58].

Under BD precoding, MUI is completely canceled at the transmitter side.

The precoding matrix of each user is designed to fall in the nullspace of (i.e.,
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be orthogonal to) the channels of all other served users [55, 56]; i.e., HkWj = 0

for all k �= j, 1 ≤ (k, j) ≤ K. This nullspace constraint results in a limitation

on the number of users that can be served simultaneously. Since the MUI is

fully cancelled for each user with BD, the order that the users are encoded in

is irrelevant; every possible ordering has the identical sum rate. In contrast, for

SZF the MUI is canceled only partially by the precoding; the signals of previously

encoded users interfere with the signals for users later in the encoding order (i.e.,

HkWj = 0 only for j > k). Because of this, the order that the users are

encoded in will affect the rates they can achieve, as well as the sum rate. The

encoding ordering of the scheduled users is thus very important for sum rate

maximization, resulting in more complexity for the scheduling and throughput

maximization problems (the latter being non-convex) [30]. Compared to BD,

SZF can achieve higher throughputs, and in some cases is also capable of serving

more users simultaneously [30].

Both BD and SZF, being linear, are suboptimal precoding methods, so their

performance in terms of the sum rate capacity is inferior to that of DPC. SZF-

DPC is also proposed in [30], which fully eliminates MUI by using both nulling

in one direction of the encoding order and DPC in the opposite direction. In

SZF-DPC it is assumed that for each user there is non-causal knowledge of the

interfering signals intended for users encoded earlier [30, 59]. Therefore, as per

the principle of DPC, the channel capacity in the presence of this interference

is the same as if said interference were not present [59]. The interference from

the remaining users (those encoded later) is nulled. Although SZF-DPC’s per-

formance is much better than BD and SZF, it still is inferior to DPC in terms of

its achievable capacity. Its chief advantage is in its lower complexity (compared

to that for DPC) of allocating power to the scheduled users to maximize the sum

rate.
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2.4 Coordinated Multi-Point Transmission Tech-

niques

A very promising approach to increase SINR on the downlink of cellular networks

without reducing the frequency reuse factor2 or traffic load is network MIMO. As

mentioned in Section 1.1, coordinated transmission can be categorized into three

different approaches. In joint transmission, antennas of multiple transmitters of

multiple base stations act together as a single antenna array, and each mobile may

receive useful signals from several nearby BSs (known as cluster) [11–14]. The

signals are jointly precoded in this cluster. This approach requires availability

at all involved BSs (transmitting nodes) of data and CSI for all simultaneously

scheduled users [13] (see Fig. 2.1(a)).

Another category of coordinated transmission is dynamic cell selection (also

known as transmission point selection) in which a single BS, which is selected

based on the maximum averaged SINR3 dynamically among all coordinating BSs,

transmits a signal towards the user while the other coordinating BSs are mute [13];

this approach is depicted in Fig. 2.1(b). The performance of this approach is

somewhat inferior to joint transmission.

Another approach to mitigating inter-cell interference, known as coordinated

scheduling/beamforming (see Fig. 2.1(c)), is simpler in that it does not require

availability of all users’ data at all BSs involved in coordination. By using CSI, the

coordinating BSs generate the beamforming vectors for their corresponding users

in order to reduce the interference within the coordinated cells. The performance

of this method is inferior to joint transmission and dynamic cell selection [13].

2This factor is a measure of how often the same frequency can be used in different areas
of the network. Using F as the number of cells which cannot use the same frequencies for
transmission, the frequency reuse factor can be defined as 1/F .

3The SINR is usually averaged over a slot (radio resource block) or subframe.
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 Coordinated Transmission

Fast Selection

Interference coordinated 
beamforming

(a)

(b)

(c)

Figure 2.1: CoMP transmission in downlink (a) joint transmission, (b) dynamic
cell selection, (c) coordinated beamforming (cf. [13]).

2.5 User Scheduling Algorithms

For the downlink of an MU-MIMO system, the upper limit on the number of

users that can be served simultaneously is equal to the number of transmitting

antennas N . This constraint is a soft limit when DPC is employed [35,36,54,60]

and the system can transmit to more than N users; however, it is not required.

In contrast, with linear precoding methods such as SZF or BD, this constraint

is a hard limit on the number of scheduled users and the system cannot support
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more than N users simultaneously [55, 61]. Therefore, on the downlink of an

MU-MIMO system, and more specifically on the downlink of a coordinated MU-

MIMO cellular HetNet with a very large number of users requesting service,

user scheduling is necessary. A user scheduler is primarily responsible to decide

which users should be scheduled for the next transmission. But, user scheduling

algorithms are not necessarily limited to this purpose. They can also manage the

order in which users are encoded, the amount of data (or equivalently the data

rate) that users are assigned, the power that is allocated for each scheduled user,

etc.

The optimal user scheduling method, an exhaustive search over all possible

subsets of users with all possible encoding orders, is extraordinarily complex and

rapidly becomes infeasible as the number of users increases. To determine the

optimal vector of scheduled users, exhaustive search must search over
∑N

j=1 j!
(
K
j

)
ordered combinations. Thus, reduced-complexity user scheduling algorithms that

are capable of achieving throughputs (sum rates) as close as possible to optimal

are of interest.

Various heuristic scheduling methods try to find a reduced-complexity near-

optimal solution. In a greedy algorithm, as an example, when each user is selected,

the incremental gain of the scheduling metric is maximized. The metrics consid-

ered by some greedy algorithms (e.g. [26, 27, 56]) include the channel capacity

or sum rate, channel gains or norms, and/or the amount of interference caused

to the other scheduled users. There are other scheduling metrics, which try to

maximize the system throughput under different constraints such as delay [62] or

the minimum achievable throughput per user [63]. Metaheuristic stochastic op-

timization is another category of techniques, which includes genetic algorithms,

simulated annealing, and particle swarm optimization methods. The first of the

three, the genetic algorithm, is inspired by biological evolution, with the solu-

tion evolving over time towards the optimal one. In [31,32], schedulers based on
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genetic algorithms are proposed.

Simulated annealing is another stochastic optimization technique to find a

solution among a wide range of candidates, and is inspired by the metallurgical

process of annealing [64]. This process involves heating and controlled cooling

of a material to improve its crystal structure. The SA algorithm searches ran-

domly among neighbouring candidate solutions. It is capable of escaping from

local optima in favour of searching more solutions for the global optimum (or at

least a better suboptimal solution) by using an acceptance criterion that defines

the probability of accepting a worse solution than the current candidate (better

solutions are always accepted). During the algorithm iterations, this probability

is decreased gradually by a temperature parameter that is analogous to the cool-

ing in annealing. In [65], a related SA algorithm for data stream scheduling in

a single-cell MIMO system is described. Earlier works [29, 66] on SA-based user

scheduling (also jointly optimizing adaptive modulation and coding for the users)

only considered a single cell with a single user being scheduled per resource block,

with no capability of spatial multiplexing for simultaneous transmission to more

than one user per resource block; the algorithms also could not account for a user

precoding order.

In 1995, Kennedy and Eberhart proposed the particle swarm optimization

technique by simulating the collective intelligence and social behavior that exists

among some species of animals and combining it with evolutionary computational

methods [67–69]. When solving a problem with PS, initial swarms (made up of

candidate solutions referred to as particles) explore the search space of the prob-

lem iteratively to find solutions, by considering a velocity and location in the

search space for each particle. The particles’ movement is influenced by both

the best solution found by each individual particle, and the best overall solution

of the swarm [67–69]. In [70, 71], PS-based user schedulers are proposed. Their

solution structure assigns a continuous-valued “fitness” variable (between 0 and
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1) to each user to indicate how good of a choice that user is to be scheduled.

However, that value of fitness for each user seems largely unrelated to the value

of the utility function being optimized, and there appears to be nothing prevent-

ing the fitness value from departing from the valid range of 0 to 1. Moreover, the

algorithms do not directly adapt the number of scheduled users (instead always

scheduling the maximum number possible), nor again are they capable of con-

sidering an encoding order in their described design4. (Zero-forcing precoding is

applied in [70,71] and thus the users’ order of encoding is not important therein.

However, consequently the proposed PS algorithms in [70, 71] cannot be applied

to successive precoding methods.)

2.6 Scheduling Criteria

Generally, in any system throughput analysis, and specifically in MU-MIMO sys-

tem analysis, two scheduling metrics are most commonly considered: the max-

imum throughput (MT) and the proportionally fair (PF) metrics. For the MT

metric, the scheduler attempts to select and allocate radio resources to those users

with the highest supportable data rates, in which their achievable sum rate is the

maximum among all other permutations of users [72]. In each scheduling interval,

the MT metric maximizes the sum rate, which is given as
∑K

j=1 Rk, where Rk is

the kth user’s achievable rate; this metric achieves the highest possible capacity

for the system.

In any wireless network, some users experience very poor channel conditions.

Thus, their achieved rates are small and consequently they might be selected by

an MT scheduler less often (or potentially never be selected) unless their channel

conditions improve, the channel conditions of the served users deteriorates, etc.

MT scheduling focuses solely on aggregate throughput and does not take into

4In general, user scheduling algorithms often do not include this ordering aspect, whether
they are based on metaheuristic stochastic optimization techniques or otherwise.
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account the fairness among users. Thus, service starvation is a possible scenario.

Hence, some compromise between fairness and throughput is required.

The PF metric, in contrast, is based upon maintaining a balance between

the maximum system throughput and user fairness [73–75]. A PF scheduler

maximizes the utility function given as
∑K

j=1 log2 R̄k, where R̄k is the average

long-term throughput of the kth user [73]. This is accomplished by assigning each

data flow (i.e. each user in our context) a scheduling priority that is inversely

proportional to its anticipated average resource consumption. In the PF metric,

each user has a weight related to its priority for being chosen by the scheduler,

and the scheduler adjusts each weight based on the average achieved rates over

the user’s history. A PF scheduler chooses those users whose instantaneous rates

relative to their average rates are better than the others, and uses a weighted

sum rate as its utility function given as [73, 74]

K∑
k=1

μkRk (2.8)

where μk is the priority weight of the kth user and is defined as μk = 1/R̄k, and

R̄k is the average throughput approximated by a moving average window over

the past tc scheduling intervals. The value of R̄k is updated for each upcoming

scheduling interval, i.e. the (t+1)th scheduling interval, when the kth user’s rate

at scheduling interval t has been decided, and it is calculated by [73–75]

R̄k(t+ 1) = (1− 1

tc
)R̄k(t) +

1

tc
Rk(t) (2.9)

If user k is not scheduled at time t, then the rateRk(t) is 0 for that user in (2.9).

Using the PF metric, if a user has been selected by the scheduler often, its weight

for the next interval will be decreased (as its average rate increases), i.e. its chance

to be chosen in the next scheduling interval diminishes. Meanwhile, another user

29



with worse channel conditions may have more opportunity to be scheduled in

the next interval simply by having higher weight. This method provides more

fairness in the network among all users. It is noteworthy to mention that MT

can be considered as a special case of weighted sum rate maximization, which is

defined by setting μk to a constant value of 1, for all users.
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Chapter 3

Reduced-Complexity User

Scheduling Algorithms for

MIMO HetNets

3.1 Introduction

With the constraint on the maximum number of scheduled users in a MU-MIMO

system, researchers and designers of coordinated multiuser multi-cell MIMO Het-

Nets with very large number of users requesting data are enthusiastically seeking

reduced-complexity high performance user scheduling algorithms. As mentioned

earlier, the optimal user scheduling algorithm exhaustively searches all possible

choices, which is very complex especially for a large pool of users. Various heuris-

tic scheduling methods have been introduced in the literature that try to find a

reduced-complexity algorithm capable of providing performance close to that of

an exhaustive search [26, 27, 31, 32, 56, 65, 76]. One example of such methods is

the category of metaheuristic stochastic optimization techniques. These methods

involve random elements to guide their movement through the search space of the

problem, and are able to find a good solution to the optimization problem. In
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practical systems, we also require finding a good solution as often as each trans-

mission interval; thus, the generally high speed of these techniques in arriving at

a solution makes them attractive for use in the context of scheduling. Simulated

annealing (SA) and particle swarm (PS) are two examples of reduced-complexity

metaheuristic optimization approaches for user scheduling. However, implement-

ing these methods for the multi-user multi-cell MIMO HetNet is difficult and

requires research.

3.1.1 Motivation and Contributions

In this chapter, reduced-complexity user scheduling algorithms based on PS and

SA are proposed and their performance for a multi-user network MIMO Het-

Net is evaluated. A typical PS or SA algorithm more commonly operates in a

continuous-valued space; however, our proposed algorithms based on PS or SA

are designed to operate in the discrete-valued search space of user indices when

selecting multiple users for simultaneous transmission. Moreover, both proposed

algorithms are capable of evaluating different encoding orders for the selected

users, a vital aspect when used in systems employing successive precoding meth-

ods (typical SA and/or PS algorithms are not able to recognize the encoding

order of users in the scheduling vector).

The initialization and selection/tuning of parameter values are important fac-

tors in the operation of the algorithms. We have devoted a significant portion of

the discussion of the simulation results to this aspect. It is noteworthy that the

precoding method used in the system has an impact on the selection of the pa-

rameters in the scheduling algorithms. Thus, we also investigate the performance

of our proposed algorithms in combination with various precoding methods.

For the PS algorithm, we propose various border methods for the search space

used in conjunction with the particle position updates to ensure the solution

elements remain integers in the range of valid user indices. Furthermore, the
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proposed SA algorithm is equipped with a neighbourhood function in the form

of a Markov chain to search among possible candidate solutions by switching

users and/or their encoding order, and increasing/decreasing the number of users

scheduled for transmission. Additionally, we propose a hybrid greedy-PS user

scheduling method, combining the traits of greedy and PS algorithms. In this

algorithm, the user with the strongest channel is always considered in all particles

(inspired by how some greedy algorithms would choose that user first). To achieve

its highest possible throughput, that user is also encoded as the first user in each

particle; thus, there is no interference from previously encoded users to decrease

the achievable rate of this user (this feature is mostly important with successive

precoding methods). Users for the rest of the particle are chosen as per the

process done in the base PS algorithm. The analyses of the algorithms consider

a throughput maximization metric for each of the precoding methods.

3.2 System Model and Sum Rate Maximization

We consider the downlink of a coordinated multi-user multi-cell MIMO HetNet

cellular network. In the assumed HetNet model, each macrocell has a sectorized

high-power BS surrounded by 12 low-power pico BSs, which form picocells over-

laying the macro coverage area as shown in Fig. 3.1. Without loss of generality,

we consider the target area of the network as depicted by the red triangle1 in

Fig. 3.1. This area includes a set of 3 macro BS sectors and 6 omnidirectional

pico BSs each equipped with N transmitting antennas. Any subset of these 9

transmitting nodes can form a cluster. There are K users uniformly distributed

over target area, each with M receiving antennas. Kc of these users are assigned

to cluster c, from which Uc users are served. Each cluster transmits coordinated

signals from all its nodes to its scheduled users.

1The examination herein applies equally to any arbitrary triangular-shaped area of cooper-
ating macro sectors and picocells as illustrated in Fig. 3.1.
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Rm

Figure 3.1: Schematic deployment of HetNet. Larger hexagons represent macro-
cells, while smaller shaded hexagons denote picocells.

The strategy of cluster forming is a user-centric strategy according to the

average received power from each node, without coordination with any other

nodes. Prior to any other sort of signal processing occurring, the users measure

the average received power from each BS (e.g. from a carrier wave). Each user

then reports the received power from all 9 BSs within the target area back to

the BSs. There is assumed to be a central unit processor that analyzes this data

(according to LTE network architecture [77], this central processor can be located

in either the radio access network portion, to manage a subset of BSs locally, or in

the core network portion, to manage all BSs through the network, as presented

in Fig. 3.2). The processor chooses the BSs that should be members of the

cluster for a given user as those from which their received power at the user’s

location is within 20 dB of the strongest received by that user. Based on this

comparison, there will be a subset of BSs that can serve each user to satisfy a

minimum acceptable SINR. If two or more users are to be served simultaneously

and they share at least one BS in common in their serving subsets, one larger

serving cluster for those users is formed as the union of these subsets. That larger
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Figure 3.2: Schematic of LTE network architecture (cf. [77]). The central pro-
cessor controlling the coordination between eNode-Bs (i.e. BSs) may be in either
the core network or the radio access network.

cluster is of potential use for all of the users whose subsets have been combined

into the larger set. Otherwise, if the subsets are disjoint, and hence there is no

overlap in the serving BSs, multiple clusters will be formed in the target area.

Multiple clusters can also result, if some subsets have been combined, but the

resulting larger sets remain disjoint. Note that with larger numbers of users

within the target area, it becomes increasingly likely that only a single cluster

will be formed from all 9 BSs in the target area; however, this is not necessarily

the case in general. After clusters are formed, the central processor communicates
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its decision on the clusters to the users2.

Let the aggregate downlink channel of the kth user from all Bc BSs in the

cth cluster be denoted by Hc,k = [Hc,k(1), · · · ,Hc,k(Bc)], where Hc,k(b) ∈ CM×N

denotes the downlink channel matrix between the kth user and bth BS of the

cluster, which accounts for path loss, log-normal shadowing and Rayleigh fading.

Each element ofHc,k(b) is denoted by hc,k(b,m, n), which is the complex downlink

channel signal strength coefficient between the mth receiving antenna of the kth

user and the nth transmitting antenna of the bth BS in the cth cluster, as given

by

hc,k(b,m, n) = zc,k(b,m, n)

√
Γ0Pt(b)

(
Rm

dc,k(b)

)α

ρc,k(b)A(θ, b), (3.1)

where zc,k(b,m, n) is an i.i.d. complex Gaussian random variable with zero mean

and unity variance representing small-scale frequency-flat Rayleigh fading. Rm is

the macrocell radius (see Fig. 3.1), which is also the reference distance, and equal

to 5 times the picocell radius. Γ0 is a scaling factor controlling the reference SNR

at the distance Rm along the macrocell antenna boresight, dc,k(b) is the distance

between user k and BS b in cluster c, and α is the path loss exponent, which

may or may not be different for the different tiers of the HetNet. Pt(b) is the

transmit power of BS b, ρc,k(b) denotes the log-normal shadow fading coefficient

with standard deviation σρ, and A(θ, b) is the antenna pattern of a macro BS

sector, where θ is the angle between the direction of interest and the boresight

of the antenna [78]. For the pico BSs with omnidirectional antennas, A(θ, b) is

equal to unity.

Defining sc,k ∈ CM×1 as the data vector of user k in cluster c, it is cooperatively

2Although we have not done so, it would be trivial for the central processor to apply a
weight or bias to certain transmission nodes when forming clusters, to favour certain parts of
the HetNet. This could, for instance, allow a specific tier to be emphasized, to make it more
likely that users receive data from those nodes, such as perhaps in the case the system operator
wished to prioritize traffic being delivered from smaller cells, or perhaps to avoid clustering
on macrocells if they periodically employed transmission blanking [20] as a further method to
manage interference.
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precoded from all Bc BSs using the precoding aggregate matrix Wc,k ∈ CBcN×M .

The received signal yk ∈ CM×1 for user k is given by

yk = Hc,k

Uc∑
j=1

Wc,jsc,j +
∑

ĉ∈A0,ĉ �=c

Hĉ,k

Uĉ∑
j=1

Wĉ,jsĉ,j +
∑
č /∈A0

Hč,k

Uč∑
j=1

Wč,jsč,j + nk︸ ︷︷ ︸
Zc,k

.

(3.2)

where the first term is the received signal from cluster c, to which the user be-

longs, while the second and third terms describe the interference from other

clusters within or outside of the target area, respectively. A0 refers to the set of

clusters formed in the target area. Applying the central limit theorem, the total

interference signal from outside the target area is approximated by an M × 1

complex Gaussian random variable with zero mean and covariance matrix σ2
IIM .

It is assumed that all BSs outside the target area are transmitting with full

power, which results in the worst case scenario for ICI. The interference from

these BSs experienced at the center of the target area is determined via Monte

Carlo simulation over many channel realizations and the standard deviation of

this interference is used as the value of σI . Our simulations have shown that

the interference and its standard deviation at the center of the area are quite

representative of the interference over the entire target area; hence, this value is

applied for all locations within the area. For interfering nodes inside the target

area, the interference is calculated using the known channel matrices. The last

term nk ∈ CM×1 is a complex additive white Gaussian noise vector with each

element having zero mean and unity variance. The summation of the last three

terms is denoted by Zc,k, which indicates the noise plus interference. To sup-

press the noise and the interference from any transmissions outside of cluster c,

a whitening filter is applied at the receiver [27, 79], which is denoted by Q
−1/2
Zc,k

,

37



where QZc,k
is the covariance matrix of Zc,k and calculated as

QZc,k
= IM +

∑
∀c̃ �=c

Hc̃,k

( Uc̃∑
j=1

Wc̃,jQc̃,jW
H
c̃,j

)
HH

c̃,k, (3.3)

where Qc̃,j = E(sc̃,js
H
c̃,j), and Wc̃,j is the aggregate precoding matrix of user j

belonging to cluster c̃. Hence, by defining H̃c,k = Q
−1/2
Zc,k

Hc,k as the post-processed

equivalent channel matrix and Z̃c,k = Q
−1/2
Zc,k

Zc,k as the whitened interference plus

noise, (3.2) is revised as

ỹk = H̃c,k

Uc∑
j=1

Wc,jsc,j + Z̃c,k. (3.4)

Given a set of users with encoding order πj
c , j ∈ {1, 2, · · · , |Ds|} where Ds is

a set of all possible combinations of the ordered users belonging to cluster c and

defining the user encoded at position k as πj
c,k, the post-processed received signal

in (3.4) can be modified and expanded as

ỹπj
c,k

= H̃c,πj
c,k
Wc,πj

c,k
sc,πj

c,k
+H̃c,πj

c,k

∑
i<k

Wc,πj
c,i
sc,πj

c,i
+H̃c,πj

c,k

∑
i>k

Wc,πj
c,i
sc,πj

c,i
+Z̃c,πj

c,k
.

(3.5)

The transmission for user πj
c,i, 1≤ i≤Uc, i �= k, is intra-cluster interference for

user πj
c,k as given by the two summations in (3.5), which model the multi-user

interference. If the intra-cluster interference and Z̃c,πj
c,k

are independent and the

intra-cluster interference is known non-causally at the transmitter, according to

the dirty paper coding theorem the capacity of the channel is equal to the case

with no interference [54]. Assuming the proper design of the precoding matrices

Wc,πj
c,k
, k ∈ {1, · · · , Uc}, the maximum achievable sum rate R in the target area
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is given by

R =

|A0|∑
c=1

max
πj
c :1≤j≤Uc!

max{
Q

c,π
j
c,k

}
k∈{1,···,Uc}

:Q
c,π

j
c,k

�0,∑
∀k

Tr

(
Q

c,π
j
c,k

)
≤1

Uc∑
k=1

Rc,πj
c,k
, (3.6)

where Rc,πj
c,k

is the achievable rate of each user and Qc,πj
c,k

is the transmit co-

variance matrix3 for user πj
c,k. In the following discussion on precoding methods,

the methodology is the same within each cluster. Without loss of generality, we

may consider an arbitrary cluster in the target area for the rest of our analysis,

i.e. one specific cluster c in this target area. However, an identical approach is

applied to all clusters that are formed in the target area. Therefore, we drop the

c subscript for ease of notation where appropriate.

In BD [55], the MUI is canceled by designing the precoding matrix of each user

such that it is constrained to lie in the nullspace of the aggregate channel matrix

H̄k =
[
H̃

T

πj
1
, · · · , H̃T

πj
k−1

, H̃
T

πj
k+1

, · · · , H̃T

πj
Uc

]T
of all scheduled users excluding πj

k.

Given Wπj
k
as the precoding matrix of user πj

k, the multiplication of the channels

of the other users by Wπj
k
results in zero, i.e. H̃πj

i
Wπj

k
= 0 for all i �= k,

1 ≤ (i, k) ≤ Uc. Therefore, the rank of the nullspace of H̄k should be greater

than zero, which (assuming full-rank channels) implies that the number of served

users in each cluster, Uc, is equal or less than the total transmitting antennas per

cluster divided by the number of receiving antennas per user, rounded up (i.e.

Uc ≤ �BcN/M�). Denoting the singular value decomposition (SVD) of H̄k as

H̄k = ŪkΛ̄k

[
V̄

1
kV̄

0
k

]H
, for a given ordered user πj

k, its achievable rate, Rπj
k
, is

3The sum-trace (transmit power) constraint of 1 on Qc,πj
k
in (3.6) assumes the transmit

power Pt(b) for BS b is embedded in the channel matrix, as we have done in (3.1); this method
is equivalent to not embedding the power in the channel matrix, but instead using a transmit
power constraint of Pt(b) for BS b. Embedding the power in the channel matrix also allows
the rates to be calculated independently of the type of transmission nodes (and their specific
transmitted power levels) used in the network. For strict accuracy, a per-BS power constraint
should be considered, but for simplicity of calculation, we have used a sum-power constraint
over all coordinated BS antennas instead.
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given by [55]

Rπj
k
= log2

∣∣∣IM +
(
H̃πj

k
V̄

0
k

)
Qπj

k

(
H̃πj

k
V̄

0
k

)H∣∣∣, (3.7)

where V̄
0
k ∈ CBcN×(BcN−r̄k), in which r̄k is the rank of H̄k, denote the matrix of

the rightmost right-singular vectors of H̄k, which is a set of vectors comprising an

orthonormal basis for the nullspace of H̄k. Defining the effective channel matrix

for user πj
k asGπj

k
= H̃πj

k
V̄

0
k, the solution of (3.6) using (3.7) as Rπj

k
is obtained by

waterfilling over G = diag
[
Gπj

1
, · · · ,Gπj

Uc

]
considering the sum power constraint

of 1 [55, 76].

In SZF and SZF-DPC [30], the user encoding order is important, i.e. different

orders of a subset of users will result in different sum rates. Assuming full-

rank channels, Uc users can be served simultaneously with SZF or SZF-DPC

if Uc ≤ �BcN/M�. In SZF-DPC, the effect of the first summation in (3.5) is

removed by the use of dirty paper coding. The second summation in (3.5) will

be canceled if the precoding matrix Wπj
k
is constrained to lie in the nullspace of

all users encoded before πj
k. Let ¯̄Hk−1 =

[
H̃

T

πj
1
, · · · , H̃T

πj
k−1

]T
. Using the SVD of

¯̄Hk−1 = ¯̄Uk−1 ¯̄Λk−1
[
¯̄V1

k−1
¯̄V0

k−1
]H

, for a given ordered user πj
k, its achievable rate

Rπj
k
is given by [30]

Rπj
k
= log2

∣∣∣IM +
(
H̃πj

k

¯̄V0
k−1

)
Qπj

k

(
H̃πj

k

¯̄V0
k−1

)H∣∣∣, (3.8)

where ¯̄V0
k−1 ∈ CBcN×(BcN−¯̄rk−1), in which ¯̄rk−1 is the rank of ¯̄Hk−1, denotes the

matrix of rightmost right-singular vectors of ¯̄Hk−1; ¯̄V0
0 � IBcN . Assuming Ḡπj

k
=

H̃πj
k

¯̄V0
k−1, and similar to BD, the solution of (3.6) by using Rπj

k
as presented in

(3.8) is obtained by waterfilling over Ḡ = diag
[
Ḡπj

1
, · · · , Ḡπj

Uc

]
considering the

sum power constraint of 1 [30, 76].

Similarly to SZF-DPC, successive precoding (specifically, successive nulling)

is used in SZF, but the signals for previously encoded users now interfere since

DPC is no longer applied to them. Therefore, the achievable rate Rπj
k
for user πj

k
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is given by [30]

Rπj
k
= log2

∣∣∣IM + H̃πj
k

(
k∑

i=1

¯̄V0
i−1Qπj

i

(
¯̄V0

i−1
)H

)
H̃

H

πj
k

∣∣∣∣∣∣IM + H̃πj
k

(
k−1∑
i=1

¯̄V0
i−1Qπj

i

(
¯̄V0

i−1
)H

)
H̃

H

πj
k

∣∣∣ . (3.9)

Since the optimization problem in (3.6) using (3.9) as Rπj
k
is not a convex prob-

lem4, a suboptimal method of calculating the covariance matrices was proposed

in [30], which we have applied herein.

Since the SZF sum-rate optimization problem is less constrained than that for

BD, it is expected that the achievable sum rates using SZF should exceed (or at

least be no worse than) those obtainable when using BD. However, in [33], it was

observed that at medium to high SNRs and especially as the number of transmit

antennas grows, the performance of SZF becomes inferior compared to BD, even if

an optimal scheduler is used for both. This is because the method to calculate SZF

covariance matrices from [30] is increasingly suboptimal under those conditions.

To correct for this method, [33] proposed an improved method to calculate the

SZF covariance matrices based on conjugate gradient projection (CGP). This

method guarantees that the performance of SZF is no worse than that of BD, and

in general is much better. We also directly apply this improved method herein,

using the CGP algorithm to calculate transmit filter and covariance matrices for

the users in each cluster. This method is named as SZF(CGP) in this thesis. We

refer the reader to [33] for details on the algorithm.

4While log x is concave for x > 0 and log|X| is concave for a positive definite matrix X,
log(|A|/|B|) = log |A| − log |B| is a difference of two concave functions, and therefore is in
general neither convex nor concave [80]. Note also that Y = AAH is always a positive semi-
definite matrix, and if Z = I+Y, where Y is positive semi-definite, then Z is strictly positive
definite.
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3.3 Scheduling Algorithms

The basis of our proposed user scheduling algorithms to maximize the sum rate

is their heuristic nature of exploring the search space to find possible solutions.

The sum rate maximization problem for a given subset of users and precoding

method is actually an optimization problem of finding beamforming vectors and

allocating power in order to maximize the utility function. While the precoding

optimization can be solved relatively straightforwardly (although sometimes sub-

optimally) in conjunction with the use of fairly low-complexity precoding methods

such as SZF or SZF-DPC, the user selection problem is far more difficult. For user

scheduling, the optimal solution would be an exhaustive search over all possible

combinations and subsets of users, which requires a prohibitively large number

of calculations, especially when the number of users requesting service becomes

large. Furthermore, in methods like SZF and SZF-DPC where the encoding order

affects the sum rate, an additional layer of complexity is added by necessitating

a search over all possible orders for each subset of users. Hence, it is necessary to

find a suboptimal scheduling method with reduced complexity. In this section,

three different reduced-complexity user scheduling algorithms are proposed and

discussed.

3.3.1 Particle Swarm (PS) User Scheduling Algorithm

Particle swarm optimization is inspired by the natural behavior of herds of ani-

mals, such as birds. One may picture a group of birds flying over a landscape and

searching for a specific target; PS as a heuristic optimization technique similarly

explores the search space of a problem by using a set of particles. The initial set

of particles is randomly generated, after which they can migrate over the solution

space searching for the optimal solution according to the design criteria.

In the PS algorithm, denoting Ds as the search space, there are P particles
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representing scheduling solutions, each particle an L-dimensional vector, where

L = min (�BcN/M�, Kc) is the maximum number of users out of all available

Kc users (L ≤ Kc) that can be served by cluster c. Each particle has a position

in the search space denoted as xi = [xi,1, · · · , xi,L] ∈ Ds, where i ∈ {1, · · · , P}.
Each element in xi, defined as xi,l, where l ∈ {1, · · · , L}, can take on any integer

value in the range of 0 to Kc, which indicates what user in the pool of users in

the cluster can be placed in the lth position in the scheduled vector xi. xi,l = 0

means that the corresponding spot in the encoding order is not assigned in the

scheduling vector5. For each xi, there is a velocity vector vi = [vi,1, · · · , vi,L]
where |vi,l| ≤ Vmax. The particle’s velocity should not become an arbitrary value,

since higher velocities would overshoot the optimum solution, and lower values

might cause the particle to get trapped in local optima. Therefore, each particle’s

velocity is limited per element to the interval of [−Vmax,+Vmax] to guarantee the

convergence of the algorithm in addition to helping ensure that particles stay

within the search region.

In the nth iteration of the PS algorithm, the best position visited (i.e. the best

solution found) by the ith particle so far is denoted by x̌i(n), while the overall

best position visited by all the particles is named as x̂(n). Using vi(n) as the

current value of the velocity of the ith particle in the nth iteration, the velocity

is updated (see Fig. 3.3 for a graphical representation) as [67–69]

vi(n+ 1) = w(n)vi(n)︸ ︷︷ ︸
y1

+ c1ϕ1 � (x̌i(n)− xi(n))︸ ︷︷ ︸
y2

+ c2ϕ2 � (x̂(n)− xi(n))︸ ︷︷ ︸
y3

, (3.10)

where c1 and c2 are stochastic acceleration weighting constants, which influence

5This means in practice that all spots after that spot in the encoding order will also be zero.
One cannot, for example, have no user encoded third in the order, yet still have users encoded
fourth or beyond.
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Figure 3.3: Velocity and position update diagram for particle i (cf. [69])

the particles’ random movement around the solution region6. ϕ1 and ϕ2 are two

random length-L vectors whose elements are uniformly distributed in the range

of (0, 1), where each represents the acceleration of the particle towards x̌i(n) and

x̂(n), respectively. The inertia weight w(n) is defined as

w(n) = ws − n×
(
ws − we

nmax

)
, (3.11)

where ws and we are, respectively, the starting and ending values for the inertia

weight, which are obtained experimentally [67, 68], and nmax is the maximum

number of iterations of the PS algorithm. In the initial stage of execution, w(n)

is close to ws and the algorithm explores more of the entire search area, while for

n close to nmax, w(n) approaches we, where it helps the algorithm to converge

to a suboptimal solution [67, 68]. All P particles have the same inertia weight

during each iteration n.

6Their values are determined experimentally by choosing different values for them and com-
paring the sum rate results with optimal results, which in our case can be obtained by exhaustive
search.
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Using the updated velocity vi(n + 1), the intermediate temporary position

xtemp is defined as

xtemp = xi(n) + vi(n+ 1). (3.12)

Since the elements xi,l are integers in [0, Kc], the elements of xtemp may be any real

value in the interval [−Vmax, Kc+Vmax]. Thus, they must be rounded or otherwise

adjusted to obtain valid integer values from 0 to Kc (i.e. so the particles don’t

leave the valid search region); see also Sections 3.3.1 and 3.3.1 for more on this.

Then, the result of this modification will become the updated position7 xi(n+1).

The value of Vmax is set asKc. We have also considered and simulated other values

including Vmax = 2Kc and Vmax = Kc/2, which yielded no significant difference

in the performance of the algorithm. Let the utility function for particle xi at

iteration n be defined as sxi(n) =
∑

k Rπj
k
as in (3.6), where xi(n) is used for8 πj.

x̌i(n) is replaced by xi(n) if the value of sxi(n) is larger than sx̌i(n). Furthermore,

if sxi(n) is larger than the sum rate of the best solution found over all the particles

so far, then x̂(n) will be updated by xi(n). The algorithm is iterated until some

desired stop criteria are satisfied. In our algorithm, two factors are considered

to halt the execution. The algorithm will run for a maximum of nmax iterations.

However, the algorithm also monitors for changes in the best sum rate sx̌i(n) seen

by each particle. If no particle has sx̌i(n) change in the past nstalled iterations, the

algorithm is declared stalled and execution terminates. With this latter condition,

the algorithm will stop when it converges, even before getting to nmax. Hence, the

computation time may be reduced considerably. The pseudocode for the particle

swarm user scheduling algorithm is described in Algorithm 1.

Considering the performance of the PS algorithm, the population size (number

of particles in the swarm) is an important factor for both the convergence of the

7If not for the rounding and border concerns, xi(n+1) could be directly updated by (3.12),
which is more typical in a PS algorithm (cf. [67, 68]).

8xi(n) might be padded with zeros if the number of served users Uc < L; these zeros would
be removed from πj .
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Algorithm 1 Particle Swarm (PS) User Scheduling Algorithm for HetNet MIMO
for all clusters c ∈ A0 in parallel do

Initialize: stalled = false, n = 1, nmax, nstalled, ws, we, c1, c2, P , Vmax, w = ws,
sx̌i(n) = 0, sx̂(n) = 0;
xi(1) = a vector of up to L ordered users randomly chosen from Ds, ∀i ∈ {1, · · · , P};
vi(1) = a vector of L velocities for the elements of xi(1), uniformly randomly chosen
from [−Vmax,+Vmax], ∀i ∈ {1, · · · , P};
while n ≤ nmax AND stalled = false do

Compute s(n) = [sx1(n), · · · , sxP (n)].
for i = 1 to P do

if sxi(n) > sx̌i(n) then
x̌i(n) = xi(n); sx̌i(n) = sxi(n);

end if
if sxi(n) > sx̂(n) then

x̂(n) = xi(n); sx̂(n) = sxi(n);
end if

end for

for i = 1 to P do
ϕ1,j = rand(∼ U(0, 1)) and ϕ2,j = rand(∼ U(0, 1)), ∀j ∈ {1, · · · , L};
vi(n+ 1) = w(n)vi(n) + c1ϕ1 �

(
x̌i(n)− xi(n)

)
+ c2ϕ2 �

(
x̂(n)− xi(n)

)
;

for each element vi,j of vi(n+ 1) with |vi,j | > Vmax do
Set vi,j = sgn(vi,j)× Vmax.

end for
xtemp = xi(n) + vi(n+ 1);
xi(n+ 1) is the rounded and revised version of xtemp based on the defined
border behavior of the valid region of user indices.

end for

w(n) = ws − n×
(

ws−we

nmax

)
; n = n+ 1;

if for all particles in the last nstalled iterations sx̌i(n) has not changed,
then stalled = true; end if

end while
end for
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algorithm and its complexity. In general, the product of the iterations and the

population size should be large enough for the algorithm to sufficiently converge

to a good solution, but there is no exact rule for this. However, the appropriate

population size will depend on the specific problem being considered. For small

search spaces (in terms of the total number of possible solutions), the population

can usually be considered as a small proportion of the size of the search space, e.g.

20%, while for large search spaces where this proportion is an unfeasibly large

number, 20 to 50 particles can often be considered good enough [67, 68]. The

behaviour of the particles when they approach the borders of the search space

can be different. In this thesis, we consider two different approaches.

Reflective Borders

With reflective borders, the particles reflect or bounce off the borders of the search

region, much like light does off a mirror or a ball off a wall, i.e. the borders reflect

the particle back into the search region (see Fig. 3.4 for more details). For large

values of Vmax, the reflection may repeat until the particle falls within the valid

region of user indices. As an example, assume that we can choose at most L = 7

users out of a pool ofKc = 10 users, we set Vmax = 10. Let us furthermore assume

that one particle’s position in the nth iteration is x(n) = [2, 5, 1, 7, 0, 0, 0] and its

corresponding (updated) velocity is v(n+1) = [−8.9, 2.0, 10, 0.7,−0.2,−3.3, 0.4].

(The third element in v(n + 1) was larger than Vmax, and thus was replaced by

Vmax). Using (3.12) to update the particle’s position (and rounding it to integer

values), we will have xtemp = [−7, 7, 11, 8, 0,−3, 0]. Elements of this particle that

would cross the borders are reflected instead. For this example, the resulting

reflected position will be xb = [7, 7, 9, 8, 0, 3, 0]. If any digits are repeated within

the position vector, the algorithm will keep the first replica in its position and

replace the others with zeros (since a given user cannot be scheduled more than
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Figure 3.4: Depiction of effect of border operations on particle elements; L = 7,
Kc = 10.

once at the same time). All zeros are then shifted to the end of the vector9. The

final version of the updated position for the example is x(n+1) = [7, 9, 8, 3, 0, 0, 0].

We name this method as reflective PS (RPS).

Modulo Borders

In the following variations, the border constraints are handled by a modulo op-

eration using the temporary updated position (i.e. xtemp from (3.12)) and the

number of users in cluster c (i.e. the value of Kc).

Type 1 : The position vector is mapped according to {[xtemp−1] mod Kc}+1.

In this case, any zeros in the vector are mapped to the value ofKc. Again consider-

ing the above example, the updated position vector xtemp = [−7, 7, 11, 8, 0,−3, 0]

considering Kc = 10 will be mapped to xb = [3, 7, 1, 8, 10, 7, 10]. After, similarly

to the RPS approach above, replicated digits are again replaced by zeros, and ze-

ros are shifted to the end of the vector. Hence, the final updated position under

9The elements of the velocity could also potentially be shifted or otherwise updated along
with mapping xtemp to a “valid” position with non-repeated non-zero digits. We have not done
so in our work. Doing so would for the most part just affect how long it takes for the algorithm
to converge to a solution, although the effect would by no means be straightforward or simple
to predict.
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this approach will be x(n + 1) = [3, 7, 1, 8, 10, 0, 0]. This approach is named as

modulo PS of type 1 (MPS1).

Type 2 : Assume that the vector of xtemp has a zero, which means that the

corresponding position should not be allocated to any user, or alternatively, in

consideration of the upcoming border operation, that fewer than the maximum

number of users should be scheduled. MPS1 would replace this zero with Kc.

Thus, especially in cases where a solution would schedule fewer than L users,

the MPS1 variation can be biased towards scheduling user Kc. If the modulo

mapping instead is set to xtemp mod (Kc + 1), then values of zero and Kc will

both be kept by the algorithm, e.g. for xtemp = [−7, 7, 11, 8, 0,−3, 0], the result

is xb = [4, 7, 0, 8, 0, 8, 0] and x(n+1) = [4, 7, 8, 0, 0, 0, 0]. This approach is named

MPS2.

Type 3 : In type 2, the value of ±(Kc + 1) is set to zero after the modulo

operation, as seen above for the “11” in position 3 of xtemp. In general, removing

a user that was previously set to be scheduled, thereby reducing the number of

scheduled users, can be quite detrimental to the system performance, especially

at large Kc. This for the most part should be avoided. Therefore, to deal with

this, the zeros of xtemp are kept as-is, but the non-zero elements of xtemp are

mapped similar to type 1. Thus, the zeros and Kc are treated differently. By

using type 3, the next position vector is obtained as xb = [3, 7, 1, 8, 0, 7, 0] and

x(n+ 1) = [3, 7, 1, 8, 0, 0, 0]. This method is named MPS3.

The performance of all three types of modulo approaches is investigated in

this work in Section 3.4.

3.3.2 Hybrid of Greedy and Particle Swarm (HGPS) User

Scheduling Algorithm

In the literature, scheduling algorithms employing greedy methods have been

widely used because of their relative simplicity and low complexity [26,27,31,56].
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A greedy algorithm maximizes the incremental utility in each step as it makes

its decisions. In this context of scheduling, this means iteratively selecting users

that maximize the increase in the scheduling metric. For example, the user with

the best channel gain may be selected in the scheduling vector of users as the

first user in the encoding order [26, 27]. We have not proposed a purely greedy

algorithm within this work, since such algorithms are ubiquitous and have already

been studied extensively.

Within this work, greedy-style selection is combined with the PS algorithm to

improve its performance; we call this hybrid methodology the HGPS algorithm.

Consequently we will have HGRPS and HGMPS variants, respectively, for the

reflective HGPS and modulo HGPS border approaches. Rather than operating

almost solely at random, the PS uses this greedy information as part of its struc-

ture. Since the rate of the ith user is affected by any previously encoded user

k, where k < i, and trivially following that better channel gains result in higher

(single-user) achievable rates, it is reasonable to put the user with the best chan-

nel gain in the first position of the scheduling vector. Thus, the achievable rate of

this user will be at its highest [27, 31]. According to this idea, for all particles i,

the first user in the ordered user vector is fixed as the one with the largest squared

Frobenius norm (F-norm) of its channel matrix, that is xi,1 = argmaxj ‖H̃c,j‖2F ,
j ∈ {1, · · · , Kc}. For the remaining users in the vector, the algorithm operates

similarly to the PS algorithm described in the previous subsection. In other

words, after choosing the first user as a common user in all particles based on the

greedy criterion, this particular user will be omitted from the pool of the users

to choose from. Then, the rest of the scheduling vector will be chosen by PS

optimization from the remaining pool. Since the first location in all scheduling

vectors is fixed, the updating procedure for this location need not occur any more.

This is described in Algorithm 2.
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Algorithm 2 Hybrid Greedy - Particle Swarm (HGPS) User Scheduling Algo-
rithm for HetNet MIMO
for all clusters c ∈ A0 in parallel do

Initialize: stalled = false, n = 1, nmax, nstalled, ws, we, c1, c2, P , Vmax, w = ws,
sx̌i(n) = 0, sx̂(n) = 0;

xi,1 = argmaxj∈{1,··· ,Kc} ‖H̃c,j‖2F ;
xi(1) = a vector of up to L ordered users randomly chosen from Ds, given that the
first user is set to xi,1 from above, ∀i ∈ {1, · · · , P};
vi(1) = a vector of L velocities for the elements of xi(1), uniformly randomly chosen
from [−Vmax,+Vmax], ∀i ∈ {1, · · · , P};
set vi,1 = 0, ∀i;
while n ≤ nmax AND stalled = false do

Compute s(n) = [sx1(n), · · · , sxP (n)].
for i = 1 to P do

if sxi(n) > sx̌i(n) then
x̌i(n) = xi(n); sx̌i(n) = sxi(n);

end if
if sxi(n) > sx̂(n) then

x̂(n) = xi(n); sx̂(n) = sxi(n);
end if

end for
for i = 1 to P do

ϕ1,j = rand(∼ U(0, 1)) and ϕ2,j = rand(∼ U(0, 1)), ∀j ∈ {2, · · · , L};
ϕ1,1 = ϕ2,1 = 0;

vi(n+ 1) = w(n)vi(n) + c1ϕ1 �
(
x̌i(n)− xi(n)

)
+ c2ϕ2 �

(
x̂(n)− xi(n)

)
;

for each element vi,j of vi(n+ 1) with |vi,j | > Vmax do
Set vi,j = sgn(vi,j)× Vmax.

end for
xtemp = xi(n) + vi(n+ 1);
xi(n+ 1) is the rounded and revised version of xtemp based on the defined
border behavior of the valid region of user indices (in all cases xi,1 retains
its original value).

end for

w(n) = ws − n×
(

ws−we

nmax

)
; n = n+ 1;

if for all particles in the last nstalled iterations sx̌i(n) has not changed,
then stalled = true; end if

end while
end for
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3.3.3 Simulated Annealing (SA) User Scheduling Algo-

rithm

In physics and metallurgy, annealing is a process in which a material first is

heated to a sufficiently high temperature and then its temperature is gradually

decreased to allow its molecules to rearrange to an improved crystalline struc-

ture with reduced energy. In this thesis, we propose a simulated annealing user

scheduling method for the maximization of the sum rate. Without memory, the

memoryless SA (SA-ml) algorithm could potentially move away from and for-

get a better solution previously seen in earlier iterations and never return there.

Having memory forces the SA with memory (SA-m) algorithm to keep track of

the best solution (and its sum rate) seen over all iterations, regardless of if it has

since moved on to explore another area of the search space. It can then report

that the overall best solution when the algorithm finishes.

The SA algorithm consists of a search space Ds, a utility function s, a param-

eter τ which is analogously called the temperature, and a cooling function. Given

a candidate solution vector x, there is a neighbourhood set, defined by Ds(x),

which is a subset of all candidate solutions except x, i.e. Ds(x) ⊆ Ds\{x}, and
consists of those solutions which are in some manner “nearby” to x. In general,

the nth state (i.e. the solution being considered at iteration n) is the output

of the neighbourhood function, N(x(n)), which operates on the neighbour set

of x(n) (i.e. Ds(x(n))). The transition from x(n) to x(n + 1) ∈ Ds(x(n)) is a

Markov chain with transition probabilities pj, j ∈ {1, · · · , |Ds(x(n))|} where the

summation of all pjs over every possible x(n + 1) equals to one; i.e.
∑

j pj = 1.

The neighbourhood function and several example elements of Ds(x(n)) obtained

by the Markov chain state diagram are depicted in Fig. 3.5. The vector of users

has up to L = min(�BcN/M�, Kc) ordered users randomly chosen from Ds. A

zero in this vector means no user is scheduled at that position in the order. In
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Figure 3.5: Neighbourhood function for a sample vector x(n) with length 3.

iteration n, the neighbourhood function will randomly select one of four possible

actions with probability of pi, i = 1, · · · , 4, namely:

• Deleting a random user from the vector,

• Replacing one random user with another user not yet scheduled,

• Flipping the order of two random users with each other, or,

• Add a random unscheduled user to the vector (if possible to do so).

Depending on the precoding method and for a given set of candidate users

with order πj, the maximum achievable sum rate of the candidate solution (or

the utility function) is calculated by (3.6) and one of the equations (3.7)–(3.9).

Defining x(n) = [a1, · · · , aL] and x̂(n) = [u1, · · · , uL], respectively, as the vectors

of the solution at iteration n and the selected solution found up to the nth itera-

tion, the respective sum rates sx(n) and sx̂(n) are calculated as
∑

k Rπj
k
as in (3.6),

where x(n) and x̂(n) are used for πj (see footnote 7). If the solution represented
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by x(n + 1) has a better sum rate compared to sx̂(n), then it will be selected as

the solution for the next iteration, i.e., x̂(n + 1) = x(n + 1). If not, it still may

be selected as a suboptimal solution according a probability function, given as

P(n) = exp

(−(sx̂(n) − sx(n+1))

τ

)
, (3.13)

where the parameter τ is the temperature. This temperature monotonically de-

creases (cools) and results in decreasing probabilities of accepting suboptimal

solutions as the execution of the algorithm progresses. The temperature should

be initialized to a value (named as τhot) such that the algorithm initially accepts

suboptimal solutions with higher probabilities, and cooled down gradually until

eventually mostly solutions with better utility functions are accepted (i.e., SA

reverts to a hill-climbing algorithm in the later stages of execution). The cooling

function is given as

τ = τhotφ
p1 , (3.14)

where φ can be chosen randomly or deterministically from the interval of (0, 1),

and p1 is the iteration counter of a loop which gradually reduces the temperature.

Algorithm 3 describes the proposed suboptimal SA scheduling algorithm. First,

the algorithm runs for an initial training period to find the proper value of τhot

such that the algorithm initially has at least a 90% probability of accepting sub-

optimal solutions. The duration of this training period is determined by practical

experiments10. The algorithm has two loops that control how many iterations the

algorithm runs before it terminates, i.e. they trade off how closely the algorithm

approaches to the optimal solution with the cost of complexity. For the outer

10To get the best training interval duration to set τhot, which helps the main algorithm
converge faster with acceptable accuracy compared to the results obtained from exhaustive
search, we tested different ranges of iterations for the training interval. Correspondingly, the
SA algorithm was run based on their resulting value of τhot. The shortest training interval
which can consequently provide SA scheduling solutions with a performance sufficiently close
to exhaustive search was chosen as the training time (i.e. the number of iterations for the
training loop).

54



Algorithm 3 Simulated Annealing (SA) User Scheduling Algorithm for HetNet
MIMO, With (SA-m) and Without (SA-ml) Memory
for all clusters c ∈ A0 in parallel do

Initialize: τhot; n = 1; p1 = 0; τ = τhot; φ; B1; B2; τf ;
x(1) = a vector of Uc ordered users randomly chosen from Ds;
x̂(1) = x(1); Compute sx̂(1).
(SA-m only:) xbest = x̂(1); sxbest

= sx̂(1).
while τ > τf do

b = 1;
while b < B2 do

Find x(n+ 1) from the neighbourhood function N(x(n)).
Compute sx(n+1).
The best solution for the next step is decided as
[x̂(n+ 1), sx̂(n+1)] =⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[x(n+ 1), sx(n+1)], if sx(n+1) ≥ sx̂(n);

[x(n+ 1), sx(n+1)], if r < exp

(
−(sx̂(n)−sx(n+1))

τ

)
,

where r = rand (∼ U(0, 1));
[x̂(n), sx̂(n)], otherwise.

(SA-m only:) if sx̂(n+1) > sxbest
then

xbest = x̂(n+ 1); sxbest
= sx̂(n+1);

end if
b = b+ 1; n = n+ 1.

end while
p1 = p1 + 1; τ = τhotφ

p1 .
end while
(SA-ml only:) return x̂(n), sx̂(n)
(SA-m only:) return xbest, sxbest

end for
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loop, we assume that there are B1 steps to cool down the temperature, or equiv-

alently, a final “frozen” temperature τf = τhotφ
B1 , at which the loop halts. For

each temperature τ , we have an inner loop whose length is controlled by a fixed

number of iterations11, B2.

3.3.4 Complexity Analysis of PS, HGPS and SA

We compare the complexity per cluster of all the proposed user scheduling al-

gorithms in terms of the number of flops12 required. In prior work [28, 31, 33],

the complexity of calculating the sum rate and transmit covariance matrices for a

single ordered selection of Uc users under SZF, SZF(CGP), and BD precoding was

calculated to be O(UcT
3) for all three methods, where T is the total number of

transmit antennas. In this work, T � BcN . We perform a similar calculation for

SZF-DPC precoding as follows. The system is assumed to transmit to the maxi-

mum possible number of users Uc simultaneously, with Uc = �T/M� = T/M + ζ,

or T = (Uc− ζ)M , where 0 ≤ ζ < 1. For the purposes of order of complexity, the

“− ζ” portion can be neglected, and so the product UcM grows on the same order

as T . For SZF-DPC, the following steps are taken, where we assume without loss

of generality that the users are ordered by their increasing indices, i.e. user 1 is

first, user 2 is second, etc.:

1. For users k = 2 to Uc, the aggregate channel matrix ¯̄Hk−1 ∈ C(k−1)M×T is

formed and its nullspace basis vectors ¯̄V0
k−1 are found. (This is not required

for user 1, as ¯̄V0
0 = IT .) The nullspace vectors can be found with an SVD; a

QR decomposition may also be done with lower total complexity, but both

methods have the same order of complexity. For a complex matrix A of

11We have also tested controlling the inner loop based on the standard deviation of the
selected solutions during the loop, halting the loop when it drops below a threshold. However,
we found this method performed consistently worse than simply using a fixed inner loop length.
Therefore, we do not go into any further detail on this alternative method.

12A flop is a real-valued floating point operation [81] which can be used as a basis to describe
the complexity of an algorithm.
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size m×n or n×m, where m ≥ n, the number of flops required for an SVD

is 16m2n + 32mn2 + 36n3 [31, 81]. Thus, for an SVD of all the aggregate

matrices, the total flops required is given as

Uc∑
k=2

(
16T 2(k − 1)M + 32T ((k − 1)M)2 + 36((k − 1)M)3

)
. (3.15)

2. Effective channel matrices are formed as Gπj
k
= H̃πj

k

¯̄V0
k−1. As described

in Section 3.2, the matrix ¯̄V0
k−1 is of size T × (T − ¯̄rk−1), where ¯̄rk−1 =

(k− 1)M assuming full-rank channels for every user. The multiplication of

a complex m× n matrix with an n× p matrix requires 8mnp flops. Thus,

to form all of the effective channel matrices Gπj
k
, the total flops required is∑Uc

k=2 8MT [T − (k − 1)M ].

3. Form the block-diagonal matrix G = diag
[
Gπj

1
, · · · ,Gπj

Uc

]
and waterfill

for the power allocation. To waterfill, one could find the singular values

of G, but it is more efficient to find the singular values of each of the

separate Gπj
k
matrices instead. For a complex matrix A of size m × n or

n × m, where m ≥ n, when only the singular values Λ are needed from

the SVD A = UΛVH , the full SVD does not need to be performed, and

only 16mn2 − 16
3
n3 flops are required [28, 81]. The dimensions of Gπj

k
are

M × [T − (k − 1)M ]. The complexity of finding the singular values for all

the Gπj
k
matrices is thus

∑Uc

k=1

[
16(T − (k − 1)M)M2 − 16

3
M3

]
.

In general, for all users, it will hold that M < T − (k − 1)M . The single

exception may be for the final user when k = Uc, where it will be that

M ≥ T − (Uc − 1)M . Since Uc = �T/M�, equality will occur if T is a

multiple ofM ; strict inequality occurs otherwise. In the worst case, the total

number of (real-valued, non-zero) singular values η is UcM . These singular

values must first be squared to become eigenvalues, using η flops. Then,
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waterfilling over the eigenvalues requires (at most) 2η2 + 6η flops [28, 56].

4. The sum-throughput from the waterfilling of the block-diagonal matrix in

the previous step can be found by log2

[∏η
i=1(1 + λipi/σ

2)
]
, where λi are

the eigenvalues from the previous step and pi are their associated waterfilled

powers. σ2 is the AWGN variance of the system. The sum-rate calculation

thus requires 1 addition, multiplication, and division for each term (the

division potentially may not be required if σ2 is normalized to 1), and η

multiplications to multiply all the terms together in the worst case. (Fewer

may be required in practice if, for instance, some of the powers pi allocated

to the eigenvalues are zero.) Thus, a total of 4η flops is required, wherein

the complexity of the single log2 operation at the end may be neglected.

Hence, the total complexity for a single SZF-DPC sum-rate calculation is

the summation of all these 4 steps. After expanding the sums, collecting terms,

and substituting UcM = T , we find the complexity is O(UcT
3), resulting from

the SVDs in step 1. Hence, for all precoding methods of interest, the order of

complexity to calculate the sum rate of the scheduled user vector πj is the same,

i.e. O(Ω), where Ω = UcT
3 for compactness of notation.

In the PS algorithm, in each loop, the algorithm first computes s(n) =

[sx1(n), · · · , sxP (n)], which consists of P sum rate calculations; hence, its complex-

ity is of order O(PΩ) flops. The complexity of the comparison with the previous

best sum rates can be neglected here, as can the complexity of generating the

random ϕ vectors, since both operations are much less complex. For each parti-

cle, the velocity update of vi has 5L multiplications and 4L additions; we neglect

the complexity of comparing the magnitude of the updated velocities with Vmax.

Similarly, the complexity of updating the position xi of each particle requires L

flops. We can furthermore neglect the complexity of the rounding and border op-

erations; these will not affect the order of complexity. Thus, the particle velocity

and position updates in total require about 10PUc flops, which is O(PUc). The
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complexity of updating w(n) can be neglected, as it is an O(1) operation. The

worst case complexity (in terms of calculations required) occurs when Uc = L.

Since the algorithm repeats at most nmax iterations, the total complexity of the

PS algorithm is thus no higher than O(Pnmax(Ω+L)) ∼= O(PnmaxΩ). If P is set

as 0.2Kc (or otherwise proportional to Kc), the complexity of the PS algorithm

can be restated as O(nmaxKcUcT
3).

The complexity of the HGPS algorithm is similar to that of the basic PS.

Finding the user among Kc with the largest squared F-norm of its M × BcN

channel matrix requires 4BcNMKc flops (for order O(TMKc)) [31,56]. The order

of complexity of calculating the sum rate does not change with one scheduled user

being fixed. When updating vi and xi, L would be replaced with L − 1, as the

first element of the position, being fixed in place, need not be updated. The order

of complexity is therefore O(TMKc + nmaxKcUcT
3) ∼= O(nmaxKcUcT

3). Thus,

the complexity of PS and HGPS are of the same order.

For the SA algorithm, the most complex operation is the calculation of the

sum rate. The neighbourhood function in comparison simply makes small changes

to the vector of scheduled users, and thus its complexity is much smaller. With

a fixed number of iterations B1 and B2 in the outer and inner loops, respectively,

its total order of complexity will therefore be O(B1B2UcT
3). In general, at least

one of B1 or B2 should increase to some degree along with Kc, although for small

changes to Kc, they can be kept constant. If we assume that B1 is set equal to

nmax from the PS algorithm, then the difference in complexity between the SA

and PS algorithms will just depend on the difference between B2 and P .

As mentioned in Chapter 2, an exhaustive search examines all
∑Uc

k=1 k!
(
Kc

k

)
possible ordered subsets of users. In each case, it calculates a sum rate for that

ordered subset. In some cases, the results of certain operations (e.g. maybe

SVDs of channel matrices) could be reused between subsets, but as a general

case, each sum rate calculation would be O(UcT
3) flops as found earlier. The
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Table 3.1: Comparison of Complexity for Different User Scheduling
Algorithms For Order-Dependent Precoding Methods

Complexity in a set network
Complexity in general- layout, in which T and Uc

case network are fixed and setting
B1 = nmax

PS O(nmaxPUcT
3) O(nmaxP )

HGPS O(nmaxPUcT
3) O(nmaxP )

SA O(B1B2UcT
3) O(nmaxB2)

Exh. Search O(KUc
c UcT

3) O(KUc
c )

highest order term occurs when the the exhaustive search considers subsets of

cardinality Uc (i.e. when k = Uc in the sum above). Overall, the complexity of

the exhaustive search would be O(Uc!
(
Kc

Uc

)
UcT

3
) ∼= O(KUc

c UcT
3). In the case of

BD precoding, where different encoding orders are not relevant, the complexity

reduces to O((Kc

Uc

)
UcT

3
)
.

The complexity of the algorithms is summarized and compared in Table 3.1.

The last column of the table assumes a set network layout, where the number of

transmit antennas T is fixed (and consequently Uc is also fixed); it is also assumed

that B1 = nmax and that nmax � M . In Fig. 3.6(a), the order of complexity of

exhaustive search, SA and PS algorithms are compared in terms of the number

of required flops for Kc = 7 . In this analysis, we assumed that PS algorithm

has 26 particles, and B2 in SA algorithm is set to 50. The PS and SA algorithms

are compared with each other based on their parameters nmax and B1. In Fig.

3.6(b), the order of complexity of the algorithms are compared in terms of the

number of required flops when Kc is increased for B1 = B2 = 50, or P = 26.

In this figure, we assume that Uc = 7, i.e. the maximum number of users that

can be served simultaneously. The difference between the order of the complexity

between exhaustive search and our proposed algorithms grows rapidly when the

number of users is increased.

60



5 10 15 20 25 30 35 40 45 50
B1 or n

max

101

102

103

104

105

106

N
um

be
r o

f f
lo

ps

Order of Complexity

PS
SA
Exh. Search

K
c
 = 7, U

c
 = 7, P = 26, B

2
 = 50

(a)

7 8 9 10 11 12 13 14 15
K

c

103

104

105

106

107

108

N
um

be
r o

f f
lo

ps

Order of Complexity

PS
SA
Exh. Search

B
1
 = 50, B

2
 = 50, P = 26, U

c
 = 7

(b)
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algorithms for order-dependent precoding methods; (a) with various B1 or nmax
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B2 = 50, P = 26. 61



Each user scheduling algorithm requires the same information to make its

decisions for every scheduling interval, i.e. the (whitened) channel matrices for

the Kc users from the Bc base stations in cluster c. This requires KcMBcN

complex values to be sent on the backhaul. Once the scheduling decision is

made, the information on that decision (again, of the same form regardless of the

algorithm used) is communicated to the BSs in the cluster over the backhaul.

This information includes, in part, an ordered vector of Uc user indices. For the

larger and more significant portion of the information sent on the backhaul, in

theory, the BSs could just be informed of the overall transmitted signal vector

χc ∈ CBcN×1, where χc =
∑Uc

k=1 Wc,ksc,k, using BcN complex values. However,

in practice, the individual precoding matrices Wc,k and data vectors sc,k could

be sent for every scheduled user k. If Uc users are each assigned M data streams,

then a total of UcM(BcN+1) complex values are sent over the backhaul for cluster

c in this latter case. Either way, each BS in the cluster only needs the portion of

the distributed information corresponding to its own transmit antennas.

3.4 Simulation Evaluation and Results

In this section, simulation results of the proposed algorithms are presented and

their performance compared with optimal scheduling using several precoding tech-

niques. The average sum rate and average number of scheduled users are deter-

mined for the target area using the Monte Carlo simulation method. Channel

matrices for the users are generated according to (3.1). The numbers of transmit

antennas per BS and receive antennas per user are assumed to be, respectively,

N = M = 2. It is assumed that the radius of each macrocell is Rm = 1 km (the

radius of the picocells is 20% of that of the macrocells). We also assume this

distance as the reference distance as described in (3.1). The transmitting power

of each macro BS in each sector is 10 dBW, and Γ0 from (3.1) is set to result
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in an (interference-free) SNR of 14.45 dB at the reference distance of Rm from

a macro BS along the antenna boresight (see Fig. 3.1). The transmitting power

of each pico BS is assumed to be 1/40 of the macro BS power. The path loss

exponent is assumed to be 4 for all BSs and the standard deviation of shadow

fading is σρ = 6 dB and 4 dB, respectively, for macro and pico BSs [78]. The

total interference from the other cells outside the target area is approximated by

a complex Gaussian random vector with zero mean and variance13 σ2
I = 81.

Prior work [82] has indicated that controlling the SA cooling rate with a

parameter value in the interval 0.85 ≤ φ ≤ 0.99 is acceptable. In this thesis,

the value of φ is chosen in two different ways. First, we set φ as a constant of

0.99. Secondly, we allow φ to be a random variable uniformly distributed in the

interval of (0, 1). A new value is used each time the algorithm runs (i.e. for each

scheduling interval). By choosing B1 = {10, 25, 50}, we can control the duration

of cooling. We set the inner loop length with the parameter B2 = {10, 25, 50}.
The transition probabilities for the Markov chain in Fig. 3.5 are all equal.

In the PS algorithm, for c1 and c2, based on experimental trials in many

applications [67, 68], values of 2 for each are reported to be good. We therefore

set c1 = c2 = 2 in this work. For ws and we in (3.11), again based on experimental

trials [67, 68], suitable values for w have a range starting around ws = 0.9 and

ending around we = 0.4; we use these same values. w is decreased over the

maximum number of iterations nmax which is set to 100. Also, the population

size P is set to 20% of Kc, rounded up. We have run several trial simulations

with different nstalled, and have observed that for nstalled = 20, the results are

sufficiently close to optimal when the algorithm indicates that it has stalled.

Finally, Vmax is set to Kc in the simulations. For HGPS, the same parameter

13To obtain σ2
I , we assume that all BSs outside the target area transmit at full power.

Assuming the worst location in the target area (the place that receives the weakest signal
power and/or lowest SINR from all BSs in the area) is at its center, the interference at this
point is measured for millions of channel realizations. The variance of these measurements is
σ2
I .
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Table 3.2: Definition of Case Numbers for Different User Schedul-
ing Algorithms and Their Parameter Settings

φ = 0.99 φ = rand(∼ U(0, 1))
B2 B2

10 25 50 10 25 50
SA 10 #1 #2 #3 #10 #11 #12

B1 25 #4 #5 #6 #13 #14 #15
50 #7 #8 #9 #16 #17 #18

Reflective Modulo borders

borders
Type
1

Type
2

Type
3

PS #19 #20 #21 #22
HGPS #23 #24 #25 #26

Greedy #27

values as for PS are applied.

We have also simulated a greedy user scheduling algorithm based on the

method introduced in [27, 28], in order to compare its results with our proposed

scheduling algorithms. The correlation threshold that maximizes the sum rate for

the greedy algorithm is determined as in [27] (see therein for more details) and

via simulations for K = 7. It has been observed that the optimum correlation

threshold is 0.6 (which provides the best performance compared to that obtained

by exhaustive search).

In Fig. 3.7, we compare the difference between the achievable sum rates

obtained by different user scheduling methods considering different parameters

under various precoding methods with the corresponding exhaustive search. Like-

wise, Fig. 3.8 compares the number of scheduled users in the target area under

the same conditions. Different scheduling algorithms and their parameter set-

tings are denoted by case numbers as described in Table 3.2. For example, case

#1 represents the SA algorithm with φ set to the fixed value of 0.99, and B1 and

B2 both set to 10. Case #19 represents RPS, while case #25 represents HGPS

with modulo borders of type 2. The goal of this comparison is to find the best
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Figure 3.7: Comparison of loss in target area sum rate between different proposed
PS, HGPS, and SA (with and without memory) user scheduling algorithms, and
existing greedy algorithm relative to exhaustive search, using (a) SZF-DPC, (b)
SZF(CGP), (c) SZF, and (d) BD precoding; M = N = 2, K = 7, Pt = 10 dBW.
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user scheduling algorithm to obtain a solution close to optimum with reduced

computational complexity.

As previously discussed, an exhaustive search will find the optimal ordered

selection of users and the maximum sum rate. Naturally, the sum rate will depend

on the precoding method used. In our system with K = 7 users, in Fig. 3.7,

exhaustive search yields sum rates of 15.97, 15.86, 15.83, and 15.51 bits/s/Hz for

SZF-DPC, SZF(CGP), SZF, and BD, respectively. (This ordering of precoding

from highest to lowest throughput is also as expected.) It is interesting to note,

though, that in Fig. 6, exhaustive search also generally schedules the fewest users

when achieving those maximal rates.

We now discuss the SA algorithm. In Fig. 3.7(a), the differences in the

sum rates of SA-ml and SA-m from those of exhaustive search are compared for

SZF-DPC precoding in cases #1 to #18. The SA-m algorithm outperforms SA-

ml by a considerable margin for most of the cases. As one example, case #9

for SA with memory achieves about 55% better performance (15.96 bits/s/Hz,

near-identically to optimal) than the memoryless version SA-ml (10.29 bits/s/Hz,

about 5.68 bits/s/Hz from optimal). In comparison, for the memoryless best-case

#18, the improvement of SA-m over SA-ml is about 2.1% (15.96 bits/s/Hz vs.

15.63 bits/s/Hz, respectively). This demonstrates the benefit of the negligible

extra complexity to keep track of the overall best solution the algorithm has

observed during the search, even though it may have later left the vicinity of

that solution. Considering the number of served users (Fig. 3.8(a)), SA-m and

SA-ml serve almost the same number of users, and both serve more users than

exhaustive search.

Using SZF-DPC precoding, the best result is obtained for the SA-m algorithm

with φ = rand(∼ U(0, 1)) and B1 and B2 both set to 50, i.e. case #18. However,

it should be noted from Fig. 3.7, especially for SZF-DPC and SZF(CGP) precod-

ing, several of the SA-m cases (as well as the PS cases) appear to have essentially
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the same indistinguishable performance. This means that the difference between

the results of these cases and the exhaustive search is smaller than what can

reasonably be reported according to the precision available from the simulations

(about 0.005 bits/s/Hz). That said, similar overall performance trends can be

seen for the other precoding methods and with different values of K. For all

precoding methods with any K, the case #18 has the best sum rate performance

with both SA-ml and SA-m, resulting from that case having the most iterations.

Increasing either B1 or B2 while keeping the other constant results in a higher

sum rate (or equivalently, a smaller loss in sum rate relative to optimal), but at the

trade off of higher complexity. For an example, in Fig. 3.7(d) with B1 = 10 and

for SA-m, increasing B2 improves the performance regardless of the type of φ that

is chosen. Similar results can be seen for the reverse; assuming constant B2 = 25,

again an increase in B1 improves the sum rate towards the optimal solution. For

SA-m with fixed φ, increasing either B1 or B2 is equivalent; the result on the

performance is nearly identical. That is, in all cases for φ fixed, setting B1 = x,

B2 = y yields the same sum rate as B1 = y, B2 = x. For example, comparing

the cases between #2 and #4 or between #6 and #8, the achievable sum rates

are almost identical for all precoding methods. With φ random, it appears that

increasing B1 is slightly better than increasing B2. Hence, it seems that it is

better in this instance to drop to a lower temperature than spending more time

iterating at each given temperature. Comparison of the results for the cases #12

and #16 in Fig. 3.7(c) and (d) best illustrate this result; case #16 (B1 = 50,

B2 = 10) consistently outperforms #12 (B1 = 10, B2 = 50).

Notably, the parameter φ affects the temperature changes. With fixed φ, every

single decrease in temperature will have a fixed ratio, while random φ means that

those ratios during the cooling are random each time the algorithm runs (i.e.

sometimes (or indeed, usually) the algorithm can be cooled down faster). Since

the SA-ml algorithm is memoryless, there is a higher possibility of locating and,
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in particular, staying nearby a better solution by using a random φ than a fixed

value of 0.99. Therefore, using a random φ achieves better sum rates for SA-ml

than keeping φ fixed. Note also that the SA-ml performance is approximately

equal with increasing B2 at a fixed value of B1. When φ is fixed at 0.99, even

increasing B1 has no positive effect on the performance. Larger values of B2

increase the opportunity of SA-ml to find a better solution at each temperature,

but also to move away from and, without memory, forget a previously better

solution. (In comparison, with memory, SA-m strictly benefits from larger B2.)

Both events occur with decreasing probability as the temperature cools and the

algorithm gets trapped at a local optimum. Larger B2 does not help at this

point, as the algorithm remains trapped in the vicinity of the local optimum,

whose location is more determined by the more random movement at higher

temperatures. Similar improved performance can be seen for SA-m with random

φ over fixed φ, and for similar reasons. However, with the addition of memory,

leaving a good solution is not nearly as detrimental, and so the effects of random

φ are considerably smaller. Since the average value of the random φ is 0.5, we

can say that the temperature is reduced on average by a ratio of 0.5. Thus, a

smaller value than 0.99 for fixed φ may potentially result in better performance,

especially for SA-ml, which would appear to highly benefit from much more rapid

cooling.

As Fig. 3.8 presents, SA-ml serves about the same number or more users

relative to SA-m with all precoding; SA-m notably serves fewer users than SA-ml

with SZF and BD. Iterating longer in the inner loop of SA-m (with the tempera-

ture fixed) might result in a higher sum rate, but the number of scheduled users

decreases under SZF and BD. The number is closer to constant with SZF-DPC

and SZF(CGP). For SA-ml with random φ, the number of users decreases with

increasing values of B1, corresponding with the increase in sum rate; like the sum

rate, the number of users only changes with B1, but not with B2, for similar
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Figure 3.8: Comparison of target area average number of scheduled users between
different proposed PS, HGPS, and SA (with and without memory) user scheduling
algorithms, and existing greedy algorithm to exhaustive search, using (a) SZF-
DPC, (b) SZF(CGP), (c) SZF, and (d) BD precoding; M = N = 2, K = 7,
Pt = 10 dBW.
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reasons for the constant performance as given in the previous paragraph.

Finally, the best SA method and parameters that can be advised to be used

with all precoding methods is the SA with memory denoted by case #18 (i.e.

B1 = B2 = 50), which achieves the highest sum rate of the examined SA cases.

We use case #18 for the SA algorithm in the remainder of the chapter.

Similar examinations are presented in Figs. 3.7 and 3.8 to compare the border

methods of PS and HGPS in case numbers 19 to 26. In Fig. 3.7(a), the sum

rate of RPS, HGRPS, and the various MPS and HGMPS methods is compared

for SZF-DPC precoding; a similar comparison is depicted in Fig. 3.7(b)-(d) for

SZF(CGP), SZF and BD precoding, respectively. As Fig. 3.7(a) depicts, the PS

and HGPS algorithms both perform very well. The RPS and MPS3 methods

(i.e. cases #19 and #22) provide sum rates the closest to an exhaustive search.

While the different border methods affect the PS performance, there is no effect

on the HGPS performance when the precoding method is SZF-DPC.

Considering Fig. 3.8, among all approaches, RPS and HGRPS generally serve

more users than the rest. Since we are interested in serving a larger number of

users as often as possible, while still keeping close to the optimal sum throughput,

it seems that the RPS variant can satisfy this aspect the best under SZF-DPC

precoding. The reflective border also does so without trading off the sum rate

performance in return (unlike the SA-ml algorithm, for instance). Similar results

are shown for SZF(CGP) in Fig. 3.8(b). For the remaining precoding methods,

MPS3 (case #22) provides higher sum rates for SZF and BD, respectively, in Figs.

3.7(c) and (d), though MPS2 (case #21) yields indistinguishable performance

from MPS3 for BD. However, the average number of scheduled users is smaller

than with RPS and MPS1 as shown in Figs. 3.8(c) and (d). Of the MPS

methods, MPS1 serves the largest number of users. This is not surprising; as

discussed in Section 3.3.1, MPS1 has a bias towards ensuring the user number Kc

is scheduled, if the number of users scheduled is less than the maximum possible.
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Hence, that additional user is selected more often, leading to the larger average

number overall. Furthermore, as also discussed earlier, MPS2 has a slight bias

towards unscheduling a user; this manifests itself in MPS2 generally scheduling

the fewest users. MPS3 represents an intermediate point between MPS1 and

MPS2. Since the numbers under the RPS method are also relatively larger,

this indicates the reflective border method also tends somewhat to avoid particle

element positions near the “0” border, at which users are not scheduled.

While the HGPS performance is very good, it does not surpass PS in terms

of sum rate maximization. The act of keeping the first scheduled user fixed in

its position limits the search area; i.e. it is narrowed to a subset of all possible

vectors of users in which the first element of all these vectors is the same. This

constraint forces the algorithm to search among only a subset of all the choices;

however, the global optimum might not belong to this subset. The different

approaches for the behaviour of the borders of the search area for the most part

appear to have little effect on the resulting sum rate of the scheduled user vector

(specifically for the HGPS methods); the exception is BD, which shows larger

changes using different type of borders. As is evident, selecting the user with

the highest channel gain as the first in the encoding order is the most dominant

factor in determining the sum rate. This is reasonable, since the first user in SZF-

DPC and SZF usually achieves the highest rate; users encoded later experience

stronger interference, and thus achieve lower rates, hence contributing less to the

sum rate. It is only these latter users that may differ between the different border

methods in the HGPS algorithm, leading to the small to insignificant difference

in sum rate between the methods. Since BD has no encoding order to speak of,

the user chosen “first” is less dominant, and there is consequently more variation

in the HGPS sum rate between the methods.

The border method does, however, affect the number of users scheduled by

HGPS in the target area more significantly, especially when the precoding method
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is SZF-DPC or SZF(CGP). Using SZF-DPC precoding, HGRPS and HGMPS2

schedule 5.5 and 4.7 users on average for the same sum rate, respectively (a

decrease of 14.5%). A similar observation can be made for the other precoding

methods. While the first selected user may dominate the sum rate, it does not

have nearly as much an effect on the number of users scheduled and encoded

after it. Thus, there are larger variations in the HGPS number of scheduled users

between the border methods, similar to those displayed for the base PS algorithm.

However, we note the difference in the sum rates between all the methods is very

small and generally negligible. Thus, we can overall remark that RPS can achieve

very good sum rate performance compared to the exhaustive search, while serving

the largest number of scheduled users. RPS is used for the PS algorithm in the

remainder of the chapter.

The greedy algorithm from [27,28] (case #27) provides sum rates on par with

the worst cases (with the fewest iterations) of our SA-m algorithm, as seen in

Fig. 3.7. However, Fig. 3.8 shows that the greedy algorithm also schedules the

largest number of users out of any of the algorithms we have examined. If, for

instance, the number of users scheduled is an important factor, then the greedy

algorithm might be a more attractive option. The order of complexity of the

greedy algorithm may also be different (potentially lower), depending on how

the number of iterations in the SA and PS algorithms are defined (e.g. a fixed

constant, proportional to Kc, etc.)

Fig. 3.9 depicts a comparison of the different user scheduling algorithms while

changing K from 5 to 15 under various precoding methods in terms of average

sum rate and average number of scheduled users in the target area. Since PS

performs about the same or better than HGPS (as observed in Figs. 3.7 and 3.8),

we just show PS and SA in Fig. 3.9. The results are compared with exhaustive

search as well14. The maximum possible number of simultaneously served users

14As an exhaustive search is highly complex and time-consuming, we have only simulated it
up to K = 9. Simulation times for larger K are prohibitively large.
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Figure 3.9: Comparison of performance vs. K in terms of (a)–(d) sum rate and
(e)–(h) average number of scheduled users in target area between proposed SA
and PS user scheduling algorithms, using SZF-DPC, SZF(CGP), SZF, and BD
precoding methods; N = M = 2, Pt = 10 dBW.
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is 9 according to our network design and parameters. Thus, for K > 9, there is

a decline in how fast the sum rate grows with K, and for very large values of K,

the number of scheduled users in the target area should asymptotically approach

9 due to multi-user diversity. In Fig. 3.9(a), SA and PS perform almost the same

under SZF-DPC, providing sum rates nearly identical to what an exhaustive

search can obtain. PS also schedules more users on average than SA for the

entire examined range of K (see Fig. 3.9(e)). Serving more users simultaneously

generally translates to more fairness to the pool of users requesting service, as it

typically results in smaller overall delays in service. Thus, since the PS algorithm

provides the same sum rate as SA, while being a bit fairer, the pairing of PS with

SZF-DPC is recommended. The SZF and SZF(CGP) results behave similarly to

those for SZF-DPC, thus the same recommendation of PS is made for those two

precoding methods. As Fig. 3.9(d) depicts, SA consistently provides a higher sum

rate than PS for BD. However, PS serves more users with this type of precoding.

For example, in Fig. 3.9(h), at K = 13, the gain of PS over SA is 8.5% for

BD precoding in terms of the number of scheduled users, while the performance

gain is 6.2% for the sum rate of SA over PS (Fig. 3.9(d)). Since the aim of the

algorithms is to maximize the system sum rate, the SA algorithm can in general

be recommended for BD. However, in many circumstances, the system operator

may be willing to trade off a bit a performance in favor of fairness to the users;

hence, the PS algorithm can still be a very viable option.

We have thus far investigated the performance of our proposed algorithms at

a fixed transmitting power of Pt = 10 dBW for the macro BSs. In Fig. 3.10 we

consider K fixed at 9 and the SA and PS scheduling algorithms are evaluated at

different transmitted powers. The pico BS transmitted power continues to be 1/40

of the macro power. Increasing Pt enlarges the variance of the interference
15 on the

target area as well as the received SNR at the user’s end. The average sum rate is

15We have set Pt = {−5, 0, 5, 10, 15, 20} dBW, which results in corresponding variances for
the surrounding interference of σ2

I = {2.6, 8, 25.7, 81, 256, 784}, respectively.
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Figure 3.10: Comparison of performance in terms of (a) sum rate and (b) average
number of scheduled users in target area between different proposed SA and PS
user scheduling algorithms vs. macro BS transmitting power, using SZF-DPC,
SZF(CGP), SZF, and BD precoding methods; N = M = 2, K = 9.
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increased with larger SNRs, but with diminishing gains. Eventually, more power

does not improve the sum rate that much, since the system is interference-limited

and hence the SINR stays approximately constant. In Fig. 3.10(a), for SZF-DPC

with PS user scheduling, the sum rate improvement from Pt = −5 dBW to Pt = 5

dBW is about 10.4%, while this improvement from Pt = 5 dBW to Pt = 15 dBW

is about 0.9%. For SZF-DPC and SZF(CGP), PS and SA perform the same for

the entire range of Pt, however, SA outperforms PS when the precoding method

is either SZF or BD (the difference is far more significant for BD than for SZF).

Moreover, the number of scheduled users in the target area is not affected by

increasing the transmitted power; i.e. the number is approximately constant

for the whole range of powers (see Fig. 3.10(b)). Increasing the transmitted

power also proportionally increases the interference experienced by users in the

cluster. Again, since the system is interference-limited, this means that the overall

situation experienced by the users changes very little. Those users that are in a

better situation to be selected by the scheduler (e.g. closer to a BS) are still in

relatively the same situation to each other. Thus, with an increase in Pt, although

there is an increase in the resulting rates per user and thus sum rates, as seen

in Fig. 3.10(a), the selections of and numbers of users chosen by the scheduler

remain almost the same.

3.5 Conclusion

In this chapter, the downlink of a coordinated heterogeneous MIMO network in-

cluding macro and pico BSs has been considered. We have proposed various sim-

plified user scheduling algorithms for this system, using reduced-complexity sim-

ulated annealing, particle swarm and hybrid greedy-particle swarm algorithms.

The proposed algorithms are flexible to the number and type of transmission

nodes in the network. Each scheduling algorithm has been evaluated for the
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different parameters and options that can affect its performance, with the best

choices determined by simulations. The performance of the proposed algorithms

has been evaluated under various precoding methods, namely SZF-DPC, SZF,

SZF(CGP), and BD precoding. Moreover, the complexity of the proposed al-

gorithms has been calculated and compared. SA algorithms with and without

memory were considered. According to the simulation results, SA with memory

outperforms the memoryless version in terms of average sum rate. Of the two

PS border methods examined, reflective PS (where the particles “bounce off” the

search area boundaries if they were to cross them) performs marginally better

than modulo borders for all precoding techniques, except for BD precoding. The

HGPS algorithm performs better than the examined greedy algorithm and very

close to PS, but the PS algorithm still achieves better results considering the sum

rate maximization criterion. All of the proposed algorithms perform quite close to

an optimal exhaustive search in terms of the sum rate they provide, but at much

lower complexity. The simulations demonstrate that PS can serve more users,

while performing close to an exhaustive search for almost all of the examined

types of precoding. Otherwise, overall the difference in performance between PS

and the other two proposed methods is mostly negligible. The results have been

tested for different ranges of the number of users and BS transmitted powers. As

the number of users in the target area increases, the achievable sum rate grows.

Increasing the transmitted power at the macro BSs can improve the sum rate

somewhat, but has no notable effect on the number of scheduled users.

The sum rate maximization criterion used in our scheduling algorithms is well

known to not account for any aspects of user fairness as part of the scheduling

decisions. However, such issues of user fairness are quite important in a practical

network. Factors like fairness and delay of service can be handled by incorpo-

rating them into the scheduling metric. A proportionally fair scheduler [73–75]

is one such example. In our proposed scheme, this would simply require a corre-

77



sponding change to the utility function calculated by the scheduling algorithms.

The remainder of the operation would essentially be unchanged.
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Chapter 4

Rotating Cluster Mechanism

4.1 Introduction

Clusters of the HetNet BSs coordinate user scheduling, precoding, and trans-

missions from their constituent antennas as a single virtual array, reducing the

interference for users within each cluster. Users located near the border of each

cluster suffer more inter-cluster interference compared to those near its center. Al-

though using a PF metric [73–75] instead of MT will improve the throughput and

fairness to these cluster-edge users, dynamic clustering, in which differing clusters

can be formed and change over time [37–40], will improve their performance even

more. For example, [83] introduced a type of dynamic clustering algorithm based

on weighted sum rate maximization for the downlink of a MU-MIMO CoMP sys-

tem. The clusters were formed specifically for the set of scheduled users such

that they experience minimum ICI. It was shown that the algorithm improved

the system sum rate in comparison to that of static clustering methods. Al-

though dynamic clustering improves the performance of the cellular system, it is

a complex method with high signalling overhead on the processor and backhaul.

Representing a middle ground between fixed and dynamic clustering, rotating

clustering is a simplified method of dynamic clustering, and can be employed
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to ameliorate the cluster-edge effects. In this method, the processor has several

predefined patterns of clustering, which are interchanged periodically. Thus, users

will periodically be near either the edge or the center of a cluster. In fact, rotating

clustering can strike a balance between performance and the complexity of the

cluster forming approach.

4.1.1 Motivation and Contributions

Different cellular layouts require different rotating patterns based on the BSs’

physical arrangement to achieve better performance; the design of these patterns

and investigation of their performance for the downlink of MIMO CoMP HetNets

is the objective of this chapter. Considering cellular layouts with 3 or 6 macrocells

per site, different rotating patterns of clusters are proposed. Assuming a 6-cell

layout, which creates a hexagonal-shaped cooperating area, we propose a set of

2 rotating cluster patterns. Similarly, for a 3-cell layout, which forms a clover-

leaf-shaped cooperating area, we propose a set of 5 rotating cluster patterns.

The performance of the systems with the proposed sets of clustering patterns

is investigated using a simulated annealing algorithm as the user scheduler and

successive zero-forcing dirty paper coding as the precoding method; the systems’

performance is compared with that of static clusters.

The rotating clustering scheme is primarily designed to improve the through-

put of users with poor channel gains, which are usually located at the cluster

edge. We analyse the effect of cluster rotation on those users. In this chapter,

the effectiveness of the proposed methods with two different scheduling metrics,

MT and PF, is investigated. We also analyse the capability of this scheme to

improve the average achievable sum rate in a cluster, which can be considered

as an extra benefit of this approach, if it is possible. Moreover, we investigate

the effect of the speed of rotation on the performance of the system to determine

the maximum speed that clusters may rotate, while still improving the system’s
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throughput non-negligibly compared to the lower speeds. The proposed cluster

rotation schemes are less complex than a fully dynamic clustering method and

hence they may be more easily implemented in a practical system. We also discuss

this matter in this chapter.

We wish to emphasize, though, that the focus of this work is on the clus-

ter rotation and its performance, not on the scheduling algorithm, nor on the

precoding method. The cluster rotation methods employed in this work can be

generalized and applied both to different user scheduling algorithms and different

precoding methods, including (but not limited to) those discussed in Chapter 3,

and the outcomes of this chapter are expected to be independent from the user

scheduling and/or precoding approaches. Please recall that the cluster rotation

scheme addresses the impact of inter -cluster interference, while precoding and

user scheduling attempt to resolve the intra-cluster interference.

4.2 System Model, Design, and Achievable Weighted

Sum Rate

We consider the downlink of a coordinated multicell MU-MIMO HetNet. Several

macro BSs are co-located at each macro site, which is partitioned into different

cells each covered by a directional antenna installed on a macro BS. We assume

two different network layouts, the first with 6 macrocells per site, and the second

with 3 macrocells per site. (For shorthand, we refer to these respectively as “6-

cell” and “3-cell” layouts in this chapter.) Different system model characteristics

are assumed, which are described in Sections 4.2.1 and 4.2.2, respectively, for

the 6-cell and 3-cell layouts. In both system models, omnidirectional pico BSs

surround each macro site and overlay the macro coverage area. The macro BSs

transmit with power Pt and the inter-site distance (ISD) between macro sites

is fixed and denoted by D. Each macro BS is equipped with Nmacro transmit
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antennas, while each pico BS has Npico antennas. We assume for simplicity that

Nmacro and Npico are both equal to N . Since all macro and pico BSs in a cluster

are jointly transmitting their signals, this assumption is a valid assumption in

our analysis and would not impact the proposed methods or the analysis in this

chapter. Having Nmacro be larger than Npico would of course increase the system

sum rates and number of users that can be scheduled simultaneously, but also

thereby significantly (and likely needlessly) increase the complexity and length of

time for simulations.

4.2.1 Layout 1: 6-Cell Layout (Hexagonal-Shaped Coop-

erating Area)

In our first HetNet model, the coverage area of the 6 cells per site overall forms

a hexagonal-shaped region, with each macro BS covering a 60◦ angle of the area

with a directional antenna. The macro site is surrounded by 12 low-powered

pico BSs that form picocells overlaying the macro coverage area (see Fig. 4.1).

Of the 6 cells per site, two adjacent ones are coordinated at any given time to

form an effectively larger cell area. The picocells also coordinate within whatever

cluster that the macrocell they overlay is part of. The location of pico BSs and

their borders are determined according to the effective coverage area analysis

by pico BSs compared to the macro ones; details of this analyse is described in

Appendix A. Without loss of generality, we may consider any arbitrary macro site

(with coverage area shown in green) and the clusters it participates in (shown by

the red dashed lines). Therefore, the BSs of any macro site contribute to three

different clusters.

As depicted in Fig. 4.1, two different patterns of clustering are possible, in

which different adjacent cells cooperate with each other. All cells within each

thick red dashed hexagon coordinate signals from their BSs to form a cluster;

one example cluster in each pattern is emphasized in the figure for clarity. As
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(a) (b)

Figure 4.1: Network layout with 6 cells per macro site for HetNet with cluster ro-
tation; (a) and (b) depict two alternating clustering patterns of BS coordination;
solid and open triangles represent, respectively, macro BS sites and pico BSs, and
the thick red dashed hexagons denote clusters.

Fig. 4.1(a) depicts, those users in a cluster that are located near the border

of the cluster experience the poorest channel conditions from the BSs in the

cooperating set. By rotating the clustering pattern by 60◦ around any macro site

(see Fig. 4.1(b)), those previously poor-coverage users are now in the middle of

the cluster (i.e. they will have better channel gains or higher achievable rates).

Therefore, most users will have the opportunity to have a higher chance of being

scheduled and to achieve reasonably good data rates for a fraction of the overall

transmission time. Averaging the throughput over all transmission periods and

clustering patterns, the overall achievable transmission rate of the users will be

improved.

There are K users uniformly distributed over the coverage area of each macro

site, each user equipped with M receive antennas. Kc(i) is the number of users

assigned to cluster c(i), from which Uc(i) users are served, where i refers to the

ith pattern of clustering. Each cluster transmits coordinated data signals from

all its BSs to its scheduled users.
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4.2.2 Layout 2: 3-Cell Layout (Clover-Leaf-Shaped Coop-

erating Area)

For the second HetNet model, which is more commonly used in LTE-Advanced

design [43] and is called a clover-leaf model, each cell in a macro site is covered

by a high-powered BS, which is located at a corner of the cell. The directional

antenna at a macro BS covers a hexagonal-shaped cell within the angle of 120◦.

Each macrocell is overlaid by 4 low-powered omnidirectional pico BSs, which are

located near the 4 edges of the macrocell that are the most distant from the macro

BS, as depicted in Fig. 4.2 and also described in Appendix A. Any three adjacent

macrocells and their constituent picocells may form a cluster, if the macrocells

share a corner that is not a site. Therefore, considering an arbitrary macro site

and its corresponding 3 macrocells (shown in green in Fig. 4.2), the macro BSs

may belong to two or three independent clusters (shown by the red dashed lines).

As depicted in Fig. 4.2, five different patterns of clustering are possible. We

again highlight one example cluster in each pattern for clarity. Those users that

are located near the edge of the cluster experience poor channel conditions from

the BSs in cooperating set, and consequently their achievable rates will be smaller

compared to the users in the middle of the cluster. By rotating the clustering

pattern (see Fig. 4.2(b)), a portion of those previously poor-coverage users are

now in the middle of the cluster, and some of the users, previously located at the

middle of cluster, are now near the edge of the cluster. To put the remainder of

the cluster-edge users in Fig. 4.2(a) near the middle of a cluster, more rotations

are required, which are depicted in Fig. 4.2(c)-4.2(e). Therefore, in this layout

after 5 intervals of rotation, all users have the opportunity of being at least once

in the middle of the cooperating area, and thus having a higher chance of being

scheduled and achieving reasonably good data rates.

There are K users, each equipped with M receive antennas, uniformly dis-
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(a) (b)

(c) (d)

(e)

Figure 4.2: Network layout with 3 cells per macro site for HetNet with cluster
rotation; (a)-(e) depict five different clustering patterns of BS coordination; solid
and open triangles represent, respectively, macro BS sites and pico BSs, and thick
red dashed lines denote cluster borders.
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tributed over each cell. This is in contrast to the 6-cell layout, which has K users

distributed over the coverage area of the macro site. Thus, for the 3-cell layout,

there are 3K users per site; i.e. Kc(i) = 3K.

For both layouts, other patterns of clustering could in theory be used, e.g. by

coordinating more macrocells together in a cluster. However, please consider the

corners of each macrocell that do not contain a macro BS site. These locations

have the worst SINR when no coordination occurs. The patterns that we use

cluster the smallest possible number of macro BSs such that it allows each of those

corners to be in the center of the cluster in one of the patterns. At the same time,

the duration between any given corner being in the center (as the scheme rotates

through the patterns) is also the smallest possible for the number of macrocells

per cluster being used. (Note there are 2 of these corners per macrocell in the

6-cell layout, and 5 such corners in the 3-cell layout, hence leading to 2 and 5

patterns respectively for the layouts.)

4.2.3 Achievable Weighted Sum Rate and User Schedul-

ing

For both layouts, averaging the throughput over all transmission periods and

clustering patterns will improve the overall achievable transmission rate of the

users. Defining Tcl as a specific clustering pattern duration in units of scheduling

intervals, rotation to the next pattern will occur every Tcl scheduling intervals.

Denoting Bc(i) as the number of BSs in the c(i)th cluster of the ith pattern, the

aggregate downlink channel of the kth user from all these Bc(i) BSs is defined

by Hc(i),k = [Hc(i),k(1), · · · ,Hc(i),k(Bc(i))], where Hc(i),k(b) ∈ CM×N denotes the

downlink channel matrix between the kth user and bth BS of the cluster. Each

element of Hc(i),k(b), denoted by hc(i),k(b,m, n), is the complex downlink channel

signal strength coefficient between the mth receiving antenna of the kth user and

the nth transmitting antenna of the bth BS in the c(i)th cluster, which includes
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path loss, log-normal shadowing, and Rayleigh fading, and is modeled by

hc(i),k(b,m, n) = zc(i),k(b,m, n)×
√

Γ0Pt(b)
( Rm

dc(i),k(b)

)α(b)

ρc(i),k(b)A(θ, b). (4.1)

zc(i),k(b,m, n) represents small-scale frequency-flat Rayleigh fading with an i.i.d.

complex Gaussian random variable distributed as CN (0, 1). Rm is the reference

distance1 and Γ0 is a scaling factor controlling the reference SNR at a distance

of Rm in the direction of the boresight of the directional antenna. The distance

between user k and BS b in cluster c(i) is represented by dc(i),k(b), and α(b) is

the path loss exponent for BS b. Pt(b) is the transmit power of BS b, and ρc,k(b)

denotes the log-normal shadow fading coefficient with standard deviation σρ. The

antenna pattern A(θ, b) of a macro BS, where θ is the angle between the direction

of interest and the boresight of the antenna at BS b, and is defined as described in

[43,78], while A(θ, b) is equal to unity for pico BSs with omnidirectional antennas.

All Bc(i) BSs of cluster c(i) cooperatively transmit the data vector sc(i),k ∈
CM×1 for user k using the aggregate precoding matrix Wc(i),k ∈ CBc(i)N×M . The

received signal yk ∈ CM×1 for user k is given by

yk = Hc(i),k

Uc(i)∑
j=1

Wc(i),jsc(i),j +
∑

č(i) �=c(i)

Hč(i),k

∑
∀j

Wč(i),jsč(i),j + nk

︸ ︷︷ ︸
Zc(i),k

. (4.2)

The first term in (4.2) is the received signal from cluster c(i), to which the user

belongs, while the second term describes the interference from other clusters.

Applying the central limit theorem, the total interference signal from all clusters

not including c(i), denoted by č(i) �= c(i), is approximated by an M × 1 complex

1Rm is defined as the farthest distance from the macro BS to the edge of its cell in the
direction of its boresight. Since we fix the value of the ISD for both layouts in our simulations,
Rm in the 6-cell layout is D/2 while it is 2D/3 for the 3-cell layout.
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Gaussian random vector with zero mean and standard deviation σI . To estimate

the standard deviation of this interference, it is assumed that all BSs outside the

cluster c(i) are transmitting with full power. The interference from these BSs

experienced at different locations within the cluster c(i) is determined and aver-

aged via Monte Carlo simulation over many channel realizations. The standard

deviation of these realizations is used as the value of σI . The last term nk ∈ CM×1

is a complex additive white Gaussian noise vector with each element having zero

mean and unity variance. The summation of interference and noise is denoted by

Zc(i),k, which with the Gaussian interference approximation ends up as a complex

Gaussian random vector with zero mean and variance σ2
I +1. For convenience of

calculation, the interference-plus-noise power is normalized at the receiver. This

is equivalent to applying a filter at the receiver of Qr = (σ2
I + 1)

−1/2
IM . Hence,

by defining H̃c(i),k = QrHc(i),k as the post-processed equivalent channel matrix

and Z̃c(i),k = QrZc(i),k as the normalized interference plus noise, (4.2) is revised

as

ỹk = H̃c(i),k

Uc(i)∑
j=1

Wc(i),jsc(i),j + Z̃c(i),k. (4.3)

We choose to use the SZF-DPC precoding technique, where the encoding

order of the users is very important for maximization of the achievable weighted

sum rate. Given a set of users with order πj
c(i) and defining the user encoded

at position k as πj
c(i),k, the post-processed received signal can be modified and

expanded as
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ỹπj
c(i),k

= H̃c(i),πj
c(i),k

Wc(i),πj
c(i),k

sc(i),πj
c(i),k

+ H̃c(i),πj
c(i),k

∑
l<k

Wc(i),πj
c(i),l

sc(i),πj
c(i),l

+ H̃c(i),πj
c(i),k

∑
l>k

Wc(i),πj
c(i),l

sc(i),πj
c(i),l

+ Z̃c(i),πj
c(i),k

.

(4.4)

The two summations in the second and third line of (4.4) represent the intra-

cluster interference for user k. In SZF-DPC, the precoding matrix Wc(i),πj
k
is

constrained to lie in the null space of the channel matrices of all users encoded

before πj
c(i),k; the aggregate channel matrix of previously encoded users is defined

as Hk−1 =
[
H̃

T

c(i),πj
c(i),1

, ..., H̃
T

c(i),πj
c(i),k−1

]T
. The precoding matrix cancels the intra-

cell interference from the summation in the third line of (4.4), while the effect of

the remaining intra-cell interference represented by the summation in the second

line of (4.4) is removed by using DPC. Using singular value decomposition of

Hk−1, for a given ordered user πj
c(i),k, its achievable rate Rc(i),πj

c(i),k
is given by

Rc(i),πj
c(i),k

= log2

∣∣∣IM + (H̃c(i),πj
c(i),k

V0
k−1)Qc(i),πj

c(i),k
(H̃c(i),πj

c(i),k
V0

k−1)
H
∣∣∣ , (4.5)

where Qc(i),πj
c(i),k

is the transmit covariance matrix for user πj
c(i),k in cluster c(i)

and V0
k−1 are orthonormal basis vectors for the joint null space of Hk−1 for the

users before πj
c(i),k in the encoding order; V0

0 � IBc(i)N .

The throughput maximization criterion results in the selection of a scheduled

vector of users that achieves the largest sum rate among all possible vectors of

users. Those users who have better channel gains have a higher likelihood to be

selected by a MT scheduler. Thus, users with poorer channel gains may be very

infrequently (and potentially never) selected by the scheduler, which is not fair.

In PF scheduling, each user has a weight related to its priority for being chosen
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by the scheduler, and the scheduler adjusts each weight based on the average

achievable rates in the user’s history. A PF scheduler chooses those users whose

instantaneous rates relative to their average rates are better than the others, and

uses a weighted sum rate as its scheduling metric; i.e. the combination of those

users with maximum weighted sum rate will be chosen to be scheduled. If a

user has been selected by the scheduler often, its weight for the next interval will

be decreased (as its average rate increases), i.e. its chance to be chosen in the

next scheduling interval degrades. Meanwhile, another user with a worse channel

matrix may have more opportunity to be scheduled in the next interval simply by

having higher weight. Using this method provides more fairness in the network

among all users.

In each cluster, the achievable weighted sum rate WSRc(i) is given by2

WSRc(i) = max
πj
c(i)

:j∈{1,2,···,Uc(i)!}
max{

Q
c(i),π

j
c(i),k

}
k∈{1,··· ,Uc(i)}

:

Q
c(i),π

j
c(i),k

�0, ∑
∀k

Tr(Q
c(i),π

j
c(i),k

)≤1

Uc(i)∑
k=1

μc(i),πj
c(i),k

(t)Rc(i),πj
c(i),k

(t)

(4.6)

where μc(i),πj
c(i),k

(t) is the priority weight of the kth user during the tth scheduling

interval in cluster c(i). In PF scheduling, for the lth user out of Kc(i), μc(i),l(t) =

1/R̄c(i),l(t), where R̄c(i),l(t) is the average achievable data rate of the lth user at

time t, averaged over a window of the past tc intervals. In each time interval,

R̄c(i),l(t) (and thus μc(i),l(t)) is updated by an exponential filter as

2In (4.6), the sum-trace (transmit power) constraint of 1 on Qc(i),πj
c(i),k

assumes the transmit

power Pt(b) for BS b is embedded in the channel matrix, as we have done in (4.1); this method
is equivalent to not embedding the power in the channel matrix, but instead using a transmit
power constraint of Pt(b) for BS b. Embedding the power in the channel matrix also allows
the rates to be calculated independently of the type of transmission nodes (and their specific
transmitted power levels) used in the network. For simplicity of calculation, we have used a
sum-power constraint over all coordinated BS antennas instead of per-BS constraints.
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R̄c(i),l(t+1) =

⎧⎪⎨
⎪⎩
(1− 1

tc
)R̄c(i),l(t) +

Rc(i),l(t)

tc
if the lth user is scheduled in interval t

(1− 1
tc
)R̄c(i),l(t) otherwise

(4.7)

where Rc(i),l(t) is the instantaneous rate of the lth user, and is obtained from (4.5),

assuming the lth user is scheduled in position k of the ordered scheduling vector

πj
c(i). One important special case of achievable weighted sum rate maximization

is MT, which is defined by setting μc(i),l to a constant of 1 for all users. Let us

define the best ordered user vector as π∗, then in any clustering pattern i, the

maximum average achievable weighted sum rate over the area of an arbitrary

macrocell, averaged over time t when using pattern i, is given as

Et

(
WSR(t, i)

)
= Et

(( Uc(i)∑
k=1

μc(i),π∗
c(i),k

(t)Rc(i),π∗
c(i),k

(t)
))

/wc(i) (4.8)

where wc(i) is the number of macrocells in cluster c(i). To solve the optimization

problem in (4.6) using (4.5) as Rc(i),πj
c(i),k

, we need to consider the μc(i),πj
c(i),k

(t)

weights in calculating the power allocation during the water-filling algorithm over

the eigenmodes of the block-diagonal matrix formed using the effective channel

matrices3 Gc(i),πj
c(i),k

= Hc(i),πj
c(i),k

V0
k−1. The user selection within a cluster is

performed by using an SAS algorithm similar to what we proposed in [85], and

described in Algorithm 3 therein. The main difference is the solution values

are now achievable weighted sum rates as per (6); the rest of the operation of

the algorithm is unchanged. We refer the reader to [85] for more details on our

SA algorithm. Note that no change to the scheduling algorithm is required for

rotating clustering; better cluster patterns for users are automatically detected by

the algorithm through the corresponding more favourable channel gains and/or

3This is similar to [84, eq. (32)], except replacing the |hkwk|2 terms there with squared
singular values of Gc(i),πj

c(i),k
.

91



achievable rates during that pattern, making the users more likely to be scheduled

during those better patterns.

4.2.4 Complexity Comparison of Dynamic Clustering and

Rotating Clustering

Fully dynamic clustering (whether the scheme in [83] or otherwise) results in

significantly higher overhead in calculation and signalling. The system must

determine and exchange possible choices of BSs for each user, run some sort of

optimization or other routine to determine the choice of which BSs to serve which

user, and finally communicate those choices across the network and to the users.

This could occur potentially as often as every scheduling interval, though the

system could also perform these operations less frequently. In comparison, almost

none of those calculations are required with rotating clustering, since the sets of

clusters are predetermined beforehand, and known at all transmitting nodes. The

additional overhead beyond that of static clustering is simply the same as the last

part of fully dynamic clustering, i.e. to periodically inform the users what their

new cluster will be. Furthermore, there are additional savings in complexity in

regards to cell association. With rotating clustering, the association of a user to a

specific anchor BS has much less impact on the network’s operation (disregarding

the context of high user mobility and/or hand-off, which are outside the scope

of this work). Note that a user receives data from a macrocell and all picocells

overlaying that macrocell. Borders between macrocells (where the received power

from the BSs of those cells are equal) are statistically identical; at times that cell

border may be also be a cluster border, while at other times it won’t. Thus,

a complicated cell association scheme is not required. Whether a user chooses

an anchor BS by closest distance, highest average received power, adding on a

tier-dependent association bias factor, etc., the performance of the scheme is by

and large unchanged. Essentially, users can be considered more to be associated
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with a cluster rather than with an individual cell; in terms of performance, it is

largely equivalent to associate with any one of the cells in the cluster. There may

still be, for example, considerations of offloading traffic, but these would now be

between clusters rather than between cells; in any event, such factors are beyond

the scope of this paper.

4.3 Simulation Setup and Results

In this section, the simulations of the proposed rotating clustering mechanisms

are presented and compared with fixed clustering of the otherwise identical coop-

erative HetNet, employing the SZF-DPC precoding technique and SAS algorithm.

Both MT and PF scheduling are considered. The average achievable sum rate

and the average achievable rate per user are determined using the Monte Carlo

simulation method. The numbers of transmitter and receiver antennas are as-

sumed to be Nmacro = Npico = 2 and M = 2, respectively. It is assumed that the

ISD in both layouts has the same value of4 D = 1732 m. In the 6-cell layout,

there are 12 pico BSs spaced evenly on the imaginary circle with radius 693 m

around each macro site. For the 3-cell layout, 4 picos are located on a circle of

radius 356 m centered at the center point of each macrocell coverage area5. The

scaling factor for the SNR, i.e. Γ0 in (4.1), is set to result in an SNR of 9.6

dB at the distance Rm = 866 m in the 6-cell layout, and an SNR of 4.7 dB at

Rm = 1155 m for the 3-cell layout, where in both cases Rm is measured from the

4Using this ISD, the circle circumscribing the macro site coverage area in the 6-cell layout
has a radius of D/

√
3, which equals 1 km. The radius of the circle circumscribing a single

macrocell in the in 3-cell layout is D/3. Using simple geometry, the area covered by a macrocell
in the 3-cell layout can be calculated as twice that of a macrocell in the 6-cell layout. Since the
6-cell layout has twice as many macrocells, the total coverage area of a macro site is the same
in both layouts.

5In both layouts, the location of pico BS is selected such that the boarder of its covered area
touches the border of overlaid macro cell area. This coverage area is decided according to the
comparison between received SINRs from the pico BS and the corresponding macro BS, which
pico BS belongs to.

93



macro site in the direction of the BS antenna boresight. The transmitting power

Pt(b) of each macro BS is 40 times greater than that of each pico BS. The path

loss exponent α(b) is assumed to be 3.91 and 3.67 and the standard deviation of

the log-normal shadow fading is σρ = 6 dB and 4 dB, respectively, for macro and

pico BSs6.

The total interference from the other clusters outside the target cluster is

approximated by the complex Gaussian random vector with zero mean and stan-

dard deviation σI . This variance is measured and averaged over the area of an

entire cluster by employing similar methodology for both layouts as was used

in [85]. The mean value of σI in the 6-cell layout is measured as 13.8. In the

3-cell layout, all 5 cluster patterns are not exactly symmetric nor statistically

identical to each other. As depicted in Fig. 4.2, the cluster patterns in Fig.

4.2(a,c,e) are similar in that for all three patterns, two sites contribute to a given

cluster. Of the three macro BSs covering the cluster, two of them are co-located

at the same site. However, in the cluster patterns of Fig. 4.2(b,d) there are

three equidistant macro BSs per cluster, with each BS belonging to a different

site. This difference creates asymmetry in some features of these patterns. Most

notably, the mean standard deviation of the interference across the clusters of

Fig. 4.2(a,c,e) is equal, but different from that of Fig. 4.2(b,d), with values of

21.3 and 26.3, respectively, for the two cases. We account for these differences in

our simulations. In the SA algorithm, we use parameter values corresponding to

SA-m case #18 in [85]; we refer readers to that reference for details. A summary

of the simulation parameters and their values is provided in Table 4.1.

6The values of the path loss exponents and the shadow fading standard deviations used here
for macrocells and picocells correspond to the Urban Macro (UMa) non-line-of-sight (NLoS)
scenario and the Urban Micro (UMi) NLoS scenario, respectively, as found in [42].
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Table 4.1: Simulation Setup Parameters and Values for 6-cell and
3-cell Layouts

6-cell Layout 3-cell Layout
Number of Tx antennas

2
per macro BS, Nmacro

Number of Tx antennas
2

per pico BS, Npico

Number of Rx antennas
2

per user, M
Macro antenna pattern Directional [78]; Directional [78];
(including 3-dB beamwidth θ3dB) θ3dB = 35◦ θ3dB = 70◦

Pico antenna pattern Omnidirectional
Path loss exponent, α 3.91 (macro); 3.67 (pico) [43]
Log-normal shadow fading

6 (macro); 4 (pico) [43]
standard deviation, σρ
Inter-site distance, D 1732 m
Distance from pico BS to macro site 693 m –
Distance from pico BS to center

– 356 m
of macrocell coverage area
Reference distance, Rm 866 m 1155 m
Macro SNR at distance of Rm 9.6 dB 4.7 dB
along antenna boresight

Interference standard deviation, σI 13.8
21.3 (Patterns (a,c,e));
26.3 (Patterns (b,d))

PF averaging window size, tc 100 40
SAS parameters Case #18 in [85]

4.3.1 Simulation Results for 6-Cell Layout

The clustering pattern is changed every Tcl scheduling intervals, while the PF

metric averages the achievable rates over tc scheduling intervals. The ratio of tc
Tcl

is defined as the speed of cluster rotation. We set tc = 100 for the size of the

averaging window in the PF metric. As an example, if the clustering pattern is

changed every Tcl = 50 intervals, the cluster rotation speed is 2, which means

that over the duration of tc intervals, the clustering pattern will change twice,

with each change occurring 50 scheduling intervals apart (see Fig. 4.3). We

considered a minimum of four full sets of rotations through both patterns for

our simulations (with that minimum occurring at the slowest rotation speed).
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Figure 4.3: Comparison of averaging interval of proportionally fair metric, tc,
with clustering pattern duration Tcl, for an example with tc = 2Tcl.

The cumulative distribution functions (CDFs) of the average achievable rates

per user for Kc = 12 and various Tcl values are depicted in Fig. 4.4. As this

figure shows, rotating clustering has the most benefit in particular for those users

with poorer channel gains (e.g. those with an average achievable rate around

the 5th percentile). In comparison, users with better channels (who achieve

higher average rates, such as those around the 90th percentile) see their average

achievable rate drop with rotating clustering. The poorer 5th percentile users

are those having low SINRs in a cluster in one of the patterns. Their achievable

rates significantly benefit from rotation because they are located in a position

in the cluster where they can have a better SINR after the rotation. The better

users trade off their average achievable rate to provide more overall fairness to the

system. Considering different rotating speeds, Fig. 4.4 depicts that the rotation

rate has an impact on each user’s average rate, the most easily seen for lower-rate

users like those around the 5th percentile. The 5th percentile per-user rates also

generally increase with decreasing Tcl, but eventually reach an upper limit, where

even faster rotation yields no further significant gains.
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Figure 4.4: CDF of average achievable per-user rate with both proportionally fair
(PF) and maximum throughput (MT) scheduling metrics, comparing proposed
rotating clustering scheme and fixed clustering for 6-cell layout, using simulated
annealing scheduling and SZF-DPC precoding. Kc = 12, Nmacro = Npico = 2,
M = 2.

In each cluster, there are some users with particularly poor channel gains and

even cluster rotation cannot help improve them much (such as those users located

near the cell borders). These users have a very low chance to be selected by the

MT scheduler and their average achieved rate is very close to (and sometimes

equal to) zero, especially for fixed clustering. Cluster rotation helps these users

by occasionally given them better channels; however, there still remain some users

that suffer from starvation. Nonetheless, although the probability of starvation

is still non-zero for MT scheduling, it is reduced significantly (by a factor of over

half for Kc = 12), by using cluster rotation, as seen in Fig. 4.4.

With rotation, the best users’ average achievable rates are reduced because
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they may be scheduled less often; however, they achieve higher instantaneous

rates when they are selected. As an example, consider a theoretical extreme case

of maximum throughput scheduling, where with fixed clustering a few users would

be scheduled most of the time with high throughput. With rotating clustering,

instead about twice as many users would be scheduled overall, half of this total in

each clustering pattern. As they would be scheduled about half as often (mostly

only during their favourable pattern), their average achievable rate would also be

about halved, but they would achieve somewhat better instantaneous rates when

scheduled, leading to an increased (albeit slightly) achievable sum rate. Similar

and larger effects on the instantaneous and average achievable rates are seen with

PF scheduling. As expected, while the average sum rate of PF is less than that of

the maximum throughput scheduling, its 5th percentile average achievable per-

user rates are higher than for maximum throughput, and there is less overall

variation in the average per-user rates achieved.

Fig. 4.5 shows the average achievable sum rate for maximum throughput

and proportionally fair scheduling vs. Kc over the area of a macrocell in an

arbitrary cluster. In Fig. 4.5, Tcl = 100, which is equal to tc. As seen, rotating

clustering outperforms fixed clustering for both scheduling metrics. However,

rotating clustering increases the average achievable sum rate with PF relatively

more than with maximum throughput. For instance, for MT scheduling, rotating

clustering provides slightly higher throughput, increasing about 0.8% and 0.7%

for Kc = 4 and Kc = 12, respectively, while for PF scheduling the throughput is

more significantly higher (about 1.4% and 3.2%, respectively, for Kc = 4 and 12).

This is expected because the users that take the most advantage of the rotation

are the users either near the border of the cluster or in poor coverage areas, who

are scheduled more often with PF than with maximum throughput.

In Fig. 4.6, the average achievable sum rate vs. Kc for proportionally fair

scheduling considering different rotation speeds is presented. As seen, while ro-
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Figure 4.5: Average achievable sum rate vs. Kc with maximum throughput (MT)
and proportionally fair (PF) scheduling metrics over the area of a macrocell in
an arbitrary cluster, comparing proposed rotating clustering scheme and fixed
clustering for 6-cell layout, using simulated annealing scheduling and SZF-DPC
precoding. Nmacro = Npico = 2, M = 2, Tcl = tc = 100.

tating clustering still outperforms fixed clustering in terms of sum rate, faster

rotation (i.e. smaller Tcl) yields diminishing gains. For instance, rotating clus-

tering provides higher throughput with respect to fixed clustering with faster

rotation7, increasing by about 2.1%, 3.2%, 4.1% and 4.5% with Kc = 12 for

Tcl = 200, 100, 50, and 25, respectively. Considering an upper limit seen in the

sum rate, rotating faster would not provide any further significant increase, but

would increase complexity in signalling overhead for cluster setup. For our sys-

7A similar evaluation has been performed for MT; the results show no notable improvements
with higher rotation speeds. This is also expected because MT overall gains very little in sum
rate by using cluster rotation in contrast to PF.
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tem, the limit is reached at about Tcl = 50 (half of tc). Smaller values of Tcl (e.g.

Tcl = 25) yield almost no additional sum rate; the additional gain in sum rate

relative to fixed clustering is only a few tenths of a percentage.

Assuming the scheduler has selected a user with poor channel gains in a clus-

ter, the chance of this user being chosen again by the scheduler is comparatively

low, since its priority weight will have likely dropped in accordance with the up-

date of its average rate by the exponential filter. The user’s priority will gradually

increase as time passes if the user is not scheduled. If the cluster pattern change

interval is smaller than tc, the possibility of that user being in a better position

in another cluster pattern, and consequently dramatically improving its priority

weight by virtue of its higher SINR and thus achievable rate, is increased. Simi-

larly, a user with high SINR in a cluster that finds itself near a cluster edge after

the pattern rotates will have its priority weight suddenly drop. It will be less

likely to be scheduled until either the PF scheduling window passes or the cluster

pattern rotates back, whichever comes first. Hence, faster rotations relative to tc

can potentially result in higher priority weights and higher sum rates. However,

smaller Tcl does not necessarily mean a linear increase in priority weights with

Tcl.

With larger Kc, cluster rotation is more effective at increasing the sum rate;

for example, the achievable gains with Tcl = 100 are 1.4% and 3.2% respectively

for Kc = 4 and 12 using PF scheduling, while faster rotation with larger Kc is

more beneficial. For example, with Kc = 8 and comparing the rotation speed of

Tcl = 200 to Tcl = 100 and 50, the sum rate gains are 0.9% and 1.4%, respectively,

whereas with Kc = 16, the gain increments are 1.4% and 2.4%. The probability

of having users that are located in the cluster with favourable channel gains is

increased with larger Kc, simply as a result of multiuser diversity. Thus, being

able to schedule more of these users improves the sum rate. Recall, though, that

users are uniformly distributed over the entire coverage area. This statistically
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Figure 4.6: Average achievable sum rate vs. Kc over the area of a macrocell in an
arbitrary cluster, comparing various Tcl values for proposed rotating clustering
scheme for 6-cell layout, using simulated annealing scheduling with proportionally
fair (PF) scheduling metric (tc = 100) and SZF-DPC precoding; Nmacro = Npico =
2, M = 2.

results in a higher proportion of users who are farther from a BS (with poorer

channel gains) than those who are nearer. An increase in Kc thus also means an

increase in the total number of “poorer” users. As was seen, it is those users who

benefit the most from rotation, explaining further why the gains with rotation

are better with higher Kc.

An increase in Kc also means more delays in scheduling users, as a larger pool

competes for the same limited resources. Faster rotation also means less of a

wait for any given user’s cluster pattern to be at its best, and thus potentially

for the user to be scheduled, improving their average rate. In other words, faster
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rotation somewhat compensates for the increased scheduling delays as Kc grows,

thus leading to the higher gains in rate observed with faster rotation at larger

Kc.

Figs. 4.7 and 4.8 further demonstrate the effects of rotating clustering (with

Tcl = 100) by depicting the average achievable rate per user based on the user’s

position within the cellular network; Fig. 4.7 depicts MT scheduling, whereas

Fig. 4.8 depicts PF. Figs. 4.7(a) and 4.8(a) show the average achievable rates

with fixed clustering. The highest rates are unsurprisingly achieved by users

nearest to a BS, especially macro BSs, but also to a lesser extent pico BSs. The

lowest achievable rates (darkest red) are seen near any macrocell corner where

three clusters meet. We will henceforth refer to these areas as the “corner” areas

for shorthand. Lower rates are also seen in the area around the border of each

cell, whereas somewhat higher achievable rates (light red to yellow) are seen near

areas that correspond to the directions of the macro BS boresights. For any

macro BS, users located near the left or right borders of the cell (i.e. at a 30◦

angle relative to the antenna boresight) receive weaker signals on account of the

antenna directivity pattern. This situation is at its worst near the corners of

the macrocells, at the furthest distance from the site. Furthermore, although

the corners are surrounded by pico BSs, the received signals from those pico

BSs are also weak due to being beyond the picocell borders. Hence, even with

clustering (either fixed or rotating) and coordination, users in the corners achieve

consistently smaller user rates, compared to the users in other locations of the

cluster.

Figs. 4.7(b) and 4.8(b) show the achievable rates with rotating clustering.

In comparison, the average rates (or the colours) are more evenly distributed

over the entire area, indicating higher overall fairness. As expected, the largest

increase in average achievable rate is experienced by users that were closest to the

cluster borders in the fixed scheme. Those users previously received the worst
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Figure 4.7: Average achievable rate per user based on user position within cellular
network, with MT scheduling metric for 6-cell layout, using simulated annealing
scheduling and SZF-DPC precoding; Nmacro = Npico = 2, M = 2, Kc = 12. (a)
Fixed clustering. (b) Rotating clustering (Tcl = 100).
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Figure 4.8: Average achievable rate per user based on user position within cellular
network, with PF scheduling metric for 6-cell layout, using simulated annealing
scheduling and SZF-DPC precoding; Nmacro = Npico = 2, M = 2, Kc = 12. (a)
Fixed clustering. (b) Rotating clustering (Tcl = 100).

SINRs and/or the most ICI. In contrast, most users who are located close to

the macro BSs or near the directions of the macro boresights receive very good

signal power. The largest decrease in average achievable rates relative to the fixed

scheme is by that latter group of users, as well as to a lesser extent users nearby

pico BSs. It is these latter users who trade off some of their average rates to
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provide more fairness and uniformity of throughput across the coverage area. It

is interesting to note that there are fairly large areas where the average achievable

rate of a user does not change much with rotating clustering. These areas and

users are those located in the interior of the cluster. Their conditions (in terms

of both useful signals and interference) are more or less the same under either

cluster pattern. Hence, rotation does not change their situation much, and so

their achievable rates do not change appreciably from the fixed scheme either.

There is also little difference in the rates seen in the cell “corner” areas with

rotation. The rather small changes that exist there are not readily visible in Figs.

4.7 and 4.8. However, where 3 clusters meet in the fixed scheme, those corners

do experience a small boost in rates with rotation due to periodically increased

coordination. Likewise, the corners at the cluster centers in the fixed scheme see

a small decrease in rates with rotation, as signals received there are no longer

always coordinated from all nearby BSs.

4.3.2 Simulation Results for 3-Cell Layout

Similar to the previous section, the clustering pattern changes (rotates) every

Tcl scheduling intervals. For the 6-cell layout, as described in Section 4.3.1, we

simulated for a minimum of 4 complete sets of rotations. Assuming Tcl = 200,

which corresponds to the slowest (non-zero) rotating speed, the total number of

simulated channel realizations (or scheduling intervals) for every drop of users

is thus 1600. To compare the 3-cell layout with the 6-cell layout, we considered

two different scenarios. First, we keep the same total number of 1600 channel

realizations per drop with 4 complete sets of rotations between the 5 clustering

patterns. We also maintain the longest pattern duration as 2tc. Thus, tc for the

PF window becomes 1600 realizations/drop ÷4 sets/drop ÷5 patterns/set ÷2

windows/pattern = 40 (realizations per window). This gives us different consid-

ered rotating speeds corresponding to pattern durations of Tcl = [10, 20, 40, 80].
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Second, we keep the value of tc equal to what we have used in Section 4.3.1, i.e.

100, and the same pattern durations, i.e. Tcl = [25, 50, 100, 200]. With still 4 full

sets of rotations at minimum, this results in 4000 channel realizations per drop.

The simulations with these two scenarios were run for Kc = 12 and the results

were compared with each other. We observed that the results of both scenarios

were very close to each other8. Thus, we present only the results for where the

number of channel realizations per drop equals9 to 1600 and tc = 40.

In Fig. 4.9, the CDF of the average achievable rates per user for Kc = 12

is illustrated. Similar to the results obtained from Fig. 4.4, rotating clustering

again yields higher per-user rates for those who are located near cluster edges (or

in otherwise poor coverage areas) in the 3-cell layout (e.g. the users with rates

around the 5th percentile). Comparison of these two figures is also interesting.

As was seen in Fig. 4.4 with MT scheduling, while rotating clustering improved

the per-user rates in the 6-cell layout, there were still some users whose achievable

rates’ were very low, even to the point of starvation. However, cluster rotation in

the 3-cell layout improves the average throughput of users considerably such that

the probability of very low rates and/or starvation becomes almost zero. There

is a larger tradeoff in the high-percentile users’ rates to achieve this, though.

In the 3-cell layout and with PF scheduling, the rotation speed corresponding

to Tcl = tc yields a per-user rate increase of about 0.5 bits/s/Hz at the 5th

percentile, while the improvement with the 6-cell layout is around two-thirds of

that. In relative terms, the 5th-percentile rate improvements rotating clustering

(with Tcl = tc) over fixed in the 6- and 3-cell layouts are, respectively, about 22.8%

8This is likely as a result of the assumption that there is no temporal correlation in the
small-scale fading component of the users’ channel gains, i.e. each realization of zc(i),k(b,m, n)
in (4.1) is independent from any other. If there was temporal correlation, the results of the two
scenarios would likely differ.

9For certainty, we simulated all cases for both scenarios and in each case the achieved results
were similar. Aside from the fact that fewer realizations means less computation time for the
simulations, using 1600 realizations for both the 6-cell and 3-cell layouts means a comparison
of the results between the two layouts is somewhat more statistically equitable.
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Figure 4.9: CDF of average achievable per-user rate with both proportionally fair
(PF) and maximum throughput (MT) scheduling metrics, comparing proposed
rotating clustering scheme and fixed clustering for 3-cell layout, using simulated
annealing scheduling and SZF-DPC precoding. Kc = 12, Nmacro = Npico = 2,
M = 2.

and 48.4%. This indicates cluster rotation is even more effective at improving the

cluster-edge user rates in the 3-cell layout. Considering the faster rotation speed

corresponding to Tcl = tc/2, the additional 5th-percentile users’ rate increase (vs.

Tcl = tc) is about 2.3% in the 6-cell layout, while this increase is about 4.4%

using the 3-cell layout. This shows that faster rotation in the 3-cell layout is

more beneficial than in the 6-cell layout to help cluster-edge users to gain further

higher throughput, which is not surprising, considering the former rotates through

a larger set of patterns.

We also investigate the user rates vs. their position within the network in

Figs. 4.10 (MT scheduling) and 4.11 (PF scheduling). Basically, the influence of

cluster rotation on achievable per-user rates with MT and PF scheduling is similar
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Figure 4.10: Average achievable rate per user based on user position within cel-
lular network, with MT scheduling for 3-cell layout, using simulated annealing
scheduling and SZF-DPC precoding; Nmacro = Npico = 2, M = 2, Kc = 12. (a)
Fixed clustering. (b) Rotating clustering (Tcl = 40).
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Figure 4.11: Average achievable rate per user based on user position within cel-
lular network, with PF scheduling for 3-cell layout, using simulated annealing
scheduling and SZF-DPC precoding; Nmacro = Npico = 2, M = 2, Kc = 12. (a)
Fixed clustering. (b) Rotating clustering (Tcl = 40).

to what we have discussed in Section 4.3.1. As before, it is users located at the

cell corners away from the sites that achieve the lowest rates. To a lesser extent,

users near the middle of cells, not especially near a macro BS nor a pico BS,

also achieve somewhat lower rates. As is obvious from Figs. 4.10 and 4.11, the

achieved users’ rates are distributed more uniformly with rotating clustering than
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with fixed clustering for both MT and PF scheduling. Furthermore, the overall

rates are increased. The achievable throughput of those users who are located

in the corners of a cell is improved, and the size of the areas experiencing lower

rates is diminished. This is particularly noticeable in Fig. 9 for MT scheduling;

the colors in the cell corners increase from dark red to orange.

Cell-center users are also significantly affected by cluster rotation. Note that

in fixed clustering, and in the patterns in Fig. 4.2(a,c,e), two parts of the cluster

come from the same site. Because of the macro BS antenna pattern, the coverage

of the beams from those two BSs has little overlap. Hence, those two cells are

essentially impacted by, at best, two coordinated signals: one from their own cell,

and one from the third BS at the other site that contributes to the cluster. How-

ever, with rotation through the patterns in Fig. 4.2(b,d), receiving a significant

coordinated signal from 3 BSs is more common. Thus, users in those two cells in

the cluster see the most improvement from rotation10. The tradeoff now comes

from users in the third cell of the fixed scheme, who with cluster rotation now

are forced to experience less advantageous cluster patterns for the sake of overall

network fairness.

Fig. 4.12 demonstrates the achievable sum rates vs. Kc for the 3-cell lay-

out. Much like the 6-cell layout, MT scheduling again doesn’t display a gain in

sum rate from cluster rotation, for similar reasons as described in Section 4.3.1.

However, the throughput with PF scheduling does again increase considerably.

For example, with Kc = 12, comparing the achievable throughput of rotating vs.

fixed clustering shows an increase of 4.5% and 6.7%, for Tcl equal to tc and tc/2,

respectively. Comparing the 6- and 3-cell layouts with the same number of users

in each cluster (such as Kc = 12), and considering that the ISD between macro

sites is the same in both layouts, the 6-cell layout generally yields higher values

for area spectral efficiency on average. For example, the average total sum rates

10This is despite the clusters of the patterns in Fig. 4.2(b,d) experiencing more surrounding
interference, as seen by their larger value of σI in the simulation setup.
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Figure 4.12: Average achievable sum rate vs. Kc with proportionally fair (PF)
scheduling (tc = 40) over the area of a macrocell in an arbitrary cluster, comparing
various Tcl for proposed rotating clustering scheme and fixed clustering for 3-cell
layout, using simulated annealing scheduling and SZF-DPC precoding. Nmacro =
Npico = 2, M = 2.

per macrocell for Kc = 12 are 8.8 and 13.6 bits/s/Hz, respectively, for the 6- and

3-cell layouts with PF using fixed clustering, but also recall that the macrocell

area in the 6-cell layout is half of that in the 3-cell layout. Hence, the sum rate

per unit area (e.g. per km2) is larger in the 6-cell layout. However, the per-user

rate improvement achieved by using cluster rotation obtained in the 3-cell layout

is much more significant. Faster rotation yields higher gains in this layout than

the 6-cell layout. For instance, the additional sum rate improvement achieved by

setting Tcl = tc/2 compared to Tcl = tc is 2.1% in the 3-cell layout, while this gain

in the 6-cell layout is only 0.8%. Although faster rotation improves the average
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sum rate, the upper limit for higher speeds of rotation is still similar to what

we described in Section 4.3.1; thus, we have only presented the results for Tcl

equal to tc and tc/2. All these comparisons demonstrate that the rotating cluster

method overall helps the system performance in the clover-leaf-shaped network

layout more than the hexagonal-shaped network layout.

4.3.3 Comparison of Rotating Cluster Method with Dy-

namic Cluster Method

In [83], a dynamic clustering method was proposed and compared with static clus-

tering. There are several differences in the simulation methodology in that paper

compared to our own (e.g. a single-tier homogeneous network, differing numbers

of users and antennas, the precoding method, etc.). However, it can still serve

as a rough guide for the performance benefits of a fully dynamic scheme over

static clustering, and that can be used for comparison with our less complex ro-

tating clustering method. In [83], with 3 macrocells per site, 4 transmit antennas

per macrocell, 2 antennas per user, and PF scheduling, the dynamic scheme was

shown to have approximately an 18% gain in average sum rate per cell [83, Fig. 5],

and about a 22% gain in 5th percentile user rate [83, Fig. 6], versus a static clus-

tering scheme of 3 cells per cluster with one macrocell contributing from each site

(similar to the macrocells in our 3-cell layout). The 5th percentile user rate gains

approximately doubled when the maximum cluster size of the dynamic scheme

increased from 3 to 6, though at the same time also enforcing that just a single

data stream be sent to each user [83, Fig. 9]. In comparison, for our 6-cell layout,

the 5th percentile user rates for Kc = 12 and PF scheduling increase by about

23% to 28% over static clustering for the minimum and maximum examined ro-

tation speeds. In the 3-cell layout, the gains were even higher, i.e. 47-53% for

Kc = 12. The gain in sum rate per cell was lower, about 2.0-4.5% for Kc = 12 in

the 6-cell layout, and about 4.5-6.7% for Kc = 12 in the 3-cell layout. However,
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we remind the reader that our rotating clustering scheme was primarily designed

to help cluster-edge users (e.g. those around the 5th percentile), while any gains

in cell sum rate are an added secondary bonus. Hence, we can see that, com-

pared to the fully dynamic scheme of [83], our rotating scheme provides gains for

cluster-edge users that are on par with or better than those in [83], but at the

tradeoff of lower gains in the sum rate per cell.

4.4 Conclusion

In this paper, the downlink of a coordinated heterogeneous MIMO cellular net-

work including macro and pico BSs in two different network layouts has been

considered. The layout designs that have been employed here are a “traditional”

hexagonal-shaped network layout and a clover-leaf-shaped network layout. We

have proposed a different rotating set of clustering patterns for each cellular lay-

out. The performance of the proposed schemes under SZF-DPC precoding and

a reduced-complexity simulated annealing user scheduling algorithm, considering

both throughput maximization and proportionally fair scheduling metrics, has

been evaluated by simulation. The results demonstrate that this rotating clus-

tering scheme performs better than fixed clustering for both metrics and in both

layouts. The average achievable rate per user has been improved for those users

achieving amongst the lowest rates in the system, as well as the average achiev-

able sum rate. The first and foremost goal of rotating clustering is to improve the

performance of cluster-edge users with less complexity than fully dynamic clus-

tering; the enhancement of the overall sum rate throughput can be considered as

a secondary benefit. Overall, users with the highest average achievable rates are

scheduled less often with rotating clustering than with fixed clustering, thereby

sacrificing some of their average performance for higher fairness to others. How-

ever, the instantaneous achievable rates of all users when they are scheduled tend
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to be better with cluster rotation than without. User rates also become more

evenly distributed over the network coverage area.

We have also evaluated the effect of different cluster rotation speeds on the

system performance in both cellular layouts. The results demonstrate that faster

rotation performs better than slower rotation, but there is an upper limit on

the rotation speed, beyond which further increases do not result in any notable

additional gains in sum rate or per-user rate. The clover-leaf-shaped network

layout gains more in performance by using cluster rotation than the hexagonal-

shaped layout. This indicates in general that some network layouts (and their

associated cluster patterns) may benefit more by cluster rotation than others.

While we have investigated two regular grid-like network layouts in this work,

the concept of rotating clustering can also be applied to more general irregular

layouts. To consider cluster rotation within irregular layouts, it would first be

necessary to determine sets of BSs in the network that should be coordinated, and

then assign different patterns of clustering to them. This may not be as simple as

with a regular layout, but it is certainly feasible, given a set of BS locations and

the areas they are expected to cover and/or where they would cause interference

without coordination. (Voronoi diagrams of order n [86] could be of use to locate

regions where BSs should coordinate, by identifying the n nearest BSs at any

given location; the distances should also be weighted based on the type/tier of

each transmitting node.) The system can then rotate through those patterns just

as in this work.
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Chapter 5

User Scheduling Algorithms with

Temporally Correlated Channel

Gains

5.1 Introduction

In the analysis of wireless systems, fading channels are usually considered to have

independent and identically distributed small-scale channel gains for different

transmission intervals of the block fading channel. These uncorrelated time-

varying channel gains provide the highest capacity [50, 51]. However, in most

practical systems, channel gains demonstrate time-correlated small-scale fading

[46–51], because of mobility in the system (either of the users or the environment

around them)1. Temporally correlated (TC) fading channels provide less capacity

than i.i.d. channels [50, 51]; the achievable capacity increases while the channel

correlation decreases [50]. In spite of having temporal correlation of channel

gains, the capacity improves linearly when the spatial multiplexing gain increases.

1There are also spatial correlations in the shadowing and path-loss components of the channel
gains, as well as sometimes between antennas for the small-scale component in the case of MIMO
systems. However, these are outside the scope of our work.
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However, this correlation causes a downward shift of the capacity [50] (i.e., the

difference between the capacity of uncorrelated and TC MIMO channels increases

as the spatial multiplexing gain increases).

In general, when perfect CSI is available at both the transmitter and receiver,

the transmitter is capable of optimally adapting its power, data rate, etc. to

achieve the capacity of fading channel. Thus, the throughput on a TC fading

channel can be improved by employing CSIT and adaptive transmission [51],

which is also a requirement in MU-MIMO systems, as we have mentioned before.

In frequency division duplexing (FDD) system, the BS transmits a training signal

to the users, and each user measures and estimates its downlink channel (i.e.,

CSIR). For CSIT, the estimated CSIR is sent back to the transmitter by users

over separate feedback link. Obtaining accurate CSI at the transmitter is a

serious challenge in MU-MIMO systems, and has been addressed in the literature

[44, 45, 87–90]. For the downlink of a MU-MIMO system, this CSIT is used

to generate appropriate precoding matrices to reduce MUI and/or to find an

appropriate set of users to be scheduled.

If the wireless channel between users and BSs experiences time-correlated

fading, any two consecutive channel gains are more or less similar to each other

depending on the value of their correlation coefficient [46–48, 51, 91] (i.e., their

similarity to each other depends on how highly they are correlated). TC channels

can be beneficial to increase the data transmission efficiency of the wireless net-

work by exploiting the TC characteristic of the channel gains [50,91]. In fact, the

characteristics of temporal correlation causes redundancy in CSI. The redundant

CSI can be removed to reduce the amount of CSI required to be fed back. As a

result, exploiting the time correlation of channels can help those practical systems

with limitations on the feedback path. Moreover, the similarities in two consec-

utive channel samples can be exploited in the search process of user scheduling

algorithms to improve their performance. Investigations of techniques that are
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able to harness this characteristic of correlated channel gains and improve the

performance of the downlink of MU-MIMO system are of interest.

5.1.1 Motivation and Contributions

In this chapter, we consider the downlink of a coordinated multi-cell MU-MIMO

HetNet with the assumption of correlated channel gains. To evaluate the per-

formance of the throughput, we consider two different metrics here: MT (as we

used in Chapter 3) and PF. We first are interested to explore the performance of

our already proposed user schedulers when fairness is considered. Similar to the

approach used in Chapter 3, the parameter setup should also be chosen for the

PF user scheduler. Then, we investigate the effect of temporal correlation of the

channel on the output of the user scheduler to see if this correlation affects the

performance of our proposed algorithms or their parameters, as well as if it can

help the scheduler to achieve better performance or to explore the search space

faster. If so, the achieved throughput of the system can be improved and/or the

complexity of the user scheduling algorithms can be reduced notably, which is of

most interest to us in design of the large wireless networks. In this chapter, we

suggest to use the behaviour of correlated channels within the search process of

the user scheduling algorithm in order to reduce its complexity and to improve

the achievable sum rate.

We consider SZF-DPC as the precoding method. As with the results in Chap-

ter 3, the outcomes of this chapter can be relatively trivially extended to different

precoding methods. In Chapter 3, we proposed the HGPS algorithm; the perfor-

mance of this algorithm was investigated when the MT metric was used. Using

the PF metric, users are chosen in part according to their priority weights, which

means that the users with higher priority will be chosen more likely by the sched-

uler. The user with the largest channel gain may be selected by the scheduler

for a few transmission intervals, then its priority may be decreased dramatically

115



relative to the other users and it might not be selected again for some time. This

is contradictory to the base HGPS algorithm, which always schedules the user

with the largest channel gain. In this chapter, we investigate the performance of

PS and SA algorithms under various parameter setups, using TC channel gains.

5.2 System Model

The coverage area of a macro BS site is partitioned into six cells each covered by

a 60◦ directional macro antenna installed on a macro BS. In this chapter, each

cluster includes two high power macro BSs and four low power pico BSs which

are overlaid on the coverage area of the macros. A sample cluster is depicted in

Fig. 5.1. Each macro directional antenna and pico omnidirectional antenna is

equipped with N transmitting antennas. In each macro cell, there are K users

uniformly distributed across the cell; as a result, the number of users in each

cluster is twice K, i.e. Kc = 2K. The received signal by user k is modeled as

yk = Hkx+ Zk (5.1)

where x is the transmitted signal from the cluster and Zk is the interference

from other clusters plus noise, which is described in (4.2). Hk is the aggregate

downlink channel of the kth user from all BSs in the cluster similar to Chapter 3,

which accounts for path loss, log-normal shadowing and Rayleigh fading. Each

element of Hk is denoted similar to (3.1), where for simplicity the suffix c is now

omitted. In this work, we consider temporal correlation of small scale fading,

which is caused by mobility of at least one of the communicating transceivers

and/or mobility of scatterers in the environment. With mobility on a small scale

(a couple of wavelengths), the shadow fading and path loss components of the

channel gains can be assumed approximately constant, and for simplicity we can

consider that they do not change over our simulation period. Thus, the correlation
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Figure 5.1: Schematic deployment of HetNet. Large triangle-shaped areas repre-
sent macro cells, while small hexagons denote pico coverage areas. The shaded
diamond-shaped area is the cooperating cluster.

of the channel gains occur in the short-term fading, modeled as Rayleigh fading.

According to (3.1), the Rayleigh fading element of h
(b,m,n)
k [t] is modeled by the

parameter z
(b,m,n)
k [t], which is a complex Gaussian random variable. Assuming

the correlation coefficient of a TC channel, one commonly used method to model

the TC channel is known as Clarke’s two dimensional isotropic scattering model

[3, 92] , which assumes that the received signal from all scatterers around the

receiver come from all azimuth directions with equal probability. One approach to

generate these channel samples, for simulation purpose, is described in [93,94] and

is well-known as filtered white Gaussian noise, and one method of this approach

is IDFT (inverse discrete Fourier transformation) method.

In IDFT method, the correlated Rayleigh complex random variations are gen-

erated by passing two generated uncorrelated i.i.d. sequences of random variables

through low pass filter to shape their power spectrum to the desired random pro-

cess via computer simulations, details of this method are provided in Appendix

B. The autocorrelation function of the output signal can be translated as the

correlation coefficient of the signal, i.e. ρ = J0(2πfdτ), where fd is the maxi-

mum Doppler frequency and τ is the time delay between two samples; the fdτ

is the normalized time delay [3, 92]. It is assumed that the transmitters have
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perfect knowledge of CSI in every transmission interval, and try to create the

corresponding precoding matrices. In (5.1), x is the transmitted signal and Zk

is the summation of additive white Gaussian noise and the interference from all

other clusters, which is distributed as CN (0, (σ2 + σ2
I )IM), where σ2IM is the co-

variance matrix of AWGN noise and σ2
IIM is the covariance matrix of inter-cluster

interference. The features of these two terms are similar to what we considered

in Chapter 3 for the same equation.

In this chapter and without loss of generality, we only consider SZF-DPC as

the precoding method, which is a sensitive precoding method to the order of the

users for the maximization of the achievable weighted sum rate, and described

in details in Chapter 3 and in [30]. Using similar procedure, for a given ordered

user πj
k, its achievable rate Rπj

k
at time t is given by (3.5), by replacing H̃c(i),πj

c(i),k

with Hk from this chapter. In each cluster, the maximum achievable weighted

sum rate is given by

max
πj :j∈{1,2,···,U !}

max{
Q

π
j
k

}
k∈{1,··· ,U}

:

Q
π
j
k

�0, ∑
∀k

Tr(Q
π
j
k

)≤1

U∑
k=1

μπj
k
[t]Rπj

k
[t] (5.2)

where μπj
k
[t] is the priority weight of the kth user during the tth scheduling

interval, and U is the maximum number of the users which can be served simul-

taneously in the cluster (it is equal to the minimum of either total number of

transmitting or receiving antennas). In PF scheduling, for the lth user in the

cluster, μl[t] is defined similar to the procedure in Chapters 2 and 4. The rest of

all calculations to generate the maximum achievable weighted sum rate at time t

summed over the cluster is given as described in previous chapters, defining the

best ordered user vector as π∗.
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5.3 User Scheduling Algorithms with Tempo-

rally Correlated Channel Gains

In this section, we investigate the performance of already proposed user schedul-

ing algorithms in Chapter 3 under the assumption of TC channel gains. In that

chapter, SA and PS algorithms are analysed under the assumption of MT perfor-

mance metric and uncorrelated channel gains. In this chapter, simulation results

of PS and SA algorithms under the assumption of TC channels are presented

and their performance is compared with optimal user scheduling using SZF-DPC

precoding technique, for both MT and PF metrics. The average sum rate and

average number of scheduled users are determined for the cluster using the Monte

Carlo simulation method.

The numbers of transmit antennas per BS and receive antennas per user are

assumed to be 2. It is assumed that the distance between macro BSs is 1732

m. The transmitting power of each macro BS in each sector is 16 dBW. The

transmitting power of each pico BS is assumed to be 1/40 of the macro BS

power. The path loss exponent is assumed to be 3.91 and 3.67 and the standard

deviation of the log-normal shadow fading is 6 dB and 4 dB, respectively, for

macro and pico BSs2. The total interference from the other clusters outside the

target cluster is approximated by a complex Gaussian random vector with zero

mean and variance σ2
I = 141. For simplicity, we assume that the channel temporal

correlation for all users has the same correlation coefficient, i.e. the channels of

all users in the network experience the same correlation; this assumption reduces

the complexity of analysis and simulations. We consider 4 different correlation

coefficients for our TC channels: a) ρ = 0, for uncorrelated channel gains; b) ρ =

0.9998, for pedestrian users with an average speed of 3 km/h, assuming that the

2The values of the path loss exponents and the shadow fading standard deviations used here
for macrocells and picocells correspond to the Urban Macro (UMa) non-line-of-sight (NLoS)
scenario and the Urban Micro (UMi) NLoS scenario, respectively, as found in [42].
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transmission carrier frequency is 2 GHz and the scheduling interval is 1 ms; c)

ρ = 0.92, for vehicular users with an average speed of 50 km/h; d) ρ = 0.75, for

even higher speeds. For SA and PS algorithms, the simulation setup parameters

are similar to what we assumed in Chapter 3. Different scheduling algorithms

and their parameter settings are denoted by case numbers similar to Table. 3.2 in

Chapter 3. The goal of this comparison is to find the parameter setup for SA and

PS algorithms as well as to select the best user scheduling algorithm to obtain

a solution close to exhaustive search when temporal correlation of channel gains

are considered, using both MT and PF.

In Fig. 5.2(a) and 5.3(a), we compare the difference between the achievable

sum rates obtained by different user scheduling methods considering different

setup parameters with the exhaustive search, under different correlation coeffi-

cients, respectively, for both PF and MT metric. The Rayleigh fading component

of channel gains are assumed TC samples with correlation coefficients of ρ = 0

and 0.75 in time, using Kc = 6. The comparison of the number of scheduled

users in the cluster under the same conditions are presented in Fig. 5.2(b) and

5.3(b) for both metrics. The optimal ordered selection of users are found by ex-

haustive search in which achieves the maximum sum rate. Using i.i.d. and TC

channel gains with Kc = 6, exhaustive search yields sum rates of 135.7 and 135.5

bits/s/Hz, respectively, for ρ = 0 and 0.75 with MT metric (similarly, with PF

metric, the achieved rates respectively are given as 134.1 and 133.9; there is a

drop off in sum rate using PF metric which is expected). These results depicts

that the achievable sum rate of the system is reduced with channel correlation.

In PS algorithm with MT metric, RPS performs very close to exhaustive

search with the maximum number of scheduled users; i.e. 5.98 users are served

in average. Using PF metric, RPS algorithm also performs better than the other

PS approaches, and it serves approximately the same number of users that MT

serves. Thus, RPS approach is chosen to represent the proposed PS user schedul-
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Figure 5.2: Comparison of (a) loss in target area sum rate, (b) target area average
number of scheduled users, between different proposed PS and SA user scheduling
algorithms, relative to exhaustive search, using SZF-DPC and different channel
correlation coefficients, with MT metric; M = N = 2, Kc = 6, Pt = 16 dBW.
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Figure 5.3: Comparison of (a) loss in target area sum rate, (b) target area average
number of scheduled users, between different proposed PS and SA user scheduling
algorithms, relative to exhaustive search, using SZF-DPC and different channel
correlation coefficients, with PF metric; M = N = 2, Kc = 6, Pt = 16 dBW.
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ing algorithm. The difference between achieved sum rates of different types of

PS algorithm and exhaustive search are approximately the same with different

channel correlation coefficient ρ, in both metrics. It means that our proposed

user scheduling algorithms behave the same under uncorrelated and correlated

channel assumptions; the proposed PS algorithm is resistant to the time correla-

tion of the channel. However, the performance loss of PS algorithm is more sever

when PF metric is used. For an example, performance loss of RPS (compared to

exhaustive search), using PF metric, is 18.4% more than the loss of performance

when MT is used, which means that RPS performs more close to the exhaustive

search when MT scheduling metric is employed.

Assuming uncorrelated channel gains, SA algorithm with case numbers #9

and #18 (See setup methods in Chapter 3) perform better than other SA ap-

proaches with approximately similar performance loss compared to exhaustive

search, using both metrics. These two cases can serve almost the same number

of users (see Fig. 5.2(b) and 5.3(b)). Correlated time-varying channel samples

cannot cause changes on performance loss on different SA approaches, using ei-

ther MT or PF metrics; except for SA algorithm case #18 using MT metric. TC

channel gains are able to slightly affect this approach; however, the performance

loss of this circumstance is negligible (about 0.002 bits/s/Hz). Since cases #9

and #18 are performing very close to each other in different circumstances, and

in line with results obtained in Chapter 3, we prefer to choose SA case #18 as our

proposed SA user scheduling algorithm for all channel gain circumstances and/or

performance metrics.

As it is clearly presented in Fig. 5.2 and 5.3, the correlation of the channel

gains cannot affect the output of our algorithms very much and the results, which

are confirmed in Chapter 3, are still valid with both metrics and in any correlation

circumstances. Thus, RPS (case #19) as the selected PS algorithm and SA

cases #18 achieve the highest sum rate in their own categories with the largest
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number of served users. They, thus, can be chosen by any system with throughput

maximization or fairness concerns.

In Fig. 5.4, the achievable sum rates of PS and SA user scheduling algorithms

are compared with exhaustive search for different correlation coefficients of TC

channel gains and various number of users in the cluster, with both MT and PF

metrics. Using MT, both algorithms perform very close to optimal scheduling

method, while SA performs closer to exhaustive search than PS. The perfor-

mance loss of SA algorithm is quite negligible for all values of Kc and/or different

temporal correlations of the channel. The loss of average achievable through-

put between PS and exhaustive search are approximately the same when ρ is

increasing; however, larger pool of users in a cluster reduces the performance loss

(multi-user diversity gain). As an example, for ρ = 0.92 and Kc = 4, the perfor-

mance loss of PS compared to exhaustive search is about 1.4%. When Kc = 6

with the same ρ, the performance loss is decreased as 0.3%, which means that PS

user scheduling algorithm performs better when Kc is large, using MT metric.

When PF is considered, the performance loss of SA and PS algorithms com-

pared to exhaustive search are, respectively, as 0.04% and 0.35% (for Kc = 6

and ρ = 0.92). This performance loss is increased by the increase in either Kc

or ρ. Using PF, the performance loss of SA and PS algorithms when Kc = 8

and ρ = 0.9998 are, respectively, obtained as 0.4% and 1.3%. This analysis re-

veals that performance of both PS and SA algorithms, using PF schedulin metric,

are affected by TC channels. The average achievable rates are decreased when

channel temporal correlation is increased (also mentioned in [50]). When Kc

increases, the achievable sum rate is increased because of employing multi-user

diversity of MU-MIMO, and the SA algorithm achieves higher sum rates (closer

to that exhaustive search obtains) compared to PS. The PS and SA algorithms

are performing approximately close to the exhaustive search and increase in the

temporal correlation of channel gains generally cannot change their performance
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between PS and SA user scheduling algorithms and exhaustive search, using
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compared to the optimal solution.

5.4 Developments on SA and PS User Schedul-

ing Algorithms

For TC channels, we introduce updates to our proposed algorithms from [85] to

take advantage of channel correlation during the search process in order to speed

their convergence and to improve their achieved sum rates. In this paper, the

scheduling metric s for all algorithms in [85] is now a WSR.

In Chapter 3, the PS user scheduling algorithm is described, and its pseu-

docode is presented in Algorithm 1. Temporal correlation in the users’ channels

can be exploited in the initialization part of the algorithm. In the original ver-

sion of this algorithm, the initial set of particles is generated randomly from all

possible vectors of ordered users. The particles then explore the search space to

find a near-optimal solution. The best overall solution that has been found by all

particles, named as x̂[t], is the output of the algorithm and becomes the sched-

uled vector of users. Having TC channels, it is quite possible that near-optimal

solutions of two consecutive fading channel realizations would have some similar-

ities with respect to each other; when two consecutive channel realizations are

correlated, it would be logical that some of the same users should be scheduled at

both of those times. Hence, the two solutions might be located near each other in

the multi-dimensional search space. Under such circumstances, it is reasonable to

initialize our next search such that the set of particles includes the outcome of the

previous exploration; i.e. x̂[t−1] is used as one of the initial particle positions in

the tth scheduling interval. The velocity of this particle is also imported from the

previous interval. The rest of the PS algorithm operates the same as described

in Chapter 3.

Using x̂[t−1] as an initial particle position at time t allows the algorithm to in-
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Algorithm 4 Updated Particle Swarm User Scheduling Algorithm
for all time realizations starting from t = 1 do

Initialize: stalled = false, n = 1, nmax, nstalled, ws, we, c1, c2, P , Vmax, w = ws,
sx̌i(n) = 0, sx̂(n) = 0; ρ;

if ρ �= 0 and t > 1 then
x1(1) = x̂[t−1], v1(1) = v̂[t−1];
xi(1) = a vector of up to L ordered users randomly chosen from Ds, ∀i ∈ {2, · · · , P};
vi(1) = a vector of L velocities for the elements of xi(1), uniformly randomly chosen

from [−Vmax,+Vmax], ∀i ∈ {2, · · · , P};
else

xi(1) = a vector of up to L ordered users randomly chosen from Ds, ∀i ∈ {1, · · · , P};
vi(1) = a vector of L velocities for the elements of xi(1), uniformly randomly chosen

from [−Vmax,+Vmax], ∀i ∈ {1, · · · , P};
end if

{Similar to the Algorithm 1 in Chapter 3 ... }

return x̂[t], v̂[t]

t = t+ 1
end for

Algorithm 5 Updated Simulated Annealing User Scheduling Algorithm
for all time realizations starting from t = 1 do

{Similar to the Algorithm 3 in Chapter 3 ... }

if ρ �= 0 and t > 1 then

x̂Temp = x
[t−1]
best ; Compute sx̂Temp

.

if sx̂Temp
> s

[t]
xbest then

x
[t]
best = x

[t−1]
best ;

s
[t]
xbest = sx̂Temp

;
end if

end if
return x

[t]
best, s

[t]
xbest

t = t+ 1
end for

127



vestigate the neighbourhood of this solution; the other (still randomly initialized)

particles still enable exploration of other parts of search space. If a near-optimal

solution is located somewhere nearby x̂[t−1], the algorithm can more quickly focus

its exploration on that area of the search space to find the best candidate solu-

tion. Thus, it will converge to this solution in fewer iterations on average. The

pseudocode of this modification is presented in Algorithm 4 herein and named as

the updated PS algorithm.

In Chapter 3, the SA algorithm with and without memory is proposed, and

Algorithm 3 presents the corresponding pseudocodes. In this paper, we only con-

sider the version with memory, SA-m, because of its higher achievable through-

put. In each execution of the SA algorithm, it initializes a random vector of

users chosen from the Kc users requesting service. Then, the algorithm proceeds

according to Algorithm 3 until it converges. The ordered vector of users that

gives the highest WSR found during the algorithm’s iterations is named as x
[t]
best.

In the modification to the original SA algorithm, the algorithm then compares

the achievable WSR s
[t]
xbest of x

[t]
best with that of the solution from the previous

scheduling interval, but using the corresponding channel gains belonging to the

current interval t. Let x̂prev be the solution of the previous interval, and s
[t]
x̂prev

be the achievable WSR of x̂prev at interval t. If s
[t]
x̂prev

> s
[t]
xbest , xprev replaces

x
[t]
best as the best solution. The updated SA algorithm then outputs its final best

solution. Algorithm 3 from Chapter 3 is updated accordingly and the updated

sections of pseudocode are provided here as Algorithm 5. The modifications let

the algorithm incorporate the solution of the previous scheduling interval, after

the channels are updated. If the previous solution is still a better candidate than

the one found by the normal iterations, the algorithm will keep that prior solution

as its output3. This process in essence improves the memory of SA algorithm, and

3We have also considered updating the SA algorithm wherein the previous solution is used
in the initialization rather than near the end, similar to the process used in the updated PS
algorithm. That attempt resulted in very negligible improvements in the achieved sum rates.
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Figure 5.5: Comparison of loss in target area sum rate for (a) MT and (b) PF
metrics, and average number of scheduled users for (c) MT and (d) PF, between
different updated PS and SA user scheduling algorithms, relative to exhaustive
search, using SZF-DPC, for correlated channel gains with various correlation
coefficients ρs; M = N = 2, Kc = 6, Pt = 16 dBW.

consequently, the achievable throughput is improved, while the complexity has

changed very little. The proposed method is named as the updated SA algorithm.

In Fig. 5.5, we compare the results of the updated PS and updated SA

This is because the algorithm gets stuck in the neighbourhood of the previous solution and
can’t sufficiently escape to search elsewhere. Note, there is only a single initialization point in
the search space that can be modified for the SA algorithm , vs. 1 modified point out of P for
PS.
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algorithms with the original PS and SA algorithms from [85] when the correlation

coefficient4 ρ = 0.75, 0.92, and 0.9997 between scheduling intervals, for Kc = 6.

The performance of both updated algorithms is improved, especially when the

MT metric is used. Considering ρ = 0.92, the updated PS algorithm yields a loss

in sum rate, relative to that provided by an exhaustive search, that is 52% and

22% smaller than the loss of the original PS algorithm, respectively for the MT

and PF scheduling metrics. The improvements of the updated SA algorithm over

the original are 61% and 16% for MT and PF, respectively. Thus, both updated

algorithms under both metrics take advantage of the temporal correlation in the

fading channels to enhance their performance significantly. The gain is smaller for

PF because its near-optimal choice of users changes faster, due to the changing

user weights each scheduling interval. We have also investigated the number

of users served by all the algorithms. The number of served users with this

developed PS and SA are compared in Fig. 5.5(c,d). Both algorithms can also

serve more users with their developed version compared to their previous version

introduced in Chapter 3; however, this improvement with updated PS is more

considerable than others. With MT metric, the number of served users increases

with updated PS and SA, respectively as 0.2% and 0.02%, when ρ = 0.92. Since

the number of users are approximately 6 in all assumptions, we conclude that the

system usually serves the maximum possible number of users that can be served

simultaneously. In all four cases, they ended up almost always serving all 6 users

requesting service. (The worst case, the original PS algorithm, served fewer users

less than 2% of the time.)

In Fig. 5.6, we compare the updated PS and SA algorithms for different num-

bers of users Kc in the cluster, with the channel correlation coefficient assumed

4These values respectively correspond to a normalized time delay of {0.165, 0.093, 0.0056}.
If we assume τ = 1 ms and a carrier frequency of 2 GHz, then the mobile speed would be {89,
50, 3} km/h. In the case of ρ = 0.75, it starts to stretch our assumption of constant path loss
and shadowing, so the value is mostly just for the purposes of comparing with a smaller ρ.

130



4 6 8 10

110

120

130

140

150

A
ch

ie
ve

d 
su

m
 ra

te
 

[b
its

/s
/H

z]

Updated PS, ρ = 0.92

MT
PF

4 6 8 10

110

120

130

140

150

Updated SA, ρ = 0.92

MT
PF

4 6 8 10
Number of users in the cluster (K

c
)

4

6

5

6

A
ve

ra
ge

 n
um

be
r o

f 
se

rv
ed

 u
se

rs

MT
PF

4 6 8 10
Number of users in the cluster (K

c
)

4

6

5

6

MT
PF

(a) (b)

(c) (d)

Figure 5.6: Comparison of achievable sum rate in the cluster with (a) updated PS
and (b) updated SA, and average number of scheduled users with (c) updated PS
and (d) updated SA, for MT and PF metrics and using SZF-DPC, for correlated
channel gains with ρ = 0.92; M = N = 2, Pt = 16 dBW.

to be 0.92. As Kc increases, the average sum rate also increases, which is the

result of multiuser diversity. The maximum possible number of simultaneously

served users in our system model is U = �BN/M� = 6. The system consistently

serves min(Kc, U) users in all cases. With Kc less than or equal to the maximum

number of served users in a cluster, our proposed updated SA and PS behave

similarly with both metrics (There is a small difference between the PF and MT

in this range of K). The results of Fig. 5.6 have the same trends for other val-

ues of the correlation coefficient ρ, with increasing sum rates as ρ decreases, as

expected.
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We also consider the change in complexity of the updated PS and SA algo-

rithms in terms of the number of iterations required to converge on a solution.

Our investigation found that the updated PS algorithm converges faster than

the original, with the convergence speed increasing the higher the value of ρ.

For example, when Kc = 10 and ρ = 0.75, 0.92, and 0.9997, the updated PS

algorithm on average finishes, respectively, 5.6%, 6.1%, and 8% faster than the

unmodified PS algorithm from Chapter 3. However, the updated SA algorithm,

despite the improved sum-rate results, did not yield a significant change in the

speed of convergence vs. the original.

5.5 Conclusion

In this chapter, the downlink of a coordinated heterogeneous MIMO network with

temporally correlated channel gains has been considered. We have investigated

our already proposed reduced-complexity user scheduling algorithms, simulated

annealing and particle swarm, under MT and PF metrics accounting for temporal

correlation of channel gains, using SZF-DPC precoding. Each algorithm, again, is

examined for the different parameters and options that can affect its performance

(the best choices determined by simulations), using TC channels. Both algorithms

perform quite close to an optimal exhaustive search in terms of achievable sum

rate they provide. The simulations demonstrate that temporal correlation of

fading channels cannot change the behaviour of our algorithms dramatically, and

both PS and SA algorithms perform close to the optimal solution in different

correlations.

We also proposed some updates to our PS and SA algorithms to improve their

performance in terms of achievable sum rate and number of served users, by ex-

ploiting the characteristics of TC channels. Using the similarities between two

channel samples in TC fading channels, the updated PS employs the solution of
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previous transmission as one of the particles in its current search, and tries to find

the best solution based on using the solution of previous scheduling interval. For

SA, the algorithm explores the search space in each scheduling interval indepen-

dently. Then, it compares the achieved sum rate of the ordered users obtained

from the current search process with the sum rate of the scheduled users in the

previous transmission interval, using the current channel gains. The solution with

larger sum rate is returned as the output of the algorithm.

Our proposed updated PS and SA user scheduling algorithms are able to

get advantage of channel correlation and perform even more closer to exhaustive

search than their previous versions; updated PS is also able to find the solution

even faster than before (lower complexity). The results have been examined for

different ranges of the number of users and various correlation coefficients. As

the number of users in the cluster increases, the achievable sum rate grows in

different correlation coefficients. The outcomes of this chapter is independent of

the choice of the precoding, and they can easily be extended to different precoding

methods.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

In Chapter 3, we have proposed various simplified user scheduling algorithms

for the downlink of a coordinated heterogeneous MIMO network, using reduced-

complexity simulated annealing, particle swarm and hybrid greedy-particle swarm

algorithms. The performance of the proposed algorithms has been evaluated un-

der SZF-DPC, SZF, SZF(CGP), and BD precoding methods, and using maximum

throughput scheduling metric. The algorithms were designed to be flexible with

the number of users, type of BSs, etc. For each proposed algorithm, different

parameters have been evaluated and determined by using simulations to find the

best options to set up the algorithm. Thus, the algorithm achieves result very

close to the exhaustive search. Computing the complexity for each of the pro-

posed algorithms, we demonstrated how much its complexity has been reduced

compared to the exhaustive search, while it performs quite close to an optimal

exhaustive search in terms of the sum rate it provides. We have analysed SA algo-

rithm with and without memory; we also proposed two methods for PS algorithm

when particles are approaching borders of search space, reflective PS and modulo

PS. SA with memory and reflective PS have been selected as the best solutions,
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respectively, for SA and PS algorithms. Although HGPS outperforms greedy

algorithms, PS algorithm outperforms HGPS algorithm in terms of achievable

sum rate. A scheduled user vector obtained from PS algorithm usually includes

more users with higher sum rate rather than the other two proposed methods.

Increasing SNR and/or the number of users improve the achieved results of our

proposed user scheduling algorithms.

We have proposed a rotating clustering scheme for two different 6-cell hexagonal-

shaped and 3-cell clover-leaf-shaped layouts in Chapter 4. The performance of

the proposed scheme under SZF-DPC precoding and the simulated annealing user

scheduling algorithms considering both throughput maximization and propor-

tionally fair scheduling metrics has been evaluated by simulation. For both met-

rics, the rotating clustering scheme outperforms fixed clustering and the achieved

throughput of most users is improved. Using PF metric, the sum rate of the sys-

tem is improved by using the cluster rotation scheme. The cluster rotation scheme

is basically suggested to improve the performance of the cluster-edge users. By

using rotating clustering scheme, the cluster-edge users are located in a position

in the cluster where they can have a better SINR after the rotation. This scheme

distributes the user rates more evenly through the network and the combination

of PF, it gains better fairness and higher throughputs. We have demonstrated

that the cluster rotation scheme improves the performance of 5th percentile users

considerably with both layouts and saves those users from very low throughput

(using PF) or service starvation (using MT). Also, the optimum speed of this

rotation has been evaluated in this chapter. The results demonstrate that faster

rotation performs better than slow rotation. However, there is an upper limit on

increasing the rotation speed, and further increases (beyond that point) do not

result in any notable gains in sum rate or per-user rate. The concept of cluster

rotation can be extended to different network layouts from grid-like network to

randomly deployed models. However, some of the network layouts gain more from
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cluster rotation than other ones; comparison of the throughput improvements for

our two assumed layouts demonstrates this.

In Chapter 5, we have, first, investigated our proposed user scheduling al-

gorithms when the fading channel is temporally correlated. Temporally corre-

lated channel models are important to model more practical scenarios in which

the users’ channel gains are not changing very quickly. Thus, the two consecu-

tive channel samples may be strongly correlated. The performance of simulated

annealing and particle swarm user scheduling algorithms have been evaluated

under TC channel model, using SZF-DPC precoding method and MT and PF

performance metrics. Our investigations demonstrate that the performance of

our proposed SA and PS algorithms are resistant to channel correlation; both

algorithms perform close to exhaustive search with uncorrelated and correlated

channel gains. We have also intended to take advantage of the characteristic of

TC channels and improve our SA and PS algorithms to perform better and faster.

Thus, we proposed some updates to our already proposed simulated annealing

and particle swarm user scheduling algorithms. In the updated version of each

algorithm, the solution of the previous scheduling interval is employed in the pro-

cess of exploration to find the suboptimal solution. Our simulations demonstrate

that the proposed updates improve the performance of both PS and SA algo-

rithms dramatically with respect to the optimal solution and they perform very

close to exhaustive search: higher correlation, throughput closer to exhaustive

search. The PS algorithm is also capable to perform even faster by employing

the proposed updates. The modifications in SA and PS user scheduling algo-

rithms improve our algorithms in order to employ better in real systems. The

results of this chapter can be easily extended to any system model with any kind

of precoding method.
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6.2 Future Research Directions

• When investigating our proposed user scheduling algorithms, we assumed

perfect channel state information and joint transmission network coordi-

nation scheme. In CoMP, perfect CSI of BSs to users channels needs to

be available at all BSs at any transmission interval to achieve maximum

throughput. In a practical system, however, the perfect CSI is not available

at BSs, and acquiring accurate CSI is a big challenge in wireless systems [88].

Downlink CSI is imperfect for two main reasons. First, the estimation of

the downlink channel, which is done by the user, usually involves some er-

rors [89]. Second, user quantizes the estimated CSI and sends it back to the

BSs using some limited CSI feedback technique, which results in furthur

distortion of the CSI [89]. Hence, the CSI at BSs in a cellular system is

an imperfect (inaccurate) version of its actual value. Another example of

imperfect CSI could include a delay in the availability of channel state infor-

mation at BSs. The imperfect CSI affects the achievable throughput of the

MU-MIMO system, by affecting the precoding and user scheduling at BSs.

Our proposed user scheduling algorithms employs perfect CSI to select the

appropriate set of users to be served, with the performance very close to the

optimal search. If this CSI is an imperfect version of the channel, the out-

put of the algorithm is expected to be affected adversely and the algorithm

might not perform that much close to exhaustive search. An important

future direction of this work would be the consideration of this imperfect

CSI in design and development of user scheduling algorithms. Also, the

analysis of the overhead of centralized scheduling could be considered in

future work.

• HetNets are considered to employ different cell sizes from macro cell to femto

cells. The femto BS is usually user deployed BS with indoor applications
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and its access can be varied from open access to all users in the network,

closed access to just its own users, or a combination of both [95]. This

restricted access also challenges all proposed RRM methods (user schedul-

ing algorithms and/or clustering methods) even more, and requires to be

considered as another future direction of this work.

• In this work, we have analysed all proposed user scheduling and cluster

rotation methods under the assumption of joint processing network coordi-

nation. However, it is essential to investigate how these proposed algorithms

and clustering methods will perform under different CoMP approaches. A

combination of different coordination methods with various HetNet deploy-

ments challenges our proposed RRM techniques and is one more interesting

future direction.

• Dynamic clustering is the optimal clustering approach to achieve high through-

put in wireless network [37–40]. As we mentioned earlier, the processing

and signaling overhead of this method is very complex. There are different

dynamic clustering methods introduced in literature [37–40]. An open area

of interest for future work would be the consideration of our proposed user

scheduling algorithms combined with dynamic clustering method in Het-

Nets. Joint scheduling and dynamic clustering should be considered, specifi-

cally when a BS belongs to two different clusters at the same time [41,96,97];

this imposes more challenges to our proposed RRM strategies.
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genetic user scheduling algorithms for multiuser MIMO systems with block

diagonalization,” in Proc. IEEE 70th Veh. Technol. Conf. (VTC 2009-Fall),

pp. 1–6, Anchorage, AK, USA, Sep. 2009.

142



[29] M. E. Aydin, R. Kwan, J. Wu, and J. Zhang, “Multiuser scheduling on the

LTE downlink with simulated annealing,” in Proc. IEEE 73rd Veh. Technol.

Conf. (VTC 2011-Spring), (Budapest, Hungary), pp. 1–5, May 2011.

[30] A. D. Dabbagh and D. J. Love, “Precoding for multiple antenna Gaussian

broadcast channels with successive zero-forcing,” IEEE Trans. Signal Pro-

cess., vol. 55, pp. 3837–3850, Jul. 2007.

[31] R. C. Elliott, S. Sigdel, and W. A. Krzymień, “Low complexity greedy,
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Appendix A

Location of Picocells in

Coordinated HetNets

Assume a pico BS located in the coverage area of a macro BS, which is also

named as target area. The equal signal to interference ratio (SIR) rule defines

the border of pico vs. macro BSs (consequently the location of the pico BS inside

the coverage area of the macro BS). Assuming coverage area of an arbitrary macro

BS and for any location of this area, the SIR of a pico BS is defined as

SIRp =
Prp

I + Prm

, (A.1)

where Prp is the received power from the corresponding pico BS, Prm is the re-

ceived power from the macro BS, and I is the interference from all transmitting

pico and macro BSs outside the target area. Similarly, we can define the SIR from

macro BS at the same point by switching Prp and Prm . The borders are defined

at those points in which SIRp = SIRm. Using (A.1), the equality is obtained

by Prm + 1/2 = ±(Prp + 1/2). This system of equations has two sets of results:

Prm = Prp or Prm = −(I + Prp). The latter is only possible if at least one of the

Prm or Prp are negative. Since Prm , Prp , and I are all positive values, the only

152



valid solution is Prm = Prp . This means that the border of pico BS is defined at

those locations in which the received signal from both pico and macro BSs are

equal.

In general, the received power, in dB, is defined as [2]

Pr = Pt + PL+ A+ χ+ ζ, (A.2)

where Pt is the transmitting power in dBW, PL is the path loss, A is the antenna

pattern of BS, χ is the log-normal shadow fading with zero mean and standard

deviation σχ, and ζ is the small-scale Rayleigh fading component, where it is i.i.d

complex Gaussian random variable with zero mean and unit standard deviation.

The average received power conditioned to a specific location (x, y) is given as

E (Pr|(x, y)) = Pt + PL(x, y) + A(x, y). (A.3)

The PL(x, y) and A(x, y) are defined as constant values at any (x, y). The path

loss is obtained as PL(x, y) = −10α log10 d(x, y)+g, where d(x, y) is the distance

between the transmitter and the location of point (x, y), g is a constant value

representing parameters of the antenna and transmission, and α is the path loss

exponent. The antenna pattern of the macro BS cell for a 120◦ directional antenna

is defined as [78]

A = −min

(
12
( θ̂

θ3dB

)2

, Am

)
, (A.4)

where θ̂ is the angle between the location of (x, y) with macro BS’s main beam,

θ3dB is 3dB beamwidth in degrees which equals to 70◦, and Am is the maximum
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attenuation and equals to 20 dB1. The equation in (A.4) can be revised as

A =

⎧⎪⎨
⎪⎩
−12

(
θ̂

θ3dB

)2

, θ̂ < θc,

−Am, θ̂ > θc,

(A.5)

where θc is the cut-off angle; i.e. the min function switches to either of its limits in

this angle. Using (A.5), θc is given as θ3dB

√
Am

12
, and it is calculated for 120◦–cell

and 60◦–cell, respectively, as 90.37◦ and 48.46◦. Since any location in the coverage

area of a cell has θ̂ < θc, the first row in (A.5) is just used in the calculations.

• Assume a cell of a 6-cell layout with its two pico BSs which are presented

in Fig. A.1. The pico BSs are located on an imaginary circle with radius

of c = R(
√
3/2 − γ) around the center of hexagon. The macro BS is also

located on the center of this hexagon site, and γ is the distance between the

border of the site and the imaginary circle, in the direction of the antenna’s

main beam (see Fig. A.1). The macro BS is equipped with 60◦ directional

antenna. The location of any pico BS can be defined by using c and β,

where β = is the angle2 between the pico BS and the main beam of the

macro BS antenna. In this layout, pico BSs are evenly spaced around the

macro BS, such that the angle between them is 30◦, and their angle from

the macro boresight is fixed to 15◦, i.e. β = 15◦. So, they are defined

accordingly as L1 = c sin β and L2 = c cos β, where L1 and L2 are depicted

in Fig. A.1.

An arbitrary point (x, y) is laid inside the macro cell. Its distance from

macro and pico BSs are, respectively, defined with d and r; the angle be-

tween this point and the main beam of the macro BS is defined by θ̂. By

using polar coordinates instead of Cartesian, (x, y) can be replaced by (r, θ)

1Similarly, for the macro BS cell with a 60◦ directional antenna, the θ3dB and Am are,
respectively, given as 35◦ and 23 dB.

2The direction of positive angles here is counter-clockwise and depicted by θ in Fig.A.1.
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Figure A.1: Location of the point (x, y) on an arbitrary macro cell of a 6-cell
layout.

(see the pico BS (a) in Fig. A.1); the distance of this location from macro

BS is obtained as

da(r, θ) =
√

l21 + l22 =
√
c2 + r2 + 2rc(sin β sin θ + cos β cos θ) (A.6)

where l1 = L1 + r sin θ and l2 = L2 + r cos θ. With similar calculations,

the distance of arbitrary point from pico BS b is obtained as db(r, θ) =√
c2 + r2 + 2rc(cos β cos θ − sin β sin θ). The angles θ̂a and θ̂b are also cal-

culated as

θ̂a(r, θ) = cos−1
c cos β + r cos θ

da(r, θ)
(A.7)
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Figure A.2: Location of the point (x, y) on an arbitrary macro cell of a 3-cell
layout.

θ̂b(r, θ) = cos−1
c cos β + r cos θ

db(r, θ)
(A.8)

where θ̂a is the angle between the point (r, θ) and the direction of the main

beam of macro BS, using the pico BS (a) as the origin of coordination.

Using the symmetry in the macro site, similar formulas are achieved for

other pico BSs in different cells.

• Assume a cell coverage area of a 3-cell layout, which the macro BS is located

on the mid-right corner of the hexagon and it is equipped with a 120◦

directional antenna which its main beam is directed towards the mid-left

corner of the hexagon. There are four pico BSs located in the middle of

four sides of the hexagon with the distance of γR from the corresponding

side, as depicted in Fig. A.2. In fact, the pico BSs are again located on

an imaginary circle as depicted in Fig. A.2. An arbitrary point (x, y) is

assumed inside the macro cell (as presented in Fig. A.2), which its distance
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from a closest pico BS is r. The distance between this point and the macro

BS is again defined by d and the angle between this point and the main beam

of the macro BS is presented by θ̂. By translating Cartesian coordinates

into polar coordinates, i.e. the (x, y) coordinates into (r, θ), all distances

and angles can be described with the same variables.

After a few calculations, the distance between the point (x, y) and the macro

BS and its corresponding angle, i.e. d and θ̂ respectively, are given as

da(r, θ) =
√
(L1 + r sin θ)2 + (R + r cos θ)2

θ̂a(r, θ) = cos−1
R + r cos θ

da(r, θ)

db(r, θ) =
√
(L1 + r sin θ)2 + (L2 +R + r cos θ)2

θ̂b(r, θ) = cos−1
R + L2 + r cos θ

db(r, θ)

dc(r, θ) =
√
(L1 − r sin θ)2 + (L2 +R + r cos θ)2

θ̂c(r, θ) = θ̂b(r, θ)

dd(r, θ) =
√
(L1 − r sin θ)2 + (R + r cos θ)2

θ̂d(r, θ) = θ̂a(r, θ)

Thus, the conditional average received power from macro and pico BSs at

point ir, θ are, respectively, given as

Et(Prm |(r, θ)) = Wm − 10αm log10 d(r, θ)−min

(
12
( θ̂(r, θ)

θ3dB

)2

, Am

)
(A.9)

Et(Prp |(r, θ)) = Wp − 10αp log10 r (A.10)

where Wm � Ptm + gm and Wp � Ptp + gp. The border at this points happens

when Et(Prm |(r, θ)) = Et(Prp |(r, θ)). The equations in (A.9) and (A.10) should

be examined over all (r, θ), where r ∈ (0, R] and θ ∈ (0, 2π], and the origin of
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coordinates is centred at pico BS’s location.

To find the parameters like Wm, Wp, αm, and αp, the link budget formula is

applied. The link budget at the distance of d from the transmitter is obtained

as the summation of Pt, transmitting Antenna gain, connector loss, receiving

antenna gain, minus the UMa path loss model, the noise floor, and receiving

noise figure, where Pt is in dBW, transmitting Antenna gain and connector loss

are given as 17 dBi, receiving antenna gain is 0 dBi, and the sum of noise floor

and receiving noise figure equals -127 dBm/Hz. The UMa channel model for

NLoS scenario, in dB, is given as [42, 78]

PLUMa = 161.04− 7.1 log10 W + 7.5 log10 h−
(
24.37− 3.7

( h

hBS

)2)
log10 hBS

+ (43.42− 3.1 log10 hBS)(log10 d− 3) + 20 log10 fc

−
(
3.2
(
log10(11.75hUT )

)2 − 4.97

)

where W is the street width, h is average building height, hBS is height of BS,

d is the distance of the user to the BS, fc is the transmitting frequency, and

hUT is the average user’s height. These values are set as W = 20 m, h = 20 m,

hBS = 25 m, hUT = 1.5 m, fc = 2 GHz. Thus, the above PLUMa is simplified as

PLUMa = 19.5653− 39.0864 log10 d, and the link budget is rewritten as

Ptm + 17− (
19.5653− 39.0864 log10 d

)
+ 127 (A.11)

Similarly, the link budget for pico BS is obtained by replacing the values of

the transmitting antenna gain and the noise floor, and the receiving noise figure,

respectively, with 5 dBi and -127 dBW. The UMi NLoS scenario is given as

PLUMi = 36.7 log10 d+ 22.7 + 26 log10 fc = 36.7 log10 d+ 30.5268. Thus, the link
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budget is given as

Ptp + 5− (
30.5268− 36.7 log10 d

)
+ 127 (A.12)

Hence, according to the link budget formulas, Wm and Wp are calculated, respec-

tively, as Ptm + 17 − 19.5653 + 127 and Ptp + 5 − 30.5268 + 127. The path loss

coefficient α for macro and pico BSs are, respectively, as 3.90864 (approximated

by 3.91) and 3.67. The macro BS transmitting power, Ptm , is set 40 W, the pico

transmits 1/40 of that3. In both system models, the ISD of two macro BSs is

assumed as
√
3 km or 1732 m.

In a cell of a 6-cell layout, the contour of the borders of two sample pico

coverage areas are illustrated in Fig. A.3. As Fig. A.3(a-d) depict, the γ is

gradually decreased from 17% to 9.5% of radius R, thus, the contours are moved

towards the borders. When the γ is 0.17R, the borders of pico coverage area

are quite laid inside the macro cell; however, a small part of the border area of

the macro cell is still not covered properly by pico coverage area. As this figure

presents, the γ = 0.12R is very good choice to set the picos overlaid on macro

cell, while their covered area is touching the macro cell border and not passing

it (if the coverage area of the pico BS passes the border of the macro BS, it will

interfere with the coverage area of other pico BS located in neighbouring macro

cell).

The contours of the border of pico BSs for a macro cell of 3-cell layout is

presented in Fig. A.4. In Fig. A.4(a), the distance of the picos from the borders

of macro cell, γ, is assumed about 0.17R. Since the coverage area of pico BSs

are overlapping with other pico BSs from adjacent macro cell, we need to move

the pico BSs a little inside the macro cell to avoid interfering with other pico BS

from other macro cell. The pico BSs are gradually moved toward the center of

3It should be noticed that the transmitting powers should be translated into dBW and then
be applied into equations (A.11) and (A.12); i.e. the Ptm is changed to 16 dBW, etc.
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(a) (b)

(c) (d)

Figure A.3: Contours of borders of pico BSs in a cell of 6-cell layout with ISD =√
3 km, Ptm = 40Ptp = 40W ; distance of pico BSs from the border of macro cell,

γ, is (a) 0.17R, (b) 0.145R, (c) 0.12R, (d) 0.095R.

the macro cell (the pico BSs are located in distances of 0.2R, 0.25R, and 0.3R

of the borders of macro cell) and the border of pico coverage area is presented

in Fig. A.4(b-c). As the results illustrate, the best option is in Fig. A.4(c) with

γ = 0.25R, which covers the area close to the border of macro cell as much as

possible.
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(a) (b)

(c) (d)

Figure A.4: Contours of borders of pico BSs in a cell of 3-cell layout with ISD
=

√
3 km, Ptm = 40Ptp = 40W ; distance of pico BSs from the borders of macro

cell, γ, is (a) 0.17R, (b) 0.2R, (c) 0.25R, (d) 0.3R.
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Appendix B

Channel Models in Simulation

In cellular systems, a user is usually surrounded by local scatters and the received

signal arrives to the user’s antenna from many different directions. It is assumed

that the BS transmitted signal is a 2D plane waveform1 in which the plane waves

arrive at the user’s antenna from all azimuth directions with equal probabil-

ity. This propagation channel model is known as Clarke’s 2D isotropic scattering

model, which is simple and commonly used model in the literature [3,92–94]. One

approach to generate the correlated channel samples, for simulation purpose, is

described in [93, 94] and it is well known as IDFT method. In this method, the

correlated Rayleigh random variations are generated by inverse discrete Fourier

transformation via computer simulations. To generate the coloured random se-

quence, two independent sequences of Gaussian random variables, namely as

A1[n̂] and A2[n̂], are generated; the elements of each sequences are i.i.d random

variables distributed as N (0, 1/
√
2), and both sequences are independent from

each other ∀k. Then, these two are filtered with an appropriate filter named

as F [n̂] and passed from an IDFT, then the output presents the time-domain

sequence of correlated samples of complex faded envelope x[n̂]. The coloured

1It is a valid assumption, if the distance between user and BS is sufficiently large.
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sequence is given as

x[n̂] = IDFT{F [n̂]A1[n̂]− jF [n̂]A2[n̂]}N̂−1n̂=0 . (B.1)

where N̂ is the number of samples. The F [n̂] filter is chosen to approximate

the spectrum of the desired signal and to shape the power spectrum of a white

Gaussian noise. The choice of appropriate coefficients for F [n̂] corresponds to

the approximation of the autocorrelation function of discrete signal x[n̂]. The

autocorrelation function is given as J0(2πf̂d|n̂|), where f̂d is the maximum nor-

malized Doppler frequency and defined as f̂d = fdTs, where fd is the maximum

Doppler frequency and Ts is the sampling period [3,92]. The autocorrelation can

be translated as the correlation coefficient of the signal, i.e. ρ = J0(2πf̂d|n̂|).
The process to find the coefficients of F [n̂] filter is described in [3, 93]. The

normalized Doppler spectrum S(f) is given as

S(f) =

⎧⎪⎨
⎪⎩

a0√
1−(f/fd)2

|f | ≤ fd

0 otherwise

(B.2)

where a0 is defined as 1.5
πfd

[93]. To obtain the F [n̂], this continuous spectrum

should be sampled at frequencies of fn̂ = n̂

N̂Ts
, n̂ = 0, · · · , N̂ − 1. The coefficients

of F [n̂] filter should have the structure given as [3, 93]

F [n̂] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 n̂ = 0

G[n̂]√
2

n̂ = 1, 2, · · · , N̂
2
− 1

G[n̂] n̂ = N̂
2

G[N̂−n̂]√
2

n̂ = N̂
2
+ 1, · · · , N̂ − 1

(B.3)
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where G[n̂] is defined as [93, 94]

G[n̂] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 n̂ = 0√
a0√

1−( n̂

N̂f̂d
)2

n̂ = 1, 2, · · · , km − 1√
a0(

π
2
− arctan

(
km−1√
2km−1

)
) n̂ = km

0 otherwise

(B.4)

km is defined as �f̂dN̂� [3, 93]. It worth to mention that G[0] = 0 satisfies the

zero-mean criterion [3, 93]. Thus, the filter F [n̂] in (B.3) is revised as

F [n̂] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 n̂ = 0√
a0/2√

1−( n̂

N̂f̂d
)2

n̂ = 1, 2, · · · , km − 1

√
a0
2
(π
2
− arctan

(
km−1√
2km−1

)
) n̂ = km

0 n̂ = km + 1, · · · , N̂ − km − 1√
a0
2
(π
2
− arctan

(
km−1√
2km−1

)
) n̂ = N̂ − km√

a0/2√
1−( N̂−n̂

N̂f̂d
)2

k = N̂ − km + 1, · · · , N̂ − 1

(B.5)

Using F [n̂] from (B.5) into (B.1), the complex-value samples of the coloured

channel gains x[n̂] with correlation coefficient ρ are generated.

In this thesis, we generate signals according to the process mentioned above.

The auto correlation of real and imaginary parts of the generated samples and the

cross correlation of them are presented in Fig. B.1(a) for correlation coefficient

zero and 0.75. In this simulation, we generate million of samples, i.e. N̂ = 106.

We also compare the autocorrelation of the generated coloured signal with respect

to the continuous correlation function, which are obtained via Bessel function of
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first order (i.e. J0(·)). As this figure illustrates, there is very good compatibility

between simulated signals and the analytic autocorrelation function.

Uncorrelated channel samples, taken from this generated wide-sense station-

ary random process, have the autocorrelation function value of zero with normal-

ized sample separation f̂dn̂ ≈ 0.38 (i.e. with normalized time separation fdτ ≈
0.38). According to this figure, each two consecutive samples with n̂ = 1 and

maximum normalized Doppler frequency of f̂d have correlation coefficient ρ. For

instance, with f̂d = 0.164, two generated samples with sample distance of n̂ = 1

are correlated with ρ = 0.75, while two samples with n̂ = 2.32 are uncorrelated

(i.e. f̂dn̂ = 0.38). Fig. B.1(b) illustrates the autocorrelation of generated samples

with other correlation coefficients. We also examine two practical scenarios in a

wireless network: first, we assume f̂d = 0.005, which is the maximum normalized

Doppler frequency of pedestrian with walking speed less than 3 km/h; second,

we assume f̂d = 0.093, which is assumed for a vehicle with speed of 50 km/h,

on average2. For the sake of simplicity in our simulations, we assume that path

loss and shadow fading do not change over the period of our simulations3. The

correlation coefficients of two samples separated by n̂ = 1 for these two speeds

are obtained, respectively, as ρ = 0.9998 and 0.92. Similarly, if two consecutive

samples have the correlation coefficient of ρ = 0.5 (i.e. f̂d = 0.24), the sampling

time for a pedestrian user should be 43.4 ms, while the channel of the vehicle is

sampled every 2.6 ms.

2In this work, the carrier frequency and the scheduling interval are considered to be 2 GHz
and 1 ms, respectively.

3For each drop of users, we simulate 2000 scheduling intervals and this assumption can still
be valid at the above mentioned speeds. This period of simulation is the equivalent of about
2 seconds for an LTE-A system. The distance between a BS and a user with the maximum
assumed speed, 50 km/h, would change by about 27 m, which does not affect the large-scale
fading considerably. Thus, we can assume it is constant in our simulation for each drop of users.
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Figure B.1: Correlation coefficient of generated channel samples for simulations
(a) autocorrelation and cross correlation of real and imaginary parts of generated
samples for ρ = 0 and 0.75 (b) autocorrelation of generated samples for ρ = 0,
0.75, 0.92, and 0.9998.
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