
Mining Annotation Usage Rules of Enterprise Java
Frameworks

by

Batyr Nuryyev

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Batyr Nuryyev, 2021

Abstract

Application Programming Interfaces (APIs) allow developers to reuse existing

functionality without knowing the implementation details. However, devel-

opers might make mistakes in using APIs, which are known as API misuses.

One way to detect and prevent API misuses is to encode usage specifications

in static checkers that automatically verify the correctness of API usages.

There are two popular approaches to encoding specifications: manual encod-

ing by API developers and automatic mining of the specifications from the

source code. Manual encoding of specifications is a tedious process, and it

also requires that specifications are known in advance. On the other hand,

encoding specifications by mining source code is more efficient and requires no

advanced knowledge of specifications. However, existing mining tools do not

extract annotation-based API usage rules, while annotations are widely used

in enterprise microservices Java frameworks.

In this thesis, we investigate whether the idea of pattern-based discovery of

rules can be applied to annotation-based API usages for enterprise microser-

vice frameworks. We evaluate the effectiveness and usefulness of our approach

on two different microservice frameworks: MicroProfile and Spring Boot. We

select MicroProfile based on our industry partner’s interests while we select

Spring Boot, which is a widely used microservice framework, for generalizabil-

ity. Our approach successfully mines 73 annotation-based API usage rules. We

verify the correctness of the mined rules with expert developers. We find that

the mined rules required some edits to become fully correct, which is much

ii

better than writing rules manually from scratch. To evaluate the usefulness of

the mined rules, we scan more than 1,500 client projects that use MicroProfile

or Spring Boot frameworks for rule violations. We find 28 violations in 24

projects, which we report as issues in GitHub. We also analyze commit histo-

ries of the projects to check whether developers have made mistakes in using

annotation-based APIs corresponding to the mined rules and fixed them. We

find 12 violations in 9 projects that have been fixed by developers. Overall,

the results show that the mined rules can be useful in detecting and preventing

annotation-based API misuses.

iii

Preface

We intend to submit Chapters 4, 5, and 6 of this thesis for a publication.

iv

We can only see a short distance ahead, but we can see plenty there that

needs to be done.

– Alan Turing, Computing Machinery and Intelligence, 1950.

v

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Sarah Nadi, for

her continuous guidance and support throughout my graduate studies. She

has been an exemplary mentor whose feedback pushed me to my limits and

helped me grow as a researcher.

I would also like to thank our collaborators Emily, Yee-Kang, Vijay from

IBM, as well as my colleagues Ajay and Mansur for offering advice and con-

structive feedback throughout this research.

This research was undertaken, in part, thanks to funding from IBM CAS

Canada.

vi

Contents

1 Introduction 1
1.1 Research Questions . 3
1.2 Study Overview . 4
1.3 Thesis Contributions . 5
1.4 Thesis Organization . 6

2 Background and Terminology 7
2.1 Microservices . 7
2.2 Java Frameworks for Building Microservices 10
2.3 Pattern Mining . 14

3 Related Work 17
3.1 Writing API Usage Specifications 17
3.2 Mining API Usage Specifications 20

4 Mining Annotation-based API Usages 24
4.1 Representation: Tracking Code Facts 24

4.1.1 Identifying Which Code Facts to Track 25
4.1.2 Categories of Usages 27
4.1.3 Supported Relationships 29

4.2 Usages as Input Itemsets . 34
4.3 Mining Frequent Itemsets . 35
4.4 Post-processing Frequent Itemsets 36
4.5 Generating Candidate Rules 39

5 RQ1: How effective is pattern mining in discovering annota-
tion rules? 41
5.1 Evaluation Setup . 41

5.1.1 Step 1: Retrieving client projects 42
5.1.2 Step 2: Parsing client projects 44
5.1.3 Step 3: Pre-processing input itemsets 44
5.1.4 Step 4: Mining . 47
5.1.5 Step 5: Post-processing frequent itemsets 47
5.1.6 Step 6: Confirming candidate rules with domain experts 48

5.2 Results . 51
5.2.1 Descriptive Statistics 51
5.2.2 Effectiveness . 54
5.2.3 Findings . 60
5.2.4 Implications . 60

vii

6 RQ2: How common are violations of the mined annotation
rules? 62
6.1 Setup . 62

6.1.1 Step 1: Fetching Projects 62
6.1.2 Step 2: Encoding mined rules 63
6.1.3 Step 3: Usage issues in Stack Overflow (Spring Boot only) 64

6.2 Results . 65
6.2.1 Findings . 65
6.2.2 Implications . 68

7 Threats to Validity 69
7.1 Internal Validity . 69
7.2 External Validity . 70
7.3 Construct Validity . 70

8 Discussion 72
8.1 Implications . 72
8.2 Limitations . 73
8.3 Recommendations . 74

9 Conclusion 76

References 78

Appendix A Supplementary Information for RQ1 Setup 86

viii

List of Tables

4.1 Categories of manually-extracted rules 30

5.1 Breakdown of sub-API usages in Spring 53
5.2 Breakdown of sub-API usages in MicroProfile 53
5.3 Unique mined and confirmed candidate MicroProfile rules. . . 58
5.4 Unique mined and confirmed candidate Spring Boot rules. . . 59

ix

List of Figures

2.1 Monolithic vs microservices architecture 8
2.2 Alice’s online shopping store system 9
2.3 MicroProfile APIs/components 11
2.4 Example of database and frequent itemsets with minimum sup-

port threshold . 14

4.1 Overview of our mining and validation approach 25
4.2 Supported relationships . 31

5.1 Example of steps required to edit a candidate rule into an actual
rule . 50

5.2 Distribution of edit distance for Microprofile and Spring candi-
date rules . 54

5.3 Total frequency of each operation across all rules in MicroProfile
and Spring APIs, respectively 55

5.4 Breakdown of edit distance of all candidate rules per API . . . 56
5.5 An example of a mined candidate rule (Spring Boot) with re-

quired edits based on expert feedback 57

6.1 Encoded rule with correct and incorrect usage (violation) . . . 63

x

Chapter 1

Introduction

Microservices architectural style is becoming more popular due to independent

development and deployment, as well as flexibility in choosing the tech stack.

According to O’Reilly’s “Microservices Adoption in 2020” report [58], 77% of

respondents (which includes software engineers, technical architects, decision-

makers, etc.) have adopted microservices and 92% are experiencing “at least

some success” with microservices.

Microservices may be polyglot, meaning that they can be composed of ser-

vices written in various languages such as Python and Java. Microservices de-

velopers using Java could leverage Jakarta EE (previously known as Java EE)

which is an an extension of Java for building enterprise web applications [76].

Jakarta EE provides features specifically for development of web applications,

such as Jakarta RESTful Web Services (JAX-RS) for creating RESTful HTTP

servers [27]. However, while Jakarta EE is a well-known and established stan-

dard for creating standalone (monolith) enterprise applications, there are Java

frameworks that focus on building enterprise microservices applications such

as MicroProfile.

MicroProfile is a collection of specifications that describe a gap-filling func-

tionality for development of microservices [43]. MicroProfile is primarily lever-

aged through Java annotations. In other words, client developers use the

functionality provided by MicroProfile through annotation-based Application

Programming Interface (API). MicroProfile heavily resorts to annotations as

its API for client developers for several reasons: first, MicroProfile extends

1

@Documented

@Retention(RetentionPolicy.RUNTIME)

@Target ({ ElementType.METHOD , ElementType.TYPE})

@InterceptorBinding

@Inherited

public @interface Asynchronous {

}

Listing 1.1: Declaration of the @Asynchronous annotation in MicroProfile [17].

Jakarta EE and wants to stay consistent because it is often used alongside,

as well as is build on top of, Jakarta EE [30]. Further, MicroProfile is a

collection of abstract specifications and not a concrete server runtime, i.e.,

server runtimes that are MicroProfile-compliant, such as WildFly and Open

Liberty, provide their own implementation for the required behavior outlined

in MicroProfile specifications.

To support easier development of microservices in Java enterprise applica-

tions, it would be useful to have automated tools that can check for correct

annotation usage. Checking for correct annotation usage is not specific only to

MicroProfile or other microservices frameworks. In fact, it has been a problem

since the introduction of annotations in Java in 2004 [10]: the built-in lan-

guage semantics used for declaring annotations (e.g., @Target in Listing 1.1

indicates that an annotation can be applied on a method or class level) are not

expressive enough to encode more complex usage rules. For example, the rule

stating that “if you apply annotation @Asynchronous on a method, then the

method must have a return type Future or CompletionStage” cannot be en-

coded in annotation declaration of @Asynchronous due to language semantics

limitations.

There has been lots of efforts designing specification languages to encode

annotation usage rules and checkers to ensure these rules are applied [31], [36],

[42]. However, with the exception of one tool that focuses on mining XML

co-configurations [86], most of these annotation checkers assume that someone

will write the rules or that these rules are documented in the documentation.

2

Unfortunately, such rules are not always documented and expecting framework

developers to exert extra effort to encode them in some specification language

is not practical.

Ideally, such rules should be automatically inferred or at least a starting

point is provided to framework developers for easy modification into a speci-

fication that can be then automatically checked by static analysis checkers to

detect and prevent usage violations.

The idea of automatically mining general API usage rules, not specific to

annotations, has been extensively researched in the literature [3], [4], [57],

[70]. A common underlying premise is that frequent usages indicate rules that

should be respected. However, most of these efforts do not take metadata (i.e.,

annotations) into account and focus on verifying API usages with control and

data flow relationships, which are not necessarily applicable to annotations

where order does not matter. While order does not matter, there might be

complex association relationships such as ones between annotations and con-

figuration files. In this work, we investigate whether the same idea of pattern

based discovery of rules can be applied to mining annotation usage rules.

1.1 Research Questions

In this thesis, we aim to answer the following two research questions:

RQ1: How effective is pattern mining in discovering annotation

rules? Our goal is to investigate whether frequent itemset mining, a sim-

ple and popular pattern mining technique, along with generation of candidate

rules can mine actual annotation usage rules. We analyze how much the gen-

erated rules have to be edited (number of edit operations) to become actual

usage rules. We focus on API usage rules of MicroProfile based on our indus-

try partner’s needs. To show generalizability of our approach, we additionally

apply our approach on Spring Boot, a similar annotation-based framework for

building microservices applications.

3

RQ2: How common are violations of the mined annotation rules?

To show usefulness of the mined rules, we encode the mined and confirmed

candidate rules static checkers and scan for violations in client projects that

use MicroProfile and Spring. We also analyze Stack Overflow posts for mani-

festations of violations of the mined candidate rules.

1.2 Study Overview

To answer the above-mentioned research questions, we first analyze various

documentation sources and Stack Overflow threads to find examples of an-

notation usage rules and, if applicable, places in code where these rules are

violated. Based on the examples we found, we identify 5 categories of anno-

tation misuse problems in MicroProfile (we focus only on 3 categories in this

thesis) and infer a set of 8 code facts that we need to track to mine the rules.

We then use frequent itemset mining to mine frequent patterns from 493

MicroProfile client projects. To increase our chances of mining meaningful

rules, we develop a set of heuristics to filter out meaningless patterns. To

validate if this technique can indeed mine useful rules, we present the mined

rules to our collaborators from IBM, one of whom is a contributor to Micro-

Profile project. We ask them to confirm, deny, or suggest edits to the mined

candidate rules. Out of 36 potentially correct candidate rules, we extract 14

unique actual usage rules. These results show that pattern mining is feasible

for extracting usage rules, though the mined rules require some editing (about

4 edit operations) to become fully correct.

To determine whether our approach to mining annotation rules is gener-

alizable, we additionally applied it to Spring Boot, a similar Java framework

that can be used to build microservices and that is also primarily used through

annotations. We fetched 281 projects from GitHub and mined 17 semantically

unique rules that we confirmed with documentation and team members who

are expert users of Spring Boot. These results show that our approach is gen-

eralizable to annotation-based enterprise microservices frameworks that are

similar to MicroProfile.

4

We then encode the mined usage rules for MicroProfile and Spring Boot

to scan for violations in client projects. For MicroProfile, we scan the commit

history for potential violations in the same set of projects that we use for

mining. For Spring Boot, we fetch more than >1K projects which we use for

scanning (at the latest commit). We find 12 violations in the commit history

of 9 projects that use MicroProfile, as well as 28 violations in 24 projects that

use Spring Boot API. For Spring Boot, we manually validate these violations

and then report issues in the corresponding repositories. Overall, these results

show that while the mined annotation usage rules are commonly violated by

client developers and have a real-world impact, they are detected and fixed

early in the development process.

1.3 Thesis Contributions

In this thesis, we make the following contributions:

• Infer types of code elements involved in annotation usage rules for enter-

prise microservices frameworks and categorize the usage rules by these

types.

• Devise a simple and feasible first-of-a-kind approach for mining annota-

tion usage rules for enterprise microservices framework/library APIs.

• Develop heuristics that increase the diversity of usages and decrease

redundancy of the mined rules.

• Provide and discuss results of our pattern mining approach, which in-

clude automatically extracted rules that are confirmed with domain ex-

perts.

• Discover violations of the automatically extracted usage rules in client

projects of two popular Java frameworks for developing microservices

applications.

Overall, our results show that mining annotation-based rules is feasible,

but has limitations such as presence of unnecessary information or lack of the

5

necessary one of the generated rules. On one hand, unnecessary information

comes from one of the disadvantages of frequent itemset mining, the pattern

mining algorithm that we use: it is prone to generating unnecessary informa-

tion that needs to be removed somehow, whether manually by hand or using

some heuristics [23]. On the other hand, the lack of necessary information

within the mined rules comes from limitations of our representation, i.e., we

do not encode all possible relationships due to their complexity. Mining com-

plex rules requires either more sophisticated analysis, such as data or control

flow analysis, or over-engineering our technique towards the precise (but not

generally applicable) relationships exhibited in usage rules of only one partic-

ular target API, thereby trading off generalizability.

1.4 Thesis Organization

The thesis is organized as follows. We provide necessary background and

terminology in Chapter 2. After that, we review the related work in Chapter 3.

We then introduce our approach in Chapter 4. Chapters 5 and 6 describe the

evaluation setup and results. We discuss threats to validity of the results

presented in this thesis in Chapter 7. We then discuss the results in Chapter 8

and conclude the thesis in Chapter 9.

6

Chapter 2

Background and Terminology

In this chapter, we provide necessary background information related to the

topics of this thesis. We first introduce the microservices architectural style

with a toy microservices application. We then introduce our target library,

MicroProfile, which is a set of specifications that aims to facilitate the use of

the microservices style for developing Java Enterprise applications. Finally, we

introduce the concept of Java annotations, which is a form of metadata. We

also provide several examples of MicroProfile annotations, which are a major

part of MicroProfile API usages.

2.1 Microservices

Microservices refer to the microservice architectural style which is an ap-

proach to developing an application as a set of smaller (“micro”) services,

each running in a separate process [22], [79]. Traditionally, software devel-

opers have built web applications in the monolith style which constitutes an

all-in-one, self-contained web application that includes user interface, business

logic, and data access (see Figure 2.1). Modifying the monolithic application

means rebuilding and redeploying the entire application. In addition, devel-

opers cannot just scale one specific function of the application, they have to

scale the application as a whole.

Microservices solve some of the challenges monolithic applications have.

They help build web applications as a suite of smaller (micro) services, each

residing in its own process, thereby providing indepedent scalability and flexi-

7

Figure 2.1: Monolithic vs microservices architecture [6].

bility. For example, if developers add or modify a feature, they do not have to

redeploy the entire application – they can just rebuild and deploy the (micro)

service that contains the updated feature. In addition, since services run in

separate processes, they can be written in different programming languages

(Java, Python, JavaScript, etc.) and may use different types of data storage

(SQL, NoSQL, etc.). Many companies are pioneering the microservices style,

such as Amazon, Netflix, Uber, and Groupon [52].

To better understand how microservices operate, let us go through the

following scenario with Alice. Alice is a software developer who aims to build

an online shopping store in the microservices architectural style in Java (as

shown in Figure 2.2). She knows that there are customers that want to scroll

through sold items, add some into the cart, and finally check out and pay for

the products. For the check out functionality, Alice needs an online cart service

that will be showing the users the products they are about to buy, as well as

processing users’ payments. She also wants to track what customer is buying

what products, and therefore Alice needs a microservice that is responsible for

user authentication. There needs to be another service such as the products

microservice that will be responsible for processing (adding, retrieving, and

modifying) products sold on the website.

8

Figure 2.2: Alice’s online shopping store system.

When users access Alice’s store, they will access the API gateway. The

API gateway is a single entry point for all users, and it interacts with some

or all back-end services as needed. Since the back-end services need to receive

and send data back to the gateway, Alice embeds a separate RESTful API

into each service. One can also assume that each service comes with its own,

separate database.

Some microservices might depend on others and thus, need a way to com-

municate with each other. Alice can choose a communication protocol depend-

ing on her needs, such as HTTP, TCP, and AMQP. She decides to stick with

HTTPS for all her client-to-gateway and service-to-service communications.

Let us now consider the problems that Alice might experience as her sys-

tem grows larger. With the growing number of features on her website, the

complexity of the system grows along the way. With higher complexity, it

becomes tedious for her to deploy, configure, and monitor each service indi-

vidually. For example, there is a risk that some of the services might fail due

to either connection issues or underlying hardware problems. The microser-

vices that depend on each other need to be resilient when one of the services

fails, i.e., she should not need to manually restart the service if it fails due

9

to connection error. Alice realizes that she needs to make her system more

(1) fault-tolerant, so that the users are still able to see and scroll through the

items, even though they might not be able to immediately buy them due to

the outage in one of the services. Besides fault tolerance, she needs to (2)

monitor the performance of her microservices in order to avoid performance

bottlenecks in her system that might slow down her website. Therefore, she

needs some additional support for her microservices so that they are (1) more

fault-tolerant and (2) can be easily monitored by her.

MicroProfile could help Alice add extra support for the microservices in

the system. To accomplish requirement (1), she could use MicroProfile Open

Tracing API that allows her to add instrumentation to her application. Al-

ice will be able to see how much computational and memory resources each

service uses. To be able to monitor (observe) her services in terms of their

performance, Alice might resort to MicroProfile Health and Fault Tolerance

APIs. The Health API allows her to monitor health of the services (whether

the services are alive and ready to accept and process requests), and the Fault

Tolerance API allows her to specify fallback mechanisms in case of the con-

nection failures.

Figure 2.2 shows the overview of Alice’s system. Having seen how some of

the MicroProfile components could help Alice with engineering the microser-

vices, let us now explore MicroProfile in detail.

2.2 Java Frameworks for Building Microser-

vices

In this work, we focus on two Java frameworks for building microservices,

namely MicroProfile and Spring Boot.

MicroProfile is an open-source Eclipse project aimed that optimizing En-

terprise Java for building microservices [43]. It is a collection of APIs aimed

to facilitate development of microservices in Enterprise Java web applications.

It contains specifications for Open Tracing, Health, Fault Tolerance, Metrics

10

Figure 2.3: MicroProfile APIs/components [51].

and others.

MicroProfile builds on top of Jakarta EE (previously referred to as Java

EE), which is a collection of standards for developing enterprise applications [76].

There are numerous web application projects that are Jakarta-EE compatible,

such as Apache TomEE, Eclipse GlassFish, Open Liberty, WildFly, and JBoss

Enterprise Application Platform [7], [21], [69], [74], [75], [88]. Unlike Jakarta

EE which is a set of standards for building monolith enterprise applications,

Microprofile is a set of specifications that aim to bring microservices to the

Enterprise Java community.

Similar to Jakarta EE, using MicroProfile alone will not produce any result

because it is simply a set of abstract specifications. To properly use MicroPro-

file, developers also need to configure a MicroProfile-supported runtime. There

are multiple server runtimes that implement MicroProfile specifications, such

as TomEE, WildFly, Quarkus, and OpenLiberty.

To better address the engineering needs of microservices, MicroProfile pro-

vides specifications as separate components (see Figure 2.3). For example,

the Open Tracing component is used for distributed tracing and monitoring

of microservices. If developers want to describe their APIs, they can use the

11

import org.eclipse.microprofile.faulttolerance.Asynchronous;

import java.util.concurrent.CompletionStage;

import java.lang.String;

public class Foo {

// Correct usage of MicroProfile Fault Tolerance API

@Asynchronous

public CompletionStage <String > doSmthAsync () {

...

}

// Incorrect usage

@Asynchronous

public String thisIsWrong () {

// Oops! A runtime exception is thrown

}

}

Listing 2.1: Example of a method-level annotation in MicroProfile.

Open API component. In addition, to monitor health status of the services,

as well as provide fallback mechanisms, developers may resort to the Health

and Fault Tolerance components. For description of other components, see

the official website for MicroProfile [43].

Java annotations. Throughout the components, MicroProfile provides the

functionality primarily through Java annotations. Java annotations are a form

of metadata applied on a variety of language constructs, such as classes, meth-

ods, method parameter, and constructors [60]. Annotations provide a con-

venient way of applying additional behavior to the constructs, whether the

developer wants them applied at compile or run time. A major advantage of

using annotations is reduced boilerplate code, i.e., pieces of code that have to

be repeated in multiple locations with little to no change [32].

Consider Listing 2.1 that contains one of the annotations from the Mi-

croProfile Fault Tolerance API, namely the annotation @Asynchronous. This

annotation is both class and method-level, meaning that it can be applied on

a class definition or method signature (as indicated by ElementType.METHOD

and ElementType.TYPE values of the @Target annotation on the declaration

12

of @Asynchronous in Listing 1.1). If @Asynchronous is used on a method,

then the method will be invoked in a separate thread, as shown in Listing 2.1.

If a class is annotated with @Asynchronous, then all the methods of that class

will be invoked in a separate thread.

Even though using the annotation seems very simple, it comes with an

additional constraint. As shown in Listing 2.1, if a method is annotated with

@Asynchronous, then it must have a return type Future or Completion-

Stage<T>. Otherwise, a runtime exception FaultToleranceDefinitionEx-

ception occurs. This is an example of annotation usage rule in MicroProfile

explicitly described in documentation [15]. Even though it is caught as soon

as the application server starts up, large-scale applications with numerous de-

pendencies take time to compile. Developers might not notice the mistake and

waste time trying to build and deploy the application, whereas such violation

could have been detected as soon as they typed the code if the usage rule could

be explicitly encoded and statically validated in real time by some IDE.

Spring Framework (including Spring Boot) is a “world’s most popular”

web application framework for the Java platform [82], [83]. Like MicroProfile,

Spring Framework offers a range of functionality, such as web app configura-

tion, security, and GraphQL support, that is often used through Java anno-

tations. The framework is a backbone of Spring Boot, which is an extension

of Spring Framework that makes it easier to create stand-alone, production-

grade Spring applications. According to the official Spring Framework website,

“Spring Boot’s many purpose-built features make it easy to build and run your

microservices in production at scale”. Spring Boot helps client developers cre-

ate standalone applications by embedding a web server (e.g., Tomcat) into

a client application. In addition to embedding a web server, Spring Boot

provides autoconfiguration feature, meaning that an application comes with

pre-defined dependencies that client developers do not need to configure man-

ually. Such feature automatically configures the underlying Spring Framework

and its modules (e.g., Spring Security) based on best practices. Thus, Spring

Boot is simply an extension of Spring Framework that allows client developers

13

Figure 2.4: (a) An example of a database of 10 transactions (transactions from
all projects) and (b) the frequent itemsets in it where the minimum support
is at least 3 transactions [9].

to quickly create standalone microservice applications in Spring without much

configuration.

2.3 Pattern Mining

Frequent itemsets. To extract annotation usage specifications as rules from

a large amount of client code, we leverage a well-known pattern mining algo-

rithm known as frequent itemset mining. Frequent itemset mining is a task of

extracting patterns from a database of “transactions” [9]. It is primarily used

for association rule learning [62], a machine learning technique for discovering

interesting relationships between items in large databases. To discover pat-

terns within some database, it is common to mine frequent itemsets and then

use them to generate association rules.

Consider the following formal definition of frequent itemset mining [9].

Let T = {i1, i2, ..., in} be a set of items, called input itemset, and D =

{T1, T2, ..., Tm} be a set of all input itemsets, called database. Alternatively,

one can think of input itemsets as transactions that contain a list of items,

such as bread and jam. Note that we refer to input itemsets as transactions

in order to avoid confusion in terminology.

14

The term itemset refers to any subset of transaction T. For example, for

transaction T = {a, b, c} of size 3, there are 23 = 8 possible itemsets (equiva-

lent to power set of a set), namely {{}, {a}, {b}, {c}, {a, b}..., {a, b, c}}. Each

itemset I comes with the notion of support supp(I), which calculates the fre-

quency of transactions I appears in. In other words, if supp(I) = k, then I

appears in k transactions. Given user-provided support threshold suppmin ∈ N,

itemset I is called frequent, if and only if supp(I) ≥ suppmin. In other words,

a frequent itemset is an itemset with support that is greater than or equal to

user-specified support threshold.

Figure 2.4 shows an example of a database of 10 transactions (equivalently,

10 input itemsets created from all projects used for mining). Given minimum

support threshold suppmin = 3, we get 16 frequent itemsets with support

values shown in the table on the right. The frequent itemsets’ sizes range from

0 (empty frequent itemset) to 3 items (e.g., {a, c, d}).

To retrieve frequent itemsets, we leverage the parallelized version of a pop-

ular mining algorithm called FP-Growth [20], [34]. Unlike traditional apri-

ori mining that generates numerous candidate sets and then filters out non-

frequent ones [2], FP-Growth leverages a tree structure, called FP-Tree, to

mine a set of frequent itemsets. FP-Growth is more efficient because, un-

like apriori mining which scans database over and over, FP-Growth scans

the database only two times. For more detailed information on FP-Growth,

see [20].

Association rules. Once frequent itemsets are retrieved, they can be used

to generate candidate association rules. Association rules (or candidate rules)

are the relational rules of the form “If X, then Y ” or X =⇒ Y where I is a

frequent itemset and X, Y ⊆ I . The “if” part is called antecedent, and the

“then” part is called consequent.

Association rules come with their own indicator called confidence. Confi-

dence of a rule X =⇒ Y is a measure of how often a candidate rule X =⇒ Y

has been found to be true:

15

conf(X =⇒ Y) = supp(X ∪ Y)/supp(X)

where X, Y are frequent itemsets. For example, if X = {“jam”, “peanut butter”}

and Y = {“bread”} and conf(X ⇒ Y) = 50%, then it means that 50% of

transactions that have “jam” and “peanut butter” also have “bread”.

While the minimum support threshold suppmin helps us mine frequent item-

sets within a database of transactions (or input itemsets), the user-defined

minimum confidence threshold confmin helps us generate candidate (associa-

tion) rules with strong “if-then” relations between items. In other words, we

generate an association rule X =⇒ Y , if and only if conf(X =⇒ Y) ≥ confmin.

In this thesis, we use frequent itemsets to generate candidate rules that

potentially represent usage specifications. We present our pattern mining ap-

proach in Chapter 4.

16

Chapter 3

Related Work

In this chapter, we discuss existing work related to the topic of this thesis, i.e.,

mining annotation-based usage rules.

An Application Programming Interface (API) is an interface through which

a software library or framework is used. When a developer wants to bring in

some functionality to their software, they resort to reusing existing libraries

or framework through APIs. The purpose of an API is to abstract away the

implementation details, so that the client developers reuse the functionality

they need without necessarily knowing how it is implemented [26].

When using APIs, developers often make mistakes, known as API misuses,

that result in bugs and even security vulnerabilities [4], [37], [53], [56], [78],

[85], [87], [90]. These violations could produce unexpected behavior such as

program crashes and resource leaks. One way to prevent API usage violations

is to write API usage specifications that precisely define how to use an API,

such as by outlining the necessary steps and dependencies. Our goal is to

automatically mine such specifications. Accordingly, we divide related work

into 2 categories, manual writing of API usage specifications and automated

mining of API usage specifications, which we discuss below.

3.1 Writing API Usage Specifications

General usage specification DSLs. To prevent API misuses, one can

create automated static checkers that check client code for correct usage of

some API. However, the automated checkers need usage specifications that

17

describe correct usage of some API. One can write usage rules as specifica-

tions in some domain specific language. In contrary to general programming

languages such as Java, a domain-specific language (DSL) is a language used

only for specific domain [19]. For example, CrySL is a DSL in which cryp-

tography experts can write cryptography API usage rules [31]. Researchers in

the CrySL study manually encoded the usage rules by first producing a set

of rules based on documentation and then refining these rules through dis-

cussions with cryptography API experts. The written specifications are then

compiled into static analysis checkers that automatically scan for API usage

violations. Other examples of DSLs and similar tools include uContracts [41]

and .NET Code Contracts [18]. uContracts [41] is a DSL for specifying “us-

age contracts” between two parties: a provider (e.g., an API) and a consumer

(e.g., client code using the API). According to Lozano et al, a usage con-

tract “defines the expectations and the assumptions by the reusable entities

[of the API] on the entities that reuse it [client code]”. While CrySL and

uContracts are external and separate languages, the code contracts in .NET

Framework are part of the platform itself, i.e., all .NET Framework languages

(e.g., C#) can take advantage of the contracts without any external tooling

support. They allow client developers to specify additional constraints on their

client code using pre-conditions, post-conditions, and invariants using .NET

Framework System.Diagnostics.Contracts package. For example, a pre-

condition Contract.Requires(x != null) expresses that parameter x must

be non-null. The contracts come with a built-in static checker that verifies the

usage constraints without running the program. However, both .NET code

contracts and uContracts do not provide support for specifying and verifying

annotations or attributes1.

Annotation-based usage specification DSLs. There are also DSLs des-

ignated for writing annotation-based usage specifications. Darwin proposes

a DSL, called AnnaBot, for verifying annotation usages [11]. Similar to the

nature of our candidate rules (i.e., rules are of the “if-then” form), their DSL

1An equivalent of a Java annotation in C# and other .NET Framework languages.

18

uses implications for writing rules (“If X, then Y ”); provides checks that check

for existence of an annotation on the class, method, or field; as well as logi-

cal operations such as AND, OR, and NOT for specifying relations between

annotations, types, etc. Similar to Annabot, Eichberg et al. [16] present a

user-extensible tool for automated annotation-based checking of implementa-

tion (usage) restrictions. They write the restrictions as checkers in XQuery,

a query language for XML documents. Given some client Java code, they

convert it into XML and run the checkers (pre-defined queries) to validate the

usage constraints in the code. A work done by Kellens et al. [29] provides

custom annotations and logical predicates that add extra semantics on top

of annotation declarations. Some of their logical predicates, such as “?meth

returns: ?exp” for specifying method return type, are similar to the relation-

ships or code facts that we track in code, such as “Method hasReturnType

Foo”. A tool developed by Laàzaro de Siqueira Jr. et al. [71] uses a DSL for

validating annotation usage rules that may span different locations in code

(e.g., annotations applied on top of other annotations’ declarations). If one

does not account for the possibility that annotation and its target element can

be decoupled (i.e., an annotated program element such as class or method),

there might be numerous false positives (false violations). Accounting for such

annotation usage complexity is important for static checkers, but in our work,

we focus only on evaluating feasibility of pattern mining for extracting annota-

tion usage rules, as well as checking the usefulness of these rules in practice. In

other words, highly accurate/precise static annotation usage checker is beyond

the scope of this thesis.

In terms of mining annotation usage rules specifically for enterprise mi-

croservices frameworks or libraries, the thesis work by done Yaxuan Zhang is

perhaps the closest related work [91] because they have a DSL that simultane-

ously supports 3 code entities we mine in our rules (discussed in Chapter 4.1.2).

Zhang does not mine any rules, but rather offers a DSL that supports specify-

ing relationships between annotations and configuration files. In other words,

their DSL engine is capable of reading both Java and XML files for verifying

the usage rules that involve both locations. Similar to Annabot [11] and other

19

DSLs, the DSL has loop constructs, such as the “for” loop, as well as existence

assertions, such as “exists”. Their DSL is more expressive than the ones we

discussed previously and allows for encoding of complex relationships, but it

requires users to know the language in advance to encode usage rules which

might get cumbersome.

Semi-manual approach to writing API usage specifications. Despite

the numerous general and annotation-usage-specific DSLs, the DSLs require

manual encoding of the rules, which is a tedious and error-prone process. To

alleviate some of the manual work of writing specifications, Mehrpour et al. [42]

offer a combination of a DSL and user interface (UI) called RulePad. RulePad

provides snippet-based and semi-natural-language modes of authoring rules.

Although our work does not incorporate manual writing of API usage rules,

we ask domain experts to confirm, deny, or suggest edits to the candidate rules

that we mine (see Chapter 5.1). We could potentially leverage RulePad to au-

tomate the process of verifying mined usage rules because the DSL supports

annotations and the relevant relationships (see Chapter 4.1.3). Even though

RulePad makes the usage specification writing process easier, it might be still

tedious and time-consuming for developers to encode all the usage specifica-

tions for APIs that have large usage surface (with numerous public methods,

classes, types, etc.). Ideally, we want to infer API usage rules using auto-

mated techniques or at least provide developers with a starting point for easy

modification into specifications.

3.2 Mining API Usage Specifications

Writing API usage specifications manually is difficult and time-consuming.

Therefore, researchers have proposed to use data (pattern) mining techniques

to extract API usage specifications automatically [54].

The general assumption behind such work is that when dealing with mas-

sive amounts of client code that uses some target API, majority of repeated

usages are correct. In other words, frequently occurring usages often imply

20

correct usages. One might then collect a massive amount of client code and

apply data mining methods to find usage patterns, parts of usages that com-

monly occur within all usages. Researchers often use these patterns to verify

whether some API usage is correct or incorrect by looking for deviations of

some given API usage example from the patterns [4].

Mining general usage patterns from code artifacts. According to Ro-

billard et al., an API property is “any objectively verifiable fact about an API

or its use in practice” [70]. There are different approaches to automatically

infer these “facts”: non-sequential, sequential, behavioral, migration map-

pings, and general information [5], [28], [38]–[40], [54], [65], [66]. For example,

Acharya et al. collect static program traces of API elements of interest (e.g.,

public methods) and use these traces to mine frequent partial orders, which are

then converted into usage specifications [1]. Zhong et al. also analyze client

code, but track API call sequences contrary to partial orders [92]. In our work,

we utilize a non-sequential approach because there is no order relation among

annotations. We resort to simple frequent itemset mining that mines frequent

associations between annotations and other relevant elements. Similar to our

approach, Li et al. leverage a non-sequential (unordered) frequent itemset

mining algorithm to extract associations among program elements, such as

functions and variables (e.g., functions and variables) [35]. Even though the

flow of their technique (how they extract patterns, generate rules, find viola-

tions, etc.) is almost identical to ours, they do not mine associations between

annotations or between annotations and program artifacts (e.g., methods).

There are also more complex representations and techniques that can cap-

ture more complex usages (e.g., data and control flow) such as frequent sub-

graph mining. For example, Amann et al. present MuDetect [4], a static API

misuse detector, based on previous work by Nguyen et al. [56]. In MuDe-

tect, Amann et al. represent code as, and mine patterns from, API Usage

Graphs. An API Usage Graph (AUG) is a graph-based representation that

captures data and control flow properties within method bodies. Nodes rep-

resent variables, method calls, etc. and edges represent data and control flow

21

relationships. Graphs can also be used to identify boilerplate code associated

with APIs [55]. Although their graph mining approach can retrieve more com-

plex patterns, the technique might result in memory overhead for large amount

of client projects. In addition to potentially slow performance, using graphs

for annotation-based API usages is excessive because annotations do not have

complex data and order flow semantics, i.e., it only matters whether you ap-

ply certain annotation or not. Unlike MuDetect, we do not analyze method

bodies and instead focus on mining usages that primarily involve annotations,

program elements such as classes, fields, and methods (we track information

only from their signatures and declarations), as well as configuration files.

Mining configuration usage patterns non-code artifacts. Our min-

ing approach is able to mine rules that involve non-code artifacts, such as

configuration files that are necessary for configuring microservices application

servers (e.g., specifying a port for an HTTP server). Apart from mining us-

age patterns from code alone, there are other approaches that mine usages

from related code artifacts, such as configuration files [86] and code com-

ments [8], [73]. The mining approaches here are not based on pattern mining,

but rather on regular expressions or similar parsing heuristics (e.g., looking for

pre-defined words in text such as code comments). For example, Wen et al.

mine configuration couplings (pairs of XML elements that frequently co-occur

together) in deployment descriptors, which are the XML files used to config-

ure applications [86]. While their work focuses on mining rules within these

configuration (XML) files alone, we mine relations between annotations, pro-

gram elements, and configuration files. On the other hand, when we analyze

configuration files, we only look for presence of class names mentioned in code

because our analysis looks for relationships between code and configuration

elements, rather than between configuration elements only.

Mining annotation usage patterns. To the best of our knowledge, while

there is a multitude of tools that leverage pattern mining techniques to mine

usage patterns from code [53], [78], [84], [85], none of them mine annotation-

22

based API usage rules that may additionally involve non-code artifacts, such

as configuration files.

23

Chapter 4

Mining Annotation-based API
Usages

In this chapter, we present the methods we use to mine annotation usage

rules of enterprise microservices frameworks or libraries. Our goal is to use

pattern mining to find annotation usage patterns that potentially represent

usage rules.

An overview of our approach can be seen in Figure 4.1 where each rectangle

is a step in our methodology. As the first step, we identify what kind of rela-

tionships (code facts) we need to track to mine usage patterns for annotation-

based frameworks. After we parse code into itemsets of these code facts, we

pre-process the itemsets to ensure that we mine as many diverse API usage

patterns as possible. After we apply the frequent itemset mining algorithm to

mine usage patterns as frequent itemsets, we post-process the frequent item-

sets to get rid of invalid patterns and generate candidate rules in an “if-then”

form.

4.1 Representation: Tracking Code Facts

APIs typically contain implicit usage constraints. These usage constraints are

known as usage rules that API users should abide by. However, violations of

these usage rules (API misuses) may lead to services crashing unexpectedly at

runtime. Similarly, the same problems may happen when using annotation-

based APIs, such as MicroProfile.

24

Figure 4.1: Overview of our mining and validation approach. Each rectangle
represents a step/process in the approach.

4.1.1 Identifying Which Code Facts to Track

Annotation-based API usages are different from the API usages that existing

pattern mining tools typically extract [1], [78], [92]. The existing work in the

area of mining API usage patterns focus on usages within method bodies [4],

[56], [84], [85]. As we discussed in Chapter 3, existing API usage extraction

tools do not analyze annotation usages. Motivated by our industry partner’s

interest in MicroProfile usage, to understand how annotations are used and

what needs to be tracked within code in order to be able to identify potential

usage problems, we use MicroProfile API as a starting point, because it is

primarily used through annotations. We search for explicit usage rules in

an “if-then” form in the official MicroProfile documentation [43], as well as

any issues client developers have faced when using MicroProfile API on Stack

Overflow and official MicroProfile forum on Google Groups [46].

To identify existing issues with usage of MicroProfile annotations in Stack

Overflow, we search for posts with tag microprofile [72]. As of June 23, 2021,

there were 233 questions related to MicroProfile. We retrieve these questions

using only microprofile tag as the search query. We look at each post title,

body, comments, and all answers on that post. We ignore questions that ask

for general information and do not contain any code snippets, such as “Why

Eclipse Glassfish does not support Eclipse Microprofile” [81] and “WebSphere

25

Application Server support of MicroProfile” [25]. We also skip questions that

have questions specific to some runtime only and not MicroProfile, such as

“Wildfly 17 error “WFLYMETRICS0003: Unable to read attribute second-

level-cache-hit-count” when statistics-enabled=“true”” [33]. That question

is concerned with a WildFly-specific exception and is not necessarily related

to MicroProfile, and probably should not have the microprofile tag at all.

While going through all the posts, we focus on questions where authors ex-

plicitly describe their question with code snippets as well as problems they

experience (e.g., runtime exceptions). For example, in one of the questions,

the question author asks about the issues they are experiencing with autho-

rization in their application [68]. The problem is that the application deploys

without any error and they do not get any logging information from the server,

even though the authorization feature does not work as expected (i.e., should

return HTTP 401 “Unauthorized”, but returns 200 “OK” instead). Along

with such questions, we look for concrete answers that follow specific text

patterns, such as “If you are using X, you should/must/need/have to use

Y”, “X must/should/need/requires/misses/has to have Y”, or “To do X, you

must/should/need/have to have Y”. These text patterns are similar to the can-

didate rules we want to generate. For example, for the same question above,

the accepted answer is found in the following sentence:

Your JAX-RS configuration class is missing the @DeclareRoles({

”mysimplerole”, ”USER” })

The answer above may be turned into a rule such as “If there is @De-

clareRoles on any method of any of class, then the class that extends Applica-

tion must be annotated with @LoginConfig” because declaring user roles on

some HTTP resources is part of user authorization (i.e., managing user access

level). Violating the rule above (i.e., using @DeclareRoles without @Login-

Config on the Application class) results in faulty behavior that has no visible

error: the developer expects to see user authorization feature based on user

roles on a given HTTP resource, whereas in reality it is simply not there.

26

In the official MicroProfile forum on Google Groups, we find only 1 ques-

tion related to API usage of MicroProfile because the forum is designated to

facilitate general conversations about MicroProfile and its future plans, rather

than its usage. For example, some posts discuss new releases[44], [47], provide

feedback on existing specifications [48], [50], and discuss future plans [45], [49].

Since the majority of the posts discuss only general information about Micro-

Profile, we do not find specific and technically detailed information about its

API usages that could help us understand what can go wrong (e.g., what

developers typically miss) when using MicroProfile annotations.

In total, we extract 15 usage rules, out of which 10 are from the official

documentation, 4 are from Stack Overflow and 1 is from the forum on Google

Groups. We additionally verify the 5 rules from Stack Overflow and Google

Groups with our collaborators from IBM, some of who are direct contributors

in the MicroProfile project, to confirm or deny whether a potential rule is a

rule or just a common idiom. We do not need to verify the 10 rules from the

official documentation because they are explicitly described there.

4.1.2 Categories of Usages

We examine the 15 usage rules we manually extracted above (we share them

publicly on GitHub [59]). Our goal is to identify what code elements appear

in these rules, as well as the relationships between these elements. Under-

standing this can help us determine the code facts we need to encode in the

representation we use for pattern mining. We observe that the 15 usage rules

we analyzed involve the following 3 types of code elements:

• Annotations (ANN): Annotations are the primary entities found in

the usage rules we analyze. Unlike marker annotations that have no pa-

rameters, such as the built-in annotation @Override, MicroProfile anno-

tations tend to have one or more parameters (e.g., @Fallback(X.class)

where X is a locally defined class).

• Configuration (CONF): This primarily involves configuration files

such as beans.xml, which contains bean class configurations, and microprofile-

27

config.properties, which contains key-value pairs specific to the web

application. Both files are used to separate configuration from code.

• Program elements (PE): Program elements come from code itself

and include elements such as constructors and method signatures. In

the rules above, we observe the following program elements: method

parameter list and return types, constructor parameter list types, field

type, class extensions (including interface implementations), as well as

method body contents, such as constructor and method calls.

The majority of rules we find span multiple entities, and thus, include

elements of multiple forms such as annotations and configuration files. Since

some rules are a mix of different forms, we classify the rules into 5 categories:

• Annotation–annotation (ANN-ANN): This category includes rules

that express relationships only between annotations (e.g., usage of one

annotation requires another). For example, if a developer applies anno-

tation @RolesAllowed on any method of any class, then the developer

should annotate the driver class (i.e., the one that extends javax.ws.rs.core.Application)

with @LoginConfig. In other words, @LoginConfig enables the autho-

rization feature that allows defining user roles (e.g., “admin” vs “user”)

for HTTP endpoints in the application [14].

• Annotation–program element (ANN-PE): This category contains

rules that involve annotations and program elements (e.g., classes). For

example, if a developer annotates a class with annotation @Liveness,

then the developer should make sure that the same class implements

interface HealthCheck [13].

• Annotation–configuration (ANN-CONF): This category contains

rules that involve annotations and configuration files (e.g., microprofile-

config.properties). For example, if a field is annotated with @Config-

Property(name="foo"), where the sole annotation parameter name has

value foo, then foo must be defined in microprofile-config.properties

file or any other configuration source [12].

28

• Configuration–configuration (CONF-CONF): This category in-

cludes rules that involve configuration files only (e.g., beans.xml file).

For example, the usage of the XML element <ssl id="x" keyStor-

eRef="bar" /> requires that value of the attribute keyStoreRef ("bar",

in this case) to be defined in another XML element keyStore (in the

same file) as the value of the attribute id, like <keyStore id="cacertKeyStore"

... /> [89].

• Program element–program element (PE-PE): This category con-

tains rules that involve program elements only (e.g., method bodies). For

example, if a developer calls method build() of an object of class Rest-

ClientBuilder, then the developer has to extend related class Rest-

ClientBuilderResolver and override the method newBuilder() in the

same codebase. The method RestClientBuilderResolver.newBuilder()

is then going to register the custom builder and is going to return the

builder that is going to execute the method build() that was called

previously [64].

Notice that we do not list the combination Program element–configuration

(PE-CONF) category where rules have relationships only between program

elements (e.g., classes) and configuration files because we did not find any such

rules for MicroProfile, based on the sources we analyzed, even though previous

studies do mention such types of rules [86]. In addition, there is only one rule

that has all three code elements (i.e., ANN, PE, and CONF).

We present the number of extracted rules grouped by category in Table 4.1.

Studying these collected rules and understanding which entities they in-

volve allow us to determine which relationships and code facts we need to track

to automatically mine these rules. In this work, we focus only on the first 3

categories of the rules.

4.1.3 Supported Relationships

We now discuss relationships (or code facts) that we track between different

elements in a program. We consider annotations, program elements, and

29

Category # of rules
extracted

from docu-
mentation

of rules
extracted from

Stack Overflow or
other forums

To-
tal

of
rules

ANN-ANN 2 1 3
ANN-PE 6 0 6
ANN-CONF 1 0 1
CONF-CONF 0 3 3
PE-PE 1 1 2
Total 10 5 15

Table 4.1: Categories of manually-extracted rules.

configuration files as the entities in the relationships we track.

While the entities contain a plethora of detail within them, we selectively

track only a subset of information based on observations from the manually

extracted rules. With annotations, we track their parameters. With program

elements, we track information only about fields, method signatures, class

signatures, and constructor signatures, such as type and class hierarchy (if

applicable). In terms of configuration files, we analyze the microprofile-

properties.config file that stores pairs of keys and values for configuring the

MicroProfile runtime; as well as beans.xml which contains class configurations

that can be changed at load time.

Figure 4.2 depicts an example of a code snippet and configuration files, as

well as the relationships that we support. We do not display fully-qualified

type names (i.e., org.a.b.c.ClassName) for the sake of brevity, but we do

use them for differentiating annotations and types that have the same name

but come from different libraries and packages.

In Figure 4.2a, there are three entities that we keep track of: class, field,

and method. We store information about fields and methods separately. In

the figure, we have the “Itemset 1” box that contains an itemset that repre-

sents the field count and the “Itemset 2” box that contains an itemset that

represents the method foo. While we formally introduce itemsets in the next

section, think of itemsets as sets containing these relationships. Note that we

do not create a separate itemset for the class Foo and instead put all relevant

30

(a) Supported relationships for an example code snippet

(b) Example content of beans.xml file.
(c) Example content of microprofile-

config.properties file.

Figure 4.2: Supported relationships

31

class information into itemsets that represent class members such as fields,

methods, and constructors1. We decided to not create a separate itemset for

classes to enable us to mine potential relationships between classes (and their

annotations or extensions) and fields or methods (and their types or annota-

tions) based on our observations with the manually analyzed rules. In other

words, if we create a separate itemset for a class, then the relationships of

class and its member elements become isolated from each other, thereby re-

moving the ability to mine cross-element relationships (i.e., between the class

and methods or fields). In addition, the underlying structure is a set and sets

do not allow for any duplicate values: while two methods return the same type

T , we will track a return type of only one of these methods thereby incorrectly

representing information within a class. We provide more information about

how we track class information in the next section.

Further, when parsing class signatures, we do not keep track of class names,

because that limits the possibility of the pattern mining technique to discover

anything. Class names are too specific for frequent itemset mining to extract

patterns. In addition, the names are irrelevant in mining association rules,

because there are typically no rules that force the usage of a particular class

name or to follow a particular convention apart from what compilers already

check for, i.e., the validity of the name.

More formally, we track the following relationships when parsing client

code in Figure 4.2a:

• The annotatedWith relationship tracks an annotation on some program

element. We consider the following program elements: class, field, method

or parameter. For example, in the “Itemset 1” box, we add the re-

lationship “Field annotatedWith @ConfigProperty” because the field is

annotated with @ConfigProperty. We create one relationship per an-

notation.

• The hasType relationship tracks the type of a field. For example, in

1Note that since there is no constructor in the code snippet in the Figure 4.2a, there is
no itemset for it

32

the “Itemset 1” box, we add the “Field hasType Integer” because the

represented field is of type Integer. There cannot be more than one

of “hasType” relationships because a field has only one type. If we are

dealing with generic types, then we simply ignore the type parameter list

(e.g., we keep only Optional from Optional<Integer>). That way, we

are more likely to mine a usage rule that involves the generic type. In

other words, the more general the information we track, the more likely

we are to mine usage rules that involve the generic type so that it is not

constrained by type parameters. Note that we track parameter types

separately using the hasParam relationship.

• The hasParam relationship tracks a parameter of some program element

along with its type. For example, in “Itemset 2” box, we add the re-

lationship “Method hasParam String”, which means that method has

a parameter of type String. Similarly, we track annotation parame-

ters, such as the “@ConfigProperty hasParam name” relationship in the

“Itemset 1” box. This relationship tracks one parameter at a time.

• The hasReturnType relationship tracks a method’s return type. For ex-

ample, we have the “Method hasReturnType Future” relationship that

tracks the method’s return type, i.e., Future. This relationship is simi-

lar to hasType relationship.

• The extends relationship tracks class extensions of a given class. This

relationship is established only for locally defined or target library/frame-

work classes. In other words, we do not track class extensions that belong

to 3rd party libraries. For example, in the “Itemset 1” and “Itemset 2”

boxes, we add the “Class extends Bar” relationship assuming that Bar

is a locally defined class (i.e., in the same project) or is part of a target

library/framework we are interested in.

• The implements relationship tracks a class’s implementations of inter-

faces, if any. This relationship is similar to the extends relationship

33

except that it tracks interface implementations (e.g., the “Class imple-

ments Baz” relationship in the “Itemset 1” and “Itemset 2” boxes).

• The definedIn relationship connects some annotation parameter value to

a key defined in microprofile-config.properties configuration file.

For example, the “name definedIn microprofile-config.properties” rela-

tionship tracks the count.property variable defined in the properties

file (Figure 4.2c). This relationship is MicroProfile-specific and might

not work for other frameworks.

• The declaredInBeans relationship connects a class to beans.xml file that

typically contains class configurations. The beans.xml file originates in

Jakarta EE, but is also an essential part of configuring beans in Mi-

croProfile applications. The connection is established only if the fully-

qualified class name is present in the configuration file. For example, we

analyze the beans.xml file (Figure 4.2b) and see that the fully-qualified

name of class Foo is mentioned under the <interceptors> parent XML

element. We therefore add the “Class declaredInBeans <interceptors>”

relationship to the “Itemset 1” and “Itemset 2” boxes.

4.2 Usages as Input Itemsets

After we establish what kind of code information and code relationships we

want to track, we now proceed with converting client code API usages to

itemsets where each item is a relationship that tracks a code fact (we discuss

items and itemsets in Chapter 2.3).

We establish one input itemset (transaction) per method, field, and con-

structor to avoid ambiguity in differentiating methods and the information

about them (return type and parameter type list). We initially tried only hav-

ing one itemset per class that combined code facts for its annotations, methods,

method annotations, parameters, etc. However, itemset representation is too

simple and does not differentiate between method annotations, parameters

and return types, i.e., we do not know which method parameter belongs to

34

what method. We therefore decided not to proceed with representing a class

with one large itemset.

Despite not creating an itemset per class, we still have to track code facts

on a class level. As methods, fields, and constructors reside within a class and

the class itself might have annotations, there might be associations between

class annotations and annotations on some of these constructs. In addition,

there might be a rule that involves both a class extension and an annotation

on the same class. To avoid missing rules that involve annotations on different

scopes, we replicate and add code facts of the class (e.g., class annotations)

into all itemsets used to represent its fields, methods, and constructors, thereby

allowing the mining of rules that involve annotations on and within the class.

For example, in Figure 4.2a, boxes 1 and 2 are input itemsets that represent

the field count and the method foo, respectively. The black arrow and the

dashed rectangles around the field and the method signatures depict what

relationships are there in each entity. In addition, the two dashed arrows

show the code facts on the class that we replicate and add into each of the

two input itemsets. For example, the relationship “Class declaredInBeans

<interceptors>” is added to both field (box 1) and method (box 2) input

itemsets. Given that there are usually very few (less than 10) to no annotations

on class signatures, our replication approach does not cause any performance

issues.

4.3 Mining Frequent Itemsets

After we convert usages into input itemsets (or transactions), we proceed to

mining frequent itemsets.

We introduce definitions of an item, itemset, and a frequent itemset in

Chapter 2.3. In our context, an item refers to one relationship, e.g., “Class

annotatedWith @Path”. Frequent itemsets are then sets of relationships that

frequently co-occur together in the set of transactions from all client projects

that use target API, such as MicroProfile. For example, here we have 2 frequent

itemsets that represent two methods, respectively:

35

[

{

“Method annotatedWith @Asynchronous”,

“Method hasReturnType Future”

},

{

“Method annotatedWith @Asynchronous”,

“Method hasReturnType CompletionStage”

}

]

The two frequent itemsets above show that methods that are annotated

with @Asynchronous also frequently have the return type of Future or Com-

pletionStage. As shown with these two frequent itemsets, frequent itemsets

are frequent associations between various code entities (e.g., annotations and

types) that could potentially be turned into an actual usage rule.

To retrieve frequent itemsets, we leverage the parallelized version of a pop-

ular mining algorithm called FP-Growth [20], [34], introduced in Chapter 2.3.

While using FP-Growth helps us cut down the mining time, we are still likely

to get a large number of frequent itemsets that are not very useful or too similar

to each other (i.e., one frequent itemset can be a superset of numerous oth-

ers). In addition, some frequent itemsets may simply represent common usage

idioms, but not usage rules. As we discussed earlier, there can be potentially

2n frequent itemsets for a transaction of size n. To alleviate the redundancy

issue and take only the most interesting frequent itemsets, we post-process the

frequent itemsets, as discussed in the next section.

4.4 Post-processing Frequent Itemsets

Before we generate any rules from the retrieved frequent itemsets, we have to

perform several post-processing steps to minimize as much redundant informa-

tion as possible. These steps allow us to decrease the likelihood of generating

“noise”. The noise in case of frequent itemsets can take several forms: (1) a

36

frequent itemset that solely contains usage that is a common idiom and not a

usage specification; (2) a frequent itemset that contains elements that cannot

be used in any way to generate a semantically correct candidate rule (i.e., there

is no rule that accurately describes something and logically makes sense); (3)

a frequent itemset that can be used to generate a candidate rule, but contains

some irrelevant relationships that have to be later edited (removed or mod-

ified). Therefore, we aim to remove as many irrelevant frequent itemsets as

possible before we generate candidate rules.

Based on our trial-and-error observations as well as discussions with the

our collaborators from IBM, we develop a set of heuristics that help us bring

the noise down and that are applicable irrespective of target library or frame-

work. In the following list, we describe each heuristic one-by-one and provide

motivation for each:

Focus on maximal frequent itemsets. To reduce the number of similar

frequent itemsets, where one frequent itemset is a superset of another, we can

leverage the maximality principle. In other words, we will only keep frequent

itemsets that are maximally frequent, i.e., that have no proper frequent super-

set. For example, say we mine two frequent itemsets A,B ∈ F , where F is the

set of all frequent itemsets, and A = {a, b} and B = {a, b, c}. A and B are

very similar, B being a superset of A by inclusion (B ⊇ A). Since B already

includes all the information contained within A, we decide to keep B (the

maximal itemset, in this case) and remove A. The motivation behind using

only maximal frequent itemsets is that the itemsets will likely contain all the

required items that make up a rule, and it is better to have one larger frequent

itemset rather than multiple smaller ones. In other words, the maximal fre-

quent itemset already contains the same information that several smaller ones

would.

Remove frequent itemsets without any target API usage. Develop-

ers tend to use multiple different libraries and frameworks in their code to

accomplish different tasks. Our technique focuses on mining API usages of

37

one or more target library or framework, and therefore, we are not interested

in other API usages, unless they are somehow connected to the target API

elements. Thus, we remove all frequent itemsets that do not have at least one

usage of the target library API (i.e., use at least one element of the API).

Remove semantically incorrect frequent itemsets. Even though fre-

quent itemsets contain relationships as string literals (e.g., “Method hasParam

String”, there is usually an implicit semantic connection between them. In

other words, when ordered correctly, items in frequent itemsets should ac-

curately describe usage rules. For example, if a frequent itemset contains a

relationship such as “@Fallback hasParam String”, we expect to see another

relationship “Method annotatedWith @Fallback” that declares the @Fallback

annotation before its parameter is used. The same applies to method and

constructor parameters, as well as to the “definedIn” relationship that links

annotation parameters to configuration files. A frequent itemset must contain

relationships that form a semantically correct sequence of actions for a given

usage. Let “ ” be a placeholder for any entity, “@A” be some annotation, and

“Pa” be some annotation parameter. In a semantically valid frequent itemset,

if there is a “P definedIn ” relationship, then there must “@A hasParam P”

relationship; if there is a “@A hasParam ” relationship (no matter how many

annotation parameters are there), then there must be the “ annotatedWith

@A” relationship. If a frequent itemset violates any of the two mentioned im-

plications, then the frequent itemset cannot be further used to generate valid

candidate rule and therefore, we remove such frequent itemset.

Remove required annotation parameters within frequent itemsets.

When declaring annotations, a framework or library can specify whether an an-

notation parameter is mandatory or optional. The difference between manda-

tory and optional parameters is in the presence of default value. If there

is a default value in the parameter declaration, then developers can use the

annotation without providing their own value. However, if developers use a

mandatory annotation, but forget to provide a concrete value, then an excep-

38

tion is thrown due to the missing value of the parameter. Since the compiler

already checks whether there are values for required (mandatory) annotation

parameters, relationships of the form “@A hasParam P”, where @A is some

annotation and P is a required parameter, are useless. In other words, such

relationships will yield rules that the compiler already checks. On the other

hand, if P is optional, we keep such relationship in the itemset because there

might be an implicit rule that somehow involves P . Note that this heuristic

helps shrink the size, and not the total number, of frequent itemsets, making

the generated rules more precise.

Remove frequent itemsets of size < 2. Maximal frequent itemsets of size

1 do not make sense because they have only 1 relationship. For example, a fre-

quent itemset {“Method annotatedWith @Asynchronous”} may be interpreted

as “all methods must be annotated with @Asynchronous” which is obviously

false. In addition, such frequent itemsets cannot be used for candidate rule

generation because a candidate rule is of the form “if-then” and thus, contains

at least 2 items (relationships). Frequent itemsets of size 1 are not going to

produce anything meaningful, so we remove such frequent itemsets.

Note that we apply the abovementioned heuristics in the order described.

In addition to the built-in heuristics, one can provide custom, domain (or API)

specific post-processing heuristics depending on the nature of the target API

(e.g., see Chapter 5.1.5).

4.5 Generating Candidate Rules

After post-processing the frequent itemsets, we proceed to generating candi-

date rules. We introduce candidate rules in Chapter 2.3.

The candidate rules in the form of “If X, then Y ” expressions naturally

fit in with the usage rules we found in the documentation. They are simple

to understand and can be easily translated into other rule forms, such as “X

must have Y ”. Given a list of “if-then” rules, we know that an API usage is

a violation of one (or more) rules if X condition holds true while Y does not.

39

For example, the rule below states that if a method is annotated with @Asyn-

chronous, then the method should return java.util.concurrent.Future:

If Method annotatedWith @Asynchronous,

then Method hasReturnType Future

Our goal is to generate as few candidate rules as possible that contain as

much information as possible within themselves. Based on our observations,

sparser (smaller in size, but larger in quantity) candidate rules require more

effort to confirm their validity. We therefore generate one semantically-correct

candidate rule with the highest confidence per frequent itemset to avoid as

many redundant candidate rules as possible.

We follow a two-step process: we first generate all possible candidate rules

whose confidence is above the minimum confidence threshold. Then, we map

each frequent itemset into a corresponding candidate rule and greedily select

a rule (1) that has the highest confidence and (2) is semantically correct. If no

such rule exists, we generate it ourselves while making sure rules we generate

ourselves (i.e., not using FP-Growth) are semantically correct.

Generating only one rule per frequent itemset lowers the amount of redu-

dant rules we have to work with by about 75% (for every frequent itemset,

there are 4 candidate rules on average). A candidate rule is redundant if

there exists another candidate rule that is essentially the same rule. There-

fore, generating one semantically-correct association rule helps us retain only

one “representative” rule per frequent itemset, instead of multiple similar, but

redundant ones.

40

Chapter 5

RQ1: How effective is pattern
mining in discovering
annotation rules?

In this chapter, we evaluate our technique described in Chapter 4. Our goal is

to investigate whether pattern mining techniques can be used to discover an-

notation usage rules in enterprise microservices libraries and frameworks, such

as MicroProfile. Since the set of relationships (discussed in Chapter 4.1.3) is

based on MicroProfile usage rules, we additionally evaluate our pattern mining

technique on a similar framework for developing microservice applications in

Java, called Spring Boot, to show the generalizability of the approach. Spring

Boot is a framework extension of the Spring framework that is used for devel-

oping microservice applications in Java. We first present our evaluation setup

and then the corresponding results that provide an answer to RQ1.

5.1 Evaluation Setup

To evaluate our pattern mining technique, we need input data in the form

of client projects that use MicroProfile and Spring Boot, respectively. After

cloning and parsing the projects and forming the input itemsets, we perform

several pre-processing steps to ensure diversity of the mined rules. Our purpose

is to mine as many unique rules as possible in the set of generated candidate

rules, thereby decreasing the redundancy1 of the generated rules.

1We provide definition of redundancy for candidate rules in Section 5.1.6

41

5.1.1 Step 1: Retrieving client projects

To mine usage patterns for MicroProfile and Spring Boot, we look for real-

world industry-like client projects that use these libraries/frameworks. The

more such projects we can find, the higher probability that we mine more

diverse API usages and more likely to see enough usages to form a pattern.

To find client projects that use MicroProfile, we use a custom Python script

that clones MicroProfile client projects from the MicroProfile GitHub reposi-

tory’s dependency graph2. A depedency graph is a graph that describes depen-

dencies (repositories that the project depends on) and depedents (other repos-

itories that depend on this project) of some project (repository) on GitHub.

We focus on dependents, which are client projects that use MicroProfile. How-

ever, since the majority of the dependents have no stars, we filter out projects

by their sizes. Our script scrapes the list of dependents page by page and

focuses only on repositories that have size of at least 500 KB in an attempt to

retrieve only real-world industry-level projects. Projects that have sizes less

than 500 KB are more likely to be toy projects, e.g., a student’s homework or a

collection of unrelated code snippets that do not represent any real-world Mi-

croProfile usages. To further increase the likelihood of fetching only real-world

client projects, we ignore projects whose title contains any of the following

keywords (case-insensitive): “demo”, “workshop”, “guide”, “example”, “play-

ground”, “getting-started”, “sample”, “starter”, “quickstart”, “quick-start”,

“tutorial”. The projects that contain one of the mentioned keywords are more

likely toy projects that might not have API usages that are representative of

real-world projects. We also clone projects from the IBM organization’s en-

terprise GitHub, which contains some closed source projects. We use query

“import org.eclipse.microprofile” in the search and manually go through >100

repositories that the search returned in total. We focus on repositories that

have projects that use MicroProfile and ignore repositories that match any

of the keywords mentioned earlier. We retrieve about 40 proprietary IBM

projects. In total, we clone 530 projects that use MicroProfile. We obtain

2https://github.com/eclipse/microprofile/network/dependents

42

https://github.com/eclipse/microprofile/network/dependents

usages (itemsets) from only 493 repositories. We could not properly parse the

remaining projects due to syntax errors in code, so we skip these projects and

do not create any itemsets from them.

To find client projects that use Spring Boot, we use the GitHub Search

API. The Search API is a convenient tool to search for repositories that match

user-specified criteria, such as maximum or minimum number of stars, last

commit date, and whether the repository is a fork or not. The search criteria

are specified in a query that the Search API uses to automatically find rele-

vant repositories. In our query, we look for projects that match the keyword

“import org.springframework.boot” and are in written Java. To ensure high

quality of the projects (i.e., real-world projects, not some student’s homework

or assignment), we focus only on repositories that have at least 100 stars, are

not forks of any other repositories, and where the last commit was made after

July 31, 2017. We set the minimum of stars to 100 because, unlike the lack

of publicly available client projects that use MicroProfile, Spring Boot has a

large number of client projects due to its popularity and earlier release than

MicroProfile (Spring Boot and its underlying Spring framework were first re-

leased in 2014 [61] and 2004 [77], respectively; MicroProfile was first released

in 2018 [43]). Similar to the process of searching for MicroProfile projects, we

ignore projects with keywords in their titles that might indicate a toy project.

Using the mentioned criteria, we automatically find and clone a list of 252

projects.

In addition to the list of 252 Spring Boot client projects obtained automati-

cally through the GitHub Search API, we manually search for real-world client

projects that are built with a microservices style in Java using Google’s search

engine. We use queries such as “large-scale open source spring boot projects”

and “real-world spring boot microservices” to find references to publicly avail-

able Spring Boot client projects. We then add 37 real-world industry-level

microservices projects mentioned in 3 relevant sources: the Stack Overflow

post about big open-source Spring Boot projects [80], a blog post on “10+

Free Open Source Projects Using Spring Boot” [67], as well as the dataset

of microservice-based systems [63]. Note that some of the projects we find

43

here were already found using the GitHub search API. In total, we retrieve

289 projects that use Spring Boot, out of which 281 are parseable (no syntax

errors that prevent parsing).

To summarize, we run our mining technique separately on 493 client projects

that use MicroProfile and 281 client projects that use Spring Boot.

5.1.2 Step 2: Parsing client projects

Since all of our projects are written in Java, we use JavaParser [24] along with

its symbol solver to parse the projects.

JavaParser is a parser for the Java language that provides each project’s

code as an Abstract Syntax Tree (AST). Using the ASTs, we create input

itemsets with the tracked code relationships discussed in Chapter 4.1.3. Java-

Parser’s symbol solver helps us resolve types and their declarations, thereby

allowing us to retrieve fully-qualified names of types so that we differen-

tiate types with the same name, but from different packages. For exam-

ple, there is the @Asynchronous annotation from javax.ejb package of En-

terprise JavaBeans (EJB), as well as the @Asynchronous annotation from

org.eclipse.microprofile.faulttolerance package of MicroProfile. Co-

incidentally, these two annotations have the same name, but they originate

from different sources and have different purposes.

5.1.3 Step 3: Pre-processing input itemsets

After processing ASTs with JavaParser into input itemsets containing the

relationships we discussed in Section 4.1.3, we pre-process the itemsets before

mining patterns from them. The following pre-processing steps allow us to

balance the possible skewed data because some projects may overcontribute

usages of only a few API annotations, whereas the rest of the projects may

not have usages of such API elements at all.

Take one unique input itemset from each project. Frequent itemset

mining is likely to yield common usages (idioms), while our goal is to ideally

mine only usage patterns that encode specification rules. One of the reasons

44

for mining common idioms is skewed input data. One project might have

thousands of usages that are the same, while other projects have insignificant

to no amount of such usages. To balance the bias towards certain projects,

we take one unique itemset per project. For example, if project A has a list

of input itemsets [I1, I2, I3], where I1 and I2 are same (i.e., have the

same items), we will keep I1 and delete I2, ending up with [I1, I3]. In

other words, we are interested in patterns that span multiple projects rather

than come mostly from one project.

After we take one input itemset from each project, we move onto parti-

tioning the input itemsets by sub-API.

Partition input itemsets by sub-API. The enterprise microservices frame-

works and libraries, such as Spring and MicroProfile (MP), spread their func-

tionality into different components in the form of Java packages. For example,

the main package for all MicroProfile APIs is org.eclipse.microprofile.

However, if a developer wants to just use the MicroProfile Fault Tolerance API,

they can use only the org.eclipse.microprofile.faulttolerance compo-

nent (sub-package). These components, which we refer to as sub-APIs, are

placed in sub-packages and provide a common functionality for a specific pur-

pose, such as fault tolerance.

We observe that only a small fraction of sub-APIs are used by client de-

velopers most of the time and thus, the number of usages from each API is

very different. For example, in the projects that we use to mine candidate

rules from, there are more than 900 itemsets that use MP OpenAPI (i.e.,

org.eclipse.microprofile.openapi) sub-API. However, there are only 45

usages of the MP Reactive (i.e., org.eclipse.microprofile.reactive) sub-

API in the same set of projects. The reasons behind this are that some sub-

APIs were released later than others, and some are simply more applicable

for a wide range of use cases than others (e.g., not all applications need to

use reactive messaging functionality from MP Reactive). As a result, while

some usages appear less commonly than others, they are likely to not qualify

as patterns due to support threshold (i.e., their support is lower than the fixed

45

threshold configured for all usages at once).

Due to imbalance in the number of usages per sub-API, we focus on mining

each sub-APIs separately instead of the entire framework or library API. This

means that we can set the support threshold differently for each sub-API. We

partition a list of all input itemsets into smaller, disjoint lists. We leverage

a hash map data structure that maps each sub-API name (as a string) to

a list of input itemsets that have elements of that sub-API. There might be

a case where one input itemset contains elements from two or more different

sub-APIs. For example, itemset { Method annotatedWith @Fallback, Class an-

notatedWith @Liveness } represents a class that contains a method with anno-

tation @Fallback, and the class itself is annotated with annotation @Liveness.

@Fallback comes from the org.eclipse.microprofile.faulttolerance sub-

API, but @Liveness comes from the org.eclipse.microprofile.health sub-

API. In such cases, we replicate and copy the input itemset for both sub-APIs

so that we do not lose information from mining one sub-API or the other. Note

that we use relative support threshold for each sub-API instead of an absolute

one. For example, the relative support threshold of 10% in a sub-API with

100 usages equals to the minimum support threshold of 10 usages, and in case

of a sub-API with 1000 usages, that means the minimum support threshold

for that sub-API is 100 usages. Unlike the absolute minimum threshold which

is fixed for all sub-APIs, the relative threshold allows us to dynamically gauge

the threshold based on the total number of input itemsets for each sub-API.

Mining sub-APIs individually, instead of all input itemsets together, al-

lows for diversity of the mined patterns. Unlike mining all the API usages at

once where some items from less popular sub-APIs might be overshadowed by

more popular ones (due to relative support threshold), mining each sub-API

separately provides an opportunity to mine patterns even from less popular

sub-APIs. Since we use relative support threshold, the threshold used for less

commonly used sub-APIs is less than the threshold used for more commonly

sub-APIs, allowing us to extract patterns even from less common usages over-

all.

After taking one input itemset from each project and grouping the itemsets

46

by sub-APIs, we now run frequent itemset mining for each sub-API separately.

5.1.4 Step 4: Mining

When mining the input itemsets that we created from each project, we set

the relative minimum support threshold smin = 0.15 which means that an

itemset is frequent, if and only if it appears in at least 15% of transactions.

For example, if there are 100 transactions in total (from all projects) and

smin = 0.15, then a frequent itemset has to appear in 15 or more transactions.

Note that this is done per sub-API meaning that absolute threshold will change

according to the number of usages of each sub-API. We choose 15% threshold

because our initial experiments showed that values lower than that lead to too

many frequent itemsets being generated without gain of any new information,

and values higher than that lead to very few frequent itemsets.

5.1.5 Step 5: Post-processing frequent itemsets

While we already describe some of built-in heuristics for post-processing fre-

quent itemsets applicable to any annotation-based framework/library (de-

scribed in Chapter 4.4), we provide one additional heuristic here that is appli-

cable to MicroProfile and Spring Boot3.

After we get frequent itemsets, we automatically remove the ones that

have irrelevant sub-APIs. We first pre-define the sub-APIs we want to focus

on because some sub-APIs may simply be internal sub-packages. There is a

chance (we intend to minimize this chance by filtering out irrelevant projects)

that there exists a project (e.g., an internal MicroProfile project) that defines

non-public packages for internal usage, e.g., for testing. For example, while

org.eclipse.microprofile.faulttolerance package is a MicroProfile sub-

API designated for public use, the package org.eclipse.microprofile.system

is not because the latter is used internally and not supposed to be imported by

client developers. After we define what sub-APIs (packages) we want to focus

on, we analyze every item within each itemset to resolve the origin of some

3Note that the heuristics described here may or may not be applicable to other Java
library or framework APIs.

47

entity (e.g., annotation). If there is at least one item that belongs to a sub-API

of interest, we keep the frequent itemset. In other words, if a frequent itemset

contains usages of annotations or other code elements that do not belong to

any of the sub-APIs of interest, then we remove the itemset.

Since Spring Boot is a framework extension, applications that use Spring

Boot also use the core Spring framework sub-APIs. For Spring Boot, we focus

on 19 sub-APIs that provide core functionality for developing microservices

applications in Java, such as interacting with relational databases with JDBC

using the “org.springframework.jdbc” package and manipulating Java beans

using the “org.springframework.beans” package. For MicroProfile, we focus on

10 sub-APIs that provide variety of functionality for building and maintaining

microservices using MicroProfile, such as the “org.eclipse.microprofile.health”

and “org.eclipse.microprofile.graphql” packages. We include the full list of

sub-APIs of MicroProfile and Spring Boot in Appendix A on page 86.

In addition to the built-in heuristics (discussed in Chapter 4.4) that remove

semantically incorrect frequent itemsets, the post-processing steps discussed

earlier cut down the number of frequent itemsets by about 25% (given relative

support threshold = 15%, we get 75 final, post-processed frequent itemsets in-

stead of 100). In fact, removing semantically incorrect frequent itemsets alone

cuts down the number of frequent itemsets by about 21%, thereby decreasing

redundancy without losing information. Based on our manual analysis of the

mined frequent itemsets, we do not lose any information because many fre-

quent itemsets tend to be very similar to each other (i.e., have a set of items

that differ only by one or two elements) and removing some of them did not

reduce the number of semantically unique candidate rules.

5.1.6 Step 6: Confirming candidate rules with domain
experts

After applying post-processing steps and generating the candidate rules, we

need to assess how close the candidate rules are to being the actual rules. Since

we do not know the actual rules beforehand, we present our candidate rules to

some of our collaborators who are domain experts in MicroProfile and Spring

48

Boot. For MicroProfile, we present the MicroProfile candidate rules to one of

our collaborators from IBM, who is a direct contributor to the MicroProfile

project. For Spring Boot, we present the Spring Boot candidate rules to two of

our team members who have extensively used Spring Boot as client developers.

We ask the domain experts to confirm or deny rules with an option that

they may suggest edits to convert a partially correct candidate rule into fully

correct. A partially correct candidate rule is a rule that requires some editing

to become an actual rule. The editing process involves the following opera-

tions: (1) the candidate rules contains redundant relationships that need to

be removed; (2) lacks necessary relationships that need to be added; (3) is too

restrictive so needs to be relaxed with “OR” relations that need to be added

between two items (“AND” is the default relation between all items inside the

antecedent or consequent); or (4) has relationships that need to be moved be-

tween the antecedent and consequent. To calculate how useful the candidate

rules are to deriving actual rules, we introduce the following four operations

for rule editing (where X is a relationship (item) in a candidate rule):

• REMOVE X. This operation removes a redundant item from a candi-

date rule thereby addressing point (1) above.

• MOVE X. This operation moves an item from the antecedent to con-

sequent, or vice versa, thereby addressing point (4) above.

• DISJOIN X, Y (i.e., join with “OR”). This operation establishes an

“OR” relation between two items, thereby addressing point (3) above.

• ADD X. This operation adds a new item to a candidate rule, thereby

addressing point (2) above.

Using the 4 operations above, we calculate the edit distance between a

candidate rule and an actual rule. Assuming that each edit operation costs

1 unit, the edit distance is the sum of all the edit operations suggested by

our experts for some candidate rule. For example, in Figure 5.1, the edit

distance between the candidate and actual rule is 5 because it requires 5 edit

49

Figure 5.1: Example of steps required to edit a candidate rule into an actual
rule.

operations (1 REMOVE, 2 MOVE-s, 1 ADD, 1 DISJOIN). We use edit

distance as a metric to calculate the effectiveness of pattern mining in the

context of mining annotation rules. Intuitively, if most candidate rules have

large edit distance (meaning that they require nearly an overhaul) to actual

rules, then our pattern mining approach has little use because the candidate

rules are not very useful, and in such case, it is not much different from writing

the API usage rules manually from scratch. Ideally, we want the edit distance

of a candidate rule to be as close to 0 as possible, implying that minimal (or

no) effort is needed to convert a candidate rule into an actual one.

Despite the fact we only generate one candidate rule per frequent itemset

(see Chapter 4.5), there might still be redundancy among candidate rules. A

redundant rule does not add a new piece of information and is basically a

variant of some other existing rule. In other words, there may be multiple

variants of candidate rules that intrinsically (semantically) refer to the same

actual rule. We establish the redundancy metric R that measures the ratio of

unique rules to redundant rules (i.e., how many unique rules are there among

all candidate rules regardless of edit distance):

50

R = 1− (Cunique/Ctotal) (5.1)

The redundancy metric R ranges from 0% (no redundancy, all rules are

semantically unique) up to 100% (fully redundant, all rules are variants of

each other). For example, say we generate 3 candidate rules “If A or B, then

C ”, “If A or D, then C ”, and “If A or E, then C ”. Assume that based on

expert feedback, all of the 3 mentioned rules correspond to 1 unique actual

rule, that is “If A, then C ”. Therefore, the redundancy is R = 1− 1/3 = 67%.

In summary, we use the edit distance and redundancy metrics as proxies

to measure the effectiveness of pattern mining.

5.2 Results

We now present the results of our experiment for MicroProfile and Spring Boot

projects, respectively, based on the setup mentioned in the section above.

5.2.1 Descriptive Statistics

MicroProfile. For MicroProfile, in terms of the input to our mining tech-

nique, we extract 33,852 raw input itemsets across all sub-APIs. We apply

the de-duplication heuristic (i.e., the one that takes one unique itemset from

each project) and keep only 17,612 input itemsets. We also filter out itemsets

without any MicroProfile usage, thereby leaving us with 3,049 pre-processed

input itemsets. Finally, we run our mining technique per sub-API on a total

of 3,049 input itemsets.

In terms of the output of our mining technique for MicroProfile, we ini-

tially retrieve 101 raw frequent itemsets. After applying the post-processing

heuristics discussed in the experiment setup (including the built-in ones in

Chapter 4.4), we get 77 final frequent itemsets. Based on the final frequent

itemsets, we generate 77 candidate rules. It took our implementation about

5 minutes from reading the raw input (client projects) to generating the final

output (candidate rules).

51

Spring Boot. For Spring Boot, in terms of the input data, we extract 52,690

raw input itemsets. After removing the duplicate itemsets (i.e., taking one

unique itemset from each project), we have 26,402 input itemsets. We also

remove itemsets that do not have any usages of Spring (Spring Boot is simply

an extension of the Spring framework) and end up with 40,695 pre-processed

input itemsets. Note that the total number of itemsets across all sub-APIs

increases from 26,402 to 40,695 because we create copies of the same itemset

for each sub-API for the reasons discussed in Step 3 in Chapter 5.1. We then

run our mining technique on the 40,695 final input itemsets.

In terms of the output data for Spring Boot, we get 62 raw frequent item-

sets. After applying the same post-processing steps we used for MicroProfile

(though with different set of concrete sub-APIs), we get 54 final frequent item-

sets. Based on these frequent itemsets, we generate 54 candidate rules. The

overall process from reading the client projects to generating the rules took

about 8 minutes.

Discussion of descriptive statistics. Overall, we extract more input item-

sets from the Spring client projects than the MicroProfile ones, even though

we have fewer client projects for Spring than MicroProfile. This might be due

to the fact that the Spring Boot projects that we use are on average larger

than the MicroProfile projects.

Tables 5.1 and 5.2 show the number of itemsets, as well as number of

distinct projects each sub-API appears in (for Spring and MicroProfile, re-

spectively). In the best case, usages of all sub-API should appear in all

projects (irrespective of the volume of usages, i.e., how pervasive the usages

are in one project), respectively, thereby increasing the likelihood of min-

ing general usage specifications across all projects. In Spring, while some

sub-APIs appear in numerous projects (such as the top 5 that appear in at

least 100 different client projects), others do not have any usages at all (e.g.,

org.springframework.shell). Similarly, but not surprisingly, the top 5 sub-APIs

by the number of projects also are the top 5 by the number of itemsets (8255,

6022, 5791, 4246, 1521, respectively). We see similar behavior with MicroPro-

52

Sub-API # of itemsets
sub-API

appears in

of projects
that have

sub-API usage
org.springframework.web 8255 257
org.springframework.beans 6022 257
org.springframework.context 5791 256
org.springframework.boot 4246 224
org.springframework.security 1521 101
org.springframework.http 677 90
org.springframework.core 570 96
org.springframework.jdbc 90 41
org.springframework.jms 36 7
org.springframework.aop 25 22
org.springframework.messaging 64 21
org.springframework.orm 20 8
org.springframework.retry 6 3
org.springframework.ldap 5 1
org.springframework.remoting 3 2
org.springframework.expression 1 1
org.springframework.shell 0 0
org.springframework.tx 0 0
org.springframework.asm 0 0

Table 5.1: Breakdown of sub-API usages in Spring.

Sub-API # of itemsets
sub-API

appears in

of projects
that have

sub-API usage
org.eclipse.microprofile.openapi 702 85
org.eclipse.microprofile.config 582 217
org.eclipse.microprofile.metrics 577 132
org.eclipse.microprofile.rest 324 68
org.eclipse.microprofile.faulttolerance 279 63
org.eclipse.microprofile.health 156 77
org.eclipse.microprofile.graphql 139 6
org.eclipse.microprofile.jwt 127 6
org.eclipse.microprofile.opentracing 70 22
org.eclipse.microprofile.reactive 38 18

Table 5.2: Breakdown of sub-API usages in MicroProfile.

file sub-APIs where the top 3 sub-APIs by the number of projects they appear

in are also the top 3 sub-APIs by the number of itemsets they appear in.

53

Figure 5.2: Distribution of edit distance for Microprofile and Spring candidate
rules.

5.2.2 Effectiveness

Overall, we retrieve 77 candidate rules for MicroProfile and 54 candidate rules

for Spring Boot, respectively. Based on our initial review of the rules, as well

as expert feedback from our collaborators and team members, 36 out of 77

MicroProfile candidate rules need some editing to be done to turn into actual

rules. The rest of the candidate rules are not potentially any rules. For Spring

Boot, there are 37 out of 54 candidate rules that require editing. We provide

a list of all mined rules for both frameworks in our publicly accessible GitHub

repository [59].

Figure 5.2 shows edit distance distribution for Spring Boot (left box) and

MicroProfile (right box) projects for the 37 and 36 rules, respectively. In Mi-

croProfile, for the candidate rules that require some edits, one has to perform

3.61 edit operations on average. The median edit distance is 4.0. For Spring

Boot’s candidate rules, one has to perform 5.0 edit operations on average. The

54

Figure 5.3: Total frequency of each operation across all rules in MicroProfile
and Spring APIs, respectively.

median edit distance for Spring Boot candidate rules is 5.0. Both Spring Boot

and MicroProfile contain only 1 candidate rule that is an actual rule and thus,

does not require any editing (i.e., edit distance is 0). Furthermore, even though

Spring Boot generates less candidate rules, the edit distance is higher than for

MicroProfile candidate rules. Overall, 75% of the candidate rules require 8 or

less edits, while there exists a rule that needs 12 editing operations.

We now report the types and distribution of operations needed to edit the

candidate rules. When editing, not all operations are needed equally likely.

Figure 5.3 shows grouped barplots of edit distance operations in MicroProfile

(blue) and Spring Boot (orange) projects. It is clear that the REMOVE

operation is the most popular edit operation due to pervasiveness of redundant

55

(a) Spring Boot candidate rules. (b) MicroProfile candidate rules.

Figure 5.4: Breakdown of edit distance of all candidate rules per API

56

Figure 5.5: An example of a mined candidate rule (Spring Boot) with required
edits based on expert feedback.

items within candidate rules. In addition, Figure 5.4 depicts edit distance

distribution by edit operations in each mined and confirmed rule for both

Spring Boot and MicroProfile APIs. It shows that the REMOVE operation

comprises a large portion of the distribution of edit operations in Spring Boot

and less so in MicroProfile. For example, Figure 5.5 depicts one of the mined

Spring Boot candidate rules that needs 2 edit operations, one of which is the

removal of the value parameter which is optional. The least needed operation

is the ADD operation implying that our pattern mining approach captures

most of items necessary to make up an actual rule. However, we cannot capture

some items due to limitations in our approach. For example, while the rule

with ID 8 from Table 5.3 is correct, it is not complete, i.e., it lacks a “Param -

name definedIn <Environment properties>” relationship, implying that the

name parameter should be defined as an environment variable. To add such

a relationship, we have to check the environment in which an application is

running (i.e., at runtime) and that requires dynamic analysis. Since our mining

approach is based on static analysis, we do not check for environment variables

and thus, cannot track such a relationship.

In addition to editing the rules themselves, there is some redundancy in

cases of both APIs. In the set of generated and confirmed candidate rules

57

ID
A

n
te

ce
d
e
n
t

C
o
n
se

q
u
e
n
t

Im
p
li

ca
ti

o
n
s

w
h
e
n

v
io

la
te

d
1

F
ie

ld
an

n
ot

at
ed

W
it

h
@

C
on

fi
gP

ro
p

er
ty

F
ie

ld
an

n
ot

at
ed

W
it

h
@

In
je

ct
N

u
ll
P

oi
n
te

rE
x
ce

p
ti

on
(w

h
ic

h
le

ad
s

to
In

te
r-

n
al

S
er

ve
r

E
rr

or
50

0)
2

C
la

ss
an

n
ot

at
ed

W
it

h
@

R
eg

is
te

rR
es

t-
C

li
en

t
(M

et
h
o
d
‖

C
la

ss
)

an
n

ot
at

ed
W

it
h

@
P

at
h

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(H
T

T
P

40
4

N
ot

F
ou

n
d
)

3
M

et
h
o
d

an
n

ot
at

ed
W

it
h

@
In

co
m

in
g

(C
la

ss
an

n
ot

at
ed

W
it

h
@

A
p
p
li
ca

ti
on

-
S
co

p
ed

)
‖

(C
la

ss
de

fi
n

ed
In

se
rv

er
.x

m
l)

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(e
m

p
ty

li
st

in
st

ea
d

of
li
st

w
it

h
ob

je
ct

s)
4

M
et

h
o
d

an
n

ot
at

ed
W

it
h

@
O

u
tg

oi
n
g

(C
la

ss
an

n
ot

at
ed

W
it

h
@

A
p
p
li
ca

ti
on

-
S
co

p
ed

)
‖

(C
la

ss
de

fi
n

ed
In

se
rv

er
.x

m
l)

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(e
m

p
ty

li
st

in
st

ea
d

of
li
st

w
it

h
ob

je
ct

s)
5

“M
et

h
o
d

ha
sP

ar
am

P
ar

am
T

”,
“P

ar
am

T
an

n
ot

at
ed

W
it

h
@

P
at

h
-

P
ar

am
”

(M
et

h
o
d
‖

C
la

ss
)

an
n

ot
at

ed
W

it
h

@
P

at
h

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(s
im

-
p
ly

ge
ts

ig
n
or

ed
or

ca
u
se

s
40

4)

6
F

ie
ld

an
n

ot
at

ed
W

it
h

@
C

la
im

F
ie

ld
an

n
ot

at
ed

W
it

h
@

In
je

ct
N

u
ll
P

oi
n
te

rE
x
ce

p
ti

on
(w

h
ic

h
le

ad
s

to
In

te
r-

n
al

S
er

ve
r

E
rr

or
50

0)
7

M
et

h
o
d

an
n

ot
at

ed
W

it
h

@
Q

u
er

y
C

la
ss

an
n

ot
at

ed
W

it
h

@
G

ra
p
h
Q

L
A

p
i

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(G
ra

p
h
Q

L
in

te
rf

ac
e

on
‘/

gr
ap

h
q
l‘

is
n
ot

ac
-

ce
ss

ib
le

8
“F

ie
ld

an
n

ot
at

ed
W

it
h

@
C

on
fi
gP

ro
p
-

er
ty

”,
“@

C
on

fi
gP

ro
p

er
ty

ha
sP

ar
am

P
ar

am
n
am

e:
S
tr

in
g”

P
ar

am
n
am

e:
S
tr

in
g

de
fi

n
ed

In
C

on
fi
g-

F
il
e

m
ic

ro
p
ro

fi
le

-c
on

fi
g.

p
ro

p
er

ti
es

D
ep

lo
y
m

en
tE

x
ce

p
ti

on
(w

h
ic

h
le

ad
s

to
In

te
r-

n
al

S
er

ve
r

E
rr

or
50

0)

9
M

et
h
o
d

an
n

ot
at

ed
W

it
h

(@
G

E
T
‖

P
U

T
‖

P
O

S
T
‖

U
P

D
A

T
E
‖

D
E

L
E

T
E

)
(M

et
h
o
d
‖

C
la

ss
)

an
n

ot
at

ed
W

it
h

@
P

at
h

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(H
T

T
P

40
4

N
ot

F
ou

n
d
)

10
F

ie
ld

ha
sT

yp
e

J
so

n
W

eb
T

ok
en

F
ie

ld
an

n
ot

at
ed

W
it

h
@

In
je

ct
N

u
ll
P

oi
n
te

rE
x
ce

p
ti

on
(w

h
ic

h
le

ad
s

to
In

te
r-

n
al

S
er

ve
r

E
rr

or
50

0)
11

F
ie

ld
an

n
ot

at
ed

W
it

h
@

R
es

tC
li
en

t
F

ie
ld

an
n

ot
at

ed
W

it
h

@
In

je
ct

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(H
T

T
P

40
4

N
ot

F
ou

n
d
)

12
C

la
ss

an
n

ot
at

ed
W

it
h

@
H

ea
lt

h
C

la
ss

im
pl

em
en

ts
H

ea
lt

h
C

h
ec

k
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(m
is

s-
in

g
li
ve

n
es

s
fe

at
u
re

/m
et

ri
c)

13
C

la
ss

an
n

ot
at

ed
W

it
h

@
L

iv
en

es
s

C
la

ss
im

pl
em

en
ts

H
ea

lt
h
C

h
ec

k
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(m
is

s-
in

g
li
ve

n
es

s
fe

at
u
re

/m
et

ri
c)

14
C

la
ss

an
n

ot
at

ed
W

it
h

@
R

ea
d
in

es
s

C
la

ss
im

pl
em

en
ts

H
ea

lt
h
C

h
ec

k
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(m
is

s-
in

g
li
ve

n
es

s
fe

at
u
re

/m
et

ri
c)

T
ab

le
5.

3:
U

n
iq

u
e

m
in

ed
an

d
co

n
fi
rm

ed
ca

n
d
id

at
e

M
ic

ro
P

ro
fi
le

ru
le

s.

58

ID
A

n
te

ce
d
e
n
t

C
o
n
se

q
u
e
n
t

Im
p
li

ca
ti

o
n
s

w
h
e
n

v
io

la
te

d
1

C
la

ss
an

n
ot

at
ed

W
it

h
@

E
n
ab

le
C

on
fi
g-

u
ra

ti
on

P
ro

p
er

ti
es

C
la

ss
an

n
ot

at
ed

W
it

h
@

C
on

fi
gu

ra
ti

on
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

2
C

la
ss

an
n

ot
at

ed
W

it
h

(@
E

n
ab

le
T

ra
n
s-

ac
ti

on
M

an
ag

em
en

t
‖

@
E

n
ab

le
J
-

p
aR

ep
os

it
or

ie
s)

C
la

ss
an

n
ot

at
ed

W
it

h
@

C
on

fi
gu

ra
ti

on
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

3
C

la
ss

an
n

ot
at

ed
W

it
h

@
R

eq
u
es

tM
ap

-
p
in

g
C

la
ss

an
n

ot
at

ed
W

it
h

@
C

on
tr

ol
le

r
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

4
C

la
ss

an
n

ot
at

ed
W

it
h

@
E

n
ab

le
R

et
ry

C
la

ss
an

n
ot

at
ed

W
it

h
@

C
om

p
on

en
t

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

5
M

et
h
o
d

an
n

ot
at

ed
W

it
h

@
B

ea
n

C
la

ss
an

n
ot

at
ed

W
it

h
@

C
on

fi
gu

ra
ti

on
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

6
C

la
ss

an
n

ot
at

ed
W

it
h

@
E

n
ab

le
C

on
fi
g-

u
ra

ti
on

P
ro

p
er

ti
es

C
la

ss
an

n
ot

at
ed

W
it

h
@

C
on

fi
gu

ra
ti

on
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

7
C

la
ss

an
n

ot
at

ed
W

it
h

@
E

n
ab

le
W

eb
S
e-

cu
ri

ty
C

la
ss

an
n

ot
at

ed
W

it
h

@
C

on
fi
gu

ra
ti

on
,

C
la

ss
ex

te
n

ds
W

eb
S
ec

u
ri

ty
C

on
fi
gu

r-
er

A
d
ap

te
r

R
u
n
ti

m
e

ex
ce

p
ti

on
(I

ll
eg

al
S
ta

te
E

x
ce

p
ti

on
)

8
F

ie
ld

an
n

ot
at

ed
W

it
h

@
Id

C
la

ss
an

n
ot

at
ed

W
it

h
@

E
n
tr

y,
F

ie
ld

m
u

st
N

ot
B

eA
n

n
W

it
h

@
A

tt
ri

b
u
te

R
u
n
ti

m
e

ex
ce

p
ti

on
(I

ll
eg

al
S
ta

te
E

x
ce

p
ti

on
)

9
C

la
ss

an
n

ot
at

ed
W

it
h

@
E

n
-

ab
le

P
ro

m
et

h
eu

sE
n
d
p

oi
n
t

C
la

ss
an

n
ot

at
ed

W
it

h
(@

C
om

p
on

en
t
‖

@
S
p
ri

n
gB

o
ot

A
p
p
li
ca

ti
on

)
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

10
M

et
h
o
d

an
n

ot
at

ed
W

it
h

@
R

et
ry

ab
le

C
la

ss
an

n
ot

at
ed

W
it

h
@

S
er

v
ic

e
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

11
F

ie
ld

an
n

ot
at

ed
W

it
h

@
A

u
to

w
ir

ed
C

la
ss

an
n

ot
at

ed
W

it
h

@
C

om
p

on
en

t
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

12
M

et
h
o
d

an
n

ot
at

ed
W

it
h

@
C

on
d
it

io
n
-

al
O

n
M

is
si

n
gB

ea
n

M
et

h
o
d

an
n

ot
at

ed
W

it
h

@
B

ea
n

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

13
M

et
h
o
d

an
n

ot
at

ed
W

it
h

@
D

ep
en

d
sO

n
M

et
h
o
d

an
n

ot
at

ed
W

it
h

@
B

ea
n

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

14
M

et
h
o
d

an
n

ot
at

ed
W

it
h

@
R

ec
ov

er
C

la
ss

an
n

ot
at

ed
W

it
h

@
S
er

v
ic

e
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

15
C

la
ss

an
n

ot
at

ed
W

it
h

@
E

n
ab

le
J
m

s
C

la
ss

an
n

ot
at

ed
W

it
h

@
C

on
fi
gu

ra
ti

on
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

16
C

la
ss

an
n

ot
at

ed
W

it
h

@
O

rd
er

C
la

ss
an

n
ot

at
ed

W
it

h
@

C
om

p
on

en
t

F
au

lt
y

b
eh

av
io

r
w

it
h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

17
F

ie
ld

an
n

ot
at

ed
W

it
h

@
A

tt
ri

b
u
te

C
la

ss
an

n
ot

at
ed

W
it

h
@

E
n
tr

y
F

au
lt

y
b

eh
av

io
r

w
it

h
ou

t
ex

p
li
ci

t
er

ro
r

(c
la

ss
is

n
ot

re
gi

st
er

ed
as

b
ea

n
,
an

n
ot

at
io

n
ig

n
or

ed
)

T
ab

le
5.

4:
U

n
iq

u
e

m
in

ed
an

d
co

n
fi
rm

ed
ca

n
d
id

at
e

S
p
ri

n
g

B
o
ot

ru
le

s.

59

for Spring Boot, the 37 candidate rules that we mine and confirm correspond

to only 17 unique confirmed rules. Thus, the redundancy for Spring Boot

is R = 1 − (17/37) = 54%, meaning there is about 2 variants of candidate

rules that represent the same 1 actual rule. Similarly for MicroProfile, we

only have 14 unique rules out of 36 confirmed ones leading to redundancy of

R = 1 − (14/36) = 61% implying that about 6 out of 10 rules are simply

variants of each other and represent the same actual rule. Tables 5.3 and 5.4

list all unique confirmed rules for MicroProfile and Spring Boot, respectively.

5.2.3 Findings

Our findings show that our pattern mining approach is feasible in automati-

cally extracting annotation usage rules for both MicroProfile and Spring Boot.

While the mined and confirmed rules have to be modified to some extent, our

approach provides a good starting point for framework developers for easy

modification into specifications.

RQ1: Our pattern mining approach is feasible and generalizable to similar
microservices Java frameworks, and finds 14 and 17 unique confirmed can-
didate rules for MicroProfile and Spring Boot, respectively. Our approach
provides a good starting point for framework developers for easy modifica-
tion of the mined and confirmed rules into usage specifications because the
mined rules require only 3 to 5 edits on average.

5.2.4 Implications

To the best of our knowledge, there is no study that applied pattern mining

techniques for extracting annotation-based API usages rules. Based on our re-

sults, we find that our pattern mining approach is able to extract annotation

usage rules, but these patterns require editing to derive actual rules. Some op-

erations require minimal mental effort such as removing optional relationships,

while others, such as the ADD operation, require more effort. In other words,

library developers (or experts of some API, in general) do not need to think

too much to know that some existing items are optional and need to be re-

moved (thus, minimal intellectual effort is needed), but if something is missing

from the rule, library developers have to think harder (and perhaps search in

60

external sources and communicate with other developers) to add missing items

into a candidate rule (thus, much more intellectual effort is needed). Based on

our observations, the more “intellectually demanding” operations are needed

less and the less “intellectually demanding” ones are needed more.

61

Chapter 6

RQ2: How common are
violations of the mined
annotation rules?

In this chapter, we aim to understand how widespread are violations of the

confirmed candidate rules that we mined. The number of violations and their

severity are the proxy for the usefulness of these rules in practice. We encode

all the unique actual rules that we mined from MicroProfile and Spring Boot

projects, respectively. We use JavaParser as our static analysis checker to scan

code for violations, namely the locations in code where for any encoded rule,

the antecedent is true but the consequent is false. For example, Figure 6.1

depicts a correct usage (code snippet 1) and a violation (code snippet 2) of one

of the actual Spring Boot rules. When the static analysis checker for this rule

encounters code snippet 2, it reports a violation stating that the class with

annotation @RequestMapping is missing annotation @Controller.

6.1 Setup

We encode 14 unique candidate rules for MicroProfile and 17 rules for Spring

as static analysis checkers, meaning that we scan code without running it.

6.1.1 Step 1: Fetching Projects

MicroProfile. For MicroProfile, we run our checkers on the same set of

projects that we use for mining, because our set already contains all non-toy

62

Figure 6.1: Encoded rule with correct and incorrect usage (violation).

projects we could find. We first scan the projects’ latest commit for viola-

tions, and if we do not find any violations, we run our checkers on all relevent

commits from the commit history. A commit is relevant if the commit change

(text addition or removal) contains any of the elements (annotation names

or types) of the encoded rules. These commits are likely to introduce or re-

move violations that we are interested in, and that way, we do not waste time

analyzing irrelevant commits.

Spring Boot. For Spring Boot, we fetch a separate set of 1,139 projects that

matched our search criteria. Having a different set of projects for scanning

violations allows us to demonstrate generalizability. We fetch these projects

using GitHub Search API. Our search criteria include projects that have at

least 20 stars, are written in Java, and match the keyword “Spring Boot”.

We remove any projects that were in our previous list (i.e., the one used for

mining).

6.1.2 Step 2: Encoding mined rules

MicroProfile. For MicroProfile, we encode 14 mined and confirmed candi-

date rules using JavaParser. With the help of JavaParser, we scan the code

63

as ASTs and look for locations in code where, for all rules, the antecedent is

true but the consequent is false.

Spring Boot. In a similar fashion, we encode 17 mined and confirmed can-

didate rules for Spring Boot and follow the same process as for MicroProfile

rules.

6.1.3 Step 3: Usage issues in Stack Overflow (Spring
Boot only)

Since Spring Boot is popular among the Java enterprise web application com-

munity, we look for manifestations of violations of the candidate rules in Stack

Overflow. A violation manifestation is a Stack Overflow post where the ques-

tion asks for help with any of the encoded rules, and the answer contains the

consequent part of these rules. For example, say we want to find manifestations

of violations of the following rule:

If a method is annotated with @Query, then the class containing

the method should be annotated with @GraphQLApi

To retrieve only relevant posts, we would first manually search for posts

that contain both annotations @Query and @GraphQLApi. We thus use search

queries such as “"@Query" "@GraphQLApi"” so that we match both annota-

tions in a post. We then manually check whether each post contains the ele-

ment (e.g., annotation) of the consequent (i.e., @GraphQLApi) in the accepted

answer of the post. In other words, an SO post is a violation manifestation,

if and only if the accepted answer states that the key element the author of

the post is missing is the element which is part of the consequent. If there

is no accepted answer, we choose the answer with highest number of votes

among all the available ones. For example, given the SO post contains the

Query annotation and the author explicitly asks about an information about

this annotation, the answers such as “Add @GraphQLApi ...” or “Missing

@GraphQLApi ...” are indicative of violation manifestations of the above

rule.

64

Note that we do not search for usage rule violations of MicroProfile API

in Stack Overflow because, as previously discussed in Chapter 4.1.1, there are

no more than 300 questions and most of them are runtime-specific (opposed

to MicroProfile-specific or general for all runtimes).

6.2 Results

6.2.1 Findings

MicroProfile. For MicroProfile, we scan for violations in the latest commit

of all projects. However, since we do not find any violations, we scan for them

in the commit history, i.e., we run our tool on every commit. We find 12

MicroProfile API usage violations of 6 distinct usage rules in 9 client projects

that we manually confirm that they were fixed later in the commit history.

We report the consequences of violations of the mined rules in Table 5.3.

Since client projects sometimes require extra work to build and run (e.g.,

finding and installing the necessary dependencies), we manually create a toy

project and simulate a violation in that project. This allows to understand the

consequences of violating rules and not rely on the ability of client projects

to build and run. By simulating a violation of every rule, we observe two

types of consequences: silent errors (which result in faulty behavior without

the application crashing) and explicit runtime errors. Rules with ID 1, 6,

8, and 10 result in runtime exceptions when violated, while violations of the

rest of the rules result in silent errors and faulty behavior. For example, when

violation, the rule with ID 9 leads to the resource class (the class that is missing

the @Path annotation) not being picked up by the runtime and registered as

an HTTP resource. This then results in HTTP 404 “Not Found” because the

resource class is not registered with the runtime due to the missing annotation.

Among the violations in client projects, there two types of consequences

of violating the 6 rules: violations of 3 rules manifest as runtime exceptions

and violations of the other 3 manifest in silent, faulty behaviors which do not

throw result in any explicit error. However, the rules with violations which

result in explicit error (e.g., runtime exceptions) do not have descriptive error

65

messages. For example, while the rule with ID 6 (see Table 5.3) causes a

NullPointerException (runtime error) when violated, it does not explicitly

say that the @Inject annotation is missing on the field. Further, developers

may struggle debugging the 4 rules that do not have explicit errors when

violated. For example, the rule with ID 7 results in faulty behavior that does

not crash an application when violated (i.e., there is no @GraphQLApi on the

class). There is no explicit exception when the rule is violated. We observe

is that it returns HTTP code 404 “Not Found” when trying to access the

GraphQL query interface on HTTP path /graphqlapi. While such behavior

seems frivolous, it may have more serious consequences, such as developer not

being able to figure out why they are not able to render the web interface or

causing other services that rely on GraphQL queries to crash.

We also find another set of 8 potential violations, but could not confirm

whether they are true violations because the code that contained them was

entirely deleted (e.g., a file containing the violation was deleted).

Spring Boot. For Spring Boot, we scan for violations in the latest commit

and find 28 violations of 4 distinct usage rules in 24 projects.

To find out the consequences of violating the mined and confirmed rules,

we follow the same process as described above. We list all the rules and

corresponding violation consequences in Table 5.4. In fact, only 2 rules result

in IllegalStateException (runtime error) when violation. The rest of the

rules result in silent, faulty behaviors, similar to consequences of violating the

confirmed MicroProfile rules.

Among the violations of 4 confirmed rules in client projects, the rule with

ID 11 is the only one that causes a runtime exception when violated. Violations

of the other 3 rules (rules with ID 3, 5, and 16) do not cause any explicit

errors and instead have a similar silent, faulty behavior such as the rule with

@GraphQLApi (see above). For example, violating the rule with ID 5 means

that the class that is missing @Component or @Configuration. When the class

is not annotated with any of the two annotations, then it is going to be ignored

by the Spring Framework runtime and is essentially a dead code if not used

66

anywhere else in the codebase. In such cases, it is not clear whether it is a

dead code by mistake or on purpose (e.g., developers wanted to ignore the

class).

For additional confirmation, we report 28 violations as issues on the cor-

responding GitHub repositories. As of August 25, 2021, only 1 repository

replied with the translated message (from Mandarin) equivalent to “Yes, it

is a violation, but the class is not used.”, meaning that one of the reported

violations is true, but is intentional. While we have not received any response

from the rest of the projects where the violations were found, the owners may

have similarly intentionally not annotated the classes with one of the required

annotations because they want purposefully to ignore the class for whatever

reason.

Spring Boot in Stack Overflow. Using the queries that we mentioned

in the setup earlier (Step 3), we find 9 Stack Overflow posts that are the

manifestations of violations of the 5 mined rules. In fact, out of these 5 rules,

we find violations of 2 in client projects (rules with ID 3 and 11), while the rest

of the rules (rules with ID 4, 7, and 8) are not violated there. For example, one

of the posts titled “@RequestMapping stopped working after adding DB and

security features” experienced an issue with non-responsive @RequestMapping

annotation, i.e., it did not work as intended. The post refers to the rule with

ID 3 in Table 5.4. The attached execution logs are not useful because they do

not contain any error, which conforms to our description of violating this rule.

According to the accepted answer (by the owner themselves), the owner was

simply missing the @Component annotation on the Validator class, the snippet

of which was not even shared in the post indicating that debugging such issues

may not be straightforward.

RQ2: We find that client developers violate 6 out of 14 encoded MicroProfile
rules and 4 out of 17 encoded Spring Boot rules. Based on our observations
with usages of Spring Boot in Stack Overflow, we additionally find manifes-
tations of violations of 5 rules indicating that developers sometimes struggle
to adhere to the implicit usage rules.

67

6.2.2 Implications

Our findings show that the violations of some of the mined and confirmed

rules are common in the client projects of MicroProfile and Spring Boot. The

findings also show that the client developers sometimes struggle to correctly

use some Spring Boot annotations, thereby unintentionally violating usage

rules. Even though the usage rules that we mine and confirm are simplistic

(i.e., do not involve data and control flow), client developers do sometimes

violate them, and the violations may lead to bugs and faulty behavior that

may be difficult to debug without additional tooling. Therefore, the findings

provide a motivation for tools that can assist client developers in correctly

using the APIs thereby preventing annotation-based API misuses.

68

Chapter 7

Threats to Validity

7.1 Internal Validity

There may be candidate rules that we confirmed to be correct, but are actually

not rules. However, such case is very unlikely given that we confirm candidate

rules simultaneously with documentation and our collaborators. One of our

industry collaborators is a direct contributor to MicroProfile who has actually

written some of the documentation. For Spring Boot, we manually verified

our rules in the documentation, as well as asked two of our team members

to confirm the rules. For every confirmed rule, we find direct evidence in

the documentation in the form of a web link. The combination of verifying

the validity rules in the documentation and with our collaborators helps us

minimize confirmation bias, so it is unlikely that a candidate rule that is

confirmed to be correct is not actually true.

There may be bugs or incorrect behavior in our implementation of the

mining approach. We create a set of synthetic examples for all relationships

(discussed in Chapter 4.1.3) and test our tool to make sure it is able to correctly

mine what we intend to mine.

We have created Python scripts to automatically calculate total edit dis-

tance, as well as visualizations related to edit distance operations. To make

sure our tooling is correct, we get several samples of candidate rules and their

edit comments, and compare the results.

69

7.2 External Validity

We focus only on Java APIs that provide functionality for building microser-

vices and that are primarily used through annotations. We limit what kind of

client projects we focus on (ignoring toy projects) while having access mostly

only to open source projects. However, in addition to open source projects,

we have access to and add more than 40 closed-source IBM projects to the set

of projects we use. We show that our approach is generalizable for libraries or

frameworks for building enterprise microservices applications in Java by evalu-

ating our approach on Spring Boot projects. We fetch more than 400 projects

for each library/framework API, confirm our usage rules with domain experts,

as well as find violations of the mined rules in client projects as well as Stack

Overflow. However, the web applications that use MicroProfile and Spring

Boot, especially the industry-level ones, tend to be closed-source. While we

add closed-source IBM projects that use MicroProfile, our approach may also

not generalize for frameworks or libraries that provide functionality other than

building enterprise web applications, or the ones that are not primarily used

through annotations or other form of metadata.

7.3 Construct Validity

When measuring the effectiveness of pattern mining for extracting annotation

usage rules, we use number of semantically unique confirmed candidate rules,

redundancy, and edit distance. The number of confirmed candidate rules serves

as an indicator whether pattern mining actually mines useful information or

not. We encode rules into static checkers to find violations in client code. But

we do not find violations of some rules. One of the possible explanations is

that the violations of these rules are probably done early in the development

process. For example, developers make a mistake that results in usage viola-

tion, but then detect it by running (deploying) the application locally thereby

fixing it before the error seeps into production (or even gets recorded in a com-

mit). In fact, we detect violations of some rules only through commit history

70

which show that developers sometimes make a mistake in some commit and

fix it in another commit later.

The redundancy and edit distance metrics measure how much information

(among and within rules, respectively) is useful and how much is redundant.

Edit distance is a proxy for usefulness of candidate rules to become real rules.

However, we did not run a user study to determine how client developers

would use it, and whether they would consider the rules (as static checkers)

themselves useful or not.

71

Chapter 8

Discussion

We discuss the implications of our results, limitations of our approach, as well

as next steps in mining annotation rules in enterprise Java applications.

8.1 Implications

In Chapter 5, we mine and confirm 14 and 17 unique candidate rules. We

also find that it takes 3 to 5 edits, on average, to convert a candidate rule

into a fully correct one. In Chapter 6, we scan for violations in real client

projects and find violations of 6 and 4 MicroProfile and Spring Boot rules, re-

spectively. Based on the results discussed in these two chapters, we find that

pattern mining is feasible for extracting annotation-based API usage rules.

In addition, we find that the mined and confirmed usage rules have corre-

sponding violations in both real-world client projects of the APIs they use and

Stack OVerflow (as violation manifestations). These results demonstrate that

while violations of some annotation-based rules are common, it is not quite

clear whether the violations are intentional or not. The violations nevertheless

have consequences that result in runtime exceptions or silent faulty behaviors,

thereby showing a need for tools that could assist client developers in correctly

using annotation-based APIs.

The results also show that pattern mining provides a starting point for

framework developers for easy modification of the mined rules into usage spec-

ifications. Even though most of the mined rules need some editing before turn-

ing into complete usage specifications, they require only a few (3 to 5) edits to

72

become fully correct rules. The need for editing for majority of rules by API

experts implies that there is a need for a tool or interface that would allow

API experts to easily confirm, deny, or modify the rules.

While we mine and confirm simplistic, yet useful rules, we do not mine more

complex usage rules due to limitations in our approach, which we discuss next.

8.2 Limitations

We now discuss the limitations of our approach. Our approach does not mine

some rules that involve relationships across code elements, such as methods

and fields. Consider the following rule:

If there is a class with a method (e.g., foo()) that is annotated

with @Fallback and @Fallback has parameter fallbackMethod

with value "bar", then the class should have another method named

bar(), parameters and return type of which should be the same as

in method foo().

In Listing 8.1, we have two methods, one of which is a fallback method

for getEntry method. The rule above states that the value of annotation

parameter fallbackMethod should be a method that exists within the same

class (or class hierarchy) and should have the same method signature (i.e.,

the same types of parameters and return type). Accordingly, both methods

getEntry and fallbackforGetEntry have the same types of parameters and

return type. Similar annotations and their usage rules exist in Spring, namely

the annotations @Retryable and @Recover, both of which are equivalent to

@Fallback.

We are not able to mine the rule above due to the following limitations.

One of the limitations is that we are not checking annotation parameter val-

ues (e.g., a string literal value of fallbackMethod above) for their semantic

meaning. In other words, a string literal value such as "bar" could mean

multiple things, such as element or attribute in XML configuration files or a

type, method, class, or even package in Java (code) files. In addition, we build

73

import org.eclipse.microprofile.faulttolerance.Fallback;

import java.lang.String;

public class Foo {

// If fails , method ‘fallbackforGetEntry ()‘ will be called

@Fallback(fallbackMethod="fallbackforGetEntry")

public String getEntry(String id) {

...

}

public String fallbackforGetEntry(String id) {

...

}

}

Listing 8.1: Specifying a fallback method

separate itemsets for fields, methods, and constructors, respectively. The pri-

mary reason behind using one itemset per construct (i.e., field, method, or

class) is to avoid ambiguity when referring to method parameters. In other

words, if we created one itemset per class for all methods, fields, and con-

structors together, we will not be able to differentiate which methods have

which parameters, which is basically a limitation with frequent itemset min-

ing. The rule above involves relationships that span two different methods. It

is therefore expected that the rule mentioned earlier will not be mined because

one itemset contains information about one method only and not several ones

within one class.

8.3 Recommendations

To address the abovementioned limitation of our representation, future work

can parse the parameter values and check whether the value is some method

that exists within the same class or its parent. However, the more specific the

tracked information is, the less likely the pattern will be mined. It is equivalent

to tracking class names (too specific) instead of general class construct instead

(general). Researchers can make an attempt to check whether a parameter

value is not just a method, but also whether it is a field or a locally defined

74

class.

Another possible direction is adapting our approach (i.e., the supported re-

lationships as edges and the program entities as nodes) into simplified graphs

without data and control flow (e.g., discussed in Chapter 3). The graphs are

more likely to capture complex rules like the one in Listing 8.1. For example,

one can initiate a graph from class entity with directional relationships, such

as “hasMethod”, into methods, fields, and constructors, respectively, where

these entities themselves have their own relationships, such as “annotated-

With”. Graphs store and track information separately per code element which

provides a functionality to differentiate information for each code element, i.e.,

which method has what return type and parameter list. Unlike frequent item-

sets that contain only unique relationships, graphs allow for duplicate relation-

ships. However, based on our initial experiments, mining frequent graphs is a

memory-intensive process which frequently leads to memory timeouts because

mining graphs is based on apriori mining which looks at all possible (frequent)

extensions of the graphs, generates the graphs, and repeats the process.

Another interesting direction is decreasing redundancy among candidate

rules. As shown in Chapter 5, there is at least 50% redundancy among the

generated candidate rules implying that there are two variants per one rule.

The future work can look into a variety of techniques, ranging from clustering

to active learning, that might help group very similar rules together in a group

from which only one rule is generated. Decreasing redundancy is important,

particularly when framework developers verify the generated rules. The more

redundancy there is, the more time-consuming and error-prone the process of

verifying rules becomes.

75

Chapter 9

Conclusion

In this thesis, we explore the idea of pattern-based discovery of Java anno-

tation usage rules. Annotation usages are ubiquitous when it comes to using

enterprise microservices frameworks. For example, MicroProfile and Spring

Boot are two of multitude frameworks that provide annotations as their API.

In collaboration with MicroProfile experts from IBM, we set out on a journey

to verify annotation usage in MicroProfile applications.

We have examined related literature to find potential solutions for our

needs. A general approach to verifying API usages in general is to write

usage specifications, encode them into some tool (e.g., static analysis checkers)

that will automatically validate a usage. Ideally, such usage rules should be

automatically extracted that will at least provide a way for easier modification

into usage specifications. We determine that there is no pattern mining tool

or technique that supports mining of annotation usages.

To better understand what is necessary for mining of annotation usage

rules, we first searched for possible usage rules of MicroProfile API. Based

on information from the sources such as the official documentation, Stack

Overflow, and the official MicroProfile forum on Google Groups, we determine

8 relationships that describe the code facts that we track in code. With these

relationships in mind, we implement our approach to find usage patterns, that

can be translated into usage specifications, using frequent itemset mining.

Frequent itemset mining extract frequent itemsets which describe patterns of

relationships that frequently occur in projects that use MicroProfile. Given

76

frequent itemsets, we then generate patterns in the form of “if-then” candidate

rules.

To evaluate our approach, we fetch and use 493 MicroProfile and 281 Spring

Boot projects for mining. For MicroProfile, we extract 14 semantically unique

usage rules which we confirm with our industry collaborators, one of whom is

a direct contributor to MicroProfile. For Spring Boot, we extract 17 semanti-

cally unique usage rules which we confirm with documentation and our team

members who have experience in using Spring Boot.

We also explore whether there are any violations of the mined and con-

firmed candidate rules. To find violations of the mined MicroProfile usage

rules, we encode the rules into checkers and run them on the same set of

projects that we used for mining. We find and manually validate 12 violations

which were fixed later in the commit history. To find violations of Spring Boot

API, we follow the same process, but use a different set of >1K projects that

use the API. We find and manually validate 28 violations and report them as

issues on the respective GitHub repositories. In addition to scanning Spring

Boot projects for violations, we find manifestations of violations of the mined

rules in 9 Stack Overflow posts.

Future work can investigate decreasing redundancy among candidate rules.

A possible direction is investigating techniques that can decrease redundancy

without losing useful information, such as clustering of similar rules together.

Another issue is that most mined rules still need some editing to become cor-

rect. In future, we suggest researchers streamlining the process of confirming

the rules with experts. A possible direction is to let the domain experts edit

annotation-based rules via some user interface that can assist experts with

confirming, denying, or modifying the rules. Ideally, static analysis checkers

can then be automatically generated from confirmed rules. Then, such checks

can be used by client developers to ensure they have no misuses in their code.

77

References

[1] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining api patterns as partial
orders from source code: From usage scenarios to specifications,” in Pro-
ceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering, 2007, pp. 25–34.

[2] R. Agrawal, R. Srikant, et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, Citeseer,
vol. 1215, 1994, pp. 487–499.

[3] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A Sys-
tematic Evaluation of Static API-Misuse Detectors,” IEEE Transactions
on Software Engineering, vol. 45, no. 12, pp. 1170–1188, 2019.

[4] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “In-
vestigating next steps in static api-misuse detection,” in Proceedings
of the 16th International Conference on Mining Software Repositories,
ser. MSR ’19, Montreal, Quebec, Canada: IEEE Press, 2019, pp. 265–
275. doi: 10.1109/MSR.2019.00053. [Online]. Available: https://doi.
org/10.1109/MSR.2019.00053.

[5] G. Ammons, R. Bodik, and J. R. Larus, “Mining specifications,” ACM
Sigplan Notices, vol. 37, no. 1, pp. 4–16, 2002.

[6] Amos Kingatua, 13 Best Practices to Secure Microservices, https://
geekflare.com/securing-microservices/, [Online; accessed 14-July-
2021], 2020.

[7] Apache TomEE, Apache TomEE, https://tomee.apache.org/, [On-
line; accessed 16-July-2021], 2021.

[8] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, and
S. D. Castellanos, “Translating code comments to procedure specifica-
tions,” in Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, 2018, pp. 242–253.

[9] C. Borgelt, “Frequent item set mining,” Wiley interdisciplinary reviews:
data mining and knowledge discovery, vol. 2, no. 6, pp. 437–456, 2012.

[10] Danny Coward, JSR 175: A Metadata Facility for the JavaTM Program-
ming Language, https://www.jcp.org/en/jsr/detail?id=175#2,
[Online; accessed 16-July-2021], 2004.

78

https://doi.org/10.1109/MSR.2019.00053
https://doi.org/10.1109/MSR.2019.00053
https://doi.org/10.1109/MSR.2019.00053
https://geekflare.com/securing-microservices/
https://geekflare.com/securing-microservices/
https://tomee.apache.org/
https://www.jcp.org/en/jsr/detail?id=175#2

[11] I. Darwin, “Annabot: A static verifier for java annotation usage,” Ad-
vances in Software Engineering, vol. 2010, 2009.

[12] Eclipse Microprofile Contributors, Annotation Type ConfigProperty, https:
//download.eclipse.org/microprofile/microprofile-2.0-javadocs-

test/apidocs/org/eclipse/microprofile/config/inject/ConfigProperty.

html, [Online; accessed 16-July-2021].

[13] ——, Different kinds of Health Checks, https://download.eclipse.
org / microprofile / microprofile - health - 2 . 1 / microprofile -

health-spec.html#_different_kinds_of_health_checks, [Online;
accessed 16-July-2021].

[14] ——, Annotation Type LoginConfig, https://download.eclipse.org/
microprofile/microprofile-2.0-javadocs-test/apidocs/org/

eclipse/microprofile/auth/LoginConfig.html, [Online; accessed
16-July-2021], 2021.

[15] Eclipse MicroProfile Fault Tolerance Contributors, Eclipse MicroProfile
Fault Tolerance, Asynchronous Usage, https://github.com/eclipse/
microprofile- fault- tolerance/blob/master/spec/src/main/

asciidoc/asynchronous.asciidoc, [Online; accessed 16-July-2021],
2021.

[16] M. Eichberg, T. Schäfer, and M. Mezini, “Using annotations to check
structural properties of classes,” in International Conference on Fun-
damental Approaches to Software Engineering, Springer, 2005, pp. 237–
252.

[17] Emily Jiang, Asynchronous (microProfile-fault-tolerance-api), https :

/ / download . eclipse . org / microprofile / microprofile - fault -

tolerance-3.0/apidocs/, [Online; accessed 14-July-2021], 2020.

[18] M. Fähndrich, “Static verification for code contracts,” in Static Analy-
sis, R. Cousot and M. Martel, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 2–5, isbn: 978-3-642-15769-1.

[19] M. Fowler, Domain-specific languages. Pearson Education, 2010.

[20] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” ACM sigmod record, vol. 29, no. 2, pp. 1–12, 2000.

[21] IBM Corp., Open Liberty: An IBM Open Source Project, https : / /

openliberty.io/, [Online; accessed 16-July-2021], 2021.

[22] James Lewis, Microservices, https://martinfowler.com/articles/
microservices.html, [Online; accessed 14-July-2021], 2014.

[23] P. Jashma Suresh, U. Dinesh Acharya, and N. Subba Reddy, “Study of
effective mining algorithms for frequent itemsets,” in Intelligent Data
Communication Technologies and Internet of Things, Springer, 2021,
pp. 499–511.

79

https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/config/inject/ConfigProperty.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/config/inject/ConfigProperty.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/config/inject/ConfigProperty.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/config/inject/ConfigProperty.html
https://download.eclipse.org/microprofile/microprofile-health-2.1/microprofile-health-spec.html#_different_kinds_of_health_checks
https://download.eclipse.org/microprofile/microprofile-health-2.1/microprofile-health-spec.html#_different_kinds_of_health_checks
https://download.eclipse.org/microprofile/microprofile-health-2.1/microprofile-health-spec.html#_different_kinds_of_health_checks
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/auth/LoginConfig.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/auth/LoginConfig.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/auth/LoginConfig.html
https://github.com/eclipse/microprofile-fault-tolerance/blob/master/spec/src/main/asciidoc/asynchronous.asciidoc
https://github.com/eclipse/microprofile-fault-tolerance/blob/master/spec/src/main/asciidoc/asynchronous.asciidoc
https://github.com/eclipse/microprofile-fault-tolerance/blob/master/spec/src/main/asciidoc/asynchronous.asciidoc
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/apidocs/
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/apidocs/
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/apidocs/
https://openliberty.io/
https://openliberty.io/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

[24] JavaParser.org, JavaParser - Home, http://javaparser.org/, [Online;
accessed 16-July-2021], 2021.

[25] Jonathan Barbero, WebSphere Application Server support of MicroPro-
file, https://stackoverflow.com/questions/57530872/websphere-
application-server-support-of-microprofile, [Online; accessed
16-July-2021], 2021.

[26] Joshua Bloch, A Brief, Opinionated History of the API, https://www.
infoq.com/presentations/history-api/, [Online; accessed 16-July-
2021], 2018.

[27] JSR 339 Contributors, JSR 339: JAX-RS 2.0: The Java API for REST-
ful Web Services, https://jcp.org/en/jsr/detail?id=339, [Online;
accessed 16-July-2021], 2014.

[28] H. Kagdi, M. L. Collard, and J. I. Maletic, “An approach to mining
call-usage patternswith syntactic context,” in Proceedings of the twenty-
second IEEE/ACM international conference on Automated software en-
gineering, 2007, pp. 457–460.

[29] A. Kellens, C. Noguera, K. De Schutter, C. De Roover, and T. D’Hondt,
“Co-evolving annotations and source code through smart annotations,”
in 2010 14th European Conference on Software Maintenance and Reengi-
neering, 2010, pp. 117–126. doi: 10.1109/CSMR.2010.20.

[30] Kevin Sutter, What’s next for MicroProfile and Jakarta EE? https://

www.eclipse.org/community/eclipse_newsletter/2018/september/

mp_jakartaee.php, [Online; accessed 16-July-2021], 2018.

[31] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “CrySL: An
Extensible Approach to Validating the Correct Usage of Cryptographic
APIs,” IEEE Transactions on Software Engineering, pp. 1–1, 2019.

[32] R. Lämmel and S. Peyton Jones, “Scrap your boilerplate: A practical
design pattern for generic programming,” vol. 38, Mar. 2003, pp. 26–37.
doi: 10.1145/604174.604179.

[33] Leonardo Leite, Wildfly 17 error “WFLYMETRICS0003: Unable to read
attribute second-level-cache-hit-count” when statistics-enabled=“true”, https:
//stackoverflow.com/questions/59322997/wildfly-17-error-

wflymetrics0003 - unable - to - read - attribute - second - level -

cache-h, [Online; accessed 16-July-2021], 2021.

[34] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “Pfp: Parallel
fp-growth for query recommendation,” in Proceedings of the 2008 ACM
conference on Recommender systems, 2008, pp. 107–114.

80

http://javaparser.org/
https://stackoverflow.com/questions/57530872/websphere-application-server-support-of-microprofile
https://stackoverflow.com/questions/57530872/websphere-application-server-support-of-microprofile
https://www.infoq.com/presentations/history-api/
https://www.infoq.com/presentations/history-api/
https://jcp.org/en/jsr/detail?id=339
https://doi.org/10.1109/CSMR.2010.20
https://www.eclipse.org/community/eclipse_newsletter/2018/september/mp_jakartaee.php
https://www.eclipse.org/community/eclipse_newsletter/2018/september/mp_jakartaee.php
https://www.eclipse.org/community/eclipse_newsletter/2018/september/mp_jakartaee.php
https://doi.org/10.1145/604174.604179
https://stackoverflow.com/questions/59322997/wildfly-17-error-wflymetrics0003-unable-to-read-attribute-second-level-cache-h
https://stackoverflow.com/questions/59322997/wildfly-17-error-wflymetrics0003-unable-to-read-attribute-second-level-cache-h
https://stackoverflow.com/questions/59322997/wildfly-17-error-wflymetrics0003-unable-to-read-attribute-second-level-cache-h
https://stackoverflow.com/questions/59322997/wildfly-17-error-wflymetrics0003-unable-to-read-attribute-second-level-cache-h

[35] Z. Li and Y. Zhou, “Pr-miner: Automatically extracting implicit pro-
gramming rules and detecting violations in large software code,” in Pro-
ceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, ser. ESEC/FSE-13, Lisbon, Portugal: As-
sociation for Computing Machinery, 2005, pp. 306–315, isbn: 1595930140.
doi: 10.1145/1081706.1081755. [Online]. Available: https://doi.
org/10.1145/1081706.1081755.

[36] Z. Li, A. Machiry, B. Chen, M. Naik, K. Wang, and L. Song, “Arbitrar:
User-guided api misuse detection,” 2021.

[37] Z. Li, A. Machiry, B. Chen, K. Wang, M. Naik, and L. Song, “ARBI-
TRAR: User-Guided API Misuse Detection,” in IEEE S&P 2021, 2021.

[38] D. Lo and S.-C. Khoo, “Smartic: Towards building an accurate, robust
and scalable specification miner,” in Proceedings of the 14th ACM SIG-
SOFT international symposium on Foundations of software engineering,
2006, pp. 265–275.

[39] D. Lo, G. Ramalingam, V.-P. Ranganath, and K. Vaswani, “Mining
quantified temporal rules: Formalism, algorithms, and evaluation,” Sci-
ence of Computer Programming, vol. 77, no. 6, pp. 743–759, 2012.

[40] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of soft-
ware behavioral models,” in Proceedings of the 30th international con-
ference on Software engineering, 2008, pp. 501–510.

[41] A. Lozano, K. Mens, and A. Kellens, “Usage contracts: Offering immedi-
ate feedback on violations of structural source-code regularities,” Science
of Computer Programming, vol. 105, pp. 73–91, 2015, issn: 0167-6423.
doi: https://doi.org/10.1016/j.scico.2015.01.004. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S016764231500012X.

[42] S. Mehrpour, T. D. LaToza, and H. Sarvari, “RulePad: Interactive Au-
thoring of Checkable Design Rules,” arXiv e-prints, arXiv:2007.05046,
arXiv:2007.05046, Jul. 2020. arXiv: 2007.05046 [cs.SE].

[43] MicroProfile, MicroProfile: Optimizing Enterprise Java for a Microser-
vices Architecture, https://microprofile.io/, [Online; accessed 14-
July-2021], 2021.

[44] MicroProfile Community and Google Groups, [microprofile] MicroProfile
4.0 has been released, https://groups.google.com/g/microprofile/
c/MgyHLEW58Nk, [Online; accessed 16-July-2021], 2021.

[45] ——, Loadbalancing for MicroProfile RestClient? https:/ /groups.

google.com/g/microprofile/c/sok2ojgo0gE, [Online; accessed 16-
July-2021], 2021.

81

https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/1081706.1081755
https://doi.org/https://doi.org/10.1016/j.scico.2015.01.004
https://www.sciencedirect.com/science/article/pii/S016764231500012X
https://www.sciencedirect.com/science/article/pii/S016764231500012X
http://arxiv.org/abs/2007.05046
https://microprofile.io/
https://groups.google.com/g/microprofile/c/MgyHLEW58Nk
https://groups.google.com/g/microprofile/c/MgyHLEW58Nk
https://groups.google.com/g/microprofile/c/sok2ojgo0gE
https://groups.google.com/g/microprofile/c/sok2ojgo0gE

[46] ——, MicroProfile - Google Groups, https://groups.google.com/g/
microprofile, [Online; accessed 16-July-2021], 2021.

[47] ——, MicroProfile 5.0 news and instructions, https://groups.google.
com/g/microprofile/c/coOY1rxlSXE, [Online; accessed 16-July-2021],
2021.

[48] ——, MicroProfile Platform Specification discussion thread, https://
groups.google.com/g/microprofile/c/RfcZFwdeQao, [Online; ac-
cessed 16-July-2021], 2021.

[49] ——, MicroProfile Steering Committee Scheduled for January 12th, https:
//groups.google.com/g/microprofile/c/3EUq808CwFk/m/-uY0nirVAAAJ,
[Online; accessed 16-July-2021], 2021.

[50] ——, Startup probe qualifier name in MicroProfile Health, https://

groups.google.com/g/microprofile/c/pYRQ4ZBuKfg, [Online; ac-
cessed 16-July-2021], 2021.

[51] MicroProfile Community, Eclipse Foundation, MicroProfile 4.0 Overview,
https://docs.google.com/presentation/d/1p_gi3xLmPZs011BKkC4QJwqjuaSGqhGZiqMcyaZrkr4,
[Online; accessed 14-July-2021], 2021.

[52] Microservices.io, Chris Richardson, Who is using microservices? https:

//microservices.io/articles/whoisusingmicroservices.html,
[Online; accessed 14-July-2021], 2020.

[53] M. Monperrus, M. Bruch, and M. Mezini, “Detecting missing method
calls in object-oriented software,” in ECOOP 2010 – Object-Oriented
Programming, T. D’Hondt, Ed., Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2010, pp. 2–25, isbn: 978-3-642-14107-2.

[54] M. Monperrus and M. Mezini, “Detecting missing method calls as viola-
tions of the majority rule,” ACM Trans. Softw. Eng. Methodol., vol. 22,
no. 1, Mar. 2013, issn: 1049-331X. doi: 10.1145/2430536.2430541.
[Online]. Available: https://doi.org/10.1145/2430536.2430541.

[55] D. Nam, A. Horvath, A. Macvean, B. Myers, and B. Vasilescu, “MAR-
BLE: Mining for Boilerplate Code to Identify API Usability Problems,”
in 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 2019, pp. 615–627.

[56] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
Proceedings of the 7th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ser. ESEC/FSE ’09, Amsterdam, The Nether-
lands: Association for Computing Machinery, 2009, pp. 383–392, isbn:
9781605580012. doi: 10.1145/1595696.1595767. [Online]. Available:
https://doi.org/10.1145/1595696.1595767.

82

https://groups.google.com/g/microprofile
https://groups.google.com/g/microprofile
https://groups.google.com/g/microprofile/c/coOY1rxlSXE
https://groups.google.com/g/microprofile/c/coOY1rxlSXE
https://groups.google.com/g/microprofile/c/RfcZFwdeQao
https://groups.google.com/g/microprofile/c/RfcZFwdeQao
https://groups.google.com/g/microprofile/c/3EUq808CwFk/m/-uY0nirVAAAJ
https://groups.google.com/g/microprofile/c/3EUq808CwFk/m/-uY0nirVAAAJ
https://groups.google.com/g/microprofile/c/pYRQ4ZBuKfg
https://groups.google.com/g/microprofile/c/pYRQ4ZBuKfg
https://docs.google.com/presentation/d/1p_gi3xLmPZs011BKkC4QJwqjuaSGqhGZiqMcyaZrkr4
https://microservices.io/articles/whoisusingmicroservices.html
https://microservices.io/articles/whoisusingmicroservices.html
https://doi.org/10.1145/2430536.2430541
https://doi.org/10.1145/2430536.2430541
https://doi.org/10.1145/1595696.1595767
https://doi.org/10.1145/1595696.1595767

[57] S. Nielebock, R. Heumüller, K. M. Schott, and F. Ortmeier, “Guided
pattern mining for api misuse detection by change-based code analysis,”
ArXiv, vol. abs/2008.00277, 2020.

[58] O’Reilly, O’Reilly’s Microservices Adoption in 2020 Report Finds that
92% of Organizations are Experiencing Success with Microservices, https:
//www.oreilly.com/pub/pr/3307, [Online; accessed 16-July-2021],
2020.

[59] oneturkmen, Miningannotationusagerules, https://github.com/ualberta-
smr/MiningAnnotationUsageRules, 2021.

[60] Oracle, Annotations, https://docs.oracle.com/javase/8/docs/
technotes/guides/language/annotations.html, [Online; accessed
13-July-2021], 2021.

[61] Phil Webb, Spring Boot 1.0 GA Released, https://spring.io/blog/
2014/04/01/spring-boot-1-0-ga-released, [Online; accessed 16-
July-2021].

[62] G. Piatetsky-Shapiro, “Discovery, analysis, and presentation of strong
rules,” Knowledge discovery in databases, pp. 229–238, 1991.

[63] M. I. Rahman, S. Panichella, and D. Taibi, “A curated dataset of microservices-
based systems,” SSSME-2019, 2019.

[64] Ralph Soika, RestClientBuilder and jUnit ¿¿ No RestClientBuilderRe-
solver implementation found! https://groups.google.com/g/microprofile/
c/g73xFffcQNU, [Online; accessed 16-July-2021], 2018.

[65] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive
inference of function precedence protocols,” in 29th International Con-
ference on Software Engineering (ICSE’07), IEEE, 2007, pp. 240–250.

[66] ——, “Static specification inference using predicate mining,” ACM SIG-
PLAN Notices, vol. 42, no. 6, pp. 123–134, 2007.

[67] Ramesh Fadatare, 10+ Free Open Source Projects Using Spring Boot,
https : / / www . javaguides . net / 2018 / 10 / free - open - source -

projects-using-spring-boot.html, [Online; accessed 16-July-2021],
2019.

[68] Ratze and rieckpil, Microprofile JWT web.xml returns 200 instead of
401, https://stackoverflow.com/questions/60583971/, [Online;
accessed 16-July-2021], 2020.

[69] Red Hat, Inc, Red Hat JBoss Enterprise Application Platform (JBoss
EAP), https://www.redhat.com/en/technologies/jboss-middleware/
application-platform, [Online; accessed 16-July-2021], 2021.

[70] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated API Property Inference Techniques,” IEEE Transactions
on Software Engineering, vol. 39, no. 5, pp. 613–637, 2013.

83

https://www.oreilly.com/pub/pr/3307
https://www.oreilly.com/pub/pr/3307
https://github.com/ualberta-smr/MiningAnnotationUsageRules
https://github.com/ualberta-smr/MiningAnnotationUsageRules
https://docs.oracle.com/javase/8/docs/technotes/guides/language/annotations.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/annotations.html
https://spring.io/blog/2014/04/01/spring-boot-1-0-ga-released
https://spring.io/blog/2014/04/01/spring-boot-1-0-ga-released
https://groups.google.com/g/microprofile/c/g73xFffcQNU
https://groups.google.com/g/microprofile/c/g73xFffcQNU
https://www.javaguides.net/2018/10/free-open-source-projects-using-spring-boot.html
https://www.javaguides.net/2018/10/free-open-source-projects-using-spring-boot.html
https://stackoverflow.com/questions/60583971/
https://www.redhat.com/en/technologies/jboss-middleware/application-platform
https://www.redhat.com/en/technologies/jboss-middleware/application-platform

[71] J. L. de Siqueira, F. F. Silveira, and E. M. Guerra, “An approach for
code annotation validation with metadata location transparency,” in In-
ternational Conference on Computational Science and Its Applications,
Springer, 2016, pp. 422–438.

[72] Stack Exchange Inc, Questions tagged [microprofile], https : / / web .

archive.org/web/20210627071301/https://stackoverflow.com/

questions/tagged/microprofile, [Online; accessed 16-July-2021], 2021.

[73] L. Tan, Y. Zhou, and Y. Padioleau, “Acomment: Mining annotations
from comments and code to detect interrupt related concurrency bugs,”
in 2011 33rd International Conference on Software Engineering (ICSE),
IEEE, 2011, pp. 11–20.

[74] The Eclipse Foundation, Eclipse GlassFish, https://projects.eclipse.
org/projects/ee4j.glassfish, [Online; accessed 16-July-2021], 2021.

[75] ——, Jakarta EE Compatible Products, https://jakarta.ee/compatibility/,
[Online; accessed 16-July-2021], 2021.

[76] ——, Jakarta EE, Cloud Native Java for Enterprise, The Eclipse Foun-
dation, https://jakarta.ee/, [Online; accessed 16-July-2021], 2021.

[77] Thomas Risberg, Spring Framework 1.0 Final Released, https://spring.
io/blog/2004/03/24/spring-framework-1-0-final-released, [On-
line; accessed 16-July-2021], 2004.

[78] S. Thummalapenta and T. Xie, “Alattin: Mining alternative patterns
for detecting neglected conditions,” in 2009 IEEE/ACM International
Conference on Automated Software Engineering, 2009, pp. 283–294. doi:
10.1109/ASE.2009.72.

[79] Tom Huston, What Are Microservices? — API Basics — SmartBear,
https://smartbear.com/solutions/microservices/, [Online; ac-
cessed 14-July-2021], 2021.

[80] tuesday, Are there any big spring-boot open source projects? https :

//stackoverflow.com/questions/54782469/are-there-any-big-

spring-boot-open-source-projects, [Online; accessed 16-July-2021],
2019.

[81] user:10747614, Why Eclipse Glassfish does not support Eclipse Micro-
profile, https://stackoverflow.com/questions/53818892/why-

eclipse- glassfish- does- not- support- eclipse- microprofile,
[Online; accessed 16-July-2021], 2021.

[82] VMware, Inc. or its affiliates, Spring, https://spring.io/, [Online;
accessed 16-July-2021], 2021.

[83] ——, Spring Boot, https://spring.io/projects/spring-boot, [On-
line; accessed 16-July-2021], 2021.

84

https://web.archive.org/web/20210627071301/https://stackoverflow.com/questions/tagged/microprofile
https://web.archive.org/web/20210627071301/https://stackoverflow.com/questions/tagged/microprofile
https://web.archive.org/web/20210627071301/https://stackoverflow.com/questions/tagged/microprofile
https://projects.eclipse.org/projects/ee4j.glassfish
https://projects.eclipse.org/projects/ee4j.glassfish
https://jakarta.ee/compatibility/
https://jakarta.ee/
https://spring.io/blog/2004/03/24/spring-framework-1-0-final-released
https://spring.io/blog/2004/03/24/spring-framework-1-0-final-released
https://doi.org/10.1109/ASE.2009.72
https://smartbear.com/solutions/microservices/
https://stackoverflow.com/questions/54782469/are-there-any-big-spring-boot-open-source-projects
https://stackoverflow.com/questions/54782469/are-there-any-big-spring-boot-open-source-projects
https://stackoverflow.com/questions/54782469/are-there-any-big-spring-boot-open-source-projects
https://stackoverflow.com/questions/53818892/why-eclipse-glassfish-does-not-support-eclipse-microprofile
https://stackoverflow.com/questions/53818892/why-eclipse-glassfish-does-not-support-eclipse-microprofile
https://spring.io/
https://spring.io/projects/spring-boot

[84] A. Wasylkowski and A. Zeller, “Mining temporal specifications from ob-
ject usage,” in Proceedings of the 2009 IEEE/ACM International Con-
ference on Automated Software Engineering, ser. ASE ’09, USA: IEEE
Computer Society, 2009, pp. 295–306, isbn: 9780769538914. doi: 10.
1109/ASE.2009.30. [Online]. Available: https://doi.org/10.1109/
ASE.2009.30.

[85] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage anoma-
lies,” in Proceedings of the the 6th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, ser. ESEC-FSE ’07, Dubrovnik,
Croatia: Association for Computing Machinery, 2007, pp. 35–44, isbn:
9781595938114. doi: 10.1145/1287624.1287632. [Online]. Available:
https://doi.org/10.1145/1287624.1287632.

[86] C. Wen, Y. Zhang, X. He, and N. Meng, “Inferring and applying def-
use like configuration couplings in deployment descriptors,” in 2020 35th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), IEEE, 2020, pp. 672–683.

[87] M. Wen, Y. Liu, R. Wu, X. Xie, S.-C. Cheung, and Z. Su, “Exposing
library api misuses via mutation analysis,” in Proceedings of the 41st
International Conference on Software Engineering, ser. ICSE ’19, Mon-
treal, Quebec, Canada: IEEE Press, 2019, pp. 866–877. doi: 10.1109/
ICSE.2019.00093. [Online]. Available: https://doi.org/10.1109/
ICSE.2019.00093.

[88] WildFly, WildFly, https://www.wildfly.org/, [Online; accessed 16-
July-2021], 2021.

[89] Yuriy Bondaruk, SSL config for outbound connections doesn’t work in
websphere-liberty 17.0.0.2, https://stackoverflow.com/questions/
45636285, [Online; accessed 16-July-2021], 2017.

[90] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online q&a forum reliable?: A study of api misuse
on stack overflow,” in 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE), IEEE, 2018, pp. 886–896.

[91] Y. Zhang, “Checking metadata usage for enterprise applications,” PhD
thesis, Virginia Tech, 2021.

[92] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and
recommending api usage patterns,” in ECOOP 2009 – Object-Oriented
Programming, S. Drossopoulou, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 318–343, isbn: 978-3-642-03013-0.

85

https://doi.org/10.1109/ASE.2009.30
https://doi.org/10.1109/ASE.2009.30
https://doi.org/10.1109/ASE.2009.30
https://doi.org/10.1109/ASE.2009.30
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1109/ICSE.2019.00093
https://doi.org/10.1109/ICSE.2019.00093
https://doi.org/10.1109/ICSE.2019.00093
https://doi.org/10.1109/ICSE.2019.00093
https://www.wildfly.org/
https://stackoverflow.com/questions/45636285
https://stackoverflow.com/questions/45636285

Appendix A

Supplementary Information for
RQ1 Setup

In this appendix, we present a list of sub-APIs we focus on when mining usage

patterns in MicroProfile and Spring Boot projects.

For Spring Boot, we treat the following packages as sub-APIs:

• “org.springframework.aop”

• “org.springframework.asm”

• “org.springframework.boot”

• “org.springframework.beans”

• “org.springframework.core”

• “org.springframework.context”

• “org.springframework.expression”

• “org.springframework.jdbc”

• “org.springframework.jms”

• “org.springframework.ldap”

• “org.springframework.messaging”

• “org.springframework.orm”

86

• “org.springframework.retry”

• “org.springframework.security”

• “org.springframework.shell”

• “org.springframework.tx”

• “org.springframework.remoting”

• “org.springframework.web”

• “org.springframework.http”

For MicroProfile, we treat the following packages as sub-APIs:

• “org.eclipse.microprofile.config”

• “org.eclipse.microprofile.faulttolerance”

• “org.eclipse.microprofile.graphql”

• “org.eclipse.microprofile.health”

• “org.eclipse.microprofile.jwt”

• “org.eclipse.microprofile.metrics”

• “org.eclipse.microprofile.openapi”

• “org.eclipse.microprofile.opentracing”

• “org.eclipse.microprofile.reactive”

• “org.eclipse.microprofile.rest”

87

	Introduction
	Research Questions
	Study Overview
	Thesis Contributions
	Thesis Organization

	Background and Terminology
	Microservices
	Java Frameworks for Building Microservices
	Pattern Mining

	Related Work
	Writing API Usage Specifications
	Mining API Usage Specifications

	Mining Annotation-based API Usages
	Representation: Tracking Code Facts
	Identifying Which Code Facts to Track
	Categories of Usages
	Supported Relationships

	Usages as Input Itemsets
	Mining Frequent Itemsets
	Post-processing Frequent Itemsets
	Generating Candidate Rules

	RQ1: How effective is pattern mining in discovering annotation rules?
	Evaluation Setup
	Step 1: Retrieving client projects
	Step 2: Parsing client projects
	Step 3: Pre-processing input itemsets
	Step 4: Mining
	Step 5: Post-processing frequent itemsets
	Step 6: Confirming candidate rules with domain experts

	Results
	Descriptive Statistics
	Effectiveness
	Findings
	Implications

	RQ2: How common are violations of the mined annotation rules?
	Setup
	Step 1: Fetching Projects
	Step 2: Encoding mined rules
	Step 3: Usage issues in Stack Overflow (Spring Boot only)

	Results
	Findings
	Implications

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Discussion
	Implications
	Limitations
	Recommendations

	Conclusion
	References
	Appendix Supplementary Information for RQ1 Setup

