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ABSTRACT 
 

 

 
A reliable estimate of the amount of oil or gas in a reservoir is required for 

development decisions.  Uncertainty in reserve estimates affects resource/reserve 

classification, investment decisions, and development decisions.  There is a need 

to make the best decisions with an appropriate level of technical analysis 

considering all available data.  Current methods of estimating resource 

uncertainty use spreadsheets or Monte Carlo simulation software with specified 

probability distributions for each variable.  3-D models may be constructed, but 

they rarely consider uncertainty in all variables.  This research develops an 

appropriate 2-D model of heterogeneity and uncertainty by integrating 2-D model 

methodology to account for parameter uncertainty in the mean, which is of 

primary importance in the input histograms.  This research improves reserve 

evaluation in the presence of geologic uncertainty.  Guidelines are developed to: 

a) select the best modeling scale for making decisions by comparing 2-D vs. 0-D 

and 3-D models, b) understand parameters that play a key role in reserve 

estimates, c) investigate how to reduce uncertainties, and d) show the importance 

of accounting for parameter uncertainty in reserves assessment to get fair global 

uncertainty by comparing results of Hydrocarbon Initially-in-Place (HIIP) 

with/without parameter uncertainty.  The parameters addressed in this research 

are those required in the assessment of uncertainty including statistical and 

geological parameters.  This research shows that fixed parameters seriously 

underestimate the actual uncertainty in resources.  A complete setup of 



  

methodology for the assessment of uncertainty in the structural surfaces of a 

reservoir, fluid contacts levels, and petrophysical properties is developed with 

accounting for parameter uncertainty in order to get fair global uncertainty.  

Parameter uncertainty can be quantified by several approaches such as the 

conventional bootstrap (BS), spatial bootstrap (SBS), and conditional-finite-

domain (CFD).  Real data from a large North Sea reservoir dataset is used to 

compare those approaches.  The CFD approach produced more realistic 

uncertainty in distributions of the HIIP than those obtained from the BS or SBS 

approaches. 0-D modeling was used for estimating uncertainty in HIIP with 

different source of thickness. 2-D is based on geological mapping and can be 

presented in 2-D maps and checked locally. 
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Chapter 1 

 

 

INTRODUCTION 

 

 

An accurate estimate of the reservoir volume is important for selecting 

number of wells to be drilled, deciding their locations, and making other reservoir 

development decisions. The first choice to make in any geostatistical study is the 

modeling scale. High resolution 3-D models are appropriate for modeling 

heterogeneity and providing input to flow simulation; however, they cannot be 

used effectively for uncertainty quantification. Global statistical analysis is 

appropriate for checking and providing input to parameter uncertainty, but it does 

not permit uncertainty assessment for specific locations or well patterns. Reserves 

estimations may be undertaken with 2-D modeling, which can be used in early 

stages of reservoir development and account for uncertainty in structural surfaces. 

 

Hydrocarbon resources are calculated as the product of gross rock volume, 

net/gross ratio, porosity, hydrocarbon saturation, and formation volume factor, 

while hydrocarbon reserves are calculated by multiplying resources volumes by 

recovery factor. This study focuses more on resource volumes, although the 

proposed methodology can be extended to estimate the reserve volumes. A single 

resource/reserve figure (deterministic case) can be computed if the value of each 

parameter is well known. It is more realistic to represent individual parameters by 

a range of values, or a probability distribution. This leads to a probability 

distribution for the resources and improves decisions. It is important to have a 

narrow and fair estimate of uncertainty at the early stages of field life; otherwise, 

designed production facilities might be underestimated or overestimated. 
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The uncertainty is due to limited data, measurement errors, and an 

imperfect model. Limited data leads to incomplete knowledge of the complex 

subsurface structure, petrophysical properties, and fluid properties. Errors in the 

measured data lead to increased error. It is difficult to generate a model that 

represents the real reservoir. With all these sources of uncertainty, a reasonable 

numerical model is needed to relate available data and understand the subsurface. 

 

 

1.1. Overview 

 

For each reservoir, management requires a volumetric estimate of discovered 

resources (HIIP) calculated based on gross reservoir volume (GRV), 

petrophysical properties including net-to-gross (NTG), porosity (), and fluid 

saturations, and hydrocarbon properties such as formation volume factor. The 

reserve volumes depend on the economic feasibility and the confidence in the 

resource. Figure 1.1 shows the components of the hydrocarbon resource base. The 

structure for this chart comes from SPE publications. The resources can be 

categorized to undiscovered and discovered resources (HIIP) where the 

discovered resources can be divided into economically unrecoverable resources 

and economically recoverable resources (ultimate recovery). The Ultimate 

Recovery can be classified into three levels, P-90, P-50, and P-10, based on level 

of confidence. These probability hurdles are applied by both Society of Petroleum 

Engineers (SPE) and Canadian Institute of Mining, Metallurgy and Petroleum 

(CIM) (Etherington et. al., 2005). 

 

1.1.1. Gross Rock Volume (GRV) 

 

Reservoirs consist of stratigraphic layers constrained by a top seal. GRV is 

the volume of a reservoir trapped between stratigraphic surfaces and/or 

hydrocarbon-water contacts. A reservoir is sometimes bounded by stratigraphic 

pinch-outs or faults, see Figure 1-2. The uncertainty in GRV is due to sparse well 
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Figure 1-1: The components of the hydrocarbon resource base (from: SPE website accessed 

March 2007)
4
. 

 

 

 

Figure 1-2: Reservoir Cross-section: The reservoir is bounded by top and bottom structure 

surfaces and above OWC level as shown in the green area above and excluding the non-pay facies. 
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data and uncertainty in structural surfaces interpreted from seismic data. 

Generally, the top and bottom structure surfaces and faults are obtained from 

seismic interpretation, while the oil-water contact (OWC) can be estimated from 

the available wells. The depth of these surfaces is never exactly known and the 

OWC depth may also be uncertain. Monte Carlo approaches are widely used to 

quantify this uncertainty. 

 

Seismic interpretation is performed in the time domain and transferred to 

depth with a time-to-depth conversion using some type of velocity model. There 

is no unique surface in units of depth because of uncertainties in the interpretation 

(in time) and uncertainties in the time-to-depth conversion. In general, the further 

away from the well locations, the larger the uncertainties in the surfaces. 

Therefore, the calculated GRV is uncertain. This uncertainty is often recognized 

but not always quantified. 

 

1.1.2. Net-to-Gross (NTG) 

 

The net-to-gross ratio (NTG) or Net Pay (NP) is a major element in 

estimating a reservoir volume. Procedures to estimate NTG or NP tend to be 

subjective. The thickness of the pay zone can be calculated by summing the 

vertical samples where the rock and fluid properties meet specified criteria within 

the given layer. The Net-to-Gross ratio can be calculated by dividing the thickness 

of the NP estimate by the gross thickness of the layer. The remaining/excluded 

zone from gross thickness has non-net facies, very low porosity, or high water 

saturation to be considered noncommercial. Figure-1.2 shows the non-net facies 

inside the reservoir layer. There is often significant dependency between porosity, 

water saturation, and net-to-gross ratio, which must be accounted for in 

geostatistical models. Models that ignore the correlation between those variables 

may lead to wrong estimates of volumes and suboptimal decisions. 
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1.1.3. Porosity () 

 

The third element affecting reserve volume estimation is the effective 

porosity, which refers to the interconnected pore volume that contributes to fluid 

flow in a reservoir excluding dead-end or isolated pores. Porosity can be 

determined from logs or measured from cores in the lab. These measurements are 

local samples and do not represent the whole reservoir. Porosity is important for 

two reasons: to estimate hydrocarbon volume and to model permeability due to 

the high correlation between porosity and permeability. 

 

1.1.4. Residual Saturation 

 

Another variable affecting reserve volume estimation is residual 

saturation, which is saturation level below which fluid drainage will not occur. It 

is also called immobile saturation or connate water saturation (Swi). Residual 

saturation is affected by several factors such as fluid viscosity, pore sizes, and 

rock wettability if it is oil-wet or water-wet. Residual saturation estimates are 

used to estimate the volume of recoverable hydrocarbon of concern in the 

reservoir. Its values can be measured by running logs or collecting a 

representative core sample and saturating it with the hydrocarbon of concern, 

followed by allowing the sample to drain for several days and then measuring the 

volume of hydrocarbon retained by the core sample. 

 

1.1.5. Formation Volume Factor (Bo) 

 

Most measurements of oil and gas production are made at the surface, 

which is known as standard conditions. Therefore, volume factors are needed to 

convert measured surface volumes to reservoir conditions and vice versa. Oil 

formation volume factor (Bo) is a measure of the shrinkage or reduction in the 

volume of crude oil as it is produced. Bo can be calculated by dividing oil and 

dissolved gas volume at reservoir conditions by oil volume at standard conditions. 
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It is almost always greater than 1.0 because the oil in the formation usually 

contains dissolved gas that comes out of solution in the wellbore with dropping 

pressure. Bo is measured in PVT labs. Accurate evaluation of Bo is of prime 

importance as it relates directly to the calculation of the reserve and oil in place 

under stock tank conditions. 

 

 

1.2. Problem Statement 

 

Decision-makers need to make the best decisions with an appropriate level 

of technical analysis with the acquisition of appropriate data. The definition of 

“appropriate” in the context of uncertainty management is important to this 

dissertation. This research will compare 0-D, 2-D, and 3-D approaches to quantify 

uncertainty. 

 

Reserves volumes have significant uncertainty due to sparse well data and 

uncertainty in structural surfaces. In this dissertation, reservoir data are used to 

develop a geostatistical approach to surface simulation and uncertainty 

assessment. The top surface structure of a reservoir, subsequent layer thickness, 

and oil water contact depths are uncertain. The main controls on the uncertainty 

assessment are (1) the possible deviations from the base case seismic predicted 

surfaces, that is, a distribution of the possible deviations from the base case, and 

(2) a variogram that specifies how fast the uncertainty increases away from the 

well locations. Careful assessment of parameter uncertainty is an important aspect 

of this research. 

 

The current methods of estimating reserves are spreadsheet or Monte 

Carlo simulation (MCS) software using somewhat arbitrary distributions for the 

variables. 3D models may be constructed, but they do not consider uncertainty in 

all variables. Experimental Design could be used in multiple deterministic (or 

scenario) modeling to quantify the uncertainties in some variables. Ignoring 
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structural uncertainties can lead to wrong estimates of volumes and bad decisions. 

Underestimating could lead to lost opportunities while overestimating could give 

high-risk exposure. 

 

The proposed methodology consists of four main steps: (1) assess 

uncertainty in gross rock volumes with uncertainty in structural surfaces using 

conditional sequential simulation with conditioning data at well locations to be 

equal to certain values; (2) assess uncertainty in reserves volumes with 

uncertainty in fluid contacts using MCS; (3) assess uncertainty in reserves 

volumes with uncertainty in petrophysical properties using cosimulation with 

super secondary data obtained from seismic data; and (4) assess full uncertainty in 

reserves volumes by combining uncertainty in all previous parameters properly. 

This scenario will be conducted twice, one without accounting for parameter 

uncertainty and one with parameter uncertainty. 

 

 

1.3. Literature Review 

 

Many papers have been published about using MCS to estimate reserve 

volumes and quantify parameter uncertainty especially in the early reservoir life 

(Behrenbruch et al., 1985; Murtha, 1997; Berteig et al., 1988). Conditional 

simulations were proposed instead of single or multiple deterministic scenarios to 

assess uncertainty of hydrocarbon pore volume associated with structural 

parameters, NTG, porosity, and permeability. The methodology in their paper was 

based on simulating structural surfaces with conditioning data at well locations to 

match available data. None of those papers mentioned varying the mean of the 

variable of interest to assess its uncertainty. 

 

Samson et al. (1996) proposed a method to assess the uncertainty in the 

position of the top structure by assuming that maps of uncertainty on the time pick 

and on the average velocity have been produced, and they evaluated the impact of 
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these uncertainty maps on GRV uncertainties. Their proposed method consists of 

generating possible error maps that are all within the range provided by 

uncertainty maps. A possible depth map is obtained by adding an error map to the 

reference case. A simulated GRV can then be computed between the simulated 

top of the reservoir, the base of the reservoir and the OWC. By iterating many 

times, histograms and expectation curves of the GRV can be derived. This paper 

focused on uncertainty due to structural surfaces and fluids contacts levels but not 

petrophysical properties. It also did not account for parameter uncertainty in the 

mean for structural deviation. 

 

Abrahamsen et al. (1998) proposed a stochastic model to assess the 

uncertainty in estimating the reserve volumes, based on the uncertainties in cap 

rock geometry and the depth to the hydrocarbon contact determined by a spill 

point detection algorithm. First, the geometry of the cap rock is simulated using 

established MCS techniques for surfaces based on Gaussian random field models. 

Second, a new algorithm finds location of spill points and trapping areas of the 

simulated structures. Then, GRV of the traps can be calculated and volume 

distributions can be quantified in terms of histograms and quantiles. 

 

There are many papers published about constructing a deterministic 3D 

geological model. This is easily accomplished with commercial software. 

Multiple deterministic (or scenario) models can be generated (perhaps using 

experimental design) to quantify the uncertainties in some variables. This 

methodology might give an idea about the limits of global uncertainty but it will 

not give a full picture of uncertainty (or a distribution) plus it does not consider 

for local uncertainty (Peng and Gupta, 2003). 
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1.4. Dissertation Outline 

 

This research aims to improve reserve evaluation in the presence of 

geologic uncertainty accounting for parameter uncertainty using 2-D models. The 

second chapter presents the hierarchical-geostatistical modeling and shows how to 

select the best modeling scale for making decisions. Chapter 3 introduces three 

different approaches to quantify parameter uncertainty and discusses their 

implementation details. The fourth chapter focuses on uncertainty management. It 

discusses how it can be presented and understood to know parameters that play a 

key role in reserve estimations in order to reduce their uncertainty. Chapter 5 

explains the proposed methodology and how to assess uncertainty of HIIP 

associated with structure such as top and bottom surfaces, layer thicknesses, and 

fluid contact levels and petro-physical properties such as net-to-gross, porosity, 

and oil saturation. It also presents the methodology with and without accounting 

for parameter uncertainty. A case study of real data from Hekla Field, a portion of 

a large North Sea reservoir is presented in the sixth Chapter to compare using 

different parameter uncertainty approaches. Chapter 7 presents 2-D vs. 0-D and 3-

D modeling using the same real data from Hekla Field. The last chapter presents 

some remarks on the developed methodology including future research directions. 
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Chapter 2 

 

 

HIERARCHICAL RESERVOIR MODELING 

AND UNCERTAINTY QUANTIFICATION 

 

 

Different modeling scales are discussed with their applications, benefits 

and disadvantages. An accurate estimate of reservoir volume is important for 

optimal decision making. The first decision to make in any geostatistical study is 

the modeling scale. 

 

Modeling scale can be categorized into three groups as shown in Table-

2.1. Selecting the appropriate modeling scale depends on the goals of the study 

and the stage in the lifecycle of a reservoir. Another factor affecting the modeling 

scale selection is time sensitivity; sometimes quick decisions must be made based 

on preliminary modeling results. One of the difficulties in modeling is getting a 

reliable distribution for all variables. 

 

 

2.1. 0-D Modeling 

 

In general, 0-D methods are used at the prospect evaluation stage, whereas 

2-D and 3-D methods are used during appraisal through to development and 

production. There are several fast and friendly programs using Monte Carlo 

Simulations of this method (Murtha, 1997 and Garb, 1988). These programs use 

the probability distributions for each of the parameters used in the calculation 

where values are drawn according to the specified probability distributions. MCS  
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Geostatistical 

Modeling 

Reservoir Life 

Exploration Appraisal Development Production Secondary 

development 

0D      

2D      

3D      

Table 2-1: Hierarchical-Geostatistical models and their application through reservoir life. 

 

 

is used when the distributions of each of the independent variables can be 

reasonably quantified. These methods may ignore the interdependencies among 

input parameters. The input uncertainty ranges for a given parameter are often 

subjective. In addition, this method is used for global statistical analysis; it does 

not permit uncertainty assessment for specific locations or development areas. 

 

Using a 0-D MCS approach offers several advantages (Mishra, 1996) for 

propagating uncertainty in reservoir engineering problems. First of these is that 

the full range of each uncertain input parameter is sampled and used in generating 

the probabilistic model outcome. A second advantage is the ease of 

implementation. Finally, the Monte-Carlo approach is conceptually simple, 

widely used and easy to explain. 

 

 

2.2. 2-D Modeling 

 

Reserves estimates can be undertaken with 2-D modeling of parameters 

such as structural elevation, thickness (h), net-to-gross (NTG), average porosity 

(), average water saturation (Sw), and oil formation volume factor (Bo). 
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Neither 0-D nor 3-D modeling considers local uncertainties in structural 

surfaces. The 2-D modeling method uses 2-D and 3-D data and combines them to 

investigate uncertainties in estimating reserves or resources globally and locally. 

 

The 2-D methods map reservoir parameters and use their spatial 

relationship rather than simply averaging. The parameter values for the 2-D grids 

can be either structural position or some other reservoir property. These methods 

are not as fast as 0-D methods but can give a better base for making decisions. 

 

Structural uncertainties can be modeled by 2-D geostatistical tools such as 

GSLIB software (Deutsch and Journal, 1998) that take into account the spatial 

correlation between data points for a given surface. Stochastic models are created 

with such a program. Multiple equally probable realizations of the structure can 

be produced. Then, a range in GRV can be calculated by combining the 

uncertainty range for fluid contacts with each of the simulated depth maps. 

Hydrocarbon-in-place volumes can then be calculated by combining GRV 

uncertainties with the uncertainty in petrophysical parameters using Monte Carlo 

simulation. 

 

 

2.3. 3-D Modeling 

 

High resolution 3-D models are appropriate for modeling heterogeneity 

and providing input to flow simulation. They are not necessarily the most efficient 

for uncertainty quantification. In addition, they are not appropriate to make time 

sensitive decisions since detailed 3-D modeling will take significant professional 

and CPU time. 

 

3-D modeling involves the construction of a geological framework grid 

using the mapped structural horizons and fault surfaces together with the 

individual reservoir layers. This framework is then merged with the sedimentary 
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building blocks, or lithofacies, and their associated petrophysical characteristics. 

3-D models allow for the population of the sparsely sampled space (between 

wells) with the individual building blocks of a reservoir and their reservoir 

properties. Multiple realizations of a reservoir can be produced from which 

quantitative models for uncertainty analysis can be derived. 

 

The procedures and the geostatistical tools used in 3-D modeling are 

dependent on the data, time available, and particular reservoir or problem to be 

investigated. The models also provide for full integration of subsurface data, but 

they also require geostatistical specialists to keep them updated. 

 

Peng et al. (2003) investigated the feasibility of using Experimental 

Design and Analysis EDA methods with multiple deterministic scenarios to study 

the hydrocarbon in-place volume (HIIP) of a reservoir. This may be important 

during the exploration or early appraisal stage, where the amount of data is not 

sufficient for meaningful 3-D numerical reservoir simulations. Multiple 

deterministic models are being used more frequently as higher-risk marginal 

fields are developed. This may be better than a probabilistic approach using 0-D 

model in the investigation of HIIP because this method is based on a geological 

representation of the reservoir that can be used for field development planning. 

However, it may not be practical because a large number of models must be built 

to generate the volume distribution curve (similar to that derived from the 

probabilistic approach). 

 

 

2.4. Remarks 

 

0-D modeling is fast and used in the early stages of the reservoir life cycle 

with few or no well data. Table 2-1 shows the hierarchical-geostatistical models 

and their application through reservoir life. 2-D modeling is better than 0-D 
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modeling in the investigation of HIIP in the appraisal stage of reservoir life 

because it is based on a geological representation of the reservoir. 

 

Table 2-2 shows a comparison between hierarchical-geostatistical 

modeling based on speed, purpose, required input data, advantages, and 

disadvantages. It shows that 0-D modeling is the best for quick decisions. 2-D 

modeling is the best to quantify local and global uncertainties. 

  

Gaussian-based techniques can be used without concern for non-linear 

averaging. Converting data to 2-D summaries further simplifies multiscale 

modeling. 2-D mapping is the most common approach to large scale modeling, 

and used for estimating resources, quantifying, and accounting for parameter 

uncertainty. 

 

Detailed 3-D models are useful for flow simulation but not necessary for 

resource estimation. They have many disaggregated components, take significant 

time, and are not appropriate to make quick decisions; but they are used more to 

make specific local decisions in mature reservoirs or to evaluate areas of interest. 

 
 

Parameters 

Hierarchical-Geostatistical Modeling 

0-D 2-D 3-D 

High Speed Yes Maybe No 

Purpose 
Mainly to estimate the 

GRV for rush decisions 
Mapping 

More detailed 

modeling 

Input data 
Probability distribution of 

each element 
2D maps All data available 

Advantages Fast. 
Good for local and 

global uncertainties. 

Good for local 

uncertainties. 

Disadvantages 
- Ignoring dependencies 

among input parameters. 

- Subjectivity. 

- Not suitable for 

flow simulation. 

- Needs a lot of time. 

 

Table 2-2: Hierarchical-Geostatistical modeling comparison. 
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Chapter 3 

 

PARAMETER UNCERTAINTY 

 

 

It is important to account for uncertainty in input histogram parameters to 

geostatistical modeling. The input histogram parameters are almost always 

assumed fixed, but they have some uncertainty that should be assessed. There is 

uncertainty in the mean, standard deviation, and sample range of the input 

histogram. Uncertainty in the mean is of primary importance; the details of the 

histogram are of second order importance compared to mean. The mean of the 

variables of interest was considered to be the statistic of interest in this study. 

Different methods were developed to quantify parameter uncertainty in such 

parameters of statistic. In this chapter, three different methods are discussed: 

conventional Bootstrap method (BS), spatial Bootstrap method (SBS), and 

Conditional Finite Domain (CFD). Each of these three methods will be described 

with a comparison and recommendation for practical reservoir uncertainty 

quantification. 

 

 

3.1. Bootstrap 

 

A first method for assessing uncertainty in the input histogram parameters 

to geostatistical modeling is a bootstrap method (BS) developed by Efron (1979). 

It is a useful application of Monte Carlo simulation to quantify uncertainty in 

statistical parameters. There are two important assumptions implicit to the use of 

the bootstrap: (1) the data are representative of the entire population and (2) the 

data are independent, which is acceptable in early reservoir appraisal with widely 

spaced wells. 
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The bootstrap is a statistical resampling technique that permits the 

quantification of uncertainty in any calculated statistics by resampling from the 

original data. This method makes no assumption about the data distribution. In 

other words, it is applicable regardless of the form of the data probability density 

function.  

 

Consider n data values of a single variable (zi, i=1,…,n) and a calculated 

statistic, say, the experimental mean mz. The bootstrap can be used to calculate 

the uncertainty in the statistic of interest (the mean) by the following simple 

procedure: 

 

1) Assemble the representative distribution of the Z random variable using 

declustering and debiasing techniques if appropriate: FZ(z).  This 

distribution could simply be the equal weighted histogram of the n data; so 

each point will have a probability of 1/n. 

2) Draw n values from the representative distribution, that is, generate n 

uniformly distributed random numbers pi, i=1,…,n and read the 

corresponding quantiles:  

zs,i = FZ
-1

(pi),        3.1 

where i=1,…,n. 

The number of data drawn is typically equal to the number of data 

available in the first place.  The distribution of simulated values is not 

identical to the initial data distribution because they are drawn randomly 

and with replacement. 

3) Calculate the statistic of interest (such as the experimental mean, msz) 

from the resampled set of data. 

4) Return to steps 2-3 and repeat L times, where L is a large number, in order 

to create L resamples. Typically, L is at least equal to 1000. 

5) Assemble the distribution of uncertainty in the calculated statistic. This 

distribution can now be used to make inferences about the parameter. 
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A GSLIB-like code called boot_avg was developed by Deutsch (Neufeld 

and Deutsch; 2007) based on a resampling technique. The bootstrap technique is 

reasonable if the data are independent, but reservoir data are often correlated to 

some extent. This correlation does not satisfy the independency assumption of this 

technique as more data are collected. 

 

 

3.2. Spatial Bootstrap 

 

Data from a spatial region usually have a correlation structure. These 

correlations are ignored in the conventional bootstrap. The bootstrap has been 

extended to resample dependent data. Hall (1985); Kunsch (1989); Liu & Singh 

(1992) have independently proposed a block resampling scheme. This method 

termed also the moving blocks method. It is a common method of the block 

bootstrap where blocks of the spatial data are sampled at random, then joined 

together to form a new sample. The block bootstrap takes care of the dependence 

structure within the blocks, but not the correlation between blocks. Hall et al. 

(1995) pointed out that the bias and the variance of a block bootstrap estimator are 

seriously affected by the block length.  

 

Andy Solow (1985) proposed the spatial Bootstrap method (SBS) by 

adding spatial dependency specified by a covariance matrix to the bootstrap. In 

the spatial bootstrap method (Journel, 1993; Norris et.al., 1993), alternative sets of 

data are resampled from whole simulated fields. This resampling method accounts 

for any prior model of spatial dependency between the data, and allows for 

integration of secondary information. 

 

A GSLIB-like code, based on an efficient matrix simulation approach, was 

presented by Deutsch (2004). It resamples with correlation, which relaxes the 

assumption of independence. A LU simulation algorithm is used to simulate 

values under a multivariate Gaussian model. The simulated values are 
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unconditional and are only required at the data locations. The method of the SBS 

is simple and efficient for a large number of realizations. The number of data has 

a limit of 10000. The covariance values between each pair of data are established 

based on an input of a 3-D variogram model. 

 

n values are simulated from the deemed representative histogram Fz(z) 

following the variogram of the normal scores of the Z variable, which can be 

represented by a 3-D variogram model (h). The algorithm is to perform an LU 

decomposition of the n by n covariance matrix: 

C = LU        3.2 

where C, L, and U are n by n matrices. The variogram model is used to 

build C. A Cholesky LU decomposition is used to calculate the lower and upper 

triangular matrices L and U. Unconditional Gaussian simulations are calculated 

by a simple matrix multiplication: 

y
(l)

 = Lw
(l)

,   l = 1, …, L     3.3 

where w and y are n by 1 vectors and L is the number of realizations. 

The w vector consists of independent Gaussian values and the y vector 

consists of the resulting unconditionally simulated values with the correct 

covariance. Then the Gaussian values are converted to probability values to draw 

from the representative distribution. 

p
(l)

 = G(y
(l)

),   l = 1, …, L     3.4 

where G
-1

 is the inverse of the standard normal distribution and p is an n 

by 1 vector of probability values [0,1]. The drawn z-values are calculated as: 

z
(l)

 = Fz
-1

(p
(l)

),  l = 1, …, L     3.5 

Performing the LU decomposition is required only once to generate the 

simulated realizations by the following equation: 

z
(l)

 = Fz
-1

(G(Lw
(l)

)),  l = 1, …, L     3.5 

The distribution of the results can be used to calculate any parameter of 

statistic using from each set of simulated values. 
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The uncertainty is larger when the data are more correlated. The effective 

number of data can be calculated as: 

𝑛𝑒𝑓𝑓 =
𝜎𝑍

2

𝜎
𝑍 
2         3.6 

where 𝜎𝑍
2 is the variance of the data values. 

 𝜎𝑍 
2 is the variance of the average values. 

 

The following steps describe the methodology to perform the spatial 

bootstrap: 

 

1) Assemble the representative data. 

2) Calculate the 3-D variogram for the data set. 

3) Perform the LU simulation at the data locations. 

4) Calculate the statistic of interest. 

5) Return to step 3 and repeat many times. 

6) Assemble the distribution of uncertainty in the statistic. 

 

There are two apparent limitations of the SBS. The first limitation is that it 

allows only quantifications of uncertainty of order one in the histogram. The 

second limitation is that SBS does not account for all possible data in the area of 

interest. It is always the case, especially in the early reservoir life, that some lower 

and higher values of the variable of interest than those previously sampled are 

obtained with collecting more samples. Ignoring such possibility in the 

uncertainty assessment process can lead to underestimation/overestimation of 

uncertainty. 

 

A major problem with the spatial bootstrap approach is that increased 

spatial correlation leads to greater uncertainty than if the data are more random. 

The SBS does not consider the affect of conditioning data or the finite reservoir 

domain. Directly accounting for size of domain and local conditioning data is 

likely to be quite important. 
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3.3. Conditional Finite Domain 

 

The Conditional Finite Domain technique (CFD) is a new stochastic 

approach that is based on a multivariate Gaussian distribution and used to assess 

uncertainty in the input histogram (Babak and Deutsch, 2006).  

 

The CFD approach has many advantages over the SBS approach. First, 

SBS allows only quantification of uncertainty of order one in the histogram, while 

CFD quantify uncertainty of any order in the histogram. CFD is also the first 

approach that accounts for the size of the domain and the local conditioning data. 

A disadvantage of the SBS is that it does not account for all possible data in the 

area of interest. Some lower and higher values of the variables of interest can be 

observed with additional sampling compared to those previously sampled; 

therefore, CFD approach determines the possible higher and lower values of the 

variable of interest. 

 

This approach does not work directly with original data but with the 

standard normal distribution after transforming the data prior to simulation. After 

simulating the full grid in the area of interest, uncertainty assessment is based not 

on the full grids of the simulated values, but rather on the sub samples of it. It is 

assumed that every set of simulated data which have the same configuration as the 

original data can be considered as an observation from the same underlying 

distribution as the original data. Then the data are back transformed to the original 

data. 

 

Any desired number of data combinations, K can be chosen using 

translation and/or rotation with respect to some centre of the original data, which 

have the same configuration as the original data and belong to the study domain, 

see Figure 3-1. The same K simulated data combinations can be found for all 

other L-1 simulated realizations. Then the uncertainty in the statistic of interest is 

quantified from the results of these K combinations obtained from L simulations. 
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The reference distribution in the first realization is obtained from the original data 

then the realization results used in the next simulated realization and so on. Figure 

3-2 shows schematic representation of the calculations performed in one step. 

 

Babak and Deutsch (2006) proved in their work that the “correct” starting 

reference distribution has no effect on the limiting uncertainty but the lower and 

upper tail values have a major effect on the limiting uncertainty value. The effect 

of the number of data and the variogram range on the limiting uncertainty was 

investigated. It was found that the uncertainty decreases as the number of data 

increases. With respect to the change in range of correlation, it was observed that 

the uncertainty in the statistic of interest decreases as the range of correlation 

increases due to the fact that the conditioning data are more correlated with each 

other and more correlated to the locations being simulated. This impact is 

reversed with using the SBS approach, that is, the uncertainty decreases if the 

range of correlation decreases. The variogram uncertainty was also investigated 

 

 

 

Figure 3-1: Use of centroid and angle in determining new data combination: Conditioning data 

(circles) is rotated on angle a anticlockwise around the centre in point O to obtain a new data 

combination (squares). (Babak and Deutsch; 2006). 
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Figure 3-2: Schematic representation of the calculations performed in one step of the CFD 

algorithm (Babak and Deutsch; 2006). 

Uncertainty in the statistic of interest as a standard deviation of the distribution of uncertainty in the 

mean over the simulated realizations 
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for the real geological data. It was shown that the variogram of the reference 

distribution can be very different from the input variogram to sequential Gaussian 

simulation. Their recommendation was that variogram uncertainty also be 

incorporated in the limiting uncertainty assessment by applying SGS each time 

not only with a different reference distribution, but also with a different input 

variogram corresponding to that reference distribution. 

 

The CFD procedure is summarized in the following steps: 

1) apply SGS to create L realizations of the variable of interest using an input 

reference distribution. 

2) calculate and quantify the uncertainty of order 1 in the statistic of interest 

and establish the reference distributions to be used in the subsequent 

assessment of uncertainty in the statistic of interest. 

3) select desired number of data combinations, say K, using translation 

and/or rotation with respect to some centre of the original data, which 

have the same configuration as the original data and belong to the study 

domain. 

4) use the reference distribution obtained in step 2 to create L realizations of 

SGS using available conditioning data and calculate and quantify 

uncertainty of order k in the statistic of interest. 

5) establish the reference distributions to be used in the subsequent 

assessment of uncertainty in the statistic of interest. 

6) repeat generating K number of data combinations, create L realizations 

using updated reference distribution obtained from last uncertainty order, 

calculate uncertainty of order k, and obtain new reference distribution for 

the next order of uncertainty. 

Where k = 2,…,∞. 

 

The CFD has shown to be convergent in the sense of limiting uncertainty 

calculation, design independent, and parameterization invariant. It is expected that 

the uncertainty in the parameter of interest will increase/decrease to a point where 
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the parameter uncertainty stabilizes. The “stabilization” phase corresponds to the 

fluctuation of the limiting parameter uncertainty around some constant value, 

which defines the limiting parameter uncertainty. 

 

 

3.4. Remarks 

 

It is important to know which approach is the best to be used in any case 

study. It might depend on input data if they are correlated or not and how much 

these approaches can be reliable. 

 

In the early stage of reservoir life, using BS is more recommended 

because it is simple and easy to use. Even though, all three approaches might give 

the same results, especially if all data are independent. Conventional bootstrap 

can be used till more data are collected and their correlation can be noticed. 

 

SBS and CFD can be used if there is correlation between the input data. 

SBS is expected to give more uncertainty in the statistic of interest since CFD 

accounts for the conditioning data and size of the domain, which reduces 

uncertainty caused by correlation between the input data. CFD is the first 

approach that accounts for those two factors. 

 

The good thing about SBS is that it is more popular and has been used 

more; even though, it might overestimate the uncertainty in the statistic of 

interest. It is recommended to conduct another study on a mature reservoir that 

has more well data and investigate the sensitivity of the uncertainty in the statistic 

of interest for a variable of interest with increasing input well data by adding them 

in steps. 
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Chapter 4 

 

UNCERTAINTY MANAGEMENT 

 

 

There are a lot of variables that play key factors in reserve estimations. 

The variables and their sources should be known to do more investigations in 

order to reduce uncertainties. Measuring the uncertainty of variables is easy to 

account for in 0-D modeling but difficult in 3-D modeling. Those variables 

affecting reserve estimates can be categorized into three major types: 

 

 Geologic factors such as Gross rock volume, Net to Gross ratios, Porosity, 

Water saturation, Cutoff values, Contacts, and Facies distribution. 

 Economic conditions such as Hydrocarbon prices, Development costs, 

Operating costs, and Marketing uncertainty. 

 Engineering factors involve Formation Volume Factors, Hydrocarbon 

fluid properties, Well productivity, Well spacing, Recovery Factors, Drive 

Mechanisms, and Secondary and tertiary projects. 

 

A complete study often studies the effects of more than 20 factors. 

Hydrocarbon resources or reserves are calculated as a combination of these 

factors. In this research, only geologic factors will be considered, even though the 

procedure might be extended in the future to study the effects of other ones. All 

geologic factors, economic conditions, and some of engineering factors are 

uncontrollable factors in estimating reserves, while some of engineering factors 

(such as well spacing, drive mechanisms sometimes, secondary projects, etc) are 

controllable. 
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Uncertainty of parameters of any distribution is important, especially 

uncertainty in the mean of the variable of interest, which is of primary 

importance. The remaining parameters of the histogram are of second-order 

importance compared to the mean. Uncertainty in the mean of any variable of 

interest can be quantified with any of the three techniques described in Chapter 3. 

 

In this chapter, uncertainty management will be discussed from two 

aspects: how uncertainty can be presented and understood and how it is important 

to improve decision making. 

 

 

4.1. Presenting and Understanding Uncertainty 

 

Uncertainty is an essential and inescapable part of life not only oil 

business. There are a lot of decisions made under uncertainty, which causes bad 

consequences. Therefore, it is really important to make the decisions with a full 

picture of uncertainty. Uncertainty is caused by incomplete knowledge regarding 

relevant geological, geophysical, and reservoir engineering parameters of the 

subsurface formation. Estimating HIIP in the appraisal stage of a reservoir is often 

most critical because of the large financial risk. Sometimes there is no time to 

consider uncertainty in all parameters; so, important parameters have to be 

investigated and presented in a good manner. 

 

In estimating resources or reserves volumes, if the uncertainty was not 

fully captured and presented in a good manner then it might underestimate or 

overestimate the volumes and cause unwanted avoidable consequences. Even 

though, uncertainty is affected by the methodology of estimating HIIP too. 
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4.1.1. Distribution and Quantiles 

 

A single reserves figure or deterministic case can be computed if the value 

of each parameter is certain. Because of uncertainty, individual parameters are 

better represented by a probability distribution or different realizations, which 

then leads to a probability distribution for reserves, which can be summarized in a 

few numbers, for ease of reporting or comparison, such as minimum, maximum, 

mode, median, and mean, see Figure 4-1. According to SPE and CIM 

(Etherington, J. et.al.; 2005), P90, P50, and P10 can be applied in reporting 

reserves or HIIP using probabilistic methods to represent proved, probable, and 

possible reserves, respectively or low estimate, best estimate, and high estimate 

for resources. 

 

 P90, P50, and P10 means that the quantities actually recovered will equal 

or exceed the estimate with a probability of at least a 90%, 50%, and 10%, 

respectively. 

 

 

 

 

 

 

 

                           

     

 

 

Figure 4-1: Terms Relating to Reserves Uncertainty. 

Median 

P50 

Min. P90            Mode       Mean       P10            Max. 

Total 

Proved 
Total 

Proved+Probable+Possible 

Total 

Proved+Probable 

Reserves 

Relative 

Frequency 



 - 28 - 

4.1.2. Sensitivity Analysis 

 

It is important to have sensitivity analysis in reserve estimations. 

Sensitivity Analysis studies the manner how the most optimal target solution or 

output would be affected by changing one parameter or more of inputs at the time 

with keeping all the other parameters unchanged at the base case value. For most 

parameters, at least two runs are required, with an optimistic and a pessimistic 

setting, respectively. The analysis can be used to know the important or most 

critical variables since reducing the number of variables is the most effective way 

to reduce computational cost in a risk analysis process. In addition, once the key 

uncertainties have been identified, attention can be focused on appropriate 

contingency plans to reduce their impact. 

 

It is easy to conduct sensitivity analysis in 0-D models but difficult in 3-D 

models. The difficulty in conducting sensitivity analysis in 3-D models is because 

of not having one parameter value due to heterogeneity. Also, the 

interdependence between some parameters has some constraints on uncertainty. 

The procedure to analyze the parameters’ uncertainty has to be repeatable, robust, 

consistent between reservoirs, and as independent as possible. 

 

 To conduct sensitivity analysis in this research, different realizations for a 

variable of interest will be used to investigate its effect on HIIP while using fixed 

realizations for other variables. 

 

4.1.3. Tornado Chart and Spider diagram 

 

A tornado chart is often used to compare distributions, in the form of 

back-to-back histograms. It is particularly popular for comparing closely related 

populations. It also ranks input parameters in terms of their impact on the output 

from the most effective to the least effective one, where the greater the 
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corresponding bar in the tornado chart, the greater the sensitivity and importance 

of that parameter to generate output. 

 

Each parameter will vary by generating different realizations and using 

them to calculate different HIIP output. From the HIIP distribution, some statistic 

parameters can be used to evaluate the uncertainty in the HIIP. For example, the 

difference between the mean and P90 and P10 (“P90 – Mean” and “P10 – Mean”) 

can be calculated and compared using a tornado chart. Another way of the 

comparison is to compare P90/P50 and P10/P50 or the standard deviation of the 

output results using a tornado chart. 

 

Spider diagram is another way of the comparison between the results, 

where the more inclined a parameter’s line is to the horizontal line, the more 

significant the change in the value of the target optimal solution or function is 

whenever the parameter’s value changes. This type of diagrams was used to 

compare the results of changing input realizations of interest variables by plotting 

“P90 – Mean”, “P50 – Mean”, and “P10 – Mean”. 

 

4.1.4. Merging Uncertainty 

 

The uncertainty in derived variables such as HIIP involves a combination 

of the uncertainty in multiple variables: 

 

 HIIP = GRV * NTG *  * So      (4-1) 

 

Simulation is required to combine the correlated uncertainty in basic 

variables into uncertainty in HIIP variable. Multiple realizations of basic variables 

are simulated as shown in the yellow shaded squares in Table 4-1. Then HIIP is 

calculated with each set of realizations as shown in the last column. The 

uncertainty in the HIIP (or any derived property) can be assembled from the 

realizations. The uncertainty in HIIP might become less than uncertainty of some  
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Realization 

Number GRV NTG  So Calculated HIIP 

1 95 0.55 0.22 0.80 9.20 MMbbl 

2 105 0.60 0.23 0.79 11.44 MMbbl 

… … … … … … 

100 100 0.59 0.24 0.77 10.90 MMbbl 

Table 4-1: A schematic table to calculate HIIP and obtain the histogram and the uncertainty in 

HIIP. 

 

 

basic variables due to merging some variables uncertainties while calculating 

HIIP uncertainty (Ren, W. et.al.; 2004). 

 

4.1.5. Local Uncertainty vs. Global Uncertainty 

 

Uncertainty can be quantified on a variety of scales. It is important to 

understand the scale of the calculation and the results. It might be local or global 

uncertainty (Neufeld and Leuangthong, 2005). 

 

Global uncertainty relates to some calculated statistic that involves many 

locations simultaneously. It is difficult to check global uncertainty. To assess 

global uncertainty or merged uncertainty in a derived variable, a common 

approach is to construct alternative realizations of the spatially distributed 

variables. Then these realizations are used to calculate resources or reserves, 

where uncertainty in the global response is assembled as a histogram of the 

responses. The realizations would not be the same; there would be local 

uncertainty, which is obtained from differences between the realizations at each 

location. 

 

On the other hand, local uncertainty relates rock properties at specific 

locations that can be potentially sampled in the future. It can be assessed by using 
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2-D models and checked by cross validation or new drilling where the proportions 

of true values falling within specified probability intervals are checked against the 

width of the intervals. P10, P50, and P90 maps can be used not only to summarize 

uncertainty but also to identify the high/low valued areas, where the high P10 

values reflect areas that are surely high and the low P90 values reflect areas that 

are surely low. 

 

 

4.2. Decision Making in Presence of Uncertainty 

 

The more uncertainty is available, the harder decision can be taken. 

Specially, at the early life of reservoir, when the data is sparse and decisions have 

to be taken. Therefore, it is important to quantify uncertainty available in 

estimations to optimize the decisions. 

 

Resources/reserves volumes might be underestimated or overestimated in 

the presence of uncertainty. The decisions made based on the estimated volumes 

might lead to a huge loss due to not quantifying the uncertainty in a proper way. 

 

Designing new production facilities is one of the most important decisions 

made in the life of a producing reservoir since it is made usually in the early stage 

of the reservoir life when there is a lack of information and sparse well data. 

Quantifying uncertainty of reserves volumes and estimated fixed production rates 

might help in planning to have a flexible design that can be changed in the future 

depends on the future reserves estimates when more data are collected and 

analyzed. Several options should be explored, and strategies should be devised 

that allow for quick de-constructing and re-establishing of production facilities. 
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4.2.1. Robust Decisions 

 

Getting a fair reserve distribution will help to make better decisions such 

as selecting best area for field development, optimum number of wells needed to 

be drilled, best strategic production plan, and optimum production facilities. 

 

 Decisions made have to be robust and flexible, where robustness means 

the absence of a need to change or react and flexibility means the ability to 

change or react when necessary. It is important to seek for robust and flexible 

alternatives. The idea is that picking a single optimum choice as the alternative for 

a given decision may be flawed, if the uncertainties are large and the outcomes 

are sensitive to the uncertainties. In that case, it is better to seek alternatives that 

are expected to perform reasonably well over a wide range of futures (i.e., are 

robust to key uncertainties) and can be changed over time as new data is gathered 

and experience is gained. 

 

4.2.2. Decide to Reduce Uncertainty 

 

 Conducting sensitivity analysis in reserve estimations is really helpful in 

order to reduce uncertainty or better understand the nature and source of the 

uncertainty. Then the attention can be focused on appropriate contingency plans 

to reduce their impact. 

 

4.2.3. Value of Information 

  

Sometimes economics play a role on the value of information, it might be 

too expensive to get a value of a variables at unsampled location than getting the 

value of another less important whether in the same location or another one. 
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The information is not only valuable as it reduces uncertainty in 

estimating resources/reserves volumes, but also because other unfeasible 

alternatives can become possible. 

 

4.2.4. Transforming of Uncertainty Through Economics/ 

Performance Forecast 

 

Geological uncertainty is an unavoidable reality for any reservoir recovery 

project. Therefore, production performance is also always uncertain since 

production performance is significantly related to reservoir geology. 

Geostatistical simulation provides a model of geological uncertainty through 

multiple realizations of geological variables such as facies type, porosity, water 

saturation, and permeability. These geological realizations can be used to 

calculate various production performance measures by way of transfer functions 

such as flow simulation. 

 

A flow simulator is used to evaluate the responses of parameters 

governing fluid flow through heterogeneous reservoirs and make reservoir 

management decisions based on predicted dynamic reservoir responses to 

production. Normally, only one deterministic set of parameters is considered and 

no uncertainty is associated with the responses or taken into account for the 

decisions. 

 

Predicting future reservoir performance is an important goal of reservoir 

flow models. Performance forecasting permits optimization of the economic 

recovery of the oil and gas resources. It is important to transform uncertainty in 

resources/reserves volumes estimates through Economics/Performance forecast to 

optimize decision making. 
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 In this dissertation, a methodology to estimate HIIP with uncertain in 

geological parameters is set up. Even though, it can be developed in the future to 

transform this uncertainty through Economics/Performance Forecast. 

 

4.2.5. Design for Fixed Production Rate 

 

 It is common to simulate reservoir performance to estimate reservoir 

recovery within a certain period or a reservoir life. This step is needed to design 

production facilities and consider any future modifications in production facilities 

or changes in reservoir management such as shifting from primary to secondary 

production scheme. 
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Chapter 5 

 

METHODOLOGY 

 

 

The Hydrocarbon Initially in Place (HIIP) of a resource can be calculated 

by multiplying the GRV by NTG by net porosity by net hydrocarbon saturation. 

An economic feasibility study has to be conducted to provide a level of 

confidence and an estimate of reserves. In this research, HIIP uncertainty will be 

assessed by conducting sensitivity analysis to investigate the effects of uncertainty 

of each variable of interest individually. Then HIIP will be estimated in the end 

with full uncertainty in all variables of interest.  

 

Two scenarios will be considered in this research. The first scenario 

describes the traditional approach of simulating multiple realizations for 

uncertainty in variables of interest without parameter uncertainty. The second 

scenario presents the main contribution of this research, which is a procedure to 

simulate realizations for uncertainty in variables of interest with parameter 

uncertainty in the mean. The second scenario will be conducted three times, 

where different parameter uncertainty distribution will be incorporated each time. 

The different approaches used will be compared and discussed in Chapter 6, 

where a case study will be conducted. The results of the case study will be 

compared with each other and ended by some comments and recommendations. 

 

All techniques required in assessing uncertainty in variables of interest 

will be described in this chapter with the required changes to incorporate 

parameter uncertainty. Table 5-1 shows a summary of the techniques that will be 

used in a traditional scenario without parameter uncertainty and in the proposed  
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Parameters to be considered 

To quantify the Uncertainty 

Without PU With PU 

Structural 

Surfaces 
 Top/Bottom 

Surface 

 Layer Thickness 

Conditional Sequential 

Gaussian Simulation 

Conditional Sequential 

Gaussian Simulation 

Fluids 

Contacts 

Levels 

 GOC 

 GWC 

 OWC 

Monte Carlo Simulation Monte Carlo Simulation 

Petrophysical 

Properties 
 Net-to-Gross 

 Porosity 

 Oil Saturation 

Cosimulating with Super 

Secondary data 

Cosimulating with Super 

Secondary data 

Full 

Uncertainty 
 Full Uncertainty Combining all realizations 

randomly 

Multivariate Parameter 

Uncertainty 

Table 5-1: Techniques for sampling realizations to quantify uncertainty in estimating HIIP 

without/with Parameter Uncertainty. 

 

 

 

scenario with parameter uncertainty. All techniques mentioned in the table will be 

explained below. 

 

 

5.1. Sampling Realizations without Parameter Uncertainty 

 

The traditional scenario of simulating realizations of uncertainty in 

variables of interest without Parameter Uncertainty is described. It is assumed that 

the mean of the variables of interest is fixed and has no uncertainty in it. For 

example, the deviations from the reference surfaces for the structural parameters 

are assumed to follow a normal distribution with a mean of zero and some 

standard deviation. 

 

Three different techniques are used to sample realizations for quantifying 

HIIP uncertainty without parameter uncertainty. Sequential Gaussian simulation 

(SGS) is used to quantify uncertainty in structural surfaces variables such as top 

and bottom surfaces and layer thickness (Xie and Deutsch, 1999), while Monte 

Carlo simulation (MCS) is used to quantify uncertainty in fluid contacts levels 

such as Gas-Oil contact (GOC), Gas-Water contact (GWC), or Oil-Water contact 



 - 37 - 

(OWC). The third method used is a cosimulation approach with a super secondary 

data using the Ultimate SGSIM program (Deutsch and Zanon, 2002). This method 

quantifies uncertainty in petrophysical properties such as NTG, porosity, and oil 

saturation. 

 

5.1.1. Sequential Gaussian Simulation (SGS) 

 

Sequential Gaussian Simulation (SGS) approach is a common approach 

used for reservoir modeling applications. SGS creates multiple equiprobable 

numerical models based on some conditioning data and global statistical 

parameters. SGS became a practical approach in the last two decades because it is 

simple, flexible, and reasonably efficient (Zanon and Leuangthong, 2003). 

 

SGS is a simulation algorithm based on kriging. Locations are assigned 

property values sequentially using previously simulated values as conditioning 

data. It is necessary to use Gaussian values in the SGS method; therefore, the data 

are transformed into Gaussian space. The SGS work-flow can be summarized in 

the following basic steps: 

 

1. Assemble the histogram of raw data and statistical parameters. 

2. Transform data into Gaussian units. 

3. Establish grid network and coordinate system (Zrel-space). 

4. Decide whether to assign data to the nearest grid node or keep separate. 

5. Determine a random path to visit all grid nodes. 

6. At each location: 

a) search to find nearby data and previously simulated grid nodes. 

b) construct the conditional distribution by kriging. 

c) draw a random value from Gaussian distribution which known as 

simulated value. 

7. Repeat step 6 until every location has been visited. 
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8. Transform the data and all simulated values back to their original 

distribution and check results (by this step a realization is generated). 

9. Create any number of realizations by repeating steps 1-8 with a change of 

the random number seed. 

 

Conditional SGS was used in this research to assess HIIP uncertainty with 

uncertainty in structural surfaces variables such as top and bottom surfaces and 

layer thickness. In this approach, the top and bottom surfaces from seismic 

interpretation were considered as reference surfaces that have been fitted to the 

well data. Away from the well locations, there exist uncertainties in the surfaces. 

The deviations from the reference surfaces are assumed to follow a known 

distribution. The deviation will be zero at the well locations and fluctuate away 

from the well locations. Such deviations can be simulated by SGS with 

conditioning data at the well locations. The deviations can then be added to the 

reference surfaces/layer thicknesses. Such simulation provides alternative 

realizations that quantify the uncertainty in the GRV and provides us with a 

distribution of GRV, see Figure 5-1.  

 

Different standard deviations should be used in the undulation generation 

for the top and bottom surfaces. The standard deviations used need to be 

determined based on knowledge of the uncertainty in the seismic interpretation of 

the surfaces and the mismatch between seismic interpretation and well 

observations. In the seismic interpretation process, the first surface captures 

uncertainty from the present day surface down to the depth of the reservoir; 

subsequent surface uncertainty is the incremental uncertainty due to the distance 

between the reservoir layers. Usually, surfaces are interpreted with seismic data 

and then calibrated with well observations to remove the mismatch between 

seismic interpretation and well observations. However, the mismatch information 

provides us valuable hints of the uncertainties on the top and bottom surfaces. 
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Figure 5-1: Uncertainty in top and bottom surfaces and layer thickness without PU can be 

simulated by using SGS with conditioning data to be zeros at well locations. 
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The following are required parameters in the conditional SGS procedure to 

simulate realizations without parameter uncertainty for the structural variables: 

 

1) The base case value (structure or thickness): (zb(u), u in A) a 2-D grid of 

values coming from the seismic.  In general these values are fitted to the 

well data. 

2) A global estimate of the uncertainty in the base case surface  – a single 

number established from time interpretation uncertainty and time to depth 

uncertainty.  It could be calculated from: 

𝜎∆ =   𝜎𝑇𝐼
2  +  𝜎𝑇𝐷

2        (5.1) 

Where TI refers to the time interpretation standard deviation and TD refers 

to the time-to-depth standard deviation and obtained from the mismatch 

between seismic interpretation and well observations. These would be 

based on a review of the seismic data and, perhaps, differences between 

different interpretations. The former equation is based on two 

assumptions: the deviations have a normal distribution shape and errors in 

TI and TD are independent. 

 

These two parameters must be established from the available reservoir 

data.  The simulation proceeds by establishing a target mean, that could be 

different from 0.0, simulating the deviations and adding them to the base case 

surface.  The procedure for simulation can be summarized by the following steps: 

 

1) obtain the best variogram model fitting the experimental variogram result 

for Structure Surfaces or Layer Thickness. 

2) simulate y
l
 uncertainty realizations using SGS with conditioning values at 

well locations to be zeros. The realizations will have a mean of zero and a 

standard deviation of one. Different random numbers should be used at 

each step to avoid unwanted correlations. 

3) non-standardize the realizations by multiplying them with some standard 

deviations 𝜎∆ (referring from seismic data). 
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∆𝑙 𝒖𝒊 =  𝑦𝑙 𝒖𝒊 ∗ 𝜎∆       (5-2) 

4) add the results to the base reference surfaces obtained from seismic data 

(to the top and bottom surfaces to quantify uncertainty in top and bottom 

surfaces and only to the bottom surface to quantify uncertainty in layer 

thickness). 

 𝑧𝑙 𝒖𝒊 =  𝑧𝑏 𝒖𝒊 + ∆𝑙       (5-3) 

            =  𝑧𝑏 𝒖𝒊 +  𝑦𝑙 𝒖𝒊 ∗  𝜎∆ 

where i = 1, …, n grid nodes 

5) calculate HIIP by calculating HIIP of each realization using equation (4-1) 

and generating a distribution plot. 

 

SGS with conditioning data can be used to quantify uncertainties in the 

structural parameters, the top and bottom surfaces and the layers thickness. For 

assessing the uncertainty in the top and bottom surfaces, the uncertainty 

realizations are added to the reference top and bottom structure obtained from the 

seismic. On the other hand, the uncertainty realizations are added to the bottom 

surface to assess the uncertainty in a layer thickness and in case of cross-over, the 

thickness will be zero since it cannot be negative. 

 

5.1.2. Monte Carlo Simulation (MCS) 

 

Monte Carlo simulation (MCS) relies on repeated random or pseudo-

random sampling to compute results. It tends to be used when it is unfeasible or 

impossible to compute an exact result with a deterministic algorithm. For 

example, the depths of the fluids contact levels are uncertain in many cases.  

 

Typically, when the fluid contacts level is not clearly measured, a 

minimum, most-likely and maximum location can be identified. In such a case, 

the location of the contact can be simulated using a triangular distribution, see 

Figure 5-2. The mean and standard deviation of a triangular distribution can be 

defined by the following equations: 
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Mean = (a+m+b)/3       (5-4) 



 = (a

2
 + m

2
 + b

2
 – am – ab – mb)/18    (5-5) 

Where: a = minimum 

 m = mode 

 b = maximum 

 

The following steps can be followed to simulate the fluid contacts levels: 

1. generate deviations randomly assuming a triangular distribution 

(minimum, mode, and maximum). 

2. run L realizations with different seed numbers. 

3. calculate HIIP for each realization and get a HIIP distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: Uncertainty in Fluids Contacts Level without PU can be simulated by using MCS 

with assuming a triangular distribution. 

 

 

MCS technique can be used to generate realizations for depths of fluid 

contacts such as gas-oil contact (GOC), gas-water contact (GWC), and oil-water 

contact (OWC). Different distributions, such as double triangular distributions 

(Behrenbruch et.al., 1985) and uniform distributions, might be assumed to 

represent fluid contacts levels. Uniform distribution can be used in the early 
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stages of reservoir life with the absence of data because it is a convenient and well 

understood source of random variation. Sometimes it is used to represent a worst 

case scenario for variation when doing sensitivity analysis. 

 

As the most likely outcome can be determined, then the triangular 

distribution might be the best choice. Another advantage for the triangular 

distribution is that it is used for a variable not suitable for a normal distribution, 

because it is either bounded or not symmetrical.  

 

5.1.3. Cosimulation with Super Secondary Data 

 

An important consideration when calculating reserve volumes is the 

correlation between some parameters. For example, NTG, , and Sw have some 

relationship with thickness and may have a relation between each other. Another 

consideration is correlation to other data types such as seismic and sparse well 

data. These correlations must be resolved by a different technique than SGS. 

 

A cosimulation technique with super secondary data is used to quantify 

the uncertainty in petrophysical properties such as NTG, , and Sw. Many 

realizations of those petrophysical properties can be generated simultaneously by 

using an ultimate_sgsim program. This program was generated by CCG Group for 

collocated cokriging using a super secondary variable (Babak and Deutsch, 2007). 

 

First, NP or NTG can be inferred from well logs. Generally, the procedure 

involves exclusion of log intervals judged to be noncommercial, the remainder 

being considered net pay. The relationship between the NTG and porosity has to 

be considered in the simulation. Then, the minimum cutoff porosity usually 

selected based on a correlation between permeability and porosity, where the 

cutoff porosity corresponds to the minimum permeability judged to be 

commercial. 
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The following steps are required to quantify uncertainty in petrophysical 

properties using cosimulation with a super secondary data, that is, thickness 

obtained from seismic data: 

 

1) calculate variables of interest (such as NTG, porosity, and Sw) at well 

locations. 

2) obtain the best variogram model fitting the experimental variogram result 

for variables of interest. 

3) generate correlation matrix among variables of interest. 

4) cosimulate variables of interest with super secondary data (thickness 

obtained from seismic data) using the ultimate_sgsim program. 

5) calculate HIIP using different realizations and get its distribution. 

 

To simulate different realizations using cosimulating technique with super 

secondary data without parameter uncertainty, the reference distribution, obtained 

from well data, for the variable of interest was fixed and used as an input for 

generating all realizations of the variable of interest. 

 

 

5.2. Sampling Realizations with Parameter Uncertainty 

 

The second scenario that is novel to this research will incorporate 

parameter uncertainty distributions obtained from using parameter uncertainty 

approaches described in Chapter 3. This scenario will be conducted three times to 

compare the results of using different parameter uncertainty methods, BS, SBS, 

and CFD. In each run, four techniques will be used to assess HIIP uncertainty 

with parameter uncertainty. The four techniques are SGS, MCS, Cosimulating 

with Super Secondary data, and Multivariate Parameter Uncertainty, where the 

first three techniques will have some changes from those conducted without 

parameter uncertainty and the fourth technique will be conducted to assess HIIP 

uncertainty with parameter uncertainty in all variables of interest. Parameter 
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uncertainty in the means of variables means that the uncertainty realizations have 

variable means for those variables of interest.  

 

The Multivariate Parameter Uncertainty technique is used when full 

uncertainty HIIP with parameter uncertainty is quantified. It is based on 

incorporating the correlation coefficients among variables of interest to determine 

the means of parameter uncertainty to eliminate the aggregation problem. 

 

5.2.1. Multivariate Parameter Uncertainty (MVPU) 

 

As mentioned before, this research is mainly to quantify the uncertainties 

in estimating the reserve/resource volumes with parameter uncertainty. The 

techniques described in Sections 5.1.1 through 5.1.3 needs slight changes to 

incorporate the parameter uncertainty distribution. To assess full uncertainty, 

Multivariate Parameter Uncertainty technique (MVPU) has to be used prior 

applying other techniques, conditional SGS, MCS, and cosimulation with super 

secondary data. MVPU is a stochastic approach that helps to determine the values 

of target means for parameter uncertainty instead of selecting the means 

randomly, in descending or in ascending order by incorporating the correlation 

coefficient among variables of interest. GSLIB-like code is used for this purpose. 

The code is called correlate created by (Neufeld and Deutsch, 2007). MVPU 

technique can be summarized by the following steps (followed by more details 

description): 

 

1) Generate normal scores distributions for all variables of interest such as 

Top, Thickness, NTG, Porosity, and Sw. (using nscore code). 

2) Generate random (independent) normal score values (wi) (using Excel or 

mcs code). The output should have a  column for each variable means: 

wi = w1,…, wn        (5-6)   

where n = number of variables of interest. 
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3) Multiply wi values by L where C = LU (using correlate code). 

Y=Lwi         (5-7) 

Cov{y y
+
} = C        (5-8) 

4) Back transform yi to mean values for variables of interest using 

transformation tables from step 1 and backtr code. 

Where yi = y1 ,…, yn 

n = number of variables of interest. 

5) Check the correlation. 

 

The Multivariate Parameter Uncertainty can be described in more detail in 

the following steps: 

 

1) clean the data and calculate 2D data for variables of interest (such as NTG, 

porosity, and Sw) at well locations; 

2) obtain the best variogram model fitting the experimental variogram result 

for variables of interest; 

3) generate correlation coefficients matrix among variables of interest; 

4) get a distribution of parameter uncertainty in the mean for all variables of 

interest using a bootstrap method; 

5) get the transformation tables for PU distributions of all variables of 

interest by normal scoring their PU distributions using nscore code; 

6) generate random values for means using MCS. The output will have 

columns of values wi where i = 1,…,n (n = number of interest variables). It 

is recommended to have each column in a separate file. The number of 

data should be equal to number of realizations. 

7) Multiply w values by L where C = LU (using correlate code). 

i. Y=Lw 

ii. Cov{y y
+
} = C 

8) back transform the results y1,…,yn to values of variables means such as 

Top, Thickness, NTG, Porosity, and Sw using transformation tables 

obtained from Step 5; 
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9) check the correlation among the back transformed values (using corrmat 

code) and compare the results to the input correlation coefficients used in 

step 7. 

10) use correlated mean values in calculating uncertainty in variables of 

interest (such as Structure Surfaces and Petrophysical properties) using the 

same procedures described earlier in Sections 5.2.1 through 5.2.3; in other 

words, use the first value of back transformed y1 as a Top mean and 

generate first realization of Top, use first value of back transformed y2 as 

a Thickness mean, use first value of back transformed y3 as a NTG mean 

to generate first realization of NTG, and so on. Then repeat the step for the 

second values to generate the second realizations for all variables of 

interest. Do the same process for all values of back transformed yi (L 

realizations). 

11) combine all realizations generated to quantify uncertainty in all variables 

of interest then calculate HIIP and get its distribution. 

12) repeat the procedure from step 1 for a different PU method (Spatial 

Bootstrap and Conditional Finite Domain). 

 

MVPU technique is important if resource/reserve volumes are estimated 

with full uncertainty since it accounts for correlation coefficient between all 

variables of interest. It is not needed if a sensitivity analysis is conducted. In case 

of conducting a sensitivity analysis, different realizations of a variable of interest 

will be used with one fixed realization (selected randomly) of the remaining 

variables of interest, while in case of full uncertainty, all realizations of all 

variables of interest will be used to calculate HIIP and get its distribution. 
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5.2.2. Sequential Gaussian simulation (SGS) with 

Parameter Uncertainty 

 

As mentioned in Section 5.1.1, SGS is a stochastic approach that can be 

used to quantify uncertainty in structural surfaces. In this section, it will be 

modified to account for parameter uncertainty in the mean of the variable of 

interest. The methodology will be modified to have the uncertainty realizations 

shifted by a mean other than zero since there is uncertainty in the means of the 

variables of interest. To generate such realizations, realizations are simulated by 

SGS with conditioning data at well locations to be a non-zero value that is based 

on the mean and standard deviation of the variable of interest obtained from well 

data a mean of the variable of interest drawn randomly from parameter 

uncertainty distribution. Figure 5-3 shows illustration of sampling realizations 

using SGS with parameter uncertainty. 

 

Three parameters must be established from the available reservoir data. 

Two of them, the base case value (structure or thickness) and a global estimate of 

the uncertainty in the base case surface (), were mentioned in Section 5.1.1, 

while the third parameter is uncertainty distribution in the mean calculated from 

the conventional bootstrap, the spatial bootstrap, or the conditional finite domain. 

 

The procedure for simulating realizations using conditional SGS with 

parameter uncertainty can be summarized by the following steps: 

 

1) generate a histogram for the data obtained at well locations; 

2) obtain a variogram model fit to the experimental variogram result for the 

variable of interest (such as top and bottom surfaces and layer thickness); 

3) calculate a distribution of parameter uncertainty in the mean for the 

variables of interest using a bootstrap method; 
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Figure 5-3: Uncertainty in top and bottom surfaces and layer thickness with PU can be simulated 

by using SGS with conditioning data to be non-zeros at well locations. 
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4) run SGS to generate L realizations with a mean of zero and standard 

deviation of one, and conditioning values at well locations to be dx; 

𝑑𝑥𝑙 =
𝑚𝑝

𝑙 −𝑚𝑜

𝜎𝑜
        (5-9) 

where,  l      = 1, …, L 

mp
l
 = parameter mean drawn from parameter uncertainty 

distribution for the variable of interest; 

mo   = a mean obtained from 2D original data for the variable of 

interest; 

o   = a standard deviation obtained from 2D original data for the 

variable of interest; 

5) reset values at well locations to be zero by adding (-dx) to the results of 

step 4; 

6) To non-standardize the realizations by multiplying them with some 

standard deviations 𝜎∆ (referring from seismic data), then add the new 

results to the reference data; 

∆𝑙 𝒖𝒊 =  𝑦𝑙 𝒖𝒊 ∗ 𝜎∆       (5-10) 

7) To add the results to the base reference surfaces obtained from seismic 

data (to the top and bottom surfaces to quantify uncertainty in top and 

bottom surfaces and only to the bottom surface to quantify uncertainty in 

layer thickness). 

𝑧𝑙 𝒖𝒊 =  𝑧𝑏 𝒖𝒊 + ∆𝑙 𝒖𝒊       (5-11) 

=  𝑧𝑏 𝒖𝒊 +  𝑦𝑙 𝒖𝒊 ∗  𝜎∆ 

8) To calculate the uncertainty in HIIP by calculating HIIP of each 

realization and generating a distribution plot. 

9) Repeat steps 3 to 8 for PU distributions obtained from Spatial Bootstrap 

and Conditional Finite Domain methods. 

 

Different random numbers can be used at each step in the simulation to 

avoid unwanted correlations. Care should be taken to ensure data conditioning 

and reasonable standard deviations at each step since determining uncertainty in 
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the base case surface needs a good experience of a geostatistician to calculate the 

standard deviations of the uncertainty in the structural parameters. The results are 

sensitive to those standard deviations and might underestimate or overestimate the 

uncertainty in resources estimations. 

 

5.2.3. Monte Carlo Simulation (MCS) 

 

In case of simulating fluid contacts levels with parameter uncertainty, 

almost the same procedure described when assessing uncertainty in fluid contacts 

levels without parameter uncertainty, as in Section 5.1.2, but the distribution 

mode has to be a variable in each realization, see Figure 5-4. The following steps 

summarized the procedure to simulate realizations for fluid contacts levels with 

parameter uncertainty in the mode: 

 

1) To generate deviations randomly assuming a triangular distribution 

(minimum, mode, and maximum); 

2) To run L realizations with different mode values in each realization; 

3) To calculate HIIP for each realization and get a HIIP distribution plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4: Uncertainty in Fluids Contacts Level with PU can be simulated by using MCS with 

assuming a variable mode triangular distribution. 
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The fluid contacts levels uncertainty might be also in the limits of the fluid 

contacts levels, the minimum and maximum, but they are assumed to be fixed in 

this procedure. The uncertainty in the mode of fluid contacts levels is used instead 

of the mean uncertainty for simplicity in calculation. Even though, the mean can 

be easily calculated for a triangular distribution as in equation 5-4. 

 

5.2.4. Cosimulation with Super Secondary Data 

 

To assess HIIP uncertainty with uncertainty in petrophysical properties, 

cosimulation with super secondary data is a suitable technique to be used since it 

incorporates the correlation among the variables of interest and the secondary 

data. Some changes to the steps described in Section 5.1.3 are required to 

incorporate the parameter uncertainty distribution.  

 

Petrophysical properties such as NTG, , and Sw can be simulated 

sequentially or simultaneously. To account for parameter uncertainty, the changes 

to the methodology will be the input reference histogram used in the 

cosimulation. It has to be different in each realization based on shifting the 

original reference histogram to a new mean drawn from parameter uncertainty 

distribution. 

 

In case of assessing resource volumes with full uncertainty, MVPU 

technique, as mentioned in Section 5.2.1, is used to determine the mean values for 

the petrophysical properties, where those mean values have to be used to generate 

different reference distributions. To shift the reference distribution, there are two 

approaches can be applied, addition and multiplication approaches. The addition 

approach is based on shifting the original data mean to a new mean by adding the 

difference between those two means to all original data as shown in the following 

equations: 
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∆𝑚 = 𝑚𝑜 −  𝑚𝑝        (5-12) 

𝑥𝑛𝑙 =  ∆𝑚 +  𝑥𝑙        (5-13) 

Where 𝑚𝑜 = the mean of original data. 

𝑚𝑝 = the parameter mean obtained from parameter distribution.  

∆𝑚 = the difference between original data mean and parameter 

mean. 

𝑥𝑙 = a value of variable of interest at l sampled location. 

𝑥𝑛𝑙 = the new shifted value of variable of interest at l sampled 

location. 

 

This approach has a disadvantage that the data might be assigned to values 

out of its real limits from the two sides, over or below the limits. For example a 

porosity value can not be zero or negative. Also, NTG is always between 0 and 1 

and can not out of this range. 

 

On the other hand, the multiplication approach is based on using the 

following equations to shift the reference distribution: 

 

𝑥𝑛𝑙 =  𝑥𝑙 ∗  
𝑚𝑝

𝑚𝑜
       (5-14) 

where 𝑚𝑜 = the mean of original data. 

𝑚𝑝 = the parameter mean obtained from parameter distribution.  

𝑥𝑙 = a value of variable of interest at l sampled location. 

𝑥𝑛𝑙 = the new shifted value of variable of interest at l sampled 

location. 

 

The multiplication approach might cause some values of the variable of 

interest exceeding the trimming limits as the addition approach does. In addition, 

the multiplication approach changes the standard deviation of the original data. 

Regardless of which approach is used, all data exceeding the limits are deleted 
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from the distribution and the mean of the remaining data has to be recalculated 

then shifted again to the parameter mean (iterative process). 

 

Next step is to use those different reference distributions as input in the 

cosimulation process to simulate different realizations for petrophysical properties 

with parameter uncertainty. The required steps are as follows: 

 

1) calculate 2D data for variables of interest (such as NTG, porosity, and Sw) 

at well locations; 

2) obtain the best variogram model fitting the experimental variogram result 

for variables of interest; 

3) generate correlation matrix among variables of interest; 

4) get a distribution of parameter uncertainty in the mean using a bootstrap 

method; 

5) use L reference files obtained from original data file by shifting its 

distribution to a new mean, which is drawn from parameter uncertainty 

distribution; 

6) generate L realizations by cosimulating variables of interest with 

supersecondary data (thickness obtained from seismic data) using an 

ultimate_sgsim code with changing the reference file for each realization; 

7) calculate HIIP using different realizations and get its distribution. 

8) repeat the procedure from step 4 for a different parameter uncertainty 

method (Spatial Bootstrap and Conditional Finite Domain).  

 

All realizations of all variables of interest are used in the calculations to 

assess full uncertainty in resource/reserve estimations, but there is no base 

scenario in simulating realizations for petrophysical properties. Therefore, 

different realizations of the variable of interest will be used with one fixed 

realization selected randomly for each of the remaining variables to conduct a 

sensitivity analysis.  
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5.3. Work Flow 

 

Figure 5-5 illustrates a work flow for quantifying HIIP uncertainty without 

parameter uncertainty in the mean. 

Figure 5-6 illustrates a work flow for sampling realizations for structural 

surfaces without parameter uncertainty in the mean. 

Figure 5-7 illustrates a work flow for sampling realizations for fluids 

contacts levels without parameter uncertainty in the mode. 

Figure 5-8 illustrates a work flow for sampling realizations for 

Petrophysical Properties without parameter uncertainty in the mean. 

Figure 5-9 illustrates a work flow for quantifying HIIP uncertainty with 

parameter uncertainty in the mean. 

Figure 5-10 illustrates a work flow for Multivariate Parameter 

Uncertainty. 

Figure 5-11 illustrates a work flow for sampling realizations for structural 

surfaces with parameter uncertainty in the mean. 

Figure 5-12 illustrates a work flow for sampling realizations for fluids 

contacts levels with parameter uncertainty in the mode. 

Figure 5-13 illustrates a work flow for preparing different reference 

distributions by shifting the original data. 

Figure 5-14 illustrates a work flow for sampling realizations for 

Petrophysical Properties with parameter uncertainty in the mean. 
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Quantifying HIIP uncertainty without Parameter Uncertainty in The 

Mean (5.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5-5: Work Flow 5.1: Quantifying HIIP uncertainty without Parameter Uncertainty in The 

Mean.  
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Sampling Realizations for Structural Surfaces without Parameter 

Uncertainty (5.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5-6: Work Flow 5.2: Sampling Realizations for Structural Surfaces without Parameter 

Uncertainty. 
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Sampling Realizations for Fluid Contacts Levels without Parameter 

Uncertainty (5.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5-7: Work Flow 5.3: Sampling Realizations for Fluids Contacts Levels without Parameter 

Uncertainty. 
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Sampling Realizations for Petrophysical Properties without Parameter 

Uncertainty (5.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5-8: Work Flow 5.4: Sampling Realizations for Petrophysical Properties without 

Parameter Uncertainty. 
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Quantifying HIIP uncertainty with Parameter Uncertainty (5.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5-9: Work Flow 5.5: Quantifying HIIP uncertainty with Parameter Uncertainty. 
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Multivariate Parameter Uncertainty (5.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 5-10: Work Flow 5.6: Multivariate Parameter Uncertainty. 
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Sampling Realizations for Structural Surfaces with Parameter 

Uncertainty (5.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5-11: Work Flow 5.7: Sampling Realizations for Structural Surfaces with Parameter 

Uncertainty. 
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Sampling Realizations for Fluid Contacts Levels with Parameter 

Uncertainty (5.8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5-12: Work Flow 5.8: Sampling Realizations for Fluids Contacts Levels with Parameter 

Uncertainty. 
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Preparing Different Reference Distributions by Shifting the Original 

Data (5.9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5-13: Work Flow 5.9: Preparing Different Reference Distributions by Shifting the Original 

Data. 
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Sampling Realizations for Petrophysical Properties with Parameter 

Uncertainty (5.10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 5-14: Work Flow 5.10: Sampling Realizations for Petrophysical Properties with Parameter 

Uncertainty. 
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Chapter 6 

 

CASE STUDY 

 

 

In this part, a real case will be presented using Hekla data. The Hekla 

reservoir is a portion of a large North Sea fluvial deposit offshore Norway. The 

Hekla data set is suitable for demonstrating the proposed approach described in 

chapter 5. The data set includes 20 wells containing petrophysical properties and 

seismic data defining reservoir geometry. The reservoir consists of two major 

layers, H1 and H2. From the seismic data, there are major faults crossing the 

fields diagonally as in Figures 6-1 and 6-2, which show the 2D and 3D views of 

H1 layer top structure of Hekla field. 

 

 

6.1. Input Data 

 

The following case study is based on data set of Hekla reservoir. The data 

are available in two data files. The first file contains seismic data defining 

reservoir geometry. It contains 8 columns about seismic data defining reservoir 

geometry (X-Coordinate, Y-Coordinate, H1 Top depth, H2 Top depth, H3 Top 

depth, H1 Impedence, H2 Impedence, H3 Impedence). The second file contains 

20 well data. It includes 12 columns of well data (Well ID, X-Coordinate, Y-

Coordinate, Depth, Acoustic Impedance, Facies, Core Porosity, Core Horizontal 

Permeability, Core Vertical Permeability, Log Porosity, Log Permeability).  Not 

all data in the input files were used in this research. 

 

By analyzing the seismic data, it is obvious that the reservoir consists of 

two major layers, H1 and H2. It is also gridded horizontally into a 101 x 131 cells,  
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 Minimum Maximum Cell Size (meters) No. of Cells 

X-Coordinate 0 5000 50 101 

Y-Coordinate 0 6500 50 131 

Table 6-1: Summary of Reservoir Grids 

 

 

and each cell represents 50 meters in two directions, X and Y (see Table 6-1), 

where X axis represents the horizontal direction from West to East and Y axis 

represents the vertical direction from South to North. From the seismic data, 2D 

and 3D views of H1 top surface are shown in Figures 6-1 and 6-2 to give an idea 

about the field structures and trends. Figures 6-3 and 6-4 show the contour maps 

for the top surface depth of both H1 and H2 layers with the distribution of the 

twenty well locations. Also, Figures 6-5 and 6-6 show the contour maps for H1 

and H2 layer thickness with the wells distribution in the field. From all those six 

maps view, it was noticed that the low thickness-thin areas crossing the field have  

 

 

 

Figure 6-1: 2D map view of Top Surface of H1 Layer in Hekla field. There are two faults in the 

field structure as shown in the map. The depths are in meters. 
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Figure 6-2: 3D map view of H1 layer top structure in Hekla field. The depths are in meters. 

 

 

 
Figure 6-3: Contour map of H1 layer depth in Hekla field with showing the distribution of twenty 

well locations. The depths are in meters. 
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Figure 6-4: Contour map of H2 layer depth in Hekla field with showing the distribution of twenty 

well locations. The depths are in meters. 

 

 

Figure 6-5: Contour map of H1 layer thickness in Hekla field with showing the distribution of 

twenty well locations. The thickness is in meters. 
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Figure 6-6: Contour map of H2 layer thickness in Hekla field with showing the distribution of 

twenty well locations. The thickness is in meters. 

 

 

two faults. And to ensure that there are two faults, cross-sectional views are 

plotted at different sections of the field, see Figures 6-7 and 6-8. The views in 

these two figures, from top to bottom, represent the cross sectional views from 

West to East and South to North, respectively. 

 

By analyzing the well data file, there are twenty existing wells. Table 6-2 

summarizes well locations, depth of top structure of each layer (H1, H2, and H3), 

and thickness of the two layers (H1 and H2) for all wells while Well No. 8 was 

eliminated from the data since it is a horizontal well with length of about 1000 m.  

Therefore, the thickness found doesn’t reflect the actual vertical thickness in the 

layers especially H2 layer since H3 top structure is unknown. So, the study will be 

based on data of 19 wells only. 

 

The histograms for all top structure depths from logs/well data were 

generated for the three top structures, H1, H2, and H3 layers. Figure 6-9 shows 
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the results of those six histograms.  As seen, that there are two populations in the 

histograms and they have the log-normal shape.  The reason of the two 

populations might be the faults available in the field. There were no data about 

any fluid contacts levels; therefore, it was assumed that the reservoir is oil bearing 

with no Gas Cap while the Oil Water Contact (OWC) was assumed to be at 

2150m depth as a base case. 

 

 

 

Figure 6-7: Cross Sectional views along Y-axes at different X values (X = 21, 41, 61, 81, and 

101). The views from top to bottom represent the cross sectional views from west to east. The 

depths are in meters. 
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It is common to find the porosity cutoff based on a correlation between 

permeability and porosity, where cutoff porosity corresponds to the minimum 

permeability judged to be commercial. In this study, it was assumed that 10% was 

the porosity cutoff since it needs some works in the laboratory to be determined 

and it is not the aim of this study.  

 

 

 

Figure 6-8: Cross Sectional views along X-axes at different Y values (Y = 21, 41, 61, 81, 101, 

and 121). The views from top to bottom represent the cross sectional views from south to north. 

The depths are in meters. 
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Table 6-2: Summary of Well Locations, Depth of Top Structure of Each Layer (H1, H2, and H3), 

and Thickness of the Two Layers (H1 and H2). All units are in meters. 

 

 

 

Porosity cutoff is really effective parameter since it has a lot of effects on 

average porosity and net-to-gross. As porosity cutoff value increases, as average 

values of porosity at well locations increase and values of NTG decrease, but this 

relationship does not mean that average porosity and NTG are negatively 

correlated. Spreadsheet was used in this step to find average porosity and NTG 

values at well locations based on the assumed porosity cutoff. Table 6-3 shows 

NP, NTG, and average porosity for both layers at well locations. It is obvious that 

means of thickness, NP, NTG, and porosity for H1 layer are higher than those for 

H2 layer. 

 

Layer 2 at well-16 is the only layer that has no pay zone detected from 

well logs, so its NTG is zero. Figure 6-10 shows distributions of NTG and 

average porosity for both H1 and H2 layers at well locations. More analysis and 
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comparison between those data were conducted, Figures 6-11 through 6-13 show 

H2 vs. H1 layer data for each well. The results show that NP and NTG in most of 

the wells have higher values in H1 layer, but porosity was different, where some 

wells have better H1 layer porosities than H2 layer ones and some wells have 

better H2 layer porosities than those for H1 layer. 

 

 

Figure 6-9: Histograms for surface structure depth for H1, H2, and H3 layers from top to bottom, 

respectively, and using seismic data on the left and well data on the right. 
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Table 6-3: Summary of Each Layer Thickness, Net Pay, Net-to-Gross, Average Porosity, and 

Porosity Standard Deviation in All 19 Wells Based on 10 % Porosity Cutoff. 

 

 

 

 
Figure 6-10: Histograms of NTG and Porosity for H1 and H2 layers obtained from well data logs. 
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Figure 6-11: Net Pay Data at well locations: H2 layer vs. H1 layer. Most of the wells have more 

net pay from H1 layer. 

 

 

 

 

 

 

 
Figure 6-12: Net-to-Gross Data at well locations: H2 layer vs. H1 layer. Most of the wells have 

more NTG from H1 layer. 
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Figure 6-13: Porosity Data at well locations: H2 layer vs. H1 layer. Most of the wells have 

average porosity close to each other for both layers. 

 

 

 

Correlation Coefficient matrix for some parameters in the two layers was 

generated to show the relationship among those variables, see Figure 6-14. Some 

of these correlation coefficients are used in cosimulating technique and also to 

know how these parameters are related. 

 

In this study, four scenarios are conducted. First scenario assesses 

uncertainty in HIIP without parameter uncertainty. The other three scenarios 

assess uncertainty in HIIP with parameter uncertainty. Each scenario uses 

different parameter uncertainty distribution obtained from using BS, SBS, or CFD 

approach. 

 

In each scenario, uncertainty of eight parameters and their effects on HIIP 

are investigated individually and combined all together in a ninth case. First three 

cases investigate the effects of uncertainty in structural surfaces on HIIP. The 

effects of fluid contacts level uncertainty are studied in the fourth case. Cases five 

to eight investigate HIIP uncertainty due to uncertainty in petrophysical 

properties. The last case combines the effects of all parameter uncertainties on 

HIIP. 
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Figure 6-14: Correlation Coefficient matrix for some parameters in the two layers to show the 

relationship among those variables. 

 

 

 

In case of conducting sensitivity analysis, different realizations of a 

variable of interest are used with one fixed realization (selected randomly) of the 

remaining variables of interest; while in case of full uncertainty, all realizations of 

all variables of interest are used to calculate HIIP and get its distribution. 

 

There are no water saturation data; therefore, it is assumed to be fixed in 

this case study at 20%. If water saturation data are available then its uncertainty 

can be investigated using the same technique used with uncertainty in NTG and 

porosity. 
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6.2. HIIP without Parameter Uncertainty 

 

Uncertainty in HIIP without parameter uncertainty in the mean is 

investigated in this section. Eight cases study the effects of the following 

parameters uncertainty on HIIP individually. The parameters are top and bottom 

surfaces, H1 layer thickness, H2 layer thickness, OWC, H1 layer NTG, H2 layer 

NTG, H1 layer porosity, and H2 layer porosity. 

 

6.2.1. HIIP with Uncertainty in Structural Surfaces 

 

Structure and thickness uncertainty must be assessed in all reservoir 

uncertainty studies. A basic assumption is that the top and bottom surfaces from 

seismic interpretation were considered as reference surfaces, which have been 

fitted to well data. Away from well locations, there exist uncertainties in the 

reference surfaces. The deviations from the reference surfaces are assumed to 

follow a Gaussian distribution. The deviation will be zero at the well locations 

and increase away from the well locations. Such deviations are simulated by a 

SGS with conditioning data at the well locations to be zeros. Then the deviations 

are added to the reference surfaces/layer thicknesses. Such simulation provides 

alternative scenarios, which quantifies the uncertainty in the HIIP and provides us 

with a distribution of HIIP. 

 

Three structural surface variables are investigated in this section, top and 

bottom surfaces, H1 layer thickness, and H2 layer thickness. The methodology 

described in Section 5.1.1 is followed in this section. 

 

First case investigates the effects of Layers structures, top and bottom 

surfaces uncertainties on HIIP. GSLIB software was used first in the method to 

generate the variogram of the well data using a gamv2004 code for the top 

structure of H1 Layer (Gringarten and Deutsch; 1999). The variograms were 

calculated in the omnidirection due to sparse data. Then the vmodel code was used 
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to obtain a spherical model that was the best variogram model fitting the 

variogram result trends (Wilde and Deutsch; 2005). The equation of the H1 Top 

Surface variogram model, as shown in Figure 6-15, is: 

 

(h) = 0.001 + 0.999 * sph      (6-1) 

av = 1 

ah1 = 2400 

ah2 = 2400 

 

By getting the variogram model parameters, the conditional Gaussian 

simulation was ran using a sgsim code with conditioning data at the well locations 

to be zeros. 100 realizations were generated where each realization gives a 

Gaussian distribution with a mean of zero and a standard deviation of one. The 

results then were analyzed with a new code, called OOIP created in this study 

(see Appendix A). The code can multiply the results with some standard 

deviations then add the new results to the reference data as in Equation 5-3. The  

 

 

 

 

Figure 6-15: Case 1: Experimental variograms in the omnidirection and best fitted model for Top 

Surface of H1 Layer using data from 19 wells in Hekla Field; a Gaussian model was used with a 

nugget effect of 0.001 and a range of 2400m. 
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standard deviation of the distributions should be estimated by referring to seismic 

interpretation, and it was assumed to be 15 meters for the reference top and 

bottom surfaces in this study. Finally, the uncertainty in HIIP without parameter 

uncertainty was estimated by calculating the HIIP of each realization and 

generating a distribution plot. The results of HIIP distribution were obtained as 

shown in Figure 6-16. The mean and standard deviation of the HIIP were 92.8086 

and 0.7745 MMm
3
, respectively. 

 

OWC level was assumed to be at 2150 m if there is no uncertainty in its 

level. In reality, OWC should be determined by logs or should be assumed at the 

lowest known hydrocarbon level, if not detected. The impact of OWC level 

uncertainty on the calculations is investigated in section 6.2.2 since calculating 

HIIP relays not only on the top and bottom surfaces, but also on OWC level.  

 

 

 

 

 

 

Figure 6-16: Case 1: The impacts of the uncertainty of top and bottom surfaces on the HIIP 

without parameter uncertainty. The deviations in the top and bottom uncertainty were assumed to 

have a standard deviation of 15m, the results are in millions m
3
. 
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In the second case, the effects of H1 layer thickness uncertainty on HIIP 

are investigated. Simulated thicknesses are obtained for each layer by adding the 

reference thicknesses and normally distributed deviations. Similarly to what have 

been done in investigating the top/bottom surfaces structures, the deviations can 

be generated by a sgsim code with zero values at well locations. The problem in 

running this case is that the variogram model could not be generated due to a 

decreasing trend of the experimental variograms obtained from H1 layer 

thicknesses at well locations, see Figure 6-17. Therefore, the variogram model 

obtained from top surface structure, as in equation (6-1), was used in case-2 to 

generate the SGS with conditioning data to be zeros at well locations, since the 

correlation coefficient between H1 layer thickness and its top surface depth is 

0.39 that is the highest compared to other correlation coefficients with the 

remaining parameters of H1 layer.  

 

 

 

 

 

Figure 6-17: Case 2: Experimental variograms in the omnidirection for thickness of H1 layer 

using data from 19 wells in Hekla Field; no model was able to be generated due to no spatial 

relationship between the data. 

 



 - 83 - 

100 realizations were generated by using conditional SGS to simulate the 

uncertainty realizations in the thickness. Then the standard deviation for H1 layer 

thickness was assumed to be 3m. After nonstandardizing the realizations, the 

results were used to get the HIIP distributions as shown in Figure 6-18. The mean 

and the standard deviation of HIIP were 93.1718 and 0.8546 MMm
3
, respectively. 

 

The effects of H2 layer thickness uncertainty on HIIP was investigated in 

the third case. The process was similar to that was conducted in the case-2, but the 

variogram model used in this case was generated using H2-Layer thickness data at 

all well locations, see the second plot in Figure 6-19; where the H2 Thickness 

variogram model is a spherical model with the following equation: 

 

(h) = 0.001 + 0.999 * sph      (6-2) 

av = 1 

ah1 = 4000 

ah2 = 4000 

 

 

 

Figure 6-18: Case 2: The impacts of the uncertainty of H1 layer thickness on the HIIP without 

parameter uncertainty. The deviations in the H1 layer thickness uncertainty were assumed to have 

a standard deviation of 3m, the results are in millions m
3
. 
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Then the deviations were generated by a sgsim code with a zero mean 

value and a standard deviation of one and conditioning data at well locations to be 

zeros. The standard deviation was assumed in this case to be 3m; and by 

generating 100 realizations, the HIIP distribution was obtained as shown in Figure 

6-20. The mean and the standard deviation of HIIP were 92.9618 and 0.4405 

MMm
3
, respectively. 

 

 

Figure 6-19: Case 3: Experimental variograms in the omnidirection and best fitted model for H2 

layer thickness using data from 19 wells in Hekla Field; a Gaussian model was used with a nugget 

effect of 0.001 and a range of 4000m. 

 

 

Figure 6-20: Case 3: The impacts of the uncertainty of H2 layer thickness on the HIIP without 

parameter uncertainty. The deviations in the H2 layer thickness uncertainty were assumed to have 

a standard deviation of 3m, the results are in millions m
3
. 
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6.2.2. HIIP with Uncertainty in Fluid Contacts Level 

 

It was assumed that there is no gas cap in this case study; therefore, only 

one case was needed to investigate the uncertainty in OWC level by determining 

the OWC minimum, maximum and most likely levels, and then 100 realizations 

were generated using mcs code assuming a triangular distribution with changing 

the seed number, see Section 5.1.2. These realizations were used to get the HIIP 

distributions above OWC as shown in Figure 6-21. The mean and the standard 

deviation of HIIP were 92.9115 and 0.0048 MMm
3
, respectively. 

 

6.2.3. HIIP with Uncertainty in Petrophysical Properties 

 

Four cases investigate the effects of uncertainty in H1 layer NTG, H2 

layer NTG, H1 layer porosity, and H2 layer porosity on HIIP. Uncertainty in 

water saturation can be investigated using the same technique used for NTG and 

porosity, but it was assumed that water saturation was fixed at 20% in all 

realizations as mentioned formerly. 

 

 

 

Figure 6-21: Case 4: The impacts of the uncertainty of OWC on the HIIP without parameter 

uncertainty. The OWC uncertainty was assumed to follow a triangular distribution with a 

minimum of 2148m, a mode of 2150m, a maximum of 2152m, the results are in millions m
3
. 
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The porosity cutoff was assumed to be at 10% in this study, as mentioned 

before. The NP and NTG for each layer in all 19 wells were calculated based on 

this cutoff. According to the methodology described in section 5.1.3, the next step 

is to obtain the best variogram model fitting the experimental variogram result for 

variables of interest. The experimental variograms for NTG and porosity of H1 

layer were generated in the omnidirection, as shown in Figures 6-22 and 6-23. 

Gaussian models were selected to fit the experimental variograms with a nugget 

effect of 0.001 and a range of 800m for the two variables. The equation of the 

variogram models is the same one as follows: 

 

(h) = 0.001 + 0.999 * Gau      (6-3) 

 av = 1 

 ah1 = 800 

 ah2 = 800 

 

 

 
 

Figure 6-22: Case 5: Experimental variograms in the omnidirection and best fitted model for 

NTG of H1 layer using data from 19 wells in Hekla Field; a Gaussian model was used with a 

nugget effect of 0.001 and a range of 800m. 
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Figure 6-23: Case 7: Experimental variograms in the omnidirection and best fitted model for 

Porosity of H1 layer using data from 19 wells in Hekla Field; Gaussian model was determined to 

fit the experimental results with a nugget effect of 0.001 and a range of 800m. 

 

 

The correlation coefficients among NTG, porosity and thickness for H1 

layer were used to generate NTG and porosity realizations simultaneously. The 

ultimate_sgsim code was used with the original data as reference distributions to 

simulate 100 realizations for each case. All NTG realizations were used with the 

first porosity realization in case 5, while all porosity realizations were used with 

the first NTG realization in case 7. The results were used to calculate HIIP 

realizations and obtain its distribution, as shown in Figures 6-24 and 6-25. The 

mean and the standard deviation of HIIP were 90.8410 and 0.3374 MMm
3
 with 

uncertainty in H1 layer NTG, and 90.8585 and 0.2242 MMm
3
 with uncertainty in 

H1 layer porosity, respectively. 

 

In cases 6 and 8, the effects of uncertainty in NTG and porosity of H2 

layer on HIIP were investigated individually. The experimental variograms in the 

omnidirection were generated. It seems that there is no relationship between the 

NTG data of H2 layer since there is no clear spatial correlation between the data. 

Therefore, the model fitting the experimental variograms of porosity for H2 layer 
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was used for both NTG and porosity of H2 layer since the correlation coefficient 

between them is 0.61 that is the highest value compared to the other correlation 

coefficients between NTG and other parameters of H2 layer, see Figure 6-14. 

 

 

Figure 6-24: Case 5: The impacts of the uncertainty of H1 layer NTG on the HIIP without 

parameter uncertainty, the results are in millions m
3
. 

 

 

 

 

 

Figure 6-25: Case 7: The impacts of the uncertainty of H1 layer porosity on the HIIP without 

parameter uncertainty, the results are in millions m
3
. 
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As Figures 6-26 and 6-27 show, Gaussian models were selected to fit the 

experimental variograms with a nugget effect of 0.001 and a range of 500m for 

the porosity of H2 layer. The equation of the variogram model is as follows: 

 

(h) = 0.001 + 0.999 * Gau      (6-3) 

 av = 1 

 ah1 = 500 

 ah2 = 500 

 

NTG and porosity realizations were generated simultaneously by 

cosimulating NTG and porosity with thickness obtained from seismic data by 

using an ultimate_sgsim code with the same variogram model for the variables in 

interest, NTG and porosity of H2 layer. 100 realizations were generated for each 

case. The results were used to calculate HIIP and obtain the HIIP distribution for 

each case as shown in Figures 6-28 to 6-29. The mean and the standard deviation 

of HIIP were 91.4682 and 0.2131 MMm
3
 with uncertainty in H2 layer NTG, and 

91.4708 and 0.1555 MMm
3
 with uncertainty in H2 layer porosity, respectively. 

 

 

 

Figure 6-26: Case 6: Experimental variograms in the omnidirection for NTG of H2 Layer using 

data from 19 wells in Hekla Field; no model was able to be generated due to no spatial 

relationship between the data. 
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Figure 6-27: Case 8: Experimental variograms in the omnidirection and best fitted model for 

Porosity of H2 Layer using data from 19 wells in Hekla Field; a Gaussian model was determined 

to fit the experimental results with a nugget effect of 0.001 and a range of 500m. 

 

 

 

 

 

 

Figure 6-28: Case 6: The impacts of the uncertainty of H2 layer NTG on the HIIP without 

parameter uncertainty, the results are in millions m
3
. 
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Figure 6-29: Case 8: The impacts of the uncertainty of H2 layer porosity on the HIIP without 

parameter uncertainty, the results are in millions m
3
. 

 

 

 

6.2.4. HIIP with Full Uncertainty 

 

In this case, multiple realizations should be drawn with uncertainty 

attached to all parameters, top and bottom surfaces, layer thicknesses, OWC 

levels, NTG, and Porosity for each layer. The deviations were generated without 

parameter uncertainty in the mean for all parameters. The standard deviations of 

15m for top and bottom surfaces uncertainty and 3m for thickness uncertainty of 

each layer were used. 100 realizations were generated to get the HIIP distribution 

above OWC level of 2150m as shown in Figure 6-30. The mean and the standard 

deviation of HIIP with full uncertainty were 93.0990 and 1.1415 MMm
3
, 

respectively. 

 

 Uncertainty in HIIP was assessed with assuming a fixed uncertainty in the 

parameter mean. To account for parameter uncertainty distribution, a parameter 

uncertainty approach has to be used. Chapter 3 described three different 

approaches that can be used. In the next section, those three different approaches  
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Figure 6-30: Case 9: The impacts of the uncertainty of all variables on the HIIP without parameter 

uncertainty, the results are in millions m
3
. 

 

 

are used and their results are compared with the results of this section to assess 

the uncertainty in HIIP with and without parameter uncertainty. 

 

 

6.3. HIIP with Parameter Uncertainty 

 

It is important to account for parameter uncertainty in the mean since 

ignoring it might lead to less uncertainty that might not reflect the real uncertainty 

available with the known collected data. Parameter uncertainty has to be 

incorporated in assessing the uncertainty of HIIP. 

 

6.3.1. Parameter Uncertainty Distributions 

 

The parameter uncertainty in the means of the variables of interest were 

quantified using the three different approaches described in Chapter 3, 

conventional bootstrap (BS), spatial bootstrap (SBS), and conditional finite 

domain (CFD). The parameters investigated in the last section 6.2 were 

investigated again in this section but with parameter uncertainty in the mean. The 
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parameters were top and bottom surfaces, H1 layer thickness, H2 layer thickness, 

H1 layer NTG, H2 layer NTG, H1 layer porosity, and H2 layer porosity. 

 

The uncertainty in the mean of H1 top surface was quantified as shown in 

Figure 6-31. The mean of the parameter distribution with using SBS and CFD 

were 1962.2m and 1964.05m, respectively. They were lower than 1972.5m, the 

mean obtained with BS approach. The standard deviation of the parameter 

uncertainty with using SBS was 26.9m and higher than 18.8m and 15.79m 

obtained with BS and CFD, respectively. 

 

 

 

  

 

 

 

Figure 6-31: Case 1: Parameter uncertainty distributions for H1 layer top surface (top left: results 

of using BS approach, top right: results of using SBS approach, bottom left: uncertainty in the 

mean using CFD approach, and bottom right: uncertainty in the standard deviation using CFD 

approach). The units are in meters. 
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The parameter uncertainty in the mean of H1 layer thickness with SBS 

approach showed a lower value in the mean, 30.6m and higher one in the standard 

deviation, 1.6m compared to those obtained with using BS and CFD, see Figure 

6-32. For case 3 investigating H2 layer thickness uncertainty, using SBS and CFD 

approaches gave lower means, 26.4m and 26.38m, respectively. The standard 

deviation was high with SBS approach, 1.9m as shown in Figure 6-33. 

 

 

 

 

   

 

 

 

Figure 6-32: Case 2: Parameter uncertainty distributions for H1 layer thickness (top left: results of 

using BS approach, top right: results of using SBS approach, bottom left: uncertainty in the mean 

using CFD approach, and bottom right: uncertainty in the standard deviation using CFD 

approach). The units are in meters. 
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Figure 6-33: Case 3: Parameter uncertainty distributions for H2 layer thickness (top left: results of 

using BS approach, top right: results of using SBS approach, bottom left: uncertainty in the mean 

using CFD approach, and bottom right: uncertainty in the standard deviation using CFD 

approach). The units are in meters. 

 

 

Quantifying the parameter uncertainty for NTG of H1 layer, as shown in 

Figure 6-34, gave a lower mean and a higher standard deviation using SBS 

approach (0.4333, 0.0558) compared to the results obtained using BS approach 

(0.4577, 0.0512), while CFD approach gave the lowest standard deviation 

(0.4431, 0.0402) compared to other approaches. 

 

The results of quantifying the parameter uncertainty for NTG of H2 layer 

are shown in Figure 6-35. Using SBS approach gave a lower mean (0.3078, 

0.0356) while using CFD approach gave a lower standard deviation (0.3284, 

0.029) compared to the results of using BS approach (0.3219, 0.035).  
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Figure 6-34: Case 5: Parameter uncertainty distributions for H1 layer NTG in fractions (top left: 

results of using BS approach, top right: results of using SBS approach, bottom left: uncertainty in 

the mean using CFD approach, and bottom right: uncertainty in the standard deviation using CFD 

approach). 
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Figure 6-35: Case 6: Parameter uncertainty distributions for H2 layer NTG in fractions (top left: 

results of using BS approach, top right: results of using SBS approach, bottom left: uncertainty in 

the mean using CFD approach, and bottom right: uncertainty in the standard deviation using CFD 

approach). 

 

 

The parameter uncertainty for porosity of H1 layer was quantified for case 

7 as shown in Figure 6-36. The standard deviation was higher with using SBS 

approach (0.2107, 0.0101) and lower with using CFD approach (0.2159, 0.0070) 

than that obtained from BS approach (0.2147, 0.0089). 

 

In case 8 investigating the uncertainty in the porosity of H2 layer, the 

parameter uncertainty was quantified and gave a lower mean and a higher 

standard deviation using SBS approach (0.1803, 0.0134) and a higher mean and a 

lower standard deviation using CFD approach (0.1902, 0.0105) compared to the 

results obtained from using BS approach (0.187, 0.0124), see Figure 6-37.  
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Figure 6-36: Case 7: Parameter uncertainty distributions for H1 layer porosity in fractions (top 

left: results of using BS approach, top right: results of using SBS approach, bottom left: 

uncertainty in the mean using CFD approach, and bottom right: uncertainty in the standard 

deviation using CFD approach). 
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Figure 6-37: Case 8: Parameter uncertainty distributions for H2 layer porosity in fractions (top 

left: results of using BS approach, top right: results of using SBS approach, bottom left: 

uncertainty in the mean using CFD approach, and bottom right: uncertainty in the standard 

deviation using CFD approach). 

 

 

 

It was noticed that the variograms used in cases 5 through 8 have low 

ranges, which made the results of the parameter uncertainty using SBS and CFD 

approaches have standard deviations close to those results obtained from BS 

approach. Therefore, another run was conducted to quantify the parameter 

uncertainty using SBS and CFD with a higher arbitrary range, 2500m. Figure 6-38 

shows the parameter uncertainty results of using SBS and CFD approaches for 

NTG of each layer individually. The results of quantifying the porosity 

uncertainty in the mean using SBS and CFD approaches with the arbitrary high 

range (2500m) are shown in Figure 6-39. 
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Figure 6-38: Cases 5 & 6: Parameter uncertainty quantification with high arbitrary range, 2500m 

for NTG (fractions) of each layer (top left: results of using SBS approach for NTG of H1 layer, 

top right: results of using SBS approach for NTG of H2 layer, mid left: uncertainty in the mean for 

NTG of H1 layer using CFD approach, mid right: uncertainty in the mean for NTG of H2 layer 

using CFD approach, bottom left: uncertainty in the standard deviation for NTG of H1 layer using 

CFD approach, and bottom right: uncertainty in the standard deviation for NTG of H2 layer using 

CFD approach). 
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Figure 6-39: Cases 7 & 8: Parameter uncertainty quantification with high arbitrary range, 2500m 

for porosity (fractions) of each layer (top left: results of using SBS approach for porosity of H1 

layer, top right: results of using SBS approach for porosity of H2 layer, mid left: uncertainty in the 

mean for porosity of H1 layer using CFD approach, mid right: uncertainty in the mean for porosity 

of H2 layer using CFD approach, bottom left: uncertainty in the standard deviation for porosity of 

H1 layer using CFD approach, and bottom right: uncertainty in the standard deviation for porosity 

of H2 layer using CFD approach). 
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Parameters Layer 

Original Data BS Variogram 

Range 

SBS CFD 

Mean  Mean  Mean  Mean  

Top  H1 1973.1 83.4 1972.5 18.8 2400 1962.2 26.9 1964.1 15.8 

Thickness H1 31.1105 4.9791 31.1043 1.1171 2400 30.6000 1.6000 31.3034 1.0141 

Thickness H2 26.8842 5.5318 26.8923 1.2557 4000 26.4000 1.9000 26.3825 1.1440 

NTG H1 0.4586 0.2290 0.4577 0.0512 800 0.4333 0.0558 0.4431 0.0402 

2500 0.4382 0.0642 0.4490 0.0540 

NTG H2 0.3227 0.1556 0.3219 0.0350 500 0.3078 0.0356 0.3284 0.0290 

2500 0.3189 0.0461 0.3476 0.0393 

Porosity H1 0.2147 0.0393 0.2147 0.0089 800 0.2107 0.0101 0.2159 0.0070 

2500 0.2120 0.0115 0.2206 0.0136 

Porosity H2 0.1870 0.0548 0.1870 0.0124  500 0.1803 0.0134 0.1902 0.0105 

2500 0.1808 0.0171 0.1890 0.0113 

Table 6-4: Comparison between means and standard deviations obtained from using different 

parameter uncertainty approaches. 

 

 

The results of using the three approaches on all eight parameters, even 

with the arbitrary high variogram range, are summarized in Table 6-4. The next 

step was to incorporate those parameter uncertainty distributions into the process 

of quantifying HIIP with those uncertainties as described in section 5.2. The same 

eight parameters investigated without parameter uncertainty were investigated 

again but with parameter uncertainty. Eight cases study the effects of these 

parameters uncertainty on HIIP individually and the ninth case studies the effects 

of full uncertainty on HIIP with parameter uncertainty. The scenario of estimating 

HIIP and its sensitivity analysis has to be run three times. In each scenario, the 

results of using one of the parameter uncertainty approaches are incorporated. 

 

6.3.2. HIIP with Uncertainty in Structural Surfaces 

 

Three different scenarios were conducted with a different parameter 

uncertainty approach incorporated in each scenario. Cases 1 to 3 investigated 

uncertainty in the top and bottom surfaces, the H1 layer thickness, and the H2 

layer thickness, respectively. The methodology described in section 5.2.2 was 

followed to simulate 100 realizations using a SGS method for each case. First step 

was to find the variogram model fitting the generated experimental variograms of 

H1 top surface and thickness of H1 and H2 layers for cases 1 to 3. The spherical 
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variogram models were already determined in cases 1 to 3 without parameter 

uncertainty and used in these cases with parameter uncertainty. 

 

Preparing the input file was the next step by adding 100 columns. Each 

column was used to simulate one realization. The dx values were used as 

conditioning data at well locations and calculated by using equation (5-9). They 

had one value in each column and varied from column to column as mp,l(i) 

changed and determined by drawing from parameter uncertainty distribution. 

mp,l(i) is calculated based on equation (6-4) for each i simulation. Then the 

corresponding value of mp,l is determined by using the parameter mean 

distribution at the calculated probability (i). input_mp code is a code created in 

this study (see Appendix A) to print out the values of mp,l required in the 

simulation. 

 

mp,l (i) = (i - 0.5) / nsim      (6-4) 

where  mp,l = parameter mean at location l. 

i = 1, 2, …, nsim. 

nsim = number of simulation. 

 

 The next step was to add (-dx) to the results of SGS simulation to reset the 

values at well locations to be zero then non-standardize the realizations by 

multiplying them with the assumed standard deviation 𝜎∆, 15m. So, the results 

are uncertainty realizations with means of (mean(i) =  𝜎∆ * mp,l (i) = 15* mp,l (i)) 

and 15m standard deviation. The results were added to the base reference surfaces 

obtained from seismic data (to the top and bottom surfaces to quantify uncertainty 

in top and bottom surfaces and only to the bottom surface to quantify uncertainty 

in layer thickness). 

 

The uncertainty realizations were used to calculate HIIP realizations and 

obtain the HIIP distribution. The effects of the uncertainty in top and bottom 

surfaces on HIIP using the three parameter uncertainty approaches were shown in 
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Figure 6-40. For cases 2 and 3, the standard deviation was assumed to be 3m for 

thickness of layers H1 and H2. The effects of the uncertainty in thickness of H1 

and H2 layers on HIIP were shown in Figures 6-41 and 6-42 using the three 

parameter uncertainty approaches. 

 

 

Figure 6-40: Case 1: The impacts of the uncertainty of top and bottom surfaces on the HIIP with 

parameter uncertainty. The deviations in the top and bottom uncertainty were assumed to have a 

standard deviation of 15m. The plots from top to bottom are the results of using BS, SBS, and 

CFD approaches, respectively; the results are in millions m
3
. 
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Figure 6-41: Case 2: The impacts of the uncertainty of H1 layer thickness on the HIIP with 

parameter uncertainty. The deviations in the H1 layer thickness uncertainty were assumed to have 

a standard deviation of 3m. The plots from top to bottom are the results of using BS, SBS, and 

CFD approaches, respectively; the results are in millions m
3
. 
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Figure 6-42: Case 3: The impacts of the uncertainty of H2 layer thickness on the HIIP with 

parameter uncertainty. The deviations in the H2 layer thickness uncertainty were assumed to have 

a standard deviation of 3m. The plots from top to bottom are the results of using BS, SBS, and 

CFD approaches, respectively. The results are in millions m
3
. 
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6.3.3. HIIP with Uncertainty in Fluid Contacts Level 

 

The same assumptions in the scenario without parameter uncertainty were 

assumed in these scenarios with parameter uncertainty. It was assumed that there 

is no gas cap; therefore, only OWC uncertainty had to be investigated. The OWC 

levels uncertainty was assumed to have a triangular distribution shape. The OWC 

level uncertainty distribution can be determined by the minimum, maximum and 

most likely levels of OWC. 

 

In this study, there is no uncertainty in the minimum and maximum OWC 

levels, while the most likely levels of OWC, the mode was variable in each 

realization. 100 realizations were generated using mcs code assuming a triangular 

distribution with a variable mode, see Section 5.2.3. These realizations were used 

to get the HIIP distributions above OWC as shown in Figure 6-43. The mean and 

the standard deviation of HIIP were 92.9180 and 0.0644 MMm
3
, respectively. 

 

 

 

 

Figure 6-43: Case 4: The impacts of the uncertainty of OWC levels on the HIIP with parameter 

uncertainty. The deviations in the OWC levels were assumed to have a triangular distribution with 

a variable mode and fixed limits, minimum and maximum levels. The results are in millions m
3
. 
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6.3.4. HIIP with Uncertainty in Petrophysical Properties 

 

Uncertainties in petrophysical properties with parameter uncertainty in the 

mean were assessed in four cases. Cases 5 through 8 investigate the uncertainty in 

H1 layer NTG, H2 layer NTG, H1 layer porosity, and H2 layer porosity, 

individually and respectively. The four cases were conducted three times each. 

The parameter uncertainty approach was changed in each scenario to compare the 

three different approaches, BS, SBS, and CFD. The parameter uncertainty 

distributions obtained in section 6.3.1 were incorporated in the methodology of 

estimating HIIP with parameter uncertainty as described in section 5.2.4. 

 

In each scenario, a parameter uncertainty distribution was used to generate 

100 input reference distributions by shifting the original reference distribution to 

have a new mean drawn from the parameter uncertainty distribution. A shift_pdf 

code was created for this purpose in this study (see Appendix A). Then 100 

realizations were generated for each variable by cosimulating NTG and Porosity 

of each layer simultaneously with thickness using an ultimate_sgsim code. The 

HIIP distributions were obtained for the four cases in each scenario. 

 

The impacts of the NTG uncertainty for H1 layer on the HIIP with 

parameter uncertainty were shown on Figure 6-44 using the different parameter 

uncertainty approaches, BS, SBS, and CFD. In case 5, the HIIP distribution with 

parameter uncertainty had a mean and a standard deviation of 93.3908 and 6.3876 

MMm
3 

using BS approach 90.3157 and 6.9903 MMm
3 

using SBS approach and 

91.5688 and 5.0388 MMm
3
 using CFD approach. 

 

The same methodology was followed in case 6 to investigate the impacts 

of the NTG uncertainty for H1 layer on the HIIP with parameter uncertainty using 

BS, SBS, and CFD approaches. The results are shown in Figure 6-45. The HIIP 

distribution with parameter uncertainty had a mean and a standard deviation of 
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94.1744 and 3.8429 MMm
3
 using BS approach 92.6174 and 3.9092 MMm

3
 using 

SBS approach and 94.8937 and 3.1845 MMm
3
 using CFD approach. 

 

 

 

Figure 6-44: Case 5: The impacts of the uncertainty of H1 layer NTG on the HIIP with parameter 

uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD approaches, 

respectively. The results are in millions m
3
. 
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Figure 6-45: Case 6: The impacts of the uncertainty of H2 layer NTG on the HIIP with parameter 

uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD approaches, 

respectively. The results are in millions m
3
. 

 

 

 

Cases 7 and 8 were conducted to investigate the impacts of the porosity 

uncertainty for H1 and H2 layers on the HIIP with parameter uncertainty using 

BS, SBS, and CFD approaches. The results of case 7 are shown in Figure 6-46 for 
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the HIIP distribution with parameter uncertainty with a mean and a standard 

deviation of 92.8095 and 2.3520 MMm
3
 using BS approach 91.7472 and 2.6676 

MMm
3
 using SBS approach and 93.1311 and 1.6491 MMm

3
 using CFD 

 

 

Figure 6-46: Case 7: The impacts of the uncertainty of H1 layer porosity on the HIIP with 

parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD 

approaches, respectively. The results are in millions m
3
. 
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approach. Figure 6-47 shows the results of case 8, the HIIP distributions with a 

mean and a standard distribution of 92.3249 and 2.2224 MMm
3
 using BS 

approach 91.1167 and 2.4022 MMm
3
 using SBS approach and 92.9032 and 

1.8826 MMm
3
 using CFD approach. 

 

 

Figure 6-47: Case 8: The impacts of the uncertainty of H2 layer porosity on the HIIP with 

parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD 

approaches, respectively. The results are in millions m
3
. 
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6.3.5. HIIP with Full Uncertainty 

 

Quantifying the uncertainties in estimating the reserve/resource volumes 

with parameter uncertainty is the main aim of this research. The Multivariate 

Parameter Uncertainty technique is used in this case to quantify the full 

uncertainty in HIIP with parameter uncertainty. It is based on incorporating the 

correlation coefficients among all variables of interest to determine the means of 

parameter uncertainty. Those means are used to simulate different uncertainty 

realizations for parameters of interest. 

 

This case shows the results of the novel scenario developed in this 

research to incorporate a parameter uncertainty in the mean that can be obtained 

from using a parameter uncertainty approach. All four techniques described in 

section 5.2 were used in this case to assess HIIP uncertainty with parameter 

uncertainty in all parameters of interest. The four techniques are Multivariate 

Parameter Uncertainty, SGS, MCS, and Cosimulating with Super Secondary data. 

Three scenarios were conducted with the three parameter uncertainty approaches, 

BS, SBS, or CFD individually. 

 

First technique was MVPU that accounts for the correlation coefficients 

between all variables of interest. The nscore code was used first to generate 

transformation tables for all variables of interest (Deutsch and Cullick; 2002). In 

this study, transformation tables were obtained for seven variables in each 

scenario. Next step was to generate random normal score values (0,1) by running 

mcs code. There were 100 values in each column as the number of uncertainty 

realizations needed to be generated. Then, the correlate code was used to 

incorporate the correlation coefficients between the variables of interest. The 

results had to be back transformed to the real units using the transformation 

tables. The backtr code developed by CCG was used for such purpose. The results 

are the values that would be used as means for the uncertainty realizations. The 

correlation coefficients were checked by running corrmat code (Neufeld and  
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Figure 6-48: Correlation coefficient matrix between the mean values obtained from MVPU 

technique for all variables of interest in the two layers. 

 

 

Deutsch; 2006) to generate the correlation coefficients between the results and 

compare the coefficients to those were obtained between the original well data, 

see Figure 6-48. 

 

 After obtaining the mean values, they were used to find the values of dx, 

the conditioning values at well locations used in SGS to quantify the uncertainties 

in the structural surfaces variables. The standard deviations of 15m for top and 

bottom surfaces uncertainty and 3m for thickness uncertainty of each layer were 

also used. The MVPU results were also used to generate the input reference 

distributions that were used in the cosimulation technique with super secondary 

data to quantify the uncertainties in the petrophysical properties, NTG and 

porosity for both layers, H1 and H2. The uncertainty in the OWC level was 

quantified by using MCS technique.  

 

The uncertainty realizations were obtained for all variables of interest and 

combined to calculate the 100 HIIP realizations and generate its distribution as 

shown in Figure 6-49. The HIIP distributions with parameter uncertainty were 

with a mean and a standard deviation of 94.7320 and 15.0209 MMm
3
 using BS 

approach 87.9839 and 15.6295 MMm
3
 using SBS approach and 94.3674 and 
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12.2283 MMm
3
 using CFD approach. Next section compares and discusses the 

results of quantifying HIIP uncertainty with/without parameter uncertainty using 

the three different approaches. 

 

 

 

Figure 6-49: Case 9: The impacts of the full uncertainty of all parameters on the HIIP with 

parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD 

approaches, respectively. The results are in millions m
3
. 
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6.3.6. HIIP with Uncertainty in Petrophysical Properties Using 

High Variogram Ranges 

 

 It was noticed that the variogram range for NTG and porosity of both 

layers, 500 to 800m were too small compared to the field size 5000 x 6500m, 

which made the standard deviation of using SBS and CFD not far away from 

those obtained from BS approach. Therefore, it was assumed that the variogram 

range was arbitrary high to be about 2500m to see the effects of increasing the 

variogram range on the HIIP uncertainty. The four cases 5 through 8 were 

repeated to investigate the impacts of each variable of interest on the HIIP with 

parameter uncertainty. They were also repeated for the three scenarios using 

different parameter uncertainty approaches. Of course, the parameter uncertainty 

distributions for those variables were already generated with the arbitrary high 

variogram range as shown in Figure 6-38 and 6-39.  

 

The effects of NTG uncertainty for H1 layer on HIIP distribution with 

parameter uncertainty were quantified as shown in Figure 6-50. The HIIP 

distributions with parameter uncertainty were with a mean and a standard 

deviation of 93.3908 and 6.3876 MMm
3
 using BS approach 90.9277 and 8.0360 

MMm
3
 using SBS approach and 92.2973 and 6.7492 MMm

3
 using CFD 

approach. 

 

 The HIIP cumulative distributions, investigating the H2 layer NTG 

uncertainty with parameter uncertainty, were shown on Figure 6-51. They were 

with a mean and a standard deviation of 94.1744 and 3.8429 MMm
3
 using BS 

approach 93.8443 and 5.0619 MMm
3
 using SBS approach and 97.0139 and 

4.3152 MMm
3
 using CFD approach. 

 

 Figure 6-52 showed the HIIP cumulative distributions with parameter 

uncertainty in H1 layer porosity were with a mean and a standard deviation of 
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94.1744 and 3.8429 MMm
3
 using BS approach 93.8443 and 5.0619 MMm

3
 using 

SBS approach and 97.0139 and 4.3152 MMm
3
 using CFD approach. 

 

 

Figure 6-50: Case 5: The impacts of the uncertainty of H1 layer NTG on the HIIP with parameter 

uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD approaches 

and with arbitrary high variogram range, 2500m, respectively. The results are in millions m
3
. 
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Figure 6-51: Case 6: The impacts of the uncertainty of H2 layer NTG on the HIIP with parameter 

uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD approaches 

and with arbitrary high variogram range, 2500m, respectively. The results are in millions m
3
. 
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Figure 6-52: Case 7: The impacts of the uncertainty of H1 layer porosity on the HIIP with 

parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD 

approaches and with an arbitrary high variogram range, 2500m, respectively. The results are in 

millions m
3
. 
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For case 8, the effects of porosity uncertainty for H2 layer on HIIP 

distributions with parameter uncertainty were shown on Figure 6-53. The HIIP 

distributions were with a mean and a standard distribution of 92.3249 and 2.2224 

MMm
3
 using BS approach 91.2068 and 3.0622 MMm

3
 using SBS approach and 

92.6851 and 2.0242 MMm
3
 using CFD approach. 

 

6.3.7. HIIP with Full Uncertainty Using High Variogram Ranges 

 

The HIIP uncertainty with parameter uncertainty in all variables of interest 

was investigated. Case 9 as in section 6.3.5 was repeated but with the arbitrary 

high variogram range, 2500m. The HIIP distributions with parameter uncertainty 

were shown in Figure 6-54 and were with a mean and a standard deviation of 

95.0838 and 11.1202 MMm
3
 using BS approach 91.5967 and 15.7863 MMm

3
 

using SBS approach and 100.5689 and 13.5197 MMm
3
 using CFD approach, 

respectively. 

 

 

6.4. Comparing Results and Discussion 

 

All HIIP distributions were obtained for all nine cases in the four 

scenarios, without parameter uncertainty and with parameter uncertainty using 

different parameter uncertainty distributions. Some statistical analysis were 

conducted on those distributions and summarized in Table 6-5. Spider charts and 

tornado charts were used to compare the uncertainty effects of each parameter on 

HIIP estimation with/without parameter uncertainty using all different 

approaches. They were also used to investigate the key parameters that play a 

major role in the HIIP uncertainty in each scenario. 
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Figure 6-53: Case 8: The impacts of the uncertainty of H2 layer porosity on the HIIP with 

parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD 

approaches and with an arbitrary high variogram range, 2500m, respectively. The results are in 

millions m
3
. 
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Figure 6-54: Case 9: The impacts of the full uncertainty of all parameters on the HIIP with 

parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD 

approaches and with an arbitrary high variogram range, 2500m, respectively. The results are in 

millions m
3
. 
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Table 6-5: Statistical analysis for all HIIP distributions from all cases in all scenarios; The results 

are in millions m
3
. 
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6.4.1. Comparing uncertainty effects of individual parameters in 

each scenario 

 

It is important to investigate the uncertainty effects of individual 

parameters on HIIP estimations. Figure 6-55 shows the tornado chart and spider 

plot for uncertainty effects of individual parameters on HIIP estimations without 

parameter uncertainty. It is obvious that H1 layer thickness uncertainty was the 

most effective parameter on estimating HIIP, followed by top and bottom surfaces 

uncertainty then H2 layer thickness. So, the surface structural parameters were 

more effective on HIIP uncertainty than petrophysical properties. The uncertainty 

in OWC was the least effective parameter on HIIP. 

 

The uncertainty effects of individual parameters in HIIP estimations with 

parameter uncertainty using BS approach were compared as shown in the tornado 

chart and spider plot of Figure 6-56. Petrophysical properties became more 

effective on HIIP estimation than structural surfaces parameters and H1 layer 

NTG was the most effective parameter followed by H2 layer NTG. Then the 

porosity of both layers H1 and H2 had almost the same effects. Then the 

remaining structural parameters were less effective. Finally, the uncertainty in 

OWC was the least effective parameter on HIIP. 

  

The tornado chart and spider plot of Figure 6-57 compared the uncertainty 

effects of individual parameters in HIIP estimations with parameter uncertainty 

using SBS approach. The order of the most effective parameters on HIIP 

estimation with parameter uncertainty using SBS approach was as same as that 

obtained by using BS approach. H1 layer NTG was the most effective parameter 

followed by H2 layer NTG, and the uncertainty in OWC was the least effective 

parameter on estimating HIIP. Using CFD approach made a little change on the 

order of the effective parameters. The results had the same order except the 

porosity of layers H1 and H2 were exchanged; even though, they were close to 

each other, see Figure 6-58. 
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Figure 6-55: Sensitivity analysis for quantifying HIIP without parameter uncertainty; the results 

are in millions m
3
. 
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Figure 6-56: Sensitivity analysis for quantifying HIIP with parameter uncertainty using BS 

approach; the results are in millions m
3
. 
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Figure 6-57: Sensitivity analysis for quantifying HIIP with parameter uncertainty using SBS 

approach; the results are in millions m
3
. 
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Figure 6-58: Sensitivity analysis for quantifying HIIP with parameter uncertainty using CFD 

approach; the results are in millions m
3
. 
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The three scenarios using different parameter uncertainty approaches were 

repeated with the arbitrary high variogram range of 2500m. The order of the 

parameters affecting HIIP distribution was almost the same as those obtained with 

low variogram ranges except the porosity of both layers H1 and H2 that 

sometimes had been exchanged; see Figures 6-59 to 6-61. 

 

The orders of the parameters affecting HIIP uncertainty from the most 

effective parameter to the least effective one were summarized for all seven 

scenarios in Table 6-6. Two observations can be inferred from the comparison 

between those results. First, quantifying the uncertainty in HIIP without parameter 

uncertainty was more sensitive to structural surfaces parameters, then 

petrophysical properties, and last to the OWC. The other six scenarios quantifying 

the uncertainty in HIIP with parameter uncertainty were more sensitive to 

petrophysical properties, then structural surfaces parameters, and last to the OWC.  

 

Second observation was about the order of the parameters in the six 

scenarios quantifying the uncertainty in HIIP with parameter uncertainty. It was 

almost the same except the porosity of H1 and H2 layers that were exchanged in 

those six scenarios because their effects on the HIIP uncertainty were almost close 

to each other. 
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Figure 6-59: Sensitivity analysis for quantifying HIIP with parameter uncertainty using BS 

approach and high arbitrary variogram range of 2500m; the results are in millions m
3
. 
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Figure 6-60: Sensitivity analysis for quantifying HIIP with parameter uncertainty using SBS 

approach and high arbitrary variogram range of 2500m; the results are in millions m
3
. 
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Figure 6-61: Sensitivity analysis for quantifying HIIP with parameter uncertainty using CFD 

approach and high arbitrary variogram range of 2500m; the results are in millions m
3
. 

 

 

Scenarios Most effective parameters                                                                                 Less effective parameters 

No PU 
Thickness 

of H1 

Top&bottom 

surfaces 

Thickness 

of H2 

NTG of 

H1 
NTG of H2 

Porosity of 

H1 

Porosity 

of H2 
OWC 

BS 
NTG of 

H1 
NTG of H2 

Porosity 

of H1 

Porosity 

of H2 

Thickness 

of H1 
Top&bottom 

surfaces 

Thickness 

of H2 OWC 

SBS 
NTG of 

H1 
NTG of H2 Porosity 

of H1 

Porosity 

of H2 

Thickness 

of H1 
Top&bottom 

surfaces 

Thickness 

of H2 OWC 

CFD 
NTG of 

H1 
NTG of H2 Porosity 

of H2 
Porosity 

of H1 

Thickness 

of H1 
Top&bottom 

surfaces 

Thickness 

of H2 OWC 

BS with 

high range 
NTG of 

H1 
NTG of H2 Porosity 

of H1 

Porosity 

of H2 

Thickness 

of H1 
Top&bottom 

surfaces 

Thickness 

of H2 OWC 

SBS with 

high range 
NTG of 

H1 
NTG of H2 Porosity 

of H2 
Porosity 

of H1 

Thickness 

of H1 
Top&bottom 

surfaces 

Thickness 

of H2 OWC 

CFD with 
high range 

NTG of 

H1 
NTG of H2 Porosity 

of H1 

Porosity 

of H2 

Thickness 

of H1 
Top&bottom 

surfaces 

Thickness 

of H2 OWC 

Table 6-6: Order of parameters affecting on HIIP distribution from the most effective parameter 

to the least effective one in all seven scenarios. 
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6.4.2. Comparing effects of uncertainty in individual parameters 

from different scenarios  

 

The effects of changing parameter uncertainty approach on all parameters 

were investigated. Four scenarios investigated the effects of the uncertainty in top 

and bottom surfaces on HIIP estimation as shown in Figure 6-62 for case 1. The 

results of using parameter uncertainty approaches had more uncertainty compared 

to the scenario without parameter uncertainty. Using the SBS approach had the  

 

 

 

Figure 6-62: Case1: Sensitivity analysis to compare different parameter uncertainty approaches 

when calculating HIIP with uncertainty in Top/Bottom Structure Surfaces. 
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most uncertain HIIP distribution. Using the CFD approach gave narrower 

distribution than that obtained from using BS approach. All the three scenarios 

using parameter uncertainty approaches had similar HIIP distributions. 

 

Case 2 investigated the effects of the uncertainty in H1 layer thickness on 

HIIP distribution using different approaches, see Figure 6-63. The results showed 

wider HIIP distribution with using parameter uncertainty approaches. The order  

 

 

 

Figure 6-63: Case2: Sensitivity analysis to compare different parameter uncertainty approaches 

when calculating HIIP with uncertainty in thickness of H1 layer. 
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of approaches from more uncertain distributions to less uncertain distributions is 

CFD, BS, and SBS; although, the results were close to each other. 

 

The effects of the uncertainty in H2 layer thickness on HIIP distributions 

using different approaches were investigated in case 3. The results in Figure 6-64 

showed similar results to those obtained in case 2, but with different order of the 

parameter uncertainty approaches since the three approaches had almost the same 

effects on HIIP distributions. 

 

 

 

Figure 6-64: Case3: Sensitivity analysis to compare different parameter uncertainty approaches 

when calculating HIIP with uncertainty in thickness of H2 layer. 
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In case 4, the effects of the uncertainty in OWC on HIIP distributions were 

investigated by assuming a variable mode in the triangular distribution for OWC 

levels. Figure 6-65 shows the comparison results without/with parameter 

uncertainty in the OWC levels. Using the parameter uncertainty in the mode of 

the triangular distribution of the OWC levels had more uncertain HIIP 

distributions compared to that obtained without parameter uncertainty. 

 

 

 

 

 
 

 

Figure 6-65: Case4: Sensitivity analysis to compare effects of OWC on HIIP with/without 

parameter uncertainty. 
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In cases 5 to 8, the effects of uncertainty in petrophysical properties on 

HIIP distributions were investigated. Figure 6-64 shows the comparison results of 

investigating the effects of uncertainty for H1 layer NTG on HIIP. SBS approach 

had the most uncertain HIIP distribution regardless the amount of the variogram 

range. It is obvious how important is to account for parameter uncertainty due to 

the narrow HIIP distribution without parameter uncertainty that might lead to 

HIIP underestimation. The results of using SBS or CFD approaches were 

sensitive to variogram range not as those obtained from using BS approach. 

 

 

 

Figure 6-66: Case5: Sensitivity analysis to compare different parameter uncertainty approaches 

when calculating HIIP with uncertainty in NTG of H1 layer. 
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Case 6 investigated the effects of uncertainty in H2 layer NTG on HIIP 

distributions. The results were compared as shown in Figure 6-67. Similar to case 

5, SBS approach had the most uncertain HIIP distribution regardless the amount 

of the variogram range. The narrowest HIIP distribution was obtained from the 

scenario ignored the parameter uncertainty. Increasing the variogram range had 

almost no effect on the case using BS approach, but it effect was clear on the 

scenarios using SBS or CFD approaches. 

 

 

 

 

 

Figure 6-67: Case6: Sensitivity analysis to compare different parameter uncertainty approaches 

when calculating HIIP with uncertainty in NTG of H2 layer. 
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Figure 6-68 shows the comparison between the results investigating the 

effects of the individual uncertainty in H1 layer porosity on HIIP distributions 

(case 7). Of course as in the previous cases, estimating HIIP without parameter 

uncertainty had the narrowest distribution. Using SBS approach gave the most 

uncertain distribution compared to BS and CFD approaches. Increasing the 

variogram range to 2500m made the HIIP to have more uncertainty using the 

CFD compared to those obtained from using BS and SBS with the high variogram 

ranges. The BS approach results were almost the same with low/high variogram 

ranges. 

 

 

 

Figure 6-68: Case7: Sensitivity analysis to compare different parameter uncertainty approaches 

when calculating HIIP with uncertainty in porosity of H1 layer. 



 - 140 - 

Case 8 investigated the effects of the individual uncertainty in H2 layer 

porosity on HIIP distributions. The results of using different parameter 

uncertainty approaches were compared and shown in Figure 6-69. The narrowest 

HIIP distribution was obtained from estimating HIIP without parameter 

uncertainty. Using SBS approach gave the most uncertain distribution with a 

low/high variogram range compared to those obtained from using BS or CFD 

approaches. The BS approach results were almost the same with low/high 

variogram ranges. Although using CFD approach with high variogram range 

made the HIIP distribution getting more uncertainty, but the standard deviation 

was still smaller than that obtained from using the BS approach.  

 

 

 

Figure 6-69: Case8: Sensitivity analysis to compare different parameter uncertainty approaches 

when calculating HIIP with uncertainty in porosity of H2 layer. 
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The order of different parameter uncertainty approaches was summarized 

in Table 6-7 based on the HIIP distribution uncertainty. In all cases, it was 

obvious that ignoring parameter uncertainty gives always the narrowest HIIP 

distribution. By comparing the results of using different parameter uncertainty 

approaches, the order of the approaches was SBS, BS, and CFD as the results had 

more uncertainty distribution to less uncertainty distribution except case-2 where 

the order was reversed, CFD, BS, and SBS. The effects of using different 

parameter uncertainty approaches were almost the same in cases 1 to 3, but cases 

5 to 8 showed a significant difference between the HIIP distributions. 

 

In cases 5 to8, increasing the variogram range affected on the HIIP 

distributions with using SBS and CFD approaches, while the results with using 

the BS approach were almost the same because SBS and CFD are based on the 

spatial correlation between the data but BS approach is based on the 

independency assumption between the data.  

 

The standard deviations of the HIIP distributions obtained from using 

parameter uncertainty approaches were related to the standard deviations of the 

parameter uncertainty distributions used. For example in case 1, the order of the  

 

 

Case 

No. 

Parameters to be 

investigated 

More Uncertainty                                             Less Uncertainty 

Distribution                                                        Distribution 

1 
Top & Bottom 

surfaces 
SBS BS CFD No PU 

2 Thickness – H1 CFD BS SBS No PU 

3 Thickness – H2 SBS BS CFD No PU 

4 OWC With PU No PU 

5 NTG – H1 SBS-2 SBS CFD-2 BS-2 BS CFD No PU 

6 NTG – H2 SBS-2 CFD-2 SBS BS-2 BS CFD No PU 

7 Porosity – H1 CFD-2 SBS-2 SBS BS-2 BS CFD No PU 

8 Porosity – H2 SBS-2 SBS BS-2 BS CFD-2 CFD No PU 

Table 6-7: Order of parameter uncertainty approaches used to quantify HIIP uncertainty due to 

uncertainty of individual parameters. No. 2 stands for using high variogram range. 
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standard deviations of HIIP distributions was SBS, BS, CFD, descendingly. As 

the order of the standard deviations of the parameter uncertainty was SBS 

(26.9m), BS (18.8m), and CFD (15.79m) as shown in Table 6-4. This comment 

was applied for all cases. 

 

6.4.3. Comparing effects of full parameter uncertainty using 

different approaches 

 

The HIIP distributions with full uncertainty (case 9) were obtained in 

seven scenarios. The first scenario estimated the HIIP without parameter 

uncertainty as shown in Figure 6-30. Three scenarios estimated HIIP distributions 

with parameter uncertainty using BS, SBS, or CFD as shown in Figure 6-49. The 

last three scenarios estimated HIIP distributions with parameter uncertainty using 

BS, SBS, or CFD with high variogram range, 2500m as shown in Figure 6-54. 

 

The results of using different parameter uncertainty approaches were 

compared using the tornado chart and the spider plot and shown in Figure 6-70. 

The narrowest HIIP distribution was obtained from estimating HIIP without 

parameter uncertainty. Using SBS approach gave the most uncertain distribution 

with a low/high variogram range compared to those obtained from using BS or 

CFD approaches. The BS approach results were almost the same with low/high 

variogram ranges. The result of using CFD approach was narrower than those 

obtained with using BS and SBS approaches but with high variogram range, the 

result of using BS approach became the narrowest compared to those obtained 

from using SBS and CFD approaches. 

 

 The probability distribution frequency of HIIP with full uncertainty were 

plotted together, see Figure 6-71. It is obvious that the HIIP distribution using 

SBS approach was the most uncertain distribution compared to those obtained 

from using BS and CFD approaches, which produced distributions similar to each 

other. 
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The cumulative distribution frequencies of HIIP with full uncertainty were 

compared as shown in Figure 6-72. It is noticed that using BS approach produced 

more uncertainty in the HIIP estimates compared to the result without parameter 

uncertainty but BS approach was ignoring the spatial correlation between the data. 

Using SBS approach considered the spatial correlation between the data and 

produced more uncertainty in the HIIP distribution with high standard deviation 

compared to all other approaches. The CFD approach considered the correlation 

between the input data and the conditioning data, so it can more realistic; even 

though, it is not such well known and popular as SBS approach. 

 

 

 

Figure 6-70: Case9: Sensitivity analysis to compare different parameter uncertainty approaches 

when calculating HIIP with full uncertainty. 
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Figure 6-71: Case9: Probability Distributions for HIIP with full uncertainty using different 

parameter uncertainty approaches. 
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Figure 6-72: Case9: Cumulative Probability Distributions for HIIP with full uncertainty using 

different parameter uncertainty approaches. 
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 BS approach might be recommended in the early stages of the reservoir 

life because of its simplicity. CFD approach might give the same results in that 

stage of the reservoir life plus it will give more realistic results as more data are 

gathered. The only disadvantage of using the CFD is the significant time required 

to generate a parameter uncertainty that might reach to a few hours depending on 

the input data and the CPU and this time is unwanted to make quick decisions. 

 

 As mentioned previously, increasing the variogram range affected the 

HIIP distribution with using SBS and CFD approaches. It can be noticed from 

Figures 6-71 and 6-72 that the expansion in the distributions was to right. In 

another word, P10 estimates were close to each other in values but P90 had a 

significant change in the values.  
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Chapter 7 

 

2-D vs. 0-D and 3-D MODELING 

 

 

Reservoir heterogeneity characterization is a big challenge. There is no 

way to assess the true heterogeneity, but models can be created to mimic the 

important features of variability. It is important to select the appropriate modeling 

scale to get a fair global uncertainty of resource volumes. Chapter 2 discussed the 

difference between different scale modeling and their applications. A 

methodology of 2-D modeling with parameter uncertainty was set up in this 

research and used in the case study in chapter 6 to compare different parameter 

uncertainty approaches. In this chapter, the results of using BS approach in the 2-

D modeling are compared with the results of using 0-D modeling using the same 

input data of the case study. In addition, the parameter uncertainty of one the 

variables of interest, porosity of H1 layer is quantified by 3-D modeling and 

compared to the results obtained from 2-D data with different parameter 

uncertainty. 

 

 

7.1 Comparison between 2-D and 0-D Modeling 

 

In early stages of a reservoir life, there is no choice sometimes but to use 

0-D modeling to estimate the resource volumes due to short time to make some 

quick decisions and/or unavailable data to apply different modeling scale. In the 

0-D modeling, the variables of interest are represented by probability distributions 

that are used to calculate resource volumes by drawing values for those variables 

according to their specified probability distribution. There are several fast and 

friendly programs that can be used to simulate realizations of the resource 
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volume. Some of them ignore the correlation between the input parameters, which 

is not realistic. In this study, GSLIB-like programs and spreadsheets were used to 

quantify uncertainty in HIIP. Many scenarios were conducted using 0-D modeling 

to investigate the effects of accounting for the correlation coefficients between the 

variables of interest and obtaining the thickness probability distribution from well 

data or seismic data. Accounting for the correlation coefficients between the 

variables of interest showed no significant change from the results obtained with 

ignoring the correlation coefficients since the data were not strongly correlated. 

Therefore, only the results with accounting for the correlation coefficients are 

presented in this study. 

 

7.1.1 0-D Modeling with Thickness Data Obtained from Seismic 

 

The resource volumes calculation in the 0-D modeling is based on 

drawing a value for each variable of interest involved from its representative 

distribution then multiplying those values with each other as shown in the 

following equation: 

 

HIIP = Area * Thickness * NTG * porosity * (1-Sw)  7-1 

 

The thickness data in this scenario were obtained from Seismic. Figure 7-1 

shows the distributions of H1 and H2 layer thicknesses obtained from Seismic 

data. To assess the uncertainty in the thickness of each layer, n values were drawn 

randomly from thickness distribution in Gaussian space as one realization. This 

process was repeated L times. The average of each realization was determined in 

original units. These averages represent the uncertainty in the means of the 

thickness, see Figure 7-2. BS approach was used to assess the uncertainty in the 

means of NTG and porosity similar to those obtained with 2-D modeling, see 

Figure 7-3. Random values for all variables of interest had to be drawn in 

Gaussian space and correlated using the correlation coefficients between those 

variables. The uncertainty in HIIP was calculated by multiplying the correlated  
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Figure 7-1: Histograms for H1 and H2 layer thicknesses obtained from Seismic Data. Top: H1 

layer thickness. Bottom: H2 layer thickness. 
 

 

values but in their original units. As in 2-D modeling, water and oil saturations 

were assumed to be fixed at %20 and %80, respectively because their data were 

unavailable. The following steps describe in details the methodology followed in 

0-D modeling using Seismic data with accounting for correlation coefficients 

between the variables on interest: 
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Figure 7-2: Parameter Uncertainty in the means of H1 and H2 layer thicknesses obtained from 

Seismic Data. 
 

 

1. normal score the thickness data obtained from Seismic to get the 

transformation tables for H1 layer thickness by running nscore program. 

2. generate L realizations by using mcs program, each realization has n values in 

Gaussian space to represent H1 layer thickness data (let L = 100 and n = 

10000 in this study). 
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Figure 7-3: Parameter Uncertainty in the means of NTG and porosity of H1 and H2 layers using 

BS approach. The units are in fractions. 
 

 

3. back transform the realizations data using the transformation table obtained 

from step 1 for H1 layer thickness. 

4. calculate average H1 layer thickness in each realization using AvgVr program. 

The results represent the uncertainty in the mean of H1 layer thickness. 

5. repeat steps 1 through 4 for H2 layer thickness. 

6. use a parameter uncertainty approach to assess the uncertainty in NTG and 

porosity for each layer of H1 and H2 (BS approach was used in this study). 

7. normal score the data obtained for all variables of interest from steps 4 

through 6 to get the transformation tables for the variables by running nscore 

program. 

8. draw L values from normal distribution (0,1) for each variable of interest by 

using mcs program (let L = 100 in this study). Each value in each column 
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represents a mean for one of the variables of interest (Average thickness, 

NTG, or porosity). 

9. use the correlation coefficients between the variables to correlate those mean 

values by using correlate program. 

10. back transform the means data using the transformation tables obtained from 

step 7 for all variables of interest. 

11. calculate HIIP in each layer by multiplying the first realizations of all 

variables to get the first realization of HIIP in that layer and so on to the L 

realization. Then calculate HIIP for all layers by adding the individual layer 

results as in the following equation: 

 𝐻𝐼𝐼𝑃 =   𝐻𝐼𝐼𝑃𝑖
𝑛𝑙
𝑖=1 =  ℎ𝑖 ∗ 𝑁𝑇𝐺𝑖 ∗ ∅𝑖 ∗ (1 − 𝑆𝑤𝑖)

𝑛𝑙
𝑖=1   7-2 

where nl = number of layers. 

12. get HIIP distribution and assess its uncertainty. 

 

HIIP was calculated using 0-D modeling with accounting for correlation 

coefficients. The results were presented in Figure 7-4 as probability distribution 

frequency and cumulative probability frequency. The mean and standard 

deviation of HIIP were 102.1249 and 10.9210 m
3
, respectively. The P-10 and P-

90 were 88.7681 and 116.2502 m
3
, respectively. 

 

 

 

  

Figure 7-4: HIIP using 0-D modeling with the correlation coefficients between the variables of 

interest. The results are in million cubic meters. 
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In this case, the seismic data was used to assess the uncertainty in the 

layers thicknesses in order to have a fair comparison of the results of using 0-D 

modeling against those obtained from using 2-D modeling. 

 

7.1.2  0-D Modeling with Thickness Data obtained from Well Logs 

 

 This scenario was conducted to investigate the effects of assessing the 

thickness uncertainty using well data with BS approach on HIIP instead of using 

seismic data and show the importance of seismic data to get better evaluation of 

the resource/reserve volumes. The thickness of each layer from well data was 

used to assess the uncertainty in the mean of that layer thickness. Figure 7-5 

shows the parameter uncertainty in the means of thickness using BS approach for 

H1 and H2 layers. The parameter uncertainty in NTG and porosity for H1 and H2 

layers are similar to those used in previous scenario, see Figure 7-3. 

 

 The procedure of estimating the HIIP using 0-D modeling is based on 

Monte Carlo simulation. As mentioned earlier, considering correlation 

coefficients between the variables of interest didn’t have a major effect on the 

HIIP results. So, only the results of considering correlation coefficients were 

presented in this study because it is more realistic than ignoring these coefficients. 

The procedure steps were as follows: 

 

   

 

Figure 7-5: Parameter Uncertainty in Thickness of H1 and H2 layers using BS approach. Left: H1 

layer. Right: H2 layer. 
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1. quantify the parameter uncertainty in the mean for all variables of interest 

(BS approach was used in this scenario). 

2. normal score the data obtained for all variables of interest from step 1 to 

get the transformation tables for the variables by running nscore program. 

3. draw L values from normal distribution (0,1) for each variable of interest 

by using mcs program (let L = 100 in this study). Each column represents 

one of the variables of interest (Average thickness, NTG, or porosity) and 

each value in the column represents a mean for one realization of that 

variable. 

4. use the correlation coefficients between the variables to correlate those 

mean values by using correlate program. 

5. back transform the means data using the transformation tables obtained 

from step 2 for all variables of interest. 

6. calculate HIIP in each layer by multiplying the first realizations of all 

variables to get the first realization of HIIP in that layer and so on to the L 

realization. Then calculate HIIP for all layers by adding the individual 

layer results as in equation (7-2). 

7. get HIIP distribution and assess its uncertainty. 

 

The uncertainty in HIIP of Hekla field was estimated using 0-D modeling 

with thickness obtained from well log data. The mean and standard deviation of 

the results were 124.6272 and 14.7800 m
3
, respectively. Figure 7-6 shows the 

probability and cumulative distribution frequencies. 

 

A comparison between the three scenarios of estimating HIIP, one 

scenario using 2-D modeling with BS approach and two scenarios using 0-D 

modeling with thickness data obtained from either seismic or well logs. The 

results were summarized in Table 7-1. Figure 7-7 compared the results of the 

three scenarios using spider plot and tornado chart. The standard deviations were 

similar except with 0-D modeling with thickness obtained from well logs, which 

had a higher standard deviation than others by about %32.  



 - 155 - 

  

Figure 7-6: HIIP using 0-D modeling with thickness obtained from well data the correlation 

coefficients between the variables of interest. The results are in million cubic meters. 
 

 

 

Table 7-1: 2-D vs. 0-D modeling: Comparison between three scenarios estimating HIIP. First 

scenario used 2-D modeling with parameter uncertainty approach. The other two scenarios used 0-

D modeling with accounting for correlation coefficients between the variables of interest; the 

thickness was obtained in one scenario from seismic and in the other from well logs. The results 

are in million cubic meters. 
 

 

Figure 7-8 presents the probability and cumulative distribution frequencies 

for the three scenarios. It was obvious that using 0-D modeling overestimated the 

HIIP volumes especially the scenario that used thickness obtained from well logs, 

which increased the mean by about %31. Using thickness from well logs with 0-D 

modeling could reduce the overestimating from %31 to less than 8% compared to 

2-D modeling. 
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Figure 7-7: 2-D vs. 0-D modeling: a spider plot and tornado chart to compare between the three 

different models, 2-D modeling with parameter uncertainty approach, 0-D modeling with 

thickness data obtained from Seismic, and 0-D modeling with thickness data obtained from well 

logs. The results are in million cubic meters. 
 

 

As mentioned earlier in chapter 2, using 2-D modeling has many 

advantages. It is based on geological mapping, which make it easy to see the 

results and check them by mapping the results and checking them locally, but 

using 0-D modeling can not be checked. It just gives the distribution of the 

resource/reserve volumes. Figure 7-9 shows some examples of the HIIP 

realizations obtained from using 2-D modeling with BS approach. The better the 

local HIIP estimates are, the more confidence the global results have. In addition, 

HIIP realizations can be ranked based on the HIIP volumes, thickness, NTG, 
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average porosity, or any variable of interest. Then the realizations that represent 

P-90 and P-10 can be used to make some decisions about the optimum location(s) 

to drill new wells. 

 

 

 

 

 

Figure 7-8: 2-D vs. 0-D modeling: a comparison between the probability and cumulative 

distribution frequencies of HIIP volumes estimated by different modeling. Top: probability 

distribution frequencies of HIIP volumes. Bottom: cumulative distribution frequencies of HIIP 

volumes. The models are 2-D modeling with parameter uncertainty approach, 0-D modeling with 

thickness data obtained from Seismic, and 0-D modeling with thickness data obtained from well 

logs. The results are in million cubic meters. 



 - 158 - 

 

 

 

Figure 7-9: 2-D HIIP Maps for different realizations. These maps were obtained from using 2-D 

modeling with BS approach to quantify the parameter uncertainty in the variables of interest. 
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7.2 Comparison between 2-D and 3-D Modeling 

 

It is good to have a model describing the field of interest in a high 

resolution, but it is important to account for the parameter uncertainty in the 

variables of interest. In the early stages of the reservoir life, 3-D models are rarely 

used to calculate the resource/reserve volumes for many reasons. The most 

important reasons are the significant time, CPU, and capacity required to run such 

high resolution models and the little data available at that time. In this section, the 

parameter uncertainty of H1 layer porosity will be quantified using 3-D modeling 

to be compared with the quantified average porosity for H1 layer using 2-D data 

and different parameter uncertainty approaches. 

 

In order to quantify the parameter uncertainty in H1 layer porosity, it is 

important to get a better 3-D variogram model that represents the continuity in the 

existing layer. Therefore, calculating proportional stratigraphic coordinate 

systems based on depth is the first step in order to capture original continuity of 

petrophysical properties and preserving this continuity within the existing layer 

structure (McLennan, 2004). The proportional coordinates ZPROP can be 

calculated as the relative distance between the existing top and bottom depths (in 

percentage), see Figure 7-10. The coordinate transformations in equation (7-3) 

can be calculated using Wells-1, 2, and 3 in depth coordinates: 

𝑍𝑃𝑅𝑂𝑃  𝒖𝑖 =  
𝑧𝑠 𝒖𝑖 − 𝑍𝑡𝑜𝑝 (𝒖𝑖)

𝑍𝑏𝑎𝑠𝑒  𝒖𝑖 − 𝑍𝑡𝑜𝑝 (𝒖𝑖)
. 100     7-3 

Where  𝑍𝑃𝑅𝑂𝑃   = proportional coordinates 

 𝑍𝑡𝑜𝑝   = existing top layer surface 

 𝑍𝑏𝑜𝑡𝑡𝑜𝑚  = existing bottom layer surface 

 𝑧𝑠  = elevation data 
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Figure 7-10: (a) A schematic reservoir, the shaded portion of Wells-1, 2, and 3 are extracted. (b) 

Proportional coordinates are calculated and shown. The shaded composites represent horizontal 

variogram calculation pairs. 
 

 

The results of proportional stratigraphic coordinate systems for 19 wells of 

Hekla field were used to generate the 3-D experimental variograms to capture the 

major directions of continuity for H1 layer porosity. The gamv2004 program was 

used because the data are irregularly spaced. The experimental variograms in two 

main horizontal directions of continuity were found to be at (45 and 135 degrees). 

They were calculated with lag distance of 300m and 200m lag tolerance, while the 

experimental variogram in the vertical direction was calculated with lag distance 

of 2m and 0.3m lag tolerance. Table 7-2 summarizes the Parameters used to 

calculate the experimental variograms for H1 layer porosity in Hekla field. A 
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spherical model was used to fit the experimental results. Figure 7-11 shows the 

best 3-D experimental variograms and their best fit models. Top plot shows the 

experimental variogram and its best fit model in the major and minor horizontal 

direction at 45 and 135 degrees, respectively. Bottom plot shows the experimental 

variogram and its best fit model in the vertical direction. The 3-D variogram 

model equation for H1 layer porosity in Hekla field is as follow: 

 

(h) = 0.001 + 0.999 * sph        7-4 

                                     av = 18 

                                     ah1 = 1200 

                                     ah2 = 500 

 

 A good variogram model is essential step required to get better simulation 

results. 100 different 3-D realizations for H1 layer porosity were sampled using 

Sequential Gaussian simulation with changing the seed number in each 

realization. A big capacity in the memory is required to store these realizations. 

As the reservoir has higher resolution as the memory needs more capacity. To 

quantify the parameter uncertainty in H1 layer porosity, the average porosity was 

calculated from each realization above the assumed porosity cutoff, %10. 

 

 

 

Direction Major Horizontal Minor Horizontal Vertical 

Azimuth 45 135 0 

Azimuth Tolerance 30 30 30 

Bandwidth horizontal 1000 1000 10 

Dip 0 0 90 

Dip tolerance 30 30 30 

Bandwidth vertical 10 10 10 

Number of lags 6 6 15 

Lag distance 300 300 2 

Lag tolerance 200 200 1 

Table 7-2. Experimental variograms parameters for H1 layer porosity in Hekla field. 
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Figure 7-11: 3-D Experimental variograms for H1 layer porosity. Top plot shows the variograms 

in the two main directions with their best fit model. Bottom plot shows the variogram in the 

vertical direction with its best fit model. The distance units are in meters. 
 

 

 

Figure 7-12: Parameter uncertainty in H1 layer porosity using 3-D modeling. The porosity cutoff 

was 10%. 
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The following steps summarized the steps required to quantify the 

parameter uncertainty of H1 layer porosity using 3-D model: 

1. calculate proportional stratigraphic coordinate systems based on elevation. 

2. generate 3-D experimental variograms and find the best fit model for H1 layer 

porosity. 

3. generate L realizations of H1 layer porosity using Sequential Gaussian 

simulations with changing the seed number in each realization. 

4. calculate the average porosity above porosity cutoff for each realization and 

obtain a distribution for H1 layer porosity. 

 

A comparison between the results of the parameter uncertainty for H1 

layer porosity using 3-D modeling and 2-D modeling was conducted. Figure 7-13 

shows the parameter uncertainty in H1 layer porosity using 3-D and 2-D modeling 

with different parameter uncertainty approaches. It is obvious that 3-D modeling 

did not capture wide uncertainty as 2-D modeling did. The CPU time required to 

quantify the parameter uncertainty using 3-D modeling and the memory allocation  

 

 

 

Figure 7-13: 2-D vs. 3-D Modeling: Parameter uncertainty in H1 layer porosity. The porosity 

cutoff was 10%. 
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needed for previously simulated nodes are significantly more than those required 

for quantifying parameter uncertainty using parameter uncertainty approaches and 

2-D modeling. Based on the reservoir grid definition used in this study, more than 

one gigabyte was needed to simulate 100 realizations and get the parameter 

uncertainty in the porosity using 3-D modeling. On the other hand, the amount of 

memory required for quantifying the parameter uncertainty of H1 layer porosity 

were about few kilobytes for BS approach, about a hundred for SBS approach, 

and more than ten megabytes for CFD approach; even though, the data required 

for the post process were just few kilobytes not like the results of the 3-D models 

where all realizations are required for the post process to estimate the 

resource/reserve volumes. 

 

 A complete study quantifying uncertainty in HIIP with full uncertainty and 

using 3-D models will need really a huge computer memory in order to store the 

simulation realizations for so the variables of interest. 
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Chapter 8 

 

CONCLUSIONS AND FUTURE WORK 

 

 

We would wish for the lowest uncertainty possible. However, too narrow 

uncertainty due to ignoring the uncertainty in the present geology leads to a false 

confidence in reserves and resources. Our aim is to obtain a realistic and fair 

measure of uncertainty. Decisions of stationarity and a modeling methodology are 

the most important factors in determining output uncertainty in any practical 

modeling study. 

 

8.1 Summary of Contributions 

 

In this study, a methodology for the assessment of uncertainty in the 

structure surfaces of a reservoir, fluid contacts levels, and petrophysical properties 

was developed and investigated. A complete setup was considered with 

accounting for parameter uncertainty in order to get a fairly global uncertainty. 

There is no question that uncertainty in the input histogram main parameter, such 

as the mean, must be considered for realistic global uncertainty characterization.  

There are several techniques for calculating parameter uncertainty in a required 

input histogram. These techniques include conventional bootstrap (BS), spatial-

bootstrap (SBS), and Condition finite-Domain (CFD). 

 

Any of the three techniques can be applied to quantify the uncertainty in 

the mean of each variable.  Uncertainty in the mean is of primary importance; the 

details of the histogram are of second order importance compared to the mean. 
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Uncertainty in the variogram is sometimes considered; however, it is also of 

second order importance. Uncertainty in the mean of each parameter was 

quantified with the three techniques mentioned above. The results of uncertainty 

in HIIP distribution with/without parameter uncertainty were analyzed and 

assessed to show the importance of accounting for parameter uncertainty in 

estimating HIIP and choose the optimum technique for quantifying full 

uncertainties in HIIP with parameter uncertainty for this case study. 

 

Techniques used in this research were described how they work, what 

variables to be used with, and how to be implemented with/without parameter 

uncertainty. There were three main techniques used to quantify uncertainty in the 

variables of interest. The techniques are conditional Sequential Gaussian 

Simulation (SGS), Monte Carlo Simulation (MCS), and cosimulation with super 

secondary data; while MVPU technique was used in assessing HIIP with 

parameter uncertainty in all variables of interest. 

 

Reservoir scenario defined by the reference top and bottom surfaces is 

only one possible estimate of the reality. Although this scenario matches the 

reality at well locations, there might be uncertainties in the area away from the 

well locations. Therefore, estimating HIIP cannot be treated as unambiguous 

results. Conditional SGS is the best choice to simulate different realizations 

quantifying the uncertainty in the structural surfaces parameters. 

 

A cosimulation technique with super secondary data was used to quantify 

the uncertainty in petrophysical properties such as NTG, , and Sw because these 

parameters had some relationship with thickness and a relation between each 

other. Many realizations of those petrophysical properties were generated 

simultaneously by using this technique. 

 

The Multivariate Parameter Uncertainty technique is a stochastic approach 

that was used to quantify full uncertainty HIIP with parameter uncertainty. It is 
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based on incorporating the correlation coefficients among variables of interest to 

determine the means of parameter uncertainty to eliminate the aggregation 

problem. 

 

There are a lot of parameters that play key factors in reserve estimations. 

The parameters and their sources should be known to do more investigations in 

order to reduce uncertainties. First sensitivity analysis was to investigate the 

orders of the parameters affecting HIIP uncertainty from the most effective 

parameter to the least effective one in all seven scenarios, without parameter 

uncertainty, with parameter uncertainty using BS, SBS, and CFD approaches with 

low and high variogram ranges each. Quantifying the uncertainty in HIIP without 

parameter uncertainty was more sensitive to structural surfaces parameters, then 

petrophysical properties, and last to the OWC. The other six scenarios quantifying 

the uncertainty in HIIP with parameter uncertainty were more sensitive to 

petrophysical properties, then structural surfaces parameters, and last to the OWC. 

In addition, the order of the parameters in the six scenarios quantifying the 

uncertainty in HIIP with parameter uncertainty was almost the same except the 

porosity of H1 and H2 layers that were exchanged in those six scenarios because 

their effects on the HIIP uncertainty were almost close to each other.  

 

The standard deviations of the HIIP distributions obtained from using 

parameter uncertainty approaches were positively correlated to the standard 

deviations of the parameter uncertainty distributions used. 

 

By comparing the cumulative distribution frequencies of HIIP with full 

uncertainty, the results of using BS approach had more uncertainty in the HIIP 

estimates compared to those results without parameter uncertainty. The problem 

of using BS approach was to ignore the spatial correlation between the data. 

Therefore, SBS approach was used to consider the spatial correlation between the 

data, but its results had more uncertainty in the HIIP distributions than those 

results obtained from using all other approaches. The CFD approach considered 
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the correlation between the input data and the conditioning data, so it should be 

more realistic; even though, it is not such well known and popular as SBS 

approach. The disadvantage of using the CFD is the significant time required to 

generate a parameter uncertainty that might reach to a few hours depending on the 

input data and the CPU. 

 

A comparison between 2-D modeling with BS approach and 0-D modeling 

with thickness data obtained from either seismic or well logs was conducted. The 

0-D modeling overestimated the HIIP volumes especially the scenario that used 

thickness obtained from well logs. Using seismic data for thickness in 0-D 

modeling reduced the overestimating of HIIP compared to the results obtained 

from 2-D modeling. One of the disadvantages of using 0-D modeling is that it can 

not be checked, while 2-D is based on geological mapping and can be checked 

locally. The better the local HIIP estimates are, the more confidence the global 

results have. But sometimes in early stages of a reservoir life, there is no choice 

but to use 0-D modeling to estimate the resource volumes due to short time to 

make some quick decisions and/or unavailable data to apply different modeling 

scale. 

 

The parameter uncertainty in the thickness of H1 layer was quantified 

using 3-D modeling. The results using 3-D modeling was much narrower than 

that obtained from using 2-D modeling. The CPU time required to quantify the 

parameter uncertainty using 3-D modeling and the memory allocation needed for 

previously simulated nodes are significantly more than those required for 

quantifying parameter uncertainty using parameter uncertainty approaches and 2-

D modeling. A complete study quantifying uncertainty in HIIP with full 

uncertainty and using 3-D models will need really a huge computer memory in 

order to store the simulation realizations for so the variables of interest. 
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8.2 Future Work 

 

There is some additional work that may be considered in the development 

of geostatistical techniques that allow for the improved integration of assessing 

uncertainty in resource/reserve volumes estimations. The following are some 

ideas for future research in points: 

 

 Effects of increasing number of wells can be investigated by increasing it 

in steps to evaluate the effects of increasing available data on HIIP 

uncertainty. 

 

 Different standard deviation values should be used in the undulation 

generation for the top and bottom surfaces and layers thickness to assess 

the sensitivity of HIIP volumes with the standard deviation of the 

uncertainty in the structural parameters. 

 

 Uncertainty in fluid contact levels was assessed by changing the mode in 

each realization, while its uncertainty can be assessed by varying the limits 

with the mode in each realization or assuming different distribution shape. 

It depends on the available data. 

 

 Formation volume and recovery factors can be added to the evaluation to 

estimate stock tank HIIP and recoverable reserves. 

 A complete study often studies the effects of 20 to 30 variables. 

Hydrocarbon resources or reserves are calculated as a combination of 

these variables. In this research, only few geologic factors and 

petrophysical properties were considered, even though the procedure 

might be extended to study the effects of other parameters such as other 

geologic factors, economic conditions, and engineering conditions. 
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Appendix A 

 

DOCUMENTATION 

 

 

 GSLIB software package (Deutsch and Journel, 1998) is used for the 

preparation of the research. There are some new GSLIB-type FORTRAN 

programs created for the techniques developed in this dissertation including OOIP 

to calculate hydrocarbon initially-in-place (HIIP) with full uncertainty in all 

parameters of interest, input_mp to calculate the values of the parameter means, 

shift_pdf to shift any original reference distribution to a new mean, and 

combine_1col to combine multiple columns from multiple files into one column. 

This appendix documents those programs created for quantifying uncertainty in 

HIIP with parameter uncertainty. Their parameter files were presented as an 

example then described. The source codes are not listed because of length 

considerations. 

 

 The first program OOIP is to calculate hydrocarbon initially-in-place with 

uncertainty in one/multi parameter(s). The program takes the realizations 

generated for parameters of interest to calculate HIIP for each grid (in details) and 

realization (in brief). The second program input_mp is to calculate the values of 

the parameter means. It draws parameter means with equal probability distance 

between the data. The third program shift_pdf  is used to shift any distribution to a 

new mean using a multiplication or addition approach. The fourth program 

combine_1col is to combine the data from multiple columns from multiple files 

into one column. Any number of columns can be read from any number of files. 

This program was required to combine the realizations of any parameter of 

interest into one file when generating these realizations had to be conducted in 

separate runs. 
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                          Parameters for OOIP 

                       ******************* 

 

Line           START OF PARAMETERS: 

1                 OOIP.out                                -file with output data 

2                 OOIP_details.out                 -file with detail output data 

3                 100                                         -  number of realizations 

4                 50    0.5    1.0                         -  nx,xmn,xsiz 

5                 50    0.5    1.0                         -  ny,ymn,ysiz 

6                 seismic.dat                             -file for seismic data 

7                 3     4                                      -  columns of top and bottom surface data 

8                 -1.0     1.0e21                         -  trimming limits 

9                   

10                START OF PARAMETERS (Top Structure Uncertainty): 

11                1                                             -  consider uncertainty in Top Surface data (0=no,1=yes) 

12                2000.0  15.0                           -  mean and standard deviation for Top Surface means if yes 

13                Top_PU_means.dat              -  PU file for Top/Bottom Structure in normal scored values 

14                1                                             -  column no. for PU means of top/bottom surfaces 

15                1                                             -  Standard Deviation in original Top Surface data (if yes) 

16                1                                             -  Standard Deviation of Uncertainty in Top Surface means (if yes) 

17                TopUncertainty.dat             -file for uncertainty in Top Surface data (if yes) 

18                1                                             -  column no. for uncertainty in top and bottom surfaces 

19                    

20                START OF PARAMETERS (Thickness Uncertainty): 

21                0                                             -  consider uncertainty in Thickness (0=no,1=yes) 

22                20.0    3.0                               -  mean and standard deviation for Thickness means if yes 

23                Thick_PU_means.dat          -  PU file for Thickness in normal scored values 

24                1                                             -  column no. for PU means of thickness 

25                1                                             -  Standard Deviation in original Thickness data (if yes) 

26                1                                             -  Standard Deviation of Uncertainty in Thickness means (if yes) 

27                ThicknessUncertainty.dat     -file for uncertainty in Thickness (if yes) 

28                1                                             -  column no. for uncertainty in thickness 

29                   

30                START OF PARAMETERS (OWC Uncertainty): 

31                0                                             -  =iOWC, consider uncertainty in OWC (0=no,1=yes) 

32                2000                                       -  OWC level (if no) 

33                OWCUncertainty.dat          -file for uncertainty in OWC, (if yes) 

34                1                                             -  column no. for uncertainty in OWC 

35                   

36                START OF PARAMETERS (NTG Uncertainty): 

37                0                                             -  =iNTG, consider uncertainty in NTG (0=no,1=yes) 

38                1                                             -  specify realization no. to be used, if iNTG=0 

39                NTGUncertainty.dat           -file for NTG realizations 

40                1                                             -  column no. for uncertainty in NTG 

41                   

42                START OF PARAMETERS (Porosity Uncertainty): 

43                0                                             -  =iporo, consider uncertainty in Porosity (0=no,1=yes) 

44                1                                             -  specify realization no. to be used, if iporo=0 

45                PoroUncertainty.dat            -file for Porosity realizations 

46                1                                             -  column no. for uncertainty in Porosity 

47                   

48                START OF PARAMETERS (Sw Uncertainty): 

49                0                                             -  =iSw, consider uncertainty in Sw (0=no,1=yes) 

50                1                                             -  specify realization no. to be used, if iSw=0 

51                SwUncertainty.dat               -file for Water Saturation realizations 

52                1                                             -  column no. for uncertainty in Sw 
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Figure A-1: An example parameter file for OOIP program. 

 Figure A-1 presents an example of the parameter file for OOIP program. 

The output files are specified on Lines 1 and 2. The first file gives the HIIP for 

all realizations and the second file gives more details output by listing all 

parameter values including HIIP for all grids in all realizations. The number of 

realizations is given on Line 3. The grid definition is given on Lines 4 and 5. The 

input file for seismic data is specified on Line 6. The column numbers for the top 

and bottom surface data are given on Line 7. The trimming limits are given on 

Line 8 for the data of the top and bottom surface depths.  

 

Parameters required for uncertainty in top structure start on Line 10. Line 

11 gives the option to consider the uncertainty in top and bottom surfaces (0 for 

no and 1 for yes). If the value is 1, then Lines 12 to 18 become active. The mean 

and standard deviation for top surface using a parameter uncertainty approach 

such as BS, SBS, or CFD are specified on Line 12. The input file for the means of 

the uncertainty realizations in the top and bottom surfaces in normal score values 

is specified on Line 13. The column number for the mean values is given on Line 

14. The standard deviation of the original data is given on Line 15. The standard 

deviation in the uncertainty realizations is given on Line 16. The input file with 

uncertainty realizations obtained from conditional SGS is specified on Line 17. 

The column number for the uncertainty realizations is given on Line 18. 

 

Parameters required for uncertainty in thickness start on Line 20. Line 21 

gives the option to consider the uncertainty in thickness (0 for no and 1 for yes). If 

the value is 1, then Lines 22 to 28 become active. The mean and standard 

deviation for thickness using a parameter uncertainty approach are specified on 

Line 22. The input file for the means of the uncertainty realizations in the 

thickness in normal score values is specified on Line 23. The column number for 

the mean values is given on Line 24. The standard deviation of the original data is 

given on Line 25. The standard deviation in the uncertainty realizations is given 

on Line 26. The input file with uncertainty realizations obtained from conditional 
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SGS is specified on Line 27. The column number for the uncertainty realizations 

is given on Line 28. 

 

Parameters required for uncertainty in OWC start on Line 30. Line 31 

gives the option to consider the uncertainty in OWC (iOWC = 0 for no and 1 for 

yes). If iOWC is 0, Line 32 becomes active to give the OWC level. If iOWC is 1, 

Lines 33 and 34 become active. The file for the uncertainty in OWC is specified 

on Line 33. The column number for uncertainty realizations in OWC is given on 

Line 34. 

 

Parameters required for uncertainty in NTG start on Line 36. Line 37 

gives the option to consider the uncertainty in NTG. (iNTG = 0 for no and 1 for 

yes). If iNTG is 0, Line 38 becomes active to give the realization number required 

to be used in calculating all OOIP realizations. The file for the NTG realization(s) 

is specified on Line 39. The column number for NTG realizations is given on 

Line 40. 

 

Parameters required for uncertainty in porosity start on Line 42. Line 43 

gives the option to consider the uncertainty in porosity. (iporo = 0 for no and 1 for 

yes). If iporo is 0, Line 44 becomes active to give the realization number required 

to be used in calculating all OOIP realizations. The file for the porosity 

realization(s) is specified on Line 45. The column number for porosity 

realizations is given on Line 46. 

 

Parameters required for uncertainty in water saturation start on Line 48. 

Line 49 gives the option to consider the uncertainty in porosity. (iporo = 0 for no 

and 1 for yes). If iSw is 0, Line 50 becomes active to give the realization number 

required to be used in calculating all HIIP realizations. The file for the Sw 

realization(s) is specified on Line 51. The column number for Sw realizations is 

given on Line 52. 

 



 - 178 - 

                    Parameters for Input_mp 

                 *********************** 

 

Line START OF PARAMETERS: 

1 Top_PU.dat             -file with output data 

2 100                          -  number of realizations 

3 18.8                         -  Standard Deviation of parameter means 

4 83.4                         -  Standard Deviation of original data 

 

Figure A-2: An example parameter file for input_mp program. 

 

 

Figure A-2 presents an example of the parameter file for input_mp 

program. The output file is specified on Line 1. The number of realizations is 

given on Line 2. The standard deviation obtained from parameter uncertainty 

approach is given on Line 3. The standard deviation obtained from parameter 

original data is given on Line 4. 

 

 

         Parameters for shifting distribution 

         ************************************ 

 

Line  START OF PARAMETERS: 

1  ../data/input.dat            - file with input data 

2  shift_pdf.out                - file with output data 

3  shift_pdf.dbg                - file for debugging output 

4  1                                   - column for variable 

5  100                               - number of data 

6  -900.0     1.0e21           - trimming limits 

7  50.0                              - targeted parameter mean 

8  1                                   - use shifting appraoch: 1=Multiplying or 2=Adding 

 

Figure A-3: An example parameter file for shift_pdf program. 

 

 

Figure A-3 presents an example of the parameter file for shift_pdf 

program. The input file is specified on Line 1. The output file is specified on Line 

2. The debugging file output is specified on Line 3. The column number of the 

input data needed to be shifted on Line 4. The number of data is given on Line 5. 

The trimming limits for the data are given on Line 6. The new mean, that the data 

mean has to be shifted to, is given on Line 7. Line 8 is to specify the approach 
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option that will be used to shift the data (1 for multiplying approach or 2 for 

adding approach). 

 

 

                    Parameters for COMBINE 

                  *********************** 

 

Line START OF PARAMETERS: 

1 combine.out                    -file for output 

2 4                                      -   number of columns to be combined 

3 firstfile.dat                      -first file 

4 1                                      -   column of interest 

5 secondfile.dat                 -second file 

6 1                                     -   column of interest 

7 secondfile.dat                -third file 

8 2                                    -   column of interest 

9 thirdfile.dat                   -fourth file 

10 1                                    -   column of interest 

 

Figure A-4: An example parameter file for combine_1col  program. 

 

 

Figure A-4 presents an example of the parameter file for combine_1col 

program. The output file is specified on Line 1. The number of columns needed to 

be combined in one is given on Line 2. The name of the input file for the first 

column to be combined is specified on Line 3. The column number of the first 

data needed to be combined in one column is given on Line 4. The name of the 

input file for the second column to be combined is specified on Line 5. The 

column number of the second data needed to be combined in one column is given 

on Line 6. The name of the input file for the third column to be combined is 

specified on Line 7. The column number of the third data needed to be combined 

in one column is given on Line 8. The name of the input file for the fourth 

column to be combined is specified on Line 9. The column number of the fourth 

data needed to be combined in one column is given on Line 10. 
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Appendix B 

 

ALPHABETICAL LISTING OF PROGRAMS USED 

 

 

backtr   normal scores back transformation 

 

boot_avg  Bootstrap resampling for the average 

 

combine_1col combines as many columns from different files into one 

column 

 

correlate correlates random values based on input correlation 

coefficients 

 

corrmat  generates correlation coefficients matrix 

 

corrmat_plot  PostScript plot of corrmat 

 

gamv2004  computes variograms of irregularly spaced data 

 

histplt   Postscript plot of histogram with statistics 

 

input_mp Draw values from parameter uncertainty distribution based 

on equally distanced probabilities 

 

manip   Manipulate columns 

 

mcs   Monte Carlo simulation 

 

nscore   Normal scores transformation 

 

OOIP Calculate hydrocarbon initially-in-place with parameter 

uncertainty 

 

plotem   Combine PostScript plots onto a single page 

 

quantile  Calculate quantiles/CDF from non-parametric distribution 

 

scatplt   Postscript plot of scattergram with statistics 

 

sgsim   sequential Gaussian simulation 
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sgsim00  Conditional finite domain 

 

shift_pdf  Shift probability distribution to a new targeted mean 

 

spatial_bootstrap Spatial bootstrap resampling for the average 

 

vargplt   PostScript plot of variogram 

 

ultimatesgsim  Ultimate sGs 

 

vmodel  variogram file from model 
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Appendix C 

 

ACRONYMS AND NOTATIONS 

 

 

A  Area 

 

a  range parameter 

 

av  range parameter in the vertical direction 

 

ah1  range parameter in the major horizontal direction 

 

ah2  range parameter in the minor horizontal direction 

 

Bo  Formation volume factor 

 

BS  Bootstrap 

 

CFD  Conditional Finite Domain 

 

CIM  Canadian Institute of Mining 

 

Cov  covariance 

 

CPU  Central processing unit 

 

D  Dimensions 

 

Fz  Cumulative distribution function of a random variable Z 

 

Fz
-1

  Inverse cumulative distribution function 

 

GOC  Gas oil contact 
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GRV  Gross rock volume 

 

GWC  Gas water contact 

 

h  Thickness 

 

HIIP  Hydrocarbon initially in place 

 

K  Number of data combinations 

 

k  order of uncertainty 

 

L  Number of Realizations 

 

LU  Lower and upper triangular matrices 

 

Max.  Maximum 

 

MCS  Monte Carlo Simulation 

 

Min.  Minimum 

 

MVPU  Multivariate Parameter Uncertainty 

 

mp
l
  l th realization of parameter mean  

 

mo  Parameter mean for the original data 

 

mz  Experimental mean 

 

n  Number of data 

 

NP  Net Pay 

 

NTG  Net-to-Gross 

 

OWC  Oil Water Contact 
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P  Probability 

 

PU  Parameter uncertainty 

 

PVT  Pressure, volume, and temperature 

 

SBS  Spatial Bootstrap 

 

SGS  Sequential Gaussian simulation 

 

SPE  Society of Petroleum Engineers 

 

sph  spherical equation 

 

So  Oil saturation 

 

Sw  Average water saturation 

 

Swi  Connate water saturation 

 

TD  Time-to-depth 

 

TI  Time interpretation 

 

u  Location vector in A 

 

Y  Transform function 

 

y
l
(u)  l th realization of variable y at location u. 

 

Z  generic random variable 

 

zb(u)  depth from the base structure at location u. 

 


l
(u)  l th realization of Uncertianty at location u. 
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  Standard deviation 

 

  Standard deviation of the original data 

 

  Standard deviation in uncertainty 

 

  Standard deviation in time interpretation 

 

  Standard deviation in time-to-depth 

 

  Average porosity 

 

(h) Stationary semivariogram between any two random variables Z(u) and Z(u+h) 

separated by lag vector h. 
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