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Abstract

Motion Planning is a fundamental component of a mobile robot to reach its

goal safely avoiding collision. For a self-driving car on a highway, the pres-

ence of non-communicating vehicles, specially those whose intent is unknown,

creates a lot of uncertainty for the motion planner in generating a safe tra-

jectory. State-of-the-art planning methods do not work well in case of adver-

sary driving scenarios, where the other vehicles may make mistakes or have

a competing or malicious intent. We use reinforcement learning framework

to improve safety under those scenarios. In most recent deep reinforcement

learning applications, there is a neural network that maps an input state to

an optimal policy over actions. However, learning a policy over such original

or primitive actions is very slow and inefficient and is therefore not suitable

for many robotics tasks. On the other hand, the knowledge already learned in

classical planning methods should be inherited and reused. In this thesis, in

order to take advantage of reinforcement learning good at exploring the action

space for optimal solution and classical planning skill models good at handling

most driving scenarios, we propose to learn a policy over an action space of

primitive actions augmented with classical planning methods. By doing so, we

show that our agent outperforms the primitive-action reinforcement learning

agent and the classical planning methods in terms of collision rate.
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Chapter 1

Introduction

A self-driving car is nothing but a mobile robot equipped with sensors to

perceive its surroundings and proper planning algorithm to reach a destination.

Although humans are good drivers but they are prone to tiredness, fatigue

and distraction which lead to unwanted accidents. As a result, safety has

been the utmost concern in developing an autonomous driving system for

both academia and commercial companies. It is believed that sensors will

be able to see beyond human capabilities, a good perception system will be

able to understand/predict the environment and a good planner will result in

collision-free motion. Autonomous vehicles are assumed to be operable both

in urban and highways. Changing lane is one of the most important tasks of

a self-driving car navigating on the highway. This feature adds to the comfort

driving for long-distance travel. Although the ultimate goal is to improve

safety and make a consumer-grade system to be used by mass people.

Autonomous driving has drawn much attention in the last decade, but ad-

dressing the problem is not new. One of the earliest successful demonstrations

of the self-driving car goes back to 1989. At that time, the project ALVINN [33]

used camera image and laser data as input to a neural network trained with

simulated road images to navigate a vehicle autonomously. 2005 DARPA chal-

lenge inspired a lot of researchers/engineers to reuse the robotics knowledge

learned so far into a sensor fused vehicle to solve the task of 212 km driverless

drive in a desert terrain. The champion team Stanley [42] is a great example

of the use of machine learning and probabilistic reasoning. 2007 DARPA chal-
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Figure 1.1: Prominent self-driving platforms, from left to right and top to
bottom: the task of lane change, Stanley robot for DARPA 2005 challenge,
Google’s Waymo self-driving car ride sharing, Uber’s self driving car fleet.

lenge required autonomous vehicle in city traffic conditions in the presence of

dynamic vehicles. Followed by these events many car companies and univer-

sity labs started developing fully autonomous vehicle systems. Google-owned

self-driving car company Waymo has the highest driverless drive of more than

one million miles with no major accidents. Now almost all the motor compa-

nies have self-driving division. GM’s cruise, Ford’s Argo, Uber, Tesla are the

most prominent ones. Of them, Uber and Tesla have encountered accidents

and caused the death of people which lead us to focus on more tested safety

features before mass production of these vehicles.

1.1 Self-driving Software Architecture

The planners for the self-driving car can be divided into four hierarchical

parts [29] as shown in Figure 1.2. At the upper level, there is the Route

Planner responsible for navigating the car from point A to point B. The

middle-level one is the Behavioral Planner which acts locally, decides driv-

ing behavior obeying the traffic rules, maintaining speed limits, etc. The next
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planner is called, the Motion Planner responsible for collision-free trajec-

tory in order to follow the previous two planners towards reaching a goal.

The Control Planner is the last planner which is responsible for the actual

driving of the car with low-level controls such as steering control and speed

control.

1.1.1 Route Planner

Usually, there is a map with the route planner. One such example is the use

of google map in our day to day driving and deciding which roads to take. It

is the highest level of decision-making system and also known as the Mission

planner. Given the destination from the source, it generates the path among

the road network. One basic intuition is to get to the goal destination in the

shortest path. Dijkstra [10] and A* [28] are two classical planners for global

route planning. State-of-the-art planners take many facts during generating

paths, such as distance, the average time to reach, traffic congestion, traffic

lights, road speed limit, road availability, etc.

1.1.2 Behavioral Planner

The behavioral planner deals with the rules of the traffic. The ego car’s be-

havior will certainly be different based on whether it is on the highway or

city or parking lot. The driving norms such as stopping at a red light, giving

right of way to other vehicles, turning on signals before switching lane, etc.

are defined in this planner. A large part of the planner depends on extracting

behaviors of other vehicles, pedestrian and their future intention. Many teams

in DARPA Urban Challenge [20] used finite state machines along with differ-

ent heuristics rules to design this type of planner. Some planners use Markov

Decision Process (MDP) for modeling uncertainties in the behavior of other

traffics [36] [43].
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Figure 1.2: Hierarchy of decision-making process, figure from [29]

1.1.3 Motion Planner

Motion planner mostly deals with collision avoidance and generating a

smooth trajectory for comfortable driving. It is always consistent with the

previous two planners. Many motion planners output a trajectory that is

passed to the low-level controller to follow. The motion planner takes input

from the map or sensor values to locate obstacles and define free space. There

are many approaches to design this type of planner. One approach is a graph-

based where the dividable spaces are defined as nodes in a connected graph.
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The trajectory is obtained by solving the graph for the shortest path. It often

requires smoothing to get a good trajectory. Dijkstra[10], A*[28], potential

field [11] are a few examples of graph-based solutions. Another approach is

sample based [19], where derivable spaces are discretized as points, sampling

is done on those points until a feasible trajectory is found. Planners are also

designed with learning-based approaches. In the supervised type of learn-

ing [35], the behavior of an expert driver is learned. In the reinforcement type

of learning [21], the planner learns the behavior by interacting with the op-

erating environment. Other approaches to design planners include breaking

the planner’s task into a set of rules and following them based on some expert

knowledge. For more elaborate discussion see 3.1.

1.1.4 Control Planner

The control planner is responsible for the actual movement of the robot. For

an autonomous vehicle, speed control, steering control, braking, etc., are low-

level actuation. If the motion planner generates a trajectory, the control plan-

ner calculates the error in following the trajectory and tries to adjust it in a

closed-loop feedback manner. PID[9] and MPC[14] are two control algorithms

popularly used in a self-driving car. Tasks like adaptive cruise control, lane

follow and emergency brake are done with these types of controllers.

Our solution is a deep reinforcement learning-based motion planner for lane

changing in the highway. We assume that we have a good low-level controller

for speed control and steer towards the next lane. Here we are basically taking

high-level decisions to decide when to stay in lane or switch to the next one.

As a result, it is compatible with a global planner and behavioral planner.

1.2 Thesis statement

In this thesis, we design a reinforcement learning(RL) based motion planner

for the task of highway lane changing. Our planner also uses a classical planner

in the RL framework. The planner operates in adversarial driving scenarios.

By adversarial we mean, the other vehicles in the environment can make mis-
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takes or have a competing or malicious intent, show inappropriate lane change

or sudden stopping behavior which might lead to accidents. Although hu-

man drivers drive well in normal traffic but they are not good at handling

accidents because a human driver rarely experiences accidents in one’s life re-

gardless of a large amount of accident-free driving time. On the other hand,

most state-of-the-art planning algorithms for autonomous driving do not con-

sider these adversaries, usually assuming all the agents in the environment are

cooperative. For example in [32] the other vehicles are assumed to be “self-

preserving”, i.e, they are giving brake and following the norm of highway driv-

ing. Another example is Optimal Reciprocal Collision Avoidance (ORCA)[5],

a popular navigation framework in crowd simulation and multi-agent system

for avoiding collision with other moving agents and obstacles. It works with

guaranteed collision-free motion when all the agents follow the same protocol.

There is always room for improving these planners by incorporating the rules

associating with the cases they fail to address. Under these circumstances, the

question for us to explore in the long term is, can we improve safety in terms

of predicting collision and avoiding it?

Another approach is supervised learning where the system will try to mimic

good human driving behavior given a lot of positive and negative samples but

it suffers from bounded performance due to imbalanced samples. We believe

that using programs to simulate billions of accidents in various driving sce-

narios will provide necessary training samples. With such large scale accident

simulation, we can take advantage of reinforcement learning RL framework to

design a controller that would learn new rules automatically and encapsulate

in a function systematically in contrast to an ad hoc way of incorporating

case-specific rules into the classical controllers.

Driving can be formulated under a reinforcement learning framework. It

has a clear temporal nature e.g., the current action has an effect on choosing

the actions in the future. An action to take at every time step influences the

resulting state which the agent observes next, which is the key feature of many

problems where reinforcement learning has been successfully applied. The

reasoning which action to apply by considering its long-term effects is usually
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called temporal credit assignment, which is usually modeled as a reinforcement

learning problem.

In most recent reinforcement learning applications, there is a deep neu-

ral network that maps an input state to an optimal policy over primitive

actions(original). However, learning a policy over primitive actions is very

difficult and inefficient. For example, hundreds of millions of frames of in-

teracting with the environment are required in order to learn a good policy

even for a simple 2D game in Atari 2600. On the other hand, the autonomous

driving field has already practiced a rich set of classical planning methods.

It is worth pointing out that the problem of state-of-the-art planning is not

that their intended performance is bad. In fact, both research and industrial

applications have shown that classical planning works great in the scenarios

they are developed for. As a result, the knowledge already learned in state-of-

the-art planning methods should be inherited and reused. To take advantage

of both methods, we propose to learn a policy over an augmented action space

from both primitive actions and classical planning methods. Classical plan-

ning methods are treated as skills and reused. They can be called with an

input state and give an action suggestion.

Our work opens the door to an effective architecture solution for au-

tonomous lane changing: building a decision hierarchy of skills using classical

planning or learning-based methods, and calling them as augmented actions

by reinforcement learning.

1.3 Thesis Contribution

Our proposed reinforcement learning planner will be able to select over the

action suggestions by classical planning methods as well as the primitive ac-

tions. It is able to call classical planning methods to apply the skills in normal

conditions for which they are developed, but is also able to pick the best prim-

itive action to avoid the collision in scenarios where classical planning cannot

ensure safety. In this way, we do not have to re-learn for the majority of scenar-

ios in driving where classical planning methods already can deal with, saving
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lots of time for training the deep networks, and focus on the rare but most

challenging scenarios they are not designed for. The advantage of our method

is that we do not have to manually detect whether classical planning fails or

not instead, failures of their actions are propagated by reinforcement learning

to earlier time steps and remembered through neural networks in training to

avoid selecting classical planning on similar failure cases in the future.

We compare our method with some rule-based planners and also primitive

action RL planner. Our method is able to achieve the lowest collision rate. It

also learns behaviors like merging, passing or fitting in a gap, see figure 1.3 .

Figure 1.3: Successful moments of driving with our method: merging (row 1),
passing (row 2) and finding gaps (row 3).
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1.4 Organization of the thesis

Chapter 2 discusses the basics of reinforcement learning, deep reinforcement

learning and how classical planners are related to DRL based planners. Chap-

ter 3 describes different approaches to collision avoidance in the highway and

designing different motion planners. Our proposed method is described in

Chapter 4. Here we talk about the simulator we used and the whole exper-

imental setup and discuss the results. Chapter 5 summarizes the proposed

solution and points the future work.
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Chapter 2

Background Study

Our solution consists of a combination of classic motion planner and a rein-

forcement learning (rl) based motion planner. In this chapter, we review the

necessary reinforcement learning background, formulation deep reinforcement

learning and how it can be used in the design of a motion planner. We also

define classical planning and how both rl planner and classical planner are

related.

2.1 Reinforcement Learning

Reinforcement Learning is a kind of machine learning method that learns by

interacting with the environment. Usually, the learning agent takes an action

in the environment it operates, observes the environment as state and receives

a reward. The agent updates its knowledge based on the state-reward pair

and takes a new action and the cycle goes on until the environment sends a

terminal signal to end the episode. The rewards are either positive, negative

or neutral based on the goal the agent is trying to achieve. A general intuition

is to give high positive reward on success and penalize(high negative reward)

on failure. Sometimes the rewards are also given to encourage some behavior

like solving in the shortest time or avoid some obvious facts.

One example of an environment can be a Pong Atari game. The actions

of the agents are up and down to slide the bar and hit the ball such that the

opponent fails to hit back. We can call these two original actions as primitive

actions. The reward can be 0 at each step of playing and +1 for a miss from

10



Figure 2.1: Reinforcement Learning framework

the opponent or -1 if the learning agent misses. The state can be the image of

the game state or a tuple of the positions of the opponent’s bar, agent’s bar

and the position of the ball. The goal of the agent is the maximize the reward

and eventually win.

The RL framework is formulated as a Markov Decision Process (MDP)

with state space S, action space A, reward “function” R : S × A → R, a

transition kernel p : S × A × S → [0, 1], and a discount ratio γ ∈ [0, 1). The

reward “function” R is generally a random variable or constant variable. The

bandit setting is a special case of the general RL setting, where we usually

have only one state.

We use π : S × A → [0, 1] to denote a stochastic policy. We use Zπ(s, a)

to denote the random variable of the sum of the discounted rewards in the

future, following the policy π and starting from the state s and the action

a. We have Zπ(s, a)
.
=

∑∞
t=0 γ

tR(St, At), where S0 = s, A0 = a and St+1 ∼

p(·|St, At), At ∼ π(·|St). The expectation of the random variable Zπ(s, a) is

Qπ(s, a)
.
= Eπ,p,R[Zπ(s, a)]

which is usually called the state-action value function. In general RL setting,

we are usually interested in finding an optimal policy π∗, such that Qπ∗(s, a) ≥

Qπ(s, a) holds for any (π, s, a). Thus RL is to solve for each state an optimal

policy which achieves maximum rewards. All the possible optimal policies

share the same optimal state-action value function Q∗, which is the unique

fixed point of the Bellman optimality operator [4] as follows,

Q(s, a) = T Q(s, a)
.
= E[R(s, a)] + γEs′∼p[max

a′
Q(s′, a′)]

11



Based on the Bellman optimality operator, [45] proposed Q-learning to learn

the optimal state-action value function Q∗ for control. At each time step, we

update Q(s, a) as

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (2.1)

where α is a step size and (s, a, r, s′) is a transition. This is usually referred to

tabular Q-learning. Tabular Q-learning uses no function approximation and

does not have generalization and usually is used in small problems.

2.2 Deep Reinforcement Learning (DRL)

There have been many works extending Q-learning to linear function approx-

imation [39] [40] where the Q values are stored in a table for all possible state

and action pair but in reality, this does not scale to complex problems. Be-

cause the amount of memory required to save and update the table increases

as the number of states increases. Secondly, the amount of time required to ex-

plore each state to create the required Q-table would be unrealistic. The figure

2.2 shows difference between them. [23] combined Q-learning with deep neu-

ral network function approximators, resulting in the Deep-Q-Network (DQN).

Here a neural network is used to approximate the Q-value function. The state

is given as the input and the Q-value of all possible actions is generated as the

output.

DQN relies on the use of experience replay buffer. At each time step, it

samples a minibatch from a memory buffer of past experience. Stochastic

gradient descent is applied to the mini batch for training. Because RL has no

training targets provided like the typical supervised learning setting, a trick of

target networks is used to generate training target from a historical snapshot

of the networks. Assume the Q function is represented by a network θ, at each

time step, DQN performs a stochastic gradient descent to update θ minimizing

the loss

(rt+1 + γmax
a
Qθ−(st+1, a)−Qθ(st, at))

2
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where θ− is target network [23], which is a copy of θ and is synchronized

with θ periodically, and (st, at, rt+1, st+1) is a transition sampled from a expe-

rience replay buffer [23], which is a first-in-first-out queue storing previously

experienced transitions. See figure 2.3 for the pseudo code.

Figure 2.2: Difference between Q-learning and Deep Q Learning

2.2.1 Discount Factor γ

The discount factor gamma determines how much importance the rl agent

gives to the future rewards in the value function. A discount factor γ = 0

helps the agent learn about immediate reward. On the other hand, for γ = 1

, the agent cares about the sum of all the future rewards.

2.2.2 Experience Replay

Each experience contains current state, current action, reward, next state and

a boolean variable about whether the transition is terminal or not. They are

stored in a buffer of fixed size. Then a sample of batches is taken randomly

during the update in a learning step. Since the data is highly correlated the
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experience replay buffer helps to learn in a reasonable way. The experience

replay helps to prevent the network from learning from what it is doing im-

mediately. Usually, each new experience is pushed at the end and if the buffer

is full, the oldest one is removed.

2.2.3 Target Network

In order to generate target Q values, the copy of the learned network is saved

as a second network after a fixed number of learning steps. This network

is used to compute the loss for every action during training. If the same

network is used every time, the network values shift and it is hard to stabilize.

rt+1 + γmaxaQθ−(st+1, a) part of the above mentioned loss function is called

the target part.

2.2.4 ε greedy

In the DQN algorithm, at each time step of training, the agent picks a random

action with probability ε or action from the current estimate of the Q-values

with probability 1 - ε. The random search for good action is called the explo-

ration phase while using the current estimates of Q-values is called exploita-

tion. The value of ε is usually decreased over time as the agent gradually

learns the task.

2.2.5 Model-based and Model-free

The goal of the RL agent is to maximize the reward. In order to do so, it

needs to find a strategy or a policy that collects more rewards in the long run.

The policy can be treated as a function that outputs an optimal action given

the state as input. The environment is deterministic if the same action for

the same state always leads to the same next state, e.g., in the game of chess,

moving a dice always leads to a fixed next game state. On the other hand, the

environment is stochastic or non-deterministic if the next state is different

for the same set of state and action i.e, there are some probabilities in the

transition. For instance, a mobile robot taking a movement action will not
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Figure 2.3: Deep Q Learning pseudo code from [23]

always lead to the same next position due to uncertainties in the motion.

The MDP mentioned earlier can be treated as a representation of the “dy-

namics” of the environment. Given any state, it defines how the environment

will react to the possible actions the agent is allowed to take. The MPD is

coupled with the transition function such that given current state and action,

it outputs the probability of moving to the next states. The transition function

and reward function together are called the model of the environment.

Model-based algorithms use a model to estimate the optimal policy. That

means the agent has the capability to predict the dynamics of the environment

since it is using the transition and reward functions.

Model-free algorithms estimate the optimal policy without using the dy-

namics of the environment. This type of algorithm estimates a “value function”

or “policy” directly from the agent’s interaction with the environment with-

out using transition function or reward function. A value function evaluates a
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state or an action taken in a state.

The highway road environment we are considering in this thesis is stochas-

tic and the RL algorithm we use is model-free which tries to learn the un-

certainties of the other agent’s driving behaviors.

2.2.6 On-policy and Off-policy

An on-policy RL agent learns the value function based on its current action

which is derived from the current policy. The algorithm SARSA[39] is an

example of an on-policy algorithm. The update function of SARSA is as

follows:

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a))

Here the action a′ is taken according to policy π. In case of off-policy, the

action a′ is derived from another policy. For instance, the Q learning update

rule uses the action which will yield the highest Q-Value (see equation 2.1)

which is different from the current policy π.

On-policy versus off-policy can be simply understood whether the action

reuses the same action that is optimized in the last state. Experience replay is

a typical off-policy learning problem we iteratively solve the policy at state s′

and we never follow the same action at s′ (because this is an off-line experience

the action at s′ was already determined when we collect data). Epsilon-greedy

is also off-policy because the action to follow in the next step may be a random

action not from the optimized action at the previous state.

2.3 Classical Planning and Reinforcement Learn-

ing based planning

By classical planning, we refer to the traditional way of designing a planner for

robotics. The term has been used to differentiate between the rule-based and

learning-based methods which are comparatively newer approaches. There are

a few common fundamental principles in the core ideas of classical planning

and reinforcement learning for designing a planner.
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First, the temporal relationship between the actions selected at successive

time steps is considered in both the fields. Optimizing the cost over future

time steps is the key idea commonly shared between classical planning and

reinforcement learning algorithms. For example, in MPC classical planner,

there is a cost function defined over a time horizon for the next few actions.

The cost function can be assumed as one special case of the (negative) reward

function in reinforcement learning. MPC relies on a system model and an

optimization procedure to plan the next few optimal actions. The collision

avoidance algorithm using risk level sets [32] maps the cost of congestion to

a weighed graph along a planning horizon and apply Djikstra’s Algorithm to

find the fastest route through traffic [32]. Many collision avoidance planning

algorithms evaluate the safety of the future trajectories of the vehicle by pre-

dicting the future motion of all traffic participants, e.g., see [17]. However,

MPC, Djikstra’s Algorithm and collision avoidance planning are not sampled

based, while reinforcement learning algorithms are sample-based.

Second, both fields tend to rely on decision hierarchies for handling com-

plex decision making. Arranging the software in terms of high-level planning,

including route planning and behavior planning, and low-level control, includ-

ing motion planning and closed-loop feedback control, became a standard for

the autonomous driving field [44] [24] [38]. In reinforcement learning, low-

level options and a high-level policy over options are separately learned [3]. In

robotics, locomotion skills are learned at a fast time scale while a meta policy

of selecting skills is learned at a slow time scale [31].

Third, sampling-based tree search methods exist in both fields. For ex-

ample, RRT is a motion planning algorithm for finding a safe trajectory by

unrolling a simulation of the underlying system [15]. In reinforcement learn-

ing, Monte-Carlo Tree Search (MCTS) runs multiple simulation paths from a

node to evaluate the goodness of the node until the end of each game.
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Chapter 3

Related Work

3.1 Related work

The key point of a motion planner is to avoid collision locally. The problem

of Collision Avoidance (CA) has seen a wide range of solution approaches.

Hence in this chapter, we talk about different collision avoidance solutions

from the perspective of mobile robot applications such as lane change, indoor

or outdoor navigation and crowd navigation. We can divide the solutions into

two major categories based on the use of data and expert knowledge. The

expert knowledge in the domain can be defined as rule-based solutions. On

the other hand, a learning based system can be trained with data coming

from a robot’s locomotion or sensor. The rule-based approaches can be subdi-

vided into sampling, control logic and mathematical function-based methods.

The learning-based methods can be again subdivided into reinforcement and

supervised learning. See the tree structure in Figure 3.1.

3.2 Rule-based

3.2.1 Sampling

In the sampling-based methods usually, multiple trajectories are generated and

the best one is chosen based on some predefined safety measure. The interac-

tive scene prediction [17] method generates future trajectories by predicting

the future motion of all the mobile vehicles. Then they compute the colli-

sion probability of each of the trajectories. The intention is predicted though
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Figure 3.1: Different approaches to solve CA, the leaves of the tree contain
few examples of the subdivision.

the trajectories. Since the number of such trajectories can be infinite. They

discretize the continuous movement space with the probable future position

of the agents by considering their motion dynamics, e.g., a car can not slide

to right or left or jump to the far lanes. They denote this space as “circle

of force” see Figure 3.2. Based on acceleration, braking and constant speed

different levels of trajectories can be generated and corresponding intention is

estimated. The collision probabilities are used for threat assessment. They

propose that they can estimate the interaction aware maneuver probabilities

from intention estimation and collision probabilities for the driver assistance

system.

MIT’s team [15] in the DARPA Urban Challenge, used a Rapidly Explor-

ing Random Trees (RRT) [16] based planner to drive in the city. The RRT

algorithm is used for planning in the high dimensional space. It builds tree

incrementally from a sample drawn randomly from the search space and grows

towards the unsearched portion. The constraints such as obstacle avoidance,

vehicle dynamics can easily be integrated in generating the space-filling tree.

In the proposed method, they assume a low-level controller is able to follow a

trajectory, see Figure 3.3. Therefore they select a node (a point on the road),

expand, check constraints up to some fixed time stamps. The best trajectory

is selected based on the constraints and sent to the low-level controller. If no

feasible trajectory is found the car starts braking. In order to address the un-

19



Figure 3.2: Trajectory generation for different speed values, image from [17].

certainty properly, they add some extension to the RRT such as bias sampling,

which starts exploring the node from the front of the car generating practi-

cal trajectories. Vehicle turning radius is also taken into account in order to

expand the tree for practical movement of the car between two points. They

incorporate the rules of the road to deal with static or dynamic obstacles. The

planner always ensures that the ego car can stop at the future uncertain events

and then start moving within that predicted environment. In order to evalu-

ate the risk, they differentiate drivable and non-drivable regions, lane marks,

non-stopping zone, etc.

Sang-Hyun and Seung-Woo [18] proposed candidate trajectory generation

and selecting the optimal one using a trained data set. The sample trajectories

are obtained from a Gaussian Process’s posterior distribution. Then the set of

the samples is evaluated with maximum entropy inverse reinforcement learn-

ing [46] with a learned cost function. They learn the optimal set of trajectory

from the expert driver in a supervised fashion.
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Figure 3.3: Motion plans are propagated using the vehicle’s dynamical model.
Propagated paths are then evaluated for feasibility, image from [15].

3.2.2 Control logic

Control logic-based planners take ideas of the control theories. They try to

correct the error towards the goal in a closed feedback loop. The goal can be

following a lane/trajectory, passing a target vehicle etc.

Model Predictive Control(MPC) [34] is one of most popular control theo-

ries. In order to design the controller it takes the model of the process into

account and has the predictive ability in the future time steps and optimizes

the cost function from the current step to the future step based on a set of con-

straints. It is an iterative, finite-horizon optimization-based controller proved

to be used in many applications including different aspects of self-driving car.

The method Scenario MPC (SCMPC) [8] takes the future traffic scenario and

directly controls the ego car for lane change assistance(LCA) and automated

highway driving(AHD). LCA is initiated by a human driver as a part of Ad-

vanced Driver Assistance Systems(ADAS). They take into ego vehicle’s bicycle

kinematic motion model, maximum speed, maximum acceleration and road

boundaries. They also define necessary constraints for lane keeping, switching
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and following a vehicle in the lane (adaptive cruise control). They predict the

traffic intention over the finite horizon to handle the uncertainties.

In [14], the authors describe the MPC based controller to overtake a ve-

hicle in a two-way road. They generate a feasible trajectory with a convex

optimization method minimizing yaw acceleration for practical steering values

and considering the vehicle dynamics. The MPC constraints are designed such

that it follows the trajectory and avoid collision with other vehicles by driving

all the wheels within the allowed boundary, Figure 3.4.

Figure 3.4: The control architecture of the autonomous vehicle system [14].

Fuzzy controller [30] is another useful controller popularly used in Robotics.

It is based on fuzzy logic that evaluates a value in terms of some logical vari-

ables that takes a continuous value between 0 and 1. The term “fuzzy” refers

to something that is not true or false but how much partially true/false in a

continuous manner. In a fuzzy control system, there are membership functions

based on expert knowledge. The input is mapped by the membership func-

tions and a rule is defined on it to take action to achieve a certain goal. [26]

used fuzzy logic to design a controller for overtaking maneuvers. They localize

the vehicle with a Global Positioning System (GPS) and send the information

to all other vehicles over a wireless network. To follow a lane the proposed

system uses a straight path fuzzy controller that maintains a constant speed.

In order to overtake a slow-moving vehicle in the right lane, they at first check

if the left adjacent lane is empty using the vehicle positioning and the speed in-

formation. The vehicle switches to the immediate left lane with a lane change
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fuzzy controller. It takes the lane coordinates into account so no trajectory

is required. The fuzzy steering controller takes a lateral and angular error as

crisp values and compares with the predefined expert values to steer either

to left or right until the vehicle is centered in the lane. In order to pass, the

vehicle now uses a fuzzy lateral controller using the right vehicle as a reference

to pass. When the right lane is free enough they switch back the vehicle to

the right lane. See Figure 3.5.

Figure 3.5: The membership function definition for the input fuzzy variables.
(a) Straight-path-tracking error. (b) Straight-path-tracking angular error. (c)
Lane-change lateral error. (d) Lane-change angular error, image from [26].

3.2.3 Mathematical Function

Mathematical function based planners take inspiration from mathematical con-

straints or cost functions. They convert the rules of the road or driving pa-

rameters into numeric values, thresholds and equations. These methods often
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derive necessary and sufficient conditions to generate practical driving com-

mands given the sensor data or state information.

One of the most popular motion planners for local collision avoidance is

ORCA (Optimal Reciprocal Collision Avoidance) [5]. They derive sufficient

conditions for multiple robots to guarantee collision avoidance without commu-

nicating with one another, assuming all the robots follow the ORCA strategy

to decide their actions. The key idea behind their method is use of Velocity

Obstacle [12] (VO) and Reciprocal Velocity Obstacle [6] (RVO).

VO refers to the set of all velocities for an ego agent that results in collision

between it and the other moving agents within some short time interval in the

future with the assumption that they retain constant velocity for that time

period. Therefore if an agent chooses a velocity within this velocity space, it

will collide. A general intuition of avoiding collision is to choose a velocity

outside this set.

In RVO, the ego agent assumes the other agent takes half the responsibility

to avoid the collision. This approach can also guarantee that choosing a veloc-

ity outside the RVO space induced by the other agent will avoid the collision

even when they pass each other from the same side. In this aspect, the agent

tries to choose a velocity close to its current velocity. The chosen velocity

might avoid the collision but could be highly deviated from the goal-directed

velocity and often might end up in a deadlock. ORCA solves this problem

by finding velocity u which is the smallest change to the relative velocity of

the two approaching agents. . It can be extended for n number of agents by

finding u for all the participating agents with the help of linear programming.

But the main limitation of the method is that it is assumed that all the agents

in the environment follow the same protocol which is very much unpractical

for autonomous vehicles driving alongside the human drivers. The method

also assumes constant velocity whereas the acceleration is a huge factor in the

future position of the high-speed vehicles. Besides, solving a linear program

might lead to an infeasible solution.

The risk level set method proposed by Pierson et. al. [32] has a cost function

which takes density and motion of the non-ego agents and derives an occu-
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pancy grid in the road surface and a greedy Djikstra [10] planning algorithm

over the unoccupied spaces to navigate in a crowded traffic, see Figure 3.6.

The occupancy grid comes from a Gaussian function multiplied by a logistic

function which helps the shape to be skewed towards the direction of driving

which resembles the uncertainty in the state estimation of the non-holonomic

motion of the vehicles. In other words, the shape has more occupancy in the

direction it is driving and lower on both sides. They assume all the agents in

the environment are “self-preserving” which means they are cooperative and

follow the rules of the road e.g., changing lane in such a way that do not go into

the braking distance of the other vehicles. This is very unpractical because all

the cars in the road can not be autonomous right at this moment and human

drivers are prone to do mistakes while changing lanes. The method does not

address inappropriate lane change and how to avoid accidental scenarios, al-

though it works under sudden speed change of the non-ego vehicles within the

same lane.

3.3 Learning based

3.3.1 Supervised Learning

Supervised learning based planners try to learn and mimic pre-recorded driving

behavior. The project ALVINN [33] mentioned in chapter 1 is a good example

of this category. However, the supervised methods for the task of lane change

are not popular due to their lack of negative samples in the training set e.g.,

collision data. These methods also do not generalize well. Training in one

type of data set hardly performs well on a new set of data.

In some literature [27], lane changing task is divided into 3 types: Manda-

tory Lane Change(MLC), Discrepancy Lane Change(DLC) and Anticipatory

Lane Change(ALC). MLC refers to the behavior that the driver must leave

the current lane. DLC improves the driving conditions by adjusting speed and

finding a better gap. The ALC describes how to avoid traffic congestion [41] [2].

The DLCE method [27] addresses a supervised way of executing the DLC for

a lane change. They used the classical machine learning algorithm SVM to
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Figure 3.6: (a) Occupancy grid obtained from Gaussian function H, (b) dis-
cretizing road spaces, (c) using Dijkstra to calculate the shortest path, image
from [32].

accept or reject the adjacent gap in the target lane. The training data comes

from NGSIM(next-generation simulation program), a labeled lane changing

data collected from a highway in California.

Tobias et. al [35] propose high-level decision making for lane change to

the left. They collect human triggered lane change data with the help of a

simulator and train the parameters of a Bayesian Network (BN) which uses a

Logistic Regression (LR) to model when is the right time to initiate the lane

change maneuver. Their feature vector includes time to collision and time gap
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in the next lane to model the traffic scenario.

Figure 3.7: (a) E2E learning architecture by Nvidia, image from [7].

Nvidia [7] proposed a convolutional neural network(CNN) approach to au-

tonomous driving. Here given an image of the road the network is able to

generate appropriate steering command. With this method, they were able to

drive on the highway, change lane and turn from one road to another. They

gathered training data by recording from the human driver’s steering wheel

command and corresponding video of the road surface ahead of the car. Three

cameras were set at left, center and right which later helped them increase

the training samples by random shift and rotation and adjusting the steering

wheel commands accordingly, Figure 3.7. The neural network has nine layers,

a normalization layer, five convolutional layers and three fully connected lay-

ers at the end, totaling 250k parameters. Since the process is end to end, it

is hard to plug with a global planner and the performance of such a system

deteriorates with new driving scenarios that are absent in the training data.
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Figure 3.8: Network architecture, simulator and occupancy grid of [25].

3.3.2 Reinforcement Learning

The reinforcement learning-based planner tries to learn from both good and

bad samples. This type of planner is comparatively newer and in most cases,

they take advantage of the simulated environment. One of the challenges of

this approach is to transfer the knowledge from the simulator to the real-world

or training the planner on an actual robot which is a very expensive procedure.

The work of Mustada et. al. [25] is very similar to ours. They address the

problem of exiting the highway through proper lane change. They take high-

level decisions to speed up, speed down, stay in-lane or switch to right/left

based on some predefined low-level controllers. They use a DQN algorithm

to train on a simulator. The input to the network is velocity, current lane,

distance to the goal lane and history of 4 past binary occupancy grids. The

grids are passed through the convolutional layer and flattened and concate-

nated with the output of the fully connected layer with the rest of the scalar

input layer, see Figure 3.8.

In this method, the reward is very sparse, +10 for a successful exit and

-10xl (the rightmost lane is 0 and the value l increases by 1 from right to left)

for failure. They introduce a Q-masking which compares the max of Q values

from the network with predefined knowledge to verify if the action is valid

(not choosing beyond the availability of the lane) or safe (not colliding based
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on the time to collision). This method is also very similar to the safety system

mentioned in Deep Traffic [13], which overrides the action taken by the output

of the network whenever the network fails to avoid a future collision.

Figure 3.9: Network architecture of [21].

The work of Branka et. al. [21] is also very relevant to our work. They train

a DQN agent to perform the lane change while maintaining the desired velocity.

There is also a safety verification to filter the appropriate action selected from

the network. They take the relative distance and velocity of the leading and

following vehicle in the current and adjacent one lane on the left and right. The

actions are switch to left, keep lane and switch to the right. The neural network

has 2 layers each having 100 fully connected neurons, see Figure 3.9. The

reward is the negative value of the absolute difference of the desired velocity

and the current velocity of the ego vehicle. They show a better performance

than an expert knowledge incorporated rule-based controller [1]. But this

methodology is not suitable for the accident-prone environment, because it

does not see other vehicles beyond the adjacent lanes. All the 3 methods we

have discussed so far formulate driving as Markov Decision Process (MDP)

and they learn by interacting with the simulator environment.
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Difference between Ours and State-of-the-art RL planners

In this subsection, we summarize the difference between the above methods

with our method.

The main difference is the use of a classical planner. In our action set,

we have one additional action that is coming from a classical planner. This

helps to reuse the classical planner and also to overcome the limitation of it.

This is applicable where the classical planner is sub-optimal in some uncertain

scenarios. Therefore our approach takes advantage of both state-of-the-art RL

planners and any existing rule-based planner that we discussed in this chapter.

Another difference is the state vector. The occupancy grid has both posi-

tion and velocity information of the cars. The state information also has more

fine-grain data because of the subdivision of each lane into 3 corridors. We

argue that this detailed information helps the neural network to capture the

features related to uncertainty in the motion of the surrounding vehicles.

Our reward function is also different than the above mentioned RL meth-

ods. It encourages to safely exit the current lane, avoid the proximity of the

other cars and even by slowing down if necessary.
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Chapter 4

Lane changing with DRL
motion planner

4.1 Problem overview

We are trying to solve lane changing on the highway. The task is to control an

ego vehicle that moves autonomously to the rightmost lane without collision.

This scenario happens frequently when we drive close to freeway exit in every-

day life. The other agents in the environment are non-communicating i.e, their

intentions are unknown. Some of the vehicles do not follow the rules of the

road properly. They can change lane randomly or speed up/down suddenly.

4.2 Our methodology

State-of-the-art[23][22] implementations of deep reinforcement learning use an

action space over the primitive actions and a neural network that maps an

input state to a policy over primitive actions. To take advantage of classical

planning methods, we treat them as action functions that can be queried with

a state input and gives an action suggestion. Our method is an implementation

of DQN with an augmented action space with both primitive actions and action

query functions by classical planning methods.

4.2.1 2D simulator

The driving simulator used in this project consists of 4 lanes in a 2D space.

Each lane is subdivided into 3 corridors. There are 19 vehicles in total within
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a 200 meter range. Vehicle types include car and motorcycle. A car occupies

three corridors and a motorcycle occupies one corridor. We map the pixels of

the simulator into meters. A car is represented as a (width = 2m,height =

4m) rectangle and a motorcycle is a (0.6m, 1.5m) rectangle.

The vehicles are placed based on their descriptions (e.g. initial speed,

location, behavior) specified in a configuration file. The behavior includes

random or fixed speed, random lane change and self-preserving nature (giving

right of way to other vehicles by slowing down or stop by braking if needed)

during the run. If all the vehicles are initialized with self-preserving mode

and random speed during the run, there is no collision. The vehicles do not

communicate with each other. Given a target corridor, the vehicle can start

changing lanes towards it with a fixed linear speed. However, it does not go

to the next corridor in the next simulator step. It requires a few simulator

steps to reach, based on the target speed and position of the target corridor

from the current corridor. We design the simulator such that if a new target

corridor comes before executing the previous corridor change command, it

starts the new instruction from its current position. By introducing a delay in

between the simulator step we can map the speed of the car and acceleration

to approximate with the real-world values. But during training, we do not

specify the delay in order to train it faster and later on we map it. The values

are no exact and only the relative differences of the values with respect to one

another are significant.

4.2.2 Experimental Setup

We devise a challenging environment where non-ego vehicles change lane ran-

domly without any sort of safety measures and give rise to the adversarial

situation where they can collide an existing vehicle in the next lane or step

into the braking distance of the other vehicles, eventually leading to a collision

in the future time stamps. Out of 19 vehicles, seven can change lane randomly

with 0.01 probability. The vehicles with higher speed than ego vehicle disap-

pear from the top and reappear at the bottom at the random location of the

lanes. This way we ensure very diverse vehicle distribution. The speed is also
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chosen randomly from 20 kmph to 80 kmph .

Task

During the experiment, we initialize the ego vehicle at the left-most lane whose

goal is to reach towards the rightmost lane. The simulator input-output values

can be used for an MDP framework. We can pass an action to the simulator, it

will execute the action and return its state after a single step taken in it. The

state also comes with a reward and a binary value if the task was complete or

failure due to a bad action.

Figure 4.1: Hierarchy of the action selection by the learned policy

Classical Planning Methods

We implemented three non-learning based planning methods. The methods do

not consider the lane change information of the other vehicles. The planner P1

and P2 described below are inspired by the human driver and are rule-based.

The planner P3 is a mathematical function based planner.

Planner P1: Planner 1 mimics the basic lane change strategy of a new

driver. If there are sufficient gaps in the front of the ego vehicle in the cur-

rent lane and both the front and back in the right lane then the ego vehicle

switches right; otherwise, follows the front vehicle in the current lane with a

PID controller for a target speed. If there is no vehicle in the front but the

right lane is occupied, a target speed of the speed limit is applied.
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Planner P2: This method is more complex than planner P1. It mimics

advanced human driving by checking both the gaps in the right lane and the

speed of the closest cars in the right lane, to ensure that the ego vehicle will

not run into the braking distance of the other vehicles. We used the mapping

table of “speeds and stopping distances” by the State of Virginia to calculate

braking distance for different speeds. 1

Planner P3: This planner is an implementation of the risk level sets [32]

described in the section 3.2.3, Figure 3.6. For the correctness check of our

implementation, we tested it in a simplified scenario where all the other vehicles

do not change lane and show “self-preserving” behavior. We noted that our

implementation was able to ensure collision-free driving as claimed in their

paper.

We learn the high-level driving policy by selecting appropriate actions such

as primitive action or a rule-based planner. The planner outputs in terms of

primitive actions see figure 4.1. In our method, planner P1 and P3 are used as

an action function to augment the action space of the DRL algorithm. With-

out loss of generality, our method can also work with any classical planning

methods added into the action space.

States

We follow a similar occupancy grid-like state representation similar to Deep

Traffic [13]. The columns in the grid represent lateral state information around

the car. We take into account the current lane and 2 more lanes on right

and left totaling 5. At each time step (16 ms), the simulator returns the

observations of the positions, speeds, distances of the other vehicles in the ego-

centric view. It also returns collision and safety breaking events information.

We set the safety distance threshold to two meters from the front and back of

the ego vehicle.

Along the longitudinal direction, we take 50 meters ahead and 50 meters

back of the ego car and discretize it with 1 meter per cell resulting in a grid

of shape 100x5. The cell values contain the speed of the vehicles occupying

1https://law.lis.virginia.gov/vacode/46.2-880/
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them otherwise 0. We differentiate the non-driving area with -100 and the

cells containing ego vehicle with 100 (any vehicle has a maximum speed of 80

kmph). We normalize the state by diving with 100 to get the cell values within

-1 to 1.

Actions

We define the vehicle command actions in terms of high-level commands by

setting the target speed and target corridor. The low-level controller does the

job of speeding up or changing lane over the future time steps. During training,

we map each of the actions to some target speed and target corridor and send it

to the simulator. For the primitive action rl agent, the actions are [accelerate,

no action, decelerate, switch to next right lane]. In our proposed method the

action set is executed in augmented nature, [accelerate, no action, decelerate,

switch to next right lane, Planner]. The Planner can be any classical planner

for changing lanes.

The “accelerate” action applies a constant acceleration of 3m/s2. The

“decelerate” action applies a deceleration of 4m/s2. The “no action” applies

no action and the momentum of the car is kept. It requires a few simulator

steps in order to reach the next right lane. During switching to the right lane

we keep a fixed longitudinal speed of 50 kmph and fixed vehicle angle of 20

degree. These are set by hyper-parameters, can be changed easily. We assume

the low-level controller takes care of this part.

Reward

The simulator can return the ground truth of the positions, speed, distances

between the vehicles and collision. We define 20 meters from back and front

as safety distance threshold. If any vehicle breaks this proximity we consider

it as safety distance broken.

Whenever the ego agent reaches right we give +10, for each collision -10,

for each safety distance broken -1. If the agent fails to reach right within 8000

simulator step we give a penalty of -10, otherwise -0.001 to encourage it to

reach right quickly.
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Reinforcement learning agents need to interact with the simulator contin-

uously through episodes. So at the beginning of each episode, we initialize the

ego car at the leftmost lane. An episode is terminated if reaching the rightmost

lane successfully or fails with a collision or safety breaking.

4.2.3 Algorithm Setup

We use a modified version of OpenAI DQN baseline2. We design a custom

environment like openAI gym by wrapping the simulator and making it gym

compatible. The primitive DQN agent’s neural network’s input layer has the

same size as the state occupancy grid. There are three hidden layers, each

of them having 128 neurons with the “tanh” activation function. The last

layer has four (the number of actions) outputs, which are the Q values for the

four actions for the given state. The learning rate is 10−4, the buffer size for

experience replay is 106, the discount factor is 0.99, and the target network

update frequency is 100. An epsilon-greedy strategy for exploration was used

for action selection. With probability ε, a random action is selected. With

probability 1 − ε, the greedy action, a∗ = arg maxa∈AQ(s, a) is selected at a

given state s. In each episode, the value of ε starts from 0.9 and diminishes

linearly to a constant, 0.02.

Our method is also implemented with a DQN agent, which has the same

neural networks architecture as the primitive action agent, except that the

output layer has 5 outputs, which include the Q values for the four same

actions as the primitive agent plus the Q value estimate for Method P1 or P3.

The learning rate, buffer size, discount factor, target network update frequency

and exploration factor are completely the same as the primitive agent.

2https://openai.com/blog/openai-baselines-dqn/
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Figure 4.2: Learning curve (Collision): our method (an RL agent with primi-
tive actions and augmented skill actions) vs. primitive actions RL agent.

4.3 Experiment and Results

Table 4.1: The adversary lane changing task: Performance of our method,
primitive action reinforcement learning, human and three planning methods.
“Ours-P” is the our method with P being the additional classical planner be-
sides primitive actions.

Ours-P1 Ours-P3 primitive agent human P1 P2 P3

collision 2.1% 2.4% 6.0% 16.0% 14.2% 11.6% 9.9%

success 85.0% 81.3% 70.1% 79.2% 69.4% 69.6% 71.7%

avr. speed 54.7 51.5 57.6 48.0 55.2 54.1 58.0

Figure 4.2 shows the learning curve for the collision rate of every 50 episodes

for the two types of agents. Thus the x-axis is the number of training episodes

divided by 50. The y-axis shows the collision rate in the past 50 episodes.

The curves show that our method learns much faster than the primitive agent.

With the augmented planning method providing action suggestions, we effec-
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Figure 4.3: Learning curve(Reward): our method (an RL agent with primitive
actions and augmented skill actions) vs. primitive actions RL agent.

tively reduce the amount of time and samples in order to learn a good collision

avoidance policy. Figure 4.3 shows that our method also learns larger rewards

in the same amount of training time.

We also tested the final performance after training finishes in 10, 000 episodes

for both the primitive agent and our agent. In addition, we also implemented

a gaming system using Logitech G29 consisting of driving wheels, acceler-

ation and deceleration paddles, to collect human performance data. Three

human testers were recruited. Each tester was trained for 30 minutes. Their

best performance over 30 trials was recorded. In each trial, 25 episodes were

attempted. Finally, their performances were averaged to get the human per-

formance index.

Table 4.1 shows the performance of our method compared to the primi-

tive agent and human. Our method performs better than both the primitive

agent and human, achieving a low collision rate of 2.1%. This low rate was
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Figure 4.4: The system used for collecting driving performance data from
human testers: A logitech driving wheel, acceleration and braking paddles,
and a chair.

achieved with a similar average speed to primitive agent and human. In terms

of the rate of successfully reaching the rightmost lane within the limited time,

our algorithm achieves 85.0%, which is much higher than the primitive agent

(70.1%) and human (79.2%). It seems human testers tend to drive at slow

speeds to reach a good success rate. Although collision is unavoidable in this

adversary setting, the performance of our method is very impressive. Note that

at the end of training shown in Figure 4.2, the collision rate of our method was

around 4% instead of being closing to our testing performance, 2.1%. This is

due to that at the end of the training, there is still a random action selection

with a probability of 0.02 used in epsilon-greedy exploration.

The table also shows the collision rate of Method P1 is 14.2% on this ad-

versary setting. This poor performance is understandable because Method P1
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was developed in a much simpler, non-adversary setting. The other planning

methods P2 and P3, although perform better than P1, still cannot solve the

adversary task with satisfactory performance. The method P3 works collision-

free in non-adversary case. But in our setting, it performs poorly (9.9%). One

of the reasons is that the method does not consider other vehicle’s motion

during the lane change. The interesting finding here is that by calling Method

P1 in our method as augmented action, we learn to avoid collision faster as

well as improve the collision rate of Method P1 or P3 significantly by using

reinforcement learning for active exploration. Thus our method achieves the

goal of reusing classical planning as skills to speed up learning.

Figure 1.3 shows the successful moments of driving with our agent. The

first row shows a sequence of actions applied by our agent that successfully

merge in between two vehicles on the right. Specifically, the first moment

accelerates; the second moment cuts in front of the vehicle on the right; and

the third and fourth moments merge in between two other vehicles on the

right. The second row shows our agent speeds up and successfully passes

other vehicles on the right. The third row helped with annotations of the

surrounding vehicles. In the first moment, our vehicle is looking for a gap.

The second moment, v3 switches left, creating a gap and the ego car switches

right into the gap. In the following moments, the ego car keeps switching right

because there are gaps on the right.
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4.4 Analysis of the learned Q values

Figure 4.5: Sampled moments: Q values for different actions.

The advantage of using reinforcement learning for autonomous driving is

that we can learn evaluation function for actions at any state. With classical

planning, knowledge represented is not clear unless reading the code.

Figure 4.5 shows a few sampled moments of the primitive rl agent. The first

moment (accelerating), the action values are, [0.851, 0.841, 0.829, 0.844]; the

second moment (decelerating), the action values are, [1.030, 1.042, 1.043, 1.036];

the third moment (accelerating), the action values are, [1.421, 1.416, 1.406, 1.418]

and the fourth moment (decelerating), the action values are, [1.316, 1.324,

1.334, 1.319]. Let us take the first moment for example, the ego vehicle was

selecting the “accelerate” action because the action value corresponding to the

acceleration action is the largest (0.851). So the acceleration action was chosen

(according to the argmax operation over the Q values). These values can also

be used for giving a warning signal as a part of the advanced driver assistance

system (ADAS).

Figure 4.6 shows the Q(s, a = switch right) at a number of successive

moments. The left color plot shows the values of switching right within the

time window. The middle moments have the largest values for switching right;

while at the two ends, the values are small, indicating the switching right is not

favorable because collision will occur. The right color bar is the color legend.
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The middle shows the trace of the car in the time window that corresponds

to the left color plot (dotted line). It clearly shows that the best moment of

switching right is when the ego car moves near to the middle line between

the two vehicles on the right. This finding means that our method has the

potential to be used to learn and illustrate fine-grained driving knowledge

that is conditioned on distances and speeds of other vehicles. These values are

useful for driver warning systems as a part of assistance.

Figure 4.6: Q(s, a = switch right) at a number of successive moments
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Chapter 5

Conclusion

In this thesis, we design a deep reinforcement learning-based motion planner

that reuses classical planner and works under the uncertain driving scenarios.

The problem is very challenging in that the other vehicles may change lane

to collide with our ego vehicle at a random time step. We proposed a novel

way of combining classical planning methods with naturally defined primitive

actions augmented with the planners. The key finding in this work is that

this method learns faster for collision avoidance and performs better than the

primitive-action reinforcement learning agent. The comparison with human

testers is promising, which shows our new method performs better than the

average performance of three testers.

Chapter 1 of the thesis introduced how self-driving car software is struc-

tured and the motivation of this research on this domain. The proposed solu-

tion is aimed at improving safety under uncertain environments.

Chapter 2 reviewed the reinforcement learning background and relevant

connections of RL to classical motion planners. We also discussed Deep

Reinforcement learning(DRL) and the different components of this learning

method. The classical planners are mostly non-learning based. The chapter

described how DRL can be used to design a motion planner.

In chapter 3, we define the problem of lane changing. The chapter also

described state-of-the-art solution approaches. The solutions are divided into

learning and non-learning methods. Non-learning methods are also known

as rule-based methods. One such method is a sampling-based method which
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usually generates multiple trajectories and the best trajectory is chosen after

considering the constraints related to the problem. Another approach is the

use of control theory to directly control the steering angles and the speed of

the vehicle to do the lane change task. The function-based approaches apply

the constraints on the state information and output appropriate behavior or

controls. In the supervised type of learning method, the learning agent tries to

mimic pre-recorded good driving behavior. On the other hand, reinforcement

learning methods learn by interacting with the environment and learn from

mistakes.

Chapter 4 described the proposed solution, experimental setup and results.

The research is useful in the sense that it is reusing the existing knowledge of

the classical planners instead of learning the knowledge from scratch. However,

one major limitation of this work is to train on a real car. It would require a

lot of driving hours. Another drawback is that our method is highly dependant

on the low-level controller. So if the low-level controller changes, the system

might require retraining. Future work is to compare with human testers in a

first-person view on a 3D simulator.
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