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ABSTRACT 

 

Steam-assisted gravity drainage (SAGD) is one of the most successful in-situ techniques and has 

been widely adopted for heavy oil and bitumen recovery. Steam chamber development and 

SAGD production performance are highly sensitive to the reservoir heterogeneity, thus 

characterizing shale heterogeneities and quantifying their influence is essential for analysis and 

optimization of SAGD operations. This thesis presents a novel workflow with data-driven 

techniques to quantify the uncertain influences of heterogeneous shale barrier configurations and 

infer potential shale barrier configurations from the SAGD production histories. The workflow is 

trained and tested on a set of 2D and 3D synthetic models, and it is subsequently applied to a 

field case study.  

The data employed for establishing the workflow is derived from a set of synthetic cases 

based on petrophysical properties and operational constraints representative of the Athabasca oil 

sands reservoirs. Reservoir heterogeneities are simulated by superimposing sets of idealized 

shale barrier configurations on the homogeneous model; each shale configuration is 

parameterized by a unique set of indices that represent the location and geometry of shale 

barriers. The workflow consists of three major steps: (1) multidimensional scaling and cluster 

analysis are performed to classify the cases in the training dataset into multiple groups sharing 

similar production characteristics; (2) for each cluster, an AI-based forward model is constructed 

to correlate the  reservoir simulation predictions (outputs) with the associated shale barrier 

configurations (inputs); (3) to infer the unknown shale barrier configuration corresponding to a 

new SAGD production history, its production profile is first analyzed and assigned to one of the 
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clusters identified in step 2, and a hybrid inverse modeling scheme, which integrates the genetic 

algorithm and previously-trained forward model, is adopted. 

The workflow is initially tested using several cases with arbitrary shale barrier 

configurations. Good agreement between the predicted and target shale barrier configurations is 

observed. The workflow is later applied to examine the actual field production histories extracted 

from Firebag. The inferred shale barrier features are consistent with those interpreted from the 

petrophysical log. This work introduces a novel systematic workflow for applying machine 

learning techniques to analyze the impact and distribution of heterogeneous shale barriers from 

SAGD field data. It presents an innovative 3D shale barrier parameterization scheme and a 

cluster-based approach for visualizing and inferring internal structures among many realizations 

of shale barrier configurations. It offers a potentially efficient way for identifying a reasonable 

ensemble of initial configurations that can be subjected to further (more detailed) history 

matching and facilitate the optimization of operational strategies for mitigating the impact of 

shale barriers. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Background and Motivations 

Canada’s oil sands and bitumen reserves are among world’s largest petroleum deposits, most of 

which are located in the province of Alberta and Saskatchewan. The density and viscosity of 

heavy oil or bitumen are always higher than that of light crude oil, which inhibits it from flowing 

easily to the production wells under normal reservoir conditions. Therefore, conventional 

production methods become ineffective and many thermal enhanced oil recovery (EOR) 

techniques have been invented for bitumen exploration and production.   

Steam-assisted gravity drainage (SAGD) is a widely-adopted in-situ thermal production 

technique for heavy oil and bitumen recovery. SAGD production performance is highly sensitive 

to the reservoir heterogeneity. Low-permeability shale barriers obstruct the communication 

between the injected steam and the in-situ bitumen, impeding the lateral and vertical expansion 

of the steam chamber. Therefore, characterizing shale heterogeneities and quantifying their 

influences is essential for the success of SAGD project management. Analytical and semi-

analytical models, such as those originally proposed by Butler (1981, 1985) and many 

subsequent improvements have been proposed over the past two decades (Reis, 1992; Akin, 

2005; Sharma and Gates, 2010). However, capturing the dynamic influence of reservoir 

heterogeneity is difficult with these analytical techniques. Experimental analysis reveals the 

impacts of shale barriers with lab-scale models; however, such experiments cannot reproduce all 

the operational conditions and field-scale heterogeneities. Studies that are based on numerical 

modeling offer insights about the impacts of field-scale heterogeneity, and numerical simulation 
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based history-matching process is usually applied for heterogeneity characterization. These 

approaches are effective but usually computationally expensive.  

On the other hand, the SAGD field data has received increasing attentions as it provides 

fundamental information of reservoir properties and production characters. Data-driven modeling 

techniques with the implementation of artificial intelligence (AI) methods offer feasible choices 

for capturing internal correlations between field data and reservoir heterogeneities. Although AI 

techniques have been successfully adopted in various petroleum engineering applications, they 

have not been widely implemented in SAGD characterization workflows.  

In this thesis, a dataset is gathered from the public domain which contains both 

geological and production information of in-operation SAGD projects. An AI-based workflow is 

proposed based on this field data set. The workflow describes a novel feature parameterization 

approach for shale barrier configurations, and data-driven approaches for correlating production 

time-series with shale heterogeneities and estimating shale barrier configurations from SAGD 

production profiles. The goal of this project is to explore the potential of applying data-driven 

models as feasible alternatives for capturing internal structures and non-linear relationships. 

 

1.2 Problem Statement 

Reservoir heterogeneity, especially the presence of low-permeability shale barriers, is an 

essential consideration for any SAGD project. Despite the successes of integrating machine 

learning and data-driven modelling techniques in various petroleum engineering applications, 

several challenges pertinent to the quantification and inference of the distribution of 

heterogeneous shale barriers in SAGD reservoirs still remain.  
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       The first challenge is related to the multifaceted nature of the dataset. SAGD field data is 

usually sparse and noisy. For most of the fields, only monthly records are available from the 

public databases, yet the corresponding on-site operations are not clear. On the other hand, the 

field data comes from diverse sources, such as oil and water production time series, log and core 

data, temperature measurements at observation wells, operational constraints and etc.; their data 

recording frequencies and formats are different. Therefore, it is not trivial to directly apply 

existing machine learning algorithms to SAGD field data; instead, customization of existing 

techniques by integrating domain knowledge is necessary. 

Another challenge is related to the proper parameterization of reservoir heterogeneity for 

model training. Although the influences of heterogeneity were explored in previous studies, 

descriptive variables of shale configurations are difficult to define; therefore, this thesis intends 

to propose a parameterization scheme for representing a particular shale barrier configuration 

and suitable for subsequent data-driven modeling.  

The key problems to be addressed in this thesis can be categorized into one of three 

groups:  

 

(1) Regression: predicting SAGD production time-series with shale heterogeneities;  

(2) Optimization: inferring probable shale barrier configurations from target SAGD production 

history;  

(3) Clustering and classification: investigating the internal structures and quantifying the 

dissimilarities among different groups of shale configurations. 
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These are usually high-dimensional and non-linear problems. Thus, the data-driven 

models established for these problems should address the following aspects: (1) selecting and 

formulating proper AI algorithms; (2) identifying and parameterizing relevant features as input 

and output variables; (3) building representative training and testing datasets. Although AI 

techniques have been successfully adopted in various petroleum engineering applications, there 

is no systematic and established workflows for their applications for heterogeneity inference in 

SAGD projects.   

 

Proposed Thesis Statement:  

The application of artificial intelligence and data-driven techniques could facilitate the 

distribution of shale barriers and their impacts on SAGD recovery performance to be inferred 

from production time-series data.   

 

1.3 Research Objectives 

The theme of this research is to demonstrate the feasibility of data mining and artificial 

intelligence algorithms in correlating reservoir heterogeneities with SAGD production profiles in 

a practical workflow suitable for field applications. This theme can be divided into the following 

objectives: 

 

(1) Explore the methodologies for SAGD field data analysis and feature selection. Establish 

datasets that are representative of SAGD production histories, reservoir petrophysical 

properties and operational constraints. Generate 2D and 3D synthetic datasets from numerical 

simulation predictions. 



5 
 

(2) Propose a parameterization approach for representing heterogeneous characteristics of shale 

barrier configurations. 

(3) Construct a series of data-driven model for predicting SAGD production time series based on 

the shale barrier configuration parameters. 

(4) Construct an AI-based workflow for inferring the presence and distribution of shale barriers 

from SAGD production time-series data. 

(5) Investigate the internal structures among different realizations of shale configuration with 

clustering techniques and quantify the dissimilarities between different realizations. 

(6) Demonstrate the feasibility of proposed workflow in field applications, including: 

1) Assembling a representative field production dataset from an existing SAGD project 

(i.e., Suncor’s Firebag); 

2) Infer probable shale barrier configurations from the SAGD field production histories 

using the developed workflows and validate the results with well log interpretations. 

 

1.4 Thesis Outline 

This thesis consists of 8 chapters, and it is organized as follows: 

 Chapter 1 presents a general introduction of this thesis including background information 

and research motivations, problem statement, research objectives and thesis outline. 

 Chapter 2 presents the literature review including the fundamentals of SAGD, impacts of 

reservoir heterogeneity on SAGD performance, application of AI and data-driven techniques for 

heterogeneity characterization. 
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 Chapter 3 presents the workflow for preparing the training/testing datasets including 

SAGD field data collection, synthetic model set-up, heterogeneity parameterization, and 

sensitivity analysis. 

 Chapter 4 presents the methodology for applying data-driven approaches to correlate 

reservoir heterogeneities with SAGD production profiles. The workflow consists of two parts: a 

forward regression model that estimates SAGD production time series from reservoir 

heterogeneities; and an inverse optimization scheme that infer unknown shale barrier 

configurations from a given SAGD production profile. The testing results on a set of 2D 

synthetic cases are also discussed. 

 Chapter 5 presents a workflow that applies multidimensional scaling (MDS) and cluster 

analysis techniques to represent the uncertain influences of different shale barrier configurations 

on SAGD production and to quantify the dissimilarities between realizations. The proposed 

workflow offers a systematic framework for optimizing the spanning of model parameter space 

in a given data set, which is particularly important for constructing representative training data 

sets for 3D proxy modeling. 

 Chapter 6 presents the application of proposed methodologies on 3D synthetic cases. The 

workflow introduced in Chapter 3 is slighted modified to accommodate for the increasing 

complexity of 3D problem, where internal structures of 3D shale configurations are investigated 

and multiple forward regression models are trained for different clusters. 

 Chapter 7 presents the application of proposed methodologies on a set of SAGD field 

production profiles assembled from Suncor’s Firebag Project.  

 Chapter 8 presents the conclusions and contributions of this study. Limitations and 

recommendations for future work are also discussed. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1 Fundamentals of the SAGD Process 

Oil sands are mixtures of sands, water, clay and bitumen. Canada’s oil sands and bitumen 

reserves are the third largest petroleum deposits in the world, next to Venezuela and Saudi Aribia, 

and most of which are located in the province of Alberta. According to Alberta Energy Regulator 

(2018), the remaining established crude bitumen reserves in Alberta is 164 billion barrels and the 

annual production is 1.036 billion barrels as of 2017. The density (API gravity 7° to 10°) and 

viscosity (up to millions of cP) of bitumen are much higher than that of conventional crude oil, 

inhibiting it from flowing easily to the production wells under normal reservoir conditions. 

Therefore, conventional production methods become ineffective and many thermal enhanced oil 

recovery (EOR) techniques have been invented for bitumen exploration and production. In 

Alberta, about 80% of the oil sands reserves are recoverable by in-situ methods such as steam 

assisted gravity drainage (SAGD) (Government of Alberta, 2017). 

SAGD is a widely-adopted in-situ thermal production technique for heavy oil recovery. 

The SAGD process was first introduced by Butler (1981). A pair of parallel wells is drilled 

horizontally into the reservoir, where an injector is placed approximately 5 to 10 meters above a 

producer. A steam chamber is created and expands upwards and laterally, while the viscosity of 

the heavy oil decreases, as high-temperature and high-pressure steam is continuously injected. 

The heated oil then drains along the edge of the steam chamber to the producer by gravitational 

force (Butler et al. 1981). In practice, the SAGD recovery process usually contains several 

different stages: 
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(1) [Start-up Operations] This stage aims to establish thermal and hydraulic communication 

between the wells and improve initial SAGD response (Saltuklaroglu et al., 1999; Elliot and 

Kovscek, 2001). Inter-well communication is established by circulating steam through both 

the injector and producer. Conduction is the main heating mechanism. During the process, 

high temperature steam is injected through a tubing string to the toe of both injector and 

producer. Then the steam is condensed and heat is released into the reservoir, the condensed 

water will flow back through the casing-tubing annuls (Cenovus Energy, 2011).   Typical 

duration of steam circulation is about 60 to 120 days.  

(2) [Ramp-up] After the inter-well communication is established, steam is injected into the 

reservoir through the upper injector while mobilized water and oil are produced through the 

lower producer. During this stage, the entire length of the well pair will be heated, and the 

steam chamber will grow vertically. Once the steam chamber reaches the top of the reservoir, 

both oil production rate and steam injection rate reach a maximum level (Cenovus Energy, 

2011).  

(3) [Conventional SAGD Operations] After the ramp-up stage, the steam chamber has reached 

the maximum height and lateral development becomes the dominant mechanism for oil 

recovery. In this stage, the steam injection rate is usually controlled to maintain a target 

steam chamber pressure and over-burden heat loss will cause declining oil rate at steady 

steam injection rate (Cenovus Energy, 2011). During the SAGD operation, the bottom-hole 

temperature of the producing fluids is controlled to be below the steam temperature (usually 

5°C to 40°C). This temperature differential is known as subcool, and this steam trap control 

setting would help liquids to accumulate above the producer and reduce the possibility of 
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steam flowing into the producing well directly (Butler, 1991; Edmunds, 2000; Ito and Suzuki, 

1999). 

(4) [Winddown and Blowdown Operations] The conventional SAGD operations will last for 

years until the optimal amount of steam has been injected into the reservoir. Then the steam 

injection will be terminated, and SAGD operation will proceed to a blowdown phase where 

non-condensable gas will be injected into the reservoir to maintain pressure (Butler, 2004; 

Yee and Strotch, 2004; Zhao et al., 2005; Cenovus Energy, 2011). During this phase, the 

bitumen production continues until the production drops to an uneconomic rate. This stage 

aims to increase the thermal efficiency by reducing the usage of steam (Gu et al., 2013).  

 

2.2 Impact of Reservoir Heterogeneity 

The first SAGD project was tested at the Underground Test Facility (UTF) in Fort McMurray, 

Canada (Edmunds et al. 1988). The test has revealed a number of issues associated with field 

applications. One of the primary challenges with the SAGD process is that steam chamber 

development and production performance are highly sensitive to the reservoir heterogeneity. 

Low-permeability shale barriers obstruct the communication between the injected steam and the 

in-situ bitumen, impeding the lateral and vertical expansion of the steam chamber. Learning from 

the UTF (Birrell et al. 2000) and 4D seismic surveillance over the Christina Lake SAGD project 

(Zhang et al. 2005) also highlights the negative effects of geological heterogeneity on SAGD 

performance. It was observed that the drainage and flow of hot fluid in the near-well region is 

highly sensitive to shale distribution, while the expansion of steam chamber away from the well 

pair is compromised by the presence of long, continuous shale or high shale proportion. Similar 

observations can also be found in Dang et al. (2013).  
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Many analytical and semi-analytical models have been proposed to represent the SAGD 

process (Butler, 1985, 1991; Rose, 1993; Pooladi-Darvish, 1994); attempts were made to 

improve the original Butler’s model: Reis (1992) proposed a linear steam chamber profile to 

account for heat loss to the surroundings; Akin (2005) modeled the impacts of asphaltene; 

Sharma and Gates (2010) modeled the effects of multi-phase flow and relative permeability, 

while Mojarad and Dehghanpour (2016) incorporated emulsion flow. However, the influences of 

reservoir heterogeneity are generally overly simplified in these models. Yang and Butler (1992) 

conducted a series of experiments with a two-dimensional model, where shale barriers with 

varying permeability and length are incorporated. Their results showed that shale barriers with 

extensive lateral continuity would reduce oil production rate, although the impact on ultimate 

recovery is less pronounced. A major deficiency with experimental analysis is that lab-scale 

models could not reproduce all the operational conditions and field-scale heterogeneities.  

Studies that are based on numerical modeling could offer some insights about the impacts 

of field-scale heterogeneity. Kisman and Yeung (1995) indicated that the effect of shale barriers 

on SAGD performance is minor, unless the shale is both continuous and extensive. Chen et al. 

(2008) presented a stochastic model of shale distribution. It was observed that fluid flow in the 

near-well region is highly sensitive to the distribution of shale barriers, while steam chamber 

development in the region further away from the well pair is affected only by long/continuous 

shale. Similar conclusions were presented by Le Ravalec et al. (2009); results from their 

sensitivity analysis reiterated that impacts on SAGD performance due to shale barriers depend 

strongly on their sizes and relative locations to the well pairs, and the shale barriers located 

between injector and producer are the most detrimental ones. Amirian et al. (2015) and Wang & 

Leung (2015) demonstrated that as the distance between a shale barrier and the horizontal well 
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pair decreases, or as the volume or continuity of a shale barrier increases, SAGD recovery 

efficiency would decrease. They parameterized the impacts of a given shale barrier with an index, 

which is the distance between a shale barrier and the well pair divided by the shale volume. 

Similar conclusions were also reported by Lee et al. (2015); 400 SAGD cases corresponding to 

different correlation length and proportions of shale barriers were simulated numerically, and the 

results confirmed that recovery factor is negatively related to the correlation length or 

proportions of shale barriers. It should be noted that computational costs associated with 

numerical simulations with fine (high-resolution) meshes for capturing all the relevant reservoir 

heterogeneities could be high, limiting its application in real-time optimization.  

 

2.3 Assessing the Distribution of Reservoir Heterogeneity 

Given the detrimental effect of reservoir heterogeneities, it is crucial to effectively infer the 

presence and distribution of heterogeneous reservoir features (e.g. low permeability shale 

barriers) for optimizing operating strategies and reservoir management. 

 Assessing the impact and distribution of reservoir heterogeneity for a particular recovery 

process often involves numerical simulation: the initial multivariate probability distribution of 

petrophysical variables (porosity, permeability and facie distribution) is inferred from static data, 

from which numerous realizations are sampled and subjected to flow simulation. This probability 

distribution would be updated to incorporate the dynamic data (time series of oil/water/steam 

rates, bottom-hole pressure, and 4D seismic) during history matching. This process of dynamic 

data integration is an inverse mathematical problem, where the solutions could be non-unique: 

multiple cases of petrophysical properties could potentially yield a similar set of dynamic data. 

Since some of the earlier works by Kruger (1960) and Jacquard (1965), in which permeability 
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was adjusted, many advancements in assisted history matching were made over the past few 

decades such as colony optimization (Hajizadeh et al., 2011), ensemble Kalman filter (EnKF) 

(Liu and Oliver, 2005; Jafarpour and Tarrahi, 2011; Patel et al., 2015), genetic algorithm 

(Ballester and Carter, 2007; Maschio et al., 2008), gradient-based approaches (Brun et al., 2004), 

Markov chain Monte Carlo (Liu and Oliver, 2003), stimulated annealing (Ouenes, 1993), 

scatter/tabu search (de Sousa, 2007; Yang et al., 2007), and simultaneous perturbation stochastic 

approximation (SPSA) (Gao et al., 2007).  

Some of these techniques have also been adopted for SAGD reservoir characterizations. 

Jia et al. (2009) implemented a SPSA algorithm to estimate parameters such as horizontal 

permeability, porosity and initial oil saturation of a synthetic SAGD model. Ito and Chen (2010) 

performed history matching with field data collected from a well-pair in Burnt Lake. Their 

model was used to understand the interplay between steam injection, operating pressure and oil 

production; their model confirmed that those factors had significant impacts on steam chamber 

growth, migration of non-condensable gas and oil drainage pattern. Hiebert et al. (2013) 

incorporated 4D seismic data to history match the production data (water injection rate, oil/water 

production rate), as well as temperature data (which is indicative of the location or top of the 

steam chamber, its thickness and average pressure) for one of the well pair in Pad 101 of the 

Suncor’s Firebag SAGD project. A few recent history-matching studies have been applied for a 

number of SAGD reservoirs, including the MacKay River (Liu et al., 2013) and the Long Lake 

(Zhang et al., 2014 and Feizabadi et al., 2014) deposits.  

It is important to note that the history-matching procedure usually requires a large 

number of forward simulations, which could be quite computationally intensive (Lee et al., 2017). 

In the case of SAGD production time-series data, a large number of shale configurations would 
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be subjected to flow simulations repeatedly until a production match is obtained. Therefore to 

optimize the workflow and improve the efficiency of conventional SAGD history-matching 

routine, it is in great demand to: (1) develop fast and reliable proxies to numerical simulation for 

capturing the effects of complex heterogeneities and generating time series SAGD production 

profiles; (2) develop an efficient and reliably workflow for quickly inferring a set of probable 

shale barrier configurations that are consistent with the target production history; these models 

can be regarded as an initial estimate of input production profiles and subjected to further history 

matching for a more accurate final match. 

 

2.4 Artificial Intelligence and Data-Driven Approaches 

Artificial intelligence and data mining techniques have been successfully adopted in various 

petroleum engineering applications, such as well log interpretation, production optimization, 

CO2 flooding, pump failure prediction and history matching (Wu and Nyland, 1986; Popa et al. 

2005; Liu et al. 2013; Shahkarami et al. 2014; Elkatatny 2018; Le Van and Chon, 2018; Moussa 

et al. 2018). 

 In particular, the use of proxy models by incorporating AI and data mining techniques to 

replace expensive forward simulations is often adopted to lower the computational cost. Yu et al. 

(2008) trained a proxy model using the genetic programming (GP) symbolic regression 

algorithm; the training data set consisted of over 800 forward simulations, and the model was 

used to predict oil production for a field in West Africa. For SAGD applications, Fedutenko et al. 

(2014) formulated an artificial neural network (ANN) based proxy to predict the field oil 

production and steam injection rates with time-varying operating conditions; the limitation, 

however, was that the training data set consisted of only 50 cases, limiting the model’s validity to 
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a narrow set of heterogeneity distribution and reservoir conditions. Klie (2015) proposed a 

hybrid proxy by combining an analytical chamber growth model with a data analytics component. 

The model was effective for predicting cumulative oil production and steam-oil ratio. Jain et al. 

(2017) employed the polynomial chaos expansion (PCE) method to construct a proxy based on 

10 synthetic simulation models. Similarly, Sun & Ertekin (2017) presented an ANN-based expert 

system that was trained with 2921 2D synthetic simulation cases to model the cyclic steam 

stimulation (CSS) process and to predict the producing oil rate. Various input parameters, 

including petrophysical properties, initial conditions and operational constraints, were included. 

The main drawback of these studies is that the permeability distribution was always assumed to 

be Gaussian; however, shale barriers would likely lead to abrupt transition in the model 

parameters. In the end, the proper parameterization of specific shale barrier configurations in a 

proxy model is not trivial. 

Amirian et al. (2015), Ma et al. (2015, 2018) and Wang & Leung (2015) have 

incorporated a variety of data-mining techniques, including ANN, cluster analysis, time series 

analysis, and principal component analysis (PCA), in an attempt to correlate shale barrier 

characteristics with oil production. A number of dimensionless variables such as shale indicator 

(SI) and lean zone indicator (LI) were implemented. However, these parameters capture only 

limited characteristics of the nearest heterogeneous features; information regarding the overall 

shale distribution is not represented.  

Another important factor for building data-driven proxy models is design of experiments 

(DOE). Although many AI-based proxy models produced reasonable results, there was a huge 

difference with respect to the size of the training data employed in their studies. One-factor-at-a-

time (OFAT) is a basic method of DOE where a single variable is varied at a time while keeping 
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others fixed. Despite its ease of implementation, OFAT usually requires a large number of 

experiments and ignores the interactions among multiple factors (Qu & Wu, 2004; Wang & Wan, 

2008). Fisher (1936, 1937) proposed a series of DOE fundamental principles and methods, 

including randomization, statistical replication, blocking, Latin squares (orthogonal arrays), 

confounding, and factorial experiments. Factorial design is a widely applied method (Box, 1980; 

Preece, 1990). It can be classified as either full factorial design or fractional factorial design. Full 

factorial design investigates every combination of the factor levels; hence, the number of 

experiments increases geometrically with the number of factors. On the other hand, fractional 

factorial design utilizes only a fraction of the full design (Wang & Wan, 2008).  

In the context of SAGD data-driven modeling, a particular challenge is assembling a 

representative training data set. Implementing a full factorial design that involves all possible 

shale barrier configurations would be formidable. A representative training data set should be 

large enough to sufficiently span the feature (input and output parameter) space without 

exhaustively sampling realizations with similar production characteristics. However, this step is 

usually achieved via trial-and-error, and there is little discussion in the reviewed literature 

regarding the methodology for quantifying similarities among different realizations and 

optimizing training dataset to efficiently span the feature parameter space. 

In this research, artificial neural network and support vector machine regression (SVR) 

are employed to establish the relationship between reservoir heterogeneities and SAGD 

production performance. Genetic algorithm (GA) is applied to solve the inverse problem which 

is inferring shale barrier configurations from SAGD production history. Other AI techniques 

such as multidimensional scaling (MDS), K-means clustering and decision tree are also applied 
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for the purpose of feature selection, cluster analysis and model performance improvement. The 

detailed formulas of these methods will be discussed in the following chapters. 
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CHAPTER 3:  MODEL SETUP AND PARAMETERIZATION OF SHALE 

HETEROGENETIES1 

 

In this research, the production data employed for constructing data-driven models is derived 

from a set of synthetic SAGD reservoir simulations based on petrophysical properties and 

operational constraints representative of Athabasca oil sands reservoirs. One primary challenge is 

related to proper parameterization of reservoir heterogeneity for model training. Although the 

influences of heterogeneity were explored in previous studies, descriptive variables of shale 

configurations are rarely defined. A number of dimensionless variables such as shale indicator 

(SI) and lean zone indicator (LI) were implemented by Amirian et al. (2015), Ma et al. (2015, 

2017) and Wang & Leung (2015) to describe reservoir heterogeneity; however, these parameters 

capture only limited characteristics of the nearest heterogeneous features; information regarding 

the overall shale distribution is not represented. 

 The primary objectives of this chapter are to (1) summarize the petrophysical properties 

and operational constraints representative of Athabasca oil sands reservoirs for synthetic model 

construction and (2) propose a feature parameterization approach for shale barrier configurations. 

 

3.1 SAGD Field Data Collection and Analysis 

A set of SAGD field data is gathered for Suncor’s Firebag project from public domain. The 

dataset consists of field data from both horizontal production/injection well pairs and vertical 

observation wells. Data including production profiles, well logs, core measurements, reservoir 

                                                           
1 The content in Chapter 3 of this thesis is derived from the following papers: 

Zheng, J., Leung, J. Y., Sawatzky, R. P., & Alvarez, J. M. (2018a). A proxy model for predicting SAGD 
production from reservoirs containing shale barriers. Journal of Energy Resources Technology, 140(12), 122903. 

Zheng, J., Leung, J.Y., Sawatzky, R.P., and Alvarez, J.M. (2018b). An AI-based workflow for estimating 
shale barrier configurations from SAGD production histories. Neural Computing and Applications. 
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pressures and steam chamber temperatures are assembled from AccuMap (IHS Energy, 2015) 

and TOP analysis software (TOP Analysis, 2015), and representative properties are interpreted 

and extracted. These values are also compared against average reservoir properties recorded in 

Suncor’s Firebag annual reports (Alberta Energy Regulator, 2012, 2013, 2014, 2015). Certain 

operational constraints, such as steam quality and injection pressures are obtained from the 

annual reports. 

The petrophysical logs are interpreted to calculate parameters such as shale volume, 

water saturation, reservoir porosity and permeability, etc. The temperature files of observation 

wells are also retrieved from TOP database. The temperature files record the monthly change of 

temperature at different depths, which can be seen as indicators of the development of steam 

chamber. When observation well temperature reaches steam temperature, it usually means that 

the steam chamber has grown to that depth. Oppositely, lower temperature at a depth may 

indicate the steam chamber has not fully heated this region or shale barriers nearby block the 

development.  In this way, the temperature files are combined with well logs to identify the 

location and thickness of shale barriers, as well as net pay thickness and depth of reservoir.  

The production data and injection data are assembled for each well-pair to calculate key 

parameters such as steam-oil ratio (SOR), gas-oil ratio (GOR), water-oil ratio (WOR) and etc. 

Every logging well is assigned to the nearest well-pair, information like distance and incline 

angle between injector and the observation well are then calculated.  The detailed data records 

for individual well-pair and pad are sorted for the usage of data-driven models, the representative 

properties for each pad and the whole reservoir are also summarized. 
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3.2 Homogeneous Base Model 

A homogeneous base model consisting of only sand is created (∆x = ∆z = 1 m). The model is 50 

m along the x-direction, representing half the distance between two neighboring well pairs, and 

40 m along the z-direction, which is the reservoir thickness. The major pay zone is located in the 

McMurray formation. Its petrophysical properties and certain operational constraints have been 

taken from representative values for several pads (pads 104-108, as shown in Fig. 3.1) in 

Suncor’s Firebag project. A set of horizontal wells are placed at the left edge of the model (y-

direction).  

 

Fig. 3.1 – Relative pad locations for the Firebag project – Image extracted using AccuMap (IHS 
Energy, 2015). 

 

For the 2D cases, the dimension along the y-direction is 20 m. To construct the 3D cases, 

a series of four 2D cases are stacked along the y-direction, resulting in a total length of 80 m (∆y 

= 20 m; total length = 4 × 20 m). Since only a portion of the horizontal well length is simulated 

in these 2D and 3D cases, the production volumes obtained with these synthetic cases must be 

scaled up proportionally to reflect actual field volumes. For instance, the typical length of a 
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horizontal producer in the field is approximately 1000 m; therefore, the simulated oil and steam 

volumes are multiplied by factors of 1000/20 = 50 and 1000/80 = 12.5, respectively, for the 2D 

and 3D cases.  

 

Table 3.1 - Reservoir properties and operating constraints for the base and heterogeneous 
models. Data are derived from Pads 104-108 in the Firebag Project. 

Initial Reservoir Pressure 
[1] 800 kPa Initial Reservoir 

Temperature [1] 8 ℃ 

Net Pay Thickness [1] 40 m Steam Injected Pressure [1] 1500 kPa – 2423 
kPa 

Reservoir Top [1] Depth: 285 
m Well Spacing [1] 100 m 

Reservoir Bottom [1] Depth: 325 
m Well Length [1] 1000 m 

Injected Steam Quality [1] 95% Steam Temperature [1] 225 ℃ 
Sand Porosity [1] 0.32 Shale Porosity [1] 0.25 

Sand Permeability [1] 3 Darcy Shale Permeability 3 × 10-8 Darcy 
Oil Saturation in Sand [1] 0.85 Oil Saturation in Shale 0 
Water Saturation in Sand 

[1] 0.15 Water Saturation in Shale 1 

Formation Compressibility 
[2] 2e-6 /kPa Formation Thermal 

Expansion Coefficient [2] 6e-5 /℃ 

Volumetric heat capacity of 
formation [2] 

2.35e6 J/m3-
°C 

Thermal conductivity of 
matrix [2] 1.5e5 J/m-day-°C 

Thermal conductivity of 
water [2] 

5.35e4 J/m-
day-°C 

Thermal conductivity of oil 
[2] 

1.15e4 J/m-day-
°C 

Ref: [1] Alberta Energy Regulator (2012). 
 [2] Li, P. (2006).  

 

Relevant reservoir properties and operating conditions are presented in Table 3.1. Since 

there is limited information pertinent to the reservoir fluid properties in the Firebag annual 

reports, fluid properties representative of typical Athabasca bitumen are assumed. A pseudo 

“oil” component is defined to represent the dead oil properties, and it is combined with 5% 

methane to reproduce the live oil. The relevant PVT properties used for the simulation are listed 
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in Table 3.2. The relative permeability (Good et al., 1997) is presented in Fig. 3.2; only the 

effective range of water saturation in sand (Sw>0.15) is important to fluid displacements. 

Viscosity-temperature correlation (Good et al., 1997) is also presented in Fig 3.3. Temperature 

data are assembled from the public domain to understand the steam chamber development. 

The base model is subjected to numerical simulation (CMG, 2015). A comparison of oil 

production profiles between the base case and a randomly-selected producing well pair from 

Firebag Pad 104 is shown in Fig. 3.4. It is observed that production trends from the base case are 

in reasonable agreement with the actual field observations, considering that reservoir 

heterogeneities have been excluded in the base model. 

 

Table 3.2 – PVT properties of the fluids in the simulation model. 

Component Water Oil Methane 
Molecular mass (kg/gmol) 0.01802 0.511 0.01604 

Critical pressure (kPa) 22048 1360 4600 
Critical temperature (°C) 374.15 624.65 -82.55 

KV1 0 0 31914 
KV2 0 0 0 
KV3 0 0 0 
KV4 0 0 -33.07 
KV5 0 0 -27.71 

Liquid density (kg/m3) 1000 1010 421 
Liquid compressibility (1/kPa) 5.70e-7 4.50e-7 1.45e-6 

Coefficient of thermal expansion 
(1/°C) 2.14e-4 6.80e-4 8.00e-4 
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Fig. 3.2 – Relative permeability functions: (a) water-oil; (b) liquid-gas.  
 

 
 

 

Fig. 3.3 – Viscosity functions with temperature: (a) oil; (b) methane.  
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Fig. 3.4 – Comparison of monthly oil production between the base model and field observations. 
 

3.3 Modeling and Parameterization of Shale Heterogeneities 

3.3.1 Strategy and Hypotheses 

To model the influence of shale barriers on SAGD production performance, various 

configurations of idealized shale barriers are randomly superimposed on the base model. The 

permeability of each shale barrier (approximately 10-7 to 10-8 Darcy) is several orders of 

magnitude smaller than the permeability of the oil sand (approximately 3 Darcy) in the 

simulation model. The individual shale barriers are categorized by their location relative to the 

SAGD well pair (vertical and lateral), and by their geometry (thickness and lateral extent).  

In order to model shale barriers that are representative of field conditions, logging data 

and temperature files were collected from observation wells located on the north side of pad 104 

and 107. Although many shale layers can be interpreted from the logs, not all of them would act 

as barriers to steam chamber development. After reviewing the temperature profiles from 

numerous observation wells, it is noted that shale layers of minimal thickness do not typically 
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cause any detectable signature in the temperature measurement. Therefore, it is concluded that 

shale barriers that are less than 30 cm in thickness would not hinder steam chamber advancement 

and production performance, and, hence, they are not regarded as barriers. Average porosity and 

saturation of only those shale layers that serve as barriers are extracted and used as input 

parameters of the idealized shale barriers (Table 3.1). Relevant statistics of these extracted shale 

barriers are summarized in Table 3.3. 

 

Table 3.3 - Summary of shale barriers interpreted from petrophysical information and 
temperature data obtained from observation wells located in pads 104N and 107N. 

Count of observation wells 7 
Count of shale barriers 19 

Maximum shale barriers thickness 3.48 m 
Minimum shale barriers thickness 0.31 m 
Average shale barriers thickness 1.22 m 

 

 

Parameterization of individual shale barriers is facilitated via the principle of 

superposition, and the key assumptions or hypotheses are: 

 

(1) The net impact on production performance caused by a large shale barrier is the sum of 

individual impacts caused by a set of smaller (basic) shale units.  

(2) A basic shale unit denotes the smallest shale barrier that could instigate an impact on the 

steam chamber development and recovery performance; in other words, the smallest 

allowable shale barrier is that of a basic shale unit. 

(3) Any shale barrier of arbitrary size and shape can be represented by a combination of one or 

more of these basic shale units.  
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Therefore, the goal is to divide the 2D reservoir domain into a number of non-

overlapping zones and assign one basic shale unit to each zone. And the shale distribution in a 

3D reservoir model will be represented by stacking a set of 2D heterogeneous segments along 

the y-direction. 

 

3.3.2 Sensitivity Analysis of Shale Barriers 

For the synthetic models, the smallest possible basic shale unit would be 1 m × 1 m, which is 

equal to the size of a single grid block. This choice offers the best model resolution, but the 

associated computational cost would be intractable: number of possible combinations = 2N, 

where N = number of grid blocks. In addition, numerical simulation suggests that, in 2D 

reservoir model, shale barriers with limited lateral extent (~ 5 m) do not introduce an observable 

change in the corresponding production profiles. Thus, the choice of an appropriate basic shale 

unit should balance between model accuracy and computational cost. To this end, a series of 

sensitivity experiments was conducted for 2D models. 

 

(1) Location of shale barrier – a single shale barrier of 5 m × 1 m is randomly placed in the 

domain. A length of 5 m represents approximately 1/10 of the reservoir length, while a 1 m 

thickness corresponds to the average thickness observed in the field data (Table 3.3).  A total 

of 54 cases are created (Fig. 3.5). 

(2) Length of shale barrier – a single shale barrier with length ranging between 5 m to 35 m 

(thickness = 1 m) is placed at one of the 7 randomly-selected locations 8 × 7 = 56 cases are 

constructed (Fig. 3.6).  
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(3) Thickness of shale barrier – a single shale barrier with thickness ranging between 1 m to 5 m 

(length = 5 m) is placed at one of the 11 randomly-selected locations. A total of 5 × 11 = 55 

cases are constructed (Fig. 3.7).  

(4) Aspect ratio of shale barrier – a single shale barrier with aspect ratio of either 10 m × 1 m or 

5 m × 2 m is placed at one of the 15 randomly-selected locations. A total of 2 × 15 = 30 cases 

are constructed (Fig. 3.8). 

 

 

Fig. 3.5 – Sensitivity experiments on location of shale barriers. 
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Fig. 3.6 – Sensitivity experiments on length of shale barriers. 
 

 

Fig. 3.7 – Sensitivity experiments on thickness of shale barriers. 
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Fig. 3.8 – Sensitivity experiments on aspect ratio of shale barrier. 
 

The corresponding production profiles are compared to that of the homogeneous base 

case in section 3.2. To quantify the mismatch in the production profile (time-series data) between 

the homogeneous base case ( b
oq ) and the cases with shale barriers ( s

oq ), an objective function (C) 

is defined as half of the mean squared error: 

 

( )2

1

1
2

m
b s
oi oi

i
C q q

m =

= −∑ ............................................................................................................ (3.1) 

 

Where m denotes the total number of monthly data records in a production profile (oil rate); i 

denotes a single time point of the time series; b
oiq  is the oil production history of homogeneous 

base case at time i; and s
oiq  is the production history of heterogeneous case at time i. All profiles 

corresponding to a particular model are normalized between their minimum and maximum 
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values on a scale of [0, 1]. Therefore the maximum value for C is 0.5; this would only occur if 

the target profile is producing constantly at the maximum oil rate, while the other profile is 

producing constantly at the minimum oil rate. On the opposite side, a value of zero for C denotes 

a complete match between the two profiles. In this way, the absolute difference between two 

production histories are compared and calculated as C.  

The C values for all the sensitivity cases are calculated and analyzed (Fig. 3.9 and Table 

3.4). Since all the sensitivity cases are compared against the homogeneous base case, the 

difference in C values would indicate the different impacts of corresponding shale barriers. A 

few important observations can be made: 

 

(1) Impact of a shale barrier of a given size decreases with the distance to the well pair; 

(2) Impact of a shale barrier at a given location increases with its length and thickness; 

(3) In this 2D reservoir model, production (and chamber advancement) is more sensitive to the 

lateral extent of a shale barrier than to its vertical extent. For a shale barrier of a fixed volume 

(e.g., 5 m × 2 m or 10 m × 1 m), the length increment has a bigger impact than the thickness 

increment. 

 

Table 3.4 – Average C values for shale barriers with different aspect ratio.  

Shale Barrier  (length × thickness) Average C value (10-3) 
5 m × 2 m 3.71 
10 m × 1 m 31.32 
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Fig. 3.9 – Average C values for different sensitivity experiments. 
 

3.3.3 Shale Configuration Setup for 2D and 3D models 

Based on above observations, it is proposed that the entire 2D reservoir be divided into 

four zones or domains based on their relative positions to the well pair. The method is designed 

such that smaller shale units are placed in zones that are close to the well pair and larger shale 

units are placed in zones that are far away; for example, the basic shale unit in zone 1 is multiple 

times smaller than the basic shale unit in zone 4. The underlying rationale is that the influence of 

any shale barrier with a particular size diminishes as the distance from the well pair increases; 

recovery performance is sensitive to a small shale barrier, if it is located in zone 1, but it is 

sensitive only to a much larger shale barrier, if it is located in zone 4.  

Next, each domain is further divided into numerous sub-domains. The presence of a shale 

barrier within a particular sub-domain is represented by a binary index (1 = a shale barrier is 
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present; 0 = shale barrier is absent).  In this way, all possible shale barrier configurations could 

be parameterized with a set of binary indices. 

It is true that a very small basic shale unit may reproduce the reservoir heterogeneity with 

higher precision, but the possible scenarios of different shale configurations will also increase 

exponentially, requiring a more extensive training dataset and larger computational time. As a 

result, the size of an individual basic shale unit should be determined considering a balance 

between model detail and computational efficiency.  

The 3D reservoir models employed in this study are constructed by stacking together four 

2D reservoir models (segments) along y-direction (Fig. 3.11). Two shale configuration setups of 

the 2D models (segments) are applied in this research: 

 

(1) The first setup is applied in Chapters 4 and 5, where 2D cases are considered. Local grid 

refinement is implemented in zone 1 to highlight the impact of fine-scaled heterogeneous 

features at the near-well region. A different basic shale unit is defined in each of the four 

domains, and there are a total of 102 sub-domains, as illustrated in Table 3.5 and Fig. 

3.10(a). A large shale barrier spanning over more than one sub-domain would be represented 

by multiple basic shale units across various sub-domains.  

(2) The second setup is applied in Chapters 6 and 7, where 3D cases and field case study are 

considered. The reason for adopting a different setup is that, with the dramatic increase in 

model parameter space in 3D (more binary shale indices due the stacking of numerous 2D 

models along the y-direction), the second setup is proposed to achieve some balance between 

maintaining model complexity and reducing computational costs. The basic shale units 

within each zone are enlarged, while the division of the four zones is the same as (1). An 
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illustration of the zone division in 2D x-z cross section is depicted in Table 3.6 and Fig. 

3.10(b). There are 38 sub-domains for each 2D segment, resulting in a total of 152 (38 × 4) 

binary indexes to parameterize all possible shale barrier configurations in 3D. Due to slight 

reduction in model resolution in comparison to setup 1, the total number of model parameters 

(i.e., binary indices) has only increased by approximately 50%. It should be noted that the 

overall shale proportion for both 2D and 3D cases are assumed to be less than 25%. 

 

 



33 
 

 

Fig. 3.10 – Illustration of the four zones and the corresponding basic shale unit for 2D models: 
(a) Setup 1 (b) Setup 2. 
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Fig. 3.11 – Illustration of 3D model and constitutive 2D segments. 
 

 

Table 3.5 – Dimensions of basic shale unit and the number of sub-domains in each zone for 
2D models (Setup 1). 

 Dimensions of Basic Shale Unit (m2) Number of Sub-Domains 
Zone 1 5 × 0.5 40 
Zone 2 5 × 2 30 
Zone 3 5 × 5 20 
Zone 4 10 × 5 12 
Total  102 
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Table 3.6 – Dimensions of basic shale unit and the number of sub-domains in each zone for 
2D models (Setup 2). 

 Dimensions of Basic Shale Unit (m2) Number of Sub-Domains 
Zone 1 5 × 2 10 
Zone 2 5 × 5 12 
Zone 3 5 × 10 10 
Zone 4 10 × 10 6 
Total  38  

 

It should be emphasized that shale barriers below the resolution of an individual basic 

shale unit and sub-domain are not included in this idealized representation of shale heterogeneity. 

This assumption seems reasonable because temperature data collected from the field observation 

wells would also suggest that chamber development is not overly sensitive to shale barriers that 

are smaller than the basic shale units. An example is shown in Fig. 3.12, where with gamma ray 

and temperature profiles of an observation well near Pad 107 are examined. Two shale barriers 

could be inferred from the logs: a thick one (> 2 m) at depth = 312 m and another thin one (< 1 m) 

at depth = 304 m. It is clear from the temperature profiles that only the thick shale has obstructed 

the steam chamber development for an extended period of time. Similar observations at other 

locations would support the decision of ignoring any shale barrier less than 0.5 m in thickness. 

Besides, inclined heterolithic strata (IHS) is not specifically modelled in this research, all shale 

barrier configurations are constructed by stacking several basic shale units laterally or vertically. 

It should be noted that the divisions of zones and subdomains may depend on the domain size 

and the specific shale barrier characteristics for a given SAGD reservoir. Sensitivity analysis that 

is similar to the one presented here should be conducted to assess the appropriate 

parameterization criteria. 
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It is observed that in some cases the steam chamber will reach the boundary on x-

direction after about 10 years. Therefore, to avoid the impact of impermeable flow boundaries, 

only the first 10 years’ simulation data of all synthetic cases are used in this research. 

 

 

Fig. 3.12 – Temperature and gamma ray profiles for the observation well 87 in Firebag – data is 
extracted from Suncor’s Firebag annual reports (Suncor Energy, 2012, 2013). 

 

3.4 Validation of Parameterization Approach 

To illustrate the utility of the proposed parameterization approach for representing 

realistic reservoir shale distribution, two stochastic realizations of 2D shale configurations are 

generated via sequential indicator simulation (Deutsch, 1998). The shale barriers in these two 

realizations are subsequently categorized with the proposed parameterization approach. The 

parameterized cases are subjected to numerical simulation, which are then compared to the flow 

simulation results of the original stochastic realizations (Fig. 3.13). It is observed that the 

production trends from the parameterized cases are in good agreement with the original 
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stochastic realizations. For Validation Case 1, the oil production profiles simulated using the 

original shale configuration and the parameterized shale configuration are similar for the initial 

60 months. A slight discrepancy begins to emerge after 60 months. To understand this 

discrepancy, the oil saturation distributions for the two set-ups after 60 months and 72 months 

are compared in Fig. 3.14. It is clear that the steam chamber development for both scenarios are 

similar up to 60 months; however, at 72 months, the front of the steam chamber in the 

parameterized scenario develops better than the original configuration; this is due to the missing 

of certain small shale barriers located at the middle and the top right corner of the modeling 

domain after parameterization. This would explain why there is a slight drop in production rate 

for the original shale configuration after 60 months, while the opposite is observed for the 

parameterized case.  
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Fig. 3.13 – Validation Cases: (a) original shale configuration; (b) parameterized shale 
configuration; (c) numerical simulation results. 
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Fig. 3.14 – Oil saturation distribution of Validation Case-1: (a) original shale configuration; (b) 
parameterized shale configuration. 

 

 It should be acknowledged that a limitation of the current parameterization scheme is 

that it may not properly represent certain shale barriers smaller the size of a basic shale unit; 

however, it is anticipated that further optimization of the resolution of the basic shale units could 

potentially resolve this issue. Overall, the differences in cumulative production for all set-ups are 
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minor. Despite of these minor deviations, the results support the idea that the proposed approach 

is effective in capturing the primary and aggregated influences of groups of shale barriers and 

generating reliable estimates of the recovery performance.   

The results demonstrate the capability and flexibility of the proposed parameterization 

technique in capturing the complex heterogeneity exhibited by the shale barriers. The current 

model assumes that the reservoir heterogeneity can be sufficiently parameterized using the 

idealized basic shale units. In order to represent more complex distribution of irregularly-shaped 

shale barriers, refining the division of various domains and reducing the size of each basic shale 

unit may be required. 

 

3.5 Summary 

In this chapter, a set of SAGD field data is gathered and analyzed for Suncor’s Firebag project. A 

homogeneous model is created, the petrophysical properties and certain operational constraints 

have been taken from representative values for several pads in Firebag.  

A novel parameterization scheme is introduced to characterize shale heterogeneity. This 

is facilitated by dividing the entire reservoir domain into a number of sub-domains and 

formulating a set of basic shale units. Sensitivity analysis of the basic shale units (size, geometry, 

position) is conducted. Different parameterization setups for 2D and 3D models are proposed.  

The proposed approach will be used to construct synthetic cases employed in this thesis, and 

synthetic datasets containing shale heterogeneity and production time-series will be assembled 

from the corresponding numerical simulations. These datasets will be used in the following 

chapters to establish a set of AI-based data-driven models for exploring the correlation between 

shale heterogeneities and SAGD production. 
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CHAPTER 4:  ESTIMATING SHALE BARRIER CONFIGURATIONS IN 2D 

EXAMPLES2 

 

To estimate the effects of complex heterogeneities on SAGD production and infer the presence 

and distribution of heterogeneous shale barriers from SAGD production time-series data, a 

methodology is developed and tested on 2D synthetic cases. The methodology consists of two 

parts: (1) a (forward) forecasting regression model is trained to estimate SAGD production time 

series (outputs) from reservoir heterogeneities that are parameterized in terms of shale barrier 

configurations (inputs); and (2) an (inverse) optimization scheme, where the GA approach is 

adopted to infer unknown shale barrier configurations from a given SAGD production profile. 

During the GA procedure, the regression model trained in part (1) is used to generate a forward 

prediction, which is used to evaluate the fitness or objective function. The proposed workflow is 

depicted in a data flow diagram (Fig. 4.1), and details are presented in the following sections. 

 
 

 

 

 

 

 

 

                                                           
2 The content in Chapter 4 of this thesis is derived from the following papers: 

Zheng, J., Leung, J. Y., Sawatzky, R. P., & Alvarez, J. M. (2018a). A proxy model for predicting SAGD 
production from reservoirs containing shale barriers. Journal of Energy Resources Technology, 140(12), 122903. 

Zheng, J., Leung, J.Y., Sawatzky, R.P., and Alvarez, J.M. (2018b). An AI-based workflow for estimating 
shale barrier configurations from SAGD production histories. Neural Computing and Applications. 
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Fig. 4.1 – Proposed workflow for correlating SAGD production profiles with shale barrier 
configurations. 

 
 

4.1 Forecasting SAGD Production from Reservoirs Containing Shale Barriers 

4.1.1 Experimental Design 

 The construction of forward regression model requires a training dataset that sufficiently 

span the model parameter space. In this chapter, a set of 2D cases are constructed by varying the 
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locations, intensity and dimensions of shale barriers. As shown in Table 3.5, there are a total of 

102 sub-domains, rendering a total of 2102 ≈ 5 × 1030 combinations of different basic shale units. 

Therefore, experimental design is carried out to identify a representative subset of these shale 

configurations, which will form the dataset for the proxy modeling in the next stage. This subset 

should encompass sufficient characteristics regarding different configurations (i.e., size, 

geometry and position) of shale barriers, such that it can be used to train a proxy model capable 

of predicting SAGD production profiles for other sets of randomly-distributed shale barriers. A 

training dataset is constructed by considering four particular configurations of shale distribution:  

 

(1) Single basic shale unit – Considering each basic shale unit as the fundamental building block 

that constitutes the reservoir heterogeneity, 102 cases with only one basic shale unit are 

constructed. 

(2) Laterally-extensive shale barriers – A laterally-extensive shale barrier is modeled by 

combining numerous basic shale units along the x-direction. This type of shale barrier 

typically hinders steam chamber advancement; oil rate would decline as the steam chamber 

encounters a shale barrier, and this decline continues until the steam chamber has advanced 

beyond the shale barrier. In order to capture the influences of shale barriers with varying 

lateral extent, a total of 267 cases are constructed by combining basic shale units from three 

representative regions in zones 1 to 4 to form laterally-extensive shale barriers. These three 

representative regions, as shown in Fig. 4.2(a), encompass all possible lateral combinations 

of basic shale units located among zones 1, 2, 3 and 4. 

(3) Vertically-extensive shale barriers – A vertically-extensive shale barrier is modeled by 

stacking numerous basic shale units along the z-direction. A total of 94 cases are constructed 
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by combining basic shale units from three representative regions in zones 1 to 3, as shown in 

Fig. 4.2(b), to form vertically-extensive shale barriers. These three representative regions 

encompass all possible lateral combinations of basic shale units located among zones 1, 2 

and 3. 

(4) Multiple disjoint shale barriers – A total of 337 cases are constructed by randomly placing 

numerous disjoint shale barriers of different sizes in the reservoir domain.  

 

  

                                    (a)                                                                      (b) 
Fig. 4.2 – Representative regions for the models: (a) laterally-extensive shale barriers; (b) 

vertically-extensive shale barriers. 
 

A training dataset consisting of a total of 800 2D cases of shale barrier configurations is 

prepared according to the aforementioned criteria. For the testing dataset, an additional 40 cases 

with randomly-distributed shale barriers are generated. The shale barriers in the testing cases are 

subsequently categorized according to the same parameterization scheme. They are used to test 

both the forward and inverse modeling workflows. A summary of the training and testing 

datasets is presented in Table 4.1. 
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Numerical simulation (CMG, 2015) is performed with each model, and the corresponding 

oil production profiles are recorded. The training and testing datasets are assembled such that the 

input variables correspond to the shale heterogeneities (i.e., a total of 102 binary location indices) 

and the operating constraints (i.e., steam injection rate and months on production, t), while the 

output variable is monthly oil production rate at t. 

Table 4.1 - Summary of training and testing datasets. 

  Training Dataset  Testing Dataset 
Number of SAGD Scenarios 800 40 
Number of Data Records for 

Each SAGD Scenario 120 (monthly data) 120 (monthly data) 

Total Data Records 96000 4800 

Input Variables Month of production, Steam injection rate, 102 
Location variables 

Output Variable Oil production rate 
 

4.1.2 Artificial Neural Network Modeling 

The forward model should capture the high dimensional non-linear correlations between 

the input and output variables. For 2D datasets, there are 104 input variables, with an extensive 

training dataset of 96000 records. ANN is one of the most widely-adopted machine-learning 

techniques due to its versatility in generalization and mapping of non-linear correlations, 

provided that the training dataset is large enough; hence, it has also been successfully applied in 

many subsurface-related applications.  

In this chapter, a type of artificial neural network (ANN) known as Multilayer Perceptron 

(MLP) is employed to approximate the non-linear relationship between the input and output 

variables. Once the ANN is trained, it can be used as a proxy model to predict oil production 

profiles corresponding to any arbitrary shale barrier configuration. The training dataset is used in 
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a supervised learning procedure to estimate the unknown network parameters. An optimal 

structure is identified using the n-folds cross-validation method. 

A MLP is a feedforward ANN that consists of an input layer, an output layer and at least 

one hidden layer. Each layer is fully connected to the next one, but connections within a single 

layer are not allowed. MLP is capable of approximating any non-linear functions, and, hence, it 

serves as a versatile regression model. The structure of the applied MLP is presented in Fig. 4.3. 

The input signal 𝑎𝑎𝑗𝑗𝑙𝑙   at a neuron j in layer l is calculated according to Eq. 4.1 (Nielsen, 2015): 

 

1( )l l l l
j jk k j

k
a f w a b−= +∑ ...........................................................................................................(4.1) 

 

The summation is performed over all k neurons in layer l-1; 𝑎𝑎𝑘𝑘𝑙𝑙−1denotes the output from 

neuron k in layer l-1; 𝑤𝑤𝑗𝑗𝑘𝑘𝑙𝑙  is the weight connecting between neuron k in in layer l-1 and neuron j 

in layer l; and 𝑏𝑏𝑗𝑗𝑙𝑙  is the bias for the neuron j in layer l. The output of neuron j in layer l is 

obtained by subjecting 𝑎𝑎𝑗𝑗𝑙𝑙  to an activation function (f), which is the commonly-adopted 

hyperbolic tangent function, in Eq. 4.2: 

 

( ) tanh( )l l
j jf a a=  ....................................................................................................................(4.2)                                                                                                       

                                                                                                                                           

The hyperbolic tangent function scales between -1 and 1, it is differentiable everywhere 

which allows gradient-based optimization methods to be adopted for estimating the weights. All 

input and output variables are normalized to vary between -1 and 1 prior to ANN modeling. This 

step is needed to reduce the large disparity in scales of different data sources and to alleviate bias 
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in the minimized solution as a result of values with overwhelmingly large magnitude. The 

objective function of the multilayer perceptron is defined as: 

 

21 ( ) ( )
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The total number of training samples is denoted by nt; the summation is performed over 

all training samples x , and ( )y x  denotes the target output corresponding to the input x ; L 

denotes the total number of layers in the network, and ( )La x  denotes the network approximation 

corresponding to the input x . This objective function is also known as the quadratic cost 

function or mean square error (Nielsen, 2015).  

The backpropagation algorithm, which is a gradient-based supervised learning technique, 

is applied to adjust the weight and biases during the learning stage by minimizing the objective 

function. The network is first initialized with a set of weights; Eq. 4.1 and Eq. 4.2 are used to 

propagate the function signals from the input layer to the output layer. An error signal, which is 

computed as the mismatch between target and prediction at the output layer, is transmitted in the 

reverse direction, and the weights of each layer are updated. This entire updating procedure must 

be repeated for many epochs until the error is reduced below a predetermined threshold. Since 

backpropagation is a gradient descent method, the transfer functions must be differentiable.  

Various optimization schemes, including the Newton’s method and the gradient descent, 

are available. The Newton’s method may converge rapidly to the local or global minimum, but 

its convergence is not guaranteed; on the other hand, the gradient descent technique is 

guaranteed to converge to the local or global minimum with proper parameters, but it is 

computationally demanding (Haykin, 2008). The Levenberg-Marquardt method was proposed as 
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a compromise, and it is a reliable and efficient technique for updating the network parameters 

(Haykin, 2008). The updating equation is presented as follows:  

 

1 ( )
L L L L L L

T
m m m m m mµ+ = + +w w J J I J e ........................................................................................(4.4) 

 

Where w is the weight matrix, J is the Jacobian matrix, I is the identity matrix, µ is the 

combination coefficient, e is the error matrix, and mL is the iteration step (Yu and Wilamowski, 

2011).  

To determine the optimal network structure, the n-fold cross validation procedure is 

implemented (Ma et al. 2015). In particular, 10 folds are used to assess the performance of eight 

network structures (i.e., the number of neurons in the hidden layer). Results of the 10-fold cross-

validation are compared in Table 4.2. As shown in Fig. 4.3, the architecture of two hidden layers, 

each with 7 neurons, is selected due to its lowest corresponding normalized mean square error 

(NMSE). The MLP network with the optimal architecture is subjected to one final learning stage 

using the entire training dataset. 

 

Table 4.2 - Average performance of the 10-folds cross-validation for different network 
structures. 

Number of Neurons in Hidden Layer(s) 8 10 12 14 3-3 
NMSE 0.0322 0.0323 0.0308 0.0328 0.0311 

Number of Neurons in Hidden Layer(s) 4-4 5-5 6-6 7-7 8-8 
NMSE 0.0341 0.0236 0.021 0.0175 0.0178 
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Fig. 4.3 – Schematic of the applied MLP network architecture with two hidden layers. 
 

4.2 Estimating Shale Barrier Configurations from SAGD Production Histories 

Once the forward AI-based proxy for correlating SAGD production with shale heterogeneities is 

established, it is integrated into a history-matching workflow for inferring shale barrier 

configurations for SAGD production histories.  

 

4.2.1 Formulation of Objective Function from Production Time-Series Data 

To quantify the mismatch in the production profile (time-series data) between the actual or target 

history ( t
oq ) and the ANN model forecast ( f

oq ), an objective function (C) is defined as half of the 

mean squared error (similar to Eq. 3.1): 
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Where m denotes the total number of monthly data records in a production profile (e.g., oil rate, 

SOR); i denotes a single time point of the time series; t
oiq  is the target production history at time i; 

and f
oiq  is the ANN model forecast at time i. In this way, the absolute difference between two 

production histories are compared and calculated as C. 

 

4.2.2 Genetic Algorithm Based Optimization Scheme 

As discussed in Chapter 3, reservoir heterogeneity in terms of shale barrier configuration is 

parameterized by a set of binary location indices. For a given SAGD production history with an 

unknown shale barrier configuration, the goal is to identify a shale barrier configuration, whose 

corresponding production profiles would match those of the target production history.  

The inverse problem can be solved using a number of popular optimization algorithms, 

such as genetic algorithm (GA), simulated annealing (SA), and various gradient-based 

minimization algorithms. The unknowns for this optimization problem are the 102 binary 

location indexes; the ease of binary encoding renders the GA an ideal solution approach. It is 

implemented to perturb these location indices and propose a shale barrier configuration, which is 

subjected to the AI-based proxy to generate a model forecast. 

A typical genetic algorithm requires a representation of the solution domain with binary 

strings (Whitley, 1994). Hence, the binary coding of shale barrier configuration is well suited for 

genetic representation in this study. For a minimization problem, a fitness function can be 

defined as the inverse of the objective function (1/C). The following GA-based workflow has 

been adopted using the Global Optimization Toolbox in Matlab® (The MathWorks Inc., 2014) 

for this problem: 
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(1) [Initialization] For a target SAGD production curve, a value of C is computed for each of 

the 800 cases in the training dataset. An initial population is generated by selecting N training 

cases with the smallest C value. 

(2) [Fitness] The solution (i.e., shale barrier configuration) is encoded into binary strings, and 

the fitness of each solution is evaluated.  

(3) [New population] The following steps are repeated until a new population is created: 

1) [Selection] Select two parents from the initial population according to their fitness. 

The solutions with better fitness values will have a bigger chance to be selected. A 

user-defined constraint is also applied at this step. In our case, any scenario with a 

shale volume proportion (i.e., total volume of shale barriers/reservoir volume) that is 

considered to be too large (> 25%) will not be selected. 

2) [Crossover] A crossover point along the binary string is randomly selected, and the 

values of two strings are exchanged up to this point to form new individuals 

(children). 

3) [Mutation] According to a pre-defined mutation probability, a portion of the binary 

strings in the new individuals will be changed randomly (0→1 or 1→0). 

4) The new individuals are placed into the new population. Repeat the selection-

crossover-mutation steps until enough new individuals are created. 

(4) [Replace] Replace the previous population with the new one and calculate its fitness value. 

(5) [Test] If the stop criterion (e.g. maximum iterations, best fitness below a threshold) is 

encountered, select the solution with the highest fitness from the latest population to be the 

optimized solution. Otherwise, repeat from Step 2. 

 



53 
 

Up to this point, the entire workflow is established: the first part is to construct an AI-

based neural network proxy for correlating SAGD production profiles with reservoir shale 

barrier configurations; the training dataset is derived from a set of synthetic numerical 

simulations in 2D; the second part involves a GA-based history-matching step for inferring shale 

barrier configuration from SAGD production history; the AI-based proxy developed in the first 

part is used to quickly generate a model forecast. A flowchart of this workflow is shown in Fig. 

4.1. 

 

4.3 Testing Results and Discussions 

The testing dataset constructed in section 4.1.1 is used to assess the predictive performance of 

the ANN model and the accuracy of the GA workflow. These cases represent a diverse range of 

shale barrier configurations: the shale volume proportion ranges from 0.5% to 20%; the lateral 

and vertical extent of the shale barrier varies from 5 m to 40 m and 0.5 m to 20 m, respectively. 

For the sake of brevity, only results for the 20 out of 40 shale barrier models in the testing 

dataset are presented in Fig. 4.4. These 20 cases are selected to illustrate 3 distinct groups of 

behavior, which will be discussed later. First, the known shale barrier configuration is shown in 

subplot (a); its corresponding oil production profile from numerical simulation is compared with 

that predicted using the AI-based proxy (or ANN model) in subplot (c). This comparison helps to 

illustrate the accuracy of the ANN prediction. Next, assuming that the oil production profile 

generated from numerical simulation in subplot (c) represents the actual history, the GA-based 

workflow can be employed to infer the shale barrier configuration that corresponds to this target 

production history. The final GA history-matched shale barrier configuration is shown in subplot 

(b), which can be compared with that of the known configuration; since the AI-based proxy is 
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used to generate the model forecast, the corresponding production profile from ANN prediction 

is also shown in subplot (c). The idea is to assess how well the GA-based workflow could 

identify a possible shale barrier configuration by minimizing the mismatch between model 

forecast and target history. Finally, the GA history-matched model is subjected to numerical 

simulation to assess its true production response. The corresponding oil production and steam 

injection profiles are compared with the target production history in subplot (d). The idea is to 

evaluate the reliability of the entire workflow and the forecast predictability of the history-

matched models. 
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Fig. 4.4 – Testing results (20 out of a total of 40 cases are shown): (a) shale barrier configuration 
of the known case; (b) shale barrier configuration of the GA history-matched case; (c) oil 

production profiles from numerical simulation for the known case and from ANN predictions for 
both the known and GA history-matched cases; (d) oil production and steam injection profiles 

from numerical simulation for the known and GA history-matched cases.  
 

To compare the shale barrier configuration of the known case and that of the GA history-

matched case, the corresponding number of shale barriers and shale volume proportion are 

presented in in Table 4.3. To compare the similarity between the production time series (e.g., oil 

production and steam injection), all profiles corresponding to a particular model are normalized 

between their minimum and maximum values on a scale of [0, 1]. The similarity of any two 

normalized production profiles can be assessed by calculating their C values (as defined in Eq. 

4.5). It is evident from Eq. 4.5 that the maximum value for C is 0.5. This would only occur if the 

target profile is producing constantly at the maximum oil rate, while the other profile is 
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producing constantly at the minimum oil rate (as determined over the entire set of forecast 

profiles). On the opposite side, a value of zero for C denotes a complete match between the two 

profiles. A set of C values have been calculated for each case, and the results are presented in 

Table 4.3. 

 

(1) C1: comparing the oil production profiles between the numerical simulation and the ANN 

prediction of the known case [subplot (c)]. 

(2) C2: comparing the oil production profiles between the numerical simulation of the known 

case (target history) and the ANN prediction of the GA history-matched model [subplot (c)]. 

(3) C3: comparing the oil production profiles between the numerical simulation of the known 

case (target history) and the numerical simulation of the GA history-matched model [subplot 

(d)]. 

(4) C4: comparing the steam injection profiles between the numerical simulation of the known 

case (target history) and the numerical simulation of the GA history-matched model [subplot 

(d)]. 

 

Table 4.3 - Performance of proposed workflow for the testing dataset.  

Case 
Known Case GA Forecasted Case 

C1 C2 C3 C4 # of shale 
barriers  

Proportion 
of shale 

# of shale 
barriers 

Proportion 
of shale  

1 6 6.50% 7 5.88% 0.0019 0.0013 0.0077 0.0051 
2 6 2.63% 7 4.25% 0.0044 0.0008 0.0084 0.0052 
3 10 8.13% 10 9.75% 0.0084 0.0024 0.0088 0.0045 
4 10 10.00% 12 13.38% 0.0080 0.0027 0.0104 0.0084 
5 6 5.50% 7 7.50% 0.0013 0.0007 0.0037 0.0021 
6 3 1.88% 4 2.75% 0.0011 0.0033 0.0033 0.0008 
7 4 4.75% 4 2.75% 0.0011 0.0019 0.0011 0.0009 
8 14 12.88% 12 16.25% 0.0042 0.0102 0.0084 0.0045 
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9 7 3.50% 7 5.88% 0.0081 0.0028 0.0071 0.0038 
10 13 10.88% 14 16.00% 0.0066 0.0120 0.0115 0.0090 
11 11 8.13% 14 9.38% 0.0089 0.0132 0.0108 0.0105 
12 4 5.13% 5 8.00% 0.0016 0.0055 0.0085 0.0017 
13 6 7.00% 8 6.38% 0.0039 0.0023 0.0028 0.0013 
14 5 1.75% 5 5.25% 0.0022 0.0025 0.0035 0.0013 
15 4 4.75% 3 2.25% 0.0018 0.0031 0.0033 0.0012 
16 6 5.00% 6 4.50% 0.0030 0.0035 0.0035 0.0013 
17 5 4.13% 6 4.63% 0.0027 0.0080 0.0100 0.0034 
18 3 3.13% 3 3.50% 0.0013 0.0022 0.0028 0.0011 
19 5 6.13% 7 8.63% 0.0051 0.0178 0.0053 0.0052 
20 11 11.00% 15 12.13% 0.0010 0.0658 0.0625 0.0379 
21 4 4.25% 6 6.00% 0.0022 0.0030 0.0062 0.0033 
22 5 3.25% 5 5.63% 0.0030 0.0062 0.0124 0.0053 
23 7 9.50% 7 5.00% 0.0195 0.0089 0.0090 0.0045 
24 7 5.13% 10 11.75% 0.0048 0.0050 0.0076 0.0049 
25 6 5.00% 8 9.13% 0.0011 0.0046 0.0041 0.0024 
26 5 6.88% 5 5.25% 0.0008 0.0110 0.0105 0.0040 
27 6 6.50% 6 6.50% 0.0022 0.0069 0.0028 0.0016 
28 6 4.63% 7 9.75% 0.0035 0.0084 0.0078 0.0034 
29 21 16.00% 13 12.75% 0.0120 0.0013 0.0252 0.0196 
30 12 8.75% 15 9.75% 0.0115 0.0025 0.0487 0.0479 
31 11 13.38% 11 14.88% 0.0112 0.0013 0.0339 0.0145 
32 15 16.50% 18 14.75% 0.0179 0.0023 0.0415 0.0266 
33 14 11.00% 13 15.13% 0.0123 0.0062 0.0155 0.0105 
34 2 0.63% 3 3.13% 0.0003 0.0004 0.0706 0.0979 

34b 2 0.63% 1 0.13% 0.0003 0.0003 2.90E-
05 

4.80E-
05 

35 17 20.63% 15 18.50% 0.0084 0.0021 0.0211 0.0078 
36 18 16.50% 18 16.88% 0.0030 0.0010 0.0159 0.0296 
37 8 4.88% 8 4.75% 0.0011 0.0004 0.0148 0.0147 
38 8 5.88% 8 7.13% 0.0058 0.0010 0.0139 0.0111 
39 10 7.00% 10 8.38% 0.0065 0.0025 0.0213 0.0101 
40 10 12.13% 10 12.00% 0.0063 0.0234 0.0255 0.0201 

 

As mentioned earlier, the performance of all 40 test cases can be divided into three 

distinct groups. For Cases 1-28, the results in Fig. 4.4 and Table 4.3 suggest that (1) the AI-

based proxy is accurate in correlating the shale barrier configuration and the corresponding 
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production time series (as illustrated by the low value of C1); (2) the GA-based workflow is 

useful for minimizing the mismatch between model forecast and target history (as illustrated by 

the low value of C2); (3) as a result of (1) and (2), the profiles obtained from numerical 

simulation for the history-matched model closely resemble those derived from ANN prediction, 

demonstrating the reliability of the entire workflow. It is observed that the shale barrier 

configurations proposed by the GA workflow have successfully captured many essential features 

exhibited by the known ones, as confirmed by the comparison in the shale volume proportion, 

and the lateral and vertical distribution of the shale barriers between the two sets of 

configurations. A visual comparison of the GA history-matched model with the known 

configuration would reveal some discrepancies: the precise location and distribution of various 

shale barriers appear to be slightly different between the two models. This deviation serves to 

illustrate the ill-posed nature of this inverse problem (Kabanikhin, 2008). According to 

Hadamard (1902), a problem is well posed if a unique solution that depends continuously on the 

data and model parameters exists. In this case, it is probable that, among all the possible shale 

barrier configurations (2102 ≈ 5×1030), many would introduce a similar influence on the SAGD 

production performance. As a result, the final solution would likely be dependent on the initial 

population of training cases selected in the initialization procedure for the GA-based workflow. 

For Cases 29-33, some discrepancy in the production profiles between the known case 

and the GA history-matched case (C3 > 0.01) can be detected. The prediction accuracy of the 

ANN model is also relatively low (C1 > 0.01). It is anticipated that improving the predictive 

capability of the ANN model would enhance the overall accuracy of the workflow, and this can 

be achieved by expanding the spanning of the model parameter space in the training dataset. 
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For the next group of Cases 34-40, despite the high prediction accuracy of the ANN 

model (C1 < 0.01 and C2 < 0.01), the performance of the GA-based workflow is poor (C3 > 0.01 

and C4 > 0.01, except for Case 35). This implies that, despite the ability of the GA algorithm to 

propose a shale barrier configuration that matches the production history predicted by the AI-

based proxy (ANN model), the numerically-simulated production profiles corresponding to this 

history-matched model deviate from the actual history. Upon further inspection, a common 

feature among these four cases is that there are shale barriers located closely above the injector 

or in between the injector-producer well pair in the known configuration; however, the GA 

history-matched model could capture only approximately or partially the exact location of these 

shale barriers, especially along the vertical direction. As discussed in Chapter 3, steam chamber 

development is highly sensitive to shale barriers in the near-well region. A slight variation in 

shale location in the area close to the well pair should have exacted a significant change to the 

injection and production profiles.  

For Case 35, the final history-matched model has not captured the shale barrier that is 

located right above the injector, which is responsible for the poor performance, as evidenced by 

the high C3 value. For Cases 36-40, the high values of C3 and C4 can be explained by the minor 

mismatch in the arrangement of shale barriers in between the well pair. Except for a moderate 

shift in the production profile between the known case and the history-matched case, both 

profiles in the subplot (d) are exhibiting a similar trend. Considering that the values of C3 and C4 

are only slightly larger than those for Cases 1-33, the history-matching results for all three cases 

are deemed satisfactory.   

However, the same conclusion cannot be drawn for Case 34. It is the only case for which 

the history-matching process is incapable of accurately inferring the presence or absence of a 
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shale barrier in between the well pair. A shale barrier was incorrectly placed right above the 

producer in the history-matched model, resulting in the high values of C3 and C4. However, why 

would the corresponding ANN prediction be similar to the target history? When proposing new 

configurations during the GA algorithm, it is the steam injection profile for the known case 

(history) that is imposed as input. In reality, though, the steam injection profile for the proposed 

configuration should be much different. In Case 34, the steam injection rate for the history-

matched configuration, which consists of a shale barrier located in between the well pair, would 

have been much lower than the target history where the shale barrier is located above the injector 

(compare the numerical simulation results for Case 4 and Case 5). Clearly, a high steam injection 

rate is physically incompatible with this particular shale barrier configuration; its corresponding 

ANN prediction turns out to be extrapolating from a portion of the model parameter space, as 

none of the cases in the training dataset contains this type of shale barrier configuration under a 

high steam injection rate (particularly during early time). This explains why the ANN predicted 

profiles of these GA history-matched cases are similar to the target history (small C2).  

A potential solution is to implement, at the end of Step 3 in the GA workflow in section 

4.2.2, a constraint/check-point to discard proposed configurations that are physically 

incompatible with the injection profile (or have not been represented in the training dataset). To 

this end, clustering analysis is implemented with following steps to ensure compatibility between 

the imposed steam injection profile and a proposed shale barrier configuration:  

 

(1) [Feature extraction] Eq. 4.5 is used to compute the dissimilarity in steam injection rate 

between each training case and the homogeneous base case (with m = 12) for each of the 10 

years. A positive C value is assigned, if the cumulative steam injection of training case is 
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higher than homogeneous base case for that particular year; otherwise, a negative C value is 

assigned. In the end, a feature vector of 10 C values is computed for each training case. 

(2) [Clustering analysis] K-means clustering is applied to the feature vectors computed in step 1. 

Two clusters could be discovered with high confidence (as evidenced by the high silhouette 

value in Fig. 4.5). All cases in Cluster 1 experience low steam injection for an extended 

period upon start-up due to the presence of shale barrier(s) in between the well pair. 

(3) [Supervised classification] The clustering results are used to train another AI-based model 

using the decision trees (Kingsford & Salzberg, 2008) to classify any given shale barrier 

configurations (represented by 102 binary location indexes) into one of the two categories 

(i.e., with or without shale barrier(s) in between the well pair). The accuracy of the 

classification corresponding to the trained decision-tree model is summarized by the 

confusion matrix in Fig. 4.6. Given the highly distinct features that are observable with each 

category, the ensuing classification performance is essentially perfect. Alternative 

approaches, such as support vector machine (SVM) (Nobel, 2006), logistic regression 

(McDonald, 2009), could also be adopted for formulating the classification model.  

(4) [Integration with the GA workflow] At the end of Step 3 in the GA workflow in section 

4.2.2, the classification model developed in Step #3 is integrated to discard any configuration 

in the proposed population that is physically incompatible with the injection profile. This 

update is shown as the red box in Fig. 4.1.  

 

The analysis of Case 34 is repeated using this revised workflow, and the results are 

presented in Table 4.3 and Fig. 4.7 as Case 34(b). Dramatic improvement in terms of C3 and C4 

values can be observed.   
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Fig. 4.5 – K-means cluster analysis of the steam injection profiles of 800 training cases.  
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Fig. 4.6 – Confusion matrix of the decision-tree model of 200 testing cases.  
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Fig. 4.7 – Testing results for case 34 based on the revised workflow: (a) shale barrier 
configuration of the known case; (b) shale barrier configuration of the GA history-matched case; 

(c) oil production profiles from numerical simulation for the known case and from ANN 
predictions for both the known and GA history-matched cases; (d) oil production and steam 
injection profiles from numerical simulation for the known and GA history-matched cases. 

 

In order to examine the utility of the proposed parameterization approach for representing 

realistic reservoir shale distribution, two additional testing cases, which consist of stochastically-

distributed shale barriers as shown in subplot (a) of Fig. 4.8, are constructed via sequential 

indicator simulation (Deutsch, 1998). Once again, the actual history is obtained from numerical 

simulation, and the GA-based workflow is used to infer the shale barrier configuration that 

corresponds to this target production history. The final GA history-matched shale barrier 

configuration is shown in subplot (b). The corresponding oil production and steam injection 

profiles for both the known and GA history-matched models are compared in subplot (c). Given 
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that the proposed workflow can infer shale barrier configurations that consist of only pre-defined 

basic shale units, it is expected that the history-matched models would not represent all 

irregularities associated with individual shale barriers; however, it is encouraging to note that the 

aggregations of nearby shale barriers are detected. This observation also reflects the non-

uniqueness of an ill-posed inverse problem: production data alone is often insufficient to 

completely resolve the high-frequency information associated with the model parameters. The 

results support the idea that, though minor deviations (mostly in the late times) are observed, the 

proposed approach is effective in capturing the influences of groups of shale barriers and 

generating reliable estimates of the recovery performance.   
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Fig. 4.8 – Testing cases with more realistic shale barrier configurations: (a) shale barrier 
configuration of the known case; (b) shale barrier configuration of the GA history-matched case; 
(c) oil production and steam injection profiles from numerical simulation for the known and GA 

history-matched cases. 
 

Overall, the results demonstrate the capability and flexibility of the proposed AI-based 

workflow in inferring the presence and distribution of heterogeneous shale barriers from SAGD 

production profiles (time-series data). The method offers a tool to quickly identify a set of shale 

barrier configurations that are consistent with the production history. Once the ANN model is 

trained, the computational requirement for the forward ANN prediction would take only a few 

seconds, while the inverse GA history-match routine would take less than 3 minutes. The main 

computational cost lies in performing the numerical simulation for all the cases in the training 

dataset. 
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4.4 Summary 

In this chapter, a two-part workflow is adopted to infer the presence and distribution of 

heterogeneous shale barriers from SAGD production profiles (time-series data). First, an 

artificial neural network (ANN) model is constructed to correlate SAGD production profiles with 

heterogeneous shale barrier configuration. Next, a genetic algorithm (GA) framework is applied 

for inferring shale barrier configuration by matching the target production time-series data. The 

performance of the workflow on 2D synthetic cases is shown to be both reliable and efficient in 

capturing most salient features of the production profiles and shale barrier configurations. 

 Analysis of the testing results reveals that screening out the shale configurations that are 

physically incompatible with the input production profiles could help improve the workflow 

performance. The following chapters would address two particular aspects. The first one is to 

improve the accuracy and robustness of the developed workflow by quantifying internal 

structures in the training dataset by incorporating clustering/classification techniques such as 

multidimensional scaling or support vector machine. The goal is to refine the selection of 

training cases and to establish multiple AI models corresponding to different characteristics in 

the model parameters. The second area is to extend the technique for 3D models and field 

applications, which would be more representative of the field conditions. 
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CHAPTER 5:  VISUALIZING AND QUANTIFYING THE UNCERTAINTY IN THE 

IMPACTS OF UNCERTAIN SHALE CONFIGURATIONS3 

 

In previous chapters, a training data set consisting of many different 2D realizations of reservoir 

heterogeneity is created and an AI-based modeling approach is successfully established to 

correlate SAGD production profiles with heterogeneous shale barrier configuration.  

It is expected that incorporating additional cluster/classification techniques to analyze 

internal structures on the shale configurations could further improve the accuracy of the 

developed models. This could also help answer the key question when proceeding to 3D 

examples: “how to assemble a representative training data set?” The impact of shale barrier 

configurations on 3D cases will be more complex than that on 2D cases, and the computational 

cost for running 3D numerical simulation is higher. Therefore, implementing a full factorial 

design that involves all possible shale barrier configurations would be formidable. A 

representative training data set should be large enough to sufficiently span the feature (input and 

output parameter) space without exhaustively sampling realizations with similar production 

characteristics. However, this step is usually achieved via trial-and-error, and there is little 

discussion in the reviewed literature regarding: (1) How big should the data set be to span the 

feature parameter space? (2) How to optimize a training data set by maximizing spanning and 

quantifying similarities among different realizations? 

The main objective of this chapter is to develop a workflow based on multidimensional 

scaling (MDS) and K-means clustering to assess and visualize similarities among a set of 

                                                           
3 The content in Chapter 5 of this thesis is derived from the following paper: 

Zheng, J., Leung, J.Y., Sawatzky, R.P., and Alvarez, J.M. (2018c). A cluster-based approach for visualizing 
and quantifying the uncertainty in the impacts of uncertain shale barrier configurations on SAGD production, Paper 
presented at SPE Canada Heavy Oil Technical Conference, Calgary, AB, Canada. 
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realizations. The results form the basis for selecting representative cases from individual clusters, 

as well as guiding the addition of new cases to under-sampled clusters. 

 

5.1 Methodology 

The proposed methodology is illustrated in Fig. 5.1. It is designed to facilitate the selection of an 

optimal subset of reservoir realizations that efficiently spans the feature space. An initial set of N 

synthetic cases corresponding to a range of shale barrier configurations is subjected to flow 

simulation. A distance function is defined, and an N×N dissimilarity matrix is constructed. MDS 

is applied to transform the distribution of all N cases into an n-dimensional Euclidean space 

based on the dissimilarity matrix. Cases that are located close to others in this transformed space 

are likely to be redundant and, hence, only a subset of these cases will be retained. MDS is 

applied again and several clusters with distinct features pertinent to the shale barrier 

configuration are discovered via K-means clustering. Additional cases of specific shale barrier 

features are generated for individual clusters with limited members. The new cases are subjected 

to flow simulation to verify their membership in the assigned clusters. Good consistency in the 

results has been observed. 
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Fig. 5.1 – Proposed workflow for visualization and analysis of heterogeneous shale 
configurations. 

 

5.1.1 Formulation of Distance Function 

The use of a metric or distance function (d) to measure the similarity between a pair of 

geological models was first introduced by Arpat (2005) and Suzuki and Caers (2008). In 

mathematics, a metric is used to define the distance between two elements of a set. In this 

context, d measures the (dis)similarity of two models in terms of their spatial properties and/or 

transfer function response (Scheidt & Caers, 2009). For example, the Hausdorff distance 

measures the geometrical difference (Dubussion & Jain 1994), and many studies have assumed 

that the Hasudorff distance is correlated directly with the difference in flow response (Suzuki and 
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Caers, 2008; Lee et al., 2017). However, the formulation of Hausdorff distance does not 

explicitly take into account the proximity of a given shale barrier to the injector-producer well 

pair, which has a dramatic impact on the SAGD performance. Alternative formulations may 

include the Manhattan distance (Honarkhah & Caers, 2010), flow-based distance (Scheidt & 

Caers, 2009), or connectivity-based distance (Park & Caers, 2007). In general, the choice of the 

distance function would depend on the flow or transport process, as well as the types of reservoir 

heterogeneity considered (Suzuki & Caers, 2008). In theory, the distance function can be defined 

in any fashion, as long as it reflects the difference in production response corresponding to the 

given pair of models (Scheidt & Caers, 2009). 

In this study, a flow-based distance function, d, is formulated to fully capture the 

differences in SAGD production profiles. Inspired by the cost function used in linear regression 

algorithms, which is half of the mean squared difference between the predicted and actual values, 

d is defined to quantify the dissimilarity in the time series of oil production and steam injection: 
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where m is the number of monthly data records of oil production rate and steam injection rate; i 

denotes a single record; oiq and *
oiq  refer to the ith oil production rates corresponding to the 

individual members for a given pair of shale configurations; siq , *
siq are defined similarly for the 

steam injection rates. To enhance the visualization of d after MDS, each of the squared 

differences in Eq. 5.1 is divided by an arbitrary constant for normalization purposes; a value of 

100, which is approximately the mean of qs and qo, is chosen. Values of the distance function 
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between every pair of synthetic cases are calculated, and an N × N dissimilarity matrix, D, is 

assembled. 

 

5.1.2 Multidimensional Scaling (MDS) 

MDS is a set of mathematical operations, where the dissimilarity matrix is transformed into a 

configuration of points in an n-dimensional Euclidean space (Cox & Cox, 2001). It computes a 

set of vectors in the n-dimensional space such that the matrix of Euclidean distances among them 

reproduces as closely as possible the features of the dissimilarity matrix. A high correlation 

between the Euclidean distance and the dissimilarity distance is expected. Each point in the 

transformed (new feature) space, R, represents one of the N cases, and the spatial distribution of 

all the points is such that the Euclidean distances among them would reflect the distances 

computed in section 5.1.1 (Scheidt & Caers, 2009). 

MDS is useful for representing high-dimensional data in a low-dimensional space that 

facilitates visual inspection and exploration (Borg & Groenen, 2005). This process may reveal 

internal structures that are hidden in the high-dimensional space (Honarkhah & Caers, 2010). In 

this case, MDS offers a visual representation of the distances (or proximities) among a set of 

objects, which are cases of shale barrier configurations. 

 

The algorithm of classical MDS can be illustrated as follows (Wickelmaier, 2003): 

 

(1) Compute a matrix of squared dissimilarities P=[D2]; 

(2) Perform double centering: 
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1) Calculate the matrix J=I-(1/N)Jn, where I is the identity matrix, N is the number of 

objects, and Jn is an N-dimensional all-ones matrix; 

2) Apply J to calculate the double centered matrix B=(1/2)JPJ; 

(3) Extract the n largest eigenvalues and eigenvectors, where n is the dimension in the new 

feature space. Assemble a matrix En of n eigenvectors and a diagonal matrix An of n 

eigenvalues; 

(4) Transform the N objects to an n-dimensional Euclidean space with the matrix X=En�𝐀𝐀n. 

 

The production histories of all cases will be used to compute the matrix D. In most cases, a two 

dimensional feature space (n = 2) is sufficient to show the distribution of objects. 

 

5.1.3 Removal of Redundant Cases 

Given that the initial N cases are generated randomly, it is expected that some of these cases 

would exhibit similar production profiles, even though the respective shale barrier configurations 

are different. Visualizing and inspecting these cases in the new feature space R facilitates the 

identification of some closely-distributed cases; removing these redundant cases could reduce the 

size of the data set while preserving the variability of the retained ensemble. The following 

procedure is adopted in this study: 

 

(1) Populate a dummy set (initially empty) by randomly selecting one case from the original N 

cases and adding it sequentially to the dummy set; 

(2) Pick a second case from the original data set and compute the Euclidean distances in R 

between the second case  and the first case in the dummy data set (from step #1). If the 



84 
 

distance between the first case in the dummy set and the second case exceeds a certain user-

defined threshold, the second case is added to the dummy set; otherwise, it is not; 

(3) Select a third case from the original data set and repeat step #2 for all cases in the dummy set. 

Iterate over all N cases. 

(4) The cases that were included in the dummy set from a reduced data set consisting of N' 

records; a new dissimilarity matrix D' should be computed with this reduced set (section 

5.2.1). Applying MDS to D' would yield a new feature space, which is denoted as R'. 

 

Given that the results of MDS depend on the relative dissimilarity among elements of a 

given set, it is expected that the spatial arrangement of the  elements corresponding to the new 

dissimilarity matrix D’ in R' will be different from the spatial arrangement of the elements 

obtained using the original D in R. 

 

5.1.4 K-means Clustering 

K-means clustering is then applied to D' in the new feature space R'. It is one of the most widely 

applied clustering techniques for discovering internal structures or groupings among data records. 

The idea is to identify Nc clusters that would minimize the mean squared Euclidean distance 

from each data point to its nearest centroid (Kanungo et al., 2002). The classical K-means 

algorithm is described as follows: 

 

(1)  Define the number of total clusters Nc; 

(2)  Initialize randomly Nc cluster centroids in the feature space R'; 

(3)  Assign each data point in R' to one of the Nc cluster centroids with the shortest distance; 
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(4)  Calculate a new centroid for each cluster as the arithmetic mean of all the points that belong 

to that particular cluster; 

(5)  Repeat steps (3) and (4) iteratively until no further changes are made to the cluster centroids. 

 

Given that this procedure is sensitive to the initial guess for the cluster of centroids, steps 

(2) to (5) should be repeated with different initializations of the cluster centroids, and at the end 

the scenario that gives the maximum separation between clusters should be selected. The overall 

performance of the clustering analysis is usually evaluated by the average silhouette value. 

Silhouette measures the similarity between a sample and its own cluster (i.e., cohesiveness) in 

comparison to other clusters (i.e., separation). The silhouette has a range of [-1, 1]. A value close 

to 1 means that an object within a given cluster is more similar to other objects in that same 

cluster than to the rest of the set, reflecting a desirable outcome where a distinct separation exists 

between the given cluster and the others. A value of 0 suggests that the object can be assigned to 

more than one cluster. Finally, a silhouette value close to -1 implies that the object is 

misclassified. The average silhouette value over the entire dataset provides an overall assessment 

of the cluster analysis, and it is often used as a measure for optimizing the number of clusters 

(Rousseeuw, 1987). 

 

5.2 2D Examples 

5.2.1 Synthetic Model Setup and MDS Analysis 

A total of N2D = 1000 shale configurations are constructed randomly and parameterized 

according to section 3.3.3. All 1000 2D cases are subjected to numerical simulation, and their 

production histories are used to compute the matrix D. The distribution of all cases in the 2D 
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Euclidean space R after applying MDS is shown in Fig. 5.2(a). Each point in the figure 

corresponds to one of the 1000 two-dimensional cases. As discussed in section 5.1.2, the goal of 

MDS is to reproduce the dissimilarity matrix in a lower dimensional space; it is much easier to 

visualize the distribution of all cases in a two-dimensional map than a higher dimensional map. 

The nth feature in the transformed Euclidean space R is calculated from the nth largest 

eigenvector and eigenvalue of matrix D.  A linear distribution in space R might indicate that the 

original dataset is linearly separable, because the Euclidean distance of any two points in space R 

is highly correlated to the pairwise dissimilarity distance (difference of production profiles). 

Inspection of Fig. 5.2(a) reveals that many points are overlapping with one another; analysis of 

their corresponding shale configurations and production histories would further confirm that 

many of these cases are indeed redundant.  

 

 

Fig. 5.2 – MDS results in the features space (R2D) calculated based on the original N2D = 1000 
2D cases. 
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To remove these redundant cases, procedures as described in section 5.1.3 are followed. 

A threshold of 0.005 is arbitrarily set, which yields a total of 471 cases in the reduced data set. 

The distribution of all 471 cases in the original MDS feature space R2D is shown in Fig. 5.2(b). It 

can be observed that, although more than half of the original cases have been removed, the 

remaining 471 cases are still effectively spanning the feature space, as compared with Fig. 5.2(a). 

This observation seems to support the hypothesis that many cases in the original data set are 

exhibiting similar production characteristics. The distribution of all N2D'=471 cases in the new 

MDS feature space R2D' is also shown in Fig.5.3. 

 

 

Fig. 5.3 – MDS results in the features space (R2D') calculated based on the original N2D' = 471 2D 
cases. 

 

5.2.2 Cluster Analysis 

K-means clustering is then applied to analyze the dissimilarity and internal structures of these 

471 cases. To identify the optimal value for Nc, clustering is repeated for different numbers of 
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clusters (ranging between 4 and 10). The corresponding average silhouette values of the N2D' 

cases (number of 2D cases in D') are listed in Table 5.1. It is observed that the average silhouette 

value stays approximately constant at 0.49 for Nc = 4, 5, and 6, but it starts to decline if Nc keeps 

increasing, indicating that further dividing the entire dataset into more clusters is not ideal: more 

similarities in terms of production profiles among the clusters would be observed, while 

additional clusters are unlikely to capture sufficient objects with unique features. As a result, Nc 

= 6 is selected as the optimal number of clusters for the 2D cases. This choice offers a reasonable 

degree of coherence within individual clusters, while maintaining sufficient distinction among 

different clusters. The K-means results are shown in Fig. 5.4. 

 

Table 5.1 – Average silhouette value for different number of clusters (471 2D cases). 

 
Number of Clusters 4 5 6 7 8 9 10 

Average Silhouette Value 0.498 0.49 0.481 0.433 0.448 0.439 0.433 
 

 

Fig. 5.4 – K-means clustering results corresponding to 6 2D clusters. 
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The oil rate profiles for all clusters corresponding to Nc = 6 are shown in Fig. 5.5. It is 

observed that most of production curves within same cluster have similar shapes. One particular 

outlier is the light blue curve with a spike in cluster 3. Further examination of Fig. 5.4 shows that 

this case is located at the boundaries in between clusters 2, 3 and 4, it might be more reasonable 

to classify this case into either cluster 2 or 4. To investigate the characteristics of shale barrier 

configurations corresponding to these clusters, cases that are located closest to the cluster 

centroids are selected and the salient characteristics of their shale barrier configurations are 

examined in Fig. 5.6. The key features of each cluster are summarized in Table 5.2. 

In summary, shale barriers that are located between the injector and producer would have 

a more pronounced impact on steam chamber development and oil production (clusters 2 and 4); 

these cases should be considered as the extreme scenarios, especially when considering 2D cases, 

as it would be highly unlikely for an operator to keep injecting steam for 80 months with nearly 

zero production. Laterally-extensive shale barriers that are located right above the injector would 

impact oil production to a certain extent (clusters 1 and 5). Finally, complex shale configurations 

in the near-well region are most detrimental to SAGD production, as they would dramatically 

obstruct the steam chamber growth (clusters 3 and 6). 
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Fig. 5.5 – Production profiles for each of the 6 clusters of 471 2D cases. 
 

 

 

 

Table 5.2 – Production characteristics and shale configuration features of all 6 clusters for 
the 2D examples. 

Cluster Production Characteristics Shale Configuration Features 

1 

qo gradually increases to a 
maximum value of approximately 
200 m3/day and starts to decline 
after 60 to 80 months.  

At least one shale barrier with a lateral extent of 
approximately 10 m is located right above the 
injector. However, very few other shale barriers 
are located in the near-well region to block the 
steam chamber growth. Therefore, the overall 
impact of all shale barriers is moderate. 

2 

There is no oil production (qo ~ 0 
m3/day) during the initial 80 
months. Subsequently, the steam 
chamber begins to grow; hence, 
qo rapidly increases to a 
maximum value of approximately 
250 m3/day and then stabilizes to 
roughly 150 m3/day afterwards.  

The shale barriers have severely hindered the 
steam chamber development. There is at least 
one shale barrier with a lateral extent of 5 to 10 
m located between the injector and producer. 
Due to their proximity to the injector, there is 
no oil production until the steam chamber has 
forced its way beyond the near-well region. 



91 
 

3 

qo is low (≤ 50 m3/day). There is 
a short initial increase to a 
maximum value of approximately 
80 m3/day and then it starts to 
decline after 5 months.  

The shale barrier configurations are complex, 
especially in the near-well region. They are 
mostly extensive along both the lateral and 
vertical directions, and they are mainly located 
around the well-pair. Although their impacts are 
not as severe as those in cluster 2, they could 
potentially isolate the near-well region from the 
rest of the reservoir and, hence, prevent an 
effective steam chamber development.  

4 

Production characteristics are 
similar to those in cluster 2; the 
initial production is further 
delayed to 80 to 120 months. 

The shale barriers have a more severe impact on 
the steam chamber development than those in 
cluster 2, since they are located closer to the 
producer in most of the cases. The cluster 
analysis presented in Fig. 5.4 reveals that 
clusters 2 and 4 are linearly separable from the 
other clusters (implying that they share some 
unique characteristics that are distinct from the 
remaining clusters). 

5 

Production characteristics are 
similar to those in cluster 1; the 
maximum rate is lower 
(approximately 150 m3/day).  

The overall impact of all shale barriers is 
moderate. In comparison to cluster 1, the shale 
barriers are slightly longer (> 10 m) and thicker 
(> 5 m) in the near-well region. There are 
several instances where a 10-m shale barrier is 
located right above the injector, but it does not 
impede on the flow path.  

6 

Production characteristics during 
the early stage (initial 20 months) 
are similar to those in cluster 3; 
however, qo increases slowly 
after the initial decline period. 

The shale configurations are complex, 
especially in the near-well region. There are 
some laterally-extensive shale barriers that are 
located right above the injector or close to the 
well pair. However, unlike cluster 3, the steam 
chamber development is not fully obstructed. 
Therefore, qo increases slowly, as more bitumen 
is contacted by the steam. 
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Fig. 5.6 – Representative shale configurations for all 6 clusters. 
 

5.2.3 Adding New Cases with Cluster Features 

For those clusters with limited cases, it would be desirable to populate them with additional cases 

sharing similar cluster features, which could improve spanning of model parameters in those 

under-sampled clusters. Table 5.3 summarizes the number of cases belonging to each cluster in 

section 5.2.2, and clusters 2, 3 and 4 have the least members in comparison to others. The 

following procedure is implemented to generate a set of additional cases: 

 

(1) Select  a case from the target cluster; 
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(2) Construct a new case based on the case selected from the target cluster: recognizing that 

shale barriers in the near-well region (i.e., zones 1 and 2) are highly effective in obstructing 

the steam chamber development, these shale barriers should remain; however, shale barriers 

that are located further away (i.e., zones 3 and 4) can be randomly removed or altered, 

generating a case that is different from the original case selected; 

(3) Subject the new case to flow simulation to verify its membership in the target cluster;  

(4) Repeat step (1) - (3) to generate as many new cases for each target cluster as desired. The 

results of applying this procedure are presented in Fig. 5.7. 

 

Table 5.3 – Number of cases in different clusters (2D examples). 

Cluster 1 2 3 4 5 6 Total 
Number of models 89 39 33 50 183 77 471 

 

 

The flow simulation results confirm that all the modified cases exhibit similar oil production 

profiles as those from the original target cluster. This result also reaffirms the observed features 

for the different clusters, as described in section 5.2.2. The comparison results in Fig. 5.7 

support the hypothesis that SAGD production is most sensitive to the shale barriers in the near-

well region. 
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Fig. 5.7 – Additional 2D cases for Clusters 2, 3 and 4: (a) original shale barrier configuration of 
an existing case in the cluster; (b) a new shale barrier configuration modified from (a) by 
preserving certain key features; (c) comparison of oil production profiles obtained from 

numerical simulation. 
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5.3 3D Examples 

There are several practical challenges associated with assembling a representative data set 

consisting of 3D cases. First, the simulation run time for a 3D simulation model is substantially 

increased in comparison to its 2D counterpart (e.g., ~ 60 minutes for a 3D model). Second, the 

model parameter space in 3D is large. As a result, implementing a full factorial design that 

involves all possible shale barrier configurations would be formidable. Therefore, a few 

modifications, as compared to the 2D examples, are introduced and explained in the flow chart in 

Fig. 5.1.  

 

5.3.1 Synthetic Model Setup and MDS Analysis 

Instead of generating a total of N3D = 1000 shale configurations randomly (as in the 2D 

examples), a total of N3D = 300 3D cases are constructed by stacking 4 random 2D segments 

from the 471 screened cases. There are two key justifications for this procedure. Generally 

speaking, it would be an inefficient use of computational effort to run flow simulations for 1000 

3D cases and then discard a significant portion of these cases at a later step. Therefore, it is 

recommended to start with a smaller number of initial cases, and add more cases systematically 

after performing the MDS and clustering analyses.  
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Fig. 5.8 – Comparison of cumulative oil production after 10 years between a certain 3D case and 
the sum of production from its constituent 2D segments. 

 

Based on the recovery behavior, there is a strong correlation between each 3D case and 

its constituent 2D segments. For example, cumulative oil production after 10 years 

corresponding to a given 3D case is highly consistent with the direct sum of production from its 

4 constituent 2D segments. As illustrated in Fig. 5.8, among the 300 original cases, the 

maximum total difference is only 7%. However, a different ordering of the 2D segments can 

have an impact on the production profile. An example of two different realizations of a 3D case 

constructed by re-arranging the same 2D segments in different order is shown in Fig. 5.9. The 

results of the simulation indicate that the specific arrangement of the 2D segments may lead to 

different flow responses (i.e., production profiles). Therefore, the stacking order should be 

considered when analyzing the 3D behavior.  

It is hypothesized that a decision tree model (or other supervised-training technique) can 

be trained to capture the correlation between the behavior of each 3D case and the corresponding 

behavior of its 2D segments, and generate additional cases corresponding to individual target 
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clusters. Specifically, utilizing the clustering results of 2D cases in section 5.2, a decision tree 

model will be integrated to systematically propose different stacking of 2D segments extracted 

from certain clusters. 

By stacking a series of 2D cases, the spatial continuity of the shale distribution along y-

direction across adjacent segments is not captured. As mentioned previously, the 3D simulation 

model is 50 m × 80 m × 40 m (4 2D segments, each with ∆y = 20 m, along the y-direction). 

All 300 cases are subjected to numerical simulation, and their production histories are used to 

compute the matrix D. The distribution of all cases in the two-dimensional Euclidean space R3D 

after applying MDS is shown in Fig. 5.10.  

 

 

(a) 



104 
 

 

(b) 

Fig. 5.9 – (a) Different realizations of a 3D case constructed by re-arranging of the same 2D 
segments in different order; (b) oil production profiles corresponding to the two 3D realizations 

in (a). 
 

 

 

Fig. 5.10 – MDS results in the features space (R3D) calculated based on the original N3D = 300 
3D cases. 
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5.3.2 Cluster Analysis and Addition of New Cases 

K-means clustering was applied to analyze the dissimilarity and internal structures of these 300 

cases. Different number of clusters (ranging between 4 and 10) were tested to identify the 

optimal value for Nc. The corresponding average silhouette values for the N3D cases are listed in 

Table 5.4. It is evident that the optimal number of clusters for 3D cases is Nc = 4 (with the 

highest average silhouette value). The K-means results are shown in Fig. 5.11; the corresponding 

oil rate profiles for all clusters are shown in Fig. 5.12, and the number of cases within each 

cluster is compared in row 1 of Table 5.5.  

 

Table 5.4 – Average silhouette value for different number of clusters (original 300 3D 
cases). 

Number of Clusters 4 5 6 7 8 9 10 
Average Silhouette 

Value 0.505 0.479 0.461 0.469 0.467 0.478 0.468 

 

 

 

Fig. 5.11 – K-means clustering results corresponding to 4 clusters of the original 300 3D cases. 
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Fig. 5.12 – Production profiles for each of the 4 clusters of the original 300 3D cases. 
 

Similar to the 2D cases, these 300 3D original cases are not optimally distributed among 

the 4 clusters; for example, there are many fewer cases in cluster 2 than there are in cluster 1. To 

improve the spanning of model parameters in under-sampled clusters, it would be desirable to 

create additional cases sharing similar shale barrier characteristics as other members of the 

cluster. However, the shale barrier configurations in 3D are more complex; hence, it would not 

be straightforward to visualize and summarize features of the shale barrier configurations for 

every cluster and directly propose a set of new (modified) cases, as described in step 2 of section 

5.2.3. An alternative approach would be to assume that the performance of a 3D case is directly 
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correlated to the specific arrangement or sequence of its corresponding 2D segments and their 

flow patterns. In particular, it is hypothesized that the cluster to which a given 3D case would 

belong to can be predicted from the cluster labels of the corresponding sequence of 2D segments. 

The following procedure is implemented: 

 

(1) Assemble a training dataset for the decision tree model based on the original N3D cases. Each 

training record consists of 4 input variables [c1, c2, c3, c4], which are the cluster labels of the 

2D segments; the subscript refers to the position of a particular 2D segment along the well 

trajectory (e.g., 1 – closest to the heel; 4 – closest to the toe). There is a single output 

consisting of the corresponding 3D cluster label c3D;  

(2) Build a decision tree model to capture the correlation between [c1, c2, c3, c4] and c3D; 

(3) To propose a new 3D case to be added to the entire data set, randomly sample (with 

replacement) a series of 4 out of the 471 2D cases obtained in section 5.2. Parameterize these 

4 cases into [c1, c2, c3, c4] using the 2D cluster labels identified in section 5.2.2; 

(4) Predict the value of c3D for the proposed 3D case in (3) using the decision tree trained in step 

(2); 

(5) Repeat steps (3) and (4) until desired number of cases are generated for all clusters. 

 

A total of 150 new cases were generated following the aforementioned procedure. The 

training performance of the decision tree model is shown in Fig. 5.13. The predicted cluster 

labels of these 150 additional cases, as well as the labels of entire data set consisting of 450 cases, 

are listed in Table 5.5. It is intended to populate the under-sampled Clusters 2, 3 and 4 with 

more cases. Therefore, as illustrated in row 2 of Table 5.5 , steps (3) and (4) of the procedure 
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were carried out such that, according to the prediction of c3D, 30% (135 cases) of the entire data 

set would belong to each of Clusters 1, 3 and 4, respectively, while the remaining 10% (45 cases) 

would be assigned to Cluster 2. This is reflected in row 4 of Table 5.5.  The justification for 

assigning fewer cases to Cluster 2 is that most cases in that cluster have relatively low production 

rates (peak rate < 50 m3/day), since their constituent 2D segments are mostly extracted from 

Clusters 2 and 4 (Table 5.2 and Fig. 5.5), where laterally-extensive shale barriers are located in 

between the injector and producer. Therefore, it was decided that these cases represented 

extreme scenarios and hence, should contribute to only a small portion of the entire data set. 

 

Table 5.5 – Number of cases in all clusters (3D examples). 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total 
[1] Original 300 Cases (Actual Label) 135 16 78 71 300 
[2] Additional 150 Cases (Predicted 
Label Based on the Decision Tree 

Model)  
0 29 57 64 150 

[3] Additional 150 Cases (Actual 
Label after MDS + K-Means 

Analysis) 
34 33 44 39 150 

Total 450 Cases ([1] + [2]) 135 45 135 135 450 
Total 450 Cases ([1] + [3]) 169 49 122 110 450 

 

 

To test the accuracy of the proposed procedure for generating these new cases, the 150 

additional cases were subjected to numerical simulation. The production histories of all 450 

cases were subjected to MDS and K-means analysis once again, and 4 clusters were identified 

(Fig. 5.14). Despite of some discrepancies in the predicted and target cluster labels, as shown in 

rows 2 and 3 of Table 5.5, the procedure was broadly effective in accomplishing its objectives: 

(1) the number of cases assigned to Cluster 2 was tripled; (2) many additional cases were 
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correctly assigned to Clusters 3 and 4; due to the proximity of Cluster 1 to Clusters 3 and 4 (see 

Figs. 5.11 and 5.14), several additional cases were assigned to Cluster 1 eventually, instead of 

Clusters 3 and 4. The distribution of all cases in the new feature space R3D’ after applying MDS 

is shown in Fig. 5.15, where the green dots denote the original 300 cases and the red dots 

represent the additional 150 cases. It is encouraging to observe that the 150 new cases have 

successfully enhanced the spanning across the feature space. The key advantage of this 

procedure is that it enables us to effectively propose a set of new cases that would correspond to 

certain specific cluster features, prior to subjecting them to flow simulation.   

 

 

Fig. 5.13 – Training performance of the decision tree model for prediction of 3D cluster label 
from the cluster labels of its corresponding 2D segments. 
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Fig. 5.14 – K-means clustering results corresponding to 4 clusters of the total 450 3D cases. 
 

 

Fig. 5.15 – MDS results in the revised features space (R3D') calculated based on the total N3D' = 
450 3D cases. 

 

5.4 Summary 

In this chapter, a new workflow is proposed to visualize (dis)similarities among realizations of 

shale barrier configurations and to quantify their influences on SAGD production. The method is 
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tested using a set of 2D and 3D synthetic cases using representative petrophysical properties and 

operating constraints extracted from Suncor’s Firebag project. A flow-based distance function is 

formulated, and multidimensional scaling (MDS) is applied to project the dissimilarity matrix to 

an n-dimensional Euclidean space, where redundancy in the original data set can be identified 

and cases that are too close to one another can be discarded. The reduced data set is subjected to 

MDS again, and K-means clustering is conducted to identify internal groupings among the data 

set. 

For 2D cases, clustering results confirm that the number of shale barriers in the near-well 

region, particularly those that are located in between the well pair, and the lateral extent of 

individual shale barriers are important factors impacting SAGD performance. New cases are 

added to several clusters with limited members, where only the shale barriers in the near-well 

region (zones 1 and 2) are kept.  The new cases are subjected to flow simulation to verify their 

membership to the assigned clusters. The comparison of flow simulation results between the 

original cluster samples and the new (modified) cases confirms that consistent cluster features 

are shared between both sets of cases, further supporting the hypothesis that shale barriers that 

are located outside of the near-well region would have minimal impact on production 

performance. 

For 3D cases, a decision-tree model is incorporated to propose new cases to reflect 

specific cluster features. This is based on the assumption that the performance of a 3D case is 

directly correlated to the specific arrangement or sequence of its corresponding 2D segments and 

their flow patterns. The decision tree model is used to predict the cluster to which a given 3D 

case would belong to from the cluster labels of the corresponding sequence of 2D segments. The 

new cases are subjected to flow simulation to verify their membership in the assigned clusters. 
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Despite some discrepancies in the predicted and target cluster labels, the implemented procedure 

is effective in proposing new cases that would significantly enhance the spanning of the model 

feature space. 

 The proposed workflow will be used in next chapter to identify internal structures among 

3D shale configurations and select representative cases for establishing separate proxy models 

corresponding to different characteristics. 
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CHAPTER 6:  ESTIMATING SHALE BARRIER CONFIGURATIONS IN 3D 

EXAMPLES  

 

A two-step workflow is successfully implemented in Chapter 4 to infer the presence and 

distribution of heterogeneous shale barriers in 2D synthetic cases. Chapter 5 proposed a 

workflow consisting of multidimensional scaling (MDS) and cluster analysis technique to 

examine and visualize the (dis)similarities among these shale barrier configurations in terms of 

production behavior. The results identify internal structures in both 2D and 3D cases, and show 

that cases belonging to the same cluster would exhibit similar shale configuration characteristics 

and production features. Due to the complex relationship between 3D shale barrier 

configurations and the production time-series, it is anticipated that quantifying the internal 

structures in 3D cases and constructing separate forward models for individual clusters would 

improve the performance of the workflow. 

 In this chapter, a three-part workflow incorporating cluster analysis and multiple forward 

models is proposed for inferring 3D shale barrier configurations from SAGD production histories: 

 
(1) Multidimensional scaling (MDS) and cluster analysis are applied to identify the internal 

structures of the synthetic cases in the training dataset based on (dis)similarities in their 

production profiles;  

(2) For each cluster, a forward forecasting model (e.g., neural network or support vector 

regression) is trained to estimate SAGD production time series (outputs) as a function of 

time-dependent steam injection constraint and the shale barrier configuration parameters; 

(3) To infer the unknown shale configuration corresponding to a new SAGD production history, 

which was not involved during the training stage, its production profile is first analyzed and 
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assigned to one of the clusters identified in step 2. Next, a hybrid inverse modeling scheme 

that combines the genetic algorithm (GA) and previously-trained forward model is adopted. 

The proposed workflow is depicted in Fig. 6.1.  

 

 

Fig. 6.1 – Schematic of the proposed workflow.  
 

6.1 Multidimensional Scaling and K-means Clustering 

In Chapter 5, MDS and K-means cluster analysis were successfully implemented to quantify the 

dissimilarities between 2D SAGD realizations, where <500 2D cases were selected to represent 

the cluster features exhibited by 1000 2D cases in the original space. The results reveal that the 

vast feature space of reservoir heterogeneity can be effectively represented by a small set of 
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selected shale barrier configurations. Based on previous study, a set of 3D synthetic cases are 

generated with the following procedure: 

 

(1) 1000 2D cases with different shale configurations are constructed and parameterized 

according to section 3.3.3. Experimental design is carried out following the methodology 

described in Chapter 4, where various features of single basic shale unit, lateral-extensive 

shale barriers, vertical-extensive shale barriers and multiple disjoint shale barriers are 

considered. 

(2) MDS analysis is implemented on the 1000 2D cases (step 1) and redundancy is reduced by 

removing closely located cases. As a result, 425 2D cases are retained; 

(3) K-means clustering analysis is applied on the 425 2D cases and 5 different clusters are 

identified (Fig. 6.2); 

(4) Each 3D case is constructed by randomly sampling four of the 425 2D segments (step 3) and 

stacking them arbitrarily along the y-direction. This strategy ensures that more populated 

clusters in the 2D feature space would be more abundantly represented in the resultant 3D 

cases.          

 

All N3D = 1200 cases are subjected to flow simulation (CMG STARS, 2015), and the 

simulated production results are recorded. MDS analysis is performed on the 3D cases, and 

redundancy is reduced by retaining only a subset of 585 cases. The distributions of the original 

1200 3D cases and the reduced set of 585 cases in the original MDS feature space are compared 

in Fig. 6.3. Each point represents one 3D case and the distance between any two cases is 

correlated to distance d (Eq. 5.1).  
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Fig. 6.2 – K-means clustering and MDS analysis corresponding to the 2D dataset.  
 

 

Fig. 6.3 – MDS analysis based on N3D = 1200 3D cases. 
 

A set of Nc (ranging between 4 to 10) clusters can be identified from these 585 cases, and 

the corresponding average silhouette values are listed in Table 6.1. The average silhouette value 

is relatively constant for Nc = 4, 5, 6, but it starts to decline as Nc increases, indicating that 
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dividing the dataset into more than 6 clusters may lead to overfitting and is not ideal. Further 

examination reveals that by increasing Nc from 5 to 6, the additional cluster would consist of 

only 6 cases (~ 1% of the entire dataset). Therefore, in order to maintain a reasonable degree of 

cluster coherence, while achieving sufficient distinction among different clusters, Nc = 5 is 

selected as the optimal number of clusters. The MDS and K-means clustering results are shown 

in Fig. 6.4, and corresponding number of cases in each cluster are listed in Table 6.2. 

 

 

Fig. 6.4 – K-means clustering and MDS analysis corresponding to the 3D dataset. 
 

Table 6.1 – Average silhouette value for different number of clusters (3D cases). 

Number of Clusters 4 5 6 7 8 9 10 
Average Silhouette Value 0.464 0.46 0.46 0.45 0.442 0.418 0.405 

 

Table 6.2 – Number of cases in different clusters (3D cases). 

Cluster 1 2 3 4 5 Total 
Number of cases 153 115 35 37 245 585 
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In each cluster, a set of average production profiles are computed and denoted as “type 

curves” (Fig. 6.5). Further examination is conducted to understand the characteristic shale barrier 

configuration pertinent to specific clusters. It is widely acknowledged that SAGD production is 

highly sensitive to the distribution of shale barriers in the near well region (Kisman and Yeung 

1995; Chen et al., 2008; Le Ravalec et al., 2009; Wang & Leung, 2015; Zheng et al., 2018a). 

Therefore, it is postulated that the distinguishing characteristics among these clusters would 

likely be their shale barrier configurations in the near-well region. To that end, potential shale 

barriers in four particular near-well locations are examined, and they are marked as “Shale 

Location 1” to “Shale Location 4” in Fig. 6.6; the frequency of occurrence corresponding to each 

of these four near-well shale barriers are analyzed. For example, in a given 3D case consisting of 

four 2D segments, the maximum frequency corresponding to a specific near-well shale barrier is 

4, implying that the same near-well shale barrier (e.g. Shale Location 1) is present in all four 2D 

segments. The histograms of these four near-well shale barriers are shown in Fig. 6.7. For each 

cluster, values of P95 and P5 are extracted from the histograms, as listed in Table 6.3. These 

values in Table 6.3 describes the most impactful shale barrier characteristics associated with 

individual clusters, which can be interpreted as constraints on the shale barrier configurations for 

each cluster. 
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Fig. 6.5 – Average steam injection and oil production profiles (type curves) corresponding to the 
5 clusters of 3D cases. 

 

 

Fig. 6.6 – Illustration of four near-well shale locations used in cluster feature analysis. 
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Cluster 1 

 

Cluster 2 
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Cluster 3 

 

Cluster 4 
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Cluster 5 

Fig. 6.7 – Histograms of total number of shale barriers at four near-well locations for different 
clusters. 

 

 

Table 6.3 – 5th and 95th percentiles from the shale frequency distributions of shale barriers at 
the four near-well locations. 

  Location_1 Location_2 Location_3 Location_4 Sum 
5th 95th 5th 95th 5th 95th 5th 95th 5th 95th 

Cluster 1 0 1 0 0 0 2 0 2 0 4 
Cluster 2 0 2 0 2 0 2 0 3 1 6 
Cluster 3 0 1 0 0 1 1 0 2 0 3 
Cluster 4 0 2 0 3 0 2 0 3 2 8 
Cluster 5 0 2 0 1 0 2 0 2 0 5 

 

 



123 
 

If the P5 values from all four selected locations are combined to infer an estimate of the 

total number of shale barriers in the near-well region, the following relation can be inferred in 

terms of shale content:  Cluster 3 ≤ Cluster 1 ≤ Cluster 5 ≤ Cluster 2 ≤ Cluster 4. An inverse 

relation is observed in the corresponding injection type curves (Fig. 6.5): the average steam 

injection rate follows an opposite trend: Cluster 3 ≥ Cluster 1 ≥ Cluster 5 ≥ Cluster 2 ≥ Cluster 4. 

A similar trend can be observed for the oil production profiles, except for that the oil production 

rate for Cluster 1 is slightly higher than Cluster 3. Another interesting observation is that Clusters 

3, 1, 5, 2, and 4 are sequentially positioned along a straight line in the Euclidean space after 

MDS analysis (Fig. 6.4). The distance in the transformed Euclidean space is supposed to reflect 

the dissimilarities among realizations. These observations corroborate the expectation that shale 

barriers located in between the injector and producer would likely to hamper the steam chamber 

development, as illustrated by Clusters 2 and 4. 

As mentioned in the previous paragraph, there are certain peculiar features associated 

with Cluster 3: although the steam injection rate is higher than that of Cluster 1, the 

corresponding oil production rate is lower. This observation suggests that the incremental steam 

injection does not contribute to an increase in oil production. Further examination of the 

distribution of shale barriers in the near-well region may offer a possible explanation. The results 

in Fig. 6.7 and Table 6.3 suggest that, for most cases in Cluster 3, there is a shale barrier at Shale 

Location 3 (adjacent to the injector) in one of the segments, but none at Shale Locations 1 and 2. 

To better understand the impacts of this particular shale barrier at Location 3, a case from Cluster 

3 is randomly selected, and a comparative case is created by removing the shale barrier at 

Location 3 in segment 1, as shown in Fig. 6.8. Their corresponding steam injection and water 

production profiles are compared in Fig. 6.9. For the original case, the shale barrier at Location 3 
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in segment 1 seem to have a dramatic impact on the steam injection and water production in all 4 

segments: in segment 1, water production is higher than the injection, implying that the steam 

injected in segment 2 is migrating to segment 1; the steam injection and water production in 

segments 2 and 3 are also much higher than those in segment 1. The temperature and pressure 

distributions in segment 1 of the two cases are compared in Fig. 6.10 and Fig. 6.11, respectively. 

The flow vectors of the gas phase are also depicted. It is clear that the pressure in segment 1 is 

lower near the producer in the original case; this is because the injectivity in segment 1 is limited 

by the shale barrier at Location 3, while fluid production is constrained with a constant bottom-

hole pressure in all segments, inadvertently creating a pressure gradient between segment 1 and 

others. The pressure distribution (cross-sectional view in the y-z plane) of original case in Fig. 

6.12 substantiates the observation that the injected steam is quickly produced where there is a 

shale barrier at Location 3, while pressure and temperature (Fig. 6.10) are not building up as 

expected in other segments. This analysis substantiates the hypothesis that any shale barriers in 

the near-well locations are particularly important and should be considered as key distinguishing 

features associated with each clusters. It will be illustrated later in section 6.3 that the ranges in 

Table 6.3 can be used as screening criteria for cluster membership. 
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Fig. 6.8 – Shale configurations of an original case from Cluster 3 and a comparative case, where 
the shale barrier at Location 3 in segment 1 is removed. 
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Fig. 6.9 – Production profiles of the original and comparative cases: (a) steam injection; (b) 
water production. 
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Fig. 6.10 – Temperature (℃) distribution (cross-sectional view in the x-z plane) in segment 1. 
The arrows represent flow vectors of the gas phase. 
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Fig. 6.11 – Pressure (kPa) distribution (cross-sectional view in the x-z plane) in segment 1. The 
arrows represent flow vectors of the gas phase. 
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Fig. 6.12 – Pressure (kPa) distribution (cross-sectional view in the y-z plane) for the original case. 
 

6.2 Forecasting SAGD Production from Reservoirs Containing Shale Barriers 

Forward models are formulated to correlate SAGD production time-series with shale 

heterogeneities. The input parameters are elapsed production time in months, monthly steam 

injection rate and the 152 binary shale location indices, while the output parameter is the 

monthly oil production rate. An artificial neural network (ANN) model was previously adopted 

in the case of 2D shale barrier configurations in Chapter 4. ANN typically shows good capability 

in generalization and mapping of nonlinear relationships for large training datasets. It worked 
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well in the 2D cases, where there were a total of 96000 records (corresponding to a training 

dataset of 800 synthetic cases) and 104 input parameters.  

In the case of 3D configurations, the number of input parameters are increased to 154, 

while the number of records is 70200 (corresponding to a training dataset of 585 synthetic cases). 

However, due to the complex relationship between shale barrier configurations in 3D and the 

production time-series, it is proposed that different forward models should be calibrated for 

individual clusters to better capture the internal structures among the 3D cases. The drawback, 

though, is that the dataset for training each forward model is smaller (e.g. Cluster 3 only has 35 

cases). To handle a smaller training dataset, another popular machine-learning technique, support 

vector machine regression (SVR), is also examined. The performances corresponding to ANN 

and SVR are compared. 

 Support vector machine was first introduced in 1992 by Vladimir Vapnik and his 

colleagues; it is a nonlinear generalized portrait method, where kernel functions are applied to 

create nonlinear classifiers (Vapnik and Lerner, 1963; Boser et al., 1992; Guyon et al., 1993; 

Cortes and Vapnik, 1995). A version of the SVM for regression problems was later introduced 

(Vapnik, 1995; Drucker et al., 1997). Many applications in petroleum-related problems can be 

found in the literature (Al-Aanzi and Gates, 2010; Liu and Horne 2012; Liu et al. 2015; Liu et al. 

2016; Oloso et al. 2018). 

The algorithm for support vector regression (SVR) is summarized here. For a set of N 

multivariate observations x (input variables) and y (output variable) that are linearly related, the 

goal is to find a set of coefficients w and a bias b, in Eq. 6.1 , such that the sum of residuals 

between observations and predictions are less than an error ε (Smola and Schölkopf, 2004).  
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( )f b′= +x w x   ......................................................................................................................(6.1)   

 

It can be formulated as a minimization problem with the following objective function: 
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where 𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖∗ are slack variables that allow the errors to be slightly larger than ε; and Cm is a soft 

margin parameter that controls the penalty imposed on the outliers (i.e., deviations > ε); it is 

needed to avoid overfitting by offering a trade-off between the training accuracy and model 

generalization capability (Crone et al., 2006; Vapnik, 1995). 

The problem definition in Eqs. 6.2-6.3 is also known as the primal problem; the 

minimization can be simplified by solving its Lagrange dual formulation (Vapnik, 1995; Smola 

and Schölkopf, 2004). The dual formulation introduces two non-negative Lagrange multipliers, 

𝛼𝛼𝑖𝑖 and 𝛼𝛼𝑖𝑖∗, and minimizes the following objective function: 
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subjected to the following constraints: 
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In the case where x and y are nonlinearly related, kernel functions can be applied to map 

the data into a high-dimensional feature space. For example, a radial basis function (RBF) kernel 

can be employed. 
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Substituting the inner product in Eq. 6.4 with Eq. 6.6 gives the objective function for a nonlinear 

SVR model: 
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The constraints are the same as Eq. 6.5. Once 𝛼𝛼𝑖𝑖  and 𝛼𝛼𝑖𝑖∗  are solved, the output of a new 

observation can be predicted by: 
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To train a SVR model with a dataset of N observations, N pairs of 𝛼𝛼𝑖𝑖 and 𝛼𝛼𝑖𝑖∗ are tuned. Typically, 

only for some of the coefficients that their differences (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) would be non-zero, and their 

corresponding input vector ix  are called support vectors. In other words, the number of 

parameters and support vectors is not determined a priori; it depends on the training dataset and 

could vary from 1 to N. On the other hand, the number of turning parameters in a multilayer 

perceptron neural network (MLP) model – a common ANN technique – is fixed for a given 

network architecture, depending on the number of input features, number of hidden layers, 

number of neurons, and the bias terms. The optimal architecture is generally determined via 

processes such as n-fold cross validation (Ma et al., 2015). The applicability of SVR and MLP 

can also be compared by examining the degrees of freedom in the adjustable parameters.   

 

Table 6.4 – Average normalized mean squared error (NMSE) of the MLP and SVR models. 

  Cluster 1 Cluster 2 Cluster 3  Cluster 4 Cluster 5 
# of cases 153 115 35 37 245 

SVR NMSE 0.0352 0.2005 0.0389 0.7253 0.0507 
MLP NMSE 0.2492 0.6991 0.6038 0.7321 0.1608 

 

 

Both SVR and MLP are employed to train a forward model for each of the 5 clusters 

identified in section 6.1. For each cluster, 10-fold cross validation is applied for the training of 

both models and to optimize the MLP architectures. The number of 3D cases in each cluster and 

the prediction errors are compared in Table 6.4. The architectures and numbers of adjustable 
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parameters for the final models are listed in Table 6.5. It is observed that SVR gives a superior 

performance with lower normalized mean squared error (NMSE). Therefore, the SVR forward 

models are selected and integrated in the next step for inferring an unknown shale barrier 

configuration corresponding to a new SAGD production history. 

 

Table 6.5 – Numbers of parameters tuned in MLP and SVR models. 

  Cluster 1 Cluster 2 Cluster 3  Cluster 4 Cluster 5 
MLP architecture 
(neurons in hidden 

layers) 
13-13 11-11 9-9 9-9 19-19 

# of parameters tuned 
(MLP) 2211 1849 1495 1495 3345 

# of parameters tuned 
(SVR) 7305 3740 1427 550 12036 

 

 

6.3 Estimating Shale Barrier Configurations from SAGD Production Histories 

These forward regression models are then integrated in a GA scheme for inferring the unknown 

shale barrier configuration corresponding to a given set of SAGD production histories: steam 

injection and oil production time series are given, and 152 binary location indexes are inferred. 

This inverse problem consists of two steps: (1) cluster identification; (2) genetic algorithm (GA) 

based optimization. 

 

6.3.1 Cluster Identification for the Target SAGD Production History 

The target cluster is identified with the following procedure: 
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(1) Calculate the values of d between the actual production history and the other 585 training 

cases (prepared in section 6.1) with Eq. 5.1.  

(2) Identify from the 585 training cases the most similar one with the smallest distance to the 

target case. 

(3) Assign the target case to the same cluster as the most similar training case.  

 

6.3.2 Genetic Algorithm (GA) Based Optimization  

The goal is to identify a particular shale barrier configuration for which the oil production and 

steam injection profiles are consistent with the known production histories. Given that each shale 

barrier configuration is parameterized by 152 binary indices, they represent the unknowns in this 

optimization problem, where the objective function is defined as the mismatch between the 

predicted and known oil production time series. The fact that each shale barrier configuration is 

uniquely parameterized by a set of binary location indices renders the GA an ideal approach, as 

compared to other gradient-based minimization algorithms. To apply GA, a set of binary strings 

(chromosomes) is utilized as genetic representation of the solution domain (Whitley, 1994). 

Details of the general GA method can be found in the reference.  

 A similar GA-based optimization scheme was successfully adopted in Chapter 4 for 

inferring shale barrier configurations in 2D SAGD cases. The workflow is implemented using 

the Python DEAP library (Fortin et al., 2012) here for the 3D cases. 

 

(1) An initial population is generated by selecting a set of most similar cases from the target 

cluster. 
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(2) The shale barrier configurations of the initial solutions are encoded into binary strings, and 

the values of their fitness functions are computed. The fitness function is defined as C=1/d, 

where d is the flow-based distance (Eq. 5.1) between the actual production history and a 

particular initial case.  

(3) Two cases (parents) are randomly selected from the initial population (the selection 

probability is inversely related to the fitness value). Two new cases (children) are generated 

by swapping parts of the parents’ binary strings and mutating a portion of the binary values 

(0→1 or 1→0). 

(4) Step 3 is repeated until a new population is created.  

(5) The oil production profiles for the new population are estimated using the forward SVR 

model trained for the specific target cluster.  

(6) Steps 2-5 are iterated multiple times until certain user-defined stop criterion is encountered 

(e.g. maximum iterations, highest fitness above a threshold), and the individual case with the 

highest fitness is identified as the shale barrier configuration that best matches the production 

history.  

 

A possible drawback of the aforementioned scheme is that, as GA randomly perturbs the 

shale barrier configurations, there is no guarantee that the resultant shale barrier configurations 

would actually belong to the same target cluster. If we blindly subject these configurations to the 

forward SRV model corresponding to the target cluster, the predicted oil production profiles 

would be incorrect.  In addition, since the steam injection profile is imposed as an input, there is 

also a distinct probability that the steam injection profile is physically incompatible with a shale 

barrier configuration that should have been classified into a different cluster. It was observed in a 
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Chapter 4 that it is possible to achieve a match in the oil production profile by imposing a 

physically incompatible steam injection input. In such instances, the inferred shale barrier 

configurations would exhibit strikingly different characteristics from the “true” model. Therefore, 

it is necessary to screen each proposed shale barrier configuration and ensures that its 

membership to the same target cluster. In particular, the P5 and P95 values of the four near-well 

shale barriers (section 6.1) can be used as simple screening criteria. 

 

(1) At the end of the GA workflow, each inferred shale barrier configuration is screened for the 

presence of shale barriers at the four near-well locations. The numbers of near-well shale 

barriers in all four segments are compared to the P5 and P95 values of the target cluster, as 

listed in Table 6.3. For example, assuming the GA proposed shale barrier configuration has 

Nlocj shale barriers at Shale Location j (j = 1, 2, 3, 4), if Nlocj is bounded by the P5 and P95 

values of the target cluster, the proposed shale barrier configuration is retained; otherwise, it 

is eliminated, and the GA scheme (section 6.3.2) is repeated. It is important to note that, in 

this study, only ranges of Nlocj are used to screen the GA proposed configurations; however, 

if additional conditioning information is available (e.g., petrophysical logs along the 

wellbore), it can be used further constrain the specific positions of shale barriers in the near-

well region among those GA proposed configurations. 

(2) The overall shale proportion for all cases is set to be less than 25% (same as the training 

dataset).  

 

It is worth mentioning that estimating an unknown shale barrier configuration from a 

given SAGD production is an ill-posed inverse problem. It is expected that multiple shale barrier 
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configurations would yield similar production behavior (Zheng et al., 2018b). Therefore, this GA 

workflow should be repeated numerous times to generate a suite of plausible shale barrier 

configurations for a specific production history.    

A testing dataset of 30 3D cases is employed to assess the performance of the forward 

SVR models, as well as the inverse GA workflow. These 30 cases are constructed by randomly 

assigning shale barriers in all four segments and ensuring that all five clusters are included. They 

are not part of the original 1200 3D cases, and the total shale volume proportion is less than 25%. 

Three different shale barrier configurations are inferred for each of the 30 testing cases following 

the prescribed procedure. To validate the model predictions, each of these shale barrier 

configurations are also subjected to flow simulation to obtain the correct oil production and 

steam injection profiles. 

 

6.4 Testing Results and Discussions 

For the sake of brevity, only two shale barrier configurations from each cluster (i.e., a total of 2 × 

5 = 10 cases, out of 30) in the testing dataset are presented in Fig. 6.13. The flow simulation 

predictions of both steam injection and oil production profiles are compared. To compute a 

measure of dissimilarity between target case and 3 proposed history-matched cases, all four 

profiles are normalized to a scale of 0 and 1, and an average C value is calculated (Eq. 5.1) and 

presented in Table 6.6. The shale barrier features of the known case and the GA history-matched 

cases are also compared in Table 6.6.  
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Fig. 6.13 – Results of 10 (out of 30) cases in the testing dataset: (a) steam injection profiles from 
numerical simulation for the known case and GA history-matched cases;  (b) oil production 

profiles from numerical simulation for the known case and GA history-matched cases. 
 

 

Table 6.6 – Comparison of shale barrier configuration features between the target case and 
the GA inferred cases. 

Test 
Case Cluster 

Near Well Shales (Target) Near Well Shales (GA 
Estimation)(mean of 3 cases) Dissimilarity  

Loc1 Loc2 Loc3 Loc4 Loc1 Loc2 Loc3 Loc4 

Target vs 
GA 

Estimation 
(mean of 3  

cases) 
1 1 0 0 1 1 0.3 0 1 1.3 0.0077 
2 1 0 0 1 0 0 0 0.7 0.3 0.0048 
3 2 1 1 0 1 1.3 0.3 1 1.3 0.0223 
4 2 1 1 1 0 0.3 1 1.3 0 0.0142 
5 3 1 0 1 1 0 0 1 0.7 0.0243 
6 3 1 0 2 0 1 0 1 0 0.0158 
7 4 2 1 1 0 0.7 0.7 1.3 1.3 0.0633 
8 4 1 2 0 0 1 1.7 1 0.7 0.0275 
9 5 1 0 1 1 1 0 0.3 1 0.0097 
10 5 0 1 1 0 0.3 0.7 0.3 0.7 0.0100 
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A visual inspection of Fig. 6.13 reveals that, for most testing cases, the simulated 

production profiles of the GA history-matched (inferred) cases are consistent with the target 

(actual) production history, where only minor dissimilarities (average C < 0.03) are observed in 

Table 6.6. Interestingly, cases that belong to Clusters 1 and 5 seem to exhibit the least 

dissimilarities, while cases that belong to Cluster 4 would yield the largest dissimilarities. To 

some extent, this difference in prediction quality may be related to the forward model errors 

(Table 6.4), where the forward models for Cluster 4 have the largest training error. It is 

anticipated that improving the predictive capability of the forward model for Cluster 4 may 

enhance the accuracy of the entire workflow.  

It is also observed that the GA history-matched cases share many key features of the 

target case, especially with respect to the distributions of near-well shale barriers. Deviations in 

the total shale proportion are noted for some cases (e.g. case 4, 6); however, these discrepancies 

do not necessarily lead to poor outcomes (or large C values). This is because the GA history-

matched cases contain more shale barriers in areas that are far away from the well pair, which do 

not instigate any observable impacts on the production behavior.   

 

6.5 Summary 

In this chapter, a three-part workflow is proposed for inferring 3D shale barrier configurations 

from SAGD production histories. First, identifying internal clusters among the training dataset 

based on MDS and K-means analysis. Second, constructing forward regression models for 

individual clusters to correlate SAGD production profiles with heterogeneous shale barrier 

configurations. Finally, implementing a GA framework to infer unknown shale barrier 

configuration from a known (target) production history. The cluster feature analysis reveals that 

shale barriers at the near-well region would have the most observable impact on the SAGD 
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production. The workflow is capable of capturing most salient features of the production profiles 

and near-well shale barrier distributions in a reliable and efficient manner. 
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CHAPTER 7:  FIELD CASE STUDY  

 

Chapter 6 has demonstrated the capability and flexibility of the proposed AI-based workflow in 

inferring the presence and distribution of heterogeneous shale barriers for 3D synthetic SAGD 

cases. In this chapter, the utility of the proposed approach for field application is tested; in 

particular, a case study on the Suncor’s Firebag Project is presented. Given that the training 

dataset is constructed based on representative petrophysical properties and operational 

constraints from Firebag, the previously established cluster features and forward models in 

Chapter 6 are retained. A few well pairs from Pads 104 and 107 are selected, and their 

production histories, as well as gamma-ray (GR) logs, are extracted.    

 

7.1 Field Production Histories 

With access to limited public data, two major challenges are encountered: production/steam 

allocation and steam leakage (injection efficiency). Regarding the first issue, the model 

dimension is only 80 m along the y-direction for all the synthetic cases, while the average 

horizontal well length is approximately 1000 m in the field. Therefore, a 80-m segment from the 

well pair should be selected. However, due to reservoir heterogeneities, not all 80-m segments of 

a given well pair in the field would contribute equally to the total production. Therefore, it is 

necessary to devise a scheme to properly allocate an estimated annual contribution. 

The second issue is that the field steam-oil ratio (SOR) is consistently higher than the 

predictions by all the synthetic cases. As an example, the oil production profile of the 

homogeneous base case is compared against that of a producing well pair extracted from Pad 104 

in Fig. 7.1. The oil production profiles of the homogeneous base case would follow similar 
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trends as the field data; however, steam injection rates in the field are much higher than the 

homogeneous case. Similar observations can be made for other well pairs in Pads 104 and 107. It 

is hypothesized that higher SOR in the field might be attributed to other factors, such as leaking, 

which are not considered in the synthetic models.  

 

 

Fig. 7.1 – Comparison of production profiles between numerical simulation (CMG) 
homogeneous base case and a randomly selected well pair in Firebag Pad 104. 

 

 

Given that the entire workflow, including the forward models, is trained based on 

synthetic simulation cases, the following procedures are proposed to ensure the applicability of 

the developed workflow for analyzing the field data:  

 

(1) [Steam Chamber Analysis] It is assumed that production/injection over a particular 

horizontal segment can be allocated in accordance to the nearby steam chamber thickness. 
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Steam chamber thickness map, which is inferred from 4D seismic data, of Pad 104 is 

extracted from Suncor’s Firebag annual AER performance presentation (Suncor Energy, 

2015). The yearly development of the steam chamber in Pad 104 from 2010 to 2013 is 

present with the same color scale. To be consistent with the annual reporting requirements, it 

is assumed that the corresponding steam chamber map reflects the change within the same 

reporting period (e.g. from March in previous year to Feb next year). In Pad 104, the average 

well length is about 1000 m along the horizontal portion, and the average well spacing is 

approximately 155 m (i.e., infill wells are not considered). Each steam chamber image can be 

digitized into a 258 × 40 pixel matrix; this resolution means that the producing area for Pad 

104 is divided into 258 portions along the 1000 m horizontal well length and 40 portions in 

between two well pairs; in other words, each pixel is representing an area of approximately 4 

m × 4 m. The RGB color code for a given pixel is translated into an equivalent steam 

chamber thickness (in meters) by linearly scaling from the RGB scale of [0, 255] to thickness 

[0, 48 m]. The maximum thickness of 48 m is obtained from the AER reports. The total 

steam chamber thickness at each of the 258 positions along the well is obtained by summing 

all 40 thickness values in the direction perpendicular to the wellbore. 

  

(2) [Petrophysical Log Analysis and Segment Selection] The gamma ray (GR) logs are used to 

infer the presence of shale near the wellbore. The GR logs and the steam chamber thickness 

maps are analyzed collectively to identify several 80-m intervals along the horizontal portion 

that exhibit different shale characteristics. A cut-off of 60 is applied on the GR logs (as per 

the Suncor’s Firebag annual AER reports).  The shale characteristics inferred from the GR 
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logs will also be used to check the final configurations proposed by the GA workflow for 

consistency. 

   

(3) [Production/Injection Allocation] Production/injection over a particular 80-m segment is 

allocated in accordance to the total steam chamber thickness computed in (1).  As mentioned 

earlier, the field steam-oil ratio (SOR) is consistently higher than the predictions by all the 

synthetic cases; therefore, to establish some level of consistency between the synthetic cases 

and the field data, a calibration scheme is proposed. The actual field history is scaled to one 

of the type curves in Fig. 6.5. The choice of a type curve will be explained later, but, first, the 

scaling procedure is discussed here. There is a total of 4 years of production history from 

2009 to 2013. For this production period, two allocation ratios for oil production (So) and 

steam injection (Ss) are calculated as: 
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where Qo and Qs denote the cumulative oil production and steam injection, respectively. The 

subscripts f and t refer to the field history and the selected type curve, respectively. The field 

data of production time series are subsequently scaled by the raw values by So and Ss, such 

that the shapes of the oil and steam profiles remain unchanged, while some level of 

consistency is achieved between the synthetic cases and the field data.  
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The choice of an appropriate type curve is discussed next. Two particular aspects can be 

considered: the overall production performance of the field history and the GR logs. The 

selection could be subjective, but the principles applied in this study are illustrated here: 

 

• If the production data indicates a uniform and steady steam chamber development, 

while relatively low shale content is interpreted from the GR log, it seems reasonable 

to select from Cluster 1 or the homogeneous case for the reference type curve.  

• If there is some indication of uneven steam chamber development and high shale 

content is interpreted from the GR logs over a portion of the 80-m interval, the type 

curve from Cluster 5 may be an appropriate choice.  

• If the production data indicates the steam chamber development has been highly 

hampered and high shale content can be inferred from the GR logs in most parts of 

the 80-m interval, a type curve from either Clusters 2 or 4 seem to be a reasonable 

choice. 

 

Two specific well pairs in Pad 104 (P104-2 and P104-5) are analyzed. The steam 

chamber thickness within the vicinity of each well pair, as well as the GR logs, between 2010 

and 2013 are shown in Fig. 7.2. It is clear that the steam chamber development is more extensive 

in P104-2 than P104-5, and this is corroborated by the higher production rate in P104-2.  
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(a) 
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(b) 

Fig. 7.2 – Gamma ray and total steam chamber thickness along the horizontal well trajectory:   
(a) P104-2; (b) P104-5. 

 

Two particular intervals exhibiting distinct shale barrier configuration characteristics are 

selected from the well pairs. According to the steam chamber thickness and GR analysis, Interval 

1 has little to no shale is observable around the well pair, while shale is present at some positions 

along Interval 2. These selected intervals are also marked in Fig. 7.2. Since well trajectory is not 

clearly defined in the field data, it is possible that the well goes through different layers which 

may lead to small errors in estimating the length of shale barriers. For the allocation purposes, 

the production/injection profiles from Interval 1 are scaled to the type curve corresponding to the 

3D homogeneous base case (Fig. 6.5). On the other hand, the production/injection profiles from 
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Interval 2 is scaled to the type curve corresponding to Cluster 5, where some shale barriers are 

present, as corroborated by the GR measurements and the relatively low oil rate of P104-5.  

 

 

Fig. 7.3 – Comparison of the scaled and allocated field history and type curves derived from the 
3D synthetic models. 

 

The allocated and scaled production profiles for these two intervals are compared with 5 

cluster type curves in Fig. 7.3 and they are considered as the input field history in the GA 

workflow. Data after 2013 is excluded in this study for two reasons: (1) the published steam 
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chamber maps of Pad 104 after 2013 are displayed over a different color scale, and (2) infill 

wells are added in 2014 and interference between well pairs could be significant.  

 

7.2 Inferring Shale Barrier Configurations from Field Histories 

The GA workflow described in section 6.3 is applied to infer several realizations of shale barrier 

configurations. A total of 3 GA history-matched shale barrier configurations are inferred for the 

two intervals identified in section 7.1. Fig. 7.4 compares the steam injection and oil production 

field history and the numerical simulation predictions of the GA inferred shale barrier 

configurations. To assess the accuracy of the inferred shale barrier configurations, portion of the 

field histories from April 2013 to September 2015 have not been presented to the GA workflow 

but used for validation purposes instead. The results are compared in Fig. 7.4. The steam 

injection and oil production allocation ratios (Eq. 7.1) for the selected interval in this period are 

assumed to be the same as the last available steam chamber map (2013). The GA history-

matched shale barrier configurations with the least mismatch with the histories are shown in Fig. 

7.5.   
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Fig. 7.4 – Results of field cases: (a) steam injection profiles from numerical simulation for the 
GA history-matched cases and the field histories; (b) oil production profiles from numerical 

simulation for the GA history-matched cases and the field histories. The red portion of the field 
history is used for validation purposes. 

 

For Interval 1, the GA history-matched cases generally follow the trends observed in the 

field history. Spikes in both steam injection and oil production profiles during the early stage of 

production (e.g., around month 10) are not predicted in any of the history-matched cases. In fact, 

none of the synthetic cases would simulate these spikes. Therefore, it is concluded that these 

fluctuations may be the result of various unknown deviations in the operating constraints. Very 

few shale barriers are inferred around the wellbore, corroborating with the steam chamber 

thickness and GR analysis. 

For Interval 2, the GA history-matched cases are consistent with essentially the entire 

field history. More shale barriers are inferred for this interval, which is also consistent with the 

steam chamber thickness and GR analysis. Slower development of the steam chamber is 

observed, as compared to Interval 1 in P104-2. The GR measurements would support the 

inference of some shale barriers near the toe portion (segment 4) in the 80-m interval. 

Interestingly, the configuration in Fig. 7.5 clearly shows a single shale barrier that is located 
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adjacent to the injector in segment 4. For both intervals, multiple shale barriers are inferred at 

distances of 4-5 m laterally away from the injector in all segments; unfortunately, the 

presence/absence of these heterogeneities cannot be confirmed directly from the GR logs due to 

their limitation in the depth of investigation. However, the production behavior of these inferred 

shale barrier configurations are highly consistent with the field histories, as evidenced in Fig. 

7.4.    
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Fig. 7.5 – Examples of GA-history matched shale barrier configurations for field cases.  

 

7.3 Summary 

In this chapter, a set of field production profiles are assembled from Suncor’s Firebag project. A 

method for allocating field production based on steam chamber volumes is introduced. The 

proposed workflow for inferring shale barrier configurations from SAGD production history is 

tested with the filed dataset. Overall, results from field cases demonstrate that the proposed AI-

based workflow is effective in capturing the influences of shale barriers and generating reliable 

estimates of the recovery performance, despite the lack of detailed information from the field. 

The estimated shale barrier configurations are consistent with production histories, petrophysical 

log measurements and steam chamber thickness maps inferred from seismic data. Addressing the 

non-uniqueness in the solution of an ill-posed inverse problem, multiple shale barrier 

configurations can be obtained to represent the uncertainties in model parameters.   
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CHAPTER 8:  CONCLUDING REMARKS 

 

8.1 Summary and Conclusions 

This research aims to explore the influences of shale heterogeneities on SAGD production 

profiles and develop a practical workflow for inferring locations of shale barriers from SAGD 

time-series data. A set of SAGD field data for Suncor’s Firebag project is compiled from the 

public domain. The dataset consists of production profiles, well logs, core measurements, 

reservoir pressures, temperature measurements and operational constraints.  

A synthetic dataset consisting of 2D and 3D cases is constructed by superimposing 

idealized shale barriers on a homogeneous base model, whose properties are assigned in 

accordance to representative petrophysical and operational parameters gathered from the Firebag 

project; production trends from the base case are in reasonable agreement with the actual field 

observations. 

 A novel parameterization scheme is introduced to represent the different shale barrier 

configurations. This is facilitated by dividing the entire reservoir domain into a number of sub-

domains and formulating a set of basic shale units and binary indices. Sensitivity analysis of the 

basic shale units (size, geometry, position) is conducted. Synthetic datasets are constructed; 

binary indices of shale heterogeneity and monthly steam injection rate are considered as input 

variables, while the monthly oil production rate is considered as an output variable. 

 An AI-based workflow is proposed to facilitate the SAGD production forecast and infer 

the presence and distribution of heterogeneous shale barriers from production profiles (time-

series data). The workflow consists of two parts. First, a forward regression model (ANN) is 

constructed to correlate SAGD production profiles with heterogeneous shale barrier 
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configuration. Next, genetic algorithm (GA) is applied for inferring shale barrier configuration 

by matching the target production time-series data. The proposed methodology is first tested with 

2D synthetic cases, and the performance of the workflow is shown to be both reliable and 

efficient in capturing most salient features of the production profiles and shale barrier 

configurations. 

In order to address the increasing complexity of 3D problems, multidimensional scaling 

(MDS) and cluster analysis are also proposed to visualize the (dis)similarities among realizations 

of shale barrier configurations and to quantify their influences on SAGD production. A flow-

based distance function is formulated, and MDS is applied to project the dissimilarity matrix to 

an n-dimensional Euclidean space, where redundancy in the original data set can be identified 

and cases that are too close to one another can be discarded. The reduced data set is subjected to 

MDS again, and K-means clustering is conducted to identify internal groupings among the data 

set. The workflow identifies different internal structures in 2D and 3D datasets with distinct 

cluster features, and new cases are successfully added to the under-sampled clusters.  

 With the cluster analysis methodology, the proposed workflow for inferring shale barrier 

configurations is optimized. The revised workflow consists of 3 steps. First, identify internal 

clusters among the training dataset by applying MDS and K-means analysis. Second, construct 

forward models (SVR) for each cluster to correlate SAGD production profiles with 

heterogeneous shale barrier configuration. Next, apply GA framework to estimate shale barrier 

configuration by matching the target production profile. A set of 3D cases are tested to examine 

the utility of the proposed approach for more realistic applications. The testing results are 

consistent with the target profiles. 
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 Case study is conducted on two field examples assembled from the Firebag field data. In 

the field examples, a method for allocating field production based on steam chamber volumes is 

introduced. The workflow established with synthetic dataset is successfully adopted for 

analyzing a few field cases. Results of the field examples are highly encouraging, considering 

that only data from the public domain was accessed. Domain knowledge and additional data 

from the field operator could help to eliminate certain assumptions and reduce uncertainties in 

various reservoir and operational parameters. 

The results of this work demonstrate the capability and flexibility of the AI-based 

network model, and of the parametrization technique for representing the characteristics of the 

shale barriers, in capturing the effects of complex heterogeneities on SAGD production. This 

work highlights the potential of an AI-based workflow to infer the presence and distribution of 

heterogeneous shale barriers from field SAGD production time-series data. The research does 

not aim to replace conventional reservoir characterization routines. The workflows presented in 

this thesis intend to provide an efficient and complementary method for exploring heterogeneous 

characteristics from SAGD field data, and the output shale configurations can be regarded as an 

initial estimate of input production profiles and subjected to further history matching for a more 

accurate final match. 

 

8.2 Contributions 

The primary contributions are summarized as follows: 

 

(1) Application of data-driven modelling techniques for SAGD production analysis is promising, 

but not yet widely implemented in practical SAGD projects. A challenge for customizing 
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data-driven models for field application is to interpret reservoir mechanics from field data 

and integrate domain knowledge regarding the physical systems in the analysis. This research 

proposes a hybridization of physics-based and data-driven modelling approaches. Physic-

based rules are integrated into the modelling process, while domain knowledge is applied to 

better understand the dataset and optimize the outputs.  

(2) In order to apply AI-based data-driven techniques for examining the influence of reservoir 

heterogeneity on SAGD production, one particular challenge pertains to the proper 

parameterization of reservoir heterogeneity for model training. This research formulates a 

novel parameterization scheme to characterize shale heterogeneity. The scheme allows any 

given shale barrier configuration to be represented by a set of binary variables. This 

parameterization scheme can be readily extended to describe other reservoir features (e.g., 

lean zones).  

(3) Another common challenge in data-driven model development is assembling a representative 

training data set. This research proposes a new workflow to visualize dissimilarities among 

realizations of shale barrier configurations and to quantify their influences on SAGD 

production. It illustrates a systematic framework for optimizing the spanning of model 

parameter space in a given data set, without exhaustively sampling similar realizations. It 

offers several potential applications in SAGD reservoir analysis; for example, the cluster 

features in terms of production characteristics and shale barrier configurations can be used to 

efficiently screen/rank realizations during history matching. The proposed technique can also 

be combined with other experimental design approaches to construct representative training 

data sets for proxy modeling. This step is particularly important if 3D cases are involved. 
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(4) Numerous machine learning techniques (ANN, SVR) are employed successfully to facilitate 

a SAGD production forecast. The performances of the ensuing models are shown to be both 

reliable and efficient in capturing many salient features in the production trends. It is 

worthwhile to mention that, once the data-driven model is trained, the computation time for 

the forward prediction takes only a few seconds. The developed model can serve as efficient 

proxy for modeling and forecasting of SAGD production time series, alleviating some 

aspects of the high computational and capital costs associated with repeating many reservoir 

simulation runs required in most typical characterization workflows. 

(5) A novel AI-based workflow is proposed to infer the presence and distribution of 

heterogeneous shale barriers from SAGD production profiles (time-series data). The results 

demonstrate the feasibility of the AI-based workflow in correlating complex reservoir 

heterogeneities with SAGD production profiles. The inferred shale configuration can be 

regarded as an initial estimate and subjected to further history matching for a more accurate 

final match. 

(6) The workflow also provides a basis for developing operating strategies to reduce the impact 

of shale barriers. For example, in most of the well pads in Firebag, infill wells are drilled a 

couple years after the original wells have commenced production. The production data 

obtained from the initial few years can be used to infer potential shale barrier distribution 

between two original well pairs, facilitating the selection of infill wells.  

 

8.3 Limitations and Recommendations 

(1) Testing results of the field examples are encouraging. However, it should be noticed that the 

proposed data-driven models are generated based on synthetic cases only. Although efforts 
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have been made to create models representative of field projects, certain field behaviors 

cannot be fully captured because of limited data availability (e.g., lack of bottom-hole 

flowing pressures). Therefore, there are uncertainties for directly applying the proposed 

workflow with field application.   

(2) The parameterization approach presented in this research considers only two specific rock 

types: sands or shale. Although the results are useful for representing the characteristics of 

shale barriers, further study is needed to extend the approach to incorporate more rock types, 

as well as other heterogeneous features such as lean zones.  

(3) Although sensitivity analysis regarding the size, geometry, and position of the shale barriers 

is conducted, there are, undeniably, choices that are made arbitrarily with respect to the basic 

shale units, in order to achieve a balance between model accuracy and computational cost. 

Further optimization of the resolution of the basic shale units could potentially improve the 

efficiency and model predictability. 

(4) For the synthetic cases employed in this study, their shale configurations are generated 

without the consideration of spatial correlation. It is recommended that future study may take 

into consideration of spatial correlation (e.g. variogram) and other conditioning information 

to improve the robustness and flexibility of the workflow. Also, due to the limitation of 

synthetic model set-up, the model cannot look at shale continuity beyond 80 m along y-

direction and 50 m along x-direction. Although its impact might be trivial as the horizontal 

GR logs show that seldom shale barriers exceed this length, it is recommended that future 

study take this into consideration. 

(5) In this research, multiple machine learning and data mining techniques (e.g. artificial neural 

network, support vector machine, K-means, decision tree, etc.) have been successfully 
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implemented for the purpose of regression, classification, and clustering.  There are many 

other techniques (e.g. deep learning algorithms) available for the similar problems, but their 

utilities have not been examined in this study. It would be interesting to investigate other 

options to further optimize the workflow. 

(6) For the cluster analysis workflow proposed in Chapter 5, future studies may consider 

formulating or utilizing other static distance functions, including the Hausdorff distance 

(Dubuisson & Jain, 1994) or the connected hydrocarbon volume (CHV), as proposed by 

(Wilde & Deutsch, 2012). Kernel transformation, principal component analysis, and other 

clustering techniques can also be applied. 

(7) The field data employed in this study are all gathered from the public domain. Although 

much effort has been made to interpret and understand the data, there are inevitable errors 

and unprecise estimations regarding the model setup and field case testing. It is anticipated 

that domain knowledge and additional data from the field operator could help to eliminate 

certain assumptions and reduce uncertainties in various reservoirs and operational parameters. 

In addition, further testing is needed to validate the utility of the proposed methodology for 

practical reservoir management and decision-making.   
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