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Abstract

Magnetic spin waves (magnons) are promising building blocks in developing

classical and quantum hybrid systems. Magnons can couple to numerous sub-

systems, such as microwave and optical photons, superconducting qubits and

phonons. However, the parametric interaction between magnons and low-frequency

phonons has not been widely studied experimentally. To elucidate this, we examined

theoretically and experimentally the interaction between gigahertz magnons and

megahertz frequency mechanical modes hosted within small spheres of yttrium iron

garnet.

We developed a linear theory describing the complete magnomechanical

interaction using standard quantum optics techniques. From this analysis, we

predicted two dynamical backaction effects: the magnon-spring effect, a shift in

the phonon frequency and magnomechanical damping of the phonon mode due

to the radiation-pressure-like force imparted by the magnon. We also describe

the critical triple-resonance condition, where particular interactions are resonantly

enhanced by ensuring the phonon frequency matches the magnon-photon normal-

mode splitting. Next, we designed and built a cavity magnomechanical system to

test our theoretical predictions. As a result, we observe the magnon-spring effect for

the first time and magnomechical damping and anti-damping of the phonon mode.

Finally, we moved the experiment onto the baseplate of a dilution refrigerator,

where we aim to continue to study the behaviour of magnomechanical systems in

cryogenic environments.
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In the beginning the Universe was created. This has made a lot of people very

angry and been widely regarded as a bad move.

– Douglas Adams, The Restaurant at the End of the Universe, 1980.
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Chapter 1

Introduction

Hybrid systems are an important component of the ongoing development

of classical and quantum technologies. These systems combine two or more

degrees of freedom, attempting to use the strengths of the individual sub-systems

while avoiding their weaknesses [1–4]. For example, spin ensembles coupled to

superconducting qubits could provide quantum memories [5, 6], or mechanical

oscillators that are simultaneously coupled to optical and microwave photons enable

wavelength conversion [7–9]. Ultimately, the development of hybrid systems results

in a net improvement in performance or additional functionality compared to

isolated sub-components. Collective magnetic excitations (magnons) have proven

themselves to be a central component in the development of many hybrid systems

[1]. The material of choice for many of these experiments has been the dielectric

ferrimagnetic yttrium iron garnet (YIG). YIG has been popular for many of its

attractive properties, such as its high spin-density ρs = 4.22 × 1027 m−3 [10],

availability of high-quality single-crystal samples [11], and its low spin-damping at

both room and cryogenic temperatures [12].

As shown in figure 1.1, magnons play a central role in the development of many

hybrid technologies [13]. The versatility of magnons comes from their ability to

couple to a wide variety of additional sub-systems. For example, magnons hosted in

YIG couple resonantly with microwave photons via the Zeeman interaction [14] and

couple parametrically with optical photons via magneto-optical effects (i.e. Faraday

and Cotton–Mouton) [15]. Many experimental works have focused on exploring

resonant microwave magnon coupling [16–18]. Coupling magnons to optical and
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Figure 1.1: Characteristic frequency and the state-of-the-art decay rate and coupling
rate for each hybrid magnonic system. See the main text for examples of each form
of coupling. Modified from Ref. [13]

microwave photons simultaneously has allowed the demonstration of coherent

microwave to optical conversion mediated by a magnon [19, 20], a key component

of many future quantum information protocols. Microwave magnon coupling has

allowed the indirect coherent coupling between magnons and superconducting qubits

[21, 22], measurement of magnon number [23] and single-shot magnon detection

[24]. Recent work has even proposed a direct coupling between magnons and

superconducting qubits without requiring a microwave cavity intermediary [25].

Moreover, extensive theoretical and experimental work into cavity optomagnonics

has been explored, including Brillion light scattering [26, 27], magnon heralding

[28], and unique optomagnonic cavity designs [29, 30].

Furthermore, magnons can be coupled to mechanical strain within a magnetic

sample, as described by the magnetoelastic effect [31]. Magnetoelastic coupling

is closely related to the magnetic anisotropy present in many magnetic crystals.

Deformations in the form of elastic strain modify the anisotropy energy, effectively

coupling strain with magnetization [32]. Resulting from the cubic symmetry of

YIG, magnetoelastic coupling manifests in two distinct ways. The first is resonant
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coupling when the magnon and phonon are at the same frequency; resonant magnon

phonon coupling has been demonstrated with integrated on-chip magnon-phonon

systems [33], and studied theoretically for broad-band frequency conversion [34].

However, parametric magnon-phonon coupling, that is, when the phonon

frequency is significantly smaller than the magnon frequency, has not been studied in

detail. Early work in the 1950s and 60s explored magnetoacoustic coupling via strong

three-wave mixing experiments [35, 36]. However, little progress was made until a

recent publication by Zhang et al. [37] demonstrated coherent magnomechanical

coupling in a hybrid microwave-magnon-phonon system. Since this demonstration,

extensive theoretical work relying on parametric magnon-phonon coupling has

been published, including the generation of non-classical entangled states [38–42],

squeezed states [43–45], classical and quantum information processing [46–49],

quantum correlation thermometry [50], and exploration of PT -symmetry [51–55].

This thesis focuses on further theoretical and experimental exploration of hybrid

microwave-magnon-phonon systems, specifically on the parametric coupling between

magnons and phonons.

The remainder of this thesis is organized as follows. Chapter 2 introduces

magnons, first classically, from Maxwell’s equations, followed by deriving the

Hamiltonian via the Holstein-Primakoff transformation. Chapter 3 discusses

microwave photons, notably, via rectangular microwave resonators and their relevant

loss mechanisms. In Chapter 4, we present the general theory describing mechanical

vibrational modes and apply this theory to the case of small spherical samples. In

Chapter 5 and Chapter 6, we review the relevant coupling Hamiltonian between

magnons and microwave photons and phonons, respectively. Chapter 7 presents

experimental work on cavity magnonic systems not yet coupled to phonons. Notably,

we introduce a novel tunable microwave cavity and demonstrate strong magnon-

photon coupling. In Chapter 8, we theoretically investigate the hybrid microwave-

magnon-phonon Hamiltonian, deriving a linear theory describing the system. Using

the linear theory, we make two predictions: a magnon-induced frequency shift of

the phonon, which we call the magnon-spring effect, and magnon-induced damping

of the phonon, which we denote as magnomechanical damping. This chapter also

proposes a thermometry protocol relying on the magnon-phonon interaction. In

3



Chapter 9, we experimentally investigate the predictions made in the previous

chapter. We observe the magnon-spring effect for the first time, along with magnon-

induced phonon lasing and efficient phonon cooling. Finally, Chapter 10 provides

some concluding statements and an outlook on future cavity magnomechanical

experiments.

4



Part I

Background

5



Chapter 2

Magnons

2.1 Introduction

This chapter will introduce the collective excitation of coupled magnetic spins.

Initially proposed by Felix Bloch [56], these excitations are known as magnons.

Magnons arise due to magnetic interactions; therefore, we begin in Section 2.2

by introducing magnetism and, considering a single orbiting electron, derive the

equation of motion describing a charged particle within a static magnetic field. Using

this derivation, we extend the analysis to derive the Landau-Lifshitz-Gilbert (LLG)

equation, describing the time-evolution of the magnetization of a ferromagnetic

material. Next, in Section 2.3, we use the LLG equation to derive the magnetic

susceptibility of a magnetized ferromagnet, known as the Polder susceptibility.

Continuing in Section 2.4, Maxwell’s equations are solved explicitly using the

Polder susceptibility to determine the magnetic mode shape of magnons within a

spherical ferrite sample, known as Walker modes. Finally, in Section 2.5 we shift

our attention to the microscopic description of ferromagnets; following the analysis

of Holstein and Primakoff, we derive the second quantized Hamiltonian describing

magnons within a three-dimensional ferromagnet.

2.2 Magnetism

To begin a description of magnons, we must briefly introduce magnetism more

generally. We will focus on materials that contain atoms with permanent magnetic

moments and exhibit long-range interactions that preferentially align neighbouring
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spins. This class of materials is known as ferromagnets; other classes of materials

include diamagnets, paramagnets, ferrimagnets, and antiferromagnets. These

materials will not be discussed here; further details on the different classes of

magnetic materials can be found in Ref. [10].

Magnetic properties of a material can be described by defining the magnetic

susceptibility χ̄ such that,

M = M0 + χ̄ ·H, (2.1)

where M is the net magnetization, H is the applied magnetic field, and M0 is

the spontaneous magnetization in the absence of an applied field. The magnetic

susceptibility, χ̄ is, in general, a 3 × 3 matrix. The focus of Section 2.3 will be

to derive this matrix and understand the consequences of its structure. However,

to begin, we will consider the equation of motion describing an orbiting charged

particle.

I

ො𝑛
B

Figure 2.1: Loop of current in a static magnetic field.
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2.2.1 Equation of motion

In order to describe a bulk magnetic material, first, consider a single electron in

orbit forming a small current loop, as shown in Fig. 2.1. The magnetic moment µ

of an orbiting electron is defined as

µ = IAn̂, (2.2)

where n̂ is a unit vector normal to the surface of the loop, defined by the right-hand

rule, I is the current generated by the orbiting electron, and A is the area enclosed

by the loop. Since the current is generated by a charged particle with a finite

mass and velocity, the orbiting electron will have angular momentum J that is

parallel or anti-parallel to the magnetic moment, depending on the sign of the

charge. The constant of proportionality relating the magnetic moment and the

angular momentum is known as the gyromagnetic ratio γ, defined as

µ = γJ. (2.3)

This current loop generated by the orbiting electron will experience a torque if an

external magnetic field is applied. This torque is given by

τ = µ×B, (2.4)

defined as the time rate of change of the angular momentum. Therefore, the

equation of motion for the angular momentum of an orbiting electron can be

written in the form,
dJ

dt
= γJ×B. (2.5)

This equation describes Larmor precession and can be illustrated using Fig. 2.2;

over a short time interval ∆t, the angular momentum vector J precesses within the

x-y plane. The frequency of precession is given by,

ωL = |γB|, (2.6)

and is known as the Larmor frequency.
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Δ𝑱
𝑱

Ƹ𝑧
𝑩

Figure 2.2: Illustration of the Larmor precession. Over a small time interval ∆t,
the angular momentum changes by a small amount ∆J, revolving around the z
axis with a frequency ωL.

2.2.2 Gyromagnetic Ratio

Deriving Eqn. 2.5 was the primary goal of this section; however, it is worth

studying the gyromagnetic ratio more closely. The total angular momentum J

of electrons is responsible for generating their net magnetic moment. Electrons

have both an orbital component L and a spin component S of their total angular

momentum, such that:

J = L+ S. (2.7)

We can first consider the contribution from the orbital angular momentum described

above. Classically, the angular momentum of a single particle is given by

L = R× p, (2.8)

where R is the position vector, and p = mev is the linear momentum of the electron.

Therefore, the magnitude of the orbital angular momentum is L = Rmev, where

9



me is the mass of the electron, and v is the velocity of the electron.

We can determine the magnetic moment of the orbiting electron. Current is

defined as the charge per unit of time passing a given point, for an orbiting electron

current is given by,

I =
v

2πR
q, (2.9)

where q is the elementary charge. Multiplying by the area of the loop, we can

determine the magnitude of the magnetic moment,

µ = qvR/2, (2.10)

Finally, by taking the ratio of the magnetic moment and the orbital angular

momentum and we can determine the orbital gyromagnetic ratio

γL = µ/L =
q

2me

. (2.11)

Inserting the relevant constants, we find that |γL/2π| = 14 GHz/T.

Unfortunately, spin angular momentum has no classical analog. The gyromag-

netic ratio for the electron spin can be obtained via the Dirac equation [57], and

differs from the orbital gyromagnetic ratio γL by a factor of two:

γS =
q

me

. (2.12)

Therefore, for spin angular momentum, |γS/2π| = 28 GHz/T. Due to the

contributions of both spin and orbital angular momentum, we can define an

effective gyromagnetic ratio,

µ = γJ, (2.13)

where

γ = g
q

2me

(2.14)

where g is what is known as the Landé g factor. This work focused on a specific

magnetic ferrite yttrium iron garnet, the magnetic properties of which arise strictly

from spin angular momentum. Therefore, for YIG g = 2, and the gyromagnetic

ratio |γ/2π| = 28 GHz/T.
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2.3 Magnetic Susceptibility

The response of a ferromagnetic material to small time-varying magnetic field

is described by the susceptibility, defined in Eqn. 2.1. This section will derive

the susceptibility of a magnetized ferrite sample, allowing an analysis of magnetic

resonances in the next section. To begin, we consider Eqn. 2.5 derived in the

previous section, which can be written as:

dJ

dt
= γµ0J×H. (2.15)

Where H is the sum of all magnetic fields,

H = Happ +Hex +Hk. (2.16)

Here, Happ is the applied magnetic field, Hex is the exchange field arising from

nearby spins within a crystal, and Hk is the anisotropy field due to crystal structure

preferentially aligning spins along a specific orientation. For this derivation, the

exchange and anisotropy fields will be ignored; the inclusion of these terms is

outlined in Ref. [10]. However, we will consider the anisotropy field in Chapter 6 to

derive the coupling between magnons and phonons.

2.3.1 Landau-Lifshitz Equation

One can re-cast Eqn. 2.15 in terms of the net magnetization using the relationship

between angular momentum and magnetization M = nγJ, where n is the number

of spins per unit volume. Making this substitution, we obtain [58],

dM

dt
= γµ0M×H, (2.17)

which is known as the Landau-Lifshitz equation of motion for magnetization.

Let’s assume a strong static magnetic field is applied in the ẑ direction. Therefore,

the magnetization will be saturated along the magnetic field direction and we can

examine small fluctuations in the x-y plane. This assumption allows the fields to

be separated into static and time-varying components,

M = M0 +m(t), (2.18)
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H = H0 + h(t). (2.19)

Since YIG is a soft-magnetic material, we can assume M0 lies parallel to the applied

magnetic field H0; furthermore, we can assume that m(t) and h(t) are both small

quantities. Substituting these equations into Eqn. 2.17 gives

dm(t)

dt
= γµ0[M0 × h(t)−H0 ×m(t)], (2.20)

where we have used the fact that M0 ×H0 = 0 and have neglected terms second-

order in m(t) and h(t), linearizing the theory. Applying these simplifications and

assuming a time dependence of the form exp(−iωt), the linear equation of motion

becomes,

− iωm = ẑ× [−ωMh+ ω0m], (2.21)

where

ωM ≡ −γµ0MS, (2.22)

and

ω0 ≡ −γµ0H0. (2.23)

Here we have assumed that the applied magnetic field is strong such that M0 ≈MS,

where MS is the saturation magnetization of the material; in this scenario

m(t) ⊥ M0. One can extract the susceptibility tensor by re-writing this equation

in the form

m = χ̄ · h, (2.24)

where,

χ̄ =

[
χ −iκ
iκ χ

]
(2.25)

and

χ =
ω0ωM

ω2
0 − ω2

(2.26)

κ =
ωωM

ω2
0 − ω2

. (2.27)

This form of the susceptibility tensor is known as the Polder susceptibility tensor

[59].
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2.3.2 Gilbert Damping

Studying these equations, one should notice as ω → ω0 the value of χ̄

diverges. This can be avoided by including magnetic damping into Eqn. 2.17.

Physically, magnetic damping results from electron-lattice coupling, and direct

magnon scattering between the magnetostatic mode and the spin-wave continuum;

and was introduced phenomenologically into the Landau-Lifshitz equation [60, 61].

The resulting equation is known as the Landau-Lifshitz-Gilbert equation and has

the form
dM

dt
= γµ0(M×H) +

α

MS

(
M× dM

dt

)
, (2.28)

where α is the Gilbert damping coefficient [62]. This can again be solved using the

linearization procedure described above, giving

iωm = ẑ× [ωMh− (ω0 − iαω)m]. (2.29)

Resulting in the modification of the Polder susceptibility, with new components

χ =
(ω0 − iαω)ωM

(ω0 − iαω)2 − ω2
(2.30)

κ =
ωωM

(ω0 − iαω)2 − ω2
. (2.31)

The value ω0 is known as the ferromagnetic resonance frequency, and the next

section will describe coupling the Polder susceptibility with Maxwell’s equations

to determine the electromagnetic modes within ferromagnetic materials. It should

be noted that here we derived the linearized magnetization dynamics. In general,

the magnetization dynamics are non-linear and this procedure may fail in some

situations, for example, when the time-dependent magnetization m(t) is no longer

a small perturbation.

2.4 Magnetostatic Modes

To begin a description of the electromagnetic modes within a ferrite sphere, we

consider Maxwell’s equations in their differential form [63–65]:

∇×H =
∂D

∂t
+ Js (2.32)
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∇× E = −∂B
∂t

(2.33)

∇ ·D = ρ (2.34)

∇ ·B = 0 (2.35)

where:

H is the magnetic field intensity [A/m],

B is the magnetic flux density [T],

E is the electric field intensity [V/m],

D is the electric flux density [C/m2],

Js is the electric current density [A/m2],

ρ is the electric charge density [C/m3].

In order to apply Maxwell’s equations to a physical medium, we must consider

the constitutive relationships:

D = ϵ0E+P, (2.36)

B = µ0(H+M). (2.37)

Here P is the electric polarization density [C/m2] and M is the material

magnetization [A·m2]. Considering only the linear response of the material, the

constitutive relationships can be written in a more compact form as:

D = ϵ̄ · E, (2.38)

B = µ̄ ·H. (2.39)

Here ϵ̄ is the material permittivity, and µ̄ is the permeability. Since we are

concerned with the magnetic response, we will assume the medium is electrically

isotropic, such that,

ϵ̄ = ϵĪ = ϵrϵ0Ī. (2.40)

For example, it has been demonstrated that the relative permittivity of YIG is

approximately constant, ϵr ≈ 14.5, over the frequency range of interest (5 − 15

GHz), and its imaginary component is negligible [66]. Finally, we can explicitly

define the material permeability by considering the Polder susceptibility derived in

14



Section 2.3, using the relationship µ̄ = µ0(̄I+ χ̄), the permeability of a magnetized

ferrite is given by,

µ̄ = µ0

1 + χ −iκ 0
iκ 1 + χ 0
0 0 1

 . (2.41)

To continue we will assume solutions in the form of electromagnetic plane waves

with a temporal and spatial dependence of the form, exp[(ik · r− iωt)]. We can,

therefore, rewrite Maxwell’s equations in the form,

ik×H = −iωD+ Js, (2.42)

k× E = ωB, (2.43)

ik ·D = ρ, (2.44)

k ·B = 0, (2.45)

where k is the electromagnetic wavevector.

Following Section 2.3 we assume that the sample magnetization is saturated

along the ẑ direction; therefore, we can restrict ourselves to studying the small

fluctuations of the fields in the x-y plane. We can write Eqn. A.1, and Eqn. A.2 in

the form,

k× h(t) = −ωϵe(t), (2.46)

k× e(t) = ωµ0(h(t) +m(t)), (2.47)

where e(t) is the transverse electric field. These equations can be simplified – see

Ref. [10] – into a form given by,

e = ωµ0
k×m

k20 − k2
, (2.48)

∇× h = −k
2
0k×m

k20 − k2
, (2.49)

where k20 = ω2µ0ϵ. Next, we assume our sample size is significantly smaller than the

wavelength of the electromagnetic radiation1. In this situation, propagation effects

may be neglected; that is, we can assume k = 0. For |k| ≪ k0, the right-hand side

1In free-space, microwave photons have a wavelength λ ∼ 30− 60 mm, whereas the samples
used in this work have a diameter of approximately 250µm.
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Figure 2.3: Spatial magnetization of specific magnetostatic modes in a YIG sphere
orthogonal to the static magnetic field.

of Eqn. 2.49 tends towards zero. This is known as the quasimagnetostatic limit of

Maxwell’s equations:

∇× h = 0, (2.50)

∇ · b = 0. (2.51)

2.4.1 Walker Modes

The magnetostatic limit implies that the magnetic field can be written as the

gradient of a scalar2,

h = ∇ψ. (2.52)

Inserting this into Eqn. 2.51, we find

∇ · (µ̄ · ∇ψ) = 0, (2.53)

2Using the vector identity, ∇× (∇ψ) ≡ 0 for any scalar field ψ
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we can expand this equation by inserting the permeability defined previously in

Eqn. 2.41,

(1 + χ)

[
∂2ψ

∂2x
+
∂2ψ

∂2y

]
+
∂2ψ

∂2z
= 0. (2.54)

Outside the sphere µ = µ0, thus χ = 0 and Eqn. 2.54 reduces to Laplace’s

equation. Inside the magnetic sphere, the general solution to Eqn. 2.54 may be

written in the form [67, 68],

ψ = Pm
n (ξ)Pm

n (cos η)[Gm
n cosmϕ+ iHm

n sinmϕ]. (2.55)

Here Pm
n (x) are the associated Legendre polynomials [69], Gm

n and Hm
n are real

normalization constants that we will set equal to unity for simplicity. Moreover,

the renormalized angular coordinates ξ and η are defined in terms of x, y, and z,

by the equations,

x = a
√
−χ

√
1− ξ2 sin η cosϕ, (2.56)

y = a
√
−χ

√
1− ξ2 sin η sinϕ, (2.57)

z = a
√
χ/(1 + χ)ξ cos η. (2.58)

The magnetization of the ferrite sphere can be determined by expanding the

Landau-Lifshitz equation, resulting in magnetization components,

mx = χ
∂ψ

∂x
− iκ

∂ψ

∂y
, (2.59)

my = iκ
∂ψ

∂x
− χ

∂ψ

∂y
. (2.60)

The magnetization can be evaluated by taking the appropriate spatial derivatives

using Eqn. 2.59 and Eqn. 2.60. A few sample magnetizations are shown in Fig. 2.3;

the magnetostatic mode utilized throughout this work is the uniformly magnetized

(1, 1, 0) mode, known as the Kittel mode.

Finally, without a formal derivation, but derived by Fletcher et al. in Ref. [68],

the resonance frequency can be determined by solving numerically, the equation

n+ 1 + ξ0
Pm′
n (ξ0)

Pm
n (ξ0)

±mκ = 0, (2.61)

where ξ0 = 1+(1/χ), Pm′
n are the derivatives of the associated Legendre polynomials,

and the± results from the definition of r [68]. The resonance for select magnetostatic
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Figure 2.4: Magnetostatic mode frequency for different Walker modes. Here we have
plotted the dispersion using normalized units ΩH = Hi
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Adapted from Ref. [68].
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modes is shown in Fig. 2.4. For clarity, the resonance curves were plotted using the

variables defined as:

ΩH =
Hi

M
=
H0 −MS/3

MS

, (2.62)

Ω =
ω

γMS

, (2.63)

∆ = ΩH − Ω. (2.64)

Where, Hi is the internal magnetic field, and ω is the magnon frequency. It should

be noted that due to this notation, magnon dispersion of the form ω(H0) ∝ H0 will

appear as horizontal lines.

2.5 Second Quantization – Holstein Primakoff

Finally, we wish to derive the Hamiltonian describing the quanta of magnetic

excitation in a ferromagnetic material. As we will show, magnetic excitations do

not correspond to individual spin flips; instead, magnetic excitations will result in

a collective spin excitation shared over the entire sample. Classically, collective

magnetic spin excitations are known as spin-waves, a particular case being Walker

modes, derived in Section 2.4.1, and the quanta of excitation for spin-waves are

known as magnons. We will start by considering the microscopic Hamiltonian

describing a ferromagnetic system and derive a second-quantized description of

magnons. It can be shown using the proper mean-field approximations, the

Hamiltonian description reduces to the classical Landau-Lifshitz-Gilbert equation,

for example, see Ref. [70]. We begin with the Heisenberg Hamiltonian coupling

only nearest-neighbour spins; we will also include the Zeeman energy due to the

presence of a static magnetic field. The Hamiltonian has the form [71],

H = −2
J
ℏ2

∑
j,δ

Ŝj · Ŝj+δ −
gµBB0

ℏ
∑
j

Ŝjz. (2.65)

In this equation, J > 0 is the exchange constant, Ŝj is the spin at location j, Ŝjz

is the z-projection of the jth spin, δ is a vector to one of the nearest neighbours

of j, µB is the Bohr magneton, and ℏ is the reduced Planck’s constant. We have

chosen a convention such that the lowest energy state is when all spins are “up.”

19



To proceed, it is convenient to re-write the spin operators as raising and lowering

operators3, for the jth site we can define

Ŝ+
j = Ŝjx + iŜjy, (2.66)

Ŝ−
j = Ŝjx − iŜjy. (2.67)

We can rewrite Eqn. 2.65 as,

H = −2
J
ℏ2

∑
j,δ

[
1

2

(
Ŝ−
j Ŝ

+
j+δ + Ŝ+

j Ŝ
−
j+δ

)
+ ŜjzŜj+δ,z

]
− gµBB0

ℏ
∑
j

Ŝjz. (2.68)

If we consider a single site j, for a specific state |sjz⟩, where the z-component of

the spin has value sjz, by defining,

Ŝjz|sjz⟩ = ℏsjz|sjz⟩. (2.69)

Furthermore, it can be shown by taking the inner product ⟨sjz|Ŝ∓
j Ŝ

±
j |sjz⟩ that the

raising and lowering operators can be written in the form

Ŝ±
j |sjz⟩ = ℏ

√
s(s+ 1)− sz(sz ± 1)|sjz ± 1⟩, (2.70)

where s is the total spin at a particular site.

Following the procedure of Holstein and Primakoff, we will introduce a new set

of basis states |nj⟩, where nj represents the number of flipped spins at site j. That

means increasing nj by one reduces sjz by one. Using this new set of basis states

we can re-write Eqn. 2.69 as,

Ŝjz|nj⟩ = ℏ(s− nj)|nj⟩, (2.71)

this can be understood as,

sjz = s− nj. (2.72)

Moreover, the newly defined basis states allow us to rewrite the equations for the

spin raising operator as,

Ŝ+
j |nj⟩ = ℏ

√
s(s+ 1)− (s− nj)(s− nj + 1)|nj − 1⟩,

= ℏ
√

2snj − n2
j + nj|nj − 1⟩,

= ℏ
√
2s

(
1− (nj − 1)

2s

)1/2√
nj|nj − 1⟩.

(2.73)

3see Ref. [70] for details about the Lie algebra defining this group
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Examining this equation suggests this can be expressed in terms of bosonic raising

and lowering operators. This derivation is by no means rigorous, and for a full

description, one can follow the original work presented in Ref. [72], alternatively

see Ref. [73]. However, considering the above equations, one can write the spin

raising operator as [10],

Ŝ+
j = ℏ

√
2s

(
1−

m†
jmj

2s

)1/2

m̂j. (2.74)

Following a similar procedure, the lowering spin operator can be written,

Ŝ−
j = ℏ

√
2sm†

j

(
1−

m†
jm̂j

2s

)1/2

. (2.75)

Note, that this transformation preserves the commutation relations for the spin

operators. These newly introduced bosonic operators acting upon the set of basis

states |nj⟩ are described by the properties of a harmonic oscillator, such that

applying these operators to the basis states, we obtain

m̂j|nj⟩ =
√
nj|nj − 1⟩, (2.76)

m̂†
j|nj⟩ =

√
nj + 1|nj + 1⟩, (2.77)

m̂†
jm̂j|nj⟩ = nj|nj⟩ (2.78)

and have the commutation relationship,

[m̂i, m̂
†
j] = δi,j. (2.79)

It can be seen that the application of the operator m̂j flips a spin located on-site j

reducing the z-component of the spin at the site. The power of this analysis comes

from assuming that the total number of spins flipped is small compared to the total

number of spins within the macroscopic system. If the number of flipped spins is

small, we can use this approximation to simplify the Hamiltonian in terms of the

bosonic operators m̂j. This approximation can be formalized mathematically by

performing an ensemble average over all lattice sites. If the total number of spins

flipped is small, we can write〈∑
j

(
1−

m̂†
jm̂j

2s

)1/2〉
≈ N, (2.80)
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(a)

(b)

(c)

Figure 2.5: Schematic representation of a one-dimensional spinwave excitation,
whose quanta of excitation is the magnon. (a) Spin-polarized ferromagnetic ground
state, (b) Single spin-flip state, (c) the spin-wave state.

where N is the total number of spins, and the brackets represent the ensemble

average suggesting we can safely approximate,(
1−

m̂†
jm̂j

2s

)1/2

≈ 1. (2.81)

This approximation allows us to rewrite the spin operators in terms of the raising

and lowering operators as

Ŝ+
j ≈ ℏ

√
2s m̂j, (2.82)

Ŝ−
j ≈ ℏ

√
2s m̂†

j. (2.83)

This is known as the Holstein-Primakoff transformation [72].

We can now substitute these operators into the Hamiltonian given in Eqn. 2.68,
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keeping terms up to second-order in creation and annihilation operators,

H =− 2J s
∑
j,δ

[
m̂†

jm̂j+δ + m̂jm̂
†
j+δ − m̂†

jm̂j − m̂†
j+δm̂j+δ + s

]
− gµBB0

∑
j

(s− m̂†
jm̂j).

(2.84)

This Hamiltonian includes terms coupling spin sites, therefore, one should expect

that any spin excitations will be shared collectively across all spins and not a single

isolated spin-flip, see Fig. 2.5. This collective excitation is known as a magnon. The

collective nature of these excitations further strengthens our approximation made

in Eqn. 2.81, since a single excitation will be shared across all spins. Thus, all spins

will be approximately unperturbed. In order to proceed with this analysis, we will

look for a set of basis states that diagonalize the Hamiltonian. The transformation

that enables this form of collective modes is the Fourier transformation. We

introduce a new set of operators m†
k and mk, which create and annihilate magnons

of wavevector k, respectively:

m̂†
k =

1√
N

∑
j

eik·rjm̂†
j, (2.85)

m̂k =
1√
N

∑
j

e−ik·rjm̂j. (2.86)

Here, rj is the location of the jth lattice site. The inverse Fourier transforms are,

m̂†
j =

1√
N

∑
j

e−ik·rjm̂†
k, (2.87)

m̂j =
1√
N

∑
j

eik·rjm̂k. (2.88)

For a lattice site j with Z nearest-neighbour sites, the Hamiltonian may be written

in the form [10],

H = −2JNZs2 − gµBB0Ns+H0, (2.89)

where,

H0 =− 2J s
N

∑
j,δ,k,k′

(
e−i(k−k′)·rjeik

′·δm̂†
km̂k′ + ei(k−k′)·rje−ik′·δm̂km̂

†
k′

− e−i(k−k′)·rjm̂†
km̂k′ − e−i(k−k′)·(rj+δ)m̂†

km̂k′

)
+
gµBB0

N

∑
j,k,k′

ei(k−k′)·rjm̂†
km̂k′ .

(2.90)
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The summation over j enforces the condition k = k′, and we can define,

γk =
1

Z

∑
δ

eik·δ. (2.91)

For a crystal with center of symmetry4, such as YIG, it can be shown that γk = γ−k

[10]. Using this definition, the Hamiltonian can be further simplified to,

H0 =
∑
k

(4J sZ(1− γk) + gµBB0)m̂
†
km̂k. (2.92)

One final simplification can be made, for the case of a simple cubic lattice, such as

that in YIG, with a nearest-neighbour distance a, we can write

γk =
1

3
(cos kxa+ cos kya+ cos kza). (2.93)

Therefore, we can re-write the Hamiltonian in the form,

H0 =
∑
k

ℏωkm̂
†
km̂k, (2.94)

where for small |k|,

ωk = gµBB0 + 4J sa2k2. (2.95)

Finally, returning to the assumption made by Walker [67], for a large external

bias field B0, and for small wavevectors |k| → 0, the Hamiltonian reduces to,

Hmag = ℏωmm̂
†m̂. (2.96)

Here, ωm is the magnon frequency for a given magnetostatic mode and is linearly

proportional to the externally applied magnetic field B0.

4A crystal has center of symmetry if an imaginary line drawn through its center links an
identical point on the opposite face of the crystal.
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Chapter 3

Microwave Resonators

3.1 Introduction

This chapter will introduce a theoretical framework for describing electromag-

netic radiation and apply this theory to the specific case of rectangular microwave

resonators. To begin, in Section 3.2 we introduce Maxwell’s equations and derive

the Helmholtz equation describing electromagnetic waves; applying the appropriate

boundary conditions, we can describe the modes of a metallic microwave resonator.

Next, in Section 3.3 we consider several sources of loss for microwave resonators and

determine that surface resistance is the limiting dissipation channel for rectangular

microwave resonators. Finally, in Section 3.4 we quantize the electromagnetic

circuit, expressing the Hamiltonian in terms of photon creation and annihilation op-

erators and derive the classical time-dynamics and steady-state solutions describing

a driven microwave resonator.

3.2 Rectangular Microwave Resonator

When electromagnetic radiation is confined, for example, within a metallic

box at microwave frequencies, standing-wave excitations will exist at particular

eigenfrequencies. These standing-wave excitations of electromagnetic radiation

are known as electromagnetic modes. To determine the electromagnetic modes

of a microwave resonator, we must start with Maxwell’s equations; as was done

in Chapter 2, we will assume the electric and magnetic fields have time-harmonic

solutions of the form exp(−iωt). Using this time-dependence, we can write
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Maxwell’s equations for a source-free and non-magnetic dielectric as:

∇×H = −iωD, (3.1)

∇× E = iωB, (3.2)

∇ ·D = 0, (3.3)

∇ ·B = 0. (3.4)

We will also assume the medium is linear, isotropic and homogeneous, such that the

permeability and permittivity are defined by scalars µ and ϵ, respectively. Given

these assumptions, we can re-write the first two Maxwell’s equations in terms of

the electric and magnetic fields1:

∇×H = −iωϵE, (3.5)

∇× E = iωµH. (3.6)

We can proceed by taking the curl of Eqn. 3.6, using the vector identity

∇ × ∇ × A = ∇(∇ · A) − ∇2A (where A is an arbitrary vector field), and

inserting Eqn. 3.5, we find that Eqn. 3.6 can be rewritten as,

∇2E+ k2E = 0. (3.7)

Following the same procedure, we can rewrite Eqn. 3.5 in a similar way,

∇2H+ k2H = 0. (3.8)

Here we have introduced the wavenumber k2 = ω2ϵµ. In free space k20 = ω2/c2,

where c is the speed of light. These equations take the form of the Helmholtz

equation and can be solved to determine the electromagnetic modes given a

resonator’s geometry. Analytical solutions exist for the Helmholtz equations for

many simple and highly symmetric geometries, as we will study in the next sections.

However, in general, for more complex geometries, one must solve these equations

numerically, for example, using COMSOL Multiphysics®, a finite-element

method (FEM) solver [74].

1Recall that D = ϵE and B = µH.
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3.2.1 Plane Waves

The most straightforward solutions to the Helmholtz equation are those within

an infinite, lossless dielectric. For simplicity, let us consider a wave propagating in

vacuum, i.e. free space. In free space, the Helmholtz equation for the electric field

can be expanded and written as,

∇2E+ k20E =
∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2
+ k20E = 0. (3.9)

This equation can be solved using the method of separation of variables [75]. We

find that the solution takes the form2,

E(x, y, z) = E+ei(k·r) + E−e−i(k·r). (3.10)

where E+ and E− are arbitrary complex amplitudes representing forward and

backwards propagating waves, respectively. The wavevector may be written as,

k = kxx̂+kyŷ+kz ẑ, wherein free space the coefficients must satisfy the relationship,

k2x + k2y + k2z = k20. (3.11)

Eqn. 3.10 is a general solution to the Helmholtz equation; however, Maxwell’s

equations apply additional constraints to these solutions. If we consider Eqn. 3.3,

we find that,

∇ · E = ik · E+ei(k·r) − ik · E−e−i(k·r) = 0. (3.12)

This equation must be valid for all positions in space; thus, we must have

k · E± = 0. (3.13)

Therefore, the electric field amplitude vector must be perpendicular to the direction

of propagation. The constraint on the magnetic field can be found by applying

Eqn. 3.2 to our solution; we find that,

H± =
−i
ωµ0

∇× E±

=
−i
ωµ0

(±ik× E±)

=
±k0
ωµ0

k̂× E±.

(3.14)

2Note: Eqn. 3.10 is, in general, complex; however, the physical fields correspond to the real
components of this solution, that is E = Re[E(x, y, z)e−iωt].
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Therefore, the magnetic field vector must be perpendicular to the direction of

propagation and the electric field vector. This is the well-known transverse

electromagnetic (TEM) or plane-wave solution to electromagnetic waves in free

space.

3.2.2 Guided Modes

Plane waves propagating through free space are the simplest solution to

Maxwell’s equations. However, often we wish to confine electromagnetic waves

or direct the flow of electromagnetic energy towards or away from an experiment.

Controlling the flow of electromagnetic energy can be accomplished by constructing

a transmission line or waveguide. To begin, let us consider a waveguide with

perfectly conducting walls parallel to the ẑ direction, see Fig. 3.1. Furthermore,

we will assume the waveguide is uniform in shape and infinitely long. Since the

walls are constructed from a perfect conductor, the electric field must vanish, and

the magnetic field must remain constant within waveguide walls, providing a set of

boundary conditions [64]:

n̂× E = 0, (3.15)

n̂ ·B = 0, (3.16)

where n̂ is the unit normal to the surface. These boundary conditions imply that

the parallel component of the electric field, and the perpendicular component of

the magnetic field must vanish at the boundary with a perfect conductor [76].

We will again assume time-harmonic fields of the form exp(−iωt), and that the

electric and magnetic fields have the form,

E(x, y, z) = e(x, y)eiβz, (3.17)

H(x, y, z) = h(x, y)eiβz. (3.18)

We have introduced the propagation constant β, which is real for lossless conductors

but can be complex to describe guided modes’ attenuation.

Solving Maxwell’s equations, it can be shown that subject to the boundary

conditions imposed by the waveguide, TEM modes are often no longer permitted3.

3Note: Coaxial cables can support TEM modes.
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Figure 3.1: Schematic of metallic waveguides. (a) Cross-section of a coaxial
waveguide. (b) Cross-section of a rectangular waveguide.

Instead, solutions to Maxwell’s equations provide two new classifications within

hollow-core waveguides, transverse electric (TE) and transverse magnetic (TM).

Transverse electric solutions to Maxwell’s equations are those for which Ez = 0 and

Hz ̸= 0, whereas transverse magnetic solutions have Ez ̸= 0 and Hz = 0. Here, we

will focus on TE modes4, the equation describing the z component of the magnetic

field Hz, takes the form,(
∂2

∂x2
+

∂2

∂y2
+ (k2 − β2)

)
hz = 0. (3.19)

This equation can be applied to any waveguide geometry, see Appendix. B. The

geometry we will consider here is that of a rectangular waveguide of height a, and

width b, where a < b, see Fig. 3.1(b). The partial differential equation describing

the magnetic field can be again solved using the method of separation of variables

[75]. Applying the appropriate boundary conditions at the walls, the final solution

for the magnetic field takes the form

Hz(x, y, z) = Amn cos
mπx

b
cos

nπy

a
eiβz, (3.20)

where Amn is an arbitrary normalization constant. The remaining field components

can be found using Eqn. 3.20, and following Appendix. B. Furthermore, using

4The solution for TM modes can be found in Ref. [76]
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Eqn. 3.19 and Eqn. 3.20, the propagation constant can be found and is given by

β =

√
k2 −

(
mπ

b

)2

−
(
nπ

a

)2

. (3.21)

For the solutions to take the form of propagating electromagnetic waves, β must

be real; therefore

k =
ω

c
>

√(
mπ

b

)2

+

(
nπ

a

)2

. (3.22)

Thus it can be seen that each mode, with indices m and n, have a specific cut-off

frequency, given by,

fmn =
c

2π
√
ϵrµr

√(
mπ

b

)2

+

(
nπ

a

)2

. (3.23)

Here ϵr and µr are the relative permittivity and permeability of any material filling

the waveguide, respectively. Therefore, for a rectangular waveguide, the lowest

frequency fundamental mode is the TE10 mode.

3.2.3 Rectangular Resonator

Waveguides provide a powerful tool for transporting electromagnetic energy;

however, one often would prefer to store electromagnetic energy. The storing of

electromagnetic energy can be accomplished by constructing a resonator, storing

energy within a small volume of space. One popular form of microwave resonator

is constructed by placing a short at both ends of a rectangular waveguide, forming

a metallic box or cavity to confine the electromagnetic radiation, which we will

assume has a height a, width b and length d. Within a rectangular microwave

resonator, both TE and TM modes will exist, and the resonance frequency can be

determined by applying the appropriate boundary conditions in the ẑ direction.

The resonant frequency of the TEmnl or TMmnl is given by [76],

fmnl =
c

2π
√
µrϵr

√(
mπ

a

)2

+

(
nπ

b

)2

+

(
lπ

d

)2

. (3.24)

If a < b < d, the lowest frequency mode will be the TE101, shown in Fig. 3.2.

Throughout this work, we will focus specifically on the TE101 mode, and in the

next section, we will consider potential loss mechanisms this mode experiences.
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Figure 3.2: FEM simulation of the TE101 mode of a rectangular microwave resonator
with dimensions 30× 30× 6 mm3. (a) Normalized electric field distribution. (b)
Normalized magnetic field distribution.

3.3 Decay Mechanisms

While deriving the electromagnetic modes of rectangular microwave resonators,

we assumed that the boundaries were constructed from perfect conductors. However,

the walls of any physical resonator are not perfect conductors, and thus we expect

loss mechanisms for the electromagnetic mode to exist. Losses can be separated

into internal and external. External losses provide a means to couple measurement

apparatus to the microwave resonator and are typically experimentally controlled.

Conversely, internal losses constitute irreversible losses where electromagnetic energy

is lost to the environment and cannot be measured. Losses result in electromagnetic

energy being removed from the resonator, effectively acting as a damping mechanism

for the resonator.

When discussing the damping of a resonator, it is helpful to introduce the

parameter known as the quality factor or, historically, the Q-factor [77]. The

quality factor of any resonator describes the resonant properties of an underdamped

harmonic oscillator. There are two standard definitions of quality factor, and

it should be noted that these definitions are not precisely equivalent, but they

converge for high quality factor resonators.
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The quality factor’s first definition is the ratio of the energy stored in the

resonator to the energy dissipated per cycle. This can be written mathematically

as,

Q = 2π × energy stored

energy dissipated per cycle
. (3.25)

This definition provides a clear, intuitive understanding of quality factor. For

example, a high-quality factor bell will ring for an extended period of time since

the stored energy requires many cycles to dissipate. A second and often more

helpful definition defines the quality factor as the frequency-to-bandwidth ratio of

the resonator,

Q =
ω0

κ
, (3.26)

where ω0 is the resonance frequency, and κ is the full width at half maximum

(FWHM) of the resonance. This definition is powerful since both ω0 and κ can

be determined by measuring the spectrum of the resonance. Furthermore, κ may

also be understood as the intensity decay rate of the resonator, that is, the rate

at which energy is dissipated. This definition can be helpful, allowing the direct

comparison of loss to coupling rates, as we will see in Chapter 7. Furthermore,

just as with the different loss mechanisms, we can separate the decay channels

into internal and external decay channels. In most situations, it is not possible to

uniquely determine the individual internal loss mechanisms; therefore, the total

decay rate is often defined as,

κ = κi + κe. (3.27)

where κi is the sum of all internal decay rates, and κe is the external coupling

rate. In the remainder of this work, we will most often consider the decay rates

rather than quality factors since they are mathematically more convenient. There

are three primary loss mechanisms for a metallic microwave resonator that we will

describe in detail in the following sections:

1) Dielectric losses; any dielectric within the microwave cavity will absorb

electromagnetic radiation, primarily through heat generation.

2) The finite conductivity of the metallic walls will absorb electromagnetic

radiation generating heat via Joule heating.
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3) Most microwave resonators will be constructed of multiple parts. Therefore,

any current crossing a physical seam within the construction will result in additional

electromagnetic loss.

3.3.1 Dielectric Loss

The metallic walls of a microwave resonator typically have a thin oxide coating.

For example, aluminum forms a protective aluminum oxide layer a few nanometers

thick nearly instantaneously when exposed to oxygen. The material’s loss tangent

parameterizes electromagnetic dissipation within a dielectric; tan δ = ϵ′′/ϵ′ [76].

Where the dielectric constant, in general, is complex and is defined as ϵ = ϵ′ + iϵ′′.

Suppose there is a thin dielectric layer of thickness t and loss tangent tan δ coating

the surface of our resonator. If we assume the only loss mechanism is due to

dielectric absorption, the internal quality factor will be limited to a value of [78]5,

QD =
1

ϵr tan δ

( ∫
V
|E|2dV

t×
∫
S
|E|2dS

)
=

pdiel
ϵr tan δ

, (3.28)

where pdiel is known as the dielectric participation ratio. We will consider a

microwave cavity made of high-conductivity oxygen-free (OFHC) copper with

dimensions (30× 30× 6) mm3. This cavity matches the dimensions of the one used

throughout this work, and the electromagnetic modes are shown in Fig. 3.2. Unlike

aluminum, copper does not immediately form a protective oxide layer; instead

slowly tarnishes over time. We consider a well-polished cavity with a thin dielectric

layer ∼ 2 nm, with tan δ ≈ 10−3 [79]. The dielectric participation ratio of the TE101

mode is pdiel = 106 and the internal quality factor would be limited by dielectric

losses to a value QD ≈ 109.

3.3.2 Conductor Loss

Beyond the thin dielectric layer, for a normal metal, the metallic walls will

have a finite electrical conductivity σ. This finite conductivity will convert induced

surface currents into heat via Joule heating, ultimately limiting the quality factor

of the microwave resonator. If we assume the only loss mechanism is due to the

5The volume integral is to be performed over the entire volume of the resonator.
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finite conductivity of the metallic walls, the internal quality factor would be limited

to a value of [78],

QC =
ωµ0λ

Rs

( ∫
V
|H|2dV

λ×
∫
S
|H|2dS

)
=
ωµλ

Rs

α, (3.29)

where α is the conductor participation ratio, Rs =
√
ωµ0/2σ is the surface resistivity

or sheet resistance, and λ is the wavelength of the electromagnetic radiation. Again

considering the cavity described above and assuming the conductivity of room-

temperature copper σ ≈ 60 × 106 S/m [80], the internal quality factor would be

limited by conductor losses to a value QC,300K ≈ 5000. At cryogenic temperatures,

the conductivity of copper increases; at 4K, σ ≈ 1×108−5×109 S/m [81], resulting

in a conductivity limited quality factor of QC,4K ≈ 15 000− 50 000.

0

1

Figure 3.3: Normalized surface current distribution for the TE101 mode of a
rectangular microwave resonator. The green line indicates the location of the seam
separating the two halves of the resonator.

3.3.3 Seam Loss

Finally, one additional source of internal losses is from the seams formed when

joining separate pieces of a microwave resonator [82]. At a seam, any surface

currents perpendicular to the seam experience a discontinuity in the electrical

conductivity, and therefore, seam losses can not be calculated using Eqn. 3.29.
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Instead, for a given material, one can define a seam conductance per unit length

gseam = Gseam/L, where Gseam is the total seam conductance and L is the length of

the seam. It should be noted that there exists no general equation to determine

the value of gseam, and, in general, it must be determined experimentally [83, 84].

If we assume the only loss mechanism is due to the finite seam conductance, the

internal quality would be limited to a value [83],

Qseam = gseam
ωµ

∫
V
|H|2dV∫

seam
|Js × l|2dl

. (3.30)

Here Js is the surface current, and l is the path along the seam. Therefore, to

maximize the seam limited quality factor, one should choose a geometry to minimize

the surface current perpendicular to the seam. Fortunately, for the TE101, by a

careful choice of cavity geometry, one can construct a resonator such that negligible

surface currents are perpendicular to the seam, as shown in Fig. 3.3. Therefore,

given a seam conductance gseam ≳ 103 [83, 84], we can again estimate the quality

factor limited by seam losses, giving Qseam ≈ 106.

3.3.4 External Coupling

The loss mechanisms described up to this point correspond to the irreversible loss

of electromagnetic energy. However, if one considers a completely sealed microwave

resonator, there is no means for inputting or extracting electromagnetic energy from

the cavity. Therefore, it is necessary to build an additional loss mechanism allowing

controlled coupling of the external environment to the microwave resonator. At

the frequency of interest for this work (5 − 10 GHz), electromagnetic energy can

be efficiently transported using coaxial transmission cables. Before reaching the

resonator, the central pin of the coaxial cable can be abruptly terminated, leaving a

short section, of length L, of a hollow cylindrical waveguide, before opening to the

microwave resonator. At the point where the coaxial cable transitions to a hollow

waveguide, many waveguide modes are excited; for a cylindrical geometry, the

lowest frequency modes will be TM0m. These modes have a propagation constant

given by,

βTM0m =

√
k2 −

(
p0m
r0

)2

, (3.31)
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where p0m is the mth zero of the zeroth-order Bessel function [69]. The propagation

constant will become imaginary when,

ω <
p0mc

r0
, (3.32)

where c is the speed of light, and the first zero occurs at p01 ≈ 2.41. For a

waveguide radius r0 = 2.0 mm, the cutoff frequency will be ωc ≈ 60 GHz; therefore,

the excited waveguide modes will decay exponentially for all frequencies of interest.

One expects the external quality factor to be proportional to the intensity of the

electromagnetic radiation at the entrance to the microwave resonator [85]. Thus,

the external quality factor should scale with the length, L, of the hollow cylindrical

waveguide as

Qext ∝ e−2βTM01L. (3.33)

An explicit expression for the external quality factor is derived in Ref. [85]. The

scaling of the external quality factor with length provides a powerful tool, allowing

the precise experimental control over the ratio of internal to external decay rates.

3.3.5 Total Resonator Decay

This section has considered several electromagnetic loss mechanisms for a

rectangular microwave resonator. The estimated limiting quality factor resulting

from each of these loss mechanisms is summarized in Table 3.1. We see that for

the copper cavity used in this work, surface resistance is the primary limiting

factor. This limits the quality factor to approximately 5000 at room temperature

and 15 000− 50 000 at cryogenic temperatures, which is in good agreement with

experimental results shown in Chapter 7, and Appendix E, respectively.

Loss Mechanism TE101 Mode

Dielectric Absorption QE 109

Surface Resistance (300K) QC 5000
Surface Resistance (4K) QC 15 000− 50 000

Seam Loss Qseam 106

Table 3.1: Summary of the estimates for the limit on the microwave quality factor
for the TE101 mode of the cavity shown in Fig. 3.2.
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3.4 Circuit Quantization

To conclude this chapter, we will derive the second quantized Hamiltonian for a

microwave resonator. As described above and in the previous chapter, it is often

challenging to solve Maxwell’s equations in general. Therefore, determining coupling

rates between, for example, magnons and electromagnetic radiation difficult. As

we will see in Chapter 5, the coupling between magnons and the electromagnetic

field can be conveniently described in the second quantization framework.

Φ

𝐿 𝐶
−𝑞

𝐼
+𝑞

(𝑎) (𝑏)

𝑚 𝑝
𝑥

𝑘

Figure 3.4: (a) Schematic of an LC resonator. (b) Schematic of a mass-on-a-spring
simple harmonic oscillator.

3.4.1 Second Quantization

To begin our derivation, consider a simple LC resonator, shown in Fig.3.4(a),

consisting of a capacitor (C) and an inductor (L). We use an LC oscillator since it

provides a simple model to perform our analysis. Moreover, at the frequencies of

interest, this lumped element model provides a good approximation of the physical

three-dimensional resonator [76]. On resonance, energy is evenly stored within the

capacitor (WC = q2/2C) and the inductor (WL = LI2/2), where q is the charge on

the capacitor plates, and I = dq/dt is the current flowing through the inductor. As

a starting place for the derivation, we can compare this system to the well-known

mass-on-a-spring simple harmonic oscillator, seen in Fig 3.4(b). The energy of

37



the mass-on-a-spring is shared between the potential energy V = kx2/2, and the

kinetic energy K = mẋ2/2. Therefore, if we compare the position x and the charge

q, we can correctly guess the form of the Lagrangian (L = K − V ) describing the

LC resonator [86], as

L =
1

2
Lq̇2 − 1

2C
q2. (3.34)

Writing the Lagrangian in this form, we have reduced the LC resonator to a single

degree of freedom q with a “mass” L and a “spring constant” 1/C, continuing with

our analogy to a mass-on-a-spring. Inserting Eqn. 3.34 into the Euler Lagrange

equation of motion, we find that [86],

q̈ = −ω2q, (3.35)

where the oscillation frequency is,

ω =
1√
LC

, (3.36)

as expected for an LC resonator, confirming our choice of the Lagrangian. Next,

using the Lagrangian defined in Eqn. 3.34, we can determine the canonically

conjugate momentum of the charge, which is given by,

Φ =
∂L
∂q̇

= Lq̇, (3.37)

where Φ is the flux through the inductor. Therefore, the Hamiltonian can be

written as,

H = q̇Φ− L =
Φ2

2L
+

q2

2C
. (3.38)

Again, this has a remarkable resemblance to the Hamiltonian describing the

mass-on-a-spring, H = p2/2m + kx2/2, where p is the canonically conjugate

momentum of the position x. Therefore, we can promote the coordinate q and its

conjugate momentum Φ to quantum operators that obey the canonical commutation

relationship [q̂, Φ̂] = iℏ. Furthermore, now that we have the Hamiltonian in terms

of the conjugate position and momentum variables, we can proceed in a way similar

to what is done for the simple harmonic oscillator [87]. We can define a pair of

operators, given by,

â =
1√
ℏω

(
Φ̂√
2L

− i
q̂√
2C

)
, (3.39)

38



and

â† =
1√
ℏω

(
Φ̂√
2L

+ i
q̂√
2C

)
. (3.40)

Notice that these operators satisfy the bosonic commutation relationship [â, â†] = 1.

Multiplying these operators gives us,

â†â =
1

ℏω

[
Φ̂2

2L
+

q̂2

2C
+ i

1

2
√
LC

(q̂Φ̂− Φ̂q̂)

]
=

1

ℏω
H +

i

ℏω
1

2
√
LC

[q̂, Φ̂]

=
1

ℏω
H− 1

2
.

(3.41)

Thus, rearranging the terms, we can see that the Hamiltonian may be written as,

Ĥ = ℏωa(â
†â+ 1/2). (3.42)

Which has the form of a simple harmonic oscillator, where ωa is the resonant

frequency. We can now identify â† (â) as the creation (annihilation) operators for

photons, the quanta of excitation for electromagnetic circuits.

3.4.2 Input-Output Relations

Finally, we wish to have a full description of the microwave resonator coupled to

the external environment, for example, via an external coaxial cable. We will use

input-output theory to model both the resonator dynamics, but also any drive that

is injected via the external coupling ports [88]. Input-output theory is formulated

in terms of the Heisenberg equations of motion describing the time evolution of

the cavity field operator â(t). The time evolution for an arbitrary operator Ô is

described by the Heisenberg equation [89],

˙̂O =
i

ℏ
[Ĥ, Ô]. (3.43)

Here, we are interested in the response of the system to an external drive at

a frequency ωd. The drive Hamiltonian may be written in the form Ĥdrive ∝

(âeiωdt − â†e−iωdt). Therefore, we can simplify our analysis by transforming the

Hamiltonian into a frame rotating at the drive frequency. The Hamiltonian can

be transformed using the relationship H′ = ÛHÛ † − iℏÛ(∂Û †/∂t), where Û is a
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unitary operator. To transform the Hamiltonian into a rotating frame, we choose

the unitary operator Û = exp(iωdâ
†ât). In the rotating frame, the Hamiltonian

may be written,

H′ = −ℏ∆(â†â+ 1/2), (3.44)

where ∆ = ωd − ωa is the drive detuning.

Before proceeding, it should be noted that the Hamiltonian only contains

information about the unitary evolution of a quantum system. However, as we

saw in Section 3.3, any microwave resonator is subject to loss mechanisms that

can not be described by unitary evolution. Therefore, additional terms are added

to the equation of motion to introduce loss, as well as driving terms, as described

in Refs. [90, 91]. Introducing the appropriate dissipative terms, the equation of

motion describing the time evolution of the field operator may be written as

˙̂a = (i∆− κ/2)â+
√
κeâin. (3.45)

Where âin describes the input field6. In most situations, a fully quantum description

is not necessary, and indeed the classical counterpart to these equations can be

obtained by simply taking the expectation value, such that â → ⟨â⟩. First, we

can solve Eqn. 3.45 for a steady-state solution, i.e. ⟨ ˙̂a⟩ = 0, while driving with a

monochromatic tone, giving

⟨â⟩ =
√
κe⟨âin⟩

κ
2
− i∆

. (3.46)

Furthermore, the steady-state photon population n̄cav = ⟨â†â⟩, is given by,

n̄cav = |⟨â⟩|2 =
(

κe
(κ/2)2 +∆2

)
P

ℏωD

, (3.47)

where P is the microwave power incident on the resonator.

Next, if we consider a single-sided microwave resonator, according to the input-

output relationship, the field reflected from the microwave resonator is given by,

âout = âin −
√
κeâ. (3.48)

6Note: Due to an unfortunate abuse of notation, â and âin do not have the same units. Where
â describes the field amplitude inside the resonator and is unit-less, âin describes a photon flux
and has units of [1/

√
s].

40



The reflection coefficient r can be determined by inserting Eqn. 3.46 into Eqn. 3.48,

in steady-state, this gives us,

r =
⟨âout⟩
⟨âin⟩

=
(κi − κe)/2− i∆

(κi + κe)/2− i∆
, (3.49)

recalling that, κ = κi + κe. For the remainder of this work, the reflection coefficient

will be referred to as S11, to be consistent with microwave literature. This is

referred to as the scattering parameter, it is the standard convention for Sij to

define scattering where the drive is applied to the jth port, and the signal is

measured at the ith port.
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Chapter 4

Mechanical Resonators

4.1 Introduction

This chapter introduces the final of our three resonators; we will focus on

describing the mechanical vibrations of a small YIG sphere. First, in Section 4.2

the isotropic wave equation is derived by considering the relationship between

stress, strain and displacement. The wave equation is solved by considering a free

sphere; we derive the characteristic equation describing spheroidal motion. Next, in

Section 4.3 we derive the mathematical formalism describing a mechanical resonator

using the theory of a classical damped harmonic oscillator. This description provides

a definition of a mechanical oscillator’s effective mass and quality factor. Finally, in

Section 4.4 we demonstrate how the classical harmonic oscillator can be quantized,

introducing quantized position and momentum operators.

4.2 Spherical Mechanical Modes

Like electromagnetic radiation forming microwave modes when confined, a

mechanical object’s geometry, material properties, and structural clamping points

will determine the possible mechanical vibrational modes. A straightforward case

is a guitar string; as the guitar string is plucked, the string is displaced from its

equilibrium position. As a function of time, the guitar string will oscillate about

its equilibrium position; this mechanical motion can be described entirely by its

displacement profile u(r, t). In general, the displacement profile may be written in
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the form [92, 93],

u(r, t) = u(r)x(t). (4.1)

Here u(r) describes the spacial profile of the mechanical mode, and we choose

a normalization such that max|u(r)| = 1 such that all information about the

displacement amplitude is contained within the term x(t). Here we will focus on

deriving the mechanical mode profiles for a small spherical object. For completeness,

we will derive the wave equation for an isotropic media to demonstrate the

relationship between stress, strain and displacement.

4.2.1 Isotropic Wave Equation

To begin, for a given set of orthogonal basis vectors, we can define the

displacement from equilibrium as,

u(r, t) =

u1(r, t)u2(r, t)
u3(r, t)

 . (4.2)

For example, in Cartesian coordinates, i = 1, 2, 3 correspond to the x, y, and z-axis,

respectively.

Furthermore, the sample we are analyzing will be subject to stress which

characterizes the internal forces acting upon neighbouring volume elements, see

Fig. 4.1. Note, stress describes the force per unit area and has units of pascals. In

general, the internal forces are represented by the stress tensor [93, 94],

σij = σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 . (4.3)

Up to this point, we have used bold symbols to represent vectors; therefore, to

represent higher-order tensors, we will introduce overlines. For each stress tensor

component, the first subscript indicates the face to which the force is applied, and

the second subscript indicates the direction of the force, see Figure 4.1. As a result

of the conservation of angular momentum [94], this tensor is symmetric, such that

σij = σji and, therefore, only has six independent terms.

For a small volume element, the internal forces acting in the ith-direction are
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given in terms of the stress tensor1,

dFi =
∂σij
∂xj

dV = (∇ · σ)dV (4.4)

Therefore, applying Newton’s second law, we can derive a relationship between the

displacement and stress of the form,

∇ · σ = ρ(r)ü, (4.5)

where, ρ(r) is the mass density, and we have assumed no external forces are being

applied.
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Figure 4.1: (a) Components of the stress tensor in Cartesian coordinates. (b) Upon
application of external stress, two points r and r+ δr move to new positions u(r)
and u(r + δr), respectively. As described in the main text, the displacement of the
point r+ δr with respect to the point r has three components: parallel translation
u(r), rotation Ω, and deformation ϵ.

Strain characterizes the deformation of the material corresponding to applied

stress. Due to the finite stiffness of a material, the applied stress will cause points

within the material to move with respect to each other, resulting in deformation. If

we consider two nearby points within a material, r and r+δr. Upon the application

of external or internal stress, the displacement of the second point can be written

1Note: We have used Einstein summation notation, where repeated indices are assumed to be
summed over.

44



as

ui(r+ δr) ≈ ui(r) +
∂ui(r)

∂xj
δxj. (4.6)

The first term corresponds to a translation parallel to the point r and the second

term accounts for any additional deformations or rotations, see Fig. 4.1. One

common way to express the second term on the right-hand side of Eqn. 4.6 is in

the form,

∂ui(r)

∂xj
δxj =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
δxj +

1

2

(
∂ui
∂xj

− ∂uj
∂xi

)
δxj,

=

(
ϵij + Ωij

)
δxj,

(4.7)

where ϵ is the strain tensor, which is symmetric and has six independent components.

The second term, Ω, defines rotations, and all diagonal terms will be zero. We are

not interested in rotations, so this second term will generally be ignored. Thus, we

can write the strain tensor in the form [93, 95],

ϵij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (4.8)

or

ϵ =
1

2

(
∇u+ (∇u)T

)
. (4.9)

The relationship between stress and strain depends on the specific material

properties such as elasticity and rigidity. For a linear elastic medium, stresses can

be written in terms of strains in the form of a generalized Hooke’s law [95, 96],

given by

σ = c ϵ. (4.10)

The elastic modulus c is a fourth-rank tensor, with components cijkl, that describes

the properties of the material. For simplicity, we will assume an isotropic medium

where the physical properties are identical regardless of the orientation2. For an

isotropic medium, the elastic modulus only has two independent components; here,

we will choose to use the Lamé constants λ and µ [94], which are defined as

cijkl = λδijδkl + µ(δikδjl + δilδjk), (4.11)

2Note: For YIG, due to the crystal structure, this is not exactly true; however, this is a good
approximation and allows us to evaluate the mode frequency numerically.
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where µ is the shear modulus (G), and λ does not have a physical meaning but can

be related to Young’s modulus (E),

E =
µ(3λ+ 2µ)

λ+ µ
. (4.12)

The utility of writing the elastic modulus using the Lamé constants is that we can

re-write Eqn. 4.10 in the form,

σ = λTr[ϵ]I+ 2µϵ, (4.13)

where Tr[O] is the matrix trace, and I is the identity matrix.

Finally, using Eqns. 4.5, 4.9 and 4.13, one can show that the isotropic wave

equation is given by [97],

ρü = (λ+ 2µ)∇(∇ · u)−∇×∇× u. (4.14)

Here we have assumed that ∇λ = ∇µ = 0, that is there are no spacial variations

in the material properties.

4.2.2 Mechanical Modes of a Sphere

For completeness, we will follow the solution for the mechanical modes of a

sphere outlined by Nishiguchi and Sakuma in Ref. [98], in spherical coordinates, we

can write the displacement in the form,

u(r, t) = ∇ψ0 +∇×ψ1 +∇×∇×ψ2. (4.15)

Where the vectors are defined as ψi = (rψi, 0, 0) and ψ0,1,2 are scalars. Substituting

the displacement defined in Eqn. 4.15, into the wave equation, Eqn. 4.14, we obtain

three scalar equations

ρψi = ((λ+ µ)δi,0 + µ)∇2ψi, (4.16)

where δi,0 is the Kronecker delta function. Studying Eqn. 4.16 we can see it takes the

form of the Helmholtz equation; in spherical coordinates, the Helmholtz equation

has general solutions

ψi(r, t) = Ai jl

(
Ωbr

vi

)
Y m
l (θ, ϕ)e−iΩbt, (4.17)
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where jl is the spherical Bessel function, Y
m
l is the spherical harmonic function [99],

v0 =
√

(λ+ 2µ)/ρ is the longitudinal sound velocity, and v1 = v2 =
√
µ/ρ is the

transverse sound velocity. To determine solutions to Eqn. 4.16 we must specify a

set of boundary conditions on the surface of the sphere. Here we choose stress-free

boundaries at the surface of the sphere, such that, σrr|r=a = σrθ|r=a = σrϕ|r=a = 0.

The stress-free boundary condition effectively introduces Neumann boundary

conditions on the displacement. Writing the stress-free boundary condition in

terms of the scalar functions defined by Eqn. 4.15 forms a set of coupled equations

(
λ∇2 + 2µ ∂2

∂r2

)
0 2µΛ ∂

∂r

(
1
r

)
2 ∂2

∂θ∂r

(
1
r

)
r

sin θ
∂2

∂r∂ϕ

(
1
r

)
2

(
∂
∂r

1
r

∂
∂r
r −∇2

)
2 1
sin θ

∂2

∂ϕ∂r

(
1
r

)
−r ∂2

∂r∂θ

(
1
r

)
2

sin θ
∂
∂ϕ

(
∂
∂r

1
r

∂
∂r
r −∇2

)


ψ0

ψ1

ψ2

 = 0. (4.18)

Where we have defined the angular momentum operator

Λ = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2
. (4.19)

From Eqn. 4.18 we can obtain two eigenvalue equations. The first is for ψ1 and

produces purely torsional modes without dilation and is not of interest for this work.

The second eigenvalue equation corresponds to spheroidal motion with dilation and

has the form

2jl+1(ξ)
ξ

η2

[
1 +

(l + 1)(l + 2)

η

(
jl+1(η)

jl(η)
− l + 1

η

)]
+ jl(ξ)

[
− 1

2
+

(l − 1)(2l + 1)

η2

+
1

η

(
1− 2l(l − 1)(l + 2)

η2
jl+1(η)

jl(η)

)]
= 0,

(4.20)

where ξ = Ωba/v0 and η = Ωba/v1 are dimensionless frequencies and a is the radius

of the sphere.

Despite the cumbersome nature, we can extract information about the spherical

mechanical modes by studying this equation. The eigenfrequency only depends

on l exhibiting a 2l + 1 fold degeneracy due to the spherical symmetry of the

problem. The degeneracy will be lifted in practice due to sample imperfection and

clamping, removing the spherical symmetric. Second, the characteristic equation
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(a) (b)

0

1(c)

𝑆1,2,2 𝑆1,2,1 𝑆1,2,0

Figure 4.2: Simulated displacement profile u(r) of a YIG sphere attached to a small
supporting post. S1,l,m defines the spherical modes with radial mode number 1,
angular mode number l, and azimuthal mode number m.

contains spherical Bessel’s functions so that the eigenfrequency will depend on the

mode order of the solution. We can therefore label the modes as Sq,l,m, where q

is the order of the solution. Finally, the characteristic equation was defined in

terms of dimensionless frequencies. From these definitions, we can see that the

eigenfrequency ωq,l,m will be inversely proportional to the radius of the sphere

a. To avoid lengthy calculations, mode shape and frequency can be found using

COMSOL Multiphysics®; a few sample displacement profiles are shown in

Fig. 4.2.

4.3 Simple Harmonic Motion

A powerful way to model the motion of an arbitrary mechanical vibrational

mode is by re-casting the problem to the motion of a point-like mass with a mass

meff . The effective mass meff accounts for the non-uniform spatial distribution of

the displacement as described by u(r). Using the procedure described by Hauer

et al. in Ref. [92], we will describe how the displacement and effective mass are

related to the physical three-dimensional mechanical displacement.
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4.3.1 Effective Mass

If we consider a simple one-dimensional mass on a spring, its potential energy

is defined as U = (1/2)mω2x2. Thus, for every small volume element dV of a

homogeneous material of density ρ(r) we can define the mechanical potential energy

per infinitesimal volume element using Eqn. 4.1 as [92],

dU =
1

2
ρ(r)Ω2

b|u(r)|2x2(t)dV, (4.21)

where Ωb is the mechanical oscillation frequency. Thus, the total potential energy

found by integrating over the volume of the mechanical element is

U(t) =
1

2

∫
V

dV ρ(r)Ω2
b|u(r)|2x2(t),

=
1

2
meffΩ

2
bx

2(t).

(4.22)

The effective mass is defined as [100, 101],

meff =

∫
V

dV ρ(r)|u(r)|2. (4.23)

Thus, the effective mass for a given mechanical mode is completely described by the

normalized displacement profile u(r) and the material density ρ(r). Furthermore,

we can see that the effective mass is always less than or equal to the total mass,

meff ≤ m0, where m0 =
∫
V
dV ρ(r).

4.3.2 Mechanical Oscillator

We can now turn our attention to the displacement amplitude x(t); we will

assume that the restoring force experienced by the mechanical oscillator is described

by Hooke’s law, such that,

Fspring = −kx, (4.24)

where k is the spring constant, and x is the displacement away from equilibrium.

Treating the problem completely classically, the restoring force can be coupled to

Newton’s second law, Facc = meffa, where a = ẍ is the acceleration of the mass.

Equating the accelerating force with the restoring spring force, we arrive at a

second-order differential equation for the displacement,

meff ẍ(t) + kx(t) = 0. (4.25)
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This equation has the solution x(t) = x0 cos(Ωbt+ θ0), where x0 is the maximum

amplitude, θ0 is an arbitrary phase offset, and Ωb =
√
k/meff is the mechanical

oscillation frequency. From this solution, we can see that, for all time, the mass

oscillates at a constant frequency and amplitude. However, in the physical world,

various damping mechanisms will cause the amplitude of the motion to decay with

time. For our simple oscillator model, damping can be included phenomenologically

with a term proportional to the velocity of the resonator,

Fdamp = −meffΓbẋ, (4.26)

where Γb is the mechanical decay rate. Including this term into our differential

equation for the displacement amplitude yields [94],

meff ẍ(t) +meffΓbẋ(t) +meffΩ
2
bx(t) = 0. (4.27)

For weak damping (Γb ≪ Ωb), Eqn. 4.27 has a solution of the form

x(t) = x0e
−Γbt/2 cos(Ω′

bt+ θ0), (4.28)

where x0 is the initial amplitude. This has the form of a decaying sinusoidal

oscillation, shown in Fig. 4.3. The introduction of mechanical decay results in a

shift of the resonance frequency, Ω′
b = Ωb

√
1− Γ2

b/4Ω
2
b. However, for the oscillators

considered within this work Γb ≪ Ωb thus, we can consider Ωb ≈ Ω′
b.

Finally, in Chapter 3, we introduced the concept of quality factor and provided

two definitions. Using the time-dependent solution to the simple harmonic oscillator,

we will show that these two definitions are approximately equivalent in the high-

quality factor limit. To begin, we defined the quality factor as the ratio of energy

lost per cycle ∆Eb to total energy stored Eb [102]

Q = 2π
Eb

∆Eb

. (4.29)

Using Eqn. 4.28 the total energy of the mechanical oscillator can be found, assuming

Γb ≪ Ωb, as

Eb =
1

2
meff ẋ

2(t) +
1

2
meffΩ

2
bx

2(t),

=
1

2
meff(ẋ

2(t) + Ω2
bx

2(t)),

=
1

2
meffx

2
0Ω

2
be

−Γbt.

(4.30)
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(a) (b)

Figure 4.3: Normalized displacement amplitude x(t) of a damped harmonic oscillator
described by Eqn. 4.28, where we have set θ0 = 0, and the oscillation frequency
ω = 0.5 rad/s. Both are plotted in arbitrary units. (a) Decay rate Γ = 0.1ω. (b)
Decay rate Γ = 0.05ω.

After a single oscillation period of time τb = 2π/Ωb, energy will have dissipated as

a result of the mechanical damping. The amount dissipated is given by,

∆Eb =
1

2
meffx

2
0Ω

2
be

−Γbt − 1

2
meffx

2
0Ω

2
be

−Γb(t+τb),

=
1

2
meffx

2
0Ω

2
be

−Γbt(1− e−Γbτb).
(4.31)

Therefore, the quality factor can be found by inserting Eqn. 4.30 and Eqn. 4.31

into Eqn. 4.29, resulting in,

Q = 2π
1

(1− e−Γbτb)
≈ 2π

1− 1 + Γbτb
=

Ωb

Γb

. (4.32)

Using the low damping approximation, we have recovered the second definition of

quality factor as the frequency-to-bandwidth ratio of the mechanical oscillator.

We introduced mechanical damping in an ad hoc manner while describing simple

harmonic motion. Here we will briefly discuss several potential loss mechanisms

that may arise for spherical mechanical modes. For this work, there were likely

two primary damping mechanisms. First, the vibrational modes can couple to

the surrounding gas environment, radiating energy in acoustic modes. This decay

channel can be mitigated by reducing the gas pressure, as will be shown in Chapter 9.
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Secondly, energy can also couple directly into the support structure. Here, the

YIG sphere was placed free to move within a hollow glass tube; this reduced the

contact area between the sphere and its support structure. Yet, this was still likely

the dominant decay channel at low pressures due to the specific mechanical mode

measured.

4.4 Quantized Mechanical Motion

Finally, as seen in Chapter 3, and described in many standard textbooks [87],

one can quantize a harmonic oscillator, producing a Hamiltonian of the form,

H = ℏΩb(b̂
†b̂+ 1/2). (4.33)

Where b̂† and b̂ are the phonon creation and annihilation operators, respectively; the

phonon being the quanta of excitation for a mechanical oscillator. These operators

have the form

b̂ =

√
mΩb

2ℏ

(
x̂+

i

mΩb

p̂

)
, (4.34)

b̂† =

√
mΩb

2ℏ

(
x̂− i

mΩb

p̂.

)
. (4.35)

In the Heisenberg formulation of quantum mechanics, both b̂†(t) and b̂(t) are,

in general, time-dependent quantities. Furthermore, these operators obey the

canonical bosonic commutation relationship [b̂, b̂†] = 1. Using these operators, it

is possible to quantize the classical displacement Eqn. 4.1 generating a quantum

displacement operator [103],

û(r, t) = xzpf

[
b̂†(t)u(r) + b̂(t)u∗(r)

]
. (4.36)

Where xzpf =
√
ℏ/2meffΩb is the zero-point amplitude of the mechanical mode.

Without loss of generality, one can ensure the mechanical mode profile is described

by a purely real function, such that u(r) = u∗(r). This assumption allows us to

re-write the quantum displacement operator in the form,

û(r, t) = x̂(t)u(r), (4.37)
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where we have introduced the quantized displacement amplitude operator

x̂(t) = xzpf

[
b̂†(t) + b̂(t)

]
. (4.38)

Furthermore, it is possible to introduce the quantized momentum operator,

p̂(t) = pzpf

[
b̂†(t)− b̂(t)

]
, (4.39)

where pzpf =
√

ℏmeffΩb/2 defines the zero-point fluctuations of the oscillator’s

momentum. From the above definitions, it is easy to see that these operators

indeed follow the canonical commutation relationship [x̂, p̂] = iℏ. Moreover, one

can directly recover Heisenberg’s uncertainly limit for a mechanical oscillator in its

ground state xzpfpzpf = ℏ/2.
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Chapter 5

Magnon-Photon Interaction

5.1 Introduction

The previous three chapters examined magnons, photons, and phonons in

isolation from one another. We will now turn our attention to the interactions

coupling these independent modes. First, we will consider the coupling between

magnons and photons and the resulting emergent phenomena. In Section 5.2

we introduce the Zeeman interaction Hamiltonian, deriving an expression for the

Hamiltonian in terms of the second-quantization magnon and photon creation

and annihilation operators. We also derive an expression for the strength of the

magnon-photon coupling. Next, in Section 5.3, using the derived Hamiltonian, we

consider the input-output relationship and arrive at the reflection coefficient for

a single-sided microwave cavity loaded with a ferromagnetic sample. The derived

reflection coefficient will be used in future chapters to fit experimental data.

5.2 Magnon-Photon Hamiltonian

In Chapters 2 and 3, we introduced magnons and photons, the quanta of

excitation for magnetic spin-waves and electromagnetic radiation, respectively.

This chapter will consider the interaction that couples these two respective modes,

see Fig 5.1. The coupling arises as a result of the Zeeman interaction, where the

time oscillating microwave field attempts to align the time oscillating magnetic

moments within the ferromagnetic sample. The interaction Hamiltonian takes the
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form [104],

Hint = −µ0

∫
Vm

dVM ·Hc. (5.1)

Here M is the net magnetization of the ferromagnetic sphere, Hc is the magnetic

𝑴 ∙ 𝑯

Figure 5.1: Schematic of magnon-photon coupling. Spins within the YIG sphere
couple via the Zeeman interaction to the time-varying microwave cavity magnetic
field. This schematic is not to scale, the YIG sphere is on the order of 250 µm in
diameter, and the microwave cavity has dimensions 30 × 30× 6 mm.

field of an unloaded microwave resonator and the integral is performed over

the magnetic sample volume Vm. In Chapter 3, we decided to quantize the

electromagnetic field using charge q̂ and flux density Φ̂ as our canonically conjugate

variables. However, there exists an equivalent quantization method starting instead

with the magnetic vector potential, found in standard textbooks [105]. Following

this standard quantization protocol, the quantized magnetic field mode of an empty

microwave resonator may be written in the form

H(r, t) =
1

µ0

√
µ0ℏωa

2Va
h(r)(â+ â†), (5.2)

where ωa is the electromagnetic mode frequency, Va is the electromagnetic mode

volume, h(r) is the normalized magnetic field mode profile, and we have omitted

any time-dependent terms for clarity.

Let us consider the energy stored within the magnetic field; magnetic energy is

defined as

WB =
1

2µ0

∫
V

dV |B(r, t)|2. (5.3)
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Inserting the quantized magnetic field Eqn. 5.2 into Eqn. 5.3 we find1,

WB =
1

2µ0

∫
V

dV
µ0ℏωa

2Va
|h(r)|2(ââ† + â†â),

=
ℏωa

4Va
(ââ† + â†â)

∫
V

dV |h(r)|2,

=
ℏωa

2Va
(â†â+ 1/2)

∫
V

dV |h(r)|2.

(5.4)

The electromagnetic mode volume for an empty microwave resonator is defined as

[106],

Va =

∫
V
dV µ0|h(r)|2

max(µ0|h(r)|2)
, (5.5)

where the integral is over the entire volume of the cavity. Furthermore, we have

normalized our magnetic field profile such that max(|h(r)|) = 1, as we did for the

mechanical displacement profile. Therefore, we can see that,

WB =
ℏωa

2
(â†â+ 1/2), (5.6)

as we expect for the magnetic field2.

Next, the uniform Kittel mode can be quantized by defining a macrospin operator

S = VmM/γ. We have assumed a bias field in the z-direction has saturated the

magnetic sample, aligning the spins. We can rewrite the magnetization in terms of

spin raising in lowering operators (S± = Sx ± iSy) as,

M =
γ

Vm

(
1

2
(S+ + S−)x̂+

i

2
(S+ − S−)ŷ + Sz

)
. (5.7)

Moreover, for low magnon numbers (⟨m̂†m̂⟩ ≪ 2s) the spin operators can be

approximated using the Holstein-Primakoff, see Chapter 2, as,

S+ = ℏ
√
2s m̂, (5.8)

S− = ℏ
√
2s m̂†, (5.9)

Sz = ℏ(s− m̂†m̂). (5.10)

1Note: The terms ââ and â†â† are not included since they cancel with equal but opposite
contributions from the electric field, see Ref. [76]

2Note: The electric field will contain an equivalent amount of energy, making up the missing
fraction of the total energy contained within the electromagnetic field,
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Where s is the total number of spins, and m̂† and m̂ are the magnon creation

annihilation operators, respectively. Inserting these definitions into Eqn. 5.7 we

can write

M =
γ

Vm

(
ℏ
√
2s

2
(m̂+ m̂†)x̂+

iℏ
√
2s

2
(m̂− m̂†)ŷ + ℏ(s− m̂†m̂)ẑ

)
. (5.11)

If we consider the experimentally relevant case where the microwave cavity

magnetic field overlapping the magnetic sample is spatially uniform through the

magnetic sample, we can assume, without loss of generality, that h(r) = h(r)x̂.

Inserting the magnetic field defined in Eqn. 5.2 and the net magnetization defined

in Eqn 5.7 into the interaction Hamiltonian Eqn. 5.1 gives

Ĥint = −µ0

∫
Vm

dV
1

µ0

√
µ0ℏωa

2Va
h(r)(â+ â†)

γ

Vm

ℏ
√
2s

2
(m̂+ m̂†). (5.12)

This can be further simplified by invoking the rotating wave approximation, where

we have assumed the magnon-photon detuning is small (∆ma ≪ {ωa, ωm}). Had we

included the explicit time-dependence we would have found that terms m̂(†)â(†) have

time dependence e±2iωt and would “average out” when considering time-averaged

expectations values. This approximation fails in the ultra-strong coupling regime

when the coupling rate becomes comparable to the microwave/magnon frequencies

[107]. We find that the interaction Hamiltonian can be written as

Ĥint = −ℏ
γ

2

√
µ0sℏωa

Va
(âm̂† + â†m̂)

∫
Vm

dV
h(r)

Vm
. (5.13)

If we assume that the magnetic sample is small compared to the length over which

the magnetic field varies, such that h(r) is uniform over the entire volume Vm, we

can pull the magnetic field out of the integral. In general, one could explicitly

perform this integral, as described in Ref. [104]. However, this approximation

holds a high degree of accuracy in most experimental situations. Recalling that the

magnetic field profile has been normalized, we can define the mode overlap as [16],

η =
|h(rm)|

max(|h(r)|)
, (5.14)

where rm is the location of the magnetic sample, and η describes the overlap

between the magnetic sample and the cavity magnetic field. We can now write the
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interaction Hamiltonian as,

Ĥint = −ℏ
γ

2
η

√
µ0sℏωa

Va
(âm̂† + â†m̂), (5.15)

alternatively, as we will use throughout the remainder of this thesis, we can write

Ĥint = ℏgam(âm̂† + â†m̂), (5.16)

where

gam = −γ
2
η

√
µ0sℏωa

Va
. (5.17)

The magnon-photon coupling rate depends on the microwave cavity mode profile,

as well as the size of the magnetic sample. The microwave mode dependence is

included via the overlap term η and the electromagnetic mode volume Va. The

magnetic sample dependence comes from the total number of spins s. For YIG,

the spin density ns = 2.2× 1028 m−3 and the total number of spins s = nsVm [10]3.

Since YIG has a large spin density, it is often possible to reach the strong-coupling

regime, in which the coupling rate gam exceeds all decay rates (i.e. gam > {κ, γm})

[16, 17]. It should also be noted but is not of primary interest to this work that

magnons can also couple to optical photons via the magneto-optical effect [15].

5.3 Input-Output Relationship

The total Hamiltonian describing the magnon-photon system is given by

H = ℏωaâ
†â+ ℏωmm̂

†m̂+ ℏgam(âm̂† + â†m̂). (5.18)

Following the procedure described in Chapter 3, we can transform this Hamiltonian

into a frame rotating at the external drive frequency ωd. In the rotating frame, the

Hamiltonian can be written as,

H = −ℏ∆aâ
†â− ℏ∆mm̂

†m̂+ ℏgam(âm̂† + â†m̂), (5.19)

3Note: Sometimes, the total number of spins is written in terms of the site density ρs = 4.2×1027

m−3, where each site contains a magnetic moment µ = 5µB. Therefore, using the site density, the
total number of spins s = 5ρsVm [10]
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where ∆a = ωd − ωa and ∆m = ωd − ωm. From the Hamiltonian, and adding

phenomenological damping, we can derive the Heisenberg equations of motion

describing the magnon and photon modes,

˙̂a = (i∆a − κ/2)â− igamm̂+
√
κeâin, (5.20)

˙̂m = (i∆m − γm/2)m̂− igamâ. (5.21)

We will consider the classical steady-state solutions ⟨â⟩ and ⟨m̂⟩ by setting

(a) (b)

𝜔+

𝜔−

Figure 5.2: (a) Numerical reflection spectrum S11 as a function of the magnon-
photon detuning from Eqn. 5.23. Parameters were: ωc = 2π×7.0 GHz, gam = 2π×10
MHz, κ = 2π × 3.0 MHz, κe = 2π × 2.0 MHz, and γm = 2π × 2.0 MHz. (b) One-
dimensional slice from at a magnon-photon detuning ∆ma = 0.

⟨ ˙̂a⟩ = ⟨ ˙̂m⟩ = 0. Solving for the photon mode in steady-state gives,

⟨â⟩ =
(i∆m − γm/2)

√
κe⟨âin⟩

(i∆a − κ/2)(i∆m − γm/2) + g2am
. (5.22)

If we consider a single-sided microwave resonator, we can determine the reflection

coefficient using the input-output relationship ⟨âout⟩ = ⟨âin⟩ −
√
κe⟨â⟩, resulting in

S11 = 1− κe(i∆m − γm/2)

(i∆a − κ/2)(i∆m − γm/2) + g2am
. (5.23)

The reflection spectrum S11 is shown in Fig. 5.2, where we have introduced the

magnon-photon detuning ∆ma = ωm − ωa. An external DC magnetic field can

control the magnon-photon detuning by adjusting the magnon frequency. The

values used to generate this plot match closely to the experimentally observed
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values found in Chapter 7. One should notice that due to the high spin density of

YIG, the magnon-photon coupling rate gam exceeds both the cavity and magnon

decay rates κ and γm, respectively. This results in the formation of hybridized

normal modes separated by a frequency ∆ω = 2gam.

Finally, we can derive an expression for the frequency of the normal modes

by considering the Hamiltonian in Eqn 5.18. Effectively we wish to find a set of

orthogonal Bogoliubov modes such that we can transform the Hamiltonian into the

form Hnew = ℏω+â
†
+â+ + ℏω−â

†
−â−.

The eigenfrequencies can be determined by solving the eigenvalue equation

det[A− λI] = 0, where A is the matrix,

A =

(
ωa −gam

−gam ωm

)
. (5.24)

Here λ are the two eigenfrequencies we will label as ω± for the upper and lower

normal modes, see Fig 5.2. Solving for the normal-mode frequencies, we find,

ω± =
ωa + ωm

2
± 1

2

√
4g2am +∆2

ma. (5.25)

Therefore, the normal-mode splitting is given by,

∆ω = ω+ − ω− =
√

4g2am +∆2
ma, (5.26)

which can be experimentally controlled, as described above, providing a powerful

tool that will be discussed in Chapter 7.
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Chapter 6

Magnon-Phonon Interaction

6.1 Introduction

The final background chapter will investigate the coupling between magnons

and phonons. In Section 6.2 we will introduce the concept of magnetocrystalline

anisotropy, which provides the foundation for the description of magnon-phonon

coupling. We will derive the magnetoelastic energy from the anisotropy energy that

describes the coupling between magnetization and strain. Next, in Section 6.3 we

will derive the second quantized Hamiltonian describing the parametric coupling

between phonons and magnons. Finally, we will use this Hamiltonian to estimate

the magnomechanical coupling rate using FEM simulations.

6.2 Magnon-Phonon Coupling

In Chapter 2, we introduced the Landau-Lifshitz equation and the associated

torque-producing magnetic fields. While analyzing this equation, we neglected

both the exchange and anisotropy fields produced within the magnetic sample.

However, magnetocrystalline anisotropy present within single-crystal ferromagnetic

and ferrimagnetic samples is the underlying mechanism for coupling magnons and

phonons.

6.2.1 Magnetocrystalline Anisotropy

If electronic orbitals within a crystal are distorted by ions within the crystal

lattice, the energy of the orbital state will depend on the orientation with respect to
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Figure 6.1: Definition of the directional cosines in terms of angles from the principle
Cartesian axis, as well as using standard spherical coordinates.

the lattice. Spin-orbit coupling will cause the energy of the net magnetic moment to

depend on their orientation within the crystal lattice. This orientation-dependent

energy is known as the magnetocrystalline anisotropy energy EK [108, 109]. Within

YIG, the magnetic moments come from the Fe3+ ions in the 6S5/2 ground state. One

would expect that since the ground state orbitals contain no angular momentum,

there would exist no spin-orbit coupling and, therefore, no anisotropy. However,

the ground state orbital is deformed by the surrounding crystal lattice resulting in

a small spin-orbit interaction and, therefore, small anisotropy energy.

The underlying crystal structure of YIG has cubic symmetry [10]; thus, the

anisotropy energy must satisfy the following symmetry conditions. First, the

anisotropy energy must be invariant under the reversal of the net magnetization

M. Secondly, the anisotropy energy must be constant under the interchange of any

two axes. It can be shown that the function that satisfies these conditions is [31],

EK = K1(α
2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) +K2α

2
1α

2
2α

2
3. (6.1)

We have expressed the anisotropy energy in terms of the directional cosines, αi,

see Fig. 6.1, which in Cartesian coordinates are related to the magnetization by

αi =
Mi

Ms

. (6.2)

Here Mi is the component of M along the ith axis, and Ms is the saturation

magnetization, the net magnetization for an external field strong enough to
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completely align all spins. For YIG, the anisotropy constants are K1 = −610

J/m3 and K2 = −26.0 J/m3 at room temperature [10]. These anisotropy constants

result in an easy magnetization axis along the (111) crystallographic direction.

6.2.2 Magnetoelastic Energy

As described above, the anisotropy energy depends on the surrounding crystal

lattice; therefore, it is reasonable to assume that mechanical strain will modify

the anisotropy energy. As the crystal undergoes deformation, the crystal structure

causes the electronic orbitals to deform, resulting in a shift in the spin-orbit coupling

and, therefore, a change in the net anisotropy energy. We can express the strain

dependence of the anisotropy energy by expressing this energy in terms of a Taylor

expansion [110],

EK = E0
K +

∂EK

∂ϵij
ϵij + . . . . (6.3)

Here E0
K is the energy of the undistorted lattice, and the second term is known

as the magnetoelastic energy EM, describing the interaction between magnetic

anisotropy and mechanical strain. The magnetoelastic energy can be written in the

form,

EM =
∂EK

∂ϵij
ϵij = bijklϵij, (6.4)

which, due to the crystal symmetry, can be reduced to two terms with coefficients,

∂EK

∂ϵii
= b1α

2
i ,

∂EK

∂ϵij
= 2b2αiαj. (6.5)

Where b1 and b2 are known as the Kittel magnetoelastic coupling constants. Using

these definitions, the magnetoelastic energy, in Cartesian coordinates, takes the

form,

EM = b1(α
2
xϵxx + α2

yϵyy + α2
zϵzz) + 2b2(αxαyϵxy + αyαzϵyz + αzαxϵzx). (6.6)

For YIG, the magnetoelastic constants are b1 = 3.48× 105 Pa and b2 = 6.4× 105 Pa

[111]. Moreover, using the definition of the directional cosines; the magnetoelastic

energy can be written in terms of the magnetization in the form,

EM =
b1
M2

s

(M2
x ϵxx +M2

y ϵyy +M2
z ϵzz)

+
2b2
M2

s

(MxMyϵxy +MyMzϵyz +MzMxϵzx).

(6.7)
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6.3 Quantized Magnomechanical Hamiltonian

Next, as we have done in the previous chapters, we will derive the Hamiltonian

describing the coupling between magnons and phonons in terms of the second

quantization field operators. From Eqn. 6.7 it can be seen that the magnetoelastic

energy depends on the magnetization and strain of the magnetic sample. To

begin, let us consider the magnetization; as we saw in Chapter 5, we can write the

magnetization in terms of the spin operators in the form [10]

Mx =
γ

Vm

ℏ
√
2s

2
(m̂+ m̂†)

My =
γ

Vm

iℏ
√
2s

2
(m̂− m̂†)

M2
z =M2

s −M2
x −M2

y

(6.8)

Here we have assumed a strong external magnetic field in the ẑ direction that will

align all the spins. Therefore,

Mz ≈Ms −
ℏγ
Vm

m̂†m̂, (6.9)

where we can identify Ms = ℏγs/Vm as the maximally magnetized state known as

the saturation magnetization, where s is the total number of spins. It is convenient

to rewrite the magnetization components in terms of the saturation magnetization

as [37],

Mx =

√
ℏγMs

2Vm
(m̂+ m̂†),

My = i

√
ℏγMs

2Vm
(m̂− m̂†).

(6.10)

Let us now consider the strain, recall in Chapter 4 we defined quantized

displacement of a mechanical oscillator as [92],

û(r, t) = x̂(t)u(r), (6.11)

where x̂(t) = xzpf [b̂+ b̂†] and xzpf =
√
ℏ/2meffΩb. Moreover, we defined u(r) as the

normalized displacement profile such that max|u(r)| = 1. Given this definition, we

can write the strain induced by a single phonon as,

ϵij = xzpf(b̂+ b̂†)
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6.12)
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Substituting these quantized operators into the magnetoelastic energy, the first

term in Eqn. 6.7 becomes1

H1 =
b1
M2

s

∫
V

dV (M2
x ϵxx +M2

y ϵyy − (M2
x +M2

y )ϵzz),

=
ℏγb1
Ms

m̂†m̂(b̂+ b̂†)
xzpf
Vm

∫
V

dV (ϵxx + ϵyy − 2ϵzz).

(6.13)

This term corresponds to a parametric coupling between magnons and phonons,

similar to the optomechanical coupling Hamiltonian [112]. The second term in

Eqn. 6.7 can be written as

H2 =
2b2
M2

s

∫
V

dV (MxMyϵxy +MyMzϵyz +MzMxϵzx),

= i
ℏγb2
Ms

xzpf
Vm

(m̂2 − m̂†2)(b̂+ b̂†)

∫
V

dV ϵxy

+
2b2
M2

s

√
ℏγ

2VmMs

(M2
s − ℏγ

2Vm
m̂†m̂)xzpf(b̂+ b̂†)

×
[
m̂

∫
V

dV (ϵxy + iϵyz) + h.c.

]
.

(6.14)

This term can result in parametric magnon generation if the phonon frequency is

twice the magnon frequency or linear magnon-phonon coupling when resonant. For

this work, we will be strictly focused on the first Hamiltonian since the magnon

frequency is much larger than the phonon frequency. However, the linear coupling

Hamiltonian has been of interest in recent work; for example, see Ref [33].

The coupling Hamiltonian can be written in the form,

H = ℏg0mbm̂
†m̂(b̂+ b̂†), (6.15)

where

g0mb =
1

ℏ
b1ζ

ns

, (6.16)

is the single magnon-phonon coupling rate. Recall ns = 2.2× 1028 m−3 is the spin

density of YIG and ζ is defined as

ζ =
xzpf
Vm

∫
V

dV (ϵxx + ϵyy − 2ϵzz), (6.17)

is the single phonon strain overlap integral.

1Note: We have invoked the rotating wave approximation to remove the terms m̂m̂ and m̂†m̂†.
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Figure 6.2: Simulated displacement profile u(r) of a YIG sphere attached to a small
supporting post. S1,l,m defines the spherical modes with radial mode number 1,
angular mode number l, and azimuthal mode number m.

The single magnon-phonon coupling rate can be estimated using FEM

simulations. Due to the asymmetry in the strain overlap integral, the coupling

rate is expected to be dependent on the external magnetic field direction. Note, in

deriving Eqn. 6.17, we assumed the static magnetic field was in the ẑ direction; thus,

if the magnetic field direction is changed, one must define a new set of Cartesian

coordinates. There exist two relevant magnetic field directions; as seen in Fig. 6.2,

the external magnetic field could be oriented along the x− y plane as was done in

work by Zhang et al. in Ref [37], or along the ẑ direction as was done in this work.

The estimated coupling rate for both mechanical modes for both external magnetic

field orientations are tabulated in Table. 6.1.

Mode Number Mechanical Frequency g0mb(H = Hx) g0mb(H = Hz)

S1,2,2 13.05 MHz 2π × 4.66mHz ∼ 0mHz
S1,2,0 13.30 MHz 2π × 2.77mHz 2π × 5.54mHz

Table 6.1: Estimated magnomechanical coupling rate for a 250 micron diameter
YIG sphere for different static magnetic field orientations.
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Chapter 7

Experimental Strong Coupling

This chapter is based on the publications C.A. Potts, E. Varga, V.A.S.V. Bitten-

court, S. Viola Kusminskiy, J.P. Davis, “Dynamical backaction magnomechanics,”

Phys. Rev. X 11, 031053 (2021) Ref. [113] and C.A. Potts, J.P. Davis “Strong

magnon–photon coupling within a tunable cryogenic microwave cavity,” Appl. Phys.

Lett. 116, 263503 (2020) Ref. [114] and draws directly on the content therein. In

order to be consistent with the rest of the thesis, a number of minor notational

changes have been made with respect to the original publications.

7.1 Introduction

Coherent light-matter interactions have been widely explored for their applica-

tions in both quantum and classical information processing and metrology. A focus

has been on spin-ensembles that possess a large electric-dipole moment resulting in

a large coupling rate. However, a recent shift in focus has been towards light-matter

coupling via the magnetic dipole interaction. Towards this end, ferromagnetic mate-

rials have shown promise due to their typically high density of strongly interacting,

highly correlated spins. The first demonstration of strong-coupling with YIG was

performed using a YIG slab placed on a superconducting microwave circuit [14].

Since this original work, much of the work has shifted towards studying spherical

YIG samples placed within a three-dimensional microwave resonator [16, 17]. Finite

magnetic samples with spherical symmetry enforce boundary conditions generating

a discrete set of magnetostatic modes, known as Walker modes. Of primary interest

has been the Kittel mode, which possesses an extremely large magnetic dipole
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moment due to the uniformity.

This chapter will focus on two experimental realizations of strong-coupling

between a spherical YIG sample and a microwave resonator. First, in Section 7.2

we will consider the rectangular microwave resonator used in Ref. [113]. The

rectangular geometry ensures a high degree of uniformity of the microwave field,

such that only coupling to the uniform Kittel mode is observed. Furthermore, we

will study the tunability of the strong-coupling spectrum, using a custom-built

magnetic to tune the magnon frequency. Next, in Section 7.3 we will discuss a

highly-tunable microwave cavity coherently coupled to a YIG sphere at cryogenic

temperatures. The unique double-stub re-entry design of the microwave resonator

enables up to 1.5 GHz of tunability, in situ at 1.2K. Moreover, the unique design of

the microwave resonator provides a high coupling rate gam/2π = 285 MHz placing

this system well within the strong-coupling regime (gam > {κ, γm}), and nearly

within the ultra-strong coupling (USC) regime (gam/ωa > 0.1).

7.2 Rectangular Microwave Resonator

To begin, let us first consider the simplest scenario of a YIG sphere mounted

at the antinode of a rectangular microwave resonator. This is similar to the

experiments performed in Ref. [16] and Ref. [17] and is based on the resonator used

in Ref. [113]. The simplicity arises due to the large mode volume of the microwave

resonator, resulting in a nearly uniform microwave field over the entire volume of

the YIG sample. The uniform microwave field and the spherical symmetry of the

YIG results in a suppression of coupling to magnetostatic modes other than the

Kittel mode due to their symmetry [115]. Moreover, as discussed in Chapter 5

the large spin density and the relatively large volume of the YIG sample results

in a large coupling between the microwave field and the Kittel mode. As a result,

normal-mode splitting can be easily observed as the coupling rate exceeds the

damping rates present within the magnon-photon system.

The experimental design consists of a three-dimensional microwave cavity

machined from oxygen-free high-conductivity copper, as seen in Fig. 7.1(a). The

microwave cavity has inner dimensions 30×30×6 mm3, resulting in the TE101 mode
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(a) (b)

Figure 7.1: (a) Photograph of half of the microwave cavity, made from oxygen-free
copper. The YIG sphere is placed – free to move – within a glass capillary, inner
dimension of approximately 300 microns. Inset: Optical micrograph of the YIG
sphere inside of the glass capillary. The scale bar is 500 microns. (b) A set of
permanent neodymium magnets attached to a pure iron yoke provide the bias
magnetic field, a solenoid allows the bias field to be varied dynamically.

having a frequency of ωa/2π = 7.074 GHz. The internal decay rate of the microwave

cavity is κi/2π = 1.56 MHz. Coupling to the cavity is achieved through a pair of

coaxial cables with external coupling rates of κ1/2π = 1.11 MHz, and κ2/2π = 1.20

MHz, resulting in a total cavity linewidth of κ/2π = (κi + κ1 + κ2)/2π = 3.87 MHz.

The cavity can be operated in reflection via a single external coaxial cable, or in

transmission with two external coaxial cable connections.

The single-crystal YIG sphere 250 µm in diameter is placed free to move – to

avoid mechanical clamping losses – within a 300 µm inner diameter capillary [36].

The sphere is located near the magnetic field maximum of the microwave cavity

and is held in place, oriented along its easy axis, by the applied static magnetic

field. A pair of neodymium magnets provide the static magnetic field, as seen in

Fig. 7.1(b). Tunability of the static magnetic field is provided via a ∼ 104 turn

solenoid, wrapped around a pure iron core and connected to the permanent magnets

using an iron yoke [21], see appendix C for details.

Due to the linear coupling, microwaves and magnons hybridize the normal

modes of the interacting Hamiltonian Eqn. 5.18 are superpositions of magnons

and photons. We label these modes as + and −, and the difference between their
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frequencies is given by

ω+ − ω− ≡ ∆ω =
√

4g2am +∆2
am, (7.1)

where ∆am = ωa − ωm is the magnon-photon detuning, see Chapter 5. Since an

externally applied bias field can tune the magnon frequency, the hybridization of

the modes is controllable: e.g., by varying the current through a solenoid providing

the bias field. Furthermore, when the cavity is resonant with the magnon mode,

ωa = ωm, the normal modes are a maximal hybridization of magnons and photons.

Otherwise, the normal modes describe partial hybridization; one of the modes is

‘magnon-like’, and the other is ‘photon-like’. The normal mode splitting can be

directly measured via the reflected microwave signal. This can be seen in Fig. 7.2,

which depicts the normal mode splitting in our experiment.

The value of the coupling rate can be extracted by performing a fit to the

normal modes presented in Fig. 7.2(a), using Eqn. 5.23. For our experimental

configuration, we extract a coupling rate gam/2π = 5.43 MHz. Furthermore, both

the magnon and microwave modes are subject to decay. The microwave cavity

decay rate is composed of both an internal cavity decay and the coupling to external

coaxial cables, as described in Chapter 3. The main source of magnon damping is

intrinsic Gilbert damping [60], which includes dissipation processes associated with

electron-lattice coupling. Other possible sources of damping include two-magnon

scattering processes between the magnetostatic mode and the spin-wave continuum

[116]. Those processes yield an inhomogeneous broadening of the magnon linewidths

for different magnon modes [117], which are less prominent in well-polished spheres.

From the measured data, we extract the magnon decay rate γm/2π = 1.01 MHz,

the total cavity decay rate κ/2π = 3.87 MHz in the two-port configuration, and

κ/2π = 2.67 MHz in the single-port configuration, placing our experiment within

the strong-coupling regime, gam > {κ, γm}. A common dimensionless parameter

used to quantify the coupling between the spins and the cavity is the cooperativity,

C = 4g2am/κγm. For the single-port implementation, the cooperativity is C = 44

which is comparable to previous experimental results [16, 17].

Coupling to higher-order Walker modes can be studied by performing a fit to

the ‘photon-like’ normal mode away from the strong-coupling hybridization. As
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Figure 7.2: Normal mode spectrum. (a) Measured normal mode spectrum as a
function of the static magnetic field. The solenoid produced a magnetic field that
opposes the static field created by the neodymium magnets; therefore, increasing
current corresponds to decreasing DC magnetic field. Dashed lines correspond
to the spectrum in (b-d). (b) Cavity reflection spectrum when the magnon is
resonant with the bare-cavity mode. The normal mode splitting, 2gam (c) Cavity
reflection spectrum when the magnon frequency is smaller than the bare-cavity
resonance frequency. Here the lower mode is ‘magnon-like’ and the upper mode is
‘photon-like.’ (d) Cavity reflection spectrum when the magnon frequency is larger
than the bare-cavity resonance frequency, similar to the detuning in (c). Here the
upper mode is ‘magnon-like’ and the lower mode is ‘photon-like.’

seen in Fig. 7.3, as the Kittel mode frequency approaches the microwave resonance

frequency (shaded red region), the quality factor of the microwave resonance

increases due to the formation of hybridized normal-modes. However, one can

notice a sharp feature at ∼ 251 mT, a reduction in the microwave quality factor.

This decrease in the quality factor of the microwave resonance results from a weak

coupling between the microwave resonator and a higher-order Walker mode; similar
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Figure 7.3: (a) Top: Measured normal mode spectrum as a function of the
static magnetic field. Bottom: Total quality factor of the ‘photon-like’ microwave
resonance as a function of the static magnetic field. At ∼ 251 mT a sharp dip can
be observed in the quality factor due to weak coupling to a higher-order magnon
mode. (b) Zoom of (a) near the weak magnon-photon coupling.

results have been seen in previous work [118]. Unfortunately, ∼ 251 mT is the lower

range of tunability of the custom-built magnet, so it is not possible to examine

other coupled Walker modes at lower fields.

Nevertheless, comparing Fig. 7.2 with the theoretical prediction shown in Fig. 5.2

one can see a striking similarity between the experimental data and the theoretical

prediction. The uniformity of the microwave field and the high spin density of

YIG allow strong coupling between the microwave resonator and the Kittel mode

while simultaneously suppressing coupling to all other Walker modes. For this

reason, experimental setups similar to the one shown in Fig. 7.1 have become

popular. For example, similar experimental designs have been used for: coupling to

superconducting qubits [21, 24], and microwave-to-optical conversion [20]. However,

the rigid design of rectangular microwave resonators results in a limited tunability

of the microwave frequency, a problem that will be discussed in the next section.

7.3 Tunable Microwave Resonator

In the experiment presented in Section 7.2, the resonance frequencies of the

Kittel mode depends linearly on the applied static magnetic field, providing a

73



large degree of tunability. Unfortunately, the microwave resonance frequency is

not tunable, limiting the possibility of bringing a coupled cavity-magnonic system

into resonance with additional sub-systems. The inability to independently tune

both the magnon and microwave cavity resonances has detrimental effects on total

system efficiency, for example, when coupling magnons to a superconducting qubit

or in a microwave-to-optical transduction experiment. Furthermore, there may

exist experimental setups in which a tunable magnetic field is not practical to

implement. Therefore, it would be advantageous to have a microwave cavity with

the ability to in situ tune its resonance frequency [119], especially while at cryogenic

temperatures.

This problem is addressed by demonstrating a highly-tunable, cryogenic,

microwave cavity strongly coupled to the lowest-order ferromagnetic resonance

within a YIG sphere. Our cavity design is based upon a double-stub re-entrant

cavity, similar to those described in Refs. [120, 121]. Moreover, this tunable hybrid

system reaches the strong coupling regime (gam > {κ, γm}), and is nearly within

the ultra-strong coupling regime (gam/ωa > 0.1) [122].

The cavity (seen in Fig. 7.4) consists of two partially overlapping 14 mm

diameter circles, milled 1 mm deep. The re-entrant stubs are 3 mm in diameter

and located on the axis of the two cylindrical depressions separated by a 2 mm

gap. A commercially available YIG sphere [11], 500 µm in diameter, is placed

directly between the two posts. This location provides the maximum overlap while

maintaining a relatively uniform magnetic field over the entire volume of the YIG

sphere. Double-stub re-entrant cavities of this form support two resonant modes,

a lower frequency symmetric mode, and a higher frequency antisymmetric mode.

The magnetic field of the symmetric mode is expelled from between the posts and

is ignored here. Instead, we focus on the higher-frequency antisymmetric mode;

this mode focuses the magnetic field between the posts as shown in Fig. 7.4(c). By

placing the small YIG sphere between the posts, the mode overlap between the

YIG sphere and the magnetic field can be large. This large mode overlap enhances

the coupling between the cavity field and the magnetic sample.

Both halves of the double-stub reentrant cavity were machined out of oxygen-

free high-conductivity copper. A model of the bottom half of the cavity is shown
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(c)

Figure 7.4: (a) A schematic outlining the experimental apparatus. A helium
reservoir is connected to the cavity through a pressure control valve. Transmission
scans are performed using a VNA coupled to the cavity via pin couplers inserted
into the cavity. (b) 3D rendering of the microwave resonator. The 500 µm diameter
YIG sphere lies between the two re-entrant posts in the high-magnetic-field region.
(c) A finite element simulation of the anti-symmetric magnetic field mode profile,
localized between the re-entrant posts. (d) Quality factor and center frequency of
the microwave cavity loaded with a YIG sphere. Linear fit reveals a slow increase
in the quality factor as the reservoir pressure is increased. Data was taken with
zero applied static magnetic field.

in Fig. 7.4(b). The two circular posts have been machined to leave a small gap

(d ≈ 100 µm) between them and the flat membrane comprising the other half

of the cavity. The thin, ∼ 500 µm, membrane on the top half of the cavity is

backed by a reservoir of liquid helium, fed by a thermally anchored capillary. The

pressure within the helium reservoir is controlled via a pressure regulator at room

temperature, see Fig. 7.4(a). Increasing the pressure causes the membrane to

deform, reducing the distance between the membrane and the two circular posts.

The tunability of this cavity can be understood by noticing that the electric field is

primarily confined within this gap. This small gap can be approximated as a parallel

plate capacitor, forming the capacitance of a lumped model LC circuit representing

the microwave cavity. The effective capacitance can be approximated as C = ϵ0A/d,

where ϵ0 is the permittivity of free space, A is the total area of the posts, and d is

the distance between the capacitor plates. Using this assumption, and assuming the

inductance L of the circuit is not affected by the deformation of the membrane, it
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is straightforward to see that the resonance frequency, ω = 1/
√
LC, is proportional

to the square root of the distance between the membrane and the posts. From this

simple model, the cavity’s tunability is understood as follows; as the pressure inside

the reservoir is increased, the gap between the membrane and the posts is reduced

and the resonance frequency is decreased.

The copper microwave cavity was attached to the base plate of a cryostat

operating at 1.2 K for the duration of the measurements. The microwave cavity

mode was driven via a coaxial cable, thermally anchored at 4 K. The readout was

performed in transmission (S21(ω)) of a vector network analyzer (VNA), Fig. 7.4(a)

with no amplification, and as a result, the measurements were performed with

relatively high input power (approximately -20 dBm at the input port). External

coupling to the cavity was achieved using straight pin couplers; however, due

to the large electric field confinement, was highly undercoupled, κ1,2 ≪ κi. If

critical coupling was required one could use loop-couplers, as demonstrated by

Clark et al. in Ref. [123]. Characterization of the cavity tunability was performed

by measuring the resonance frequency and quality factor as a function of reservoir

pressure, shown in Fig. 7.4(d). The primary factor limiting the quality factor of

this cavity is the seam that exists between the two halves of the cavity. The quality

factor may be increased in future implementations by bonding the two halves of

the cavity using a galvanic indium bond [83].

First, we characterize the magnon-photon interaction at various cavity

frequencies. The cavity frequency is set by pressurizing the helium reservoir

and is held constant over the course of an experimental run. The magnetic field

was slowly increased such that the magnon frequency passes through the cavity

resonance frequency, thus bringing the magnons and photons into resonance. At

each static magnetic field step, transmission measurements were performed. The

resulting scattering parameter (S21(ω)) is plotted in Fig. 7.5(a,b) for two pressures,

2 and 6 bar, respectively. One can see the avoided level crossing, which is the

hallmark of mode hybridization and strong-coupling.

The magnon–photon coupling rate and the magnon linewidth can be extracted

from the experimentally measured transmission coefficient, S21(ω), where the

transmission coefficient can be evaluated using input-output theory [90] and is
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(a) (b)

Figure 7.5: (a) Normalized transmission spectrum (S21(ω))) of the tunable YIG
microwave cavity system as a function of the external magnetic field. The helium
reservoir pressure was set to 2 bar. The solid black line is a fit to the coupled magnon-
photon system described by Eqn. 7.2. (b) Normalized transmission spectrum
(S21(ω))), for a helium reservoir pressure set to 6 bar. Note, that both figures have
been plotted on the same axes.

given explicitly by [17]

S21(ω) =

√
κ1κ2

i(ω − ωa)− κ
2
+ |gam|

i(ω−ωm)−γm/2

. (7.2)

Here, κ1,2 is the coupling rate to the external ports, and κ = κ1 + κ2 + κi ∼ κi

is the total cavity decay rate, which is approximately equal to the internal loss

rate since the coupling ports are highly undercoupled, and the magnon linewidth is

γm. The peak of the theoretical curve is plotted on top of the experimental data

in Fig. 7.5(a,b). Using Eqn. 7.2 we can extract the magnon-photon coupling rate

gam/2π = 285 MHz, which is in good agreement with the value extracted from

COMSOL via Eqn. 5.17, gam/2π = 260 MHz. Furthermore, we can extract the

magnon linewidth γm = 4.3 MHz, and the total cavity linewidth κ/2π = 23.8 MHz.

From these parameters, it can be seen that this cavity lies well within the strong-

coupling regime (gam > {κ, γm}) and is close to the USC regime (gam/ωa > 0.1). It

would be possible to reach the USC regime by using a larger YIG sphere. Based on

COMSOL simulations a 1 mm diameter YIG sphere should be well within the USC

regime. Furthermore, the formation of additional normal modes can be observed as

the magnetic field is increased. Since the microwave magnetic field is not uniform
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over the entire YIG sample coupling to higher-order Walker modes is possible. This

has been observed previously, for example, see Ref. [124], and could be mitigated

through careful engineering of the microwave cavity, or the use of a smaller YIG

sphere.

From the experimentally extracted parameters, we can determine the cooperativ-

ity for this experimental setup to be C = 4g2am/κγm ≈ 3175. Since the cooperativity

scales with the radius of the YIG sphere cubed, to compare our results with the

literature we shall consider the cooperativity per unit volume of the YIG sphere.

In our experiment, we have achieved CVm = 48500 mm−3, a value comparable

to the volume-normalized cooperativity obtained in Ref. [125] and an order of

magnitude below the state-of-the-art CVm = 373000 mm−3 [126]. The difference

between our results and state-of-the-art values can be minimized with optimization

of our microwave cavity.

Figure 7.6: Normalized transmission spectrum (S21(ω)) of the tunable YIG
microwave cavity system as a function of helium reservoir pressure. The magnetic
field was held constant at ∼ 380 mT.

A final demonstration of the tunability of our microwave cavity was performed

by examining the magnon-photon strong-coupling while not varying the magnitude

of the static magnetic field. This experimental procedure is different than typical

cavity-magnonic experiments in which the cavity frequency is fixed and the magnon

frequency is swept, as is shown in Fig. 7.5. Instead, we set the static magnetic

field to a constant value of ∼ 380 mT. Then the pressure of the helium reservoir
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was slowly reduced from 6.0 bar to 0 bar over the course of several hours. During

the pressure sweep transmission scans were constantly performed. The resulting

transmission data is shown in Fig. 7.6. This plot is similar to what is seen in

Fig. 7.5, however, now the cavity frequency shifts, while the magnon modes are

held at a constant frequency. This additional degree of freedom will allow the

frequency of maximum hybridization (ωa = ωm) to be set anywhere within the

range of the tunability of the microwave cavity, rather than being restricted to a

single frequency set by the microwave cavity. This feature is especially important

at cryogenic temperatures where the cavity frequency may shift during cooling as a

result of thermal contraction.
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Chapter 8

Cavity Magnomechanics: Theory

This chapter is based on the publications C.A. Potts, V.A.S.V. Bittencourt, S.

Viola Kusminskiy, J.P. Davis, “Magnon-phonon quantum correlation thermometry,”

Phys. Rev. Applied 13, 064001 (2020) Ref. [50], and C.A. Potts, E. Varga,

V.A.S.V. Bittencourt, S. Viola Kusminskiy, J.P. Davis, “Dynamical backaction

magnomechanics,” Phys. Rev. X 11, 031053 (2021) Ref. [113] and draws directly

on the content therein. In order to be consistent with the rest of the thesis, a

number of minor notational changes have been made with respect to the original

publication.

8.1 Introduction

In the background chapters of this thesis, Chapters 2, 3, and 4, three independent

bosonic modes were introduced: magnons, photons and phonons, respectively. We

also introduced the interaction between magnons and photons, Chapter 5, and

the interaction between magnons and phonons, Chapter 6. Here we aim to bring

together all of the individual components to describe the hybrid microwave-magnon-

phonon system. Namely, we aim to develop a linear theory describing the dynamics

of the three coupled bosonic modes.

In Section 8.2, starting with the non-linear Hamiltonian derived previously and

considering the fluctuations around the steady-state, we linearize the Hamiltonian.

The linear Hamiltonian provides a tractable problem that we can use to derive the

system dynamics. Next, in Section 8.3 we consider the effect on the mechanical

motion due to the radiation-pressure-like force applied by the magnons. We
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arrive at two predicted phenomena, a frequency shift, which we call the magnon-

spring effect, and a modification of the spectral linewidth, the magnomechanical

damping rate. These two effects will be studied in detail experimentally in the

next chapter. Finally, in Section 8.4, using the linearized theory developed, we

propose a primary thermometric scheme based on the intrinsic thermal noise of

the mechanical mode. We demonstrate by a careful choice of correlation functions;

that primary thermometry can be achieved via self-calibration by comparing the

thermomechanical signal with intrinsic quantum fluctuations.

8.2 Linear Theory

We consider the hybrid cavity microwave-magnon-phonon system depicted in

Fig. 8.1 in terms of three coupled bosonic modes, denoted by â (cavity microwave

mode), m̂ (magnon mode) and b̂ (phonon mode), with frequencies ωa, ωm and Ωb

respectively, where ωa,m ≫ Ωb. In this system, the microwave and magnon modes

interact via a linear coupling Hamiltonian, see Chapter 5. In contrast, the magnons

and the mechanical vibrations are coupled via a parametric type Hamiltonian, see

Chapter 6. The difference in Hamiltonians arises from the differing nature of the

interactions, as described in the background chapters of this thesis. The total

Hamiltonian describing the system dynamics reads

Ĥ0 = ℏωaâ
†â+ ℏΩbb̂

†b̂+ ℏωmm̂
†m̂

+ ℏgam(â+ â†)(m̂+ m̂†) + ℏg0mbm̂
†m̂(b̂+ b̂†).

(8.1)

Here, the microwave-magnon coupling strength is indicated by gam, while the single

magnon-phonon coupling strength is g0mb. This model applies directly to current

experimental setups in which the microwave mode strongly couples with the uniform

magnetization mode (Kittel mode) of a ferromagnetic YIG sphere [17, 37], such as

work performed within this thesis. The resonant microwave-magnon coupling is

usually realized by tuning the frequency of the Kittel mode by an applied external

DC magnetic field (35 to 350 mT), with frequencies ranging between 1 to 10 GHz.

Magnetoelastic effects, see Chapter 6, are responsible for the coupling between

magnons and phonons corresponding to the collective mechanical breathing modes

of the YIG sphere, usually in the MHz range due to the relatively large size of
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Figure 8.1: (a) Photograph of half of the microwave cavity, made from oxygen-
free copper. The YIG sphere is placed – free to move – within a glass capillary,
inner dimension of approximately 300 microns. Inset: Optical micrograph of
the YIG sphere inside of the glass capillary. The scale bar is 500 microns. (b)
Schematic of the coupled magnomechanical system. â – Numerical simulation of the
TE101 microwave magnetic field distribution. m̂ – Schematic representation of the
Kittel magnon mode within the spherical YIG sample. b̂ – Numerically simulated
displacement of the mechanical mode that has the strongest magnomechanical
coupling to the Kittel mode. The solid line indicates linear magnon-photon coupling,
while the dashed line represents parametric magnon-phonon coupling.

the sphere (currently in the 100 µm radius range). For this standard experimental

setup, with a sphere affixed to a thin rod [37], or free to move within a glass

capillary and suspended in the microwave cavity [113], the coupling strengths are

gam ∼ 5 MHz and g0mb ∼ 5 mHz [37, 113]. This model can generally describe more

complex structures or modes, with coupling parameters adjusted accordingly.

The microwave resonator is assumed to be coupled to a single external port,

labelled 1, which is coherently driven such that the total Hamiltonian of the system

is

Ĥ = Ĥ0 + Ĥdrive, (8.2)

where Ĥdrive = iℏϵd
√
κ1(âe

iωdt − â†e−iωdt), with κ1 the coupling rate to the port

and ωd the driving frequency. Moreover, ϵd =
√

2κ1P/ℏωd, with P the driving

microwave power.
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8.2.1 Linear Hamiltonian

Starting with the Hamiltonian given by Eqn. 8.2, we transform the Hamiltonian

to a frame rotating at the drive frequency by applying the unitary transformation

Û = exp(iωdâ
†â+ iωdm̂

†m̂) to remove the time-dependence from the driving term,

resulting in1:
Ĥ′ = −ℏ∆aâ

†â+ ℏΩbb̂
†b̂− ℏ∆mm̂

†m̂

+ ℏgam(âm̂† + â†m̂) + ℏg0mbm̂
†m̂(b̂+ b̂†)

+ iℏϵd
√
κ1(â− â†),

(8.3)

where ∆a = ωd − ωa and ∆m = ωd − ωm are the detunings between the drive and

the cavity/magnon mode, κ1 is the coupling rate to the drive port and we have

applied the rotating wave approximation.

Using the above Hamiltonian, we derive the dynamics of any operator Â via the

Heisenberg equation −iℏ ˙̂
A = [Ĥ′, Â], plus the addition of dissipation/fluctuation

terms modelling the interaction with an environment, and the application of the

mean-field approximation (i.e. ⟨m̂â⟩ ≈ ⟨m̂⟩⟨â⟩) [127]. We obtain the following

semi-classical equations for the expectation values ⟨â⟩, ⟨m̂⟩ and ⟨b̂⟩

⟨ ˙̂a⟩ =
(
i∆a −

κ

2

)
⟨â⟩ − igam⟨m̂⟩ − ϵd

√
κ1,

⟨ ˙̂m⟩ =
(
i∆m − γm

2

)
⟨m̂⟩ − igam⟨â⟩

− ig0mb⟨m̂⟩(⟨b̂⟩+ ⟨b̂†⟩),

⟨ ˙̂b⟩ =
(
−iΩb −

Γb

2

)
⟨b̂⟩ − ig0mb|⟨m̂⟩|2.

(8.4)

Where the total cavity mode decay rate κ = κ1 + κi includes the decay into the

coupling port as well as the intrinsic decay rate κi. Furthermore, γm is the magnon

decay rate and Γb is the phonon decay rate. The classical steady-state values ⟨â⟩,

⟨m̂⟩ and ⟨b̂⟩ are then obtained by setting ⟨ ˙̂a⟩ = ⟨ ˙̂b⟩ = ⟨ ˙̂m⟩ = 0. Additionally, we

consider gam ≫ g0mb such that

⟨â⟩ =
(i∆m − γm/2) ϵd

√
κ1

(i∆a − κ/2) (i∆m − γm/2) + g2am
,

⟨m̂⟩ = igam⟨â⟩
(i∆m − γm/2)

,

⟨b̂⟩ = − ig0mb|⟨m̂⟩|2

iΩb + Γb/2
.

(8.5)

1Recall: The Hamiltonian in the rotating frame will be of the form Ĥ′ = ÛĤÛ† − iℏÛ∂Û †/∂t.
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Notice that at zero detuning ∆a = ∆m = 0, since ϵd is real; ⟨â⟩ is real while ⟨m̂⟩ is

pure imaginary.

Next, employing standard quantum optics procedures [90], we obtain the

linearized Hamiltonian for the fluctuations δÂ = Â− ⟨Â⟩ around the steady-state

value ⟨Â⟩ of the fields Â = â, m̂, b̂. In the frame rotating at the drive frequency,

neglecting quadratic terms in the fluctuations and considering the rotating wave

approximation for the magnon-photon coupling, the linearized Hamiltonian reads

ĤLin = −ℏ∆aδâ
†δâ+ ℏΩbδb̂

†δb̂− ℏ∆̃mδm̂
†δm̂

+ ℏgam(δâδm̂† + δâ†δm̂)

+ ℏ(gmbδm̂
† + g∗mbδm̂)(δb̂+ δb̂†),

(8.6)

where ∆̃m = ωd −ωm − 2ℏg0mbRe[⟨b̂⟩] denotes the phonon-shifted magnon frequency.

Since the magnon-phonon coupling is the lowest rate in the system (g0mb ≪ gam),

in the following, we do not consider the frequency shift −2ℏg0mbRe[⟨b̂⟩], since it

is a small perturbation. The effective magnon-phonon coupling is defined as

gmb = g0mb⟨m̂⟩. Therefore, it is enhanced from its bare value g0mb by the average

number of steady-state magnons, driven via the coupling to the microwave mode.

8.2.2 Langevin Equations

From the Hamiltonian 8.6, we obtain the linear coupled quantum Langevin

equations

δ ˙̂a =
(
i∆a −

κ

2

)
δâ− igamδm̂+

√
κ1ξ̂1(t),

δ ˙̂m =
(
i∆̃m − γm

2

)
δm̂− igamδâ− igmb(δb̂+ δb̂†)

+
√
γmη̂(t),

δ
˙̂
b = −

(
iΩb +

Γb

2

)
δb̂− i(gmbδm̂

† + g∗mbδm̂) +
√

Γbζ̂(t).

(8.7)

These describe the evolution of the fluctuations, including the interaction with the

environment via the noise operators ξ̂1(t), η̂(t) and ζ̂(t) [90]. If there exist multiple

coupling ports, Eqn. 8.7 may be generalized by writing the photon noise term as∑√
κiξ̂i(t).

The open dynamics of the system are described via input fluctuation operators.

The input fluctuations of the cavity mode are denoted by ξ̂1[ω], and for the magnon
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mode by η̂[ω], whereas the noise acting on the phonon mode is represented by ζ̂(t).

These operators have correlations satisfying the fluctuation-dissipation theorem

[128, 129]. We assume that the magnon, photon and phonon environments are

heat baths with the same temperature, T . To describe the photon and magnon

environments, we use the standard framework of the first Markov approximation

(the environment correlations decay much faster than the time scale in which the

system has a considerable evolution) and consider that the initial system-bath state

is uncorrelated [90, 91]. We moreover assume that the state of each environment is

weakly affected by the system and is described by thermal states. The correlation

properties of the magnon and microwave noises β̂ = η̂, ξ̂1, are then given by

⟨β̂[ω]β̂†[ω′]⟩ = 2π(nth + 1)δ(ω + ω′),

⟨β̂†[ω]β̂[ω′]⟩ = 2πnthδ(ω + ω′),
(8.8)

where nth = [exp(ℏωa,m/kBT )− 1]−1 is the thermal occupancy of the photonic and

magnonic baths.

For the phonon mode, we adopt the approach of Ref. [130], in which the

environmental effects are described in the framework of quantum Brownian motion.

In this case, the correlator of the phonon noise reads

⟨ζ̂(t)ζ̂†(t′)⟩ = 1

2π

∫
dωeiω(t−t′) ω

Ωb

(n[ω] + 1),

⟨ζ̂†(t)ζ̂(t′)⟩ = 1

2π

∫
dωeiω(t−t′) ω

Ωb

n[ω],

(8.9)

where n[ω] = [exp(ℏω/kBT )− 1]−1 is the mean number of thermal phonons with

frequency ω and temperature T.

Next, we can write Eqn. 8.7 in the frequency domain by performing a Fourier

transform δÔ[ω] =
∫∞
−∞ dteiωtδÔ(t) and defining δẑ[ω] = δb̂[ω] + δb̂†[−ω]:

χ−1
a [ω]δâ[ω] = −igamδm̂[ω] +

√
κ1ξ̂1[ω],

χ−1
m [ω]δm̂[ω] = −igamδâ[ω]− gmbδẑ[ω] +

√
γmη̂[ω],

δẑ[ω] = −i(χb[ω]− χ∗
b[−ω])×[

gmbδm̂
†[−ω] + g∗mbδm̂[ω] + δF̂th[ω]

]
,

(8.10)

where χa[ω] = [−i(∆a + ω) + κ/2]−1, χm[ω] = [−i(∆̃m + ω) + γm/2]
−1 and

χb[ω] = [i(Ωb − ω) + Γb/2]
−1 are the susceptibilities.
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The noise acting on the phonon mode, now described by the displacement

operator δẑ[ω], is encoded in δF̂th[ω], which represents the effects of the environment

on the phonon mode and is given by [130]∫ ∞

−∞
dω′⟨{δF̂th[ω

′], δF̂th[ω]}⟩ = 2πΓb
ω

Ωb

coth

(
ℏω

2kBT

)
, (8.11)

where {·, ·} represents the anti-commutator. This model corresponds to the

thermomechanical model for phonon modes in cavity optomechanical systems

[130, 131]. The symmetrized noise spectra are required to compare with the

experimentally observable correlation functions [130, 132]. We notice that although

we have used a coloured noise model for the phonon mode, the magnon mode noise

is white noise. This is a good approximation as long as the temperature is low

enough, such that the number of thermal magnon excitations is small, and the

magnon mode quality factor is large (see the discussion in [130]).

The Langevin equations, Eqn. 8.10, are then solved. The cavity field fluctuations

are given in terms of δẑ by

δâ[ω] = −Λam[ω](gamgmbχm[ω]δẑ[ω]+

igamχm[ω]
√
γmδη̂[ω]−

√
κ1ξ̂1[ω]),

(8.12)

with Λam[ω] =
[
χ−1
a [ω]+g2amχm[ω]

]−1
. The thermomechanical fluctuations, encoded

in δẑ[ω], are imprinted on the microwave mode via the coupling to the magnon

mode. This is akin to the cavity optomechanical case, in which the thermal phonon

fluctuations can be measured via the noise of an optical mode [112, 131]. Moreover,

by solving the linear system, we obtain the following solution for δẑ[ω] in terms of

only noise operators

δẑ[ω] =
[
1 + (χb[ω]− χ∗

b[−ω])|gmb|2(Ξ[ω]− Ξ∗[−ω])
]−1

×
[
− i(χb[ω]− χ∗

b[−ω])(gmbΞ
∗[−ω]√γmη̂†[−ω] + g∗mbΞ[ω]

√
γmη̂[ω])

+ gam(χb[ω]− χ∗
b[−ω])

[
gmbχ

∗
m[−ω]Λ∗

am[−ω]
√
κ1ξ̂

†
1[−ω]

− g∗mbχm[ω]Λam[ω]
√
κ1ξ̂1[ω]

]
− i(χb[ω]− χ∗

b[−ω])δF̂th[ω]
]
,

(8.13)

with Ξ[ω] = Λam[ω]χm[ω]/χa[ω] = 1/(χ−1
m [ω] + g2amχa[ω]).
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8.3 Phonon Self-Energy

Due to the magnetoelastic interaction, magnons impart a radiation-pressure-like

force on the phonons. This interaction results in a dynamical modification of

the mechanical mode, known as dynamical backaction [112]. In the absence of

any magnomechanical interaction, the mechanical oscillator is described by its

susceptibility χb[ω]
−1 = [i(Ωb − ω) + Γb/2]. However, due to the interaction with

the magnons, the mechanical susceptibility describing the mechanical mode will be

modified. Starting from the equations of motion in the time domain 8.7, we obtain

the equation for the phonon mode in the frequency domain

χ−1
a [ω]δâ[ω] = −igamδm̂[ω] +

√
κ1ξ̂1[ω]

χ−1
m [ω]δm̂[ω] = −igamδâ[ω]− igmb(δb̂[ω] + δb̂†[ω])

+
√
γmη̂[ω]

χ−1
b [ω]δb̂[ω] = −i(gmbδm̂

†[ω] + g∗mbδm̂[ω])

+
√

Γbζ̂[ω],

(8.14)

By solving this system of equations, we arrive at:

χ−1
b [ω]δb̂[ω] = −|gmb|2 (Ξ[ω]− Ξ∗[−ω])

[
1+

|gmb|2(Ξ[ω]− Ξ∗[−ω])
(χ∗

b[−ω])−1 − |gmb|2(Ξ[ω]− Ξ∗[−ω])

]
δb̂[ω] + δF̂noise,

(8.15)

where the last term δF̂noise represents all the noise terms. We can rewrite this

equation as (
χ−1
b [ω]− iΣ[ω]

)
δb̂[ω] = δF̂noise, (8.16)

where we identify the modification of the mechanical susceptibility as the phonon

self-energy Σ[ω] given by

Σ[ω] = i|gmb|2 (Ξ[ω]− Ξ∗[−ω])
[
1+

|gmb|2(Ξ[ω]− Ξ∗[−ω])
(χ∗

b[−ω])−1 − |gmb|2(Ξ[ω]− Ξ∗[−ω])

]
.

(8.17)

This can be simplified by noticing that the second term in Eqn. 8.17 is proportional

to |gmb|2 and the mechanical susceptibility is counter-rotating, thus can be neglected;
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therefore, we can approximate the self-energy as2

Σ[ω] = i|gmb|2(Ξ[ω]− Ξ∗[−ω]). (8.18)

In the weak magnon-phonon coupling limit, the mechanical frequency is shifted

by δΩb = −ReΣ[ω], which we refer to as the magnon-spring effect and the

interaction induces an additional damping rate Γmag = 2 ImΣ[ω] which we refer to

as the magnomechanical decay rate. Therefore, the absolute phonon frequency and

the total mechanical linewidth may be written as:

Ω̃b = Ωb + δΩb,

ΓTot = Γb + Γmag.
(8.19)

(a) (b)

Figure 8.2: (a) Magnon-Spring effect predicted from Eqn. 8.19. (b) Magnomechan-
ical damping rate predicted from Eqn. 8.19. Parameters are listed in the main
text.

For illustration, consider a hybrid cavity microwave-magnon-phonon system with

parameters similar to the ones in Ref. [113]. With system parameters: gam = 2π×5.0

MHz, g0mb = 2π × 4.0 mHz, κ = 2π × 2.5 MHz, κ1 = 2π × 1.0 MHz, γm = 2π × 1.0

MHz, ωa = ωm = 2π×7.0 GHz, and Ωb = 2π×10.0 MHz. Notice that the mechanical

frequency is equal to twice the magnon-photon coupling rate, Ωb = 2gam, known

2We choose to adopt the self-energy notation as has been done in optomechanics due to the
close analogy with how Dyson’s equation modifies the bare Green’s function due to interactions.
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as triple-resonance3, which will be discussed in more detail in Chapter 9. We also

choose a drive power of −5.0 dBm and define the drive detuning as ∆d = ωd − ωa.

As shown in Fig. 8.2, the mechanical mode experiences a maximum frequency

shift of approximately ±40 Hz and additional damping of ±300 Hz. It should be

noted that the magnomechanical damping rate can be either positive or negative

depending on the relative detuning of the external drive tone. These dynamical

backaction effects will be discussed in more detail in the next chapter, where we

will compare the theoretical predictions with experimental results.

8.3.1 Phonon Temperature

As seen above, dynamical backaction modifies the total linewidth of the

mechanical mode, but as a result of the additional damping, the phonon bath

temperature is also changed. Here we will derive an expression for the effective

phonon temperature that will be used in Section 9.4.3. We will begin by considering

the linear equations of motion in the frequency domain, defined in Eqn. 8.14 and

the noise correlations defined in Eqn. 8.8. However, for simplicity, we will also

assume white noise correlations for the phonon bath [132]4:

⟨ζ̂†[ω′]ζ̂[ω]⟩ = 2πnth,bδ(ω + ω′),

⟨ζ̂[ω′]ζ̂†[ω]⟩ = 2π(nth,b + 1)δ(ω + ω′).
(8.20)

The thermal occupancy of the baths is given by Bose-Einstein distributions

nth,(a,m) =
1

exp
[

ℏω(a,m)

kBTBath

]
− 1

,

nth,(b) =
1

exp
[

ℏΩb

kBTBath

]
− 1

,
(8.21)

where kB is the Boltzmann constant, TBath is the bath temperature (assumed to be

the same for all the modes), and we have assumed that the occupancy of the baths

for all decay channels are the same and given in terms of the cavity frequency ωa.

3Note, Eqn. 8.18 is completely general within the linear theory and can be used for any drive
or magnon-photon detunings. These parameters were used simply as a demonstration.

4Unfortunately, there will be a slight abuse of notation where we will reuse ζ̂[ω] to describe
the phonon noise.
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Before deriving the effective temperature of the phonon mode in the coupled and

driven system described by the Eqn. 8.14, let us first consider why the noise spectral

density of the phonon mode provides information about that mode’s temperature.

For that, we consider the simpler problem in which there is no magnon-phonon

coupling. In this case, the phonon mode is driven only by thermal noise, and the

phonon component reads

δb̂[ω] = χb[ω]
√

Γbζ̂[ω],

δb̂†[ω] = χ∗
b [−ω]

√
Γbζ̂

†[ω].
(8.22)

We then can consider the spectral density given by []

Sδb†δb[ω] =

∫ ∞

−∞
dteiωt⟨δb̂†(t)b̂(0)⟩,

=

∫ ∞

−∞

dω′

2π
⟨δb̂†[ω]δb̂[ω′]⟩.

(8.23)

For the simple uncoupled case, the solutions of the frequency domain equations

combined with the noise correlations Eqn. 8.20 yields the simple relation,

Sδb†δb[ω] =
Γbnth,b

(ω + Ωb)2 +
Γ2
b

4

, (8.24)

which is given in terms of the bath occupancy nth,b and thus the temperature of

the mode. The noise spectral density Sδb†δb[−Ωb] and its counterpart Sδbδb† [Ωb] are

linked to the ability of the oscillator to emit/absorb energy [132, 133].

Turning our attention to the full problem, we solve the linear Langevin equations

Eqn. 8.14 and obtain(
χ−1
b [ω]− iΣ[ω]

)
δb̂[ω] = A[ω]

∑
i

√
κi
√
κ1iξ̂i[ω]

+ Ã[ω]
∑
i

√
κiξ̂

†[ω]

+ B[ω]√γmη̂[ω] + B̃[ω]√γmη̂†[ω]

+
√

Γbζ̂[ω] + C̃[ω]
√
Γbζ̂

†[ω],

(8.25)

where Σ[ω] is the self-energy derived above. The frequency-dependent coefficients

have complicated and not elucidating forms that depend on the susceptibilities and

the couplings. We then rewrite the above expression as(
i(Ω̃b[ω]− ω) +

ΓTot[ω]

2

)
δb̂[ω] =

√
ΓTot[ω]Υ̂[ω], (8.26)
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(a) (b)

Figure 8.3: Comparison between the full formula for the effective temperature
Eqn. 8.29 and the approximate estimate Eqn. 8.35. (a) Effective temperature as
given by equation Eqn. 8.29 (dashed line) and as given by Eqn. 8.35 (continuous
line) as a function of the driving power. (b) Difference between the effective
temperatures (Eqn. 8.29 - Eqn. 8.35) as a function of the driving powers. For both
plots, we use the experimental parameters and driving scheme corresponding to
the results of Fig 9.8, and the bath temperature is TBath = 295 K.

where ΓTot and Ω̃b[ω] are defined in Eqn. 8.19 and Υ̂[ω] is the combination of noises

appearing on the right-hand side of Eqn. 8.25 divided by the total phonon decay

rate.

Recalling the relation of the spectral density Sδb†δb[ω] to the thermal number of

phonons and using the noise relations Eqn. 8.20, we obtain [134]

Sδb†δb[ω] =
ΓTot[ω]neff,b[ω]

(ω + Ω̃b[ω])2 +
Γ2
Tot[ω]

4

, (8.27)

where the effective phonon number is given in terms of the frequency dependent

coefficients of Eqn. 8.25 and of the thermal occupancy of the baths as

ΓTot[ω]neff,b[ω] = κ|A[−ω]|2nth,a

+ κ|Ã[−ω]|2(nth,a + 1)

+ γm|B[−ω]|2nth,m

+ γm|B̃[−ω]|2(nth,m + 1)

+ Γbnth,b + Γb|C̃[−ω]|2(nth,b + 1).

(8.28)

In deriving the above formula we have assumed that all the decay channels of the

cavity mode are related to thermal baths at the same temperature. The effective
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temperature for the phonon mode is then given by

Teff,b[ω] =
ℏΩ̃b[ω]

kB

[
ln

(
neff,b[ω] + 1

neff,b[ω]

)]−1

. (8.29)

We can make further approximations to the effective temperature formula. Since

ω(a,m) are three orders of magnitude larger than the phonon frequency, nth,(a,m) ≪

nth,b and we can discard the terms ∝ nth,(a,m) and ∝ nth,(a,m) + 1. Furthermore, at

room temperature nth,b ≫ 1, and Eqn. 8.28 simplifies to

ΓTot[ω]neff,b[ω] = Γb(1 + |C̃[−ω]|2)nth,b. (8.30)

The remaining frequency-dependent coefficient is given explicitly by

C̃[ω] = |gmb|2χ∗
b [−ω] (Ξ∗[−ω]− Ξ[ω])

1 + |gmb|2χ∗
b [−ω] (Ξ∗[−ω]− Ξ[ω])

, (8.31)

where Ξ[ω] = [χ−1
m [ω] + g2amχa[ω]]

−1, and Eqn. 8.31 depends on the driving power

only through |gmb|2 = |g0mb⟨m⟩|2 where [50]:

⟨m⟩ =
iϵd

√
κext

(i∆a − κ/2)(i∆m − γm/2) + g2am
. (8.32)

At low powers, the contribution ∝ |C̃[−ω]|2 can be safely discarded, but as the

power increases, since χb[ω] is sharply peaked around Ωb, this contribution becomes

prominent. In fact, |C̃[−ω]|2 goes from zero to its maximum value of one. In the

limit kBT ≫ ℏωa,b,m, valid for our room temperature experiment, we can write

neff,b[ω] ∼
kBTeff,b[ω]

ℏΩ̃b[ω]
,

nth,(b) ∼
kBTBath

ℏΩb

,

(8.33)

and since the phonon frequency shift δΩb ≪ Ωb, we can take Ω̃b ∼ Ωb. Within

those approximations, the phonon mode effective temperature reads

Teff,b[ω] ≈
ΓbTBath(1 + |C̃[−ω]|2)

ΓTot[ω]
. (8.34)

A rough estimate of the effective temperature can be made by discarding the term

∝ |C̃[−ω]|2, such that

Teff,b[ω] ≈
ΓbTBath

ΓTot[ω]
. (8.35)
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Figure 8.4: Difference between the effective temperature given by the full formula
Eqn. 8.29 and the improved approximation Eqn. 8.34. For this plot we have used
the experimental parameters and driving scheme corresponding to the results of
Fig. 9.8, and the bath temperature is TBath = 295 K.

This has a familiar form of the effective phonon temperature in driven optome-

chanical systems (for example, see [112, 134]), and in our case, it is valid for

low driving powers only. This can be seen in Fig. 8.3, which shows the effective

temperature at the phonon frequency for the red detuning scheme (driving at the

lower normal mode) as given by Eqn. 8.29 and as given by Eqn. 8.35 for the values

of the parameters corresponding to Fig. 9.8. The approximation is good for small

driving powers, but at powers larger than 0.1 mW, the difference between the full

formula and the rough approximation can be ∼ 40 K. Thus, even though Eqn. 8.35

is a simple and practical approximation; it leads to an underestimate of the phonon

effective temperature.

The improved approximation Eqn. 8.34 adds the contribution ∝ |C̃[−ω]|2, which,

for a given detuning and at Ωb is a function of the driving power P given by

|C̃[−Ωb]|2 =
P2|C|2

1 + 2PRe [C] + P2|C|2
, (8.36)

where C is a complex number that can be calculated with Eqn. 8.31 and Eqn. 8.32

for a given set of parameters. For conciseness, in Chapter 9, we define |C̃[−Ωb]|2 as

β(P). Figure 8.4 shows the difference between the effective temperature obtained

by the full formula Eqn. 8.29, and the approximation including the aforementioned
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power-dependent factor Eqn. 8.34. In this case, the maximum difference is now

∼ 0.08 K for driving powers corresponding to temperatures of ∼ 150 K, and thus

this approximation is more suitable for analysing the experimental data.

8.4 Quantum Correlation Thermometry

Finally, as described in Ref. [50] the hybrid cavity microwave-magnon-phonon

system may be used as a primary thermometer. While many physical systems

demonstrate temperature-dependent behavior that can be used for thermometry,

such as electrical resistance or magnetic susceptibility, such thermometers rely

on extrinsic properties and therefore require calibration to an external reference

to be of use [135]. These types of thermometers are referred to as secondary

thermometers. Primary thermometers, instead, do not require external calibration

and are therefore critical to precision measurements and temperature metrology

[136–138]. Here, primary thermometry can be achieved via self-calibration by

comparing the thermomechanical signal with intrinsic quantum fluctuations [131].

The ratio of these carefully chosen spectra provides a thermometric relation that

only depends on the temperature of the measured phonon mode.

8.4.1 Zero-Detuning Equations of Motion

In Section 8.2, we assumed an arbitrary drive detuning; however, from now on,

we consider that the drive is on resonance with the microwave cavity, such that the

detuning is zero ∆a = ∆m ≡ ∆ = 0. This assertion ensures there is no backaction

imparted on the mechanical mode from the magnons, as described in the previous

section. We will also assume that the mechanical motion is within the sideband-

resolved regime: Ωb ≫ γm,Γb, κ [37, 113]. Using these simplifying assumptions

and the fact that, at zero detuning, the magnon steady-state amplitude is purely

imaginary, see Section 8.2, without loss of generality, we have gmb = i|gmb| and

χa[ω] = χ∗
a[−ω], χm[ω] = χ∗

m[−ω],Λam[ω] = Λ∗
am[−ω] and Ξ[ω] = Ξ∗[−ω]. Notice

however that χb[ω] ̸= χ∗
b [−ω]. These simplifications allow δẑ[ω] to be written in
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the simplified form,

δẑ[ω] = i|gam|fm[ω]
√
γm(η̂[ω]− η̂†[−ω])

+ |gam|fa[ω]
√
κ1(ξ̂1[ω] + ξ̂†1[−ω])

− i(χb[ω]− χ∗
b[−ω])δF̂th[ω].

(8.37)

In this expression we have defined fm[ω] = iΞ[ω](χb[ω] − χ∗
b[−ω]) and fa[ω] =

igamχm[ω]Λam[ω](χb[ω]− χ∗
b[−ω]), such that fa,m[ω] = f ∗

a,m[−ω].

The microwave cavity field operator can be written in terms of noise operators

by inserting Eqn. 8.37 into Eqn. 8.12 to get

δâ[ω] = Λam[ω]gamχm[ω]
[
− i

√
γmη̂[ω]

+ |gmb|2fm[ω]
√
γm

(
η̂[ω]− η̂†[−ω]

)
− i

√
κ1|gmb|2fa[ω]

(
ξ̂1[ω] + ξ̂†1[−ω]

)
− (χb[ω]− χ∗

b[−ω])|gmb|δF̂th[ω]
]

+
√
κ1Λam[ω]ξ̂1[ω].

(8.38)

8.4.2 Correlation Spectra

Experimentally, the microwave modes are only accessible via the reflected or

transmitted signals. We can obtain the fluctuations of the output mode via the

input-output relation [90]

δâout[ω] = ξ̂1[ω]−
√
κ1δâ[ω]. (8.39)

Using a detection scheme, such as homodyne, one can measure arbitrary quadratures

of the output fields. These carry information of the phase and amplitude fluctuations

and are affected by thermal noise [132]. Here we use the canonical in-phase and

out-of-phase quadratures to construct correlation spectra. For an arbitrary operator

Â we define X̂Â[ω] = Â[ω] + Â†[−ω], and ŶÂ[ω] = −i
(
Â[ω]− Â†[−ω]

)
. At zero

detuning ∆a = ∆m = 0 the quadratures of the cavity field are given by

X̂δâ[ω] =
√
γmΛam[ω]gamχm[ω]Ŷη̂[ω] + Λam[ω]X̂ξ̂[ω],

Ŷδâ[ω] = 2Λam[ω]|gmb|2gamχm[ω]
(√

γmfm[ω]Ŷη̂[ω]− fa[ω]δX̂ξ̂[ω]
)

−√
γmΛam[ω]gamχm[ω]X̂η̂[ω] + Λam[ω]Ŷξ̂[ω]

+ 2i(χb[ω]− χ∗
b[−ω])Λam[ω]|gmb|gamχm[ω]δF̂th[ω],

(8.40)
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where the coefficients fa[ω] and fm[ω] have been defined above and we have adopted

the shorthand notation for the total microwave input noise ξ̂ =
√
κ1ξ̂1.

Using these and Eqn. 8.39 we can construct a generic quadrature of the output

field δâout parameterized by θ, as

X̂out,θ[ω] = cos (θ)X̂out[ω] + sin (θ)Ŷout[ω], (8.41)

such that the experimentally measurable symmetrized correlation spectrum can be

calculated as

Sθ,θ′ [ω] =
1

4

∫ ∞

−∞
dω′⟨{X̂out,θ[ω], X̂out,θ′ [ω

′]}⟩. (8.42)

where the symmetrized expectation values ⟨{Â[ω], B̂[ω′]}⟩ = (⟨Â[ω]B̂[ω′]⟩ +

⟨B̂[ω′]Â[ω]⟩)/2. It is necessary to use the symmetrized expectation value to compare

with the classically accessible measurement currents. The reflected signal can

be demodulated using an IQ-mixer allowing the simultaneous measurement of

X̂out[ω] and Ŷout[ω]. Importantly, these two quadratures are sufficient to construct a

measurable correlation function containing the phonon noise contribution. This is in

contrast to the heterodyne measurement technique used in Ref. [131]. Instead, here,

the low-frequency microwave signal would allow direct demodulation, simplifying

measurement when compared to high-frequency optical measurements. The two

quadratures can then be directly captured using a data acquisition system, following

demodulation, without any additional post-processing.

For deriving the thermometric relation we need to consider the correlation

spectra, which are given in terms of the following expectation values

⟨Ŷout[ω]Ŷout[ω′]⟩ = −
√
κ1⟨Ŷin[ω]Ŷδâ[ω′]⟩

−
√
κ1⟨Ŷδâ[ω]Ŷin[ω′]⟩

+ κ1⟨Ŷδâ[ω]Ŷδâ[ω′]⟩,

⟨X̂out[ω]Ŷout[ω
′]⟩ = −

√
κ1⟨X̂in[ω]Ŷδâ[ω

′]⟩

−
√
κ1⟨X̂δâ[ω]Ŷin[ω

′]⟩)

+ κ1⟨X̂δâ[ω]Ŷδâ[ω
′]⟩,

(8.43)

where Ŷin = −i(ξ̂1 − ξ̂†1) and X̂in = (ξ̂1 + ξ̂†1) are the input noise quadratures for the

measurement port. The expectation values contained within Eqn. 8.43 are given in
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terms of expectation values of noise quadratures by

⟨Ŷin[ω]Ŷδâ[ω′]⟩ = 2π
√
κ1Λam[ω

′]δ(ω + ω′)
(
(2nth + 1) + 2igam|gmb|2χm[ω

′]fa[ω
′]
)
,

⟨X̂in[ω]Ŷδâ[ω
′]⟩ = 2iπ

√
κ1Λam[ω

′]δ(ω + ω′)
(
2igam|gmb|2χm[ω

′]fa[ω
′](2nth + 1) + 1

)
,

⟨Ŷδâ[ω]Ŷδâ[ω′]⟩ = 2g2am|gmb|2Λam[ω]Λam[ω
′]χm[ω]χm[ω

′]×(
2γm|gmb|2fm[ω]fm[ω′]⟨δŶη̂[ω]δŶη̂[ω′]⟩ − γmfm[ω]⟨δŶη̂[ω]δX̂η̂[ω

′]⟩

− γmfm[ω
′]⟨δX̂η̂[ω]δŶη̂[ω

′]⟩+ 2κ1fa[ω]fa[ω
′]⟨δX̂ξ̂1

[ω]δX̂ξ̂1
[ω′]⟩

)
+ gamΛam[ω]Λam[ω

′]
(
γmgamχm[ω]χm[ω

′]⟨δX̂η̂[ω]δX̂η̂[ω
′]⟩

− 2κ1|Gmb|2χm[ω]fa[ω]⟨δX̂ξ̂1
[ω]δŶξ̂1 [ω

′]⟩

− 2κ1|gmb|2χm[ω
′]fa[ω

′]⟨δŶξ̂1 [ω]δX̂ξ̂1
[ω′]⟩

)
+ κ1Λam[ω]Λam[ω

′]⟨δŶξ̂1 [ω]δŶξ̂1 [ω
′]⟩+ 4g2am|gmb|2(χb[ω]− χ∗

b[−ω])×

(χb[ω
′]− χ∗

b[−ω′])Λam[ω]Λam[ω
′]χm[ω]χm[ω

′]⟨δF̂th[ω]δF̂th[ω
′]⟩,

⟨X̂δâ[ω]Ŷδâ[ω
′]⟩ = γmg

2
amΛam[ω]Λam[ω

′]χm[ω]χm[ω
′]
(
− ⟨δŶη̂[ω]δX̂η̂[ω

′]⟩

+ 2|gmb|2fm[ω′]⟨δŶη̂[ω]δŶη̂[ω′]⟩
)
+ κ1Λam[ω]Λam[ω

′]
(
⟨δX̂ξ̂1

[ω]δŶξ̂1 [ω
′]⟩

− 2gam|gmb|2χm[ω
′]fa[ω

′]⟨δX̂ξ̂1
[ω]δX̂ξ̂1

[ω′]⟩
)

(8.44)

The expectation values for the phonon and magnon noise quadratures can be

calculated using Eqn. 8.8 and are (for β̂ = ξ̂1, η̂),

⟨δX̂β̂[ω]δX̂β̂[ω
′]⟩ = ⟨δŶβ̂[ω]δŶβ̂[ω

′]⟩ = 2π(2nth + 1)δ(ω + ω′),

⟨δX̂β̂[ω]δŶβ̂[ω
′]⟩ = −⟨δŶβ̂[ω]δX̂β̂[ω

′]⟩ = i2πδ(ω + ω′),
(8.45)

while the phonon noise correlator is given by

⟨δF̂th[ω]δF̂th[ω
′]⟩ = 2πγb

ω

ωb

coth

(
ℏω

2kBT

)
δ(ω + ω′), (8.46)

For all plots in this thesis, we used the full expressions given by Eqn. 8.44.

However, a simplified relation can be obtained by ignoring all terms related to the

photon and magnon shot noises within the expression for ⟨Ŷδâ[ω]Ŷδâ[ω′]⟩. Since we

are considering the experimentally relevant resolved-sideband regime, all the terms,

besides the phonon noise correlation, contained within ⟨Ŷδâ[ω]Ŷδâ[ω′]⟩ are sharply

peaked around ω = 0 and for ω around Ωb the only relevant contribution will be
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(a) (b)

Figure 8.5: a) Phase-phase autocorrelation spectrum for different temperatures.
b) Amplitude-phase cross-correlation spectrum, at 100 mK. Each panel is plotted
against frequency, normalized in units of Ωb.

the phonon noise term. In this case

⟨Ŷδâ[ω]Ŷδâ[ω′]⟩ ≈ 4g2am|gmb|2

|(χb[ω]− χ∗
b[−ω])|2

Λam[ω]Λam[ω
′]χm[ω]χm[ω

′]

⟨δF̂th[ω]δF̂th[ω
′]⟩.

(8.47)

By performing the integration over frequency space and properly normalizing, as

defined in Eqn. 8.42, we arrive at the symmetrized noise spectra. The phonon’s noise

contribution is included in the correlation spectrum via the component proportional

to ⟨{Ŷδâ[ω], Ŷδâ[ω′]}⟩ and the temperature of the phonon mode can be determined by

considering the ratio of two conveniently chosen correlation spectra: one containing

the above-mentioned term and the other one a reference. For the former, we notice

that the phase-phase autocorrelation spectrum Sπ
2
,π
2
[ω], in the resolved sideband

regime {ωa,m,Ωb} ≫ {κ, γm,Γb}, is given explicitly by

Sπ/2,π/2[ω] = 2πκ1g
2
am|gmb|2|χb[ω]− χ∗

b[−ω]|2

× Λam[ω]Λam[−ω]χm[ω]χm[−ω]

× Γb
ω

Ωb

coth

(
ℏω

2kBT

)
− πκ1Λam[ω](2nth + 1),

(8.48)
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while the reference term is the amplitude-phase correlation spectrum S0,π
2
[ω] given

by
S0,π/2[ω] = πκ1g

2
am|gmb|2Λ2

am[−ω]χ2
m[−ω]

i(χb[ω]− χ∗
b[−ω])(2nth + 1)

[1 + Λam[ω]χm[ω]/χa[−ω]− Λam[ω]].

(8.49)

In Eqn. 8.48, the term πκ1Λam[ω](2nth+1) is a constant offset that can be subtracted

in post processing. Furthermore, it can be shown that,

Γb
ω

Ωb

|χb[ω]− χ∗
b [−ω]|2 =

4ΓbωΩb

(Ω2
b − ω2 − iωΓb +

Γ2
b

4
)(Ω2

b − ω2 + iωΓb +
Γ2
b

4
)
,

i(χb[ω]− χ∗
b[−ω]) =

2Ω3
b − 2ω2Ωb + ΩbΓ

2
b/2 + 2iΓbωΩb

(Ω2
b − ω2 − iωΓb +

Γ2
b

4
)(Ω2

b − ω2 + iωΓb +
Γ2
b

4
)

(8.50)

Therefore, it can be seen that Γb
ω
Ωb
|χb[ω]− χ∗

b [−ω]|2 = 2 Im{i(χb[ω]− χ∗
b[−ω])}.

Figure 8.5 shows a calculated phase-phase autocorrelation spectrum (a) and an

amplitude-phase correlation (b) as functions of the frequency. The maximum value

of the phase-phase autocorrelation Sπ
2
,π
2
[ω] increases with the bath temperature

T and, similar to what was reported in Ref. [131], can be used as a thermometric

measurement.

8.4.3 Thermometric Relationship

At low magnon and photon thermal occupancy, the terms related to photon

and magnon shot noise in the function Sπ/2,π/2[ω] can be ignored, and the phonon

noise is the main component of the phase-phase autocorrelation Eqn.8.44. In this

limit, we have the thermometric relationship

Re{Sπ
2
,π
2
[ω]}

Im{S0,π
2
[ω]}

=
4coth

(
ℏω

2kBT

)
2nth + 1

, (8.51)

where the constant background contribution from Re{Sπ
2
,π
2
[ω]} has been subtracted.

This expression determines the temperature of the phonon mode via the measured

correlation spectra and is independent of experimental parameters, such as coupling
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Figure 8.6: a) Thermometric relationship as a function of bath temperature. The
solid line represents the simplified analytical expression in Eqn. 8.51, and the solid
circles are numerically simulated values including all noise contributions within the
phase-phase correlation function. For this curve Ωb = 10 MHz and ωa = ωm = 10
GHz. b) Thermometry relationship for different values of the microwave resonance
frequency: ωm = 10, 25, 50 GHz. In both plots ω = Ωb, corresponding to the peak
of Re{Sπ

2
,π
2
[ω]} and Im{S0,π

2
[ω]}.

strengths and decay rates. We also note that the inclusion of all terms contained

within Sπ/2,π/2[ω] (see Eqn. 8.44) is consistent with Eqn. 8.51 within 0.1 mK for

typical experimental parameters.

Figure 8.6 depicts the thermometric relation Eqn. 8.51 as a function of the

phonon effective temperature, Fig. 8.6(a), and for several values of the MW mode

frequency, Fig. 8.6(b). Although the relation defined in Eqn. 8.51 is unique for

all temperatures, for T > ℏωa,m/kB the function is relatively flat. Therefore, the

thermometric measurement will be most accurate at low temperatures when the

thermal photon/magnon occupation is less than unity.

The absolute sensitivity of this measurement scheme is dependent on the

exact experimental geometry, namely the effective mass and the frequency of

the mechanical element, and a fundamental limit is given by the ratio of the

thermomechanical noise spectrum to the standard quantum limit, defined by

the noise spectrum due to zero-point fluctuations [112]. The relative height

of the thermomechanical spectrum compared to the standard quantum limit is

proportional to the number of thermal phonons within the system. Therefore, the

thermometer’s sensitivity can be improved by decreasing the mechanical frequency,
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Figure 8.7: Thermometric relation for different finite detunings of the MW drive.
As the detuning increases S0,π/2[ω] is contaminated with a contribution from the
phonon thermal occupancy. Inset shows Re{S0,π/2[ω]} for the same detunings.
Diamond markers and dashed lines represent negative detunings.

thus increasing the number of thermal phonons. In practice, measurements may be

limited by instrumentation noise that will depend on the exact experimental

implementation, although recent microwave optomechanics experiments have

demonstrated imprecision below the standard quantum limit, validating the viability

of the proposed thermometer [139].

A potential source of error for this thermometry protocol is non-zero detuning of

the microwave drive. The thermometric relation 8.51 was derived for ωd = ωa = ωm.

Finite values of the detuning introduce spurious effects. This is depicted in Fig. 8.7,

which shows the thermometric relation for different detunings. Experimentally

these effects can be minimized by carefully varying the detuning and monitoring

the real component of the amplitude-phase cross-correlation spectra. The peak-to-

peak height of S0,π/2[ω] directly depends on the value of the detuning. Therefore,

minimizing the peak-to-peak height of the amplitude-phase cross-correlation spectra

will minimize the thermometric relation error, as shown in the inset of Fig. 8.7.

Finally, for the considered strong magnon-photon coupling, a drive tone tuned to

∆ = ∆a = ∆m = 0 is far off-resonance. This is a consequence of the hybridization

of the microwave and magnon modes forming two normal modes separated by

2gam, as depicted in Fig. 8.8. This leads to the wrong conclusion that it would be
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(a) (b)

Figure 8.8: (a) Transmission spectrum of a strongly coupled magnon-photon system
showing hybridized magnon-photon modes separated by 2gam. b) Phase-phase
correlation function for ω = Ωb. The magnon-photon coupling rate was set to equal
the phonon frequency, gam = Ωb, resulting in a peak in the correlation function at
zero detuning, ∆a = 0, corresponding to the measurement prescribed in the text.

preferable to drive on resonance with the hybrid mode to allow an enhancement of

the magnon-phonon coupling rate. However, as discussed above, the thermometric

relation in Eqn. 8.51 is precise for ∆ = 0. Nevertheless, the signal-to-noise ratio

can be improved by carefully tuning the magnon-photon coupling rate to match

the frequency of the phonon mode, i.e. gam = Ωb. The coupling gam depends on an

overlap between the cavity mode and the magnetic element, and the aforementioned

condition can be achieved by carefully positioning the magnetic element in the

cavity. When this condition is satisfied, by pumping the cavity on resonance, one

also pumps the mechanical sidebands of the hybrid modes as described in Fig. 8.9.

The two sidebands constructively interfere producing an enhanced signal strength

for the noise spectra, as shown in Fig. 8.8(b).
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Figure 8.9: Schematic illustration of the relevant frequencies in the system. (a) The
resonant magnon and photon modes (frequencies ωm ≈ ωa) form two hybridized
modes which, in the strong coupling regime considered (gam ≫ κ, γm) and for ω, have
frequencies ω± ∼ ωa(m)±gam. (b) Due to the interaction with the phonon mode, the
hybrid modes have mechanical sidebands separated by Ωb from their frequencies.
(c) In our driving scheme we set Ωb ≈ gam, which gives a cavity enhancement
when the MW mode is pumped on resonance, despite initial expectations. This
corresponds to pumping the mechanical sidebands of the hybridized MW-magnon
modes.
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Chapter 9

Dynamical Backaction
Magnomechanics

This chapter is based on the publication C.A. Potts, E. Varga, V.A.S.V. Bitten-

court, S. Viola Kusminskiy, J.P. Davis, “Dynamical backaction magnomechanics,”

Phys. Rev. X 11, 031053 (2021) Ref. [113] and draws directly on the content

therein. In order to be consistent with the rest of the thesis, a number of minor

notational changes have been made with respect to the original publication.

9.1 Introduction

In Chapter 8, we introduced the linear theory describing a hybrid microwave-

magnon-phonon system. During this analysis, we found that due to the parametric

coupling between the magnon and phonon, the mechanical oscillator would

experience dynamical backaction. Dynamical backaction results in two observable

phenomena: first, the mechanical frequency will shift, known as the magnon-spring

effect; second, the total linewidth of the mechanical oscillator will be modified,

known as magnomechanical damping.

Motivated by the predicted dynamical backaction, this chapter will describe

the experimental observation of both effects. To begin, in Section 9.2 we

provide a description of the triple-resonance condition. The triple-resonance

condition allows the selective enhancement of dynamical backaction effects.

Next, in Section 9.3 we measure the mechanical motion using the technique of

magnomechanically induced transparency, described in Ref. [37]. This measurement
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was performed to find the mechanical frequency and extract the magnomechanical

coupling rate to provide a baseline calibration. In Section 9.4, we perform a

second measurement of the mechanical spectrum, this time using the method of

homodyne detection. Homodyne detection more easily allowed the detection of

the dynamical backaction effects. Namely, we observe: the magnon-spring effect in

Section 9.4.1, magnomechanical anti-damping and phonon lasing in Section 9.4.2,

magnomechanical cooling in Section 9.4.3, and describe a parasitic heating effect

in Section 9.4.4. The dynamical backaction effects are analyzed using the theory

presented in chapter 8 and were found to be in good agreement with the calibration

performed in Section 9.3.

9.2 Triple-Resonance

As was briefly discussed in Chapter 8, careful experimental design allows the

hybrid microwave-magnon-phonon system to achieve the triple-resonance condition,

where the phonon frequency matches the difference in frequencies between the

hybrid cavity-magnon modes (Ωb = 2gam). The triple-resonance condition allows

the selective cavity enhancement of scattering processes, maximizing the dynamical

backaction effects. This enhancement was critical in allowing the observation of,

for example, the magnon-spring effect, discussed in Section 9.4.1.

Let us first contrast magnomechanics with cavity optomechanics to provide an

intuitive understanding. Consider the spectrum of a typical cavity optomechanics

experiment depicted in Fig. 9.1(a); see Ref. [112] for a detailed description of

optomechanics1. In this situation, a single optical resonance of frequency ωa couples

directly to a mechanical oscillator of frequency Ωb. The interaction between the

optical resonance and the mechanical oscillator generates two optical sidebands at

frequencies ωa + Ωb and ωa − Ωb due to the frequency modulation of the optical

resonance [112]. Alternatively, the generation of sidebands can be thought of as a

scattering process. As a photon interacts with the mechanical oscillator, it can gain

energy by absorbing a phonon (anti-Stokes) or lose energy by emitting a phonon

1We adopt much of the language of optomechanics in this work since the optomechanical and
magnomechanical interaction Hamiltonian share a similar form, despite the different origin of the
coupling.
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Figure 9.1: (a) Cavity optomechanics scattering picture. A resonant drive tone
ωd = ωa is scattered via Stokes and Anti-Stokes processes, forming a pair of
sidebands at ωa ± Ωb. The scattering rate and amplitude of the sidebands will be
the same for the red and blue sidebands. (b) Cavity magnomechanics scattering
picture. A drive tone on resonance with the lower normal-mode ωd = ω− is
scattered via Stokes and Anti-Stokes processes, forming a pair of sidebands at
ωa ± Ωb. However, due to the formation of normal modes, the Anti-Stokes process
is strongly enhanced since the blue sideband is resonant with the upper normal
mode. Moreover, the Stokes process is suppressed since the red-sideband is far
off-resonance.

(Stokes), depending on the relative phase of the photon and phonon [112]. In the

sideband resolved regime (i.e. Ωb ≫ {κ,Γb}), the red and blue sidebands both lie

outside the linewidth of the optical cavity2. Therefore, the Stokes and anti-Stokes

processes scatter photons out of the cavity at the same rate. In this situation, one

would expect no backaction effects, similar to the scenario described in Chapter 8

for the thermometry protocol.

By contrast, let us consider a magnomechanical experiment in which the

microwave drive is tuned to the lower normal mode, ωd = ω−, and the experimental

configuration is triply resonant, see Fig.. 9.1(b). Since the magnon-phonon coupling

2We follow the convention of labelling the sidebands red and blue considering that the scattered
photons have either gained energy and have blue-shifted or, conversely, have lost energy and have
red-shifted.
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Figure 9.2: Normal mode spectrum. (a) Measured normal mode spectrum as a
function of the static magnetic field. The solenoid produced a magnetic field that
opposes the static field created by the neodymium magnets; therefore, increasing
current corresponds to decreasing DC magnetic field. Dashed lines correspond to
the spectrum in (b-d). (b) Cavity reflection spectrum when the magnon is resonant
with the bare-cavity mode. The normal mode splitting, 2gam is smaller than the
phonon frequency, Ωb = 2π × 12.6278 MHz. (c) Cavity reflection spectrum when
the magnon frequency is smaller than the bare-cavity resonance frequency. The
system was set up such that the normal mode spacing matches the mechanical
frequency. Here the lower mode is ‘magnon-like’ and the upper mode is ‘photon-
like.’ (d) Cavity reflection spectrum when the magnon frequency is larger than the
bare-cavity resonance frequency, similar to the detuning in (c). Here the upper
mode is ‘magnon-like’ and the lower mode is ‘photon-like.’

is weak compared to the microwave-magnon coupling, we can describe the magnon

mode as a superposition of the normal modes, see Chapter 5. The magnon-phonon

Hamiltonian can then define a scattering process between the normal modes,

mediated by a phonon. Therefore, a drive photon resonant with the lower frequency

normal mode is scattered into the upper normal mode, and a phonon is absorbed.

This process is resonant if the phonon frequency matches the normal mode splitting,
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fulfilling the triple-resonance condition. Notably, both the microwave drive and the

blue sideband are resonant due to the existence of the normal mode spectrum, in

contrast to optomechanics, where only the cavity drive is resonant.

Triple-resonance can also be understood by recognizing that the anti-Stokes

process is enhanced since the photons scattered into the blue sideband are scattered

resonantly into the upper normal mode. At the same time, the Stokes process is

suppressed since the red sideband is off-resonance. The asymmetry in the rate

of the scattering processes results in net absorption of phonons, thus effectively

cooling the mechanical mode3. Conversely, when the microwave drive is tuned to

the upper normal mode, in which case the Stokes process would be resonant, and

the Anti-Stokes process would be suppressed, one would observe amplification of

the mechanical mode.

In our experiment, shown in Fig. 8.1, the resonant normal mode splitting (for

ωa = ωm) and the phonon frequency are not perfectly matched; indeed, the phonon

frequency is slightly larger than the normal mode splitting, see Fig. 9.2. However, by

detuning the magnon frequency slightly from the bare microwave cavity frequency

(i.e. ∆am ̸= 0), the normal mode splitting can be tuned to exactly match the

phonon frequency, see Fig. 9.2(c,d). This results in the system becoming triply

resonant, significantly enhancing the magnon-phonon coupling. Indeed, it has been

shown in Ref. [37] that when compared with off-resonance driving, the cooperativity

of a fully-hybridized triple-resonant system will be enhanced by a factor of

F = 16

(
Ωb

κ+ γm

)2

. (9.1)

Furthermore, with our current experimental values Eqn. 9.1 predicts a triple-

resonance cooperativity enhancement of F ≈ 100.

9.3 Magnomechanically Induced Transparency

Since the mechanical mode probed in our experiment is different than in Ref. [37],

to determine the mechanical frequency and extract the magnomechanical coupling

rate, we calibrate the system using magnomechanically induced transparency

3One could also consider Fermi’s golden rule in which the density of states for the Anti-Stokes
process is larger than for the Stokes process [112]
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Figure 9.3: Magnomechanically induced transparency. (a) Schematic illustration of
the measurement setup: VNA, vector network analyzer; RF, microwave generator.
The VNA and source are synced using a 10 MHz clock signal. Included is a
rendering of the microwave cavity and magnetic yoke assembly. The frequency axis
is negative due to the relative detuning between the drive tone and the normal
mode. (b) Normalized reflection spectrum centred around the lower-normal mode,
the system is tuned near spectrum (c) from Fig. 9.2, but at a larger solenoid current
to isolate the ‘magnon-like’ normal mode. A narrow transparency window opens
as ∆dp = −Ωb due to the magnomechanical coupling. (c) Zoom-in of (b) shows a
detailed spectrum of the magnomechanical induced transparency.

(MMIT). MMIT is analogous to optomechanically induced transparency (OMIT)

[140, 141], and is a consequence of the interference of sidebands generated by the

parametric coupling to phonons. Besides the natural response of the system at

the normal mode frequencies, each mode has sidebands shifted by the phonon

frequency, see Fig. 9.1(b). MMIT is observed by driving the cavity resonant with

the red-sideband of one of the normal modes while sweeping the probe through

the normal mode resonance. The interference between the weak probe and the

upconverted excitations via the annihilation of a phonon generates a transparency

window.

Figure 9.3(a) illustrates a schematic of our MMIT measurement apparatus.

A two-port microwave cavity was used, with the microwave drive at frequency
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Figure 9.4: Magnomechanically induced transparency spectrum. (a) Cavity
magnomechanics scattering picture. Drive tone tuned to the red-sideband of
the lower normal mode, with ∆d = −Ωb, a probe tone is swept through the lower
normal mode, with a drive tone detuning ∆dm = ωd − ωp. (b) Magnomechanical
cooperativity as a function of the lower normal mode frequency. For each
measurement, the drive tone is detuned by the phonon frequency from the lower
normal mode, ωd = ω− − Ωb. Blue circles are experimentally determined using
Eqn. D.1, and the dotted orange line is a numerical fit using Eqn. D.2, where g0mb

is the only fit parameter.

ωd connected to coupling port one and driven with a power between 1 and 50

mW. It should be noted that all powers are quoted as power at the device, which

was carefully calibrated for each experimental configuration. The VNA probe, at

frequency ωp, was connected to coupling port two, and the probe tone was held at

a constant power of 0.03 mW.

To simplify our analysis, we decided to apply a red-detuned drive tone on the

lower normal mode, see figure 9.4. The reflection spectrum as a function of the two-

photon detuning ∆dp = ωd−ωp is shown in Fig. 9.3(b,c). A sharp peak can be seen

at ∆dp = −Ωb resulting from the coherent magnomechanical interaction. Following

the analysis performed by Zhang et al. in Ref. [37]. A series of data was taken

at atmospheric pressure for various pump powers and magnon-photon detunings,

shown in Fig. 9.4(b). From this we were able to extract the single magnon-phonon

coupling rate g0mb/2π = 4.38 mHz, the mechanical frequency Ωb = 12.6270 MHz,

and the intrinsic mechanical decay rate Γb/2π = 286 Hz.
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Figure. 9.3(c) shows that there exists a second, higher frequency mechanical

mode. This mode was not observed in the homodyne mechanical detection scheme,

described next, except at the highest drive powers. However, at those drive

powers magnon nonlinearities resulted in the system becoming bistable [142]. The

second mechanical mode has a frequency Ωb = 12.637 MHz, and a coupling rate

g0mb/2π = 2.41 mHz. The difference in the transparency window height can be

attributed to the increased damping rate, which is approximately an order of

magnitude larger than the lower-frequency mode. Numerical simulations reveal

that clamping causes the S1,2,0 mode to split into two nearly degenerate modes,

resulting in the two modes observed here.

9.4 Homodyne Measurements

Next, we measure the YIG sphere’s mechanical vibrations without resorting

to the MMIT window, which more easily enables the observation of dynamical

backaction effects. In this scheme, a microwave signal was sent to the hybrid

magnomechanical system, as shown in Fig. 9.5(a). The transmitted signal was

demodulated using an IQ-mixer, and the low-frequency mechanical signal was

digitized using an analog-to-digital converter (ADC). The reflected signal was

passed through a directional coupler and measured using a VNA to characterize

the normal mode spectrum. During the mechanical measurements, the VNA was

not exciting the cavity to avoid potential beat frequencies from obfuscating the

mechanics. To balance the homodyne circuit, the DC component of the demodulated

signal was continually measured and locked dynamically – at a rate of 1 kHz –

by adjusting the local oscillator phase4. Data was taken in three atmospheric

conditions: ambient pressure, a partial pressure of pure helium gas (∼ 15 Torr),

and vacuum (< 1 mTorr).

As mentioned, one remarkable aspect of this hybrid magnomechanical system

is that it can be brought into triple-resonance. In this case, the red mechanical

sideband of the upper normal mode has the same frequency as the lower normal

mode and vice versa. Therefore, not only is the drive tone cavity-enhanced, but

4It was found experimentally that phase locking was not necessary.
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Figure 9.5: Homodyne mechanical detection. (a) Simplified schematic of the
measurement setup: VNA, vector network analyzer; RF/LO, microwave generator;
ADC, analog-to-digital converter; IQ, IQ-mixer, both the in-phase and quadrature
ports were connected to the ADC. (b) Power spectral density of the mechanical
motion. The normal mode spectrum was tuned to Fig. 9.2(d). The probe was
tuned directly on resonance with the upper normal mode. With increasing drive
power, a frequency shift, and linewidth narrowing can be observed. (c) Power
spectral density of the mechanical motion; offset for clarity. The normal mode
spectrum was tuned to Fig. 9.2(c). The probe was tuned directly on resonance
with the lower normal mode. Due to interference between scattered excitations and
the thermal magnon bath, the power spectrum lies below the noise floor, known as
noise squashing. (d) Power spectral density of the mechanical motion, the drive
tone was detuned one mechanical frequency above the upper normal mode. (e)
Power spectral density of the mechanical motion, the drive tone was detuned one
mechanical frequency below the lower normal mode. For both (d) and (e), the
drive power was held constant at 12 mW. All data presented were obtained with
the experimental setup in a partial pressure of helium gas.

one of the two mechanical sidebands is simultaneously cavity-enhanced. The

Stokes (anti-Stokes) scattering process is strongly preferred, resulting in effective

magnomechanical backaction heating (cooling). These two specific scenarios will

be discussed in more detail in the next sections.

The mechanical power spectrum under the triple-resonance condition is shown in

Fig. 9.5(b,c). The normal mode spectrum for Fig. 9.5(b) is shown in Fig. 9.2(d), and

the drive is tuned on resonance with the upper normal mode. With increasing drive
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power, two effects can be seen in Fig. 9.5(b): the frequency of the mode decreases,

we attribute this to parasitic thermal effects that are discussed in section 9.4.4, and

a narrowing of the linewidth, which ultimately results in phonon lasing discussed

in Section 9.4.2. Conversely, for Fig. 9.4(c), the normal mode spectrum is shown in

Fig. 9.2(c), and the drive is tuned on resonance with the lower normal mode. Again

we observe a power-dependent frequency shift resulting from parasitic thermal

effects5. We further see a phenomenon known as noise squashing resulting from

interference between the thermal magnon bath and excitations scattered via the

magnomechanical interaction, which will be discussed further in Section 9.4.3.

Furthermore, it is possible to observe mechanical motion without relying on the

triple-resonance condition, one can apply the drive tone on the blue sideband

of the upper normal mode (or the red sideband of the lower normal mode).

Although this sideband driving has some similarities with procedures commonly

adopted in cavity optomechanics [112], the composition of the normal modes can

be changed by varying the magnon-photon detuning. This in turn results in each

normal mode experiencing a detuning-dependent coupling rate, decay rate, and

effective phonon coupling rate. Therefore, there exists an optimal detuning for

mechanical measurements. The magnon and photon components of the normal

mode provide two distinct operations, the magnon-like component couples directly

to the mechanical motion, whereas the applied microwave tone can drive the photon

component. Thus, the competition between these two effects needs to be balanced

for optimal mechanical detection. The mechanical power spectrum while driving

above (below) the upper (lower) normal mode, with optimal detunings, is shown

in Fig. 9.5(d) and (e), respectively. Due to the small magnomechanical coupling

(compared to the microwave-magnon coupling), a drive power of ∼ 5 mW was

required to resolve the mechanical spectrum.

It should be noted that, unlike many optomechanical measurements, the observed

mechanical motion is not thermomechanical in nature. Due to the high drive powers,

there is considerable backaction in the form of heating (cooling) of the mechanical

mode. However, the intrinsic mechanical properties can be extracted by considering

5It was brought to our attention that the frequency shift may not be due to heating effects
and instead is a result of the Kerr nonlinearity present in YIG [143]
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the data presented in Fig. 9.5(b) and extrapolating to zero drive power. As a result,

within a partial helium environment, we find the mechanical mode has a resonance

frequency Ωb = 12.6278 MHz, and an intrinsic mechanical decay rate Γb/2π = 98

Hz.

Finally, to confirm the observed mechanical signal was not a result of

direct electromechanical coupling (i.e. coupling between photons and phonons),

measurements were performed, shifting the magnon frequency far from the

microwave resonance frequency. In this scenario, the normal mode spectrum

disappears, and we are left with only the microwave cavity resonance. Both OMIT

and homodyne measurements were performed; no evidence of the mechanical motion

was observed in either of these scenarios.

9.4.1 Magnon Spring Effect

The magnomechanical interaction results in the formation of sidebands that

carry information about the mechanical vibrations. However, the interaction

also results in a modification of the mechanical susceptibility due to dynamical

backaction from the interaction with magnons. We previously described the full

linear theory of the magnomechanical interaction in Chapter 8 and derived the

following expression for the phonon self-energy [50],

Σ[ω] = i|gmb|2(Ξ[ω]− Ξ∗[−ω]). (9.2)

Here, gmb = g0mb⟨m⟩ is the cavity-enhanced magnon-phonon coupling rate, |⟨m⟩|2

is the coherent steady-state magnon population, and Ξ[ω] = [χ−1
m [ω] + g2amχa[ω]]

−1.

The magnon and cavity susceptibilities are given by, χm[ω] = [−i(∆m + ω) + γm/2]

and χa[ω] = [−i(∆a + ω) + κ/2], respectively. In the weak coupling limit, when

gmb ≪ κ, γm – which holds for all data presented in this article and would only break

down for the highest on-resonance drive powers – the real and imaginary parts of

the self-energy describe a mechanical frequency shift δΩb = −ReΣ[ω], the magnon-

spring effect, and an additional magnomechanical damping rate Γmag = 2ImΣ[ω].

In order to observe the small magnon-induced frequency shift, parasitic heating

needed to be eliminated (see Section 9.4.4). To reduce the heating of the sphere, a

low drive power was required; however, reducing the drive power simultaneously
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Figure 9.6: Magnon spring effect. Power spectral density of the mechanical motion
within a partial pressure of helium gas and a constant probe power of 0.13 mW.
The microwave drive was tuned to the normal mode shown in the inset. The white
curve is the theoretical prediction for the magnon-spring effect, see chapter 8, the
only fit parameter was the intrinsic mechanical frequency.

reduces the frequency shift. Therefore, this experimental run was performed in a

low pressure (∼ 15 Torr) of pure helium gas to reduce the mechanical linewidth,

allowing the small frequency shift to be resolved. Helium was used because it

possesses high thermal conductivity; therefore, it provides good thermalization

while limiting the mechanical damping of the sphere. Secondly, the heating of the

sphere was primarily due to magnon decay and not microwave photon absorption.

Thus, unlike in Fig. 9.5(b), the drive tone was applied to the ‘photon-like’ normal

mode and the interaction with phonons scattered excitations into the ‘magnon-like’

normal mode. This indeed resulted in less heating of the YIG sphere; however, it

has the unwanted secondary effect of reducing the detection efficiency due to the

reduced external coupling of the ‘magnon-like’ mode.

Figure 9.6 shows the mechanical power spectrum, revealing the magnon-induced

frequency shift. To avoid complicating effects from heating or a slow drift of the

magnetic field, the magnet was re-adjusted between each drive frequency, and the

drive frequencies were applied in a randomized order. This data was taken with a
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drive power of 0.13 mW; at this power and drive detuning, we observed negligible

frequency shift due to heating. The white curve is a theoretical prediction from

Eqn. 9.2, where the only fit parameter used was the intrinsic mechanical frequency,

which increased slightly in the partial pressure of helium, Ωb/2π = 12.6278 MHz.

All other parameters were extracted using a fit to the reflected normal mode

spectrum and the magnomechanical damping measurement discussed below. The

theoretical prediction and the experimentally measured shift are in agreement,

confirming the direct observation of the magnon spring effect.

9.4.2 Magnomechanical Anti-Damping

We can further consider the effect magnon backaction has on the mechanical

decay rate. As described above, the interaction with magnons causes additional

damping of the mechanical mode, Γmag = 2ImΣ[ω], which results in an effective

mechanical damping rate,

ΓTot = Γb + Γmag. (9.3)

Just as in cavity optomechanics, Γmag can be positive or negative [112, 144], thus

either increasing or decreasing the total mechanical damping rate. The backaction

enhancement of damping will be discussed in the next section; here, we will focus

on the case of anti-damping.

We now consider the data presented in Fig. 9.5(b); the drive tone is on resonance

with the upper normal mode, and the splitting between the normal modes is tuned

to exactly one mechanical frequency. The additional magnomechanical damping is

thus maximized due to the triple-resonance enhancement and the magnomechanical

damping should increase linearly with drive power as predicted by Eqn. 9.2. This

behavior is confirmed by the experimental points shown in Fig. 9.7(a). Furthermore,

fits to the total linewidth allow extraction of the intrinsic linewidth, Γb, as well as g
0
mb.

Extrapolating to zero drive power yields, Γb/2π = 247 Hz in air, Γb/2π = 98 Hz in

a partial pressure of helium (∼ 15 Torr), and Γb/2π = 59 Hz in vacuum; suggesting

the primary damping mechanism was viscous air damping. The magnomechanical

coupling rate can be determined using Eqn. 9.2 and 9.3 as well as the slope of the

data presented in Fig. 9.7(a) resulting in a value g0mb/2π = 4.58 mHz. As expected,
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Figure 9.7: Parametric instability. (a) Mechanical linewidth as a function of drive
power in air (blue squares), helium partial pressure ∼ 15 mTorr (purple triangles),
and vacuum (red circles). The single magnon-phonon coupling rate extracted from
these curves was g0mb/2π = 4.65, 4.66, 4.43 mHz, respectively. For this data, the
normal mode spectrum was tuned to (d) in Fig. 9.2, and the probe tone was tuned
on resonance with the ‘magnon-like’ mode. Inset: Power spectral density of the
mechanical motion for the green (drive power = 0.54 mW) and orange (drive power
= 0.68 mW) markers, respectively. (b) Phase coherent oscillations are visible within
the time-domain signal; here, the drive power is set above the parametric instability
threshold. (c) With the drive power set below the parametric instability threshold,
the time-domain signal comprises primarily of noise.

the magnon-phonon coupling rate is independent of the intrinsic decay rate and is

in good agreement with our numerical prediction and the result from the MMIT

measurement.

As the drive power is increased, a threshold will be reached where Γb + Γmag

becomes negative. In this situation, the mechanical oscillations will grow

exponentially in time and will ultimately be limited by higher-order nonlinear

effects. This parametric instability is analogous to lasing and is often referred to as

phonon lasing [145–148]6. The onset of lasing can clearly be seen in Fig. 9.7(a) as

the total decay rate approaches zero above a threshold drive power. Furthermore,

the inset of Fig. 9.7(a) shows the mechanical power spectrum above (orange) and

below (green) the threshold power. The onset of mechanical lasing results in four

6The term phonon lasing often causes controversy, so if preferred, this phenomenon can be
referred to as a parametric instability.
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orders of magnitude increase of the mechanical power spectrum. The additional

noise peaks in the lasing spectrum are a result of 60 Hz line noise captured by the

solenoid being transduced via the mechanical mode. Finally, we observe the onset

of mechanical lasing directly in the time-domain. The time-domain signal captured

by the ADC is plotted in Fig. 9.7(b,c). Below the lasing threshold, the signal is

mainly comprised of noise; however, above lasing threshold, coherent oscillations

at the mechanical frequency are visible [35, 149]. The time-domain and power

spectrum data provide unambiguous evidence of phonon lasing, which could be

used for stable clock signals [150], or as the basis of sensitive mass and force sensors

[151].

9.4.3 Magnomechanical Cooling

When driving on the red-sideband in our system, for example, Fig. 9.4(c,e), the

mechanical spectrum dips below the measurement noise floor, a phenomenon known

as noise squashing [112]. Noise squashing has been observed in optomechanics,

primarily in the context of feedback cooling [152, 153]. In feedback cooling, noise

squashing results from the detector noise and the noise-driven mechanical motion

becoming correlated.

In our experiment, the detector noise was not fed into the system and cannot

correlate with the mechanical motion. There was no feedback, and as a result, the

noise squashing we have observed has a different origin. Indeed, it has a backaction-

cooling origin, which has been observed in a microwave optomechanical nanobeam

device [154]; however, this is the first observation in magnomechanics. Notably,

because our experiment was performed at room temperature, there exist a large

number of thermally excited gigahertz magnons and photons, āth ≈ m̄th ≈ 800. This

thermal population produces a broad peak in the power spectrum, corresponding

to the hybrid system’s normal modes. In the triply resonant situation, the

mechanical mode lies directly in the center of this broad peak in the power spectrum.

Noise squashing results from destructive interference between upconverted drive

excitations and the thermal excitations, causing the mechanical peak to appear

below the detection noise floor. However, since the thermal peak is approximately

constant over the mechanical mode’s width, it is possible to extract the mechanical
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linewidth by performing a fit to an inverted power spectral density. The extracted

linewidth from the data in Fig. 9.5(b,c) are shown in Fig. 9.8(a). Extrapolating to

zero drive power, the intrinsic linewidth from the damping and anti-damping data

were Γb/2π = 58.5 Hz and Γb/2π = 59.7 Hz, respectively, which are in excellent

agreement.

(a) (b)

Figure 9.8: Magnomechanical cooling. (a) Mechanical linewidth as a function of
drive power in vacuum. Red circles demonstrate magnomechanical anti-damping
and includes the data from Fig. 9.5(b), green crosses demonstrate magnomechanical
damping and includes the data from Fig. 9.5(c). (b) Effective mode temperature of
the mechanical mode determined from Eqn. 9.4.

Finally, since our experiment lies well within the sideband resolved regime

(i.e. {κ, γm} ≪ Ωb), and the number of thermal magnons and microwave excitations

are small compared to the phonon population, we can extract the effective

mode temperature due to magnomechanical cooling. The effective phonon

mode temperature is given by an expression similar to that for driven cavity

optomechanical systems [112]:

Tfinal = Tinit

(
Γb(1 + β(P))

ΓTot

)
. (9.4)

Here, β(P) is a drive dependant variable; for derivation see Section 8.3. The

effective mode temperature is defined in a consistent way for a driven system

via the power spectrum of the mode [132]. The effective mode temperature is

shown in Fig. 9.8(b); at the highest drive power the mechanical mode was cooled
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to approximately 65 Kelvin from room temperature. With improvements to the

experimental setup, such as smaller YIG spheres, and pre-cooling the experiment

via cryogenics, which improves κ, Γb, and reduces thermal noise, it may be possible

to achieve ground-state cooling of the mechanical vibrations.

9.4.4 Anomalous Spring Effect

While searching for the magnon-spring effect we observed a drive-dependent

phonon frequency shift; however, this frequency is not entirely due to dynamical

magnon backaction. We believe that the observed frequency shift is potentially

influenced by the heating of the YIG sample by the microwave drive. This is

supported by the results plotted in Fig. 9.5(b,c); for zero drive detuning in the

triple-resonance scenario Eqn. 9.2 predicts zero frequency shift. However, both

cases result in a softening of the mechanical motion, likely due to a modification

of the Young’s modulus due to heating [155]. Magnetostrictive materials have

been shown to exhibit a magnetic field dependent Young’s modulus due to the ∆E-

effect [156, 157]. Therefore, temperature-dependent modifications of the saturation

magnetization and therefore internal static magnetic field may cause the observed

frequency shift [158]. Furthermore, for all detunings presented in Fig. 9.9, we

observe a softening of the effective spring constant. However, dynamical backaction

does not predict softening in all cases. Specifically, in Fig. 9.9(c), we expect the

magnon-spring effect to result in a hardening of the mechanics.

In all cases, the frequency shift follows the normal mode shape; as the normal

mode depth increases, the circulating power increases, and the frequency shift

increases. Moreover, the amplitude of the frequency shift is much larger than

what is predicted by the calculated phonon self-energy in Eqn. 9.2. The maximum

frequency shift predicted is approximately an order of magnitude smaller than

the one observed. Thus, in this situation, any frequency shift resulting from the

magnon-spring effect is overwhelmed by the additional frequency shift resulting

from heating.

The temperature dependence of the mechanical frequency was measured by

heating the experimental setup. We observe a dependence of approximately −715

Hz/K for the frequency shift, suggesting that at the highest drive powers, the
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(c) (d)

(b)(a)

Figure 9.9: Magnon Heating. (a-d) Mechanical power spectral density. Detuning is
relative to the specific mode shown within the inset. Plots (a) and (c) the probe
power is held constant at 0.54 mW. Plots (b) and (d) the probe power is held
constant at 0.27 mW. All data presented was obtained with the experimental setup
in atmospheric conditions.

temperature of the sphere was increased by approximately 1 Kelvin due to the

microwave drive. This heating can be mitigated by using lower drive powers, placing

the sphere in a partial pressure helium environment, and by applying the drive

tone to the ‘photon-like’ normal mode.

Additionally, in Fig. 9.9 one may expect that the signal-to-noise ratio should

be symmetric about zero detuning, with variations resulting from the homodyne

detection sensitivity. However, the primary determining factor of the signal-to-noise

ratio is related to the triple-resonance condition. For example, in Fig. 9.9(a), and

(c), the magnon-photon detuning was zero, such that the normal modes were fully

hybridized, see Fig. 9.2(b). In this situation, the normal mode spacing is slightly
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smaller than the phonon frequency 2gam/2π = 10.86 MHz and Ωb/2π = 12.627 MHz.

The asymmetry in the signal-to-noise ratio in Fig. 9.9(a) can be understood by

considering the mechanical sideband created on the microwave carrier. For negative

drive detunings – relative to the normal mode central frequency, i.e. ∆d < 0 – the

mechanical sideband is at a lower frequency than the lower normal mode and is

therefore not resonantly enhanced. Conversely, a positive drive detuning (∆d > 0)

results in the lower mechanical sideband lying directly within the lower normal mode,

resonantly enhancing this scatting process and improving the signal to noise ratio.

A similar argument can be made for the scattering process regarding Fig. 9.9(c),

resulting in a resonant enhancement of the scattering process for negative detunings.

It should be noted that we were made aware recently of an article that potentially

describes the origin of the anomalous spring effect; rather than resulting from the

heating of the YIG sample. Instead, the anomalous spring effect was attributed to

the Kerr nonlinearity present within YIG [143].
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Chapter 10

Conclusion

Magnetic spin waves (magnons) have found themselves at the center of the

development of many hybrid systems [1]. This focus has occurred thanks in part

to the ability of magnons to interact with a wide variety of additional subsystems

[13]. A majority of research has focused on the coupling of magnons to optical or

microwave photons, for example, to develop bidirectional conversion of photons [20].

This thesis focused on the magnetoelastic coupling of magnons with megahertz

frequency phonons. To date, the parametric magnon-phonon coupling has not

been studied in detail, with a single recent experimental publication by Zhang

et al. Ref. [37]. This work aimed to focus on this interaction, theoretically and

experimentally, to develop a deeper understanding and allow the development of

new and novel technologies.

This thesis investigated the magnomechanical interaction hosted within a

single crystal YIG sphere, providing a theoretical framework and experimental

demonstration of the magnon-spring effect and magnomechanical damping. The first

section of this thesis provided the required background information; in Chapter 2,

we introduced magnons, providing a semi-classical description using the Landau-

Lifshitz-Gilbert equations while also deriving the second-quantized Hamiltonian.

In Chapter 3, we reviewed Maxwell’s equations and how, when confined within a

metallic box, electromagnetic radiation can produce standing microwave resonances.

Next, chapter. 4 focused on the mechanical modes of a sphere, providing an

understanding of an isolated mechanical object. Next, in Chapters 5 and 6,

we describe the isolated magnon-photon and magnon-phonon interactions studied
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throughout this thesis. Having built up this theoretical background, the next section

of this thesis focused on the experimental and new theoretical work performed.

Chapter 7 describes experimental work investigating magnon-photon coupling.

First, the coupling of the Kittel mode to a rectangular microwave cavity is described

in detail. This work is similar to previous work performed in Ref. [16] and Ref. [17];

however, it describes the versatility of the coupled magnon-photon system that will

be utilized in future chapters. Next, tunability is achieved using a custom-built

permanent magnet allowing in situ modulation of the magnon frequency by varying

the static magnetic field strength. This is followed by a description of a tunable

microwave resonator coupled to magnons. To date, cavity magnonic systems have

used a fixed frequency microwave resonator, depending on the ability to tune the

magnon frequency. The addition of a tunable microwave cavity provides freedom

to choose the exact frequency of both the microwave and magnon modes. This may

be beneficial, for example, allowing precise tuning to the resonance frequency of a

superconducting qubit regardless of sight experimental imperfections.

In Chapter 8, we consider the full magnonmechanical Hamiltonian and

investigate the emergent phenomena one should expect to observe experimentally.

The full Hamiltonian itself is non-linear; therefore, to begin, we linearize the theory

providing a tractable problem to solve analytically. From the linear theory, we

can make two predictions: first, the magnonmechanical interaction will impart a

small frequency shift on the mechanical mode, known as the magnon-spring effect,

and second, we further expect to see a modification of the mechanical linewidth,

an effect known as magnomechanical damping (anti-damping). Both dynamical

backaction phenomena are summarized by the phonon self-energy, similar to the

related field of optomechanics [112]. We further propose a thermometry scheme

based on the magnomechanical interaction using this theoretical description.

Finally, in Chapter 9, we describe an experimental realization of the experiment

described in the previous chapter. We further describe a critical triple-resonance

condition, where the frequency difference between the hybrid magnon-photon modes

matches the frequency of the mechanical mode. The triple-resonance condition

enhances the backaction effects described previously, allowing the experimental

observation. We further describe the experimental setup and successfully observe
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both the magnon-spring effect and magnomechanical damping and anti-damping.

Moreover, we observe an anomalous backaction effect, attributed initially to heating,

but recently has been shown to be a result of the Kerr nonlinearity present within

YIG [143].

The parametric interaction between magnons and phonons has not been widely

studied. However, this interaction has been studied extensively theoretically despite

the limited experimental work. Therefore, there is likely plenty of potentially

experimental avenues for study. First and foremost, moving the experiment to

cryogenic temperatures would provide a testbed for exploring quantum mechanics

with massive samples. Moreover, moving to materials other than YIG, such

as lithium ferrite, may exhibit improved performance at room or cryogenic

temperatures.
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Appendix A

Maxwell’s Equations: Magnetic
Material

A.1 Wave Equation in Anisotropic Media

As we saw in Chapter 3, for plane waves Maxwell’s equations can be written in

the form:

ik×H = −iωD+ J, (A.1)

k× E = ωB, (A.2)

ik ·D = ρ, (A.3)

k ·B = 0, (A.4)

The first two Maxwell’s equations, using the constitutive relations defined in

Eqn. 2.38 and Eqn. 2.39, and assuming a source-free non-conducting media, can be

written in the form:

k×H = −ωϵ̄ · E, (A.5)

k× E = ωµ̄ ·H. (A.6)

Without formal motivation, it is convenient to define an antisymmetric matrix k̄

given by,

k̄ ≡ k× Ī =

 0 −kz ky
kz 0 −kx
−ky kx 0

 . (A.7)

Here Ī is the identity matrix. For an arbitrary matrix A, k̄ has the property:

k×A = k̄ ·A. (A.8)
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Using this vector identity, it is possible to rewrite Eqn. A.5 and Eqn. A.6 in the

form,

k̄ ·H = −ωϵ̄ · E, (A.9)

k̄ · E = ωµ̄ ·H. (A.10)

These equations can be simplified to the form [10],

[k̄ · ϵ̄−1 · k̄+ ω2µ̄] ·H = 0, (A.11)

and,

[k̄ · µ̄−1 · k̄+ ω2ϵ̄] · E = 0. (A.12)

These equations correspond to the complex wave equations for the H and E fields,

respectively. Typically, when solving Maxwell’s equations we do not consider

the matrix form of the permittivity and permeability tensors. However, for an

anisotropic magnetic material, we are required to consider an arbitrary solution

due to the form of the Polder susceptibility [59]. Non-trivial solutions to these

equations come from the solution to the equations,

det[k̄ · ϵ̄−1 · k̄+ ω2µ̄] = 0, (A.13)

det[k̄ · µ̄−1 · k̄+ ω2ϵ̄] = 0. (A.14)

A.2 Plane Waves in Magnetized Ferrite

As we have done throughout this thesis, let us assume that a strong static

magnetic field is applied in the ẑ direction. Moreover, we will assume the magnetic

material is electrically isotropic, as we did in Chapter 3. Thus, we can write

Eqn. A.11 in the form,

[k̄⊗ k̄− k2Ī+ ω2µ̄ϵ] ·H = 0, (A.15)

where µ̄ is the Polder susceptibility defined in Eqn. 2.41. Moreover, we have used

the vector identity k̄ · k̄ = k̄⊗ k̄− k2Ī, where the outer product u⊗ v is defined as,

u⊗ v =

uxvx uxvy uxvz
uyvx uyvy uyvz
uzvx uzvy uzvz

 . (A.16)
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Figure A.1: Magnon dispersion relationship kb for propagation perpendicular to
the applied field. The wavenumber is normalized by kM = ωM

√
µ0ϵ, and we further

used ω0 = ωM . The dashed line corresponds to the dispersion relationship for
k = ka = k0.

For a non-trivial solution we require,

det[k̄⊗ k̄− k2Ī+ ω2µ̄ϵ] = 0. (A.17)

If we explicitly carry out the matrix multiplication we find,

k̄⊗ k̄− k2Ī+ ω2µ̄ϵ =k20(1 + χ)− k2y − k2x kxky − ik20κ kxkz
kykx + ik20κ k20(1 + χ)− k2x − k2z kykz

kzkx kzky k20 − k2x − k2y

 , (A.18)

where k20 = ω2µ0ϵ. Here, we will consider the situation where k is perpendicular to

the applied magnetic field. A treatment of k parallel can be found in Ref. [10].

A.2.1 Perpendicular Propagation

Limiting our analysis to the situation where k = kŷ, we find that Eqn. A.18

simplifies to,
k̄⊗ k̄− k2Ī+ ω2µ̄ϵ =k20(1 + χ)− k2 −ik20κ 0

ik20κ k20(1 + χ) 0
0 0 k20 − k2

 . (A.19)

We can separate the magnetic field into two components written in the form,

H = H0ẑ + h, (A.20)
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where, H0 is the static field, and h is the field component related to the propagating

wave. Given this assumption, the field h must satisfy the equation,k20(1 + χ)− k2 −ik20κ 0
ik20κ k20(1 + χ) 0
0 0 k20 − k2

hxhy
hz

 = 0. (A.21)

Setting the determinant of the coefficient matrix equal to zero, we find:

k2a = k20 = ω2µ0ϵ, (A.22)

k2b = k20

[
(1 + χ)2 − κ2

1 + χ

]
. (A.23)

We can see that k2 = k2a corresponds to propagation in a non-magnetic dielectric.

Substituting the definitions of χ and κ, Eqn. 2.26 and Eqn. 2.27, respectively,

the dispersion relationship for kb can be written in the form,

k2b = k20

[
(ω0 + ωM)2 − ω2

ω0(ω0 + ωM)− ω2
0

]
, (A.24)

and is shown in Fig. A.1.
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Appendix B

Maxwell’s Equations: Waveguide
and Resonator

B.1 Waveguide Solutions

To begin, let us assume the electric and magnetic fields can be written in the

form1,

E(x, y, z) = [e(x, y) + ẑez(x, y)]e
iβz, (B.1)

H(x, y, z) = [h(x, y) + ẑhz(x, y)]e
iβz, (B.2)

where, e(x, y) and h(x, y) are the transverse electric and magnetic fields, and ez(x, y)

and hz(x, y) are the longitudinal field components, see Fig. 3.1. For a source-free

waveguide, we can write Maxwell’s equations as,

∇× E = iωµH, (B.3)

∇×H = −iωϵE. (B.4)

The three components of these equations can be written explicitly as,

∂Ez

∂y
− iβEy = iωµHx, (B.5)

iβEx −
∂Ez

∂x
= iωµHy, (B.6)

∂Ey

∂x
− ∂Ex

∂y
= iωµHz, (B.7)

1Note: we have assumed a time dependence e−iωt, therefore, compared with, Ref. [76] we
replace j with −i.
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∂Hz

∂y
− iβHy = −iωϵEx, (B.8)

iβHx −
∂Hz

∂x
= −iωϵEx, (B.9)

∂Hy

∂x
− ∂Hx

∂y
= −iωϵEx. (B.10)

These six equations can be solved in terms of the longitudinal field components,

reduced to four equations, given by:

Hx =
−i
k2c

(
ωϵ
∂Ez

∂y
− β

∂Hz

∂x

)
, (B.11)

Hy =
i

k2c

(
ωϵ
∂Ez

∂y
+ β

∂Hz

∂y

)
, (B.12)

Ex =
i

k2c

(
β
∂Ez

∂x
+ ωµ

∂Hz

∂y

)
, (B.13)

Ey =
−i
k2c

(
− β

∂Ez

∂y
+ ωµ

∂Hz

∂x

)
, (B.14)

where k2c = k2 − β2, is the cutoff wavenumber.

B.2 Transverse Electric Waves

As defined in the main text, transverse electric waves are defined by Ez = 0;

therefore, Eqns. B.11-B.14 reduce to,

Hx =
iβ

k2c

∂Hz

∂x
, (B.15)

Hy =
iβ

k2c

∂Hz

∂y
, (B.16)

Ex =
iωµ

k2c

∂Hz

∂y
, (B.17)

,

Ey =
−iωµ
k2c

∂Hz

∂x
. (B.18)

In order to solve for all field components, first we must find the solution to

Hz(x, y, z) = hz(x, y)e
iβz, which can be found from the Helmholtz equation,(

∂2

∂x2
+

∂2

∂y2
+ k2c

)
hz = 0. (B.19)

142



Where, the solution to Eqn. B.19 is subject to the specific boundary conditions of

the waveguide. For a rectangular waveguide of height a and width b, we can use

the method of separation of variables, defining

hz(x, y) = X(x)Y (y), (B.20)

substituting this into Eqn. B.19 we find

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+ k2c = 0. (B.21)

Since this equation must be valid for all positions in space, each term must be

constant, such that
d2X

dx2
+ k2xX = 0, (B.22)

d2Y

dy2
+ k2yY = 0, (B.23)

and must satisfy the condition k2x + k2y = k2c . The general solution for hz can be

written in the form,

hz = (A cos kxx+B sin kxx)(C cos kyy +D sin kyy). (B.24)

To determine the unknown coefficients we must apply the appropriate boundary

conditions. That is, the electric field components tangent to the waveguide walls

must be zero, i.e.

ex(x, y) = 0, at y = 0, b, (B.25)

ey(x, y) = 0, at y = 0, a. (B.26)

Applying these boundary conditions, we find the final solution for Hz has the form,

Hz(x, y, z) = An,m cos
mπx

a
cos

nπy

b
eiβz, (B.27)

where An,m is an arbitrary constant, kx = mπ/a, ky = nπ/b, and (m,n) are positive

integers. From this solution, one can see that the propagation constant is given

explicitly by,

β =
√
k2 − k2c =

√
k2 −

(
mπ

a

)2

−
(
nπ

b

)2

. (B.28)
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For an electromagnetic wave to propagate, the propagation constant must be real

therefore we find that

k > kc =

√(
mπ

a

)2

+

(
nπ

b

)2

. (B.29)

This corresponds to a cutoff frequency,

fmn =
c

2π
√
ϵrµr

√(
mπ

b

)2

+

(
nπ

a

)2

. (B.30)
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Appendix C

Tunable Magnet

The magnon frequency is determined by the magnitude of the applied static

magnetic field. To produce magnons with a frequency of 7.0 GHz requires an applied

magnetic field of ∼ 250 mT. Generating a static magnetic field of this magnitude

at room temperature can be difficult. Therefore, we constructed a magnet using

a pair of static neodymium magnets to provide the necessary field strength and

a solenoid to provide tunability. The magnet construction is similar to that used

in Ref. [21], see Fig. C.1. A pair of disk-shaped permanent neodymium magnets

are attached to the ends of an iron yoke. The permanent magnets produce a static

field of approximately ∼ 260 mT at the center of the gap between the magnets.

Tunability is provided by an approximately 104 turn solenoid wound around the

iron core of the yoke. The solenoid provides approximately ±15 mT of tunability

about the field generated by the permanent magnets. The tunability was limited

because the current source could only generate ∼ 30 mA of current.

An identical magnet was fabricated for cryogenic experiments, the only

change being replacing the copper solenoid with superconducting wire. The

superconducting wire allowed a larger current to be passed through the solenoid,

increasing the tunability to approximately ±100 mT.

One drawback of this magnet design was that the current source used to

drive the solenoid introduced 60 Hz fluctuations of the static magnetic field.

These fluctuations were visible directly in the VNA measurements and were also

observed directly in the mechanical spectrum when driven into mechanical lasing,

see Section. 9.4.2.
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(a) (b)

Figure C.1: Tunable magnet. (a) Rendered schematic of the tunable magnet. Pure
iron yoke with a pair of disk-shaped neodymium magnets provides the static bias
field. A ∼ 104 turn solenoid provides tunability about the bias field set point. (b)
Photograph of the tunable magnet.
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Appendix D

MMIT: Theory

Here we will outline the equations used to fit the magnomechanically induced

transparency data; however, for a full description of this theory, see the

supplementary material included with Ref. [37]. For the data presented in

Section 9.3, the drive was detuned from the lower normal mode by the phonon

frequency, ωd = ω− − Ωb. In this scenario, the transparency window will have a

peak reflectivity is defined as

r =
1− 2κ−,e

κ−
+ C

1 + C
. (D.1)

The transparency window can be seen in Fig. 9.3. Here, κ− and κ−,e are the

linewidth and external coupling rate of the lower normal mode, respectively, and C

is the cooperativity.

The cooperativity can be shown to have the form,

C ≈ 4P(g0mb)
2

ℏωdΩ2
bΓb

κ1 sin
4(θ) cos2(θ)

κ cos2(θ) + γm sin2(θ)
, (D.2)

where P is the microwave power at the experimental device. All losses have been

carefully calibrated to ensure the accurate determination of the power reaching the

device from the microwave sources. All other variables have been defined in the

main text except θ ∈ [0, π/2], which is defined as,

tan(2θ) =
2gam

ωm − ωa

, (D.3)

where θ describes the hybridization of the normal modes; for maximally hybridized

modes θ = π/4.
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By varying the static magnetic field, and therefore the magnon-photon detuning,

and measuring the cooperativity at each detuning using Eq. (D.1) it is possible to

determine the magnon-phonon coupling rate. The cooperativity as a function of

the lower normal mode frequency is shown in Fig. 9.4.
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Appendix E

Cryogenic Experiments

Following the work performed at room temperature, see Chapter 9, the

experiment was moved onto the baseplate of a dilution refrigerator. Pre-cooling the

experiment will ensure the gigahertz microwave and magnon modes are cooled to

their thermal ground state. Furthermore, starting from the baseplate temperature

of ∼ 10 mK may allow magnomechanical cooling of the mechanical motion into

its ground state. Ground-state cooling would allow further experimentation in

studying the quantum behavior of massive mechanical objects. Attempts were made

to observe the YIG sphere’s mechanical motion; however, these were ultimately

unsuccessful.

Despite the inability to observe mechanical motion, several measurements

were performed. First, we measured the microwave cavity linewidth at cryogenic

temperatures. As predicted in Chapter 3, the microwave quality factor increased.

At ∼ 15 mK the microwave quality factor increased to a value of Q ≈ 16 000.

Next, we measured the magnon linewidth as a function of temperature. As was

observed in Ref. [17], the magnon linewidth is minimum at approximately 1K and

increases slightly with decreasing temperature due to coupling to two-level systems;

see Fig. E.1.

There are several potential reasons we could not observe the sphere’s mechanical

motion. Here we will consider several potential issues that would need to be

considered for future experiments. First, the mechanical frequency will shift as

a function of temperature. It is expected that the mechanical frequency shift

should be small since the change in Young’s modulus is relatively small over this
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Figure E.1: Temperature Dependence of Magnon Linewidth. A minimum in the
magnon linewidth exists at approximately 1K; a slight increase is observed below
this temperature and has been attributed to two-level system relaxation; see Ref. [17]
for a full discussion.

temperature range [155]. However, additional factors may result in a frequency

shift; if the frequency shift is large, it may not be possible to reach the triple-

resonance condition, which is important for increasing the mechanical signal. Next,

the magnetoelastic coupling constants are temperature-dependent. In previous

experiments measuring the magnetoelastic coupling constants, there appears to be

a trend of b1 decreasing with decreasing temperature [159, 160]. This may result in

the magnon-phonon coupling rate g0mb becoming small at cryogenic temperatures.

One possible way to avoid these issues is to follow the mechanical spectrum as

a function of temperature. Unfortunately, the linewidth of magnons within YIG

experiences a maximum at ∼ 45 K, making it difficult to measure the mechanical

spectrum continually [12]. These issues may be avoided by switching to a new

material, such as lithium ferrite; however, this will require further research [121,

161].
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Appendix F

COMSOL Magnon-Photon
Coupling

COMSOL Multiphysics® is a finite-element method solver [74] widely used

throughout this thesis. In Chapter 5, we used Comsol to estimate the magnon-

photon coupling rate by estimating the mode volume of the microwave resonance.

This method is powerful since the mode volume of an arbitrary microwave resonator

can be found rapidly. However, this method does not consider any non-uniformity

of the cavity field. As discussed in Chapter 7, any non-uniformity of the cavity field

will result in coupling to higher-order Walker modes. This appendix will discuss

an alternative method for simulating magnon-photon coupling within a microwave

cavity.

Within Comsol, one can define a custom anisotropic permeability tensor for

custom material. We will define the relative permeability for the YIG sample as

defined by the Polder susceptibility tensor, Eqn. 2.41, and the relative permeability

as ϵr = 15 [66]. Using the definitions in Chapter 2, one can perform a parametric

sweep of the fictitious static magnetic field used in the definition of ω0, see

Section 2.3.1. We will utilize the Electromagnetic Waves, Frequency Domain

(emw) physics package in Comsol with the Frequency Domain study. Explicitly

calculating S21(ω), Comsol effectively solves Maxwell’s equations coupled to the

Landau-Lifshitz-Gilbert equation for each frequency and the static magnetic field

value. This simulation repeats in simulation the measurements are done, for example,

in Chapter 7 while studying the tunable microwave resonator. Figure F.1 shows

a comparison between the Comsol simulation and the experimentally measured
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(a) (b)

Figure F.1: (a) Experimentally measured transmission coefficient (b) COMSOL
simulation demonstrating strong magnon-photon coupling.

transmission through a cavity similar to that used in Ref. [114].
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