
University of Alberta

F u z z y A n t i c i p a t o r y L e a r n i n g C l a s s i f i e r S y s t e m f o r M o b il e

R o b o t N a v ig a t io n

by

P aw el M ak sy m ilian P y tla k

A thesis subm itted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M a s te r o f Science.

Departm ent of Electrical & Computer Engineering

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33329-7
Our file Notre reference
ISBN: 978-0-494-33329-7

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One cannot escape the feeling that these mathematical formulae have an
independent existence and an intelligence of their own, that they are wiser

than we are, wiser even than their discoverers, that we get more out o f them
than we originally put into them.

- Heinrich Hertz

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis is dedicated to m y parents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Designing autonomous intelligent control systems for real-world problems is

a daunting task. The complex input-output relationships resulting from the

interaction between a process and its environment are often not readily solv

able by traditional mathematical methods. A growing amount of research is

being performed in designing control systems which develop their own solu

tion by utilizing methods borrowed from nature. This thesis presents work

performed in the aforementioned field, specifically in developing an extension

to the Anticipatory Learning Classifier System (ALCS) to facilitate the trans

parent use of real-valued inputs as well as outputs in order to make the system

more applicable to real-world problems. This has been accomplished through

the application of concepts borrowed from Fuzzy Logic to implement a varia

tion of an evolvable Fuzzy Controller within the ALCS paradigm. As such, the

Fuzzy Anticipatory Learning Classifier System (or FALCS) allows the user to

evolve an adaptive control system capable of latent learning as well as utilizing

the best known course of action in the absence of previous knowledge. The

FALCS-based controller was tested to be successful in generating a rule-base

tha t kept a simulated agent “alive” in a virtual environment. Furthermore,

a FALCS-based controller was successfully implemented to allow a simulated

robot to navigate a previously unknown environment, as well as seeking a goal

location while avoiding obstacles at the same time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

Firstly, I would like to thank my supervisors: Drs. Petr Musilek and Marek

Reformat for granting me the incredible opportunity to conduct this exciting

research, for their support and guidance. Secondly, I would also like to thank

all the FACIA members, both support staff and peers for their input as well

as their friendship. Finally, I would like to thank my parents for their support

and encouragement in this endeavor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 O verview ... 1
1.2 C o n trib u tio n s .. 3
1.3 Organization ... 4

2 B ackground 5
2.1 Intelligent S y s te m s ... 5
2.2 Reinforcement Learning ... 6
2.3 Evolutionary C o m p u tin g ... 7
2.4 Fuzzy L o g ic .. 16

3 FALCS A rch itecture 20
3.1 System O v erv iew .. 20
3.2 Fuzzy C la ss ifie r... 20
3.3 Rule G eneration ... 23
3.4 Match Set Generation .. 25
3.5 Rule S election .. 27
3.6 Action Generation .. 34
3.7 Action Sets G enera tion .. 37
3.8 Anticipatory Learning P ro c e ss ... 38
3.9 Reinforcement Learning P ro c e s s ... 47
3.10 Genetic G enera liza tion .. 49
3.11 Population C o n tro l .. 50
3.12 Effective M o d e l ... 52

4 E xperim ents 54
4.1 Simulated Agent .. 54
4.2 Robot C o n tro l le r .. 59

5 C onclusions and Future W ork 70
5.1 C o n c lu sio n s .. 70
5.2 Main C on tribu tions... 72
5.3 Limitations and Future W o r k ... 73

B ibliography 76

A A pp en d ix 81
A .l Experiment Setup P a ra m e te rs ... 81
A.2 Robot E n v iro n m en ts ... 83
A.3 Additional Test Scenarios ... 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

A .l Critical FALCS parameters .
A.2 FALCS configuration switches

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Structure of A L C S ... 15
2.2 Structure of a typical fuzzy co n tro lle r.. 19

3.1 Overall structure of F A L C S ... 21
3.2 Example of fuzzy membership functions u t i l iz e d 22
3.3 Structure of FALCS action generation m ech an ism 36
3.4 Range of allowable cases for membership function merging . . 46

4.1 Survival Age of Simulated Agent w.r.t. Training Iterations . . 57
4.2 Average Reward to FALCS w.r.t. Training I te r a t io n s 57
4.3 Average Pet Health to FALCS w.r.t. Training Iterations . . . 58
4.4 Average Pet Hunger to FALCS w.r.t. Training Iterations . . . 58
4.5 Number of steps between collisions for obstacle avoidance in

Environment # 2 .. 61
4.6 Total number of crash-free steps for obstacle avoidance for En

vironment # 2 .. 62
4.7 Average reward given for obstacle avoidance in Environment # 2 62
4.8 Number of useful classifiers for obstacle avoidance in Environ

ment # 2 ... 63
4.9 Sample trajectory in learning environment # 4 for obstacle avoid

ance ... 64
4.10 Ratio of collision-free steps to total number of steps in multiple

e n v iro n m e n ts .. 64
4.11 Number of steps between collisions during goal-seeking behavior

t r a i n i n g ... 67
4.12 Time to seek goal position w.r.t. learning iterations during goal-

seeking behavior tra in in g ... 68
4.13 Reward function w.r.t. learning iterations for seeking goal po

sition during goal-seeking behavior tra in in g 68
4.14 Sample trajectory in goal seeking objective with obstacles dur

ing goal-seeking behavior tr a in in g .. 69

A .l Environment # 1 for robot n av ig a tio n ... 84
A.2 Environment # 2 for robot n av ig a tio n ... 84
A.3 Environment # 3 for robot n av ig a tio n ... 85
A.4 Environment # 4 for robot n av ig a tio n ... 85
A.5 Number of steps between collisions in Environment # 1 86
A.6 Total number of crash-free steps in Environment # 1 ... 86
A.7 Average reward given in Environment # 1 . 87
A.8 Number of useful classifiers in Environment # 1 87
A.9 Number of steps between collisions in Environment # 2 88
A. 10 Total number of crash-free steps in Environment # 2 88
A. 11 Average reward given in Environment # 2 89
A. 12 Number of useful classifiers in Environment # 2 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.13 Number of steps between collisions in Environment # 2 90
A. 14 Total number of crash-free steps in Environment # 2 90
A. 15 Average reward given in Environment jf= 2 91
A. 16 Number of useful classifiers in Environment # 2 91
A. 17 Number of steps between collisions in Environment # 3 92
A. 18 Total number of crash-free steps in Environment # 3 92
A .19 Average reward given in Environment # 3 93
A.20 Number of useful classifiers in Environment # 3 93
A.21 Number of steps between collisions in Environment # 4 94
A.22 Total number of crash-free steps in Environment # 4 94
A.23 Average reward given in Environment # 4 95
A.24 Number of useful classifiers in Environment # 4 95
A.25 Number of steps between collisions in learning environment # 4 96
A.26 Total number of crash-free steps in learning environment # 4 . 96
A.27 Average reward given w.r.t. learning iterations in learning en

vironment # 4 ... 97
A.28 Number of good classifiers generated in learning environment # 4 97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 O verview

Today’s modern society is more and more dependent on technology, and as

a result, we are pushing the engineering frontiers faster than ever before. Nev

ertheless, the devices which surround us everyday are still extremely depen

dent on humans to give them instructions on how they should function. This

is especially true of control systems which operate an extremely wide range of

today’s products: from consumer electronics, to business and factory equip

ment, to aerospace vehicles and extraterrestrial probes. However, the design

and implementation of these control systems is a complex task, which requires

immense expertise and a great deal of patience due to the large and complex

spaces th a t the inputs and outputs encompass.

To alleviate the burden of this problem, designers are more frequently

turning to artificial intelligence and statistical methods to help simplify the

designs and allow for the devices to learn their own control functions. Through

the use of intelligent systems, the devices and machines are capable of making

human-like decisions on their own without having a human designer provide

solution for every problem tha t could be encountered.

In the field of intelligent systems, a great deal of promise has been shown

in the area of evolutionary computation [1] [2] [3]. As the name suggests, this

paradigm attem pts to “evolve” a solution to a given problem over successive

generations by using methods observed in nature such as Darwinian natural

selection [4], immune systems [5] [6], swarm intelligence [7] [8], self organi-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

zations and so forth. In effect, these methods could be seen as performing

a guided stochastic search [9] when viewed from a classical artificial intelli

gence perspective. Furthermore, many systems employ different combinations

of these techniques in order to benefit from each m ethod’s own strengths while

at the same time minimizing their own independent weaknesses.

One of the many benefits of applying evolutionary computation strategies

to solve optimization problems is the inherent massive parallelism th a t exists

inside the many stages of evolutionary computing algorithms. This is of fair

significance in today’s world, due to the multi-core processing push by the

industry, as these methods can be readily coded to make fuller use of all the

parallel computational power available, thus providing results much faster as

opposed to competing sequential algorithms.

One of the most amazing aspects of using evolutionary computation meth

ods is the fact th a t they allow one to generate desirable intelligent systems

with minimal human intervention. This results in reducing the costs of bring

ing new devices to the market as well as developing more robust devices which

are capable of better applying themselves to their working environment as op

posed to a “one-size-fits-all” strategy [10] [11] [12]. In particular, evolutionary

computing methods can be applied to systems which must operate in environ

ments th a t cannot be modelled in the laboratory either due to impracticality,

limited knowledge or due to completely new or frequency changing operat

ing environments which are not know at the time of development. In such

situations, evolutionary computing can be applied online, where the system

receives feedback on its current performance from a governor to evolve a more

optimized system for future use.

A prime example of such an application exists in the realm of mobile

robotics. This is a fast growing sector in today’s world with applications

ranging from the benign such as toy pets, to the useful such as robotic lawn-

mowers and vacuum cleaners, and to the exotic in the form of exploratory

robotics being sent into space. Furthermore, advanced robotic applications

are being employed to more pressing m atters in our current society such as

search and rescue, counter-terrorism and military applications, all of which

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aim to either save lives or to reduce the risk of human death as opposed to

tha t of the machine.

The objective of this research is to develop a novel autonomous intelligent

system capable of learning goal oriented behavior for the control of a robotic

mobile platform, where a robot would glean situations from its environment

and learn the correct input output mapping with limited or no human inter

vention. Moreover, the goal is to design a transparent control system whose

actions can be analyzed by a human expert and which is capable of continuous

online learning.

To accomplish this objective, the work has aimed on expanding an in

triguing evolutionary control technique based on the Anticipatory Learning

Classifier System (ALCS). The Anticipatory Learning Classifier System forms

a rule-based intelligent system which evolves a population of rules to solve the

control problem at hand by exploiting psychologically significant observations

of anticipatory behavior from the real world. As such, the research described

in this thesis focuses on an extension of the Anticipatory Learning Classifier

system originally developed by Stolzmann and Butz [13] th a t would deal di

rectly with real-valued data and be well suited for integration into control

systems, in particular, those found in mobile robotic applications.

1.2 C ontributions

The main contributions of this thesis can be summarized as follows:

• A novel system, based upon the ALCS along with concepts of fuzzy logic,

was designed such th a t it is capable of transparently handling real-valued

inputs and providing real-valued outputs.

• ALCS learning algorithms were modified to allow for machine learning

on fuzzy sets as opposed to discrete symbol strings.

• Enhanced classifier selection and action generation methods were devised

th a t exploit the advantages of fuzzy logic.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The developed system was successfully applied as an intelligent, au

tonomous controller for two separate application domains.

1.3 O rganization

This thesis is organized into 5 chapters. Chapter 2 presents a brief description

of the fundamental workings of components which comprise the Fuzzy Antici

patory Learning Classifier System, while Chapter 3 provides a detailed view of

how the system is designed. Chapter 4 reviews experimental results obtained

by testing the system in two settings: a simulated agent and a mobile robot.

Finally, Chapter 5 concludes the thesis, summarizes main contributions, and

provides suggestions for extending the present system in the future.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

This chapter provides an overview of the different constituents which are in

corporated and /or which have provided inspiration for the development of the

Fuzzy Anticipatory Learning Classifier System.

2.1 In te lligen t System s

An intelligent system [14] is an instantiation of an algorithm or set of algo

rithms capable of performing actions or giving outputs which would be deemed

intelligent should they be performed by a human. This means, tha t for a sys

tem to be an “intelligent system,” it must be capable of performing several,

ideally all of the following key tasks. It must be capable of gleaning informa

tion from its surroundings or assigning labels to inputs as well as be capable

of analyzing the gathered information so tha t it can recognize patterns in the

data. It must be able to perform inference from incomplete information, as

well as extract meaning from inexact and noisy data. Furthermore, it must be

capable of dealing with unfamiliar situations and adapting to them. Finally,

it must be capable of providing an informed output based on the collected

knowledge.

Many different architectures are available for devising an intelligent sys

tem. The system described in this thesis focuses on utilizing intelligent sys

tems based upon soft computing principles [15]. These are computational

methods based on approximate and/or qualitative representations of knowl

edge in a manner similar to what is believed to be used by human reasoning.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As such, they are well suited for dealing with incomplete as well as imprecise

information.

The central focus of this thesis is to expand the Anticipatory Learning

Classifier System to utilize real values instead of discrete symbols. This will

make the system more suitable for direct incorporation into intelligent control

systems.

2.2 R einforcem ent Learning

Reinforcement learning in an artificial intelligence (AI) learning technique

which was pioneered by Sutton and Barto [16]. It lies in an area between

supervised learning, where the system receives direct instructions as to what

the correct input-output response pairs should be in order to mimic them,

and unsupervised learning, where the algorithm must discover innate features

and patterns from raw data without receiving any guidance (e.g. clustering

techniques or self-organization). In effect, reinforcement learning attem pts to

devise a solution from limited feedback from the environment in the form of

rewards based on how it performs when going from one state to another. Thus,

the goal of a reinforcement learning algorithm is to find an optimal solution

to a sequential problem in the form of a policy tt, which specifies what action

to take for each given state in the problem so as to maximize the to tal reward

received from all possible steps.

An offshoot from the original reinforcement learning algorithm is the group

of Temporal Difference learning algorithms tha t aim to find the optimal policy

7r by means of sampling the environment and learning from sequential steps.

This is ideal for situations where the entire range of possible states and actions

is not known such as in the case of a robot controller.

The reinforcement learning process present in the Anticipatory Learning

Classifier System draws its roots from a reinforcement learning algorithm de

veloped by W atkins termed Q-learning [17]. The basis for this methodology is

tha t through successive iterations, using the update rule shown in Formula 2.1,

an approximation of the Q-function may be learnt (if the environment is static

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the learning rate a lies in [0..1] and takes on successively decreasing val

ues such th a t ctj = oo and a i < i n f , an optimal Q value may be

learnt; see [18] for specifics). As a result of learning the Q-value, a policy is

generated which allows the agent to find the method of reaching a goal by

selecting actions which maximize the estimated state-action value.

rt + 7 - max Q (st+1,a t+1) - Q (st ,a t)
f l i + 1

(2.1)Q,(st,ot) <— Q(st,at) + 0't(stjat)

where:

Q is the expected utility value

Q' is the newly updated expected utility value

St is a given state a t time t

at is an action performed at time t

rt is a reward received at time t

a is the learning rate in [0..1]

7 is the discount factor in [0. .1)

2.3 E volu tionary C om puting

The developed Fuzzy Anticipatory Learning Classifier System (or FALCS) falls

into the broad field of evolutionary computation. Evolutionary Computing (or

EC) [2] is a paradigm inspired by concepts of Darwinian natural selection to

evolve a system which is capable of reaching a particular objective by means of

processing successive generations of candidate solutions. During each learning

phase, a set of candidate solutions is formed. Through various operators, new

solutions are generated which come either as a result of the current population

or by other means from the problem space. These candidate solutions are then

evaluated to determine how well they solve a particular task. Undesirable

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

solutions are removed from the population and surviving candidates live on to

form the next population.

Many different algorithms have been developed which fall into this category

and even more utilize partial concepts. This thesis will focus on two particular

instances: the genetic algorithm and its close relative the learning classifier

system, the main foundation for the Fuzzy Anticipatory Learning Classifier

System.

2.3.1 G enetic Algorithm s

Genetic Algorithms (GA) [19] [20] were developed by Holland [21] as a means

to solve optimization problems. They accomplish the task through successive

populations of candidate solutions. During each iteration of the algorithm,

GAs apply genetic operators modeled from nature. The resulting offspring

populations are successively selected, recombined and altered to form an iter

atively better solution to the problem.

Genetic algorithms operate upon sequence of bits known as chromosomes,

where each bit, commonly referred to as a gene, encodes a particular feature in

the problem space. Initially, a random population of chromosomes is generated

after which the genetic operators are applied to form successive candidate

populations.

The two most commonly applied genetic operators utilized in Genetic Al

gorithms are the crossover and the mutation operator. The crossover operation

splices genes between two randomly selected chromosomes to form two new

chromosomes. Depending on the particular implementation, the parent chro

mosomes die off (i.e. they are removed from the population), or remain which

is the case for the GA used in the implementation of the Anticipatory Learning

Classifier System.

The mutation operator acts upon randomly selected chromosome and changes

a specified number of genes to random values. It is through this operation tha t

the GA performs exploratory actions to search for completely new solutions.

Finally, the new population is passed through an evaluation stage which

then computes each chromosome against a fitness function to determine its

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quality in solving the optimization problem. The outcome of this process de

termines the probability tha t the individual will be selected in future iterations

for the crossover population. The iterations term inate once a desired quality

of solution is achieved or no further improvement is attained i.e. the solution

converges.

Genetic Algorithms can be seen as forming an intelligent hill-climbing al

gorithm [22] th a t searches a known problem space to find an optimal solu

tion through the recombination of previous candidates while at the same time

attem pting to avoid local minima through mutation. Under the correct cir

cumstances, genetic algorithms may find a near-optimal solution to the prob

lem [23].

By setting param eters of a GA, one can achieve a desirable ratio between

exploration and exploitation.

2.3.2 Learning Classifier System s

Learning Classifier Systems (LCS) are a family of evolutionary computing

algorithms which develop a rule-based solution to a particular input-output

problem. These algorithms draw their roots from the original implementation

by Holland [24], whereby a solution is formed through successive trial and

error of a set of rules which are augmented by parameters to form so called

classifiers, th a t match their input condition against the current state of the

operating environment and im part a stored action onto it. The condition and

action strings inside the classifiers themselves take on values of either true,

false or don’tcare.

W hen an input condition or message is presented to the system, it is

recorded in an internal memory space which can be seen as a blackboard

message list. From the population of classifiers, [A/'], a set of matching rules

is formed by comparing each classifier’s condition string against the environ

mental input. In order for a classifier to be selected for insertion into the set

of matching classifiers, referred to as the Match Set [M], all of the condition

symbols in the classifier’s condition string must be the same as those from the

input message, except for don’tcare symbols which ignore the environmental

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input for tha t particular b it’s position.

The winning classifier is selected from the Match Set through a bidding

process tha t utilizes the quality of match in terms of its specificity and the

adaptive strength param eter associated with each rule as a bid amount. The

classifier present in the Match Set with the highest bid is then placed into

the internal message board list. This process of selecting classifiers against

the environmental input is repeated until all the available slots in the message

list are filled up. The final action is chosen from the selected classifiers via

a roulette wheel selection process, whereby the probability of a classifier being

selected is proportional to tha t classifier’s bid. The winning classifier’s action

is then im parted onto the environment after which the success of the action is

gauged.

The success or failure of a particular action determines the credit to be

assigned to the matching classifiers through a bucket brigade credit appor

tionment algorithm [25]. The bid made by each classifier in the message list

is placed into to a “bucket” . The winners of the previous iteration receive an

equal proportion of the current contents of the bucket. Furthermore, the re

ward from the environment is equally distributed to all the previously selected

classifiers.

Finally, a Genetic Algorithm is utilized on the entire population to create

new rules based on recombination of the current classifiers. The selection of

classifiers to take part in the genetic operations is based in proportion to the

respective classifier’s fitness. Thus the GA attem pts to evolve a cooperative set

of classifiers rather than having a single fittest classifier for each situation [26].

A close relative of Holland’s original LCS system is Wilson’s [27] Zeroth-

level Classifier System (ZCS) which simplifies the original LCS framework

through the elimination of the complex message board system and rule bidding

inside the Learning Classifier System. Furthermore, the notion of an Action

Set, [A], was introduced which treats all matching classifiers with the same

action strings as one for both selection and reinforcement learning, rather

than dealing with individual classifiers by themselves. The perceived reward

at the next iteration is then distributed to the previous Action Set equally to

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all classifiers less a predefined discount amount. Also, all classifiers not present

in the Action Set are given a penalty to reduce the chance th a t they will be

selected in future iterations.

2.3.3 XCS

One of the disadvantages of the classical Learning Classifier algorithms is tha t

they tend to focus on niche environments. This is a direct result of the reward

system th a t favors actions which have the highest utility value thus reducing

the system’s motivation to explore other alternatives in a given environment.

In order to adapt the classifier system to model an environment more accu

rately, Wilson [28] devised a strategy where the strength aspect of the classifier

is replaced with a predictive system which attem pts to maximize the accuracy

of predicting the reward payoff tha t will be attained when its action is im

parted onto the environment. The resulting system, called XCS [29], [30],

no longer focuses on niche areas but rather performs a wider exploration of

the environment, as it aims to maximize the prediction accuracy of reward

received when performing an action rather than maximizing the reward itself.

As such, it creates a state-action model of the explored environment in the

form of a set of if-then rules tha t are augmented by a parameter signifying the

expected payoff of each rule.

2.3.4 ALCS

A close descendant of the XCS is the Anticipatory Learning Classifier System

(ALCS) algorithm developed by Stolzmann and Butz [31], [13], [32], The

ALCS follows the desire to develop a model of the working environment as in

XCS, but takes th a t concept to the next level. Incorporating observations from

the psychological work of anticipatory behavior in humans and animals [33],

it aims at modeling the environment in terms of input conditions, an action

and the effect th a t the action has on the environment.

In the most basic form, the Anticipatory Learning Classifier System works

in a manner similar to a combination of both LCS and XCS. The system fo

cuses on a population of classifiers which hold Condition-Action-Effect rules

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

augmented by a few key parameters. Thus, each classifiers rule specifies the

Condition upon which the classifier is active (“fires”), the Action which the

classifier will im part onto the environment, and the Effect th a t its action will

have on the environment, (i.e. the next state of the environment). The condi

tion bitstring can take on discrete symbols i.e. “1” , “0” or (a don’tcare

value which matches all possible symbols). The effect bit string is formed in

the same way with the exception tha t the don’tcare symbol represents a “no

change” in the environment rather than simply ignoring the value during the

learning stages.

Each classifier contains several key parameters which are modified during

the learning process. The two most im portant are the reward prediction value,

r , and quality parameter, q. The reward prediction parameter is similar to the

Q utility value in W atkins’s Q-Learning algorithm [17], which is an indicator of

the expected return of taking the current action and performing the best known

actions thereafter. In ALCS it can be seen as a means of predicting the benefit

tha t will be attained when the rule is utilized. The quality parameter, q, of

the classifier rule represents the predictive quality on a scale of [0..1] indicating

how well the condition-action-effect triplet matches the given environmental

message. Finally, the third important param eter is the Markset, M , which

stores all the input conditions where the given classifier fails to anticipate the

output correctly.

The operation of the algorithm is fairly straight forward. The working

environment is probed for a representation of the current state. This state is

used to generate a set of matching classifiers known as the Match Set [M] based

upon each classifier’s condition bitstring. An exploratory action is selected

based on the exploration probability parameter, or a classifier is selected from

the Match Set which has the highest product of predictive quality, q, and

reward prediction, r . After this, an Action Set [A] is formed from the Match

Set, where each classifier’s action [A] is the same as the winning action. The

winning action is then im parted onto the environment and the classifier sets

are retained for the learning algorithms.

Three main learning algorithms work in conjunction to evolve an optimally

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

general bu t accurate predictor. The aim is to evolve a classifier tha t encom

passes the widest possible range of input conditions while a t the same time

providing an accurate prediction of the next state of the environment.

The anticipatory learning process provides the means by which the clas

sifiers are able to learn the condition-action-effect mapping in a given envi

ronment. After an action has been imparted, each classifier in the Action

Set is assessed to check whether it correctly predicted the next state of the

environment.

If a given classifier correctly predicted its action outcome, one of two cases

can occur. Should the classifier not have any marks, its quality is incremented

by means of an adapted Widrow-Hoff delta rule [34] as shown in Formula 2.2.

, _ j q + (3(1 — q) if correct prediction , .
^ \ Q ~ 0Q otherwise * ' '

where:

q' is the classifier’s new quality value

q is the classifier’s previous quality value

(3 is the learning rate

Otherwise if the markset is not empty, the system attem pts to generate

a new classifier by first creating a clone and then adding don’tcare symbols to

positions in the condition bitstring and to a difference bitstring, which repre

sents the symbols th a t are different between the markset and the triggering

condition. The number of added don’tcare symbols is determined by maintain

ing the specificity of the two bitstrings above a specificity threshold. Finally,

the new classifier clone is specialized with the remaining bits in the difference

bitstring th a t are not empty and do not have don’tcare symbols.

On the other hand, if a given classifier does not correctly predict its out

come, its quality is decreased as dictated by Formula 2.2. Next, the environ

mental input for which the classifier fired is recorded in the Mark Set. After

this, if the classifiers condition bitstring has don’tcare bits which can be spe

cialized to match the input condition, a new clone is generated w ith those

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bits set and the effect bitstring is adjusted accordingly to correctly predict the

outcome.

If no correctly predicting classifier is found and if no alternative candi

date classifier is generated, a new classifier is formed by a covering algorithm.

The algorithm creates a new classifier, whose condition, action and effect bit-

strings are equal to the observed state transition triplet. Furthermore, the

quality and reward prediction parameters are initialized to default values and

the numerosity and experience parameters are both set to one. Finally, the

learning tim estam ps are set to the current iteration number.

During learning, reward prediction parameters are updated by a reinforce

ment learning-like algorithm in a manner similar to what could be utilized in

traditional Q-learning. The reward received from the environment is passed

onto all classifiers inside the Action Set [A] by means of Formula 2.3.

r' = r + / ? (p + 7 max (a ■ r) — r] (2.3)V cie \M](t+i))

where:

r' is the classifier’s new reward prediction parameter

r is the classifier’s previous reward prediction parameter

p is the reward from the environment

13 is the learning rate

7 is the discount factor

This effectively builds up a prediction of what the average reward will be

attained when the classifier is utilized.

The final component of the system is a generalization algorithm, based on

the traditional genetic algorithm tha t performs two tasks. First, it selects can

didate classifiers from the Action Set [A], upon which it performs a crossover

operation on the condition bitstring to find better matching conditions. It

also performs a m utation operation on the condition bitstring. It should be

noted, however, th a t the m utation operator only sets don’tcare values in the

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bitstring, rather than inserting specific bits. This is due to the desired objec

tive of generalizing the classifiers rather than specializing them (as this already

occurs effectively during the Anticipatory Learning stage).

Assuming th a t the system converges to a stable population, a model will

emerge inside the system tha t provides a condensed temporal representation of

how a set of possible actions for all known condition will affect the environment.

Due to the focus on maintaining high quality predictions without full regard for

the reward attained, the model itself covers as much of the area as the system

is trained on. Furthermore, due to the reinforcement learning component of

ALCS, it is possible to ascertain the desirability of each alternative action for

a given environment state.

The complete architecture of the system is shown in Figure 2.1.

Classifier
Population

L
Condition
Perception

Match Set
Generation

Match Set
[Ml

J R E
Genetic

Algorithm

Environment

Reward

7
Effect
Perception

Reinforcement
Learning

Anticipatory
Learning

Action
Selection

Action Set
[AJ

Figure 2.1: Structure of ALCS

The advantage of holding an anticipation value for an intelligent system,

in addition to a condition-action pair, comes directly from psychology [35].

It has been shown through animal experiments th a t many behaviors are far

more complex than what can be modeled using classical Pavlovian behavior

of Stimulus-Response [36]. Animals, and Humans in particular, are capable of

forming models of their environments without receiving any direct reward from

the surroundings, and yet they are extremely capable of using this knowledge

“when the time is right” .

A classical demonstration of this fact comes from ra t in maze experi-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ments [37] [38]. These experiments are conducted in two phases. In the

first phase, each individual from a group of the rodent subjects is allowed

to explore given maze with no food present. After this exploratory phase,

a desirable treat for the ra t is placed in a goal location and the ra t is placed

at the starting position. The time is measured to see how long it will take

the ra t to find its treat. In the second phase of the experiment, a different

set of ra ts is used to measure how long they will take to find the desirable

treat from a starting position without first being allowed to explore the maze.

It has been shown conclusively tha t the rats which have previously explored

the maze have a significantly faster search time than those which did not have

the opportunity to explore the maze. Hence, it can be concluded tha t latent

learning does occur, where the rats do form a representation of the maze and

are able to use this representation to find the goal much faster.

More so, it is well known tha t human thinking is far more complex than

just responding to stimuli. We are able to choose a particular course of action

depending on what we perceive to be the most desirable outcome and we can

predict what outcome our actions will have.

Hence, it can be easily seen th a t the main advantage of using anticipations

in a control system for a robot or agent is tha t it can learn its environment

without having to be given an explicit reward. W ith such an approach, it

can be placed in an unknown surrounding, and allowed to explore it initially

without having any direct goal. Upon introducing an objective, the robot or

agent can atta in this objective rather than relying on a pure reward mecha

nism. This has been illustrated by replicating an experiment similar to the

aforementioned ra t experiment using Khepera robots [39].

2.4 Fuzzy Logic

Fuzzy logic [40] [41] was originally introduced by Zadeh [42] in the 1960’s as

a way to represent imprecise human knowledge in a more formal mathematical

manner. Classical boolean logic deals with absolutes: either something is true

or it not, something is part of a set or is excluded from a set. However, in the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

real world, not everything can be stated in such absolutes; many concepts have

degrees of truthfulness and degrees of belongingness to different sets. Further

more, humans usually use general and approximate expressions of information

on a daily basis as opposed to using precise quantities. As such, it is difficult

to map the vague information into classical mathematical formulations.

To accommodate qualitative knowledge, fuzzy logic utilizes the notion of

fuzzy membership functions. This allows a specific instance x from the domain,

termed universe o f discourse of AT, to have a range of possible membership

to a particular set, A, between 0 and 1. Thus, when the belongingness or

membership is given as 0, x is completely excluded from the set A and when

the membership is 1 it is completely included in A. The real advantage comes

from the range of values in between 0 and 1 which allows a complete range of

degree of belongingness to the set. Examples of possible membership function

types include the delta function, trapezoid function, sigmoid function, Gaus

sian function, generalized bell function, and so forth. The basis for the fuzzy

membership function is shown in Formula 2.4 below:

p A (ar) : X - [0,1] (2.4)

By associating linguistic descriptors with membership functions, one is

able to encode imprecise human concepts such as “near” and “far” , “hot” and

“cold” to varying degrees of belongingness on a range of possible values in the

universe of discourse.

The different operators such as AND, OR, NOT, union, etc are defined

in fuzzy logic through appropriate mathematical operators th a t meet specific

criteria. This allows one to use fuzzy logic in normal boolean algebra equations.

For specifics, see [41].

To obtain a crisp set of elements belonging to fuzzy set A whose degree

of membership is equal or greater than a particular threshold value a, an

alpha cut is taken of the membership function. This process is defined by

Formula 2.5:

A a = {x 6 X \ p A (x) > a } , a € [0,1] (2.5)

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to encode human knowledge with fuzzy logic, a set of if-then

or if-then-else rules is utilized which allows an expert to encode associations

between a condition or antecedent with a particular output, or consequent.

As such, they take on the form of IF condition X is x% then output Y is y,

where x and y are fuzzy values as opposed to specific numerical values. To

accommodate for more complex input space, separate antecedents are stringed

together though the use of the AND operator.

To obtain a specific output or inference, I, from the knowledge base of

fuzzy rules, R, a process known as the compositional rule of inference (CRI)

is utilized. This process forms an agregate function composed of the current

data D along with the entire set of fuzzy rules present. This is formally stated

in Formula 2.6:

I = D o R (2.6)

Furthermore, the actual membership function obtained from the CRI pro

cess is defined as:

Hi = sup min (pD, hr) (2.7)

In order to obtain a crisp numerical value which can be utilized by a real-

world process from an output u, a defuzzification process is employed which

either employs a threshold method such as an a-cut or a weighted combination

of the rule inferences. One such possibility is the center of gravity method

which finds the centroid of a given inference membership function. This is

shown in Formula 2.8:

f u ■ p i (u) du
u = *■■■ , w (2.8)

J hi (u) du
U

The typical structure of a fuzzy controller is illustrated in Figure 2.2. First,

a real-world value is passed through a fuzzification stage where its belonging

ness to different fuzzy membership functions is assessed. Next, the fuzzifed

value is used to perform a composition of the different rules present in the fuzzy

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rule base by means of an inference engine. Finally, the composite function is

defuzzified to give a resulting crisp output which is then utilized by given

application. It is also possible to have a closed-loop feedback system which

utilizes sensors to observe the actual outcome of the controller and compare it

against the desired value. This is the reprocessed back into the fuzzification

stage to repeat the cycle and infer the next output value.

actual response from senso rs

ProcessFuzzification Defuzzification

Fuzzy Rule Base

Inference Engine

Error A ssessm ent

Figure 2.2: Structure of a typical fuzzy controller

Fuzzy logic control systems are particularly well suited for applications

where it is not possible to form a model of the process itself but rather it is

necessary to rely on a set of known good heuristic rules that dictate what action

to perform for a set of input conditions. In addition, control systems based

on fuzzy logic have the advantage of transparency to a human user. They

encode the solution to the control problem in a readily recognizable form thus

allowing for easy analysis and modification by an expert [43]. Furthermore,

through the inherent ambiguity present, the fuzzy controllers are able to handle

continuous ranges without overcomplicated mathematical formulations, which

consequently help to preserve the simplicity of a compact human readable rule

base. Fuzzy logic controllers are also able to gracefully handle noisy inputs

th a t normally exist in real-world systems without causing erratic behavior.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

FALCS Architecture

This chapter documents the development of the Fuzzy Anticipatory Learning

Classifier System (FALCS) and describes all the underlying mechanisms which

allow it to function. It describes the concepts borrowed from Fuzzy Logic to

extend the parent Anticipatory Learning Classifier System (ALCS) to work

with real-valued problems, as well as modifications performed upon ALCS to

allow it to transparently use the fuzzified classifiers.

3.1 S ystem O verview

The structure of the FALCS system can be seen in Figure 3.1. The description

of the individual components is described in the proceeding sections.

3.2 Fuzzy Classifier

For the transparent operation of the Anticipatory Learning Classifier System

with real-valued inputs, the use of the bitstring based classifiers has been

replaced by sequences of functions. The condition bitstring effectively becomes

a set of fuzzy membership functions based on generalized bell functions.

The action bitstring becomes a set of singleton variables which can take

on a number of predefined numerical values, hence they are referred to as

“granulated” singleton bits in this thesis. The rationale behind using discrete

intervals for the actual actions is to allow for the learning mechanisms to op

erate effectively upon the classifiers, in particular when determining if two

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\ ' ' AnfibipafoqC r
^ . Lbarning.^^ ,/j - Reinforcement

I Learning

. r "" G'erielic...

Figure 3.1: Overall structure of FALCS

classifiers perform the same action. It should be noted th a t a full range nu

merical output values emerges through the use of defuzzification, as described

in Section 3.6.2. The number of granules can be directly related to the con

cept of fuzzy resolution, where the greater the number of granules, the finer

the resolution and, subsequently, control. However, the tradeoff is a signifi

cant increase in the population size as well as training time required to learn

the finer control rules. Also, using a smaller number of granules reduces the

possibility of falling into a local minima and taking a long time to escape from

it. The tradeoff off is a more general solution which is learnt faster.

Finally, the effect bitstring becomes a set of fuzzy membership functions

based on the generalized bell function. However, default w idth of these func

tions is much narrower compared to tha t of the condition bitstring and the

overall shape is much sharper i.e. it has a more trapezoidal shape as opposed

to a bell shape as illustrated in Figure 3.2.

The complete triplet, cl, is shown below in Formula 3.1.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

Q.
f2

0.4

0.2

0.8 10.2 0.4 0.60
Crisp Value

Figure 3.2: Example of fuzzy membership functions utilized

C = l p Cl {x) ,nc2{x), . . . , ficdp (a r) J -
d =z) A = {fiAi (x) , / ia2 (x) , . . . , nAda (x) j ^ ^

E = |/*j& (x) , he2 { x) , . . . , HEdp (x) |
internal parameters

where:

C is the classifier’s condition fuzzy membership function set

A is the classifier’s action fuzzy membership function set

E is the classifier’s effect fuzzy membership function set

dp is the perceivable dimensionality

da is the actable dimensionality

The concept of markset is no longer present inside the fuzzy classifiers due

to feasibility and effectiveness issues. It has been replaced with an alternative

form more appropriate for the method of encoding the input conditions. This

is further described in Section 3.8.1.

The indicative parameters present in each classifier system are the same as

those of the Anticipatory Learning Classifier System.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 R u le G eneration

In order for the learning classifier system to be useful, a population of rules

embodied as classifiers must exist. These classifiers are the means through

which the system learns i.e. stores knowledge and interacts with its surround

ings. Thus, to allow for consistent and effective learning, well-defined classifier

generation m ethod must be devised.

3.3.1 R andom Classifiers

In order to bootstrap the system during the first stage of learning, an initial

random set of classifiers is generated according to Formula 3.2. These clas

sifies are limited in number and have different but relatively general input

conditions, each with different random actions whose effect will be imparted

onto the environment. This allows for an initial fast exploration of the work

ing environment in the hopes tha t at least some will provide a seed for new

classifiers to be generated. However, for complex and high-dimensional en

vironments, this method provides limited utility due to the low probability

of actually finding the correct condition-action-effect combination, even with

fairly general inputs.

x —R an d o m (0 ,l)
0 .5 R an d o m (0 ,iw c)

2sc \

HAi{%) — & (x — Random (0,1))

m i x) 0.5-Random (0,iw E)
g —R andom (Q ,l)

(3.2)

q = lq
r — ir
n = 1
e = 1

where:

fiCj (x) is the classifier’s condition membership function for input j

HAj (x) is the classifier’s action membership function for input j

fiEj (x) is the classifier’s effect membership function for input j

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<5 (x) is a delta/singleton function

cl.q is the classifier’s quality parameter

cl.r is the classifier’s reward prediction parameter

cl.n is the classifier’s numerosity

cl.e is the classifier’s experience

iw is the initial membership function width

s is the membership function sharpness modifier

3.3.2 Covering

The main process through which classifiers are created inside the Fuzzy An

ticipatory Learning Classifier system, is known as covering. Each time tha t

a condition-action-effect triplet is encountered and no existing classifier matches

the input, action and output sequence, or when no classifier with adequate

quality exists, a new classifier is generated such th a t it matches the triplet

sequence observed in the environment as shown in Formula 3.3. O ther pa

rameters such as initial reward and quality are set to default values (see Sec

tion A. 1.1 in the Appendix for details). This initial classifier generated through

the covering procedure is then handed off to the classifier insertion mechanism

(described in Section 3.8.2), which aims to reduce redundancy and increase

the generality of the population. Therefore, there is no guarantee tha t this

particular instance will actually be part of the population. If the newly gen

erated classifier can be merged with an existing classifier, a merging process

described in Section 3.8.4 is performed.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f*Ci(x)

VAiix)

c l= ^ (*)

6(x - di (t))

(-l I z - g , - (t + 1) 2 5 B1 I a?-g, t̂+
0.5lt?£; (3.3)

where:

<r (t) is the environment condition perception at time t

He, (x) is the classifier’s condition membership function for input j

Ha0 {x) is the classifier’s action membership function for input j

HEj(x) is the classifier’s effect membership function for input j

5 (x) is a delta/singleton function

a (t) is the action taken at time t

q is the classifier’s quality parameter

r is the classifier’s reward prediction parameter

n is the classifier’s numerosity

e is the classifier’s experience

w is the initial membership function width

s is the initial membership function sharpness modifier

3.4 M atch Set G eneration

Upon probing the environment for a numerical representation of the current

situation, the first step of the Fuzzy Anticipatory Learning Classifier algorithm

is to generate a Match Set [M] in a manner similar to the original algorithm.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each classifier inside the population is checked for match with the current

environmental perception. The degree to which a given classifier matches

a given input is determined by an average of all the condition fuzzy membership

functions. This is illustrated by Formula 3.4. It should be noted th a t if

a particular membership function is denoted as a don’tcare, the value of the

membership function is automatically set to fic (x) = 1.0.

dp

E hC2 ((Tj)

Mm (*) = (3-4)

where:

is the degree of match membership function

a is the environment condition perception

dp is the environment condition perception dimensionality

Hc2 (x) is the classifiers condition membership function for input j

If the degree of match is above a predefined threshold, a T , the classifier is

deemed to match the current situation.

doesMatch (a, cli) = (cr) > ocT (3-5)

where:

a is the environment condition perception

a T is the acceptance threshold param eter (i.e. alpha-level)

The given classifier is added to the Match Set population as show in For

mula 3.6.

[M] (t) — {cl € [IV] | doesMatch (a (t) , c£)} (3.6)

where:

[M] (t) is the M atch Set at time t

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[N] is the classifier population

a (t) is the environment condition perception at time t

3.4.1 A ctable Set Generation

In situations were it is known that certain actions cannot be performed due to

physical or other constraints, it is possible to integrate this knowledge directly

into the system for faster learning. This is done by creating an Actable Set,

[C], which contains all classifiers from the Match Set which do not include

a Disallowed Action Set, D. This process is stated formally in the formula

below:

[C] (t) - {cl € [M] (t) |d .A % D} (3.7)

where:

[C] (t) is the Actable Set a t time t

[M] (t) is the Match Set at time t

D is the disallowed actions set

While forming an Actable Set is not explicitly required for proper system

operation, it helps to speed up the learning process by disregarding certain

types of actions th a t should always be excluded. The disadvantage of using

this method is th a t the model inside FALCS does not contain these undesir

able actions. If such behavior is desirable, the Actable Set is used in place

of the M atch Set for classifier selection, Acting Set generation and learning

algorithms.

3.5 R u le Selection

In order to choose an action to impart onto the environment, a mechanism

needs to be in place to select a winning classifier, i.e. the classifier which

best represents the given state of the environment and whose action will be

utilized to form the action to be imparted onto the working environment. To

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accomplish this objective within the FALCS architecture, five major meth

ods of selecting classifiers have been implemented. Each method has its own

benefits and appropriate situations when it is most useful.

3.5.1 M ax Q-R

The first classifier selection mechanism comes directly from the parent ALCS

algorithm. It is based on an elitist selection ideology tha t deems the winning

classifier the one which has the highest predictive quality of the next state of

the working environment and at the same time provides the highest reward

from the environment as described by Formula 3.8. The methodology behind

this selection mechanism can be seen as a greedy best-first search strategy [44]

which aims to maximize the short term profit without explicitly taking into

consideration any long term strategy. However, this provides an excellent

method for choosing an action when a non detrimental step needs to be taken,

such as during active system operation when the system should not try to

perform actions th a t have not been verified to be acceptable. Furthermore,

this selection mechanism provides the fastest means of selecting the action, and

may be the only viable means of choosing an action under real-time constraints

within a large population. This process is shown in Formula 3.8:

clw = argm ax (cl.q ■ cl.r) (3.8)
cie\M](t)

where:

clw is the winning classifier

[M] (t) is the M atch Set at time t

cl.r is the classifier’s reward prediction param eter

cl.q is the classifier’s quality parameter

To form the actual Acting Set, [T] which will later be used to calculate the

actual crisp action, the top naci classifiers selected using the above formula are

inserted into [T].

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.2 B est Known A ction

When working with real-valued inputs in large dimensional spaces, it can be

expected th a t no matching classifiers will be present for numerous input situa

tions, especially during the initial training phase. Relying solely on using ran

dom actions to fill this void would be a significant impediment to the learning

mechanism in the learning classifier system. This is because of the enormous

search space which would need to be handled to find a single adequate solu

tion. However, due to the use of fuzzy logic, it is possible to choose the best

matching classifier from the existing population, even if the match degree of

the best matching classifier is below the acceptable threshold. This process

is illustrated in Formula 3.9. This best matching classifier is selected as the

winner and is utilized as if it were normally chosen by the other selection mech

anisms. The actual crisp numerical value is calculated in the same manner as

for fully matching classifiers, as presented in Section 3.6.2.

clw (t) = argm ax (degreeMatch (a (t) , cl)) (3-9)
cie[JV]

where:

clw is the winning classifier

[N] is the classifier population

a (t) is the environmental perception

When the selected classifier’s action is utilized, one of two situations may

occur. First, a new classifier will be generated and an attem pt will be made

to add it to the population. Due to the generalization mechanism in place

(see Section 3.8.2), it is very likely tha t it will be merged with the classi

fier which spawned the action. Secondly, if the action performed was deemed

detrimental, i.e. the immediate reward is below the m in r threshold, the condi

tion membership functions of the originally spawning classifiers will be shifted

away from the triggering condition by means of the ALP function learning

procedure described in Algorithm 3. It should be noted tha t the user must set

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the m inr value to a level which indicates what actions receiving an immediate

reward value below the specified threshold are never acceptable. Furthermore,

due to the fact th a t the newly generated classifier has a reward value below

m inr, an exploratory action (described in Section 3.5.5) will be utilized.

3.5.3 R oulette W heel Selection

In order to improve upon the exploratory mechanisms present inside FALCS,

a roulette wheel selection mechanism has been introduced as an alternative

rule selection mechanism. Roulette wheel selection mechanisms are commonly

used in genetic algorithms to select chromosome for genetic operators. The

particular implementation used for classifier selection inside FALCS is detailed

in Algorithm 1.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 1: RouletteSelect
Input : M atch Set [M]

O utput: W inning classifier clw

begin
m r *— min (cl.r)

de[M] '
1[MJ|

s <— (di-n • cli.q ■ (cZj.r — m r))
i—1

p *— s • Random (0,1)

i *- l , j <- 0

repeat
j *- j + (cli.n ■ ch.q • (cli.r — m r))d

i *— i + 1
until j > s

return cli
end

where:

cl.r is the classifier’s reward prediction parameter

cl.q is the classifier’s quality parameter

cl.n is the classifier’s numerosity

d is a small factor, altering the selection probability difference between

strongest candidate and weakest candidate

The benefit of using the roulette wheel as opposed to the elitist selection

stems from the likely selection of higher quality classifiers while still allowing

less proven classifiers to be selected, although with much smaller probability.

As such, it eliminates the dominance of high quality classifiers from monop

olizing and thus focusing on a niche in the environment. Thus, the method

provides a broader range of actions, all of which may be beneficial to the de

sired solution. It can also discover previously unexplored paths to the system’s

objective which would have otherwise been ignored.

> For more cooperative action generation, this classifier selection method

is also used to select a predefined number of classifiers, dictated by the naci

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variable, for insertion into the Acting Set, [T], to perform an action. This

allows for cooperative action generation as with the Max Q-R method, but

also for varied combinations of classifier’s actions, given th a t the probability

of a classifiers selection is in proportion to its quality and reward value.

While this selection mechanism is excellent for training an initial classifier

population to a completely unknown environment, due to the randomness

of the rule selection mechanism it may not be an ideal candidate for use in

a production operating environment. This is due to the fact th a t it may

lead to a previously unencountered state which is not desirable when only

exploitative operation is required i.e. when only proven solutions are to be

utilized. Therefore, for these types of situations it is best to use the roulette

wheel selection mechanism during the initial phase of training, and then switch

to a more stable action selection mechanism such as the “Max Q-R” and the

“Best Known Action” .

3.5.4 Desired Effect

This method of selection comes from the fact tha t the system provides an

anticipated effect of each classifier’s action. Hence, after an initial training

tha t builds up an effective population of rule triplets, it is possible to choose

the action based on the desired effect tha t will occur in given environment as

shown in Formula 3.10. This is of particular use when one wishes to use more

complex action planning algorithms.

clw (t) = argm ax (degreeSimilar (de, cl.E)) (3.10)
d e [M]

where:

d w is the winning classifier

[M] is the Match Set

de is the desired outcome in the environment

E is the classifier’s Effect

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, unlike the parent Anticipatory Learning Classifier System, the

possibility of chaining rules in a forward manner i.e. performing plan ahead is

not readily possible in the current FALCS implementation. This is due to the

fact th a t the fuzzy output prediction does not specify an exact output like in

the discrete case. It is not known to which particular state an action will lead;

rather a rough estim ate of the different possible number of states which are

very similar to each other is known, and these states are considered the same

when presented to a FALCS classifier.

3.5.5 Exploratory Actions

In order to facilitate a life-long learning process, the concept of taking ex

ploratory actions was incorporated from previous classifier systems (including

ALCS) into the FALCS architecture. Exploratory actions are required in the

classifier system to prevent the learning classifier system from stagnating in

a suboptimal state such as being stuck at local minima, both in terms of the

reward attainable from the environment as well as from attaining the best

possible predictions for future outcomes. W ithout such actions, the system

would continue to choose the current elite classifiers without taking into con

sideration th a t better actions are possible. Also, it would never recognize tha t

the current action being performed may not be the best suited alternative.

To allow for exploratory actions within FALCS, a fuzzy membership func

tion generator has been designed to generate new singleton action bits in one

of two ways. For environments where only a single action is possible i.e. only

one of the outputs may be active at a time, a random action generator first

chooses a particular output bit, and then assigns a random value (singleton

function) in the allowed output range. However, for environments where all

bits can take on different random values, all action bits are randomized.

No m atter which main classifier selection method is used, a probability

function exists where a random action is chosen if a drawn random number

falls below an exploration probability threshold, e. This ensures th a t the learn

ing classifier system is able to discover previously unseen alternatives which

would be otherwise missed. Furthermore, when only a single classifier is in-

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

serted into the Acting Set, and its reward value is below the m in r threshold,

tem pt to find an action tha t would be deemed more acceptable by the working

environment.

3.6 A ction G eneration

3.6.1 D iscrete O utput

When the environment upon which FALCS operates does not require (or does

not accept) real-valued actions, the system can use the granulated singleton

bits as discrete symbols for outputs. Also, in such a configuration, only one

winning classifier needs to be selected for insertion to the Acting Set, [T], i.e.

nad — 1 • In this case, the degree the winning classifier matches given situation

can be seen as its corresponding confidence value.

3.6.2 Real-valued Output

The classifier’s condition membership function is augmented by a scaled reward

component as shown in Formula 3.11. The inclusion of the reward scaling is

to reduce/eliminate the utilization of detrimental actions in the solution.

fid. is the classifier’s effective condition membership function for action

generation

He- is the classifier’s condition membership function

r is the given classifier’s reward

In the case tha t real-valued actions are desirable, naci classifiers in the

Acting Set, [T], are composed together as shown in into the composed function

I , Formula 3.12. Each classifier keeps track of its contribution to the solution,

the exploratory action generation mechanism will also be utilized in an at-

min
de\T]

max (cl.r) — min (cl.r)
c(e[T] de[T]

where:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k . This whole process effectively forms what could be seen as the inference

engine in a classical Fuzzy Control system.

I = P o [T \ .C (3.12)

where:

P is the set of perceived environmental data

[T] is the Acting Set

C is the set of classifier’s condition membership functions

/ is the composed inference

Hi (p) = maxm in(/ija,/ic'') (3.13)

where:

Hi is the composed inference membership function

Hp is the membership function of the perceived environment condition

He is the classifier’s condition membership function (see Formula 3.11)

S is domain of possible perceptions P

The crisp value, which is then presented to the working environment as

the action to be im parted onto, is determined through the a Center of Gravity

(CoG) defuzzificaton process. This is illustrated by Formula 3.14

f a h i (o) da

a ~ I \ rl (3-14)J hi {v) da
p

where:

a is the generated action to be imparted onto the environment

a is the perceived environmental situation

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P is the set of perceived environmental data

Hi is the composed fuzzy membership function

A top-down view of the actual action generation procedure is provided

Figure 3.3.

Population Set [N]

Classifier M embership
Functional

deg ree m atch &
reward factor "

Action

Classifier M embership
Function(s)

Acting Set [T]
Classifier M embership

Function (s)

Classifier M embership
Functions)

Environment
Classifier Membership

Function(s)
degree m atch &
reward factor r

Classifier M embership
Function(s)

Im plicit Fuzzification-like C o m p o sitio n a l R ule D efuzzification
o f In fe re n c e (CRI)

Figure 3.3: Structure of FALCS action generation mechanism

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7 A ction Sets G eneration

3.7.1 A ction Set

To properly credit all classifiers which correspond to the generated action,

an Action Set, [A], is formed in a manner similar to the parent Anticipatory

Learning Classifier System. The most dominant classifier which has the great

est impact on the solution is automatically inserted into this set. In addition,

all classifiers th a t match the given chosen action are also inserted into this set.

[A] (t) = {cl € [M] (t) |cl.A ~ a (<)} (3.15)

[A](i) is the Action Set at time t

[M)(t) is the Match Set at time t

cl.A is the classifier’s action

a(t) is action performed at time t

3.7.2 Contribution Set

To allow for learning to occur in classifiers which contributed to the solution

via the fuzzy composition and defuzzification steps (i.e. are present in the

Acting Set [T], but are not included within the Action Set because they do

not have the same type of action as tha t which has been ultimately generated)

a Contribution Set, [K], is formed according to Formula 3.16. This set includes

all classifiers which are not part of the Action Set but made a contribution to

the solution greater than a predefined threshold k > m in K.

[.K] (t) = {cl 6 [T] (t)\cl.K > mink, cl [A] (t)} (3.16)

where:

[A](t) is the Contribution Set at time t

[T](t) is the Acting Set at time t

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[A](t) is the Action Set at time t

k is the classifier’s contribution to the action

m in K is minimum contribution amount required for accreditation

3.7.3 Chained Set

Each effect in the classifier is dependent on the previous action. In many

situations, such as in robot navigation, the difference between a given state and

the next may be very small. To compensate for this, a stack of n ch classifiers is

maintained to provide the learning mechanisms a means of identifying which

classifiers were used in sequence to attain given consequence in the environment

as show in Formula 3.17. It should be noted however, tha t this set only contains

winning classifiers, and does not account for other classifiers such as those in

the Action and Contribution Sets.

[H] (t) = {cl € [N] \IsM ainC lassif i e r (cl (u)) , t > u > (t — nch)} (3-17)

where:

[.H] (t) is the stack of classifiers at time t

n Ch is the length of the chain

[N] is the classifier population Set

3.8 A n tic ip atory Learning P rocess

The majority of the anticipatory learning concepts implemented in the ALCS

algorithm were incorporated into FALCS in their original spirit while allowing

for learning to take place with the fuzzy membership functions as opposed to

discrete symbols. However, many changes have been made to allow learning

for more general fuzzy membership functions. A generalized overview of the

main methodology behind the anticipatory learning process utilized in FALCS

can be seen in Algorithm 2.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o rith m 2: AntieipatoryLearningProcess
b eg in

fo reach cl E [A] do
increment cl.e

update learning timestamp

if does cl anticipate outcome correctly th e n
if cl.r similar to p th e n

increase condition matching

e n d

increment cl.q according to Formula 2.2
else

decrease condition matching

decrement cl.q

create more specialized classifier based on cl if possible

if cl.q < th e n
Delete (cl)

e n d
en d

en d
e n d ___

3.8.1 Function Learning

The Anticipatory Classifier System parent algorithm utilized a concept of mark

bits to note each input condition where a classifier failed to correctly predict

the next sta te of its working environment. This enabled the system to evolve

a population which would minimize the number of incorrectly predicted out

comes while a t the same time allow a partially working population to exist.

Directly importing this concept into the real-domain where each incorrect in

put condition would be noted is not feasible due to the boundless number

of marks th a t could be generated per classifier. Furthermore, utilizing these

marks would prove challenging due to the need for an equality operator which

would need to compare if a mark already exists in a system or not: it would

be necessary to define how close must a particular value be to be considered

equivalent. Small variations of this threshold could have vastly significant

influence on the learning characteristics.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The remedy for this dilemma follows directly from the utilization of the

expanding and contracting membership functions. Because each “bit” in the

classifier’s bitstring is in fact a fuzzy membership function, it is possible to

note the positions of inputs where the classifier fails to generate correct re

sults. Thus, every time a classifier is utilized to generate an action for given

condition, if the effect is not correctly anticipated, the current classifiers qual

ity is decremented as shown in Formula 2.2. Furthermore, each membership

function composing the classifier condition string is contracted away from the

input situation by a rate dictated by the function learning param eter ijfi. Also,

if the given input value for a particular membership function is between the

two bounds for th a t particular bit, the nearest bound is shifted towards the

input value by a degree dictated by the boundary learning rate, rjbi.

The major idea behind using the bounds is to avoid oscillations where the

input membership functions would expand in a particular phase of learning

and then contract in another phase. The added benefit is the higher quality

value tha t a given classifier will attain as it will not need to be reprimanded

for firing due to too general condition bitstrings.

The two main procedures utilized in the function learning process are the

enhance and inhibit matching shown in Algorithms 3 and 4 respectively.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o rith m 3: EnhanceMatching
In p u t: membership function h a {x) , crisp value v

b eg in
c <— center of h a {x)

I <— argm in (/xa (x) > 0.5)
x e x

r <— argm ax (ha (x) > 0.5)
x&X

if v < c th e n
d <— max (I — v, 0)

I' <— max (I — rjfi • d, bi)

r' <— r
e lse

d <— max (v — r, 0)

r' <— min (r + rffi ■ d, br)

I' <— I
en d

i f I' (a I AND r’ « r th e n
increase sharpness of /j.a{x)

e n d

adjust ^^(x) such th a t ha(1') ~ 0.5 and f iA(r') & 0.5
e n d

where:

6/ is the left boundary

br is the right boundary

rift is the function learning rate

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o rith m 4: InhibitMatching
In p u t: membership function fJ.A(x), crisp value v

beg in
c <— center of n A(x)

I <— argm in (nA (x) > 0.5)
xex

r <— arg max (/uA (x) > 0.5)
xex

if v < c th e n
d *— max (v — 1,0)

V *— max (I + rjfi ■ d, bt)

r' *— r

if v > bi th e n
b i* - b t + rju (v - b{)

e n d
else

d max (r — v, 0)

r ' <— min (r — rjft ■ d, br)

I1 <— I

if v < b r th e n
br * br T]bl (pr n)

en d
e n d

if V sa I AND r’ r th e n
decrease sharpness of fiA(x)

en d

adjust p A(x) such tha t fiA(l') « 0.5 and / i ^ r 7) ~ 0.5
end

where:

bt is the left boundary

br is the right boundary

rjfi is the function learning rate

rjbt is the boundary learning rate

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.8.2 Insertion

Before a classifier is inserted into the population, it is first verified tha t it does

not already exist or it is not subsumed by another classifier.

In order to avoid adding redundant classifiers, while at the same time

ensuring th a t the most fit classifiers are promoted, a subsumption check is

performed each time a new classifier is added into the population. This pro

cedure is a set of checks with aim to find either a more general classifier which

subsumes the insertion candidate or an existing classifier which is similar to

a prescribed degree to the candidate. If a subsuming classifier is found, then

its numerosity param eter is increased as is its quality. Furthermore, the clas

sifier’s condition and effect membership functions are checked and adjusted

if necessary to better match the condition and effect which spawned the new

insertion candidate.

If a subsuming classifier is not found, the population is then checked for

classifiers th a t could be joined together with the insertion candidate. If this

is possible, the new candidate is merged into a clone of the already existing

classifier and is inserted into the population. This is to ensure tha t an al

ready good classifier is not destroyed in the merging process, in case the new

combination does not prove effective (i.e. its condition is too general or the

predicted effect is too broad and covers too wide of a range of possibilities)

Otherwise, the new candidate classifier is inserted into the population nor

mally.

3.8.3 Subsum ption

In order to reduce the number of redundant classifiers and to promote the de

velopment of highly reliable yet as general as possible classifiers, a subsumption

check algorithm has been incorporated into FALCS. In principle, this check

operates much in the same manner as in the original Anticipatory Learning

Classifier System.

This procedure performs a series of checks between two classifiers as out

lined in Algorithm 5 listed below. It is run iteratively upon the entire popu-

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lation, whereby a discovered subsumer becomes the candidate and terminates

when all possible classifiers have been checked. The last classifier to success

fully pass all the checks subsumes the original candidate.

A lg o rith m 5: SubsumptionTest
In p u t: original classifier ocj . candidate classifier cd

b eg in
if od .condition D cd .condition AND

od .action = cd .action AND

od .effect D cd . effect AND

od function bounds < cd function bounds AND

od .quality > cd .quality AND

od .reward > cd .reward AND

od . experience > cd . experience

th e n
r e tu r n od subsumes cd

e lse
r e tu r n od does not subsume cd

e n d
en d ______________________

These checks are aimed at finding the most general classifier possible while

at the same time ensuring tha t the chosen classifier has the highest possible

predictive quality and is beneficial to the working environment.

This check is needed to ensure tha t we only throw away candidate classi

fiers if there indeed exists a proven classifier th a t is more general and is well

performing as opposed to a freshly inserted general classifier whose condition

and effect may be a superset of the candidate but in reality its performance is

poor due to the fact tha t it has not yet been fully taught and evaluated. Fur

thermore, it is needed to ensure tha t we find the most fitting individual from

a set of similar classifiers for further enhancement as opposed to a random

choice. Moreover, the checks ensure tha t the subsuming classifier has better

experience, thus it has more reliable knowledge about the condition-action-

effect mapping, resulting in a more stable classifier population.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.8.4 M erging

In order to ensure tha t only similar classifiers are merged, a set of criteria must

be met:

• both classifiers’ must correspond to the same action

• a t least one of the fuzzy membership function bits inside the condition

or effect bitstring can be combined together (as shown in Figure 3.4).

• both classifiers’ quality parameters must be greater than the reliability

threshold, Qq

• both classifiers’ reward prediction parameters must be greater than the

inadequacy threshold, 6r

• the classifiers’ quality parameters must not differ more than A q

• the classifiers’ reward prediction parameters must not differ more than

A r

• both classifiers’ experience must be greater than the experience thresh

old, 0e

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) One function completely overlaps another

(b) One function partially

t

inpul

02'

fr«02

(c) Two touching side-by-side functions

Figure 3.4: Range of allowable cases for membership function merging

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If all the aforementioned conditions are met, then the two classifiers can

be merged. The reward param eter is merged together based on a weighted

average with the classifier’s experience and numerosity value (i.e. how many

individual classifier instances would exist if no merging and subsumption check

were used) are added up together. The quality parameter is the lowest value

of the two classifiers and the remaining parameters are summed together.

The effective computation of these new values is illustrated in Formula 3.18.

Each fuzzy membership bit is combined together with the other corresponding

membership value and the bounds are merged together based on the most

restrictive possible combination.

' C = Merge (clx.C, cl2.C)

clL-tm
r — clj .r c h .ncl i .e+cl 2 .T'dz.ncl^.e

d\.T i'd i .e+cl.2 .ri'C/2 e
q = min (cl\.q, ch-q) (3.18)
n = cl\.n + cl2 -n
e = cl\.e + d 2-e

where:

clm is the newly merged classifier

C is the set of Condition fuzzy membership functions

r is the classifier’s reward prediction param eter

q is the classifier’s quality parameter

e is the classifier’s experience

n is the classifier’s numerosity

3.9 R einforcem ent Learning P rocess

Due to the changes in the manner tha t a given classifier’s action is transformed

into an action im parted onto the environment, the reinforcement learning algo

rithm method used in FALCS must account for the varying amount of contri

bution tha t each classifier carries in generating given action which then leads

to the particular consequence.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The classifiers present in the Action Set are allocated a reward amount

in the same manner as tha t in the parent ALCS algorithm, as show in For

mula 3.19.

cl.r' — cl.r + nri (p + 7 max (cl.q ■ cl.r) — cl.r
\ de[M](t+1)

(3.19)

where:

cl.r1 is the classifier’s new reward prediction parameter

cl.r is the classifier’s previous reward prediction parameter

p is the reward message from the environment

rjri is the reinforcement learning rate

7 is the discount factor

To account for the fact tha t pervious actions have an effect for the current

situations, the ncs previous acting classifiers are updated with a small reward

dictated by learning rate augmented by a factor whose magnitude is inversely

proportional to the classifiers position in the chain, P /i. This results in an ex

ponentially decreasing reward. The complete rewarding function is illustrated

in Formula 3.20

cl.r' is the classifier’s new reward prediction parameter

cl.r is the classifier’s previous reward prediction param eter

p is the reward message from the environment

p is the learning rate augmenting factor

i is the position of a given classifier in the chain

rjri is the reinforcement learning rate

d .r ' = cl.r + p + 7 max (cl.q ■ d .r) — cl.r
de[M](t+1)

(3.20)

where:

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 is the discount factor

Classifiers having a substantial effect on the solution need to be rewarded

for their contribution. Therefore, each classifier from the Contributing Set has

its reward param eter updated in a manner similar to tha t of the main Action

Set. To reflect their limited role, a smaller learning rate, r/r;K, is used and

the degree to which they matched the input condition is accounted for. The

augmented update formula has the following form:

d .r ' is the classifier’s new reward prediction param eter

d .r is the classifier’s previous reward prediction param eter

p is the reward message from the environment

k is the classifier’s contribution to an action

rfriK is the contribution set reinforcement learning rate

7 is the discount factor

3.10 G en etic G eneralization

The main concept behind the genetic generalization is very similar to the par

ent Anticipatory Learning Classifier System method. However, rather than

working on individual discrete symbols, the GA works upon sets of mem

bership values. It should be noted, tha t the genetic algorithm operates on

whole membership functions and does not split or recombine functions to

gether. A major change is the extension of the m utation operator tha t can

expand the membership functions to include a wider range of possible inputs

which provide a valid match as opposed to just being able to set a particular

bit as a don’tcare. The effect of settings a bit to a don’tcare value can be seen

as setting the membership value to a constant of 1 i.e. Pa {x) — 1.

max
cie[M](t+i)

(3.21)

where:

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.11 P op u lation C ontrol

Due to the immense expansion in the search space cased by the inclusion of

real-valued ranges as inputs, actions and outputs, additional mechanisms must

be considered to ensure tha t the system does not grow out of hand which would

result in extensive memory usage and computational infeasibility.

3.11.1 Forced M erging

In order to control the population growth FALCS executes an algorithm to

compact the population after a predefined number of learning steps (i.e. after

a single training session or ncit iterations). Each classifier in the population

is compared against all others to check whether a merger is possible. If so,

the condition-aetion-effect bitstrings are combined together, as are all the aug

menting param eters as dictated by the merging process.

3.11.2 Size Control

FALCS does not perform any direct limitations to the population size. While

this type of behavior is readily implementable within the FALCS framework,

it is not desired due to goal of representing the working environment as com

pletely as possible. By directly limiting the population size, the system focus

is restricted to particular niches of the environment. This would be beneficial

for small embedded systems with limited computing resources or for systems

aiming to exploit only a specific environment. However, the ultim ate objective

is to allow the system to provide an optimal course of action with accurate

next sta te predictions for as many situations as possible.

To this end, there are alternative means of restricting the population size

present inside the FALCS architecture. The three primary ways means of

restricting unbound population growth are:

1. Restricting the maximum match set size

2. Restricting the number of acting classifiers riad

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Removing unfit classifiers after each training session based on poor re

ward and poor quality when better alternatives exist.

The maximum Match Set size limit ensures tha t there are at most n[M]Cnac/

main solutions. While this does reduce the comprehensiveness of the model,

the information tha t is thrown away would be of negligible use. This is due

to the fact th a t a very large number of matching classifiers could be formed

tha t would correctly predict the next state but be of little use due to a low

environmental utility. The process of enforcing the Match Set size is show in

Algorithm 6 .

A lgorithm 6: EnforceSetSize
begin

e +- Size([M]) - n [m]

e <— m in(e, 0)

i *— 0

w hile i < Size([M]) AND e > 0 do
if cli.q < m in q th e n

Delete(cli)

e <— e — 1
en d

i <— i + 1
end

w hile e > 0 do
cl = arg min(cl.r)

cie[M]
Delete (cl)

e <— e — 1
end

end__

Restricting the number of acting classifiers forces the system to only main

tain the best actions and not keep the alternatives. Furthermore, because only

a small number of classifiers are used to generate the action, learning should

occur faster as there are fewer possible actions th a t could be formed and less

classifiers to evaluate.

Forcibly removing bad classifiers helps ensure tha t the system does not

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have to deal with unneeded classifiers tha t would otherwise take up valuable

computing resources. It also ensures tha t the classifiers do not get used though

the exploratory processes when no better solutions exist, but rather promote

the system to come up with new alternative possibilities.

3.12 E ffective M odel

When the FALCS system is trained to a degree satisfactory to the user, the

system embodies a model of the working environment in the form of condition-

action-effect triplets. These form what could be described as a dp + da dimen

sional model of the working environment, where dp is the perception dimension,

i.e. the inputs to the system; and da is the action dimension, i.e. the degrees of

freedom though which the system can interact with the environment by means

of effectors. In effect, the classifiers from a piece-wise function for every single

condition previously encountered and trained to respond with up to g number

of granulated actions, which were tested during training and /or operation, to

give the expected next state in the environment. It should be noted th a t this

generated model is a continuously changing approximation of a snapshot of its

working environment which continues to be updated after every single action

taken unless this behavior is inhibited.

Due to this configuration, it is possible to extract useful, human readable

information. In particular, it is possible to map out a sequence of steps tha t

will most likely need to be performed to go from state A to state B without

the need to actually perform the action. Furthermore, it is possible to per

form backwards search to provide a list of actions and the prior conditions

tha t can result in a known output state. As such, the information gleaned

is more human readable and can be analyzed by experts to give insight into

the functionality of the system and/or to analyze given environment. This is

a clear advantage compared to alternative approaches such as neural networks.

However, the system does not aim to provide definite knowledge of both

the input and output states. It only provides a range of possible numerical

values which could trigger a given rule and a range of possible output numeri-

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cal values. This is a direct result of incorporating fuzzy logic into the system.

Furthermore, FALCS does not aim at putting human readable labels to mem

bership functions, but rather forms these functions as it deems fit for the given

environment and for the range tha t give the best results. Thus, it is up to the

human user to assign linguistic labels such as “close” , “near” , ”fa r“ as well as

linguistic modifiers such as “very” or “slight” to the functions, generated as

a result of learning. This behavior is by design to allow the learning classifier

to come up with its own subjective representation of a particular grouping of

data without undue influence of a human designer.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Experiments

In order to evaluate the performance of the devised system, two sets of exper

iments have been performed. In the first experiment, FALCS has been used

to provide goal-oriented behavior for a simulated agent. In the second experi

ment, FALCS has been used as an obstacle avoidance controller as well as an

objective-based controller for a mobile robot.

4.1 S im ulated A gent

4.1.1 Overview

In order to provide a platform simple enough to debug and test the Fuzzy

Anticipatory Learning Classifier System while still allowing for comprehensive

evaluation of the performance and effectiveness of the new algorithm, a simu

lated agent test system was devised. This simulation environment was modeled

on the simple electronic toys known as “virtual pets” or “nano pets” . The ob

jective in this game is to keep a virtual animal or creature alive as long as

possible by means of appropriately applying different necessary actions such

as feeding the pet, playing with it, giving it medicine, letting it sleep, etc.

These actions are conceptually similar to actions tha t an autonomous robot

would need to perform when aiming to carry out an objective without a hu

man to supervise and care for it, but of course in a much simplified fashion.

It also illustrates tha t FALCS is a potential candidate for controlling in-game

characters.

This scenario provides a toy domain in which the system must devise a set

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of procedures to care for the virtual agent. Each rule performs a particular

action which has an observable effect tha t can be deemed good (pet is content

and lives), bad (pet complains or dies) or neutral (no immediate observable

change). Furthermore, each action has a fairly deterministic outcome on the

environment in th a t a particular action on the environment will result in the

same outcome each time rather than giving a random output. Thus, this

experiment would show tha t the Fuzzy Anticipatory Learning Classifier System

can mimic the behavior of a child playing with a nano pet toy.

The additional benefit of this type of simulation is tha t it can be performed

faster than real time which allows for easier evaluation of the system, and it

also allows to give consistent and repeatable trial runs. Hence, it can be used

to tune param eters as well as observe the effect of introducing and removing

different methods inside the Fuzzy Anticipatory Learning Classifier System.

4.1.2 Setup

A simple version of a virtual pet was implemented where the virtual pet had

five distinct parameters: tiredness, hunger, fitness, health and happiness. All

five conditions were fed to the Fuzzy Anticipatory Learning Classifier System

as a value in the range of [0..1]. In turn, FALCS could select to perform one of

the following actions: sleep, eat, play, exercise, take medication, see a doctor.

A limitation was enforced, where only one action can be performed at a single

time. The maximum duration tha t the agent can live regardless of its internal

parameters was set to 1000 learning steps.

The rewarding function utilized has three components: the first component

ensures th a t no critical parameter of the simulated agent is outside a predefined

threshold; if there is a problem and it is not being remedied, a penalty is im

posed. The second component provides a minimal reward for non-detrimental

actions th a t improved the overall status of the agent. The final component

checks the state of the agent. If the agent has either attem pted to perform an

illegal operation or is dead, a heavy penalty is given. The effective rewarding

scheme is summarized in Formula 4.1.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p(t) =]
p (Oip ■ (p(t) — p(t — 1)) otherwise

(4.1)

where:

p is the environmental reward at time t

P is the set of parameters

p (t) is an observed parameter of the agent at time t

©p is the critical parameter threshold

0p is a soft, non-critical threshold

ocp is the parameters importance

4.1.3 Trial Runs

A number of trial runs have been performed using the designed simulator.

Results of the experiments are illustrated in Figures 4.1 - 4.4.

From these figures we can clearly see tha t the Fuzzy Anticipatory Learning

Classifier System is capable of devising a control strategy for keeping the pet

alive as long as possible.

The most direct measure of the success of the controller can be observed

in Figure 4.1. This graph illustrates the number of trials tha t the agent has

survived with respect to the total number of life cycles evaluated. From the

smoothed average curve, we can clearly observe the improvement in the sur

vival rate. Furthermore, the density of the data points illustrate how at the

beginning, the classifier clearly finds successful paths to achieve the maximum

age of 1000 training trials; however, it continues to explore other possibili

ties. We also see th a t the agent continues to have an average age th a t is less

the than optimal trials after it would appear tha t a solution has been forged.

This occurs by design due to the exploratory actions tha t the FALCS-based

controller will continue to make.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

av
er

ag
e

re
w

ar
d

900

800

700

600

500

400

300

200

100

+ ++ • ■+ . + +v-+ + + ++ + ++v A /a r a V +■f. + . + + V V A j / +
+ ♦!** ■ViV

,J v +* *
+ i * ++ I ++

+ + ++
: ft-*- A!■++,' +

f + ++ A +. f + \ ‘ /♦* ++ + ♦'*♦ U+ ♦ A ♦♦ ++ ++ +

+

* f * * * * + + f + * + + + +
* + + j.+ + * . + + + +- I + -k. + + + X .

4+ + ** ++ +*■ + + + + + ++ + * + +
*+ +++ ~ *♦* + + ++ + ♦ +

* + + + + + h* + + + + + t * i f + + + + + ^ + + * + + *. + +

b v - * v * , : , * *
** + t j ± + V l + +H*- * * \ + +

s y . v . * - . T • *. , . „
1000 1500

iteration

Figure 4.1: Survival Age of Simulated Agent w.r.t. Training Iterations

-to

-15

-20

-25

-30
0 500 1000 1500 2000 2500

iteration

Figure 4.2: Average Reward to FALCS w.r.t. Training Iterations

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

90

70

I<D
60

40

0 500 1000 1500 2000 2500
iteration

Figure 4.3: Average Pet Health to FALCS w.r.t. Training Iterations

70

60

&c2
i

2000 25001000 15000 500
iteration

Figure 4.4: Average Pet Hunger to FALCS w.r.t. Training Iterations

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The most influential characteristic of the virtual agent is the hunger level

as without food, the pet will quickly die. The average hunger level per learning

iteration can be seen in Figure 4.4. The plot clearly shows th a t the average

hunger level per learning trial decreases early on, as the agent depends on

having energy for survival. Taking the concept to the robotic realm, without

power a robot is of no use. It should be noted tha t the hunger level will also

have a significant influence on the well being (“health”) of the virtual agent.

It is interesting to see in the average health graph, shown in Figure 4.3,

a U-shaped curve. Given tha t the pet health is the second most influential

param eter in regards to its survival, and all other parameters such as fitness,

happiness, tiredness influence the health level; it can be seen th a t initially it

is learnt th a t health needs to be kept a t a high level.

The convergence of learning can be seen in the average reward function

illustrated by Figure 4.2. It shows tha t initially we have many negative penal

ties, however, after about the first quarter of the trials, the number of critical

penalties decreases and we see a leveling out with rewards hovering with small

positive values in the latter portion of the learning trials.

4.2 R ob ot C ontroller

4.2.1 O bjectives

One of the most im portant tasks in the field of mobile robotics is to provide

a means for autonomous mobility, where a human operator does not need to

supervise the robot in simple navigation tasks. This involves the ability for

a robot to control its actuators (usually motors connected to a drive train)

while a t the same time avoiding obstacles in its path detected by means of

sensors such as sonar, laser, LIDAR, and so forth.

The difficulty in achieving this task efficiently is the enormous space en

compassed by the sensor data. This is further compounded by the fact that

no sensor works ideally and usually gives rather noisy data. There can also be

variances with the readings due to environmental conditions and deterioration,

as well as interm ittent false readings.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.2 Setup

To facilitate the testing of the Fuzzy Anticipatory Learning Classifier System

in a controlled and repeatable manner, the implemented robotic controller was

designed using the Player Project interface. The Player program [45], [46] is an

open-source implementation of a high quality mobile robot control platform

which can handle a variety of different robots. It also can utilize its sister

project, Stage [47] which allows for high precision robotic simulation, and this

was used for the m ajority of the simulations performed and shown in this

thesis. The Pioneer P2DX robot was chosen due to its popularity as a mobile

platform and the numerous sonar sensors surrounding the circumference of its

body. Driving is achieved by two drive motors which also provide a means of

turning by driving the two motors at different speeds.

The simulation environment provides limited variability in the sonar read

ings. The data is assumed to be fairly close to what would be expected on

a real robotic platform. However, for a real-world implementation, a filtering

and smoothing process would be required to provide a means to reduce the

effect of obvious outliers.

For the main robot navigation task, all sixteen sonar readings have been

presented directly into the Fuzzy Anticipatory Learning Classifier System. The

outputs from the system directly control the speed and heading of the robot.

The rewarding function utilized for the development of the FALCS-based ob

stacle avoidance is illustrated by Formula 4.2. The training environments used

to evaluate the performance of the robot can be found in Appendix A.2.

Pit)

- to o o d (t) < e OD
—50 -I- (od (t) — od(t — 1)) approaching obstacle

10 -|- 25 • (od (t) — od(t — 1)) moving away from obstacle (4.2)
5 • f s (t) moving forward

5 + f s (t) otherwise

where:

p is the environmental reward

eOD is the closest allowable distance to an obstacle

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

od (t) is the distance to the nearest obstacle at time t

f s (t) is the robo t’s forward speed at time t

4.2.3 Trial Runs on Object Avoidance

* 2500 •

Figure 4.5: Number of steps between collisions for obstacle avoidance in En
vironment # 2

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120000

100000

80000

60000

40000

20000

00 100 200 300 400 500 700600
Learning Iteration

Figure 4.6: Total number of crash-free steps for obstacle avoidance for Envi
ronment # 2

40

20

0

-20

•40

-60

-80

•100
60000 100000 120000 1400000 20000 40000 60000

L earning Trial

Figure 4.7: Average reward given for obstacle avoidance in Environment # 2

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

180

160

140

100

60

60

40

20

0
80000 1000000 20000 40000 60000 140000

Learning Trial

Figure 4.8: Number of useful classifiers for obstacle avoidance in Environ
ment # 2

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.9: Sample trajectory in learning environment # 4 for obstacle avoid
ance

1

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91
200000100000 1500000 50000

Learning Step

Figure 4.10: Ratio of collision-free steps to total number of steps in multiple
environments

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As can be seen in Figure 4.5, the FALCS-based obstacle avoidance con

troller incrementally learns to avoid obstacles resulting in longer durations of

collision free navigation. It should be noted tha t even though it may seem that

there appear to be frequent collisions between the larger peaks of collision-free

behavior, the reality is th a t these are relatively brief periods of time. This

illusion is a result of the fact th a t the x-axis does not illustrate linear time but

rather the training iteration whose duration is dependent on the time between

collisions. W hen an obstacle is hit, the robot is moved a few steps back and

is then allowed to resume training. The system will take a few iterations to

reprimand the incorrectly acting classifier(s) until this behavior is unlearnt.

The resulting data can also be illustrated in an alternative manner. In Fig

ure 4.6, one can observe the total crash-free time in terms of robot movement

steps with respect to the number of learning iterations. Also, the average

reward function in Figure 4.7 confirms the fact th a t the system is learning

due to the increasing average reward being applied to the classifiers making

up the controller. Additional examples of learning trials can be found in Ap

pendix A. 3.

Further illustration of the system’s performance can be seen by taking

the ratio between the number of collision-free steps and the to tal number of

steps for multiple simulation runs. This is shown in Figure 4.10, where one

can clearly see th a t the FALCS-based obstacle avoidance system is capable of

developing a control strategy for various situations.

The classifier population size which has been adequately trained and proven

to be beneficial to the solution is illustrated by Figure 4.8. This graph includes

all classifiers whose quality is above the inadequacy threshold, 9q, reward pre

diction param eter is above reliability threshold, 9r, and experience above the

experience threshold 9e.

Finally, from the recorded trajectory of the robot in the environment, one

can observe the fact tha t the robot maintains a fairly random navigation path

and does not tend to converge to a repeated behavior such as maintaining

a small loop path in a safe area.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.4 Goal-oriented Behavior

Obstacle-avoidance tasks are only so useful by themselves. In order to achieve

sensible behavior of a robot platform, it must be allowed to search for and carry

out a particular objective. The number of possibilities is endless; tasks could

involve mining for a mineral, locating a target, searching for mines, finding

abnormal conditions, etc.

In order to perform simulation for this task, FALCS algorithm has been

extended to deal with learning multiple behaviors. This is accomplished using

successive iterations which train the system to generate a population of clas

sifiers for one objective, then train a new population for the second objective.

Finally, the classifiers are merged together into a single population where they

are trained on the task involving multiple behaviors.

To allow for simulations to take place on goal-seeking behavior inside the

utilized simulation environment, two additional values were passed from the

environment to the controller, corresponding to the robot’s relative coordi

nates. This gives the robot a means to localize its position and to sense when

it has arrived at a goal position. This is functionally identical to a sensor

providing distance information to a goal beacon as an alternative simulation

scenario.

4.2.5 Perform ance on Goal-oriented Tasks

From Figure 4.11 one can truly appreciate the learning behavior for the ob

stacle avoidance task when the robot is trained for an extended period of

time. W ith a single step being an equivalent to 0.25s in real time, the total

training time illustrated encompasses over 17 hours of real-time simulation.

After the goal seeking behavior is trained, it can be observed from Figure 4.12

tha t initially, the controller fails to find the goal destination in the allotted

number of 2000 steps. However, once the goal position is located, the time to

reach the goal position quickly diminishes. This can be attributed to the fact

tha t a model is first build of the environment, and once a path to the goal is

discovered, the model is then quickly exploited to improve the performance.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.14 shows a sample recorded trajectory of well-learnt goal finding

behavior for environment # 3 (as shown in Figure A.3). Originally, the robot

starts in the lower left hand corner of the sample world and then must au

tonomously navigate to the goal position in the upper right hand corner of the

world.

12000

10000

8000

to

I
1 6000O•5
3z 4000

2000

0 100 200 300 400 500 600 700 800 900 1000
lea rn in g Iteration

Figure 4.11: Number of steps between collisions during goal-seeking behavior
training

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2200

2000

1800

1600

1400
§©
1

1200

GC
~ 1000
& aV)

800

600

400

200

0 20 40 60 80 100 120
Learning Trial

Figure 4.12: Time to seek goal position w.r.t. learning iterations during goal-
seeking behavior training

-20

TJ

i
® -40

I
-60

-80

-100
250000150000 20000050000 1000000

Robot Learning Step

Figure 4.13: Reward function w.r.t. learning iterations for seeking goal posi
tion during goal-seeking behavior training

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Goaf
Position

Starting
Position

Figure 4.14: Sample trajectory in goal seeking objective with obstacles during
goal-seeking behavior training

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future Work

5.1 C onclusions

This thesis illustrates work performed upon the Anticipatory Learning Clas

sifier System to allow it to be readily applied to a wider range of problems.

Through the utilization of concepts borrowed from Fuzzy Logic, the rules in

the learning classifier system have been enhanced to directly use real-valued in

puts and provide real-valued outputs. Furthermore, the learning mechanisms

present within the Anticipatory Learning Classifier System have been refined

and expanded to handle and utilize the extra flexibility tha t the inclusion of

Fuzzy Logic brings.

The Fuzzy Anticipator Learning Classifier System benefits from its con

stituent components in order to maximize its effectiveness. The parent Antic

ipatory Learning Classifier provides an elegant method to incorporate antic

ipatory learning processes observed in the psychology domain into a defined

computational algorithm, thus allowing the system to benefit from the ability

to perform latent learning. This is im portant for autonomous learning systems

as it has been shown to be highly effective in nature.

By virtue of being a learning classifier, the system is able to evolve a set of

rules which model the working environment and provide a means to choose the

best course of action for a given situation. Furthermore, the learning classifier

system is not constrained by a predefined structure as rules can be easily added

or replaced to accommodate new environmental conditions. Thus the system

does not require a redesign when more complexity needs to be trained into

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the system, which is a clear advantage compared to other approaches, such as

neural networks. Due to the utilization of a Q-Learning like algorithm inside

the system, it is capable of developing a solution to a given problem with

minimal human interaction to be present. From this perspective, the major

shortcoming of the system is the necessity to select a number of parameters

prior to training which then proceeds with full autonomy.

Fuzzy Logic provides a means to use continuous, real-valued inputs into the

system without the need to perform prior discretization. Furthermore, fuzzy

logic provides a means to utilize partial knowledge gained through past learn

ing immediately without the need to completely learn the input-action-output

relationships. More so, the Fuzzy aspects allow a human expert to examine the

individual rules generated in the system to gain insight into how the system

solves a particular problem. Conversely, an expert can instantiate new rules

from their own intuition and thus provide the system a better starting point

from which to begin online training.

The implemented Fuzzy Anticipatory Learning Classifier System has been

demonstrated to be effective through successful synthetic testing of a goal-

oriented agent based upon a “virtual pet” game as well as well as through

various simulated robotic navigation tasks. It was observed th a t the system

does indeed aim to develop a model of the working environment in the form

of a rule base, and th a t is able to take full advantage of this model. The

anticipatory aspect of the system allows the system to learn with minimal

reward to allow for better exploratory processes.

Through the contribution described in this thesis - the design and imple

mentation of the Fuzzy Anticipatory Learning Classifier System, the bound

aries of autonomous intelligent control systems, in particular those based on

evolutionary computing principles, have been pushed another step towards the

ultimate goal of building a truly autonomous self-learning robotic system.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 M ain C ontributions

• This thesis illustrates a novel approach of applying Fuzzy Logic to the

Anticipatory Learning Classifier System to allow it to handle real-valued

inputs. This is accomplished through the replacement of discrete sym

bols in each classifier present in ALCS with a set of fuzzy membership

functions utilizing generalized bell functions for both input matching and

next sta te predictions as well as utilizing granulated singleton functions

to specify each classifier’s action.

• ALCS learning algorithms were expanded and augmented to handle the

extra complexity tha t the continuous functions bring. This was ac

complished though additional learning procedures to adjust the mem

bership functions to find a general encoding of input-action-effect se

quences. Further algorithms were devised to apply concepts of reinforce

ment learning to multiple classifiers contributing to a generated output

action.

• ALCS action selection mechanisms were also improved to utilize the

benefits of fuzzy logic to provide continuous valued outputs or discrete

outputs with a confidence value. This was done through the implemen

tation of classifier selection methods which choose a larger number of

candidates th a t contribute to the final solution through a defuzzification

procedure.

• This thesis also illustrates the success of the proposed system through

the implementation of two test scenarios. In the first, a simulated agent

scenario was implemented which illustrates th a t FALCS is capable of

evolving a controller tha t can keep the agent alive in its virtual environ

ment through the optimization of its parameters. In the second scenario,

FALCS was used as a for a mobile robot navigation task, where a simu

lated Pioneer P2DX robot was allowed to explore its surroundings while

at the same time avoiding obstacles. An extension to this system was

done to introduce goal-seeking behavior though successive training on

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different tasks leading up to the final behavior objective.

5.3 L im itations and Future W ork

Despite the many successes attained in this first revision of the Fuzzy Antic

ipatory Learning Classifier System, more work still needs to be performed on

the system to further enhance its functionality.

The action selection mechanism, while already providing good performance,

still has room for improvement. The most obvious enhancement would be to

further utilize the anticipation strings i.e. predictions of the next sta te of

a given environment, to provide a means of chaining the potential actions and

then choosing a sequence of actions which would optimize for a higher level

objective rather than focusing only on optimizing for the next state. However,

despite its simplistic high level algorithm, the implementation of said method

poses several challenges. First, a method needs to be devised which would

appropriately choose the next state classifier for anticipations of broad possi

bilities. This is the case for classifiers which do not care about the outcome for

a set of environmental conditions, because they have been deemed irrelevant,

or because the outcome is so variable tha t it holds little co-relationship with

the current task a t hand. However, for the next state classifiers this may be

a critical input variable which would need to be somehow predicted/recovered

from the already present model. The second consideration th a t has to be

taken into account is the fact tha t multiple classifiers can be utilized to arrive

at the next state. Therefore, it is imperative tha t an accurate and repeatable

method of selecting the acting classifiers and then coming up with the output

value be devised. This is further complicated by the fact th a t it is not known

how well the classifiers will match given environmental state which is crucial

for defuzzifying the output.

Another area of improvement in the system is devising an accurate method

of population control. The Anticipatory Learning Classifier System aims at

providing an accurate model of all input-action-output combinations possible.

However, in many situations, the entire model is not relevant. As Brooks has

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pointed out [48] “why bother re-creating an environmental model when the

environment already provides the best model possible” . Hence, a balance needs

to be struck to preserve the optimal degree of modeling without effectively

recreating the environment. It should be noted however, tha t this is already

partially accomplished through the process of devising as general classifiers as

possible. The area th a t needs to be addressed is how many classifier triplets

need to be stored for the different actions and whether the best matching

classifier procedure can be utilized to provide the knowledge without explicitly

storing this information.

A different area of improvement tha t still needs to be taken into consider

ation is the selection of parameters. All intelligent systems require a certain

degree of human intervention to choose an optimal set of parameters so tha t

the system can efficiently interact with the environment. It has been exper

imentally found th a t the current implementation of FALCS provides good

performange in two separate domains utilizing essentially the same set of op

erational parameters. However, it would be desirable to develop a method

capable of finding the optimal set of parameters such as the learning rates,

thresholds, etc., as opposed to human tuning through trial and error.

Furthermore, a limitation still present in the system is the fact tha t FALCS

requires a fixed input and output dimensionality. While incomplete data input

can be handled through the fuzzy aspects and the utilization of “don’tcare”

bits, FALCS is not capable of handling inputs with variable dimensionality.

Such a capability would provide an invaluable service to applications where

sensing devices are changed on the go (such as using different robotic sen

sors depending on the operating environment) or to use the most applicable

data without having to go through the time consuming process of learning

which data being fed into the classifier system is most relevant for the current

objective.

By developing and applying the suggested improvements, it is expected

tha t the performance of the Fuzzy Anticipatory Learning Classifier System

will be further refined thus being able to provide improved adaptive behavior,

better runtime performance as well as increased transparency to allow a human

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to interpret the resulting model which enables the system to operate.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] T. Back and H. Schwefel, “An overview of evolutionary algorithms for

param eter optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 1-

23, 1993.

[2] A. Eiben and J. Smith, Introduction to Evolutionary Computing. Springer,

2003.

[3] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms

in multiobjective optimization,” Evolutionary Computation, vol. 3, no. 1,

pp. 1-16, 1995.

[4] C. Darwin, On the Origin of Species by Means o f Natural Selection, or

the Preservation of Favoured Races in the Struggle for Life. John Murray,

November 1859.

[5] D. Dasgupta, ed., Artificial Immune Systems and Their Applications.

Berlin: Springer-Verlag, Inc, January 1999.

[6] L. DeCastro and J. Timmis, Artificial Immune Systems: A New Compu

tational Intelligence Approach. 2001.

[7] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From

Natural to Artificial Systems. 1999.

[8] A. P. Engelbrecht, Fundamentals o f Computational Swarm Intelligence.

Wiley <fc Sons, 2006.

[9] J. C. Spall, Introduction to Stochastic Search and Optimization. Wiley-

Interscience, 1 ed., March 2003.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] D. Dasgupta and Z. Michalewicz, Evolutionary Algorithms in Engineering

Applications. Springer, 1997.

[11] M. Ostertag, E. Nock, and U. Kiencke, “Optimization of airbag release

algorithms using evolutionary strategies,” in Control Applications, 4th

IEEE Conference on Control Applications, pp. 275-280, 1995.

[12] A. K. Kordon, G. F. Smits, and M. E. Kotanchek, “Industrial evolutionary

computing,” in GECCO ’07: Proceedings o f the 2007 GECCO conference

companion on Genetic and evolutionary computation, (New York, NY,

USA), pp. 3297-3322, ACM Press, 2007.

[13] M. Butz, D. E. Goldberg, and W. Stolzmann, “The anticipatory classifier

system and genetic generalization,” Tech. Rep. 2000032, 2000.

[14] E. Turban, J. E. Aronson, and T.-P. Liang, Decision Support Systems and

Intelligent Systems. Prentice Hall, 7 ed., April 2004.

[15] F. Hoffmann, M. Koppen, F. Klawonn, and R. Roy, eds., Soft Computing:

Methodologies and Applications. Springer, 1 ed., September 2005.

[16] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Cam

bridge, MA: MIT Press, 1998.

[17] C. Watkins, Learning from Delayed Rewards. PhD thesis, King’s College,

University of Cambridge, England, 1989.

[18] C. J. C. H. Watkins and P. Dayan, “Technical note: q-learning,” Mach.

Learn., vol. 8, no. 3-4, pp. 279-292, 1992.

[19] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Boston, MA.: Kluwer Academic Publishers, 1989.

[20] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA.:

MIT Press, 1996.

[21] J. H. Holland, Adaptation in natural and artificial systems. Ann Arbor:

University of Michigan Press, 1975.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[22] S. Russell and P. Norvig, Artificial Intelligence: A M odem Approach.

Prentice-Hall, 1995.

[23] M. M arra and B. Walcott, “Stability and optimality in genetic algo

rithm controllers,” in Intelligent Control, IEEE International Symposium,

(Dearborn, MI, USA), pp. 492-496, September 1996.

[24] J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptive

algorithms,” SIG A R T Bull., no. 63, pp. 49-49, 1977.

[25] M. Dorigo, “Message-Based Bucket Brigade: An Algorithm for the Ap

portionment of Credit Problem,” in Proceedings o f European Working

Session on Learning ’91, Porto, Portugal (Y. Kodratoff, ed.), no. 482,

pp. 235-244, Springer-Verlag, 1991.

[26] L. Bull and T. Kovacs, eds. Springer, June 2005.

[27] S. W. Wilson, “ZCS: A zeroth level classifier system,” Evolutionary Com

putation, vol. 2, no. 1, pp. 1-18, 1994.

[28] S. W. Wilson, “Classifier fitness based on accuracy,” Evolutionary Com

putation, vol. 3, no. 2, pp. 149-175, 1995.

[29] M. V. Butz and S. W. Wilson, “An algorithmic description of XCS,”

Lecture Notes in Computer Science, vol. 1996, pp. 253-273, 2001.

[30] S. W. Wilson, “State of XCS classifier system research,” Lecture Notes in

Computer Science, vol. 1813, pp. 63-81, 2000.

[31] M. Butz, D. E. Goldberg, and W. Stolzmann, “New challenges for an

ACS: Hard problems and possible solutions,” Tech. Rep. 99019, Urbana,

IL, 1999.

[32] M artin V. Butz, David E. Goldberg and W. Stolzmann, “Introducing a

genetic generalization pressure to the anticipatory classifier system - part

1: Theoretical approach,” in Proceedings of the Genetic and Evolution

ary Computation Conference (GECCO-2000) (D. Whitley, D. Goldberg,

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer, eds.), (Las Vegas,

Nevada, USA), pp. 34-41, Morgan Kaufmann, 10-12 2000.

[33] M. Butz, O. Sigaud, and P. Gerard, eds., Anticipatory Behavior in Adap

tive Learning Systems, Foundations, Theories, and Systems, vol. 2684 of

Lecture Notes in Computer Science, Springer, 2003.

[34] B. Widrow and M. Hoff, “Adaptive switching circuits,” IR E WESCON

Convention Record, pp. 96-104, 1960.

[35] W. Stolzmann, M. Butz, J. Hoffmann, and D. E. Goldberg, “First cogni

tive capabilities in the anticipatory classifier system,” pp. 287-296, 2000.

[36] I. P. Pavlov, Conditioned reflexes. London: Routledge & Kegan Paul,

1927.

[37] E. C. Tolman and C. H. Honzik, “Insight in rats,” University o f California

Publications in Psychology, 1930.

[38] J. P. Seward, “An experimental analysis of latent learning,” Journal of

Experimental Psychology, vol. 39, pp. 177-186, 1949.

[39] W. Stolzmann, “Latent learning in khepera robots with anticipatory clas

sifier systems,” in 2nd International Workshop on Learning Classifier Sys

tems (P. L. Lanzi, W. Stolzmann, and S. W. Wilson, eds.), (Orlando,

Florida, USA), pp. 290-297, 13 1999.

[40] G. Chen and T. T. Pham, Introduction to Fuzzy Sets, Fuzzy Logic, and

Fuzzy Control Systems. CRC, November 2000.

[41] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Appli

cations. Prentice Hall PTR, 1 ed., May 1995.

[42] L. Zadeh, “Fuzzy sets,” Information Control, vol. 8, pp. 338-353, 1965.

[43] R. Babuska, Fuzzy Modeling for Control. Boston: Kluwer Academic Pub

lishers, 1998.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[44] J. Pearl, Heuristics: Intelligent Search Strategies fo r Computer Problem

Solving, p. 48. Addison-Wesley, 1984.

[45] T. H. Collett, B. A. MacDonald, and B. P. Gerkey, “Player 2.0: To

ward a practical robot programming framework,” in Proceedings o f the

Australasian Conference on Robotics and Automation, ACRA 2005, De

cember 2005.

[46] B. Gerkey, K. St0y, and R. T. Vaughan, “Player robot server,” Tech.

Rep. IRIS-00-392, Institute for Robotics and Intelligent Systems, School

of Engineering, University of Southern California, November 2000.

[47] R. T. Vaughan, “Stage: A multiple robot simulator,” Tech. Rep. IRIS-00-

394, Institu te for Robotics and Intelligent Systems, School of Engineering,

University of Southern California, 2000.

[48] R. A. Brooks, “Intelligence without reason,” in Proceedings o f the 12th

International Joint Conference on Artificial Intelligence (R. Myopoulos,

John; Reiter, ed.), (Sydney, Australia), pp. 569-595, Morgan Kaufmann,

August 1991.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Appendix

A .l E xperim ent Setup Param eters

The Fuzzy Anticipatory Learning Classifier Systems includes many tunable

parameters which have considerable effect on the outcome of the solution to

the problem at hand. However, the majority of these values do not require

any modification, and are suitable for a wide range of different problems.

A. 1.1 FALCS Param eters

These param eters listed in Table A .l alter the learning characteristics of the

FALCS system. The tuning of parameters is to allow the user to optimize the

system for fast learning while avoiding local minima as well as to minimize

overtraining, to ensure optimal generality for the given environment, and to

ensuring a compact classifier population.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Notation [Description Value

Vrl Reinforcement learning rate 0.15
VrlK Reinforcement learning rate for Contribution Set 0.05

P Reinforcement learning rate coefficient for Chain Set 0.8
7 Reinforcement learning discount factor 0.9

V f i Function learning rate 0.05
Vbi Function bounds learning rate 2 X T)f l

0 r Inadequacy threshold 0.1
Reliability threshold 0.8

de Experience threshold 25
t Exploration probability 0.2

X g a GA application rate 25
X c Crossover probability 0.7

X m M utation rate 0.3
iq Initial untrained classifier / clone quality 0.5
i r Initial untrained classifier / clone reward prediction param eter 1.0

f l ip Initial population size 50
wc Initial condition membership function width 0.1
wE Initial effect membership function width 0.05
sc Initial membership function sharpness modifier 3
se Initial membership function sharpness modifier 10
1wc Initial random classifier condition membership function width 0.25
Iwb Initial random classifier effect membership function width 0.07

m in q Minimum predictive quality threshold 0.15
m inr Minimum classifier reward prediction param eter threshold -20
m axr Maximum classifier reward 50

9 Action singleton granularity 8
m in K Minimum contribution threshold 0.2

a T Match acceptance threshold 0.7
Ar Max mergable reward prediction param eter difference 20

Max mergable quality difference 0.1
n\M\ Match Set size threshold 10
fbacl Acting Set size 5
rich Number of chained classifiers 15

Table A .l: Critical FALCS parameters

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .1.2 FALCS Configuration

The options listed in Table A.2 influence the overall configuration and struc

ture of operation. Different environments and objectives may require different

behavior and the user may wish to optimize the learning characteristics for

the particular application, e.g. wishing to develop an extensive model or just

develop a control system to exploit the best action as possible.

Description Options
Compact population filter no}
Generalize classifiers during ALP {yes, no}
Prune bad classifiers { fl'iter no}
Effect equals “no change” {yes, no}
Utilize best matching classifier {yes, no}

Table A.2: FALCS configuration switches

A .2 R ob ot E nvironm ents

A set of environments were created to provide an obstacle course for the mobile

robot learning simulations. While simplistic in nature, they allow for a full

range of different sonar readings to be encountered as well as obstacles with

varying profiles tha t a mobile robot could encounter in a real environment.

These are shown in Figures A .l to A.4.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A .l: Environment # 1 for robot navigation

Figure A.2: Environment # 2 for robot navigation

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A.3: Environment # 3 for robot navigation

Figure A.4: Environment # 4 for robot navigation

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .3 A dd ition al Test Scenarios

This section provides examples of additional results obtained during trial runs

of the FALCS-based mobile robot obstacle avoidance system.

A.3.1 R un A

0
5)

1
i
o

0 too 200 300 400 500 600
Collision

Figure A.5: Number of steps between collisions in Environment # 1

250000

200000

150000

100000

50000

0
100 300 400 5000 200 600

Figure A.6: Total number of crash-free steps in Environment # 1

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

20

0

•20

-40

-60

-80

■100 0 50000 100000 150000 200000 250000 300000
Learning Trial

Figure A.7: Average reward given in Environment # 1

180

160

140

120

100

80

60

40

20

0
50000 100000 150000 200000 250000 3000000

Learning Trial

Figure A.8: Number of useful classifiers in Environment # 1

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .3 .2 R un B

i ,
i t i i i _ j i

0 100 200 300 400 500 600 700 800
Collision

Figure A.9: Number of steps between collisions in Environment # 2

Iffi
2

I

z
2

50000

0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 700 800
Learning Iteration

Figure A. 10: Total number of crash-free steps in Environment # 2

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

20

0

•20

•40

-60

•80

•100 0 15000050000 100000 200000 250000 300000

Figure A .11: Average reward given in Environment # 2

150000
Learning Trial

Figure A. 12: Number of useful classifiers in Environment # 2

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .3.3 R un C

12000

10000

8000

6000

4000

2000

0
Collision

Figure A. 13: Number of steps between collisions in Environment # 2

250000

200000

150000

I 100000

50000

0
7000 100 200 300 400 500 600 800 900 1000

Learning Iteration

Figure A. 14: Total number of crash-free steps in Environment # 2

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

0

•20

•40

-60

•80

•too 0 50000 150000100000 200000 250000
Learning Trial

Figure A. 15: Average reward given in Environment # 2

80

70

60

50

40

30

20

10

0
150000 200000 2500000 50000 100000

Learning Trial

Figure A. 16: Number of useful classifiers in Environment # 2

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .3.4 R un D

3 0 0 0 |

2 5 0 0 •

^ 2000 ■

<o

i
g 1500 ■

•5

0 2 0 0 4 0 0 6 0 0 8 0 0 1COO 1200
Collision

Figure A. 17: Number of steps between collisions in Environment # 3

250000

S.0m
1£

z

%h

O 2 0 0 4 0 0 6 0 0 600 1000 1200

Learning iteration

Figure A. 18: Total number of crash-free steps in Environment # 3

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

20

0

-20

•40

-60

-80

•too
50000 tooooo 150000 200000 2500000

Learning Trial

Figure A.19: Average reward given in Environment # 3

50000 100000 150000
Learning Trial

20 0000 250000

Figure A.20: Number of useful classifiers in Environment # 3

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .3.5 R un E

!
ISs0 ■5
1
z

Figure A.21: Number of steps between collisions in Environment # 4

50000

Iw
I
T

1

40000

10000

0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 900
Learning iteration

Figure A.22: Total number of crash-free steps in Environment # 4

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£
I

-50

1

-too

Learning Trial

Figure A.23: Average reward given in Environment # 4

70

60

50

40

30

20

10

0
8000050000 60000 7000030000 400000 10000 20000

Learning Trial

Figure A.24: Number of useful classifiers in Environment # 4

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .3.6 R un F

4000

3500

3000

I
Ii
S 2000
oZ
f 1500
z

1000

500

0
0 200 400 600 800 1000 1200

Collision

Figure A.25: Number of steps between collisions in learning environment # 4

450000

400000

350000

300000

I
-§ 250000

0
z
j | 200000

1 150000

100000

50000

0
0 200 400 600 BOO 1000 1200

Leamktg Iteration

Figure A.26: Total number of crash-free steps in learning environment # 4

'"1" 1—' 1--- -i.......i......i
1 i'

i l l i i H i

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

20

0

•20

-40

-60

•80

-1000 50000 100000 150000 200000 250000 300000 350000 400000 450000
Learning Trial

Figure A.27: Average reward given w.r.t. learning iterations in learning envi
ronment # 4

50000 100000 150000 200000 250000 300000
learning Trial

350000 400000 450000

Figure A.28: Number of good classifiers generated in learning environment # 4

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

