
University of Alberta 

EFFICIENT TRANSMISSION AND RESOURCE ALLOCATION METHODS FOR 

MULTI-USER MIMO DOWNLINK 

by © 

Boon Chin Lim 

A thesis submitted to the Faculty of Graduate Studies and Research in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy 

in Communications 

Department of Electrical and Computer Engineering 

Edmonton, Alberta 

Fall 2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-46361-1 
Our file Notre reference 
ISBN: 978-0-494-46361-1 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



To Linda, Annette, Quianna, my parents and the Almighty 



ABSTRACT 

The consideration of multiple-input multiple-output (MIMO) techniques for the 

cellular downlink of future wireless systems is motivated by the demand for high 

transmission rates to multiple users over limited frequency spectrum. Although the 

optimal approach for MIMO broadcast channels is dirty paper coding (DPC), it incurs 

very high complexity that limits its practicality. This thesis focuses on enhancing the 

feasibility of deploying multi-user MIMO techniques in practical downlink systems. In 

line with this, emphasis is placed on improving the performance of transmit zero-forcing 

beamforming (TZFBF), which has lower complexity but is sub-optimal. 

To narrow the sum rate performance gap with DPC systems, it is shown that 

receive antenna selection (RAS) is necessary for maximizing the achievable sum rate for 

TZFBF systems. This is true for TZFBF systems with multi-antenna terminals even when 

all receive antennas are equipped with RF chains and RAS reduces the upper bound on the 

broadcast sum capacity, and when the orthogonalized channels use optimal processing. 

Similarly, spatial mode selection (SMS) is necessary when receive-weight matrices are 

used for spatial mode allocation. Significantly, RAS/SMS helps to reduce the performance 

gap even for small user pool sizes. Optimal user selection for sum rate maximization is 

subsumed within an optimal RAS/SMS process for multi-antenna terminals and both 

selection processes become identical for single-antenna terminals. For a system with M 

transmit antennas, RAS/SMS increases the probability of scheduling M spatial modes 

compared to the case with sole reliance on user selection, especially when the potential 

user pool is small. 



However, optimal RAS/SMS incurs very large system overhead because the 

channel matrices of all potential users must be fed back to the base station. Another 

challenge is posed by the flexibility for spatial mode allocation at multi-antenna terminals 

to meet individual transmission rate requirements. A streamlined process that 

encompasses efficient selection with feedback reduction and systematic resource 

allocation with rate loss minimization, is developed for the sum rate maximization of 

TZFBF systems. In addition, bounds are developed for estimation of the ergodic TZFBF 

sum rates where RAS/SMS, user selection, signal-to-noise ratio and number of transmit 

elements are taken into account. 
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Chapter 1 

INTRODUCTION 

The wireless communications industry has witnessed phenomenal worldwide growth 

since the early 1990s. Cellular communications networks in particular have become 

pervasive and the high subscriber rates testify to the fact that wireless communications is 

a reliable and viable transport mechanism for voice and data. This widespread success 

has given impetus to the development of newer wireless systems and standards for many 

other types of telecommunication traffic. In fact, cellular telephones began to evolve into 

something more than the wireless version of the telephone invented in the 19 century 

when the short message service was introduced. From this beginning of mobile 

convergence, the introduction of wireless access to the Internet is driving digital 

convergence in all conceivable areas, including digital audio broadcasting, digital video 

broadcasting, peer-to-peer multimedia communications, multimedia messaging service 

(MMS), 3D audio and video on demand [1]. The convergence is accelerated with the 

push towards the vision of a highly developed ubiquitous information society that 

incorporates paradigms such as ubiquitous networks, pervasive computing, and ambient 

intelligence. The content-rich lifestyle envisaged under these visions and paradigms will 

not only place heavy demands on the wireless communications infrastructure but also 

demands for more frequency spectrum, which is a very limited resource. In the cellular 

context, content-rich applications will result in high data-rate transmissions especially on 

downlinks, that is, data delivered from base stations to user terminals. A similar push has 

also been happening in the domain of military communication systems. It has been more 

than a decade since the first calls have been issued for the development of military 

communication systems that enable network-centric operations. There is a desire to 

realize the full potential of a robust ubiquitous military network that provides the benefits 

of Internet-like connectivity and flexibility. The development of such a network is still 

fraught with fundamental challenges like severe spectrum limitations [2]. 
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It is commonly recognized that the "sweet-spot" of the radio spectrum is 

approximately between 300 and 5000 MHz where the bandwidth and propagation 

characteristics are favorable for the delivery of broadband and mobile wireless services. 

The demand for this spectral range is very high as more and more wireless services are 

being introduced or proposed. Although more bandwidth is available in the higher 

frequency bands, they tend to suffer from higher propagation losses and place limitations 

on coverage and reach. High-gain, directional antennas may be used in some cases to 

address the range issue. However, for cellular systems the use of highly directional 

antennas is impractical. Although the cellular concept allows for frequency re-use, the 

growing user density and the push for content-rich applications has spurred research 

efforts to extract as much as possible from every piece of spectral real estate. 

In this respect, new ground in information and communications theory was broken 

in the mid 1990s with important breakthroughs beginning with the introduction of spatial 

multiplexing by Paulraj and Kailath in 1994 [3] and the subsequent fundamental research 

done at Bell Labs (for example, [4] and [5]). Under scatter-rich propagation conditions, 

huge data-rate gains over conventional point-to-point wireless systems were obtained by 

employing multiple-antenna arrays at both the transmitter and receiver [5]-[6]. Such 

multiple-antenna wireless systems have become commonly referred to as "multiple-input 

multiple-output" or MIMO systems. The block diagram of a typical point-to-point MIMO 

system is shown in Figure 1.1 where the transmitter has M antennas and the receiver has 

N antennas. 

The high data-rate gains are obtained by separating signals that are transmitted in 

the same frequency channel from spatially separated transmitters. This creates parallel 

channels within the same channel bandwidth and the resulting capacity increase is linear 

with the array size rather than the conventional logarithmic increase with increasing 

signal-to-noise ratio. Under a scatter-rich environment where each path between a pair of 

transmit- and receive antennas experiences independent and identically distributed (i.i.d.) 

Ray leigh fading, the single-user capacity Csu of the MxN point-to-point MIMO system 

in Figure 1.1 can be written as [5], [7] 

Csu=log2det(l + (SNR)HH") bits/sec/Hz, (1.1) 
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Transmitter 

GhanriblW 
. • : . ; f ! ; r i H ' » W M l 4 * ! i : K ! i 

matrixHl 
M transmit antennas 

Receiver 

N receive antennas 

Figure 1.1: Block diagram of a single-user, point-to-point MIMO system 

where H is the NxM channel matrix. When the signal-to-noise ratio (SNR) is high, the 

average or ergodic single-user capacity Csu is 

Csu = min (M, N) log2 SNR + 0(1) bits/sec/Hz, (1.2) 

where 0(1) represents a term with negligible contribution. Equation (1.2) shows that the 

capacity scales with min(M,iV) bits/sec/Hz whenever the SNR increases by 3dB. 

Departing from the traditional approach where antenna arrays are used in tandem 

with processing algorithms to mitigate the ill-effects of multipath propagation, MIMO 

systems exploit the multipath environment and excel under scatter-rich environments. 

MIMO systems can also be used to provide diversity gain rather than capacity gain. This 

is typically achieved by designing codes that improve link reliability by spreading data 

over both space- and time dimensions and is commonly referred to as space-time coding. 

In this dissertation, we will be focusing on the issues relating to the utilization of MIMO 

systems for spatial multiplexing to achieve capacity gains. 
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M transmit antennas 

\7 N} receive antennas 

i N-, receive antennas 

Mobile 
user #2 

i NJT receive antennas "K 

Mobile 
user #K 

Figure 1.2: Block diagram of a multi-user MIMO system 

To serve multiple users in cellular systems, traditional multiplexing methods for the 

downlink (from base station to the users) and multiple access methods for the uplink 

(from the users back to the base station) are based on one or a combination of the 

following, namely, time-division, frequency-division and code-division. MIMO systems 

have opened the spatial dimension for point-to-point systems and their consideration for 

the multi-user environment is a natural extension. It may appear that combining a MIMO 

spatial multiplexing scheme, that is, space-division multiplexing (SDM) with time-

division multiplex (TDM) is a viable configuration to serve multiple users in the cellular 

downlink shown in Figure 1.2. This is however of limited utility primarily because of 

physical limitations at the user terminals. To see why this is so, consider first that the 

capacity of a point-to-point MIMO system scales almost linearly with min(M, N) over 

the single-input single-output (SISO) case, where M and N are the number of transmit and 

receive antennas, respectively [6]. The TDM regime will constrain the base station to see 

only one user at a time and the scaling with min(M, N) applies, where N is the number 
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of antennas at each user terminal. Although it is possible to equip the base station with 

more antennas, mobile or nomadic terminals have limited space and power. For example, 

most existing mobile platforms have only one antenna and the configuration will only 

result in logarithmic capacity gain. Consequently, serving multiple users via a 

combination of MIMO techniques and TDM will not help achieve capacity that scales 

with M, the number of base station antennas. 

Still, it appears reasonable that by exploiting the differences in spatial signatures 

under a scatter-rich environment, MIMO systems can create multiple channels in the 

spatial domain to serve multiple users simultaneously from a single base station using the 

same frequency channel and within the same time slot. For point-to-point MIMO 

systems, achieving a capacity that scales with mm{M,N) requires channel state 

information (CSI) to be available at the receiver, but is not necessary at the transmitter. 

The channel state information comprises details on the channel gain and phase shift from 

each transmit antenna to each receive antenna. For the multi-user situation, spatial 

multiplexing to multiple users from a single base station is possible when full CSI is also 

available at the transmitting base station. This stems mainly from the fact that the 

transmitter is then able to account for the inter-user interference among the users when 

catering for the channel rate requirement of each user. CSI at the base station is not only 

useful in achieving the required SNR at a desired user but also in reducing the resultant 

interference at other points of the system. A survey on the various schemes to accomplish 

this will be given in the next section. CSI at the base station may be obtained via (a) the 

use of training or pilot data in the uplink for time-division duplex systems or (b) feedback 

of each user's channel estimates done using training data in the downlink for frequency-

division duplex systems. Acquiring CSI at the transmitting base station using either 

method is challenging and incurs substantial overhead but appears to be justifiable due to 

sum rate gains in the multi-user environment. 

A performance parameter of interest is the sum rate, which is the sum of all channel 

rates achieved in each of the parallel data channels created by spatial multiplexing. The 

maximum achievable sum rate of a multi-user MIMO system is referred to as its sum 

capacity. Sum rate maximization or achieving the sum capacity is of interest when high 
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overall system throughput is desired. Note that achieving sum capacity often results in 

uneven resource allocation among the users served, that is, some users end up with high 

channel rates exceeding their requirements while others may be in deficit. An alternative 

to sum rate maximization is an exercise to meet a certain level of Quality of Service 

(QoS) at each user. This may be expressed in terms of a minimum data rate, maximum 

packet delay, etc. The problem of meeting QoS constraints at the minimum transmission 

power is commonly referred to as the power-control or interference-balancing problem. It 

must be recognized that meeting each user's QoS needs will likely cause a departure from 

the best achievable sum rate. Both issues will be addressed in this dissertation. Although 

more effort is placed on the issue of sum rate maximization, both issues are addressed 

jointly, for example, a mechanism for meeting the user-QoS requirements while 

minimizing the sum rate loss will be proposed. 

Before giving a survey on the various spatial multiplexing schemes, it is noteworthy 

that spatial multiplexing could also be used to enhance future broadband systems at the 

infrastructure level besides serving multiple users at the "last-mile" stage. For example, 

multi-hop relaying is considered one of the most promising technologies in broadband 

systems that enables cost-effective enhancement of coverage, user throughput and system 

capacity [8]. The primary reason is that many broadband radio interfaces for next-

generation mobile networks such as 3G LTE (Long Term Evolution) and mobile 

WiMAX 802.16e and beyond will be characterized by very limited range due to the push 

for higher data rates over higher transmission frequencies, which have higher propagation 

channel losses. The high data rate demand coupled with high channel losses translates to 

lower energy in every bit of information sent, which poses more challenges for reliable 

data recovery. For example, 3G systems are expected above the 2 GHz band while 

WiMAX 802.16e is destined to become the time-division duplex technology for the 2.5 

and 3.5 GHz bands. To get a feel of the impact, good quality indoor coverage in a 

suburban setting would take nearly four times as many sites to deploy at 2 GHz than at 1 

GHz, and 10 times as many for 3.5 GHz [8]. To ensure that the quality of end-user 

experience is not dependent on terminal location within a cell, a high density of base 

stations will be needed, which will drive up the cost of deployment. To address this 

problem, the use of multi-hop relays appears to be a viable solution [9]. In particular, 
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wireless relay nodes do not need wired-backbone access and help reduce capital 

expenditures. They facilitate faster network rollout and enable adaptive traffic capacity 

engineering. They are also well suited for ad hoc deployments such as emergency and 

disaster scenarios as well as military settings. Since relays normally work in the half-

duplex mode, the burst rate in each half will be high if a high overall system throughput 

is desired. For example, the burst rate in each relay hop is roughly double that of the 

overall system throughput for a two-hop relay system. The problem is compounded if a 

base station has to communicate with several relay nodes in different area sectors. 

Serving these relay nodes via time-division multiplexing coupled with half-duplex 

operation will result in very high burst rates that may exceed individual channel 

capacities. Toward this end, spatial multiplexing using MIMO technologies in the relay 

downlink between a base station and its neighboring wireless relay nodes is particularly 

attractive since reliance on time-division multiplexing can be avoided or at least reduced. 

Further cost reduction may be realized from the fact that MIMO systems operate best in a 

scatter-rich environment. This means that the relay nodes need not be located on high 

tower structures to get good line-of-sight with a base station. Additionally, there are two 

other reasons that make fixed wireless relays favorably disposed for the application of 

MIMO techniques as compared to mobile nodes. First, spatial multiplexing relies on the 

availability of accurate and timely channel state information. It is easier to meet this 

requirement with relay nodes because they are usually static when deployed. Second, the 

form factor of relay terminals is not normally constrained by space and power as 

compared to mobile terminals, which are constrained by ergonomics. This means for 

example that the possibility of incorporating more antennas and RF chains at a relay 

terminal is much higher than for a mobile terminal. 

LI A Brief Survey of Spatial Multiplexing 
Schemes 
Spatial multiplexing methods for multi-user MIMO downlinks may broadly be classified 

under two categories, namely, the coding approach to avoid inter-user interference or the 

signal processing approach. The methods may be further classified according to a number 
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of criteria like (a) whether they attempt to approach the sum capacity bound, (b) the 

extent of inter-user interference elimination, (c) the number of user terminal antennas, (d) 

whether they utilize the user terminal processing capabilities, (e) whether they achieve 

the minimum QoS requirements, and (f) the number of data streams transmitted to each 

user [10]. As an example, a spatial multiplexing scheme that maximizes the sum capacity 

may not always lead to a desirable solution as it favors users with higher SNR and leaves 

weaker users with little or no throughput. 

Information theory literature considers multi-user downlinks where transmissions 

originate from a base station as a "broadcast channel" (BC). It is referred to as a "vector 

broadcast channel" or as a MIMO broadcast channel when the MIMO structure is 

included. When the transmitter and receivers have full channel state information, the 

MIMO broadcast channel is considered as non-degraded. It has been proven in [11] -

[14] that the maximum sum rate, that is, the sum capacity of non-degraded MIMO 

broadcast channels is achieved by a coding technique proposed by Costa called "writing 

on dirty paper" [15]. This is commonly referred to as dirty-paper coding (DPC) and a 

tutorial exposition is available in [16] from which the basic idea is outlined here. Suppose 

a signal S is to be sent in the presence of interference / and noise W. If the interference / 

is known beforehand to the transmitter that is sending S, Costa presented the surprising 

result that the capacity of this system is the same as if there were no interference present. 

This concept of writing on dirty paper implies designing a code that avoids the known 

interference /. In the context of multi-user downlinks, the base station has knowledge of 

the signals to be sent to each user. If the channel to each user is also known at the base 

station, the interference arising from the non-desired signals arriving at each user will 

then be known and dirty-paper methods can then be used to avoid mutual interference. It 

has been shown that the sum capacity Csum as well as other combinations of individual 

channel rates are achievable, that is, all points of the rate region for different QoS are 

achievable using the dirty-paper coding approach [17]. For the case where all K user 

terminals have only one antenna, the sum-capacity expression is [12] 

Csum - sup log2 det (i + HDH" ) bits/sec/Hz, (1.3) 
DeA 
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where A is the set of all KxK non-negative diagonal matrices with trace (D) < P, where 

P is the total transmitted power. The multi-user sum capacity expression in (1.3) is 

similar to the single-user capacity expression in (1.1) and hence it is easy to see that the 

expected sum capacity Csum also scales linearly with mm(M,K) under the same 

conditions as for Csu. When the number of users K is very large, it has been shown that 

the asymptotic expected sum capacity of a MIMO-BC system using DPC scales with the 

number of transmit antennas Mas 

MloglogKN, (1.4) 

where N is the number of receive antennas per user [18]. 

Unfortunately, dirty-paper coding involves complex nonlinear designs that incur 

heavy computational load, which may present difficulties for real-time implementation at 

least in the near term. DPC is sometimes referred to as interference-dependent coding 

because the transmitted code is a nonlinear function of the information symbols and the 

interference environment. As such, DPC requires new code designs, which makes it 

incompatible with current communication standards and protocols and complicates its 

adoption. There are various works that seek to achieve simplified DPC techniques and 

one such example referred to as vector perturbation is found in [19]. 

There is a lower-complexity alternative to the coding approach for achieving spatial 

multiplexing in multi-user MIMO systems and this is the signal processing approach for 

which there is extensive industry experience and support. In this non-coding approach, 

the signal for an intended user is treated as noise when it arrives as interference to other 

users. A multi-user system that adopts this approach is referred to as a degraded-

broadcast channel in information theory literature. In particular, linear processing 

techniques like transmit beamforming and receive beamforming can achieve spatial 

multiplexing with reduced complexity. In contrast to DPC, beamforming involves 

choosing appropriate transmit- and receive vectors and the process is independent of the 

signaling and coding protocols used. Hence, the integration of such linear processing 

techniques into current systems is much less complex than DPC. One simple linear 

transmit beamforming technique is zero-forcing beamforming (ZFBF), which is widely 
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considered due to its relative simplicity. The transmit processor is chosen such that all 

inter-user interference will be reduced to zero. However, like zero-forcing receivers, 

which suffer from noise enhancement, ZFBF suffers from transmission power increase 

when signals arriving at different users are highly correlated. Another class of schemes in 

the signal processing approach employs non-linear techniques. An example of this is 

based on the Tomlinson-Harashima pre-coding (THP) technique [20], [21] that was 

originally developed for the pre-equalization of inter-symbol interference in dispersive 

channels. Compared to zero-forcing beamforming, transmit processing using THP 

techniques has better success at limiting the power increase when pre-eliminating the 

inter-user interference. More details on this approach can be found in literature, for 

example, [22]. 

To achieve the maximum sum rate, optimal beamforming requires interference 

balancing or equivalently, signal-to-interference-plus-noise ratio (SINR) balancing across 

all active users. Significantly, it has also been shown in [18] that the expected sum rate 

for optimal beamforming scales as for DPC, that is, with MloglogKN, when the 

number of users K is very large. Nevertheless, optimal beamforming is still inferior when 

compared to the DPC approach, which achieves sum capacity for MIMO-BC. Although 

less complex than DPC, optimal beamforming involves SINR balancing and presents a 

non-convex problem that still entails high computational complexity [23], [24]. A sub-

optimal beamforming method with lower complexity is zero-forcing beamforming, which 

does away with SINR balancing by enforcing zero co-channel interference (CCI) among 

the active users. In effect, this results in the creation of orthogonal parallel single-user or 

point-to-point MIMO channels that are free from mutual interference and coding for each 

user can be done independently of others. 

The lower complexity of zero-forcing beamforming (ZFBF) is accompanied by a 

performance penalty in that its expected sum rate R^F does not increase linearly with 

M. This is shown in [25] and more details are given in Chapter 2. However, this setback 

can be overcome when a large user pool is available from which user selection becomes 

possible. It is shown in [26] that i?ŝ fF, the expected sum rate for ZFBF with single-

antenna user terminals ( N = 1) approaches that of DPC in the limit of large K and when 
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judicious user selection is applied. This means that R*™F » C°^c when K -»oo and the 

average ZFBF sum rate scales linearly with M, and from (1.4), it scales as M log log X". 

This is due to the existence of multi-user diversity, and the channel gains of the best users 

are roughly log AT times the average channel gain, as stated in (1.4). When CSI is 

available at the transmitter, it can choose a group of users with high channel gains whose 

channel directions are closely matched to the zero-forcing beam directions. 

Motivated by the possibility for ZFBF to scale like (1.4) and by its low complexity, 

our focus is on finding solutions to address the shortcomings of ZFBF in line with the 

intent of this dissertation to enhance the feasibility of deploying multi-user MIMO 

systems. To be commensurate with its low complexity, emphasis on efficiency is given 

when developing algorithms for the performance enhancement of ZFBF systems. For 

example, attention is paid to enhancing the performance of low-complexity, user-

selection methods when developing algorithms to enable scaling with M as closely as 

possible. 

When the users or nodes are equipped with multi-antenna terminals, a class of 

ZFBF that makes use of block diagonalization has been proposed in [27]-[29]. The 

motivation behind block diagonalization comes from the recognition that enforcing ZFBF 

between antennas of the same terminal is sub-optimal because those antennas can 

coordinate their processing for better performance. It is therefore better to enforce zero 

co-channel interference between user terminals only and this gives rise to the block 

diagonalized approach of achieving space-division multiplexing (SDM). It is recognized 

in [27]-[29] that block diagonalization effectively creates parallel single-user MIMO 

channels and hence optimal processing techniques that were traditionally proposed for 

single-user MIMO channels could be used. This includes schemes like layered space-time 

coding and a beamforming scheme that is based on the singular-value decomposition 

(SVD) of single-user MIMO channels. The SVD-based beamforming scheme is optimal 

for single-user MIMO channels [30] and a description of its use in BD systems can be 

found in [27]. It has also been recognized that in the presence of large user pools, 

judicious user selection is beneficial for mw/ft'-antenna terminals served by spatial 
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multiplexing [31]. The benefits of user selection are also recognized for block 

diagonalized systems, for example, [32] and [33]. 

In this dissertation, it is shown that sole reliance on user selection is insufficient 

when maximizing the ZFBF sum rate for block diagonalized systems. Instead, an 

additional level of selection, commonly known as receive antenna selection (RAS) is also 

needed. The combination of RAS and user selection helps ZFBF systems with multi-

antenna terminals to approach scaling with M faster than dependence on user selection 

alone. Another important impact of this combination is the possibility of scaling with M 

with smaller user-pool sizes than when relying on user selection alone. This will help 

realize performance improvements under realistic operating conditions and avoid a 

dependence on the existence of large user pools. It is shown in Chapter 5 that the user 

selection process is in fact subsumed under the RAS process when optimal selection is 

desired. Note that the RAS and user selection processes become identical for ZFBF 

systems serving single-antenna terminals. 

The RAS concept was originally developed for single-user MIMO links where 

hardware cost reduction was sought while preserving as much of the performance as 

possible. Since the cost of antennas is generally lower than the attendant RF-chains, the 

idea is to cater more antennas than RF-chains. The antennas are spatially spread out and a 

subset of the best antennas is selected for connection with the RF-chains via RF switches. 

It is shown in [34] that judicious receive antenna selection done over this configuration 

will help achieve the diversity order of a fully equipped system, that is, a system where 

each antenna is served by its own RF-chain. It must be pointed out however that the 

switching loss incurred between the antennas and the RF chains may be high. This has 

negative impact on the signal-to-noise ratio and must be accounted for in the link budget. 

A feasibility study can then be made by weighing the degradation against the potential 

diversity gain. It is noteworthy however that progress in technologies such as micro-

electromechanical systems (MEMS) may help reduce the losses incurred by RF switches 

and make the RAS concept more viable. 

Differing from the conventional approach to receive antenna selection (RAS), it is 

shown in this dissertation that RAS is necessary for sum rate maximization even when 
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Figure 1.3: Comparison between traditional RAS and RAS for fully equipped system 

each user terminal is fully equipped. This is true despite a drop in the upper bound on the 

broadcast sum capacity. To highlight some numerical results, significant improvements to 

the average sum rate of between -40% to -50% are obtained when RAS is performed on 

an 8-user block-diagonalized system, where each user is equipped with 4 antenna-RF 

chains (note that user selection is not done). It is interesting to note that users with 

reduced antenna-array sizes may also enjoy channel rate increases. More details on this 

are given in Section 1.3 and in Chapter 3. It is also important to note that issues 

associated with switching losses between the antennas and RF chains do not exist in this 

case because each terminal is fully equipped, that is, each antenna is accompanied by an 

RF-chain. Selection can then be done after down-conversion so that possible impact on 

the link budget is typically negligible. A comparison between the original RAS scheme 

for single-user MIMO systems and the RAS scheme proposed for block-diagonalized 
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systems is shown in Figure 1.3. Analysis of the mechanisms behind the impact of RAS, 

its extent and its consideration together with user selection is given in Chapter 3. For 

systems that use receive-weight matrices to control the number of data streams, that is, 

the number of spatial modes, it is shown that spatial mode selection (SMS) is also needed 

to help maximize the sum rate. This process is analogous to the receive antenna selection 

(RAS) process and its details are given in Section 1.3. 

As noted earlier, the sum rate maximization process often results in uneven resource 

allocation among the users served, that is, some users end up with high channel rates 

exceeding their requirements, while others may be in deficit. On the other hand, it must 

be recognized that meeting each user's QoS needs will likely cause a departure from the 

best achievable sum rate. Both issues are jointly addressed in this dissertation and 

algorithms for meeting the user-QoS requirements while minimizing the ZFBF sum rate 

loss are proposed. A related problem exists for multi-antenna terminals that are capable 

of receiving more than one data stream. Here, the resource allocation problem entails (a) 

finding an appropriate number of antennas/modes to be activated at each user terminal to 

meet each individual demand and (b) solving a combinatorial problem that may arise 

when subsets of antennas/modes are to be chosen at some users. A challenge emerges 

here because resource allocation done at any one user will have an impact on all other 

users. To address these issues, efficient resource allocation algorithms are developed in 

this thesis that meet individual channel-rate requirements while minimizing the 

individual- and the overall sum rate losses. 

The use of receive antenna selection in block diagonalized systems was previously 

mentioned in [35], [36] and [37]. An equivalent was proposed in [38], where beam 

ordering and selection were introduced for BD. However, [36] and [38] did not give 

detailed explanations of why receive antenna selection (RAS) benefits BD-SDM systems. 

They did not cover schemes that use receive-weight matrices for spatial mode allocation. 

The RAS algorithms in [36] and [38] use a single-antenna selection approach that often 

results in the scheduling of many users, especially when intra-terminal correlation is high. 

This gives rise to low individual channel rates, which may be insufficient to meet the 

individual rate demands. Although the algorithm in [36] provides very good sum rate 

performance, it incurs high complexity due to the iterative use of BD pre-coding with 
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single-antenna selection. A block antenna/mode selection approach is introduced in this 

thesis to help overcome problems faced by the single-antenna selection approach. In 

addition, the issue of resource allocation to meet individual rate demands was also not 

well addressed in [36], [37] and [38]. 

Another major hindrance to the adoption of spatial multiplexing is the need for 

channel state information (CSI) at the base station, which can incur an enormous amount 

of overhead when the user pool is large. Zero-forcing beamforming systems require 

timely and accurate channel estimates for good performance. The problem is 

compounded when exploitation of multi-user diversity via judicious user/antenna/mode 

selection is desired and optimal selection is performed by the base station based on the 

channel matrices of all users under consideration. This has motivated much research 

effort to find ways of reducing the feedback overhead. In general, selection algorithms 

with better sum rate performance still require the full channel matrix of each user under 

consideration at the base station. There are two broad approaches to mitigate the 

overhead-reduction problem associated with CSI feedback to the base station, namely, (a) 

limited-bandwidth CSI feedback and (b) partial CSI feedback. 

This dissertation focuses on the latter case of partial CSI feedback during the 

user/antenna/mode selection process and during the beamforming process. An example 

where a high degree of CSI feedback reduction is achieved during user selection is found 

in [39] where the authors propose an orthogonal random beamforming (RBF) scheme. 

The RBF scheme achieves the optimal DPC sum rate asymptotically when the user pool 

is very large. This is possible due to existence of multi-user diversity that enables the 

matching of users even with randomly chosen beam directions. However, RBF has slow 

convergence in K, the user-pool size and requires the presence of very large user-pool 

sizes to be effective. Results in [26] show poor performance for the RBF scheme for 

practical values of K, for example, K<100, where a base station with four transmit 

antennas is serving single-antenna terminals. Hence, focus is given in this dissertation to 

ZFBF systems and the methods for achieving partial CSI feedback. 

A straightforward method for reducing CSI feedback during user selection in ZFBF 

systems is to base the selection metric on the channel gain of each user. The reduction is 
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due to fact that each channel gain value may be transmitted as a scalar to the base station, 

which is much less than transmitting the full channel matrix of each user. The base 

station chooses users with the best gains and the full channel matrix data are required 

only from these users. However, channel-gain based user selection often results in poor 

ZFBF performance because the chosen channel directions may not line up well with the 

zero-forcing directions. The impact of antenna/mode selection on ZFBF systems allows 

the development of a method to mitigate this situation and significant performance 

improvement is obtained with a low additional complexity and overhead. Results in 

Chapter 5 show significant reduction in the performance gap between channel-gain based 

user selection and more complex algorithms. This makes the deployment of channel-gain 

based user selection more feasible in practice. 

A variant of the channel-gain method for CSI feedback reduction has been proposed 

in [40]. It is a polling method that picks the next user who has the highest projection 

magnitudes in the null space of a currently chosen user group. User selection decisions 

are again made on a single scalar feedback from each user while full CSI feedback is 

required only from the chosen users, thus contributing to feedback reduction. Again, the 

method proposed for channel-gain based user selection may be used here for sum rate 

improvement. 

In relation to CSI feedback reduction during the ZFBF beamforming process, the 

analysis and results in Chapter 3 will show a possible method that is based on localized 

antenna/mode selection done at each user terminal, without the involvement of the base 

station. Localized antenna/mode selection can contribute to better sum rates but is sub-

optimal compared to coordinated selection done by the base station. However this 

approach may be considered if CSI feedback reduction for the purpose of zero-forcing 

beamforming is of paramount concern. 

Taken together, the practical feasibility of deploying ZFBF systems is raised by 

proposing an efficient streamlined process that integrates the sum rate maximization (via 

RAS and user selection) and the resource allocation processes to meet individual QoS 

needs while minimizing individual- and sum rate losses, along with reduction in the CSI 

feedback requirement during user selection or beamforming. 
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In the following sections, an overview of zero-forcing beamforming (ZFBF) 

methods for multi-user downlinks and the related issues is given. To emphasize the point 

that the zero-forcing operation is accomplished at the base station, the term "transmit 

zero-forcing beamforming" or TZFBF is used. Broadly, TZFBF methods may be grouped 

under two categories, namely, those for single-antenna terminals and those for multi-

antenna terminals. An outline of the research effort and contributions made is then given 

against this background. 

1.2 TZFBF for Single-Antenna Terminals 

For single-antenna terminals, transmit zero-forcing beamforming (TZFBF) is easily 

implemented by a process known as channel inversion using a linear algebra operation 

known as the pseudo-inverse. In this case, the pseudo-inverse of the channel matrix is 

taken [41], [42] and is used to pre-code the data streams before transmission. The system 

may then be referred to as "transmit channel-inversion beamforming" or TCIBF. 

Transmit channel-inversion beamforming creates parallel channels that are orthogonal to 

each other, that is, the co-channel interference among them is forced to zero. When the 

channel is scatter-rich, a maximum of M such channels could be created to serve M users, 

where Mis the number of base station transmit antennas. Depending again on the channel 

conditions, each user channel will experience a certain channel gain. In general high 

channel gains will result when the users are located in such a way that the multipath 

signals arriving at their terminals are uncorrelated with each other. Conversely, the 

channel gains will be low when the signals arriving at different users are correlated. This 

latter case tends to occur when the users are not sufficiently dispersed over a geographic 

area. Low channel gain requires more transmission power to maintain an adequate 

throughput to the affected user. 

In practice however, the radio frequency (RF) amplification stage of any 

transmission system has a maximum rating, that is, typical systems are power 

constrained. Faced with a power constraint, an optimal way of dividing this power among 

a given set of parallel channels with different gains to result in the best sum rate may be 

done using a well known method called waterfilling [43]. Waterfilling across the 

17 



orthogonalized channels can be done since CSI is available at the transmitter from which 

the channel gains can be computed after beamforming. It is also known however that 

using waterfilling alone does not achieve the best possible sum rate and that serving a 

subset of < M users may result in better sum rates [11]. The mechanisms underlying this 

behavior will be dealt with at length in Chapter 3. Optimal selection of this subset 

requires an exhaustive search to find the one that results in the highest sum rate. The 

exhaustive search involves two processes, first choosing a candidate user subset and then 

performing a TCIBF rate evaluation for that subset. Each rate evaluation entails a channel 

inversion exercise since the TCIBF channel gains are needed during the rate evaluation. 

Since the optimal subset may be anywhere from one to M users (that is, TCIBF does not 

scale linearly with M), the exhaustive search will require a total of ^ 1 = 1 ( f ) r a t e 

evaluations, which has an exponential complexity order eO(2M). This complexity 

grows rapidly with M and presents an unacceptable burden when implementing large 

systems. 

To alleviate this, an algorithm is developed in this thesis to perform subset selection 

using only a maximum of M rate evaluations. The algorithm is arrived at after analyzing 

the underlying causes for poor channel gains in TCIBF. The algorithm is referred to as 

Joint Rate Evaluation and User Selection (JREUS) since it avoids the typical arrangement 

that entails separate user-subset selection and rate evaluation processes. Significantly, the 

user selection function in JREUS introduces negligible additional complexity to the 

original TCIBF rate evaluation process. It exhibits near-optimal performance over a wide 

range of channel and SNR conditions, and outperforms existing algorithms in [26], [44] -

[50] under practical conditions. Alternatives with slightly better performance than JREUS 

are also derived by analyzing the factors that cause sub-optimal performance in JREUS. 

Further complexity reduction is realized via a recursive-inverse algorithm that avoids the 

need to perform each channel inversion afresh as the candidate users are considered in 

turn. 

18 



1.2.1 User Selection for TCIBF 

The potential pool of users in a multi-user MIMO system normally exceeds the ability of 

a base station to support them simultaneously. Let us assume S is the potential user pool 

with K users, where K » M. A subset SrczS of at most M users must be chosen to 

meet the base station's constraint when TCIBF is used. Judicious user selection rather 

than random selection can help TCIBF to approach the DPC sum capacity asymptotically 

when the number of users is high [26], [51]. This is due to the existence of multi-user 

diversity [52]-[53], which may be exploited via judicious user selection. In other words, 

a large user pool presents the transmitter with a higher chance of choosing a group of 

users with high channel gains whose channel directions are matched to the zero-forcing 

beam directions [26]. This lowers the likelihood of signal attenuation due to poor channel 

gains in TCIBF, which occurs when channel inversion is performed on a chosen user 

subset whose associated channel is poorly conditioned. 

To maximize the TCIBF sum rate, the optimal active user subset Sr c S of size 

Kr <M must again be found via an exhaustive search involving ^ J (fj rate 

evaluation steps. Clearly, the exhaustive search complexity becomes impractical when 

the user pool is large and this has attracted much effort to develop efficient user selection 

algorithms using various approaches, for example, [26], [44] - [50]. These algorithms 

employ methods like orthogonal complement projection, "greedy" TCIBF pre-coding, 

pair-wise metrics based on correlation, cosine and squared normalized inner products, 

channel gains and combinations thereof. In accordance with [18], a well designed user 

selection algorithm should achieve TCIBF sum rates that scale with M log log K. 

1.2.1.1 Reducing CSI Feedback Requirement During User Selection 

Since user selection is done over the entire pool of K users, all schemes in [26], [44] -

[50] require the full channel state information (CSI) of all users at the base station, with 

the exception of schemes that rely on channel gains as the selection metric. This incurs 

very significant overhead when K is large and presents a major hindrance not only to the 
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adoption of TCIBF, but also to the implementation of spatial multiplexing using MIMO 

systems in general. This is an interesting research topic and various approaches have been 

proposed to address this issue. To re-iterate, the focus of this thesis is on partial CSI 

feedback schemes. 

In general, channel-gain based selection is attractive because selection can be done 

using only a scalar value from each user. A gain threshold may also be enforced to further 

reduce the amount of feedback to the base station. Full CSI is then obtained from the 

chosen users to implement the desired spatial multiplexing scheme, for example, TCIBF. 

However, channel-gain based selection has poor sum rate performance because it does 

not take the users' channel directions into account. This also results in a lower probability 

of scheduling M users even when K is large. As such, it fails to achieve sum rates that 

scale with M log log AT as given in [18]. This is also true in general for schemes that use 

pair-wise decision metrics. To address this, a scheme that strives to achieve scaling as 

(1.4) is developed. By incorporating JREUS in tandem with the algorithms in [26], [44] -

[49], their performances are improved by providing additional opportunities for 

exploiting multi-user diversity. For convenience, the scheme is referred to as 

"simultaneous scheduling and sum rate maximization" or SSRM for short. Numerical 

results show that the poorer performing algorithms achieve significant sum rate 

improvements that are accompanied by higher probabilities of scheduling M users. Hence 

the SSRM scheme helps these low performing algorithms to approach a performance that 

scales with M log log K [18]. For example, the expected sum rate performance of 

channel-gain based selection is improved from within about 24% to within about 9% of 

the best algorithm found in [50]. The probability of scheduling M users is simultaneously 

raised from a low percentage to almost 100% when K is reasonably large. This improves 

the feasibility of employing channel-gain based selection in practice, which is attractive 

given its lower CSI feedback demand and lower computational complexity. 

For those spatial multiplexing schemes that can scale with M even under poor 

channel conditions, the SSRM approach of using the JREUS algorithm in tandem with 

existing user selection algorithms can help such schemes to scale closing with log AT 

when K>M than sole reliance on existing user-selection schemes alone. One example 
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of such a scheme is regularized channel inversion, which possesses linear sum rate 

growth with M [25]. Regularized channel inversion, which is equivalent to using a 

minimum mean-squared error (MMSE) criterion to design the beamformer weights, helps 

address the poor performance of TCIBF under poor channel conditions, for example, 

when the channel is rank deficient due to users in close geographical proximity or due to 

a scatter-poor environment. Despite this, SSRM can be used to help pick better users 

from the potential user pool to help closer scaling with log K. 

1.2.1.2 Another Class of User Selection Algorithms 

Next, [54] shows that the multi-user broadcast sum capacity is upper-bounded by the 

equivalent single-user, point-to-point MIMO capacity where all receiver antennas can 

cooperate. This motivates the evaluation of receive antenna selection (RAS) algorithms 

developed for single-user MIMO channels for the purpose of user selection in the multi

user setting [34], [55] - [56]. This approach is developed in Chapter 4 of this thesis. 

Briefly, RAS algorithms are developed to improve the performance of point-to-point 

MIMO systems in terms of capacity and diversity. The key idea is to provide more 

receive antennas than RF chains and selecting the best subset of antennas to be used. This 

is similar to the multi-user case where choosing a user subset is akin to choosing a subset 

of receive antennas. Specifically, it is found that the incremental antenna selection 

algorithm in [55], which is based on the maximization of point-to-point MIMO capacity, 

has lower implementation complexity and a performance that is close to the best 

performing user selection scheme in [50]. This opens up a different class of user selection 

algorithms that are based on RAS algorithms. 

1.2.2 Resource Allocation in TCIBF 

Regarding resource allocation versus the QoS requirements of each user, the sum rate 

maximization algorithms proposed in this thesis provide a systematic basis for allocation 

when coupled with power allocation methods. This is because algorithms like JREUS 

involve user ranking, which can then be used as a basis for resource allocation. Very 
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importantly, these algorithms will help resource allocation methods to minimize the sum 

rate loss during allocation. The details are presented in Chapter 4. 

1.2.3 Impact of Transmit Antenna Selection in TCIBF 

Next, it is known that transmit antenna selection (TAS) methods provide diversity 

benefits through the provision of more transmit antennas, beyond the required M 

transmit-chains. This is applicable to both single-user as well as multi-user MIMO 

systems. It is also clear from [18] that TAS is not useful for fully equipped systems where 

all transmit antennas are accompanied by an RF chain. This is because the multi-user sum 

rates of optimal DPC and optimal beamforming scale as M \og\o% KN and reducing M 

will reduce the sum rate. Despite this, it is shown that transmit antenna selection (TAS) 

on a fully equipped system operating in a /w//-rank channel provides a means of 

increasing the sum rate in some cases when swi-optimal user selection (USEL) 

algorithms are used. The mechanism works by assisting the USEL search path to get out 

of a local maximum. The proposed method requires further USEL to follow any prior 

TAS process and the restoration of any transmit antennas that were removed. An analysis 

is provided to give insight into the proposed method. The analysis and scheme are 

applicable to any sub-optimal USEL algorithm and guidelines on decoupled search 

strategies are given. The analysis also affirms the statement that given channel state 

information at the transmitter, TAS alone does not help improve the sum rate of TZFBF, 

regardless of the channel condition, signal-to-noise ratio and USEL method employed. 

This means that joint exhaustive USEL-TAS searches are not needed to achieve the 

optimal sum rate and instead, only exhaustive USEL is needed. More details on this topic 

are presented in Chapter 4. 

1.3 TZFBF for Multi-Antenna Terminals 

When each user terminal has multiple antennas, creating parallel channels with zero co-

channel interference at the same terminal is sub-optimal since each terminal is able to 
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Figure 1.4: Block diagram of typical block diagonalized system 

coordinate the processing of its receivers. Zero-forcing between antennas of the same 

terminal presents constraints to the solution set and it is therefore better to impose 

orthogonality between user terminals only. In this way, better techniques such as layered 

space-time coding can then be used for the task of separating different data streams 

assigned to each user that result in higher sum rates. Alternatively, singular value 

decomposition (SVD)-based beamforming with waterfilling can be used when 

coordination between the base station and users is possible. Enforcing zero co-channel 

interference between users is commonly referred to as block diagonalization (BD) and 

examples of BD schemes are found in [27], [28] and [29]. 
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Figure 1.4 shows the general block diagram of a space-division multiplexing 

(SDM) system that employs block diagonalization. As shown, the typical BD system 

makes use of transmit- and receive- matrices, viz., Ty. and Ry, for each user j . In this 

dissertation, they will be referred to as transmit/receive-weight matrices or as pre-

coding/decoding matrices, respectively. The simplest BD system does not make use of 

receive-weight matrices and outputs of the antenna RF-chains are used directly for 

receiver processing. This configuration is referred to as direct-BD for convenience. An 

example that enables direct-BD is when layered space-time coding is used so that layer-

or data-stream separation can be done at each user terminal without the use of receive-

weight matrices. In contrast, the SVD-based beamforming scheme mentioned above 

requires receive-weight matrices to enable access to each spatial mode. Since the block 

diagonalization process yields parallel single-user MIMO channels, the use of SVD-based 

beamforming with each user is the optimal solution for achieving the best sum rate, as 

shown in [27]. 

1.3.1 Spatial Mode Allocation in BD Systems 

For direct-BD, each data stream, that is, spatial mode allocated to a user, requires a 

corresponding antenna-RF chain at that user's terminal. Along with power control, a 

dynamic spatial mode allocation strategy may be implemented in accordance with each 

user's QoS requirement. This means that users with low QoS demands do not need to 

activate all antenna-RF chains and vice versa. Given limited transmission resources, this 

strategy enables the scheduling of more users compared to a regime where selection is 

done only at the user level, that is, all antennas of each chosen user are activated. 

However, this QoS-dependent strategy gives rise to a resource allocation problem 

that entails decisions on (a) the number of antenna-RF chains needed at each user and (b) 

the specific combination of antennas for activation at each terminal to help ensure high 

throughput in direct-BD. To illustrate the latter point, suppose a terminal equipped with 4 

antenna-RF chains has been allocated 2 data streams or spatial modes. A decision is then 

needed for the choice of 2 antennas out of \z\ = 6 possible combinations. These two 
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decisions cannot be made in isolation at each terminal since a choice made at one user 

impacts the rate of other users in the BD context. Such allocations must therefore be 

made at the base station where it can be done with the aim of minimizing rate losses at 

the individual- and the overall sum rate levels. Note that any sum rate maximization 

regime may result in some users having inadequate channel rates and others having 

excess rates. On the other hand, resource allocation exercises to meet the rate requirement 

of each user usually cause a departure from the maximum sum rate. The challenge is 

therefore in finding ways of implementing resource allocation while minimizing rate 

losses. 

The mechanism for spatial mode activation in direct-BD is sub-optimal because the 

unused antenna-RF chains could contribute to better diversity performance. To address 

this, schemes such as the Coordinated Transmit-Receive (CTR) [27] and the iterative null 

space directed SVD (Nu-SVD) [29] use appropriately dimensioned receive weight 

matrices that reflect the number of spatial modes to be activated at each user terminal. In 

this way, no receive antenna-RF chains are dropped during mode allocation and better 

performance results because diversity is preserved. Block diagonalization is performed on 

projected virtual channels, which are made of each user's channel matrix combined with 

its associated receive-weight matrix. We will refer to this method as virtual-channel BD. 

However, a similar resource allocation problem remains and entails decisions on (a) the 

number of modes needed at each user and (b) the specific choice of modes for activation 

at each terminal to help ensure high throughput in virtual-channel BD. Note that all 

references made to "antennas" for direct-BD systems in this dissertation are also 

applicable to the "modes" in virtual channel BD systems. The contributions made in this 

thesis towards this issue are listed in Section 1.4. 

1.3.2 User Selection in BD Systems 

When the user pool is large, BD systems can enjoy better sum rates by exploiting multi

user diversity via judicious user selection (see Section 1.1). Optimal user selection for BD 

sum rate maximization requires an exhaustive search to find the best user subset. 

Consider a base station with M antennas serving S, a pool of K terminals, each with an 
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arbitrary number of Nj antennas. Let Kr be the number of active users allowed in a 

direct-BD and it is determined by the following pre-coding dimensionality constraint 

For virtual-channel BD, (1.5) is also applicable where Nj is replaced by my, the number 

of modes activated at each terminal. 

Finding the optimal active subset of Kr users that satisfies (1.5) using exhaustive 

search becomes impractical for large user pools and this motivates the development of 

user-selection algorithms. Most, such as those in [26], [44] - [50], were proposed for 

single-antenna terminals. There is relatively little work done for multi-antenna USEL 

(examples are [33] and [57]). The incremental selection algorithm in [33] performs BD 

pre-coding on each potential user by considering each in turn against the currently 

selected subset and selects the user that contributes the largest sum rate gain. This is 

computationally heavy since the evaluation of each candidate user requires a BD pre-

coding exercise, which involves singular-value decomposition (SVD) or its equivalent to 

finding the projection null spaces. It is actually the multi-antenna terminal version of the 

algorithm in [50]. The algorithms proposed in [57] are computationally less complex by 

making their decisions based on pair-wise metrics such as angles and correlations 

between channel row vectors. The contributions made in this thesis towards this issue are 

discussed in the next section. 

1.3.3 Antenna/Mode Selection in BD Systems 

Antenna selection has been proposed to save cost for single-user MIMO systems where a 

limited number of analog RF chains are adaptively switched to a subset of available 

antennas (see [34] and references therein). This approach is attractive because it retains 

the diversity benefits of a system that has a high spatial degree of freedom [34] without 

the need to match every antenna with an analog RF chain. Although the full system 

capacity is not achieved, identifying the best subset of antennas for each channel 

realization helps in attaining a large fraction of capacity. Optimal antenna subset selection 
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Table 1.1: Sum rate improvement due to RAS/SMS - A snapshot 
User #1 #2 #3 #4 #5 #6 #7 #8 Total 

Direct-BD without RAS 
#Ants 
Rate 

4 
12.2 

Direct-til) wit 
#Ants 
Rate 

3 

4 
12.5 

4 
11.7 

4 
10.5 

h RAS 
2 3 4 

1C.£ 11.4 1-3 9 22.7 

4 
12.4 

2 
12.0 

4 
10.8 

3 
16.4 

4 
12.7 

4 
23.9 

4 
11.0 

3 
17.2 

93.8 

137.4 

Nu-S\ D without SMS 
#Modes 
Rate 

4 
12.2 

4 
12.5 

4 
11.7 

4 
10.5 

4 
12.4 

4 
10.8 

4 
12.7 

4 
11.0 93.8 

Nu-SVD with SMS 
#Modes 
Rate 

3 
17.6 

2 
11.9 

3 
18.2 

3 
17.4 

3 
17.4 

3 
16.4 

4 
23.9 

4 
23.1 145.9 

requires an exhaustive search and this has motivated the development of many selection 

algorithms to help lower computational complexity, for example, [34], [55] and [56]. In 

[58], this concept of antenna selection is extended to a multi-user MIMO downlink 

setting where each user terminal is equipped with more receive antennas than analog 

chains. The authors in [58] proposed antenna selection algorithms with the same 

objective of diversity gain enhancement. 

In this dissertation, it is shown analytically and numerically that receive antenna 

selection (RAS) is a necessary part of maximizing the achievable sum rate for multi-user 

MIMO wireless downlinks that use block diagonalized space-division multiplexing. This 

is true even though RAS reduces the broadcast sum capacity when all user terminals are 

fully equipped, that is, all receive antennas are equipped with analog RF chains. The need 

for RAS holds true even when optimal processing such as SVD-based beamforming with 

waterfilling is used in each of the parallel single-user MIMO channels created via block 

diagonalization for a fully equipped system. When virtual-channel BD schemes such as 

CTR [27] and Nu-SVD [29] are used to provide a means of spatial mode allocation while 

preserving diversity, applying RAS to the projected virtual channels is equivalent to 

spatial mode selection (SMS). 
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An example to illustrate the benefits of RAS/SMS is given in Table 1.1 using 

direct-BD and Nu-SVD. A system serves K = 8 users, each equipped with N} = 4 

antennas, via spatial multiplexing from a base station that is equipped with 

M = ̂  '_ Nj = 32 antennas. The fairly large value of Nj = 4 is chosen to better 

illustrate the effect of RAS/SMS. The user channel characteristics are assumed to be 

homogeneous and identical, that is, the users are located in such a way that their average 

signal-to-noise ratios (SNR) and fading characteristics are identical. Specifically, each 

path between a transmit- and a receive antenna is assumed to experience Rayleigh fading 

and one particular channel realization is used in this example. Table 1.1 shows the 

individual and overall sum channel rates (in bits/sec/Hz) with and without RAS/SMS. To 

avoid exhaustive search, a RAS algorithm known as "Maximum Determinant Ranking" 

or MDR (details given in a later section) is used. As shown in Table 1.1, RAS/SMS has 

substantial impact on the system sum rates with improvements of -46% and -56% for 

direct-BD and Nu-SVD, respectively. 

It is interesting to note that in many cases, users with reduced antenna array sizes or 

reduced spatial mode sets enjoy rate increase as well, for example, users #1 and #3. Note 

also that the rate loss for users #2 and #5 in the direct-BD scheme is not large despite 

having 2 antennas removed. The same is also true in Nu-SVD where user #2 has 2 modes 

removed. The illustration demonstrates the mutual benefit when judicious RAS/SMS is 

performed across the entire system, which improves the sum rates achievable within the 

BD context. This is true despite sum capacity and individual capacity loss due to 

RAS/SMS on a fully equipped system. To further highlight some numerical results, a 

substantial improvement to the averaged sum-rate of ~40% to -42% is obtained when 

RAS is performed on the above 8-user direct-BD system, while a range of-47% to -53% 

is obtained when SMS is performed on the same 8-user Nu-SVD system. 

The use of RAS in BD systems was previously mentioned in [35], [36] and [37]. An 

equivalent was proposed in [38], where beam ordering and selection were introduced for 

BD systems. However, [36] - [38] did not give detailed explanations of why receive 

antenna selection (RAS) benefits BD systems. They did not cover schemes that use 
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receive weight matrices for spatial mode allocation and the issue of resource allocation to 

meet individual rate demands was also not well addressed. 

Differing from the typical RAS process in single-user MIMO systems, it is 

necessary in BD systems to discriminate between intra-terminal and inter-terminal 

antennas, because zero-forcing is done across terminals via BD pre-coding whereas intra-

terminal antenna cooperation is possible. In general, this necessitates a selection metric 

that is based on the rate contribution of each antenna within the BD context. This 

approach is adopted in the RAS algorithms in [36] - [38] and [58]. 

Optimal sum rate maximization involves exhaustive search over the entire potential 

user pool to find the optimal antenna- or spatial-mode subset. Hence, optimal user 

selection for BD sum rate maximization is subsumed within the RAS/SMS process for 

multi-antenna terminals. Both user- and antenna/mode selection processes become 

identical for the case of single-antenna terminals. The RAS algorithms in [36] and [38] 

perform RAS and user selection jointly by considering one candidate antenna at a time. 

This single-antenna selection approach gives rise to two key problems: 

(a) Higher computational loads may be incurred since a decision metric must 

be generated for each and every antenna under consideration. For 

example, although the algorithm in [36] provides very good sum rate 

performance, it incurs high complexity due to the repeated use of BD pre-

coding to consider each candidate antenna one at a time. 

(b) The single-antenna selection approach often results in the scheduling of 

many users, especially when intra-terminal correlation is high at many 

terminals. As transmit resources are spread over many users, it results in 

low individual channel rates, which may be insufficient to meet the 

individual rate demands. 

To help reduce the complexity mentioned in (a), the following two approaches are 

considered: 
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(i) Methods to reduce the number of selection metrics needed, that is, a number 

that is less than the total number of receive antennas or modes across all 

users under consideration. 

(ii) Alternative selection metrics that require less computational effort, that is, 

not using the BD sum rate contribution of each antenna or mode as a 

decision metric. 

For point (i), the concept of "block antenna selection (BAS)" and "block mode 

selection (BMS)" is introduced. Note that the block approach still allows for RAS/SMS 

together with user selection. In BAS/BMS, selection is done on a subset basis instead of a 

single-antenna selection (SAS) basis. In this way, the user selection process is also 

subsumed under a BAS/BMS process. 

For point (ii), it is shown that existing RAS algorithms meant for single-user MIMO 

systems can be modified for BAS/BMS. These are computationally more efficient than 

[36], [33] and [58] because decision via repeated BD pre-coding is not required. In this 

way, decremental BAS/BMS, which has potential for better performance than 

incremental BAS/BMS, is also possible since the BD pre-coding constraint no longer 

applies. To highlight, a decremental user selection algorithm based on a decremental 

RAS algorithm from [34] achieves better performance than [33]. 

The block antenna/mode selection approach will also help address the issue of 

scheduling too many users as pointed out in (b) above. This is clear since the 

antennas/modes are chosen as subset blocks from user terminals. In the extreme case, the 

block sizes may equal the maximum antenna/mode dimensions of each terminal and this 

corresponds to the usual user selection approach, like the algorithms in [33] and [57]. In 

this case, RAS/SMS may follow after user selection (USEL) is done, that is, the user-

selection and RAS/SMS processes are decoupled. 

It is important to note that the RAS/SMS process allows BD systems to scale closer 

with M log log KN under small user-pool sizes than relying on user selection alone. 

Firstly, the performance gap from the optimal sum capacity level is narrowed when 
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RAS/SMS is employed in cases where no additional user selection is possible (that is 

when KN = M). When KN > M and user selection is possible, the RAS/SMS process 

may free transmit resources that allow the consideration of more users. Iterating this way, 

scaling with Mloglog KN in (1.4) may be achieved with smaller user groups than 

otherwise possible. This iterative scheme is particularly beneficial for channel-gain based 

user selection schemes and numerical results show significant improvements. In this way, 

RAS/SMS contributes not only to better sum rates, it also allows the use of channel-gain 

based user selection schemes, which have lower processing complexity and significantly 

lower CSI feedback requirements. 

1.3.4 An Integrated Process for BD Systems 

It appears at this stage that the various processes associated with the use of block 

diagonalized space division multiplexing (BD-SDM) are to be considered separately. The 

main processes are: 

(a) Sum rate maximization via receive antenna/mode selection. 

(b) Sum rate maximization via user selection. 

(c) Resource allocation to meet each user's channel-rate requirement. 

(d) Channel state information (CSI) feedback requirement reduction, that is, 

achieving partial CSI feedback from each user terminal to the base station. 

In line with the push for efficiency, effort is made in this thesis to identify the tasks 

that are common between processes, intermediate results that may be shared or inferences 

that may be made. An integrated, streamlined process is then proposed. Beginning with 

the task of sum rate maximization, the methods for joint antenna/mode selection and user 

selection have been discussed in Section 1.3.3. The RAS/SMS process invariably ranks 

the antennas or modes under consideration. Such rankings are useful during the resource 

allocation phase because they help in decisions that involve trading off the next worst 
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antenna or mode in order to benefit the rest. Importantly, this enables a systematic means 

for resource allocation with rate loss minimization. Integration with two partial CSI 

feedback schemes will also be discussed, namely those associated with channel-gain 

based user selection schemes and the one found in [40]. 

1.4 Key Contributions 

It is shown that receive antenna selection (RAS) or spatial mode selection (SMS) is 

necessary for maximizing the achievable sum rate of MIMO wireless downlinks that use 

block diagonalized space-division multiplexing (BD-SDM). This allows BD-SDM 

systems to scale closer with M log log KN under small user-pool sizes than relying on 

user selection alone. This means that the use of RAS/SMS helps BD-SDM systems to 

better approach the DPC sum capacity rather than the traditional method of relying on 

user selection alone. RAS/SMS algorithms for which user selection is a subset of, are 

proposed to help realize this scaling. For systems with single-antenna terminals, the 

RAS/SMS and user selection processes are identical. For BD systems, RAS/SMS not 

only contributes to better sum rates, it also allows the use of channel-gain based user 

selection schemes, which have lower processing complexity and significantly lower CSI 

feedback requirements. 

A detailed analysis on the joint impact of receive antenna selection and user 

selection upon block diagonalized systems is given. The key contribution is in the form of 

a novel lower bound on the expected BD sum rate that takes RAS and SNR into account. 

It provides a means of estimating performance without the need for time consuming 

Monte Carlo simulations and is easily extended to channel-inversion systems for single-

antenna terminals. The approach is extended to provide an upper bound on the expected 

BD sum rate that takes user selection, RAS and SNR into account. It demonstrates the 

inter-play of the various mechanisms and provides a means of estimating the upper bound 

performance that includes (a) the expected BD sum rates versus the number of user 

subsets considered, (b) the expected number of antennas or modes to be activated, and (c) 
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the SNR level. Again, this upper bound analysis is easily extended to channel-inversion 

systems for single-antenna terminals. 

A systematic method is developed for resource allocation to meet the channel rate 

requirements at each user while minimizing losses at the individual- and sum rate levels. 

The rate-loss minimization approach provides a systematic approach to address the 

impact on all other users when resource allocation is done at any one user. In addition, 

method does away with the need to make a priori decisions on the number of 

antennas/modes at each terminal. It also solves the combinatorial problem that presents 

itself when subsets of antennas/modes are to be chosen at some users. A streamlined 

process that simultaneously reduces CSI feedback requirement while achieving sum rate 

maximization via RAS/SMS and user selection, and systematic rate-loss minimizing 

resource allocation is proposed. 

Further details on the key contributions are categorized and listed under those for 

single-antenna terminals (Section 1.4.1) and those for multi-antenna terminals (Section 

1.4.2). 

1.4.1 Transmit ZFBF for Single-Antenna Terminals 

For this case where transmit channel inversion beamforming (TCIBF) is used, the 

following key contributions are made: 

a. An analysis of conditions for sum rate increase during user selection in TCIBF 

when the maximum number of users is K = M, where Mis the number of transmit 

antennas. 

b. An efficient, near-optimal user selection algorithm that implements joint rate 

evaluation and user selection (JREUS). JREUS requires a maximum of only M 

steps for its decision metric computations compared to e 0(M2) steps for most 

existing algorithms or e 0(2M) steps for an exhaustive search. This is accompanied 

by an analysis to show the sub-optimality of JREUS and alternative strategies to 

improve performance. 
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A lower bound on the expected TCIBF sum rate taking the impact of user selection 

when the user pool is K <M. The lower bound is parameterized by the different 

levels of SNR and different user-subset sizes. Estimates of the expected sum rates 

are given with respect to the number of users scheduled under different levels of 

SNR. Estimates of the average number of users to be scheduled for sum rate 

maximization can then be made for different SNR levels. Comparisons with 

numerical results show that the bound is fairly tight and therefore useful in practice. 

An upper bound on the expected TCIBF sum rate taking the impact of user selection 

when the user pool is K> M . The upper bound is parameterized by the different 

levels of SNR, different user-subset sizes and the number of user subsets 

considered, which reflects the potential user-pool size. The upper bound provide 

ballpark estimates of the expected sum rates are given with respect to the number of 

users scheduled under different levels of SNR and indicative user-pool sizes. 

Estimates of the average number of users to be scheduled for sum rate 

maximization can then be made for different SNR levels and user-pool sizes. 

Adaptation and evaluation of receive-antenna selection (RAS) algorithms designed 

for single-user MIMO systems for use as user-selection algorithms in TCIBF. 

Results show near-optimal performance and lower complexity than the best user-

selection algorithm in [50], which is computationally heavy because of repeated 

TCIBF pre-coding during selection. 

In general, user selection algorithms with lower computational complexity or partial 

CSI feedback perform poorer in terms of the achieved sum rate and the number of 

scheduled users. As such, these algorithms fail to achieve sum rates that scale with 

M log log K . A scheme that strives toward the scheduling of M users is developed 

to enhance the performance of such algorithms by incorporating JREUS to work in 

tandem. Significant performance improvements are gained by providing additional 

opportunities for exploiting multi-user diversity. For convenience, the scheme is 

referred to as "simultaneous scheduling and sum rate maximization" or SSRM for 

short. 
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g. A method for simultaneous proportionally fair scheduling and partial CSI feedback 

is proposed. 

h. The proposed user selection algorithms provide a systematic means for resource 

allocation when meeting QoS requirements for each user. 

i. An analysis to show that using transmit-antenna selection (TAS) alone for TCIBF 

does not help increase the sum rate regardless of the channel conditions, SNR levels 

or user-selection (USEL) algorithms used. When sub-optimal USEL algorithms are 

used however, TAS followed by further USEL may achieve higher sum rates by 

helping the search path to get out of a local maximum. This is true even for a fully 

equipped system operating in a full-rank channel. In accordance with the analysis, 

restoring the transmit antenna removed will always result in higher sum rates. 

Guidelines are given on how USEL should be conducted together with TAS. 

1.4.2 Transmit ZFBF for Multi-Antenna Terminals 

For this case where block diagonalized (BD) beamforming is used to implement space-

division multiplexing (BD-SDM), the following key contributions are made: 

a. A novel lower bound on the expected BD-SDM sum rate that takes antenna/mode 

selection into account when the user pool does not exceed the pre-coding constraint. 

The lower bound is parameterized by the different levels of SNR and different 

number of antennas chosen for each user, which corresponds to spatial mode 

allocation. Estimates of the expected sum rates are given with respect to the number 

of antennas/modes scheduled under different levels of SNR. Estimates of the 

average number of antennas/modes to be scheduled for sum rate maximization can 

then be made for different SNR levels. Comparisons with numerical results show 

that the bound is fairly tight and therefore useful in practice. 

b. An upper bound on the expected BD-SDM sum rate to demonstrate the joint impact 

of user selection when the user pool exceeds the pre-coding constraint. The 

interplay of various mechanisms is demonstrated because the upper bound is 

parameterized by the different levels of SNR, different numbers of user terminal 
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antennas/modes and the number of user subsets considered, which reflects the 

potential user-pool size. This upper bound can provide ballpark estimates of the 

expected sum rates with respect to the number of antennas/modes scheduled under 

different levels of SNR and indicative user-pool sizes. Estimates of the average 

number of antennas/modes to be scheduled for sum rate maximization can then be 

made for different SNR levels and user-pool sizes. 

c. Efficient and near-optimal algorithms for RAS/SMS are developed for the case 

where the total number of receive antennas or spatial modes is within the block 

diagonalization pre-coding constraint. The algorithms provide spatial channel 

ranking and can therefore be used to provide a systematic method for resource 

allocation to meet the individual QoS needs of the scheduled group. This rate-loss 

minimization approach provides a systematic approach to address the impact on all 

other users when resource allocation is done at any one user. In addition, method 

does away with the need to make a priori decisions on the number of 

antennas/modes at each terminal. It also solves the combinatorial problem that 

presents itself when subsets of antennas/modes are to be chosen at some users. 

d. Efficient algorithms for joint user selection and RAS/SMS to maximize the sum 

rate. To allow joint selection, the concepts of "block antenna selection (BAS)" and 

"block mode selection (BMS)" are introduced, which account for differences in 

intra- and inter-terminal processing in block diagonalized systems. A novel 

approach is based on the modification of existing RAS algorithms is proposed. It 

has good performance and low complexity, which is realized by avoiding repeated 

use of BD pre-coding during selection. It allows for decremental selection, which 

has potential for better performance than incremental selection. An equivalent 

method for "simultaneous scheduling and sum rate maximization" or SSRM is 

developed to allow scaling with M\og\ogKN (1.4). This method gives significant 

sum rate improvement for channel-gain based user selection, which have lower 

processing complexity and significantly lower CSI feedback requirements during 

user selection. 

36 



1.5 Thesis Organization 

1.5.1 Outline of Chapter Two 

Chapter 2 provides descriptions of the system model, operating conditions and 

assumptions. It begins with the general formulas for the MIMO broadcast channel sum 

capacity and proceeds to the sum rate expressions when beamforming is used. It then 

covers sum rates for the specific case where zero-forcing beamforming is used. Details on 

the implementation of zero-forcing schemes, that is, block-diagonalized (BD) 

beamforming for terminals with multiple antennas and the transmit channel inversion 

beamforming (TCIBF) for terminals with single antennas will be given. Variants of 

block-diagonalized systems will also be discussed. Key issues relating to resource 

allocation and channel state information (CSI) feedback will also be outlined. 

1.5.2 Outline of Chapter Three 

In line with the intention of enhancing the feasibility of fielding multi-user MIMO 

systems, this chapter starts by highlighting the issues affecting the sum rate of zero-

forcing beamforming systems. It describes the mechanisms that affect the sum rates for a 

given channel and then seeks to find methods for sum-rate improvement. In particular, 

the impact of antenna selection and user selection and the underlying mechanisms 

governing their behavior will be studied in detail. Where possible, expressions to quantify 

their impact will be given on an ergodic basis and on an asymptotic basis, for example, 

when the user pool becomes very large. 

It is known that the sum rate performance of a block diagonalized (BD) system is 

lower bounded by its equivalently sized transmit channel-inversion beamforming 

(TCIBF) system. Given this, Chapter 3 begins by analyzing the conditions and 

mechanisms that contribute to poor performance in transmit channel-inversion 

beamforming (TCIBF). It then describes the impact of user de-selection on the TCIBF 

sum rate when the number of users K is limited to K <M, where M is the number of 

transmit antennas. Two lower bounds are then derived for the ergodic TCIBF sum rate 
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under a Rayleigh fading channel. The first lower bound captures the effect of user de

selection and SNR upon the expected TCIBF sum rate. This expression allows ergodic 

sum rate estimations with respect to the number of users scheduled at various levels of 

SNR. The expression is similar to that in [59] but unlike the approach in [59], it is not 

derived under the assumption of a large system, that is, K -> oo and M —> oo, with 

MIK = p where p < 1 is a constant. This implies applicability of such lower bounds, 

including the one in [59], to systems of practical sizes, which is confirmed via numerical 

results. 

A second tighter lower bound is derived next by dropping the use of Jensen's 

inequality. The effect of user de-selection is captured by the parameters of unordered 

eigenvalues of Wishart matrices. Numerical results show that this second lower bound 

provides more accurate estimates than the first. This approach is then extended to 

formulate an upper bound that demonstrates the joint effect of user selection when 

K » M by incorporating methods from order statistics. Finally, an approach is given to 

demonstrate the scaling of TCIBF with M log log K. The approach uses techniques from 

extreme value theory and differs from that in [26]. 

Turning next to block diagonalized (BD) systems, a novel approach for lower 

bounding the expected sum rate BD systems operating in Rayleigh fading channels is 

presented. It jointly captures the effect of receive antenna selection (RAS) (or 

equivalently, spatial mode selection (SMS)) and different SNR levels. It uses the 

parameters of unordered eigenvalues of Wishart matrices to capture the effects of 

RAS/SMS. Estimates given by this lower bound compares favorably with numerical 

results. Next, an upper bounding approach to capture the joint effects of user selection, 

RAS/SMS and different SNR levels is outlined. It combines the use of unordered 

eigenvalues of Wishart matrices together with methods from order statistics. Since block 

diagonalized (BD) systems perform better than an equivalent TCIBF system, it should 

approach scaling with M log log K at a faster rate than TCIBF systems. 
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1.5.3 Outline of Chapter Four 

Chapter 4 focuses on the development of selection algorithms for zero-forcing 

beamforming for single-antenna terminals, that is, algorithms for transmit channel-

inversion beamforming (TCIBF). It begins with a user selection algorithm for the case 

when K<M and avoids the typical arrangement that entails separate user selection and 

TCIBF rate evaluation processes. It is therefore referred to as Joint Rate Evaluation and 

User Selection (JREUS) because user selection is made possible during TCIBF rate 

evaluation. It incurs a maximum of M steps, which is lower than the £0(2") steps 

needed for exhaustive search and is also lower than many existing algorithms, which 

e 0(M2) steps. The factors behind the sub-optimality of JREUS are then examined and 

alternative algorithms with higher complexity are proposed for better performance. 

User selection algorithms for the case when K>M are developed next. A brief 

survey of existing algorithms is given and a new class of user selection algorithms that is 

based on receive antenna selection (RAS) algorithms is introduced. Focus is then made to 

help algorithms with lower complexity in terms of lower computational loads and lower 

CSI feedback requirement to perform better by helping them to scale closer with 

M log log K. Essentially, this requires the use of JREUS in tandem with any user 

selection algorithm of choice. This helps in dropping users that contribute to poorer sum 

rates and create opportunities for the scheduling of better users. This process is referred to 

as "scheduling and sum rate maximization" or SSRM for convenience. 

Schemes for the required channel state information (CSI) feedback reduction, 

scheduling fairness and resource allocation are addressed next. This is followed by an 

analysis on the impact of transmit antenna selection on the TCIBF sum rate. The 

numerical results of various schemes are presented at the end of this chapter. 

1.5.4 Outline of Chapter Five 

Chapter 5 deals mainly with the selection and allocation algorithms for sum rate 

maximization in block-diagonalized systems. Selection algorithms refer to those for 
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receive antenna selection (RAS), spatial mode selection (SMS) and user selection. For 

receive antenna selection, a scheme known as "maximum determinant ranking" or MDR 

is derived based on the JREUS algorithm from Chapter 4. For spatial mode selection, a 

simple but near-optimal scheme is developed for the Nu-SVD block diagonalization 

method developed in [29]. It is based on the "poorest spatial mode elimination" approach 

and is referred to as the PSME algorithm. 

The concept of block antenna selection or block spatial mode selection is developed 

next and the accompanying algorithms are proposed. To highlight, one class of block 

selection algorithms that is based on existing receive antenna selection algorithms has 

low complexity while providing good performance. The lower complexity is due mainly 

to the fact that repeated BD sum rate evaluations are avoided while the good performance 

results from minimizing the capacity loss of an equivalent single-user system. By 

combining block selection together with RAS/SMS, a scheme similar to the SSRM 

(scheduling and sum rate maximization) scheme in Chapter 4 helps BD systems to scale 

closer to M \og\ogKN. 

Next, the resource allocation problem to satisfy possibly different user QoS 

requirements is discussed, and an algorithm is proposed to help meet individual channel 

rate demands while minimizing rate losses at the individual- and sum rate levels. This is 

followed by a scheme that is proposed to address the issue of CSI feedback reduction. 

The chapter ends by proposing an overall streamlined process that covers sum rate 

maximization via user selection and RAS/SMS, resource allocation with rate loss 

minimization and partial CSI feedback. 

1.5.5 Outline of Chapter Six 

In this concluding chapter, a summary of the main issues and contributions is given. 

Some ideas on possible avenues for future work are then discussed. 
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Chapter 2 

SYSTEM MODELS AND ASSUMPTIONS 

2.1 Multi-user MIMO Downlinks 

The focus is on the multi-user MIMO downlink of a base station (BS) serving S, a 

group of K geographically distributed users via spatial multiplexing that is achieved using 

linear pre- and post-processing at the transmitter and receivers. The base station has M 

antennas and transmit-chains while each user j has one or more antennas Nj, each 

coupled with a receive-RF chain. Unless otherwise specified, any reference to receive 

antennas in this dissertation will imply an antenna that is equipped with an analog-RF 

chain. The system is therefore considered fully equipped and the total number of antenna-

RF chains at the user receivers is N = V N,. Each user's channel sub-matrix is denoted 

as Hj eC yX and the overall channel matrix is denoted as HeCNxM where 

H = [Hf H2 ••• H£] r . The entries htj of H represents the channel complex gain between 

the _/* transmit antenna and the i* user terminal antenna. They are all independent and 

identically distributed, each with a complex Gaussian distribution. A scatter-rich 

environment is assumed and consequently, Hy. and H are of full rank. In addition, it is 

assumed that the user channels experience i.i.d. blockwise flat fading that is constant over 

a block and varies independently from block to block. The information-theoretic 

assumption of infinitely long code-block lengths is applicable assuming each fading block 

is sufficiently long. More details on the channel model used are given in Section 2.2. The 

base station caters a transmit vector s, e CMxl for each user j and the received signal 

vector y ^ e C ' " at usery is given by 
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where n, e C^'*1 has variance E{n -n^} = c2lN for all receivers. 

The sum capacity for a system described by (2.1) has been formulated using the 

dirty-paper coding (DPC) framework for the case of Gaussian noise, e.g., [12] and [60]. In 

fact, it was shown in [17] that all points of the rate region is achievable using DPC. Dirty 

paper coding employs a multi-user encoding strategy that is based on interference pre-

subtraction [15]. Briefly, the base station (transmitter) first picks a codeword for user #1. 

This is followed by choosing a codeword for user #2, which is done with full (non-causal) 

knowledge of the codeword for user #1. Hence, the codeword of user #1 can be pre-

subtracted such that user #2 does not have interference arising from user # l ' s codeword. 

Similarly, the codeword for user #3 is chosen so that it does not have interference arising 

from the codewords of user #1 and #2. This process is implemented until all K users are 

coded. In this way, the achievable channel rate R°FC for each user is 

i ? D P C = . 
10g2 

log2 

R„„ +H,fy7' R, ,)H? 
"J»J J \4-li=l >t*i) J 

K.„+MEXK 
(2.2) 

where R S J =E{sys^} are covariance matrices for each transmitted data vector s,, 

R„ „ = cs2„IN. is the receiver noise covariance and | • | = det(«). To achieve sum capacity, 

optimal values for Ks s must be found and the resulting sum capacity Cs^
c is 

czc = max 
(Rm ,—,JL,K,K pZij.iU{R'j'j ) S P 

V1*- DDPC 

LMRJ ' 
(2.3) 

where ]jr =,trl R5 s I < P is the constraint on the transmitted power. Combining (2.2) and 

(2.3), the sum capacity may be written as 

CIC=,_max Y > g 2 
\ m''"' *K'K) (2.4) 
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However, dirty paper coding involves complex nonlinear designs that incur heavy 

computational loads, which may present difficulties for real-time implementation at least 

in the near term. There is a lower-complexity alternative to the coding approach for 

achieving spatial multiplexing in multi-user MIMO systems and this is the signal 

processing approach for which there is extensive industry experience and support. In this 

non-coding approach, the signal for an intended user is treated as noise when it arrives as 

interference to other users. A multi-user system that adopts this approach is referred to as a 

degraded-broadcast channel in information theory literature. In particular, linear 

processing techniques like transmit beamforming and receive beamforming can achieve 

spatial multiplexing with reduced complexity, which in line with the intent of this 

dissertation. In contrast to DPC, beamforming involves choosing appropriate transmit and 

receive vectors and the process is independent of the signaling and coding protocols used. 

Hence, the integration of such linear processing techniques into current systems is 

relatively less complicated than DPC. 

The following system model delineates a sub-optimal method of spatial 

multiplexing via linear processing at the transmitter and receivers. Specifically, spatial 

multiplexing is achieved via beamforming using linear pre-processors (T;.) and post

processors (R;) at the transmitter and receivers respectively. It is assumed that the base 

station has complete channel knowledge to compute all T\ and Ry matrices. 

Consider first the case where only pre-processing matrices T\ are used. For each 

user j , a data vector of arbitrary dimension dy eC"1'"1 is pre-coded by T,- e C xmj to 

result in transmission vectors s ; = T,-dy eC M x l . The received signal vector yy. eC 'x at 

usery is given by 

yy= H yZ« T A+», . (2-5) 

All rrij data streams in dy. are i.i.d. -CA/^OJY,) with covariance matrix 

Rdd =E{d,df} = diag(y1,---,ym ) , where y, = E{\d, | 2 } . This implies that all data 
j j J J j J J 

streams are independently coded. To constrain the total transmit power, tr(Rss) < P must 
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again be satisfied, where Rss = E{ss^} . To find the capacity from the viewpoint of a user 

j , (2.5) is first re-written as 

y,. = H , T , d , + H X u TA + n,, (2.6) 
desired signal interference 

The interference term arising from transmissions to the other K-\ users may be assumed 

to be asymptotically Gaussian distributed. This is reasonable since the differential entropy 

H(yj) is maximized when yy. is a zero mean, centrally symmetrical, complex Gaussian 

(ZMCSCG) random variable. This in turn implies that dy. must also be ZMCSCG. Since 

the sum of Gaussian random variables is also Gaussian, it is therefore reasonable to 

assume that the interference term is asymptotically Gaussian distributed. Let 

z , = H , Y * Td + n , = H T d ; + n / , 
J J i—ii=\,i*j J J J J J' 

(2.7) 

where t , = [TJ • • • T,_, Tj+l •••TK] and d, = [d, • • • dy._, d,+1 • • • d,,]. Given this, the 

capacity from the viewpoint of a user7 for a fixed channel Hy is 

d e t (Rv,v, ) 
C, = max log yjyj' 

•* &det(R , ) ' 
jZj -

where R ^ = E{y,yf} and Rzz = E{z,zJ}. Hence 

Cy
BF = max logdet ^ + R.. 

(2.8) 

(2.9) 

The sum rate RSum of the entire system comprising AT users is then 

( 

s.t. tr(R„)S/> 

I* + 
R,, 

(2.10) 

Finding the optimal sum rate is not an easy task as it involves SINR balancing via a set of 

T; and R^w matrices. 
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When post-processing matricesRy e CmjX ' are used, estimates of the transmitted 

data symbols at usery are derived as 

d y = R y ( H y ^ T A + » y ) . (2.1D 

In this case, the expressions for z. and R™m are modified as 

z ; = R 4 H ^ ^ T ^ + ^ ) = R v H M + R ^ ' (2-12) 

s.t. tr(RSJ)£P 
R 

(2.13) 

Again, finding the optimal sum rate for beamforming is a difficult non-convex 

optimization problem [23] as it involves SINR balancing via a set of TV, R,. and Rrfrf 

matrices. Simpler but sub-optimal schemes may be obtained via the zero-forcing 

beamforming approach and details are given later in Section 2.3. 

2.2 Channel Model Used 

In general, channel models may be classified into two broad categories, namely, 

physical models and analytical models. Physical channel models characterize an 

environment on an electromagnetic wave propagation basis by describing the multipath 

propagation between the location of the transmit array and the location of the receive 

array. In contrast, analytical channel models characterize the transfer function of the 

channel between the individual transmit and receive antennas in a mathematical/analytical 

way without explicitly accounting for wave propagation. The individual transfer functions 

are usually expressed in the form of a MIMO channel matrix. Analytical models are very 

popular for synthesizing MIMO channel matrices in the context of system and algorithm 

development and verification [61]. 

Analytical models can be further subdivided into propagation-motivated models 

and correlation-based models [61]. The first subclass models the channel matrix via 

propagation parameters whereas the second subclass characterizes the MIMO channel 
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matrix statistically in terms of the correlations between the matrix entries. A very popular 

correlation-based model is the spatially independent and identically-distributed (i.i.d.) flat-

fading channel, which is commonly referred to as a scatter-rich narrowband channel. 

Other popular correlation-based analytical channel models are the Kronecker model and 

the Weichselberger model. 

In this thesis, the following assumptions are made in relation to the channels and 

the channel state information available at the base station: 

(a) The channels are assumed to be narrowband with Rayleigh flat-fading 

and therefore completely characterized in terms of their spatial structure 

[61]. Note that this assumption is valid within the sub-channels of 

broadband systems that use OFDM schemes. 

(b) The channels are quasi-stationary where each user channel experience 

i.i.d. block-wise flat fading that is constant over a block and varies 

independently from block to block. This is a so-called "quasi-static 

channel", a common simplification to facilitate analysis. This models 

the slow fading situation where the delay requirement of the application 

is short compared to the channel coherence time. Essentially, the 

channel is random but is constant at least for the duration of a block 

plus the time delays associated with channel state information (CSI) 

feedback. This allows channel matrices to be written without the need 

to account for changes with time. 

(c) Together with (b), the definition of ergodic MIMO capacities or sum 

rates is permissible when (1) the BS transmitter can adapt its 

transmission strategy in accordance with the instantaneous channel state 

so as to maximize the instantaneous transmission rate, and (2) the 

information-theoretic assumption of infinitely long code-block lengths 

is applicable assuming each block is sufficiently long. 

(d) The channels used are strictly non line-of-sight, that is, the line-of-sight 

component is zero and the AT-factor is zero. 

46 



(e) The Kronecker model is used to capture the presence of spatial 

correlations. This model is popular given its simplicity arising from 

separable transmit and receive correlation that allows for independent 

array optimization. Details on this model are given in the following 

section. 

(f) A single-cell system is assumed in this work and inter-cell interference 

is not accounted for. However, the results are applicable to cellular 

systems with network coordination, where inter-cell interference can be 

mitigated. 

(g) The channel state information available at the base station is assumed to 

be timely and accurate. As mentioned in (b) above, the timeliness must 

be taken with respect to the channel coherence time. No attempt has 

been made in this thesis to study the impact of inaccurate, delayed or 

erroneous CSI. 

2.2.1 Further Details on the Channel Model Used 

The following description is mainly taken from [61] and [69]. In general, various 

narrowband analytical models are based on a multi-variate complex Gaussian distribution 

of the MIMO channel coefficients, that is, Rayleigh or Ricean fading. With the assumption 

of zero line-of-sight component, we consider only the case with non line-of-sight 

components characterized by the Gaussian matrix H. In the most general form, the zero-

mean multi-variate complex Gaussian distribution of h = vec{H} is given by 

/<h>=^Wexp(-h"R»h)' (Z14) 

where R H =E(hh w J and vec{A} =faf •••aM where A = [a1---aml. 

RH is known as the full correlation matrix and describes the spatial MIMO 

channel statistics. It contains the correlations of all channel matrix elements. Realizations 

of MIMO channels with the distribution of (2.14) can be obtained by 
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H = unvec{h} withh = R^hw , (2.15) 

where R„2 denotes an arbitrary matrix square root (R^R^1 '2 = RH), and hw is an nmxl 

vector with i.i.d. Gaussian elements with zero mean and unit variance. 

For the classical i.i.d. model, RH = p2I, that is, all elements of H are uncorrected 

and hence statistically independent and have equal variance p2 . Physically, this 

corresponds to a spatially white MIMO channel, which occurs only in rich scattering 

environments. The i.i.d. model is parameterized only by p2 and is often used for 

theoretical considerations like the information theoretic analysis of MIMO systems 

Next, the Kronecker model assumes that spatial transmit and receive correlation 

are separable, which is equivalent to restricting to correlation matrices that can be written 

a Kronecker product 

RH=R,<g>Rr, (2.16) 

where RTx and R^ are the transmit and receive correlation matrices. They are 

deterministic, positive-definite Hermitian matrices and are given by 

RTX=E(H"H) 

R*=E(HH*)' 
(2.17) 

It can be shown that under the assumption in (2.16), (2.15) then simplifies to the 

Kronecker model 

h = (R,<8>Rr)
1/2hw «- H = RfHwR|/2> (2.18) 

where Hw = unvec(hw) is an i.i.d. unit-variance MIMO channel matrix. 

It is assumed in this thesis that the base station antennas are well spaced enough to 

allow Rr = I and the users are well separated enough to consider only the intra-terminal 

antenna correlation. A constant correlation model may be used when the receive antennas 

are in close spatial proximity. Let r(j be the entries of R r , then rti = 1 and rtJ = cp for the 
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constant correlation model where cp is the correlation between any two antennas at each 

user terminal. For arrays with better linear spacing, an exponential correlation model may 

be used where each element rtj in Rr is ri} = (p''~7' where 9 is the maximum correlation 

between any two antennas at each user terminal. 

When switches are used for antenna selection or RF-chain selection (after the 

down-conversion stage) at the receiver, the coupling factor of the switches may also be 

included in the receive correlation matrices R r . 

2.3 Transmit Zero-forcing Beamforming Methods 

As stated in Section 2.1, finding the optimal sum rate for beamforming is a 

difficult non-convex optimization problem [23] as it involves SINR balancing via a set of 

Tj, Ry. and Rrfd matrices. Simpler but sub-optimal schemes may be obtained via the 

zero-forcing beamforming approach, which enforces zero co-channel interference (CCI) 

among active users. For single-antenna terminals, zero-forcing beamforming may be 

easily implemented using the pseudo-inverse of the channel matrix. This creates 

orthogonal channels to each user where data to each user may then be encoded 

independently. For multi-antenna terminals, the pseudo-inverse method may also be used. 

This creates parallel orthogonal channels not only between users, but also within each user 

terminal. This approach is sub-optimal however, as it is better to impose orthogonality 

between users only, because antennas located at the same terminal can cooperate 

effectively. In this way, techniques such as layered space-time coding or singular value 

decomposition (SVD)-based beamforming with waterfilling could then be considered at 

each user terminal for better performance. This is commonly referred to as block 

diagonalization (BD) [27], [28], [29]. Since block diagonalization is also applicable to 

single-antenna terminals, it has a more generalized form and its description is given first. 

Having given the assumptions regarding the channel, it is appropriate to highlight 

that the applicability of beamforming methods in practice is contingent on the availability 

of timely and accurate channel state information (CSI) at the base station transmitter. In 

general, this means that the channel coherence time should be longer than the data block 
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duration plus the feedback delays associated with the CSI feedback. This is often referred 

to as a slow-fading channel. 

2.3.1 Block Diagonalized Zero-forcing Beamforming 

Block diagonalization enforces zero co-channel interference (CCI) among users 

with multi-antenna terminals. To accomplish this, the pre-coding matrices T, are chosen 

so that each user's beam is forced to lie within the nullspace of a composite channel 

matrix that comprises all other users' channel matrices. In other words, the zero co-

channel interference (CCI) constraint forces Ty to lie in the null space of K. [27], where 

H,=[Hf - . H;_, Hj+1 HT
Kf (2.19) 

and K is the number of users. In this way, K parallel single-user MIMO channels are 

created because 

H.T; =0 V/*y. (2.20) 

Note that for a group of K users, block diagonalization is possible when the following pre-

coding constraint is met 

(M-Xf=u#,Ar.)>0, Vy, (2.21) 

where M is the number of transmit antennas at the base station and Nt is the number of 

antennas at each user terminal. 

The simplest from of block diagonalization makes use of pre-coding matrices Ty. 

only, without the use of receive-processing matrices Ry. To recover the data streams at 

each user terminal, schemes such as V-BLAST may be used in each block-diagonalized 

channel. For convenience, this form of block diagonalization is referred to as "direct-BD" 

since the pre-coding matrices are derived directly from the channel matrices Hy , without 

the involvement of the receive-processing matrices Ry. In practice, direct-BD is desirable 

in situations where resources for the transmission of Ry from the base station to each user 
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is limited or unavailable. The sum rate expression for direct-BD can be obtained using 

(2.10) and given Hy.T]. =0 Vz * j in (2.20), the interference term in (2.7) reduces to zero 

so that z, = n, and R,7 = a2lN . The sum rate for direct-BD (DBD) is then 
J J zjzj iy j 

^ =T,R^af=. ,- ,^M l 0 g d e t(^ + H ^ R ^ T / H " / 0 2 ) - C-22) 
s.t. tr(R„)s;> 

One means of finding Ty is via SVD(H;.) 

H, = uAt v) (i) y(0) ]"• (2.23) 

("«E«.W"') i^^-1,1.^)) 

Since Vy0) forms an orthonormal basis for the row or left null space of Hy., its column 

vectors can therefore be used as part of the pre-coding matrix T, of user j , i.e., 

Ty. = VJ0)P;, where Py is the other part of the pre-coding matrix to be determined. This 

form of Tj makes (2.22) realizable because 

(2.24) 

where Hr = [Hf H£ • • • H£] r and Tr = [% T2 • • • TK]. Note that each pre-coded channel of 

the form HyV|0) may be thought of as a projecte d channel Hp = H/VJ0) with dimensions 

NJ^M-T;=U*JN>)- (2-25> 

Note that the pre-coding constraint in (2.21) is simply derived from (2.25) and states that 

the number of columns in each projected channel must be >0 to realize block 

diagonalization in a group of chosen users. 

T = 
r r 

"H.V/^P, 

0 

0 

0 

H 2 V 2
( 0 ) P 2 

... 0 

0 

0 

H,VfP,_ 
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The block orthogonalization process has created K single-user MIMO channels 

and the optimal solution for P, is then clear via [30], i.e., using SVD(HyV|0)), set 

p. =Vy
(1), where 

[Va) v(o)]//> (2.26) 

When the use of receive-processing matrices Ry is possible, the optimal solution as in any 

single-user MIMO channel is obtained by setting Ry. = Uy., where Uy. is obtained from 

(2.26). In this case (2.12) becomes z;. = U,.ny. so that Rzz =a2lN. since U;. is unitary 

and the sum rate in (2.13) becomes 

* £ =T R
m ^ , . . ,ZMlogde t ( l^ .+R y .H y T y R^.TfH;R; /a 2 ) 

s.t. tr(Rss)ZP 

= X ; = 1 l o g d e t ( l ^ + R ^ 2 / c 2 ) , s.t. tr(Rdjdj)<P, (2.27) 

where the power constraint tr(Rrf . ) < P is obtained because T. is assumed to be unitary 

as is commonly implemented for block diagonalized systems. 

As shown in (2.27), direct access to the projected channels' spatial modes is 

achieved and waterfilling can be done to maximize each user's throughput. Note however 

that all Ry. = Uy matrices must be transmitted from the base station to each user because 

only the base station possesses the complete channel state information needed to design all 

T\ and Ry matrices. Note also that (2.27) may be used as a means of computing the best 

sum rate of a given direct-BD system. 

As shown above, each user j has a number of spatial modes created after block 

diagonalization. For direct-BD, each spatial mode allocated to a user will require a 

corresponding antenna-RF chain at that user's terminal. The maximum possible number of 

spatial modes that could be allocated to a user is therefore limited by number of antenna-

RF chains available at its terminal. Along with power control, a dynamic spatial-mode 

allocation strategy may be done in accordance with each user's channel-rate requirement. 

H 
PJ 

H,V<0)=U;. J J J 
X-j 

0 

0 

0 
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This enables the scheduling of more users compared to a fixed allocation regime, since the 

base station transmission resources are limited. In this way, some terminals may deactivate 

one or more antenna-RF chains when the number of spatial modes allocated to them is less 

than the antenna-RF chains available. This mechanism of spatial mode control is sub-

optimal because the un-used antenna-RF chains could contribute to better diversity 

performance. 

To address this, the Coordinated Transmit-Receive (CTR) [27] and the iterative 

null space directed SVD (Nu-SVD) [29] schemes perform block diagonalization on a 

projected virtual channel Hc, which is defined as He =[[RfH,f [R"HK]T]T . The 

BD-SDM process in CTR and Nu-SVD create zero co-channel interference after the 

receive-processing matrices at the user receivers instead of just after the antennas for 

direct-BD. The receive-processing matrices Ry. are appropriately dimensioned according 

to the desired number of spatial modes to be activated for each user/. For CTR, the Ry 

matrices are labeled as Wy. in [27]. Since all antennas remain in use, both CTR and Nu-

SVD provide better diversity performance than the simple scheme of de-activating 

antennas according to the number of modes needed at each user. 

2.3.2 Channel Inversion Zero-forcing Beamforming 

The block diagonalization procedure described above requires 2K SVD 

operations. When user terminals are equipped with only one antenna, a simpler way of 

achieving zero-forcing beamforming (ZFBF) is available via pre-coding with the right-

side Moore-Penrose pseudo-inverse. Let h;. 6 ClxA/ be a vector with complex entries that 

represent the channel between the base station and user/ and let H = [h[ h£ •••hT
K]T, 

K = N be a matrix that contains a concatenation of all channel vectors {hx, • • • h,,}. The 

right-side Moore-Penrose pseudo-inverse of H is H + eC M x " where 

H+=H"(HH") - 1 . (2.28) 
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Since (HH")"1 exists only if N<M, a pre-coding constraint in the form of K<M 

exists for single-antenna user terminals. When the potential pool of users £ contains 

K>M users, a subset Sr<zS of users where 1̂ 1 = ̂  <M, must be chosen. 

Henceforth, it is assumed that a subset Sr c S of Kr = M users is chosen and the 

associated overall channel matrix is H r . Let the following vectors represent concatenation 

of quantities across the system: 

Overall receive vector y = [>>,, y2, • • • yK ] r 

Overall data vector d = [dx, d2, • • • dK f 

Overall noise vector n = [«,, n2, • • • nK ] r 

(2.29) 

The overall transmit vector is then s = H*d and the overall receive vector becomes 

y = Hrs + n = HrH;d + n=d + n. (2.30) 

From (2.22), the sum rate RSum of such a system with channel-inversion pre-coding is 

* l = I > g 2 ( l + T>2)> s . t . t r (RJ<P, (2.31) 

where HrRJSH* =HrH*Rrfrf (HrH*)w =diag(yp---,y^ ). For convenience, this zero-

forcing beamforming scheme will be referred to as "transmit channel-inversion 

beamforming" or TCIBF. Note the power constraint 

tr(R j = U - ( H ; R V . H ; " ) = £ « ( * A ) < P, (2.32) 

where {l/6,.} = [(HrHf)-1],!.. (2.33) 

The optimal choice for {y(. :i = l,---,Kr} is via waterfilling where, 

y, = ( M , - a 2 ) + , / = 1, ,Kr-p + l, (2.34) 

P (. G2WO 
nT Kr-p + l ^ 1 P ft b,j 

(2.35) 
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where (x)+ =max(0,x) and Hr is the water-level. From (2.35), it can be seen that the bt 

values are in effect the orthogonalized channel gains. Variable p is first set to 1 and 

subsequently incremented whenever negative power allocations occur. The data stream 

with the most negative power allocation is assigned zero power and removed from further 

consideration. The process is repeated until y,, > 0 V? = 1, • • •, Kr. Users with zero-power 

assignment are effectively de-selected and a subset of Sa c Sr active users remains, 

where |,Sfl| = Ka. However, relying on the (x)+ power allocation policy alone as in (2.34) 

does not help optimize the TCIBF sum rate because it is also dependent on the overall 

channel matrix H r , whose impact can be seen from (2.4). Low bt values will constrain 

y, to low values so that the power constraint in (2.32) can be met. This is signal 

attenuation in effect and results in low TCIBF sum rates. Note that orthogonalized 

channel gains bi may also be viewed in terms of projections as [11] 

b,= h,..null(H„.)\ (2.36) 

where Hrt =[h[ •••hf_1 hf+, •••h£l and null(A) is an orthonormal basis of A's null 

space. 
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Chapter 3 

AN ANALYSIS OF ZERO-FORCING 

BEAMFORMING SYSTEMS 

In line with the intention of enhancing the feasibility of fielding multi-user MIMO 

systems, this chapter starts by highlighting the issues affecting the sum rate of zero-

forcing beamforming systems. It describes the mechanisms that affect the sum rates for a 

given channel and then seeks to find methods for sum-rate improvement. In particular, 

the impact of antenna selection and user selection and the underlying mechanisms 

governing their behavior will be studied in detail. Where possible, expressions to quantify 

their impact will be given on an ergodic basis and on an asymptotic basis, for example, 

when the user pool becomes very large. 

3.1 Transmit Channel Inversion Beamforming 
(TCIBF) for Single-Antenna Terminals 

3.1.1 Factors Affecting TCIBF Sum Rates 

Recall from Chapter 2 that the TCIBF sum rate is given by 

*L=X>g 2 ( l + y,./c2), s.t. tr(RJ<P, (3.1) 

and the power constraint is 

tr(R„) = t r C H ^ H ; " ) = £ * (Yl A ) < P, (3.2) 

where {1 /ft,.} = [(HrHf )"'],,,• (3-3) 

The optimal choice for {yt : i = 1, • • •, Kr} is via waterfilling where, 

y, =(M>,-o-2)+ , i = \, ,Kr-p + \, (3.4) 
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P r CT
2^+iP 

^ X ^ I 
1+^Z 

v P t f «i, 
(3.5) 

where (x)+ =max(0,x) and uj is the water-level. From (3.5), it can be seen that the bt 

values are in effect the orthogonalized channel gains. 

However, relying on the (x)+ power allocation policy alone as in (3.4) does not 

help optimize the TCIBF sum rate because it is also dependent on the overall channel 

matrix H r , whose impact can be seen from (3.2). Low b{ values will constrain yt to low 

values so that the power constraint can be met. This is signal attenuation in effect and 

results in low TCIBF sum rates. This means that the mechanism of allocating zero power 

to those channels with low gains does not help to improve the sum rate significantly, 

especially when the channel conditions are poor. To see the reason behind this 

phenomenon, an expansion using SVD(Hr) on (3.3) is helpful 

Mb, =[(HrHr")-% =[(USEU")-% 

= Y?Uu/iFn i = l--,Kr, (3-6) 

where "kj are the eigenvalues of H rHf. It is seen from (3.6) that each 1/6, value is 

influenced by the entire set of eigenvalues {kj: j = 1, • • •, Kr}. Low X.s result in large \lb{ 

values Vz, which then constrains y, to low values and results in a low sum rate. Since the 

converse is true, it motivates the search for methods to increase the Xj values. To begin, 

the orthogonalized channel gains b, may be viewed in terms of projections as [11] 

b,= h,.null(H„.) \ (3.7) 

w h e r e H r / = h^---h£_j h.Tj+l---\\
T

K and nu l l (A) is an o r thonorma l bas is o f A ' s null 

space. Hence bt will be high when the channel row vectors are close to being orthogonal 

and low when highly correlated channel row vectors are present. This points to the first 

approach for improving the Xj values, namely, given S, a pool of K > M users, judicious 
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selection must be made so that Hr is populated by row vectors from Kr=M users that 

are close to being orthogonal. 

Despite this, sometimes a subset Sr<zS of Kr = M is not sufficiently orthogonal 

and higher b, values can be obtained by removing one or more highly correlated row 

vectors. This is still in line with (3.7) but done at the expense of a reduced active user 

subset where 1 < Kr < M . The impact of removing row vectors, which may be interpreted 

as removing users or as removing receive antennas from the overall system, can be seen 

starting with (3.6). Let Ss <zSr be a subset with one user removed from Sr and let 

H ^ H , be the associated channel matrix. Let XIW!i(Zs)>X2(Zs)>--->Xt[dn(Zs) and 

W Z , ) > ^ 2 ( Z , ) > - >^(Zr) be the ordered eigenvalues of Z 5=H sHf and 

Zr = H rHf, respectively. With Kr < M, it can be shown that 

W Z r ) > W Z , ) > ^ 2 ( Z , . ) > X 2 ( Z , ) > >Xmin(Zs)>Xmin(Zr). (3.8) 

The proof for (3.8) is given in Appendix A. Hence the extremal eigenvalues of Zs lie 

between those of Zr. In particular, the minimum and the lower eigenvalues of Zs are 

increased. If increases in the lower eigenvalues outweigh the decreases in the higher 

values, then lower {1/6,} values may result. Note that (3.8) is true regardless of the 

transmit- and receive-correlation matrices Rj.'2 and R(
1/2 that may be associated with 

Hy = Rj./2HWR)/2 (see Chapter 2 on channel model used). Further insights are given in the 

next section where the eigenvalue distributions of Zr = HrHf are examined. 

3.1.1.1 Case When Receive Antennas are Uncorrelated 

In this case, we set the correlation matrices Rj./2 = IN in Hr = RlJ2Hw so that 

Hr = Hw e cNxM _ xhe base station antennas are assumed to be well spaced enough to 

allowR(
I/2 =1M. The i.i.d. complex Gaussian entries of Hr are scaled as ^ (0 ,1) so that 
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HrHf is a complex Wishart matrix W, i.e., a random complex Hermitian square NxN 

matrix. In general, W is defined as 

W = 
HrHf N<M 
HfH N>M. 

(3.9) 

Wishart matrices are parameterized by 

m = max{JV,M} 

n = min{N,M}, 
(3.10) 

and often written as W(«, m). The eigenvalues of W are random variables and can be 

described by their joint probability density function. The joint density of the ordered 

eigenvalues of W(«, m) is [6] 

A^.-uo^nrn^-y (3.11) 
KJ 

where Knm is a normalizing factor that can be found in [63]. The unordered eigenvalues 

have the joint density 

•<j 

The distribution of one of the unordered eigenvalues is [6] 

n ,=i 

where 

<PkM = 
k\ 

-,1/2 

(k + m-n)\ 
Lm

k-"(X), k = 0, ,n-\ 

(3.12) 

(3.13) 

(3.14) 

and i™ " (X) is the associated Laguerre polynomial of order k where 

1 dk 

it! dkk 
(3.15) 
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Figure 3.1. PDF and CDF of unordered eigenvalue of W(n,m) 
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(3.16) 

The impact of user/antenna selection on the orthogonalized channel gains bt can 

be examined by studying its impact on a representative unordered-eigenvalue distribution. 

Removing users and their corresponding row vectors from Hr on a random selection 

basis is equivalent to reducing the parameter n in W(n,m) = H rHf. Figure 3.1 shows the 

unordered-eigenvalue probability distribution function in (3.13) and the accompanying 

cumulative distribution function of an example with Hr e C16x16, W(n,w = 16), where n 

is decreased from 16 to 1. As shown, the spread of eigenvalues is widest when n = m = 16 
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and in fact, its PDF exhibits a negative exponential behavior with a prominent low-value 

cluster. This low-value cluster diminishes rapidly even with n = m-\. From the CDF 

plots, it is clear that the eigenvalue range becomes narrower as the value of n is 

decreased, i.e., the lower-eigenvalue range is raised while the higher range is lowered, 

which is in line with (3.8). The eigenvalue variance versus parameter n is tabulated in 

Table 3.1. 

Table 3.1: Eigenvalue variance G\ versus parameter n in W(«, m) = H rHf, Hr e C 

n 

°l 

16 

247 

15 

238 

14 

224 

13 

208 

12 

192 

11 

176 

10 

160 

9 

144 

8 

128 

7 

112 

6 

96 

5 

80 

4 

64 

3 

48 

2 

32 

1 

16 

It is important to note that the lower-eigenvalue range may be raised by orders of 

magnitude while the higher-eigenvalue range may remain largely in the same order of 

0 5 10 15 20 

^ m i n 
Figure 3.2. The PDF of X^ for W(« = 3,w), m = 3,4,5, ,28. Adapted from [63] 
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magnitude as n is decreased. This mechanism supports the argument that the bt values 

may be raised by reducing the number of rows in H r . Note again that this argument is 

statistically true even for this case where Hr =HW, i.e., without the influence of the 

receive-correlation matrix R r . 

In terms of the ordered eigenvalues, a view of the minimum eigenvalue (A^) 

behavior may be seen from [63] where the minimum-eigenvalue PDFs of both real and 

complex Wishart matrices were derived. Both PDF expressions were of similar form and a 

sample X^n -PDF plot for a series of real Wishart matrices was given for W(3,3) to 

W(3,28). This plot is reproduced in Figure 3.2 and it is clear that the PDF of X^n shifts 

to a higher range as n becomes increasingly less than m. Again, it is important to note that 

the lower-eigenvalue range may be raised by orders of magnitude. 

3.1.1.2 Case When Receive Antennas are Correlated 

In this case, the correlation matrix at the user terminal is Rj.'2 * IN. When the constant 

correlation model or the exponential correlation model is used, the resulting correlation 

matrix Rj.'2 e RNxN can be determined using only the first row vector r = (rn, ru, • • •, r1N) 

in R'/2. The matrix may then be viewed as a special case of a Hermitian Toeplitz matrix. 

The effect of the correlation value cp upon the eigenvalues of R'/2 may be seen via its 

extreme eigenvalue bounds. A simple algorithm in [64] may be used for this purpose 

where the proposed bounds pertain to matrices of any dimension and amount to computing 

inner products. The maximal eigenvalue X, of any Hermitian Toeplitz matrix is given by 

the inner product 

(r,w), where (3.17) 

f = ('ii»|/i2|>"-»M)» (3-18) 

w = (l,V--,X:„), (3.19) 
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Extreme Eigenvalues of a 16x16 Correlation Matrix 

» Max eigenvalue - simulated 
v Min eigenvalue - simulated 

— Max eigenvalue - Hertz upperbound 
Min eigenvalue - Hertz lowerbound 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Maximum correlation value between receive antennas 

Figure 3.3. Extreme eigenvalues of a R 1/2 116x16 correlation matrix 

A, -2 cos 
7t 

L(tf-l)/(i-l)J + 2 i = 2,-,N, (3.20) 

where LxJ denotes the floor of x. The minimal eigenvalue X of any Hermitian Toeplitz 

matrix is given by the inner product 

(r,w), where (3.21) 

w = (l, A2.--.2w). 

-L, i = 2,-,N. 

(3.22) 

(3.23) 

In Figure 3.3, an example with R'/2 e IR16"16 utilizing the exponential correlation model is 

given. The extreme eigenvalues versus the correlation 9 are computed and compared 

with the bounds given by [64]. As shown, the upper bound is tight while the lower bound 

is good till about 9 = 0.32. In any case, it is clear that the eigenvalue spread widens, as 

the inter-antenna correlation 9 becomes higher. 

63 

http://A2.--.2w


Since w = |w|, the direct proportion between the eigenvalue spread and cp is due 

to r , as can be seen from (3.18). This means that the removal of antennas that are highly 

correlated with other elements will help reduce the eigenvalue spread, i.e., raising the 

lower eigenvalues and lowering the higher eigenvalues. To examine the combined effect 

in H rH? = R'/2HWH"R'/2, we note the following from [67]: 

(a) Given two (nx«) positive definite matrices A and B, then 

X is eigenvalue of BA <=> X is eigenvalue of B1/2AB1/2 (3.24) 

(b) Given two (n x m) matrices A and B with rank r = min{«, m), let 

c1(A)>--->cr(A)>0, Oj(B)£ —£o r(B)£0 and 

c,(BA") > > ar(BA") > 0 be the singular values of A, B and BA", 

respectively. Then 

o,+y_1(BA//)^o/(A)ay(B), l<{*,y}<r where (i + j)<(r +1) (3.25) 

Let A = HWH^ and B = R r , we can see from combining (3.24) and (3.25) that: 

^ ( R ^ H ^ O * \ (H w lOX,(R r ) , 1 * ihj) * N where (i + j) < (N + l) 

(3.26) 

Note that (3.26) applies because the singular values in (3.25) are non-negative. Equation 

(3.26) shows the trend for lower eigenvalues in H,Hf = R'/2HWH"R'/2 when the 

eigenvalues in either HWH^ and/or Rr become lower. For example, (3.26) shows that 

W R ^ H ^ l W 2 ) * AMn(HwH5)X1(Rr) or 

^ ( R f ^ H X ' 2 ) * ^ ( H J H ^ ^ C R , ) , where 

1 ru1/2w ~nH~a1/2\ — i ^»1/2w vfHi3V2\ 
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It is therefore seen from the above that two mechanisms for achieving higher bt 

values are available, namely, (a) judicious user subset selection from a user pool to choose 

SrczS of Kr = M users and (b) de-selecting users to result in a subset Ss c Sr of 

\<Kr<M users. The sum rate expression in (3.1) may be updated to reflect the 

possibility of maximization via these two mechanisms as 

O H ^ f f l ^ f l + T,/*2). s.t. t r ( R J < P , (3.27) 

where Hs is the channel matrix associated with Ss and Rss is found using waterfilling. 

Note that (b) is equivalent to removing antennas that are highly correlated from 

within a chosen subset. Regarding point (b) however, the benefit of user removal upon the 

TCIBF sum rate remains to be seen, as it is known that Sato's cooperative upper bound 

[54], which represents the sum-rate upper bound for multi-user broadcast channels, will be 

reduced. This is addressed in the next section where an analysis on the conditions for sum-

rate increase during user/antenna de-selection is given. 

3.1.2 Sum Rate Impact of User/Antenna De-selection for K<M 

Let S represent a given pool of K<M users and assume that there is no 

possibility of replacing any user. Under poor channel conditions, the waterfilling process 

may assign zero power to users associated with low bt values. Although this helps 

mitigate the signal attenuation problem in terms of meeting the power constraint in (3.1), 

it does not achieve the best sum rate since the poor channel condition still exerts its 

influence on the remaining bt values as shown by (3.6). It has been recognized that 

judicious user-subset selection is needed for TCIBF sum-rate maximization, e.g., see [11] 

and [66]. However, there has been little analysis to show the underlying mechanisms 

behind the benefit of user-subset selection. To analyze the conditions under which TCIBF 

sum rate improvements would occur with user-subset reduction, the \lbf values may first 

be represented as 
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{l/bl:i = \,-,Kr} = {(An\A;\ , ( ^ r ) A " ' ) , (3-28) 

where (Aii)r are cofactors associated with the principal diagonal elements hu in HrHr 

and Ar = det(HrHf ) . Each {Ail)r is found after eliminating row i and column i in Hr¥Lr
H, 

which corresponds to eliminating row i in Hr e CKrXM to give sub-matrix Hs e CK,xM 

where Ks=Kr-\, i.e., eliminating one user /. For the general case starting with 

Kr=M, let yt = (\iTbi-a
2)k+ represent the computation of yt after having removed k 

rows and having waterfilling re-applied. Note that Ks=Kr-k for the general case and 

substituting (3.28) into (3.4) and (3.5), we obtain 

Y/ = 

f A P f x+ht^x \ \ 
-a2 (3.29) 

'*+ 

where (A„)s and As are associated with HsHf and Ka=Ks-p + \. Using (3.29) in 

(3.27), 

*£.(Hf) = H Rm fx Z>& i+ PA„ 

°X(4,X 

- 2 AT, 

i+—z!(4»). 
V% 

\ 
-1 

^ 
(3.30) 

Considering only those row eliminations that result in non-zero power allocations, i.e., 

y, > 0, Vz, and Ka = Ks, (3.30) is re-written as 

i?a!m(H
s)= m a x * . log2 ^ r+ i (4 ) . ]-iogaft(4i). -^.logA 

V J 
Term I Term II 

.(3.31) 

It appears from (3.31) that AsP/o2 dominates under high SNR where higher As values 

will help increase -K&m(Hs). This leads to a 2-part question, (i) does As >Ar exist for 

SsaSr, and (ii) if it does, would it result in a higher sum rate? 

To answer the first part, note that HrHr
H is positive definite Hermitian and as 

shown in Appendix A, the inclusion principle [67] applies so that 
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L W ) * ^n(H,Hf ) < Xa(H,H?) < ̂ 2(HsHf ) < < ̂ ( H ^ f ) < Xmax(HrHf ), 
(3.32) 

where X,,(B) represents the eigenvalue X, of matrix B. Note that As > Ar can happen for 

example when the lower eigenvalues of HrKr
H transit from ^•(HrHr

H)< 1 to A,,-(FUE[/f) > 1 

after a row elimination in Hr. Supposing Hs is a sub-matrix of Hr after a one-row 

reduction, then the following lemma applies: 

Lemma 3.1: The largest determinant (As)max =max(det(H5Hf )j among all one-

row reduced sub-matrices Hs of Hr is equal to the cofactor that is associated 

with the maximum \lbt value among {l/b!:i = l,---,Kr}, 

where {1/6,} = [(H rHfr%-

Proof. In relation to (3.28), As > Ar occurs whenever a cofactor (Aii)r is larger than its 

associated determinant Ar, i.e., when there are one or more 1/6,>1. From (3.28), it is 

clear that max(l/6,) is associated with the largest cofactor max((4,) r). Let 

max((4,),.) = (4bt)r where {Akk)r is associated with the sub-matrix A u that arises from 

eliminating row k and column k in HrIlr
H, which corresponds to removing row k in Hr to 

give H .̂ This will result in a HsHf that possesses the largest determinant 

max (det(HsHf)) = (As)max = (A^)r, which is associated with max (l /b t) = 1 / bk. D 

To answer if (As)mBi>Ar would lead to a higher sum rate, (3.31) can be 

approximated at high SNR as 

^ ( H , ) « i 5 : , l o g 2 ^ A , ^ - j . (3.33) 
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Equation (3.33) assumes (AsP/a2) > ]T .^y(Aij)s and that dropping Term II is reasonable 

via the inequality of arithmetic- and geometric- means (AM-GM inequality), where: 

(A-f)"
1z5(4«),^(n5(4»).)1/J,:,=* 

(Kslog2Z^(Ai)s-Kslog2Ks) > log2n*?Mi)s, (3-34) 

with equality only when {Au}s={c}, where c is a constant. Given a random matrix H s , 

{Aa)s* {c}, and applying (3.34) to (3.31), we see that (Term I)>(Term II) for all SNR 

levels because Ks log2 Z*si(4,) > log2 Ilfji(Ai) e v e n w h e n S N R = ° • G i v e n t h i s ' t h e 

following equation (3.35) must hold for sum rate increases to occur with H , c H r , i.e., 

RSum ( H i ) ~ RSum ( H r ) > ° ' 

p ( p \KrIKs 

a 
Ar—\ . (3.35) 

V o-

The condition in (3.35) is not difficult to meet. Firstly, the existence of highly correlated 

pairs in Hr would render A, «: 1. The removal of one row in such pairs will result in 

As > Ar. Next, the removal of a user with very low channel gain will also result in higher 

As since 

(n^(Z,) = A,)^lCW, (3-36) 

where Zr =H rHf and (za)r are elements of the principal diagonal in Zr and represent 

the channel gains. The power exponent in (3.35) also poses no problems since if both Kr 

and Ks are large, then Kr/Ks ->l. However, this also implies that achieving the 

maximum sum rate with a small user subset is less likely, unless the user channel vectors 

are all highly correlated. 

The statistical analysis of Wishart matrices W(n,m) given earlier in Section 

3.1.1.1 also applies here, i.e., it gives an explanation of why As >Ar can occur when 
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n < m, which reflects user or antenna de-selection. With W(w, m) = Wr = H,Hf when 

n = m and W(n,m) = Ws = HsHf when n < m , the possibility for As > Ar can be easily 

seen from Figures 3.1 and 3.2 where the probability distributions depart from the lower-

eigenvalue regions when n<m. It is important to note that the lower-eigenvalue range 

may be raised by orders of magnitude while the higher-eigenvalue range may remain 

largely in the same order of magnitude as n is decreased. It is under such conditions that 

As > Ar can occur when n < m. Note again that this argument is statistically true even for 

the case where Hr = Hw, i.e., when Rj/2 = 1N where all users are geographically 

dispersed and uncorrelated. 

When correlation is present among the users, we let Hr = R^2Hwr and 

Hs = R]f Hws where R'f is appropriately matched to H s . Then, 

det(Wr) = (det(R:/2))2 det(Zwr) and det(Ws) = ( d e t ^ 2 ))2 det(Zws), where 

Zw = HwrHwr and Zws = HWSK"S. Then 

Ar = det(Wr) = n ( > 2 ( R ' / 2 ) ] X ; ^ (Zr)> a n d (3-37) 

A, = det(Ws) = n > 2 ( R « 2 ) n > < - (Z*)- (3-38> 

It was shown earlier in Section 3.1.1.2 that the removal of antennas that are highly 

correlated with other elements will help reduce the eigenvalue spread in R'f, i.e., raising 

the lower eigenvalues and lowering the higher eigenvalues. When combined with the 

reduction in eigenvalue spread for H^H^ (as shown above), A5 > Ar can occur when 

n <m. 

An example using Hr e C16x16 is given in Figure 3.4 where the cumulative 

distribution functions of Ar and As are compared for 50000 channel realizations and two 

levels of inter-user correlation, viz., 0.0 and 0.5. For each channel realization, the value of 

As is obtained in three ways: (a) a row in Hr is randomly de-selected to yield H s , (b) de

selecting the row that yields the highest As among all one-row reduced sub-matrices, and 
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(c) de-selecting one or more rows to find the highest possible As among all sub-matrices 

of H r . As shown, the probability of higher As is improved when judicious user de

selection is done. The results also show that more than one de-selection may be needed for 

higher As values. Table 3.2 shows the percentage of time that a method of de-selection is 

better than the case without de-selection. As shown, the percentage of time that judicious 

de-selection is useful is high, especially when inter-user correlation is high. 

The above analysis of the conditions under which As > Ar can occur, provides a 

basis for user/antenna selection algorithms with the objective of TCIBF sum-rate 

maximization. It is recognized from the onset that any sum-rate maximization algorithm 

that is based solely on finding max(A5) is sub-optimal since the cofactor terms in (3.31) 

are neglected. The various approaches to algorithm development will be discussed in 

detail in Chapter 4. 

Corr = 0.0, no de-selection 
Corr = 0.0, random de-selection 
Corr = 0.0, one-row de-selection via max(1/bi) 
Corr = 0.0, multi-row de-selection via max(1/bi) 
Corr = 0.5, no de-selection 
Corr = 0.5, random de-selection 
Corr = 0.5, one-row de-selection via max(iybi) 
Corr = 0.5, multi-row de-selection via max(iybi) 

4 5 6 
Determinant x10 

10 
13 

Figure 3.4. Cumulative distribution functions of Ar and As 
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Table 3.2: Percentage of time that a de-selection method is better than no de-selection 

User De-selection 
Method 

Percentage of time better than: 

(a) No user de-selection (b) Judicious one-user de
selection 

Inter-user correlation = 0.0 

Random one-user de-selection 

Judicious one-user de-selection 

Judicious multi-user de
selection 

63.5% 

98.4% 

98.4% 

n.a. 

n.a. 

47.3% 

Inter-user correlation - 0.5 

Random one-user de-selection 

Judicious one-user de-selection 

Judicious multi-user de
selection 

80.2% 

99.9% 

99.9% 

n.a. 

n.a. 

84.2% 

3.1.3 Impact of User/Antenna De-selection on Ergodic TCIBF 
Sum Rate in Rayleigh Fading Channel 

Beginning with a set Sr of Kr = M users, the focus here is to examine the impact of 

subset selection (also referred to as user/antenna de-selection) on E(R^m), the ergodic 

TCIBF sum rate. Specifically, this refers to the case where a subset of users Ss c Sr is 

varied in the range \Ss\ = Ks=l,---Kr, under Rayleigh fading channel conditions while 

maintaining M transmit antennas. Using random subset selection, two lower bounds for 

E ( i ? ° m j will be presented, where the second bound is tighter than the first. It will be 

shown that the sum rates estimated using the second bound are close to the case when 

judicious subset selection is done. Importantly, it is shown that the maximum ergodic 

TCIBF sum rates usually occur at KS<M for practical SNR ranges and that random 
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user/antenna de-selection provides fairly good performance compared to judicious 

user/antenna de-selection. It must be emphasized that this section focuses on subset 

selection from a set Sr of Kr - M users, which must not be confused with user selection 

from a potential pool of K > M users. 

3.1.3.1 First Lower Bounding Approach for E(l?£«) 

As shown in the previous section, sum-rate maximization for TCIBF may be achieved for 

a set Sr of Kr = M users by choosing a subset Ssc:Sr of\Ss\ = Ks=\,---Kr users. When 

judicious user subset selection (also referred to as judicious user/antenna de-selection) is 

done, the ergodic TCIBF sum-rate expression can be derived from (3.27) as 

E(R2m(nr)) = E(max^ilog2(\ + yi/o
2)}, s.t. t r ( R J < P . (3.39) 

<max£ ; i l og 2 ( l + E(Yi.)/a
2), s.t. tr(Rss)<P, (3.40) 

where Hs is the composite channel matrix of the subset Ss and the inequality (a) in 

(3.40) arises because log(») is concave for which the following form of Jensen's 

inequality applies 

^(x) fx(x) dx < <p(j^x fx(x) dx), (3.41) 

where <p is a concave function and X is a random variable with a probability distribution 

function fx(x). 

The y( values in (3.40) are influenced by X,, the eigenvalues of 

W(M,/M) = Ws =H sHf, where n and m are the number of rows and columns in Hs, 

respectively. In turn, the Xt values are influenced by the number of users/antennas in Ss, 

which may be varied in the range \SS\ = KS=\,---Kr. This changes n = Ks in 

W(«, m) = Ws = HsHf while keeping m = M . Note that varying n in W(«, m) amounts 

to random subset selection and this may be adopted to simplify the analysis. Adopting 
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random subset selection instead of judicious subset selection, the ergodic sum rate may be 

examined with respect to user/antenna de-selection, that is, versus Ks. The ergodic TCIBF 

sum rate is then lower bounded as 

HRsL(Ks))^^og2(l + E{yi)/o
2), s.t. t r ( R J < P . (3.42) 

Assuming that all Ks chosen users/antennas will be active on average, that is, 

E(y,.) # 0 Vi = 1, —*, in (3.4), we put Ka = (Kr -p + \) = Ks in (3.4) and (3.5) so that 

E(y,.) = E ( ^ . - a 2 ) , i=l , ,K„ (3.43) 

u r = 
K. 

( „2 K, i > 

1+-Y- (3.44) 

Hence (3.40) becomes 

E ( C m ( i : s ) ) > E S l 0 8 2 ( l + E (M, . - a 2 ) / a 2 ) s.t. t r ( R J < P 

>^og2^A/o2) s.t. t r ( R J < P . (3.45) 

To simplify the analysis, we assume a high SNR regime and allow for equal power 

allocation among the users, i.e., \iTxP/Ks in (3.44). This assumption further lower 

bounds E(R2m(Ks)) so that 

E ( * ° , ( * . ) ) * Z > 8 2 

To find E(&.), it is seen from (3.6) that 

£rW>t) K^KS 

s.t. t r ( R J < P . (3.46) 
J 

E(I/^)=E(X^1^-1), '=I,-..-.*. (3.47) 

Now, it is known from [34] and references therein that the singular values of Hs and the 

left-hand singular vectors in Us taken from SVD(HS) = UJ£SV// are statistically 
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independent when the entries of Hs are zero mean, centrally symmetrical, complex 

Gaussian (ZMCSCG) random variables. Hence 

=^-B(ZS^)' /=1--^ (3-48) 

where E(uvu'v) = l/K,Vj. It is noted from [70] that 

E (trace (\V;'))= K' for KS<M. (3.49) 

Since trace(A) = ̂  \ for a («xn) matrix A with eigenvalues \,---,\ [67], (3.49) 

can be substituted into (3.48) to obtain 

E (l/6 |) = ±B( ta ice (w: I ) ) = - j S i F , i = \,....,K, (3.50) 

The result in (3.50) is also shown in [65] and [66]. In [65], it is derived from the empirical 

distribution function of inverse eigenvalues of Wishart matrices in the Stieltjes domain. In 

[66], an expression similar to (3.49) was derived using the probability distribution function 

of the unordered eigenvalue of a Wishart matrix. Substituting (3.50) into (3.46) 

E(*£ , (*.))**, log, 
(T>(M \\ p 

v°2 K. 
s.t. t r ( R J < P . (3.51) 

A similar expression in (3.52) is derived in [59] by appealing to asymptotic 

parameters arising from large systems where M —> °o and Ks -> oo with MI Ks kept as a 

constant 

ylog2(^l+|-(p-l)j, (3.52) 
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Figure 3.5. Ergodic TCIBF Sum Rate based on (3.51) and (3.53) 

where p = M IK and K is the number of active users, which is equal to Ks in our context. 

Using the notation in our context, (3.52) becomes 

*,log2 

( P(M ^ 
a2 [K, 

(3.53) 

which is almost identical to (3.51). 

The derivation of (3.51) does not use an asymptotic approach and this makes it 

applicable for predicting the performance of systems of practical sizes. It also gives the 

assurance that (3.53) is also applicable to smaller user pools, as will be shown later. Note 

however that E(Z?^) in (3.51) is undefined for the case where M = KS, but should tend 

towards zero as shown by (3.53). To illustrate the behaviour of (3.51) and (3.53), an 
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Figure 3.6. Histogram of number of users chosen for maximum TCIBF sum rate from 
numerical results 

example of a TCIBF system with 16 users and three levels of SNR = P/G2 is given in 

Figure 3.5. The following points may be made from Figure 3.5: 

a. 

b. 

The number of users/antennas that results in the maximum ergodic 

TCIBF sum rate is less than M, the number of transmit antennas. 

A greater number of users/antennas must be de-selected when the 

SNR is low and vice versa. 

This is compared to Monte Carlo simulation results where histograms of the best number 

of users for the highest ergodic sum rates are shown in Figure 3.6 for various SNR levels. 

To save computation time, the histogram is obtained using a sub-optimal user-selection 

algorithm. Waterfilling is done to maximize the sum rate. As shown, the simulation results 
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coincide very well with the theoretical results given in Figure 3.5, that is, the number of 

users scheduled for maximum sum rate in Figure 3.6 are close to those in Figure 3.5. The 

ergodic sum rates obtained from simulation are shown in Table 3.3 and they show that the 

lower bound of (3.51) gives reasonable estimates, especially at high SNR. 

Table 3.3: Simulated results for TCIBF ergodic sum rate with 16 users 

SNR (dB) 

lOdB 

20dB 

40dB 

TCIBF Ergodic Sum Rate 

Simulated (bits/sec/Hz) 

34.2 

70.8 

161.7 

Lower Bound in (3.51) 

(bits/sec/Hz) 

26.6 

60.7 

146.7 

Difference 
(%) 

22.2% 

14.3% 

9.3% 

The impact of user/antenna de-selection upon the ergodic TCIBF sum rate is 

therefore shown via the expression in (3.51). To help maximize the average throughput, 

the number users/antennas to be de-selected is higher when the SNR level is low and vice 

versa. To raise the probability of supporting all users in a chosen group while maintaining 

a high average throughput, a TCIBF system with high average SNR is needed. Assuming 

random subset selection, the maximum E(R^m^Ks)) is therefore found by determining 

the best value of Ks when given a level of SNR and the number of transmit antennas M. 

This can be expressed as 

max(E(i?c /(^)))>max Ks log2 o-2U 
s.t tr(RJ</>. (3.54) 

Since the expression for m a x E f i ? ^ ^ ) ) in (3.54) is concave in Ks, a 

derivative can be taken to give the Ks to SNR relationship that yields the highest ergodic 

sum rates: 
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Figure 3.7. Plot of K IM ratio to SNR for maximum TCIBF sum rate 

l-K/M 

( 
exp 

1 

l-KJM 
= SNR. (3.55) 

The relationship is plotted in Figure 3.7, which corresponds to the peaks in Figure 3.5. 

Equation (3.55) is useful for estimating the average percentage of users served for any 

given SNR value in TCIBF systems. An expression similar to (3.55) can also be found in 

[59]. It is seen from Figure 3.7 that achieving a load factor of Ks IM -> 1 occurs only at 

very high SNR levels. This stringent requirement may be lowered in practice when the 

potential user pool size K is larger than M and the existence of multi-user diversity may be 

exploited via judicious user selection (discussed below). 

3.1.3.2 A Tighter Second Lower Bounding Approach for E(i?^m ) 

A tighter lower bound is obtained by dropping the use of Jensen's inequality in (3.40). 

Maintaining the high SNR and random subset selection regime, then 
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E(R°,(Kg))^E £ > g r p w 
G2K. 

s.t. tr(Rdd)<P. (3.56) 

Considering TCIBF from the projection viewpoint as in (3.7), TCIBF may be considered 

as a special case of block diagonalization where all user terminals have only one antenna. 

Each user j will experience a projected channel Hpj with Wishart matrices 

WPj(n,m) = HPJllpj that have unordered eigenvalues X with PDF 

fxity = n~i^"=iq>i(X)2'km~ne~l . In this case, the values of n and m may be given using 

(3.103) below 

n = l ] 
m = (M + q-(Kr-l))\ 

(3.57) 

It is important to note from (3.57) that the parameter m (the number of column vectors in 

HpJ) is affected by the parameter q, which represents the number of users/antennas that 

are de-selected. Note that Kr<M represents the initial number of users within the user 

set Sr. Note also that varying the parameter m implies random user/antenna de-selection. 

Using this approach, the ergodic TCIBF sum rate is then 

E(*L(*.))*E]£lo& ( \\ 

V°Ks J 
s.t. tr(Rrfrf)<P, or 

E(R*L(KS))> [Kslog2 

v°X J 
fx(X)dk s.t.tr(RM)<P. (3.58) 

Note that Ks = Kr -q in (3.57). 

Figure 3.8 compares ergodic TCIBF sum rates arising from the first lower bound 

of (3.51) with those arising from the second lower bound of (3.58). Table 3.4 follows up 

on Table 3.3 by comparing the simulated results with both bounds. As shown, the lower 

bound in (3.58) is tighter than that in (3.51). We note again that finding max[E(i?^m)) 

involves finding the optimum value of Ks = Kr -q and (3.58) may be expressed as 
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Number of Users 

Figure 3.8. Comparing the two lower bounds in (3.51) and (3.58) with (3.53) by [59] 

max(E( iC (*,))) > max [K, log2 

K°Ks J 
0)dk s.t.tr(Rdd)<P. (3.59) 

Note again that the maximization in (3.59) with respect to Ks implies random selection. 

In Figure 3.9, the two bounds of (3.51) and (3.58) are compared to numerical 

results. Two sets of numerical results are presented for the ergodic TCIBF sum rate and 

each set is obtained using 2000 channel realizations. In the first set, de-selection of the 

users/antennas is done randomly while judicious de-selection is done for the second set 

using a sub-optimal selection algorithm from Chapter 4. 
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As shown in Figure 3.9, the second lower bound of (3.58) is tight when compared 

to the numerical results where random de-selection is done. It is also fairly tight when 

compared against the case where judicious de-selection is done (see Table 3.4). Its 

performance is better than that of (3.53) [59] at high SNR levels (from 20dB onwards). 

The bound of (3.58) is therefore useful for design assessments where initial estimates of 

(a) the ergodic sum rates of TCIBF systems and (b) the optimum number of users for the 

best sum rates, are needed. Monte Carlo simulations may then follow for more accurate 

results when a system size is decided. As a side note, the performance of judicious de

selection will be significantly better than random de-selection under heterogeneous 

channel conditions. 
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Figure 3.9. Comparing the two lower bounds in (3.51) and (3.58) with numerical results 
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Figure 3.10. Numerical results of outage sum rates with and without user/antenna de
selection 

When the transmitter does not have adaptive modulation, the outage capacity is the 

more appropriate measure of performance. The impact of random user/antenna de

selection on the outage sum rate is shown in Figure 3.10. A comparison is made between 

no de-selection and where de-selection is done to achieve the best sum rate (see Figure 3.9 

for best points). As shown in Figure 3.10 and Table 3.5, improvements to the 10%-outage 

sum rate are higher in percentage terms compared to improvements to the average sum 

rate. The improvements are especially significant when the SNR levels are low. 
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Table 3.4: Simulated results compared with the two lower bounds. 

SNR (dB) 

lOdB 

20dB 

40dB 

TCIBF Ergodic Sum Rate (bits/sec/Hz) 

Simulated 

(bits/sec/Hz) 

34.2 

70.8 

161.7 

1st Lower Bound in (3.51) 

(bits/sec/Hz) 

26.6 

60.7 

146.7 

Difference 
(%) 

22.2% 

14.3% 

9.3% 

2nd Lower Bound in 
(3.58) 

(bits/sec/Hz) 

27.5 

62.8 

151.4 

Difference 
(%) 

19.6% 

11.3% 

6.4% 

Table 3.5: Outage sum rate comparison for case without de-selection and case with de
selection for the best sum rates. 

SNR 

(dB) 

lOdB 

20dB 

40dB 

TCIBF 10%-Outage Sum Rate (Monte 
Carlo simulations) 

No de-selection 
(bits/sec/Hz) 

5 

20 

115 

Best number de
selected (bits/sec/Hz) 

26 

58 

143 

Percentage 
Improvement (%) 

420% 

188% 

24% 

3.1.4 Impact of User Selection on Ergodic TCIBF Sum Rate 
when K>M 

The main intention here is to demonstrate the joint impact of (a) user selection, (b) user 

de-selection (also referred to as user subset selection in the previous section) and (c) 

different SNR levels, upon the ergodic TCIBF sum rate when the user pool is large 

(K > M). An upper bound will be derived for the purpose of demonstrating the joint 
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impact of these mechanisms. To simplify the task at this stage, the bound will be based on 

a number of assumptions and the sum rates provided are only good as ballpark estimates. 

Let S represent a potential pool of K > M users, that is, there are more single-

antenna terminals than the number of base-station-transmit antennas. To employ TCIBF, it 

is necessary to choose a subset Sr with Kr - \Sr\ < M users to meet the TCIBF pre-coding 

constraint. This is commonly referred to in literature as user selection. User selection is 

potentially beneficial as it has been shown that transmit zero-forcing beamforming 

approaches the DPC sum capacity asymptotically when the number of users is high [26]. 

This is due to the presence of multi-user diversity in large user pools and judicious user 

selection is needed for sum-rate maximization. In other words, a large user pool presents 

the transmitter with a higher chance of choosing a group of users with high channel 

magnitudes whose channel directions are matched to the zero-forcing beam directions 

[26]. This lowers the likelihood of signal attenuation in TCIBF, which occurs when 

channel inversion is performed on a chosen user subset whose composite channel is poorly 

conditioned. 

When the user pool is large, there are many subsets of Sr that can be considered. 

The optimal strategy is to perform an exhaustive search of all possible combinations of 

users to find the optimum subset S°pt • When the user pool size is very large, the 

probability that S°pt = M will be high, where M is the number of base station transmit 

antennas. As shown in Section 3.1.3 however, Ls,°pt <M may result when the potential 

user pool is not much larger than M and/or the channel conditions are poor. Note that the 

act of selecting any subset with p^1* < M may be viewed as & joint action that comprises 

the initial selection of Sr with |5 r | = M followed by user/antenna de-selection from 

within Sr to result in S°pt, with Ls'r
opt <A/ . In practice, this two-step process is true of 

low-complexity user-selection algorithms that avoid sum-rate evaluations. Note that sum-

rate evaluations are computationally intensive since repeated TCIBF pre-coding is 

involved. These algorithms are normally used to pick l^l = Kr =M users since there is no 

other stopping criterion. The user-selection exercise is then followed by user/antenna de-
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selection for sum-rate maximization. For consistency with the notation in Section 3.1.3, 

the resulting subset is labeled as Ss c Sr where \Ss\ = Ks={l,—,Kr} .To reflect the two 

selection mechanisms, ST is used to represent the best subset of LS'°pt| = ̂  =M users 

from the potential user pool of K users whereas the optimal subset is denoted as 

ST c ST, where \sT\ = KS={\,--,M] • 

To begin, the effect of user/antenna de-selection is considered in isolation. 

Suppose that a user set Sr where \Sr \- Kr = M is given without any regard to the effects 

of user selection. The ergodic TCIBF sum rate after judicious user/antenna de-selection to 

choose ST £= Sr may be derived from (3.39) as 

E ( C 4 H r ) ) = E(maxXSlog 2 ( l + Y,/a2)), s.t t r ( R J < P 

E(/&.(Hr))= [rf^ (r)dr, s.t. tr(RJ<P, (3.60) 

where f a (r) is the probability density function of i?^II(H^pt). Note that f a (r) is 
°sum ^ ' °svm 

parameterized by the number of users in the subset S°pt, which represents the user de

selection mechanism. 

Next, the impact of user selection may be jointly reflected using methods from 

order statistics and a brief outline is given as follows. Suppose that L subsets are drawn 

from the user pool where each subset has a sum rate of R^ml and a set of rates 

{R&,mi>Rs!im2>"'>Rs!,mL} ls obtained. This set of rates may then be ordered and designated 

a s RsL,w <RSL,(2);L <'--<RsL,(Ly.L- lt i s w e l 1 k n o w n f r o m o r d e r statistics theory that 

/ c, (r) the probability distribution function of R? (l).L is given by [62] 
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where f Cl (r) and FCI (r) are the probability density function and cumulative 

distribution function of Rfum (H s / ) , respectively. The best subset S™f from among the L 

subsets is the one associated with the highest sum rate R^lmXL).L and its PDF fRC, (r) is 

simply derived from (3.61) as 

fa (r) = LFa (r)L~lfa (r). (3.62) 

Using (3.62) with (3.60), the ergodic TCIBF sum rate expression that captures the joint 

effect of judicious user selection and subset selection may be expressed as 

B ( * £ . ( H , , L J = [rLF^ (rf-lfRCl {r)dr, s.t. t r (R^)<P . (3.63) 
\ v ' max / JU nsum "-sum 

To make use of the order-statistics method described above, some assumptions 

relating to subset selection must be made. To re-iterate, the optimal strategy involves an 

exhaustive search of all possible combinations of users to find the optimum subset S°pt. 

To reduce complexity, practical selection algorithms usually reduce the number of 

combinations considered by proceeding in an incremental or decremental manner. Note 

that in both cases (optimal selection or via algorithms), each user may be evaluated more 

than once. To suit the order-statistics model however, the aforementioned user selection 

process is approximated by drawing L subsets {SsJ, / = l,---,z} simultaneously for 

consideration. This means that each user is considered only once because each user 

appears in only one combination. All subset sizes are assumed to be equal in each draw of 

L subsets and contain 5 ^ = ^ users, where KS=\,---,M V/ = 1,---,Z and 

max(^) = M. Next, assuming the existence of very large user pools where K —» oo, each 

subset Ssl can then be considered independent from all other subsets Ssk, where / * k. 

The solution to (3.63) depends on the availability of f a (r) and F a (r) and 
Rsum R*um 

efforts are still on-going at the time of writing to solve them. For the purpose of 

demonstrating the joint effects of user selection and user/antenna de-selection, coupled 

86 



with parameters like SNR and M, an approximation to (3.63) via bounding techniques is 

taken. 

To begin, the approach in Section 3.1.3.2 is adopted and random user/antenna de

selection is first assumed within each of the L subsets. Each usery within subset / will have 

a projected channel matrix HpJJ and Wishart matrices WPJJ(n!,m!)-U.PJl'RpJj that have 

unordered eigenvalues X,.L with PDF A;i(?0 = V Z Z i ^ ) 2 ^ " " ' ^ and associated CDF 

FhAX)= LfhAl)dX where 

nt =1 

m, = (M + qi-(KsJ-\))\ 
V/ = !,-••, L. (3.64) 

In this case, the parameter q, in (3.64) follows the approach in Section 3.1.3.2 and 

represents the number of users/antennas that are de-selected to form SsJ. Since we assume 

equal size for all SsJ for ease of analysis even when RAS is done, that is, the same for all 

L sets, then q, = q and £,_, = Ksl = M before de-selection so that (3.64) becomes 

n, =1 1 
' \Vl = \,-,L. (3.65) 

ml = q +1J 

The next approximation comes from the assumption that all eigenvalues within each of 

the L subsets take on the same instantaneous value X,.L during each draw. The 

representative eigenvalues from each of the L chosen subsets may then be sorted as X(l).L 

where X,(1):Z < A,(2):i < • • • < \L).L . The best subset from among them is the one associated 

with the maximum eigenvalue Xm!K = \L):L • This assumption gives rise to an upper bound 

since all eigenvalues within the chosen subset has the same instantaneous value of 

Xmax = \LyL • It is well known from order statistics theory that fx t ̂  (X) the probability 

distribution function of k(l).L is [62] 

4* ft) = (/ _ xylL _7), ̂  ~̂' t 1 ~^ <*•>)" A * ̂ - ( 3 - 6 6 > 
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Equation (3.66) may then be applied to (3.58) that results in an upper bound 

expression for the ergodic TCIBF sum rate 

E(*L(*.))* J > , l o g a - 7 ^ A » dk s.t. tv(Rdd)<P. (3.67) 

The sum rate expression in (3.67) is parameterized by: 

(a) M , the number of base station transmit antennas, 

(b) L, the number of user subsets drawn for consideration from the user pool 

(c) q, = q, the number of users/antennas de-selected from each subset and 

(d) SNR, the signal-to-noise ratio.. 

The maximum E(i?°m(ATs)J given L and M involves finding the best value of 

Ks =M -q. Hence 

MO^)J^max£*>g : -£• L Fhz (X)L-lfli£ (k) dk s.t. tr(Rrfrf) < P. 

(3.68) 

Figure 3.11 shows the behavior of ISfi?^ {Ks)) using (3.67) under different L, 

SNR and Ks. The behavior without user subset selection, i.e., when L = 1, is identical to 

those produced by the second lower bound in Figure 3.8. When L > 1, the results show 

better ergodic sum rates, which reflect the benefits of multi-user diversity (MUD) when 

coupled with user/antenna de-selection (done randomly in this case). The effect of varying 

Ks within the chosen subset is still significant even when L > 1. This means user/antenna 

de-selection must still be done when searching for the best user subset, especially when 

the user pool is small. The results also show mat the benefits of MUD harnessed via user 

selection help in the scheduling of more users (i.e., less users de-selected) from within the 

chosen subset, especially at low SNR. To highlight the case when SNR = lOdB, the 
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Figure 3.11. Ergodic TCIBF Sum Rate based on (3.67) 

number of users scheduled within a chosen group went from 9 to 11 when L, the number 

of subsets drawn, went from 1 to 20, respectively. This is to be expected on average since 

the chances of finding a subset with users that are close to being orthogonal is higher when 

the potential user pool is large. This translates to higher eigenvalues on average and higher 

ergodic sum rates. Conversely, more users/antennas must be de-selected to give adequate 

channel gains when the potential user pool is small, i.e., L is small. 

In Figures 3.12 and 3.13, the upper bound of (3.67) is compared against numerical 

results where user/antenna de-selection is done in a random manner and in a judicious 

manner, respectively. As shown, (3.67) does upper bound even for the judicious 

user/antenna de-selection case. 
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Figure 3.12. Comparing the upper bound in (3.67) with simulated results using random 
user/antenna de-selection 

3.1.5 Sum Rate Scaling Behavior of TCIBF in Large User 
Pools 

It has been shown in [18] that E(.K°^C), the expected dirty paper coding (DPC) sum rate, 

scales as 

E(RD?C) 
\ sum J -

_ _ A? 
lim 
K^M\og\ogKN 

(3.69) 

where M is the number of transmit antennas, K is the user pool size and N is the number of 

antennas per user terminal. It is also shown in [18] that E ( Z ? S ° M the expected 

beamforming sum rate scales as that for DPC, that is 

E(RBF ) 
\ sum J -

__ . 1, 
lim 
*->°°Mloglog£/V 

(3.70) 
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Figure 3.13. Comparing the upper bound in (3.67) with simulated results using judicious 
user/antenna de-selection 

Next, it has been shown in [26] that the zero-forcing beamforming (ZFBF) 

strategy, while generally sub-optimal, can achieve the same asymptotic sum capacity as 

that of DPC, when K the number of users goes to infinity. The approach in [26] was based 

on a selection algorithm known as semi-orthogonal user selection. In this section, it will be 

shown that transmit channel-inversion beamforming (TCIBF) can also scale as 

M log log K as K -» oo (note that N -1 for TCIBF). The simplified method here is based 

mainly on extreme-value theory and on [71], which dealt with asymptotic throughput 

analysis for channel-aware scheduling in time-division multiplexing (TDM) systems. An 

outline of the approach is given next. 

A lower bound is first established by excluding the user/antenna de-selection 

process after selecting the best user subset from the potential user pool of size K. Recall 

that excluding the user/antenna de-selection process will result in a lower ergodic sum rate 
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than otherwise possible. The associated Wishart matrix is then of full rank, that is, 

W(/M,m). The sum rate is further lower bounded by applying the lowest channel gain, as 

represented by Xmia, the minimum eigenvalue of W(m,m), to all users. Using extreme-

order statistics, the ergodic TCIBF sum rate is evaluated when K —» oo, where fx , the 

probability density function of Xmin, is used. Note that if scaling with M is true for the 

ergodic TCIBF sum rate (E( i?^)) , then, the ergodic sum rate for systems utilizing block 

diagonalization (BD) will also scale with Mbecause it is lower bounded by E^i?^ J. 

From [69], the PDF and CDF of the minimum eigenvalue 'kmin for W(m,m) are 

f^iS) = Me'm- (3-71) 

F^(X) = \-e-m'. (3.72) 

The ergodic TCIBF sum rate expression in (3.58) can be used as a starting point for 

applying X^ 

E(R«m)>EUlog^^jj s.t. tr(Rrf(/)<P, (3.73) 

where KS=M is set to reflect the exclusion of the user/antenna de-selection process after 

selecting the best user subset from the potential user pool. Noting that R.2m is a function of 

^-min'we w r i t e m e following for ease of reference 

RsL-n^J-Mlog.ipX^), (3.74) 

P_ 
o2M 

where p = 2 , which is the SNR per transmit antenna. For the purpose of scaling with 

M, the value of p will be fixed as M is scaled, i.e., the total power P will be adjusted so 

that p is set constant at the desired value. 
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The evaluation of E (•/?"„,) as K -> oo using extreme-value theory requires F' (r), 

the CDF of R^lm, which is complicated to evaluate. To simplify the evaluation, we note 

that (3.73) is an approximation to Equation (1) in [71] and a theorem from [71] known as 

the "limiting throughput distribution (LTD)" theorem can be applied to solve for (3.73). 

The LTD theorem allows for the evaluation of E(/?£M without the need to check 

FBc, (r) directly. Instead, if it can be shown that 

lim — 
./LW . 

= o, (3.75) 

then, FDCJ (r) the cumulative distribution distribution of the TCIBF rate is 
RSum 

*«LM-'UrV>). 

and Fa (r) belongs to the domain of attraction of the Gumbel distribution. 
**Sum 

Using the LTD theorem with K —> oo 

HRSL)-"K 
->£ 

(3.76) 

0» (3.77) 

where En = 0.5772 • • • is the Euler constant, 

aK=^og\pF;mJl-— and 

bK = log 
KL 

F - M I - 1 

(3.78) 

(3.79) 

For K -» co, E(R^) may be evaluated as 
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®(RsL)*M(aK+E0bK). (3.80) 

To begin, the condition in (3.75) is evaluated 

.. d 
l i m — *-min V / 

>L(*) 
= lim — 

l _ ( l _ e - ^ ) 

Me -XM 
= 0. (3.81) 

This shows that FaCl (r) belongs to the domain of attraction of the Gumbel distribution 
"Sum 

and the LTD theorem is indeed applicable. Next, to evaluate Fx
-1 (l-K~l J in (3.78), we 

note that 

fl.lxJ^Ui-exp 
M M J K 

1-exp -
\ogKe 

M 
M • 1 - — . 

(3.82) 

(3.83) 

Using these, the values of aK and bK are then 

«JC = 1 °g P 
log^ 

M 
and 

^ = log-
r. i 
1+ 

L l o g * 

(3.84) 

(3.85) 

Plugging the values of aK and ^ in (3.80), the ergodic TCIBF sum rate when K -> oo is 

then 

M O M log |p!^Wlogfl+
 l 

M \ogK 
*0 when AT->eo / 
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*Mlog-P-logK, whereK->oo. (3.86) 
M 

This means that scaling with Mis possible when Kand/or SNR are large. In particular, the 

ergodic TCIBF sum rate E f ^ M scales as for DPC when K->cc, that is, as 

M log log K [18] because 

Mlog-^-logK 
lim 4£ = i (3.87) 
K-*00 M log log K 

using the l'Hopital's rule with t = logK and letting t -» oo. 
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3.2 Block Diagonalized (BD) Zero-forcing 
Beamforming (ZFBF) for Multi-Antenna 
Terminals 

3.2.1 Factors Affecting Sum Rates of Block Diagonalized 
ZFBF Systems 

This section begins with systems using direct block diagonalization (direct-BD [27], see 

Section 2 for system model) to achieve zero-forcing beamforming to users with multi-

antenna terminals. Given S, a pool of ^potential users, a subset Sr cz S of \Sr\ = Kr users 

has to be chosen whenever M, the number of transmit antennas is less than the total 

number of receive antennas from the users to be served, that is, M < ^%iNj, where Nj 

is the number of antennas at userj. From Section 2, the sum rate expression for direct-BD 

is 

< " (H,) = H ̂ T m a x I > g d e t ( l w , + H,T,R V y T;H» /a2) . (3.88) 

S.tMRdjdj)=P, H(T,=<U*/ 

Since direct-BD achieves zero CCI by projecting each Hy. onto H | , the null space 

of Ĥ . =[H[ ••• H^_, H^+1 H^] r , it is preferable that the user channels within Sr are 

close to being orthogonal. Hence, Sr must be properly chosen to give high projected 

channel gains in HPj - HyVJ0) and yield high sum rates. However, sole reliance on user 

selection does not attain the maximum sum rate because the judicious implementation of 

receive-antenna selection (RAS) in direct-BD improves the spatial mode gains of HPy in 

two ways. 

First, the removal of antennas with high inter-terminal correlation from the 

members of Sr helps the user-channel matrices H7. to get closer to being mutually 

orthogonal. This improves the projected channel gains in Hp. because it decreases the 

angle between the sub-spaces spanned by Hy. and fij". This can be readily seen by 

expressing HPj =HjPf, where P/ = IM - Uj ( H ; H " ) " ' H\ is the orthogonal 
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complement projection matrix of H;.. This leads to HPj = Hy - Ly., where 

L. = H MH (H.H^) ILJ represents the projection loss. Note that in the extreme cases, 

HPj = H ; and Rp. - 0 result when the row vectors of Hy are drawn from the row spaces 

of Hj and H ; , respectively. This means 0<||HP.|£ <||Hy|£ and approaching 

orthogonality between all H ; will help lower the projection losses. The sum-rate impact 

of Ly can be seen by approximating (3.88) as 

* - K > «. R xT* • to82 n;:/|det(R, (Hy. -Ly) Vf)f det(Rdj,V)) 
s.t.Vt(B.djdj)=P, H,Tj=0,i*j 

(3.89) 

where a high SNR regime is assumed and equal power allocation can be applied on all 

data streams. 

Let S'r c Sr where (\S'r\ = K'r)z\Sr\ be the set of users remaining after RAS. Note 

that RAS may result in the dropping of one or more users. Let R'S™
D (n'j), Ry , H ; , Ly 

and Vy
(1) represent the corresponding entities after RAS. Let {Uj e S^} c £̂  be a subset 

i i2 i i2 

of Kg<K'r users with |det(R;.(H;.-L;.)v;(1))| > det(R,(Hy-L,)v, ( 1 )) . It is 

possible for i ? r D ( H ; ) > ^ r ( H , ) i f 

(n{ , , , .g } |det(B;.) |2)(n{ m : w J d e t ( B L ) | 2 ) > ( ^ ^ } | d e t ( B „ ) f ) , <3-90) 

where B ^ R ^ - L , ) ^ , {£/, e£ g ; ./ = l,---£g} and C/meS;\Sg means members 

from S'r excluding those in Sg. It is clear from (3.90) that higher sum rates may result 

from RAS when members of Sg have rate gains that outweigh the rate losses in the other 

users affected by RAS. In addition, RAS has a mutual effect among all members of S'r 

since the members of S may also have undergone RAS and have reduced array sizes. 

97 



Second, each antenna removal at a particular terminal provides an additional 

degree of freedom to all other terminals in S'r. For example, if one antenna is removed 

from user k, all other users y have projected channels H/> with dimensions 

NjXiM + l-Z^N,), (3.91) 

where N, represents the original number of receive antennas at each terminal. The number 

of columns in {RPj : V/, j #• k) is increased by one and has the effect of adding more 

transmission resources to all users other than k. This raises the channel gains in H^., 

which can be explained in terms of their singular values. The resulting channel matrix H^ 

has dimensions (N'k xM), where N'k = Nk - 1 . User k's single-user capacity and the multi

user sum capacity are correspondingly reduced. 

Since RAS is not performed on any other user, we have H^ = H t , i.e., the row null 

space remains unchanged, which leads to Y((0) = Vi
(0). The projected channel 

H; t=H;v; ( 0 ) has dimensions 

( i V , - l ) x ( M - X ^ , , ^ , ) , (3.92) 

that is, a one-row reduction with no change in the column dimension. Let the singular 

values of H'ft be o ^ ) ^ ^ ) ^ . - ^ ^ ^ ) , then 

<W (HA) * amax (H^) > • • • > a ^ (H!pt) > a,^ (H ft) since rows(Hft) < columns(Hft) 

[67]. The singular values of H^ lie between those of the original Hft and hence, the total 

channel power gain \\H'J2
F < | | H j £ , where | | H ; j | ^ t r ( H ^ H ^ ) = ̂ A , ; and X', are 

the eigen-values of H'PtH'£. For any other user j , the row dimension of Hy. is reduced by 

one and let it be represented as H'y. Let V/'
(0) be the new orthonormal basis associated 

with the row null space of Ĥ . and the new projected channel be H'P. = Hy.Vy'
(0). By virtue 
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of a one-antenna reduction in user k, the column dimension of the projected channels of all 

other users y is increased by one, that is, 

NjXiM + l-ZZu.jN,). (3.93) 

Since rows(H/>y) < columns(H/> ) , then [67] 

omm(KJ)^omm(KPj)>--->amin(R'Pj)>omin(RPj) (3.94) 

Equation (3.94) shows that the singular values in H'Pj may be greater than the 

original singular values of HP.. Given that tr(H^yH^)> tr(HPyH^) because of the 

additional column in H'P. and that rank(Hi»y) = rank(HP/), this ensures that 

CP,(H'P.) >a,(Hp.) will be true for some values of i in (3.94). In turn, this creates the 

potential for higher total channel power gain, i.e., ||H'p |£ >||Hp |£ and the potential for 

higher sum rates despite sum capacity loss due to user k. In fact, given that 

\\RPJ\\F -xL^M-sa,,^^) a n d ||HJ}|£ -XiNftM+i-iR^jN,) where xlt is a chi-square random 

variable with 2/ degrees of freedom, the probability of ||H'p|£ >||H^|£ is raised due to 

one more column in H'Pj. When RAS is done on more than one user, it is important to 

note that (3.94) also applies to those users with reduced antenna array sizes due to RAS. 

Let sk and Sj represent the total number of receive antennas eliminated from user 

k and usery, respectively. Let {Nj: j = \,-• • ,Kr) be the original number of antennas at 

each user j prior to RAS and hence s. e{0,l,---,iV^}. The dimensions of the projected 

channel H^ for user k can be more generally expressed as 

Hence, user &'s projected channel will have its row dimension reduced by ek after 

RAS is applied on it, while its column dimension may be increased by the amount 

Pi = ^jLijtktej) when RAS is performed on other users as well. In general, this means 

that the singular values of those users with reduced array size may still be increased due to 

99 



additional columns in their projected channels, although the RAS process might have 

reduced their channel ranks. In this way there is mutual benefit to be obtained when RAS 

is done at all users to remove antennas with high correlation. 

Note that the above analysis extends readily to block diagonalization schemes that 

use Rj, receive-weight matrices for spatial-mode allocation. These schemes have better 

performance because no antennas are dropped at the user terminals during spatial-mode 

allocation. Examples of such schemes are the coordinated transmit-receive (CTR) scheme 

[27] and the null space directed SVD (Nu-SVD) scheme [29]. By replacing each Hy with 

a virtual channel HVJ = R"H,, the equivalent of RAS is then spatial mode selection 

(SMS). In this way, the above arguments on the benefits of RAS for direct-BD are 

applicable to schemes that operate on the virtual channels, such as CTR and Nu-SVD. The 

main drawback for such schemes is the need for the base station to send R ; to each of the 

chosen users. 

Table 3.6 illustrates the benefits of RAS/SMS using direct-BD [27] and Nu-SVD 

[29] with a fixed channel realization. A system with Kr = 8 users, iV. =4 V/, 

M = ^%iNj = 32 and SNR = 20dB is used. This large system is deliberately chosen to 

better illustrate the impact of RAS/SMS. To avoid exhaustive search, a RAS algorithm 

from Chapter 5 is used to perform RAS and SMS. As shown, RAS/SMS has a substantial 

impact on the system sum rates with improvements of-46% and -56% for direct-BD and 

Nu-SVD, respectively. Interestingly, many users with reduced antenna-array sizes or 

reduced spatial-mode sets enjoy rate increases, e.g., users #1 and #3. The rate loss for 

users #2 and #5 in the direct-BD scheme is not large despite having 2 antennas removed. 

The same is also true in Nu-SVD where user #2 has 2 modes removed. As expected, Nu-

SVD with SMS performs better than direct-BD with RAS since all receive antennas are 

utilized. The example demonstrates the mutual benefit among users when judicious 

RAS/SMS is performed across the chosen group. 
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Table 3.6 

User 
Sum rate improvement due to RAS/SMS - A 
#1 #2 #3 #4 #5 #6 #7 #8 

snapshot 

Total 

Direct-BD without RAS 
#Ants 
Rate 

4 
12.2 

4 
12.5 

4 
11.7 

4 
10.5 

4 
12.4 

4 
10.8 

4 
12.7 

4 
11.0 93.8 

Direct-BD with RAS 
#Ants 
Rate 

3 
16.8 

2 
11.4 

3 
16.9 

4 
22.7 

2 
12.0 

3 
16.4 

4 
23.9 

3 
17.2 137.4 

Nu-SVD without SMS 
#Modes 
Rate 

4 j 4 
12.2 12.5 

4 
11.7 

4 
10.5 

4 
12.4 

4 
10.8 

4 
12.7 

4 
11.0 93.8 

#Modes 
Rate 

3 
17.6 

2 
11.9 

3 
18.2 

3 
17.4 

3 
17.4 

3 
16.4 

4 
23.9 

4 
23.1 145.9 

When there are potential users beyond the chosen group, additional sum rate gains 

due to multi-user diversity may be realized by scheduling more users if the RAS/SMS 

process has released transmission resources. This is justified by the scaling expression 

M\og\o%KN [18], which shows that Mchannels must be served to reap the full benefits 

of multi-user diversity arising from a large user pool and the available degrees of freedom. 

A greedy procedure for realizing this is: (a) add the next best user to the current group 

(using a user selection algorithm), (b) perform RAS/SMS to remove antennas/modes that 

cause low sum rates, (c) iterate until the next chosen user causes a sum rate drop even after 

RAS/SMS or when the scheduling of M channels is reached. Note that this procedure is 

also applicable to channel inversion beamforming (TCIBF) systems where the users have 

single-antenna terminals. However, the improvement is not expected to be as significant 

when a good user-selection algorithm is already in place. 
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3.2.2 Ergodic BD Sum Rate Analysis with RAS/SMS and User 
Selection under Rayleigh Fading Channels 

As for the channel-inversion beamforming (TCIBF) case, two cases are considered here, 

namely (a) the total number of receive antennas matches the total number of transmit 

antennas, i.e., ^ Nj =M, and (b) a large user pool exists and a subset Sr of \Sr\ = Kr 

users is chosen such that V ' N, =M . Each user terminal has N, receive antennas and 

we assume negligible inter-terminal and intra-terminal antenna correlation. A novel 

approach to establish a lower bound for case (a) under the influence of receive antenna 

selection (RAS) or spatial mode selection (SMS) is developed here. Importantly, it is 

shown for case (a) that the maximum ergodic BD sum rates usually occur at ]T . Nj <M 

for practical SNR ranges and that random RAS/SMS provides fairly good performance 

compared to judicious RAS/SMS. It will then be extended to cover case (b) where the 

joint effects of user selection and RAS/SMS are captured. 

3.2.2.1 Impact of Receive Antenna Selection (RAS) 

This is examined as case (a), where the user pool of K users is such that the total number 

of receive antennas matches the total number of transmit antennas, i.e., ^ N} =M . 

This condition meets the BD pre-coding constraint and user selection is therefore not 

strictly required. Instead, the impact of antenna de-selection from the multi-antenna 

terminals is examined. Antenna de-selection is more commonly referred to as receive-

antenna selection or RAS. Note that the situation may arise where RAS causes a user with 

poor channel gain to be completely de-selected. It can be said therefore that user selection 

is subsumed under receive-antenna selection. For the first case (a), the ergodic sum rate 

for block diagonalized systems is from Chapter 2, 

E « ° ) = IE (S ; = 1 l og 2 de t ( l ^ . + R^^ /a 2 ) ) , s.t. tr(Rdd)<P, (3.96) 
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where T.2j-diaglkJl,---'kJN\ where Sj contains the eigenvalues of H^H^ and 

HPj =H;VJ0) are projected single user channel with dimensions N} x(M-^if=liUjNi). 

Next, we assume that all user terminals have an equal number of receive antennas, i.e., 
If 

Nj-r\ V/ and 2 J = I ^ / = - ^ - The l ° w e r bounding approach for TCIBF in Section 

3.1.3.1 will be adapted for application here. Specifically, antenna/mode selection will be 

done on a random basis and on the use of unordered eigenvalues of Wishart matrices. We 

begin by introducing the unordered eigenvalue Xj of Wiy(ny,»iy) = H^H^ into (3.96) 

where 

n^Nj 

mj={M-Z^A)\ 
(3.97) 

To simplify the analysis, we assume a high SNR regime and allow for equal power 

allocation among the users, i.e., Rd.d. = (-P/X -i^JrN w n e r e !#• *s a n
 NJXNJ 

identity matrix. Then (3.96) becomes 

HRs^E £*,log2det A T 
2 ^ * . J NJ ° 2 & 

s.t. tr(Rdd)<P ; 

>E Sti10^ 
yv^ 

T ^ ' . 
s.t. t r (R„)<P, 

E«D
m)^I> Nj log2 

^ 

v"&. 
s.t. tr(Rdd)<P. (3.98) 

We want to examine the impact of antenna de-selection, which is more commonly 

phrased as receive antenna selection or RAS, across the user terminals. If one antenna is 

removed from user k, then all other users j will have projected channels HPy with 
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dimensions Nj x(M + l - ^ * , MJNt), where {N,:i = !,•••,K} represents the original 

number of receive antennas at each terminal. In general, the dimensions of the projected 

channel H^ for user k can be more generally expressed as 

(V^(^-lUV8y| (3.99) 

where e. e{0,\,---,Nj}. Hence, user k's projected channel will have its row dimension 

reduced by sk after RAS while its column dimension may be increased by the amount 

P* ~2*ij=ij*k(ej) (3.100) 

when RAS is performed on other users as well. When Nj =r\ V/, (3.99) becomes 

(i\-ek)x(M + Vk-(K-iyr\). (3.101) 

The parameters of WP7(n;.,my.) = H^.H^. will therefore change accordingly when RAS is 

done across the user terminals. To help visualize the impact of RAS on the BD ergodic 

sum rate in (3.98), we use a case with 8 users, each equipped with 4 antennas. The base 

station is equipped with 8 x 4 = 32 transmit antennas. For a start, we would like to observe 

the impact of a progressive one-antenna reduction from each user, done in a round-robin 

style. Let X represent the unordered eigenvalue of a user without RAS and X' represent 

the unordered eigenvalue of a user that has a one-antenna reduction. The ergodic sum rate 

is then 

E(R£r)HK-q)r& 
f f 

log2 

v v 

Y\ 

<*\Ki\-q) 
+ q(r\-l)E log2 -X 

w 
o\Kr\-q) 

s.ttv(Rdd)<P, 

(3.102) 

where q is progressively stepped through q = 0,---,K . The first expectation in (3.102) is 
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^ 
E !og2 a2(Kn-q) J-00 

' p . 
\o\Kx\-q) AW ^ 

where 

/x<*.)=-2>,(*.)2*.'KV 

with 
n = Ti | 

m = (M + q-(K-\)r\)\ 
(3.103) 

The second expectation in (3.102) is 

E [ log, f——^—r 
1 82la2(Ar,-g) , 

= £ l o g 2 (y (ATl-^r) 
X' /V(V) dV, 

where 

with 
H' = TI-1 ] 

m' = (M + (q -1) - (K - l)ri)J 
(3.104) 

Equation (3.102) may be iterated to progressively remove two or more antennas from each 

user. This is done by the formation of two user groups Gt and G2. The first group initially 

contains all users and the second group is progressively incremented to reflect an antenna 

removal from each user until all users from G{ ends up in G2. The following expression 

may be used 

E ( C S ) ^ ( ^ - ^ ) ( n - ^ log2 
a2(Ki\-t) 

+ £/2(n-r2)E 
J) 

W 
log 21 o\K\\-t) 

V 

s.t. tv(Rdd)<P, 
(3.105) 
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where Ul is the number of users in the first group, r, is the number of antennas that is 

already removed from each user in the first group; U2=0,---K is the number of users to 

be progressively included in the second group and r2 = rx +1 reflects the total number of 

antennas that would be removed from each user when the next antenna removal is done; 

and t is the total number of antennas that will be removed after the removal of the next 

antenna. Note that (Kr\-t) = Ul(r\-rl) + U2(r[-r2). To use (3.105), we state the current 

value of rx then r2 = rx +1, i.e., G2 contains users with one more antenna removed. The 

number of users in G2 is sequentially incremented from U2=0,---K and 

(Kr\—t) = Ul(r\ — rl) + U2(r\ — r2) is updated at each step. The parameters of X, in G{ are 

" 1 = 1 1 - 1 

and the parameters of X' in G2 are 

n2=x\-r2 

m2=(M + (t-r2)-(K-\)r]) 

where t - Kx\ - Ux (n. - rx) - U2 (n. - r2) represents the total number of antennas de-selected. 

Continuing the example with 8 users and 4 antennas per user, we plot the ergodic 

BD sum rate given by (3.98) using the method in (3.105), versus the number of antennas 

de-selected in Figure 3.14. As shown, the ergodic BD sum rate improves even when 

random RAS is applied and the improvements are substantial. The optimum number of 

antennas de-selected is high when the SNR is low and vice-versa. The lower-bound 

ergodic BD sum rate given by (3.98) compares well with the Monte Carlo results where 

random RAS is done (also shown in Figure 3.14). For example, numerical results yield 

« 99 b/s/Hz without RAS and »139 b/s/Hz with RAS at 20dB SNR. This compares well 

with 82 b/s/Hz and 127 b/s/Hz, respectively obtained via (3.98). We see that 

max (E (RS^™ )) occurs at different values of t at different SNR and using (3.105) 

(3.106) 

(3.107) 
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Figure 3.14: Impact of RAS on a block diagonalized ZFBF system 
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s.t. tr(Rd(1)<P, 

J) 

(3.108) 

It will become clear later during the discussion on selection algorithms that user subset 

selection is actually subsumed within the RAS process. 

Next, block diagonalized systems may be lower-bounded by performing channel 

inversion across all antennas of all user terminals. The lower bound for ergodic TCIBF 

sum rate in (3.51) may then be modified for use in this context: 
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Figure 3.15: Performance of BD ergodic sum rate lower bound compared with simulated 
results with random RAS and an equivalent TCIBF system 

E(B^M)^E(xa)^M-t)log2 4 s.t. tr(Rdd)<P, (3.109) 

where t is the total number of antennas removed from the equivalent TCIBF system with 

Kr\ receive antennas and M transmit antennas. The results using (3.109) for an 

equivalent TCIBF system with 32 users are also shown in Figure 3.14. It is clear that the 

lower bound of (3.51) requires the removal of more antennas to result in the maximum 

sum rate compared to the equivalent BD system. For comparison, numerical results using 

random RAS on the 32-user TCIBF system is also shown in Figure 3.14. 

For comparison against random RAS, numerical results with judicious RAS using 

the maximum determinant ranking (MDR) algorithm from Chapter 5 are presented in 

Figure 3.15. For the 8-user BD system, the judicious RAS is done at the localized- and 
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global levels. For localized judicious RAS, the MDR algorithm is employed locally at 

each user terminal to remove antennas that contribute to poor performance, that is, the 

base station is not involved in the RAS process. For global judicious RAS, the base station 

performs RAS on the composite channel matrix that is the concatenation of the individual 

user channel matrices. As shown in Figure 3.15, the ergodic sum rates arising from 

localized judicious RAS are only slightly better than random RAS performed at each 

terminal. However, better performance is obtained when judicious RAS done on a global 

basis at the base station. For comparison, results for an equivalent 32-user TCIBF system 

with random and judicious RAS are also shown. 

Results for random RAS or localized judicious RAS show the possibility for 

reducing the channel matrix size to be fed back from each user back to the base station. 

This is true especially when the SNR levels are low where sum rate maximization involves 

the de-selection of more antennas. The lower bound in (3.98) may be used to guide the 

number of users that employ localized RAS for a given SNR level. 

At this stage, we have shown that receive-antenna de-selection from some user 

terminals is needed on average when maximizing the ergodic sum rate for block 

diagonalized systems. This is commonly referred to as receive antenna selection or RAS. 

The sum rate is increased even when RAS is randomly done on a round-robin basis. For 

the case where each terminal has only one antenna, receive-antenna de-selection becomes 

identical to user de-selection. 

3.2.2.2 Impact of User Selection 

Using the same approach as Section 3.1.4, the main intention here is to demonstrate the 

joint impact of (a) user selection, (b) RAS/SMS and (c) different SNR levels, upon the 

ergodic BD sum rate when the user pool is large (K>M). An upper bound will be 

derived for the purpose of demonstrating the joint impact of these mechanisms. To 

simplify the task at this stage, the bound will be based on a number of assumptions and the 

sum rates provided are only good as ballpark estimates. The first expectation in (3.102) is 
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Similarly, the second expectation in (3.102) is 
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log 
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f,(X)Jk', (3.111) 

1 ^ where / ^ (V) = Z J ^ ( V ) " / ^ (V) and / ^ (X') = - J X W V * ' , with 

«' = n - l ] 
m' = (M + ( ^ - l ) - ( ^ - l ) n ) J 

Putting (3.110) and (3.111) into a form similar to (3.105), we can find the ergodic BD sum 

rate E^R BD-USEL-RAS ) that takes both user subset selection and RAS into account 

E(R. BD-USEL-RAS 
Sum 

+ U2(r\-r2)j^ log 

\KT\-q) 

( P 

AJX) <*• 

o2(Kr\-q) 
^fx,Jl')dk', s.ttr(Rdd)<P, 

(3.112) 

Continuing the example with 8 users and 4 antennas per user, we plot the ergodic BD sum 

rate E(^„°"USEI 'RAS ) versus the number of antenna de-selected in Figure 3.16. The results 

show that both user selection and RAS are useful towards ergodic sum rate maximization. 

The effect of RAS is more pronounced when the potential user pool for subset selection is 

smaller and vice versa. This is to be expected since the chances of finding eigenvalues in 
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Figure 3.16: Impact of both user selection and RAS on a block diagonalized ZFBF system 

the higher range is raised in large user pools, which results in higher ergodic sum rates. In 

practice, it means that the chances of finding user subsets with users of good channel gains 

that are close to being orthogonal with each other are higher on average for larger user 

pools. 

3.3 Considerations for Algorithms 
Arising from the discussions above, the following is a list of considerations when 

designing algorithms for user/antenna/mode de-selection: 

a. It is shown in Section 3.1.3 that random user/antenna de-selection is useful for 

increasing the ergodic transmit channel-inversion beamforming (TCIBF) sum 
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rate. This implies that judicious de-selection will give better performance 

especially under heterogeneous channels. 

b. It is shown in Section 3.2.2 that random antenna/mode de-selection is useful 

for increasing the ergodic block diagonalized (BD) beamforming sum rate. 

This also implies that judicious de-selection will give better performance 

especially under heterogeneous channels. 

c. For BD systems, a round-robin style of random de-selection produces results 

that are close to localized judicious de-selection for homogeneous channels. 

Since the channel matrix size to be fed back to the base station is reduced after 

a localized RAS (be it random or judicious), a method for reducing the 

feedback overhead may be developed on this basis. For example, it is shown in 

Figure 3.15 that around 8 antennas must be removed from the 8-user BD 

system to achieve the best sum rate when SNR = 20dB. This means that one 

antenna must be removed from each user and this reduces the size of the 

channel matrix to be fed back from each user to the base station. 

d. For BD systems with large user pools, antenna/mode de-selection should not 

be done too early during an incremental user selection process. This can be 

seen from Figure 3.15 where the sum rates go on a downward trend when the 

number of antennas/modes is too few. This implies that a group of M 

antennas/modes should be chosen first before attempting antenna/mode de

selection. 

e. For TCIBF systems with large user pools, user/antenna de-selection should not 

be done too early during an incremental user selection process. This can be 

seen from Figure 3.9 where the sum rates go on a downward trend when the 

number of users/antennas is too few. This implies that a group of M 

users/antennas should be chosen first before attempting user/antenna de

selection. 
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3.4 Summary 

For a given set of single-antenna terminals that is served by Transmit Channel Inversion 

Beamforming (TCIBF), we have shown the underlying mechanism behind the impact of 

user de-selection on the TCIBF sum rate. The process of random user de-selection was 

shown to be changing the parameters of Wishart matrices that may be derived from the 

overall concatenated system channel matrix or from the individual projected channel 

vector. The ergodic sum rate expressions for TCIBF demonstrate concavity with variations 

in Ks, which is the number of users left after de-selection. Optimum values of Ks for 

maximum ergodic sum rates can be determined for different SNR levels. 

When the potential user pool is larger than the TCIBF pre-coding constraint, multi

user diversity (MUD) gain is available when judicious user subset selection is done. The 

impact of MUD via user subset selection was jointly analyzed with user de-selection using 

order statistics methods. It was shown that both user de-selection from within a chosen 

user subset and user subset selection can be combined to yield higher ergodic TCIBF sum 

rates. It was also shown that user de-selection has less impact when more user subsets are 

available for selection. This is to be expected since the chances of finding eigenvalues in 

the higher range is raised and result in higher ergodic sum rates. In practice, it means that 

the chances of finding user subsets with users of good channel gains that are close to being 

orthogonal with each other are higher on average for larger user pools. 

For block diagonalized (BD) systems, we have also carried out a joint analysis on 

the impact of user subset selection and antenna de-selection. It was shown that the ergodic 

sum rates of BD systems benefit from receive antenna selection (RAS) or spatial mode 

selection (SMS), even when RAS/SMS is randomly done. The basis behind the benefits of 

both is the same as that experienced by TCIBF. Antenna de-selection is commonly 

referred to in literature as receive antenna selection or RAS. We note that user de-selection 

in TCIBF is synonymous with antenna de-selection for the BD case when all terminals are 

equipped with only one antenna. In addition, the user subset selection process in BD is 

subsumed under the RAS process, as will be shown in the section on algorithms. 
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Chapter 4 

SELECTION AND ALLOCATION 

ALGORITHMS FOR TCIBF WITH SINGLE-

ANTENNA TERMINALS 

We will develop user selection algorithms for the purpose of sum rate maximization under 

two cases, (i) when K<M and (ii) when K>M, where K is the user pool size. 

Proposals for fair scheduling and CSI feedback reduction will be given. Preliminary 

methods for resource allocation against a given set of QoS requirements will also be 

given. The challenge is to perform resource allocation while minimizing the sum rate loss. 

An analysis on the impact of transmit antenna selection (TAS) will also be given. 

4.1 User Selection Algorithm for K < M 

Given a pool of K < M users, there is no possibility of replacing any user. Under poor 

channel conditions, the waterfilling process may assign zero power to users associated 

with low bt values (see Chapters 2 and 3). Although this helps mitigate the signal 

attenuation problem in terms of meeting the power constraint, it does not achieve the best 

sum rate since the poor channel condition still exerts its influence on the remaining b, 

values. To analyze the conditions under which TCIBF sum rate improvements would 

occur with subset reduction, we begin by representing the 1/6. values as 

{\/bi:i = \,-,Kr} = {(An)rA? MKrKr)X}, (4-1) 

where {Aii)r are cofactors associated with the diagonal elements h„ in H,H.r" and 

A,. =det(H rH^). Each (Aii)r is found after eliminating row i and column i in HrHr
w, 

which corresponds to eliminating row i in Hr e CKrXM to give sub-matrix Hs e CK°xM 
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where Ks=Kr-\, i.e., eliminating user i. Starting with K = M, let y, =([iTbi-c
2)k+ 

represent the computation of y,. after having removed k rows and having waterfilling re

applied. Substituting (4.1) into the expressions for y,. and the water-level |xr, 

Y/ 

f A.P {. a2 A , . > 

(4,)A 
- a (4.2) 

A+ 

where (^;;)5 and As are associated with HsHf and Ka=Ks-p + \. Using (4.2) in the 

TCIBF sum rate expression, 

*(H,> s ^TZFBF max 
Hs,R„,ti(RM)=P 

Z>& 
( ( 
1+ 

PA„ 

°X(4,)S 

( c2 £, A 

1 + —2(4 , ) 
-1 

>k+J 

• (4.3) 

Considering only those row eliminations that result in non-zero power allocations, i.e., 

yt > 0, Vz, and Ka=Ks, (4.3) is re-written as 

f \ 

*(H,> TZFBF max 
A.P 

^logj - v + J c ^ x Uiog2n(4,).-*>ga*. 
1=1 Term III 

(4.4) 

Term I Term 11 

It appears from (4.4) that AsP/a2 dominates under high SNR where higher As values 

will help increase ^(H5)TZFBF. This leads to a 2-part question, (i) does Ss c Sr with 

As > Ar exist, and (ii) if it does, would it result in a higher sum rate? 

To answer the first part, note that H.rHr
H is positive definite Hermitian and the 

inclusion principle [67] implies 

W H , H ? ) * W H . H f ) < Xmax(HsHf ) < ^ ( H . H f ), (4.5) 

where X,,(B) represents the eigenvalue X, of matrix B. The justification for being able to 

apply the inclusion principle to any Hs c Hr is given in Appendix A. Note that As > Ar 

can happen when the lower eigenvalues of HrKr
H transit from Xi(HrH.r

H) < 1 to 

^ • ( H j a / ^ l after a row elimination in Hr. In relation to (4.1), this situation occurs 

whenever a cofactor (Aii)r is larger than its associated determinant Ar, i.e., there is one 

or more !/&,•> 1. From (4.1), max(l/6,) is associated with max((4,)r) = (4»mX > m e 

115 



largest cofactor. This means that eliminating row m and column m column of HrHr , 

which corresponds to removing row m in Hr to give Hs, will result in a H ^ that 

possesses the largest determinant ( A J ^ = (Amm)r and more importantly, (As)max > Ar. 

To answer if (As)max>Ar would lead to a higher sum rate, (4.4) can be 

approximated at high SNR as 

•^(HJTZFBF
 w ^ l ° g 2 

( V \ E, s 

V^tty 
(4.6) 

Equation (4.6) assumes (AsP/a2) > 'Lfjl(Aii)s and that dropping Term II is reasonable via 

the inequality of arithmetic- and geometric- means (AM-GM inequality), where: 

(Kslog2^Mi)s-Ks\og2Ks) > log2nfi(4»),. (4-7) 

with equality only when {Au}s={c}, where c is a constant. Given a random matrix H s , 

{Au}s*{c}, and applying (4.7) to (4.4), we see that (Term I)>(Term II) for all SNR 

levels because Ks\og2Hfl\{Ai) > ^°E2llfji{Ai) e v e n when SNR = 0. Given this, 

(4.8) must hold for sum rate increases to occur with H , c H r , i.e., 

-KCHJTZFBF
 --^(Hr)TZFBF > 0» 

K>KS 

Kr Kr ^ 

C A \KS( E V* 
. (4.8) \KrJ K*oj 

The condition on As in (4.8) is not difficult to meet. Firstly, the existence of highly 

correlated pairs in Hr would render Ar «; 1. The removal of one such rows will result in 

As > Ar. Next, the removal of a user with very low channel gain will also result in higher 

As since 

(n>,(zj=Ar)<n:;(z,,x, (4.9) 
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where Zr = HrHf and (zti)r = diag(Zr). Lastly we note that the power exponents in (4.8) 

pose no problems since if Kr and Ks are large, then Kr/Ks—>1. However, this also 

implies that achieving the maximum sum rate with a small user subset is less likely, unless 

the user channel vectors are all highly correlated. 

Next, with respect to the waterfilling process, we see from (4.2) that the influence of 

l.fjl(Aii)s is less when SNR and As are high. In addition, the "bucket bottom" is 

inversely proportional to As while bt <x As. Hence, choosing the next subset that has the 

highest Â  among all subsets of the same cardinality is also reasonable from the 

waterfilling viewpoint, i.e., in avoiding zero power assignments so that Ka^> Ks. 

At this point, we see that choosing each reduced user subset such that As is 

maximized is a reasonable approach in terms of the waterfilling process and the sum rate 

maximization process, under all channel and SNR conditions. This leads to a user 

selection algorithm that removes the user associated with the current max(l/6;) value to 

result in the next highest determinant As. At high SNR, this approach would also give the 

best cooperative MIMO capacity among all such one-row reduced channel matrices. The 

algorithm's pseudo-code is listed in Table 4.1 and is referred to as Joint Rate Evaluation 

and User Selection (JREUS) because user selection is made possible during TCIBF rate 

evaluation since the l/b( values are available. It avoids the typical arrangement that 

entails separate user selection and TCIBF rate evaluation processes. Rate evaluation and 

user selection are performed until the sum rate drops, hence incurring a maximum of M 

steps. This is lower than the 0{2M) steps needed for exhaustive search. It is also lower 

than many existing algorithms because most operate on the principle of considering each 

remaining user against a subset of chosen users and incur 0(M2) steps. The extension "-

MAX" refers to a JREUS version where user selection is guided by the max(l/fy) value. 

Note that stopping when (As)m+1 <(As)m is not optimal, where (As)m represent the 

determinant of (HL_Hf )m at the TM"1 step of user removal. The primary reason is that 
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Table 4.1 JREUS-MAX Algorithm 
Start with KS=M and initial Hs=HrcH; 
Initialize R_max = 0, done = 0; 

while done == 0 
compute 1/jbi values; 
find water level ur; 
find yi values; 
compute channel rate R_temp; 

if R_max < R__temp 
R_max = R_temp; 
HB_found = Hs; 

else 
done = 1; 

end_if 

k = argmax(l/Jbi) ; 
eliminate row k in Hs; 
form new Hs; 

end_loop 

Output: R_max and set of active users in 
Hs found 

bt = As l{Ali)s are also dependent on the cofactors and they may still increase even when 

(As)m+1 < (As)m. In addition, (4.2) and (4.4) are also dependent on the subset sizeKs. 

To reduce complexity of JREUS-MAX, a recursive inversion procedure is given in 

Appendix B. It makes use of (HrIlf )_1 to derive the subsequent (H^Hf ) - 1 matrices. 

Numerical results show near-optimal performance using JREUS-MAX for both 

homogeneous and heterogeneous channels (see below). 

4.1.1 Sub-optimality of JREUS-MAX and Alternative 
Strategies 

The high SNR approximation in (4.6) allowed us to isolate the impact of As, which led to 

the development of JREUS-MAX. However, a search path that depends solely on 

max(l/i>|) is sub-optimal because the cofactors are ignored. We will discuss the possible 

alternative decision strategies to mitigate this sub-optimality and their effectiveness. The 

cofactor dependency in (4.2) and (4.4) may be viewed in terms of b( as 
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and (4.10) 

(4.11) 
>k+ 

Starting with a subset SrczS where \Sr\ -M, let (Ss)mWi^/b^ czSr, be a one-row 

reduced subset with max(AJ among all subsets of the same cardinality. However, since 

bi=As/(Aii)s, higher projected channel gains may be achieved by another subset 

St * (Ss)max(i/b) • This leads to the idea of sum rate comparisons among some subsets of 

the same cardinality at each iteration stage. Given bt = As/(Ait)s, one would examine 

those subsets whose determinants are close to max(A^). A simple algorithm is JREUS-

ALT1, which comprises JREUS-MAX plus rate evaluation for another subset associated 

with the second highest 1/6, value. The subset with the higher sum rate is selected at each 

stage and the greedy search proceeds until the sum rate drops. The recursive inverse in 

Appendix B can also be used. Numerical results show that JREUS-ALT1 is better / worse 

than JREUS-MAX for about 24% / 7% of the time. Despite this, the ergodic sum rate 

improvement of JREUS-ALT1 over JREUS-MAX is only 0.24%. This is because most 

improvements are not high while some negative results are high. 

For comparison, we will also consider JREUS-ALT2 where the subsets up to the 

third highest 1/6, value are examined. Note that Dimic's algorithm [50] is actually for the 

case when all subsets of the same cardinality are considered at each stage. Numerical 

results show that Dimic's algorithm is mostly worse off despite its higher search 

complexity, except when SNR < 10 dB. It also gets worse when correlation among users is 

high. This shows that a strategy that considers all subsets raises the probability of wrong 

search paths that lock onto local maxima. This leads to the notion of thresholding, i.e., 

consider an alternative subset only if its \lbt value is within a pre-defined threshold of 

max(l/6,). Numerical results show that depending on the level of user correlation, 

thresholds of the range 0.58 to 0.90 improve the sum rate performances of JREUS-ALT1 
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and JREUS-ALT2. However, the improvements are not large and the improvements 

generally occur when the SNR levels are < 22 dB for low to midlevel of correlation. A 

method for optimum threshold determination is beyond the scope of this thesis. When 

complexity is of concern, detailed numerical results in Section 4.4 show that JREUS-

MAX is adequate in achieving most of the optimal sum rate in the ergodic sense. In 

addition, performing JREUS-MAX for M steps instead of stopping whenever the sum rate 

drops is better for about 0.9% of the time and improves the ergodic sum rate by only about 

0.03%. Hence the proposed stopping criterion for JREUS-MAX gives good performance 

with reduced complexity. An alternative search strategy via the equivalent of transmit 

antenna selection is given in [75]. Again, the ergodic sum rate improvement is not high 

and it has higher complexity than JREUS-ALT1. 

4.2 User Selection Algorithm for K > M 
When K>M, optimal sum rate maximization requires exhaustive search involving 

X,=i \u TCIBF sum rate evaluations. Exhaustive search becomes impractical for large 

user pools and this has attracted much effort to develop efficient user selection algorithms 

using various approaches, e.g., [26], [44] - [50]. 

4.2.1 Brief Survey of Existing Algorithms 

An overview of the algorithms in [26], [44] - [50] can be drawn from the optimal 

beamforming sum rate scaling expression MloglogKN , where AT»1 is assumed [18]. 

The intuitive explanation as provided in [24] is that one can always find a roughly 

orthogonal set of M channels to transmit over when K is very large. Next, the quality of 

these channels grows roughly as logK for single antenna terminals because the maximum 

of independent exponential random variables describing received power distributions 

grows logarithmically. Given this, a simple user selection algorithm based on the users' 

channel gains, i.e., the channel vector norm lengths should perform better than random 

user selection. A total of K norm-length metrics must be examined from which a subset 

of M users may be chosen. Next, a better selection basis must consider the orthogonality 
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among users or its equivalent. In general, this will incur the examination of 

YJ
M_^(K-j) = M(2K-M + \)/2, or 0(MK) decision metrics for the algorithms in [26], 

[44]-[50]. 

In [44] - [46], the orthogonal complement projection approach is utilized. 

Selection is done incrementally where the next user is chosen based on the largest 

projection norm in the null space of the composite channel for the existing group of 

selected users. In [47] and [48], selection is based on pair-wise metrics derived from the 

correlation (h^h/) and the cosine [(h^.h/)/(|ht|||h;||) between channel vectors 

respectively, where h^ is the kth row of the channel matrix. As expected, the correlation 

metric does not perform well under both homogeneous and heterogeneous channels since 

a low gain channel will be confused as having low correlation. The cosine metric does 

better but still cannot discriminate a high gain channel from a low one. To cater for 

heterogeneous channels, a related scheme in [49] based on the squared-normalized inner 

products (SNIP) l^li^,li;)|/njh^[|2 Hh/1|2 ) provides better performance by introducing an 

inverse proportionality to the channel gain. 

To reduce search complexity, a hybrid scheme comprising both orthogonal 

complement projection and pair-wise cosine-based metrics has been proposed in [26]. By 

setting a threshold, pair-wise cosine metric comparison with the last chosen candidate is 

done to reduce the number of potential candidates for consideration. Only candidates with 

metrics below the threshold are entered for the next round of evaluation via orthogonal 

complement projection, which caters for heterogeneous channels. In [50], selection is 

based on repeated use of TCIBF pre-coding with rate evaluation to search for the next best 

user. In [44], a simple selection scheme based on the user channel gains was also 

proposed. This is commonly referred to as norm-based selection (NBS) and is simply done 

by ranking all users according to their channel gains. Simulation results in Section 4.4 

show that algorithms using NBS and pair-wise metrics have poorer sum rate maximization 

performance. In addition, they fail to schedule M users for a large fraction of time. 

All schemes in [26], [44] - [50] implement incremental selection, i.e., identifying 

the next best user at each step. All except [47] and [48] are suited for handling both 
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homogeneous and heterogeneous channels. All operate on the entire pool of K users and 

hence require the channel state information of all users at the base station, which incurs 

significant overhead when K is large. Noting that the final active user subset cardinality is 

Kr<M, the stopping criterion of the schemes in [26], [44] - [50] comes in one of two 

ways. In [44], [46], [48] and [50] TCIBF rate evaluation is performed at each step and the 

selection process stops whenever inclusion of any remaining users causes the sum rate to 

drop, or when Kr-M is reached. Others like [26] postpone the TCIBF rate evaluation 

until Kr=M users are first chosen. TCIBF rate evaluation is then performed and the final 

active user subset that achieves the best sum rate for a particular channel realization is 

identified. 

Next, we consider another class of user selection algorithms by drawing from 

single-user MIMO links where a major limiting factor is the cost of multiple analog RF 

chains. Since antenna hardware costs much less than the analog RF chains, a viable way of 

achieving a large fraction of the MIMO channel capacity is to adaptively select the best-

antenna subset from a pool of antennas for coupling to a smaller pool of RF chains. It has 

been shown that the achievable diversity order through antenna subset selection is the 

same as that of the full system [34]. Receive antenna selection (RAS) algorithms that 

strives to maximize the subset channel capacity have been proposed, e.g., in [34] and [55]. 

The antenna selection process runs parallel to that of user selection encountered in multi

user MIMO systems. In fact, we note from [54] that the multi-user sum capacity is upper-

bounded by its equivalent single-user MIMO capacity, i.e., where all receiver antennas can 

cooperate. This motivates the consideration of receive antenna selection (RAS) algorithms 

that were developed for single-user MIMO systems, for the purpose of user selection in a 

multi-user setting. We will evaluate the performance of incremental selection algorithms 

(IRAS) in [34] and [55] and decremental selection algorithms (DRAS) in [34] and [56]. 

The algorithms in [34] and [55] are based on the single-user MIMO capacity expression 

with equal power allocation (high SNR regime implied). The incremental selection 

algorithms identifies the next antenna whose inclusion maximizes the capacity gain while 

the decremental selection algorithms identifies the next antenna whose removal minimizes 

the capacity loss. Two pair-wise approaches are proposed in [56]. The first is the 
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Table 4.2: User Selection Algorithm Complexity Order Comparison 
ALGORITHM COMPUTATIONAL COMPLEXITY 

ORDER 

Receive Antenna Selection (RAS) Based 
Decremental RAS [33] 
Incremental RAS [33] 
Incremental RAS [34] 
Mutual information based method (Decremental RAS 
based on pair-wise metrics) [35] 
Correlation based method (Decremental RAS based on 
pair-wise metrics) [35] 
: O H M k l ComDlement Projection Based rtncrementa 
Tu's algorithm [21] 
Berenguer's algorithm [20] 
Jiang's algorithm [22] (similar to [21]) 
Yoo's algorithm [16] - hybridized with cosine-metric 
Based on Repeated Pre-coding """' ;;-v 
Dimic's incremental selection algorithm [26] 
Note that sum rate evaluation is already done. 

eO(K2M3) 
<=0(KM3) 
eO(KM2) 
zO(K2M) 

eO(K2M) 

selection} 
eO(KM3) 
eO(KM3) 
eO(KM3) 
Upper bounded by sO(KM3) 

.•\'-y~??/*:.is<<'',.' ';!'-::'^:';:: =' ^ I f 8 : : - ? 
eO(KM3) 

Pair-wise Metrics 
Squared-normalized inner product [25] 
Cosine-based incremental selection [24] 
Spatial compatibility metric [23] (similar to CBM in [35]) 

eO(K2M) 
eO(K2M) 
eO(K2M) 

Frobenius Norm Based 
Norm based selection [20] eO(KM) 

"Correlation Based Method" (CBM), which is based on a pair-wise correlation metric like 

[47] and as expected, it does not perform well. The second is named "Mutual Information 

Based Method" (MIBM), which is based on removing an antenna that has maximum pair-

wise mutual information with the other antennas. 

To compare algorithm complexities, we may compare (i) the number of decision 

metrics needed and (ii) the computational complexity. For exhaustive search, the decision 

metric is just the sum rate and the number of decision metrics needed is ^ ._ (f ) . For 

algorithms that depend on orthogonal complement projection, equivalent single-user 

capacity or "greedy" TCIBF rate evaluations, the number of decision metrics is 0(MK) 

because most examine the remaining users in turn with respect to a currently chosen 

subset. For algorithms that depend on pair-wise metrics, the number of decision metrics 
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can be reduced from £*._,£w' to 0(MK) because of symmetry and metric re-use for 

each selection stage. For norm-based user selection, the number of decision metrics is the 

lowest at K. Next, the computational complexities of the algorithms in [26], [44] - [50], 

[34] - [56] are given in Table 4.2, based on the complexity orders given in those papers or 

extrapolated from similar papers. Numerical results show that the IRAS algorithm in [55] 

provides a balance of good performance with lower implementation complexity compared 

to the best user selection algorithms in [26], [44] - [50]. 

4.2.2 Incorporating JREUS 

Although the JREUS algorithms cannot be used when K> M, they can improve the 

performance of the algorithms in [26], [44] - [49], [34] - [56] when used in tandem with 

them. The general arrangement is to pre-select a subset Sr with [Ŝ l = .ST,. -M users using 

an algorithm from [26], [44] - [49], [34] - [56] without TCIBF rate evaluation. A JREUS 

algorithm is then invoked during rate evaluation to select the final active subset Ss c Sr 

that maximizes the sum rate, where \SS\ = Ks <M. Rate evaluation is not done when pre

selecting the Kr=M users and this approach will not incur significant additional 

complexity when \SS\ -»M for a large, geographically distributed user pool. Numerical 

results in Section 4.4 show significant sum rate improvement for the poorer performing 

algorithms e.g., those based on norm lengths and pair-wise metrics, and marginal 

improvement for the near-optimal algorithms like [50], [34] and [55]. Additionally, 

JREUS helps in scheduling more users for a larger fraction of time for algorithms with 

poorer sum rate performance. Compared to the case without JREUS however, it also 

reduces the likelihood of scheduling the maximum of M users. 

4.2.3 Simultaneous Scheduling and Sum Rate Maximization 

When the user pool is large, the user selection algorithms in [26], [44] - [49], [34] - [56] 

will have a higher chance of scheduling the maximum number of M users when 

performing sum rate maximization [18], [24]. However, this is done with different degrees 
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of success and algorithms with poorer sum rate performance tend to schedule fewer users 

as well. Recalling that at least M users or channels must be served in order to reap the full 

benefits of multi-user diversity (MUD) arising from a large user pool [18], we propose a 

method that strives toward simultaneous spatial multiplexing and sum rate maximization. 

When a JREUS algorithm drops users from the initial list of M users, the original user 

selection algorithm, e.g., those in [26], [44] - [49], [34] - [56] may be invoked again to 

choose the next M -Ks user(s) for consideration. Selection is done against the current 

group already chosen via JREUS. The process stops when inclusion of the next user 

causes sum rate reduction. Algorithms using pair-wise or channel-gain metrics can re-use 

the metrics evaluated during the first round of selection. This is not so for projection- or 

single-user capacity based algorithms where fresh metric computations must be done. The 

process is iterated in a greedy fashion until Ks = M users are chosen. However, there is 

still a possibility that a solution with KS=M may not exist, i.e., when the remaining 

users cause sum rate reduction. For ease of reference, we will refer to this process as 

"scheduling and rate maximization" or SRM. In effect, SRM provides an avenue for better 

MUD exploitation by relying on JREUS to remove poorer performing users from the 

initial selection, which creates room for the consideration of better users. The SRM 

process can be iterated greedily and the results show convergence on the scheduling of M 

users with high probability. Thus SRM enables the algorithms to scale to M log log KN , 

given in [18]. As expected, the impact of SRM is more pronounced in algorithms that are 

based on norm lengths and pair-wise metrics, while improvements for the near-optimal 

algorithms like [50], [34] and [55] are marginal. To highlight, the norm-based scheme 

(NBS) from [44] is compared with the near-optimal scheme in [50] for homogeneous 

channels. The percentage difference in ergodic sum rate is ~28% without JREUS, ~20% 

with JREUS-MAX and -13% with JREUS-MAX-SRM. The difference narrows to -9% 

using JREUS-MAX-SRM with heterogeneous channels. Simultaneously, the SRM 

procedure significantly increased the probability of scheduling M users in NBS. To reduce 

complexity, the recursive inverse algorithm in [50], which operates on an incremental 

basis, can be used during SRM. Hence, using JREUS-MAX-SRM in tandem with norm-
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based user selection improves its feasibility for practical deployment while keeping the 

complexity level close to its original of 0(K) decision metric evaluations. 

A less complex SRM procedure may be done via an approximation where the 

original user selection algorithm, e.g., those in [26], [44] - [49], [34] - [56] is used to rank 

and pre-select M + v|/ users. The approximation arises since ranking of the additional \|/ 

users is only done against the first chosen set of M users. The additional y users will be 

considered whenever a JREUS algorithm drops users from the initial list of M users. The 

magnitude of \]/ is dependent on the strength of the algorithm employed and expected to 

be small for near-optimal algorithms. However, the pre-selection of additional \|/ users 

may present an uncertainty that can be avoided as follows. Algorithms implementing 

decremental selection are "SRM-ready" since they eliminate the least favourable user at 

each turn and have therefore ranked the entire user pool except for the chosen subset Sr. 

The IRAS algorithms in [34] and [55] actually rank all remaining users according to their 

capacity-gain contribution and the last round of ranking may be used with SRM. This idea 

can be extended to those using orthogonal complement projections where the last round of 

projection-gain ranking can be used. Most algorithms with pair-wise metrics would have 

pre-computed the metrics that could be re-used to rank the remaining users. Finally, the 

ranking of all users for norm-based algorithms is straightforward. The additional users 

needed when using SRM with NBS is not expected to be high since the best user subset is 

likely to be found among users with high channel gains, as pointed out in [24]. The 

approximate SRM method is used when generating the numerical results in Section 4.4. 

4.2.4 Reducing CSI Feedback Requirement during User 
Selection 

Attention is given next to reducing the channel state information (CSI) required at the base 

station during user selection and the challenge includes avoiding significant sum rate loss. 

The approach adopted here is guided by [18] where it was shown that the optimal 

beamforming sum rate scales as Mloglog KN and by the intuitive explanation provided 

in [24]. They lead to the notion of restricting CSI feedback to those users with the highest 

channel gains because the likelihood of finding a subset of M users that are roughly 
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orthogonal from among them is high when K » 1 . We refer to this as norm-based CSI 

feedback reduction (NB-CSIFR) algorithm where a subset of users Sg c S with the best 

channel gains provides CSI feedback to the base station. NB-CSIFR can be accomplished 

simply via thresholding schemes, i.e., only users with channel gains exceeding a pre

determined level are required to provide CSI feedback. A subset Sr c Sg with 1̂ 1 < M 

can then be selected using an algorithm of choice. A similar proposal for reducing CSI 

feedback requirement was made recently in [49]. Numerical results show insignificant loss 

in the multi-user sum capacity with NB-CSIFR for K » 1 even when thresholding has 

limited feedback to about 38% of the user pool. This is also true for the sum rates achieved 

by the algorithms in [26], [44] - [50], [34] and [56]. 

4.2.5 Scheduling Fairness 

Scheduling fairness is not an issue for homogeneous channels because all users have equal 

throughput shares over the long term since they are statistically identical. This is not the 

case for heterogeneous channels due for example to a near-far situation. In [26], two fair 

scheduling schemes were proposed, viz., round-robin TCIBF (RR-TCIBF) and 

proportional fair TCIBF (PF-TCIBF). Theoretical background on the utilization of 

proportional fair scheduling in wireless systems can be found in [72]. Given space 

limitations, we briefly highlight that for RR-TCIBF, any near-optimal user selection 

algorithm will ensure near orthogonality within each group of chosen users and provide 

performances similar to that in [26]. This is not so for the poorer performing algorithms 

like those based on NBS or pair-wise metrics and their performance can be improved by 

the incorporation of JREUS and SRM during the selection of each time-multiplexed 

group. 

Next, since RAS algorithms in [34] and [55] were introduced for user selection, 

we will give an outline on their adaptation for PF-TCIBF. Beginning with incremental 

selection, (4.12) shows the single user MIMO capacity expression when one additional 

row vector h, is appended to Hj{1...i} € CkxM, which is a channel matrix comprising row 

vectors ht to hk that are associated with the current chosen subset Ss. 
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C(H^,..,};h /) = log2det(/jV+H^.„,)HJ{1>...M/a2) 

Capacity of current chosen subset Ss 

+ log2(l + h,(a2/JV+H^...i}Hj{1;...i}) hf) . 
' * ' 

AC, : Additional capacity due to appended row vector h, 

In IRAS, the next chosen antenna is based on argmax(AC;), where AC, is defined in 

(4.12). For PF-TCIBF, we propose choosing the next user based on argmax((x/AC,), 

where weight \i, is the usual inverse of the time-averaged past throughput for user / as 

defined for example in [26]. This method is easily extended for decremental selection 

where the next user to be deleted is based on argmin(jx/AC;) to minimize the capacity 
7 

loss. We note also that the weights u.; can be used for the purpose of CSI feedback 

reduction, i.e., PF-CSIFR, by setting a threshold value for JJ-,̂ ,, where 

^ l o g 2 ( l + | |h,f). 
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4.3 Resource Allocation Against QoS 
Requirements 

Up to this point, the emphasis has been on the judicious selection of users for TCIBF sum 

rate maximization. Since CSI is already available at the base station, waterfilling may also 

be done to maximize the sum rate of the chosen subset. At this stage however, the 

individual channel rates are not matched to each user's QoS needs. For some users, the 

instantaneous channel rates may be in excess of what they need, while others may be in 

deficit. Preliminary proposals to deal with this issue are given in the following section. 

These resource allocation proposals are guided by the objective of minimizing the sum 

rate loss. However, we do not have numerical results at this stage. 

4.3.1 Power Allocation 

A straightforward idea is to reduce the power allocated to users with excess channel rates 

and re-distribute the power savings to those in need. This is carried out after the initial 

power allocation, which is done via waterfilling. To minimize sum rate loss, the re

distribution should be guided by the waterfilling principle, i.e., allocate more power to the 

better channels. Hence, the excess power will be given to the next best user and any 

leftover power will be given to the next best user. The process is repeated until all QoS 

requirements are satisfied or when no excess power is left. When the latter case occurs, 

there may be one or more users that still do not achieve a channel rate that match their 

QoS requirements. We may consider the following proposal when more than one user 

does not have adequate power allocation. 

4.3.2 Dropping Users 

Essentially, users with very poor channel rates may be dropped in the interest of helping 

others in the subset. This may be done when power allocation methods fail to yield a 

solution, especially when more than one user does not have adequate power. In this case, 
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removing the worst user may benefit the remaining users. Rate improvements for the 

remaining users come not only from the power saved, but also from better null space 

projections that result in higher projected channel gains. 

The initial user subset may have been chosen using an incremental or decremental 

user selection scheme. For incremental selection, the chosen subset would have already 

been ranked and de-selection of the next worse user is easily accomplished. However, the 

de-selection accuracy is dependent on the user selection algorithm previously used. 

Algorithms that are based on channel gains or pair-wise metrics will give poorer de

selection performance. This may be improved by using JREUS-based algorithms, which 

have been shown to yield near-optimal results when the user set size Kr<M. In 

particular, JREUS-MAX will incur little additional complexity for user de-selection since 

rate evaluation is needed in any case. For the decremental selection case, the chosen subset 

is still not ranked. Hence a JREUS-based algorithm should be employed to incur the least 

additional computational complexity since rate evaluation is needed. 

Upon the de-selection of one user, TCIBF pre-coding and waterfilling is done for 

the new subset. The power allocation scheme in Section 4.3.1 is invoked and the entire 

process is repeated until a solution is found. 

4.3.3 Adding Users 

This is possible for the case where < M users are chosen and each user has a channel rate 

that exceeds its QoS requirement. Selection of the next user is easier in this case because 

both incremental and decremental user selection algorithms would have ranked all users 

that are not already chosen in the original subset. Using this ranked list, the next user can 

be included for TCIBF pre-coding and rate evaluation. The power allocation method in 

Section 4.3.1 may then be invoked and inclusion of the new user will depend on its impact 

to the original subset. The process may be repeated until the ability to meet the QoS 

requirements of the most current subset is breached. Note that the last user added may 

have only attained a fraction of its QoS requirement. 
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Again, the ranking done by algorithms with poorer performance may be improved 

by using JREUS algorithms. In this case, the situation is similar to Section 4.2.3 where 

simultaneous scheduling and sum rate maximization was discussed. To re-iterate, JREUS 

can be used on the chosen subset to help maximize the sum rate if it was not already done. 

This process may drop some users and create room for the consideration of more users. 

The SRM-style procedure may be adopted, where the power allocation method in Section 

4.3.1 is carried out for each new user. This process is iterated greedily until the ability to 

meet the QoS requirements of the most current subset is breached. 

4.4 Impact of Transmit Antenna Selection (TAS) 

It is known that transmit antenna selection (TAS) methods provide diversity benefits 

through the provision of more transmit antennas, beyond the required M transmit-chains. 

This is applicable to both single-user as well as multi-user MIMO systems. It is also clear 

from [18] that TAS is not useful for fully equipped systems where all transmit antennas are 

accompanied by a RF chain. This is because the multi-user sum rates of optimal DPC and 

optimal beamforming scale as M log log KN and reducing M will reduce the sum rate. We 

will show that this is true when optimal user selection (USEL) has been done to maximize 

the TCIBF sum rate but not always true when SM -̂optimal USEL algorithms are 

employed. 

4.4.1 Impact of TAS on TCIBF Sum Rate 

In line with Section 4.1, we assume that a subset Sr has been chosen from S the pool of K 

users using an exhaustive search or USEL algorithm. The number of chosen users is 

|Sr| = 1 < Kr < M and the associated composite channel matrix is Hr 6 CKrXM. Next, we 

define an arbitrary user subset Ss c Sr that is the result of applying TAS and perhaps 

further user de-selection. It has \Ss\ = l<Ks <Kr users and the associated composite 

channel matrix is H1eCK,xM', where M'=M-a and a represents the number of 

transmit antennas removed. In addition, KS<M' so that the TCIBF pre-coding constraint 
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is met. Waterfilling is done over Ss so that Sa the final active user subset of Ka users is 

found. Considering only those row eliminations that result in non-zero power allocations, 

i.e., y, > 0, Vz in (4.3), i.e., Ka = Ks and (4.4) applies. Although changing M' may 

affect Ka in (4.4), it will be shown that the analysis here still applies. The analytical 

results will be applicable to any search method, viz., joint exhaustive USEL-TAS search, 

decoupled exhaustive USEL-TAS search and any sub-optimal USEL/RAS algorithm. 

To evaluate the effects of removing column vectors from H^, we assume Ks < M' 

without loss of generality. Let H^ represent a channel sub-matrix with one column 

removed from H s . Sub-matrix H t will be Ks x(M'-l) where Ks <(M'-l) and H tHf 

still has dimensions Ks x Ks. Hence (4.4) still applies and the cofactors and determinant 

are now notated as (Au)k and Ak. Let the singular values of Hk and Hs be 

°max(HJ>a2(H i)>... .>a r a to(H i) and aniax(HJ>a2(HJ)>....>omin(Hs) respectively. 

With Ks < M' in H s , we note that [67] 

amxi(Us)>amax(ak)>c2(Rs)>c2(Rk)> >am i n(H,)>am i n(H,) (4.13) 

Although equalities are present in (4.13), note that 

(det(H,Hf) = A,) < (det(HsHf) = As) (4.14) 

because (z„)t <(*«), V/ = l,-tf f, (4.15) 

where (zu)k and (z„)s are the principal diagonal elements of Z t = H t H f and 

Zs =H5Hf respectively. Equation (4.15) is true because H t has one column less than 

Hs and hence trace(Z^) < trace(Zs). This means that 

I^:Mz
k)<Z-:Mzs)> (4-16) 

so that some inequalities must exist in (4.13) and hence (4.14) holds. At high SNR levels, 

it is clear from (4.14) that R(Hk)<R(Hs) using (4.4). At low SNR levels however, the 

outcome of (4.4) is not so straightforward and a comparison of (Aji)s and {Aji)k is needed 

before any conclusions could be made. 
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Let an arbitrary matrix H ^ C " " where m<n have cofactors {AM;j = \~-m}x, 

associated with the diagonal elements of Zx = H^Hf eCmxm. From [67] 

nrAcz.) * d«*((Zx)i-i) ̂  ns%+/(Zx) (4-17) 

=> n s % ( z j < { ^ } , <nr=iV(z,) (4.i8> 

where (Zxym_x are the (m- l)x(m-1) principal sub-matrices of H^H^that are associated 

with the set of cofactors {Aj/}x. Note that (4.18) is true because of the Inclusion Principle 

(see Appendix) where the eigenvalues of Zx do not change when the corresponding rows 

and columns are interchanged to find the (Zx)
J
m_y that is associated with its {Ajj}x. 

Applying (4.18) on Z* and Zs, we first see via (4.13) that 

n & - % ( z 4 ) < n & " 1 X l ( z f ) and (4.19) 

nSX,(z*)<n*A+ i (
z*)- <4-20) 

With (4.18), (4.19) and (4.20) in mind, we see from (4.1) that 

1 4 l l * ^ (4.2.) 
^ m a x ( Z t ) \Pt)k ^min(Z/t) 

and 

1 •siU^-Lr. (4.22) 

where i = \, ,KS. Since ^max(Z/t)<Xmax(Zi) and ^ ( Z J ^ X ^ C Z , ) , it can be implied 

that one or more (}/bi)k values are greater than max(\/bi)s values. It is also clear that 

min(l/6,);t > min(l/&,.),. It is then clear from the power constraint expression in (2.3) that 

the set of {yt}k values contains some elements that are lower than min(y,.)s. It is also clear 

that minfy.)^ <min(y.)s. Hence R(Uk)<R(Us) via (2.2) and this is true for any SNR 

and channel condition as reflected by the sub-matrix determinants and cofactors of HA 
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and H s . Even though the above analysis was done for the one-column de-selection case, it 

is obvious from (4.19) - (4.22) that the results apply to any number of columns removed 

from Hs as long as KS<M' is true, prior to each step of column de-selection (note that 

TAS cannot proceed in TCIBF when Ks = M'). Since this condition meets the TCIBF 

pre-coding constraint, we can draw the first conclusion that reducing the number of 

transmit antennas for any (KS,M') antenna combination will not increase the TCIBF sum 

rate. The combination may arise from any joint search method (e.g., joint exhaustive TAS-

USEL or de-coupled TAS-USEL), any USEL algorithm or during waterfilling. 

Next, it can be readily inferred that the converse is true, i.e., increasing the number 

of transmit antennas for any antenna combination will increase the sum rate. A repeated 

application of this reasoning shows that any TCIBF system should utilize all available 

transmit antennas for sum rate maximization. Very importantly, this means that TAS is not 

useful in realizing the optimal TCIBF sum rate under any SNR level and any channel 

condition. Hence, an exhaustive joint- or exhaustive decoupled- USEL-TAS search is not 

needed when finding the optimal solution set for sum rate maximization; instead, only an 

exhaustive USEL search is needed. 

4.4.2 Combining TAS with Sub-optimal User Selection 
Algorithms 

When sub-optimal USEL algorithms such as JREUS or those in [44] - [49] are used to 

avoid exhaustive search, the chosen subset may be the result of following a search path 

that leads to a local maximum. It will be shown that TAS may help assist the USEL 

process in getting out of a local maximum when the optimal set is contained within the 

sub-optimal set. Fig. 4.1 is provided for visualization by depicting the singular value 

transition paths for an example with 6 users. Each transition row represents the removal of 

a row/column vector. When USEL is done, the transition paths can be understood from 

(2.9). Assume for the moment that an optimal USEL search resulted in a 3-user subset and 

their singular values are shown as triangles (upper set). Next, assume that a sw^-optimal 

USEL algorithm has chosen a 4-user subset instead and their singular values are shown as 
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Optimal USEL: 
6 ants to 3 ants 

Singular values of optimum user 
sub-set 

Sub-optimal USEL: 
6 ants to 4 ants 

Singular values of sub-optimal 
user sub-set 

TAS 

Additional USEL 

Column vector restoration 

Figure 4.1. Singular Value Transition Diagram 

squares. Fig. 4.1 illustrates how the use of TAS followed by USEL could result in a set of 

singular values (diamond shape) that are closer to the optimum values (upper triangular 

set). The singular value transitions due to TAS can be understood from (4.13) and the 

subsequent transitions arising from USEL is again due to (2.9). Numerical results have 

shown that this procedure does result in sum rate gains in some cases, especially if the 

optimum subset is contained within the sub-optimal subset. Note that the USEL procedure 

following each TAS may contain more than one row de-selection. For the TAS stage 

however, it is clear from the previous section (Section 4.4.1) that no more than one 

column vector should be de-selected at a time. For ease of reference, we will name this 

procedure as DSEL (decoupled TAS-USEL) and more details are given in Section 4.4.3. 

Next, it was shown in Section 4.4.1 that any TCIBF system should utilize all 

available transmit antennas for sum rate maximization. Drawing on this, we apply the 

converse by restoring the de-selected column vector back into the sub-matrix arising from 
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a TAS-USEL cycle. For the example in Fig. 4.1, it will result in moving the singular 

values into a higher region (lower triangular set), which helps approach the optimal subset 

singular values (upper triangular set). We will refer to this algorithm as MDSEL (modified 

DSEL). Numerical results have confirmed that whenever DSEL provides a sum rate 

increase, restoring the removed column vector will always increase that sum rate further. 

Note however that the expected gain from incorporating TAS is not high, 

especially when the USEL algorithm is already near optimal. For example, the JREUS 

algorithm is nearly optimal especially at high SNR and numerical results in the next 

section will show that the occurrence rate where TAS does make a difference is not high 

and the sum rate increase is also not high. This is to be expected because TAS does not 

help achieve the optimal sum rate when optimal USEL is done. This can be easily inferred 

from Fig. 4.1 where a TAS-USEL cycle done on the optimal selection will depart from the 

original optimal selection indicated as triangles. Next, it is clear from the above discussion 

that the scheme can be adapted for use with any USEL algorithm because the TAS process 

is essentially independent of the USEL algorithm utilized. 

4.4.3 Guidelines on Sub-optimal Decoupled Search Strategies 

Drawing from single-user MIMO systems where transmit antenna selection (TAS) was 

first proposed, the optimal antenna subset selection requires a joint exhaustive search of all 

possible transmit- and receive- antenna combinations. Various sub-optimal decoupled 

search methods have been proposed to avoid the computationally intensive joint 

exhaustive search. One example of decoupled exhaustive search is given in [79] where 

TAS is done before RAS. In general, algorithms such as those in [34] and [55] may be 

employed for further complexity reduction. 

In TCIBF, any decoupled search algorithm must first take the pre-coding 

constraint into account, which will have impact on the search order. From Section 4.4.1, 

we note that performing TAS alone when using sub-optimal USEL algorithms is always 

not useful. Rather, TAS must always be followed by USEL. Next, TAS should generally 

not be used too early in any decoupled search strategy because it moves the singular 

values to a lower range as shown by (4.13). Hence strategies like one-step alternation 
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between USEL and TAS should be avoided. In line with the TCIBF pre-coding constraint 

and with the fact that only USEL is needed for optimal search, it is expedient to perform 

any sub-optimal USEL algorithm first. As guided by Section 4.4.2, TAS is then performed 

next where a sequential elimination of each column vector coupled with USEL is done. 

This process may be repeated until the subset with the best sum rate is found. The 

procedure as outlined is the decoupled TAS-USEL or DSEL algorithm. Next, whenever 

DSEL results in sum rate gains, the column vector removed by TAS should be restored to 

give a higher sum rate (i.e., MDSEL is used). 

4.5 Numerical Results 

4.5.1 Comparing Algorithms forK < M 

We focus on comparing the JREUS family with the near-optimal algorithms in [26], [44] 

- [31], [50] and [34] - [55]. Those based on pair-wise metrics or channel gains are 

excluded since they also require rate evaluation but do not provide good returns for the 

complexity involved. The algorithm in [45] is used to represent all orthogonal 

complement projection based methods. Fig. 4.2(a) shows the sum rates for K = M = 8 

users when correlation among the users is zero in a homogeneous channel. The presence 

of spatial fading correlation among users is captured by modelling the channel as 

Hr = R|,/2HW, where Hw is the i.i.d. spatially white channel and Ru is positive definite 

Hermitian matrix that specifies the user correlations. An exponential correlation model is 

used where each element ry in Ru is rtj = p~J', where p is the maximum correlation 

between two users. To facilitate examination, Fig. 4.2(b) shows the percentage sum rate 

difference of each algorithm compared to exhaustive search, i.e., (i?Exh - RMso)IRExk. As 

shown, the JREUS family performs well for SNR>10dB and thresholding for JREUS-

ALT1 and JREUS-ALT2 helps when SNR<20dB. Both JREUS-ALT1 and JREUS-

ALT2 perform very well without thresholding for SNR>20dB whereas Dimic's 

algorithm [50] is worse off. This means that the consideration of all alternative subsets is 

not ideal as it raises the likelihood of solutions yielding local maximums. Note that 

JREUS-MAX has the same performance as Gorokhov's DRAS algorithm [34] at high 
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SNR. This is expected since each row removal by JREUS-MAX gives the next best 

MIMO capacity at high SNR when comparing subsets of the same cardinality. This is 

equivalent to minimizing the DRAS capacity loss. Similarly, the IRAS [34] and [55] 

performances are close to those of orthogonal complement projection at high SNR levels. 

Fig. 4.3 shows the percentage sum rate difference for p = 0.50 and p = 0.95. In summary, 

JREUS-MAX provides good performance when K<Mwith low complexity in practical 

SNR and correlation ranges. 

4.5.2 Comparing Algorithms for A' > M 

The sum rate maximization performance of the algorithms in [44] - [50] and [34], [55], 

and [56] are evaluated with and without CSIFR, JREUS and SRM. Fig. 4.4 shows the 

sum rate versus K for a system with 8 transmit-antennas, 20dB SNR, zero correlation 

among users and operating in a homogeneous channel without CSI feedback reduction. 

As shown, Dimic's algorithm performs best for large AT whereas the DRAS algorithm in 

[34] performs best when K < 32. IRAS performs better for larger user pools than DRAS 

and is close to Dimic's. All algorithms benefit from JREUS-MAX and SRM, except for 

Dimic's algorithm for which they do not apply. The improvement is significant for the 

poorer performing algorithms. For example, the sum rate difference between norm-based 

selection (NBS) and Dimic's algorithm is -28% when K = 120. This improves to -20% 

with JREUS-MAX and -13% with SRM. The approximated SRM scheme as outlined in 

Section 4.2.3 is used in all numerical results shown here. We also observe that the gap 

narrows between Dimic's sum rate and the multi-user sum capacity (derived using [73]) 

as K becomes large. Next, Fig. 4.5 shows that SRM is successful in maximizing the 

number of scheduled users while maximizing the sum rate simultaneously. The 

improvement is significant for the poorer performing schemes. 

Fig. 4.6(a) shows the same system operating under a heterogeneous channel 

without CSIFR where the relative average-SNR levels among all users is varied 

uniformly in a lOdB range. As expected, the correlation-based algorithm performs poorly 

and the cosine-based algorithm performance registers a significant drop. Fig. 4.6(b) 
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shows the same system with CSIFR where the threshold is set at 4dB, i.e., any user 

whose channel gain is 4dB below the average homogeneous channel SNR will be 

dropped. At this threshold, CSI feedback occurs for -38% of the user pool on average. As 

shown, there is no significant loss of multi-user sum capacity or the algorithms' sum rates 

for K > 40 even though the effective user pool has shrunken. This affirms the approach 

outlined in Section 4.2.4. In addition, the correlation- and cosine-based algorithm, which 

includes the squared-normalized inner products (SNIP), improved significantly since 

thresholding performs pre-selection and results in fewer mistakes due to low gain users. 

The performance difference of NBS with JREUS-MAX-SRM has also narrowed to 

within -9% of Dimic's algorithm with or without CSIFR. Given that NBS has a 

computational complexity reduction of 0(M2) compared to Dimic's algorithm, this 

result further improves the feasibility of employing NBS in practice. Fig. 4.7 compares 

the scheduling performance of NBS (with simultaneous sum rate maximization) versus 

Dimic's algorithm for CSIFR with thresholds of 3dB, 4dB and 5dB. As shown, the 

number of users scheduled for NBS is higher than Dimic's when JREUS-MAX-SRM is 

employed. 

In summary, the incorporation of JREUS-MAX and SRM provides simultaneous 

improvement of sum rate and user scheduling performance, especially for the poorer 

performing algorithms. This improves the feasibility of employing the norm-based 

selection (NBS) algorithm in practice, which is attractive given its low complexity and 

natural fit for NB-CSIFR. Next, incremental RAS algorithms in [34] and [55] have 

demonstrated performance that is close to the best algorithm in [50]. The IRAS 

implementation in [55] has a lower complexity than [50] by a factor of M. This improves 

the feasibility of achieving performances above that offered by NBS when the potential 

user pool is large. 

4.5.3 Sample Results for TAS with TCIBF 

To verify the findings in Section 4.4.1, simulations are conducted on an 8-user TCIBF 

system with M - 8 transmit antennas. The results arising from joint exhaustive TAS-
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USEL are identical to the case where only exhaustive USEL is done. This serves to 

confirm the analysis that TAS does not help in achieving the optimal TCIBF sum rate. 

Next, simulations are done to illustrate the effect of TAS when sub-optimal USEL 

algorithms are used. The near-optimal JREUS algorithm is used for USEL. The maximum 

sum rate gain for DSEL over USEL alone (using JREUS) is 7.7%, 8.2%, 14.4% and 

20.8% for correlations of 0.0, 0.2, 0.5 and 0.9 respectively. Fig. 4.8 shows a sample result 

when the correlation is 0.0. For most cases, the increase tends to occur around OdB SNR 

except when correlation is high. The maximum sum rate gain for MDSEL over DSEL is 

7.1%, 8.8%, 8.9% and 9.6% for correlations of 0.0, 0.2, 0.5 and 0.9 respectively. Fig. 4.9 

shows the percentage of time that DSEL resulted in better sum rates than using JREUS 

alone. As expected, the occurrence rate is low, especially when SNR is high where JREUS 

performs better, except when correlation is high. The results show that the incorporation 

of TAS with sub-optimal USEL algorithms does have the potential for channel sum rate 

gains. However, when the USEL algorithm is already near optimal, the contribution from 

TAS is not high and the occurrence frequency is low. This is to be expected because TAS 

does not help achieve the optimal sum rate when optimal USEL is already done. 

140 



100 
Fig. 4.2(a) TCIBF Sum Rate vs SNR 

N 
I 
"** 
o 
<D 
in 1 n 
*̂  

E 
» 
M. 
CO 
LL 
N 

80 

60 

40 

20 h 

Exhaustive Search 
JREUS-MAX 
JREUS-ALT1 
JREUS^ALTI-TH 
JREUS-ALT2 
JREUS-ALT2-TH 
[26] 
[21] 
[33]Algo3 
[33]Algo2 

Number of Tx Ants = 8, Correlation = 0.00, 5,000 channel realizations 
10 15 20 25 30 35 40 

~ Fig. 4.2(b) TCIBF Sum Rate Difference (%) from Optima! vs SNR; Correlation = 0.00 
# 

Q^&^L& i L..^§.y?.:6!tJ',"TH: Bestiaveraĝ  threshold = °-5?. 
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Fig. 4.3(a) TCiBF Sum Rate Difference (%) from Optimal vs SNR; Correlation = 0.50 
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Fig. 4.5 Scheduling Maximization Performance (Homogeneous Channel) 
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Fig. 4.7(a) Scheduling Maximization Performance with CSIFR @3dB Threshold 
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Chapter 5 

SELECTION AND ALLOCATION 

ALGORITHMS FOR BLOCK DIAGONALIZED 

(BD) SYSTEMS 

5.1 Overview 

It has been shown in Chapter 3 that receive antenna selection (RAS) or spatial mode 

selection (SMS) is necessary for sum rate maximization in block diagonalized space-

division multiplexing (BD-SDM) systems. It is also mentioned in Chapter 3 that the user 

selection problem in BD-SDM can be subsumed within the receive antenna selection 

(RAS) or spatial mode selection (SMS) process. Details on RAS/SMS for BD-SDM are 

given in this chapter, along with efficient ways of implementing RAS/SMS and user 

selection jointly. 

Differing from RAS for single-user MIMO systems, it is necessary to account for 

the differences between intra-terminal and inter-terminal processing when performing 

RAS for BD-SDM systems. In general, this necessitates the repeated use of BD pre-coding 

to check the rate contribution of each antenna. This incurs high computational complexity 

and ways to avert this are addressed below. Note that the need to account for these 

differences is also implicitly recognized in existing user selection algorithms like those in 

[33] and [47] where BD pre-coding is repeatedly done to check the rate contribution of 

each user. This is also true for TCIBF with single-antenna terminals where for instance, 

repeated TCIBF pre-coding and rate evaluations are done in [50] during user/antenna 

selection. 

Optimal receive antenna selection (RAS) requires an exhaustive search over all 

antenna combinations and a BD-SDM rate evaluation is needed for each combination. For 
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a BD-SDM system with M transmit antennas and a pool of .£ potential users, the number 

of rate evaluations needed is 

x;= 1(r)e0(v^M) , (5.1.1) 
where all terminals are assumed to have the same number of antennas (r|). The 

complexity order is eO(r\MKM) for M«r\K because (^)<(nkIk\). Since an 

exhaustive search over all possible antenna combinations is needed for sum rate 

maximization, it is clear that user selection is automatically subsumed under this 

exhaustive RAS process. Given the need for BD-SDM rate evaluations, only incremental 

RAS (IRAS) is possible when designing algorithms for complexity reduction. User 

selection can still be subsumed under the IRAS process that operates on a single-antenna 

selection (SAS) basis. A decremental (DRAS) approach is not possible since the BD-SDM 

pre-coding constraint is not met when the user pool is large. 

However, implementing incremental-RAS algorithms on a single-antenna selection 

basis (IRAS-SAS) incurs the following problems: (a) the presence of high intra-terminal 

correlation often results in the choice of too many users, each with insufficient resources 

to meet the individual QoS needs, and (b) the need for high computational complexity 

since selection is done on the SAS basis. Although the complexity order for IRAS-SAS is 

lower than exhaustive search at eO(Mx\K) as shown in (5.1.2), the number of rate 

evaluations is still very high at 

^WC-f) = M(2r)K-M+l)/2. (5-1.2) 

To help overcome the first shortcoming of single-antenna selection (SAS) where 

too many users are chosen, the concept of "block antenna selection (BAS)" is introduced. 

The equivalent "block mode selection (BMS)" is applicable for BD systems that make use 

of receive-processing matrices for mode allocation. In BAS/BMS, the antennas or modes 

are chosen on a block basis, that is, antennas/modes are chosen as subsets from each user 

terminal. In this way, the user selection process is still subsumed under a BAS or BMS 

process. 
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Besides providing a means of avoiding the choice of too many users, the 

BAS/BMS approach also paves the way for algorithms that require fewer rate evaluations. 

This helps address the second shortcoming of high computational complexity when RAS 

is implemented on an SAS basis. Additional computational reduction can be realized if 

BD pre-coding and/or rate evaluations could be avoided during RAS. Seven algorithms 

are proposed along these lines for the purpose of block antenna/mode selection. They are 

based on the modification of existing algorithms, for example, a simplified incremental 

selection method based on mutual null space projections from [58] is proposed to avoid 

the need for repeated BD pre-coding. Another four are based on existing single-user RAS 

algorithms and they are computationally more efficient than [33] largely because neither 

repeated BD-SDM pre-coding nor rate evaluations are required. In this way, decremental 

BAS/BMS becomes possible since there are no dimensional constraints due to BD pre-

coding nor projection requirements. In line with the intent of this thesis, particular 

attention is paid to the performance enhancement of channel-gain based algorithms 

because of their low complexity as well as potential for partial CSI feedback. Next, RAS 

algorithms that derive selection metrics from user- or antenna pairs can also be modified 

for BAS/BMS. However, attention is not given to them because their levels of 

performance improvement and complexity reduction are not significant. 

BAS/BMS algorithms should be implemented with guidance from the analyses 

done in Chapter 3. For BD-SDM systems that serve large user pools, results from Chapter 

3 show that RAS/SMS should not be done too early during an incremental 

user/antenna/mode selection process. This can be seen from Figure 3.15 where the sum 

rates go on a downtrend when the number of antennas/modes is too few. This result lends 

credence to a decoupled approach where user selection is done before RAS/SMS. In this 

case, the block size is set at the maximum and users are chosen along with their entire set 

of antennas. One approach is to choose a group of users with a total of M receive antennas, 

where M is the number of transmit antennas. RAS is then performed to remove those 

antennas that are committed to low rate returns. The additional room created may then 

allow for the scheduling of more users. This process may be iterated and referred to as the 

"simultaneous scheduling and sum-rate maximization" (SSRM) scheme. The decoupled 
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user-selection and RAS/SMS approach is attractive from the viewpoint of complexity 

reduction. 

It is shown in Section 3.2.2 that random antenna/mode de-selection done in a 

round-robin style among users of a BD-SDM is useful for increasing the ergodic BD-SDM 

sum rate. For BD systems, a round-robin style of random de-selection produces results 

that are close to localized judicious de-selection for homogeneous channels. Since the 

channel matrix size to be fed back to the base station is reduced after a localized RAS (be 

it random or judicious), a method for reducing the feedback overhead may be developed 

on this basis. For example, it is shown in Figure 3.15 that around 8 antennas must be 

removed from the 8-user BD system to achieve the best sum rate when SNR = 20dB. This 

means that one antenna must be removed from each user and this reduces the size of the 

channel matrix to be fed back from each user to the base station. This method may be 

considered if CSI feedback reduction during beamforming is of paramount importance. 

Next, it is worthwhile to highlight the impact of small user pools upon the RAS 

algorithms. To begin, incremental RAS done on the single-antenna selection (SAS) 

approach may still yield favorable selection when the user pool is small since the selected 

antennas are less dispersed over different users. In fact, decremental RAS (DRAS-SAS) 

may also be feasible for small user pools if rate evaluations can be postponed until the pre

ceding constraint is met. DRAS-SAS is interesting because it may produce better 

performance than IRAS-SAS if the total number of receive antennas is close to the 

number of transmit antennas. 

Given the interest for decoupled user-selection and RAS/SMS, attention is paid to 

the case when the combined pool of receive antennas from all users is ^ ._ Nj <M . This 

situation is akin to a transmit channel-inversion beamforming (TCIBF) system that is 

serving M single-antenna terminals. In this case, it is possible to employ a single-user RAS 

algorithm that does not involve repeated TCIBF pre-coding within its user/antenna 

selection process as in [50] nor projections onto the orthogonal complement subspace. 

Decremental RAS can be done and better sum rate performance can be obtained as shown 

in Chapter 4. It is possible to adopt a similar approach to serve BD-SDM systems when 

]>] Nj <M . An efficient, near-optimal algorithm implementing decremental RAS on a 
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SAS basis is shown below. Based on maximum determinant ranking (MDR), it has low 

complexity and requires a maximum of only M rate evaluations instead of 

2]._ i-M(M + l)/2 rate evaluations needed in typical RAS algorithms, e.g., [34], [55], 

[58]. Compared to IRAS algorithms, e.g., [58], MDR has better performance and incurs 

less complexity on average because (M-N')<N' occurs with high probability, where 

N' is the final number of receive antennas after RAS. 

Besides the decoupled user selection and RAS approach, the MDR algorithm can 

be used in general to improve the sum rate performance of any BAS/BMS algorithm for 

the usual case where ^ ,= AT, > M , This starts with the use of a BAS/BMS algorithm to 

choose a group of users and antennas that meets the BD pre-coding constraint. A RAS 

procedure is then performed using MDR for sum rate maximization. The BAS/BMS-MDR 

combination for sum rate maximization may free transmission resources that allow the 

scheduling of additional users, which can be judiciously done for further sum rate 

maximization. This procedure draws its guidance from the optimal beamforming sum rate 

that scales as M log log KN [18], which means that one should strive for the scheduling of 

M channels when maximizing the beamforming sum rate. The procedure does so by 

providing a better means of exploiting the multi-user diversity (MUD). Similar to the 

single-antenna terminal case, the procedure will raise the feasibility of employing lower 

complexity BAS/BMS algorithms in practice, for example channel-gain based algorithms. 

Since the RAS/SMS process in MDR involves spatial channel ranking, it provides 

a systematic way for resource allocation to meet individual QoS requirements while 

minimizing sum rate loss. Essentially, the decremental RAS/SMS process in MDR is 

useful since it can help identify the next worst antenna/mode to discard or add. The 

approach is very similar to the case for single-antenna terminals and preliminary resource 

allocation methods are given. 
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5.2 A Near-Optimal Decremental RAS/SMS 
Algorithm when N = ̂ ^Nj<M: Maximum 
Determinant Ranking (MDR) 

When the combined pool of receive antennas from all users is ^ Nj < M , a simple but 

near-optimal RAS scheme that is based on the equivalent single-user capacity may be 

developed. As pointed out earlier, there is a need to discriminate between intra-terminal 

and inter-terminal correlations when performing RAS/SMS in BD-SDM. In general, this is 

accomplished by the incorporation of the BD-SDM rate evaluation or its equivalent during 

the selection process as done in [33] and [58]. 

To avoid this computationally intensive process, we propose a decremental RAS 

(DRAS) process that operates on a single-antenna selection (SAS) basis for this case. The 

theoretical basis for this approach is from the Sato upper bound for multi-user systems 

[54] where the multi-user sum rate is upper bounded by the capacity of an equivalent 

single-user, that is, assuming cooperation among all receive antennas. The preference for a 

decremental approach over an incremental one is the fact that the DRAS process is able to 

account for the joint contributions of all remaining antennas and therefore provide better 

performance than IRAS [34]. The DRAS approach is also more attractive than IRAS in 

this case because it incurs less complexity on average since (M - N') < N' occurs with 

high probability, where N' is the final number of receive antennas after RAS. 

The algorithm is based on maximum determinant ranking (MDR) and is similar to 

the DRAS algorithm (Algorithm III) in [34], i.e., it de-selects the next antenna on the basis 

of minimizing the equivalent single-user capacity loss. Note that the BD-SDM pre-coding 

constraint is met here and MDR requires a maximum of only M rate evaluations. This is 

much lower than the methods proposed in [33] and [58], which would incur a maximum 

of M{M + l)/2 rate evaluations for this case. Note that the user selection process is 

subsumed under this DRAS-SAS process. 
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Table 5.1 MDR Algorithm 
Initialize 

for 

end 

H0 = H ; 

S = [] ; %Ranked antenna 

R = 0 to N-2 

Compute Xj =diag(HJ?H^)
_1 

index 

/ 

(%Note: use recursive inverse 

a*=argmax(x,); 
j J 

f(aR): aR -» row(H0) ; %Map aR 

in 

to 

S =[S;/(afl)]; %Add new row index 

Update H(fl+1)a ; %Remove 

Output: S ; %Antennas ranked f 

row 

rom 

aR 

set 

Appendix for 

original row 

into 

from 

worst to 

ranking 

H s 

best 

R > 0) 

index in H 0 

set 

5.2.1 The MDR Algorithm 

Let HeC* x M be the associated composite channel matrix that is derived from the 

concatenation of all user channel matrices, where N = I ^ Nj j < M . Let H s represent 

the channel matrix after the removal of R rows from H e CNxM. The approach here is 

similar to Algorithm III in [34] but takes on a simplified form that maximizes the 

determinant of H(A+1)_y.H^+1)J, where H(S+1)J is a one-row reduced composite channel 

matrix after removing rowy from H„ . The row number a^ chosen from HR is such that 

aR = argmax(det(H(fl+1)y.H(^+1)7.)). (5.2.1) 

The basis for this approach is derived from the high SNR approximation for the single-

user channel capacity C„, i.e., Cs„(Ha)«log2(p/M)Jvdet(HsHf), where p is the 

average SNR. Hence aR is chosen such that the resulting det(B.(R+1)aRH"R+lXaR) is the 

largest among all H(fl+1). so that the capacity loss Closs = C „ ( H J I ) - C „ ( H ( J , + 1 X B J I ) is 
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minimized. However, the stopping criterion is not clear and the examination of all possible 

combinations requires N(N + l)/2eO(N2) steps. 

One efficient way of implementing (5.2.1) is via a method similar to JREUS in 

Chapter 4. Let %, = r(H*H*)~1l > i-e-> X, a r e m e diagonal elements of (H.RH")~l and 
J L Jj,j ' 

they may be re-written as 

Xj={AnA-\ M^A'1}, (5.2.2) 

where Au are cofactors associated with the diagonal elements hjs in H^H", 

A = det(HfiH") and N' = N-R. Each An is found after eliminating rowy and column j 

in HRH", which corresponds to eliminating row j in HR to result in H ( /W)J , i.e., 

AM = det(H{R+1)JH"R+l)J). From (5.2.2) we see that max(^) corresponds to max(x;) 

and hence the next largest determinant among all det (H(/?+1)JH^+1)J) can be easily found. 

In this way, the ranking of all antennas from worst to best can be recursively done in 

JV-1 steps, i.e., for R = 0,---,N-2. For convenience, we will refer to this scheme as 

"maximum determinant ranking" or MDR and its pseudo-code is given in Table 5.1. BD-

SDM rate evaluation is then done from H0 down to H^., by removing antennas one at a 

time, according to the ranking done by MDR. This incurs N rate evaluations and is much 

less complex than the N(N + Y)/2 e 0(N2) steps required if all determinant combinations 

were examined. Further complexity reduction can be achieved by the following stopping 

criterion: Perform BD-SDM rate evaluation after each antenna de-selection and stop the 

process whenever the sum rate drops. Simulations have shown only a slight difference in 

results. This incurs less complexity on average since (N-N')<N' occurs with high 

probability, where N' is the final number of receive antennas after RAS. 

To reduce computational complexity, a recursive inverse method is given in 

Appendix B so that all subsequent (HSH^)_ 1 where R = \,---,N-2, can be found from 

the initial ( H ^ H ^ ) - 1 . In this way, the computational complexity of MDR is dictated 

mainly by the evaluation of (Hfl=0H^=0)
-1, which is approximately eO(Nl). The 
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computational complexity of other RAS and user selection algorithms are given in Table 

4.2. MDR has the same complexity order as those algorithms based on pair-wise metrics 

and the incremental RAS algorithm in [55]. Numerical results show that MDR is near 

optimal and has performance that exceeds other near-optimal algorithms with higher 

complexity, e.g., Algorithm III in [34]. 

5.2.2 Poorest Spatial Mode Elimination (PSME) Algorithm 

In Nu-SVD, there is a one-to-one correspondence between the spatial mode gains and the 

columns of the post-processing matrices defined as Ry. in [29], which are dimensioned 

according to the desired number of spatial modes for each usery. It is therefore possible to 

implement a simple SMS algorithm that proceeds by removing the column in Ry. 

associated with poorest spatial mode to be eliminated. For convenience, we will refer to 

such a SMS algorithm as "poorest spatial mode elimination (or PSME)". The Nu-SVD 

process is repeated after each column-elimination and the elimination process is stopped 

whenever the next iteration results in a lower sum rate. Numerical results show that the 

PSME and MDR algorithms have identical performance. This is expected since MDR 

seeks for the next highest determinant while PSME removes the smallest eigenvalue. 

Hence PSME is the preferred method for SMS in Nu-SVD since it incurs negligible 

computational load compared to MDR. Note that PSME does not apply to CTR since 

a one-to-one correspondence between the spatial modes and the columns of Wy. in CTR 

does not exist. 

5.3 Block Antenna/Mode Selection (BAS/BMS) 
Algorithms 

The "block antenna/mode selection (BAS/BMS)" concept is proposed to allow the joint 

consideration of antenna/mode selection and user selection without the shortcomings of 

selection on a single-antenna basis, which includes (a) the presence of high intra-terminal 

correlation often results in the choice of too many users, each with insufficient resources 

to meet the individual QoS needs, and (b) the need for high computational complexity 
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since selection is done on the SAS basis. The same reasoning applies to spatial mode 

selection (SMS). In this way, the user selection process can be subsumed under a BAS or 

BMS process. 

We note that optimal BAS/BMS requires an exhaustive search and the number of 

rate evaluations required is the same as (5.1.1). In this section, we introduce seven 

algorithms for BAS/BMS that incur less complexity than (5.1.2) for IRAS-SAS. Among 

them, the more efficient algorithms are based on existing RAS algorithms and are 

computational more efficient than [33] or [58], largely because neither rate evaluations via 

repeated BD-SDM pre-coding nor mutual null space projections are required. In this way, 

decremental BAS/BMS is also possible since dimensional constraints associated with BD-

SDM pre-coding or mutual null space projections no longer apply. 

5.3.1 Implementing BAS / BMS Using the Approach in [33] 

To begin, a straightforward BAS/BMS scheme with less complexity than (5.1.1) is via an 

adaptation of [33]'s method where BD-SDM pre-coding is systematically used to assess 

the rate contribution of every antenna subset of every user, including choosing an empty 

set from a user (i.e., performing user selection). The number of rate evaluations required in 

the original scheme in [33] when choosing K' users from a pool ofK is 

= K'(2K-K'+l)/2. 

Assuming each terminal has the same n. antennas, the number of rate evaluations required 

when incorporating BAS/BMS into [33] is 

XKjJo^K~^V =^K'(2K-K' + \)/2. (5.3.2) 

Note that each terminal will have 2n combinations, including the empty set, which means 

the user is de-selected. The complexity orders of (5.3.1) and (5.3.2) are eO(K'K) and 

eO^K'K) respectively. Noting that M =r\K', the complexity order of (5.1.2) is 

e 0{x\2K'K) , which is close to e 0(2nK'K) in (5.3.2) for the practical range of n < 4. For 
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reference, (5.3.2) has higher complexity when r| > 4. It appears at this stage that using the 

BAS/BMS approach does not help lower the complexity compared to the IRAS-SAS 

approach although it helps to address the issue of choosing too many users. 

5.3.1.1 Using Pre-selection via Localized BAS / BMS with [33] 

Localized BAS is defined here as choosing antenna subsets from a terminal without 

consideration for other terminals in the BD-SDM context. Localized BAS draws its 

motivation from the fact that de-selecting antennas with high intra-terminal correlation 

incurs low percentage rate losses for the affected user while it releases transmit resources 

for the potential of high rate returns at other terminals. Very importantly, localized BAS 

also draws its justification from Section 3.2.2 where it was shown that random 

antenna/mode de-selection done in a round-robin style among users of a BD-SDM is 

useful for increasing the ergodic BD-SDM sum rate. This means that localized BAS has a 

high probability of providing good ergodic performance when done judiciously. 

The same reasoning applies to BD schemes that work with projected channels, 

e.g., the CTR method in [27] and the Nu-SVD method in [29]. There, the starting point 

would be to use all columns of Vj from Hy = UySy V" to activate all spatial modes. 

There are many ways of identifying the antennas/modes with high correlation. For 

example, RAS algorithms and user selection algorithms for multi-user systems with 

single-antenna terminals may be used. An efficient way is similar to the JREUS algorithm 

in Section 4.1. The explanation for this can be derived from (2.36) where bt measures the 

projection magnitude of the / row vector into the null space of all other row vectors. In 

this way, we may treat the antennas at the same terminal as single-antenna users and the 

magnitudes of their mutually orthogonal projections may be measured in terms of the 

maximum TCIBF sum rate obtained via JREUS. This process is repeated across all user 

terminals to remove antennas/modes with high intra-terminal correlation. 

Taking guidance from Section 3.2.2, the following discussion is based on an 

example where each user is equipped with 4 antennas. Rate evaluations will be done 

round-robin style where each user is considered in turn for two cases, namely, (a) without 
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antenna de-selection and (b) with one antenna de-selected on a local intra-terminal basis. 

The best users that yield the highest sum rate while meeting the BD pre-coding constraint 

are then selected from this pool. Further RAS may then be done on the chosen group using 

the MDR algorithm and further scheduling may be done if the pre-coding constraint is not 

exceeded. This process is iterated until the sum rate drops or when the pre-coding 

constraint is exceeded. 

5.3.1.2 Using BAS / BMS with Localized Antenna/Mode Ranking with 
[33] 
In this approach, all antennas/modes at each terminal are ranked locally. The motivation 

behind this scheme is as stated in the previous section. This may be done using any RAS 

or user selection algorithm and rate evaluation is not needed. In particular the JREUS 

approach may be used for high performance and low complexity. In this way, the number 

of rate evaluations may be reduced to 

^(K-j)(r] + \) = (r] + l)K'(2K-K' + l)/2, (5.3.3) 

where (T| + 1) is the number of choices at each terminal. The complexity order is 

e 0((x\ + l)K'K), which means the complexity of (5.3.3) is lower than that of IRAS-SAS 

in (5.1.2) or the original BAS without localized antenna de-selection in (5.3.2) when 

n > 2 . 

Taking a similar approach as that in Section 5.3.1.1, further reduction in the 

number of rate evaluations may be obtained when implementing localized de-selection 

using the ranked list on a round-robin basis for all users. 

5.3.2 Implementing BAS / BMS Without Rate Evaluation 

The motivation behind this is to avoid repeated BD-SDM rate evaluations during 

selection, which is a computationally heavy process that involves SVD. One possible 

approach is by adapting single-user MIMO RAS algorithms e.g., [34], [55], [56], [75] or 

user selection algorithms for single-antenna terminals e.g., [26], [44] - [49]. These 
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algorithms employ methods like capacity maximization, orthogonal complement 

projection, channel-gain metrics and pair-wise metrics based on correlation, cosine and 

squared normalized inner products, and combinations thereof. For a pool of K single-

antenna terminals or antennas in general, the simplest channel-gain based selection 

algorithm requires only K decision metrics while most other schemes require 

K'(2K-K' + l)/2e0(K'K) decision metrics. In general, algorithms using pair-wise 

metrics do not perform as well as those based on capacity maximization or orthogonal 

complement projection. 

These algorithms may be adapted for BAS/BMS as follows: (a) For capacity 

maximization methods, blocks of row vectors may be chosen or de-selected for 

incremental and decremental selection respectively, (b) For orthogonal complement 

projection methods, projection may be done in blocks instead of single antennas or modes, 

(c) For channel gain metrics, a "block gain" metric may be defined, (d) For pair-wise 

metrics, "block-wise" metrics may be obtained from the basic pair-wise metrics. We will 

highlight the schemes in (a) and (b) given their good performance and (c), given its 

simplicity. The schemes in (d) do not provide high performance or significant complexity 

reduction. We want to highlight that all material written for BAS are applicable to BMS as 

well in the following sections. It is also important to stress that guidance from the analyses 

done in Chapter 3 should be followed when implementing BAS/BMS algorithms for block 

diagonalized systems. To give visibility on the intrinsic complexity of each algorithm 

however, the complexity evaluation for each algorithm in the following sections is done 

without any consideration for Chapter 3. 

5.3.2.1 BAS/BMS using Norm-Based Selection (NBS) 

The simplest antenna selection algorithm is based on the power of the received signals 

[75]. This algorithm selects antennas with the largest channel gains (norms) and performs 

well only at low signal-to-noise ratios. It can be easily adapted for BAS by ranking ay, 

which is the sum of all channel gains associated with each multi-antenna terminal, where 

{a, ;y = l,...,iQ = ̂ | h , , | 2 , (5.3.4) 
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where h,., is the /* channel row vector of user /' and N, is the number of receive 

antennas at user j . As shown in (5.3.4), there are K decision metrics. Norm-based BAS 

(NBS-BAS) is accomplished by choosing the IC users that are associated with the IC 

highest ctj values. Assuming r\ antennas at each terminal, the number of complex 

multiplications is MKr\. 

Taking a similar approach as that in Section 5.3.1.1, localized de-selection may be 

done based on the metric of, for each user j . Again, further RAS/SMS can be done using 

the MDR algorithm and further scheduling may be done if the pre-coding constraint is not 

exceeded. Numerical results show good sum rate improvement when this iterative scheme 

is used. 

5.3.2.2 BAS/BMS based on Orthogonal Complement Projections (OCP) 

This can be based on Algorithm I in [34], which is a RAS algorithm for single-user MIMO 

systems, or on the algorithm in [44], which is a user selection algorithm for single-antenna 

terminals. They can be adapted to operate on blocks of antennas for BAS/BMS. Since 

dimensional constraints have to be met, the orthogonal complement projection approach is 

only possible on an incremental selection basis. 

Consider a multi-user MIMO system with M transmit antennas and K users, each 

with Nk receive antennas. The goal is to choose K' users out of the original pool of K 

users using incremental BAS/BMS. Let Hy be the channel matrix for usery and let Sc be 

the set of n users that are already chosen where /•„....,/; are indices of the chosen users. 

Let H , b e the composite channel matrix for Sc obtained by the concatenation of the 

selected users' channel matrices Hn , • • •, Hr . 

The orthogonal complement projection (OCP) method simply selects the next user 

k that has the largest projection norms in the null space of H , denoted as H^ r . Let 

HM = H^P^^ be the projected matrix of Uk onto H;j" where 

pi,r, = 1M -^,..,r„ (H
n,...,„

H^,..,r„) H,,..,,„ • T h e c h o i c e among HM may be determined by 
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w , = a r g m a x y | H j j , (5.3.5) 

where us is the index of the chosen user and |HM | | = tr(Hp iH" t) . Alternatively, us 

may be based on the following 

Mj=argmax(det(HMH^)), (5.3.6) 

or 

us =argmax(log2det(l + P H M H^)) . (5.3.7) 

Next, we address the number of decision metrics needed. When each terminal is 

equipped with n antennas and OCP is used for user selection and not antenna subset 

selection, the number of decision metrics needed for choosing K' users out of AT users is 

^(K-jl-K'ilK-K'+^/l, (5.3.8) 

which is the same as (5.3.1). When antenna subset selection is desired, each terminal 

presents 211 choices and hence the number of decision is the same as (5.3.2). The localized 

antenna/mode ranking method in Section 5.3.1.2 can be done at each terminal to reduce 

the choices to (n +1) at each terminal. This reduces the number of decision metrics and is 

equal to (5.3.3). In all cases here, the computational cost is lower than those methods 

involving [33] because no BD-SDM pre-coding and rate evaluations are involved in each 

decision metric. A detailed assessment on the computational complexity is not done yet at 

this stage. Taking a similar approach as that in Section 5.3.1.1, a round-robin style of de

selection may be done so that an initial group of users with the highest sum rate can be 

chosen. Further RAS/SMS can then be done to further improve the sum rate using the 

MDR algorithm and additional scheduling may be done if the pre-coding constraint is not 

exceeded. 
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5.3.2.3 BAS/BMS based on Equivalent Single-User Capacity 
Maximization 

The algorithms proposed here are based on the RAS algorithms in [34]. The incremental 

algorithm is based on maximizing the capacity gain of a single-user MIMO system for 

the next chosen antenna. The decremental algorithm is based on minimizing the capacity 

loss of a single-user MIMO system for the next de-selected antenna. In this multi-user 

context, the equivalent single user is formed assuming cooperation among all user 

antennas. The equivalent single-user channel matrix is formed by the concatenation of all 

user channel matrices. We begin by giving the background to the incremental RAS 

scheme known as Algorithm II in [34]. 

5.3.2.3.1 Background on Incremental RAS (IRAS) in [34] 

Consider a point-to-point MIMO system with M transmit antennas and L receive antennas 

where L>M. Let / represent the receive antenna index. The objective here is to choose 

M receive antennas using IRAS. Let Sc be a set of n antennas that has already been 

chosen and let rp. ...,rn be the indices of the chosen antennas. Let H r,---,H r represent 

their corresponding channel row vectors and H , eC"xM be its associated channel 

matrix that is a stack of the row vectors H r , • • •, Hr . Suppose that the next antenna / is to 

be added to Sc and let H, be its associated channel row vector. The resulting single-user 

MIMO channel capacity when H, is appended to H,. r is 

QRASCH,,..,,;H,) = log2 {det(lM +p(Hj.. , |Hw < +HfH,))} 

( 

= log2 det I M + p H ^ H ^ + P H ? H , 

y" J 

(5.3.9) 

where p is the average SNR. Note that when n < M, the normal expression for capacity 

in (5.3.9) would have used Hri> ,. H" ^ instead of H J ^ H , , ^ as above. Equation (5.3.9) 

is numerically correct since det(Im + C B ) = det(I„ + B C ) and this allows for 
(mxn)(nxm) (nxm)(mx«) 
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appending of H, to be accounted for in an additive way. Given the identity 

det(A) * det(D - CA_1B) = det(D) * det(A - BD_1C), one may write 

det(A + xy//) = det(A)*(l + ywA-1x), (5.3.10) 

where yHA_1x is a scalar. Using (5.3.10), (5.3.9) may be expressed as 

QAs(Hn,..,r„ ;H;) = log2 {det(lM + p^^^^^ 

lo^det^+pH^H^.J+log, 
Capacity of original channel matrix 

l + H^p-'^+H^H^fHf 
Pz =Scalar term to be maximized 

ACIRAS (Hq rr.R ;H/ )=Additional capacity due to additional row vector H, 

(5.3.11) 

Note the definition of AC1RAS(Hr r ;H;) in (5.3.11), which is the additional capacity gain 

due to the additional row vector H ; . To maximize ACIRAS(H,. ,. ;H ;) , we wish to identify 

a user / so that 

(P/)« =^xH '(p_l1- +K,^.,X^- (5-3.12) 

The matrix inverse within (5.3.12) is the most computationally heavy portion that may be 

made less using a recursive inverse procedure that is based on the Woodbury matrix 

identity 

(A-1+UCV")~1=A-AU(C + V"AU)~1V"A. (5.3.13) 

By letting C = I , U = H" and \H = H , , we get the Sherman-Morrison identity. 

Defining A ^ ^ p - ' l M + H ^ H J , the following recursive inverse procedure is 

obtained 
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f 
KU = (P-% + [ H ^ ;Hr< ]" [ H , ^ ; H, ])"' = j 

= A : 1 -
^ « " r„ " r„ A „ 

" (l + H r A X ) ' 

(5.3.14) 

where Hr arises from the previously chosen row vector. IRAS starts by identifying the 

first antenna, which is the row vector with the maximum norm length, i.e., 

Hj = max H ; , l = \,....,L, (5.3.15) 

where H; are the channel row vectors of all receive antennas. The initial value for A„' is 

Aj"1 = p_1IM and n is subsequently varied in the range n e {2, ,M}. For convenience, 

we will refer to this scheme as GIS-SAS, i.e., Gorokhov's incremental selection based on 

single-antenna selection (SAS). 

5.3.2.3.2 Background on Decremental RAS (DRAS) in [34] 

For DRAS, the algorithm begins with n = K antennas in the set Sc, where K is the total 

number of antennas. For DRAS, Sc may be defined as the set of remaining antennas. De

selection is done by removing antennas from Sc such that the single-user MIMO capacity 

loss is minimized and the resulting capacity expression is similar to (5.3.11) where 

CDRAs(Hr„..,r„ \H,) = log2det(lM + pH*. j r<Hw<) + log2 

Capacity of original channel matrix 

l-H^p-^+Hj^H^yV 
V 5; =Scalar term to be minimized 

ACDRAS (H^ rJ.n \H/ )=Capacity loss after removing row vector H/ 

(5.3.16) 
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where Hr r \H ; represents the removal of row vector H, from Hri r . To minimize 

^Q>RAs(Hn,..irn \ H,), we wish to identify a user / so that 

(8/L. = ™nH< (P"'1- + I C . H w . V Hf (5-3.17) 

A recursive inverse procedure similar to that in (5.3.14) can also be applied to (5.3.17) to 

lower computational cost 

( 

A;i, = ( P X +[H,,..,. \H, J [HWn \HZ ])" = 
1 •% ' T 1 ^ 

=A:' + 
i , A„ H, H, A^ 

" (l-H^A-Hf)' 

(5.3.18) 

where H, arises from the previously chosen antenna. For the DRAS case, the process 

starts with finding the inverse of A~lK. This makes GDS-SAS more complex than GIS-

SAS, however its performance is better. For convenience, we will refer to this scheme as 

GDS-SAS, i.e., Gorokhov's decremental selection based on single-antenna selection 

(SAS). 

5.3.2.3.3 Incremental BAS/BMS 

This is done by adapting the IRAS algorithm in [34] given in Section 5.3.2.3.1. For 

convenience, we will refer to this scheme as GIS-BAS, i.e., Gorokhov's incremental 

selection based on block-antenna selection (BAS). This is referred interchangeably to as 

GIS-BMS for block spatial mode selection. Consider a multi-user MIMO system with M 

transmit antennas and K users, each with Nk receive antennas. The goal is to choose K' 

users out of the original pool of K users using incremental BAS/BMS. Let Hy. be the 

channel matrix for usery and let Sc be the set of n users that are already chosen where 

rv....,rn are indices of the chosen users. Let H be the composite channel matrix for 
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Sc obtained by the concatenation of the selected users' channel matrices H,.,- -,H,, . 

When a new user k is added to Sc, the new composite channel is denoted as [H r ^; H^ ] . 

Assuming cooperation among all receive antennas in Sc, the increase in the equivalent 

single-user MIMO capacity is 

QBAs(Hri,..,, ;H t) = log2 det(IM + p H ^ , H , ^ + pH? H t). (5.3.19) 

This is similar to (5.3.9) and hence 

C f f i A S(HM ;H,)= log2det(pG„) + log2det(I„4 +HAG^Hf) , 
„ ' „ 1 

Capacity of original channel matnx ^ ^ ^ ^ . ^ ) = a d d i t i o n a l c a p a d t y t 0 b e ^ ^ ^ ^ 

(5.3.20) 

where G„ = p"'lM +Hf , H, „ and Nt is the number of antennas/modes in user k. To 

maximize CmAS (Hr r ; H^), we perform the following 

ACBAS(Hri> A ;Ht)max = maxlog2 d e t ^ + HkG?H» ). (5.3.21) 

To reduce computational load, the current inverse G"1 in (5.3.21) may be recursively 

done using the Woodbury identity in (5.3.13) with C = I , U = H" i and V*=H#ii i> 

where Hr is the previously chosen user channel matrix 

G~:+l =G;1-G; ,Hj(l J ,% + H r G X [ 1 H , G ; ,
) (5.3.22) 

where Hr is the previously chosen user channel matrix, ne{\,....,K'-\), K' is the 

number of users to be chosen and GJ"1 = p ' l^ . Selection of the first user rx may be found 

by 

rx = argmax(det(l„. +pHyHj)). (5.3.23) 

An approximation to (5.3.23) may be done for complexity reduction using the identity 

In det( A) < trace(A) - m, (5.3.24) 
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where A is a mxm matrix. Numerical results show that the approximation in (5.3.24) 

performs poorly when high intra-terminal antenna correlation exists. The performance for 

GIS-BAS approach that of NBS-BAS under such conditions. The pseudo-code for GIS-

BAS is given in Table 5.2. Note that the list of users in Sc obtained via GIS-BAS is 

ranked from best to worst. 

Next, we address the number of decision metrics needed. When each terminal is 

equipped with n antennas and GIS-BAS is used for user selection and not antenna subset 

selection, the number of decision metrics needed for choosing K' users out of AT users is 

ZK^(K-J) = K'(2K-K'+\)/2, (5.3.25) 

which is the same as (5.3.1). When antenna subset selection is desired, each terminal 

presents 2n choices and hence the number of decision is the same as (5.3.2). The localized 

antenna/mode ranking method in Section 5.3.1.2 can be done at each terminal to reduce 

the choices to (n + 1) at each terminal. This reduces the number of decision metrics and is 

equal to (5.3.3). In all cases here, the computational cost is lower than methods involving 

[33] because no BD-SDM pre-coding and rate evaluations are involved in each decision 

metric. A detailed assessment on the computational complexity is not done yet at this 

stage. Taking a similar approach as that in Section 5.3.1.1, a round-robin style of de

selection may be done so that an initial group of users with the highest sum rate can be 

chosen. Further RAS/SMS can then be done to further improve the sum rate using the 
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MDR algorithm and additional scheduling may be done if the pre-coding constraint is not 

exceeded. 

5.3.2.3.4 Decremental BAS/BMS 

This is done by adapting the DRAS algorithm in [34] given in Section 5.3.2.3.2. For 

convenience, we will refer to this scheme as GDS-BAS, i.e., Gorokhov's decremental 

selection based on block-antenna selection (BAS). This is interchangeably referred to as 

GDS-BMS for block spatial mode selection. As for GDS-SAS, the development of GDS-

BAS is very similar to GIS-BAS. For GDS-BAS, we start with the entire pool of AT users 

in Sc and the equivalent single-user capacity is CDBAS(Hn ). When a user k is removed, 

the capacity becomes 

CDBAs(Hri>..,, \H t ) = log2det(IM + P H ^ H ^ -pH?H t). (5.3.26) 

The expressions corresponding to (5.3.20), (5.3.21) and (5.3.22) are 

C ^ s ( H W i \ H 4 ) = log2det(pGn) + l o ^ d e t q ^ - H ^ ' H f ) ,(5.3.27) 

Capacity of original channel matrix ACDBAS(Hn,.,,, \H, )=capacity loss to be minimized 

ACDBAS(Hri^ \H,)min =mmlog2det(I^ -H .G^Hf ) (5-3.28) 

and 

G ^ =G^ +^G;IHj(lw% -H^G^HjJ '^H^G; 1 , (5.3.29) 

where Hr is the previously chosen user channel matrix. The pseudo-code for GDS-BAS 

is given in Table 5.3. Note that the list of users remaining in Sc after GDS-BAS is not 

ranked. 

Next, we address the number of decision metrics needed. When choosing K' users 

out of K users, the number of users to be de-selected is K-K'. When each terminal is 

equipped with r| antennas and GIS-BAS is used for user selection and not antenna subset 

selection, the number of decision metrics needed for choosing AT'users out of K users is 
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The complexity order is € 0(K2), which is higher than GIS-BAS unless K' -^ K . When 

antenna subset selection is desired, each terminal presents 2n choices and hence the 

number of decision is 

'ZK
J'*(K-j)2*=2\K2+K-K'2-K')/2, (5.3.31) 

which has complexity order e 0{2^K2). The localized antenna/mode ranking method in 

Section 5.3.1.2 can be done at each terminal to reduce the choices to (n + 1) at each 

terminal. This reduces the number of decision metrics to 

YJ
K^iK-j){^\) = (^\){K2+K-K'2-K')l2, (5.3.32) 

which has complexity order eO((r| + l)^:2). In all, GDS-BAS requires more decision 

metrics than GIS-BAS unless K'^> K. A detailed assessment on the computational 

complexity is not done yet at this stage. Taking a similar approach as that in Section 

5.3.1.1, a round-robin style of de-selection may be done so that an initial group of users 

with the highest sum rate can be chosen. Further RAS/SMS can then be done to further 

improve the sum rate using the MDR algorithm and additional scheduling may be done if 

the pre-coding constraint is not exceeded. 

171 



5.4 Decoupled User Selection and RAS/SMS 
From Section 5.3, it was shown that the required number of decision metrics is lowest (see 

(5.3.25) and (5.3.30)) when selection is done at the user level and not at the antenna-subset 

level. One means of keeping close to these numbers is to perform user selection first, 

followed by RAS/SMS on the chosen users. For example, the GIS-BAS algorithm is used 

to select K' out of K users, where Y\ N- <M to meet BD-SDM pre-coding 

constraints. This is followed by RAS/SMS using any RAS algorithm, e.g., the MDR 

algorithm from Section 5.2. Using MDR, the maximum number of decision metrics 

needed is 

M + Yj
K^(K-j) = M + K'(2K-K'+\)/2, (5.4.1) 

which is still e 0(K'K) as desired. In fact, the number of rate evaluations in the 

RAS/SMS phase is expected to be <M because (M-N')<N' occurs with high 

probability, where N' is the final number of antennas/modes after RAS/SMS. 

The RAS/SMS process may create room for the scheduling of additional users 

when ^ Nj <M after RAS/SMS. Judicious scheduling may be done by means of the 

original user selection ranking. For example, all un-selected users would have been ranked 

during the last round of GIS-BAS user selection. Similarly, all de-selected users would 

have been ranked in GDS-BAS. Strictly speaking though, the current user and antenna set 

would have changed after RAS/SMS and a fresh ranking is needed. However, the previous 

user selection ranking could still be used as an approximation. This is particularly 

applicable to NBS-BAS. In this way, we strive towards the scheduling of M channels. This 

helps in approaching the optimal beamforming sum rate, which scales as M log log KN 

[18]. Numerical results show that this iterative scheme provides significant improvement 

to the sum rate performance of NBS schemes. This is attractive since NBS schemes have 

low complexity. In addition, it is important to note that NBS schemes have low CSI 

172 



feedback requirement and hence their adoption will facilitate the deployment of BD 

schemes in practical systems. More details are given in Section 5.6 below. 

5.5 Resource Allocation in BD Systems 
Resource allocation involves power and spatial mode allocation. We focus on the latter, 

which requires (a) determining the number of spatial modes per user and (b) making a 

choice out of ( w " j combinations when a user j is allocated Nj modes, which is less 

than its maximum JVmax. The two decisions cannot be made in isolation since a choice at 

one user has rate impacts on other users. When a group of users are chosen based on the 

sum rate maximization criterion, some of the users may not have the required channel 

rate while others may have excess rates. This is usually still true after RAS/SMS has been 

performed on the chosen group to help maximize the sum rate. Performing resource 

allocation after sum rate maximization via RAS/SMS is the correct order of events since 

the poorer antennas/modes have been weeded out. Although power scaling provides a 

means of resource allocation, it is not efficient when users with QoS deficit have low 

channel rates. 

The same RAS/SMS algorithms used for sum rate maximization in BD-SDM can 

also be used to provide a systematic mechanism for resource allocation. This is due to 

their ability to rank the antennas or spatial modes in an order that represent their 

contribution to the overall sum rate. Removing an antenna or mode with low contribution 

will result in a low rate loss to the affected user and a low loss to the overall sum rate. This 

mechanism is useful when reducing the rates of those users with excess rate in order to aid 

those that are lacking. One may proceed by dividing the selected user pool into 2 groups, 

viz., those with excess rates (Group #1) and those who are in deficit (Group #2). The rate 

allocation process may then proceed by eliminating the worst antenna or mode within 

Group #1. This may be done using any RAS/SMS algorithm, e.g., MDR. If the elimination 

causes a user to go from Group #1 to Group #2, undo the elimination and go for the next 

worse antenna or mode in Group #1. Repeat this process until all individual user rates are 

satisfied. 
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Note that a solution may not be found and other allocation policies may then be 

invoked, e.g., serving the higher priority users. In this case the RAS/SMS algorithms are 

of help again as it can identify the worst antennas and modes to be eliminated so that the 

overall rate loss impact is minimized. In fact, the proposed method may be used in tandem 

with any other scheduling methods, for example, priority ranking according to the buffer 

lengths. 

In this way, the proposed method does away with the need to make a priori 

decisions on the number of antennas/modes at each terminal. It also solves the 

combinatorial problem that presents itself when subsets of antennas/modes are to be 

chosen at some users. Further adjustments to the final transmission rate and powers may 

be done via power scaling. In the case where there are still excess rates after all users are 

satisfied, the RAS/SMS process may be used to free resources to allow the scheduling of 

more users. 

5.6 Reducing CSI Feedback Requirement 

A major hindrance to the adoption of spatial multiplexing is the need for channel 

state information (CSI) at the base station, which can incur an enormous amount of 

overhead when the user pool is large. Zero-forcing beamforming systems require timely 

and accurate channel estimates for good performance and the problem is compounded 

when exploitation of multi-user diversity via judicious user selection is desired. In general, 

better sum-rate maximization is achieved when user selection schemes at the base station 

have access to the full channel matrix of each user under consideration. Arising from this, 

a major concern is that the delays associated with the CSI feedback of many users may go 

beyond the channel coherence time and cause processing errors. This has motivated much 

research effort to find ways of mitigating this problem. There are two broad approaches to 

mitigate the problem associated with making CSI available at the base station, namely, (a) 

limited-bandwidth CSI feedback and (b) partial CSI feedback. 

This dissertation focuses on the latter case of partial CSI feedback during the user 

selection process and during the beamforming process. A straightforward method for 

reducing CSI feedback during user selection in ZFBF systems is to base the selection 
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metric on the channel gain of each user. The reduction is due to fact that each channel gain 

value may be transmitted as a scalar to the base station, which is much less than 

transmitting the full channel matrix of each user. Further feedback reduction may be 

achieved by thresholding methods, that is, only those users who are above the pre-defined 

gain level will report their values back to the base station. The base station ranks the gain 

values and obtain the channel matrices only from the best chosen users. In this way, the 

amount of CSI fed back is drastically reduced compared to the case where a user selection 

scheme requires feedback from all potential users. 

However, channel-gain based user selection results in poor ZFBF performance because 

the chosen channel directions may not line up well with the zero-forcing directions. To 

address this, the base station may employ RAS/SMS to weed out those antennas/modes 

that give low rate returns. This may free up transmit resources for the consideration of 

additional users. The original ranking list may be used and channel matrices of the next 

best users are obtained. The cycle repeats itself until no additional room is left or when the 

channel rate of the originally chosen group becomes insufficient. In this way, good sum 

rate performance along with CSI feedback reduction can be achieved using channel-gain 

based user selection schemes. This iterative process is referred to as "simultaneous 

scheduling and sum-rate maximization" (SSRM). Numerical results below show 

significant improvements to channel-gain based user selection when RAS plus SSRM are 

employed. In fact, channel-gain based user selection schemes become on par with the 

more complex schemes that required the full channel matrix of all users under 

consideration. 

Another interesting scheme that is a variant of channel-gain based selection is 

proposed in [40] where a form of polling is used. The next chosen user is one with the 

highest projection magnitudes in the null space of a currently chosen user group. 

Decisions at the BS are made on a single scalar feedback from each user while full CSI 

feedback is required only from the chosen users, thus attaining the goal of feedback 

reduction. The process begins by broadcasting to all users with a pre-coding matrix 

T, = I . Each usery will compute its single-user capacity C^H/T^ and report it to the BS. 

The BS will choose the first user ux where ux =
argmax(C /(H /.T1)) and require its 
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channel matrix El to be fed back. Next, the base station will broadcast to all remaining 

users after pre-coding with T2 where T2 is the null space of H,. The second user u2 

where u2 =
a rgm a x(C ;(H ;T2)) is then chosen. The process is repeated with pre-coding 

matrix T3 where T3 is the null space of H2 = [Hf H2 f . In this way, a subset Sr c S of 

Kr users may be chosen. The user selection approach in [40] is similar to schemes that 

make use of orthogonal complement projection. The adoption of the scheme in [40] 

requires the simplest form of block antenna selection, which is to decouple the user 

selection and RAS processes. 

In relation to CSI feedback reduction during the ZFBF beamforming process, the 

analysis and results in Chapter 3 will show a possible method that is based on localized 

antenna/mode selection done at each user terminal, without the involvement of the base 

station. It is shown in Section 3.2.2 that random antenna/mode de-selection done in a 

round-robin style among users of a BD-SDM is useful for increasing the ergodic BD-SDM 

sum rate. For BD systems, a round-robin style of random de-selection produces results 

that are close to localized judicious de-selection for homogeneous channels. Since the 

channel matrix size to be fed back to the base station is reduced after a localized RAS (be 

it random or judicious), a method for reducing the feedback overhead may be developed 

on this basis. For example, it is shown in Figure 3.15 that around 8 antennas must be 

removed from the 8-user BD system to achieve the best sum rate when SNR = 20dB. This 

means that one antenna must be removed from each user and this reduces the size of the 

channel matrix to be fed back from each user to the base station. This method may be 

considered if CSI feedback reduction during beamforming is of paramount importance. 

5.7 Proposed Integrated Process 

The user selection and RAS processes may be jointly done using BAS algorithms. 

To accommodate CSI feedback requirement reduction schemes such as channel-gain 

based selection like NBS or the scheme in [40], a decoupled user selection (USEL) and 

RAS approach must be taken. The user selection scheme of choice may be invoked first to 
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choose Kr users. The availability of channel sub-matrices H, - H ^ at the BS enables 

RAS to be performed. Let H|--H^ be the new channel sub-matrices after RAS. If 

transmission resources are made available after RAS, the user selection process may be 

repeated. For the scheme in [40], selection may be repeated with T̂ . to choose the next 

user, where \ is the null space of U'K = [H.[T • • • H£ f. This USEL-RAS cycle may 

be repeated until M channels are scheduled. 

Resource allocation may take place next, making use of the antenna/mode ranking 

provided by the RAS/SMS algorithms to minimize rate loss. The resource allocation 

method proposed in Section 5.5 may be used. In the case where there are still excess rates 

after all users are satisfied, the RAS/SMS process may be used to free resources to allow 

the scheduling of more users. The USEL-RAS process in the previous paragraph may be 

repeated until M channels are scheduled. In this way, CSI feedback reduction is achieved 

along with BD-SDM sum rate maximization and resource allocation. 

5.8 Numerical Results 

The presence of spatial fading correlation in H7 is captured by modeling the channel as 

Hy = R'/2HWR}/2, where Hw is the i.i.d. spatially white channel and Rr and Rt are positive 

definite Hermitian matrices that specify the receive and transmit correlations respectively. 

We assume that the base station antennas are well spaced enough to allow R, = IM and the 

users are well separated enough to consider only the intra-terminal antenna correlation. An 

exponential correlation model is used where each element nj in Rr is r\j = p1'~J\ where p is 

the maximum correlation between two antennas at each user terminal. 

5.8.1 Impact of RAS/SMS on BD Systems 

Fig. 5.1 shows the ergodic sum rates of direct-BD and Nu-SVD with and without 

RAS/SMS for a 4-user system each with 2 antennas. The RAS/SMS is done via exhaustive 

search, MDR, G3 and NB, where G3 is the decremental RAS "Algorithm III" from [34] 
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and NB is norm-based selection. As shown, RAS/SMS provides substantial sum rate gain 

and helps BD-SDM schemes to approach the multi-user sum capacity (derived using [73]). 

The MDR algorithm is near optimal for both direct-BD and Nu-SVD. The MDR 

performance is slightly better than the decremental RAS scheme named Algorithm III 

from [34] and named as G3 in Fig. 5.1. This is pleasing as MDR has computational 

complexity of e 0(M3)while G3 is upper bounded by e 0(M5). The NB-RAS algorithm 

does not perform as well as MDR but is attractive from the complexity viewpoint. 

Fig. 5.2 compares the performance of direct-BD, CTR and Nu-SVD using the 

MDR and PSME algorithms for RAS/SMS. A larger system comprising 8 users, each with 

4 antennas is used. As shown, all three BD-SDM schemes benefited from RAS/SMS. As 

expected, Nu-SVD provides the best performance among the three schemes. MDR and 

PSME provide the same results for Nu-SVD. However, PSME incurs negligible 

computational load compared to MDR and is therefore the preferred means of SMS for 

Nu-SVD. Both MDR and PSME are used for CTR and as expected, MDR provides better 

performance since a one-to-one correspondence between the spatial modes and the 

columns of W. does not exist in CTR. In all, Nu-SVD provides the best performance but 

it is computationally more expensive as it is an iterative algorithm. CTR is attractive in 

that its performance is only slightly worse than Nu-SVD and it provides a means of mode 

selection at a computational cost that is practically the same as direct-BD. 

5.8.2 Example of Additional User Scheduling 

As described before, the RAS/SMS process may free resources that allow the scheduling 

of additional users. The BD-SDM sum rate may increase in the process since it strives 

towards the scheduling of M channels, which is needed when trying to approach the 

optimal beamforming sum rate. Fig. 5.3 shows a direct-BD system with 32 transmit 

antennas and users that are equipped with 4-antenna terminals. A group of 8 users is 

initially selected and Fig. 5.3(a) shows the ergodic sum rate of this 8-user group with and 

without RAS via MDR. Fig. 5.3(a) also shows the impact of scheduling the 9th user 

whenever resources are available. We see an improvement in the ergodic sum rate. The 

impact on an arbitrary individual user's ergodic channel rate is also shown in Fig. 5.3(b). 
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As shown, the addition of the 9 user causes a slight drop in the individual channel rate. 

This drop is expected to continue as more users are added. The process of adding users is 

stopped when the overall sum rate drops or when no more free resources are available. 

5.8.3 Comparison of BAS Algorithms and Impact of RAS 

In Fig. 5.4, a total of four BAS algorithms that do not perform rate evaluations during 

user selection are compared against the algorithm in [33], which uses direct-BD pre-

coding during user selection. Selection via exhaustive search is also given for 

comparison. The four BAS algorithms are (a) GIS-BAS (see Section 5.3.2.3.3), (b) GDS-

BAS (see Section 5.3.2.3.4), (c) PMP-BAS [79] and (d) NBS-BAS (see Section 5.3.2.1). 

The pairwise mutual projection BAS (PMP-BAS) scheme is based on a pair-wise metric 

that jointly measures the correlation and row vector norm. The simulation involves 

choosing 4 users out of a pool of 8 users, each equipped with 4 antennas. 

As shown, the differences in performance for GDS-BAS, GIS-BAS, PMP-BAS 

and NBS-BAS compared to Shen's algorithm in [33] are 1.5%, 4.4%, 7.2% and 7.5% 

respectively when intra-terminal correlation is 0.0. We see that the tradeoff in performance 

is not great compared to the reduction in complexity. This is especially so when RAS is 

applied on the chosen user subset. This makes norm-based (or channel gain based) NBS 

schemes more attractive in practice. The difference in performance becomes negligible for 

GDS-BAS and GIS-BAS when compared to Shen's algorithm in [33] and exhaustive 

search. 

5.8.4 Combining Decoupled User Selection, RAS and SSRM 

In Fig. 5.5, user selection is done first, that is, all antennas of each chosen user are 

included. An RAS exercise is done next and this is followed by the simultaneous 

scheduling and sum rate maximization (SSRM) process. The comparison is made for 

Shen's algorithm in [33], the user selection algorithms based on the GDS and GIS 

algorithms from [34] and the norm-based algorithm NBS. As shown, the NBS algorithm 

benefits the most from RAS and SSRM. In this way, RAS and SSRM improves the 
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feasibility of deploying NBS, which lowers implementation complexity as well as 

reducing the CSI feedback requirement. 

5.8.5 Comparing Single-Antenna Selection (SAS) with 
Decoupled User Selection, RAS and SSRM 

In Fig. 5.6, compares the single-antenna selection approach with the decoupled user-

antenna selection approach. It shows the sum rate performance as well as the number of 

users scheduled. The algorithms from [36] and [38] are compared with the GDS-MDR-

SSRM combination. As shown, [36] achieves high sum rates at the expense of low 

individual channel rates because the number of users scheduled is high. The block 

selection approach is achieves a lower sum rate but provides higher individual rates by 

scheduling a lower number of users. For comparison with [38], the incremental RAS 

algorithm from [34] is used for antenna ranking. The results show that the antenna ranking 

approach has potential for good performance with lower complexity than [36]. 

5.9 Summary 

Efficient and near-optimal algorithms for RAS/SMS are developed for the case where the 

total number of receive antennas or spatial modes is within the block diagonalization pre-

coding constraint. The algorithms provide spatial channel ranking and can therefore be 

used to provide a systematic method for resource allocation to meet the individual QoS 

needs of the scheduled group. This rate-loss minimization approach provides a systematic 

approach to address the impact on all other users when resource allocation is done at any 

one user. In addition, method does away with the need to make a priori decisions on the 

number of antennas/modes at each terminal. It also solves the combinatorial problem that 

presents itself when subsets of antennas/modes are to be chosen at some users. 

Efficient algorithms for joint user selection and RAS/SMS to maximize the sum 

rate. To allow joint selection, the concepts of "block antenna selection (BAS)" and "block 

mode selection (BMS)" are introduced, which account for differences in intra- and inter-
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terminal processing in block diagonalized systems. A novel approach is based on the 

modification of existing RAS algorithms is proposed. It has good performance and low 

complexity, which is realized by avoiding repeated use of BD pre-coding during selection. 

It allows for decremental selection, which has potential for better performance than 

incremental selection. An equivalent method for "simultaneous scheduling and sum rate 

maximization" or SSRM is developed to allow scaling with MloglogKN (1.4). This 

method gives significant sum rate improvement for channel-gain based user selection, 

which have lower processing complexity and significantly lower CSI feedback 

requirements during user selection. 
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1 Direct-BD and Nu-SVD with and without RAS/SMS 
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Fig. 5.2 Direct-BD, Nu-SVD and CTR with and without RAS/SMS 
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Fig. 5.4 BAS Algorithms: Comparison & Impact of RAS 

55 

•••Exhaustive search 
•A-Shen's algorithm [3 
-0-GDS-BAS 
•e-GIS-BAS 
-3-PMP-BAS 

NBS-BAS 

(a) Direct-BD ergodic 
sum rate without RAS 

rasa: 

0.1 0.2 0.3 0.4 0.5 0.6 0 J 
Intra-terminal Antenna Correlation 

0.8 0.9 

185 



Fig. 5.5. Decoupled USEL-RAS with SSRM* 
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Fig. 5.6. Comparing SAS and Decouple BAS-RAS 
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

In line with the intent to enhance the feasibility of deploying multi-user MIMO 

techniques in practical downlink systems, the focus of this thesis has been on issues 

relating to transmit zero-forcing beamforming (TZFBF). Transmit ZFBF is a linear 

processing technique and is a potential candidate for multi-user downlinks given its low 

complexity compared to other processing schemes. However, its lower complexity is 

accompanied by a setback in terms of a sum rate performance gap compared to optimal 

schemes like dirty paper coding (DPC). Like other spatial multiplexing techniques, it also 

faces challenges in user selection, resource allocation and system overhead demands. 

It is shown in this thesis that receive antenna selection (RAS) is necessary for sum 

rate maximization when multi-antenna terminals are served via block diagonalized space-

division multiplexing (BD-SDM). Sole reliance on user selection to exploit multi-user 

diversity from a large potential user pool does not achieve the best sum rates. It is shown 

that optimal user selection is actually subsumed under an exhaustive RAS process. The 

introduction of RAS to block diagonalized systems helps achieve higher sum rates that 

narrows the performance gap with DPC even when the user pool sizes are small. 

Specifically, RAS provides significant sum rate improvements to BD systems since it 

helps them to scale with M (the number of transmit antennas) even when the potential 

user pool is small. Hence, the incorporation of RAS enhances the feasibility of deploying 

block diagonalized systems in practical systems. 

For single-antenna terminals, the user selection and RAS processes become 

identical. For BD systems that use receive-weight matrices as a means of spatial mode 

allocation in multi-antenna terminals, RAS becomes spatial mode selection (SMS). By 

analyzing the conditions for sum rate increase, efficient selection algorithms for joint user 

selection and RAS/SMS are developed for both multi-antenna and single-antenna 

terminals that work under homogeneous and heterogeneous channel conditions. Invoking 
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the Sato upper bound, a class of low complexity selection algorithms for the multi-user 

environment is derived from existing RAS algorithms that are meant for single-user 

MIMO systems. The block antenna selection concept is introduced to enhance the 

performance of this approach. The analysis also provides novel expressions for ergodic 

sum rate bounds that jointly reflect the impacts of user selection, RAS/SMS, SNR levels 

and number of transmit antennas. 

On the challenge posed by resource allocation, a key issue centers on mode 

selection for each user since any selection done at one terminal affects the rates achieved 

at all other terminals. This causes a departure from the best sum rate when a sum rate 

maximization process has already been done. A systematic method is introduced that 

performs resource allocation to meet the individual user throughput requirements while 

minimizing rate loss at the overall- and individual levels. The method does away with the 

need to make a priori decisions on the number of antennas/modes at each terminal. It also 

solves the combinatorial problem that presents itself when subsets of antennas/modes are 

to be chosen at some users. Ordering resource allocation after sum rate maximization via 

RAS/SMS is expedient since the poorer antennas/modes that were committed to lower 

rate returns have been removed. In addition, lower complexity is achieved by exploiting 

the antenna/mode ranking arising from the sum rate maximization process. 

On the challenge of reducing system overheads, this thesis has focused on aspects 

of partial channel state information (CSI) feedback. Specifically, selection algorithms that 

are based on channel gains are attractive since only a scalar feedback to report the SNR 

level is needed from each user for the purpose of selection. Detailed channel matrices are 

then required only from the chosen users. However, the sum rate performance of channel-

gain based selection is usually poor due to the fact that inter-user and intra-terminal 

correlations are not taken into account. To address this, an iterative scheme is introduced 

to help channel-gain based selection algorithms schemes scale closer to M log log KN. It 

is significant to note that this iterative scheme for block diagonalized systems is made 

possible primarily due to the ability of RAS/SMS to remove antennas/modes that are 

committed to poor rate returns. A streamlined process that integrates the sum rate 

maximization exercise (via user selection and RAS/SMS), the resource allocation 
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process, and the partial CSI feedback scheme is introduced. Taken together, the 

streamlined process helps to improve the feasibility of deploying multi-user MIMO 

techniques in practical systems. 

Suggestions on future work include the following: 

(a) Consideration of the above techniques for relay networks. 

(b) Consideration of the above techniques for cooperative methods in cellular 

systems. This includes cooperation among base stations and relay nodes. 

(c) Improving the analytical bounds for the ergodic sum rate expressions. 

(d) Combining the above techniques with other dimensions like time and frequency, 

that is, in the areas of time-division multiplexing (TDM) and frequency-division 

multiplexing (FDM), including OFDM. 

(e) Consideration of the above techniques in the area of inter-cell interference 

control. Methods may capitalize on the fact that RAS in block diagonalized 

systems frees transmission resources that could be used for interference control. 

The methods could be done cooperatively among base stations to maximize the 

overall system throughput. 

(f) Improvements to the partial CSI feedback schemes proposed so far. One 

consideration is to exploit the processing ability of the receiver to improve the 

feedback metric. 

(g) Implementing a test-bed for field tests. 
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APPENDIX A 

Proof for Equation (3.8) 
The Inclusion Principle [Lutkepohl 1996] states that for a (n x n) Hermitian matrix A 

with eigenvalues A,i(A)< ... <Xn(A), a principal (q x q) sub-matrix A(q) of A with 

eigenvalues ,̂i(A(?))< ... <X?(A(?)): 

(a) ^A)<X,(A (? ))<V,,+,(A);z=l,...,<?; (A.l) 

(b) ^ A ) < ^ ( A ( ? ) ) < X _ ( A ( ? ) ) < ^ ( A ) . (A.2) 

The matrices A(?) = [al---aq] are the principal sub-matrices of A, where a. eC*xland 

q. = l,-",(n-l) • It is clear from (A.l) that 

*w»(A) * ^ ( A ( „ ) < X,(A) < K(\q)) * - * K-(\,)) * ^ ( A ) (A.3) 

In the context of this paper, we are interested in the sub-matrices A« that are associated 

with the cofactors An of the diagonal elements a,-,- of A. These sub-matrices A,-,- are 

different from the principal sub-matrices A(?) of A and hence it is not clear if (A.3) is 

applicable to A,-,-. 

Lemma A.l: The Inclusion Principle is applicable to the sub-matrices A,-,- that are 

associated with the cofactors An of the diagonal elements a„- of A. 

Proof: Let A=[BB^] be a Hermitian matrix arising from a complex matrix B. The 

elimination of row i in B corresponds to the elimination of row i and column i in A. Let 

the new sub-matrix be A,, after the eliminations in A. The elements in A,, constitute the 

elements for the calculation of the cofactor An that is associated with the diagonal 

element a„ in A. Next, any sub-matrix A„ may be identified as a principal sub-matrix 

A-js of A that is obtained after moving the ith row and i * column in A to their 
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respective last nx row/column positions. This is done by a series of adjacent row/column 

exchanges until the /* row/column reaches the n& row/column positions. Let this re

arranged nxn matrix be A,. It is important to note that: 

(a) Each row exchange is matched by another column exchange. 

(b) The principal diagonal element associated with the i* row and i* column in 

A remains as a principal diagonal element when shifted to the nl row, n 

column position (see example below). Note that the other elements in the 

original zthrow and i * column may be shifted, however, the goal of mapping 

A!; as a principal sub-matrix A(„_1} of A is achieved. 

(c) All principal diagonal elements of A remain as the principal diagonal elements 

of A*. 

The eigenvalues of A.,. (A .J a r e m e s a m e a s ^,(A) because of the following: 

(a) Since the formation of A* preserves the elements in the principal diagonal of 

A, then trace(A;[) = trace(A) and this means that 

I M M A - ) = EMMA). (A.4) 

(b) Since each row exchange is matched by another column exchange, then 

det(AJ = det(A) and this means that 

The condition under which (A.4) and (A.5) could be simultaneously satisfied must 

therefore be \{A.X) = A.,. (A) . Hence the Inclusion Principle as represented by (A.l) and 

(A.2) can be applied to the sub-matrices A« that are associated with the cofactors An of . 

the diagonal elements an of A. • 
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Example 

This shows how a sub-matrix A„ that is associated with the cofactor Ati of the diagonal 

element a,, of A could be mapped as a principal sub-matrix A(n_1} of A. Given a matrix 

A e M4x4 with the following entries captured in a table: 

1 
I 
19 
13 

2 
6 
4 
14 

23 

I 
6 
15 

5 

I 
12 
16 

The cofactor A12 for entry a22 in A is desired and the associated matrix is 

1 23 5" 
19 6 12 
13 15 16 

The following is a series of row and column exchanges to map A22 as a principal sub-

matrix A(3) of A. 

Exchange 2nd and 3rd rows 
1 
9 
1 
13 

2 
4 
6 
14 

23 
6 

1 
15 

5 
12 

i 
16 

Exchange 2nd and 3rd columns 
1 
19 
1 
13 

23 
6 
2 
15 

2 
4 
6 
14 

5 
12 
W: 

16 

Exchange 3rd and 4th rows 
1 
19 
13 
1 

23 
6 
15 
2 

2 
4 
14 
6 

5 
12 
16 

1 
Exchange 3rd and 4th columns 

1 
19 
13 

1 

23 
6 
15 

1 

5 
12 
16 

1 

2 
4 
14 
6 
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APPENDIX B 

Recursive Matrix Inverse 

The objective is to find A-1 given Z'( 

Then from [31], qn = A-1+A-1B(D-CA-1B)-1CA_1, q12 =-A_IB(D-CA_1B)_1, 

q21 = - (D-CA B)_1CA ' and q22 = (D-CA 1 B) 1 . 

Hence qn = A^+A^Bq^q^CA^/q^ and therefore 
1 """ V "" V 

A - ' ^ - M I L . (Bi) 
q 2 2 

Equation (Bl) serves as the basis for recursive inverse when one row is removed at a time 

in TZFBF. To show this, we examine the applicability of (Bl) when Z = HHH where H 

is {n +1) x(n +1). Let H5 = PH where P is the permutation matrix that switches any two 

rows in H. Then H^Hf =(PH)(PH)" = P ( H H " ) P " , which represents a row and 

column switch in HH". Next, it can be shown that (H^Hf )_1 =P(HHH)"1P", which 

means that the corresponding rows and columns of (HHH)_1 are switched when a pair of 

rows in H is switched. For TZFBF user selection, the row to be removed in H is switched 

with the last row to form Hs and the desired A-1 is then computed via (Bl). 

(ttXrt) 

-(lx«) (lxl) J l_^21,(lx«) <l22,(lxl)_ D 
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