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Abstract

Background: Bovine whole genome linkage disequilibrium maps were constructed for eight breeds of
cattle. These data provide fundamental information concerning bovine genome organization which will
allow the design of studies to associate genetic variation with economically important traits and also
provides background information concerning the extent of long range linkage disequilibrium in cattle.

Results: Linkage disequilibrium was assessed using r2 among all pairs of syntenic markers within eight
breeds of cattle from the Bos taurus and Bos indicus subspecies. Bos taurus breeds included Angus, Charolais,
Dutch Black and White Dairy, Holstein, Japanese Black and Limousin while Bos indicus breeds included
Brahman and Nelore. Approximately 2670 markers spanning the entire bovine autosomal genome were
used to estimate pairwise r2values. We found that the extent of linkage disequilibrium is no more than 0.5
Mb in these eight breeds of cattle.

Conclusion: Linkage disequilibrium in cattle has previously been reported to extend several tens of
centimorgans. Our results, based on a much larger sample of marker loci and across eight breeds of cattle
indicate that in cattle linkage disequilibrium persists over much more limited distances. Our findings
suggest that 30,000-50,000 loci will be needed to conduct whole genome association studies in cattle.
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Background

Linkage disequilibrium (LD) maps are fundamental tools
for exploring the genetic basis of economically important
traits in cattle. Likewise, comparative LD maps enable us
to explore the degree of diversity between breeds of cattle
and to detect genomic regions that have been subject to
selective sweeps within the different dairy and beef breeds
which represent different biological attributes (e.g. Conti-
nental European vs. British). The currently available infor-
mation regarding LD in cattle is primarily based on
microsatellite studies performed in dairy cattle. The most
extensive of these studies used 284 genome-wide micros-
atellites in a population of Dutch Black and White Dairy
cattle [1] to show that syntenic LD extended up to several
tens of centimorgans (cM). Haplotypes for 581 maternally
inherited gametes were used to estimate LD using Lewon-
tin's normalized D'. The results indicated high levels of LD
not only between closely linked markers but for markers
located as much as 40 cM (~40 Mb) apart. Two subse-
quent studies examined the extent of LD in cattle
although both used fewer animals and microsatellites
[2,3]. Vallejo [2] selected distantly related animals to
quantify the level of genetic diversity in United States Hol-
stein cattle. While only 23 Holstein bulls were genotyped
with 54 microsatellite loci that spanned most of the auto-
somal genome, extensive LD was detected in the United
States Holstein population in agreement with the findings
of Farnir et al. [1]. Tenesa et al. [3] genotyped 50 Holstein
bulls for 13 microsatellites spanning BTA2 and BTAG6, to
determine the extent of LD in the United Kingdom Hol-
stein population. The average D' value was 44% with sig-
nificant LD reported only for distances less than 10.3 cM.
Linkage disequilibrium among non syntenic loci was not
significant.

More recently Khatkar et al. [4] scored 220 BTAG single
nucleotide polymorphisms (SNPs) in a sample of 433
Australian dairy bulls and estimated LD between marker
pairs using D'. While they found that LD decayed with
increasing distance between markers, D' did not reach
background until an average distance of 20 Mb separated
the markers. They also found that there was extensive var-
iability in the magnitude of D' at any one distance. The
rate of decay of LD estimated using SNPs [4] was much
greater than that estimated using microsatellites [1],
which is consistent with the findings of Varilo et al. 5]
that more informative marker systems are able to detect
LD over greater physical distances.

Only recently has the extent of LD been examined in beef
cattle populations. A sample of 162 half-sib progeny from
a Japanese black sire and 406 half-sib Japanese brown cat-
tle were genotyped with 246 and 156 autosomal micros-
atellite markers, respectively [6]. For syntenic markers, the
mean D' was 16.3% for Japanese Brown and 25.1% for
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Japanese Black. Characteristic of D' as a measure of LD,
significant LD was observed for marker pairs separated by
as much as 40 cM in both breeds.

Quantifying the extent of LD in the bovine genome is a
necessary first step for determining the number of markers
that will be sufficient for QTL mapping by linkage dise-
quilibrium. The previous studies which used microsatel-
lite markers were either too narrowly focused on
particular chromosomes, or were of insufficient resolu-
tion to precisely estimate genome-wide LD and almost
certainly were unable to precisely estimate short-range
LD. The high density and low inherent rates of mutation
of SNPs relative to microsatellites within mammalian
genomes allows for the identification of ancestral haplo-
type blocks and the estimation of identity by descent
probabilities which are crucial for haplotype-based associ-
ation studies [7]. In this study, we estimated LD in 8
breeds of cattle utilizing 2670 single nucleotide polymor-
phism (SNP) markers that were derived from the bovine
genome sequence and were aligned to the Btau_3.1
genome sequence assembly.

Results and Discussion

Haplotype Estimation

The program GENOPROB 2.0 [8,9] which utilizes multi-
generation pedigrees including both genotyped and non-
genotyped animals was used for the estimation of phased
haplotypes. For all breeds, greater than 97% of the scored
genotypes were determined by GENOPROB 2.0 to have a
probability of at least 95% of being correct conditional on
the pedigree and marker map [10] (Figure 1a, Additional
file 1). While the overall level of genotype accuracy was
high, the level of genotype certainty was clearly dependent
on pedigree structure. The Holstein, Limousin and Angus
samples were obtained from the most complex pedigrees
and produced the most accurately estimated genotypes
and phased chromosomes (Figure 1b, Additional file 1).
The depth of the pedigree as well as the location of the
genotyped individuals within the pedigree (generation)
had the largest influence on the estimation of phase prob-
abilities (0Gmx). Figure 1b clearly demonstrates that the
breeds with the greatest pedigree complexity produced the
highest probabilities of correctly phased genotypes. The
cumulative proportion of heterozygous genotypes which
could be phased by GENOPROB 2.0 with order probabil-
ities >0.99 was 87.6%, 76.9% and 69.2% for Holstein,
Limousin and Angus, respectively. The Brahman sample
comprises several independent three generation pedigrees
consisting of grandparent - parent and multiple offspring
in which only one parent and grandparent was genotyped
and there were no additional close pedigree relationships
between individuals within or between families. This is in
contrast to the Nelore sample which represents a two gen-
eration pedigree and which, in most cases, both parents of
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each animal were genotyped. For these pedigree struc-
tures, the three generation Brahman pedigree produced
5.3% (BR 63.4%, NEL 58.1%) more heterozygous geno-
types with a phase order probability of >0.99. However,
using a three generation pedigree structure with larger
numbers of individuals per generation and including
complete pedigree relationships among ungenotyped and
genotyped animals such as in the Holstein, Limousin and
Angus samples, produced a significant increase in the pro-
portion of heterozygous genotypes which could be accu-
rately phased.

http://www.biomedcentral.com/1471-2156/8/74

General LD Findings

Comparative linkage disequilibrium maps were generated
for eight breeds of cattle for the 29 bovine autosomes. The
majority of the SNPs used in this study were chosen
because they had previously been identified as putatively
being variable within Bos taurus. This ascertainment bias
resulted in the SNP minor allele frequencies being sub-
stantially lower in the two Bos indicus breeds than in the
Bos taurus breeds (Figure 2). It also resulted in a set of
SNPs in which common SNPs within the Bos taurus
genome were over-represented. However, even though
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a and b. Summary of genotype (pGmx) and phase (0Gmx) probabilities for each breed based on GENOPROB
2.0 results. Only genotyped progeny with at least one genotyped parent were used.
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Figure 2
Minor allele frequencies (MAF) for all breeds.

these loci were identified from Bos taurus derived
sequences, more than 50% of the loci were polymorphic
in Bos indicus and had a minor allele frequency >0.05 (Fig-
ure 2). This indicates that a substantial fraction of the loci
identified by the Bovine Genome Sequencing Project will
have utility for QTL mapping within Bos indicus breeds.

The current estimate of the size of the bovine genome is
2.87 Gb [11] and with equal spacing, the 2,670 SNP loci
used in this study would have an inter-marker distance of
approximately 1 Mb. However, the loci were selected
according to genomic location, likely assay conversion
rate and minor allele frequency in Bos taurus and conse-
quently were not uniformly distributed (Figure 3), 30% of
the loci have inter-marker distances less than 0.5 Mb,
while 13% are separated by more than 3 Mb. The non-
uniform distribution of marker locations allows the esti-
mation of LD across several orders of magnitude of differ-
ences in physical distance.

The 12 values for pairs of loci were binned according to the
physical distance separating the loci and were averaged
within each breed (Figure 4). As has previously been
observed there is an inverse relationship between LD and
physical or genetic distance [12] and 12 is essentially at

long-range background levels in all eight breeds by a locus
separation of approximately 500 kb. A similar study per-
formed in pigs found that average r2 values had fallen to
0.1 for SNPs with an inter-marker distance of 3 cM [13];
similarly, linkage disequilibrium within dog breeds
extends across several Mb [14]. However LD in humans
extends for only tens of kb [15] which is consistent with
the large effective size and rapid recent expansion of
human populations.

Our findings indicate a substantially shorter range of LD
than has previously been reported in cattle [1,6]. We
attribute the differences between previous reports and our
findings to the differences in measures used to report LD,
namely D' versus 12. The Dutch Black and White Dairy cat-
tle used in this experiment are a subset of the animals used
in Farnir et al. [1] and the Holstein cattle are a subset of
the animals previously used to fine map milk production
traits on BTAG [16]. To provide a direct comparison
between the approaches, we estimated genome-wide aver-
age measures of LD using both 12 and D' in these two
breeds (Figure 5). Both estimates of LD show an inverse
relationship between LD and distance, however, in gen-
eral, D' overestimates the extent of LD [17,18]. The use of
D' suggests that LD extends for several tens of centimor-
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Percentage of loci within each bin. Proportion of loci for each bin are shown based on inter-marker distances measured in
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Overall average r2 values. Average r2 values are shown for each breed. The maximum value for each bin is shown on the

horizontal axis.
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gans (or Mb), consistent with the earlier reports (Figure
5). However, the use of 12 indicates that LD is at back-
ground levels by approximately 0.5 Mb. Similar differ-
ences between measures of LD have recently been
reported in cattle [19,20].

It has been suggested that when large differences exist
between marker allele frequencies, due to the presence of
a rare allele, these two measures of LD are divergent [20].
D' estimates historical recombination through allelic
association whereas r2 measures the squared correlation
coefficient between locus allele frequencies and is strongly
influenced by the order in which the mutations arose
(genealogy) and not necessarily the physical distance
between loci [21]. In the context of QTL mapping, r2is the
preferred measure of LD, because it quantifies the amount
of information that can be inferred about one (perhaps
nonobservable quantitative trait or disease) locus from
another [22,23], and can therefore be used to estimate the
number of loci needed for association studies [23,24]. For
this reason we have used 12 as the primary measure of LD
in this study.

Variation in average r2 values between breeds is evident in
Figures 4 and 6. Considering the similarity between the
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Holstein and Dutch Black and White Dairy breeds, we
expected comparable average 12 values between these
breeds (Figure 4). In fact the extent of LD is quite similar
within all of the Bos taurus and within the Bos indicus
breeds, however, the Bos indicus appear to have substan-
tially lower levels of LD at short inter-marker distances
than do the Bos taurus. This could be the result of ascer-
tainment bias as the SNPs used in this study were detected
because they were common SNPs within Bos taurus and
their average minor allele frequency was much lower in
Bos indicus [25]. An alternative hypothesis is that the lower
levels of LD at short inter-marker distances could also
reflect historically larger effective population sizes [26],
which seems particularly appropriate for the Nelore. On
the other hand, long range LD in Brahman appears to be
greater than for the Nelore and other Bos taurus breeds
which suggests a smaller current effective population size
which is consistent with the relatively recent formation of
the breed as an admixture between extant Bos taurus and
several imported Bos indicus breeds imported into the U.S.
between 1854 and 1926 [27].

r2 by Chromosome
Variation in LD between chromosomes and breeds was
examined using the 18.7% of all possible syntenic locus
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Figure 5

Estimates of D' and r2 for Holstein and Dutch Black and White Dairy cattle. Average LD is shown for each breed in
each bin. The maximum inter-marker value for each bin is shown on the horizontal axis.
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pairs (Additional file 2 and Figure 2) that were separated
by less than 1 Kb. The average 12 values by chromosome
and for each breed are shown in Figure 6 (Additional file
3). In Figure 6, breeds are grouped according to subspecies
and the primary agricultural purpose of each breed. The
first six Bos taurus breeds include Angus, Charolais, Lim-
ousin, and Japanese Black representing meat breeds, fol-
lowed by Dutch Black and White Dairy and Holstein
which are dairy breeds. While the Brahman is used prima-
rily for meat in the U.S. and Australia, the Nelore is a Bos
indicus breed used for both milk and meat production in
South America. With the exception of BTA7, 12 and 21,
the average r2 across the Bos taurus breeds was 0.5603 with
minimum and maximum r2 values obtained on BTA29 in
Limousin (0.12) and BTA14 in Holstein (0.91), respec-
tively. The average 12 values across the Bos indicus breeds
was 0.37 with minimum and maximum r2? values on
BTA20 in Nelore (0.06) and BTA22 in Nelore (0.69). The
relatively low level of LD at short inter-marker distances
contrasts with previously published reports in cattle [1,6].
We found comparable results for pairs of syntenic loci
separated by approximately 100 kb and 500 kb (Addi-
tional files 4 and 5), respectively, which further supports
our contention that useful LD [24] does not extend
beyond 0.5 Mb and that average r2 values drop below 0.1
by 1 Mb (Figure 4). These findings have a profound
impact on the number of loci and the number of individ-
uals that will need to be tested in association-based QTL
scans.

BTA 7, 12 and 21

Figure 6 indicates that the average r2 values are low for all
breeds on BTA 7, 12 and 21 when compared to all other
autosomes. The average 12 values on these chromosomes
appears not to be a sampling artifact, since the number of
loci used to calculate the average r2 values was 19, 21 and
7 locus pairs on BTA 7, 12 and 21, respectively, which is
not significantly different than for the other autosomes
(Additional file 3). Additionally, each of the loci on these
chromosomes had similar allele frequencies to those loci
on the other autosomes (data not shown). This suggests
that the loci on BTA 7, 12 and 21 may have been clustered
around one or more recombination hotspots on each of
these chromosomes. To determine if the loci were clus-
tered, we plotted the location of the SNP pairs along each
chromosome (Figure 7). Figure 7 demonstrates that the
SNP pairs used to examine the extent of short range LD are
distributed along the length of these three chromosomes
and we therefore conclude that BTA 7, 12 and 21 have
intrinsically lower levels of LD than do the other auto-
somes.

We have two theories as to why lower than average LD
may exist on BTA 7, 12 and 21. First, because cattle have
been selected for production traits for at least 50 genera-
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tions, there is the possibility that selection on QTL distrib-
uted throughout the genome has generated different
patterns of LD on individual chromosomes. However,
compared to chromosomes of similar size, there does not
appear to be fewer QTLs on BTA7, 12 and 21 [28,29] and
selection should have resulted in similar patterns of LD on
these chromosomes as on all others. Second, it is possible
that chromosomes 7, 12 and 21 have higher than average
rates of recombination than do the other autosomes. A
comparison between the physical [30] and genetic [31]
maps of BTA7, 12 and 21 as well as chromosomes of sim-
ilar physical size, indicates that the physical to genetic size
relationship is similar for BTA7, 12 and 21 and other chro-
mosomes of similar physical size. However, regions of
increased recombination have been detected on human
chromosomes 14 and 15 [32], which are partially orthol-
ogous to BTA21. A complete exploration of these chromo-
somes in order to study aspects of genome organization
that potentially affect recombination rate will require
additional markers and animals.

Conclusion

While we included loci in this analysis for which order
was consistent between the Btau_3.1 assembly and our
radiation hybrid map [10], the genome coordinates for
each locus were obtained from the Btau_3.1 assembly.
This assembly spans only 2.43 Gb and while an additional
319 Mb of sequence exists as contigs which are unas-
signed to chromosomes, we expect the final sequence to
be much closer to 2.8 Gb. The unassembled contigs are
likely to be biased towards centromeric and telomeric
sequences and duplications which are difficult to assem-
ble, but some are no doubt interstitial to chromosomes.
The fact that these are unassembled would likely cause a
systematic bias towards the underestimation of the physi-
cal distance between loci. There also appear to be a signif-
icant number or problems with the ordering and
orientation of scaffolds within the assembly and these
errors are likely to produce random effects on the estima-
tion of distance between syntenic loci. Thus overall, we
suspect that the incomplete nature of the assembly results
in about a 10% underestimate of the distance between
loci. This has only a minor affect on our conclusions and
the extent of LD available for association analysis still
does not significantly exceed 500 kb. At a physical dis-
tance of 100 kb separating flanking SNP loci, the average
r2is 0.15-0.2 and the average r2 between these markers
and a QTL located at mid-interval is about 0.3 (Figure. 4).
This would appear to be the lowest desirable resolution
for whole genome association mapping in bovine and
assuming a 2.87 Gb genome, it would require 28,700 fully
informative SNPs to saturate the genome at an average res-
olution of 100 kb. Since the number of validated bovine
SNPs is currently insufficient to achieve an even spacing
and because many SNPs are likely to have low minor
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allele frequencies leading to their being uninformative in
many populations, we believe that 50,000 SNPs will be
the minimum required for whole genome association
studies in cattle. Furthermore, the extent of LD on BTA 7,
12 and 21 appears to be much lower than for the auto-
somal genome as a whole and suggests that SNP density
may need to be enhanced on these chromosomes. The
construction of a high resolution LD map of the bovine
genome will provide further insight into the effects of
selection and evolutionary forces upon the genomes of
breeds which have been selected for different agricultural
purposes.

Methods

DNA Collection

DNA was collected from 70 Angus (USA), 20 Canadian
Angus, 40 Charolais (Canada), 40 Brahman (USA), 97
Dutch Black and White Dairy cattle (Belgium), 48 Hol-
stein (USA), 65 Japanese Black (Japan), 43 Limousin
(USA) and 97 Nelore (Brazil) cattle. In order to phase the
chromosomes using linkage information, we selected
small families where members within the families were
closely related but the families themselves were not
closely related. Family structure and the number of indi-
viduals per family varied between the breeds but the gen-
eral family structure consisted of a male grandparent,
male parent and three or more progeny (Additional file
6). This three generation family structure allowed for the
efficient estimation of marker phase relationships in the
progeny and also produced the most likely phase relation-
ships in each of the parents/grandparents.

Marker Selection and Genotyping

Sequence information for SNPs was obtained from public
databases [33,34]. Lodi included in this study met the fol-
lowing criteria; minor allele frequency (MAF) > 0.05 in
Angus based on previous screens (data not shown) and
concordant order determined by radiation hybrid (RH)
mapping [10] and genomic sequence location. Oligonu-
cleotides were designed, synthesized and assembled into
oligo pooled assays (OPA) by Illumina Inc. (San Diego,
CA). Genotyping was performed using the manufacturer's
protocol for the Illumina® BeadStation 500G [35,36]).

Locus locations within the bovine genome sequence
assembly

Chromosomal coordinates for each SNP were obtained by
aligning approximately 250 bp flanking each SNP by
BLAST to the latest release of the bovine genome sequence
assembly, Btau_3.1. These physical coordinates were com-
pared to the linkage and RH maps of McKay et al[10].
Thirty four markers were excluded from the analysis
because their assignment in the sequence assembly was to
a chromosome that differed to their linkage or RH map
assignment or because they had no chromosomal assign-
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ment in Btau_3.1. Marker information can be found in
Additional file 7.

Haplotypes and LD Analysis

GENOPROB V2.0 [8,9] was used to assess genotype score
quality and produce whole chromosome phased haplo-
types based on the pedigree and physical map locations of
the loci. Briefly, GENOPROB uses an allelic peeling algo-
rithm to estimate both the probability that a genotype is
correct, denoted as pGmzx, and the probability that the
order (phase) of the alleles are correct, denoted as oGmx.
Only genotypes with a pGmx > 0.95 were used for LD
analysis but no restriction was placed on order probabil-
ity, oGmx. This produced a set of whole chromosome
haplotypes comprised of accurately scored genotypes that
were in the most likely phase configuration. LD was
assessed by generating r2 values using GOLD [37] inde-
pendently for the maternally- and paternally-inherited
haplotypes. LD data presented here is based only on the
maternally inherited haplotypes which avoids the over-
representation of paternally inherited haplotypes within
the primarily male pedigrees.
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