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Abstract

Several successful methods for shape reconstruction from image sequences have been developed 

using a variational formulation. In this work we utilize the same framework, which leads to a Partial 

Differential Equation (PDE) describing the motion o f an initial surface to a refined surface that is a 

better match to the input images. Motivated by the primary goals o f reconstructing the object and 

the parameters to a reflectance model, we take advantage o f known lighting conditions in the error 

measure. In particular, we assume that there is light variation, due to object rotation relative to the 

light source, allowing the recovery o f shape in both textured and textureless regions. Additionally, 

we propose a method to filter out specular highlights, which allows the recovery o f surfaces having 

non-Lambertian reflectance. Following recent work using an explicit surface parameterization, we 

apply the PDE refinement to a deformable mesh.

We test our method using images obtained from an easy to use capture setup. The setup is 

accessible to the average PC user, because the only hardware requirements are a camera, a light 

source, and a glossy white sphere. The capture setup provides images, camera calibration, light 

calibration, and silhouette images to be used in the refinement. The visual hull is used as a starting 

point for the PDE evolution. A t the end o f the refinement, our method outputs a triangulated mesh 

and the parameters o f a Phong reflectance model represented in texture space.

Results on real and synthetic images demonstrate that this method is capable o f recovering the 

geometry o f textureless surfaces, and moderately textured surfaces, but is unstable in the recovery 

o f deep concavities. Several examples on real sequences illustrate the applicability o f our models 

in computer graphics applications, where the recovered objects are composed and rendered under 

novel lighting and view conditions.
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Chapter 1

Introduction

Three dimensional computer graphics models have been widely utilized in the entertainment indus

try, ranging from special effects in movies to the characters and worlds o f immersive 3D games. 

More recently, 3D models are becoming an important part o f heritage preservation and are making 

their way into educational museum content. As a consequence, the virtual heritage objects can eas

ily  be shared and distributed through the Internet. In many cases, the models are manually created 

by artists, but with the increasing use o f 3D models, a large body o f research has focused on more 

automated methods. Many o f these methods rely on images to recover the 3D geometry and/or a 

model o f the scene reflectance.

The automated methods can be roughly broken into two classes: the passive methods and the 

active methods. The passive methods typically use only image data for reconstruction. Within 

this class o f methods falls many o f the so called shape from X methods, including shape from 

shading, shape from silhouettes, shape from stereo, and shape from shadows. In particular, shape 

from silhouette uses silhouette information to reconstruct solid objects, whereas shape from shading 

uses surface shading. One common passive approach is shape from stereo, which uses the image 

position o f a scene point in multiple images to triangulate the depth o f the scene point. The position 

and orientation o f the cameras is commonly required for the shape from stereo methods, but other 

work on the structure and motion problem has shown that the camera position/orientations can also 

be recovered directly from the images. This work on structure and motion offers the potential for 

low cost systems based on a single moving camera to automatically recover the scene structure and 

a color texture o f the scene (such systems are demonstrated in [71] and [67]).

The other class o f methods, the active methods, emit something into the world and use the 

sensed results to reconstruct the environment. For example, sonar sensors, which are commonly 

used for collision detection in robots, detect reflected sound waves. Other active approaches, more 

commonly used for 3D model reconstruction, include laser range finding and structured/unstructured 

light methods. Laser range finders reconstruct a dense depth map by scanning a beam o f light over 

the scene and use triangulation to find the depth o f scene points. The unstructured light methods 

typically project a textured pattern onto the scene, which can then be used with a stereo image

1
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pair to triangulate the depth. This approach reduces the ambiguities in traditional stereo matching, 

especially in textureless regions.

In some applications the 3D models are rendered to produce new 2D images from arbitrary view

points, with the only requirement being that the new images are realistic. This inspired an alternative 

stream o f research, which does not attempt to reconstruct a complete geometric representation o f the 

scene, but rather is focused on reconstructing a representation suitable for rendering novel views. 

These methods are typically referred to as the image-based rendering (IBR) methods.

One example o f IBR is the Lumigraph [32] (or the Light Field [53]), which treats many input 

images as samples o f the light leaving the scene along a given ray. To render a new image, the ray 

associated with each pixel is used to index a representation o f the input images, retrieving the light 

along that ray. Unlike the Lumigraph, view-dependent texture mapping uses a coarse geometry and 

multiple input images [20], At render time, the texture for a given polygon is computed by blend

ing the input images at viewpoints that are similar to the novel viewpoint. Using the nearest input 

images accounts for errors in the geometry, effectively simulating the parallax caused by the under

lying surface geometry. Moreover, the blending o f near images also reproduces specular highlights 

observed in the original input images. A  more compact method for view-dependent texture mapping 

is accomplished by a principle component analysis on the input images, which are first warped to a 

consistent reference frame, as done with Eigen-Textures [65] and dynamic textures [14].

A ll o f the above methods have the potential to ease the creation o f 3D models, or in the case o f 

IBR, to obtain a valid scene representation for rendering synthetic images. Unfortunately, for the 

automatic creation o f general purpose 3D models, no individual method is ideal. Particular imple

mentations o f passive methods, e.g., shape from stereo, are prone to errors on textureless or glossy 

surfaces but are appealing because they are relatively inexpensive. Active methods, such as laser 

scanning, produce accurate dense structure, but the required hardware is fairly expensive and not 

accessible to the average user. A  slightly cheaper alternative to laser scanning is the use o f struc

tured/unstructured light, but additional hardware is still required to project a pattern onto the scene. 

As IBR methods typically retain many images, memory consumption can become problematic. Fur

thermore, IBR methods usually have a limited geometric representation, implying the objects cannot 

cast or receive accurate shadows. On the other hand, some IBR approaches, such as panoramic im

ages, are useful in many practical situations. One example is the use o f panoramic images in real 

estate, where a home buyer can browse panoramas o f available homes via the Internet. A  downside, 

common to almost all the above methods, is that the reflectance or texture is recovered undercurrent 

lighting conditions, implying that renderings are subject to similar light conditions.

In this work, our main focus is on the semi-automated capture o f 3D models from images, where 

the acquisition system has the follow ing properties:

1. The recovered models are applicable for use in typical computer graphics applications.

2. The shape recovery is accurate on a wide variety o f surfaces.

2
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3. The acquisition does not require expensive hardware.

By typical computer graphics applications we mean that the objects should produce renderings with 

realistic shadows, allow for rendering under novel lighting/viewpoints, and be easily composed with 

other synthetic and captured models. The second property is desirable so that a variety o f objects 

may be reconstructed (e.g., uniform material, spatially varying surface properties, etc.). Finally, the 

above hardware requirements ensure the resulting system is also useful for the average PC user.

As a great deal o f computer graphics models are used in the entertainment industry, we do not 

expect an acquisition method to completely replace manual modeling but instead to aid the manual 

creation. That is, we understand that these models may need to be animated or altered by artists to 

achieve a specific effect. Therefore, the recovered models need to be easily manipulated, ruling out 

the image-based approaches, which may be unintuitive or hard to manually modify.

Some o f the active methods, such as laser scanning and active light, directly violate the hard

ware requirements. Other active methods, such as those requiring light variation (e.g., photometric 

stereo), and the passive methods are possible candidates. First, we review these candidate methods 

(Chapter 2). Then, based on the existing literature, we propose a method that attempts to satisfy the 

aforementioned requirements. This method is composed o f the main contributions o f this thesis:

• We present a Partial Differential Equation (PDE) based shape recovery method that utilizes 

known light variation to recover the shape o f a variety o f solid surfaces. The derivation and 

implementation are both based on previous work in the variational formulation o f the image- 

based shape recovery problem. Our contribution comes in the form o f an error function that 

utilizes known light variation and filters out specular highlights, allowing for the reconstruc

tion o f both textured and textureless surfaces. (Chapter 3).

• We have developed a capture system that recovers a 3D triangulated mesh and the parameters 

o f a Phong reflectance model represented in texture maps. This system has been designed to 

be easy to use, and it requires commonly available hardware: a light source (e.g., table lamp), 

a camera, and a glossy white sphere (e.g., painted ping-pong ball) used to calibrate the light 

source. Therefore, the capture system is a practical way o f providing the input to the shape 

recovery method, while satisfying the above mentioned properties (Chapter 4).

We then evaluate the effectiveness o f our capture setup on a variety o f synthetic and real image 

sequences (Chapter 5). These experiments demonstrate that the method is useful for recovering the 

shape o f objects with varying surface properties. Results o f relighting, shadowing, and composing 

several objects in a scene are also presented.

3
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Chapter 2

Previous Work

Shape reconstruction from image(s) is one o f the most active topics o f research in computer vision; 

therefore, it is a topic for which many methods have been proposed. In this chapter we w ill give 

an introduction, and specific classification, to the existing methods and ideas in the literature. This 

review is only a sparse sampling o f the previous work, but it gives a basic understanding o f the 

types o f image information used for shape reconstruction as well as the typical choices for scene 

representation during the reconstruction.

Classification Property Classes
Scene Representation depth/disparity map, 3D triangulated mesh, voxel grid, level set
Lighting Conditions known, constant, accounted for, recovered

Information Used shadows, specular highlights, shading, texture, silhouettes
Surface Material textured, Lambertian, non-Lambertian

Number o f Images Used single, multiple

Figure 2.1; Properties that can be used to classify the previous work, along with some representative 
classes.

In order to present the previous literature in a meaningful manner, it is helpful to classify the 

methods based on a certain property. Some o f the potential properties for classification are given 

in Figure 2.1. One natural property for classification is the type o f representation used in the scene 

reconstruction. Common choices include disparity maps, 3D triangulated meshes, voxel grids, and 

level sets. Other distinguishing characteristics include the type o f image information used, the class 

o f surface materials the method can reconstruct, or other assumptions made by the methods, such as 

known lighting conditions. The type o f image information is typically either surface texture, relied 

upon by some two camera stereo methods, or shading variation, utilized in shape from shading 

and photometric stereo. The class o f surface materials reconstructed can be broadly divided into 

Lambertian/non-Lambertian or textured/non-textured.

A ll o f the above are potential properties for classification, but for this work, we find the most 

natural classification to be the surface representation and the assumed knowledge on lighting con

ditions. We partition the light knowledge into 4 classes: known, the position and strength o f the 

illumination is modeled; constant, the light is unknown, but assumed to be constant; accounted for,

4
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Figure 2.2: The silhouettes from multiple viewpoints restrict the volume o f the recovered object.

the method accounts for light variation caused by object movement relative to the light source; and 

recovered, the parameters o f an illumination model are recovered along with the shape. We also find 

it easier to discuss the shape from silhouette methods separately as they are occasionally used by 

other methods to obtain an initial estimate.

Shape from silhouette uses multiple silhouette images to recover a solid 3D object that produces the 

same silhouette as the object o f interest in the input images (Fig. 2.2). The method takes as input 

a set o f n  binary silhouette images, S u  where a tru e  (resp. fa l s e ) denotes a pixel is w ithin (resp. 

outside) the object, and the calibration parameters associated with the images. The separation o f the 

object from the background is typically accomplished by using background subtraction or by using 

color segmentation on a solid color background. A  3D point x  belongs to the object i f  and only i f  it 

projects inside the silhouette o f each input image:

where P , is the camera calibration matrix for image i and I I  is the projection operator (formally 

defined in Chapter 3).

The best possible reconstruction using only silhouettes is known as the visual hull [49]: the 

reconstructed volume from an arbitrary number o f silhouette images. The visual hull is typically 

a good approximation o f the true scene object, but features that are not observed in the silhouettes 

cannot be recovered. These features are typically indentations into the object. Although it is not 

practical to obtain the actual visual hull, using several images typically produces a volume that is 

close enough.

A  simple method that uses voxels to reconstruct the visual hull was presented by Szeliski [86]. 

A  typical implementation would be to initialize each voxel as belonging to the object and then

2.1 Shape From Silhouette

(2.1)
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projecting them onto the input images to see i f  they belong to the object. A conservative carving 

would carve only those voxels that project to all background pixels in any image. V is ib ility  does 

not need to be accounted for, and in the worst case, each voxel needs to be projected onto every 

input image to determine i f  it is carved or part o f the object. For a particular set o f input images, the 

accuracy o f the reconstruction is limited to the voxel grid resolution.

Another method to reconstruct the approximate visual hull is to extrude the silhouette edges o f 

each input image to get a 3D silhouette cone for each image. These silhouette cones can then be 

intersected in 3D to obtain the visual hull [4]. An alternative method for computing the polyhedral 

visual hull was proposed by Matusik et al. [61]. By projecting the 3D silhouette cone o f an image 

onto the other input images, the polygon intersections are computed in 2D instead o f being directly 

computed in 3D.

Alternative representations, such as the Marching Intersections (M I) data structure [75], have 

also been proposed for obtaining shape from silhouette [87]. The M I data structure contains three 

sets o f rays, one set for each direction o f the 3 principle coordinate axis. The rays in the x  direction, 

are distributed on a lattice in the y  — z  plane; the other two sets o f rays are sim ilarly defined. The 

rays are then projected onto the silhouette images, and the entry/exit points o f the ray with the 

silhouette boundary are computed. The entry/exit points are quickly determined by scan-converting 

the projected line and keeping track o f the pixel locations where tru e  and fa ls e  are crossed. These 

intersection points are then back-projected onto the world rays. Tarini et al. note that this method 

is capable o f producing a more accurate shape than the voxel methods o f similar resolution, while 

making more efficient use o f memory [87],

2.2 Depth/Disparity Map Representation

We now move onto the methods that use a depth/disparity map as their surface representation. There 

is a great deal o f literature pertaining to this representation as depth/disparity maps are commonly 

used in the binocular stereo methods. Most o f the two-camera and multi-camera stereo methods fall 

into the class o f unknown/constant lighting, and they typically rely on surface texture for successful 

reconstruction. The two-camera algorithms commonly deal with rectified stereo pairs, where the 

epipolar lines are aligned with the horizontal scan lines (see [72,29] for details on the rectification). 

The task o f these algorithms is to find the correct matching o f pixels in the left image to the pixels 

in the right image (see Fig. 2.3). Once the matching is obtained, the reconstruction o f the 3D point 

is given by triangulation [33]. As the match is constrained to lie on the same horizontal scan line, 

for each (u;, v) in the left image, a match {ur ,v )  is found in the right image. The change in the u  

direction, 5u = u r — ut, is known as the disparity, and it is inversely proportional to the depth.

Scharstein and Szeliski present a review and taxonomy o f recent two-camera stereo methods, 

suggesting that the algorithms can be broadly classified into local and global methods [78]. The local 

methods basically compare a window from the left image centered around (u i,v )  with a window in
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Figure 2.3: A  pair o f stereo images (left, middle) and the corresponding disparity map (right) com
puted using a standard local window based stereo matching method. Bright values in the disparity 
map indicate features that are close to the camera.

the right image centered around (u r , v). A  search along the scan line is performed to find the (u r , v) 

whose window minimizes a similarity score between the window in the left image. This score is 

dependent on the method, with possible choices including the sum o f squared differences (SSD) 

score, the sum o f absolute differences (SAD) score, or a zero normalized cross-correlation (ZNCC) 

score. The methods are defined as local because each individual pixel in the left image chooses 

a corresponding pixel in the right image, independently o f the neighboring pixels. There is some 

notion o f smoothness, introduced by the choice o f window size, but neighboring pixels are free to 

have widely differing disparities.

In contrast, the global methods formulate the two-camera stereo problem as a global energy 

function over the entire image that takes into account a per-pixel matching cost as well as a per-pixel 

smoothness cost [78]. The matching cost ensures that a pixel obtains a disparity, 5u, that maps it 

to a pixel o f similar color in the right image. The smoothness constraint ensures that neighboring 

pixels have similar disparities, which is typically true i f  the pixels observe the same object. The 

smoothness energy makes the global methods less sensitive to noise than the local methods, but it 

is an NP hard problem to recover the disparity map that gives the global minimum o f the energy 

function [9].

Two camera stereo algorithms typically assume that the scene is Lambertian. With the addition 

o f an extra camera, some o f the problems caused by non-Lambertian highlights can be overcome. 

Bhat and Nayar propose a three camera setup, consisting o f a left, right, and center camera [6]. 

Stereo matching then occurs between one o f 3 possible pairs o f images. I f  the quality o f a match in 

a particular pair is poor, then that pair o f images cannot be used, and one o f the other two pairs o f 

images is used instead. H. Zhang et al. also demonstrate that a trinocular method produces better
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results than a binocular scheme [103]. Kolmogorov and Zabih have also extended their two camera 

global matching algorithm to take advantage o f a multi-camera setting, where they again use graph 

cuts to optimize the error function [43].

Although most o f the two-camera stereo techniques fall into the constant lighting category, some 

can be classified to lie within the accounted fo r  category. Recall that by accounted fo r , we mean 

that the light has changed as a result o f moving the object with respect to the light source. This light 

variation is common in turntable sequences where a single camera is used to capture multiple views 

o f an object rotating on the turntable. The stereo methods that use ZNCC as their cost measure 

roughly fall into this category. ZNCC is a correlation measure for comparing two measurement 

vectors, and in the case o f stereo, the measurements are two local windows. The ZNCC is computed 

by subtracting the mean from the measurement vectors, normalizing them to be unit length, and then 

taking the dot product between the two normalized vectors [22], In this manner, the ZNCC can be 

seen as accounting for light variations [24]. Another example is the theoretically based cost function 

o f Simakov et al. [82]. Their method properly accounts for the light variation on a Lambertian object 

due to object movement with respect to a fixed camera and unknown lighting conditions.

In the known light conditions category, we place the methods o f photometric stereo and shape 

from shading. Although these methods typically recover a surface normal for each pixel, we place 

them in the depth map category, as the normal map can be integrated to obtain a depth map (see 

Frankot and Chellappa [27] for details o f one such method for integration).

Unlike the above mentioned stereo vision, which requires two or more input images, shape 

from shading uses a single image o f a surface with a uniform bi-directional reflectance distribution 

function (BRDF) as input. Assuming a directional light source, and ignoring inter-reflections and 

self-shadowing, the image o f the object is dependent only on the orientation o f the surface. The 

goal o f shape from shading is then to recover the per-pixel orientation that produced the image. 

A  reflectance map, R , which is a function o f surface orientation, is commonly used to encode the 

surface material properties as well as the light conditions. In other words, R  maps an orientation to 

an image intensity (or an RGB color). It is possible that two orientations map to the same intensity, 

so additional constraints, such as smoothness or integrability o f the surface, are then used to compute 

the surface orientation at each pixel [106], The reflectance map needs to be known in advance, so 

typically the object is assumed to be Lambertian; hence, the reflectance map is implied by the light 

direction. Other researchers investigate the use o f non-Lambertian models in their methods for shape 

from shading. One such work is that o f Ragheb and Hancock [74] whose algorithm is capable o f 

iteratively removing the specular component, leaving a Lambertian image which shape from shading 

can then be successfully applied to.

Woodham introduced photometric stereo [94], a method that can recover the per-pixel orientation 

o f a surface without any additional constraints. Instead o f using only one image, Woodham suggests 

using several images o f an object viewed from the same viewpoint but different lighting conditions.
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Figure 2.4: Three input images o f a dog with different light directions and the recovered depth using 
standard photometric stereo.

In the case o f a Lambertian object, three lighting conditions can be used to recover the surface 

orientation at each pixel. Assuming n  >  3 image measurements /<, which were obtained under 

illumination from directional light sources, 1* E SR3, we have a set o f equations o f the form [94]:

nn '  h '11 7lx h
Tl y =

. ̂
. J n  .

The normal n  =  (nXl n y , n z )T can be obtained i f  the light source directions span a 3 dimensional 

space. Actually, the solution vector is the normal times the diffuse albedo, which can easily be 

separated by normalizing the solution vector to be unit length. As the above system o f equations 

is computed individually for each pixel location, photometric stereo can recover a varying diffuse 

albedo. In other words, Eq. 2.2 can be evaluated for each pixel, allowing the surface to be textured 

Lambertian (see Fig. 2.4).

As in shape from shading, photometric stereo can also handle non-Lambertian surfaces. For a 

uniform non-Lambertian surface, the orientation can be obtained i f  images o f a reference object with 

a similar material are available [95]. I f  the surface normals for each pixel o f the reference object are 

known (easy when the reference object is a sphere), then there is a set o f intensity measurements for 

each normal. The orientation on the scene object is then obtained by looking up the surface normal 

with the same intensity measurements over the different set o f illum ination conditions. The idea o f 

using reference objects has been more recently explored by Hertzmann and Seitz [35], who present 

a method that assumes that the BRDF o f the scene object is a linear combination o f the BRDF’s o f 

a set o f reference objects.

W olff and Angelopoulou present a method for recovering the shape o f diffuse objects by using 

another type o f photometric information [93]. This information comes in the form o f two photo

metric ratio images. The photometric ratio images are obtained by using a stereo camera rig to 

capture two stereo pairs, one pair illuminated by each o f two different point light sources. The left 

(resp. right) photometric ratio image is then obtained by simply d ividing the intensity values o f the 

left (resp. right) images. Although the lighting positions are unknown, we place this method in
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the known light category, as the method requires differently illuminated images for the photometric 

ratio. The authors demonstrate that the photometric ratio o f a surface point should be the same in 

the stereo pair, so a traditional disparity search is then used to obtain the disparity map by matching 

the values in the photometric ratio images. The matching o f ratios is shown to improve the stereo 

matching across textureless regions, but it seems that self-shadowing could reduce the effectiveness 

o f the method.

Another interesting approach for shape recovery using multiple images taken under different 

lighting conditions is presented by Magda et al. [57]. The method uses Helmholtz reciprocity to 

overcome problems typical stereo matching algorithms have with view-dependent highlights. For 

any BRDF, Helmholtz reciprocity states that interchanging the incoming and outgoing directions 

should produce the same value. The authors discuss a multi-image system, and they implement a 

two image system: one image is taken with a camera and light source (not located at the camera), and 

another image is taken after switching the positions o f the light and camera. Using Helmholtz reci

procity, the view-dependent effects are stationary on the object in the images. Therefore, traditional 

stereo matching can then be performed on their input images, with the results not being affected 

by specular highlights. In later work, the multi-image system was implemented via a camera and 

light source attached at opposite ends o f a rotating disk [108]. The depth is then recovered from a 

single camera location, which is not restricted to the positions o f the input images. The addition o f 

the extra image pairs allows this method to recover surface normals as well as depth information. 

Whenever the matching fails, for example, in areas with little  surface texture, the recovered normals 

can be used to obtain an accurate shape.

Most o f the discussion so far has concentrated on recovering surface geometry using either 

stereo or shading/photometric variation, but there have also been approaches for merging the two. 

One attempt to merge shape from shading and binocular stereo was proposed by Cryer et al. [16]. 

The authors compute shape from shading and binocular stereo individually on the input images, 

and these individual results are then merged in frequency space. The merging uses the low fre

quency component o f the stereo results and the high frequency component o f the shading results, 

implying that errors in the stereo w ill propagate to the end result. In some sense, the two meth

ods are not cooperating, in that shading cannot make up for errors in the stereo results, or vice 

versa. An alternative method, proposed by Lange, offers a more cooperative approach for merging 

photometric stereo with binocular stereo [48]. Additionally, common sim plifying assumptions on 

reflectance/illumination are lifted from photometric stereo, and a Phong model o f reflectance and 

point light sources are used instead.

Falling in the category o f recovered illumination conditions is the work o f Brooks and Horn, 

which estimates the light source direction as well as the surface orientation in shape from shading 

[10]. Another example is the work o f Hayakawa, who proposes a method to recover the light source 

direction and surface normals in photometric stereo using a rank constraint to factor the observa-
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tion matrix [34]. Unfortunately, this reconstruction is only known up to an arbitrary 3 degree o f 

freedom transformation o f the light sources and the normals. The transformation is known as a 

generalized bas relief (GBR) transformation, which is discussed in detail by Belhumer et al. [5]. 

Another method for surface and light source reconstruction using photometric stereo is presented by 

Georghiades [31], In his work, a simplified Torrance-Sparrow reflectance model is used, enabling 

the reconstruction o f a non-Lambertian surface and the light sources up to a binary ambiguity.

Another work that recovers light sources while using a depth map as the surface model is the 

work o f L. Zhang et al. [104]. Their method is initialized by tracking a few feature points over 

an input sequence. These tracked points give the camera parameters for an orthographic camera, 

the feature points in 3D, and the surface normals at the feature points. These points and surface 

normals are used to initialize the estimate o f light conditions, which is assumed to be a directional 

light and ambient term per image frame. The dense per-pixel depth and normal computation is 

then constrained by the recovered light and camera parameters. The authors note that the dense 

3D points are inaccurate in textureless regions but the normal information is accurate. So instead 

o f using the 3D surface points, the dense normals are integrated to obtain a depth map, and the 

resulting depth map is aligned with the 3D coordinates o f the sparse feature points. This method is 

unlike the typical photometric stereo methods presented above, where the camera is stationary and 

the lighting is changed. In this case, the object is rotated in front o f a stationary camera and light, 

and the intensity variation on a surface point in 3D is used to obtain the photometric information and 

hence the surface normal. As a general capture method, this can be seen as more convenient than 

photometric stereo because only one physical light source is needed.

2.3 3D Mesh Representation

Triangulated surface meshes are a common representation for 3D objects in computer graphics, and 

several researchers have proposed methods which use this representation for shape reconstruction. 

Fua and Leclerc note that this representation allows for merging o f multiple types o f information, 

e.g., shading/texture, as well as being an easy representation to take vis ib ility  into account [28]. 

These methods typically take some input mesh as a starting point and refine this mesh according 

to some error measure, which produces a mesh that is consistent with the images. Aside from the 

choice o f error metric, some o f the other issues involved when using a mesh based representation 

include the following: Should the error be measured on the mesh, or in the images? Should the tr i

angles in the mesh be regular sizes, or permitted to have varying sizes/shapes? For the first question, 

there is no straight answer. Even though recovering a mesh that best matches the input images is 

the goal o f the reconstruction, it may be easier to implement a method that measures the error on 

the surface. For the second issue, it may seem ideal to have a mesh with irregular sizes, allowing 

a high resolution reconstruction only when the underlying surface is detailed, but it may be more 

complicated to implement than the alternative method. In this section, we see that the existing mesh
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based methods explore the above options, as well as many other possible directions.

We begin our review in the category o f constant lighting, which does not necessarily follow 

the chronological order o f appearance o f the mesh based methods. As the mesh based methods are 

trying to find a model that matches the input images, an error measure denoting the similarity o f the 

model to the scene must be chosen. A  common error measure for Lambertian scenes is a variance 

based color consistency measure. For a point on the surface o f the object, the colors from all cameras 

in which the point is visible are collected; the error metric is the variance o f these colors. Zhang and 

Seitz use this error measure on sample points within each triangle o f the mesh, and they assume that 

the initial estimate encloses the true scene object [105]. The error at each o f these surface points is 

used to compute a displacement for the surface point. I f  the error is above some threshold, then the 

current point is assumed to be far from the true surface, and the displaced point lies in the direction 

o f its negative normal, essentially shrinking towards the true object (given the assumption that the 

initial object encloses the true scene). Otherwise, when the error is below the threshold, a gradient 

based method is used to move the point towards the true surface. Given the new displaced points, the 

vertices o f the triangles are then moved to best approximate this displacement. Triangles that cannot 

fit the displacement o f its sample points are then subdivided so as to better fit the sample points. 

Mesh regularity is ensured using Garland and Heckbert’s mesh simplification algorithm, which also 

reduces the resolution o f the mesh in regions with little geometric detail.

A  similar approach that is developed theoretically using Partial Differential Equations (PDE’s) 

is presented by Duan et al. [21]. The error measure is essentially a variance based consistency 

measure, which is computed on a tangent plane at the mesh vertices, instead o f using sample points 

on the triangles. The iterative update, obtained as the solution to the PDE, moves the vertices in the 

direction o f their normal with a speed that is dependent on the current error, the gradient o f the error, 

and the curvature o f the surface. The speed also includes a constant term that effectively forces the 

mesh inwards when the error function is non-zero and the current surface has little gradient/curvature 

information. This force is similar to the constant shrinking displacement used by Zhang and Seitz 

[105]. The search is initialized with a low resolution mesh that encloses the object, which is sub

divided as needed during the optimization. Unlike many other mesh based approaches, their mesh 

implementation also handles topological changes, allowing the recovery o f objects having different 

genus than the initial shape.

Isidoro and Sclaroff present a texture space method for recovering a triangular mesh [37], where 

the texture space is a 2D parameterization o f the mesh. For a given mesh, the best texture image is 

obtained by warping the input images to texture space and taking a weighted average. The warping 

uses the 3D geometry to map visible triangles in the input images to the corresponding triangle in 

texture space. I f  a triangle is visible in a particular view, then the weighting for that triangle in the 

view is based on the projected area o f the triangle in that image. Otherwise, the weighting for that 

view is zero. The error in texture space is easily computed by warping the input images to texture
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space, subtracting the current texture image, and taking a weighted average. The refinement is ac

complished by sampling the points on the surface which have large error and performing an epipolar 

search to find a more consistent surface point. Their estimate is initialized using the visual hull, so 

the search for a more consistent surface point is limited by the visual hull. Instead o f directly mov

ing these randomly selected surface points to their more consistent location, the recovered offsets 

are used to determine a free-form deformation that can be applied to the entire mesh. In addition 

to the contribution o f the refined points, the resulting free-form deformation is also influenced by a 

silhouette preserving contribution. That is, points which are believed to belong to the visual hull are 

used to restrict movement in the areas o f the current model which are potentially correct. Again the 

Garland-Heckbert algorithm is used to refine the mesh. The above process is iteratively applied to 

obtain the final reconstruction.

Vogiatzis et al. take a Bayesian approach to formulating the mesh reconstruction problem, and 

then they use simulated annealing to optimize the mesh [90]. Unlike the mesh methods presented 

so far, the error function is computed as a sum o f the error in every pixel in every image. To 

compute the error in image space o f image i, with calibration P j,  all input images are warped to the 

image plane o f / ,  using P , and projective texture mapping the current mesh. The average o f these 

warped images, taking visibility into account, is an image IK;. The reconstruction seeks to make 

these synthetic images, IP,, best agree with the corresponding input images, f .  Mesh regularity is 

imposed in the prior, which tries to keep the surface locally planar, while preferring a mesh with 

a smaller number o f vertices. In order to optimize with simulated annealing, the authors describe 

the mutations used in their work: some mutations move a vertex in a random direction, some move 

a vertex in the direction o f the gradient, and some move a vertex along further distances using 

a correlation based search. Other mutations are targeted at the smoothness (prior) and consist o f 

swapping/removing edges or introducing new edges.

An alternative method proposed by Vogiatzis et al. attempts to reconstruct the depth along the 

surface normal from an initial low resolution mesh [91]. The depth is sampled on the triangles o f 

the mesh, and the problem is formulated similar to the global stereo methods. For each sample on a 

triangle, there is an energy that attempts to find the best depth, and there is also a smoothness term 

suggesting that the neighboring samples should be at similar depths. The smoothness constraints are 

extended across triangles to ensure a consistent looking mesh. The depths are optimized by Loopy 

Belief Propagation, in a multi-resolution subdivision o f possible depths. The authors note that the 

advantage o f such a representation over standard disparity maps are the ease at which it handles 

many images and solid objects.

Although most o f the above works are essentially iterative methods used to refine the surface, 

others have proposed more direct methods. One such example is the work o f Esteban and Schmitt 

[22], who propose a ZNCC carving approach. As discussed in the disparity/depth map category, 

this method is classified to belong to the accounted fo r  light category because it uses the ZNCC.
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Given an initial starting mesh obtained from shape from silhouette, the method first detects vertices 

on the mesh that are not on the true surface. This is done using a robust correlation score on the 

tangent plane to the object at the vertex. Each vertex that fails the correlation test is assigned a 

carving direction: the direction is aligned with the line through the vertex and the camera center o f 

the median camera that the vertex is visible in. A  correlation method that uses the nearest cameras 

and filters out poor camera pairs is used to find a distance to carve in the carving direction, with the 

search being limited by the initial shape. The authors note that the method cannot find a carving 

depth in regions where the surface is lacking texture.

We are unaware o f other mesh-based methods that take into account light changes that are a 

result o f a moving the object with respect to the lighting. The error metric o f Simakov et al. [82], 

may directly extend to a mesh based implementation.

Known as one o f the original mesh-refinement papers [105], is the work o f Fua and Leclerc 

[28], which falls into the known illumination classification. The authors use a triangulated mesh to 

combine stereo and shading information. They assume that the light direction is known in advance, 

and that this lighting is fixed over the input images (i.e., the camera is moving with respect to the 

light and the object). They propose an error function that is a linear combination o f a stereo term, a 

shading term, and a smoothness term. The stereo term is essentially the variance measure mentioned 

earlier, evaluated at equally spaced sample points on each triangle. Given the known light conditions 

and a current mesh estimate, the albedo at a surface point can be obtained. The albedo is then used 

in the shading component o f the error function, which tries to ensure that neighboring triangles have 

similar albedos. The smoothness term essentially promotes local planarity o f the surface. For each 

triangle, the shading term is weighted based on how well the triangle is approximated by a single 

albedo. On the other hand, the stereo term is inversely weighted. This ensures that the stereo term 

is active when texture is available; otherwise, the shading term is dominant. The optimization is 

performed using a conjugate gradient based method, which, as pointed out by the authors, requires 

an accurate starting position. For this reason, the mesh is initialized with standard stereo data.

Yu et al. present a method for recovering the shape o f a uniform non-Lambertian object being 

illuminated by an arbitrary number o f known directional sources [99]. Taking advantage o f the mesh 

based representation and the known lighting, they properly model occlusions as well as shadows. 

They assume that the object to be reconstructed is star-shaped and parameterize their mesh using 

spherical coordinates. Movement is constrained to be along the radial component. Using an initial 

input mesh (i.e., shape from silhouette), they interleave the fitting o f a Phong model o f reflectance 

with the mesh refinement. A fter the reflectance model has been fit, the refinement is accomplished 

by optimizing the parameters o f the mesh to minimize the difference between the model and the 

images. A  multi-resolution and extrapolation scheme is used to speed up the optimization.

Although none o f the discussed methods directly recover the light conditions, a mesh obtained 

from one o f the above methods captured under a stationary object and moving camera may be usable
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Figure 2.5: An example o f voxel coloring, where the cameras are arranged in a circular pattern 
above the dog. The blue plane denotes the sweeping plane moving downwards through the volume. 
The consistency o f each voxel is checked only once.

in other algorithms that estimate lighting given shape (e.g., the work o f Nishino et al. [66]). One 

method that is somewhere between the recovered lighting category and the accounted fo r  lighting 

category is the method o f Yu et al. [100]. Their method recovers the shape along with a com

bined model o f reflectance and illumination. The combined model is called a View Independent 

Reflectance Map (VIRM ), and as the name suggests, it is related to the concept o f a reflectance map 

used in shape from shading. The V IR M  is a representation o f a uniform surface material (which may 

be non-Lambertian) lit by a particular illumination. The view-dependent effects o f the material are 

encoded in the V IRM , but only for the illumination at the time o f capture. Furthermore, the VIRM  

can be visualized on other geometries, i.e., the material o f the scene object is viewed on the other 

geometry subject to the illumination in the original capture. Unfortunately, the lighting/material 

properties in the V IR M  cannot be separated. The recovery o f shape using the V IRM  is similar to the 

authors other work, mentioned above [99], in that the VIRM  estimation and shape refinement are 

interleaved.

2.4 Voxel Based Representation

As mentioned in the shape from silhouette review (Section 2.1), voxel based representations can be 

used as a straightforward method to obtain the visual hull. Voxels are simply carved away from an 

initia l solid volume to reveal the visual hull. Voxel based representations have also been used for 

reconstructions that rely on cues other than silhouettes. For example, Seitz and Dyer introduced 

voxel coloring [80], which is a method that attempts to find a set o f voxels that could have produced 

the colors observed in the images. Ideally, under the Lambertian assumption, with a stationary object 

relative to the light source(s), a point on the surface o f the object should project to the same color 

in all input images that the point is visible. In the presence o f sensor noise and calibration errors, 

the point should project to a set o f colors that are similar, taking into account any potential sources 

o f error. I f  instead o f a point we consider a voxel, a similar reasoning holds, although instead o f 

projecting to an individual pixel, the voxel w ill project to a set o f pixels. When these pixel sets
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agree with a consistency measure, the voxel is thought to be part o f the surface, and the voxel is said 

to be consistent. One possible consistency check is to threshold the variance o f the observed pixel 

colors. The final surface should be composed o f a set o f voxels that are consistent. The process o f 

voxel coloring is then to carve away the inconsistent voxels until only the consistent voxels remain. 

The remaining volume is referred to as the plioto hull, and it is the maximal set o f voxels that is 

consistent with the given images [45].

To avoid checking the consistency o f a voxel whenever vis ib ility  changes (i.e., a consistent voxel 

becomes visible in another view when an inconsistent voxel is carved), Seitz and Dyer develop an 

algorithm to work on a subset o f potential camera configurations. The constraint on cameras is that 

no surface point can lie within the convex hull o f the camera centers [80]. This simple constraint 

allows the algorithm to check the consistency o f each voxel only once, by visiting the voxels in a 

particular order (see Fig. 2.5 for an example). The restriction on camera placement has since been 

removed [44, 17].

Instead o f simply using a consistency check on the pixels that observe the voxel, Zabulis and 

Daniilidis propose the use o f a correlation score [101]. For a pair o f cameras, they optimize a 

correlation score on the tangent plane o f each voxel by searching the space o f possible surface 

normals. Changing the surface normal affects the tangent plane, and the true surface normal should 

produce the tangent plane having the best correlation score. A  small set o f k cameras having the 

best pairwise correlation scores is found and used to refine the surface normal estimate. Unlike the 

previously mentioned algorithms, the surface is not carved away nor is v is ib ility  explicitly accounted 

for. Instead, after a voxel’s score/normal have been computed, the surface is extracted by a 3D 

operator that is based on the Canny edge detector.

Some approaches have been proposed to handle non-Lambertian surfaces in voxel coloring [13, 

97, 8]. Chhabra [13] and Yang et al. [97] propose similar methods that allow a structured variation 

on the observed colors. The argument is similar to what follows. When the camera is moving and 

the lighting is constant, the colors observed on a surface point can be represented as the sum o f 

two components: a constant diffuse color and a view-dependent specular component. Assuming a 

white specular color, the observations should be on a line in RGB space, where the line goes from 

the diffuse color to the color o f the light. I f  the observed colors lie near this line, then the voxel 

is part o f the surface. This approach w ill work with some shiny surfaces, but w ill not work with 

m irror like surfaces. For such surfaces, an alternative specular approach o f Bonfort and Sturm is 

more appropriate [8].

Other researchers propose to use the voxel space as a location to merge stereo data [24, 60, 23]. 

Matsumoto et al. use a voxel based approach to obtain the visual hull as an initial estimate, and 

then they perform a stereo matching to refine the shape [60]. For each input image, a partial surface 

facing the image is extracted by searching along a ray from the camera center through the voxel 

volume to find a voxel on the ray that minimizes a matching score. This voxel is then assumed to
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belong to the surface. The score o f each voxel is computed using a SSD consistency score in the 

neighboring k  images. They do not explicitly handle occlusions, but instead they assume that a point 

is visible in some set o f k  adjacent images. After the partial surfaces have been computed, a vote 

is cast for the voxels behind the partial surface. The final voxel volume is extracted by thresholding 

the votes o f the voxels in the volume.

In a similar manner, the methods o f Esteban and Schmitt also use a voting scheme [24, 23J. In 

their case, for an input image / ;  they use the neighboring k  images and a robust ZNCC score to find 

the potential depth o f the surface along a ray through every pixel in I f  the score at the potential 

depth is above a correlation threshold, then a vote is cast for the voxel containing the point. A 

triangulated mesh is then used to extract the surface from the voxel volume. The triangulated mesh, 

a 3D snake, moves along a linear combination o f the gradient o f a smoothing energy, the gradient o f 

a silhouette energy, and the gradient o f the voxel volume.

Other voxel based approaches require known lighting information [92, 89]. Weber et al. [92] use 

a turntable and capture images o f a scene object lit by three different light sources, whose positions 

are calibrated in advance. Instead o f using the standard variance consistency measure used to carve 

voxels, their error metric incorporates the light information and is valid for Lambertian scenes only. 

Given the light source positions, the error metric is taken as the residual after fitting a normal and 

diffuse albedo to the observed image intensities (somewhat similar to the photometric stereo method 

presented in Eq. 2.2). During the carving process, the known light positions allow for shadow 

information to also be computed. Therefore, only visible and lit image points are used in the error 

metric.

Another voxel method utilizing illumination variation is the work o f Treuille, Hertzmann, and 

Seitz [89]. Their work extends the example based photometric stereo approach o f Hertzmann and 

Seitz [35] (briefly reviewed in Section 2.2) to a voxel based representation. Again, the method 

requires images o f calibration spheres having similar material properties as the scene. In the case o f 

a single material, the measurements observed on a voxel are used to look up an orientation with the 

most similar observed colors. I f  the colors corresponding to the looked up orientation do not fit the 

observed colors well, then the voxel is carved. The multiple material method is similar, except that 

a linear combination o f the different material colors at a particular orientation is fit to the observed 

colors.

2.5 Level Set Representation

We now move onto shape reconstruction algorithms that use level sets as their representation. We 

w ill focus our discussion on the methods developed for multi-camera reconstructions o f solid ob

jects, therefore we w ill not consider the use o f level sets for disparity/depth reconstructions.

In the level set formulation, instead o f some explicit parameterization o f the surface, the surface 

is represented as the level set o f an im plicit function (e.g., y, z ) =  0). For a solid object, <I> also
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Figure 2.6: Evolution o f a level set using a shape from silhouette energy.

characterizes the points belonging to the object as those points for which <I> <  0 and those outside the 

object as <I> >  0. Level set methods are the numerical methods to solve surface evolution (described 

by PDE’s) using the level set representation. The existence o f such numerical methods and the 

ability o f level sets to change topology during their evolution are two appealing characteristics o f 

this representation.

Faugeras and Keriven were the first to use level set methods for multi-camera solid object recon

structions [25], They took a variational approach and formulated the shape from multiple images 

problem as the reconstruction o f a surface that minimizes a stereo matching cost, integrated over 

the surface. Following fundamental principles in variational calculus, the functional gives rise to a 

Partial Differential Equation (PDE) that describes the motion o f a surface as a function o f time. The 

desired surface, the one that minimizes the functional, can be obtained by evolving an initial surface 

through the motion described by the PDE (see Fig. 2.6). A t this point, an explicit representation, 

such as a triangular mesh, could be used (an example o f this approach was given in Section 2.3, 

namely [21]), but instead the authors used the level set methods [69].

Faugeras and Keriven originally used an accumulation o f pairwise cross-correlation scores, mea

sured on the tangent plane o f the object, as their matching cost. Other researchers have proposed 

different error measures and use PDE’s similar to those obtained by Faugeras and Keriven. Slabaugh, 

Schafer, and Hans use a simpler variance based consistency measure, which is computed over image 

regions that observe a particular voxel [83], Jin et al. propose another error measure to overcome 

specular reflection [41]; their measure takes the median score over all possible two image ZNCC 

scores computed on a surface patch.

In later work, Jin et al. propose another variational formulation o f the multi-camera stereo prob

lem [40]. A new matching cost that is valid for non-Lambertian scenes is also presented. The 

previous matching costs projected a surface patch on the tangent plane o f the object into multiple 

views, and then used a variant o f cross-correlation o f these image measurements for the matching 

cost. Instead o f performing a pairwise correlation, the new measure first flattens the image measure

ments into the columns o f a matrix, denoted the radiance tensor. Their error measure is based on 

the rank o f this matrix. This cost function should also account for lighting changes due to object 

motion, so we classify this method as belonging to the accounted fo r  class.
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Some work with the level set representation involves assumptions o f known lighting. For ex

ample, Jin et al. propose a variational method that takes advantage o f a single known light position 

in order to reconstruct solid objects [39]. They propose partitioning the object into two regions: a 

textured region and a textureless region. Their method then operates on textureless regions, while 

the correlation based method o f Faugeras and Keriven can be used on textured regions. As the 

lighting is assumed to be fixed and the camera moving, the color o f a point (textured or not) in two 

images should appear the same. The textureless regions are then assumed to have uniform albedo, 

making the reconstruction similar to shape from shading, with the primary difference being the use 

o f multiple images o f the object.

In addition to recovering the shape o f textureless scenes, later work by Jin et al. also recovers 

a model o f the illumination [38]. This work is an extension o f their previous variational work in 

stereoscopic segmentation [98] and stereoscopic shading [39]. Stereoscopic segmentation attempts 

to segment foreground objects from the background using multiple images, essentially recovering 

the approximate visual hull in the process. The extended work assumes that the light can be modeled 

as a collection o f point sources, an ambient term, and a uniform hemispherical term. The evolution 

o f the surface and the estimation o f the illumination parameters are then interleaved to obtain the 

final reconstruction. As the albedo o f the object cannot be separated from the light source strength, 

the albedo is assumed to be white. In addition to automatically segmenting the object from the 

background using multiple images, the use o f shading information should allow for concavities to 

be recovered.

2.6 Discussion

With each o f the surface representations comes advantages and disadvantages. In the case o f shape 

from shading and photometric stereo, the depth/disparity map representation is the most natural 

representation. For binocular stereo, the depth/disparity map is also an appropriate choice as there 

is little to gain by a voxel or mesh based representation.

In the case o f multi-image reconstructions, the depth/disparity map becomes less appealing. 

A  single depth map could be used, but then the reconstruction may become biased to the chosen 

camera. Alternatively, i f  a depth map is reconstructed for each camera, then merging multiple rep

resentations and ensuring consistency among the data can become complicated. In either approach, 

visibility constraints can also become problematic.

The problems with visibility are easily overcome by choosing one o f the alternative representa

tions. Successful methods for multi-image reconstruction using each o f these world centered repre

sentations have been discussed, but mesh and level set representations have some advantages over a 

voxel representation. One advantage is that smoothing or regularizing terms can easily be integrated 

into a mesh or level set. Another advantage is that the mesh and level set representations give read

ily  computable surface normals. As the surface normal is directly tied to the surface shading, the
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normal can be exploited when the lighting is known. Nevertheless, methods have been developed to 

take advantage o f known lighting information while using a voxel representation [92, 89].

Ignoring the representation used, some observations can be made regarding the use o f light in

formation in the shape reconstruction process. Firstly, the methods that assume unknown lighting, 

or do not directly require light knowledge, are the most applicable to outdoor and uncontrolled envi

ronments. These methods typically perform best when the scene is sufficiently textured. Secondly, 

using light variation allows for the shape reconstruction in textureless regions. Unfortunately, the 

methods that introduce light variation are typically limited to laboratory settings, where light vari

ation is obtained by moving a calibrated light source, by using several physical calibrated sources, 

or by moving the object and fixing the position o f the source. Thirdly, some knowledge o f the i l

lumination conditions (or at least light variation) is necessary to recover reflectance parameters o f 

the surface. Even in the recovery o f the surface albedo, some knowledge o f the light is necessary to 

undo the shading.

These are the observations that influenced the design o f our reconstruction method. Specifically, 

we have chosen a variational approach, which is implemented using the mesh representation. Fur

thermore, we require known light variation to aid the reconstruction o f textureless surfaces and to 

fit the reflectance parameters. A  major influence o f the design o f the capture system presented in 

Chapter 4 was to provide this light variation, while keeping the capture setup as simple as possible.
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Chapter 3

Theoretical Fundamentals

In this chapter we review the essential background pertaining to image formation and reflectance 

modeling, followed by a description o f the central problem o f this work: the shape reconstruction 

problem. After our formal definition o f the general shape reconstruction problem, we use existing 

variational methods to formulate a solution. The general reconstruction solution is then specialized 

to work with textured Lambertian objects, followed by a method for dealing with specular objects. 

The particular contribution o f this work is to utilize known light conditions in the reconstruction 

process, which allows the recovery o f surfaces with both textured and textureless regions.

3.1 Image Formation

In this section, the necessary background o f the image formation process as well as some definitions 

o f terminology used throughout this work w ill be described.

3.1.1 Definitions

As this work is rooted in computer vision, a set o f images w ill be the primary input. Input image 

i w ill be denoted as and the RGB triplet at row v and column u  in image I,  w ill be denoted by 

Ii(u, u). The red, green, or blue channel o f an image is denoted by I f ,  I f ,  I f ,  so that I f (x i ,v )  means 

the red component o f location (u, v)T  in image i. Similarly, in the context o f material properties, 

coefficients for a particular color channel w ill be denoted with a superscript, e.g., cr ,c!l,cb or the 

more general cA. Bilinear interpolation is assumed for color retrieval at location ( u ,v ) T , for which 

u or v is not a natural number.

The pinhole model o f a perspective camera w ill now be detailed. This is followed by an im

provement o f the model to compensate for radial distortion. The camera model gives a geometrical 

meaning o f what is observed at a given pixel location. We then present a brief review o f surface 

reflectance models, which gives a basic understanding o f why a pixel at coordinates (u ,v ) T is a 

particular color.
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3.1.2 Pinhole Camera

In the pinhole camera model, light from the portion o f the scene in front o f  the camera passes through 

an infinitely small focal point and intersects the image plane, giving a 2D image. As illustrated in 

Fig. 3.1, the projection o f a 3D scene point is found by intersecting the line through the scene point 

and the focal point with the image plane, which in this case is the plane z — —f .  The size o f an 

object in the image is proportional to the focal length o f the camera, / ,  and inversely proportional to 

the distance o f the object from the focal point along the optic axis. By convention, the image plane 

is assumed to be in alignment with the x-y axis o f the cameras coordinate system. Therefore, the 

optic axis is aligned with the z-axis, and the depth o f a point is given by its 2 coordinate.

The general pinhole camera allows for an arbitrary placement o f the camera in a world coordinate 

system and an affine parameterization o f the image plane. The position and orientation o f the camera 

are given by a 3D Euclidean transformation consisting o f a 3 x  3 rotation matrix R  and a 3 x 

1 translation t.  Using homogeneous coordinates, the perspective projection o f a 3D point m  =  

( x , y , z , l ) T  is given by [33]:

The 3 x 4  matrix P  is the projection matrix associated with an image taken by a camera. I f  the 

matrix P  is known for a particular image, the image is said to be calibrated. The matrix K  holds the 

intrinsic parameters o f the camera including the focal length, f x , f y \ the skew, a ; and the principle 

point, (cx ,c y)T . A  non-zero skew, a , suggests non-rectangular pixels, but the pixels are typically 

rectangular so we w ill restrict its value to be zero [33]. The final image coordinates, (u ,u )T , are 

obtained by dividing the coordinates o f the point by the homogeneous component:

Figure 3.1: The geometry o f the pinhole projection model.

/  x \

(3.2)
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Radial Distortion

In real cameras, light does not pass through a single infinitely small focal point. Instead, there is a 

circular opening with finite diameter letting light through, and a lens system is used to focus the light

on the image plane. The lens is not directly modeled by the pinhole camera, so real cameras tend

to deviate from the pinhole model. One common form o f deviation is radial distortion: distortion 

as a function o f the radial distance from the center o f the lens [33]. The radial distortion can be 

expressed as a function o f normalized image coordinates, where the normalized image coordinates 

(•t,„ y n , 1)T for a point m  =  (x, y, z, 1)T are:

^  y n j  =  n([ R  t  ]m ) (3.3)

Following Zhang [107], radial distortion is approximated using two terms:

x'n =  x „ ( l  +  fci?-2 +  k2lA )
!/n =  V n ( l  +  k l r 2 + k27A j

Where ?• =  \ A -2 4- y,2, is the radial distance, and k i ,k 2 are the radial distortion coefficients. The 

point (x'n ,y'n , 1)T then undergoes the transformation by the intrinsic parameters K  to obtain the 

image coordinates.

I f  image I  was taken with a camera having radial distortion coefficients ki  and k2, then the image 

I '  with no radial distortion and the same intrinsic and extrinsic parameters as I  can be obtained by 

a simple rectification.

3.1.3 Reflectance Models

The perspective camera model gives geometric information about which pixel a scene point w ill 

be observed in, or conversely which ray in world space corresponds to a pixel. The other form o f 

information available at an image pixel is its color, which is determined by the interaction o f light 

with the surface point observed by the pixel. Reflectance models offer a way o f understanding the 

interaction o f surface and light. Some o f the reflectance models used in the literature w ill now be 

discussed.

The appearance o f an object is determined by the interaction o f the surface o f the object with 

the current illumination conditions as well as the relative position o f the viewer with respect to the 

object. This interaction o f light on the surface is commonly modeled with the five dimensional 

bi-directional reflectance distribution function (BRDF):

f*(0u<t>i,0o,4>o) (3-5)

The BRDF is a local property o f a surface, defined on the upper hemisphere about the surface normal 

o f each point on the object (see Fig. 3.2 for an illustration o f the parameterization o f directions at 

a point). Given a wavelength o f light, A, the BRDF returns the fraction o f light reflected from a
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=  ( M )

Figure 3.2: Parameterization o f a direction in the upper hemisphere at a surface point p , with normal 
n.

particular incoming direction, tu,- =  (0 ;,^ ,) , in the outgoing direction, u>0 =  (90,<p0). Instead o f 

representing the BRDF as a function o f wavelength, the 5 dimensional BRDF is often approximated 

by three separate 4D functions, one for each o f the color channels: / r , f 9, and f b.

I f  there is only one light source, modeled as either a point light source or directional source, the 

color observed on a point is given by [1]:

E x (90,cj>0) =  / ^ i . & A . ^ O ^ i . M c o s ^ j )  (3.6)

where U i  =  ( 6 i , 4> i ) r  is the direction from the surface point to the light source, and f A(0j, <A,) is the 

amount o f light arriving at the surface. Note that this formulation allows for the light source to be 

either a directional source or a point light source. In the case o f a directional source, the amount o f 

light reaching any lit surface point is not dependent on the distance from the source. On the other 

hand, for a point source, £x (9i,4>i) encodes the degrading energy arriving at the surface, which is 

a function o f the distance from the surface patch to the source. This fa ll-o ff can be modeled as 

being inversely proportional to the squared distance from the surface patch to the source [26]. The 

contribution o f a finite number o f light sources (which are visible from the surface) to the outgoing 

radiance at uju can be computed as a sum o f the individual contributions. In the lim it, all light in 

the environment (reflected and direct light) can be taken into account by integrating Eq. 3.6 over the 

upper hemisphere o f the point, but this integration is typically too complicated for many Computer 

vision and Computer graphics applications.

By considering a single light source and ignoring the indirect light, we have simplified the shad

ing model. Another dimension for simplification lies within the BRDF itself. Many researchers have 

developed simpler parametric functions that describe the BRDF [47, 55,7, 70, 88]. The simplest o f 

these models is to assume that the BRDF is constant: k,i=(kd , k 9d, k bt)T . This results in the Lam

bertian model, where light arriving at a surface from a particular direction is reflected equally in all 

directions. The Lambertian model effectively models matte objects, such as clay, where the shading 

observed is a result o f the foreshortened contribution o f the light source (i.e., as a result o f cos(0;)). 

Substituting the Lambertian BRDF into Eq. 3.6, the color observed on the surface is then:
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E x = k x cos(8i)ex (8i , fa )  (3.7)

Although the Lambertian model successfully models matte materials, shiny objects exhibit a 

view-dependent reflectance that strays from Eq. 3.7. For instance, shiny surfaces tend to reflect more 

light in the perfect reflection o f the incoming light about the surface normal. With such surfaces, 

when the view direction (i.e., the output direction) is close to this perfect reflection direction, the 

surface has a highlight. This specular reflectance is typically modeled as an additive component to 

the Lambertian model. Such specular models include the Phong [70], Blinn-Phong [7], Torrance- 

Sparrow [88], and the Lafortune model [47]. For instance, combining Phong’s view-dependent 

component with the Lambertian model in Eq. 3.7, and plugging the BRDF into Eq. 3.6 gives the 

following:

E X =  { k x +  k ° cos^ y ,. ) c o s { ()i ) <>^ei ,4>i ) (3 .8)
COS^ujJ 

Phong

where 6r is the angle between the reflected incoming direction and the outgoing direction, k s =  

(kr„ k ° , k baF  is the specular color, and n  is the specular exponent. A  larger value o f n  signifies a

sharper specularity, whereas a smaller value o f n gives rise to a specularity observed on a surface

point through a wider range o f views.

Lewis points out that the Phong BRDF does not obey the natural properties o f a true surface 

[55]. More specifically, Lewis notes that the Phong model is not energy conserving1 nor does it 

obey Helmholtz reciprocity2. Nevertheless, the Phong model has been commonly used in Computer 

graphics because o f its simplicity.

Up until now, the simplified shading models we have discussed ignored the contribution o f the 

indirect light. In its simplest form, the contribution o f indirect light can be modeled as another 

additive component. The conglomerate Lambertian, specular, and ambient shading model becomes 

[26]:

E x = (kx cos (^) +  k x cos(6r )n)£x (8i , fa) +  k x ax (3.9)

where ax is a constant denoting the amount ofambient light o f color A present, and k „  =  (k" ,k-[ ,k")T 

is an ambient coefficient o f the surface material.

Instead o f modeling the reflectance in the local coordinate frame o f a surface point, Eq. 3.9 is 

typically modeled using unit length vectors in a common coordinate system (Fig. 3.3). Letting n 

be the surface normal at a point, 1 be the direction to the light source, and v  be the view direction 

(analogous to the outgoing direction), Eq. 3.9 becomes:

E x =  (kxt {n ■ 1) +  k x {v  • r ) " ) ( A +  k xa x (3.10)

1 Energy conserving means Ihat the total outgoing light does not exceed the total incoming light
2HcImhoItz reciprocity implies / A(u>j,uj0) =  / A(u)0,u>j) for all t*j0 , oj,
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Figure 3.3: An illustration o f the unit length vectors used in the shading computation.

where r  =  2 n (n  • 1) — 1 is the perfect reflection o f the incoming light vector about the normal. We 

have also dropped the angular index o f £x , as here we consider only one source o f interest. 

Replacing k x (v  • r ) ' “ in Eq. 3.10 with fcx (n  • h ) '“, where h  is the half-angle:

the Phong model becomes the Blinn-Phong model. In this work, we use Equation 3.10 with the 

Blinn-Phong substitution as our shading model.

Throughout this work, the information from a digital image w ill be used as i f  it were a direct 

measurement o f the scene irradiance. This is not true for real cameras, where the final image inten

sity is a non-linear function o f the scene irradiance [63]. There exists methods to recover and undo 

this mapping, some based on multiple images o f the scene, where the aperture/exposure [63, 19] or 

illumination [81] is varied, or by utilizing a single image o f a known color calibration pattern [12]. 

Therefore, for accurate application o f the ideas in this work, the actual scene irradiance rather than 

raw image intensities should be used.

3.1.4 Reflectance Fitting

Given a set o f input images, an object surface, and illumination information, it is possible to recover 

the parameters o f a reflectance model for the surface. O f course the method o f fitting a reflectance 

function is dependent on both the chosen reflectance model and the assumptions about the lighting 

environment. Previous work in this area covers the various possibilities o f reflectance models, such 

as the Phong model [77, 2, 76], the Torrance-Sparrow model [30, 36], or for estimating the BRDF
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itself [62]. While most o f the existing work covers the estimation o f reflectance models under simple 

lighting, methods have also been developed for more complicated situations [96].

In our case, for low parameter BRDF models, given enough observations, the parameters can be 

estimated efficiently using an indirect iterated linear approach [36] or by a more direct non-linear 

method [47]. For example, the indirect methods essentially try to classify the observations into ones 

where only the diffuse component is expected to be observed. The diffuse color can then be fit to 

these samples. The specular contribution is then fit to the remaining points by first subtracting the 

diffuse contribution. This classification/estimation process is then iterated. On the other hand, the 

non-linear approaches seek to directly minimize the squared error between the observed samples 

and those predicted by the reflectance model.

One o f the take home messages o f the existing literature is that a dense estimation o f the specular 

parameters is not always possible. In this regard, existing methods for parametric BRDF estimation 

differ in how the specular parameters are computed for the surface points in which the observations 

do not allow a direct fitting. One approach is to use an interpolation scheme to interpolate the 

specular parameters o f the surface points whose parameter estimation is possible [77, 76]. Another 

approach, proposed by Lensch et al. [51], clusters the surface o f the object into materials, and 

then fits a BRDF model to each o f the clusters. This allows for a more accurate estimate o f BRDF 

parameters, while a true spatially varying surface is obtained by fitting a linear combination o f the 

cluster models to each surface point.

3.2 Shape Refinement

We now consider the shape refinement problem. We start with a general formulation, which is then 

specialized to work with Lambertian objects under known light variation. This is followed by a 

filtering method to aid the recovery o f specular surfaces.

3.2.1 Problem Definition

The shape recovery problem takes as input a set o f n  images, I  =  { / , j i  e l . . .  n } ;  the associ

ated calibration, P ,; the illumination information, L,-; and outputs a shape, S, and corresponding 

reflectance parameters that best agree with the input images.

In the most general case it may be that nothing is known about the illumination conditions. In 

our specific work, we assume the illumination conditions consist o f a single point light source and 

an ambient term. The object is assumed to be moving relative to the source, so the images contain 

illumination variation. Further, we assume that the surface reflectance parameters are implied by 

the surface. That is, given some desired parametric reflectance model, the parameters o f the model 

can be fit using the surface, the surface normal (implied by the surface), and the imaging conditions 

given as input. Therefore, the shape recovery problem is to recover a shape, such that the shape and 

its implied reflectance parameters best agree with the input images.
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3.2.2 Shape Functional

In this work, we use the same variational formulation o f the shape recovery problem as Faugeras and 

Keriven [25]. That is, we wish to recover the surface, S ,  that minimizes the follow ing functional:

F ( S )  = f  f  g (x ,  n )d S  — f  f  g (x ,  n )||x ,t x x v \\dudv (3.11)
J J S  J v J u

Where x  =  (x(u, v ) ,y (u ,  v), z(u, v ) )T  is a point on the surface and n  =  p "  is the surface 

normal at point x. The function g is a photo-consistency function that measures the consistency o f a 

surface point with the images that observe the point. In this work, we are interested in investigating 

a photo-consistency function o f the following form:

g(x ,  n) =  J 2  M x >n - £ i) l | / i (n (P iX ) )  -  i? (x , n , L t )||2 (3.12)
i

Where R  is basically a graphics rendering equation, returning the color o f the point x  under 

lighting conditions Li. The function h is a weighting function, typically taken to be the visib ility o f 

point x  in image i. In fact, the function 7? is a function o f the entire surface, as it should take into 

account any inter-reflections, and more importantly the v isib ility o f the point x  to the light source. A 

similar argument regarding the function h requiring the entire surface can be made. We w ill ignore 

these subtleties for the remainder o f this discussion.

The function R  also encodes the reflectance model at a point x  on the surface, and may be any 

BRDF model, but for practical issues we are interested in parametric reflectance models. Recall we 

are assuming that the parameters o f the reflectance model are implied by the surface shape, the input 

images and the available illumination information. Therefore, given that Eq. 3.11 is only dependent 

on the surface shape, the parameters o f this BRDF model are obtained by a fitting process that in 

fact seeks to minimize Eq. 3.12.

The photo-consistency model in Eq. 3.12 does not necessarily generalize constraints on the ob

servations at a point, such as the one proposed by Jin et al. [40], as it explic itly requires a BRDF 

model to be fit to the colors. A  more general form o f Eq. 3.12 for shape optimization would be sim

ilar to the one suggested by Kutulakos and Seitz [45]. Their measure does not assume a particular 

model o f reflectance; instead, given the viewing geometry and light conditions, their approach sim

ply measures the possibility o f observing a set o f colors on a point. A  measure o f this form would 

also generalize the constraint used by Jin et al. as well as the measure given in Eq. 3.12. On the 

other hand, as we are also interested in obtaining a parametric model o f reflectance, we believe that 

the measure in Eq. 3.12 is appropriate. Furthermore, any other assumptions on the scene properties, 

such as the scene consisting o f a uniform material, can be embedded in the function R.

A similar consistency function to Eq. 3.12 was used in the stereoscopic shading work o f Jin et 

al. [39], but they assume a constant albedo over a region o f the surface. Although our error function 

is essentially the same as theirs, Jin et al. assume the light is fixed with respect to the object during
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the capture. Under these circumstances, the authors assume that the albedo is constant over a region 

o f the surface, and that all color variations observed on this region are due to shading. This region 

is then refined using a shading error function, and another error measure is used on the textured 

regions. Another similar error function was used in the mesh based work o f Yu et al. [99], but 

again they use a moving camera and assume that the object has a uniform non-Lambertian surface 

material. Instead, in our work, we assume that the object is moving relative to the light source (as 

done by Weber et al. [92]), and therefore, we allow for a true spatially varying albedo.

During the capture, motion o f the object relative to the light source is easily accomplished using a 

turntable capture setup and a stationary light. In our system, we utilize two fu ll rotations, each having 

a different light position to ensure sufficient light variation (see Chapter 4 for details). Following 

observations in other work [104, 92], we feel that this variation is sufficient to allow for the use o f 

a spatially varying albedo during the capture, without affecting the reconstructed geometry. That 

is, even for a uniform Lambertian object, a spatially varying albedo w ill not be able to explain the 

shading effects in all the images, implying that the shading must come from the surface itself. This 

is much like the advantage that photometric stereo has over shape from shading, except that like 

stereo, we have to establish correspondence across multiple images.

Finding the surface, S , can now be done in a similar manner as done by Faugeras and Keriven. 

First, the PDE corresponding to the Euler-Lagrange equation o f Eq. 3.11 must be derived, and 

then the minimization can be accomplished using level set methods. Alternatively, an explicit mesh 

representation can be used to perform the minimization, as done by Duan et al. [21], In fact, 

Faugeras and Keriven derive the PDE for the general form o f Eq. 3.11, which can be used directly 

with our consistency measure.

The PDE derived by Faugeras and Keriven contains higher order terms resulting from the general 

form o f g being a function o f n. Instead o f using the fu ll PDE, complete w ith the higher order terms, 

we use a simplified PDE, which is accurate for a g that is only a function o f surface position x. This 

is essentially the same PDE described by Caselles et al. [11] and is sim ilar to those used by Duan et 

al. [21]:
d S
—  = (2gncreg -  \7g • n )n  (3.13)

where n is the mean curvature. The first component o f the motion in Eq. 3.13,2gncreg, is essentially 

a smoothing term, reducing the mean curvature o f the object, whereas the second component ensures 

the evolution decreases the error function on the surface. The creg coefficient was introduced to 

weight the contribution o f the smoothing term.

The mean curvature, k , at a point on the surface is the average o f the principle curvatures at the 

point. For a given point on the surface, consider a plane going through that point and containing the 

surface normal at that point (two such planes are illustrated in Fig. 3.4). The plane intersects the 

surface creating a curve that lies on both the surface and the plane. For any such plane, the normal 

curvature is defined as the curvature o f the plane curve at the particular surface point. The principle
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Figure 3.4: An illustration o f the curvature at a point on the surface S  by examining the curves 
created by intersecting two planes with the surface.

curvatures at the point are the maximum and minimum o f all possible normal curvatures [50].

In this work, we explore the use o f a mesh based representation, so it is useful to convert Eq. 3.11 

into its discrete counterpart. The surface integral can first be broken down into a sum o f integrals 

over piecewise continuous regions, namely triangles. The integrals are then composed into a sum o f 

regularly spaced sample points over the triangles. A , giving:

F { S )  ^  y  ] fl(^ivi +  A2V2 +  A3V3 , Atni +  A2n 2 +  A3n 3) (3.14)
{ v i ,V 2 , v 3 } 6 A  { A i . A a . A a J S - ' t

where {vi, v 2, v 3} is a triangle consisting o f vertices Vi, v 2, and v 3, each having normals n i , n 2, 

and n 3 respectively. A  denotes a regular sampling over the triangle, where the sample points, 

{Ai, A2, A3}, are barycentric coordinates satisfying Ai +  A2 4- A3 =  1 and Aj >  0 for i £ {1 ,2 ,3 }. 

The method o f computing the error on sampling points within the triangles relates our work to other 

mesh based approaches [28, 105, 99, 100]. On the other hand, an alternative approach, used in the 

work o f Duan et al. [21], is to sample the error on the tangent plane o f the mesh vertices.

To recover the shape o f textureless surfaces, only a small number o f sample points may be 

necessary. In such a case, the simplest sampling scheme is to use only the vertices o f the mesh 

as sample points. On the other hand, a sampling resolution matching the image resolution may 

be necessary for highly textured objects. As we would like our method to work on textured and 

textureless surfaces, we choose the dense sampling. The only downside o f the increased sampling 

is a proportional increase in computation time.

Assuming a reflectance model, the shape refinement then proceeds by iteratively updating the 

initial shape, So, using Eq. 3.13 until convergence. The gradient is approximated per vertex using 

central differences, and the optimization is done at multiple mesh resolutions. Following Duan et 

al. [21], our mesh data structure is also capable o f handling topological changes. A  more detailed 

description o f the implementation details are presented in Chapter 4.
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3.2.3 Lambertian Object

We now consider a particular instantiation o f the general shape recovery formulation presented 

above. Consider the simple example o f shape refinement where the scene is assumed to consist 

o f a Lambertian object. In order to do the refinement, we must first instantiate the illumination 

knowledge, L ,, and the rendering function, R,  mentioned above. Given our assumption on known 

lighting, the light knowledge consists o f the position and color o f a point light source as well as the 

ambient light contribution for each input image. Given that we know the position o f the source, we 

also know the direction to the source, 1;, from a point. Using the Lambertian model described in 

Section 3.1.3, the rendering function becomes:

A t any step during the optimization we need to be able to fit a Lambertian model to every surface 

point on the current mesh, S t. We first assume that the ambient color o f the object is the same as 

its diffuse color, i.e., x =  /e(A x . For every sample point x  on the mesh, with normal n  (computed 

as the barycentric weighting o f the vertex normals), every image that the point is visible gives an 

equation o f the follow ing form for each color channel:

which is linear in the unknown albedo, k j ,x  — ( k j x ,kfi x , k j x )T , and can be solved in the least 

squares sense with a couple vector dot products and a division.

Let V (x ,  P ;) be the binary function denoting the images in which x  is visible. Setting the weight 

function /i(x , n, Pi, L ) =  V (x , Pi), the error computed by g is essentially the residual o f the fitting 

in Eq. 3.16:

Image Sampling Issues

Eq. 3.17 equally uses all observations o f a sample point, but this is not entirely correct. First consider 

the case when the current mesh is far from the actual surface, as depicted in Figure 3.5. When the 

current estimate is far from the surface, widely separated views sample from different regions o f the 

underlying surface, implying that a numerical gradient may not provide meaningful information. In 

this case, it is helpful to restrict the number o f views used in g , instead o f using all visible samples. 

Later in the optimization process the number o f views can be increased.

In order to choose a subset o f the observations, we first assume that the images were captured 

using a stationary camera and a rotating object. Then following Esteban and Schmitt [22], we use 

the ricameras closest cameras to the median visible camera. The median visible camera is currently

(3.15)

/ 1A(n(P ix)) =  ( ( n - l i ) ^  +  ^ ) ^ , x (3.16)

giamb{x, n ) =  ^ ^ (x .P i)!!/i(n (P ,x )) - i? ( (im(,(x , n ,L i ) l |2 (3.17)
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based solely on the azimuthal angle (y  axis is up, so azimuth is the rotation about y), allowing 

for multiple elevations in the capture. This modification easily fits into the above framework by 

modifying the v isib ility function to get V7, which returns a binary 1 i f  and only i f  the point is visible 

and is within the set o f n cam cra s  surrounding the median camera.

T ru e  S u r fa i
'rue S urface

C u rre n t Mesh

Figure 3.5: The cameras ci through c,i all ob
serve the same triangle on the current mesh. 
Neighboring cameras sample from overlap
ping regions, whereas samples from c i and 
c.i do not overlap.

Figure 3.6: The cameras ci through c\ all 
observe the true surface, but the number o f 
pixels occupied by the surface patch varies 
between the cameras.

The other sampling issue occurs even when the true surface is known. Consider the case where 

several cameras observe a particular patch o f the true surface (Fig. 3.6). The patch occupies a 

different number o f pixels when projected into each o f the images. In the views where the patch 

occupies few pixels, the sample points on the patch w ill project to overlapping pixels. This causes 

a blurred texture to appear on the patch. To account for this, each sample is weighted by n  • v  (in 

both the albedo computation and in the error computation), implying that image planes parallel to 

the patch are given large weights, and grazing views are given smaller weights.

This weighting is a simplification o f the one used by Isidoro and Sclaroff [37], except we do 

not take into account the distance o f the patch from the camera. This is a valid assumption, as in 

most o f our sequences, the object is rotating in front o f the camera, so the cameras are typically a 

constant distance from the scene. This distance is typically larger than the size o f the object so the 

intra-object distance is assumed to have negligible effects.

We note that this second sampling issue is a consequence o f our error function being computed 

on the surface o f the object. This problem can be avoided i f  the error is formulated in image space.

Again, the above mentioned weight is easily embedded in the function h. Letting

h w(x, n , P i )  =  n - v  

where v  is derived from Pj  and x , we get the new instantiation o f h:

/i(x , n, P i ,L )  =  h w{x, n, Pj )  V '(x , Pj)  =  (n • v) V '(x ,  Pj)
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The complete Lambertian error function becomes:

</t,.mfc(x,n) =  5 Z (n  • v )V /(x,Pi)||/«(n(Pix)) -  n, L ,) | |2 (3.18)
i

For a point x  on the current mesh, the albedo that minimizes the weighted least squares problem 

in Eq. 3.18 is obtained as:

i,x _  E , ( n  • v)V"(x, PQ((n  • 1QI* +  a f) ff(n (P ,x ))  
d'x E,-(n • v)V'(x, Pi) ( (n  • l,)t? +  a*)*

3.2.4 Specular Object

As mentioned in Section 3.1.4, it is not always possible to accurately estimate the reflectance pa

rameters at all points on the surface. Fortunately, this problem does not affect the usefulness o f the 

photo-consistency measure in Eq. 3.12. This simply states that parameter estimates for some points 

may not rellect the true properties o f the surface at this point. The fitted reflectance model does 

however minimize Eq. 3.12. The proper recovery (interpolation/clustering) o f specular parameters 

over these regions need only be done when the shape optimization is complete, whereas a direct 

non-linear method could be used to estimate the reflectance model during the optimization o f the 

surface. A  more complete approach would be to actually use the interpolation/clustering method 

whenever the optimization needed to fit a reflectance model.

In practice, it is inefficient to fit a fu ll reflectance model to each surface point during the opti

mization. Instead o f fitting the fu ll reflectance model, we choose to filter out the specular highlights 

during the optimization.

Filtering Specular Highlights

Specular highlights can be filtered out with the use o f the h function. So far we have used this 

function to explicitly represent vis ib ility  and resolve the image sampling issues, but it can also be 

used to handle specular highlights. One method is to give observations where specular highlights 

are expected a smaller weight. This approach relies on the current estimate o f n  and would give 

samples having a large n  • h  a smaller weighting (a similar approach was taken by Marschner in the 

estimation o f a diffuse texture map given known geometry [58]).

Another approach, and the one used in this work, is to use the fact that specular highlights 

typically cause a bright image observation. In this approach, the specular highlights are assumed to 

produce the brightest image observations on a surface point. So the n s;)ec samples with the largest 

intensity are not used in computation o f the albedo, nor are they used in the computation o f g for 

a point. The rest o f the optimization remains the same as the Lambertian case presented in Section 

3.2.3. This type o f filtering is essentially another binary function, like the vis ib ility  function V.  

The modifications o f Eq. 3.18 and Eq. 3.19 to include the filtering are straightforward and can be
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accomplished by substituting the V '  with a V "  that is the product o f V '  with the binary specular 

filtering function.

The number o f filtered samples, n 3VCC , must be chosen such that n camerns -  n apec > 2, so 

that value o f g does not vanish everywhere. In practice, we ensure that the separation is greater 

than 2 by taking nc«mer«s >  6 and n spec =  m in (nc„ mcr„ s/3 ,4 ). Although this photo-consistency 

measure ignores the brightest samples, we still expect the filtering to work with objects that are 

strictly Lambertian. As for specular objects, this filtering method should lose effectiveness when the 

specular component is observed in more than n apcc images.

3.3 Discussion

As this work follows the variational formulation o f multi-view stereo, it is closely related to the other 

variational approaches [21, 25, 83, 41, 40, 39, 38, 98, 84]. In particular, we followed the original 

work o f Faugeras and Keriven [25] to formulate and obtain a PDE for a general error measure. We 

then use a simplified PDE for the evolution. The optimization is carried out with a mesh based 

representation, so the method is also closely related to the other mesh based works [28, 105, 37,99].

A specific implementation o f the general error measure is then proposed for Lambertian objects. 

The error function is essentially the same as the one used by Jin et al. [39], except that the proposed 

method uses the same error measure over the entire surface, in addition to allowing for a spatially 

varying albedo. Assuming that the input images contain some light variation makes this possible. 

Similar to other existing methods [92, 105], this light variation can be obtained by moving the object 

with respect to the source.

A simple extension o f the Lambertian method to aid the reconstruction o f specular objects was 

then proposed. Other variational approaches have taken specularities into account (i.e., the measure 

o f Jin et al. [41] mentioned in Section 2.5), but their methods do not directly extend to our error 

measure. In our method, the brightest observations o f a surface point are assumed to be caused 

by specular reflection and are not used in the computation o f the Lambertian error measure. With 

enough image observations, this extension should allow for the reconstruction o f both Lambertian 

and non-Lambertian objects.
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Chapter 4

System

As the previous chapter dealt with theoretical aspects regarding the shape refinement, we now turn 

our attention to the implementation details. Here we w ill discuss the individual modules that make 

up a complete system for outputting 3D models and surface reflectance parameters given a set o f 

input images.

Input Images Initial GeometrySilhouette Extraction Final model

m n
Shape refinementCamera Calibration

m
Images From Light Position I

Texture Coordinates
Light Calibration

Reflectance Fitting

Images From Light Position

Figure 4.1: An overview o f the system implementation showing the flow o f information through 
several modules in the system.

The flow o f the input images and intermediate data through the system is depicted in Fig. 4.1. We 

begin by discussing the prerequisites to the mesh refinement: the capture setup (Section 4.1), camera 

calibration (Section 4.2), light calibration (Section 4.3), and the method for obtaining an initia l mesh 

using shape from silhouette (Section 4.4). This naturally leads to the details o f the mesh based 

refinement (Section 4.5). Following the mesh refinement details, we discuss the implementation 

used for automatic texture coordinate generation (Section 4.6). Finally, we present the details o f the 

reflectance fitting (Section 4.7). Before continuing, we remind the reader that the system itself has 

not only been designed as a testbed for the mesh based refinement, but also as an easy to use system 

with minimal hardware requirements.
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4.1 Capture Setup

L igh t Source|Solid Background

Calibration Pattern

Camera

Calibration Sphere

Figure 4.2: A  snapshot o f the capture setup.

Our capture setup consists o f a single camera viewing an object rotating on a turntable (Fig. 4.2). 

The object is lit by a single light source, which is assumed to be contributing the majority o f the light 

to the scene. In order to calibrate the camera, we use a calibration pattern that is situated between 

the object and the turntable. Alternatively, features on the object itself could be used to calibrate the 

cameras (see references [71, 67] for examples). The silhouette extraction is typically performed by 

background subtraction or blue-screening. In our implementation, we use the latter approach with 

a uniform colored background to obtain the silhouettes for the visual hull computation. The light 

position and color are calibrated using a white sphere, which rotates along with the object on the 

turntable.

A  typical capture consists o f two sets o f input images, with each set containing roughly 30 input 

images taken as the object performs one fu ll rotation. The two sets o f input images are taken with 

a different light source position. For this reason, our capture setup is similar to the one described 

by Weber et al. [92]. As we do not account for shadowing, we currently try to place the light in a 

manner to avoid shadows (i.e., we try to position the light as close to the camera center as possible), 

implying that each rotation also has a different camera position.

The current system obeys the minimal hardware requirements, where a commonly available 

desk lamp, either halogen or tungsten, was used as the light source (costing roughly $20 CAD), and 

a painted ping-pong ball or marble was used to calibrate the light source (costing roughly $1 CAD). 

In many o f the captures an actual turntable was used, but successful captures were also obtained by 

using a rotating cake table (or lazy susan), costing approximately $20 CAD. The total cost o f the 

system would then be dominated by the camera used, where pricing for a cheap webcam or digital 

camera would start at $100 CAD.
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4.2 Camera Calibration

To obtain the calibration parameters, all that is required is a set o f point correspondences from image 

points to known world points. For this purpose, we use a calibration pattern based on the one used 

in Canons 3D S.O.M. [3], Their pattern has the advantage o f being easy to detect, stable through 

occlusions, as well as reliable through a wide variety o f viewing angles.

• •
•  •  •  •

* • .  ** •  • •

•  •  •  •  •  •  •

•  *  *  ••  •  • ••  •  •  •
•  • • •

Figure 4.3: Our slightly modified version o f the 3D S.O.M. pattern.

The pattern consists o f 14 groups o f small and big dots, where the dots are binary digits (small 

being binary 0, and big being binary 1), which uniquely identify the group (Fig. 4.3). The original 

pattern consisted o f 15 possible groupings, all possible groups except the group o f all small dots. 

We also removed the group o f big dots, for reasons that are described below.

The detection o f the modified pattern proceeds in the same manner as the original pattern [3], 

which we review here for completeness:

• Detect Potential Dots: A  simple thresholding can be used to create a binary image, where 

connected components are identified as the potential dots. The sizes (in pixels) and the centers 

o f the dots are all that is required for the remainder o f detection.

• Find Potential Groups: Potential groups o f four dots are found such that the dots lie on the 

same line and satisfy the cross ratio o f the world points.

• Order Dots in Groups: The dots in a group must be ordered in a consistent manner so that the 

binary number can be read off. This is done by finding the center o f the pattern, then ordering 

the groups from the center out. Each line defined by a potential group is intersected with the 

line o f every other potential group. The intersection point o f each pair o f lines is used to cast 

votes for the center point in a low resolution discretization o f the image. The grid cell with the
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most votes is where the center lies, and the actual center point is then refined. Any potential 

groups without an intersection in this grid cell are outliers and can be discarded.

• Classify Dots in Groups: Each dot within a group must be classified as either large or small. 

I f  a-max (resp. ami,,) is the largest (resp. smallest) dot area in a group, then a dot is small i f  

its area is less than ((< /amni +  \ /a mm)/2 )2 and big otherwise.

The classification o f dots into big or small is the primary difference o f our method from the 

original method. The original method performed the classification based on amax only, where a 

dot was considered small i f  its area was less than a fraction o f amax. We found that this method 

sometimes misclassified the group o f all big dots as the group containing three big dots and one 

small dot. This typically happened when the pattern was viewed at a grazing angles. We found that 

removing the group o f all big dots and using the above classification alleviated this problem.

4.2.1 Automatic Thresholding

Detection o f the potential dots via thresholding typically requires a user to manually enter the thresh

old value, depending on the lighting conditions at the time the image was taken. In an attempt to 

remove, or at least reduce the amount o f user interaction, we have designed an automatic technique 

for detecting the dots. The technique is reliable and can detect the dots over a wide range o f illum i

nation conditions.

The method was motivated by the algorithm for detecting Maximally Stable Extremal Regions 

(MSER) [59], which detects features that can be reliably matched over widely separated views. 

The motivation o f our approach is that there is a range o f thresholds that w ill produce connected 

components that correspond to the same dot. Therefore, we try every possible threshold on the 

image (assuming an 8-bit image, there are 255 potential thresholds) in succession, while keeping 

track o f the centers and sizes o f the connected components for each threshold. I f  there exists a center 

in roughly the same position for a successive range o f thresholds, then this position is extracted as a 

dot, and its area is taken to be the average area o f the component, over the range o f thresholds.

Fortunately, the implementation can be handled in a similar manner as that for detecting MSER’s 

[59]. First, each ( x ,y )  position in the image is sorted based on the intensity at that point. Note that 

this step is linear in the number o f pixels, since the pixels are just placed in an array with other 

pixels having the same intensity. We then initialize a set o f connected components to nil. Each 

connected component w ill maintain certain characteristics, such as its size, the sum o f all the pixel 

coordinates in the component (from which the current position can be deduced), and the previous 

sizes and positions o f the component.

A  2D array o f pointers to existing components is created and cleared, and the pixels with the 

lowest intensity value (since we wish to detect black dots) are taken from the unprocessed set o f 

pixels. For each pixel, the neighboring positions in the 2D array are checked. One o f two possible

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cases can occur:

1. None o f  the neighboring pixels are set This pixel is starting a new connected component. Cre

ate a new connected component, and set the corresponding pointer to point to this component.

2. One or more neighboring pixel(s) is set I f  the neighboring pixels belong to the same compo

nent, then this pixel is a growing part o f an existing connected component. Add this pixel 

to the adjacent component, and increase the size. Otherwise, this pixel is connecting two or 

more existing components. Merge the smaller component(s) into the larger component, and 

adjust the sizes accordingly. Add this pixel to the merged component. Set the pixel’s pointer 

to the component the pixel was added.

After adding all the pixels o f a given intensity, for which the temporary image corresponds to a 

thresholded image using that intensity, we check to see i f  the connected components have moved. 

For each component, we check its current position (obtained by dividing the sum by the number o f 

points) to the previous position o f the component ( if  one exists), and i f  the component has moved 

less than one pixel, we increment its stationary counter, otherwise the stationary counter is cleared. 

I f  the counter exceeds a threshold r mi„, then we consider the component to be a dot, compute its 

average position and area, and store these characteristics in an output array. I f  on future iterations 

the dot has not moved, then its position and area are updated in the output array. This output position 

w ill be updated until the stationary counter exceeds r m ni. Otherwise, the component is assumed to 

be either too large or no longer growing, and consequently, its position is no longer updated. We have 

found values o f rmin — 20 and Tm a x  =  100 to be good choices. This means that a component has 

to stay in approximately the same position for 20 different thresholds to be chosen as a valid dot. I f  

the component is approximately stationary for more than 100 different thresholds, the component’s 

position and size in the output buffer w ill no longer be updated (see Algorithm  1).

After detection o f the pattern, existing calibration methods, such as Zhang’s method [107], can 

be applied to obtain the camera parameters. The intrinsic parameters are calibrated in advance, so 

during the capture we only need to obtain the extrinsic parameters. A t this point in the capture we 

remove the radial distortion using the model described in Chapter 3.
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Algorithm 1: Extract dots 
Data: Image im
Result: VectorOf Dots output 
VectorOf Pixels bins[256]; 
for y=0;y < im.h;y++ do 

for a = 0 ; . v  <  im.w;x++ do
b ins [im [y ][x ]].append  ((x,y)r );

end
end
C om ponent labels[im.h][im.w];
V e c to rO f  C om ponen ts  components = 0; 
for intensity € [0,255] do

forcach p € bins[intensity} do
neigh = g e tN e ig h b o rs  (labels,p);
C om ponent c; 
if ||/ie/g/i||==Othen

c = new C om ponen t (); 
components.append (c);

else
/ / T h i s  p i x e l  i s  c o n n e c te d  t o  an  e x i s t i n g  co m p o n e n t 
/ / o r  i t  i s  j o i n i n g  tw o  o r  m ore  c o m p o n e n ts  
c=m ergeC om ponen ts  (labels,neigh,p);

end
c.sum+=p;
c.size++;
Iabels[p.y][p.x]=c;

end
/ /H a v e  th e  c o m p o n e n ts  m oved s in c e  l a s t  g r a y  l e v e l  
foreach c € components do

if \\c .su m /c .s ize  — c .la stP osition \\ <1 then 
c.stationary++;
if c.stationary>  r mi„ && c.stationary< Tm a x  then 

if c G output then output[c]=<c.sum/c.size,c.size> ; 
else output .a p p e n d  (<c.sum/c.size,c.size>);

end
else

c.stationary=0;
end
c.lastPosition=c.sum/c.size;

end
end
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4.3 Light Calibration

We use a single, glossy white sphere to calibrate the light source position/color. The method is 

similar to other works using multiple spheres to triangulate the position o f light sources/features 

[64, 73, 52], with the main difference being that we use several temporal images o f one physical 

sphere instead o f several physical spheres.

Camera
Turntable

Light

Figure 4.4: The specular highlights o f a white sphere rotating on the turntable are used to find the 
light position.

The basic idea in all the methods is similar: an observed specular highlight (or feature) on a 

sphere corresponds to a ray in space. When the positions/radii o f the spheres are known, a ray can 

be computed for each sphere, and the intersection o f these rays corresponds to the light source (or 

feature) position. In our case, the light source position is fixed with respect to the camera, and the 

sphere is rotating on the turntable, so we can use multiple temporal images o f the same sphere to 

calibrate the source position (Fig. 4.4). Because the sphere is moving with respect to the camera, the 

sphere’s position is represented in the world coordinate system (i.e., the coordinates o f the rotating 

turntable). On the other hand, since the light is stationary with respect to the camera, its position is 

represented in the camera coordinate system.

Our implementation o f the light source detection and light source color estimation proceeds in 

the following manner:

• Detect Sphere Position

• Compute Ray For Each Image o f  the Sphere

• Intersect Rays

• Compute Source Color

4.3.1 Detect Sphere Position

To obtain an initial estimate to the position/radius o f our sphere, we require the user to select the 

sphere in two input images. The selection consists o f clicking on three points defining a circle that
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best approximates the projection o f the sphere (note that the projection o f a sphere into an image 

is generally an ellipse). The centers o f these circles are then used to triangulate the center o f the 

sphere, x sp/lere (using the algorithm given in [33]). The radius o f the sphere, r spi,ere< is determined 

by backprojecting a single point on the circle to the same depth as x sp/ierc and computing the 

distance o f this backprojected point to x SJ);lcrc.

The above procedure serves as an initial estimate o f the sphere’s position and radius, but the 

accuracy o f the light source position relies on an accurate estimate o f these values. To increase 

the accuracy, we then refine the position o f the sphere based on image observations in all the input 

images that observe the entire sphere. We use a method inspired by Knossow et al. [42], who 

optimize the parameters o f a kinematic model o f a human so that the projected apparent contours o f 

the model agree with the edges observed in the images. In our case, the parameters are the sphere’s 

position and radius, and we wish to have the silhouette o f the sphere agree with image edges.

The refinement reduces to a non-linear optimization o f the follow ing cost function:

E s p h e r e  =  E  E  mm(||n (p ix ) -  e||2) (4.1)
i & v  xe/t.

where V  is the set o f images in which the sphere is visible, Ai is a set o f sample points on the 

apparent contour o f the sphere in image i, and is the set o f edge locations detected in image i.

Following Knossow et al. [42], the cost in Eq. 4.1 simplifies to:

E s p k e r c  =  E  E  rfi(n (P ,x ))2 (4.2)
iev x g / i i

where d, is the distance transform o f the edge features in image i.

We use the Canny edge detector to detect edge features, giving a binary image. The distance 

transform o f these binary feature images is then performed using the approximate algorithm o f 

Danielsson [18]. The optimization o f the sphere’s radius and position is done with the Levenberg- 

Marquardt algorithm. For each image, we select roughly 50 points on the apparent contour to be 

used in the optimization (see Appendix A  for details on selecting the sample points on the apparent 

contour).

4.3.2 Compute Ray for Each Image of the Sphere

Now that we have an accurate estimate o f the sphere’s position, we can compute a ray from the 

sphere to the light source. We use the observation o f a highlight on our specular sphere to define 

this ray. That is, in each image we detect the brightest pixel on the sphere: (Xb,yb)T ■ The ray

corresponding to the brightest pixel, r(t)  =  Ob +  tdb, is intersected with the sphere, giving a point

XiSect and a surface normal n isect at the point o f intersection. The desired ray from the sphere to the 

light source has origin x isect, and the direction is obtained by reflecting d(, about n ;sect (see Fig. 

4.5). In practice, due to image noise, we do not use the brightest pixel on the sphere in the input 

image but on a Gaussian filtered image instead.
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b reflected about r ijsect

f ( t )  =  Ob +  t d y ' '

Brightest pixel

Figure 4.5: The brightest pixel on the sphere in an image defines a ray, f ( t )  =  Ob +  tdb, that is 
intersected with the sphere to find the direction to the light source.

Although we currently use the above method, which computes the ray from the specularity to the 

light source position, we have also explored other possibilities. For instance, by using the shading o f 

a Lambertian sphere we can compute the direction o f an infinite source. The ray from the sphere to 

the light source is then defined by the center o f the sphere and the recovered direction. This basically 

assumes that the light source can be well approximated as an infinite source over the surface o f the 

sphere, but the direction to the source changes over different positions o f the sphere with respect to 

the camera. While this method also works, we found that using the specular highlights provided a 

better estimate o f the light position, which is essential in the reflectance estimation (Section 4.7).

4.3.3 Intersect Rays

f i { t )

Figure 4.6: The optimization seeks to minimize the squared distance o f to each o f the 3D 
rays.

The rays for each image where the sphere is visible can now be intersected to compute the light 

source position. Ideally the rays would all intersect in a single point, but this is rarely the case due 

to noise and the source having a finite area.

We obtain an initial estimate to the source position by solving each pair o f equations, where

o; +  Udi =  o j - f  t j d j  (4.3)
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and then taking the average position as the initial estimate.

This above estimate is then refined using the following non-linear cost function:

Elight (flight)  =  ^   ̂\\-Xhgflt x j |  (4.4)
iev

where x j is the projection o f x u ght onto the ray i, given as:

x'i =  Oi +  ((xiight -  O j )  • d i)d j

which is illustrated in Fig. 4.6.

The above procedure provides an accurate estimate o f the light source position, but we acknowl

edge that the non-linear cost function is not optimal. The cost function should instead optimize the 

distance between the observed highlight o f the source on the sphere and the synthesized highlight 

on the sphere.

4.3.4 Compute Source Color

Figure 4.7: An input image o f a ping-pong ball (left) and the rendered sphere after fitting the sphere
and light color (right). The blueish region on the left image denotes which pixels were filtered out
as specular highlights. Because the ping-pong ball is modeled as a perfect sphere, the hemispherical 
inconsistency in the left image is not observed in the rendered image.

Given the estimate o f the sphere and the light position, we can now estimate the light source 

color. We use the assumption that the color o f our calibration sphere is white (or is o f some known 

reference color), meaning k,i =  (1,1, l ) r  and k a =  (1,1, l ) r . We then filter out the anticipated 

specular highlight (which was used to find the light source position), and for all pixels that observe 

the sphere (in every image), we compute the normal n and the direction to the light source 1. Each 

pixel then gives an equation for each color channel:

(n • l ) f  +  ar = I r
(n  • 1 )£a + a® =  I 3 (4.5)
(n • 1 )£b + ab = I b

The linear system o f equations is then solved for each color channel to obtain the light source color 

i  =  (£r , £a, £b)T  and the ambient color a =  (ar ,a a, a b). Given that these variables should not 

be negative, we use a non-negative linear least squares method to find the solution. In addition to 

ignoring the specular pixels, we also ignore saturated pixels. Furthermore, we only use observations
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that satisfy n  • 1 >  0.1 (i.e., the point is lit by the source direction). Letting h  be the half-angle for a 

particular pixel, the highlights are filtered out using the following condition:

n  • h  >  0.995 k  cos(6°) (4.6)

The above implies that the specularity is only observed in a 6 degree cone about the perfect reflection 

angle, but the threshold should be adjusted i f  the reflectance o f the calibration sphere deviates from 

this. In practice, the number o f potential samples can be large, so we lim it the number o f the samples 

to some reasonable number, where currently we use at most 1000 samples. Figure 4.7 illustrates the 

results o f the light color fitting.

4.4 Shape from Silhouette

We use a color based segmentation to separate the object from a solid colored background. Through 

this process we obtain the silhouette images, 5 i( which are used as input to shape from silhouette.

4.4.1 Silhouette Images

n •

►

Figure 4.8: A  color x  is part o f the background i f  it lies within a certain distance o f the ellipsoid 
defined by the background samples. The distance is computed by transforming the point into a space 
where the ellipsoid is a sphere.

The user is prompted to select a region 7?; containing samples o f background pixel colors. Let 

C(Ri)  denote the colors extracted from the region Ri  in matrix format, so C(Ri)  is a 3 x  m  matrix. 

These background samples can be summarized by an ellipsoid in RGB color space, which can be 

obtained through a principle component analysis. We then wish to classify other image pixels as 

belonging to this set o f background pixels based on their distance to this ellipsoid (see Fig. 4.8).

Letting x  =  mean(C(Ri)) ,  and C(Ri)  be the result o f subtracting the mean from each column 

o f C(Ri).  The principle components are obtained through the eigenvector decomposition o f the 

covariance matrix:
C(Ri )C(Ri )r  

(m -  1)

giving a 3 x 3 matrix A  containing the eigenvectors in the columns, and a 3 x  3 matrix B  whose 

diagonal is the eigenvalues. We transform the other colors, x , into a new space using the following
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transformation:

T(x) =  ( A B 0,5) - 1 (x  -  x) (4.8)

The length o f the color vector in this new space measures the sim ilarity o f the sample x  and the 

background samples. This transform takes the general ellipsoid to a sphere centered at the origin. A  

threshold on the length o f the vector in this space, set to 4 \/3 , can then be used to classify the pixel 

as foreground or background. This gives a binary mask for each image, where a 1 (resp. 0) denotes 

that the pixel is foreground (resp. background).

In practice, multiple regions need to be selected to identify the background regions. In this case, 

we take the silhouette mask to be the binary AND o f the individual masks.

4.4.2 Marching Intersections Shape from Silhouette

We use the marching intersections (M I) method [87] to compute the approximate visual hull from 

the binary image masks 5,-. This method was briefly outlined in Chapter 2.

xa =  (1 -  A)xj +  Ax2

Figure 4.9: Computing the intersection point on the 3D ray, given the intersection point in an image.

Recall that the M I data structure consists o f three sets o f rays that form a 3D lattice, with each 

ray storing entry and exit points o f the true object. The entry/exit points represent a union o f disjoint 

intervals along the ray that belong to the object. As the points along the ray can be parameterized by 

a linear combination o f the two end points, these intervals lie in the real number line, i.e., U i [« i, 6t], 

and so the entry/exit points can be stored as a list o f floating point numbers. For any ray, each image 

gives a set o f entry/exit points corresponding to a union o f valid intervals. Combining the results 

from multiple images is identical to an intersection o f the intervals for each image.

To obtain the intersection points for a particular input image, the end points o f a ray are first 

projected onto the image, giving a line. The line is then scan-converted, checking for intersections 

with the silhouette. Once an intersection is found, the corresponding position on the 3D ray can be 

found in the fo llow ing manner. Let x i  =  ( . t i , i / i ,  2 i ) r  and x 2 =  ( . t 2 , j /2 , z 2 ) t  be the end points 

o f a 3D ray represented in the camera coordinate frame, so that the z  coordinate is the depth. Also, 

let m i =  (u i,  u i)T (resp. m 2 =  (u2,u2)r ) be the projection o f X i (resp. x 2) onto the image (Fig.
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4.9). I f  m„ =  (ua ,v a)T , then the corresponding intersection point in 3D, xa =  (1 -  A)xi +  AX2, 

is obtained by solving for A as:

A =  . X l ~ UaZl  (4.9)
Ua {Z2 ~  2 l )  -  X2 +  X i

or:

A = . Vl ~ ” aZl  (4.10)
Va (Z2 ~  Z l )  ~  2/2 +  2/1

The better conditioned o f the two equations is used for the solution to A.

The remainder o f an implementation o f SFS using M I is straightforward, although some opti

mizations are pointed by Tarini et al.[87]. As in the original work, after the set o f entry/exit intervals 

on all rays have been computed, the marching cubes surface extraction [56] is used to obtain a 

triangulated mesh from the M I data structure.

4.5 Mesh Refinement

Now that all the necessary prerequisites have been defined, we can move onto the mesh refinement.

We begin this section by describing the mesh implementation used, followed by details regarding

the optimization o f the error on this mesh.

4.5.1 Deformable Mesh

One o f the most important design decisions that comes into play when choosing a mesh represen

tation is whether the mesh resolution should be adaptive or not. The main advantage o f such an 

implementation is obvious: a lower resolution mesh in regions o f low detail implies less variables 

to optimize over. On the other hand, the adaptive mesh may create some difficulties when reasoning 

about mesh smoothness and self-collisions. We would like our mesh to handle topology changes 

(splitting and merging), so we opt for an easier implementation as opposed to a more elegant adap

tive implementation.

We use the mesh proposed by Lachaud and Montanvert [46], which easily handles topology 

changes and maintains a consistent resolution based on some simple assumptions:

1. I f  e is an edge in the mesh, then <  ||e|| <  2.5<rmca/,.

2. I f  Vi and V2  are vertices in the mesh that are not adjacent, then ||ui — U2 II >  ^&mesii-

The first assumption says that the length o f every edge in the mesh is restricted to be within 

the given range and maintains an approximately constant global resolution. I f  an edge becomes too 

long, the edge is split; conversely, i f  the edge is too short, it is collapsed.

The second assumption is used to detect collisions. This assumption is also a restriction on the 

type o f objects representable by the mesh, but for moderate or small a mcah this is not a problem. 

The other topology change occurs when the mesh is splitting (i.e., the inverse o f a collision). The
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detection o f mesh splitting is really a special case o f a meah <  ||e|| being violated and is easily 

detected.

We w ill use the term remesh to refer to an operation that enforces the above assumptions on 

the mesh (i.e., removes small edges, changes the topology, etc.). By simply changing the value o f 

Omcsh and performing the remesh operation effectively changes the global resolution o f the mesh. 

Following Yu et al. [100], we assume that the normal at a vertex is the weighted average o f the 

normals at the adjacent triangles, where the weight o f a triangle is proportional to its area.

4.5.2 Error Optimization

As mentioned in Section 3.2.4, our photo-consistency function essentially assumes a Lambertian 

model, but accounts for the rare cases where specular highlights occur by filtering them out. The 

photo-consistency measure is computed at various sample points on the triangles. The motion o f the 

surface is then guided by the gradient o f this measure and a regularizing term proportional to the 

mean curvature.

Sample Points

V ?  s a m p le s

v i

Figure 4.10: Sample points are chosen on an orthogonal lattice w ithin each triangle.

The sample points are selected on an orthogonal lattice in each triangle o f the surface (Fig. 4.10). 

Following other mesh implementations [28, 105], the resolution o f the lattice is determined by the 

resolution o f the images. Our cameras are approximately equidistant from the center o f the object, 

so we define this resolution by back-projecting a single pixel from an arbitrary image onto a plane at 

the center o f the object and parallel to the image plane. The dimensions o f the back-projected pixel 

are used to make the lattice agree with the resolution o f the input image when the plane is parallel 

with the image. We find using half the resolution is appropriate, as many o f the triangles are not 

parallel to any image plane.

Given the sample points, computation o f g on the mesh is performed on each sample point 

using the consistency function discussed in Section 3.2.3 with the specular filtering discussed in 

Section 3.2.4. During the optimization we need the component o f the photo-consistency evaluated 

on a particular vertex. This per vertex consistency is computed as a barycentric weighting o f the 

consistency on the sample points o f the triangles adjacent to the vertex.
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Gradient Computation

The shape evolution Equation 3.13 (presented in Section 3.2.2) used in our implementation requires 

the gradient o f the photo-consistency function g along the direction o f the normal vector. In our 

implementation, with a triangulated mesh, we compute Vr/ • n  numerically using central differences. 

Letting gv+ (resp. gv ~) be the consistency computed on the mesh when a vertex v  is replaced with 

v + =  v  +  n A n  (resp. v "  =  v  — n A n ), then:

f f v +  -  0 V -V<y • n  ;
2A n

where A n  =  c&ameah and ca 6 (0,1], to ensure that the derivative step size is bounded by the 

minimum edge length a mes/,.

AnV'

Figure 4.11: Computing the gradient at the cir
cled vertex directly influences the adjacent tr i
angles (marked with l ’s), and influences the 
normals at the distance 2 neighbors (marked 
with 2 ’s).

Figure 4.12: An exaggeration o f the displace
ment at a vertex v , demonstrating how the 
neighboring vertex normals are affected in the 
gradient computation. This in turn affects the 
interpolated samples over the triangles at dis
tance 2 from v.

In order to compute the gradient efficiently, without displacing each vertex and computing the 

consistency over the entire mesh, we consider the influence a single vertex has on the mesh. We w ill 

assume that displacing a vertex a small amount does not affect the vis ib ility  o f the mesh, so only 

local effects need be considered.

When displacing a vertex v  along its normal, the directly connected triangles are altered, and 

therefore their projection into the images is also altered. Also, since the normal at a vertex is com

puted using a weighted average o f the triangle normals, the normals at the neighboring vertices 

are also affected. A ll triangles w ithin distance two are affected (Fig. 4.11) because the photo

consistency is also dependent on the normal. The sampling points on the adjacent triangles (those 

marked with a 1 in Fig. 4.11) may change, as does the normal at the sample points w ithin these 

triangles. For the triangles at a distance 2 (those marked with a 2 in Fig. 4.11), the interpolated 

normal at the sample points changes (Fig. 4.12), but the projection o f these points into the images 

remains fixed.

Under this reasoning, the gradient computation for a vertex v  must do the albedo fitting and 

consistency computation for all triangles within distance 2 o f the vertex. Though this can be done
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Figure 4.13: An example o f the gradient computation by computing the consistency measure on the 
entire mesh. The neighboring triangles affect a single vertex, while distance 2 triangles partially 
influence the gradient on more than one vertex.

by individually moving the vertex and computing the consistency on the required triangles, we 

choose a method based on that o f Zach et al. [102], which computes the gradient for a set o f vertices 

simultaneously.

The mesh is partitioned into disjoint sets o f vertices, (/;, such that

V u ,v  £ U i,veqneigh(v) n  reqneigh(u) =  0

where req n e ig h (v)  in our case is the set o f triangles o f distance 1 or 2 from v . In other words, i f  

u ,v  e Ui then 4 edges must be crossed to get from u  to v . The gradient for every vertex in t / j  can 

be computed by simultaneously moving each vertex in Ui and computing the consistency measure 

over the entire mesh. The change in the photo-consistency measure for a vertex v  then needs to be 

accumulated over the triangles in req n e ig h (v), instead o f over the entire mesh.

The majority o f time in our implementation is spent computing the gradient. As the gradient is 

then dependent on the number o f disjoint sets used in the gradient computation, one way to improve 

performance is to reduce the number o f disjoint sets. We first make the assumption that the photo

consistency on the triangles at distance two is expected to change less than the adjacent triangles. 

Then we can reduce the number o f sets by reducing the separation o f vertices in the sets from 4 edges 

to 3. This implies that two vertices u, v  £ Ui may have a non-empty reqneigh  intersection, where 

the intersection contains triangles at distance 2 from both u  and v. Then instead o f accumulating the 

gradient over all triangles in re q n e ig h (v ), we compute the gradient at v  as the sum o f the change 

o f consistency on v  plus the change on the neighboring vertices. Recall that the photo-consistency 

at a vertex is computed as a barycentric weighting o f the photo-consistency at all sample points on 

triangles that contain the vertex. Therefore, this faster gradient computation accurately accounts for 

the change on the adjacent triangles and approximately accounts for the change in photo-consistency 

on the distance 2 triangles (Fig. 4.13).
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Regularization

The motion along the gradient is only one part o f the shape evolution equation. We also need to 

compute the portion o f the motion corresponding to the smoothing term, i.e., the motion along the 

normal proportional to gn.  The computation o f g was previously discussed, reducing the discussion 

to the computation o f k, the mean curvature o f the mesh.

We use the results o f Surazhsky et al. [85], who survey several methods for computing mean 

and Gaussian curvature on triangulated meshes, suggesting that a paraboloid method provides good 

results for mean curvature. The method first computes a transformation aligning the normal at a 

vertex v  to the z  — ax is , and placing vertex v  at the origin. The neighbors o f a vertex v  are 

also transformed by this transformation. Letting (x i, iji, Z() be the transformed points, a paraboloid 

described by parameters a, b, and c is then fit in the least squares sense to the sample points:

argmin„ 'b ,c ^  ||-z; -  {ax}  +  bxiij i  +  cg f )||2
i

The mean curvature at vertex v  is then computed as k =  a +  c.

4.5.3 The Shape Optimization Algorithm

As we have discussed all the components that make up the specifics o f the implementation, we can 

now describe the complete algorithm. The pseudocode for the shape optimization algorithm is given 

in Algorithm 2 and w ill be outlined below.

The algorithm initializes the shape using shape from silhouette (line 1) and starts at some user 

defined base resolution (line 2). The shape is then partitioned, the sample points are obtained, the 

visibility is set, and the best cameras for the sample points are initialized (lines 5-8). For each 

partition, the gradient is computed by displacing the vertices in the partition up and then down, and 

recomputing the albedo and consistency at the displaced positions (lines 12-21). Each vertex is then 

moved in its normal direction as defined by the evolution (lines 22-24). A fter the vertices are moved, 

the shape is then remeshed (line 25).

In theory, the error (i.e., total photo-consistency) should not increase as long as the time step is 

small enough, but in practice, due to the remesh operation and the sampling o f points on the triangles, 

the error sometimes increases between iterations. Therefore, in our implementation, the refinement 

for a given resolution stops (i.e., the errorDecreasing condition in the algorithm fails) when the error 

has not decreased after two iterations. The optimization occurs over higher resolutions by decreasing 

cTmesh until the highest resolution is reached. This resolution may be user defined, or the increase in 

resolution may continue until there is only one sample point per triangle.

In practice, the movement in the direction o f the normal is limited to that used in the gradient 

computation (i.e., by CA(Tmcs/,), and the time step should be chosen so that this condition is met by 

the majority o f vertices. Recall that the cre,  coefficient was introduced to weight the regularization
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A lgorithm  2: Shape Optimization

l shape=initializeToSFS();
2 ermc.,,/,=seIectInitialMeshResolution;
3 while <J,„eah >  h ig h estR eso lu tio n  do
4 while crrorDecreasing do
5 U=partitionShape(shape);
6 s=getSamplePoints(shape);
7 v=getVisibility(shape,s);
8 c=getBestCameras(shape,s,v);
9 a=fitAlbedo(shape,s,v,c);

10 err=getPerVertexConsistency(shape,s,v,c,a);
11 K=getMeanCurvature(shape);
12 foreach [/, G U do
13 shapeup=dispIaceAlongNormal(shape,I/j,CA<7'„1(,s/,);
14 albup=fitAlbedo(shapeup,s,v,c);
IS errup=getPerVertexConsistency(shapeup,s,v,c,albup);
16 shapedn=displaceAlongNormal(shape,I7„—CACTmes/i);
17 a!bdn=fitAlbedo(shapedn,s,v,c);
18 errdn=getPerVertexConsistency(shapedn,s,v,c,albdn);
19 gradtemp=(errup-errdn)/(2 cAO’,„cs/i);
20 Vr/([/;)=accumulateOverNeighbors([/j, shape, gradtemp);
21 end
22 foreach (x, n) G shape  do
23 x+ = (2err(x.)n(x)crca -  V g (x ))n A t;
24 end
25 shape = remesh(shape);
26 end
27 Gincali =  ^ m e s / i i

28 end

component, allowing user control on the smoothness o f the object. In all our experiments, we found 

that creiJ =  0.5 produced acceptable results.

Optimizing at several mesh resolutions is important because a coarse resolution o f the mesh 

has fewer degrees o f freedom and larger changes in shape can occur. Additional improvements 

can be gained in regions o f high frequency texture by using downsampled images during the m ulti

resolution search. More specifically, we construct a Gaussian pyramid o f downsampled input images 

and choose the pyramid level that best suits the resolution o f the mesh (a similar suggestion to this 

was made by Fua and Leclerc [28]). As the number o f sample points on a triangle are chosen from 

the resolution o f the images, the pyramid level for a given mesh resolution is chosen so that an edge 

o f length crmcnh has roughly two sample points.

Silhouette Preservation

Although the multi-resolution mesh and Gaussian pyramid scheme improves the efficiency o f the 

refinement, a low resolution mesh is unable to accurately represent high geometric detail. In our 

experiments, refinement with a low resolution mesh was often unable to preserve features observed
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Figure 4.14: Several iterations o f a silhouette preserving displacement applied to a smoothed object.

in the silhouettes. We have found that a silhouette preserving force helped overcome these problems.

Our silhouette preserving force is similar to the other approaches proposed in the literature [24, 

37,6 8 ]. To ensure that the current mesh does not extend past the initial shape from silhouette volume, 

any vertex that projects outside the silhouette in a particular view is moved so that it projects to the 

silhouette boundary in that view. We then make the assumption that the silhouette vertices for each 

view should align with the boundary o f the input silhouette image in that view. Therefore, we 

compute the silhouette vertices for each view (those vertices that project to the silhouette boundary 

o f the current mesh), and compute a displacement along the normal to move these vertices closer 

to the input silhouette boundary for that view. The displacement is proportional to the distance 

o f the vertex from the nearest point on the input silhouette image boundary (easily computed in a 

preprocess using an approximate Euclidean distance transform). I f  a vertex is a silhouette vertex in 

more than one input image, then the minimum o f the displacements is retained. The displacement 

can then be smoothed over the vertices o f the mesh to ensure a smooth model.

We then optionally apply this silhouette displacement intermittently during the optimization, 

where currently it is applied every 10 iterations and after an increase in resolution. Figure 4.14 

shows the result o f successively interleaving the silhouette preserving displacement o f the mesh 

with the remesh operation.

4.6 Texture Coordinate Generation

To obtain a complete 3D model, suitable for today’s 3D applications, we first need to obtain texture 

coordinates for the triangles o f the mesh. In other words, we need to find a parameterization o f the 

surface mapping a point in 2D to a point on the surface. It is in this space that the final reflectance 

model w ill be represented.

The automatic texture coordinate generation follows the method used by Levy et al. [54]. The 

surface is split into pieces, which are individually mapped to 2D, and then all the pieces are placed 

into a rectangle. The resulting texture coordinate mapping should preserve (as best as possible) the 

properties o f the triangles (i.e., angles), the relative size o f the triangles, while utilizing as much area 

o f the final texture rectangle as possible.
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In order to split the surface, vve use the shape approximation method o f Cohen-Steiner et al.

[15]. Their method best approximates the surface o f a 3D object with a predefined number o f planes 

(n,,lanes)- A mapping from each triangle to its best approximating plane is stored during their 

algorithm. A t the end o f the approximation, we use this labeling to partition our 3D object.

Our method then proceeds in much the same way as that described by Levy et al. [54], where 

the individual pieces are first mapped to 2D using a Least Squares Conformal Mapping (LSCM). 

The pieces are then scaled to occupy an area proportional to their surface area and packed into the 

rectangle starting with the largest piece first. Levy et al. propose a packing method that attempts to 

minimize the wasted space between the lower contour o f the current piece and the upper contour o f 

the currently packed pieces. Our method differs slightly in this packing stage, and w ill be discussed 

below.

Figure 4.15: The binary mask o f the piece (left) is to be inserted into the global occupancy mask 
(middle). The texture coordinate offset for the piece is obtained by finding the first available position 
for the piece, illustrated in the updated occupancy mask (right).

Given a desired resolution o f the texture, say wtcx x  h tcx, we retain a binary mask o f size 

wtex x  h lcx denoting which texels are used, called the global occupancy mask. This mask is initia lly 

cleared. Then each piece is rasterized to an individual occupancy mask. The texture coordinates o f 

a piece are then computed by finding a position in the global occupancy mask that accommodates 

the individual mask. Actually, the search is to find a texture coordinate offset, which positions the 

texture coordinates o f the piece in a non-overlapping part o f the texture map (see Fig. 4.15). This 

can be performed by a binary AND o f the individual mask and the global occupancy mask at each 

possible ( u, v) location. The first position where the binary AND (across all pixels o f the individual 

mask) returns FALSE is accepted as the texture coordinate offset for the piece. I f  no such position is 

found, then the pieces are too big to fit in the desired rectangle. In this case, the texture coordinate 

offsets o f each piece are reset, and then each piece is scaled down uniformly. The process continues 

until all pieces fit in the rectangle (see Fig. 4.16 for the results o f the texture coordinate generation).

The slowest part o f the algorithm is checking to see i f  there is any overlap between an individual
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Figure 4.16: A  rendering o f the texture coordinates (left) for an object (middle). The image on the 
right is obtained by texture mapping the model using the image on the left as the texture.

mask and the global mask. This portion o f the algorithm can be sped up by a fast reject implemen

tation. For instance, one such approach is to check every n-th pixel o f the mask for overlap. Once 

overlap is found, the position is rejected; otherwise, the remaining pixels need to be checked.

Cracks on the boundaries o f the individual pieces are avoided in a similar manner as Marschner

[58]. Instead o f using a disjoint partitioning o f the object, the partitions also include the neighboring 

triangles, i.e., there exists a single triangle o f overlap at the boundaries o f the partitions. The texture 

coordinate generation is done with these extra triangles in place, as is any warping o f input images 

to the texture space. After the warping described in Section 4.7 is complete, the extra triangles are 

removed.

4.7 Reflectance Fitting

With the triangulated mesh and associated texture coordinates, we can now discuss the final fitting 

o f the Phong reflectance model. As mentioned in Section 3.2.4, we did not fit an explicit specular 

model to the surface points because specular highlights are not necessarily observed on every surface 

point. I f  instead only a Lambertian model is required, a similar fitting process to the one defined in 

Section 3.2.3 can be used.

The texture coordinates provide a mapping from 2D to the surface o f the mesh, so reflectance 

fitting takes place in each occupied texel. The center o f each texel can be treated as an individual 

point on the object, which could then be projected into the input images to obtain color samples. 

Instead, we warp the input images to the texture space, using projective texture mapping and a 

shadow map visibility test. This approach can take advantage o f the graphics hardware for trilinear 

filtering via mipmaps.
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4.7.1 Interpolation Method

Our interpolation method is similar in spirit to the other interpolation based methods [77, 76]. We 

first attempt to fit the Phong model to the observations at each texel. A  reliable fitting is only possible 

when a texel has several observations with a large n  • h. I f  there are not enough observations, the 

specular parameters w ill not be estimated correctly, leaving only a correctly fit Lambertian model.

To allow for the recovery o f specular parameters on surface points where specular highlights 

were not observed, some sort o f interpolation is required. We make the assumption that surface 

points with similar diffuse albedos w ill tend to have similar specular parameters. With this assump

tion we then fit the specular parameters to those texels that observe a specular highlight, giving a set 

o f candidate Phong parameters. The remaining texels then assume the Phong parameters o f one o f 

the candidates having a similar diffuse albedo. The process is outlined below:

1. Fit a fu ll Phong model to those texels where the specular parameters can be reliably estimated, 

and add the texel and its Phong parameters to the candidate set.

• The fu ll Phong model is only fit to those texels having at least 4 observations where 

n  • h  >  0.75. As a result o f the estimated shape having some errors, the surface normals 

are sometimes slightly wrong. Correct surface normals should have an observed specular 

peak in a sample where n  • h  is the largest. Therefore, we also reject texels whose 

brightest observation does not occur near the observation having the largest n  • h.

• In the current implementation, we assume that the specular color is some shade o f gray, 

i.e., k rs =  fc® =  k bs =  k a. We also assume that the ambient color o f the object is the 

same as its diffuse color, so k j  =  k „ .  Therefore, the specular fitting process need only 

estimate the diffuse albedo, k j ;  the specular coefficient, k s \ and the specular exponent, 

n.

• Let c , =  (c--, c f , c j)T be observed color i  and let ax =  fp hong(k,/, ks , n , i )  be the color 

component anticipated by the Phong model in observation i.  We then minimize the 

following set o f non-Linear equations:

£ ( k (/,fcs,n ) =  £  Y ,  (4.11)
• Ae{r, <i,b}

I f  an observed color is saturated, the error is only considered when the anticipated color 

is less than the observed color. This is done through the f sat function:

t  i a A\ _  /  0  i f  cA is saturated and ax > cx . .  . . .
W f l , c , - ( l  otherwise 1 ;

The use o f this function was based on an observation by Schirmacher et al. [79], where 

ignoring the saturated pixels produced a closer fit to the unsaturated pixels.

2. For every texel not in the candidate set,
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• We first fit the diffuse albedo only (in a similar manner as Section 3.2.3).

• We then find k  elements from the candidate set having the most similar diffuse color 

(measured using Euclidean distance in YU V space). The specular parameters o f this 

texel are chosen as the specular parameters o f one o f the k  candidates that best agree with 

the image observations. In other words, these are the specular parameters that produce 

the least error when plugged into equation Eq. 4.11, using this texel’s observations and 

diffuse color.

A t the end o f the reflectance fitting, it is possible that neighboring texels have abruptly changing 

specular parameters. To make synthetic renderings more visually pleasing, we perform a post

process filter to the fitted specular parameters. This filtering assigns new specular parameters to a 

texel based on a weighted average o f the specular parameters on the texels in the same triangle and 

those in neighboring triangles. The weight is the sum o f two terms: a term that is inversely propor

tional to the distance o f the diffuse colors in YU V space, and a term that is inversely proportional to 

the geometric distance between the two points. The first term gives the parameters o f similar colored 

texels a larger weight than differently colored texels. The second term gives closer texels a greater 

weight than farther texels. For all the results in this paper, the above filtering has been iteratively 

applied 4 times.

Unfortunately, as this method is interpolating specular parameters, it is possible that a completely 

Lambertian point is assigned a specular component. The clustering method o f Lensch et al. [51], 

which uses a set o f surface points to fit the specular component, should be less susceptible to this 

type o f error.
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Chapter 5

Experiments

We now discuss the results o f our mesh based refinement described in Chapter 3, with sequences 

obtained using the system defined in Chapter 4. We first present results on synthetic sequences, and 

then continue to discuss the results on real experiments. In all cases, unless otherwise specified, the 

capture consists o f two sets o f images, where each set o f images uses a different light position. Also, 

since we have not yet accounted for shadows, we try to position the light source in such a manner 

that there are no shadows. For real sequences, we cannot position the light source at the center o f the 

camera, so some shadows do exist, but we expect the effect o f these shadows to be minimal. Again, 

since the light source is close to, but not exactly at the camera center, the light source calibration 

presented in Chapter 4 is still used.

5.1 Synthetic Objects

Our first set o f experiments are on a synthetic object, captured under similar settings as described 

in Chapter 4. Experiments on synthetic data sets give us an impression o f how well the method 

works on perfect data, i.e., without image noise, calibration errors, etc. In the synthetic cases we 

wish to evaluate the shape evolution, and therefore we do not use the silhouette preserving force. 

Furthermore, all the results on synthetic objects have been obtained using the specular filtering from 

Section 3.2.4. Applying this filtering on Lambertian objects demonstrates that the filtering does not 

need to be applied selectively, but rather that it can be applied to all surfaces.

For the synthetic tests, we have chosen an object that has several different concavities that are 

not recovered by the visual hull. We perform various tests with this object by varying the surface 

texture and specular parameters. A ll o f the data sets for the synthetic data have been obtained using 

two sets o f 32 images taken at two different elevations, with the light source positioned exactly at 

the camera center, for a total o f 64 images.
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5.1.1 Varying Texture

The first set o f results are with respect to varying the texture on the surface o f the object. These 

experiments were intended to identify situations when the refinement w ill work and when it w ill 

fail. Figure 5.1 shows the sample textures used, as well as some o f the input images.

Seq. Name Input Image 20 Input Image 36 Texture

DTEXO

DTEX1

DTEX2

Figure 5.1: The names o f the data sets and 2 o f the 64 input images from each o f the diffuse 
sequences. On the right is the texture used for the sequence.

The shape refinement was then run on each o f these sequences, w ith n ca m e ras set to 12. The 

starting resolution o f the mesh was chosen such that the downsampled images in the Gaussian pyra

mid were not used. In other words, the refinement is done on the original images. The results for 

these experiments are shown in Figure 5.3.

Comparing the results in Figure 5.3 with the initial mesh and the ground truth (Fig. 5.2), we see 

that our method appears to work well on all the concavities o f the object. The lighting information 

is sufficient to capture the shape o f the object when there is no surface texture. Furthermore, the
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method also appears to work well on the smoothly varying texture (DTEXO). The method is also 

able to recover the shape under the abruptly changing, piecewise constant texture in the DTEX1 

sequence. Although, in this sequence the recovered shape has m inor ridges on the boundary o f 

colored regions in the surface texture.

Unfortunately, the results are not so impressive on the repetitive high frequency texture o f se

quence DTEX2. Portions o f the concavities are recovered, but they are not recovered completely. 

This example demonstrates that the shape refinement may have trouble working on surfaces with 

high frequency texture. A  possible explanation is that the gradient provides little  information when 

the shape is far from the surface, making the refinement in such regions useless.

On the other hand, when we reduced the mesh resolution so that the downsampled images in the 

pyramid were used, we found that the method was successful on the DTEX2 sequence. This seems 

to suggest the importance o f the Gaussian pyramid for surfaces with high frequency textures. Fur

thermore, it appears that the textured sequences benefit more from the multi-resolution search than 

the non-texture sequences, suggesting that care needs to be taken in choosing the starting resolution 

for a particular object.

Name

Initial

Figure 5.2: The initial shape from silhouette mesh and the ground truth o f the synthetic object.
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Name View 1 View 2 View 3

DIFF •  ♦  •
TEXO W ♦  9
TEX1

TEX2 9  ♦  #
Figure 5.3: The results o f the synthetic diffuse experiments. For the first three surface types (DIFF, 
TEXO, and TEX1), the shape was successfully recovered. The high frequency texture in the TEX2 
sequence caused some difficulties for the reconstruction, which is illustrated by the remaining vol
ume in the concavities.
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5.1.2 Specular Objects

We have also performed tests when the synthetic object had a specular surface. Figure 5.4 shows 

some o f the input images for the specular sequences. Sequence H50 was taken with a specular 

coefficient o f 1.0 and a hardness o f 50, while H20 had a specular coefficient o f 0.52 and a hardness 

o f 20. Any surface with a hardness greater than 50 w ill produce less highlights, implying that the 

results should be as good, i f  not better, in those circumstances.

Input Image 20 Input Image 36 TextureName

H50TEX1

Figure 5.4: The names o f the data sets and 2 o f the 64 input images from each o f the specular 
sequences. On the right is the texture used for the sequence.

As with the results in the diffuse case, we have tested the results o f our method when the specular 

filtering was on (the brightest n spec samples are not used in the reflectance fitting nor are they used 

in the computation o f the error). We have turned o ff  this feature so as to compare the benefits o f 

such an approach. We have only done this for sequence H50, the results o f which we call H50L.

Figure 5.5 shows the results for the specular sequences. Notice that the main concavities are 

recovered for both sets o f specular parameters and uniform material (H50 and H20). The method 

also works for the textured sequence as depicted by the results for H50TEX1. Looking at the results 

for H50L, we see that the specular highlights cause the recovered shape to be deformed. This defor

mation happens on the regions where the specular highlights were observed in the image sequence. 

Comparing H50L to H50, we see that the specular filtering approach does indeed improve the re

sults. Returning back to H20, the filtering is proving to be less successful, illustrated by the slightly
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deformed shape, but the results are not as bad as H50L. As the specular hardness o f the underlying 

object goes down (i.e., the specular lobe gets wider), we expect the specular filtering method to 

become less useful. This is due to the increased number o f specular samples, implying that some 

specular samples w ill not be filtered out.

Name View 1 View 2 View 3

H50 w ♦  #
H50L # *  •
H20 •  % 9

H50TEX1

Figure 5.5: Results for the specular sequences. Comparing the results in H50 to those o f H50L (no 
specular filtering), we can see that the specular filtering helps produce a better reconstruction. The 
shape recovery was also successful in the H20 sequence, and the H50TEX1 sequence.
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5.2 Real Objects

In this section we w ill show the results o f the shape optimization on real objects. We have chosen 

objects with varying surface properties (e.g., single matte material, textured diffuse object, and 

specular objects), to test the reconstruction method. In all cases the refinement stage takes roughly 

20 minutes to 1 hour for completion1. The resulting mesh often has many little  bumps, possibly due 

to image noise, so we often perform a simple mesh smoothing or reduce the resolution o f the mesh 

after the optimization.

We first present the results for a single material, matte object: a 3D printout o f the Stan

ford bunny. The sequence contains 52 images, and the shape optimization has been done with 

n c,imeras =  12. Two input images, the ground truth, and the results are shown in Figure 5.6.

The refinement pulls the initial shape closer to the true object, making noticeable indentations by 

the legs o f the bunny. Some o f the small bumps also start to become visible through the refinement. 

Unfortunately, the small features, such as the ears and the base o f the platform start to deterio

rate slightly, although a more frequent application o f the silhouette force could help overcome this 

problem.

In another experiment, we have captured two model houses, which both exhibit near Lambertian 

reflectance and have varying surface texture. The TallHouse capture consists o f 52 images, 26 at 

each o f the two light elevations, and the refinement was done with n C H m e r a s — 8 . The results are 

displayed in Figure 5.7. The refinement o f the TallHouse brings out fine details, such as the stairs, 

the shingles on the roof, and the windows on the front.

The other model house, the ShortHouse, has a large concavity on the front o f the object and 

another on the back (Fig. 5.8). The Gaussian pyramid implementation was required to reconstruct 

these concavities. In this sequence, we demonstrate typical problems that occur when fitting a 

spatially varying albedo to an erroneous shape. The second row o f Figure 5.8 shows the fitted 

albedo using the initial geometry. The recovered texture is blurry in regions where the shape is 

not recovered, and does not produce a realistic rendering. In such cases, an image-based rendering 

technique could compensate for the geometric errors, but could only reproduce images from novel 

views that are close to input views. In this experiment, there are no images from above the object, so 

using an image-based method with the viewpoint in the first column would still produce erroneous 

renderings. Our results are shown in the bottom row o f Fig 5.8, where we can see that the texture is 

much sharper than the results in the second row, and the overhead view is convincing.

5.2.1 Reflectance Results

We now present the results o f objects having non-Lambertian appearance. Additionally, we show 

the results after fitting the Phong model to the surface.

1 Experiments were run on 2.5 — 3.0 GHz machines with >  1 GB of RAM
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Results o f individual captures are presented in Figure 5.9. In each o f the cases we can see that 

the reconstructed result closely resembles the input image. Comparing the novel renderings o f the 

reconstructed Phong reflectance to the input images, it seems that the specular component is under 

fit. That is, the specular component is not as sharp as it is on the true object. A  similar problem 

was noted in the work o f Yu et al. [99]. As in their work, this could be a direct result o f errors in 

the computed light position or errors in the recovered shape. Another problem is that our specular 

interpolation method often assigns a specular component to the regions o f the object that are actually 

Lambertian.

Figure 5.10 demonstrates the practical usefulness o f our models. In this scene, the elephant’s 

legs and trunk have been animated so that it looks like the elephant is taking a drink from the coffee 

cup. Both the elephant and coffee cup have been reconstructed with the methods described in this 

thesis, and the two objects were easily combined with the synthetic sphere. The diffuse color o f 

the objects has been reconstructed by the method in this paper, but the specular component was 

modified in Blender. The rendering, obtained by using the 3D modeler Blender, contains several 

light sources, realistic shadows, and demonstrates how these models can be modified and combined 

with traditional computer graphics models.

As another example o f the potential applications o f these models, we have captured a set o f 

chess pieces. The unique chess pieces were individually captured and combined into a working 

chess game. Total time taken was 1.5 hrs for image acquisition and roughly 6  hours for refinement 

(a total o f 12 models). Screenshots o f the original chess board and the synthetic game are presented 

in Figure 5.11.
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Figure 5.6: Two input images (top), synthetic images o f the ground truth (2nd row), the initial 
volume (3rd row), and reconstruction results (bottom) from the Bunny sequence. The fine details 
start to become visible in the reconstructed results, mostly visible around the feet and between the 
legs o f the bunny.
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Figure 5.7: Two input images (top), the initial volume (2nd row), shaded reconstruction results (3rd 
row), and textured reconstruction results (bottom) from the TallHouse sequence. The refined results 
start to bring out the stairs in the base o f the house, as well as the indentation by the chimney. The 
textured and lit  renderings on the bottom row fa ithfully represent the true object.
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Figure 5.8: Two input images (top), the initial volume (2nd row), the albedo computed for the 
initia l volume (3rd row), shaded reconstruction results (4th row), and albedo o f reconstruction results 
(bottom) from the ShortHouse sequence. Notice the blurriness o f the texture in the 2nd row resulting 
from inaccuracies in the shape. After the refinement, the recovered texture is sharp (4th row), and 
novel views that are far from input views are possible (1st column o f 4th row).
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Figure 5.9: Some results for shape estimation and reflectance fitting o f specular objects. From left 
to right: an input image, a shaded image, the diffuse texture, diffuse and specular texture at the same 
viewpoint, and a novel viewpoint w ith shadows and two lights. The renderings o f each object are 
realistic, although the specular component is not as sharp as observed in the input images.
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Figure 5.10: M ultip le captures (real images o f  the two objects are given on the top row) were 
combined with some synthetic objects (the sphere and ground plane) and then rendered in Blender 
with multiple novel lights and a novel viewpoint (bottom). The vertices o f the elephant have been 
modified to demonstrate the practical usefulness o f the models.
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Figure 5.11: The unique pieces o f the real chess board (top) were captured individually. These 
pieces were then combined to produce a working chess game. The middle and bottom images show 
two lighting conditions o f the chess game, where the objects are both casting and receiving shadows.
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Chapter 6

Conclusions

In this thesis we have presented a capture setup for obtaining the shape and reflectance o f solid 3D 

models from images. The system has been designed to be easy to use, while operating with minimal 

hardware requirements. In the simplest case, we have captured objects using a rotating cake table, 

a single consumer handheld camera, a desktop lamp, a painted ping-pong ball, and a couple sheets 

o f blue paper. Each module o f the system has been presented with enough detail to allow for an 

independent implementation.

Within this capture setup, one o f the main contributions was the use o f a consistency function 

that incorporates a known light position. Assuming that the object was moving relative to the light 

allowed the recovery o f spatially varying reflectance parameters. The consistency measure fits nicely 

into the variational framework, which leads to a PDE describing the evolution o f a surface. In our 

implementation, we have represented the surface using a triangulated mesh, which is deformed 

from an initia l volume, the visual hull, to the final refined shape. Instead o f a mesh, we would like 

to consider the use o f a level set representation during the reconstruction. Another implementation 

option that we have not yet explored is to measure the photo-consistency on the tangent plane o f the 

vertices (mentioned in Chapter 3), instead o f on the triangles themselves.

We have demonstrated that our implementation is effective for textureless and low textured ob

jects, but seems to be less useful on high frequency texture. Unfortunately, the method also seems 

limited in the range o f concavities that can be recovered. In order to recover large concavities, the 

refinement needs to be started with a low resolution mesh and downsampled images. In such cir

cumstances the use o f a silhouette preserving force was necessary to preserve the volume o f the 

object during the reconstruction (similar observations were made by Isidoro and Sclaroff [37]). For

tunately, these textured regions are where correlation based methods are expected to work well [23]. 

A  possible alternative to the use o f a low resolution mesh would be to directly carve high textured 

regions (as done in [2 2 ]), while allowing the gradient based refinement to do the remaining portions 

o f the object.

As mentioned above, the silhouette force was necessary when using a low resolution mesh. In 

the current implementation the silhouette force is a simple ad-hoc approach that does not fit nicely
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into the variational framework used. We would like to investigate a mathematical measurement o f 

the photo-consistency in the images, where it is more natural to represent a silhouette preserving 

force. In this formulation, we suspect that the silhouette preserving force could be encoded directly 

in the PDE evolution. The work o f Yezzi and Soatto on stereoscopic segmentation [98] is a potential 

starting point for this extension.

A downside o f the current implementation is that the quality o f the final results is directly de

pendent on the initial resolution o f the mesh, and the other parameters, such as n CHmcr„ s. As the 

refinement typically takes anywhere from 2 0  minutes to 1 hour, it takes time to adjust these parame

ters. We would like to further investigate the effects o f the parameters and the initia l mesh resolution 

to reduce the number o f runs required to get good final results.

Specular highlights have also been accounted for by treating them as outliers, allowing the 

method to recover the shape o f glossy objects. We have demonstrated that the shape is success

fu lly  recovered for some specular objects, but we suspect the reliability o f our approach to degrade 

with materials having a wide specular lobe. A  potential direction for future work is to utilize the 

information contained in the specular highlights, rather than filtering them out.

An additional area for future efforts is the integration o f a user into the shape recovery. In some 

reconstructions, it is clear to a user that a particular portion o f the object should be planar, or that 

an edge should be 90 degrees. We would like to introduce these constraints to allow optional user 

intervention during the reconstruction process. The model would then be refined to best match the 

input images, while maintaining the user defined constraints.

Unfortunately, the capture system described in this work is limited to indoor settings and small 

capture objects. To make the methods more practical, we would like to investigate similar capture 

schemes for large scale 3D models in outdoor environments. In outdoor environments, introduc

ing light variation is not a feasible option, so instead we would like to consider dense shape and 

reflectance reconstruction where the light variation comes from captures at different times o f day.
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Appendix A

Sampling the occluding contour of a 
sphere

The projection o f a sphere onto an image plane is generally an ellipse. One approach for determining 

sample points for the occluding contour would be to analytically derive the equation o f this ellipse, 

and choose sample points directly on this ellipse. Alternatively, one could determine points on the 

occluding contour in 3D and project these points onto the image. We take the latter approach.

Figure A. 1: I f  a i and a2 are on the occluding Figure A.2: The occluding contour o f a 
contour o f the sphere then a io  =  a jo  =  ?•, sphere is a circle on the sphere, which is pro- 
Z oa 2C =  Z o a jc , and |co| =  |co| => jected into the image.
A o a 2C =  A o a ic  => aTc =  a le .

I f  x  is a point on a sphere o f radius r, c is the center o f the camera, and the ray f ( t )  =  c + t ( x —c) 

is tangent to the sphere, then x  is on the occluding contour o f the sphere. It is not hard to show that 

all such points actually lie on the intersection o f a plane with the sphere. This is illustrated in Fig. 

A . l,  where by similar triangles, ail points on the occluding contour o f the sphere are equidistant 

from the camera center c.

The plane is defined by the normal, which is aligned with o — c, and the point p  on the 

line join ing c to o. By Pythagoras theorem, all points on the occluding contour are distance 

d — ^ /||o  — c||2 — j -2 from the camera center. This distance defines the angle, 6cone =  tan - 1 (^ ) , 

o f the cone from c through the occluding contour. The point p  is then given by the orthogonal 

projection o f an occluding contour point onto the line oc, i.e., ||p — c||=c/cos(0 C(me) => p  =
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C +  d co s (0 c o n c )|^ z fjf-

Once the plane is found, we sample points at regular angular intervals on the intersection o f 

this plane with the sphere, which is a circle on the plane. The radius is readily obtained as r cjrc =  

y /d 2 -  ||p -  c||2. These points are then projected onto the corresponding image (Fig. A.2).
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