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Abstract

Designing autonomous intelligent control systems for real-world problems is 

a daunting task. The complex input-output relationships resulting from the 

interaction between a process and its environment are often not readily solv

able by traditional mathematical methods. A growing amount of research is 

being performed in designing control systems which develop their own solu

tion by utilizing methods borrowed from nature. This thesis presents work 

performed in the aforementioned field, specifically in developing an extension 

to the Anticipatory Learning Classifier System (ALCS) to facilitate the trans

parent use of real-valued inputs as well as outputs in order to  make the system 

more applicable to real-world problems. This has been accomplished through 

the application of concepts borrowed from Fuzzy Logic to implement a varia

tion of an evolvable Fuzzy Controller within the ALCS paradigm. As such, the 

Fuzzy Anticipatory Learning Classifier System (or FALCS) allows the user to 

evolve an adaptive control system capable of latent learning as well as utilizing 

the best known course of action in the absence of previous knowledge. The 

FALCS-based controller was tested to be successful in generating a rule-base 

tha t kept a simulated agent “alive” in a virtual environment. Furthermore, 

a FALCS-based controller was successfully implemented to allow a simulated 

robot to  navigate a previously unknown environment, as well as seeking a goal 

location while avoiding obstacles at the same time.
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Chapter 1 

Introduction

1.1 O verview

Today’s modern society is more and more dependent on technology, and as 

a result, we are pushing the engineering frontiers faster than ever before. Nev

ertheless, the devices which surround us everyday are still extremely depen

dent on humans to give them instructions on how they should function. This 

is especially true of control systems which operate an extremely wide range of 

today’s products: from consumer electronics, to business and factory equip

ment, to  aerospace vehicles and extraterrestrial probes. However, the design 

and implementation of these control systems is a complex task, which requires 

immense expertise and a great deal of patience due to the large and complex 

spaces th a t the inputs and outputs encompass.

To alleviate the burden of this problem, designers are more frequently 

turning to  artificial intelligence and statistical methods to  help simplify the 

designs and allow for the devices to learn their own control functions. Through 

the use of intelligent systems, the devices and machines are capable of making 

human-like decisions on their own without having a human designer provide 

solution for every problem tha t could be encountered.

In the field of intelligent systems, a great deal of promise has been shown 

in the area of evolutionary computation [1] [2] [3]. As the name suggests, this 

paradigm attem pts to  “evolve” a solution to a given problem over successive 

generations by using methods observed in nature such as Darwinian natural 

selection [4], immune systems [5] [6], swarm intelligence [7] [8], self organi-

1
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zations and so forth. In effect, these methods could be seen as performing 

a guided stochastic search [9] when viewed from a classical artificial intelli

gence perspective. Furthermore, many systems employ different combinations 

of these techniques in order to  benefit from each m ethod’s own strengths while 

at the same time minimizing their own independent weaknesses.

One of the many benefits of applying evolutionary computation strategies 

to solve optimization problems is the inherent massive parallelism th a t exists 

inside the many stages of evolutionary computing algorithms. This is of fair 

significance in today’s world, due to the multi-core processing push by the 

industry, as these methods can be readily coded to make fuller use of all the 

parallel computational power available, thus providing results much faster as 

opposed to competing sequential algorithms.

One of the most amazing aspects of using evolutionary computation meth

ods is the fact th a t they allow one to generate desirable intelligent systems 

with minimal human intervention. This results in reducing the costs of bring

ing new devices to  the market as well as developing more robust devices which 

are capable of better applying themselves to  their working environment as op

posed to  a “one-size-fits-all” strategy [10] [11] [12]. In particular, evolutionary 

computing methods can be applied to systems which must operate in environ

ments th a t cannot be modelled in the laboratory either due to impracticality, 

limited knowledge or due to  completely new or frequency changing operat

ing environments which are not know at the time of development. In such 

situations, evolutionary computing can be applied online, where the system 

receives feedback on its current performance from a governor to  evolve a more 

optimized system for future use.

A prime example of such an application exists in the realm of mobile 

robotics. This is a fast growing sector in today’s world with applications 

ranging from the benign such as toy pets, to  the useful such as robotic lawn- 

mowers and vacuum cleaners, and to the exotic in the form of exploratory 

robotics being sent into space. Furthermore, advanced robotic applications 

are being employed to  more pressing m atters in our current society such as 

search and rescue, counter-terrorism and military applications, all of which

2
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aim to either save lives or to  reduce the risk of human death as opposed to 

tha t of the machine.

The objective of this research is to develop a novel autonomous intelligent 

system capable of learning goal oriented behavior for the control of a robotic 

mobile platform, where a robot would glean situations from its environment 

and learn the correct input output mapping with limited or no human inter

vention. Moreover, the goal is to design a transparent control system whose 

actions can be analyzed by a human expert and which is capable of continuous 

online learning.

To accomplish this objective, the work has aimed on expanding an in

triguing evolutionary control technique based on the Anticipatory Learning 

Classifier System (ALCS). The Anticipatory Learning Classifier System forms 

a rule-based intelligent system which evolves a population of rules to solve the 

control problem at hand by exploiting psychologically significant observations 

of anticipatory behavior from the real world. As such, the research described 

in this thesis focuses on an extension of the Anticipatory Learning Classifier 

system originally developed by Stolzmann and Butz [13] th a t would deal di

rectly with real-valued data and be well suited for integration into control 

systems, in particular, those found in mobile robotic applications.

1.2 C ontributions

The main contributions of this thesis can be summarized as follows:

•  A novel system, based upon the ALCS along with concepts of fuzzy logic, 

was designed such th a t it is capable of transparently handling real-valued 

inputs and providing real-valued outputs.

•  ALCS learning algorithms were modified to allow for machine learning 

on fuzzy sets as opposed to discrete symbol strings.

•  Enhanced classifier selection and action generation methods were devised 

th a t exploit the advantages of fuzzy logic.

3
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•  The developed system was successfully applied as an intelligent, au

tonomous controller for two separate application domains.

1.3 O rganization

This thesis is organized into 5 chapters. Chapter 2 presents a brief description 

of the fundamental workings of components which comprise the Fuzzy Antici

patory Learning Classifier System, while Chapter 3 provides a detailed view of 

how the system is designed. Chapter 4 reviews experimental results obtained 

by testing the system in two settings: a simulated agent and a mobile robot. 

Finally, Chapter 5 concludes the thesis, summarizes main contributions, and 

provides suggestions for extending the present system in the future.

4
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Chapter 2 

Background

This chapter provides an overview of the different constituents which are in

corporated and /or which have provided inspiration for the development of the 

Fuzzy Anticipatory Learning Classifier System.

2.1 In te lligen t System s

An intelligent system [14] is an instantiation of an algorithm or set of algo

rithms capable of performing actions or giving outputs which would be deemed 

intelligent should they be performed by a human. This means, tha t for a sys

tem to  be an “intelligent system,” it must be capable of performing several, 

ideally all of the following key tasks. It must be capable of gleaning informa

tion from its surroundings or assigning labels to inputs as well as be capable 

of analyzing the gathered information so tha t it can recognize patterns in the 

data. It must be able to  perform inference from incomplete information, as 

well as extract meaning from inexact and noisy data. Furthermore, it must be 

capable of dealing with unfamiliar situations and adapting to them. Finally, 

it must be capable of providing an informed output based on the collected 

knowledge.

Many different architectures are available for devising an intelligent sys

tem. The system described in this thesis focuses on utilizing intelligent sys

tems based upon soft computing principles [15]. These are computational 

methods based on approximate and/or qualitative representations of knowl

edge in a  manner similar to what is believed to be used by human reasoning.

5
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As such, they are well suited for dealing with incomplete as well as imprecise 

information.

The central focus of this thesis is to expand the Anticipatory Learning 

Classifier System to utilize real values instead of discrete symbols. This will 

make the system more suitable for direct incorporation into intelligent control 

systems.

2.2 R einforcem ent Learning

Reinforcement learning in an artificial intelligence (AI) learning technique 

which was pioneered by Sutton and Barto [16]. It lies in an area between 

supervised learning, where the system receives direct instructions as to  what 

the correct input-output response pairs should be in order to  mimic them, 

and unsupervised learning, where the algorithm must discover innate features 

and patterns from raw data without receiving any guidance (e.g. clustering 

techniques or self-organization). In effect, reinforcement learning attem pts to 

devise a solution from limited feedback from the environment in the form of 

rewards based on how it performs when going from one state to  another. Thus, 

the goal of a reinforcement learning algorithm is to  find an optimal solution 

to a sequential problem in the form of a policy tt, which specifies what action 

to  take for each given state in the problem so as to maximize the to tal reward 

received from all possible steps.

An offshoot from the original reinforcement learning algorithm is the group 

of Temporal Difference learning algorithms tha t aim to find the optimal policy 

7r by means of sampling the environment and learning from sequential steps. 

This is ideal for situations where the entire range of possible states and actions 

is not known such as in the case of a robot controller.

The reinforcement learning process present in the Anticipatory Learning 

Classifier System draws its roots from a reinforcement learning algorithm de

veloped by W atkins termed Q-learning [17]. The basis for this methodology is 

tha t through successive iterations, using the update rule shown in Formula 2.1, 

an approximation of the Q-function may be learnt (if the environment is static

6
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and the learning rate a  lies in [0..1] and takes on successively decreasing val

ues such th a t ctj =  oo and a i < i n f , an optimal Q value may be 

learnt; see [18] for specifics). As a result of learning the Q-value, a policy is 

generated which allows the agent to  find the method of reaching a goal by 

selecting actions which maximize the estimated state-action value.

rt +  7 - max Q (st+1,a t+1) -  Q (st ,a t)
f l i + 1

(2.1)Q,(st,ot) <— Q(st,at) + 0't(stjat) 

where:

Q  is the expected utility value 

Q' is the newly updated expected utility value 

St is a given state  a t time t 

at is an action performed at time t 

rt is a reward received at time t 

a  is the learning rate in [0..1]

7  is the discount factor in [0. .1)

2.3 E volu tionary C om puting

The developed Fuzzy Anticipatory Learning Classifier System (or FALCS) falls 

into the broad field of evolutionary computation. Evolutionary Computing (or 

EC) [2] is a paradigm inspired by concepts of Darwinian natural selection to 

evolve a  system which is capable of reaching a particular objective by means of 

processing successive generations of candidate solutions. During each learning 

phase, a set of candidate solutions is formed. Through various operators, new 

solutions are generated which come either as a result of the current population 

or by other means from the problem space. These candidate solutions are then 

evaluated to  determine how well they solve a particular task. Undesirable

7
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solutions are removed from the population and surviving candidates live on to 

form the next population.

Many different algorithms have been developed which fall into this category 

and even more utilize partial concepts. This thesis will focus on two particular 

instances: the genetic algorithm and its close relative the learning classifier 

system, the main foundation for the Fuzzy Anticipatory Learning Classifier 

System.

2.3.1 G enetic Algorithm s

Genetic Algorithms (GA) [19] [20] were developed by Holland [21] as a means 

to solve optimization problems. They accomplish the task through successive 

populations of candidate solutions. During each iteration of the algorithm, 

GAs apply genetic operators modeled from nature. The resulting offspring 

populations are successively selected, recombined and altered to form an iter

atively better solution to the problem.

Genetic algorithms operate upon sequence of bits known as chromosomes, 

where each bit, commonly referred to as a gene, encodes a particular feature in 

the problem space. Initially, a random population of chromosomes is generated 

after which the genetic operators are applied to form successive candidate 

populations.

The two most commonly applied genetic operators utilized in Genetic Al

gorithms are the crossover and the mutation operator. The crossover operation 

splices genes between two randomly selected chromosomes to form two new 

chromosomes. Depending on the particular implementation, the parent chro

mosomes die off (i.e. they are removed from the population), or remain which 

is the case for the GA used in the implementation of the Anticipatory Learning 

Classifier System.

The mutation operator acts upon randomly selected chromosome and changes 

a specified number of genes to random values. It is through this operation tha t 

the GA performs exploratory actions to search for completely new solutions.

Finally, the new population is passed through an evaluation stage which 

then computes each chromosome against a fitness function to  determine its

8
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quality in solving the optimization problem. The outcome of this process de

termines the probability tha t the individual will be selected in future iterations 

for the crossover population. The iterations term inate once a desired quality 

of solution is achieved or no further improvement is attained i.e. the solution 

converges.

Genetic Algorithms can be seen as forming an intelligent hill-climbing al

gorithm [22] th a t searches a known problem space to find an optimal solu

tion through the recombination of previous candidates while at the same time 

attem pting to  avoid local minima through mutation. Under the correct cir

cumstances, genetic algorithms may find a near-optimal solution to the prob

lem [23].

By setting param eters of a GA, one can achieve a desirable ratio between 

exploration and exploitation.

2.3.2 Learning Classifier System s

Learning Classifier Systems (LCS) are a family of evolutionary computing 

algorithms which develop a rule-based solution to a particular input-output 

problem. These algorithms draw their roots from the original implementation 

by Holland [24], whereby a solution is formed through successive trial and 

error of a set of rules which are augmented by parameters to form so called 

classifiers, th a t match their input condition against the current state of the 

operating environment and im part a stored action onto it. The condition and 

action strings inside the classifiers themselves take on values of either true, 

false or don’tcare.

W hen an input condition or message is presented to the system, it is 

recorded in an internal memory space which can be seen as a blackboard 

message list. From the population of classifiers, [A/'], a set of matching rules 

is formed by comparing each classifier’s condition string against the environ

mental input. In order for a classifier to be selected for insertion into the set 

of matching classifiers, referred to as the Match Set [M], all of the condition 

symbols in the classifier’s condition string must be the same as those from the 

input message, except for don’tcare symbols which ignore the environmental

9
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input for tha t particular b it’s position.

The winning classifier is selected from the Match Set through a bidding 

process tha t utilizes the quality of match in terms of its specificity and the 

adaptive strength param eter associated with each rule as a bid amount. The 

classifier present in the Match Set with the highest bid is then placed into 

the internal message board list. This process of selecting classifiers against 

the environmental input is repeated until all the available slots in the message 

list are filled up. The final action is chosen from the selected classifiers via 

a roulette wheel selection process, whereby the probability of a classifier being 

selected is proportional to  tha t classifier’s bid. The winning classifier’s action 

is then im parted onto the environment after which the success of the action is 

gauged.

The success or failure of a particular action determines the credit to  be 

assigned to the matching classifiers through a bucket brigade credit appor

tionment algorithm [25]. The bid made by each classifier in the message list 

is placed into to  a “bucket” . The winners of the previous iteration receive an 

equal proportion of the current contents of the bucket. Furthermore, the re

ward from the environment is equally distributed to all the previously selected 

classifiers.

Finally, a Genetic Algorithm is utilized on the entire population to create 

new rules based on recombination of the current classifiers. The selection of 

classifiers to  take part in the genetic operations is based in proportion to  the 

respective classifier’s fitness. Thus the GA attem pts to evolve a cooperative set 

of classifiers rather than having a single fittest classifier for each situation [26].

A close relative of Holland’s original LCS system is Wilson’s [27] Zeroth- 

level Classifier System (ZCS) which simplifies the original LCS framework 

through the elimination of the complex message board system and rule bidding 

inside the Learning Classifier System. Furthermore, the notion of an Action 

Set, [A], was introduced which treats all matching classifiers with the same 

action strings as one for both selection and reinforcement learning, rather 

than dealing with individual classifiers by themselves. The perceived reward 

at the next iteration is then distributed to  the previous Action Set equally to

10
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all classifiers less a  predefined discount amount. Also, all classifiers not present 

in the Action Set are given a penalty to reduce the chance th a t they will be 

selected in future iterations.

2.3.3 XCS

One of the disadvantages of the classical Learning Classifier algorithms is tha t 

they tend to focus on niche environments. This is a direct result of the reward 

system th a t favors actions which have the highest utility value thus reducing 

the system’s motivation to explore other alternatives in a given environment. 

In order to  adapt the classifier system to model an environment more accu

rately, Wilson [28] devised a strategy where the strength aspect of the classifier 

is replaced with a predictive system which attem pts to  maximize the accuracy 

of predicting the reward payoff tha t will be attained when its action is im

parted onto the environment. The resulting system, called XCS [29], [30], 

no longer focuses on niche areas but rather performs a wider exploration of 

the environment, as it aims to maximize the prediction accuracy of reward 

received when performing an action rather than maximizing the reward itself. 

As such, it creates a state-action model of the explored environment in the 

form of a set of if-then rules tha t are augmented by a parameter signifying the 

expected payoff of each rule.

2.3.4 ALCS

A close descendant of the XCS is the Anticipatory Learning Classifier System 

(ALCS) algorithm developed by Stolzmann and Butz [31], [13], [32], The 

ALCS follows the desire to  develop a model of the working environment as in 

XCS, but takes th a t concept to  the next level. Incorporating observations from 

the psychological work of anticipatory behavior in humans and animals [33], 

it aims at modeling the environment in terms of input conditions, an action 

and the effect th a t the action has on the environment.

In the most basic form, the Anticipatory Learning Classifier System works 

in a manner similar to  a combination of both LCS and XCS. The system fo

cuses on a population of classifiers which hold Condition-Action-Effect rules

11
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augmented by a few key parameters. Thus, each classifiers rule specifies the 

Condition upon which the classifier is active ( “fires”), the Action  which the 

classifier will im part onto the environment, and the Effect th a t its action will 

have on the environment, (i.e. the next state of the environment). The condi

tion bitstring can take on discrete symbols i.e. “1” , “0” or (a don’tcare 

value which matches all possible symbols). The effect bit string is formed in 

the same way with the exception tha t the don’tcare symbol represents a “no 

change” in the environment rather than simply ignoring the value during the 

learning stages.

Each classifier contains several key parameters which are modified during 

the learning process. The two most im portant are the reward prediction value, 

r , and quality parameter, q. The reward prediction parameter is similar to the 

Q  utility value in W atkins’s Q-Learning algorithm [17], which is an indicator of 

the expected return of taking the current action and performing the best known 

actions thereafter. In ALCS it can be seen as a means of predicting the benefit 

tha t will be attained when the rule is utilized. The quality parameter, q, of 

the classifier rule represents the predictive quality on a scale of [0..1] indicating 

how well the condition-action-effect triplet matches the given environmental 

message. Finally, the third important param eter is the Markset, M , which 

stores all the input conditions where the given classifier fails to  anticipate the 

output correctly.

The operation of the algorithm is fairly straight forward. The working 

environment is probed for a representation of the current state. This state is 

used to  generate a  set of matching classifiers known as the Match Set [M] based 

upon each classifier’s condition bitstring. An exploratory action is selected 

based on the exploration probability parameter, or a classifier is selected from 

the Match Set which has the highest product of predictive quality, q, and 

reward prediction, r . After this, an Action Set [A] is formed from the Match 

Set, where each classifier’s action [A] is the same as the winning action. The 

winning action is then im parted onto the environment and the classifier sets 

are retained for the learning algorithms.

Three main learning algorithms work in conjunction to evolve an optimally
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general bu t accurate predictor. The aim is to evolve a classifier tha t encom

passes the widest possible range of input conditions while a t the same time 

providing an accurate prediction of the next state of the environment.

The anticipatory learning process provides the means by which the clas

sifiers are able to learn the condition-action-effect mapping in a given envi

ronment. After an action has been imparted, each classifier in the Action 

Set is assessed to  check whether it correctly predicted the next state of the 

environment.

If a given classifier correctly predicted its action outcome, one of two cases 

can occur. Should the classifier not have any marks, its quality is incremented 

by means of an adapted Widrow-Hoff delta rule [34] as shown in Formula 2.2.

, _  j  q + (3(1 — q) if correct prediction , .
^ \  Q ~  0Q otherwise * ' '

where:

q' is the classifier’s new quality value 

q is the classifier’s previous quality value 

(3 is the learning rate

Otherwise if the markset is not empty, the system attem pts to  generate 

a new classifier by first creating a clone and then adding don’tcare symbols to 

positions in the condition bitstring and to a difference bitstring, which repre

sents the symbols th a t are different between the markset and the triggering 

condition. The number of added don’tcare symbols is determined by maintain

ing the specificity of the two bitstrings above a specificity threshold. Finally, 

the new classifier clone is specialized with the remaining bits in the difference 

bitstring th a t are not empty and do not have don’tcare symbols.

On the other hand, if a given classifier does not correctly predict its out

come, its quality is decreased as dictated by Formula 2.2. Next, the environ

mental input for which the classifier fired is recorded in the Mark Set. After 

this, if the classifiers condition bitstring has don’tcare bits which can be spe

cialized to match the input condition, a new clone is generated w ith those

13
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bits set and the effect bitstring is adjusted accordingly to correctly predict the 

outcome.

If no correctly predicting classifier is found and if no alternative candi

date classifier is generated, a new classifier is formed by a covering algorithm. 

The algorithm creates a new classifier, whose condition, action and effect bit- 

strings are equal to  the observed state transition triplet. Furthermore, the 

quality and reward prediction parameters are initialized to  default values and 

the numerosity and experience parameters are both set to  one. Finally, the 

learning tim estam ps are set to  the current iteration number.

During learning, reward prediction parameters are updated by a reinforce

ment learning-like algorithm in a manner similar to  what could be utilized in 

traditional Q-learning. The reward received from the environment is passed 

onto all classifiers inside the Action Set [A] by means of Formula 2.3.

r' =  r  +  / ? ( p  +  7  max (a ■ r) — r ] (2.3)V cie \M]( t+i )  )

where:

r' is the classifier’s new reward prediction parameter 

r  is the classifier’s previous reward prediction parameter 

p is the reward from the environment 

13 is the learning rate 

7  is the discount factor

This effectively builds up a prediction of what the average reward will be 

attained when the classifier is utilized.

The final component of the system is a generalization algorithm, based on 

the traditional genetic algorithm tha t performs two tasks. First, it selects can

didate classifiers from the Action Set [A], upon which it performs a crossover 

operation on the condition bitstring to find better matching conditions. It 

also performs a m utation operation on the condition bitstring. It should be 

noted, however, th a t the m utation operator only sets don’tcare values in the
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bitstring, rather than inserting specific bits. This is due to  the desired objec

tive of generalizing the classifiers rather than specializing them (as this already 

occurs effectively during the Anticipatory Learning stage).

Assuming th a t the system converges to  a stable population, a model will 

emerge inside the system tha t provides a condensed temporal representation of 

how a set of possible actions for all known condition will affect the environment. 

Due to the focus on maintaining high quality predictions without full regard for 

the reward attained, the model itself covers as much of the area as the system 

is trained on. Furthermore, due to the reinforcement learning component of 

ALCS, it is possible to  ascertain the desirability of each alternative action for 

a  given environment state.

The complete architecture of the system is shown in Figure 2.1.

Classifier
Population

L
Condition
Perception

Match Set
Generation

Match Set 
[Ml

J R E
Genetic

Algorithm

Environment

Reward

7
Effect
Perception

Reinforcement
Learning

Anticipatory
Learning

Action
Selection

Action Set 
[AJ

Figure 2.1: Structure of ALCS

The advantage of holding an anticipation value for an intelligent system, 

in addition to  a condition-action pair, comes directly from psychology [35]. 

It has been shown through animal experiments th a t many behaviors are far 

more complex than  what can be modeled using classical Pavlovian behavior 

of Stimulus-Response [36]. Animals, and Humans in particular, are capable of 

forming models of their environments without receiving any direct reward from 

the surroundings, and yet they are extremely capable of using this knowledge 

“when the time is right” .

A classical demonstration of this fact comes from ra t in maze experi-
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ments [37] [38]. These experiments are conducted in two phases. In the 

first phase, each individual from a group of the rodent subjects is allowed 

to  explore given maze with no food present. After this exploratory phase, 

a  desirable treat for the ra t is placed in a goal location and the ra t is placed 

at the starting position. The time is measured to  see how long it will take 

the ra t to find its treat. In the second phase of the experiment, a different 

set of ra ts  is used to measure how long they will take to find the desirable 

treat from a  starting position without first being allowed to  explore the maze. 

It has been shown conclusively tha t the rats which have previously explored 

the maze have a significantly faster search time than those which did not have 

the opportunity to  explore the maze. Hence, it can be concluded tha t latent 

learning does occur, where the rats do form a representation of the maze and 

are able to  use this representation to  find the goal much faster.

More so, it is well known tha t human thinking is far more complex than 

just responding to  stimuli. We are able to choose a particular course of action 

depending on what we perceive to be the most desirable outcome and we can 

predict what outcome our actions will have.

Hence, it can be easily seen th a t the main advantage of using anticipations 

in a control system for a robot or agent is tha t it can learn its environment 

without having to  be given an explicit reward. W ith such an approach, it 

can be placed in an unknown surrounding, and allowed to explore it initially 

without having any direct goal. Upon introducing an objective, the robot or 

agent can atta in  this objective rather than relying on a pure reward mecha

nism. This has been illustrated by replicating an experiment similar to  the 

aforementioned ra t experiment using Khepera robots [39].

2.4 Fuzzy Logic

Fuzzy logic [40] [41] was originally introduced by Zadeh [42] in the 1960’s as 

a way to  represent imprecise human knowledge in a more formal mathematical 

manner. Classical boolean logic deals with absolutes: either something is true 

or it not, something is part of a set or is excluded from a set. However, in the
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real world, not everything can be stated in such absolutes; many concepts have 

degrees of truthfulness and degrees of belongingness to different sets. Further

more, humans usually use general and approximate expressions of information 

on a daily basis as opposed to using precise quantities. As such, it is difficult 

to map the vague information into classical mathematical formulations.

To accommodate qualitative knowledge, fuzzy logic utilizes the notion of 

fuzzy membership functions. This allows a specific instance x  from the domain, 

termed universe o f discourse of AT, to have a range of possible membership 

to a particular set, A, between 0 and 1. Thus, when the belongingness or 

membership is given as 0, x  is completely excluded from the set A  and when 

the membership is 1 it is completely included in A. The real advantage comes 

from the range of values in between 0 and 1 which allows a complete range of 

degree of belongingness to  the set. Examples of possible membership function 

types include the delta function, trapezoid function, sigmoid function, Gaus

sian function, generalized bell function, and so forth. The basis for the fuzzy 

membership function is shown in Formula 2.4 below:

p A (ar) : X  -  [0,1] (2.4)

By associating linguistic descriptors with membership functions, one is 

able to  encode imprecise human concepts such as “near” and “far” , “hot” and 

“cold” to  varying degrees of belongingness on a range of possible values in the 

universe of discourse.

The different operators such as AND, OR, NOT, union, etc are defined 

in fuzzy logic through appropriate mathematical operators th a t meet specific 

criteria. This allows one to  use fuzzy logic in normal boolean algebra equations. 

For specifics, see [41].

To obtain a crisp set of elements belonging to fuzzy set A  whose degree 

of membership is equal or greater than a particular threshold value a, an 

alpha cut is taken of the membership function. This process is defined by 

Formula 2.5:

A a = {x  6 X \ p A ( x ) > a } , a €  [0,1] (2.5)
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In order to  encode human knowledge with fuzzy logic, a set of if-then 

or if-then-else rules is utilized which allows an expert to encode associations 

between a condition or antecedent with a particular output, or consequent. 

As such, they take on the form of IF condition X  is x% then output Y  is y, 

where x  and y  are fuzzy values as opposed to specific numerical values. To 

accommodate for more complex input space, separate antecedents are stringed 

together though the use of the AND operator.

To obtain a specific output or inference, I,  from the knowledge base of 

fuzzy rules, R, a process known as the compositional rule of inference (CRI) 

is utilized. This process forms an agregate function composed of the current 

data D  along with the entire set of fuzzy rules present. This is formally stated 

in Formula 2.6:

I  = D o R  (2.6)

Furthermore, the actual membership function obtained from the CRI pro

cess is defined as:

Hi =  sup min (pD, hr) (2.7)

In order to  obtain a crisp numerical value which can be utilized by a real- 

world process from an output u, a defuzzification process is employed which 

either employs a threshold method such as an a-cut or a weighted combination 

of the rule inferences. One such possibility is the center of gravity method 

which finds the centroid of a given inference membership function. This is 

shown in Formula 2.8:

f  u ■ p i  (u ) du
u =  *■■■ , w  (2.8)

J hi (u ) du
U

The typical structure of a fuzzy controller is illustrated in Figure 2.2. First, 

a real-world value is passed through a fuzzification stage where its belonging

ness to  different fuzzy membership functions is assessed. Next, the fuzzifed 

value is used to  perform a composition of the different rules present in the fuzzy
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rule base by means of an inference engine. Finally, the composite function is 

defuzzified to  give a resulting crisp output which is then utilized by given 

application. It is also possible to have a closed-loop feedback system which 

utilizes sensors to  observe the actual outcome of the controller and compare it 

against the desired value. This is the reprocessed back into the fuzzification 

stage to  repeat the cycle and infer the next output value.

actual response from senso rs

ProcessFuzzification Defuzzification

Fuzzy Rule Base

Inference Engine

Error A ssessm ent

Figure 2.2: Structure of a typical fuzzy controller

Fuzzy logic control systems are particularly well suited for applications 

where it is not possible to  form a model of the process itself but rather it is 

necessary to  rely on a set of known good heuristic rules that dictate what action 

to  perform for a set of input conditions. In addition, control systems based 

on fuzzy logic have the advantage of transparency to a human user. They 

encode the solution to the control problem in a readily recognizable form thus 

allowing for easy analysis and modification by an expert [43]. Furthermore, 

through the inherent ambiguity present, the fuzzy controllers are able to handle 

continuous ranges without overcomplicated mathematical formulations, which 

consequently help to  preserve the simplicity of a compact human readable rule 

base. Fuzzy logic controllers are also able to gracefully handle noisy inputs 

th a t normally exist in real-world systems without causing erratic behavior.
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Chapter 3 

FALCS Architecture

This chapter documents the development of the Fuzzy Anticipatory Learning 

Classifier System (FALCS) and describes all the underlying mechanisms which 

allow it to  function. It describes the concepts borrowed from Fuzzy Logic to 

extend the parent Anticipatory Learning Classifier System (ALCS) to  work 

with real-valued problems, as well as modifications performed upon ALCS to  

allow it to  transparently use the fuzzified classifiers.

3.1 S ystem  O verview

The structure of the FALCS system can be seen in Figure 3.1. The description 

of the individual components is described in the proceeding sections.

3.2 Fuzzy Classifier

For the transparent operation of the Anticipatory Learning Classifier System 

with real-valued inputs, the use of the bitstring based classifiers has been 

replaced by sequences of functions. The condition bitstring effectively becomes 

a set of fuzzy membership functions based on generalized bell functions.

The action bitstring becomes a set of singleton variables which can take 

on a number of predefined numerical values, hence they are referred to as 

“granulated” singleton bits in this thesis. The rationale behind using discrete 

intervals for the actual actions is to allow for the learning mechanisms to op

erate effectively upon the classifiers, in particular when determining if two

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



\ ' '  AnfibipafoqC r 
^  .  Lbarning.^^ ,/j - Reinforcement 

I Learning

. r  ""  G'erielic...

Figure 3.1: Overall structure of FALCS

classifiers perform the same action. It should be noted th a t a full range nu

merical output values emerges through the use of defuzzification, as described 

in Section 3.6.2. The number of granules can be directly related to the con

cept of fuzzy resolution, where the greater the number of granules, the finer 

the resolution and, subsequently, control. However, the tradeoff is a signifi

cant increase in the population size as well as training time required to  learn 

the finer control rules. Also, using a smaller number of granules reduces the 

possibility of falling into a local minima and taking a long time to  escape from 

it. The tradeoff off is a more general solution which is learnt faster.

Finally, the effect bitstring becomes a set of fuzzy membership functions 

based on the generalized bell function. However, default w idth of these func

tions is much narrower compared to tha t of the condition bitstring and the 

overall shape is much sharper i.e. it has a more trapezoidal shape as opposed 

to a bell shape as illustrated in Figure 3.2.

The complete triplet, cl, is shown below in Formula 3.1.
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Figure 3.2: Example of fuzzy membership functions utilized

C =  l p Cl {x) ,nc2{x), . . . ,  ficdp (a r ) J -
d =z  ) A  =  {fiAi (x) , / ia2 ( x ) , . . . ,  nAda (x) j  ^  ^

E  = |/*j& (x) , he2 { x ) , . . . ,  HEdp (x) |
internal parameters

where:

C  is the classifier’s condition fuzzy membership function set 

A  is the classifier’s action fuzzy membership function set 

E  is the classifier’s effect fuzzy membership function set 

dp is the perceivable dimensionality

da is the actable dimensionality

The concept of markset is no longer present inside the fuzzy classifiers due 

to  feasibility and effectiveness issues. It has been replaced with an alternative 

form more appropriate for the method of encoding the input conditions. This 

is further described in Section 3.8.1.

The indicative parameters present in each classifier system are the same as 

those of the Anticipatory Learning Classifier System.
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3.3 R u le  G eneration

In order for the learning classifier system to be useful, a population of rules 

embodied as classifiers must exist. These classifiers are the means through 

which the system learns i.e. stores knowledge and interacts with its surround

ings. Thus, to  allow for consistent and effective learning, well-defined classifier 

generation m ethod must be devised.

3.3.1 R andom  Classifiers

In order to  bootstrap the system during the first stage of learning, an initial 

random set of classifiers is generated according to  Formula 3.2. These clas

sifies are limited in number and have different but relatively general input 

conditions, each with different random actions whose effect will be imparted 

onto the environment. This allows for an initial fast exploration of the work

ing environment in the hopes tha t at least some will provide a seed for new 

classifiers to  be generated. However, for complex and high-dimensional en

vironments, this method provides limited utility due to the low probability 

of actually finding the correct condition-action-effect combination, even with 

fairly general inputs.

x —R an d o m (0 ,l)  
0 .5 R an d o m (0 ,iw c  )

2sc \

HAi{%) — & (x — Random (0,1))

m i x ) 0.5-Random (0,iw E )
g —R andom (Q ,l)

(3.2)

q =  lq 
r  — ir 
n = 1
e =  1

where:

fiCj (x) is the classifier’s condition membership function for input j

HAj (x ) is the classifier’s action membership function for input j

fiEj (x) is the classifier’s effect membership function for input j
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<5 (x ) is a delta/singleton function 

cl.q is the classifier’s quality parameter 

cl.r is the classifier’s reward prediction parameter 

cl.n is the classifier’s numerosity 

cl.e is the classifier’s experience 

iw is the initial membership function width 

s is the membership function sharpness modifier

3.3.2 Covering

The main process through which classifiers are created inside the Fuzzy An

ticipatory Learning Classifier system, is known as covering. Each time tha t 

a  condition-action-effect triplet is encountered and no existing classifier matches 

the input, action and output sequence, or when no classifier with adequate 

quality exists, a new classifier is generated such th a t it matches the triplet 

sequence observed in the environment as shown in Formula 3.3. O ther pa

rameters such as initial reward and quality are set to default values (see Sec

tion A. 1.1 in the Appendix for details). This initial classifier generated through 

the covering procedure is then handed off to the classifier insertion mechanism 

(described in Section 3.8.2), which aims to  reduce redundancy and increase 

the generality of the population. Therefore, there is no guarantee tha t this 

particular instance will actually be part of the population. If the newly gen

erated classifier can be merged with an existing classifier, a merging process 

described in Section 3.8.4 is performed.
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f*Ci(x)

VAiix)

c l=  ^ ( * )

6(x  -  di (t))

( -l I z - g , - ( t + 1 )  2 5 B1 I a?-g, t̂+ 
0.5lt?£; (3.3)

where:

<r (t) is the environment condition perception at time t 

He, (x) is the classifier’s condition membership function for input j  

Ha0 {x ) is the  classifier’s action membership function for input j  

HEj(x) is the classifier’s effect membership function for input j  

5 (x ) is a delta/singleton function 

a (t ) is the action taken at time t

q is the classifier’s quality parameter 

r  is the classifier’s reward prediction parameter 

n  is the classifier’s numerosity 

e is the classifier’s experience 

w  is the initial membership function width 

s  is the  initial membership function sharpness modifier

3.4 M atch  Set G eneration

Upon probing the environment for a numerical representation of the current 

situation, the first step of the Fuzzy Anticipatory Learning Classifier algorithm 

is to  generate a Match Set [M ] in a manner similar to  the original algorithm.
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Each classifier inside the population is checked for match with the current 

environmental perception. The degree to which a given classifier matches 

a given input is determined by an average of all the condition fuzzy membership 

functions. This is illustrated by Formula 3.4. It should be noted th a t if 

a particular membership function is denoted as a don’tcare, the value of the 

membership function is automatically set to fic (x) =  1.0.

dp

E  hC2 ((Tj)

Mm (*) =    (3-4)

where:

is the degree of match membership function

a  is the environment condition perception

dp is the environment condition perception dimensionality

Hc2 (x ) is the classifiers condition membership function for input j

If the degree of match is above a predefined threshold, a T , the classifier is 

deemed to  match the current situation.

doesMatch (a, cli) = (cr) > ocT (3-5)

where:

a  is the environment condition perception

a T is the acceptance threshold param eter (i.e. alpha-level)

The given classifier is added to  the Match Set population as show in For

mula 3.6.

[M] (t ) — {cl € [IV] | doesMatch (a (t ) ,  c£)} (3.6)

where:

[M] (t ) is the M atch Set at time t
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[N] is the classifier population 

a  (t ) is the environment condition perception at time t

3.4.1 A ctable Set Generation

In situations were it is known that certain actions cannot be performed due to 

physical or other constraints, it is possible to integrate this knowledge directly 

into the system for faster learning. This is done by creating an Actable Set, 

[C], which contains all classifiers from the Match Set which do not include 

a Disallowed Action Set, D. This process is stated formally in the formula 

below:

[C] (t ) -  {cl € [M] (t) |d .A  % D}  (3.7)

where:

[C] (t ) is the Actable Set a t time t

[M] (t) is the Match Set at time t

D  is the disallowed actions set

While forming an Actable Set is not explicitly required for proper system 

operation, it helps to  speed up the learning process by disregarding certain 

types of actions th a t should always be excluded. The disadvantage of using 

this method is th a t the model inside FALCS does not contain these undesir

able actions. If such behavior is desirable, the Actable Set is used in place 

of the M atch Set for classifier selection, Acting Set generation and learning 

algorithms.

3.5 R u le  Selection

In order to choose an action to impart onto the environment, a mechanism 

needs to be in place to  select a winning classifier, i.e. the classifier which 

best represents the given state of the environment and whose action will be 

utilized to form the action to be imparted onto the working environment. To
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accomplish this objective within the FALCS architecture, five major meth

ods of selecting classifiers have been implemented. Each method has its own 

benefits and appropriate situations when it is most useful.

3.5.1 M ax Q-R

The first classifier selection mechanism comes directly from the parent ALCS 

algorithm. It is based on an elitist selection ideology tha t deems the winning 

classifier the one which has the highest predictive quality of the next state of 

the working environment and at the same time provides the highest reward 

from the environment as described by Formula 3.8. The methodology behind 

this selection mechanism can be seen as a greedy best-first search strategy [44] 

which aims to  maximize the short term profit without explicitly taking into 

consideration any long term strategy. However, this provides an excellent 

method for choosing an action when a non detrimental step needs to be taken,

such as during active system operation when the system should not try  to

perform actions th a t have not been verified to be acceptable. Furthermore, 

this selection mechanism provides the fastest means of selecting the action, and 

may be the only viable means of choosing an action under real-time constraints 

within a large population. This process is shown in Formula 3.8:

clw =  argm ax (cl.q ■ cl.r) (3.8)
cie\M](t)

where:

clw is the winning classifier 

[M] (t) is the M atch Set at time t

cl.r is the classifier’s reward prediction param eter 

cl.q is the classifier’s quality parameter

To form the actual Acting Set, [T] which will later be used to calculate the 

actual crisp action, the top naci classifiers selected using the above formula are 

inserted into [T].
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3.5.2 B est Known A ction

When working with real-valued inputs in large dimensional spaces, it can be 

expected th a t no matching classifiers will be present for numerous input situa

tions, especially during the initial training phase. Relying solely on using ran

dom actions to fill this void would be a significant impediment to the learning 

mechanism in the learning classifier system. This is because of the enormous 

search space which would need to be handled to find a single adequate solu

tion. However, due to the use of fuzzy logic, it is possible to  choose the best 

matching classifier from the existing population, even if the match degree of 

the best matching classifier is below the acceptable threshold. This process 

is illustrated in Formula 3.9. This best matching classifier is selected as the 

winner and is utilized as if it were normally chosen by the other selection mech

anisms. The actual crisp numerical value is calculated in the same manner as 

for fully matching classifiers, as presented in Section 3.6.2.

clw (t ) = argm ax (degreeMatch (a (t) , cl)) (3-9)
cie[JV]

where:

clw is the winning classifier 

[N] is the classifier population 

a  (t ) is the environmental perception

When the selected classifier’s action is utilized, one of two situations may 

occur. First, a new classifier will be generated and an attem pt will be made 

to add it to  the population. Due to the generalization mechanism in place 

(see Section 3.8.2), it is very likely tha t it will be merged with the classi

fier which spawned the action. Secondly, if the action performed was deemed 

detrimental, i.e. the immediate reward is below the m in r threshold, the condi

tion membership functions of the originally spawning classifiers will be shifted 

away from the triggering condition by means of the ALP function learning 

procedure described in Algorithm 3. It should be noted tha t the user must set
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the m inr value to  a level which indicates what actions receiving an immediate 

reward value below the specified threshold are never acceptable. Furthermore, 

due to  the fact th a t the newly generated classifier has a reward value below 

m inr, an exploratory action (described in Section 3.5.5) will be utilized.

3.5.3 R oulette W heel Selection

In order to  improve upon the exploratory mechanisms present inside FALCS, 

a roulette wheel selection mechanism has been introduced as an alternative 

rule selection mechanism. Roulette wheel selection mechanisms are commonly 

used in genetic algorithms to  select chromosome for genetic operators. The 

particular implementation used for classifier selection inside FALCS is detailed 

in Algorithm 1.
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A lgorithm  1: RouletteSelect
Input : M atch Set [M]

O utput: W inning classifier clw

begin
m r *— min (cl.r) 

de[M] '
1[MJ|

s <— (di-n • cli.q ■ (cZj.r — m r))
i—1

p *— s • Random (0,1) 

i *- l , j  <- 0 

repeat
j  *- j  +  (cli.n ■ ch.q • (cli.r — m r))d

i *— i +  1 
until j  >  s

return  cli 
end

where:

cl.r is the classifier’s reward prediction parameter 

cl.q is the classifier’s quality parameter 

cl.n is the classifier’s numerosity

d is a small factor, altering the selection probability difference between

strongest candidate and weakest candidate

The benefit of using the roulette wheel as opposed to  the elitist selection 

stems from the likely selection of higher quality classifiers while still allowing 

less proven classifiers to  be selected, although with much smaller probability.

As such, it eliminates the dominance of high quality classifiers from monop

olizing and thus focusing on a niche in the environment. Thus, the method 

provides a broader range of actions, all of which may be beneficial to  the de

sired solution. It can also discover previously unexplored paths to the system’s 

objective which would have otherwise been ignored.

> For more cooperative action generation, this classifier selection method 

is also used to  select a  predefined number of classifiers, dictated by the naci

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



variable, for insertion into the Acting Set, [T], to  perform an action. This 

allows for cooperative action generation as with the Max Q-R method, but 

also for varied combinations of classifier’s actions, given th a t the probability 

of a classifiers selection is in proportion to its quality and reward value.

While this selection mechanism is excellent for training an initial classifier 

population to  a completely unknown environment, due to  the randomness 

of the rule selection mechanism it may not be an ideal candidate for use in 

a production operating environment. This is due to the fact th a t it may 

lead to  a previously unencountered state which is not desirable when only 

exploitative operation is required i.e. when only proven solutions are to  be 

utilized. Therefore, for these types of situations it is best to  use the roulette 

wheel selection mechanism during the initial phase of training, and then switch 

to a more stable action selection mechanism such as the “Max Q-R” and the 

“Best Known Action” .

3.5.4 Desired Effect

This method of selection comes from the fact tha t the system provides an 

anticipated effect of each classifier’s action. Hence, after an initial training 

tha t builds up an effective population of rule triplets, it is possible to choose 

the action based on the desired effect tha t will occur in given environment as 

shown in Formula 3.10. This is of particular use when one wishes to  use more 

complex action planning algorithms.

clw (t ) =  argm ax (degreeSimilar (de, cl.E )) (3.10)
d e [M ]

where:

d w is the winning classifier 

[M] is the Match Set 

de is the desired outcome in the environment 

E  is the classifier’s Effect
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However, unlike the parent Anticipatory Learning Classifier System, the 

possibility of chaining rules in a forward manner i.e. performing plan ahead is 

not readily possible in the current FALCS implementation. This is due to  the 

fact th a t the fuzzy output prediction does not specify an exact output like in 

the discrete case. It is not known to which particular state an action will lead; 

rather a rough estim ate of the different possible number of states which are 

very similar to  each other is known, and these states are considered the same 

when presented to  a FALCS classifier.

3.5.5 Exploratory Actions

In order to  facilitate a life-long learning process, the concept of taking ex

ploratory actions was incorporated from previous classifier systems (including 

ALCS) into the FALCS architecture. Exploratory actions are required in the 

classifier system to prevent the learning classifier system from stagnating in 

a suboptimal state such as being stuck at local minima, both in terms of the 

reward attainable from the environment as well as from attaining the best 

possible predictions for future outcomes. W ithout such actions, the system 

would continue to  choose the current elite classifiers without taking into con

sideration th a t better actions are possible. Also, it would never recognize tha t 

the current action being performed may not be the best suited alternative.

To allow for exploratory actions within FALCS, a fuzzy membership func

tion generator has been designed to generate new singleton action bits in one 

of two ways. For environments where only a single action is possible i.e. only 

one of the outputs may be active at a time, a random action generator first 

chooses a particular output bit, and then assigns a random value (singleton 

function) in the allowed output range. However, for environments where all 

bits can take on different random values, all action bits are randomized.

No m atter which main classifier selection method is used, a probability 

function exists where a random action is chosen if a drawn random number 

falls below an exploration probability threshold, e. This ensures th a t the learn

ing classifier system is able to discover previously unseen alternatives which 

would be otherwise missed. Furthermore, when only a single classifier is in-
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serted into the Acting Set, and its reward value is below the m in r threshold,

tem pt to  find an action tha t would be deemed more acceptable by the working 

environment.

3.6 A ction  G eneration

3.6.1 D iscrete O utput

When the environment upon which FALCS operates does not require (or does 

not accept) real-valued actions, the system can use the granulated singleton 

bits as discrete symbols for outputs. Also, in such a configuration, only one 

winning classifier needs to  be selected for insertion to  the Acting Set, [T], i.e. 

nad — 1 • In this case, the degree the winning classifier matches given situation 

can be seen as its corresponding confidence value.

3.6.2 Real-valued Output

The classifier’s condition membership function is augmented by a scaled reward 

component as shown in Formula 3.11. The inclusion of the reward scaling is 

to reduce/eliminate the utilization of detrimental actions in the solution.

fid. is the classifier’s effective condition membership function for action 

generation

He- is the classifier’s condition membership function

r  is the given classifier’s reward

In the case tha t real-valued actions are desirable, naci classifiers in the 

Acting Set, [T], are composed together as shown in into the composed function 

I ,  Formula 3.12. Each classifier keeps track of its contribution to  the solution,

the exploratory action generation mechanism will also be utilized in an at-

min
de\T]

max (cl.r) — min (cl.r)
c(e[T] de[T]

where:
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k . This whole process effectively forms what could be seen as the inference 

engine in a classical Fuzzy Control system.

I  = P o [ T \ .C  (3.12)

where:

P  is the set of perceived environmental data 

[T] is the Acting Set

C  is the set of classifier’s condition membership functions 

/  is the composed inference

Hi (p ) =  maxm in(/ija,/ic'') (3.13)

where:

Hi is the composed inference membership function

Hp  is the membership function of the perceived environment condition

He is the classifier’s condition membership function (see Formula 3.11)

S  is domain of possible perceptions P

The crisp value, which is then presented to the working environment as

the action to  be im parted onto, is determined through the a Center of Gravity

(CoG) defuzzificaton process. This is illustrated by Formula 3.14

f a  h i (o) da

a ~  I \ rl (3-14)J hi {v) da
p

where:

a is the generated action to be imparted onto the environment 

a  is the perceived environmental situation
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P  is the set of perceived environmental data

Hi is the composed fuzzy membership function

A top-down view of the actual action generation procedure is provided 

Figure 3.3.

Population Set [N]

Classifier M embership 
Functional

deg ree  m atch & 
reward factor "

Action

Classifier M embership 
Function(s)

Acting Set [T]
Classifier M embership 

Function (s)

Classifier M embership 
Functions)

Environment
Classifier Membership 

Function(s)
degree m atch & 
reward factor r

Classifier M embership 
Function(s)

Im plicit Fuzzification-like C o m p o sitio n a l R ule D efuzzification
o f In fe re n c e  (CRI)

Figure 3.3: Structure of FALCS action generation mechanism
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3.7  A ction  Sets G eneration

3.7.1 A ction  Set

To properly credit all classifiers which correspond to  the generated action, 

an Action Set, [A], is formed in a manner similar to the parent Anticipatory 

Learning Classifier System. The most dominant classifier which has the great

est impact on the solution is automatically inserted into this set. In addition, 

all classifiers th a t match the given chosen action are also inserted into this set.

[A] (t) = {cl € [M] (t) |cl.A ~  a (<)} (3.15)

[A](i) is the Action Set at time t 

[M)(t) is the Match Set at time t 

cl.A is the classifier’s action 

a(t) is action performed at time t

3.7.2 Contribution Set

To allow for learning to  occur in classifiers which contributed to the solution 

via the fuzzy composition and defuzzification steps (i.e. are present in the 

Acting Set [T], but are not included within the Action Set because they do 

not have the same type of action as tha t which has been ultimately generated) 

a Contribution Set, [K], is formed according to Formula 3.16. This set includes 

all classifiers which are not part of the Action Set but made a contribution to  

the solution greater than a predefined threshold k > m in K.

[.K ] (t ) =  {cl 6 [T] (t)\cl.K > mink, cl [A] (t )} (3.16)

where:

[A](t) is the Contribution Set at time t 

[T](t) is the Acting Set at time t
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[A](t) is the Action Set at time t

k is the classifier’s contribution to the action 

m in K is minimum contribution amount required for accreditation

3.7.3 Chained Set

Each effect in the classifier is dependent on the previous action. In many 

situations, such as in robot navigation, the difference between a given state and 

the next may be very small. To compensate for this, a stack of n ch classifiers is 

maintained to  provide the learning mechanisms a means of identifying which 

classifiers were used in sequence to attain  given consequence in the environment 

as show in Formula 3.17. It should be noted however, tha t this set only contains 

winning classifiers, and does not account for other classifiers such as those in 

the Action and Contribution Sets.

[H] (t ) =  {cl €  [N ] \IsM ainC lassif i e r  (cl (u)) , t  > u > (t — nch)} (3-17)

where:

[.H ] (t ) is the stack of classifiers at time t 

n Ch is the length of the chain 

[N] is the classifier population Set

3.8 A n tic ip atory  Learning P rocess

The majority of the anticipatory learning concepts implemented in the ALCS 

algorithm were incorporated into FALCS in their original spirit while allowing 

for learning to take place with the fuzzy membership functions as opposed to 

discrete symbols. However, many changes have been made to allow learning 

for more general fuzzy membership functions. A generalized overview of the 

main methodology behind the anticipatory learning process utilized in FALCS 

can be seen in Algorithm 2.
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A lg o rith m  2: AntieipatoryLearningProcess 
b eg in

fo reach  cl E [A] do  
increment cl.e

update learning timestamp

if  does cl anticipate outcome correctly th e n
if  cl.r similar to  p th e n

increase condition matching

e n d

increment cl.q according to Formula 2.2 
else

decrease condition matching

decrement cl.q

create more specialized classifier based on cl if possible

if  cl.q < th e n  
Delete (cl)

e n d
en d

en d
e n d _______________________________________________________________

3.8.1 Function Learning

The Anticipatory Classifier System parent algorithm utilized a concept of mark 

bits to  note each input condition where a classifier failed to  correctly predict 

the next sta te  of its working environment. This enabled the system to  evolve 

a population which would minimize the number of incorrectly predicted out

comes while a t the same time allow a partially working population to  exist. 

Directly importing this concept into the real-domain where each incorrect in

put condition would be noted is not feasible due to the boundless number 

of marks th a t could be generated per classifier. Furthermore, utilizing these 

marks would prove challenging due to  the need for an equality operator which 

would need to  compare if a mark already exists in a system or not: it would 

be necessary to  define how close must a particular value be to be considered 

equivalent. Small variations of this threshold could have vastly significant 

influence on the learning characteristics.
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The remedy for this dilemma follows directly from the utilization of the 

expanding and contracting membership functions. Because each “bit” in the 

classifier’s bitstring is in fact a fuzzy membership function, it is possible to 

note the positions of inputs where the classifier fails to generate correct re

sults. Thus, every time a classifier is utilized to  generate an action for given 

condition, if the effect is not correctly anticipated, the current classifiers qual

ity is decremented as shown in Formula 2.2. Furthermore, each membership 

function composing the classifier condition string is contracted away from the 

input situation by a rate dictated by the function learning param eter ijfi. Also, 

if the given input value for a particular membership function is between the 

two bounds for th a t particular bit, the nearest bound is shifted towards the 

input value by a degree dictated by the boundary learning rate, rjbi.

The major idea behind using the bounds is to avoid oscillations where the 

input membership functions would expand in a particular phase of learning 

and then contract in another phase. The added benefit is the higher quality 

value tha t a given classifier will attain  as it will not need to  be reprimanded 

for firing due to  too general condition bitstrings.

The two main procedures utilized in the function learning process are the 

enhance and inhibit matching shown in Algorithms 3 and 4 respectively.
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A lg o rith m  3: EnhanceMatching
In p u t: membership function h a {x ) ,  crisp value v

b eg in
c <— center of h a {x )

I <— argm in (/xa (x ) > 0.5) 
x e x

r  <— argm ax (ha  ( x )  > 0.5)
x&X

if  v < c th e n
d  <— max (I — v, 0)

I' <— max (I — rjfi • d, bi)

r' <— r  
e lse

d  <— max (v  — r, 0)

r' <— min (r  +  rffi ■ d, br)

I' <— I 
en d

i f  I' (a I AND  r’ «  r  th e n  
increase sharpness of /j.a{x)

e n d

adjust ^^(x ) such th a t ha(1') ~  0.5 and f iA(r') & 0.5 
e n d

where:

6/ is the left boundary

br is the right boundary

rift is the function learning rate
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A lg o rith m  4: InhibitMatching
In p u t:  membership function fJ.A(x), crisp value v

beg in
c <— center of n A(x)

I <— argm in (nA (x ) > 0.5) 
xex

r <— arg max (/uA (x) >  0.5) 
xex  

if  v < c th e n
d *— max (v — 1,0)

V *— max (I +  rjfi ■ d, bt)

r' *— r

if  v > bi th e n
b i* - b t + rju (v -  b{)

e n d
else

d max (r — v, 0) 

r ' <— min (r — rjft ■ d, br)

I1 <— I

if  v < b r th e n
br * br T]bl (pr n)

en d
e n d

if  V sa I AND  r’ r  th e n  
decrease sharpness of fiA(x)

en d

adjust p A(x) such tha t fiA(l') «  0.5 and / i ^ r 7) ~  0.5 
end

where:

bt is the left boundary

br is the right boundary

rjfi is the function learning rate

rjbt is the boundary learning rate
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3.8.2 Insertion

Before a classifier is inserted into the population, it is first verified tha t it does 

not already exist or it is not subsumed by another classifier.

In order to  avoid adding redundant classifiers, while at the same time 

ensuring th a t the most fit classifiers are promoted, a subsumption check is 

performed each time a new classifier is added into the population. This pro

cedure is a set of checks with aim to find either a more general classifier which 

subsumes the insertion candidate or an existing classifier which is similar to 

a prescribed degree to  the candidate. If a subsuming classifier is found, then 

its numerosity param eter is increased as is its quality. Furthermore, the clas

sifier’s condition and effect membership functions are checked and adjusted 

if necessary to  better match the condition and effect which spawned the new 

insertion candidate.

If a subsuming classifier is not found, the population is then checked for 

classifiers th a t could be joined together with the insertion candidate. If this 

is possible, the new candidate is merged into a clone of the already existing 

classifier and is inserted into the population. This is to ensure tha t an al

ready good classifier is not destroyed in the merging process, in case the new 

combination does not prove effective (i.e. its condition is too general or the 

predicted effect is too broad and covers too wide of a range of possibilities)

Otherwise, the new candidate classifier is inserted into the population nor

mally.

3.8.3 Subsum ption

In order to  reduce the number of redundant classifiers and to promote the de

velopment of highly reliable yet as general as possible classifiers, a subsumption 

check algorithm has been incorporated into FALCS. In principle, this check 

operates much in the same manner as in the original Anticipatory Learning 

Classifier System.

This procedure performs a series of checks between two classifiers as out

lined in Algorithm 5 listed below. It is run iteratively upon the entire popu-
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lation, whereby a discovered subsumer becomes the candidate and terminates 

when all possible classifiers have been checked. The last classifier to  success

fully pass all the checks subsumes the original candidate.

A lg o rith m  5: SubsumptionTest
In p u t:  original classifier ocj .  candidate classifier cd

b eg in
if  od .condition D cd .condition AND  

od .action = cd .action AND  

od .effect D cd . effect AND  

od function bounds < cd function bounds AND  

od .quality >  cd .quality AND  

od .reward > cd .reward AND  

od . experience > cd . experience 

th e n
r e tu r n  od subsumes cd 

e lse
r e tu r n  od does not subsume cd 

e n d
en d ______________________

These checks are aimed at finding the most general classifier possible while 

at the same time ensuring tha t the chosen classifier has the highest possible 

predictive quality and is beneficial to the working environment.

This check is needed to ensure tha t we only throw away candidate classi

fiers if there indeed exists a proven classifier th a t is more general and is well 

performing as opposed to  a freshly inserted general classifier whose condition 

and effect may be a  superset of the candidate but in reality its performance is 

poor due to  the fact tha t it has not yet been fully taught and evaluated. Fur

thermore, it is needed to ensure tha t we find the most fitting individual from 

a set of similar classifiers for further enhancement as opposed to a random 

choice. Moreover, the checks ensure tha t the subsuming classifier has better 

experience, thus it has more reliable knowledge about the condition-action- 

effect mapping, resulting in a more stable classifier population.
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3.8.4 M erging

In order to ensure tha t only similar classifiers are merged, a set of criteria must 

be met:

•  both classifiers’ must correspond to the same action

•  a t least one of the fuzzy membership function bits inside the condition 

or effect bitstring can be combined together (as shown in Figure 3.4).

•  both classifiers’ quality parameters must be greater than  the reliability 

threshold, Qq

•  both classifiers’ reward prediction parameters must be greater than the 

inadequacy threshold, 6r

•  the classifiers’ quality parameters must not differ more than A q

•  the classifiers’ reward prediction parameters must not differ more than 

A r

•  both classifiers’ experience must be greater than the experience thresh

old, 0e
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(a) One function completely overlaps another

(b) One function partially

t

inpul

02'

fr«02

(c) Two touching side-by-side functions 

Figure 3.4: Range of allowable cases for membership function merging
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If all the aforementioned conditions are met, then the two classifiers can 

be merged. The reward param eter is merged together based on a weighted 

average with the classifier’s experience and numerosity value (i.e. how many 

individual classifier instances would exist if no merging and subsumption check 

were used) are added up together. The quality parameter is the lowest value 

of the two classifiers and the remaining parameters are summed together. 

The effective computation of these new values is illustrated in Formula 3.18. 

Each fuzzy membership bit is combined together with the other corresponding 

membership value and the bounds are merged together based on the most 

restrictive possible combination.

' C = Merge (clx.C, cl2.C)

clL-tm
r  — clj .r c h  .ncl i .e+cl 2 .T'dz.ncl^.e  

d\.T i'd i .e+cl.2 .ri'C/2 e
q = min (cl\.q, ch-q) (3.18)
n =  cl\.n  +  cl2 -n 
e =  cl\.e +  d 2-e

where:

clm is the newly merged classifier 

C  is the set of Condition fuzzy membership functions 

r  is the classifier’s reward prediction param eter 

q is the classifier’s quality parameter 

e is the classifier’s experience 

n  is the classifier’s numerosity

3.9 R einforcem ent Learning P rocess

Due to  the changes in the manner tha t a given classifier’s action is transformed 

into an action im parted onto the environment, the reinforcement learning algo

rithm method used in FALCS must account for the varying amount of contri

bution tha t each classifier carries in generating given action which then leads 

to the particular consequence.
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The classifiers present in the Action Set are allocated a reward amount 

in the same manner as tha t in the parent ALCS algorithm, as show in For

mula 3.19.

cl.r' — cl.r + nri ( p +  7  max (cl.q ■ cl.r) — cl.r 
\  de[M ](t+1)

(3.19)

where:

cl.r1 is the classifier’s new reward prediction parameter

cl.r is the classifier’s previous reward prediction parameter

p  is the reward message from the environment

rjri is the reinforcement learning rate

7  is the discount factor

To account for the fact tha t pervious actions have an effect for the current 

situations, the ncs  previous acting classifiers are updated with a small reward 

dictated by learning rate augmented by a factor whose magnitude is inversely 

proportional to  the classifiers position in the chain, P /i. This results in an ex

ponentially decreasing reward. The complete rewarding function is illustrated 

in Formula 3.20

cl.r' is the classifier’s new reward prediction parameter 

cl.r is the classifier’s previous reward prediction param eter 

p is the reward message from the environment 

p  is the learning rate augmenting factor 

i is the position of a given classifier in the chain 

rjri is the reinforcement learning rate

d .r '  =  cl.r +  p + 7  max (cl.q ■ d .r) — cl.r
de[M ](t+1)

(3.20)

where:
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7  is the discount factor

Classifiers having a substantial effect on the solution need to  be rewarded 

for their contribution. Therefore, each classifier from the Contributing Set has 

its reward param eter updated in a manner similar to tha t of the main Action 

Set. To reflect their limited role, a smaller learning rate, r/r;K, is used and 

the degree to  which they matched the input condition is accounted for. The 

augmented update formula has the following form:

d .r ' is the classifier’s new reward prediction param eter 

d .r  is the classifier’s previous reward prediction param eter 

p is the reward message from the environment 

k is the classifier’s contribution to an action 

rfriK is the contribution set reinforcement learning rate 

7  is the discount factor

3.10 G en etic  G eneralization

The main concept behind the genetic generalization is very similar to  the par

ent Anticipatory Learning Classifier System method. However, rather than 

working on individual discrete symbols, the GA works upon sets of mem

bership values. It should be noted, tha t the genetic algorithm operates on 

whole membership functions and does not split or recombine functions to

gether. A major change is the extension of the m utation operator tha t can 

expand the membership functions to include a wider range of possible inputs 

which provide a valid match as opposed to just being able to set a particular 

bit as a don’tcare. The effect of settings a bit to  a don’tcare value can be seen 

as setting the membership value to a constant of 1 i.e. Pa {x ) — 1.

max
cie[M ](t+i)

(3.21)

where:
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3.11 P op u lation  C ontrol

Due to  the immense expansion in the search space cased by the inclusion of 

real-valued ranges as inputs, actions and outputs, additional mechanisms must 

be considered to  ensure tha t the system does not grow out of hand which would 

result in extensive memory usage and computational infeasibility.

3.11.1 Forced M erging

In order to  control the population growth FALCS executes an algorithm to  

compact the population after a predefined number of learning steps (i.e. after 

a single training session or ncit iterations). Each classifier in the population 

is compared against all others to check whether a merger is possible. If so, 

the condition-aetion-effect bitstrings are combined together, as are all the aug

menting param eters as dictated by the merging process.

3.11.2 Size Control

FALCS does not perform any direct limitations to the population size. While 

this type of behavior is readily implementable within the FALCS framework, 

it is not desired due to goal of representing the working environment as com

pletely as possible. By directly limiting the population size, the system focus 

is restricted to  particular niches of the environment. This would be beneficial 

for small embedded systems with limited computing resources or for systems 

aiming to  exploit only a specific environment. However, the ultim ate objective 

is to  allow the system to  provide an optimal course of action with accurate 

next sta te  predictions for as many situations as possible.

To this end, there are alternative means of restricting the population size 

present inside the FALCS architecture. The three primary ways means of 

restricting unbound population growth are:

1. Restricting the maximum match set size

2. Restricting the number of acting classifiers riad
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3. Removing unfit classifiers after each training session based on poor re

ward and poor quality when better alternatives exist.

The maximum Match Set size limit ensures tha t there are at most n[M]Cnac/ 

main solutions. While this does reduce the comprehensiveness of the model, 

the information tha t is thrown away would be of negligible use. This is due 

to the fact th a t a very large number of matching classifiers could be formed 

tha t would correctly predict the next state but be of little use due to  a low 

environmental utility. The process of enforcing the Match Set size is show in 

Algorithm 6 .

A lgorithm  6: EnforceSetSize
begin

e +- Size([M]) -  n [m]

e <— m in(e, 0) 

i *— 0

w hile  i <  Size([M]) AND e > 0 do  
if  cli.q < m in q th e n  

Delete(cli)

e <— e — 1 
en d

i <— i +  1 
end

w hile  e >  0 do
cl =  arg min(cl.r) 

cie[M]
Delete (cl)

e <— e — 1 
end

end________________________________________________________________

Restricting the number of acting classifiers forces the system to only main

tain the best actions and not keep the alternatives. Furthermore, because only 

a small number of classifiers are used to generate the action, learning should 

occur faster as there are fewer possible actions th a t could be formed and less 

classifiers to evaluate.

Forcibly removing bad classifiers helps ensure tha t the system does not
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have to  deal with unneeded classifiers tha t would otherwise take up valuable 

computing resources. It also ensures tha t the classifiers do not get used though 

the exploratory processes when no better solutions exist, but rather promote 

the system to  come up with new alternative possibilities.

3.12 E ffective M odel

When the FALCS system is trained to a degree satisfactory to the user, the 

system embodies a model of the working environment in the form of condition- 

action-effect triplets. These form what could be described as a dp +  da dimen

sional model of the working environment, where dp is the perception dimension, 

i.e. the inputs to  the system; and da is the action dimension, i.e. the degrees of 

freedom though which the system can interact with the environment by means 

of effectors. In effect, the classifiers from a piece-wise function for every single 

condition previously encountered and trained to respond with up to g number 

of granulated actions, which were tested during training and /or operation, to 

give the expected next state in the environment. It should be noted th a t this 

generated model is a continuously changing approximation of a snapshot of its 

working environment which continues to be updated after every single action 

taken unless this behavior is inhibited.

Due to this configuration, it is possible to  extract useful, human readable 

information. In particular, it is possible to map out a sequence of steps tha t 

will most likely need to be performed to go from state A to  state  B without 

the need to  actually perform the action. Furthermore, it is possible to per

form backwards search to provide a list of actions and the prior conditions 

tha t can result in a  known output state. As such, the information gleaned 

is more human readable and can be analyzed by experts to  give insight into 

the functionality of the system and/or to analyze given environment. This is 

a clear advantage compared to alternative approaches such as neural networks.

However, the system does not aim to provide definite knowledge of both 

the input and output states. It only provides a range of possible numerical 

values which could trigger a given rule and a range of possible output numeri-
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cal values. This is a direct result of incorporating fuzzy logic into the system. 

Furthermore, FALCS does not aim at putting human readable labels to mem

bership functions, but rather forms these functions as it deems fit for the given 

environment and for the range tha t give the best results. Thus, it is up to  the 

human user to  assign linguistic labels such as “close” , “near” , ”fa r“ as well as 

linguistic modifiers such as “very” or “slight” to  the functions, generated as 

a result of learning. This behavior is by design to allow the learning classifier 

to  come up with its own subjective representation of a particular grouping of 

data without undue influence of a human designer.
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Chapter 4 

Experiments

In order to  evaluate the performance of the devised system, two sets of exper

iments have been performed. In the first experiment, FALCS has been used 

to  provide goal-oriented behavior for a  simulated agent. In the second experi

ment, FALCS has been used as an obstacle avoidance controller as well as an 

objective-based controller for a mobile robot.

4.1 S im ulated  A gent

4.1.1 Overview

In order to  provide a platform simple enough to debug and test the Fuzzy 

Anticipatory Learning Classifier System while still allowing for comprehensive 

evaluation of the performance and effectiveness of the new algorithm, a simu

lated agent test system was devised. This simulation environment was modeled 

on the simple electronic toys known as “virtual pets” or “nano pets” . The ob

jective in this game is to  keep a virtual animal or creature alive as long as 

possible by means of appropriately applying different necessary actions such 

as feeding the pet, playing with it, giving it medicine, letting it sleep, etc. 

These actions are conceptually similar to actions tha t an autonomous robot 

would need to  perform when aiming to  carry out an objective without a hu

man to supervise and care for it, but of course in a much simplified fashion. 

It also illustrates tha t FALCS is a potential candidate for controlling in-game 

characters.

This scenario provides a toy domain in which the system must devise a set
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of procedures to  care for the virtual agent. Each rule performs a particular 

action which has an observable effect tha t can be deemed good (pet is content 

and lives), bad (pet complains or dies) or neutral (no immediate observable 

change). Furthermore, each action has a fairly deterministic outcome on the 

environment in th a t a particular action on the environment will result in the 

same outcome each time rather than giving a random output. Thus, this 

experiment would show tha t the Fuzzy Anticipatory Learning Classifier System 

can mimic the behavior of a child playing with a nano pet toy.

The additional benefit of this type of simulation is tha t it can be performed 

faster than  real time which allows for easier evaluation of the system, and it 

also allows to  give consistent and repeatable trial runs. Hence, it can be used 

to  tune param eters as well as observe the effect of introducing and removing 

different methods inside the Fuzzy Anticipatory Learning Classifier System.

4.1.2 Setup

A simple version of a virtual pet was implemented where the virtual pet had 

five distinct parameters: tiredness, hunger, fitness, health and happiness. All 

five conditions were fed to the Fuzzy Anticipatory Learning Classifier System 

as a value in the range of [0..1]. In turn, FALCS could select to  perform one of 

the following actions: sleep, eat, play, exercise, take medication, see a doctor. 

A limitation was enforced, where only one action can be performed at a single 

time. The maximum duration tha t the agent can live regardless of its internal 

parameters was set to  1000 learning steps.

The rewarding function utilized has three components: the first component 

ensures th a t no critical parameter of the simulated agent is outside a predefined 

threshold; if there is a problem and it is not being remedied, a penalty is im

posed. The second component provides a minimal reward for non-detrimental 

actions th a t improved the overall status of the agent. The final component 

checks the state of the agent. If the agent has either attem pted to perform an 

illegal operation or is dead, a heavy penalty is given. The effective rewarding 

scheme is summarized in Formula 4.1.
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p( t )  =  ]
p ( Oip ■ (p(t) — p( t  — 1)) otherwise

(4.1)

where:

p  is the environmental reward at time t 

P  is the set of parameters 

p  (t ) is an observed parameter of the agent at time t 

©p is the critical parameter threshold 

0p is a soft, non-critical threshold 

ocp is the parameters importance

4.1.3 Trial Runs

A number of trial runs have been performed using the designed simulator. 

Results of the experiments are illustrated in Figures 4.1 - 4.4.

From these figures we can clearly see tha t the Fuzzy Anticipatory Learning 

Classifier System is capable of devising a control strategy for keeping the pet 

alive as long as possible.

The most direct measure of the success of the controller can be observed 

in Figure 4.1. This graph illustrates the number of trials tha t the agent has 

survived with respect to  the total number of life cycles evaluated. From the 

smoothed average curve, we can clearly observe the improvement in the sur

vival rate. Furthermore, the density of the data  points illustrate how at the 

beginning, the classifier clearly finds successful paths to  achieve the maximum 

age of 1000 training trials; however, it continues to explore other possibili

ties. We also see th a t the agent continues to have an average age th a t is less 

the than optimal trials after it would appear tha t a solution has been forged. 

This occurs by design due to  the exploratory actions tha t the FALCS-based 

controller will continue to  make.
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Figure 4.2: Average Reward to FALCS w.r.t. Training Iterations
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The most influential characteristic of the virtual agent is the hunger level 

as without food, the pet will quickly die. The average hunger level per learning 

iteration can be seen in Figure 4.4. The plot clearly shows th a t the average 

hunger level per learning trial decreases early on, as the agent depends on 

having energy for survival. Taking the concept to the robotic realm, without 

power a robot is of no use. It should be noted tha t the hunger level will also 

have a significant influence on the well being (“health”) of the virtual agent.

It is interesting to  see in the average health graph, shown in Figure 4.3, 

a U-shaped curve. Given tha t the pet health is the second most influential 

param eter in regards to  its survival, and all other parameters such as fitness, 

happiness, tiredness influence the health level; it can be seen th a t initially it 

is learnt th a t health needs to  be kept a t a high level.

The convergence of learning can be seen in the average reward function 

illustrated by Figure 4.2. It shows tha t initially we have many negative penal

ties, however, after about the first quarter of the trials, the number of critical 

penalties decreases and we see a leveling out with rewards hovering with small 

positive values in the latter portion of the learning trials.

4.2 R ob ot C ontroller  

4.2.1 O bjectives

One of the most im portant tasks in the field of mobile robotics is to  provide 

a  means for autonomous mobility, where a human operator does not need to 

supervise the robot in simple navigation tasks. This involves the ability for 

a  robot to  control its actuators (usually motors connected to  a drive train) 

while a t the same time avoiding obstacles in its path detected by means of 

sensors such as sonar, laser, LIDAR, and so forth.

The difficulty in achieving this task efficiently is the enormous space en

compassed by the sensor data. This is further compounded by the fact that 

no sensor works ideally and usually gives rather noisy data. There can also be 

variances with the readings due to environmental conditions and deterioration, 

as well as interm ittent false readings.
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4.2.2 Setup

To facilitate the testing of the Fuzzy Anticipatory Learning Classifier System 

in a controlled and repeatable manner, the implemented robotic controller was 

designed using the Player Project interface. The Player program [45], [46] is an 

open-source implementation of a high quality mobile robot control platform 

which can handle a variety of different robots. It also can utilize its sister 

project, Stage [47] which allows for high precision robotic simulation, and this 

was used for the m ajority of the simulations performed and shown in this 

thesis. The Pioneer P2DX robot was chosen due to its popularity as a mobile 

platform and the numerous sonar sensors surrounding the circumference of its 

body. Driving is achieved by two drive motors which also provide a means of 

turning by driving the two motors at different speeds.

The simulation environment provides limited variability in the sonar read

ings. The data  is assumed to be fairly close to what would be expected on 

a real robotic platform. However, for a real-world implementation, a filtering 

and smoothing process would be required to  provide a means to  reduce the 

effect of obvious outliers.

For the main robot navigation task, all sixteen sonar readings have been 

presented directly into the Fuzzy Anticipatory Learning Classifier System. The 

outputs from the system directly control the speed and heading of the robot. 

The rewarding function utilized for the development of the FALCS-based ob

stacle avoidance is illustrated by Formula 4.2. The training environments used 

to evaluate the performance of the robot can be found in Appendix A.2.

Pit)

- to o  o d ( t ) < e OD
—50 -I- (od (t ) — od(t  — 1)) approaching obstacle

10 -|- 25 • (od (t ) — od(t  — 1)) moving away from obstacle (4.2)
5 • f s  (t ) moving forward

5 + f s  (t ) otherwise

where:

p is the environmental reward 

eOD is the closest allowable distance to an obstacle
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od (t ) is the distance to  the nearest obstacle at time t 

f s  (t ) is the robo t’s forward speed at time t

4.2.3 Trial Runs on Object Avoidance

*  2500  •

Figure 4.5: Number of steps between collisions for obstacle avoidance in En
vironment #  2
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Figure 4.6: Total number of crash-free steps for obstacle avoidance for Envi
ronment #  2
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Figure 4.7: Average reward given for obstacle avoidance in Environment #  2
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Figure 4.8: Number of useful classifiers for obstacle avoidance in Environ
ment #  2
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Figure 4.9: Sample trajectory in learning environment # 4  for obstacle avoid
ance
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Figure 4.10: Ratio of collision-free steps to total number of steps in multiple 
environments
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As can be seen in Figure 4.5, the FALCS-based obstacle avoidance con

troller incrementally learns to avoid obstacles resulting in longer durations of 

collision free navigation. It should be noted tha t even though it may seem that 

there appear to  be frequent collisions between the larger peaks of collision-free 

behavior, the reality is th a t these are relatively brief periods of time. This 

illusion is a result of the fact th a t the x-axis does not illustrate linear time but 

rather the training iteration whose duration is dependent on the time between 

collisions. W hen an obstacle is hit, the robot is moved a few steps back and 

is then allowed to  resume training. The system will take a few iterations to 

reprimand the incorrectly acting classifier(s) until this behavior is unlearnt.

The resulting data  can also be illustrated in an alternative manner. In Fig

ure 4.6, one can observe the total crash-free time in terms of robot movement 

steps with respect to  the number of learning iterations. Also, the average 

reward function in Figure 4.7 confirms the fact th a t the system is learning 

due to  the increasing average reward being applied to  the classifiers making 

up the controller. Additional examples of learning trials can be found in Ap

pendix A. 3.

Further illustration of the system’s performance can be seen by taking 

the ratio between the number of collision-free steps and the to tal number of 

steps for multiple simulation runs. This is shown in Figure 4.10, where one 

can clearly see th a t the FALCS-based obstacle avoidance system is capable of 

developing a  control strategy for various situations.

The classifier population size which has been adequately trained and proven 

to be beneficial to  the solution is illustrated by Figure 4.8. This graph includes 

all classifiers whose quality is above the inadequacy threshold, 9q, reward pre

diction param eter is above reliability threshold, 9r, and experience above the 

experience threshold 9e.

Finally, from the recorded trajectory of the robot in the environment, one 

can observe the fact tha t the robot maintains a fairly random navigation path 

and does not tend to converge to a repeated behavior such as maintaining 

a small loop path  in a safe area.
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4.2.4 Goal-oriented Behavior

Obstacle-avoidance tasks are only so useful by themselves. In order to achieve 

sensible behavior of a robot platform, it must be allowed to search for and carry 

out a  particular objective. The number of possibilities is endless; tasks could 

involve mining for a mineral, locating a target, searching for mines, finding 

abnormal conditions, etc.

In order to  perform simulation for this task, FALCS algorithm has been 

extended to  deal with learning multiple behaviors. This is accomplished using 

successive iterations which train the system to generate a population of clas

sifiers for one objective, then train a new population for the second objective. 

Finally, the classifiers are merged together into a single population where they 

are trained on the task involving multiple behaviors.

To allow for simulations to take place on goal-seeking behavior inside the 

utilized simulation environment, two additional values were passed from the 

environment to the controller, corresponding to  the robot’s relative coordi

nates. This gives the robot a means to localize its position and to sense when 

it has arrived at a goal position. This is functionally identical to  a sensor 

providing distance information to a goal beacon as an alternative simulation 

scenario.

4.2.5 Perform ance on Goal-oriented Tasks

From Figure 4.11 one can truly appreciate the learning behavior for the ob

stacle avoidance task when the robot is trained for an extended period of 

time. W ith a  single step being an equivalent to  0.25s in real time, the total 

training time illustrated encompasses over 17 hours of real-time simulation. 

After the goal seeking behavior is trained, it can be observed from Figure 4.12 

tha t initially, the controller fails to find the goal destination in the allotted 

number of 2000 steps. However, once the goal position is located, the time to 

reach the goal position quickly diminishes. This can be attributed to the fact 

tha t a model is first build of the environment, and once a path to the goal is 

discovered, the model is then quickly exploited to improve the performance.
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Figure 4.14 shows a sample recorded trajectory of well-learnt goal finding 

behavior for environment # 3  (as shown in Figure A.3). Originally, the robot 

starts in the lower left hand corner of the sample world and then must au

tonomously navigate to  the goal position in the upper right hand corner of the 

world.
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Figure 4.11: Number of steps between collisions during goal-seeking behavior 
training
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Figure 4.12: Time to  seek goal position w.r.t. learning iterations during goal- 
seeking behavior training

-20

TJ

i
®  -40

I
-60

-80

-100
250000150000 20000050000 1000000

Robot Learning Step
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Chapter 5 

Conclusions and Future Work

5.1 C onclusions

This thesis illustrates work performed upon the Anticipatory Learning Clas

sifier System to  allow it to  be readily applied to a wider range of problems. 

Through the utilization of concepts borrowed from Fuzzy Logic, the rules in 

the learning classifier system have been enhanced to  directly use real-valued in

puts and provide real-valued outputs. Furthermore, the learning mechanisms 

present within the Anticipatory Learning Classifier System have been refined 

and expanded to handle and utilize the extra flexibility tha t the inclusion of 

Fuzzy Logic brings.

The Fuzzy Anticipator Learning Classifier System benefits from its con

stituent components in order to  maximize its effectiveness. The parent Antic

ipatory Learning Classifier provides an elegant method to  incorporate antic

ipatory learning processes observed in the psychology domain into a  defined 

computational algorithm, thus allowing the system to benefit from the ability 

to perform latent learning. This is im portant for autonomous learning systems 

as it has been shown to  be highly effective in nature.

By virtue of being a learning classifier, the system is able to  evolve a set of 

rules which model the working environment and provide a means to choose the 

best course of action for a given situation. Furthermore, the learning classifier 

system is not constrained by a predefined structure as rules can be easily added 

or replaced to  accommodate new environmental conditions. Thus the system 

does not require a redesign when more complexity needs to be trained into
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the system, which is a clear advantage compared to other approaches, such as 

neural networks. Due to the utilization of a Q-Learning like algorithm inside 

the system, it is capable of developing a solution to a given problem with 

minimal human interaction to  be present. From this perspective, the major 

shortcoming of the system is the necessity to select a number of parameters 

prior to  training which then proceeds with full autonomy.

Fuzzy Logic provides a means to use continuous, real-valued inputs into the 

system without the need to perform prior discretization. Furthermore, fuzzy 

logic provides a means to utilize partial knowledge gained through past learn

ing immediately without the need to completely learn the input-action-output 

relationships. More so, the Fuzzy aspects allow a human expert to  examine the 

individual rules generated in the system to gain insight into how the system 

solves a particular problem. Conversely, an expert can instantiate new rules 

from their own intuition and thus provide the system a better starting point 

from which to  begin online training.

The implemented Fuzzy Anticipatory Learning Classifier System has been 

demonstrated to  be effective through successful synthetic testing of a goal- 

oriented agent based upon a “virtual pet” game as well as well as through 

various simulated robotic navigation tasks. It was observed th a t the system 

does indeed aim to  develop a model of the working environment in the form 

of a rule base, and th a t is able to take full advantage of this model. The 

anticipatory aspect of the system allows the system to  learn with minimal 

reward to  allow for better exploratory processes.

Through the contribution described in this thesis - the design and imple

mentation of the Fuzzy Anticipatory Learning Classifier System, the bound

aries of autonomous intelligent control systems, in particular those based on 

evolutionary computing principles, have been pushed another step towards the 

ultimate goal of building a truly autonomous self-learning robotic system.
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5.2 M ain C ontributions

•  This thesis illustrates a novel approach of applying Fuzzy Logic to  the 

Anticipatory Learning Classifier System to allow it to handle real-valued 

inputs. This is accomplished through the replacement of discrete sym

bols in each classifier present in ALCS with a set of fuzzy membership 

functions utilizing generalized bell functions for both input matching and 

next sta te  predictions as well as utilizing granulated singleton functions 

to  specify each classifier’s action.

•  ALCS learning algorithms were expanded and augmented to handle the 

extra complexity tha t the continuous functions bring. This was ac

complished though additional learning procedures to adjust the mem

bership functions to find a general encoding of input-action-effect se

quences. Further algorithms were devised to apply concepts of reinforce

ment learning to  multiple classifiers contributing to a generated output 

action.

•  ALCS action selection mechanisms were also improved to utilize the 

benefits of fuzzy logic to  provide continuous valued outputs or discrete 

outputs with a confidence value. This was done through the implemen

tation  of classifier selection methods which choose a larger number of 

candidates th a t contribute to the final solution through a  defuzzification 

procedure.

•  This thesis also illustrates the success of the proposed system through 

the implementation of two test scenarios. In the first, a simulated agent 

scenario was implemented which illustrates th a t FALCS is capable of 

evolving a controller tha t can keep the agent alive in its virtual environ

ment through the optimization of its parameters. In the second scenario, 

FALCS was used as a for a mobile robot navigation task, where a simu

lated Pioneer P2DX robot was allowed to explore its surroundings while 

at the same time avoiding obstacles. An extension to  this system was 

done to introduce goal-seeking behavior though successive training on
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different tasks leading up to the final behavior objective.

5.3 L im itations and Future W ork

Despite the many successes attained in this first revision of the Fuzzy Antic

ipatory Learning Classifier System, more work still needs to be performed on 

the system to  further enhance its functionality.

The action selection mechanism, while already providing good performance, 

still has room for improvement. The most obvious enhancement would be to 

further utilize the anticipation strings i.e. predictions of the next sta te  of 

a  given environment, to  provide a means of chaining the potential actions and 

then choosing a sequence of actions which would optimize for a higher level 

objective rather than focusing only on optimizing for the next state. However, 

despite its simplistic high level algorithm, the implementation of said method 

poses several challenges. First, a method needs to be devised which would 

appropriately choose the next state classifier for anticipations of broad possi

bilities. This is the case for classifiers which do not care about the outcome for 

a  set of environmental conditions, because they have been deemed irrelevant, 

or because the outcome is so variable tha t it holds little co-relationship with 

the current task a t hand. However, for the next state classifiers this may be 

a  critical input variable which would need to  be somehow predicted/recovered 

from the already present model. The second consideration th a t has to  be 

taken into account is the fact tha t multiple classifiers can be utilized to  arrive 

at the next state. Therefore, it is imperative tha t an accurate and repeatable 

method of selecting the acting classifiers and then coming up with the output 

value be devised. This is further complicated by the fact th a t it is not known 

how well the classifiers will match given environmental state which is crucial 

for defuzzifying the output.

Another area of improvement in the system is devising an accurate method 

of population control. The Anticipatory Learning Classifier System aims at 

providing an accurate model of all input-action-output combinations possible. 

However, in many situations, the entire model is not relevant. As Brooks has
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pointed out [48] “why bother re-creating an environmental model when the 

environment already provides the best model possible” . Hence, a balance needs 

to be struck to  preserve the optimal degree of modeling without effectively 

recreating the environment. It should be noted however, tha t this is already 

partially accomplished through the process of devising as general classifiers as 

possible. The area th a t needs to be addressed is how many classifier triplets 

need to  be stored for the different actions and whether the best matching 

classifier procedure can be utilized to provide the knowledge without explicitly 

storing this information.

A different area of improvement tha t still needs to  be taken into consider

ation is the selection of parameters. All intelligent systems require a certain 

degree of human intervention to choose an optimal set of parameters so tha t 

the system can efficiently interact with the environment. It has been exper

imentally found th a t the current implementation of FALCS provides good 

performange in two separate domains utilizing essentially the same set of op

erational parameters. However, it would be desirable to  develop a method 

capable of finding the optimal set of parameters such as the learning rates, 

thresholds, etc., as opposed to  human tuning through trial and error.

Furthermore, a limitation still present in the system is the fact tha t FALCS 

requires a fixed input and output dimensionality. While incomplete data input 

can be handled through the fuzzy aspects and the utilization of “don’tcare” 

bits, FALCS is not capable of handling inputs with variable dimensionality. 

Such a capability would provide an invaluable service to  applications where 

sensing devices are changed on the go (such as using different robotic sen

sors depending on the operating environment) or to use the most applicable 

data without having to go through the time consuming process of learning 

which data being fed into the classifier system is most relevant for the current 

objective.

By developing and applying the suggested improvements, it is expected 

tha t the performance of the Fuzzy Anticipatory Learning Classifier System 

will be further refined thus being able to provide improved adaptive behavior, 

better runtime performance as well as increased transparency to allow a human
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to interpret the resulting model which enables the system to  operate.
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Appendix A 

Appendix

A .l  E xperim ent Setup Param eters

The Fuzzy Anticipatory Learning Classifier Systems includes many tunable 

parameters which have considerable effect on the outcome of the solution to 

the problem at hand. However, the majority of these values do not require 

any modification, and are suitable for a wide range of different problems.

A. 1.1 FALCS Param eters

These param eters listed in Table A .l alter the learning characteristics of the 

FALCS system. The tuning of parameters is to allow the user to optimize the 

system for fast learning while avoiding local minima as well as to minimize 

overtraining, to  ensure optimal generality for the given environment, and to 

ensuring a compact classifier population.
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Notation [ Description Value

Vrl Reinforcement learning rate 0.15
VrlK Reinforcement learning rate for Contribution Set 0.05

P Reinforcement learning rate coefficient for Chain Set 0.8
7 Reinforcement learning discount factor 0.9

V f i Function learning rate 0.05
Vbi Function bounds learning rate 2 X  T)f l

0 r Inadequacy threshold 0.1
Reliability threshold 0.8

de Experience threshold 25
t Exploration probability 0.2

X g a GA application rate 25
X c Crossover probability 0.7

X m M utation rate 0.3
iq Initial untrained classifier /  clone quality 0.5
i r Initial untrained classifier /  clone reward prediction param eter 1.0

f l ip Initial population size 50
wc Initial condition membership function width 0.1
wE Initial effect membership function width 0.05
sc Initial membership function sharpness modifier 3
se Initial membership function sharpness modifier 10
1wc Initial random classifier condition membership function width 0.25
Iwb Initial random classifier effect membership function width 0.07

m in q Minimum predictive quality threshold 0.15
m inr Minimum classifier reward prediction param eter threshold -20
m axr Maximum classifier reward 50

9 Action singleton granularity 8
m in K Minimum contribution threshold 0.2

a T Match acceptance threshold 0.7
Ar Max mergable reward prediction param eter difference 20

Max mergable quality difference 0.1
n\M\ Match Set size threshold 10
fbacl Acting Set size 5
rich Number of chained classifiers 15

Table A .l: Critical FALCS parameters
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A .1.2 FALCS Configuration

The options listed in Table A.2 influence the overall configuration and struc

ture of operation. Different environments and objectives may require different 

behavior and the user may wish to optimize the learning characteristics for 

the particular application, e.g. wishing to develop an extensive model or just 

develop a control system to  exploit the best action as possible.

Description Options
Compact population filter no}
Generalize classifiers during ALP {yes, no}
Prune bad classifiers { fl'iter no}
Effect equals “no change” {yes, no}
Utilize best matching classifier {yes, no}

Table A.2: FALCS configuration switches

A .2 R ob ot E nvironm ents

A set of environments were created to provide an obstacle course for the mobile 

robot learning simulations. While simplistic in nature, they allow for a full 

range of different sonar readings to be encountered as well as obstacles with 

varying profiles tha t a  mobile robot could encounter in a real environment. 

These are shown in Figures A .l to A.4.
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Figure A .l: Environment # 1  for robot navigation

Figure A.2: Environment # 2  for robot navigation
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Figure A.3: Environment # 3  for robot navigation

Figure A.4: Environment # 4  for robot navigation
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A .3  A dd ition al Test Scenarios

This section provides examples of additional results obtained during trial runs 

of the FALCS-based mobile robot obstacle avoidance system.

A.3.1 R un A
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Figure A.5: Number of steps between collisions in Environment #  1
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Figure A.6: Total number of crash-free steps in Environment #  1
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Figure A.7: Average reward given in Environment #  1
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Figure A.8: Number of useful classifiers in Environment #  1
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A .3 .2 R un B
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Figure A.9: Number of steps between collisions in Environment #  2
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Figure A. 10: Total number of crash-free steps in Environment #  2
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Figure A .11: Average reward given in Environment #  2
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Figure A. 12: Number of useful classifiers in Environment #  2
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A .3.3 R un C
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Figure A. 13: Number of steps between collisions in Environment #  2
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Figure A. 14: Total number of crash-free steps in Environment #  2
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Figure A. 15: Average reward given in Environment #  2
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Figure A. 16: Number of useful classifiers in Environment #  2
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A .3.4 R un D
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Figure A. 17: Number of steps between collisions in Environment #  3
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Figure A. 18: Total number of crash-free steps in Environment #  3
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Figure A.19: Average reward given in Environment #  3
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Figure A.20: Number of useful classifiers in Environment #  3
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A .3.5  R un E

!
ISs0 ■5
1
z

Figure A.21: Number of steps between collisions in Environment #  4
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Figure A.22: Total number of crash-free steps in Environment #  4
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Figure A.23: Average reward given in Environment #  4
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Figure A.24: Number of useful classifiers in Environment #  4
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A .3.6 R un F
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Figure A.25: Number of steps between collisions in learning environment # 4
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Figure A.26: Total number of crash-free steps in learning environment # 4
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Figure A.27: Average reward given w.r.t. learning iterations in learning envi
ronment # 4

50000 100000 150000 200000 250000 300000
learning Trial

350000 400000 450000

Figure A.28: Number of good classifiers generated in learning environment # 4
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