Highway Lane change under uncertainty with Deep
Reinforcement Learning based motion planner

by

Nazmus Sakib

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

(© Nazmus Sakib, 2020

Abstract

Motion Planning is a fundamental component of a mobile robot to reach its
goal safely avoiding collision. For a self-driving car on a highway, the pres-
ence of non-communicating vehicles, specially those whose intent is unknown,
creates a lot of uncertainty for the motion planner in generating a safe tra-
jectory. State-of-the-art planning methods do not work well in case of adver-
sary driving scenarios, where the other vehicles may make mistakes or have
a competing or malicious intent. We use reinforcement learning framework
to improve safety under those scenarios. In most recent deep reinforcement
learning applications, there is a neural network that maps an input state to
an optimal policy over actions. However, learning a policy over such original
or primitive actions is very slow and inefficient and is therefore not suitable
for many robotics tasks. On the other hand, the knowledge already learned in
classical planning methods should be inherited and reused. In this thesis, in
order to take advantage of reinforcement learning good at exploring the action
space for optimal solution and classical planning skill models good at handling
most driving scenarios, we propose to learn a policy over an action space of
primitive actions augmented with classical planning methods. By doing so, we
show that our agent outperforms the primitive-action reinforcement learning

agent and the classical planning methods in terms of collision rate.

i

Preface

The work presented in this thesis is an elaboration of a research article advised
by Professor Hong Zhang (Nazmus, Hengshuai Yao, Hong Zhang, 2019) [37].
Dr. Hengshuai Yao participated in the discussion. The author was responsible

for implementing the method and performing the experiments.

1l

Acknowledgements

First of all, I would like to thank my supervisor Prof. Hong Zhang for his
immense support and guidance. I am really grateful for his valuable advice
and supervision throughout the whole journey. He taught me how to define
a problem and approach it from different research perspectives. During this
period, I made many mistakes but he was very patient, pointed out the right
things for me and always encouraged me to improve my skills. He also allowed
me to do an internship which was a great opportunity for me to get in touch
with industry grade research and valuable experience for my career.

I am also indebted to Dr. Hengshuai Yao for his discussion, support and
valuable feedback throughout the internship period. He taught me how to
keep trying on a problem until it is solved. I would also like to thank Prof.
Dr. Nilanjan Ray, Dr. Ron Kube and Dr. Moein Shakeri for their discussion
and suggestions. Many thanks to Ali, Sean, Shing Yan and my other friends
and colleagues from Edmonton.

Finally, I am thankful to my family members for their tremendous support

and a lot of sacrifices.

v

Contents

1 Introduction
1.1 Self-driving Software Architecture
1.1.1 Route Planner
1.1.2 Behavioral Planner
1.1.3 Motion Planner
1.1.4 Control Planner
.2 Thesis statement
.3 Thesis Contribution
4 Organization of the thesis,

—_ = =

Background Study

2.1 Reinforcement Learning
2.2 Deep Reinforcement Learning (DRL)
Discount Factor v L.
Experience Replay
Target Network,
egreedy
Model-based and Model-free
On-policy and Off-policy
2.3 Classical Planning and Reinforcement Learning based planning

D
2.
2.
2.
2.
2.
2.

RO DO DO DO BN N
SO W~

3 Related Work
3.1 Related work
3.2 Rule-based o
3.2.1 Sampling
3.2.2 Control logic
3.2.3 Mathematical Function
3.3 Learning based oo
3.3.1 Supervised Learning
3.3.2 Reinforcement Learning

4 Lane changing with DRL motion planner
4.1 Problem overview Lo
4.2 Our methodology L.
4.2.1 2D simulator L
4.2.2 Experimental Setup
4.2.3 Algorithm Setup
4.3 Experiment and Results
4.4 Analysis of the learned Q values

5 Conclusion

References

O OO W WN =

List of Tables

4.1 The adversary lane changing task: Performance of our method,
primitive action reinforcement learning, human and three plan—
ning methods. “Ours-P” is the our method with P being the
additional classical planner besides primitive actions. . . . 37

vi

List of Figures

1.1

1.2

— Wik

W N

Lo
Ut

3.6

3.7
3.8
3.9

4.1
4.2

4.3

i
o

Prominent self-driving platforms, from left to right and top to
bottom: the task of lane change, Stanley robot for DARPA 2005
challenge, Google’s Waymo self-driving car ride sharing, Uber’s

self driving car fleet. 2
Hierarchy of decision-making process, figure from [29] 4
Successful moments of driving with our method: merging (row

1), passing (row 2) and finding gaps (row 3). 8
Reinforcement Learning framework 11
Difference between Q-learning and Deep Q Learning 13
Deep Q Learning pseudo code from [23] 15

Different approaches to solve CA, the leaves of the tree contain
few examples of the subdivision. 19
Trajectory generation for different speed values, image from [17]. 20
Motion plans are propagated using the vehicle’s dynamical model.
Propagated paths are then evaluated for feasibility, image from
................................ 21
The control architecture of the autonomous vehicle system [14]. 22
The membership function definition for the input fuzzy vari-
ables. (a) Straight-path-tracking error. (b) Straight-path-tracking
angular error. (c) Lane-change lateral error. (d) Lane-change
angular error, image from [26]. 23
(a) Occupancy grid obtained from Gaussian function H, (b) dis-
cretizing road spaces, (c) using Dijkstra to calculate the shortest

path, image from [32]. L 26
(a) E2E learning architecture by Nvidia, image from [7]. . .. 27
Network architecture, simulator and occupancy grid of [25]. . 28
Network architecture of [21]. 29
Hierarchy of the action selection by the learned policy 33

Learning curve (Collision): our method (an RL agent with prim-
itive actions and augmented skill actions) vs. primitive actions
RLagent. 37
Learning curve(Reward): our method (an RL agent with prim-

itive actions and augmented skill actions) vs. primitive actions
RLagent. 38
The system used for collecting driving performance data from
human testers: A logitech driving wheel, acceleration and brak-

ing paddles, and a chair. 39
Sampled moments: @ values for different actions. 41
Q(s,a = switch_right) at a number of successive moments . . 42

vil

Chapter 1

Introduction

A self-driving car is nothing but a mobile robot equipped with sensors to
perceive its surroundings and proper planning algorithm to reach a destination.
Although humans are good drivers but they are prone to tiredness, fatigue
and distraction which lead to unwanted accidents. As a result, safety has
been the utmost concern in developing an autonomous driving system for
both academia and commercial companies. It is believed that sensors will
be able to see beyond human capabilities, a good perception system will be
able to understand /predict the environment and a good planner will result in
collision-free motion. Autonomous vehicles are assumed to be operable both
in urban and highways. Changing lane is one of the most important tasks of
a self-driving car navigating on the highway. This feature adds to the comfort
driving for long-distance travel. Although the ultimate goal is to improve
safety and make a consumer-grade system to be used by mass people.
Autonomous driving has drawn much attention in the last decade, but ad-
dressing the problem is not new. One of the earliest successful demonstrations
of the self-driving car goes back to 1989. At that time, the project ALVINN [33]
used camera image and laser data as input to a neural network trained with
simulated road images to navigate a vehicle autonomously. 2005 DARPA chal-
lenge inspired a lot of researchers/engineers to reuse the robotics knowledge
learned so far into a sensor fused vehicle to solve the task of 212 km driverless
drive in a desert terrain. The champion team Stanley [42] is a great example

of the use of machine learning and probabilistic reasoning. 2007 DARPA chal-

Figure 1.1: Prominent self-driving platforms, from left to right and top to
bottom: the task of lane change, Stanley robot for DARPA 2005 challenge,
Google’s Waymo self-driving car ride sharing, Uber’s self driving car fleet.

lenge required autonomous vehicle in city traffic conditions in the presence of
dynamic vehicles. Followed by these events many car companies and univer-
sity labs started developing fully autonomous vehicle systems. Google-owned
self-driving car company Waymo has the highest driverless drive of more than
one million miles with no major accidents. Now almost all the motor compa-
nies have self-driving division. GM’s cruise, Ford’s Argo, Uber, Tesla are the
most prominent ones. Of them, Uber and Tesla have encountered accidents
and caused the death of people which lead us to focus on more tested safety

features before mass production of these vehicles.

1.1 Self-driving Software Architecture

The planners for the self-driving car can be divided into four hierarchical
parts [29] as shown in Figure 1.2. At the upper level, there is the Route
Planner responsible for navigating the car from point A to point B. The
middle-level one is the Behavioral Planner which acts locally, decides driv-
ing behavior obeying the traffic rules, maintaining speed limits, etc. The next

2

planner is called, the Motion Planner responsible for collision-free trajec-
tory in order to follow the previous two planners towards reaching a goal.
The Control Planner is the last planner which is responsible for the actual
driving of the car with low-level controls such as steering control and speed

control.

1.1.1 Route Planner

Usually, there is a map with the route planner. One such example is the use
of google map in our day to day driving and deciding which roads to take. It
is the highest level of decision-making system and also known as the Mission
planner. Given the destination from the source, it generates the path among
the road network. One basic intuition is to get to the goal destination in the
shortest path. Dijkstra [10] and A* [28] are two classical planners for global
route planning. State-of-the-art planners take many facts during generating
paths, such as distance, the average time to reach, traffic congestion, traffic

lights, road speed limit, road availability, etc.

1.1.2 Behavioral Planner

The behavioral planner deals with the rules of the traffic. The ego car’s be-
havior will certainly be different based on whether it is on the highway or
city or parking lot. The driving norms such as stopping at a red light, giving
right of way to other vehicles, turning on signals before switching lane, etc.
are defined in this planner. A large part of the planner depends on extracting
behaviors of other vehicles, pedestrian and their future intention. Many teams
in DARPA Urban Challenge [20] used finite state machines along with differ-
ent heuristics rules to design this type of planner. Some planners use Markov
Decision Process (MDP) for modeling uncertainties in the behavior of other

traffics [36] [43].

destination

User specifiied l

Route Planning

I |
Road network data
— |

T
Sequence of waypoints through road network

¥

Behavioral Layer

Perceived agents,

obstacles, and

signage
—

Motion Specification
Y
Motion Planning

Estimated pose and
collision free space

T
o

Reference path or trajectory

Local Feedback
Control
Estimate of vehicle
state
———
Steering, throttle and brake commands

\l

Figure 1.2: Hierarchy of decision-making process, figure from [29]

1.1.3 Motion Planner

Motion planner mostly deals with collision avoidance and generating a
smooth trajectory for comfortable driving. It is always consistent with the
previous two planners. Many motion planners output a trajectory that is
passed to the low-level controller to follow. The motion planner takes input
from the map or sensor values to locate obstacles and define free space. There
are many approaches to design this type of planner. One approach is a graph-

based where the dividable spaces are defined as nodes in a connected graph.

The trajectory is obtained by solving the graph for the shortest path. It often
requires smoothing to get a good trajectory. Dijkstra[l10], A*[28], potential
field [11] are a few examples of graph-based solutions. Another approach is
sample based [19], where derivable spaces are discretized as points, sampling
is done on those points until a feasible trajectory is found. Planners are also
designed with learning-based approaches. In the supervised type of learn-
ing [35], the behavior of an expert driver is learned. In the reinforcement type
of learning [21], the planner learns the behavior by interacting with the op-
erating environment. Other approaches to design planners include breaking
the planner’s task into a set of rules and following them based on some expert

knowledge. For more elaborate discussion see 3.1.

1.1.4 Control Planner

The control planner is responsible for the actual movement of the robot. For
an autonomous vehicle, speed control, steering control, braking, etc., are low-
level actuation. If the motion planner generates a trajectory, the control plan-
ner calculates the error in following the trajectory and tries to adjust it in a
closed-loop feedback manner. PID[9] and MPCJ[14] are two control algorithms
popularly used in a self-driving car. Tasks like adaptive cruise control, lane
follow and emergency brake are done with these types of controllers.

Our solution is a deep reinforcement learning-based motion planner for lane
changing in the highway. We assume that we have a good low-level controller
for speed control and steer towards the next lane. Here we are basically taking
high-level decisions to decide when to stay in lane or switch to the next one.

As a result, it is compatible with a global planner and behavioral planner.

1.2 Thesis statement

In this thesis, we design a reinforcement learning(RL) based motion planner
for the task of highway lane changing. Our planner also uses a classical planner
in the RL framework. The planner operates in adversarial driving scenarios.

By adversarial we mean, the other vehicles in the environment can make mis-

5

takes or have a competing or malicious intent, show inappropriate lane change
or sudden stopping behavior which might lead to accidents. Although hu-
man drivers drive well in normal traffic but they are not good at handling
accidents because a human driver rarely experiences accidents in one’s life re-
gardless of a large amount of accident-free driving time. On the other hand,
most state-of-the-art planning algorithms for autonomous driving do not con-
sider these adversaries, usually assuming all the agents in the environment are
cooperative. For example in [32] the other vehicles are assumed to be “self-
preserving”, i.e, they are giving brake and following the norm of highway driv-
ing. Another example is Optimal Reciprocal Collision Avoidance (ORCA)I[5],
a popular navigation framework in crowd simulation and multi-agent system
for avoiding collision with other moving agents and obstacles. It works with
guaranteed collision-free motion when all the agents follow the same protocol.
There is always room for improving these planners by incorporating the rules
associating with the cases they fail to address. Under these circumstances, the
question for us to explore in the long term is, can we improve safety in terms
of predicting collision and avoiding it?

Another approach is supervised learning where the system will try to mimic
good human driving behavior given a lot of positive and negative samples but
it suffers from bounded performance due to imbalanced samples. We believe
that using programs to simulate billions of accidents in various driving sce-
narios will provide necessary training samples. With such large scale accident
simulation, we can take advantage of reinforcement learning RL framework to
design a controller that would learn new rules automatically and encapsulate
in a function systematically in contrast to an ad hoc way of incorporating
case-specific rules into the classical controllers.

Driving can be formulated under a reinforcement learning framework. It
has a clear temporal nature e.g., the current action has an effect on choosing
the actions in the future. An action to take at every time step influences the
resulting state which the agent observes next, which is the key feature of many
problems where reinforcement learning has been successfully applied. The

reasoning which action to apply by considering its long-term effects is usually

6

called temporal credit assignment, which is usually modeled as a reinforcement
learning problem.

In most recent reinforcement learning applications, there is a deep neu-
ral network that maps an input state to an optimal policy over primitive
actions(original). However, learning a policy over primitive actions is very
difficult and inefficient. For example, hundreds of millions of frames of in-
teracting with the environment are required in order to learn a good policy
even for a simple 2D game in Atari 2600. On the other hand, the autonomous
driving field has already practiced a rich set of classical planning methods.
It is worth pointing out that the problem of state-of-the-art planning is not
that their intended performance is bad. In fact, both research and industrial
applications have shown that classical planning works great in the scenarios
they are developed for. As a result, the knowledge already learned in state-of-
the-art planning methods should be inherited and reused. To take advantage
of both methods, we propose to learn a policy over an augmented action space
from both primitive actions and classical planning methods. Classical plan-
ning methods are treated as skills and reused. They can be called with an
input state and give an action suggestion.

Our work opens the door to an effective architecture solution for au-
tonomous lane changing: building a decision hierarchy of skills using classical
planning or learning-based methods, and calling them as augmented actions

by reinforcement learning.

1.3 Thesis Contribution

Our proposed reinforcement learning planner will be able to select over the
action suggestions by classical planning methods as well as the primitive ac-
tions. It is able to call classical planning methods to apply the skills in normal
conditions for which they are developed, but is also able to pick the best prim-
itive action to avoid the collision in scenarios where classical planning cannot
ensure safety. In this way, we do not have to re-learn for the majority of scenar-

ios in driving where classical planning methods already can deal with, saving

7

lots of time for training the deep networks, and focus on the rare but most
challenging scenarios they are not designed for. The advantage of our method
is that we do not have to manually detect whether classical planning fails or
not instead, failures of their actions are propagated by reinforcement learning
to earlier time steps and remembered through neural networks in training to
avoid selecting classical planning on similar failure cases in the future.

We compare our method with some rule-based planners and also primitive
action RL planner. Our method is able to achieve the lowest collision rate. It

also learns behaviors like merging, passing or fitting in a gap, see figure 1.3 .

Figure 1.3: Successful moments of driving with our method: merging (row 1),
passing (row 2) and finding gaps (row 3).

1.4 Organization of the thesis

Chapter 2 discusses the basics of reinforcement learning, deep reinforcement
learning and how classical planners are related to DRL based planners. Chap-
ter 3 describes different approaches to collision avoidance in the highway and
designing different motion planners. Our proposed method is described in
Chapter 4. Here we talk about the simulator we used and the whole exper-
imental setup and discuss the results. Chapter 5 summarizes the proposed

solution and points the future work.

Chapter 2

Background Study

Our solution consists of a combination of classic motion planner and a rein-
forcement learning (rl) based motion planner. In this chapter, we review the
necessary reinforcement learning background, formulation deep reinforcement
learning and how it can be used in the design of a motion planner. We also
define classical planning and how both rl planner and classical planner are

related.

2.1 Reinforcement Learning

Reinforcement Learning is a kind of machine learning method that learns by
interacting with the environment. Usually, the learning agent takes an action
in the environment it operates, observes the environment as state and receives
a reward. The agent updates its knowledge based on the state-reward pair
and takes a new action and the cycle goes on until the environment sends a
terminal signal to end the episode. The rewards are either positive, negative
or neutral based on the goal the agent is trying to achieve. A general intuition
is to give high positive reward on success and penalize(high negative reward)
on failure. Sometimes the rewards are also given to encourage some behavior
like solving in the shortest time or avoid some obvious facts.

One example of an environment can be a Pong Atari game. The actions
of the agents are up and down to slide the bar and hit the ball such that the
opponent fails to hit back. We can call these two original actions as primitive

actions. The reward can be 0 at each step of playing and +1 for a miss from

10

‘:l AGENT ll
state reward action

Sr R t A .

r+1

St Environment]4—
-4

\

Figure 2.1: Reinforcement Learning framework

the opponent or -1 if the learning agent misses. The state can be the image of
the game state or a tuple of the positions of the opponent’s bar, agent’s bar
and the position of the ball. The goal of the agent is the maximize the reward
and eventually win.

The RL framework is formulated as a Markov Decision Process (MDP)
with state space S, action space A, reward “function” R : S x A — R, a
transition kernel p : & x A x § — [0, 1], and a discount ratio v € [0,1). The
reward “function” R is generally a random variable or constant variable. The
bandit setting is a special case of the general RL setting, where we usually
have only one state.

We use 7 : § x A — [0,1] to denote a stochastic policy. We use Z7(s,a)
to denote the random variable of the sum of the discounted rewards in the
future, following the policy 7 and starting from the state s and the action
a. We have Z™(s,a) = Y 2 7' R(Si, Ar), where Sy = 5, Ay = a and S;4q ~
p(+|St, At), Ar ~ m(-|S;). The expectation of the random variable Z7 (s, a) is

QW(S’ CL) =]EW7P7R[ZW(Sa a)]

which is usually called the state-action value function. In general RL setting,
we are usually interested in finding an optimal policy 7*, such that Q™ (s,a) >
Q™ (s, a) holds for any (m,s,a). Thus RL is to solve for each state an optimal
policy which achieves maximum rewards. All the possible optimal policies
share the same optimal state-action value function ()*, which is the unique

fixed point of the Bellman optimality operator [4] as follows,

Q(s,a) = TQ(s,a) = E[R(s,a)] + nySle[HLz;X Q(s',d)]

11

Based on the Bellman optimality operator, [45] proposed Q-learning to learn
the optimal state-action value function QQ* for control. At each time step, we

update Q(s,a) as

Q(s,a) = Q(s,a) + a(r + ymax Q(s',a’) — Q(s, a)) (2.1)

where « is a step size and (s, a,r, s') is a transition. This is usually referred to
tabular Q-learning. Tabular Q-learning uses no function approximation and

does not have generalization and usually is used in small problems.

2.2 Deep Reinforcement Learning (DRL)

There have been many works extending Q-learning to linear function approx-
imation [39] [40] where the () values are stored in a table for all possible state
and action pair but in reality, this does not scale to complex problems. Be-
cause the amount of memory required to save and update the table increases
as the number of states increases. Secondly, the amount of time required to ex-
plore each state to create the required Q-table would be unrealistic. The figure
2.2 shows difference between them. [23] combined Q-learning with deep neu-
ral network function approximators, resulting in the Deep-Q-Network (DQN).
Here a neural network is used to approximate the Q-value function. The state
is given as the input and the Q-value of all possible actions is generated as the
output.

DQN relies on the use of experience replay buffer. At each time step, it
samples a minibatch from a memory buffer of past experience. Stochastic
gradient descent is applied to the mini batch for training. Because RL has no
training targets provided like the typical supervised learning setting, a trick of
target networks is used to generate training target from a historical snapshot
of the networks. Assume the @) function is represented by a network 6, at each
time step, DQN performs a stochastic gradient descent to update # minimizing

the loss

(Te41 + 7y max Qo (541, a) — Qo(5t, Clt))2

12

where 6~ is target network [23], which is a copy of # and is synchronized
with 6 periodically, and (s¢, at, 7441, Si41) is a transition sampled from a expe-
rience replay buffer [23], which is a first-in-first-out queue storing previously

experienced transitions. See figure 2.3 for the pseudo code.

Q Table
State-Action Walua

¥
o|o|o|lo|o|e|o|e|a

Q Learning

L]

State

Deep Q Learning

Figure 2.2: Difference between Q-learning and Deep Q Learning

2.2.1 Discount Factor v

The discount factor gamma determines how much importance the rl agent
gives to the future rewards in the value function. A discount factor v = 0
helps the agent learn about immediate reward. On the other hand, for v =1

, the agent cares about the sum of all the future rewards.

2.2.2 Experience Replay

Each experience contains current state, current action, reward, next state and
a boolean variable about whether the transition is terminal or not. They are
stored in a buffer of fixed size. Then a sample of batches is taken randomly

during the update in a learning step. Since the data is highly correlated the

13

experience replay buffer helps to learn in a reasonable way. The experience
replay helps to prevent the network from learning from what it is doing im-
mediately. Usually, each new experience is pushed at the end and if the buffer

is full, the oldest one is removed.

2.2.3 Target Network

In order to generate target Q values, the copy of the learned network is saved
as a second network after a fixed number of learning steps. This network
is used to compute the loss for every action during training. If the same
network is used every time, the network values shift and it is hard to stabilize.
Tir1 + ymax, Qp- (Se41,a) part of the above mentioned loss function is called

the target part.

2.2.4 € greedy

In the DQN algorithm, at each time step of training, the agent picks a random
action with probability e or action from the current estimate of the Q-values
with probability 1 - €. The random search for good action is called the explo-
ration phase while using the current estimates of Q-values is called exploita-
tion. The value of € is usually decreased over time as the agent gradually

learns the task.

2.2.5 Model-based and Model-free

The goal of the RL agent is to maximize the reward. In order to do so, it
needs to find a strategy or a policy that collects more rewards in the long run.
The policy can be treated as a function that outputs an optimal action given
the state as input. The environment is deterministic if the same action for
the same state always leads to the same next state, e.g., in the game of chess,
moving a dice always leads to a fixed next game state. On the other hand, the
environment is stochastic or non-deterministic if the next state is different
for the same set of state and action i.e, there are some probabilities in the

transition. For instance, a mobile robot taking a movement action will not

14

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; = {x, } and preprocessed sequence ¢, = ¢(s;)
For t = 1,T do
With probability ¢ select a random action a,
otherwise select a, =argmax_ Q(¢(s;),a; 0)
Execute action a, in emulator and observe reward r, and image x; +
Set s;41 =5;,a;,% 4+ and preprocess ¢, , | =¢(s;+1)
Store transition (¢,,a;.r¢,¢,,,) in D
Sample random minibatch of transitions ((f)j,aj,g,q5j+ ,) from D

rj if episode terminates at step j+ 1
Sety;= rj+7 maxy Q(d,“l,a’; 9‘) otherwise

Perform a gradient descent step on (y]- -0 (cf)j.aj; 0))2 with respect to the
network parameters 0
Every C steps reset Q= Q
End For
End For

Figure 2.3: Deep Q Learning pseudo code from [23]

always lead to the same next position due to uncertainties in the motion.

The MDP mentioned earlier can be treated as a representation of the “dy-
namics” of the environment. Given any state, it defines how the environment
will react to the possible actions the agent is allowed to take. The MPD is
coupled with the transition function such that given current state and action,
it outputs the probability of moving to the next states. The transition function
and reward function together are called the model of the environment.

Model-based algorithms use a model to estimate the optimal policy. That
means the agent has the capability to predict the dynamics of the environment
since it is using the transition and reward functions.

Model-free algorithms estimate the optimal policy without using the dy-
namics of the environment. This type of algorithm estimates a “value function”
or “policy” directly from the agent’s interaction with the environment with-

out using transition function or reward function. A value function evaluates a

15

state or an action taken in a state.
The highway road environment we are considering in this thesis is stochas-
tic and the RL algorithm we use is model-free which tries to learn the un-

certainties of the other agent’s driving behaviors.

2.2.6 On-policy and Off-policy

An on-policy RL agent learns the value function based on its current action
which is derived from the current policy. The algorithm SARSA[39] is an
example of an on-policy algorithm. The update function of SARSA is as

follows:

Q(s, a) = Q(s,a) + a(r +1Q(s',) — Q(s, a))

Here the action @’ is taken according to policy 7. In case of off-policy, the
action a’ is derived from another policy. For instance, the Q learning update
rule uses the action which will yield the highest Q-Value (see equation 2.1)
which is different from the current policy .

On-policy versus off-policy can be simply understood whether the action
reuses the same action that is optimized in the last state. Experience replay is
a typical off-policy learning problem we iteratively solve the policy at state s’
and we never follow the same action at s’ (because this is an off-line experience
the action at s’ was already determined when we collect data). Epsilon-greedy
is also off-policy because the action to follow in the next step may be a random

action not from the optimized action at the previous state.

2.3 Classical Planning and Reinforcement Learn-
ing based planning

By classical planning, we refer to the traditional way of designing a planner for
robotics. The term has been used to differentiate between the rule-based and
learning-based methods which are comparatively newer approaches. There are
a few common fundamental principles in the core ideas of classical planning

and reinforcement learning for designing a planner.

16

First, the temporal relationship between the actions selected at successive
time steps is considered in both the fields. Optimizing the cost over future
time steps is the key idea commonly shared between classical planning and
reinforcement learning algorithms. For example, in MPC classical planner,
there is a cost function defined over a time horizon for the next few actions.
The cost function can be assumed as one special case of the (negative) reward
function in reinforcement learning. MPC relies on a system model and an
optimization procedure to plan the next few optimal actions. The collision
avoidance algorithm using risk level sets [32] maps the cost of congestion to
a weighed graph along a planning horizon and apply Djikstra’s Algorithm to
find the fastest route through traffic [32]. Many collision avoidance planning
algorithms evaluate the safety of the future trajectories of the vehicle by pre-
dicting the future motion of all traffic participants, e.g., see [17]. However,
MPC, Djikstra’s Algorithm and collision avoidance planning are not sampled
based, while reinforcement learning algorithms are sample-based.

Second, both fields tend to rely on decision hierarchies for handling com-
plex decision making. Arranging the software in terms of high-level planning,
including route planning and behavior planning, and low-level control, includ-
ing motion planning and closed-loop feedback control, became a standard for
the autonomous driving field [44] [24] [38]. In reinforcement learning, low-
level options and a high-level policy over options are separately learned [3]. In
robotics, locomotion skills are learned at a fast time scale while a meta policy
of selecting skills is learned at a slow time scale [31].

Third, sampling-based tree search methods exist in both fields. For ex-
ample, RRT is a motion planning algorithm for finding a safe trajectory by
unrolling a simulation of the underlying system [15]. In reinforcement learn-
ing, Monte-Carlo Tree Search (MCTS) runs multiple simulation paths from a

node to evaluate the goodness of the node until the end of each game.

17

Chapter 3

Related Work

3.1 Related work

The key point of a motion planner is to avoid collision locally. The problem
of Collision Avoidance (CA) has seen a wide range of solution approaches.
Hence in this chapter, we talk about different collision avoidance solutions
from the perspective of mobile robot applications such as lane change, indoor
or outdoor navigation and crowd navigation. We can divide the solutions into
two major categories based on the use of data and expert knowledge. The
expert knowledge in the domain can be defined as rule-based solutions. On
the other hand, a learning based system can be trained with data coming
from a robot’s locomotion or sensor. The rule-based approaches can be subdi-
vided into sampling, control logic and mathematical function-based methods.
The learning-based methods can be again subdivided into reinforcement and

supervised learning. See the tree structure in Figure 3.1.

3.2 Rule-based

3.2.1 Sampling

In the sampling-based methods usually, multiple trajectories are generated and
the best one is chosen based on some predefined safety measure. The interac-
tive scene prediction [17] method generates future trajectories by predicting
the future motion of all the mobile vehicles. Then they compute the colli-

sion probability of each of the trajectories. The intention is predicted though

18

CA

expert knowledge data

Rule Based Learnlng Based
Sampllng based Control logic Math Function Superwsed Reinforcement
Scene ORCA E2E-primitive
Prediction action set
RRT Fuzzy Risk Level Set NVidia E2E Ours (primitive actions + classical
trajectory Controller planner)

Figure 3.1: Different approaches to solve CA, the leaves of the tree contain
few examples of the subdivision.

the trajectories. Since the number of such trajectories can be infinite. They
discretize the continuous movement space with the probable future position
of the agents by considering their motion dynamics, e.g., a car can not slide
to right or left or jump to the far lanes. They denote this space as “circle
of force” see Figure 3.2. Based on acceleration, braking and constant speed
different levels of trajectories can be generated and corresponding intention is
estimated. The collision probabilities are used for threat assessment. They
propose that they can estimate the interaction aware maneuver probabilities
from intention estimation and collision probabilities for the driver assistance
system.

MIT’s team [15] in the DARPA Urban Challenge, used a Rapidly Explor-
ing Random Trees (RRT) [16] based planner to drive in the city. The RRT
algorithm is used for planning in the high dimensional space. It builds tree
incrementally from a sample drawn randomly from the search space and grows
towards the unsearched portion. The constraints such as obstacle avoidance,
vehicle dynamics can easily be integrated in generating the space-filling tree.
In the proposed method, they assume a low-level controller is able to follow a
trajectory, see Figure 3.3. Therefore they select a node (a point on the road),
expand, check constraints up to some fixed time stamps. The best trajectory
is selected based on the constraints and sent to the low-level controller. If no

feasible trajectory is found the car starts braking. In order to address the un-

19

Fig. 2: The possible future positions of this vehicle on a highway are only
restricted by the dynamic constraints. The black circles, called “Circles of
Forces”, define the area which a vehicle is able to reach in a particular time.
The green arrows show possible future trajectories in this area.

Fig. 3: The arrows show example trajectories for the allowed maneuvers.
Red arrows label braking maneuvers. Green arrows show trajectories which
keep their speed and the blue ones indicate an acceleration of the vehicle.

Figure 3.2: Trajectory generation for different speed values, image from [17].

certainty properly, they add some extension to the RRT such as bias sampling,
which starts exploring the node from the front of the car generating practi-
cal trajectories. Vehicle turning radius is also taken into account in order to
expand the tree for practical movement of the car between two points. They
incorporate the rules of the road to deal with static or dynamic obstacles. The
planner always ensures that the ego car can stop at the future uncertain events
and then start moving within that predicted environment. In order to evalu-
ate the risk, they differentiate drivable and non-drivable regions, lane marks,
non-stopping zone, etc.

Sang-Hyun and Seung-Woo [18] proposed candidate trajectory generation
and selecting the optimal one using a trained data set. The sample trajectories
are obtained from a Gaussian Process’s posterior distribution. Then the set of
the samples is evaluated with maximum entropy inverse reinforcement learn-
ing [46] with a learned cost function. They learn the optimal set of trajectory

from the expert driver in a supervised fashion.

20

Obstacle collision

FeajiEEe s =>Infeasible path

Road departure
=> Infeasible path

.

Divider crogsing
=> Infeasibl¢ path

Qar

Figure 3.3: Motion plans are propagated using the vehicle’s dynamical model.
Propagated paths are then evaluated for feasibility, image from [15].

3.2.2 Control logic

Control logic-based planners take ideas of the control theories. They try to
correct the error towards the goal in a closed feedback loop. The goal can be
following a lane/trajectory, passing a target vehicle etc.

Model Predictive Control(MPC) [34] is one of most popular control theo-
ries. In order to design the controller it takes the model of the process into
account and has the predictive ability in the future time steps and optimizes
the cost function from the current step to the future step based on a set of con-
straints. It is an iterative, finite-horizon optimization-based controller proved
to be used in many applications including different aspects of self-driving car.
The method Scenario MPC (SCMPC) [8] takes the future traffic scenario and
directly controls the ego car for lane change assistance(LCA) and automated
highway driving(AHD). LCA is initiated by a human driver as a part of Ad-
vanced Driver Assistance Systems(ADAS). They take into ego vehicle’s bicycle
kinematic motion model, maximum speed, maximum acceleration and road

boundaries. They also define necessary constraints for lane keeping, switching

21

and following a vehicle in the lane (adaptive cruise control). They predict the
traffic intention over the finite horizon to handle the uncertainties.

In [14], the authors describe the MPC based controller to overtake a ve-
hicle in a two-way road. They generate a feasible trajectory with a convex
optimization method minimizing yaw acceleration for practical steering values
and considering the vehicle dynamics. The MPC constraints are designed such
that it follows the trajectory and avoid collision with other vehicles by driving

all the wheels within the allowed boundary, Figure 3.4.

[X,_, Y.or, X, V.5]; (ij B
0, -
Trajectory path A T, Autonomous
generation _A MPL}| I ™ Vehicle
Vehicle initial Lane change controfer L, : model
status information T :

e, v 2 00]

Figure 3.4: The control architecture of the autonomous vehicle system [14].

Fuzzy controller [30] is another useful controller popularly used in Robotics.
It is based on fuzzy logic that evaluates a value in terms of some logical vari-
ables that takes a continuous value between 0 and 1. The term “fuzzy” refers
to something that is not true or false but how much partially true/false in a
continuous manner. In a fuzzy control system, there are membership functions
based on expert knowledge. The input is mapped by the membership func-
tions and a rule is defined on it to take action to achieve a certain goal. [26]
used fuzzy logic to design a controller for overtaking maneuvers. They localize
the vehicle with a Global Positioning System (GPS) and send the information
to all other vehicles over a wireless network. To follow a lane the proposed
system uses a straight path fuzzy controller that maintains a constant speed.
In order to overtake a slow-moving vehicle in the right lane, they at first check
if the left adjacent lane is empty using the vehicle positioning and the speed in-

formation. The vehicle switches to the immediate left lane with a lane change

22

fuzzy controller. It takes the lane coordinates into account so no trajectory
is required. The fuzzy steering controller takes a lateral and angular error as
crisp values and compares with the predefined expert values to steer either
to left or right until the vehicle is centered in the lane. In order to pass, the
vehicle now uses a fuzzy lateral controller using the right vehicle as a reference
to pass. When the right lane is free enough they switch back the vehicle to
the right lane. See Figure 3.5.

T T T
right center left right center left

05+ 1 057

0 1 Il N 1 I 0\ 1 1 T 1 1 1 T | |

-3 2 -1 0 1 2 3 45 4 3 2 4 0 1 2 3 4 5
input variable "Lateral-Error" input variable "Angular-Error'

(a) (b)
ligh|I Y cer;ler Y IIeﬂ ‘ right ‘ cer:ter I I left ‘

1 1

05r 1 05¢

0 1 1 I l I 0 1 1 T 1 1 1 I 1

-3 -2 -1 0 1 2 3 5 4 3 2 4 0 1 2 3 4 5
input variable "Lateral-Error" input variable "Angular-Error'

(c) (d)

Figure 3.5: The membership function definition for the input fuzzy variables.
(a) Straight-path-tracking error. (b) Straight-path-tracking angular error. (c)
Lane-change lateral error. (d) Lane-change angular error, image from [26].

3.2.3 Mathematical Function

Mathematical function based planners take inspiration from mathematical con-
straints or cost functions. They convert the rules of the road or driving pa-

rameters into numeric values, thresholds and equations. These methods often

23

derive necessary and sufficient conditions to generate practical driving com-
mands given the sensor data or state information.

One of the most popular motion planners for local collision avoidance is
ORCA (Optimal Reciprocal Collision Avoidance) [5]. They derive sufficient
conditions for multiple robots to guarantee collision avoidance without commu-
nicating with one another, assuming all the robots follow the ORCA strategy
to decide their actions. The key idea behind their method is use of Velocity
Obstacle [12] (VO) and Reciprocal Velocity Obstacle [6] (RVO).

VO refers to the set of all velocities for an ego agent that results in collision
between it and the other moving agents within some short time interval in the
future with the assumption that they retain constant velocity for that time
period. Therefore if an agent chooses a velocity within this velocity space, it
will collide. A general intuition of avoiding collision is to choose a velocity
outside this set.

In RVO, the ego agent assumes the other agent takes half the responsibility
to avoid the collision. This approach can also guarantee that choosing a veloc-
ity outside the RVO space induced by the other agent will avoid the collision
even when they pass each other from the same side. In this aspect, the agent
tries to choose a velocity close to its current velocity. The chosen velocity
might avoid the collision but could be highly deviated from the goal-directed
velocity and often might end up in a deadlock. ORCA solves this problem
by finding velocity u which is the smallest change to the relative velocity of
the two approaching agents. . It can be extended for n number of agents by
finding u for all the participating agents with the help of linear programming.
But the main limitation of the method is that it is assumed that all the agents
in the environment follow the same protocol which is very much unpractical
for autonomous vehicles driving alongside the human drivers. The method
also assumes constant velocity whereas the acceleration is a huge factor in the
future position of the high-speed vehicles. Besides, solving a linear program
might lead to an infeasible solution.

The risk level set method proposed by Pierson et. al. [32] has a cost function

which takes density and motion of the non-ego agents and derives an occu-
24

pancy grid in the road surface and a greedy Djikstra [10] planning algorithm
over the unoccupied spaces to navigate in a crowded traffic, see Figure 3.6.
The occupancy grid comes from a Gaussian function multiplied by a logistic
function which helps the shape to be skewed towards the direction of driving
which resembles the uncertainty in the state estimation of the non-holonomic
motion of the vehicles. In other words, the shape has more occupancy in the
direction it is driving and lower on both sides. They assume all the agents in
the environment are “self-preserving” which means they are cooperative and
follow the rules of the road e.g., changing lane in such a way that do not go into
the braking distance of the other vehicles. This is very unpractical because all
the cars in the road can not be autonomous right at this moment and human
drivers are prone to do mistakes while changing lanes. The method does not
address inappropriate lane change and how to avoid accidental scenarios, al-
though it works under sudden speed change of the non-ego vehicles within the

same lane.

3.3 Learning based
3.3.1 Supervised Learning

Supervised learning based planners try to learn and mimic pre-recorded driving
behavior. The project ALVINN [33] mentioned in chapter 1 is a good example
of this category. However, the supervised methods for the task of lane change
are not popular due to their lack of negative samples in the training set e.g.,
collision data. These methods also do not generalize well. Training in one
type of data set hardly performs well on a new set of data.

In some literature [27], lane changing task is divided into 3 types: Manda-
tory Lane Change(MLC), Discrepancy Lane Change(DLC) and Anticipatory
Lane Change(ALC). MLC refers to the behavior that the driver must leave
the current lane. DLC improves the driving conditions by adjusting speed and
finding a better gap. The ALC describes how to avoid traffic congestion [41] [2].
The DLCE method [27] addresses a supervised way of executing the DLC for

a lane change. They used the classical machine learning algorithm SVM to

25

(c) Planned route

Figure 3.6: (a) Occupancy grid obtained from Gaussian function H, (b) dis-
cretizing road spaces, (c¢) using Dijkstra to calculate the shortest path, image
from [32].

accept or reject the adjacent gap in the target lane. The training data comes
from NGSIM(next-generation simulation program), a labeled lane changing
data collected from a highway in California.

Tobias et. al [35] propose high-level decision making for lane change to
the left. They collect human triggered lane change data with the help of a
simulator and train the parameters of a Bayesian Network (BN) which uses a
Logistic Regression (LR) to model when is the right time to initiate the lane

change maneuver. Their feature vector includes time to collision and time gap

26

in the next lane to model the traffic scenario.

Recorded
steering
wheel angle Adjust for shift Desired steering command
' ™ and rotation
————— Network
Left camera]— computed
steering X

! - ; command s
Centercamera}—b Rizdfo”t';ﬁh:t - CNN -
- —— a 10 N S

A

Right camera

_J

Back propagation | Eror
weight adjustment

Figure 3.7: (a) E2E learning architecture by Nvidia, image from [7].

Nvidia [7] proposed a convolutional neural network(CNN) approach to au-
tonomous driving. Here given an image of the road the network is able to
generate appropriate steering command. With this method, they were able to
drive on the highway, change lane and turn from one road to another. They
gathered training data by recording from the human driver’s steering wheel
command and corresponding video of the road surface ahead of the car. Three
cameras were set at left, center and right which later helped them increase
the training samples by random shift and rotation and adjusting the steering
wheel commands accordingly, Figure 3.7. The neural network has nine layers,
a normalization layer, five convolutional layers and three fully connected lay-
ers at the end, totaling 250k parameters. Since the process is end to end, it
is hard to plug with a global planner and the performance of such a system

deteriorates with new driving scenarios that are absent in the training data.

27

FC{10) + RelU

v . Q-values QO-masking
"l = =
d2g —
. max
® > Action
flat
=)
. F(s)
occupancy grid | Cony(Sx5xd,4) + RelU
(42x5x4)

Low-level module

Constraints

—L\ 5 Prior knowledge [-

Low-level controller

Figure 3.8: Network architecture, simulator and occupancy grid of [25].

3.3.2 Reinforcement Learning

The reinforcement learning-based planner tries to learn from both good and
bad samples. This type of planner is comparatively newer and in most cases,
they take advantage of the simulated environment. One of the challenges of
this approach is to transfer the knowledge from the simulator to the real-world
or training the planner on an actual robot which is a very expensive procedure.

The work of Mustada et. al. [25] is very similar to ours. They address the
problem of exiting the highway through proper lane change. They take high-
level decisions to speed up, speed down, stay in-lane or switch to right/left
based on some predefined low-level controllers. They use a DQN algorithm
to train on a simulator. The input to the network is velocity, current lane,
distance to the goal lane and history of 4 past binary occupancy grids. The
grids are passed through the convolutional layer and flattened and concate-
nated with the output of the fully connected layer with the rest of the scalar
input layer, see Figure 3.8.

In this method, the reward is very sparse, +10 for a successful exit and
-10x1 (the rightmost lane is 0 and the value | increases by 1 from right to left)
for failure. They introduce a Q-masking which compares the max of) values
from the network with predefined knowledge to verify if the action is valid

(not choosing beyond the availability of the lane) or safe (not colliding based

28

on the time to collision). This method is also very similar to the safety system
mentioned in Deep Traffic [13], which overrides the action taken by the output

of the network whenever the network fails to avoid a future collision.

13 input 2 hidden layers 3 output

neurons 100 neurons each neurons
Leading
vehicle rel_d,
in the rel_d,
left lane -

Q(s, a=left)

RL Q(s, a=keep) Qls, a) a Execute
agent VaL Q(s, a=right) VaE Ay, a
Following

vehicle in | rel_dg
the right rel_d,
lane

Figure 3.9: Network architecture of [21].

The work of Branka et. al. [21] is also very relevant to our work. They train
a DQN agent to perform the lane change while maintaining the desired velocity.
There is also a safety verification to filter the appropriate action selected from
the network. They take the relative distance and velocity of the leading and
following vehicle in the current and adjacent one lane on the left and right. The
actions are switch to left, keep lane and switch to the right. The neural network
has 2 layers each having 100 fully connected neurons, see Figure 3.9. The
reward is the negative value of the absolute difference of the desired velocity
and the current velocity of the ego vehicle. They show a better performance
than an expert knowledge incorporated rule-based controller [1]. But this
methodology is not suitable for the accident-prone environment, because it
does not see other vehicles beyond the adjacent lanes. All the 3 methods we
have discussed so far formulate driving as Markov Decision Process (MDP)

and they learn by interacting with the simulator environment.

29

Difference between Ours and State-of-the-art RL planners

In this subsection, we summarize the difference between the above methods
with our method.

The main difference is the use of a classical planner. In our action set,
we have one additional action that is coming from a classical planner. This
helps to reuse the classical planner and also to overcome the limitation of it.
This is applicable where the classical planner is sub-optimal in some uncertain
scenarios. Therefore our approach takes advantage of both state-of-the-art RL
planners and any existing rule-based planner that we discussed in this chapter.

Another difference is the state vector. The occupancy grid has both posi-
tion and velocity information of the cars. The state information also has more
fine-grain data because of the subdivision of each lane into 3 corridors. We
argue that this detailed information helps the neural network to capture the
features related to uncertainty in the motion of the surrounding vehicles.

Our reward function is also different than the above mentioned RL meth-
ods. It encourages to safely exit the current lane, avoid the proximity of the

other cars and even by slowing down if necessary.

30

Chapter 4

Lane changing with DRL
motion planner

4.1 Problem overview

We are trying to solve lane changing on the highway. The task is to control an
ego vehicle that moves autonomously to the rightmost lane without collision.
This scenario happens frequently when we drive close to freeway exit in every-
day life. The other agents in the environment are non-communicating i.e, their
intentions are unknown. Some of the vehicles do not follow the rules of the

road properly. They can change lane randomly or speed up/down suddenly.

4.2 Our methodology

State-of-the-art[23][22] implementations of deep reinforcement learning use an
action space over the primitive actions and a neural network that maps an
input state to a policy over primitive actions. To take advantage of classical
planning methods, we treat them as action functions that can be queried with
a state input and gives an action suggestion. Our method is an implementation
of DQN with an augmented action space with both primitive actions and action

query functions by classical planning methods.

4.2.1 2D simulator

The driving simulator used in this project consists of 4 lanes in a 2D space.

Each lane is subdivided into 3 corridors. There are 19 vehicles in total within
31

a 200 meter range. Vehicle types include car and motorcycle. A car occupies
three corridors and a motorcycle occupies one corridor. We map the pixels of
the simulator into meters. A car is represented as a (width = 2m, height =
4m) rectangle and a motorcycle is a (0.6m, 1.5m) rectangle.

The vehicles are placed based on their descriptions (e.g. initial speed,
location, behavior) specified in a configuration file. The behavior includes
random or fixed speed, random lane change and self-preserving nature (giving
right of way to other vehicles by slowing down or stop by braking if needed)
during the run. If all the vehicles are initialized with self-preserving mode
and random speed during the run, there is no collision. The vehicles do not
communicate with each other. Given a target corridor, the vehicle can start
changing lanes towards it with a fixed linear speed. However, it does not go
to the next corridor in the next simulator step. It requires a few simulator
steps to reach, based on the target speed and position of the target corridor
from the current corridor. We design the simulator such that if a new target
corridor comes before executing the previous corridor change command, it
starts the new instruction from its current position. By introducing a delay in
between the simulator step we can map the speed of the car and acceleration
to approximate with the real-world values. But during training, we do not
specify the delay in order to train it faster and later on we map it. The values
are no exact and only the relative differences of the values with respect to one

another are significant.

4.2.2 Experimental Setup

We devise a challenging environment where non-ego vehicles change lane ran-
domly without any sort of safety measures and give rise to the adversarial
situation where they can collide an existing vehicle in the next lane or step
into the braking distance of the other vehicles, eventually leading to a collision
in the future time stamps. Out of 19 vehicles, seven can change lane randomly
with 0.01 probability. The vehicles with higher speed than ego vehicle disap-
pear from the top and reappear at the bottom at the random location of the

lanes. This way we ensure very diverse vehicle distribution. The speed is also
32

chosen randomly from 20 kmph to 80 kmph .

Task

During the experiment, we initialize the ego vehicle at the left-most lane whose
goal is to reach towards the rightmost lane. The simulator input-output values
can be used for an MDP framework. We can pass an action to the simulator, it
will execute the action and return its state after a single step taken in it. The
state also comes with a reward and a binary value if the task was complete or

failure due to a bad action.

High-level Driving Policy
(to be learned)

/\

Primitive Action Rule Action
(e.g. acceleration, deceleration,
switch to right.) (e.g. Planner 1 or Planner 2.)

[Primitive Action

Figure 4.1: Hierarchy of the action selection by the learned policy

Classical Planning Methods

We implemented three non-learning based planning methods. The methods do
not consider the lane change information of the other vehicles. The planner P1
and P2 described below are inspired by the human driver and are rule-based.
The planner P3 is a mathematical function based planner.

Planner P1: Planner 1 mimics the basic lane change strategy of a new
driver. If there are sufficient gaps in the front of the ego vehicle in the cur-
rent lane and both the front and back in the right lane then the ego vehicle
switches right; otherwise, follows the front vehicle in the current lane with a
PID controller for a target speed. If there is no vehicle in the front but the
right lane is occupied, a target speed of the speed limit is applied.

33

Planner P2: This method is more complex than planner P1. It mimics
advanced human driving by checking both the gaps in the right lane and the
speed of the closest cars in the right lane, to ensure that the ego vehicle will
not run into the braking distance of the other vehicles. We used the mapping
table of “speeds and stopping distances” by the State of Virginia to calculate
braking distance for different speeds. !

Planner P3: This planner is an implementation of the risk level sets [32]
described in the section 3.2.3, Figure 3.6. For the correctness check of our
implementation, we tested it in a simplified scenario where all the other vehicles
do not change lane and show “self-preserving” behavior. We noted that our
implementation was able to ensure collision-free driving as claimed in their
paper.

We learn the high-level driving policy by selecting appropriate actions such
as primitive action or a rule-based planner. The planner outputs in terms of
primitive actions see figure 4.1. In our method, planner P1 and P3 are used as
an action function to augment the action space of the DRL algorithm. With-
out loss of generality, our method can also work with any classical planning

methods added into the action space.

States

We follow a similar occupancy grid-like state representation similar to Deep
Traffic [13]. The columns in the grid represent lateral state information around
the car. We take into account the current lane and 2 more lanes on right
and left totaling 5. At each time step (16 ms), the simulator returns the
observations of the positions, speeds, distances of the other vehicles in the ego-
centric view. It also returns collision and safety breaking events information.
We set the safety distance threshold to two meters from the front and back of
the ego vehicle.

Along the longitudinal direction, we take 50 meters ahead and 50 meters
back of the ego car and discretize it with 1 meter per cell resulting in a grid

of shape 100x5. The cell values contain the speed of the vehicles occupying

https://law.lis.virginia.gov/vacode/46.2-880/
34

https://law.lis.virginia.gov/vacode/46.2-880/

them otherwise 0. We differentiate the non-driving area with -100 and the
cells containing ego vehicle with 100 (any vehicle has a maximum speed of 80
kmph). We normalize the state by diving with 100 to get the cell values within
-1 to 1.

Actions

We define the vehicle command actions in terms of high-level commands by
setting the target speed and target corridor. The low-level controller does the
job of speeding up or changing lane over the future time steps. During training,
we map each of the actions to some target speed and target corridor and send it
to the simulator. For the primitive action rl agent, the actions are [accelerate,
no action, decelerate, switch to next right lane|. In our proposed method the
action set is executed in augmented nature, [accelerate, no action, decelerate,
switch to next right lane, Planner|. The Planner can be any classical planner
for changing lanes.

The “accelerate” action applies a constant acceleration of 3m/s?>. The
“decelerate” action applies a deceleration of 4m/s®. The “no action” applies
no action and the momentum of the car is kept. It requires a few simulator
steps in order to reach the next right lane. During switching to the right lane
we keep a fixed longitudinal speed of 50 kmph and fixed vehicle angle of 20
degree. These are set by hyper-parameters, can be changed easily. We assume

the low-level controller takes care of this part.

Reward

The simulator can return the ground truth of the positions, speed, distances
between the vehicles and collision. We define 20 meters from back and front
as safety distance threshold. If any vehicle breaks this proximity we consider
it as safety distance broken.

Whenever the ego agent reaches right we give 410, for each collision -10,
for each safety distance broken -1. If the agent fails to reach right within 8000
simulator step we give a penalty of -10, otherwise -0.001 to encourage it to

reach right quickly.
35

Reinforcement learning agents need to interact with the simulator contin-
uously through episodes. So at the beginning of each episode, we initialize the
ego car at the leftmost lane. An episode is terminated if reaching the rightmost

lane successfully or fails with a collision or safety breaking.

4.2.3 Algorithm Setup

We use a modified version of OpenAl DQN baseline’. We design a custom
environment like openAl gym by wrapping the simulator and making it gym
compatible. The primitive DQN agent’s neural network’s input layer has the
same size as the state occupancy grid. There are three hidden layers, each
of them having 128 neurons with the “tanh” activation function. The last
layer has four (the number of actions) outputs, which are the Q values for the
four actions for the given state. The learning rate is 1074, the buffer size for
experience replay is 10°, the discount factor is 0.99, and the target network
update frequency is 100. An epsilon-greedy strategy for exploration was used
for action selection. With probability €, a random action is selected. With
probability 1 — €, the greedy action, a* = arg max,c4 Q(s,a) is selected at a
given state s. In each episode, the value of € starts from 0.9 and diminishes
linearly to a constant, 0.02.

Our method is also implemented with a DQN agent, which has the same
neural networks architecture as the primitive action agent, except that the
output layer has 5 outputs, which include the Q values for the four same
actions as the primitive agent plus the Q value estimate for Method P1 or P3.
The learning rate, buffer size, discount factor, target network update frequency

and exploration factor are completely the same as the primitive agent.

’https://openai.com/blog/openai-baselines-dqn/
36

https://openai.com/blog/openai-baselines-dqn/

0.200
—-— primitive actions
0-175 7 —— primitive actions augmented with pl
0.150 1 11 —— primitive actions augmented with p3
\
w 0.125 bt
= - fu
e ” " Loty A
5 . f H— Lt b
E 0.100 1,“r_,k..i& ,’5;.‘;:} l
3 0.075 1 W\ H.. ',..”‘ =
WK *\a‘\jjﬂ”l;\.alﬁ ,J‘u.,'.hu
0.050 +
\"\4"“ ‘“ ¢
0.025 +
D.ODO T ! ! T T T !
0 25 50 75 100 125 150 175

No. of episodes divided by 50

Figure 4.2: Learning curve (Collision): our method (an RL agent with primi-
tive actions and augmented skill actions) vs. primitive actions RL agent.

4.3 Experiment and Results

Table 4.1: The adversary lane changing task: Performance of our method,
primitive action reinforcement learning, human and three planning methods.
“Ours-P” is the our method with P being the additional classical planner be-
sides primitive actions.

Ours-P1 | Ours-P3 | primitive agent | human P1 P2 P3
collision 2.1% 2.4% 6.0% 16.0% || 14.2% | 11.6% | 9.9%
success 85.0% 81.3% 70.1% 79.2% || 69.4% | 69.6% | 71.7%
avr. speed 54.7 51.5 57.6 48.0 55.2 54.1 58.0

Figure 4.2 shows the learning curve for the collision rate of every 50 episodes
for the two types of agents. Thus the x-axis is the number of training episodes
divided by 50. The y-axis shows the collision rate in the past 50 episodes.
The curves show that our method learns much faster than the primitive agent.

With the augmented planning method providing action suggestions, we effec-
37

—-—- primitive actions
—— primitive actions augmented with pl
—— primitive actions augmented with p3

T T T T T
0 25 50 75 100 125 150 175
No. of episodes divided by 50

Figure 4.3: Learning curve(Reward): our method (an RL agent with primitive
actions and augmented skill actions) vs. primitive actions RL agent.

tively reduce the amount of time and samples in order to learn a good collision
avoidance policy. Figure 4.3 shows that our method also learns larger rewards
in the same amount of training time.

We also tested the final performance after training finishes in 10, 000 episodes
for both the primitive agent and our agent. In addition, we also implemented
a gaming system using Logitech G29 consisting of driving wheels, acceler-
ation and deceleration paddles, to collect human performance data. Three
human testers were recruited. Each tester was trained for 30 minutes. Their
best performance over 30 trials was recorded. In each trial, 25 episodes were
attempted. Finally, their performances were averaged to get the human per-
formance index.

Table 4.1 shows the performance of our method compared to the primi-
tive agent and human. Our method performs better than both the primitive

agent and human, achieving a low collision rate of 2.1%. This low rate was

38

Figure 4.4: The system used for collecting driving performance data from
human testers: A logitech driving wheel, acceleration and braking paddles,
and a chair.

achieved with a similar average speed to primitive agent and human. In terms
of the rate of successfully reaching the rightmost lane within the limited time,
our algorithm achieves 85.0%, which is much higher than the primitive agent
(70.1%) and human (79.2%). It seems human testers tend to drive at slow
speeds to reach a good success rate. Although collision is unavoidable in this
adversary setting, the performance of our method is very impressive. Note that
at the end of training shown in Figure 4.2, the collision rate of our method was
around 4% instead of being closing to our testing performance, 2.1%. This is
due to that at the end of the training, there is still a random action selection
with a probability of 0.02 used in epsilon-greedy exploration.

The table also shows the collision rate of Method P1 is 14.2% on this ad-

versary setting. This poor performance is understandable because Method P1

39

was developed in a much simpler, non-adversary setting. The other planning
methods P2 and P3, although perform better than P1, still cannot solve the
adversary task with satisfactory performance. The method P3 works collision-
free in non-adversary case. But in our setting, it performs poorly (9.9%). One
of the reasons is that the method does not consider other vehicle’s motion
during the lane change. The interesting finding here is that by calling Method
P1 in our method as augmented action, we learn to avoid collision faster as
well as improve the collision rate of Method P1 or P3 significantly by using
reinforcement learning for active exploration. Thus our method achieves the
goal of reusing classical planning as skills to speed up learning.

Figure 1.3 shows the successful moments of driving with our agent. The
first row shows a sequence of actions applied by our agent that successfully
merge in between two vehicles on the right. Specifically, the first moment
accelerates; the second moment cuts in front of the vehicle on the right; and
the third and fourth moments merge in between two other vehicles on the
right. The second row shows our agent speeds up and successfully passes
other vehicles on the right. The third row helped with annotations of the
surrounding vehicles. In the first moment, our vehicle is looking for a gap.
The second moment, v3 switches left, creating a gap and the ego car switches
right into the gap. In the following moments, the ego car keeps switching right

because there are gaps on the right.

40

4.4 Analysis of the learned QQ values

Figure 4.5: Sampled moments: Q values for different actions.

The advantage of using reinforcement learning for autonomous driving is
that we can learn evaluation function for actions at any state. With classical
planning, knowledge represented is not clear unless reading the code.

Figure 4.5 shows a few sampled moments of the primitive rl agent. The first
moment (accelerating), the action values are, [0.851,0.841,0.829,0.844]; the
second moment (decelerating), the action values are, [1.030, 1.042,1.043, 1.036];
the third moment (accelerating), the action values are, [1.421,1.416, 1.406, 1.418]
and the fourth moment (decelerating), the action values are, [1.316, 1.324,
1.334, 1.319]. Let us take the first moment for example, the ego vehicle was
selecting the “accelerate” action because the action value corresponding to the
acceleration action is the largest (0.851). So the acceleration action was chosen
(according to the argmax operation over the () values). These values can also
be used for giving a warning signal as a part of the advanced driver assistance
system (ADAS).

Figure 4.6 shows the Q(s,a = switch_right) at a number of successive
moments. The left color plot shows the values of switching right within the
time window. The middle moments have the largest values for switching right;
while at the two ends, the values are small, indicating the switching right is not

favorable because collision will occur. The right color bar is the color legend.
41

The middle shows the trace of the car in the time window that corresponds
to the left color plot (dotted line). It clearly shows that the best moment of
switching right is when the ego car moves near to the middle line between
the two vehicles on the right. This finding means that our method has the
potential to be used to learn and illustrate fine-grained driving knowledge
that is conditioned on distances and speeds of other vehicles. These values are

useful for driver warning systems as a part of assistance.

3.2
2.72

2.24
1.76
1.28
0.8

Figure 4.6: Q(s,a = switch_right) at a number of successive moments

42

Chapter 5

Conclusion

In this thesis, we design a deep reinforcement learning-based motion planner
that reuses classical planner and works under the uncertain driving scenarios.
The problem is very challenging in that the other vehicles may change lane
to collide with our ego vehicle at a random time step. We proposed a novel
way of combining classical planning methods with naturally defined primitive
actions augmented with the planners. The key finding in this work is that
this method learns faster for collision avoidance and performs better than the
primitive-action reinforcement learning agent. The comparison with human
testers is promising, which shows our new method performs better than the
average performance of three testers.

Chapter 1 of the thesis introduced how self-driving car software is struc-
tured and the motivation of this research on this domain. The proposed solu-
tion is aimed at improving safety under uncertain environments.

Chapter 2 reviewed the reinforcement learning background and relevant
connections of RL to classical motion planners. We also discussed Deep
Reinforcement learning(DRL) and the different components of this learning
method. The classical planners are mostly non-learning based. The chapter
described how DRL can be used to design a motion planner.

In chapter 3, we define the problem of lane changing. The chapter also
described state-of-the-art solution approaches. The solutions are divided into
learning and non-learning methods. Non-learning methods are also known

as rule-based methods. One such method is a sampling-based method which

43

usually generates multiple trajectories and the best trajectory is chosen after
considering the constraints related to the problem. Another approach is the
use of control theory to directly control the steering angles and the speed of
the vehicle to do the lane change task. The function-based approaches apply
the constraints on the state information and output appropriate behavior or
controls. In the supervised type of learning method, the learning agent tries to
mimic pre-recorded good driving behavior. On the other hand, reinforcement
learning methods learn by interacting with the environment and learn from
mistakes.

Chapter 4 described the proposed solution, experimental setup and results.
The research is useful in the sense that it is reusing the existing knowledge of
the classical planners instead of learning the knowledge from scratch. However,
one major limitation of this work is to train on a real car. It would require a
lot of driving hours. Another drawback is that our method is highly dependant
on the low-level controller. So if the low-level controller changes, the system
might require retraining. Future work is to compare with human testers in a

first-person view on a 3D simulator.

44

References

1]

T. K. G. Aachen, “Pelops white paper,” Technical Report,Institute for
Automotive Engineering Aachen and the BMW Group, 2010.

Ahmed and K. Iftekhar, “Modeling driver’s acceleration and lane chang-
ing behavior,” Massachusetts Institute of Technology, 1999.

P.-L. Bacon, J. Harb, and D. Precup, The option-critic architecture,
2016. arXiv: 1609.05140 [cs.AI].

R. Bellman, Dynamic programming. Courier Corporation, 2013.

V. D. Berg, G. J., S. J., M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” Springer Robotics research, pp. 3-19, 2011.

V. D. Berg, Lin, and D. Manocha, “Reciprocal velocity obstacles for
real-time multi-agent navigation,” International Journal of Robotics Re-
search, 1988.

M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K.
Zieba, End to end learning for self-driving cars, 2016. arXiv: 1604.07316
[cs.CV].

G. Cesari, G. Schildbach, A. Carvalho, and F. Borrelli, “Scenario model
predictive control for lane change assistance and autonomous driving on
highways,” IEEE Intelligent Transportation Systems Magazine, vol. 9,
no. 3, pp. 23-35, 2017, 1SsN: 1941-1197. por: 10.1109/MITS . 2017 .
2709782.

S. Chamraz and R. Balogh, “Two approaches to the adaptive cruise
control (acc) design,” in 2018 Cybernetics Informatics (K I), 2018, pp. 1—
6. DOI: 10.1109/CYBERI.2018.8337542.

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
numerische mathematik,” Numerische mathematik, pp. 269-271, 1959.

J. M. Fakoor. Mahdi Kosari. Amirreza, “Revision on fuzzy artificial po-
tential field for humanoid robot path planning in unknown environment,”
International Journal of Advanced Mechatronic Systems, 2015.

P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” International Journal of Robotics Research,
1988.

45

29

25

17

11

24

27

21

3,5, 25

24

https://arxiv.org/abs/1609.05140
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://doi.org/10.1109/MITS.2017.2709782
https://doi.org/10.1109/MITS.2017.2709782
https://doi.org/10.1109/CYBERI.2018.8337542

[15]

[16]

[17]

[18]

[20]

[21]

[22]

23]

L. Fridman, J. Terwilliger, and B. Jenik, Deeptraffic: Crowdsourced hy-
perparameter tuning of deep reinforcement learning systems for multi-
agent dense traffic navigation, 2018. arXiv: 1801.02805 [cs.NE].

C. Huang, F. Naghdy, and H. Du, “Model predictive control-based lane
change control system for an autonomous vehicle,” in 2016 IEEE Region
10 Conference (TENCON), 2016, pp. 3349-3354. DO1: 10.1109/TENCON .
2016.7848673.

Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, “Motion
planning for urban driving using rrt,” in 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008, pp. 1681-1686. DOTI:
10.1109/IR0S.2008.4651075.

S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic plan-
ning,” The International Journal of Robotics Research, vol. 20, no. 5,
pp. 378-400, 2001. poI: 10.1177/02783640122067453. eprint: https:
//doi.org/10.1177/02783640122067453. [Online]. Available: https:
//doi.org/10.1177/02783640122067453.

A. Lawitzky, D. Althoff, C. F. Passenberg, G. Tanzmeister, D. Wollherr,
and M. Buss, “Interactive scene prediction for automotive applications,”
in 2013 IEEE Intelligent Vehicles Symposium (1V), 2013, pp. 1028-1033.

S. Lee and S. Seo, “A learning-based framework for handling dilemmas
in urban automated driving,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 1436-1442. por: 10.1109/
ICRA.2017.7989172.

N. Z. Liang Ma Jianru Xue, “Efficient sampling-based motion plan-
ning for on-road autonomous driving,” IEEE Transactions on Intelligent
Transportation Systems, 2015.

K. I. M. Buehler and S. Singh, “The darpa urban challenge:autonomous
vehicles in city traffic,” wvol. 56. springer, 2009.

B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker, “High-
level decision making for safe and reasonable autonomous lane changing
using reinforcement learning,” Sep. 2018. DOI: 10.1109/ITSC.2018.
8569448.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, Playing atari with deep reinforcement learning,
2013. arXiv: 1312.5602 [cs.LG].

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, p. 529, 2015.

46

29, 34

17, 19, 21

19

17, 18, 20

20

31

12, 13, 15, 31

https://arxiv.org/abs/1801.02805
https://doi.org/10.1109/TENCON.2016.7848673
https://doi.org/10.1109/TENCON.2016.7848673
https://doi.org/10.1109/IROS.2008.4651075
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1177/02783640122067453
https://ieeexplore.ieee.org/document/6629601
https://doi.org/10.1109/ICRA.2017.7989172
https://doi.org/10.1109/ICRA.2017.7989172
https://doi.org/10.1109/ITSC.2018.8569448
https://doi.org/10.1109/ITSC.2018.8569448
https://arxiv.org/abs/1312.5602

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, et al., “Junior: The
stanford entry in the urban challenge,” Journal of field Robotics, vol. 25,
no. 9, pp. 569-597, 2008.

M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, “Tactical deci-
sion making for lane changing with deep reinforcement learning,” Dec.
2017.

J. E. Naranjo, C. Gonzalez, R. Garcia, and T. de Pedro, “Lane-change
fuzzy control in autonomous vehicles for the overtaking maneuver,” IEEE
Transactions on Intelligent Transportation Systems, vol. 9, no. 3, pp. 438—
450, 2008, 1ssN: 1558-0016.

J. Nie, J. Zhang, X. Wan, W. Ding, and B. Ran, “Modeling driver’s accel-
eration and lane changing behavior,” Intelligent Transportation Systems
(ITSC), 2016.

N. J. Nilsson, “A mobile automaton: An application of artificial intelli-
gence techniques,” tech. rep.,DTIC Document, 1969.

B. Paden, M. Cap, S. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, 2016.

W. Pedrycz, Fuzzy Control and Fuzzy Systems (2Nd, Extended Ed.)
Taunton, UK, UK: Research Studies Press Ltd., 1993, 1SBN: 0-86380-
131-5.

X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learn-
ing,” ACM Trans. Graph., vol. 36, no. 4, 41:1-41:13, Jul. 2017, 1SSN:
0730-0301. pDOI: 10.1145/3072959.3073602. [Online]. Available: http:
//doi.acm.org/10.1145/3072959.3073602.

A. Pierson, W. Schwarting, S. Karaman, and D. Rus, “Navigating con-
gested environments with risk level sets,” ICRA, pp. 1-8, 2018.

D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural net-
work,” Advances in neural information processing systems 1, pp. 305—
313, 1989.

J. Rawlings and D. Mayne, Model Predictive Control: Theory and Design.
Jan. 2009.

T. Rehder, W. Muenst, L. Louis, and D. Schramm, “Learning lane
change intentions through lane contentedness estimation from demon-
strated driving,” Intelligent Transportation Systems (ITSC), 2016.

T. G. S. Brechtel and R. Dillmann, “Probabilistic mdp-behavior planning
for cars,” 14th International Conference on Intelligent Transportation
Systems, 2011.

47

17

28

22, 23

25

22

17

6, 17, 24, 26, 34

21

https://doi.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3072959.3073602

[43]

[44]

[45]

[46]

N. Sakib, H. Yao, H. Zhang, and S. Jui, “Single-step options for adversary
driving,” Nuerips Autonomous Vehicle Workshop, 2019. arXiv: 1903 .
08606 [cs.AI].

S. Shalev-Shwartz, N. Ben-Zrihem, A. Cohen, and A. Shashua, “Long-
term planning by short-term prediction,” CoRR, vol. abs/1602.01580,
2016. [Online|. Available: http://arxiv.org/abs/1602.01580.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction
(2nd Edition). MIT press, 2018.

C. Szepesvari, Algorithms for Reinforcement Learning. Morgan and Clay-
pool, 2010.

T. T., H. Koutsopoulos, and M. Ben-Akiva, “Modeling integrated lane
changing behavior,” Journal of Transportation Research Board, pp. 30—
38, 2003.

S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, and A. A. et al,
“Stanley: The robot that won the darpa grand challenge,” Journal of
field Robotics, 2006.

S. Ulbrich and M. Maurer, “Probabilistic online pomdp decision making
for lane changes in fully automated driving,” 16th International Confer-
ence on Intelligent Transportation Systems, 2013.

C. Urmson, J. A. Bagnell, C. R. Baker, M. Hebert, A. Kelly, R. Ra-
jkumar, P. E. Rybski, S. Scherer, R. Simmons, S. Singh, et al., “Tartan
racing: A multi-modal approach to the darpa urban challenge,” 2007.

C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3-4, pp. 279-292, 1992.

B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy
inverse reinforcement learning,” in Proc. AAAI 2008, pp. 1433-1438.

48

iii

17

12,

12

25

17

12

20

16

https://arxiv.org/abs/1903.08606
https://arxiv.org/abs/1903.08606
http://arxiv.org/abs/1602.01580

	Introduction
	Self-driving Software Architecture
	Route Planner
	Behavioral Planner
	Motion Planner
	Control Planner

	Thesis statement
	Thesis Contribution
	Organization of the thesis

	Background Study
	Reinforcement Learning
	Deep Reinforcement Learning (DRL)
	Discount Factor
	Experience Replay
	Target Network
	 greedy
	Model-based and Model-free
	On-policy and Off-policy

	Classical Planning and Reinforcement Learning based planning

	Related Work
	Related work
	Rule-based
	Sampling
	Control logic
	Mathematical Function

	Learning based
	Supervised Learning
	Reinforcement Learning

	Lane changing with DRL motion planner
	Problem overview
	Our methodology
	2D simulator
	Experimental Setup
	Algorithm Setup

	Experiment and Results
	Analysis of the learned Q values

	Conclusion
	References

