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ABSTRACT

A reliable estimate of the amount of oil or gas in a reservoir is required for
development decisions. Uncertainty in reserve estimates affects resource/reserve
classification, investment decisions, and development decisions. There is a need
to make the best decisions with an appropriate level of technical analysis
considering all available data.  Current methods of estimating resource
uncertainty use spreadsheets or Monte Carlo simulation software with specified
probability distributions for each variable. 3-D models may be constructed, but
they rarely consider uncertainty in all variables. This research develops an
appropriate 2-D model of heterogeneity and uncertainty by integrating 2-D model
methodology to account for parameter uncertainty in the mean, which is of
primary importance in the input histograms. This research improves reserve
evaluation in the presence of geologic uncertainty. Guidelines are developed to:
a) select the best modeling scale for making decisions by comparing 2-D vs. 0-D
and 3-D models, b) understand parameters that play a key role in reserve
estimates, ¢) investigate how to reduce uncertainties, and d) show the importance
of accounting for parameter uncertainty in reserves assessment to get fair global
uncertainty by comparing results of Hydrocarbon Initially-in-Place (HIIP)
with/without parameter uncertainty. The parameters addressed in this research
are those required in the assessment of uncertainty including statistical and
geological parameters. This research shows that fixed parameters seriously

underestimate the actual uncertainty in resources. A complete setup of



methodology for the assessment of uncertainty in the structural surfaces of a
reservoir, fluid contacts levels, and petrophysical properties is developed with
accounting for parameter uncertainty in order to get fair global uncertainty.
Parameter uncertainty can be quantified by several approaches such as the
conventional bootstrap (BS), spatial bootstrap (SBS), and conditional-finite-
domain (CFD). Real data from a large North Sea reservoir dataset is used to
compare those approaches. The CFD approach produced more realistic
uncertainty in distributions of the HIIP than those obtained from the BS or SBS
approaches. 0-D modeling was used for estimating uncertainty in HIIP with
different source of thickness. 2-D is based on geological mapping and can be

presented in 2-D maps and checked locally.
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Chapter 1

INTRODUCTION

An accurate estimate of the reservoir volume is important for selecting
number of wells to be drilled, deciding their locations, and making other reservoir
development decisions. The first choice to make in any geostatistical study is the
modeling scale. High resolution 3-D models are appropriate for modeling
heterogeneity and providing input to flow simulation; however, they cannot be
used effectively for uncertainty quantification. Global statistical analysis is
appropriate for checking and providing input to parameter uncertainty, but it does
not permit uncertainty assessment for specific locations or well patterns. Reserves
estimations may be undertaken with 2-D modeling, which can be used in early

stages of reservoir development and account for uncertainty in structural surfaces.

Hydrocarbon resources are calculated as the product of gross rock volume,
net/gross ratio, porosity, hydrocarbon saturation, and formation volume factor,
while hydrocarbon reserves are calculated by multiplying resources volumes by
recovery factor. This study focuses more on resource volumes, although the
proposed methodology can be extended to estimate the reserve volumes. A single
resource/reserve figure (deterministic case) can be computed if the value of each
parameter is well known. It is more realistic to represent individual parameters by
a range of values, or a probability distribution. This leads to a probability
distribution for the resources and improves decisions. It is important to have a
narrow and fair estimate of uncertainty at the early stages of field life; otherwise,

designed production facilities might be underestimated or overestimated.



The uncertainty is due to limited data, measurement errors, and an
imperfect model. Limited data leads to incomplete knowledge of the complex
subsurface structure, petrophysical properties, and fluid properties. Errors in the
measured data lead to increased error. It is difficult to generate a model that
represents the real reservoir. With all these sources of uncertainty, a reasonable

numerical model is needed to relate available data and understand the subsurface.

1.1. Overview

For each reservoir, management requires a volumetric estimate of discovered
resources (HIIP) calculated based on gross reservoir volume (GRV),
petrophysical properties including net-to-gross (NTG), porosity (¢#), and fluid
saturations, and hydrocarbon properties such as formation volume factor. The
reserve volumes depend on the economic feasibility and the confidence in the
resource. Figure 1.1 shows the components of the hydrocarbon resource base. The
structure for this chart comes from SPE publications. The resources can be
categorized to undiscovered and discovered resources (HIIP) where the
discovered resources can be divided into economically unrecoverable resources
and economically recoverable resources (ultimate recovery). The Ultimate
Recovery can be classified into three levels, P-90, P-50, and P-10, based on level
of confidence. These probability hurdles are applied by both Society of Petroleum
Engineers (SPE) and Canadian Institute of Mining, Metallurgy and Petroleum
(CIM) (Etherington et. al., 2005).

1.1.1. Gross Rock Volume (GRV)

Reservoirs consist of stratigraphic layers constrained by a top seal. GRV is
the volume of a reservoir trapped between stratigraphic surfaces and/or
hydrocarbon-water contacts. A reservoir is sometimes bounded by stratigraphic

pinch-outs or faults, see Figure 1-2. The uncertainty in GRV is due to sparse well
-2-



Total Hydrocarbon
Resource Base

Discovered Resources
(Hydrocarbon initially-
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Figure 1-1: The components of the hydrocarbon resource base (from: SPE website accessed
March 2007)*.
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Figure 1-2: Reservoir Cross-section: The reservoir is bounded by top and bottom structure
surfaces and above OWC level as shown in the green area above and excluding the non-pay facies.
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data and uncertainty in structural surfaces interpreted from seismic data.
Generally, the top and bottom structure surfaces and faults are obtained from
seismic interpretation, while the oil-water contact (OWC) can be estimated from
the available wells. The depth of these surfaces is never exactly known and the
OWC depth may also be uncertain. Monte Carlo approaches are widely used to

quantify this uncertainty.

Seismic interpretation is performed in the time domain and transferred to
depth with a time-to-depth conversion using some type of velocity model. There
is no unique surface in units of depth because of uncertainties in the interpretation
(in time) and uncertainties in the time-to-depth conversion. In general, the further
away from the well locations, the larger the uncertainties in the surfaces.
Therefore, the calculated GRV is uncertain. This uncertainty is often recognized

but not always quantified.

1.1.2. Net-to-Gross (NTG)

The net-to-gross ratio (NTG) or Net Pay (NP) is a major element in
estimating a reservoir volume. Procedures to estimate NTG or NP tend to be
subjective. The thickness of the pay zone can be calculated by summing the
vertical samples where the rock and fluid properties meet specified criteria within
the given layer. The Net-to-Gross ratio can be calculated by dividing the thickness
of the NP estimate by the gross thickness of the layer. The remaining/excluded
zone from gross thickness has non-net facies, very low porosity, or high water
saturation to be considered noncommercial. Figure-1.2 shows the non-net facies
inside the reservoir layer. There is often significant dependency between porosity,
water saturation, and net-to-gross ratio, which must be accounted for in
geostatistical models. Models that ignore the correlation between those variables

may lead to wrong estimates of volumes and suboptimal decisions.



1.1.3. Porosity (¢)

The third element affecting reserve volume estimation is the effective
porosity, which refers to the interconnected pore volume that contributes to fluid
flow in a reservoir excluding dead-end or isolated pores. Porosity can be
determined from logs or measured from cores in the lab. These measurements are
local samples and do not represent the whole reservoir. Porosity is important for
two reasons: to estimate hydrocarbon volume and to model permeability due to

the high correlation between porosity and permeability.

1.1.4. Residual Saturation

Another variable affecting reserve volume estimation is residual
saturation, which is saturation level below which fluid drainage will not occur. It
is also called immobile saturation or connate water saturation (Swi). Residual
saturation is affected by several factors such as fluid viscosity, pore sizes, and
rock wettability if it is oil-wet or water-wet. Residual saturation estimates are
used to estimate the volume of recoverable hydrocarbon of concern in the
reservoir. Its values can be measured by running logs or collecting a
representative core sample and saturating it with the hydrocarbon of concern,
followed by allowing the sample to drain for several days and then measuring the

volume of hydrocarbon retained by the core sample.

1.1.5. Formation Volume Factor (Bo)

Most measurements of oil and gas production are made at the surface,
which is known as standard conditions. Therefore, volume factors are needed to
convert measured surface volumes to reservoir conditions and vice versa. Oil
formation volume factor (Bo) is a measure of the shrinkage or reduction in the
volume of crude oil as it is produced. Bo can be calculated by dividing oil and

dissolved gas volume at reservoir conditions by oil volume at standard conditions.
-5-



It is almost always greater than 1.0 because the oil in the formation usually
contains dissolved gas that comes out of solution in the wellbore with dropping
pressure. Bo is measured in PVT labs. Accurate evaluation of Bo is of prime
importance as it relates directly to the calculation of the reserve and oil in place

under stock tank conditions.

1.2. Problem Statement

Decision-makers need to make the best decisions with an appropriate level
of technical analysis with the acquisition of appropriate data. The definition of
“appropriate” in the context of uncertainty management is important to this
dissertation. This research will compare 0-D, 2-D, and 3-D approaches to quantify

uncertainty.

Reserves volumes have significant uncertainty due to sparse well data and
uncertainty in structural surfaces. In this dissertation, reservoir data are used to
develop a geostatistical approach to surface simulation and uncertainty
assessment. The top surface structure of a reservoir, subsequent layer thickness,
and oil water contact depths are uncertain. The main controls on the uncertainty
assessment are (1) the possible deviations from the base case seismic predicted
surfaces, that is, a distribution of the possible deviations from the base case, and
(2) a variogram that specifies how fast the uncertainty increases away from the
well locations. Careful assessment of parameter uncertainty is an important aspect

of this research.

The current methods of estimating reserves are spreadsheet or Monte
Carlo simulation (MCS) software using somewhat arbitrary distributions for the
variables. 3D models may be constructed, but they do not consider uncertainty in
all variables. Experimental Design could be used in multiple deterministic (or

scenario) modeling to quantify the uncertainties in some variables. Ignoring
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structural uncertainties can lead to wrong estimates of volumes and bad decisions.
Underestimating could lead to lost opportunities while overestimating could give

high-risk exposure.

The proposed methodology consists of four main steps: (1) assess
uncertainty in gross rock volumes with uncertainty in structural surfaces using
conditional sequential simulation with conditioning data at well locations to be
equal to certain values; (2) assess uncertainty in reserves volumes with
uncertainty in fluid contacts using MCS; (3) assess uncertainty in reserves
volumes with uncertainty in petrophysical properties using cosimulation with
super secondary data obtained from seismic data; and (4) assess full uncertainty in
reserves volumes by combining uncertainty in all previous parameters properly.
This scenario will be conducted twice, one without accounting for parameter

uncertainty and one with parameter uncertainty.

1.3. Literature Review

Many papers have been published about using MCS to estimate reserve
volumes and quantify parameter uncertainty especially in the early reservoir life
(Behrenbruch et al., 1985; Murtha, 1997; Berteig et al., 1988). Conditional
simulations were proposed instead of single or multiple deterministic scenarios to
assess uncertainty of hydrocarbon pore volume associated with structural
parameters, NTG, porosity, and permeability. The methodology in their paper was
based on simulating structural surfaces with conditioning data at well locations to
match available data. None of those papers mentioned varying the mean of the

variable of interest to assess its uncertainty.

Samson et al. (1996) proposed a method to assess the uncertainty in the
position of the top structure by assuming that maps of uncertainty on the time pick
and on the average velocity have been produced, and they evaluated the impact of
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these uncertainty maps on GRV uncertainties. Their proposed method consists of
generating possible error maps that are all within the range provided by
uncertainty maps. A possible depth map is obtained by adding an error map to the
reference case. A simulated GRV can then be computed between the simulated
top of the reservoir, the base of the reservoir and the OWC. By iterating many
times, histograms and expectation curves of the GRV can be derived. This paper
focused on uncertainty due to structural surfaces and fluids contacts levels but not
petrophysical properties. It also did not account for parameter uncertainty in the

mean for structural deviation.

Abrahamsen et al. (1998) proposed a stochastic model to assess the
uncertainty in estimating the reserve volumes, based on the uncertainties in cap
rock geometry and the depth to the hydrocarbon contact determined by a spill
point detection algorithm. First, the geometry of the cap rock is simulated using
established MCS techniques for surfaces based on Gaussian random field models.
Second, a new algorithm finds location of spill points and trapping areas of the
simulated structures. Then, GRV of the traps can be calculated and volume

distributions can be quantified in terms of histograms and quantiles.

There are many papers published about constructing a deterministic 3D
geological model. This is easily accomplished with commercial software.
Multiple deterministic (or scenario) models can be generated (perhaps using
experimental design) to quantify the uncertainties in some variables. This
methodology might give an idea about the limits of global uncertainty but it will
not give a full picture of uncertainty (or a distribution) plus it does not consider

for local uncertainty (Peng and Gupta, 2003).



1.4. Dissertation Outline

This research aims to improve reserve evaluation in the presence of
geologic uncertainty accounting for parameter uncertainty using 2-D models. The
second chapter presents the hierarchical-geostatistical modeling and shows how to
select the best modeling scale for making decisions. Chapter 3 introduces three
different approaches to quantify parameter uncertainty and discusses their
implementation details. The fourth chapter focuses on uncertainty management. It
discusses how it can be presented and understood to know parameters that play a
key role in reserve estimations in order to reduce their uncertainty. Chapter 5
explains the proposed methodology and how to assess uncertainty of HIIP
associated with structure such as top and bottom surfaces, layer thicknesses, and
fluid contact levels and petro-physical properties such as net-to-gross, porosity,
and oil saturation. It also presents the methodology with and without accounting
for parameter uncertainty. A case study of real data from Hekla Field, a portion of
a large North Sea reservoir is presented in the sixth Chapter to compare using
different parameter uncertainty approaches. Chapter 7 presents 2-D vs. 0-D and 3-
D modeling using the same real data from Hekla Field. The last chapter presents

some remarks on the developed methodology including future research directions.



Chapter 2

HIERARCHICAL RESERVOIR MODELING
AND UNCERTAINTY QUANTIFICATION

Different modeling scales are discussed with their applications, benefits
and disadvantages. An accurate estimate of reservoir volume is important for
optimal decision making. The first decision to make in any geostatistical study is

the modeling scale.

Modeling scale can be categorized into three groups as shown in Table-
2.1. Selecting the appropriate modeling scale depends on the goals of the study
and the stage in the lifecycle of a reservoir. Another factor affecting the modeling
scale selection is time sensitivity; sometimes quick decisions must be made based
on preliminary modeling results. One of the difficulties in modeling is getting a

reliable distribution for all variables.

2.1. 0-D Modeling

In general, 0-D methods are used at the prospect evaluation stage, whereas
2-D and 3-D methods are used during appraisal through to development and
production. There are several fast and friendly programs using Monte Carlo
Simulations of this method (Murtha, 1997 and Garb, 1988). These programs use
the probability distributions for each of the parameters used in the calculation
where values are drawn according to the specified probability distributions. MCS
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Reservoir Life

Geostatistical Exploration | Appraisal | Development | Production Secondary

Modeling development
0D M
2D ﬁ

Table 2-1: Hierarchical-Geostatistical models and their application through reservoir life.

is used when the distributions of each of the independent variables can be
reasonably quantified. These methods may ignore the interdependencies among
input parameters. The input uncertainty ranges for a given parameter are often
subjective. In addition, this method is used for global statistical analysis; it does

not permit uncertainty assessment for specific locations or development areas.

Using a 0-D MCS approach offers several advantages (Mishra, 1996) for
propagating uncertainty in reservoir engineering problems. First of these is that
the full range of each uncertain input parameter is sampled and used in generating
the probabilistic model outcome. A second advantage is the ease of
implementation. Finally, the Monte-Carlo approach is conceptually simple,

widely used and easy to explain.

2.2. 2-D Modeling

Reserves estimates can be undertaken with 2-D modeling of parameters
such as structural elevation, thickness (h), net-to-gross (NTG), average porosity

(@), average water saturation (Sw), and oil formation volume factor (Bo).
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Neither 0-D nor 3-D modeling considers local uncertainties in structural
surfaces. The 2-D modeling method uses 2-D and 3-D data and combines them to

investigate uncertainties in estimating reserves or resources globally and locally.

The 2-D methods map reservoir parameters and use their spatial
relationship rather than simply averaging. The parameter values for the 2-D grids
can be either structural position or some other reservoir property. These methods
are not as fast as 0-D methods but can give a better base for making decisions.

Structural uncertainties can be modeled by 2-D geostatistical tools such as
GSLIB software (Deutsch and Journal, 1998) that take into account the spatial
correlation between data points for a given surface. Stochastic models are created
with such a program. Multiple equally probable realizations of the structure can
be produced. Then, a range in GRV can be calculated by combining the
uncertainty range for fluid contacts with each of the simulated depth maps.
Hydrocarbon-in-place volumes can then be calculated by combining GRV
uncertainties with the uncertainty in petrophysical parameters using Monte Carlo

simulation.

2.3. 3-D Modeling

High resolution 3-D models are appropriate for modeling heterogeneity
and providing input to flow simulation. They are not necessarily the most efficient
for uncertainty quantification. In addition, they are not appropriate to make time
sensitive decisions since detailed 3-D modeling will take significant professional
and CPU time.

3-D modeling involves the construction of a geological framework grid
using the mapped structural horizons and fault surfaces together with the

individual reservoir layers. This framework is then merged with the sedimentary
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building blocks, or lithofacies, and their associated petrophysical characteristics.
3-D models allow for the population of the sparsely sampled space (between
wells) with the individual building blocks of a reservoir and their reservoir
properties. Multiple realizations of a reservoir can be produced from which

quantitative models for uncertainty analysis can be derived.

The procedures and the geostatistical tools used in 3-D modeling are
dependent on the data, time available, and particular reservoir or problem to be
investigated. The models also provide for full integration of subsurface data, but

they also require geostatistical specialists to keep them updated.

Peng et al. (2003) investigated the feasibility of using Experimental
Design and Analysis EDA methods with multiple deterministic scenarios to study
the hydrocarbon in-place volume (HIIP) of a reservoir. This may be important
during the exploration or early appraisal stage, where the amount of data is not
sufficient for meaningful 3-D numerical reservoir simulations. Multiple
deterministic models are being used more frequently as higher-risk marginal
fields are developed. This may be better than a probabilistic approach using 0-D
model in the investigation of HIIP because this method is based on a geological
representation of the reservoir that can be used for field development planning.
However, it may not be practical because a large number of models must be built
to generate the volume distribution curve (similar to that derived from the

probabilistic approach).

2.4. Remarks

0-D modeling is fast and used in the early stages of the reservoir life cycle
with few or no well data. Table 2-1 shows the hierarchical-geostatistical models

and their application through reservoir life. 2-D modeling is better than 0-D
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modeling in the investigation of HIIP in the appraisal stage of reservoir life

because it is based on a geological representation of the reservoir.

Table 2-2 shows a comparison between hierarchical-geostatistical
modeling based on speed, purpose, required input data, advantages, and
disadvantages. It shows that 0-D modeling is the best for quick decisions. 2-D

modeling is the best to quantify local and global uncertainties.

Gaussian-based techniques can be used without concern for non-linear
averaging. Converting data to 2-D summaries further simplifies multiscale
modeling. 2-D mapping is the most common approach to large scale modeling,
and used for estimating resources, quantifying, and accounting for parameter

uncertainty.

Detailed 3-D models are useful for flow simulation but not necessary for
resource estimation. They have many disaggregated components, take significant
time, and are not appropriate to make quick decisions; but they are used more to

make specific local decisions in mature reservoirs or to evaluate areas of interest.

Hierarchical-Geostatistical Modeling
0-D 2-D 3-D
Parameters
High Speed Yes Maybe No
PUrDOSE Mainly to estimate the Manbin More detailed
P GRYV for rush decisions ppIng modeling
Probability distribution of .
Input data cach element 2D maps All data available
Good for local and Good for local
Advantages Fast global uncertainties. uncertainties.
- Ignoring dependencies . .
. - - Not suitable for - Needs a lot of time.
Disadvantages | among input parameters. flow simulation.
- Subjectivity.

Table 2-2: Hierarchical-Geostatistical modeling comparison.
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Chapter 3

PARAMETER UNCERTAINTY

It is important to account for uncertainty in input histogram parameters to
geostatistical modeling. The input histogram parameters are almost always
assumed fixed, but they have some uncertainty that should be assessed. There is
uncertainty in the mean, standard deviation, and sample range of the input
histogram. Uncertainty in the mean is of primary importance; the details of the
histogram are of second order importance compared to mean. The mean of the
variables of interest was considered to be the statistic of interest in this study.
Different methods were developed to quantify parameter uncertainty in such
parameters of statistic. In this chapter, three different methods are discussed:
conventional Bootstrap method (BS), spatial Bootstrap method (SBS), and
Conditional Finite Domain (CFD). Each of these three methods will be described
with a comparison and recommendation for practical reservoir uncertainty

quantification.

3.1. Bootstrap

A first method for assessing uncertainty in the input histogram parameters
to geostatistical modeling is a bootstrap method (BS) developed by Efron (1979).
It is a useful application of Monte Carlo simulation to quantify uncertainty in
statistical parameters. There are two important assumptions implicit to the use of
the bootstrap: (1) the data are representative of the entire population and (2) the
data are independent, which is acceptable in early reservoir appraisal with widely
spaced wells.
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The bootstrap is a statistical resampling technique that permits the

quantification of uncertainty in any calculated statistics by resampling from the

original data. This method makes no assumption about the data distribution. In

other words, it is applicable regardless of the form of the data probability density

function.

Consider n data values of a single variable (z;, i=1,...,n) and a calculated

statistic, say, the experimental mean m,. The bootstrap can be used to calculate

the uncertainty in the statistic of interest (the mean) by the following simple

procedure:

1)

2)

3)

4)

5)

Assemble the representative distribution of the Z random variable using
declustering and debiasing techniques if appropriate: Fz(z). This
distribution could simply be the equal weighted histogram of the n data; so
each point will have a probability of 1/n.

Draw n values from the representative distribution, that is, generate n
uniformly distributed random numbers p;, i=I,....n and read the
corresponding quantiles:

zsi = FZ71(pi), 3.1
where i=1,....n.

The number of data drawn is typically equal to the number of data
available in the first place. The distribution of simulated values is not
identical to the initial data distribution because they are drawn randomly
and with replacement.

Calculate the statistic of interest (such as the experimental mean, mg,)
from the resampled set of data.

Return to steps 2-3 and repeat L times, where L is a large number, in order
to create L resamples. Typically, L is at least equal to 1000.

Assemble the distribution of uncertainty in the calculated statistic. This

distribution can now be used to make inferences about the parameter.
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A GSLIB-like code called boot_avg was developed by Deutsch (Neufeld
and Deutsch; 2007) based on a resampling technique. The bootstrap technique is
reasonable if the data are independent, but reservoir data are often correlated to
some extent. This correlation does not satisfy the independency assumption of this

technique as more data are collected.

3.2. Spatial Bootstrap

Data from a spatial region usually have a correlation structure. These
correlations are ignored in the conventional bootstrap. The bootstrap has been
extended to resample dependent data. Hall (1985); Kunsch (1989); Liu & Singh
(1992) have independently proposed a block resampling scheme. This method
termed also the moving blocks method. It is a common method of the block
bootstrap where blocks of the spatial data are sampled at random, then joined
together to form a new sample. The block bootstrap takes care of the dependence
structure within the blocks, but not the correlation between blocks. Hall et al.
(1995) pointed out that the bias and the variance of a block bootstrap estimator are

seriously affected by the block length.

Andy Solow (1985) proposed the spatial Bootstrap method (SBS) by
adding spatial dependency specified by a covariance matrix to the bootstrap. In
the spatial bootstrap method (Journel, 1993; Norris et.al., 1993), alternative sets of
data are resampled from whole simulated fields. This resampling method accounts
for any prior model of spatial dependency between the data, and allows for

integration of secondary information.

A GSLIB-like code, based on an efficient matrix simulation approach, was
presented by Deutsch (2004). It resamples with correlation, which relaxes the
assumption of independence. A LU simulation algorithm is used to simulate

values under a multivariate Gaussian model. The simulated values are
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unconditional and are only required at the data locations. The method of the SBS
is simple and efficient for a large number of realizations. The number of data has
a limit of 10000. The covariance values between each pair of data are established
based on an input of a 3-D variogram model.

n values are simulated from the deemed representative histogram Fz(z)
following the variogram of the normal scores of the Z variable, which can be
represented by a 3-D variogram model y(h). The algorithm is to perform an LU
decomposition of the n by n covariance matrix:

C=LU 3.2

where C, L, and U are n by n matrices. The variogram model is used to
build C. A Cholesky LU decomposition is used to calculate the lower and upper
triangular matrices L and U. Unconditional Gaussian simulations are calculated
by a simple matrix multiplication:

yO = Lw®, I=1,..,L 3.3

where w and y are n by 1 vectors and L is the number of realizations.

The w vector consists of independent Gaussian values and the y vector
consists of the resulting unconditionally simulated values with the correct
covariance. Then the Gaussian values are converted to probability values to draw
from the representative distribution.

p¥ = Gy"), I=1,..,L 3.4

where G™ is the inverse of the standard normal distribution and p is an n
by 1 vector of probability values [0,1]. The drawn z-values are calculated as:

2V = FzY(p"), I=1,..,L 35

Performing the LU decomposition is required only once to generate the
simulated realizations by the following equation:

2V = Guw"), 1=1,..,L 35

The distribution of the results can be used to calculate any parameter of

statistic using from each set of simulated values.
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The uncertainty is larger when the data are more correlated. The effective

number of data can be calculated as:

NS

neff = . 3.6

NN

where o2 is the variance of the data values.

o7 is the variance of the average values.

The following steps describe the methodology to perform the spatial

bootstrap:

1) Assemble the representative data.

2) Calculate the 3-D variogram for the data set.

3) Perform the LU simulation at the data locations.
4) Calculate the statistic of interest.

5) Return to step 3 and repeat many times.

6) Assemble the distribution of uncertainty in the statistic.

There are two apparent limitations of the SBS. The first limitation is that it
allows only quantifications of uncertainty of order one in the histogram. The
second limitation is that SBS does not account for all possible data in the area of
interest. It is always the case, especially in the early reservoir life, that some lower
and higher values of the variable of interest than those previously sampled are
obtained with collecting more samples. Ignoring such possibility in the
uncertainty assessment process can lead to underestimation/overestimation of

uncertainty.

A major problem with the spatial bootstrap approach is that increased
spatial correlation leads to greater uncertainty than if the data are more random.
The SBS does not consider the affect of conditioning data or the finite reservoir
domain. Directly accounting for size of domain and local conditioning data is

likely to be quite important.
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3.3. Conditional Finite Domain

The Conditional Finite Domain technique (CFD) is a new stochastic
approach that is based on a multivariate Gaussian distribution and used to assess
uncertainty in the input histogram (Babak and Deutsch, 2006).

The CFD approach has many advantages over the SBS approach. First,
SBS allows only quantification of uncertainty of order one in the histogram, while
CFD quantify uncertainty of any order in the histogram. CFD is also the first
approach that accounts for the size of the domain and the local conditioning data.
A disadvantage of the SBS is that it does not account for all possible data in the
area of interest. Some lower and higher values of the variables of interest can be
observed with additional sampling compared to those previously sampled;
therefore, CFD approach determines the possible higher and lower values of the

variable of interest.

This approach does not work directly with original data but with the
standard normal distribution after transforming the data prior to simulation. After
simulating the full grid in the area of interest, uncertainty assessment is based not
on the full grids of the simulated values, but rather on the sub samples of it. It is
assumed that every set of simulated data which have the same configuration as the
original data can be considered as an observation from the same underlying
distribution as the original data. Then the data are back transformed to the original
data.

Any desired number of data combinations, K can be chosen using
translation and/or rotation with respect to some centre of the original data, which
have the same configuration as the original data and belong to the study domain,
see Figure 3-1. The same K simulated data combinations can be found for all
other L-1 simulated realizations. Then the uncertainty in the statistic of interest is

quantified from the results of these K combinations obtained from L simulations.
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The reference distribution in the first realization is obtained from the original data
then the realization results used in the next simulated realization and so on. Figure

3-2 shows schematic representation of the calculations performed in one step.

Babak and Deutsch (2006) proved in their work that the “correct” starting
reference distribution has no effect on the limiting uncertainty but the lower and
upper tail values have a major effect on the limiting uncertainty value. The effect
of the number of data and the variogram range on the limiting uncertainty was
investigated. It was found that the uncertainty decreases as the number of data
increases. With respect to the change in range of correlation, it was observed that
the uncertainty in the statistic of interest decreases as the range of correlation
increases due to the fact that the conditioning data are more correlated with each
other and more correlated to the locations being simulated. This impact is
reversed with using the SBS approach, that is, the uncertainty decreases if the

range of correlation decreases. The variogram uncertainty was also investigated
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Figure 3-1: Use of centroid and angle in determining new data combination: Conditioning data
(circles) is rotated on angle a anticlockwise around the centre in point O to obtain a new data
combination (squares). (Babak and Deutsch; 2006).
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Sequential Gaussian Simulation
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Figure 3-2: Schematic representation of the calculations performed in one step of the CFD
algorithm (Babak and Deutsch; 2006).
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for the real geological data. It was shown that the variogram of the reference

distribution can be very different from the input variogram to sequential Gaussian

simulation. Their recommendation was that variogram uncertainty also be

incorporated in the limiting uncertainty assessment by applying SGS each time

not only with a different reference distribution, but also with a different input

variogram corresponding to that reference distribution.

1)

2)

3)

4)

5)

6)

The CFD procedure is summarized in the following steps:

apply SGS to create L realizations of the variable of interest using an input
reference distribution.

calculate and quantify the uncertainty of order 1 in the statistic of interest
and establish the reference distributions to be used in the subsequent
assessment of uncertainty in the statistic of interest.

select desired number of data combinations, say K, using translation
and/or rotation with respect to some centre of the original data, which
have the same configuration as the original data and belong to the study
domain.

use the reference distribution obtained in step 2 to create L realizations of
SGS using available conditioning data and calculate and quantify
uncertainty of order k in the statistic of interest.

establish the reference distributions to be used in the subsequent
assessment of uncertainty in the statistic of interest.

repeat generating K number of data combinations, create L realizations
using updated reference distribution obtained from last uncertainty order,
calculate uncertainty of order k, and obtain new reference distribution for
the next order of uncertainty.

Where k=2,...,0.

The CFD has shown to be convergent in the sense of limiting uncertainty

calculation, design independent, and parameterization invariant. It is expected that

the uncertainty in the parameter of interest will increase/decrease to a point where
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the parameter uncertainty stabilizes. The “stabilization” phase corresponds to the
fluctuation of the limiting parameter uncertainty around some constant value,

which defines the limiting parameter uncertainty.

3.4. Remarks

It is important to know which approach is the best to be used in any case
study. It might depend on input data if they are correlated or not and how much

these approaches can be reliable.

In the early stage of reservoir life, using BS is more recommended
because it is simple and easy to use. Even though, all three approaches might give
the same results, especially if all data are independent. Conventional bootstrap

can be used till more data are collected and their correlation can be noticed.

SBS and CFD can be used if there is correlation between the input data.
SBS is expected to give more uncertainty in the statistic of interest since CFD
accounts for the conditioning data and size of the domain, which reduces
uncertainty caused by correlation between the input data. CFD is the first
approach that accounts for those two factors.

The good thing about SBS is that it is more popular and has been used
more; even though, it might overestimate the uncertainty in the statistic of
interest. It is recommended to conduct another study on a mature reservoir that
has more well data and investigate the sensitivity of the uncertainty in the statistic
of interest for a variable of interest with increasing input well data by adding them

in steps.
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Chapter 4

UNCERTAINTY MANAGEMENT

There are a lot of variables that play key factors in reserve estimations.
The variables and their sources should be known to do more investigations in
order to reduce uncertainties. Measuring the uncertainty of variables is easy to
account for in 0-D modeling but difficult in 3-D modeling. Those variables

affecting reserve estimates can be categorized into three major types:

e Geologic factors such as Gross rock volume, Net to Gross ratios, Porosity,
Water saturation, Cutoff values, Contacts, and Facies distribution.

e Economic conditions such as Hydrocarbon prices, Development costs,
Operating costs, and Marketing uncertainty.

e Engineering factors involve Formation Volume Factors, Hydrocarbon
fluid properties, Well productivity, Well spacing, Recovery Factors, Drive

Mechanisms, and Secondary and tertiary projects.

A complete study often studies the effects of more than 20 factors.
Hydrocarbon resources or reserves are calculated as a combination of these
factors. In this research, only geologic factors will be considered, even though the
procedure might be extended in the future to study the effects of other ones. All
geologic factors, economic conditions, and some of engineering factors are
uncontrollable factors in estimating reserves, while some of engineering factors
(such as well spacing, drive mechanisms sometimes, secondary projects, etc) are

controllable.
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Uncertainty of parameters of any distribution is important, especially
uncertainty in the mean of the variable of interest, which is of primary
importance. The remaining parameters of the histogram are of second-order
importance compared to the mean. Uncertainty in the mean of any variable of

interest can be quantified with any of the three techniques described in Chapter 3.

In this chapter, uncertainty management will be discussed from two
aspects: how uncertainty can be presented and understood and how it is important

to improve decision making.

4.1. Presenting and Understanding Uncertainty

Uncertainty is an essential and inescapable part of life not only oil
business. There are a lot of decisions made under uncertainty, which causes bad
consequences. Therefore, it is really important to make the decisions with a full
picture of uncertainty. Uncertainty is caused by incomplete knowledge regarding
relevant geological, geophysical, and reservoir engineering parameters of the
subsurface formation. Estimating HIIP in the appraisal stage of a reservoir is often
most critical because of the large financial risk. Sometimes there is no time to
consider uncertainty in all parameters; so, important parameters have to be

investigated and presented in a good manner.

In estimating resources or reserves volumes, if the uncertainty was not
fully captured and presented in a good manner then it might underestimate or
overestimate the volumes and cause unwanted avoidable consequences. Even

though, uncertainty is affected by the methodology of estimating HIIP too.
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4.1.1. Distribution and Quantiles

A single reserves figure or deterministic case can be computed if the value
of each parameter is certain. Because of uncertainty, individual parameters are
better represented by a probability distribution or different realizations, which
then leads to a probability distribution for reserves, which can be summarized in a
few numbers, for ease of reporting or comparison, such as minimum, maximum,
mode, median, and mean, see Figure 4-1. According to SPE and CIM
(Etherington, J. et.al.; 2005), P90, P50, and P10 can be applied in reporting
reserves or HIIP using probabilistic methods to represent proved, probable, and
possible reserves, respectively or low estimate, best estimate, and high estimate

for resources.

P90, P50, and P10 means that the quantities actually recovered will equal
or exceed the estimate with a probability of at least a 90%, 50%, and 10%,

respectively.

Total
Proved+Probable

Total Total
Proved I Proved+Probable+Possible

Relative
Frequency

v | \4 \ 4
Min. P90 Mode Mean P10 Max.
Median
P50

Reserves — 8™

Figure 4-1: Terms Relating to Reserves Uncertainty.
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4.1.2. Sensitivity Analysis

It is important to have sensitivity analysis in reserve estimations.
Sensitivity Analysis studies the manner how the most optimal target solution or
output would be affected by changing one parameter or more of inputs at the time
with keeping all the other parameters unchanged at the base case value. For most
parameters, at least two runs are required, with an optimistic and a pessimistic
setting, respectively. The analysis can be used to know the important or most
critical variables since reducing the number of variables is the most effective way
to reduce computational cost in a risk analysis process. In addition, once the key
uncertainties have been identified, attention can be focused on appropriate

contingency plans to reduce their impact.

It is easy to conduct sensitivity analysis in 0-D models but difficult in 3-D
models. The difficulty in conducting sensitivity analysis in 3-D models is because
of not having one parameter value due to heterogeneity. Also, the
interdependence between some parameters has some constraints on uncertainty.
The procedure to analyze the parameters’ uncertainty has to be repeatable, robust,
consistent between reservoirs, and as independent as possible.

To conduct sensitivity analysis in this research, different realizations for a
variable of interest will be used to investigate its effect on HIIP while using fixed

realizations for other variables.

4.1.3. Tornado Chart and Spider diagram

A tornado chart is often used to compare distributions, in the form of
back-to-back histograms. It is particularly popular for comparing closely related
populations. It also ranks input parameters in terms of their impact on the output

from the most effective to the least effective one, where the greater the
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corresponding bar in the tornado chart, the greater the sensitivity and importance

of that parameter to generate output.

Each parameter will vary by generating different realizations and using
them to calculate different HIIP output. From the HIIP distribution, some statistic
parameters can be used to evaluate the uncertainty in the HIIP. For example, the
difference between the mean and P90 and P10 (“P90 — Mean” and “P10 — Mean”)
can be calculated and compared using a tornado chart. Another way of the
comparison is to compare P90/P50 and P10/P50 or the standard deviation of the

output results using a tornado chart.

Spider diagram is another way of the comparison between the results,
where the more inclined a parameter’s line is to the horizontal line, the more
significant the change in the value of the target optimal solution or function is
whenever the parameter’s value changes. This type of diagrams was used to
compare the results of changing input realizations of interest variables by plotting
“P90 — Mean”, “P50 — Mean”, and “P10 — Mean”.

4.1.4. Merging Uncertainty

The uncertainty in derived variables such as HIIP involves a combination

of the uncertainty in multiple variables:

HIIP = GRV * NTG * ¢* So (4-1)

Simulation is required to combine the correlated uncertainty in basic
variables into uncertainty in HIIP variable. Multiple realizations of basic variables
are simulated as shown in the yellow shaded squares in Table 4-1. Then HIIP is
calculated with each set of realizations as shown in the last column. The
uncertainty in the HIIP (or any derived property) can be assembled from the
realizations. The uncertainty in HIIP might become less than uncertainty of some
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Realization
Number GRV NTG @ So Calculated HIIP
1 95 0.55 0.22 0.80 9.20 MMbbl
2 105 0.60 0.23 0.79 11.44 MMbbl
100 100 0.59 0.24 0.77 10.90 MMbbl

Table 4-1: A schematic table to calculate HIIP and obtain the histogram and the uncertainty in
HIIP.

basic variables due to merging some variables uncertainties while calculating
HIIP uncertainty (Ren, W. et.al.; 2004).

4.1.5. Local Uncertainty vs. Global Uncertainty

Uncertainty can be quantified on a variety of scales. It is important to
understand the scale of the calculation and the results. It might be local or global

uncertainty (Neufeld and Leuangthong, 2005).

Global uncertainty relates to some calculated statistic that involves many
locations simultaneously. It is difficult to check global uncertainty. To assess
global uncertainty or merged uncertainty in a derived variable, a common
approach is to construct alternative realizations of the spatially distributed
variables. Then these realizations are used to calculate resources or reserves,
where uncertainty in the global response is assembled as a histogram of the
responses. The realizations would not be the same; there would be local
uncertainty, which is obtained from differences between the realizations at each

location.

On the other hand, local uncertainty relates rock properties at specific

locations that can be potentially sampled in the future. It can be assessed by using
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2-D models and checked by cross validation or new drilling where the proportions
of true values falling within specified probability intervals are checked against the
width of the intervals. P10, P50, and P90 maps can be used not only to summarize
uncertainty but also to identify the high/low valued areas, where the high P10
values reflect areas that are surely high and the low P90 values reflect areas that

are surely low.

4.2. Decision Making in Presence of Uncertainty

The more uncertainty is available, the harder decision can be taken.
Specially, at the early life of reservoir, when the data is sparse and decisions have
to be taken. Therefore, it is important to quantify uncertainty available in

estimations to optimize the decisions.

Resources/reserves volumes might be underestimated or overestimated in
the presence of uncertainty. The decisions made based on the estimated volumes

might lead to a huge loss due to not quantifying the uncertainty in a proper way.

Designing new production facilities is one of the most important decisions
made in the life of a producing reservoir since it is made usually in the early stage
of the reservoir life when there is a lack of information and sparse well data.
Quantifying uncertainty of reserves volumes and estimated fixed production rates
might help in planning to have a flexible design that can be changed in the future
depends on the future reserves estimates when more data are collected and
analyzed. Several options should be explored, and strategies should be devised

that allow for quick de-constructing and re-establishing of production facilities.
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4.2.1. Robust Decisions

Getting a fair reserve distribution will help to make better decisions such
as selecting best area for field development, optimum number of wells needed to

be drilled, best strategic production plan, and optimum production facilities.

Decisions made have to be robust and flexible, where robustness means
the absence of a need to change or react and flexibility means the ability to
change or react when necessary. It is important to seek for robust and flexible
alternatives. The idea is that picking a single optimum choice as the alternative for
a given decision may be flawed, if the uncertainties are large and the outcomes
are sensitive to the uncertainties. In that case, it is better to seek alternatives that
are expected to perform reasonably well over a wide range of futures (i.e., are
robust to key uncertainties) and can be changed over time as new data is gathered

and experience is gained.
4.2.2. Decide to Reduce Uncertainty
Conducting sensitivity analysis in reserve estimations is really helpful in
order to reduce uncertainty or better understand the nature and source of the
uncertainty. Then the attention can be focused on appropriate contingency plans
to reduce their impact.
4.2.3. Value of Information
Sometimes economics play a role on the value of information, it might be

too expensive to get a value of a variables at unsampled location than getting the

value of another less important whether in the same location or another one.
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The information is not only valuable as it reduces uncertainty in
estimating resources/reserves volumes, but also because other unfeasible

alternatives can become possible.

4.2.4. Transforming of Uncertainty Through Economics/

Performance Forecast

Geological uncertainty is an unavoidable reality for any reservoir recovery
project. Therefore, production performance is also always uncertain since
production performance is significantly related to reservoir geology.
Geostatistical simulation provides a model of geological uncertainty through
multiple realizations of geological variables such as facies type, porosity, water
saturation, and permeability. These geological realizations can be used to
calculate various production performance measures by way of transfer functions

such as flow simulation.

A flow simulator is used to evaluate the responses of parameters
governing fluid flow through heterogeneous reservoirs and make reservoir
management decisions based on predicted dynamic reservoir responses to
production. Normally, only one deterministic set of parameters is considered and
no uncertainty is associated with the responses or taken into account for the

decisions.

Predicting future reservoir performance is an important goal of reservoir
flow models. Performance forecasting permits optimization of the economic
recovery of the oil and gas resources. It is important to transform uncertainty in
resources/reserves volumes estimates through Economics/Performance forecast to

optimize decision making.
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In this dissertation, a methodology to estimate HIIP with uncertain in
geological parameters is set up. Even though, it can be developed in the future to

transform this uncertainty through Economics/Performance Forecast.

4.2.5. Design for Fixed Production Rate

It is common to simulate reservoir performance to estimate reservoir
recovery within a certain period or a reservoir life. This step is needed to design
production facilities and consider any future modifications in production facilities
or changes in reservoir management such as shifting from primary to secondary

production scheme.
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Chapter 5

METHODOLOGY

The Hydrocarbon Initially in Place (HIIP) of a resource can be calculated
by multiplying the GRV by NTG by net porosity by net hydrocarbon saturation.
An economic feasibility study has to be conducted to provide a level of
confidence and an estimate of reserves. In this research, HIIP uncertainty will be
assessed by conducting sensitivity analysis to investigate the effects of uncertainty
of each variable of interest individually. Then HIIP will be estimated in the end
with full uncertainty in all variables of interest.

Two scenarios will be considered in this research. The first scenario
describes the traditional approach of simulating multiple realizations for
uncertainty in variables of interest without parameter uncertainty. The second
scenario presents the main contribution of this research, which is a procedure to
simulate realizations for uncertainty in variables of interest with parameter
uncertainty in the mean. The second scenario will be conducted three times,
where different parameter uncertainty distribution will be incorporated each time.
The different approaches used will be compared and discussed in Chapter 6,
where a case study will be conducted. The results of the case study will be

compared with each other and ended by some comments and recommendations.

All techniques required in assessing uncertainty in variables of interest
will be described in this chapter with the required changes to incorporate
parameter uncertainty. Table 5-1 shows a summary of the techniques that will be

used in a traditional scenario without parameter uncertainty and in the proposed
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To quantify the Uncertainty
Parameters to be considered Without PU With PU

Structural e Top/Bottom Conditional Sequential Conditional Sequential
Surfaces Surface Gaussian Simulation Gaussian Simulation

e Layer Thickness
Fluids e GOC Monte Carlo Simulation | Monte Carlo Simulation
Contacts e GWC
Levels e OWC
Petrophysical | e Net-to-Gross Cosimulating with Super | Cosimulating with Super
Properties e Porosity Secondary data Secondary data

o Qil Saturation
Full e Full Uncertainty | Combining all realizations | Multivariate Parameter
Uncertainty randomly Uncertainty

Table 5-1: Techniques for sampling realizations to quantify uncertainty in estimating HIIP
without/with Parameter Uncertainty.

scenario with parameter uncertainty. All techniques mentioned in the table will be

explained below.

5.1. Sampling Realizations without Parameter Uncertainty

The traditional scenario of simulating realizations of uncertainty in
variables of interest without Parameter Uncertainty is described. It is assumed that
the mean of the variables of interest is fixed and has no uncertainty in it. For
example, the deviations from the reference surfaces for the structural parameters
are assumed to follow a normal distribution with a mean of zero and some

standard deviation.

Three different techniques are used to sample realizations for quantifying
HIIP uncertainty without parameter uncertainty. Sequential Gaussian simulation
(SGS) is used to quantify uncertainty in structural surfaces variables such as top
and bottom surfaces and layer thickness (Xie and Deutsch, 1999), while Monte
Carlo simulation (MCS) is used to quantify uncertainty in fluid contacts levels

such as Gas-Oil contact (GOC), Gas-Water contact (GWC), or Oil-Water contact
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(OWC). The third method used is a cosimulation approach with a super secondary
data using the Ultimate SGSIM program (Deutsch and Zanon, 2002). This method
quantifies uncertainty in petrophysical properties such as NTG, porosity, and oil

saturation.
5.1.1. Sequential Gaussian Simulation (SGS)

Sequential Gaussian Simulation (SGS) approach is a common approach
used for reservoir modeling applications. SGS creates multiple equiprobable
numerical models based on some conditioning data and global statistical
parameters. SGS became a practical approach in the last two decades because it is

simple, flexible, and reasonably efficient (Zanon and Leuangthong, 2003).

SGS is a simulation algorithm based on kriging. Locations are assigned
property values sequentially using previously simulated values as conditioning
data. It is necessary to use Gaussian values in the SGS method; therefore, the data
are transformed into Gaussian space. The SGS work-flow can be summarized in

the following basic steps:

Assemble the histogram of raw data and statistical parameters.
Transform data into Gaussian units.

Establish grid network and coordinate system (Z-space).

Decide whether to assign data to the nearest grid node or keep separate.

Determine a random path to visit all grid nodes.

o o~ wbdhE

At each location:
a) search to find nearby data and previously simulated grid nodes.
b) construct the conditional distribution by kriging.
c) draw a random value from Gaussian distribution which known as
simulated value.

7. Repeat step 6 until every location has been visited.
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8. Transform the data and all simulated values back to their original
distribution and check results (by this step a realization is generated).
9. Create any number of realizations by repeating steps 1-8 with a change of

the random number seed.

Conditional SGS was used in this research to assess HIIP uncertainty with
uncertainty in structural surfaces variables such as top and bottom surfaces and
layer thickness. In this approach, the top and bottom surfaces from seismic
interpretation were considered as reference surfaces that have been fitted to the
well data. Away from the well locations, there exist uncertainties in the surfaces.
The deviations from the reference surfaces are assumed to follow a known
distribution. The deviation will be zero at the well locations and fluctuate away
from the well locations. Such deviations can be simulated by SGS with
conditioning data at the well locations. The deviations can then be added to the
reference surfaces/layer thicknesses. Such simulation provides alternative
realizations that quantify the uncertainty in the GRV and provides us with a
distribution of GRV, see Figure 5-1.

Different standard deviations should be used in the undulation generation
for the top and bottom surfaces. The standard deviations used need to be
determined based on knowledge of the uncertainty in the seismic interpretation of
the surfaces and the mismatch between seismic interpretation and well
observations. In the seismic interpretation process, the first surface captures
uncertainty from the present day surface down to the depth of the reservoir;
subsequent surface uncertainty is the incremental uncertainty due to the distance
between the reservoir layers. Usually, surfaces are interpreted with seismic data
and then calibrated with well observations to remove the mismatch between
seismic interpretation and well observations. However, the mismatch information

provides us valuable hints of the uncertainties on the top and bottom surfaces.
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Well-A Well-B

Conditional SGS s

Non-standaridizing

Adding uncertainty realizations to
base reference structure surfaces
obtained from Seismic data

Figure 5-1: Uncertainty in top and bottom surfaces and layer thickness without PU can be

simulated by using SGS with conditioning data to be zeros at well locations.
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The following are required parameters in the conditional SGS procedure to

simulate realizations without parameter uncertainty for the structural variables:

1)

2)

data.

The base case value (structure or thickness): (zp(u), u in A) a 2-D grid of
values coming from the seismic. In general these values are fitted to the
well data.

A global estimate of the uncertainty in the base case surface o4 — a single
number established from time interpretation uncertainty and time to depth
uncertainty. It could be calculated from:

oy = o + ofp (5.1)
Where T1 refers to the time interpretation standard deviation and TD refers
to the time-to-depth standard deviation and obtained from the mismatch
between seismic interpretation and well observations. These would be
based on a review of the seismic data and, perhaps, differences between
different interpretations. The former equation is based on two
assumptions: the deviations have a normal distribution shape and errors in

Tl and TD are independent.

These two parameters must be established from the available reservoir

The simulation proceeds by establishing a target mean, that could be

different from 0.0, simulating the deviations and adding them to the base case

surface. The procedure for simulation can be summarized by the following steps:

1)

2)

3)

obtain the best variogram model fitting the experimental variogram result
for Structure Surfaces or Layer Thickness.

simulate y' uncertainty realizations using SGS with conditioning values at
well locations to be zeros. The realizations will have a mean of zero and a
standard deviation of one. Different random numbers should be used at
each step to avoid unwanted correlations.

non-standardize the realizations by multiplying them with some standard

deviations gy (referring from seismic data).
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Au) = y'(uy) * 0, (5-2)
4) add the results to the base reference surfaces obtained from seismic data
(to the top and bottom surfaces to quantify uncertainty in top and bottom
surfaces and only to the bottom surface to quantify uncertainty in layer
thickness).
z'uy) = z,(u) + A (5-3)
= z,(u) + y'(w;) * o,
where i =1, ..., n grid nodes
5) calculate HIIP by calculating HIIP of each realization using equation (4-1)

and generating a distribution plot.

SGS with conditioning data can be used to gquantify uncertainties in the
structural parameters, the top and bottom surfaces and the layers thickness. For
assessing the uncertainty in the top and bottom surfaces, the uncertainty
realizations are added to the reference top and bottom structure obtained from the
seismic. On the other hand, the uncertainty realizations are added to the bottom
surface to assess the uncertainty in a layer thickness and in case of cross-over, the

thickness will be zero since it cannot be negative.
5.1.2. Monte Carlo Simulation (MCS)

Monte Carlo simulation (MCS) relies on repeated random or pseudo-
random sampling to compute results. It tends to be used when it is unfeasible or
impossible to compute an exact result with a deterministic algorithm. For

example, the depths of the fluids contact levels are uncertain in many cases.

Typically, when the fluid contacts level is not clearly measured, a
minimum, most-likely and maximum location can be identified. In such a case,
the location of the contact can be simulated using a triangular distribution, see
Figure 5-2. The mean and standard deviation of a triangular distribution can be

defined by the following equations:
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2.
3.

Mean = (a+m+b)/3 (5-4)
o’ = (a® + m? + b* — am — ab — mb)/18 (5-5)
Where: a = minimum

m = mode

b = maximum

The following steps can be followed to simulate the fluid contacts levels:
generate deviations randomly assuming a triangular distribution
(minimum, mode, and maximum).

run L realizations with different seed numbers.

calculate HIIP for each realization and get a HIIP distribution.

Minimum Fluids Contacts Level
depth

Maximum

Figure 5-2: Uncertainty in Fluids Contacts Level without PU can be simulated by using MCS

with assuming a triangular distribution.

MCS technique can be used to generate realizations for depths of fluid

contacts such as gas-oil contact (GOC), gas-water contact (GWC), and oil-water
contact (OWC). Different distributions, such as double triangular distributions
(Behrenbruch et.al., 1985) and uniform distributions, might be assumed to

represent fluid contacts levels. Uniform distribution can be used in the early
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stages of reservoir life with the absence of data because it is a convenient and well
understood source of random variation. Sometimes it is used to represent a worst

case scenario for variation when doing sensitivity analysis.

As the most likely outcome can be determined, then the triangular
distribution might be the best choice. Another advantage for the triangular
distribution is that it is used for a variable not suitable for a normal distribution,
because it is either bounded or not symmetrical.

5.1.3. Cosimulation with Super Secondary Data

An important consideration when calculating reserve volumes is the
correlation between some parameters. For example, NTG, ¢, and Sw have some
relationship with thickness and may have a relation between each other. Another
consideration is correlation to other data types such as seismic and sparse well

data. These correlations must be resolved by a different technique than SGS.

A cosimulation technique with super secondary data is used to quantify
the uncertainty in petrophysical properties such as NTG, ¢, and Sw. Many
realizations of those petrophysical properties can be generated simultaneously by
using an ultimate_sgsim program. This program was generated by CCG Group for

collocated cokriging using a super secondary variable (Babak and Deutsch, 2007).

First, NP or NTG can be inferred from well logs. Generally, the procedure
involves exclusion of log intervals judged to be noncommercial, the remainder
being considered net pay. The relationship between the NTG and porosity has to
be considered in the simulation. Then, the minimum cutoff porosity usually
selected based on a correlation between permeability and porosity, where the
cutoff porosity corresponds to the minimum permeability judged to be

commercial.
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The following steps are required to quantify uncertainty in petrophysical
properties using cosimulation with a super secondary data, that is, thickness

obtained from seismic data:

1) calculate variables of interest (such as NTG, porosity, and Sw) at well
locations.

2) obtain the best variogram model fitting the experimental variogram result
for variables of interest.

3) generate correlation matrix among variables of interest.

4) cosimulate variables of interest with super secondary data (thickness
obtained from seismic data) using the ultimate_sgsim program.

5) calculate HIIP using different realizations and get its distribution.

To simulate different realizations using cosimulating technique with super
secondary data without parameter uncertainty, the reference distribution, obtained
from well data, for the variable of interest was fixed and used as an input for

generating all realizations of the variable of interest.

5.2. Sampling Realizations with Parameter Uncertainty

The second scenario that is novel to this research will incorporate
parameter uncertainty distributions obtained from using parameter uncertainty
approaches described in Chapter 3. This scenario will be conducted three times to
compare the results of using different parameter uncertainty methods, BS, SBS,
and CFD. In each run, four techniques will be used to assess HIIP uncertainty
with parameter uncertainty. The four techniques are SGS, MCS, Cosimulating
with Super Secondary data, and Multivariate Parameter Uncertainty, where the
first three techniques will have some changes from those conducted without
parameter uncertainty and the fourth technique will be conducted to assess HIIP

uncertainty with parameter uncertainty in all variables of interest. Parameter
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uncertainty in the means of variables means that the uncertainty realizations have

variable means for those variables of interest.

The Multivariate Parameter Uncertainty technique is used when full
uncertainty HIIP with parameter uncertainty is quantified. It is based on
incorporating the correlation coefficients among variables of interest to determine

the means of parameter uncertainty to eliminate the aggregation problem.

5.2.1. Multivariate Parameter Uncertainty (MVPU)

As mentioned before, this research is mainly to quantify the uncertainties
in estimating the reserve/resource volumes with parameter uncertainty. The
techniques described in Sections 5.1.1 through 5.1.3 needs slight changes to
incorporate the parameter uncertainty distribution. To assess full uncertainty,
Multivariate Parameter Uncertainty technique (MVPU) has to be used prior
applying other techniques, conditional SGS, MCS, and cosimulation with super
secondary data. MVPU is a stochastic approach that helps to determine the values
of target means for parameter uncertainty instead of selecting the means
randomly, in descending or in ascending order by incorporating the correlation
coefficient among variables of interest. GSLIB-like code is used for this purpose.
The code is called correlate created by (Neufeld and Deutsch, 2007). MVPU
technique can be summarized by the following steps (followed by more details

description):

1) Generate normal scores distributions for all variables of interest such as
Top, Thickness, NTG, Porosity, and Sw. (using nscore code).

2) Generate random (independent) normal score values (w;) (using Excel or
mcs code). The output should have a column for each variable means:
Wi = Wy,..., W (5-6)

where n = number of variables of interest.
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3)

4)

5)

Multiply w; values by L where C = LU (using correlate code).
Y=Lw; (5-7)
Cov{yy}=C (5-8)
Back transform y; to mean values for variables of interest using
transformation tables from step 1 and backtr code.
Whereyi=Vyi,..., ¥n

n = number of variables of interest.

Check the correlation.

The Multivariate Parameter Uncertainty can be described in more detail in

the following steps:

1)

2)

3)
4)

5)

6)

7)

8)

clean the data and calculate 2D data for variables of interest (such as NTG,
porosity, and Sw) at well locations;

obtain the best variogram model fitting the experimental variogram result
for variables of interest;

generate correlation coefficients matrix among variables of interest;

get a distribution of parameter uncertainty in the mean for all variables of
interest using a bootstrap method;

get the transformation tables for PU distributions of all variables of
interest by normal scoring their PU distributions using nscore code;
generate random values for means using MCS. The output will have
columns of values w; where i = 1,...,n (n = number of interest variables). It
is recommended to have each column in a separate file. The number of
data should be equal to number of realizations.

Multiply w values by L where C = LU (using correlate code).
i. Y=Lw

ii. Cov{yy}=C
back transform the results yi,...,yn to values of variables means such as
Top, Thickness, NTG, Porosity, and Sw using transformation tables
obtained from Step 5;
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9) check the correlation among the back transformed values (using corrmat
code) and compare the results to the input correlation coefficients used in
step 7.

10)use correlated mean values in calculating uncertainty in variables of
interest (such as Structure Surfaces and Petrophysical properties) using the
same procedures described earlier in Sections 5.2.1 through 5.2.3; in other
words, use the first value of back transformed yl as a Top mean and
generate first realization of Top, use first value of back transformed y2 as
a Thickness mean, use first value of back transformed y3 as a NTG mean
to generate first realization of NTG, and so on. Then repeat the step for the
second values to generate the second realizations for all variables of
interest. Do the same process for all values of back transformed y; (L
realizations).

11) combine all realizations generated to quantify uncertainty in all variables
of interest then calculate HIIP and get its distribution.

12) repeat the procedure from step 1 for a different PU method (Spatial

Bootstrap and Conditional Finite Domain).

MVPU technique is important if resource/reserve volumes are estimated
with full uncertainty since it accounts for correlation coefficient between all
variables of interest. It is not needed if a sensitivity analysis is conducted. In case
of conducting a sensitivity analysis, different realizations of a variable of interest
will be used with one fixed realization (selected randomly) of the remaining
variables of interest, while in case of full uncertainty, all realizations of all

variables of interest will be used to calculate HIIP and get its distribution.
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5.2.2. Sequential Gaussian simulation (SGS) with

Parameter Uncertainty

As mentioned in Section 5.1.1, SGS is a stochastic approach that can be
used to quantify uncertainty in structural surfaces. In this section, it will be
modified to account for parameter uncertainty in the mean of the variable of
interest. The methodology will be modified to have the uncertainty realizations
shifted by a mean other than zero since there is uncertainty in the means of the
variables of interest. To generate such realizations, realizations are simulated by
SGS with conditioning data at well locations to be a non-zero value that is based
on the mean and standard deviation of the variable of interest obtained from well
data a mean of the variable of interest drawn randomly from parameter
uncertainty distribution. Figure 5-3 shows illustration of sampling realizations
using SGS with parameter uncertainty.

Three parameters must be established from the available reservoir data.
Two of them, the base case value (structure or thickness) and a global estimate of
the uncertainty in the base case surface (o), were mentioned in Section 5.1.1,
while the third parameter is uncertainty distribution in the mean calculated from
the conventional bootstrap, the spatial bootstrap, or the conditional finite domain.

The procedure for simulating realizations using conditional SGS with

parameter uncertainty can be summarized by the following steps:

1) generate a histogram for the data obtained at well locations;

2) obtain a variogram model fit to the experimental variogram result for the
variable of interest (such as top and bottom surfaces and layer thickness);

3) calculate a distribution of parameter uncertainty in the mean for the

variables of interest using a bootstrap method;
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Well-A Well-B

SGS with conditioning data to be
dx at well locations

Reseting values at well locations
to be zeros

Non-standaridizing

Adding uncertainty realizations to
base reference structure surfaces
obtained from Seismic data

Figure 5-3: Uncertainty in top and bottom surfaces and layer thickness with PU can be simulated

by using SGS with conditioning data to be non-zeros at well locations.
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4) run SGS to generate L realizations with a mean of zero and standard
deviation of one, and conditioning values at well locations to be dx;

m;,—mo

dx! = (5-9)

Oo

where, | =1,...,L
mpI = parameter mean drawn from parameter uncertainty
distribution for the variable of interest;
m, =a mean obtained from 2D original data for the variable of
interest;
0, = astandard deviation obtained from 2D original data for the
variable of interest;

5) reset values at well locations to be zero by adding (-dx) to the results of
step 4,

6) To non-standardize the realizations by multiplying them with some
standard deviations g, (referring from seismic data), then add the new
results to the reference data;

A(uy) = y'(u;) * 0, (5-10)

7) To add the results to the base reference surfaces obtained from seismic
data (to the top and bottom surfaces to quantify uncertainty in top and
bottom surfaces and only to the bottom surface to quantify uncertainty in
layer thickness).
z'(uy) = z,(u) + Al(w,) (5-11)

= z,(u) + y'(w;) * 0,

8) To calculate the uncertainty in HIIP by calculating HIIP of each
realization and generating a distribution plot.

9) Repeat steps 3 to 8 for PU distributions obtained from Spatial Bootstrap

and Conditional Finite Domain methods.

Different random numbers can be used at each step in the simulation to
avoid unwanted correlations. Care should be taken to ensure data conditioning

and reasonable standard deviations at each step since determining uncertainty in

-50 -



the base case surface needs a good experience of a geostatistician to calculate the
standard deviations of the uncertainty in the structural parameters. The results are
sensitive to those standard deviations and might underestimate or overestimate the

uncertainty in resources estimations.
5.2.3.  Monte Carlo Simulation (MCS)

In case of simulating fluid contacts levels with parameter uncertainty,
almost the same procedure described when assessing uncertainty in fluid contacts
levels without parameter uncertainty, as in Section 5.1.2, but the distribution
mode has to be a variable in each realization, see Figure 5-4. The following steps
summarized the procedure to simulate realizations for fluid contacts levels with

parameter uncertainty in the mode:

1) To generate deviations randomly assuming a triangular distribution
(minimum, mode, and maximum);
2) To run L realizations with different mode values in each realization;

3) To calculate HIIP for each realization and get a HIIP distribution plot.

Minimum Fluids Contacts Level
depth

Variable Mode for
each realization

Maximum

Figure 5-4: Uncertainty in Fluids Contacts Level with PU can be simulated by using MCS with

assuming a variable mode triangular distribution.
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The fluid contacts levels uncertainty might be also in the limits of the fluid
contacts levels, the minimum and maximum, but they are assumed to be fixed in
this procedure. The uncertainty in the mode of fluid contacts levels is used instead
of the mean uncertainty for simplicity in calculation. Even though, the mean can

be easily calculated for a triangular distribution as in equation 5-4.

5.2.4. Cosimulation with Super Secondary Data

To assess HIIP uncertainty with uncertainty in petrophysical properties,
cosimulation with super secondary data is a suitable technique to be used since it
incorporates the correlation among the variables of interest and the secondary
data. Some changes to the steps described in Section 5.1.3 are required to

incorporate the parameter uncertainty distribution.

Petrophysical properties such as NTG, ¢, and Sw can be simulated
sequentially or simultaneously. To account for parameter uncertainty, the changes
to the methodology will be the input reference histogram used in the
cosimulation. It has to be different in each realization based on shifting the
original reference histogram to a new mean drawn from parameter uncertainty

distribution.

In case of assessing resource volumes with full uncertainty, MVPU
technique, as mentioned in Section 5.2.1, is used to determine the mean values for
the petrophysical properties, where those mean values have to be used to generate
different reference distributions. To shift the reference distribution, there are two
approaches can be applied, addition and multiplication approaches. The addition
approach is based on shifting the original data mean to a new mean by adding the
difference between those two means to all original data as shown in the following

equations:
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Am =m, — m, (5-12)
xn = Am + x (5-13)
Where m, = the mean of original data.

m, = the parameter mean obtained from parameter distribution.

Am = the difference between original data mean and parameter

mean.
x; = a value of variable of interest at | sampled location.
xn; = the new shifted value of variable of interest at | sampled

location.

This approach has a disadvantage that the data might be assigned to values
out of its real limits from the two sides, over or below the limits. For example a
porosity value can not be zero or negative. Also, NTG is always between 0 and 1
and can not out of this range.

On the other hand, the multiplication approach is based on using the

following equations to shift the reference distribution:

xn; = xj * Zp (5-14)

mo
where m, = the mean of original data.
m, = the parameter mean obtained from parameter distribution.
x; = a value of variable of interest at | sampled location.
xn; =the new shifted value of variable of interest at | sampled

location.

The multiplication approach might cause some values of the variable of
interest exceeding the trimming limits as the addition approach does. In addition,
the multiplication approach changes the standard deviation of the original data.

Regardless of which approach is used, all data exceeding the limits are deleted
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from the distribution and the mean of the remaining data has to be recalculated

then shifted again to the parameter mean (iterative process).

Next step is to use those different reference distributions as input in the

cosimulation process to simulate different realizations for petrophysical properties

with parameter uncertainty. The required steps are as follows:

1)

2)

3)
4)

5)

6)

7)
8)

calculate 2D data for variables of interest (such as NTG, porosity, and Sw)
at well locations;

obtain the best variogram model fitting the experimental variogram result
for variables of interest;

generate correlation matrix among variables of interest;

get a distribution of parameter uncertainty in the mean using a bootstrap
method;

use L reference files obtained from original data file by shifting its
distribution to a new mean, which is drawn from parameter uncertainty
distribution;

generate L realizations by cosimulating variables of interest with
supersecondary data (thickness obtained from seismic data) using an
ultimate_sgsim code with changing the reference file for each realization;
calculate HIIP using different realizations and get its distribution.

repeat the procedure from step 4 for a different parameter uncertainty

method (Spatial Bootstrap and Conditional Finite Domain).

All realizations of all variables of interest are used in the calculations to

assess full uncertainty in resource/reserve estimations, but there is no base

scenario in simulating realizations for petrophysical properties. Therefore,

different realizations of the variable of interest will be used with one fixed

realization selected randomly for each of the remaining variables to conduct a

sensitivity analysis.
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5.3. Work Flow

Figure 5-5 illustrates a work flow for quantifying HIIP uncertainty without
parameter uncertainty in the mean.

Figure 5-6 illustrates a work flow for sampling realizations for structural
surfaces without parameter uncertainty in the mean.

Figure 5-7 illustrates a work flow for sampling realizations for fluids
contacts levels without parameter uncertainty in the mode.

Figure 5-8 illustrates a work flow for sampling realizations for
Petrophysical Properties without parameter uncertainty in the mean.

Figure 5-9 illustrates a work flow for quantifying HIIP uncertainty with
parameter uncertainty in the mean.

Figure 5-10 illustrates a work flow for Multivariate Parameter
Uncertainty.

Figure 5-11 illustrates a work flow for sampling realizations for structural
surfaces with parameter uncertainty in the mean.

Figure 5-12 illustrates a work flow for sampling realizations for fluids
contacts levels with parameter uncertainty in the mode.

Figure 5-13 illustrates a work flow for preparing different reference
distributions by shifting the original data.

Figure 5-14 illustrates a work flow for sampling realizations for

Petrophysical Properties with parameter uncertainty in the mean.
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Quantifying HIIP uncertainty without Parameter Uncertainty in The
Mean (5.1)

Seismic
Data

Local Well
Data

Establish
Representative
Global
Histograms

Generate realizations
using cosimulation

Generate Generate

realizations using realizations using with super secondary
SGS for structural MCS for Fluids data for petrophysical
surfaces Contacts Levels properties

(Work Flow 5.2) (Work Flow 5.4)

(Work Flow 5.3)

no

Calculate
HIIP for all
realizations

Results

Acceptable
?

Maps and statistics
of simulated values

Obtain HIIP
distribution
and

END

Figure 5-5: Work Flow 5.1: Quantifying HIIP uncertainty without Parameter Uncertainty in The
Mean.

-56 -



Sampling Realizations for Structural Surfaces without Parameter
Uncertainty (5.2)

Seismic
Data

Local Well
Data

Establish
variogram, grid
network, and
histogram

reali?:il?i]gfsltﬁsing Non-standardize
> realizations b
SGS with y

multiplying them

conditioning data to with o

be zero at well
locations

Add realizations
to base reference
surfaces
obtained from
Seismic data

Calculate
HIIP for all
realizations and
Check results

Results

Acceptable
?

Maps and statistics
of simulated values

Obtain HIIP
distribution
and

END

Figure 5-6: Work Flow 5.2: Sampling Realizations for Structural Surfaces without Parameter

Uncertainty.
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Sampling Realizations for Fluid Contacts Levels without Parameter
Uncertainty (5.3)

Seismic
Data

Local Well
Data

Establish grid
network and
histogram

Simulate realizations
using MCS assuming
a triangular
distribution.

Calculate
HIIP for all
realizations and
Check results

Results

Acceptable
?

Maps and statistics
of simulated values

Obtain HIIP
distribution
and

END

Figure 5-7: Work Flow 5.3: Sampling Realizations for Fluids Contacts Levels without Parameter

Uncertainty.
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Sampling Realizations for Petrophysical Properties without Parameter
Uncertainty (5.4)

Seismic
Data

Local Well
Data

Establish
variogram, grid
network, and
histogram

N

Simulate realizations

Reference using cosimulation
distribution [ with super secondary
obtained data (thickness
from 2D data obtained from
(Fixed for all seismic)

realizations)

N~

.. Calculate
Results Maps and statistics HIIP and
Acceptable of simulated values | [¢——
2 Check results

Obtain HIIP
distribution
and

END

Figure 5-8: Work Flow 5.4: Sampling Realizations for Petrophysical Properties without
Parameter Uncertainty.
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Quantifying HIIP uncertainty with Parameter Uncertainty (5.5)

Local Well Seismic
Data . Data
Establish
Representative
Global
» Histograms

Multivariate
Parameter
Uncertainty
(Work Flow 5.6)

Generate
realizations using
MCS for Fluids
Contacts Levels
(Work Flow 5.8)

Generate realizations
using cosimulation with
super secondary data for
petrophysical properties
(Work Flows 5.9 & 5.10)

Generate
realizations using
SGS for structural
surfaces
(Work Flow 5.7)

no

Calculate
HIIP and
check results

Maps and statistics
of simulated values | [ &——

Results

Acceptable
?

Obtain HIIP
distribution
and

END

Figure 5-9: Work Flow 5.5: Quantifying HIIP uncertainty with Parameter Uncertainty.
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Multivariate Parameter Uncertainty (5.6)

Seismic
Data

Simulate random
values for means
using MCS for all
variables of interest

Local Well
Data

Establish 2D data
histograms, uncertainty
distribution, and
correlation coefficients
matrix

~a Correlation
Coefficients Matrix

\ 4

Parameter Uncertainty
distributions for variables of
interest using a PU approach

Correlate random
means by using
correlation
coefficients among
variables of interest

Get transformation
tables for PU
distributions using
normal scoring

no

Back transform
the correlated
means

Transformation tables for
variables of interest

Means of uncertainty
realizations for all
variables of interest

Results

Acceptable
2

G

et values of
uncertainty
means and
back to Work
Flow 5.5

\ END /

Figure 5-10: Work Flow 5.6: Multivariate Parameter Uncertainty.
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Sampling Realizations for Structural Surfaces with Parameter
Uncertainty (5.7)

Correlated means for
variables of interest
obtained from MVPU
(from Work Flow 5.6)

Local Well
Data
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variogram, grid
network, and
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Seismic
Data
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distribution
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Results

Acceptable
?

END

Add (-dx) to reset
the uncertainty
realizations to be
zero at well
locations

Maps and statistics
of simulated values

Add realizations to
base reference
surfaces obtained
from Seismic data

Non-standardize
realizations by
multiplying them

with O 3

Calculate
HIIP for all
realizations and
Check results

Figure 5-11: Work Flow 5.7: Sampling Realizations for Structural Surfaces with Parameter

Uncertainty.
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Sampling Realizations for Fluid Contacts Levels with Parameter
Uncertainty (5.8)

Seismic
Data

Local Well
Data

Establish grid
network and
histogram

Simulate realizations
using MCS assuming
triangular distribution
with a variable mode

Calculate
HIIP for all
realizations and
Check results

Results

Acceptable
?

Maps and statistics
of simulated values

Obtain HIIP
distribution
and

END

Figure 5-12: Work Flow 5.8: Sampling Realizations for Fluids Contacts Levels with Parameter

Uncertainty.
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Preparing Different Reference Distributions by Shifting the Original
Data (5.9)

Correlated means for

_ variables of interest
M~ obtained from MVPU
Local Well (from Work Flow 5.6)
Data Establish
original data
— histograms
A
o
Seismic / Reference
Data distribution
. obtained
Delete data out from 2D data
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range and update

the reference
distribution

Generate new
reference distribution
by shifting original
reference distribution
to match the new
correlated mean.

Check shifted
data within the
acceptable range

R

epeat the
process L
times to get L
new reference
distributions
and

END

-

Figure 5-13: Work Flow 5.9: Preparing Different Reference Distributions by Shifting the Original
Data.
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Sampling Realizations for Petrophysical Properties with Parameter
Uncertainty (5.10)

Different reference

_ distributions
~— (from Work Flow 5.9)
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Data

Establish
variogram, grid
network, and
histogram

N
o
Seismic /
Data v
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distribution
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Acceptable
?

T

Maps and statistics
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END

Calculate
HIIP and
Check results

Figure 5-14: Work Flow 5.10: Sampling Realizations for Petrophysical Properties with Parameter

Uncertainty.
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Chapter 6

CASE STUDY

In this part, a real case will be presented using Hekla data. The Hekla
reservoir is a portion of a large North Sea fluvial deposit offshore Norway. The
Hekla data set is suitable for demonstrating the proposed approach described in
chapter 5. The data set includes 20 wells containing petrophysical properties and
seismic data defining reservoir geometry. The reservoir consists of two major
layers, H1 and H2. From the seismic data, there are major faults crossing the
fields diagonally as in Figures 6-1 and 6-2, which show the 2D and 3D views of
H1 layer top structure of Hekla field.

6.1. Input Data

The following case study is based on data set of Hekla reservoir. The data
are available in two data files. The first file contains seismic data defining
reservoir geometry. It contains 8 columns about seismic data defining reservoir
geometry (X-Coordinate, Y-Coordinate, H1 Top depth, H2 Top depth, H3 Top
depth, H1 Impedence, H2 Impedence, H3 Impedence). The second file contains
20 well data. It includes 12 columns of well data (Well ID, X-Coordinate, Y-
Coordinate, Depth, Acoustic Impedance, Facies, Core Porosity, Core Horizontal
Permeability, Core Vertical Permeability, Log Porosity, Log Permeability). Not

all data in the input files were used in this research.

By analyzing the seismic data, it is obvious that the reservoir consists of
two major layers, H1 and H2. It is also gridded horizontally into a 101 x 131 cells,
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Minimum | Maximum | Cell Size (meters) | No. of Cells
X-Coordinate 0 5000 50 101
Y-Coordinate 0 6500 50 131

Table 6-1: Summary of Reservoir Grids

and each cell represents 50 meters in two directions, X and Y (see Table 6-1),
where X axis represents the horizontal direction from West to East and Y axis
represents the vertical direction from South to North. From the seismic data, 2D
and 3D views of H1 top surface are shown in Figures 6-1 and 6-2 to give an idea
about the field structures and trends. Figures 6-3 and 6-4 show the contour maps
for the top surface depth of both H1 and H2 layers with the distribution of the
twenty well locations. Also, Figures 6-5 and 6-6 show the contour maps for H1
and H2 layer thickness with the wells distribution in the field. From all those six
maps view, it was noticed that the low thickness-thin areas crossing the field have

7668
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Figure 6-1: 2D map view of Top Surface of H1 Layer in Hekla field. There are two faults in the
field structure as shown in the map. The depths are in meters.
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Figure 6-2: 3D map view of H1 layer top structure in Hekla field. The depths are in meters.
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Figure 6-3: Contour map of H1 layer depth in Hekla field with showing the distribution of twenty
well locations. The depths are in meters.
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Figure 6-4: Contour map of H2 layer depth in Hekla field with showing the distribution of twenty
well locations. The depths are in meters.
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Figure 6-5: Contour map of H1 layer thickness in Hekla field with showing the distribution of
twenty well locations. The thickness is in meters.
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Figure 6-6: Contour map of H2 layer thickness in Hekla field with showing the distribution of
twenty well locations. The thickness is in meters.

two faults. And to ensure that there are two faults, cross-sectional views are
plotted at different sections of the field, see Figures 6-7 and 6-8. The views in
these two figures, from top to bottom, represent the cross sectional views from

West to East and South to North, respectively.

By analyzing the well data file, there are twenty existing wells. Table 6-2
summarizes well locations, depth of top structure of each layer (H1, H2, and H3),
and thickness of the two layers (H1 and H2) for all wells while Well No. 8 was
eliminated from the data since it is a horizontal well with length of about 1000 m.
Therefore, the thickness found doesn’t reflect the actual vertical thickness in the
layers especially H2 layer since H3 top structure is unknown. So, the study will be

based on data of 19 wells only.

The histograms for all top structure depths from logs/well data were
generated for the three top structures, H1, H2, and H3 layers. Figure 6-9 shows
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the results of those six histograms. As seen, that there are two populations in the
histograms and they have the log-normal shape. The reason of the two
populations might be the faults available in the field. There were no data about
any fluid contacts levels; therefore, it was assumed that the reservoir is oil bearing
with no Gas Cap while the Oil Water Contact (OWC) was assumed to be at

2150m depth as a base case.
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-1800 . . . . .
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-22001 .
-2400 .
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Figure 6-7: Cross Sectional views along Y-axes at different X values (X = 21, 41, 61, 81, and
101). The views from top to bottom represent the cross sectional views from west to east. The
depths are in meters.
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It is common to find the porosity cutoff based on a correlation between
permeability and porosity, where cutoff porosity corresponds to the minimum
permeability judged to be commercial. In this study, it was assumed that 10% was
the porosity cutoff since it needs some works in the laboratory to be determined

and it is not the aim of this study.
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Figure 6-8: Cross Sectional views along X-axes at different Y values (Y = 21, 41, 61, 81, 101,
and 121). The views from top to bottom represent the cross sectional views from south to north.
The depths are in meters.
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Well Depth of | Depth of | Depth of | Thickness | Thickness
number | X-Coor. | Y-Coor. | Top H1 Top H2 Top H3 H1 H2
1 26186 | 62570 2044 2 20783 21108 34 1 325
2 24339 | 46795 1924 1 19583 1988 2 34 2 299
3 20215 | 22575 20123 2043 7 20735 314 298
4 40558 | 27595 2043 3 20759 21053 326 29 4
5 26670 | 44455 1966.7 2018.6 20463 31.9 277
6 20738 | 46300 1875 4 1897 4 1926.0 220 258
7 11870 | 42480 18897 1919 .9 1943 3 02 234
9 39983 | 47480 20727 21035 21308 308 273
10 17479 | 39140 18905 1917 .5 1943 3 270 263
11 28930 | 37330 20239 2080.9 2088.7 37.0 27.8
12 12238 | 2708.0 1928.2 1859.8 18963.3 31.6 23.5
13 28416 | 23875 19191 1954 9 1986 .9 358 320
14 17973 | 17520 2008 4 20401 2067 B 337 275
15 46074 | 19900 21853 2214 2 2242 5 269 253
16 593.9 3425 1953.0 1981.5 1987.7 285 5.2
17 541.8 14335 1957.7 1996.3 20236 386 27.3
18 27026 | 51650 1916.0 19501 1982 8 341 327
19 15831 | 44880 18216 18383 1862 6 167 243
20 25491 28895 20389 2070.9 2097.2 32.0 26.3

Table 6-2: Summary of Well Locations, Depth of Top Structure of Each Layer (H1, H2, and H3),
and Thickness of the Two Layers (H1 and H2). All units are in meters.

Porosity cutoff is really effective parameter since it has a lot of effects on
average porosity and net-to-gross. As porosity cutoff value increases, as average
values of porosity at well locations increase and values of NTG decrease, but this
relationship does not mean that average porosity and NTG are negatively
correlated. Spreadsheet was used in this step to find average porosity and NTG
values at well locations based on the assumed porosity cutoff. Table 6-3 shows
NP, NTG, and average porosity for both layers at well locations. It is obvious that
means of thickness, NP, NTG, and porosity for H1 layer are higher than those for
H2 layer.

Layer 2 at well-16 is the only layer that has no pay zone detected from
well logs, so its NTG is zero. Figure 6-10 shows distributions of NTG and

average porosity for both H1 and H2 layers at well locations. More analysis and
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comparison between those data were conducted, Figures 6-11 through 6-13 show
H2 vs. H1 layer data for each well. The results show that NP and NTG in most of
the wells have higher values in H1 layer, but porosity was different, where some
wells have better H1 layer porosities than H2 layer ones and some wells have

better H2 layer porosities than those for H1 layer.
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Figure 6-9: Histograms for surface structure depth for H1, H2, and H3 layers from top to bottom,
respectively, and using seismic data on the left and well data on the right.
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Well Thickness | Thickness NTG for | NTG for | Av. Poro. | Av. Poro. Std.Dev. Std.Dev.
number H1 (m) H2 (m) | NP1 (m) | NP2 (m) | H1 (%) H2 (%) H1 H2 Porosity-H1 | Porosity-H2
1 341 325 18.4 13.6 54.0 41.8 0.1898 0.1701 0.0523 0.0487
2 34.2 29.9 30.8 16.3 901 51.2 0.2214 0.2018 0.0637 0.0636
3 314 298 26.2 1.2 83.4 376 0.2032 0.2101 0.0662 0.0670
4 32.6 294 2238 1.9 69.9 40.5 0.1987 0.1642 0.0613 0.0644
5 31.9 207 14.7 11 461 4.0 0.2381 0.1609 0.0521 0.0289
[ 220 28.6 12.7 12.9 57T 451 0.2142 0.2509 0.0686 0.0592
i 30.2 234 5.8 43 291 16.4 0.2116 0.1504 0.0579 0.0524
9 30.8 273 16.9 1.8 54.9 43.2 0.2266 0.2183 0.0614 0.0522
10 27.0 26.3 12.7 12.6 47.0 47.9 0.2625 0.1789 0.0857 0.0671
11 37.0 27.8 15.2 11.4 411 41.0 0.2243 0.2015 0.0587 0.0586
12 31.6 2345 10.9 6.4 345 272 0.2074 0.2518 0.0751 0.0582
13 35.8 32.0 12.7 14.3 355 447 0.2245 0.2530 0.0855 0.0542
14 337 275 19.7 10.0 58.5 36.4 0.2558 0.2429 0.0789 0.0774
15 289 283 0.2 71 0.7 251 01116 01725 0.0066 0.0455
16 285 6.2 11.4 0.0 40.0 0.0 0.2546 0.0000 0.0596 MNA
17 38.6 273 3.5 44 9.1 16.1 0.1914 0.1925 0.0682 0.0590
18 341 327 214 31 62.8 9.5 0.2596 0.1539 0.0528 0.0205
19 16.7 243 1.6 12.6 9.6 51.9 0.1308 0.1826 0.0236 0.0557
20 32.0 26.3 15.2 8.3 475 31.6 0.2542 0.1980 0.0586 0.0601
Minimum 16.7 6.2 0.2 0 0.7 0.0 0.1116 0.0000 0.0066 0.0205
Maximum 38.6 327 30.8 16.3 901 51.9 0.2625 0.2530 0.0857 0.0774
Mean 31.1105 26.8842 | 145158 | 9.0684 | 458607 | 32.2658 0.2148 0.1871 0.0598 0.0552
Std.Dev. 51155 5.6834 7.9049 46567 | 23.6292 | 15.9817 0.0404 0.0563 0.0189 0.0134

Table 6-3: Summary of Each Layer Thickness, Net Pay, Net-to-Gross, Average Porosity, and
Porosity Standard Deviation in All 19 Wells Based on 10 % Porosity Cutoff.
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Figure 6-10: Histograms of NTG and Porosity for H1 and H2 layers obtained from well data logs.
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Figure 6-11: Net Pay Data at well locations: H2 layer vs. H1 layer. Most of the wells have more
net pay from H1 layer.
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Figure 6-12: Net-to-Gross Data at well locations: H2 layer vs. H1 layer. Most of the wells have
more NTG from H1 layer.
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Figure 6-13: Porosity Data at well locations: H2 layer vs. H1 layer. Most of the wells have
average porosity close to each other for both layers.

Correlation Coefficient matrix for some parameters in the two layers was
generated to show the relationship among those variables, see Figure 6-14. Some
of these correlation coefficients are used in cosimulating technique and also to

know how these parameters are related.

In this study, four scenarios are conducted. First scenario assesses
uncertainty in HIIP without parameter uncertainty. The other three scenarios
assess uncertainty in HIIP with parameter uncertainty. Each scenario uses
different parameter uncertainty distribution obtained from using BS, SBS, or CFD

approach.

In each scenario, uncertainty of eight parameters and their effects on HIIP
are investigated individually and combined all together in a ninth case. First three
cases investigate the effects of uncertainty in structural surfaces on HIIP. The
effects of fluid contacts level uncertainty are studied in the fourth case. Cases five
to eight investigate HIIP uncertainty due to uncertainty in petrophysical
properties. The last case combines the effects of all parameter uncertainties on

HIIP.
-77 -



Correlation Matrix

Thekness H2 D1E 030 D033 o.
0.35 .. 0.52 . 0.33 0.32 023 012 0.11

03 om o3t o ..
3
|

e

=
=
m

Top Elevation H3

(=}
-
(=]

Porosity H2

=
IG)
lill

MNet Pay He

D44 0.

(=]
w

Top Elevation H2

034 05

ha

Porosity H1

NTG_H1

MNet Pay H1

Thickness H1  D.33

Top Elevation H1

G)
%

{H ssauol |
H A= djaN
HH Ausouog

ZH sSAUOI
2H AediaN
gH Ausaieg

IH uoiess] do| .
(=]
(7]

2H uoueag3 do)
g1 uoeasg dog

Figure 6-14: Correlation Coefficient matrix for some parameters in the two layers to show the
relationship among those variables.

In case of conducting sensitivity analysis, different realizations of a
variable of interest are used with one fixed realization (selected randomly) of the
remaining variables of interest; while in case of full uncertainty, all realizations of
all variables of interest are used to calculate HIIP and get its distribution.

There are no water saturation data; therefore, it is assumed to be fixed in
this case study at 20%. If water saturation data are available then its uncertainty
can be investigated using the same technique used with uncertainty in NTG and

porosity.

-78 -



6.2. HIIP without Parameter Uncertainty

Uncertainty in HIIP without parameter uncertainty in the mean is
investigated in this section. Eight cases study the effects of the following
parameters uncertainty on HIIP individually. The parameters are top and bottom
surfaces, H1 layer thickness, H2 layer thickness, OWC, H1 layer NTG, H2 layer
NTG, H1 layer porosity, and H2 layer porosity.

6.2.1.  HIIP with Uncertainty in Structural Surfaces

Structure and thickness uncertainty must be assessed in all reservoir
uncertainty studies. A basic assumption is that the top and bottom surfaces from
seismic interpretation were considered as reference surfaces, which have been
fitted to well data. Away from well locations, there exist uncertainties in the
reference surfaces. The deviations from the reference surfaces are assumed to
follow a Gaussian distribution. The deviation will be zero at the well locations
and increase away from the well locations. Such deviations are simulated by a
SGS with conditioning data at the well locations to be zeros. Then the deviations
are added to the reference surfaces/layer thicknesses. Such simulation provides
alternative scenarios, which quantifies the uncertainty in the HIIP and provides us
with a distribution of HIIP.

Three structural surface variables are investigated in this section, top and
bottom surfaces, H1 layer thickness, and H2 layer thickness. The methodology

described in Section 5.1.1 is followed in this section.

First case investigates the effects of Layers structures, top and bottom
surfaces uncertainties on HIIP. GSLIB software was used first in the method to
generate the variogram of the well data using a gamv2004 code for the top
structure of H1 Layer (Gringarten and Deutsch; 1999). The variograms were

calculated in the omnidirection due to sparse data. Then the vmodel code was used
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to obtain a spherical model that was the best variogram model fitting the
variogram result trends (Wilde and Deutsch; 2005). The equation of the H1 Top

Surface variogram model, as shown in Figure 6-15, is:

y(h) = 0.001 + 0.999 * sph (6-1)
a=1
an1 = 2400
an2 = 2400

By getting the variogram model parameters, the conditional Gaussian
simulation was ran using a sgsim code with conditioning data at the well locations
to be zeros. 100 realizations were generated where each realization gives a
Gaussian distribution with a mean of zero and a standard deviation of one. The
results then were analyzed with a new code, called OOIP created in this study
(see Appendix A). The code can multiply the results with some standard

deviations then add the new results to the reference data as in Equation 5-3. The

0 500 1000 1500 2000 2500 3000
Distance

Figure 6-15: Case 1: Experimental variograms in the omnidirection and best fitted model for Top
Surface of H1 Layer using data from 19 wells in Hekla Field; a Gaussian model was used with a
nugget effect of 0.001 and a range of 2400m.
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standard deviation of the distributions should be estimated by referring to seismic
interpretation, and it was assumed to be 15 meters for the reference top and
bottom surfaces in this study. Finally, the uncertainty in HIIP without parameter
uncertainty was estimated by calculating the HIIP of each realization and
generating a distribution plot. The results of HIIP distribution were obtained as
shown in Figure 6-16. The mean and standard deviation of the HIIP were 92.8086
and 0.7745 MMm?, respectively.

OWC level was assumed to be at 2150 m if there is no uncertainty in its
level. In reality, OWC should be determined by logs or should be assumed at the
lowest known hydrocarbon level, if not detected. The impact of OWC level
uncertainty on the calculations is investigated in section 6.2.2 since calculating

HIIP relays not only on the top and bottom surfaces, but also on OWC level.

1.0
> 0.8
3]
e |
g A
o 0.6 ] Number of Data 100
2 P mean 92.8086
L . std. dev. 0.7745
g N coef. of var 0.0083
=04 ] maximum 94.8240
= ] upper quartile 93.2200
= 1 median 92.7975
g ] lower quartile 92.4005
O 02] minimum 90.9420

00 ] ! L DL L | oo r e L

90.94 91.94 92.94 93.94 94.94

OOIP with uncertainty in Top and Bottom Surfaces

Figure 6-16: Case 1: The impacts of the uncertainty of top and bottom surfaces on the HIIP
without parameter uncertainty. The deviations in the top and bottom uncertainty were assumed to
have a standard deviation of 15m, the results are in millions m®.
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In the second case, the effects of H1 layer thickness uncertainty on HIIP
are investigated. Simulated thicknesses are obtained for each layer by adding the
reference thicknesses and normally distributed deviations. Similarly to what have
been done in investigating the top/bottom surfaces structures, the deviations can
be generated by a sgsim code with zero values at well locations. The problem in
running this case is that the variogram model could not be generated due to a
decreasing trend of the experimental variograms obtained from H1 layer
thicknesses at well locations, see Figure 6-17. Therefore, the variogram model
obtained from top surface structure, as in equation (6-1), was used in case-2 to
generate the SGS with conditioning data to be zeros at well locations, since the
correlation coefficient between H1 layer thickness and its top surface depth is
0.39 that is the highest compared to other correlation coefficients with the

remaining parameters of H1 layer.

1.20_Semivariogtam fer H1 Layer Thickness o

] R s S
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Figure 6-17: Case 2: Experimental variograms in the omnidirection for thickness of H1 layer
using data from 19 wells in Hekla Field; no model was able to be generated due to no spatial
relationship between the data.
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100 realizations were generated by using conditional SGS to simulate the
uncertainty realizations in the thickness. Then the standard deviation for H1 layer
thickness was assumed to be 3m. After nonstandardizing the realizations, the
results were used to get the HIIP distributions as shown in Figure 6-18. The mean
and the standard deviation of HIIP were 93.1718 and 0.8546 MMm?, respectively.

The effects of H2 layer thickness uncertainty on HIIP was investigated in
the third case. The process was similar to that was conducted in the case-2, but the
variogram model used in this case was generated using H2-Layer thickness data at
all well locations, see the second plot in Figure 6-19; where the H2 Thickness

variogram model is a spherical model with the following equation:

v(h) =0.001 + 0.999 * sph (6-2)
ay=1
an1 = 4000
an, = 4000
1.0
> 08|
@)
C -
g |
g 061 Number of Data 100
bt ] mean 93.1718
L . std. dev. 0.8546
g coef. of var 0.0092
= 04_] maximum 95.7990
- upper quartile 93.7335
E ] median 93.1380
5 7 lower quartile 92.5065
o 02 ] minimum 91.3030
0.0_

913 923 933 943 93 93
OOIP with Uncertainty in H1 Layer Thickness

Figure 6-18: Case 2: The impacts of the uncertainty of H1 layer thickness on the HIIP without
parameter uncertainty. The deviations in the H1 layer thickness uncertainty were assumed to have
a standard deviation of 3m, the results are in millions m®,
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Then the deviations were generated by a sgsim code with a zero mean
value and a standard deviation of one and conditioning data at well locations to be
zeros. The standard deviation was assumed in this case to be 3m; and by
generating 100 realizations, the HIIP distribution was obtained as shown in Figure
6-20. The mean and the standard deviation of HIIP were 92.9618 and 0.4405

MMm?, respectively.

12 £

|
-
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Figure 6-19: Case 3: Experimental variograms in the omnidirection and best fitted model for H2
layer thickness using data from 19 wells in Hekla Field; a Gaussian model was used with a nugget
effect of 0.001 and a range of 4000m.
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Figure 6-20: Case 3: The impacts of the uncertainty of H2 layer thickness on the HIIP without
parameter uncertainty. The deviations in the H2 layer thickness uncertainty were assumed to have
a standard deviation of 3m, the results are in millions m®,
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6.2.2.  HIIP with Uncertainty in Fluid Contacts Level

It was assumed that there is no gas cap in this case study; therefore, only
one case was needed to investigate the uncertainty in OWC level by determining
the OWC minimum, maximum and most likely levels, and then 100 realizations
were generated using mcs code assuming a triangular distribution with changing
the seed number, see Section 5.1.2. These realizations were used to get the HIIP
distributions above OWC as shown in Figure 6-21. The mean and the standard
deviation of HIIP were 92.9115 and 0.0048 MMm?®, respectively.

6.2.3.  HIIP with Uncertainty in Petrophysical Properties

Four cases investigate the effects of uncertainty in H1 layer NTG, H2
layer NTG, H1 layer porosity, and H2 layer porosity on HIIP. Uncertainty in
water saturation can be investigated using the same technique used for NTG and
porosity, but it was assumed that water saturation was fixed at 20% in all

realizations as mentioned formerly.
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Figure 6-21: Case 4: The impacts of the uncertainty of OWC on the HIIP without parameter
uncertainty. The OWC uncertainty was assumed to follow a triangular distribution with a
minimum of 2148m, a mode of 2150m, a maximum of 2152m, the results are in millions m?.
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The porosity cutoff was assumed to be at 10% in this study, as mentioned
before. The NP and NTG for each layer in all 19 wells were calculated based on
this cutoff. According to the methodology described in section 5.1.3, the next step
IS to obtain the best variogram model fitting the experimental variogram result for
variables of interest. The experimental variograms for NTG and porosity of H1
layer were generated in the omnidirection, as shown in Figures 6-22 and 6-23.
Gaussian models were selected to fit the experimental variograms with a nugget
effect of 0.001 and a range of 800m for the two variables. The equation of the

variogram models is the same one as follows:

v(h) = 0.001 + 0.999 * Gau (6-3)
a,=1
an = 800
an2 = 800

—_——t
0 500 1000 1500 2000 2500 3000
Distance

Figure 6-22: Case 5: Experimental variograms in the omnidirection and best fitted model for
NTG of H1 layer using data from 19 wells in Hekla Field; a Gaussian model was used with a
nugget effect of 0.001 and a range of 800m.
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Figure 6-23: Case 7: Experimental variograms in the omnidirection and best fitted model for
Porosity of H1 layer using data from 19 wells in Hekla Field; Gaussian model was determined to
fit the experimental results with a nugget effect of 0.001 and a range of 800m.

The correlation coefficients among NTG, porosity and thickness for H1
layer were used to generate NTG and porosity realizations simultaneously. The
ultimate_sgsim code was used with the original data as reference distributions to
simulate 100 realizations for each case. All NTG realizations were used with the
first porosity realization in case 5, while all porosity realizations were used with
the first NTG realization in case 7. The results were used to calculate HIIP
realizations and obtain its distribution, as shown in Figures 6-24 and 6-25. The
mean and the standard deviation of HIIP were 90.8410 and 0.3374 MMm? with
uncertainty in H1 layer NTG, and 90.8585 and 0.2242 MMm? with uncertainty in

H1 layer porosity, respectively.

In cases 6 and 8, the effects of uncertainty in NTG and porosity of H2
layer on HIIP were investigated individually. The experimental variograms in the
omnidirection were generated. It seems that there is no relationship between the
NTG data of H2 layer since there is no clear spatial correlation between the data.

Therefore, the model fitting the experimental variograms of porosity for H2 layer
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was used for both NTG and porosity of H2 layer since the correlation coefficient
between them is 0.61 that is the highest value compared to the other correlation

coefficients between NTG and other parameters of H2 layer, see Figure 6-14.
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Figure 6-24: Case 5: The impacts of the uncertainty of H1 layer NTG on the HIIP without
parameter uncertainty, the results are in millions m®.
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Figure 6-25: Case 7: The impacts of the uncertainty of H1 layer porosity on the HIIP without
parameter uncertainty, the results are in millions m®.
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As Figures 6-26 and 6-27 show, Gaussian models were selected to fit the

experimental variograms with a nugget effect of 0.001 and a range of 500m for

the porosity of H2 layer. The equation of the variogram model is as follows:

y(h) =0.001 + 0.999 * Gau (6-3)
a=1
an1 =500
anz =500

NTG and porosity realizations were generated simultaneously by

cosimulating NTG and porosity with thickness obtained from seismic data by

using an ultimate_sgsim code with the same variogram model for the variables in

interest, NTG and porosity of H2 layer. 100 realizations were generated for each

case. The results were used to calculate HIIP and obtain the HIIP distribution for

each case as shown in Figures 6-28 to 6-29. The mean and the standard deviation
of HIIP were 91.4682 and 0.2131 MMm? with uncertainty in H2 layer NTG, and
91.4708 and 0.1555 MMm? with uncertainty in H2 layer porosity, respectively.
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Figure 6-26: Case 6: Experimental variograms in the omnidirection for NTG of H2 Layer using
data from 19 wells in Hekla Field; no model was able to be generated due to no spatial

relationship between the data.
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Figure 6-27: Case 8: Experimental variograms in the omnidirection and best fitted model for
Porosity of H2 Layer using data from 19 wells in Hekla Field; a Gaussian model was determined
to fit the experimental results with a nugget effect of 0.001 and a range of 500m.
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Figure 6-28: Case 6: The impacts of the uncertainty of H2 layer NTG on the HIIP without
parameter uncertainty, the results are in millions m°.
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Figure 6-29: Case 8: The impacts of the uncertainty of H2 layer porosity on the HIIP without
parameter uncertainty, the results are in millions m°.

6.2.4.  HIIP with Full Uncertainty

In this case, multiple realizations should be drawn with uncertainty
attached to all parameters, top and bottom surfaces, layer thicknesses, OWC
levels, NTG, and Porosity for each layer. The deviations were generated without
parameter uncertainty in the mean for all parameters. The standard deviations of
15m for top and bottom surfaces uncertainty and 3m for thickness uncertainty of
each layer were used. 100 realizations were generated to get the HIIP distribution
above OWC level of 2150m as shown in Figure 6-30. The mean and the standard
deviation of HIIP with full uncertainty were 93.0990 and 1.1415 MMm?,

respectively.

Uncertainty in HIIP was assessed with assuming a fixed uncertainty in the
parameter mean. To account for parameter uncertainty distribution, a parameter
uncertainty approach has to be used. Chapter 3 described three different

approaches that can be used. In the next section, those three different approaches
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Figure 6-30: Case 9: The impacts of the uncertainty of all variables on the HIIP without parameter
uncertainty, the results are in millions m®.

are used and their results are compared with the results of this section to assess

the uncertainty in HIIP with and without parameter uncertainty.

6.3. HIIP with Parameter Uncertainty

It is important to account for parameter uncertainty in the mean since
ignoring it might lead to less uncertainty that might not reflect the real uncertainty
available with the known collected data. Parameter uncertainty has to be

incorporated in assessing the uncertainty of HIIP.
6.3.1. Parameter Uncertainty Distributions

The parameter uncertainty in the means of the variables of interest were
quantified using the three different approaches described in Chapter 3,
conventional bootstrap (BS), spatial bootstrap (SBS), and conditional finite
domain (CFD). The parameters investigated in the last section 6.2 were

investigated again in this section but with parameter uncertainty in the mean. The
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parameters were top and bottom surfaces, H1 layer thickness, H2 layer thickness,

H1 layer NTG, H2 layer NTG, H1 layer porosity, and H2 layer porosity.

The uncertainty in the mean of H1 top surface was quantified as shown in
Figure 6-31. The mean of the parameter distribution with using SBS and CFD
were 1962.2m and 1964.05m, respectively. They were lower than 1972.5m, the
mean obtained with BS approach. The standard deviation of the parameter
uncertainty with using SBS was 26.9m and higher than 18.8m and 15.79m
obtained with BS and CFD, respectively.
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Figure 6-31: Case 1: Parameter uncertainty distributions for H1 layer top surface (top left: results
of using BS approach, top right: results of using SBS approach, bottom left: uncertainty in the
mean using CFD approach, and bottom right: uncertainty in the standard deviation using CFD
approach). The units are in meters.
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The parameter uncertainty in the mean of H1 layer thickness with SBS

approach showed a lower value in the mean, 30.6m and higher one in the standard

deviation, 1.6m compared to those obtained with using BS and CFD, see Figure

6-32. For case 3 investigating H2 layer thickness uncertainty, using SBS and CFD

approaches gave lower means, 26.4m and 26.38m, respectively. The standard

deviation was high with SBS approach, 1.9m as shown in Figure 6-33.
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Figure 6-32: Case 2: Parameter uncertainty distributions for H1 layer thickness (top left: results of
using BS approach, top right: results of using SBS approach, bottom left: uncertainty in the mean
using CFD approach, and bottom right: uncertainty in the standard deviation using CFD
approach). The units are in meters.
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Figure 6-33: Case 3: Parameter uncertainty distributions for H2 layer thickness (top left: results of
using BS approach, top right: results of using SBS approach, bottom left: uncertainty in the mean
using CFD approach, and bottom right: uncertainty in the standard deviation using CFD

approach). The units are in meters.

Quantifying the parameter uncertainty for NTG of H1 layer, as shown in
Figure 6-34, gave a lower mean and a higher standard deviation using SBS
approach (0.4333, 0.0558) compared to the results obtained using BS approach
(0.4577, 0.0512), while CFD approach gave the lowest standard deviation
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(0.4431, 0.0402) compared to other approaches.

The results of quantifying the parameter uncertainty for NTG of H2 layer
are shown in Figure 6-35. Using SBS approach gave a lower mean (0.3078,

0.0356) while using CFD approach gave a lower standard deviation (0.3284,

0.029) compared to the results of using BS approach (0.3219, 0.035).
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Figure 6-34: Case 5: Parameter uncertainty distributions for H1 layer NTG in fractions (top left:
results of using BS approach, top right: results of using SBS approach, bottom left: uncertainty in
the mean using CFD approach, and bottom right: uncertainty in the standard deviation using CFD
approach).
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Figure 6-35: Case 6: Parameter uncertainty distributions for H2 layer NTG in fractions (top left:
results of using BS approach, top right: results of using SBS approach, bottom left: uncertainty in
the mean using CFD approach, and bottom right: uncertainty in the standard deviation using CFD
approach).

The parameter uncertainty for porosity of H1 layer was quantified for case
7 as shown in Figure 6-36. The standard deviation was higher with using SBS
approach (0.2107, 0.0101) and lower with using CFD approach (0.2159, 0.0070)
than that obtained from BS approach (0.2147, 0.0089).

In case 8 investigating the uncertainty in the porosity of H2 layer, the
parameter uncertainty was quantified and gave a lower mean and a higher
standard deviation using SBS approach (0.1803, 0.0134) and a higher mean and a
lower standard deviation using CFD approach (0.1902, 0.0105) compared to the
results obtained from using BS approach (0.187, 0.0124), see Figure 6-37.
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Figure 6-36: Case 7: Parameter uncertainty distributions for H1 layer porosity in fractions (top
left: results of using BS approach, top right: results of using SBS approach, bottom left:
uncertainty in the mean using CFD approach, and bottom right: uncertainty in the standard

deviation using CFD approach).
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Figure 6-37: Case 8: Parameter uncertainty distributions for H2 layer porosity in fractions (top
left: results of using BS approach, top right: results of using SBS approach, bottom left:
uncertainty in the mean using CFD approach, and bottom right: uncertainty in the standard
deviation using CFD approach).

It was noticed that the variograms used in cases 5 through 8 have low
ranges, which made the results of the parameter uncertainty using SBS and CFD
approaches have standard deviations close to those results obtained from BS
approach. Therefore, another run was conducted to quantify the parameter
uncertainty using SBS and CFD with a higher arbitrary range, 2500m. Figure 6-38
shows the parameter uncertainty results of using SBS and CFD approaches for
NTG of each layer individually. The results of quantifying the porosity
uncertainty in the mean using SBS and CFD approaches with the arbitrary high
range (2500m) are shown in Figure 6-39.
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Figure 6-38: Cases 5 & 6: Parameter uncertainty quantification with high arbitrary range, 2500m
for NTG (fractions) of each layer (top left: results of using SBS approach for NTG of H1 layer,
top right: results of using SBS approach for NTG of H2 layer, mid left: uncertainty in the mean for
NTG of H1 layer using CFD approach, mid right: uncertainty in the mean for NTG of H2 layer
using CFD approach, bottom left: uncertainty in the standard deviation for NTG of H1 layer using
CFD approach, and bottom right: uncertainty in the standard deviation for NTG of H2 layer using

CFD approach).
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Figure 6-39: Cases 7 & 8: Parameter uncertainty quantification with high arbitrary range, 2500m
for porosity (fractions) of each layer (top left: results of using SBS approach for porosity of H1
layer, top right: results of using SBS approach for porosity of H2 layer, mid left: uncertainty in the
mean for porosity of H1 layer using CFD approach, mid right: uncertainty in the mean for porosity
of H2 layer using CFD approach, bottom left: uncertainty in the standard deviation for porosity of
H1 layer using CFD approach, and bottom right: uncertainty in the standard deviation for porosity
of H2 layer using CFD approach).
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Original Data BS Variogram SBS CFD

Parameters | Layer Range
Y Mean G Mean G & Mean (¢ Mean (¢}
Top H1 1973.1 83.4 1972.5 18.8 2400 1962.2 26.9 1964.1 15.8
Thickness H1 31.1105 4.9791 31.1043 1.1171 2400 30.6000 1.6000 31.3034 1.0141
Thickness H2 26.8842 5.5318 26.8923 1.2557 4000 26.4000 1.9000 26.3825 1.1440
NTG H1 0.4586 0.2290 0.4577 0.0512 800 0.4333 0.0558 0.4431 0.0402
2500 0.4382 0.0642 0.4490 0.0540
NTG H2 0.3227 0.1556 0.3219 0.0350 500 0.3078 0.0356 0.3284 0.0290
2500 0.3189 0.0461 0.3476 0.0393
Porosity H1 0.2147 0.0393 0.2147 0.0089 800 0.2107 0.0101 0.2159 0.0070
2500 0.2120 0.0115 0.2206 0.0136
Porosity H2 0.1870 0.0548 0.1870 0.0124 500 0.1803 0.0134 0.1902 0.0105
2500 0.1808 0.0171 0.1890 0.0113

Table 6-4: Comparison between means and standard deviations obtained from using different
parameter uncertainty approaches.

The results of using the three approaches on all eight parameters, even
with the arbitrary high variogram range, are summarized in Table 6-4. The next
step was to incorporate those parameter uncertainty distributions into the process
of quantifying HIIP with those uncertainties as described in section 5.2. The same
eight parameters investigated without parameter uncertainty were investigated
again but with parameter uncertainty. Eight cases study the effects of these
parameters uncertainty on HIIP individually and the ninth case studies the effects
of full uncertainty on HIIP with parameter uncertainty. The scenario of estimating
HIIP and its sensitivity analysis has to be run three times. In each scenario, the

results of using one of the parameter uncertainty approaches are incorporated.

6.3.2. HIIP with Uncertainty in Structural Surfaces

Three different scenarios were conducted with a different parameter
uncertainty approach incorporated in each scenario. Cases 1 to 3 investigated
uncertainty in the top and bottom surfaces, the H1 layer thickness, and the H2
layer thickness, respectively. The methodology described in section 5.2.2 was
followed to simulate 100 realizations using a SGS method for each case. First step
was to find the variogram model fitting the generated experimental variograms of
H1 top surface and thickness of H1 and H2 layers for cases 1 to 3. The spherical
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variogram models were already determined in cases 1 to 3 without parameter

uncertainty and used in these cases with parameter uncertainty.

Preparing the input file was the next step by adding 100 columns. Each
column was used to simulate one realization. The dx values were used as
conditioning data at well locations and calculated by using equation (5-9). They
had one value in each column and varied from column to column as my(i)
changed and determined by drawing from parameter uncertainty distribution.
mp,(i) is calculated based on equation (6-4) for each i simulation. Then the
corresponding value of my; is determined by using the parameter mean
distribution at the calculated probability (i). input_mp code is a code created in
this study (see Appendix A) to print out the values of m, required in the

simulation.

Mp, (i) = (i - 0.5) / nsim (6-4)
where my = parameter mean at location .
i=1,2, ..., nsim.

nsim = number of simulation.

The next step was to add (-dx) to the results of SGS simulation to reset the

values at well locations to be zero then non-standardize the realizations by

multiplying them with the assumed standard deviation g, 15m. So, the results

are uncertainty realizations with means of (mean(i) = g, * mp, (i) = 15* my, (i)
and 15m standard deviation. The results were added to the base reference surfaces
obtained from seismic data (to the top and bottom surfaces to quantify uncertainty
in top and bottom surfaces and only to the bottom surface to quantify uncertainty

in layer thickness).

The uncertainty realizations were used to calculate HIIP realizations and
obtain the HIIP distribution. The effects of the uncertainty in top and bottom

surfaces on HIIP using the three parameter uncertainty approaches were shown in
-103 -



Figure 6-40. For cases 2 and 3, the standard deviation was assumed to be 3m for
thickness of layers H1 and H2. The effects of the uncertainty in thickness of H1
and H2 layers on HIIP were shown in Figures 6-41 and 6-42 using the three
parameter uncertainty approaches.
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Figure 6-40: Case 1: The impacts of the uncertainty of top and bottom surfaces on the HIIP with
parameter uncertainty. The deviations in the top and bottom uncertainty were assumed to have a
standard deviation of 15m. The plots from top to bottom are the results of using BS, SBS, and
CFD approaches, respectively; the results are in millions m®.
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Figure 6-41: Case 2: The impacts of the uncertainty of H1 layer thickness on the HIIP with
parameter uncertainty. The deviations in the H1 layer thickness uncertainty were assumed to have
a standard deviation of 3m. The plots from top to bottom are the results of using BS, SBS, and
CFD approaches, respectively; the results are in millions m®.
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Figure 6-42: Case 3: The impacts of the uncertainty of H2 layer thickness on the HIIP with
parameter uncertainty. The deviations in the H2 layer thickness uncertainty were assumed to have
a standard deviation of 3m. The plots from top to bottom are the results of using BS, SBS, and
CFD approaches, respectively. The results are in millions m®.
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6.3.3. HIIP with Uncertainty in Fluid Contacts Level

The same assumptions in the scenario without parameter uncertainty were
assumed in these scenarios with parameter uncertainty. It was assumed that there
IS no gas cap; therefore, only OWC uncertainty had to be investigated. The OWC
levels uncertainty was assumed to have a triangular distribution shape. The OWC
level uncertainty distribution can be determined by the minimum, maximum and
most likely levels of OWC.

In this study, there is no uncertainty in the minimum and maximum OWC
levels, while the most likely levels of OWC, the mode was variable in each
realization. 100 realizations were generated using mcs code assuming a triangular
distribution with a variable mode, see Section 5.2.3. These realizations were used
to get the HIIP distributions above OWC as shown in Figure 6-43. The mean and
the standard deviation of HIIP were 92.9180 and 0.0644 MMm?, respectively.
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Figure 6-43: Case 4: The impacts of the uncertainty of OWC levels on the HIIP with parameter
uncertainty. The deviations in the OWC levels were assumed to have a triangular distribution with
a variable mode and fixed limits, minimum and maximum levels. The results are in millions m®.
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6.3.4. HIIP with Uncertainty in Petrophysical Properties

Uncertainties in petrophysical properties with parameter uncertainty in the
mean were assessed in four cases. Cases 5 through 8 investigate the uncertainty in
H1 layer NTG, H2 layer NTG, H1 layer porosity, and H2 layer porosity,
individually and respectively. The four cases were conducted three times each.
The parameter uncertainty approach was changed in each scenario to compare the
three different approaches, BS, SBS, and CFD. The parameter uncertainty
distributions obtained in section 6.3.1 were incorporated in the methodology of

estimating HIIP with parameter uncertainty as described in section 5.2.4.

In each scenario, a parameter uncertainty distribution was used to generate
100 input reference distributions by shifting the original reference distribution to
have a new mean drawn from the parameter uncertainty distribution. A shift_pdf
code was created for this purpose in this study (see Appendix A). Then 100
realizations were generated for each variable by cosimulating NTG and Porosity
of each layer simultaneously with thickness using an ultimate_sgsim code. The
HIIP distributions were obtained for the four cases in each scenario.

The impacts of the NTG uncertainty for H1 layer on the HIIP with
parameter uncertainty were shown on Figure 6-44 using the different parameter
uncertainty approaches, BS, SBS, and CFD. In case 5, the HIIP distribution with
parameter uncertainty had a mean and a standard deviation of 93.3908 and 6.3876
MMm?® using BS approach 90.3157 and 6.9903 MMm?® using SBS approach and
91.5688 and 5.0388 MMm? using CFD approach.

The same methodology was followed in case 6 to investigate the impacts
of the NTG uncertainty for H1 layer on the HIIP with parameter uncertainty using
BS, SBS, and CFD approaches. The results are shown in Figure 6-45. The HIIP

distribution with parameter uncertainty had a mean and a standard deviation of
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94.1744 and 3.8429 MMm?® using BS approach 92.6174 and 3.9092 MMm? using

SBS approach and 94.8937 and 3.1845 MMm? using CFD approach.

QOIP using CFD approach
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Figure 6-44: Case 5: The impacts of the uncertainty of H1 layer NTG on the HIIP with parameter
uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD approaches,
respectively. The results are in millions m°.
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Figure 6-45: Case 6: The impacts of the uncertainty of H2 layer NTG on the HIIP with parameter
uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD approaches,
respectively. The results are in millions m®.

Cases 7 and 8 were conducted to investigate the impacts of the porosity
uncertainty for H1 and H2 layers on the HIIP with parameter uncertainty using

BS, SBS, and CFD approaches. The results of case 7 are shown in Figure 6-46 for
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the HIIP distribution with parameter uncertainty with a mean and a standard
deviation of 92.8095 and 2.3520 MMm?® using BS approach 91.7472 and 2.6676
MMm? using SBS approach and 93.1311 and 1.6491 MMm?® using CFD
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Figure 6-46: Case 7: The impacts of the uncertainty of H1 layer porosity on the HIIP with

parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD
approaches, respectively. The results are in millions m®.
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approach. Figure 6-47 shows the results of case 8, the HIIP distributions with a
mean and a standard distribution of 92.3249 and 2.2224 MMm® using BS
approach 91.1167 and 2.4022 MMm?® using SBS approach and 92.9032 and
1.8826 MMm?® using CFD approach.
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Figure 6-47: Case 8: The impacts of the uncertainty of H2 layer porosity on the HIIP with
parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD
approaches, respectively. The results are in millions m®.
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6.3.5. HIIP with Full Uncertainty

Quantifying the uncertainties in estimating the reserve/resource volumes
with parameter uncertainty is the main aim of this research. The Multivariate
Parameter Uncertainty technique is used in this case to quantify the full
uncertainty in HIIP with parameter uncertainty. It is based on incorporating the
correlation coefficients among all variables of interest to determine the means of
parameter uncertainty. Those means are used to simulate different uncertainty

realizations for parameters of interest.

This case shows the results of the novel scenario developed in this
research to incorporate a parameter uncertainty in the mean that can be obtained
from using a parameter uncertainty approach. All four techniques described in
section 5.2 were used in this case to assess HIIP uncertainty with parameter
uncertainty in all parameters of interest. The four techniques are Multivariate
Parameter Uncertainty, SGS, MCS, and Cosimulating with Super Secondary data.
Three scenarios were conducted with the three parameter uncertainty approaches,
BS, SBS, or CFD individually.

First technique was MVPU that accounts for the correlation coefficients
between all variables of interest. The nscore code was used first to generate
transformation tables for all variables of interest (Deutsch and Cullick; 2002). In
this study, transformation tables were obtained for seven variables in each
scenario. Next step was to generate random normal score values (0,1) by running
mcs code. There were 100 values in each column as the number of uncertainty
realizations needed to be generated. Then, the correlate code was used to
incorporate the correlation coefficients between the variables of interest. The
results had to be back transformed to the real units using the transformation
tables. The backtr code developed by CCG was used for such purpose. The results
are the values that would be used as means for the uncertainty realizations. The
correlation coefficients were checked by running corrmat code (Neufeld and
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Figure 6-48: Correlation coefficient matrix between the mean values obtained from MVPU
technique for all variables of interest in the two layers.
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Deutsch; 2006) to generate the correlation coefficients between the results and
compare the coefficients to those were obtained between the original well data,

see Figure 6-48.

After obtaining the mean values, they were used to find the values of dx,
the conditioning values at well locations used in SGS to quantify the uncertainties
in the structural surfaces variables. The standard deviations of 15m for top and
bottom surfaces uncertainty and 3m for thickness uncertainty of each layer were
also used. The MVPU results were also used to generate the input reference
distributions that were used in the cosimulation technique with super secondary
data to quantify the uncertainties in the petrophysical properties, NTG and
porosity for both layers, H1 and H2. The uncertainty in the OWC level was
quantified by using MCS technique.

The uncertainty realizations were obtained for all variables of interest and
combined to calculate the 100 HIIP realizations and generate its distribution as
shown in Figure 6-49. The HIIP distributions with parameter uncertainty were
with a mean and a standard deviation of 94.7320 and 15.0209 MMm? using BS
approach 87.9839 and 15.6295 MMm?® using SBS approach and 94.3674 and
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12.2283 MMm? using CFD approach. Next section compares and discusses the

results of quantifying H
the three different appro

IIP uncertainty with/without parameter uncertainty using

aches.
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Figure 6-49: Case 9: The

OOIP using CFD approach

impacts of the full uncertainty of all parameters on the HIIP with

parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD
approaches, respectively. The results are in millions m®.
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6.3.6. HIIP with Uncertainty in Petrophysical Properties Using
High Variogram Ranges

It was noticed that the variogram range for NTG and porosity of both
layers, 500 to 800m were too small compared to the field size 5000 x 6500m,
which made the standard deviation of using SBS and CFD not far away from
those obtained from BS approach. Therefore, it was assumed that the variogram
range was arbitrary high to be about 2500m to see the effects of increasing the
variogram range on the HIIP uncertainty. The four cases 5 through 8 were
repeated to investigate the impacts of each variable of interest on the HIIP with
parameter uncertainty. They were also repeated for the three scenarios using
different parameter uncertainty approaches. Of course, the parameter uncertainty
distributions for those variables were already generated with the arbitrary high

variogram range as shown in Figure 6-38 and 6-39.

The effects of NTG uncertainty for H1 layer on HIIP distribution with
parameter uncertainty were quantified as shown in Figure 6-50. The HIIP
distributions with parameter uncertainty were with a mean and a standard
deviation of 93.3908 and 6.3876 MMm? using BS approach 90.9277 and 8.0360
MMm?® using SBS approach and 92.2973 and 6.7492 MMm® using CFD

approach.

The HIIP cumulative distributions, investigating the H2 layer NTG
uncertainty with parameter uncertainty, were shown on Figure 6-51. They were
with a mean and a standard deviation of 94.1744 and 3.8429 MMm?® using BS
approach 93.8443 and 5.0619 MMm? using SBS approach and 97.0139 and
4.3152 MMm?® using CFD approach.

Figure 6-52 showed the HIIP cumulative distributions with parameter

uncertainty in H1 layer porosity were with a mean and a standard deviation of
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94.1744 and 3.8429 MMm?® using BS approach 93.8443 and 5.0619 MMm? using
SBS approach and 97.0139 and 4.3152 MMm? using CFD approach.
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Figure 6-50: Case 5: The impacts of the uncertainty of H1 layer NTG on the HIIP with parameter
uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD approaches
and with arbitrary high variogram range, 2500m, respectively. The results are in millions m®,
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QOQIP using CFD approach
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Figure 6-51: Case 6: The impacts of the uncertainty of H2 layer NTG on the HIIP with parameter
uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD approaches
and with arbitrary high variogram range, 2500m, respectively. The results are in millions m®,
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Figure 6-52: Case 7: The impacts of the uncertainty of H1 layer porosity on the HIIP with
parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD
approaches and with an arbitrary high variogram range, 2500m, respectively. The results are in
millions m®.
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For case 8, the effects of porosity uncertainty for H2 layer on HIIP
distributions with parameter uncertainty were shown on Figure 6-53. The HIIP
distributions were with a mean and a standard distribution of 92.3249 and 2.2224
MMm? using BS approach 91.2068 and 3.0622 MMm?® using SBS approach and
92.6851 and 2.0242 MMm?® using CFD approach.

6.3.7. HIIP with Full Uncertainty Using High Variogram Ranges

The HIIP uncertainty with parameter uncertainty in all variables of interest
was investigated. Case 9 as in section 6.3.5 was repeated but with the arbitrary
high variogram range, 2500m. The HIIP distributions with parameter uncertainty
were shown in Figure 6-54 and were with a mean and a standard deviation of
95.0838 and 11.1202 MMm?® using BS approach 91.5967 and 15.7863 MMm?®
using SBS approach and 100.5689 and 13.5197 MMm® using CFD approach,

respectively.

6.4. Comparing Results and Discussion

All HIIP distributions were obtained for all nine cases in the four
scenarios, without parameter uncertainty and with parameter uncertainty using
different parameter uncertainty distributions. Some statistical analysis were
conducted on those distributions and summarized in Table 6-5. Spider charts and
tornado charts were used to compare the uncertainty effects of each parameter on
HIIP estimation with/without parameter uncertainty using all different
approaches. They were also used to investigate the key parameters that play a

major role in the HIIP uncertainty in each scenario.
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Figure 6-53: Case 8: The impacts of the uncertainty of H2 layer porosity on the HIIP with
parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD
approaches and with an arbitrary high variogram range, 2500m, respectively. The results are in
millions m®,
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Figure 6-54: Case 9: The impacts of the full uncertainty of all parameters on the HIIP with
parameter uncertainty. The plots from top to bottom are the results of using BS, SBS, and CFD
approaches and with an arbitrary high variogram range, 2500m, respectively. The results are in
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Statistics of Both Layers OOIP with/without Parameter Uncertainty
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- PU in the mode 92.9180 | 0.0644 | 92.8080 93.0290 | 93.0075 | 92.9180 | 92.8250 | 0.1989 0.1094 0.0204

No PU 90.8410 | 0.3374 | 90,1890 92,9110 | 51.2345 | 90.8005 | 90.4765 | -1.5741 -2.0081 -2.3321
BS 93.3908 | 6.3876 | 76.6970 | 109.9260 | 101.5115 | 93.4365 | 85.1200 | B8.7023 0.6279 -7.6836
BS with high range 93.3908 | 6.3876 | 76.6970 | 109.9260 | 101.5115 | 93.4365 | 85.1200 | B.7029 0.6279 -7.6886
SBS 90.3157 | 6.9903 | 72,1030 | 108.3180 | 99.4270 | 90.3545 | 81.2595 | 6.6184 -2.4541 | -11.5491
SBS with high range | 90.9277 | 8.0360 | 69.9720 | 111.7000 | 101.1200 | 90.9735 | 80.5245 | 8.3114 -1.8351 | -12.2841
CFD 91.5688 | 5.0386 | 73.4470 | 104.4850 | 98.1170 | 91.5840 | 85.0455 | 5.3084 -1.22456 -7.7631

CFD with high range | 92.2973 | 6.7492 | 74.6990 | 109.7580 | 100.7715 | 92.3320 | 83.5590 | 7.9629 -0.4766 -9.2456

6 - Uncertainty in H2 NTG| 5 - Uncertainty in HL NTG

No PU 91.4682 | 0.2131 | 91.0640 | 52,9110 | S91.6740 | 91.4500 | 91.2620 | -1.1346 -1.3586 -1.5466
BS 94.1744 | 3.8429 | 84.2230 | 104.1360 | 99.1265 | 94.1730 | 89.21595 | 6£.3179 1.3644 -3.5891
BS with high range 94.1744 | 3.8429 | 84.2230 | 1041360 | 99.1265 | 94.1730 | 89.2155 | 6.3173 1.3644 -3.5851
SBS 92.6174 | 3.9092 | 82.4800 | 102.7460 | 97.6600 | 92.6265 | 87.5760 | 4.8514 -0.1821 -5.2326
SBS with high range | 93.8443 | 5.06019 | 80.7240 | 106.9630 | 100.3770 | 93.8465 | 87.3130 | 7.5684 1.0379 -3.4956
CFD 94.8937 | 3.1845 | B86.6360 | 103.1430 | 99.0100 | 94.8845 | 90.7785 | 6.2014 2.0759 -2.0301
CFD with high range | 97.0139 | 4.3152 | 85.8300 | 108.1970 | 102.5865 | 97.0065 | 91.4500 | 9.7779 4.1979 -1.3586
- No PU 90.8585 | 0.2242 | 90.5610 | 52,9110 | S90.9635 | 90.8290 | 90.7245 | -1.8451 -1.9736 -2.0841
_;I_: BS 92,8095 | 2.3520 | 86.6910 | 98.9040 | 95.8545 | 92.8080 | 89.7740 | 3.045% -0.0006 -3.0346
‘E‘ £ |BS with high range 92.8095 | 2.3520 | 86.6910 | 98.9040 | 95.8545 | 92.8080 | 89.7740 | 3.0453 -0.0006 -3.0346
-{;‘z g SBS 91.7472 | 2.6677 | 84.8320 | 98.6570 | 95.2010 | 91.7315 | 88.3045 | 2.3924 -1.0771 -4.5041
g “ |sBs with high range | 92.0927 | 3.0365 | 84.2060 | 99.9630 | 96.0270 | 92.0915 | 88.1635 | 3.2184 -0.7171 -4.6451
- CFD 93.1311 | 1.8491 | 83.3410 | 97.9290 | 95.5255 | 93.1360 | 90.7555 | 2.7163 0.3274 -2.0451

CFD with high range | 94.3798 | 3.5927 | 85.0700 | 103.6820 | 99.0225 | 94.3650 | 89.7470 | 6.2133 1.5564 -3.0616

- No PU 914708 | 0.1555 | 91.3120 | 52,9110 | S91.5300 | 91.4550 | 91.3780 | -1.2736 -1.3536 -1.4306
_E BS 92.3249 | 2.2224 | B6.5590 | 98.0960 | 95.1970 | 92.3305 | 89.4610 | 2.3884 -0.4781 -3.3476
_*E & |BS with high range 92,3249 | 2.2224 | 86.5590 | 98.0960 | 95.1970 | 92.3305 | 894610 | 2.3854 -0.4781 -3.3476
1;'_‘: g SBS 91.1167 | 2.4022 | B4.8700 | 97.3350 | 94.2050 | 91.1125 | 88.0110 | 1.3964 -1.6961 -4.7976
g = SBS with high range | 91.2068 | 3.0622 | 83.2770 | 99.1600 | 95.1500 | 91.2100 | 87.2585 | 2.3414 -1.5986 -5.5501
o CFD 92.9032 | 1.8826 | 88.0240 | 97.7750 | 95.3275 | 92.9035 | 90.4690 | 2.518% 0.0949 -2.3396
CFD with high range | 92.6851 | 2.0242 | 87.4410 | 97.9470 | 95.3010 | 92.6850 | 90.0685 | 2.4924 -0.1236 -2.7401

No PU 93.0990 | 1.1415 | 90.4020 | 95.8290 | 94.4935 | 93.0500 | 91.4405 | 1.6849 0.2414 -1.3681

E BS 95.0838 | 11.1202 | 68.9660 | 125.5660 | 109.5415 | 93.7790 | 81.6240 | 16.7329 0.5704 -11.1846
*;f: BS with high range 95.0838 | 11.1202 | 63.9660 | 125.5660 | 109.5415 | 93.7730 | 81.6240 | 16.7329 0.5704 -11.1846
g SBS 89.0134 | 13.1910 | 64.2640 | 132.8020 | 107.3660 | 86.4030 | 74.3275 | 14.5574 -6.4056 | -18.4811
E SBS with high range | 91.5967 | 15.7863 | 58.3780 | 137.6690 | 113.5846 | 89.4915 | 72.3795 | 20.77860 -3.3171 | -20.4291
o CFD 95.7294 | 9.5482 | 73.9840 | 126.5750 | 107.6170 | 95.2865 | 84.1300 | 14.8084 2.4779 -8.6786

CFD with high range | 100.5689 | 13.5197 | 69.6590 | 137.0870 | 117.9896 | 99.2860 | 84.9505 | 25.1810 6.4774 -7.8581

Table 6-5: Statistical analysis for all HIIP distributions from all cases in all scenarios; The results
are in millions m®.
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6.4.1. Comparing uncertainty effects of individual parameters in

each scenario

It is important to investigate the uncertainty effects of individual
parameters on HIIP estimations. Figure 6-55 shows the tornado chart and spider
plot for uncertainty effects of individual parameters on HIIP estimations without
parameter uncertainty. It is obvious that H1 layer thickness uncertainty was the
most effective parameter on estimating HIIP, followed by top and bottom surfaces
uncertainty then H2 layer thickness. So, the surface structural parameters were
more effective on HIIP uncertainty than petrophysical properties. The uncertainty

in OWC was the least effective parameter on HIIP.

The uncertainty effects of individual parameters in HIIP estimations with
parameter uncertainty using BS approach were compared as shown in the tornado
chart and spider plot of Figure 6-56. Petrophysical properties became more
effective on HIIP estimation than structural surfaces parameters and H1 layer
NTG was the most effective parameter followed by H2 layer NTG. Then the
porosity of both layers H1 and H2 had almost the same effects. Then the
remaining structural parameters were less effective. Finally, the uncertainty in

OWC was the least effective parameter on HIIP.

The tornado chart and spider plot of Figure 6-57 compared the uncertainty
effects of individual parameters in HIIP estimations with parameter uncertainty
using SBS approach. The order of the most effective parameters on HIIP
estimation with parameter uncertainty using SBS approach was as same as that
obtained by using BS approach. H1 layer NTG was the most effective parameter
followed by H2 layer NTG, and the uncertainty in OWC was the least effective
parameter on estimating HIIP. Using CFD approach made a little change on the
order of the effective parameters. The results had the same order except the
porosity of layers H1 and H2 were exchanged; even though, they were close to

each other, see Figure 6-58.
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Figure 6-55: Sensitivity analysis for quantifying HIIP without parameter uncertainty; the results
are in millions m?,
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Figure 6-56: Sensitivity analysis for quantifying HIIP with parameter uncertainty using BS
approach; the results are in millions m°.

-126 -



-10 -5 o] 5 10

H1 NTG

H2 NTG

H1 Porosity

H2 Porosity

H1 Thickness

Top/Bottom
Surfaces

H2 Thickness

W P90-Mean
N = P10-Mean
owcC
10
8 \
6 \
4 \ \
2 \ \
0
P90-Mean P50-Mea =Wlean

. =
. N

A OOIP from mean value in MM cubic meters

)4

-10

—e—Uncertainty in Top Structure ——=Uncertainty in H1 Thickness —&—Uncertainty in H2 Thickness —<=Uncertaintyin OWC Level

—#—Uncertaintyin H1 NTG —8—Uncertaintyin H2 NTG ——Uncertainty in H1 Porosity ——Uncertaintyin H2 Porosity

Figure 6-57: Sensitivity analysis for quantifying HIIP with parameter uncertainty using SBS
approach; the results are in millions m®.
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Figure 6-58: Sensitivity analysis for quantifying HIIP with parameter uncertainty using CFD
approach; the results are in millions m°.
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The three scenarios using different parameter uncertainty approaches were
repeated with the arbitrary high variogram range of 2500m. The order of the
parameters affecting HIIP distribution was almost the same as those obtained with
low variogram ranges except the porosity of both layers H1 and H2 that

sometimes had been exchanged; see Figures 6-59 to 6-61.

The orders of the parameters affecting HIIP uncertainty from the most
effective parameter to the least effective one were summarized for all seven
scenarios in Table 6-6. Two observations can be inferred from the comparison
between those results. First, quantifying the uncertainty in HIIP without parameter
uncertainty was more sensitive to structural surfaces parameters, then
petrophysical properties, and last to the OWC. The other six scenarios quantifying
the uncertainty in HIIP with parameter uncertainty were more sensitive to

petrophysical properties, then structural surfaces parameters, and last to the OWC.

Second observation was about the order of the parameters in the six
scenarios quantifying the uncertainty in HIIP with parameter uncertainty. It was
almost the same except the porosity of H1 and H2 layers that were exchanged in
those six scenarios because their effects on the HIIP uncertainty were almost close
to each other.
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Figure 6-59: Sensitivity analysis for quantifying HIIP with parameter uncertainty using BS
approach and high arbitrary variogram range of 2500m; the results are in millions m®.
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Figure 6-60: Sensitivity analysis for quantifying HIIP with parameter uncertainty using SBS
approach and high arbitrary variogram range of 2500m; the results are in millions m®.
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Figure 6-61: Sensitivity analysis for quantifying HIIP with parameter uncertainty using CFD

approach and high arbitrary variogram range of 2500m; the results are in millions m®.

Scenarios | Most effective parameters < P Less effective parameters
Thickness Thickness NTG of Porosity of Porosity
Mo IPY of H1 of H2 HL NTG of H2 HL ofH2 | OWC
NTG of Porosity Porosity Thickness Thickness
= H1 NTG of H2 of H1 of H2 of H1 ofHz | OWC
NTG of NTG of H2 Porosity Porosity Thickness Thickness
S H1 of H1 of H2 of H1 ofHz | OWC
NTG of NTG of H2 Porosity Porosity Thickness Thickness
e HL of H2 of H1 of H1 ofH2 | OWC
BS with NTG of NTG of H2 Porosity Porosity Thickness Thickness |\
high range H1 of H1 of H2 of H1 of H2
SBS with NTG of NTG of H2 Porosity Porosity Thickness Thickness | \\/
high range H1 of H2 of H1 of H1 of H2
CFD with NTG of NTG of H2 Porosity Porosity Thickness Thickness | o\
high range H1 of H1 of H2 of H1 of H2

Table 6-6: Order of parameters affecting on HIIP distribution from the most effective parameter
to the least effective one in all seven scenarios.
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6.4.2. Comparing effects of uncertainty in individual parameters

from different scenarios

The effects of changing parameter uncertainty approach on all parameters
were investigated. Four scenarios investigated the effects of the uncertainty in top
and bottom surfaces on HIIP estimation as shown in Figure 6-62 for case 1. The
results of using parameter uncertainty approaches had more uncertainty compared

to the scenario without parameter uncertainty. Using the SBS approach had the

SBS

CFD

No PU

A OOIP from mean value in MM cubic meters

: .
1 -0.5 0 0.5 1 1
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) N
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-1.5
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—+without Parameter Uncertainty  -m-using BS  —+-using SBS  =<using CFD

Figure 6-62: Casel: Sensitivity analysis to compare different parameter uncertainty approaches
when calculating HIIP with uncertainty in Top/Bottom Structure Surfaces.
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most uncertain HIIP distribution. Using the CFD approach gave narrower
distribution than that obtained from using BS approach. All the three scenarios

using parameter uncertainty approaches had similar HIIP distributions.

Case 2 investigated the effects of the uncertainty in H1 layer thickness on
HIIP distribution using different approaches, see Figure 6-63. The results showed

wider HIIP distribution with using parameter uncertainty approaches. The order

CFD
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Figure 6-63: Case2: Sensitivity analysis to compare different parameter uncertainty approaches
when calculating HIIP with uncertainty in thickness of H1 layer.
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of approaches from more uncertain distributions to less uncertain distributions is

CFD, BS, and SBS; although, the results were close to each other.

The effects of the uncertainty in H2 layer thickness on HIIP distributions
using different approaches were investigated in case 3. The results in Figure 6-64
showed similar results to those obtained in case 2, but with different order of the
parameter uncertainty approaches since the three approaches had almost the same

gffects on HIIP distributions.
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Figure 6-64: Case3: Sensitivity analysis to compare different parameter uncertainty approaches
when calculating HIIP with uncertainty in thickness of H2 layer.
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In case 4, the effects of the uncertainty in OWC on HIIP distributions were

investigated by assuming a variable mode in the triangular distribution for OWC

levels. Figure 6-65 shows the comparison results without/with parameter

uncertainty in the OWC levels. Using the parameter uncertainty in the mode of

the triangular distribution of the OWC levels had more uncertain HIIP

distributions compared to that obtained without parameter uncertainty.
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Figure 6-65: Case4:
parameter uncertainty.

Sensitivity analysis to compare effects of OWC on HIIP with/without
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In cases 5 to 8, the effects of uncertainty in petrophysical properties on
HIIP distributions were investigated. Figure 6-64 shows the comparison results of
investigating the effects of uncertainty for H1 layer NTG on HIIP. SBS approach
had the most uncertain HIIP distribution regardless the amount of the variogram
range. It is obvious how important is to account for parameter uncertainty due to
the narrow HIIP distribution without parameter uncertainty that might lead to
HIIP underestimation. The results of using SBS or CFD approaches were

sensitive to variogram range not as those obtained from using BS approach.
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Figure 6-66: Caseb: Sensitivity analysis to compare different parameter uncertainty approaches
when calculating HIIP with uncertainty in NTG of H1 layer.
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Case 6 investigated the effects of uncertainty in H2 layer NTG on HIIP
distributions. The results were compared as shown in Figure 6-67. Similar to case
5, SBS approach had the most uncertain HIIP distribution regardless the amount
of the variogram range. The narrowest HIIP distribution was obtained from the
scenario ignored the parameter uncertainty. Increasing the variogram range had
almost no effect on the case using BS approach, but it effect was clear on the

scenarios using SBS or CFD approaches.
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Figure 6-67: Case6: Sensitivity analysis to compare different parameter uncertainty approaches
when calculating HIIP with uncertainty in NTG of H2 layer.
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Figure 6-68 shows the comparison between the results investigating the
effects of the individual uncertainty in H1 layer porosity on HIIP distributions
(case 7). Of course as in the previous cases, estimating HIIP without parameter
uncertainty had the narrowest distribution. Using SBS approach gave the most
uncertain distribution compared to BS and CFD approaches. Increasing the
variogram range to 2500m made the HIIP to have more uncertainty using the
CFD compared to those obtained from using BS and SBS with the high variogram
ranges. The BS approach results were almost the same with low/high variogram

ranges.
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Figure 6-68: Case7: Sensitivity analysis to compare different parameter uncertainty approaches
when calculating HIIP with uncertainty in porosity of H1 layer.
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Case 8 investigated the effects of the individual uncertainty in H2 layer
porosity on HIIP distributions. The results of using different parameter
uncertainty approaches were compared and shown in Figure 6-69. The narrowest
HIIP distribution was obtained from estimating HIIP without parameter
uncertainty. Using SBS approach gave the most uncertain distribution with a
low/high variogram range compared to those obtained from using BS or CFD
approaches. The BS approach results were almost the same with low/high
variogram ranges. Although using CFD approach with high variogram range
made the HIIP distribution getting more uncertainty, but the standard deviation

was still smaller than that obtained from using the BS approach.
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Figure 6-69: Case8: Sensitivity analysis to compare different parameter uncertainty approaches
when calculating HIIP with uncertainty in porosity of H2 layer.
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The order of different parameter uncertainty approaches was summarized
in Table 6-7 based on the HIIP distribution uncertainty. In all cases, it was
obvious that ignoring parameter uncertainty gives always the narrowest HIIP
distribution. By comparing the results of using different parameter uncertainty
approaches, the order of the approaches was SBS, BS, and CFD as the results had
more uncertainty distribution to less uncertainty distribution except case-2 where
the order was reversed, CFD, BS, and SBS. The effects of using different
parameter uncertainty approaches were almost the same in cases 1 to 3, but cases

5 to 8 showed a significant difference between the HIIP distributions.

In cases 5 t08, increasing the variogram range affected on the HIIP
distributions with using SBS and CFD approaches, while the results with using
the BS approach were almost the same because SBS and CFD are based on the
spatial correlation between the data but BS approach is based on the

independency assumption between the data.

The standard deviations of the HIIP distributions obtained from using
parameter uncertainty approaches were related to the standard deviations of the

parameter uncertainty distributions used. For example in case 1, the order of the

Case | Parameters to be More Uncertainty . Less Uncertainty
No. investigated Distribution " Distribution
1 Top & Bottom SBS BS CED No PU
surfaces
2 Thickness — H1 CED BS SBS No PU
3 Thickness — H2 SBS BS CFD No PU
4 owcC No PU
5 NTG - H1 SBS-2 | SBS | CFD-2 | BS-2 BS CFD | NoPU
6 NTG - H2 SBS-2 | CFD-2 | SBS BS-2 BS CFD | NoPU
7 Porosity—H1 | 'cFp-2 | SBS-2 | SBS | BS-2 BS CFD | NoPU
8 Porosity —H2 | sBs-2 | SBS BS-2 BS | CFD-2 | CFD | NoPU

Table 6-7: Order of parameter uncertainty approaches used to quantify HIIP uncertainty due to
uncertainty of individual parameters. No. 2 stands for using high variogram range.
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standard deviations of HIIP distributions was SBS, BS, CFD, descendingly. As
the order of the standard deviations of the parameter uncertainty was SBS
(26.9m), BS (18.8m), and CFD (15.79m) as shown in Table 6-4. This comment
was applied for all cases.

6.4.3. Comparing effects of full parameter uncertainty using

different approaches

The HIIP distributions with full uncertainty (case 9) were obtained in
seven scenarios. The first scenario estimated the HIIP without parameter
uncertainty as shown in Figure 6-30. Three scenarios estimated HIIP distributions
with parameter uncertainty using BS, SBS, or CFD as shown in Figure 6-49. The
last three scenarios estimated HIIP distributions with parameter uncertainty using

BS, SBS, or CFD with high variogram range, 2500m as shown in Figure 6-54.

The results of using different parameter uncertainty approaches were
compared using the tornado chart and the spider plot and shown in Figure 6-70.
The narrowest HIIP distribution was obtained from estimating HIIP without
parameter uncertainty. Using SBS approach gave the most uncertain distribution
with a low/high variogram range compared to those obtained from using BS or
CFD approaches. The BS approach results were almost the same with low/high
variogram ranges. The result of using CFD approach was narrower than those
obtained with using BS and SBS approaches but with high variogram range, the
result of using BS approach became the narrowest compared to those obtained
from using SBS and CFD approaches.

The probability distribution frequency of HIIP with full uncertainty were
plotted together, see Figure 6-71. It is obvious that the HIIP distribution using
SBS approach was the most uncertain distribution compared to those obtained
from using BS and CFD approaches, which produced distributions similar to each

other.
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The cumulative distribution frequencies of HIIP with full uncertainty were
compared as shown in Figure 6-72. It is noticed that using BS approach produced
more uncertainty in the HIIP estimates compared to the result without parameter
uncertainty but BS approach was ignoring the spatial correlation between the data.
Using SBS approach considered the spatial correlation between the data and
produced more uncertainty in the HIIP distribution with high standard deviation
compared to all other approaches. The CFD approach considered the correlation
between the input data and the conditioning data, so it can more realistic; even

though, it is not such well known and popular as SBS approach.
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Figure 6-70: Case9: Sensitivity analysis to compare different parameter uncertainty approaches
when calculating HIIP with full uncertainty.
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BS approach might be recommended in the early stages of the reservoir
life because of its simplicity. CFD approach might give the same results in that
stage of the reservoir life plus it will give more realistic results as more data are
gathered. The only disadvantage of using the CFD is the significant time required
to generate a parameter uncertainty that might reach to a few hours depending on

the input data and the CPU and this time is unwanted to make quick decisions.

As mentioned previously, increasing the variogram range affected the
HIIP distribution with using SBS and CFD approaches. It can be noticed from
Figures 6-71 and 6-72 that the expansion in the distributions was to right. In
another word, P10 estimates were close to each other in values but P90 had a

significant change in the values.
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Chapter 7

2-D vs. 0-D and 3-D MODELING

Reservoir heterogeneity characterization is a big challenge. There is no
way to assess the true heterogeneity, but models can be created to mimic the
important features of variability. It is important to select the appropriate modeling
scale to get a fair global uncertainty of resource volumes. Chapter 2 discussed the
difference between different scale modeling and their applications. A
methodology of 2-D modeling with parameter uncertainty was set up in this
research and used in the case study in chapter 6 to compare different parameter
uncertainty approaches. In this chapter, the results of using BS approach in the 2-
D modeling are compared with the results of using 0-D modeling using the same
input data of the case study. In addition, the parameter uncertainty of one the
variables of interest, porosity of H1 layer is quantified by 3-D modeling and
compared to the results obtained from 2-D data with different parameter

uncertainty.

7.1 Comparison between 2-D and 0-D Modeling

In early stages of a reservoir life, there is no choice sometimes but to use
0-D modeling to estimate the resource volumes due to short time to make some
quick decisions and/or unavailable data to apply different modeling scale. In the
0-D modeling, the variables of interest are represented by probability distributions
that are used to calculate resource volumes by drawing values for those variables
according to their specified probability distribution. There are several fast and
friendly programs that can be used to simulate realizations of the resource
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volume. Some of them ignore the correlation between the input parameters, which
is not realistic. In this study, GSLIB-like programs and spreadsheets were used to
quantify uncertainty in HIIP. Many scenarios were conducted using 0-D modeling
to investigate the effects of accounting for the correlation coefficients between the
variables of interest and obtaining the thickness probability distribution from well
data or seismic data. Accounting for the correlation coefficients between the
variables of interest showed no significant change from the results obtained with
ignoring the correlation coefficients since the data were not strongly correlated.
Therefore, only the results with accounting for the correlation coefficients are

presented in this study.

7.1.1 0-D Modeling with Thickness Data Obtained from Seismic

The resource volumes calculation in the 0-D modeling is based on
drawing a value for each variable of interest involved from its representative
distribution then multiplying those values with each other as shown in the

following equation:

HIIP = Area * Thickness * NTG * porosity * (1-Sw) 7-1

The thickness data in this scenario were obtained from Seismic. Figure 7-1
shows the distributions of H1 and H2 layer thicknesses obtained from Seismic
data. To assess the uncertainty in the thickness of each layer, n values were drawn
randomly from thickness distribution in Gaussian space as one realization. This
process was repeated L times. The average of each realization was determined in
original units. These averages represent the uncertainty in the means of the
thickness, see Figure 7-2. BS approach was used to assess the uncertainty in the
means of NTG and porosity similar to those obtained with 2-D modeling, see
Figure 7-3. Random values for all variables of interest had to be drawn in
Gaussian space and correlated using the correlation coefficients between those
variables. The uncertainty in HIIP was calculated by multiplying the correlated
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Figure 7-1: Histograms for H1 and H2 layer thicknesses obtained from Seismic Data. Top: H1
layer thickness. Bottom: H2 layer thickness.

values but in their original units. As in 2-D modeling, water and oil saturations
were assumed to be fixed at %20 and %80, respectively because their data were
unavailable. The following steps describe in details the methodology followed in
0-D modeling using Seismic data with accounting for correlation coefficients

between the variables on interest:
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Figure 7-2: Parameter Uncertainty in the means of H1 and H2 layer thicknesses obtained from
Seismic Data.

1. normal score the thickness data obtained from Seismic to get the
transformation tables for H1 layer thickness by running nscore program.

2. generate L realizations by using mcs program, each realization has n values in
Gaussian space to represent H1 layer thickness data (let L = 100 and n =

10000 in this study).
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Figure 7-3: Parameter Uncertainty in the means of NTG and porosity of H1 and H2 layers using
BS approach. The units are in fractions.

3. back transform the realizations data using the transformation table obtained
from step 1 for H1 layer thickness.

4. calculate average H1 layer thickness in each realization using AvgVr program.
The results represent the uncertainty in the mean of H1 layer thickness.

5. repeat steps 1 through 4 for H2 layer thickness.

6. use a parameter uncertainty approach to assess the uncertainty in NTG and
porosity for each layer of H1 and H2 (BS approach was used in this study).

7. normal score the data obtained for all variables of interest from steps 4
through 6 to get the transformation tables for the variables by running nscore
program.

8. draw L values from normal distribution (0,1) for each variable of interest by

using mcs program (let L = 100 in this study). Each value in each column
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represents a mean for one of the variables of interest (Average thickness,
NTG, or porosity).

9. use the correlation coefficients between the variables to correlate those mean
values by using correlate program.

10. back transform the means data using the transformation tables obtained from
step 7 for all variables of interest.

11. calculate HIIP in each layer by multiplying the first realizations of all
variables to get the first realization of HIIP in that layer and so on to the L
realization. Then calculate HIIP for all layers by adding the individual layer
results as in the following equation:

HIIP = Y™ HIIP, = Y™, h; * NTG; * @; * (1 — Sw;) 7-2
where nl = number of layers.

12. get HIIP distribution and assess its uncertainty.

HIIP was calculated using 0-D modeling with accounting for correlation
coefficients. The results were presented in Figure 7-4 as probability distribution
frequency and cumulative probability frequency. The mean and standard
deviation of HIIP were 102.1249 and 10.9210 m?®, respectively. The P-10 and P-
90 were 88.7681 and 116.2502 m*, respectively.
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Figure 7-4: HIIP using 0-D modeling with the correlation coefficients between the variables of
interest. The results are in million cubic meters.
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In this case, the seismic data was used to assess the uncertainty in the
layers thicknesses in order to have a fair comparison of the results of using 0-D

modeling against those obtained from using 2-D modeling.

7.1.2 0-D Modeling with Thickness Data obtained from Well Logs

This scenario was conducted to investigate the effects of assessing the
thickness uncertainty using well data with BS approach on HIIP instead of using
seismic data and show the importance of seismic data to get better evaluation of
the resource/reserve volumes. The thickness of each layer from well data was
used to assess the uncertainty in the mean of that layer thickness. Figure 7-5
shows the parameter uncertainty in the means of thickness using BS approach for
H1 and H2 layers. The parameter uncertainty in NTG and porosity for H1 and H2

layers are similar to those used in previous scenario, see Figure 7-3.

The procedure of estimating the HIIP using 0-D modeling is based on
Monte Carlo simulation. As mentioned earlier, considering correlation
coefficients between the variables of interest didn’t have a major effect on the
HIIP results. So, only the results of considering correlation coefficients were
presented in this study because it is more realistic than ignoring these coefficients.

The procedure steps were as follows:
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Figure 7-5: Parameter Uncertainty in Thickness of H1 and H2 layers using BS approach. Left: H1
layer. Right: H2 layer.
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quantify the parameter uncertainty in the mean for all variables of interest
(BS approach was used in this scenario).

normal score the data obtained for all variables of interest from step 1 to
get the transformation tables for the variables by running nscore program.
draw L values from normal distribution (0,1) for each variable of interest
by using mcs program (let L = 100 in this study). Each column represents
one of the variables of interest (Average thickness, NTG, or porosity) and
each value in the column represents a mean for one realization of that
variable.

use the correlation coefficients between the variables to correlate those
mean values by using correlate program.

back transform the means data using the transformation tables obtained
from step 2 for all variables of interest.

calculate HIIP in each layer by multiplying the first realizations of all
variables to get the first realization of HIIP in that layer and so on to the L
realization. Then calculate HIIP for all layers by adding the individual
layer results as in equation (7-2).

get HIIP distribution and assess its uncertainty.

The uncertainty in HIIP of Hekla field was estimated using 0-D modeling

with thickness obtained from well log data. The mean and standard deviation of

the results were 124.6272 and 14.7800 m?®, respectively. Figure 7-6 shows the

probability and cumulative distribution frequencies.

A comparison between the three scenarios of estimating HIIP, one

scenario using 2-D modeling with BS approach and two scenarios using 0-D

modeling with thickness data obtained from either seismic or well logs. The

results were summarized in Table 7-1. Figure 7-7 compared the results of the

three scenarios using spider plot and tornado chart. The standard deviations were

similar except with 0-D modeling with thickness obtained from well logs, which

had a higher standard deviation than others by about %32.
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coefficients between the variables of interest. The results are in million cubic meters.

Table 7-1: 2-D vs. 0-D modeling: Comparison between three scenarios estimating HIIP. First
scenario used 2-D modeling with parameter uncertainty approach. The other two scenarios used 0-
D modeling with accounting for correlation coefficients between the variables of interest; the
thickness was obtained in one scenario from seismic and in the other from well logs. The results

20 vs. 0D Modelling Results

0-D with 0-D with
Dimension 2-D Sies.&corre. corre.
Mean 95.0838 102.2947 124.6272
Std 11.1202 11.1925 14.78
Minimum 08.9660 60.0694 70.76044
Maximum 125.566 132.1702 164.3913
Fa0 109.5415 116.6759 1442652
F30 93.779 102.5044 125.0532
F10 81.624 88.5083 105.9197
P90-Mean 14.4577 14.3812 19.638
P50-Mean -1.3048 0.2097 0.426
F10-Mean -13.4598 -13.7864 -18.7073

are in million cubic meters.

for the three scenarios. It was obvious that using 0-D modeling overestimated the
HIIP volumes especially the scenario that used thickness obtained from well logs,
which increased the mean by about %31. Using thickness from well logs with 0-D

modeling could reduce the overestimating from %31 to less than 8% compared to

2-D modeling.
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Figure 7-7: 2-D vs. 0-D modeling: a spider plot and tornado chart to compare between the three
different models, 2-D modeling with parameter uncertainty approach, 0-D modeling with
thickness data obtained from Seismic, and 0-D modeling with thickness data obtained from well
logs. The results are in million cubic meters.

As mentioned earlier in chapter 2, using 2-D modeling has many
advantages. It is based on geological mapping, which make it easy to see the
results and check them by mapping the results and checking them locally, but
using 0-D modeling can not be checked. It just gives the distribution of the
resource/reserve volumes. Figure 7-9 shows some examples of the HIIP
realizations obtained from using 2-D modeling with BS approach. The better the
local HIIP estimates are, the more confidence the global results have. In addition,
HIIP realizations can be ranked based on the HIIP volumes, thickness, NTG,

- 156 -



average porosity, or any variable of interest. Then the realizations that represent
P-90 and P-10 can be used to make some decisions about the optimum location(s)

to drill new wells.
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Figure 7-8: 2-D vs. 0-D modeling: a comparison between the probability and cumulative
distribution frequencies of HIIP volumes estimated by different modeling. Top: probability
distribution frequencies of HIIP volumes. Bottom: cumulative distribution frequencies of HIIP
volumes. The models are 2-D modeling with parameter uncertainty approach, 0-D modeling with
thickness data obtained from Seismic, and 0-D modeling with thickness data obtained from well
logs. The results are in million cubic meters.
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7.2 Comparison between 2-D and 3-D Modeling

It is good to have a model describing the field of interest in a high
resolution, but it is important to account for the parameter uncertainty in the
variables of interest. In the early stages of the reservoir life, 3-D models are rarely
used to calculate the resource/reserve volumes for many reasons. The most
important reasons are the significant time, CPU, and capacity required to run such
high resolution models and the little data available at that time. In this section, the
parameter uncertainty of H1 layer porosity will be quantified using 3-D modeling
to be compared with the quantified average porosity for H1 layer using 2-D data

and different parameter uncertainty approaches.

In order to quantify the parameter uncertainty in H1 layer porosity, it is
important to get a better 3-D variogram model that represents the continuity in the
existing layer. Therefore, calculating proportional stratigraphic coordinate
systems based on depth is the first step in order to capture original continuity of
petrophysical properties and preserving this continuity within the existing layer
structure (McLennan, 2004). The proportional coordinates Zprop Can be
calculated as the relative distance between the existing top and bottom depths (in
percentage), see Figure 7-10. The coordinate transformations in equation (7-3)
can be calculated using Wells-1, 2, and 3 in depth coordinates:

zs(u;)— Ztop (U;)
Zpase (W)= Ztop () '

100 7-3

Zprop (W) =

Where Zprop = proportional coordinates
Zip = eXisting top layer surface

Zyortom = €XIisting bottom layer surface

Zg = elevation data
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Figure 7-10: (a) A schematic reservoir, the shaded portion of Wells-1, 2, and 3 are extracted. (b)
Proportional coordinates are calculated and shown. The shaded composites represent horizontal
variogram calculation pairs.

The results of proportional stratigraphic coordinate systems for 19 wells of
Hekla field were used to generate the 3-D experimental variograms to capture the
major directions of continuity for H1 layer porosity. The gamv2004 program was
used because the data are irregularly spaced. The experimental variograms in two
main horizontal directions of continuity were found to be at (45 and 135 degrees).
They were calculated with lag distance of 300m and 200m lag tolerance, while the
experimental variogram in the vertical direction was calculated with lag distance
of 2m and 0.3m lag tolerance. Table 7-2 summarizes the Parameters used to

calculate the experimental variograms for H1 layer porosity in Hekla field. A
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spherical model was used to fit the experimental results. Figure 7-11 shows the
best 3-D experimental variograms and their best fit models. Top plot shows the
experimental variogram and its best fit model in the major and minor horizontal
direction at 45 and 135 degrees, respectively. Bottom plot shows the experimental
variogram and its best fit model in the vertical direction. The 3-D variogram

model equation for H1 layer porosity in Hekla field is as follow:

v(h) = 0.001 + 0.999 * sph 7-4
av=18
ahl = 1200
ah2 =500

A good variogram model is essential step required to get better simulation
results. 100 different 3-D realizations for H1 layer porosity were sampled using
Sequential Gaussian simulation with changing the seed number in each
realization. A big capacity in the memory is required to store these realizations.
As the reservoir has higher resolution as the memory needs more capacity. To
quantify the parameter uncertainty in H1 layer porosity, the average porosity was

calculated from each realization above the assumed porosity cutoff, %10.

Direction Major Horizontal | Minor Horizontal Vertical
Azimuth 45 135 0
Azimuth Tolerance 30 30 30
Bandwidth horizontal 1000 1000 10
Dip 0 0 90
Dip tolerance 30 30 30
Bandwidth vertical 10 10 10
Number of lags 6 6 15
Lag distance 300 300 2
Lag tolerance 200 200 1

Table 7-2. Experimental variograms parameters for H1 layer porosity in Hekla field.
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Figure 7-11: 3-D Experimental variograms for H1 layer porosity. Top plot shows the variograms
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vertical direction with its best fit model. The distance units are in meters.
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Figure 7-12: Parameter uncertainty in H1 layer porosity using 3-D modeling. The porosity cutoff

was 10%.
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The following steps summarized the steps required to quantify the
parameter uncertainty of H1 layer porosity using 3-D model:
1. calculate proportional stratigraphic coordinate systems based on elevation.
2. generate 3-D experimental variograms and find the best fit model for H1 layer
porosity.
3. generate L realizations of H1 layer porosity using Sequential Gaussian
simulations with changing the seed number in each realization.
4. calculate the average porosity above porosity cutoff for each realization and

obtain a distribution for H1 layer porosity.

A comparison between the results of the parameter uncertainty for H1
layer porosity using 3-D modeling and 2-D modeling was conducted. Figure 7-13
shows the parameter uncertainty in H1 layer porosity using 3-D and 2-D modeling
with different parameter uncertainty approaches. It is obvious that 3-D modeling
did not capture wide uncertainty as 2-D modeling did. The CPU time required to

quantify the parameter uncertainty using 3-D modeling and the memory allocation
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Figure 7-13: 2-D vs. 3-D Modeling: Parameter uncertainty in H1 layer porosity. The porosity
cutoff was 10%.
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needed for previously simulated nodes are significantly more than those required
for quantifying parameter uncertainty using parameter uncertainty approaches and
2-D modeling. Based on the reservoir grid definition used in this study, more than
one gigabyte was needed to simulate 100 realizations and get the parameter
uncertainty in the porosity using 3-D modeling. On the other hand, the amount of
memory required for quantifying the parameter uncertainty of H1 layer porosity
were about few kilobytes for BS approach, about a hundred for SBS approach,
and more than ten megabytes for CFD approach; even though, the data required
for the post process were just few kilobytes not like the results of the 3-D models
where all realizations are required for the post process to estimate the

resource/reserve volumes.
A complete study quantifying uncertainty in HIIP with full uncertainty and

using 3-D models will need really a huge computer memory in order to store the

simulation realizations for so the variables of interest.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

We would wish for the lowest uncertainty possible. However, too narrow
uncertainty due to ignoring the uncertainty in the present geology leads to a false
confidence in reserves and resources. Our aim is to obtain a realistic and fair
measure of uncertainty. Decisions of stationarity and a modeling methodology are
the most important factors in determining output uncertainty in any practical
modeling study.

8.1 Summary of Contributions

In this study, a methodology for the assessment of uncertainty in the
structure surfaces of a reservoir, fluid contacts levels, and petrophysical properties
was developed and investigated. A complete setup was considered with
accounting for parameter uncertainty in order to get a fairly global uncertainty.
There is no question that uncertainty in the input histogram main parameter, such
as the mean, must be considered for realistic global uncertainty characterization.
There are several techniques for calculating parameter uncertainty in a required
input histogram. These techniques include conventional bootstrap (BS), spatial-
bootstrap (SBS), and Condition finite-Domain (CFD).

Any of the three techniques can be applied to quantify the uncertainty in
the mean of each variable. Uncertainty in the mean is of primary importance; the

details of the histogram are of second order importance compared to the mean.
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Uncertainty in the variogram is sometimes considered; however, it is also of
second order importance. Uncertainty in the mean of each parameter was
quantified with the three techniques mentioned above. The results of uncertainty
in HIIP distribution with/without parameter uncertainty were analyzed and
assessed to show the importance of accounting for parameter uncertainty in
estimating HIIP and choose the optimum technique for quantifying full

uncertainties in HIIP with parameter uncertainty for this case study.

Techniques used in this research were described how they work, what
variables to be used with, and how to be implemented with/without parameter
uncertainty. There were three main techniques used to quantify uncertainty in the
variables of interest. The techniques are conditional Sequential Gaussian
Simulation (SGS), Monte Carlo Simulation (MCS), and cosimulation with super
secondary data; while MVPU technique was used in assessing HIIP with

parameter uncertainty in all variables of interest.

Reservoir scenario defined by the reference top and bottom surfaces is
only one possible estimate of the reality. Although this scenario matches the
reality at well locations, there might be uncertainties in the area away from the
well locations. Therefore, estimating HIIP cannot be treated as unambiguous
results. Conditional SGS is the best choice to simulate different realizations

quantifying the uncertainty in the structural surfaces parameters.

A cosimulation technique with super secondary data was used to quantify
the uncertainty in petrophysical properties such as NTG, ¢, and Sw because these
parameters had some relationship with thickness and a relation between each
other. Many realizations of those petrophysical properties were generated

simultaneously by using this technique.

The Multivariate Parameter Uncertainty technique is a stochastic approach

that was used to quantify full uncertainty HIIP with parameter uncertainty. It is
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based on incorporating the correlation coefficients among variables of interest to
determine the means of parameter uncertainty to eliminate the aggregation

problem.

There are a lot of parameters that play key factors in reserve estimations.
The parameters and their sources should be known to do more investigations in
order to reduce uncertainties. First sensitivity analysis was to investigate the
orders of the parameters affecting HIIP uncertainty from the most effective
parameter to the least effective one in all seven scenarios, without parameter
uncertainty, with parameter uncertainty using BS, SBS, and CFD approaches with
low and high variogram ranges each. Quantifying the uncertainty in HIIP without
parameter uncertainty was more sensitive to structural surfaces parameters, then
petrophysical properties, and last to the OWC. The other six scenarios quantifying
the uncertainty in HIIP with parameter uncertainty were more sensitive to
petrophysical properties, then structural surfaces parameters, and last to the OWC.
In addition, the order of the parameters in the six scenarios quantifying the
uncertainty in HIIP with parameter uncertainty was almost the same except the
porosity of H1 and H2 layers that were exchanged in those six scenarios because

their effects on the HIIP uncertainty were almost close to each other.

The standard deviations of the HIIP distributions obtained from using
parameter uncertainty approaches were positively correlated to the standard

deviations of the parameter uncertainty distributions used.

By comparing the cumulative distribution frequencies of HIIP with full
uncertainty, the results of using BS approach had more uncertainty in the HIIP
estimates compared to those results without parameter uncertainty. The problem
of using BS approach was to ignore the spatial correlation between the data.
Therefore, SBS approach was used to consider the spatial correlation between the
data, but its results had more uncertainty in the HIIP distributions than those

results obtained from using all other approaches. The CFD approach considered
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the correlation between the input data and the conditioning data, so it should be
more realistic; even though, it is not such well known and popular as SBS
approach. The disadvantage of using the CFD is the significant time required to
generate a parameter uncertainty that might reach to a few hours depending on the
input data and the CPU.

A comparison between 2-D modeling with BS approach and 0-D modeling
with thickness data obtained from either seismic or well logs was conducted. The
0-D modeling overestimated the HIIP volumes especially the scenario that used
thickness obtained from well logs. Using seismic data for thickness in 0-D
modeling reduced the overestimating of HIIP compared to the results obtained
from 2-D modeling. One of the disadvantages of using 0-D modeling is that it can
not be checked, while 2-D is based on geological mapping and can be checked
locally. The better the local HIIP estimates are, the more confidence the global
results have. But sometimes in early stages of a reservoir life, there is no choice
but to use 0-D modeling to estimate the resource volumes due to short time to
make some quick decisions and/or unavailable data to apply different modeling

scale.

The parameter uncertainty in the thickness of H1 layer was quantified
using 3-D modeling. The results using 3-D modeling was much narrower than
that obtained from using 2-D modeling. The CPU time required to quantify the
parameter uncertainty using 3-D modeling and the memory allocation needed for
previously simulated nodes are significantly more than those required for
quantifying parameter uncertainty using parameter uncertainty approaches and 2-
D modeling. A complete study quantifying uncertainty in HIIP with full
uncertainty and using 3-D models will need really a huge computer memory in

order to store the simulation realizations for so the variables of interest.
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8.2 Future Work

There is some additional work that may be considered in the development
of geostatistical techniques that allow for the improved integration of assessing
uncertainty in resource/reserve volumes estimations. The following are some

ideas for future research in points:

e Effects of increasing number of wells can be investigated by increasing it
in steps to evaluate the effects of increasing available data on HIIP

uncertainty.

e Different standard deviation values should be used in the undulation
generation for the top and bottom surfaces and layers thickness to assess
the sensitivity of HIIP volumes with the standard deviation of the

uncertainty in the structural parameters.

e Uncertainty in fluid contact levels was assessed by changing the mode in
each realization, while its uncertainty can be assessed by varying the limits
with the mode in each realization or assuming different distribution shape.

It depends on the available data.

e Formation volume and recovery factors can be added to the evaluation to
estimate stock tank HIIP and recoverable reserves.

e A complete study often studies the effects of 20 to 30 variables.
Hydrocarbon resources or reserves are calculated as a combination of
these variables. In this research, only few geologic factors and
petrophysical properties were considered, even though the procedure
might be extended to study the effects of other parameters such as other

geologic factors, economic conditions, and engineering conditions.
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Appendix A

DOCUMENTATION

GSLIB software package (Deutsch and Journel, 1998) is used for the
preparation of the research. There are some new GSLIB-type FORTRAN
programs created for the techniques developed in this dissertation including OOIP
to calculate hydrocarbon initially-in-place (HIIP) with full uncertainty in all
parameters of interest, input_mp to calculate the values of the parameter means,
shift_pdf to shift any original reference distribution to a new mean, and
combine_1col to combine multiple columns from multiple files into one column.
This appendix documents those programs created for quantifying uncertainty in
HIIP with parameter uncertainty. Their parameter files were presented as an
example then described. The source codes are not listed because of length

considerations.

The first program OOIP is to calculate hydrocarbon initially-in-place with
uncertainty in one/multi parameter(s). The program takes the realizations
generated for parameters of interest to calculate HIIP for each grid (in details) and
realization (in brief). The second program input_mp is to calculate the values of
the parameter means. It draws parameter means with equal probability distance
between the data. The third program shift_pdf is used to shift any distribution to a
new mean using a multiplication or addition approach. The fourth program
combine_1col is to combine the data from multiple columns from multiple files
into one column. Any number of columns can be read from any number of files.
This program was required to combine the realizations of any parameter of
interest into one file when generating these realizations had to be conducted in

separate runs.
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Parameters for OOIP

ek e ek e ek ek ok ek

START OF PARAMETERS:

OOIP.out -file with output data

OOIP_details.out -file with detail output data

100 - number of realizations

50 05 1.0 - NX,XMn,Xxsiz

50 05 1.0 - ny,ymn,ysiz

seismic.dat -file for seismic data

3 4 - columns of top and bottom surface data
-1.0 1.0e21 - trimming limits

START OF PARAMETERS (Top Structure Uncertainty):

1 - consider uncertainty in Top Surface data (0=no,1=yes)

2000.0 15.0 - mean and standard deviation for Top Surface means if yes
Top_PU_means.dat - PU file for Top/Bottom Structure in normal scored values

1 - column no. for PU means of top/bottom surfaces

1 - Standard Deviation in original Top Surface data (if yes)

1 - Standard Deviation of Uncertainty in Top Surface means (if yes)
TopUncertainty.dat -file for uncertainty in Top Surface data (if yes)

1 - column no. for uncertainty in top and bottom surfaces

START OF PARAMETERS (Thickness Uncertainty):

0 - consider uncertainty in Thickness (0=no,1=yes)

20.0 3.0 - mean and standard deviation for Thickness means if yes
Thick_PU_means.dat - PU file for Thickness in normal scored values

1 - column no. for PU means of thickness

1 - Standard Deviation in original Thickness data (if yes)

1 - Standard Deviation of Uncertainty in Thickness means (if yes)

ThicknessUncertainty.dat  -file for uncertainty in Thickness (if yes)
1 - column no. for uncertainty in thickness

START OF PARAMETERS (OWC Uncertainty):

0 - =iOWC, consider uncertainty in OWC (0=no,1=yes)
2000 - OWC level (if no)

OWCUncertainty.dat -file for uncertainty in OWC, (if yes)

1 - column no. for uncertainty in OWC

START OF PARAMETERS (NTG Uncertainty):

0 - =iNTG, consider uncertainty in NTG (0=no,1=yes)
1 - specify realization no. to be used, if INTG=0
NTGUncertainty.dat -file for NTG realizations

1 - column no. for uncertainty in NTG

START OF PARAMETERS (Porosity Uncertainty):

0 - =iporo, consider uncertainty in Porosity (0=no,1=yes)
1 - specify realization no. to be used, if iporo=0
PoroUncertainty.dat -file for Porosity realizations

1 - column no. for uncertainty in Porosity

START OF PARAMETERS (Sw Uncertainty):

0 - =iSw, consider uncertainty in Sw (0=no,1=yes)
1 - specify realization no. to be used, if iSw=0
SwUncertainty.dat -file for Water Saturation realizations

1 - column no. for uncertainty in Sw
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Figure A-1: An example parameter file for OOIP program.
Figure A-1 presents an example of the parameter file for OOIP program.

The output files are specified on Lines 1 and 2. The first file gives the HIIP for
all realizations and the second file gives more details output by listing all
parameter values including HIIP for all grids in all realizations. The number of
realizations is given on Line 3. The grid definition is given on Lines 4 and 5. The
input file for seismic data is specified on Line 6. The column numbers for the top
and bottom surface data are given on Line 7. The trimming limits are given on

Line 8 for the data of the top and bottom surface depths.

Parameters required for uncertainty in top structure start on Line 10. Line
11 gives the option to consider the uncertainty in top and bottom surfaces (O for
no and 1 for yes). If the value is 1, then Lines 12 to 18 become active. The mean
and standard deviation for top surface using a parameter uncertainty approach
such as BS, SBS, or CFD are specified on Line 12. The input file for the means of
the uncertainty realizations in the top and bottom surfaces in normal score values
is specified on Line 13. The column number for the mean values is given on Line
14. The standard deviation of the original data is given on Line 15. The standard
deviation in the uncertainty realizations is given on Line 16. The input file with
uncertainty realizations obtained from conditional SGS is specified on Line 17.

The column number for the uncertainty realizations is given on Line 18.

Parameters required for uncertainty in thickness start on Line 20. Line 21
gives the option to consider the uncertainty in thickness (0 for no and 1 for yes). If
the value is 1, then Lines 22 to 28 become active. The mean and standard
deviation for thickness using a parameter uncertainty approach are specified on
Line 22. The input file for the means of the uncertainty realizations in the
thickness in normal score values is specified on Line 23. The column number for
the mean values is given on Line 24. The standard deviation of the original data is
given on Line 25. The standard deviation in the uncertainty realizations is given

on Line 26. The input file with uncertainty realizations obtained from conditional
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SGS is specified on Line 27. The column number for the uncertainty realizations

is given on Line 28.

Parameters required for uncertainty in OWC start on Line 30. Line 31
gives the option to consider the uncertainty in OWC (iOWC = 0 for no and 1 for
yes). If iOWC is 0, Line 32 becomes active to give the OWC level. If iIOWC is 1,
Lines 33 and 34 become active. The file for the uncertainty in OWC is specified
on Line 33. The column number for uncertainty realizations in OWC is given on
Line 34.

Parameters required for uncertainty in NTG start on Line 36. Line 37
gives the option to consider the uncertainty in NTG. (iNTG = 0 for no and 1 for
yes). If INTG is 0, Line 38 becomes active to give the realization number required
to be used in calculating all OOIP realizations. The file for the NTG realization(s)
is specified on Line 39. The column number for NTG realizations is given on
Line 40.

Parameters required for uncertainty in porosity start on Line 42. Line 43
gives the option to consider the uncertainty in porosity. (iporo = 0 for no and 1 for
yes). If iporo is 0, Line 44 becomes active to give the realization number required
to be used in calculating all OOIP realizations. The file for the porosity
realization(s) is specified on Line 45. The column number for porosity

realizations is given on Line 46.

Parameters required for uncertainty in water saturation start on Line 48.
Line 49 gives the option to consider the uncertainty in porosity. (iporo = 0 for no
and 1 for yes). If iSw is 0, Line 50 becomes active to give the realization number
required to be used in calculating all HIIP realizations. The file for the Sw
realization(s) is specified on Line 51. The column number for Sw realizations is

given on Line 52.
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Parameters for Input_mp

Line START OF PARAMETERS:

1 Top_PU.dat -file with output data

2 100 - number of realizations

3 18.8 - Standard Deviation of parameter means
4 83.4 - Standard Deviation of original data

Figure A-2: An example parameter file for input_mp program.

Figure A-2 presents an example of the parameter file for input_mp
program. The output file is specified on Line 1. The number of realizations is
given on Line 2. The standard deviation obtained from parameter uncertainty
approach is given on Line 3. The standard deviation obtained from parameter

original data is given on Line 4.

Parameters for shifting distribution

Line START OF PARAMETERS:

1 ../data/input.dat - file with input data

2 shift_pdf.out - file with output data

3 shift_pdf.dbg - file for debugging output

4 1 - column for variable

5 100 - number of data

6 -900.0 1.0e21 - trimming limits

7 50.0 - targeted parameter mean

8 1 - use shifting appraoch: 1=Multiplying or 2=Adding

Figure A-3: An example parameter file for shift_pdf program.

Figure A-3 presents an example of the parameter file for shift_pdf
program. The input file is specified on Line 1. The output file is specified on Line
2. The debugging file output is specified on Line 3. The column number of the
input data needed to be shifted on Line 4. The number of data is given on Line 5.
The trimming limits for the data are given on Line 6. The new mean, that the data

mean has to be shifted to, is given on Line 7. Line 8 is to specify the approach
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option that will be used to shift the data (1 for multiplying approach or 2 for
adding approach).

Parameters for COMBINE

Line START OF PARAMETERS:

1 combine.out -file for output

2 4 - number of columns to be combined
3 firstfile.dat -first file

4 1 - column of interest

5 secondfile.dat -second file

6 1 - column of interest

7 secondfile.dat -third file

8 2 - column of interest

9 thirdfile.dat -fourth file

10 1 - column of interest

Figure A-4: An example parameter file for combine_1col program.

Figure A-4 presents an example of the parameter file for combine_1col
program. The output file is specified on Line 1. The number of columns needed to
be combined in one is given on Line 2. The name of the input file for the first
column to be combined is specified on Line 3. The column number of the first
data needed to be combined in one column is given on Line 4. The name of the
input file for the second column to be combined is specified on Line 5. The
column number of the second data needed to be combined in one column is given
on Line 6. The name of the input file for the third column to be combined is
specified on Line 7. The column number of the third data needed to be combined
in one column is given on Line 8. The name of the input file for the fourth
column to be combined is specified on Line 9. The column number of the fourth

data needed to be combined in one column is given on Line 10.
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Appendix B

ALPHABETICAL LISTING OF PROGRAMS USED

backtr
boot_avg

combine_1col

correlate

corrmat
corrmat_plot
gamv2004
histplt

input_mp

manip
mcs
nscore

OQIP

plotem
quantile
scatplt

sgsim

normal scores back transformation
Bootstrap resampling for the average

combines as many columns from different files into one
column

correlates random values based on input correlation
coefficients

generates correlation coefficients matrix
PostScript plot of corrmat

computes variograms of irregularly spaced data
Postscript plot of histogram with statistics

Draw values from parameter uncertainty distribution based
on equally distanced probabilities

Manipulate columns
Monte Carlo simulation
Normal scores transformation

Calculate hydrocarbon initially-in-place with parameter
uncertainty

Combine PostScript plots onto a single page
Calculate quantiles/CDF from non-parametric distribution
Postscript plot of scattergram with statistics

sequential Gaussian simulation
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sgsimO00
shift_pdf
spatial_bootstrap
vargplt
ultimatesgsim

vmodel

Conditional finite domain

Shift probability distribution to a new targeted mean
Spatial bootstrap resampling for the average
PostScript plot of variogram

Ultimate sGs

variogram file from model
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ay

dn1

dn2

Bo

BS

CFD

CIM

Cov

CPU

Fz

Fz!

GOC

Appendix C

ACRONYMS AND NOTATIONS

Area

range parameter

range parameter in the vertical direction

range parameter in the major horizontal direction
range parameter in the minor horizontal direction
Formation volume factor

Bootstrap

Conditional Finite Domain

Canadian Institute of Mining

covariance

Central processing unit

Dimensions

Cumulative distribution function of a random variable Z
Inverse cumulative distribution function

Gas oil contact
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GRV

GWC

HIIP

LU

Max.

MCS

Min.

MVPU

Mo

m,

NP

NTG

owcC

Gross rock volume

Gas water contact

Thickness

Hydrocarbon initially in place

Number of data combinations

order of uncertainty

Number of Realizations

Lower and upper triangular matrices

Maximum

Monte Carlo Simulation

Minimum

Multivariate Parameter Uncertainty

| th realization of parameter mean

Parameter mean for the original data

Experimental mean

Number of data

Net Pay

Net-to-Gross

Oil Water Contact
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PU
PVT
SBS
SGS
SPE
sph
So
Sw
Swi
TD

TI

y'(u)

zp(u)

A'(u)

Probability

Parameter uncertainty

Pressure, volume, and temperature

Spatial Bootstrap

Sequential Gaussian simulation

Society of Petroleum Engineers

spherical equation

Oil saturation

Average water saturation

Connate water saturation

Time-to-depth

Time interpretation

Location vector in A

Transform function

| th realization of variable y at location u.

generic random variable

depth from the base structure at location u.

| th realization of Uncertianty at location u.
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c Standard deviation

G, Standard deviation of the original data

Ga Standard deviation in uncertainty

o1 Standard deviation in time interpretation

Ga Standard deviation in time-to-depth

@ Average porosity

v(h) Stationary semivariogram between any two random variables Z(u) and Z(u+h)

separated by lag vector h.
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