jonal Libra
I* c‘;lfact:grr‘\aéda v du Canada

Biblioth nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
guality of the original thesis submitted for microfilming.

very effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an infarior phetocopy.

Reproduction in full or in part of this imicroform is governed
by the Canadian Copyright Act, #.5.C. 1970, ¢. C-30, and
subsequent amendments,

NL-339 (r.8804) ¢

AVIS

La qualité de cette microforme dépend grandement de la

qualité de la thése soumise au microfilmage. Nous avons

:-put fait pour assurer une qualité supérieure de reproduc-
ion.

S'il man%ue des pages, veuillez communiquer avec
funiversité qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pazes originales ont été dactylogra-
phiées a 'aide d'un ruban usé ou si université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette micrcforme est

soumise & la Lol canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canada

University of Alberta
Autonomous Indoor Navigation of a Robot

by

@ Murat Goksin Bakir

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Master of Science

Department of Computing Science

Edmonton, Alberta
Fall 1990

E
o .

fNational Library

Bibliothéque nationale
of Canada

du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

The author has granted an imevocable non-
exclusive ficence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or foomat, making this thesis available
to interested persons.” T

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence inévocable et
non exclusive permettant & la Bibliothdque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de queique maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése & {1 disposition des personres
intéressées.

L'auteur conserve fa propriété du droit d'auteus

“qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-65120-2

UNIVERSITY OF ALBERTA !

RELEASE FORM

NAME OF AUTHOR: Murat Gokgin Bakir
TITLE OF THESIS: Autonomous Indoor Navigation of a Robot

DEGREE: Master of Science
YEAR THIS DEGREE GRANTED: 1990

Permission is hereby granted to UNIVERSITY OF ALBERTA LIBRARY to
reproduce single copies of this thesis and to lend or sell such copies for private,
scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis not extensive
extracts from it may be printed or otherwise reproduced without the author’s written
permission.

(Signed) ..
ermanent Address:
Mustafa Kemal Pasa Sokak
56/4
Inebolu 37500
TURKEY

Date: 12 lSep\t’Mbef)'sso

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research. for acceptance, a thesis entitled Autonomous Indoor
Navigation of a Robot submitted by Murat Goksin Bakir in partial fulfillment
of the requirements for the degree of Master of Science.

Date: 7 / Seplenben l 1930

To
My

Parents

Anncine
ve
Babama

Abstract

The design and implementation of an indoor navigation system of an autonomous mo-
bile robot requires robust estimation of its position and generation of sale trajectories.
In this thesis we present a general localization method and a trajectory generation
algorithm so that the robot can autonomously navigate indoors in a known environ-
ment. The localization methods introduced so far make use of sensor data nsnally
too excessive for real-time processing. We exploit optical wheel encoders and sonar
proximity sensors in order to localize the robot dynamically without disturbing the
continuity of its motion. The encoder localization is based on observing differential
changes in wheel positions, while the sonar localization algorithm extracts position
information from sonar reflections. The sonar sensory system correlates the range
data and the line segments constructed from tiie range data with an a priori cnvi-
ronment map to obtain a position estimate. A general fusion algorithin for multiple
sensory systems combines sensory position information on the basis of an explicit
representation of the uncertainties of the various sensors. The trajectory gencration
algorithm has been developed on the basis of previously introduced methods. The al-
gorithm provides continuous and smooth motion, and facilitates adaptivity to sensor
feedback. The above methods &7 implemented on a physical mobile robot and the

experimental results of the rcalized system are presented.

Acknowledgements

1 would like to thank my supervisor, Hong Zhang, for his guidance, constructive
criticism and support thrcughout this work and especially for teaching me the process
of research and its accomp *shment. I would also like to thank Roger Toogood for his
advice and suggestions about the project, I extend this thanks to all members of the

Robotics Research Group at University of Alberta.

A special thanks goes to Feral and Cengiz, for providing me shelter, food and
loving care during the last weeks of my thesis. Thanks to all those people who shared
their time, thoughts and feelings with me. Finally, I would like to thank Seref Uguris,

for his existence in this world.

Contents

1 Introduction

1.1 ThesisGoals L
1.2 Autonomous Mobile Robot Navigation,
1.2.1 Perception L
122 Controlo
1.3 PreviousWork
1.4 Organizationof the Thesis

2 System Description

2.1 System Architecture
211 TheRobot.
2.1.2 Proximity Subsystemo

2.2 Software Organization
221 The WorldModel

3 Localization of the Robot Using Multiple Sensors

3.1 Background
3.2 Sensor Uncertainty Modeling
3.3 Consistency Test of a Single Sonar Reading

3.4 Perception Models oo oo oo oo

3.4.1 Monitoring the Motion by Dead-Reckoning 28

3.4.2 Monitoring the Motion by Sonar Sensors 29

3.5 Orientation Determinationo oo oo 31
3.6 Final Fusionofthe Data 32
3.7 SUMINATY e e e e e e e e e e e e e 36
- iectory Planning and Execution 37
1o Yatroduction . .. oL L o o e e e e e e e e e e e e e 37
4.2 Motion Planning of Mobile Robots 38
4.3 Kinematicsof the TRC Robot A1
4.4 Trajectory Generation L 45
4.4.1 Basic Formulation of the Solution 45

4.4.2 Determination of the Solution Degree and Exit Distance Selection 48

4.5 Motion Controlo 53
4.5.1 Setting Wheel Velocities 53
4.5.2 Execution of the Trajectory e e e 54

4.6 SUMMATY i it e e e e e e e 56

Implementation 58

51 Communication« o v it i e e e e e e 5%
51.1 Scheduler 0. e e 6O

5.2 Motion and Sensory Control 62
520 Motion oo e e e e e G2
5.2.2 Exception handling G4
523 SensorControl 0. 65

53 Localization o o o GG

5.3.1 Sonar Sensor Localization 66

5.3.2 Encoder Localization

533 DataFusion.........

5.4 Trajectory Generation and Control

5.5 Experimental Results

56 Summary

6 Conclusion

6.1 Summary Discussion

6.2 Future Research

Bibliography « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ « o &

...................

...................

94
R

95

98

List of Figures

1.1 Wheel structures for mobilerobots
9.1 Therobot base e e
2.2 Control architectureof therobot
2.3 The communicationschemeo oo oo
2.4 Control Structure of the proximity subsystem
2.5 Sonar sampling in the hallway00
2.6 Sonar array configurationo
2.7 The framework of the navigation system
28 Theworldmodel
2.9 Representation of a part of the corridor
3.1 Normalizationof sensordata
3.2 Sensorfeedback oo o e
3.3 A multiple reflection pattern and its interpretation
34 Concofreflection i e
3.5 Visiblespace o e
3.6 Nearness Test L o e
3.7 Geometryofareflection oo
3.8 A sample weighted least square fit

3.9 Detecting a deviation from the estimated path

o

3.10 Fitting curves to a set of data points

4.1 A sample trajectory for the mobile robot

4.2 ‘The TRC in World Coordinates
43 The TurnMotion
4.4 Dividing the goal intosub-goals
4.5 Seginentsof atrajectory

4.6 Aiternative solutions for trajectory gencration

4.7 Two different solutions for the same trajectory

4.9 Destination constraint on the exit distance

4.10 Details of a curvature

..........................

4.11 Possible typesof motion L.

4.12 A sample motion and its corresponding velocity profile

4.13 Updating a trajectory during navigation
5.1 The communication between processes
5.2 The interruptscheme
5.3 The scheduling mechanism,
54 Theworldmap
5.5 Associating a point withaline.
5.6 The scarch algorithm
5.7 Forming lines by point transformation
5.8 Encoder geometry o
5.9 Data flow of localization
5.10 A sample run within the corridors

5.11 Correction of a trajectory by overriding the last two nodes

5.12 Real and estimated patho oL
5.13 Localization errors along the path e e :
5.14 x coordinate of the actual location and the sonar lo-alization

5.15 x coordinate of the actual location and the encoder localization

5.16 x coordinate of the actual and the estimated location R
5.17 y coordinate of the actual location and the sonar localization

5.18 y coordinate of the actual location and the encoder localization

5.19 y coordinate of the actual and the estimated location
5.20 Error in Encoder localization and final estimation in x coordinatcs
5.21 Error in Sonar localization and final estimation in x coordinates

5.22 Error in Encoder localization and final estimation in y coordinates
5.23 Error in Sonar localization and final estimatiocn in y coordinates

5.24 Error in Encoder localization and final estimation in orientation

5.95 Frror in Sonar localization and final estimation in orientation

Chapter 1

Introduction

Most of today’s industrial purpose robots are used in stationary applications.
However, there are a several tasks for which a high degree of mobility is required. Pro-
duction techniques can be significantly improved by using autonomous mobile robots,
which can move independently in the manufacturing domain and transport materials
and tools. Utilizing an autonomous mobile robot need not be limited to the manu-
facturing industry. Space exploration, un 'erwater exploration, and service industry

are some of the areas in which mobile robotics research finds wide applications.

By definition, a mobile robot possesses a means of locomotion. Two main
types of terrain locomotion techniques used today are legged and wheeled locomo-
tion. A legged vehicle is extremely difficult to control. The robot not only has
to maintain its balance all the time, but also has to synchronize its legs. A con-
siderable amount of research is being done in this area. Examples are biped ma-
chines with and without joints [Sugano, 1985], hopping machines [Raibert, 1984],
quadroped machines with crab-like motions [Hirose, 1984], and hexaped machines
[Zhimin and Dongying, 1985]. Legged locomotion assumes static stability. Static
stability is easy to achieve as it requires relatively simple analysis and reasonable

computational complexity. Dynamic stability, however, still rcquires substantial re-
1

The CMU Pluto Drive
(Six degrees of freedom,very hard to control)

Conventional
(Two degrees of freedom)

2 S

Tank Drive Simuitanously Driven Wheels and Stcering

(Two degrees of freedom) (Two degrees of freedom)

passive/ =
\ g

Figure 1.1: Wheel structures for mobile robots

search.

Wheeled robots represent another class of locomotion. There is a large set
of different designs for wheel structures, some of which are shown in Figure 1.1.
A wheeled mobile robot locally moves in a plane, and thus it has three degrees of
configurational freedom, which are the two translational degrees of freedom and one
rotational degree of freedom on the z — y plane. Depending on the kinematics of
the robot, one of the configuration parameters may be dependent on the others. For
example a tank drive mobile robot (Figure 1.1) can move only in the direction normal
to the axis of its driving wheels. Wheeled robots with such constraints are referred

to as non-holonomic robots.

Autonomous navigation requires the knowledge of the current state of the en-

vironment. This information can be acquired and updated by a number of individual
sensors making use of various physical properties of the environment. A multitude of
sensors have been developed [Brooks and Lozano-Perez, 1983]. In robot navigation,
typical sensors used for perception are: odometer, compass, vision, proximity and

tactile sensors.

1.1 Thesis Goals

This thesis presents a system for the autonomous indoor navigation of a wheeled
mobile robot. The primary goal of this work is to provide a general {framework unaer
which positional information collected from various sensor sources can be fused to
obtain an optimal estimate of the current position of the rcbot. We also present an
algorithm that generates a continuous motion trajectory in a two-dimensional space
according to the task specifications. 1n addition, unlike many previous attempts, we
emphasize the real-time and sensor driven nature of the motion planning problem by

updating the task plan on a continuous basis.

Estimating the position of a mobile robot is a critical issue in autonomous nav-
igation as the success of any task that the robot has to perform relies on successful
localization of the robot. A reliable localization method must use multiple sources so
that the resulting position estimate will not be biased because of the deficiencies of
a single type of sensor. The problem of localization requires a solution that employs
a data integration method while considering the environmental and sensory charac-
teristics that define the uncertainty related to each position estimate. The solution
presented in this thesis exploits multiple sensors to dynamically localize the robot
in a previously known environment without disturbing the continuity of its motion.
Multiple sensor data are combined to obtain a final position estimate using a fusion

method that employs probabilistic estimation methods.

3

Trajectory generation, on the other hand, is another problem to be addressed
for navigation. Considering the fact that the robot will be realizing its tasks in real
time, an efficient path generation algorithm is necessary. The method we develop
generates safe trajectories which are formed of straight line segments and arcs of con-
stant curvature, and maintains continuity of the motion with respect to the physical

movement capabilities of the robot at hand.

The result of this study is a system that maintains its position while navigating
in a previously known environment. The tasks to be executed are monitored dy-
namically by the supervisory control module in order to correct deviations from the
path. This method provides a safe navigation within the environment. The theories
we develop are verified physically on a non-holonomic mobile robot equipped with an

ultrasonic sensor array and wheel encoders.

1.2 Autonomous Mobile Robot Navigation

Autonomy of a mobile robot is its ability to successfully navigate while per-
forming its tasks without human supervision. The specific tasks, as well as the envi-
ronmental constraints, define the level of autonomy that the robot must possess. For
example, moving between two points in free space requires a lower level of autonomy
than working in production tasks. However, apart from the environmental and task
specific constraints, the control system of an autonomous mobile robot must con-
tain at least two basic modules, perception and control. These two modules function
independently and communicate and interact in real time. The perception system in-
terprets the sensory data to obtain position estimates. The control system performs

motion planning and execution.

Besides these requirements, an autonomous mobile robot may also be required

to satisfy other conditions. Some of these can be examplified by object recognition for

a garbage collection task [Lin et al., 1989}, precise position estimation for an assembly
task[Perez and Rouchy, 1987], etc. Our aim in realizing an autonomous mobile robot
is to achieve a general methodology for autonomous navigation which will constitute

the basis for future applications.

1.2.1 Perception

In order for a mobile robot to perform a navigation task, some means of cn-
vironmental perception is required. Localization, in this context, can be dcfincd as
determining the current position estimate of the robot using sensors. There have
been many solutions proposed for the problem of localization [Giralt et al., 1987,
Crowley, 1989b, Kuc and Barshan, 1989, Krotkov, 1989, Hu and Stockman, 1986,
Kriegman et al., 1987]. The basic idea of all these methods is to exploit one or more

sensor systems to periodically estimate the position of the robot.

With tbe development of advanced sensor systems, like CCD cameras, laser and
sonar rangefinders, etc., much information can be gathered from the environment.
The usage of multiple sensors gives rise to the problem of combining data from these
sensors. This problem is referred to as data fusion. Different sensors are perceptive
to various aspects of the environment with different accuracies. Fusing the data at
hand, considering all these constraints, is not an easy task. Probabilistic and heuristic
methods are used to achieve this goal [Hackett and Shah, 1990], but the field is still

in its infancy.

Our system interprets muitiple sensory data into distinct position cstimates
based on the geometric characteristics of the sonar sensors and optical encoders
mounted on robot wheels. The localization scheme uses a world model which rep-
resents the physical locations of the objects in the environment and has necessary

information for the robot to perceive and differentiate between distinct objects and

their locations. All sonar data are associated with a certain amount, of uncertainty and
they are integraied into a single estimate using weighted least square fit. Encoder data
is geometrically interpreted with a probabilistic uncertainty. Both of these sensory
position estimates are fused into a final position estimate using maximum likelihcod
method. This process is repeated periodically to provide localization. The described
fusion method is not limited to only sonar sensors and encoders, it is instead a general

method for fusing sensor data from multiple sources.

1.2.2 Control

The basic task of the control system is to su;.rvise the successful execution of
continuous motion, such as reaching a final goal poiat, and to determine the deviations
from the expected path. It is also responsible for decomposing a task into smaller

subtasks with the help of decision making algorithms and problem solving techniques.

A reactive control plan is required to ensure the robustness of the system.
The planning involves understanding a goal, and generating a feasible trajectory
for it. The trajectory must be continuous, because discontinuities in the trajectory
may result in infinite acceleration and deceleration. For indoor navigation, the geo-
metric aspects of the environment must be perceived and an appropriate trajectory
must be generated. There are two basic groups of methods for this problem: local
methods and global methods. Local methods assume no knowledge about the envi-
ronment and make use of local sensory information to generate partial trajectories
[Khatib, 1986, Faverjon and Tournossoud, 1987]. Global methods, on the other hand,
deal with cases where complete information about the navigation domain is provided

[Laumond, 1987, Brooks and Lozano-Perez, 1983].

In this work we study both global and local trajectory generation. First, a

global trajectory is generated for the main goal, and then, in order to carry it out,

it is decomposed into local trajectories. These local trajectories are monitored and
dynamically updated to obtain a safe navigation based on sensory feedback from
the perception system. A general trajectory generation method which uses straight
line segments and arcs of constant curvature to maintain the continuity of motion is
introduced. The motion planning accepts modifications in real time which are caused

by possible positioning errors detected by the sensors.

1.3 Previous Work

The first project in mobile robot navigation appeared in 1967 as a thesis pro-
posal [Schmidt, 1971]. The goal of the thesis was to realize a real time control of a
computer driven vehicle which would make a trip from the house of the author to
his work. However, the resulting system was not autonomous. Within the past two
decades, autonomous navigation has been an active research area. Many autonomous
navigation systems have been developed [Brooks, 1988, Crowley, 1989a, Stefik, 1985,
Giralt, 1984, Kriegman et al., 1987]. We will briefly review their hardware configura-
tions in this section and will describe their perception and control structures relevant

to our work in subsequent chapters.

The first automatically guided vehicles were mainly developed in the USA
[Rembold and Levi, 1987] and Japan[Maeda, 1985]. Their characteristic features
were sophisticaved supervisory systems and onboard navigators. These vehicles were
not completely autonomous. They were developed to operate on one factory floor

with the help of induction loops, reflective guide strips, floor markings, etc.

DARPA [Stefik, 1985] has set the goal to build an autonomous land vehicle to be
able to go on a mission over rugged terrains. Their vehicle is a six wheeled outdoor
robot, equipped with 2 cameras and ultrasonic rangefinders. The planning activi-

ties are in four levels: mission planning, global trajectory planning, local planning,

and reflexive planning. Sensor processing is done in a hierarchical manner involving

localization and reflexive reaction to the environment.

The Stanford mobile robot[Kriegman et al., 1987] is a two wheeled vehicle,
which has two cameras, sonar sensors and tactile sensors. The navigation system
is both onboard (emergency handling) and offboard (global planning). Uncertainty
is related to the position transformations by a multivariate normal distribution. The

final information is used to update the global world model.

In France, the project HILARE [Giralt, 1984] began in 1974. Currently, it is
an advanced testbed for mobile robot applications in LAAS. The locomotion system
of HILARE involves 2 driving wheels and one caster wheel. The sensing hardware
are 14 ultrasonic rangefinders and a combined camera/laser scanner for 3-D viewing.
The control hierarchy of the robot is composed of planning, control analysis and
navigation, and motion control. The world modeling and path finding take place in
a hierarchical manner. Another mobile robot in France which uses laser and infrared
triangulation sensors is VESA [Giralt, 1984]. Its locomotion mechanism uses 2 driving
wheels and 2 passive casters. The control of VESA is done by a global planning

module which determines the path by triangulation.

1.4 Organization of the Thesis

The following chapters describe an autonomous navigation system for a mobile
robot. This system is implemented on a TRC mobile robot base [Tra, 1989b]. The
hardware configuration and the control structure of the robot is described in chapter
2. In chapter 3 we introduce our solution to the problem of determining the optimal
position estimate of a mobile robot using multiple sensors. This method is based
on reducing the sensor uncertainty by data fusion. Chapter 4 describes a trajectory

generation method, and the motion control of the zobot to execute the generated path.

The implementation details of the proposed methods are described in chapter 5, which
also gives the experimental results of the system. Finally, chapter 6 summarizes the

work, and highlights directions for future research.

Chapter 2

System Description

In this chapter we will describe our autonomous mobile robot system, which
explores the environment using an array of sonar proximity sensors to maintain its
autonomy. The primary aim of our system is to dynamically maintain the location
of the robot while controlling its motion towards a goal in a robust manner. The
previous work in this field involves localization where the robot has to stop and
investigate the environment [Elfes, 1986] [Crowley, 1985]. The system we introduce
is sensor driven in real time where updates in positioning and motion planning are
done on a continuous basis. The navigation, achieved by matching the extracted
sensor information with the previously known world model, will be explained in the

next chapters.

2.1 System Architecture
2.1.1 The Robot

The robot is constructed on a TRC mobile robot base [Tra, 1989b). Its shape is
10

Bumper T L
Q'___ Passive casters
/

Driving Wheels
—

o o))

Figure 2.1: The robot base

rectangular with dimensions 28cm x 70cm X 75cm. Steering is done by 2 differential
steering wheels on the center axis and 4 passive casters on the corners as shown in
Figure 2.1. The independent control of the two wheels enable the robot to reach any
point in its free space. This form of locomotion makes the vehicle well suited for

indoor traveling.

The driver wheels’ motors contain two shaft encoders used for odometry. The

trajectories to be followed are specified by a path planner which will be explained in

chapter 4.
Proximity Subsystem
Encoder
How Cropue T
()
SPARCStati Robot Control Board
SLC MOTOROLA
68HC11 CPU
HCTL 1000
Servo Controtler

Protective Encoder Motor
Circuit Bumpers .

Figure 2.2: Control architecture of the robot

11

12

The robot is equipped with a Motorola 68HC11 CPU as the main controller.
The safety bumpers at the two ends detect any contact with an obstacle and set
certain registers for emergency handling. The software design of the controller allows
linear motion and turning with a given radius and rate |Tra, 1989b] through multiple
modes of motion such as go and turn. The transitions between these modes are
practically continuous [Tra, 1989b]. The control architecture of the system is given
in Figure 2.2. The robot’s control system only communicates with the host system.
Communication includes receiving motion commands froi: the host and sending the

status of the robot to the host.

Robot Proximity
Controller Subsystem
Sun
WorkStation
RS-232 - ======== \ RS-232

- = - - o -

Figure 2.3: The communication scheme

The robot’s computational system is currently an offboard Sun Workstation.
As a host CPU, it communicates with the robot and the proximity subsystem via
two RS232 serial ports. All the planning and perception is done on the host CPU.
The resulting motion commands are sent to the robot and the sonar sensor controller.

Figure 2.3 shows an overall system architecture.

" 1.2 Proximity Subsystem

The proximity subsystem is a sensor system capable of operating up to 24 sonar

Host Processor

e

8 Ultrasonic Sensors

T Interface Card

8 Ultrasonic Sensors

Figure 2.4: Control Structure of the proximity subsystem

and infrared sensors. Currently, in our system 16 sonar sensors are placed around the
robot and provide direct range information. Experimentally each sonar sensor is found
to be sensitive over a reception angle of approximately 30°. This result is consistent
with other people’s work [Moravec and Elfes, 1986]. The proximity subsystem also
uses a 68HC11 processor to control 2 sensor interface boards, each of which can handle
up to 8 sonar sensors (see Figure 2.4). The range of an ultrasonic sensor is between
15¢m and 1050cm [Tra, 1989a]. The proximity software is able to activate sensors on
a selective basis and set the timeout distance of each sensor. The major drawbacks
of the system are its wide span angle and the long acoustic wavelength, which causes
objects with smooth surfaces to reflect the wave speculatively and results in the
robot’s failure to detect those objects [Kriegman et al., 1987]. Figure 2.5 illustrates
the uncertainty in sonar sensor readings, showing the floor plan of the hallway where
the experiments were run, and a sample scan of the corridor, using ultrasonic sensors.
The sampling is done along a path starting from the middle of the corridor along the

path shown with a dotted line in Figure 2.5.

Figure 2.5: Sonar sampling in the hallway

The configuration of the sonar array of the robot is shown in Figure 2.6. The
two sides and the front of the vehicle carry 3 sensors each. Two sensors oriented at
30° and 60°, respectively, are on each of the front corners, and one sensor oriented at
45° is located on each of the back corners. These sensors are used for the construction
of an environment model and also for the detection of unexpected objects in order to

react to them.

2.2 Software Organization

The control and perception organization of the robot is shown in Figure 2.7. The
navigation system is based on two sensor systems, the encoders and the sonar sensors.

The data coming from each of the sensor systems are processed independently to

14

|

Figure 2.6: Sonar array configuration

localize the robot. Periodically, each sensor system produces an estimate of the robot
position with a measure of uncertainty. The perception module receives input from
both sensors and fuses them using a maximum likelihood estimator. The perception
method involves matchings between the model and the a priori world model. These
matchings determine the correspondence between the sensor and the world models.
Then, based on these matchings and the uncertainties related to them, a new position
for the robot is estimated. The final estimate of the position is sent to the trajectory
planner. Using this current position estimate, the trajectory planner determines the
deviations from the planned path, and updates the path planning, if necessary. The
motion planner, which is the executor of the current trajectory, issues appropriate
commands to the motion controller of the robot base in order to execute the planned
trajectory. Details of the sensory perception and sensory fusion algorithms will he
given in chapter 3. Further discussions of the trajectory generation will be provided

in chapter 4.

2.2.1 The World Model

Designing the representation of the world model is a critical issuc. The world
model must describe the environment precisely without giving excessive details. The

grid representation, where each cell in the map contains a probabilistic estimate

15

16

PROX™ITY SUBSYSTEM
ENCODERS
Motion
’ Scnar Seasors
Controller
|). 156)
Localization Using Encoders Localization Using Sonar Sensors
L ‘ {]
Perception
Trajectory Planner
Motion Planner
(Trajectory Execution)

Figure 2.7: The framework of the navigation system

of whether it is empty or occupied by an object [Mathies and Elfes, 1988], is one
alternative. However, it involves several geometric operations for any search through
the map. Thus, a tree structured representation of the map is chosen. Since this
model will be used for both the trajectory generation and the perception mechanisms,
it should be kept as small as possible. Hierarchical representation is an alternative to

a small map, as the search will be through a smaller map at each level of hierarchy.

Figure 2.8 shows the hierarchy of the world model within a building. Physically
connected objects are also connected with a link at each level. Each node contains
position information about itself. As the robot is designed to travel indoors on one
floor only, the world model is represented in two dimensions. At the lowest level there
are the line segments forming the structure of their parents. When searching for a
path, the search will start at the current node and proceed by consecutive findpaths

along successive levels of the map.

Building

Hallway Room Hallway

Wall

Door me
B EaehE o

Fieure 2.8: The world model

Hallway

Figure 2.9: Representation of a part of the ccrridor

Let us go through a simple example to illustrate the representation of the world
model. Figure 2.9 shows an example of the representation of a part of the corridor
being modeled. The smallest unit of representation is a line. These lines are the
projections of the surfaces (walls and doors) on the x-y plane. As seen in Figure 2.9,
the lines which are physically connected at their edges are also connected in their
abstract representations. At the higher levels of the hierarchy, a rough description
is also given. In our example this description is the shaded area, which includes the
hallway (and the rooms, if they are included). The advantage of this description is
that one can find the region of a point at higher levels. Thus, generally a depth-first

search is sufficient to find a particular point.

17

Chapter 3

Localization of the Robot Using

Multiple Sensors

This chapter deals with the problem of determining the location and orientation
of a mobile robot using multiple sensors, the process which is known as localization.
The most commonly used technique for localization of a robot is dead reckoning
(trajectory integration). However, because of the erratic nature of any sensor and
many environmental constraints, such as a slippery floor, a dead-reckoning system will
accumulate errors, and as a result, the robot will eventually lose track of its position
along the path. To prevent this from happening, its position must be periodically
re-established. Therefore, a solution for localization is essential for a mobilc robot to

perform a navigation task.

3.1 Background

There have been several solutions proposed for the problem of localization.
The basic principle underlying these solutions is the fact that different sensors

18

are sensitive to different aspects of the environment. One type of sensor can
be used in situations where another type does not function well, and vice-versa.
The most common approach is to monitor the position of the robot using dead-
reckoning. This can be done by monitoring wheel rotations using encoders attached
to the wheels [Giralt et al., 1987] [Tournossoud, 1988}, or by detecting incrtial forces
[Thorpe and Kanade, 1986]. The main disadvantage of dead-reckoning is the fact
that the errors caused by the terrain characteristics and encoder uncertainty will ac-
cumulate. Thas, the trajectory integration is not suitable for robust localization in

the long run.

Using beacons at certain known positions to localize the robot is another
approach to the problem. The basic idea is to make use of beacons, in the
way lighthouses are used for ships. Some techniques involving this method
are: using recognized landmarks [Levitt et al., 1987], infrared position references
[Giralt et al., 1979], cable lines to follow [Drake et al., 1985] and external lights as
lighthouses [Lao et al., 1986]. These methods involve measuring the distance to a
number of beacons in order to find the relative position and orientation of the robot,
and then mapping those into world coordinates. However, as the approach requires
a very structured environment, it becomes expensive for applications which require a

large work space.

Other approaches try to localize the robot in an unstructured environment.
They can be grouped into two categories: those using active and those using pas-
sive sensors. Methods using active sensors are based on the principle of emitting
a signal and interpreting the received signal, as a flying bat. Active sensors are
widely used in autonomous navigation for proximity sensing. Ultrasonic sensors
[Crowley, 1989b], [Miller, 1984], [Drumbheller, 1987] can be used to measure the dis-
tances of objects in the environment to form an abstract world model to help local-
ization. Other proximity sensors, like laser rangefinders, can also be used for this

purpose [Smith and Cheeseman, 1987}, [Hoppen et al., 1990].Using sonar sensors is

19

20

quite inexpensive and useful for indoor navigation where the objects are not far
away. However, because of the speed of sound in the air, the time limitations of
the sonar sensors constitute a bottleneck. There are a few other problems for the
sonar sensors. For example many objects are either absorbers or speculative reflec-

tors [Kriegman et al., 1987], and the sensors have a low angular resolution.

The second group of methods for localization is using passive sensors, which is
usually done by vision. These methods make use of reflected light energy from the
environment. Many techniques are proposed for position detection and world model
construction [Kanade, 1987], [Crowley, 1989b] and [Krotkov, 1989] based on feature
extraction and pattern matching. These methods are computationally complex. Re-
strictive assumptions can be made to decrease the complexity [Krotkov, 1989]. How-

ever, these assumptions can make the solutions unstable and error-prone.

All the methods described above make use of one or more sensor systems in
addition to dead reckoning, in order to periodically localize the robot along its
path. The advantages of usirg multiple sensors are straightforward. The uncer-
tainty can bs reduced by using a consensus of redundant sensors. Multiple data
points on a certain geometry can be used to extract detailed information from the
geometry. Redundancy can be used for detecting and compensating for sensor fail-
ures. Most of the implemented systems use consistency checking as the first step
to eliminate false sensor data ([Lin et al., 1989], {Brooks, 1988], [Crowley, 1989b],
[Miller, 1984], [Drumbheller, 1987} etc.). Consistency operators are applied to check
sensor data and reject the sensor readings which do not fulfill the consistency criteria
[Rodger and Browse, 1986]. Examples of decision criteria are: comparing the con-
sistency of a sensor reading with the majority of the sensors [Lin et al., 1989], and
making use of physical characteristics of the sensors along with the knowledge of pos-
sible data sources [Crowley, 1989b] [Kriegman et al., 1987]. In our case, the encoder
readings are consistent throughout the process, but the sonar sensor readings may

sometimes give inconsistent readings as in the example shown in Figure 3.3.

During self localization, as we get multiple observations about the environment
from the sensors, the question of how to obtain an accurate description of the envi-
ronment from these observations arises. Many answers have been proposed for this
question based on either experimental heuristics or probabilistic calculations. Some
of these methods can be grouped as: Bayesian approaches, averaging and least square
fitting and heuristic methods. An example of Bayesian approaches may be using the
Bayesian rule directly in a cellular representation of the environment, called occu-
pancy grids [Mathies and Elfes, 1988], where each cell is associated with a probability
of being occupied by an object. Another approach is to involve the maximum likeli-
hood method to integrate the geometric sensor observations into an estimate of the
environment, using uncertainties related to the sensors [Durrant-Whyte, 1987]. Aver-
aging and least square methods are also used to match the features, extracted from the
sensor readings, with the world model in order to estimate some unknown features of
the environment [Kent et al., 1986]. Both of the two methods use assumptions about
the distribution characteristics of the sensor data. Heuristics (which are basically
applying rules and relationships for model matching) are also widely used along with
the other methods [Hu and Stockman, 1986). Guiding, for example, involves focusing
on one or more sensors within different parts of the scene [Luo et al., 1988]. Heuristic
methods are useful in isolated environments. However, they are the least adaptive

methods [Hackett and Shah, 1990].

In this chapter we will describe the work we have done for the self localization
of the TRC Mobile Robot. Our approach is using a Gaussian modeling for the sensor
uncertainty. The localization of the robot is done by using the information from sonar
sensors and encoders. Encoders keep track of the current position of the robot with
a certain amount of uncertainty. The position information of the sonar perception
is constructed by the robot’s coordinates computed from ii.lividual readings and the
orientation information. The orientation is computed by forming lines from the sonar
readings and then matching these lines with the previously known world model. The

final position of the robot is estimated using a maximum likelil:ood estimate of both

22

dead reckoning and sensor perception.

In the following sections, we will first give a probabilistic modeling S 1o ancer-
tainty of the sensors. Then, we will describe the consistency tests we use ¥ - efimpven
inconsistent data. In section 3.4 we will introduce the perception s'ystcma and the
process by which the perceived data are converted to location information. Finally

in section 3.6 we will discuss sensory data fusion.

3.2 Sensor Uncertainty Modelin i

The uncertainty in a particular sensor reading, which is the distance of the
actual reflection point to the reading, is modeled using a Gaussian density function
[Silk, 1983]. The distribution of the error is also assumed to be Gaussian as the error

term is the uncertainty in a sensor reading.

It is quite unlikely that one may exactly obtain a p.obabilistic description of the
system. The exact probability distribution is dependent on many physical parameters.
Even if it may be approximated after substantial work, the resulting model may be
undesirable because of its complexity. We henceforth assume normal distribution for

the uncertainty of the sensor readings.

The uncertainty in a reading is the error term related to the reading. The
closest approximation we can make about the error term in a sensor reading is the
distance of the sensor reading to the estimated reflection point. If the estimated
reflection point of the n** reading of the itk sensor, Si, = [s.-,.,, s;n,], is found to be

R, = [r,-,.,, r.-n,],then the estimate of the error in this reading becomes

et = mdist(Rin, Sin) (3.1)

where mdist() is a two dimensional, first order Minkowski metric

[Duda and Hart, 1973] which can be stated in our case as,

mdist(Rin, Sin) = [Ir.-n, — Sing |y [Tin, — Sin, I] (3.2)

Since the error in the readings is dependent on the environmental constraints,
the mean and the variance of the sensor uncertainty fuaction are varying in time.
In such cases a maximum likelihood estimate of the mean, which is the arithmetic
average of the samples, is used. Geometrically, if we think of » samples as a cloud of
points, we would expect the mean of these samples to be the centroid of this cloud.
This centroid, referred to as the sample mean, is described as the n'* arithmetic
average of the samples (which are the error terms in our case). The sample mean of

the it sensor is defined as _
j=n

1 .
My, = — Z E,'j (3.3)
n j=1

which is the maximum likelihood estimate of the mean for a normal distribution. The
sample mean is unbiased, however, we want the model to be sensitive to the recent
properties of the environment. Thus, we use the following equation for computing
the sample mean

1 j=n .
Mip = = 5,']' (3'4)

k

J=n~k

which biases the sample mean to the last k readings.

As the readings from a single sensor, S;; j = 1..n, result from the reflections
of many different objects, a means of normalization is required. The normalization
should take into account the measure of proximity. This normalization is done as
follows

Ein = 5;,1 — Min (35)

where the asterisk denotes raw or ’unnormalized’ data. This method of normalization
makes feature values invariant to rigid displacements of the coordinates by forcing
the origin of the coordinate system to coincide with the sample mean. The effects of

this normalization procedure are shown in Figure 3.1.

23

The (sample) covariance matrix is:

Na= 3 f =] [l @9

j=n~k

The probability of €;,, the n'® estimated error of sensor ¢ from our assumption of

normal distribution becomes:

-1

flet) = eap [lebn = manl” A5 (650 — mil (37)

2 IAinl% 2

which will be used as the weight related to the n'* reading of the i** sensor. This

equation is based on the normal distribution characteristics of the sensors’ data.

After the localization process is complete the last set of the sensor readings’
reflection point estimates are updated using a linear approximation of the final esti-

mated position. This is shown in Figure 3.2.

3.3 Consistency Test of a Single Sonar Reading

The sensor data, generated by the reflection of the sonar waves coming back
to the transducer, does not always give reliable information about the positions of
the objects in front of the sonar sensor. This is either caused by multiple reflections
as shown in Figure 3.3, or by the fact that the angle between the normal to the
surface of the reflection and the transducer beam is greater than the transducer’s half
angle, thus we must distinguish consistent reflections from inconsistent ones. For this
purpose a number of consistency checks are applied to the sensor points. We will

explain these in the following paragraphs.

The consistency checking on the sensor data is made in two steps. First a set of
empirical heuristics are applied, and then a probabilistic consistency evaluation based

on a Gaussian model is computed.

24

| Raw Datz (Readings) 1} Emror (Raw Data -Estimated Reflection Points)
1000 1000
-~
500 500
sampleno leno
0 100 140 50 100 140
) b)
Sample Mean } Normalized Ermror
1000 1000
500 500
o - - sampleno
0 100 140 50 d) 100 140

)

Figure 3.1: Normalization of sensor data

By this set of tests we first try to remove inconsistent data which we call false
reflections. Examples of false reflections may be the points that are caused by multiple
reflections or those with an error that the system should not tolerate (Figure 3.3).

The following rules are used in the decision process.

Visibility Test One constraint that the world model places on any possible reflection
is that the reflecting point must be directly visible by the transducer (Figure
3.5). The existence of an object between a candidate reflection point and the
sensor implies the penetration of sonar rays through the object and consequently

the rejection of the candidate.

Proximity Test A candidate reflection point must lie within a certain proximity

25

Sl’l
Sensor i
M reading
Sonar
Localization
o @y ®
readings
F
U
S -
: >
0 k
N
-—..
—.-

Figure 3.2: Sensor feedback

threshold from the reflecting surface (Figure 3.6). The threshold value for the

proximity test is set empirically.

Cone of Reflectivn Test Any candidate of a reflection point must be within a cer-
tain neighborhor:? of the cone of reflection (Figure 3.4), i.e., the angle between

the sonar contour and the normal to the surface must be within a certain limit

as shown in Figure 3.4

Selectionn Among Multiple Candidates If multiple matchings are made between
the reflection points and the set of candidate reflectors of the world model, then

we choose the candidate with the shortest distance to the reading.

After running all these tests on a set of scan, each consistent point is related to

a point of a line segment. The other points, which are eliminated through these tests,

26

a) Real reflection patiern b) Interpretationof . :(lection
ISPi=d,+d + d+dy

Figure 3.3: A multiple reflection pattern and its interpretation

are not used at all. Multiple reflection patterns can be searched for, and calculated
for the eliminated points, but for our purposes, the time complexity of the process is
not feasible. There may also be multiple (even infinite) solutions for such patterns.

Thus, multiple reflection points are considered useless.

Finally, the weights are assigned to the points which pass the tests using equa-
tion 3.7. These weights define the system’s degree of belief in the points, and are

used later for line extraction.

(3]

28

¥ : Half angle of the Transducer

S1 can get a reflection from Q whereas S 2cannot.

Figure 3.4: Cone of reflection

3.4 Perception Models
3.4.1 Monitoring the Motion by Dead-Reckoning

As the robot proceeds, the movements are simultaneously monitored using the
encoders attached to the wheels. Readings from the encoders are mapped to the
world coordinates, to determine the change in the position of the robot. Then this
information is integrated to give the robot position vector P by Equation 3.8, where

the encoder readings are E = (e,,e;), the distances traveled by the right and left

- t
P=["K (égdt) (3.8)
to 6t

In the above equation K is the transformation which will h.2 explained in section

wheels respectively.

4.3, mapping the differential changes in the robot’s whee: positions into the world

coordinates. From 3.8, differential changes are given by:

- 6E ..
17 = (Za) os

When the changes in the encoders are finite, the fzite change in P is approximated

i

The shaded regions are not
visible by the sensor, S |

Figure 3.5: Visible space

AP = KAE; (3.10)

where

AE; = E; — E;_,, (3.11)

Numerically, equation 3.8 is approximated by,

Pi=P_i + AP, (3.12)

Equation 3.12 is used along with the encoder readings for the continuous monitoring

of the robot’s position.

3.4.2 Monitoring the Motion by Sonar Sensors

The Cartesian coordinates of the base coordinate frame of the robot, with an

29

s\" B : Consistedt

PZ < Inconsistént

Figure 3.6: Nearness Test

orientation of 8, are computed for each sonar reading by the following equations

derived from Figure 3.7
Xr=zp — (Is; + ds;)(S(% + 0)) (3.13)

Yr = yp — (Is; +ds;)(C(7i + 9)) (3.14)

where (Xgr, Yr) is the coordinates of the robot, (zp,yp) is the reflection point, Is; is
the distance between the center of the robot and the sonar sensor, ds, is the distance
measured by the sonar sensor, and v is the angle that the sensor beam makes with the

robot’s y axis. The final approximation of these points are made using the equations

- Z i=1 Wz; Ti

T = =5—— 3.15
E::l Wg; ()

— Z: 1 w!l'yi

V== 3.16
zt"'l wy- ()

The above equations give the weighted averages of the sonar readings, where wg;, wyi

are the computed weights for each reading z;,y: of the reflection point p;.

30

Figure 3.7: Geometry of a reflection

3.5 Orientation Determination

In addition to position localization, the orientation of the robot must also be
localized. Orientation is of extreme importance as the trajectory generation depends
on the orientation. Orientation cannot be calculated from a single point because a
single point does not contain any orientation information. Instead we obtain it by
forming lines from multiple sensor readings and matching thesc lines with the a priori

world model.

The points are related to a line segment in the world model, as mentioned in the
previous section. Thus, the clustering process of the points is already done. These
points are then used to form a line using a weighted least square fit. The information
about the world model is integrated into the system by assigning a weight to each

point. This weight is the uncertainty in the reading.

31

32

The line forming algorithm is mainly composed of two steps:

I. Group all points which are related to multiple segments of a single wall.

II. Form a line using weighted least square fit method.

The basic formulation of the weighted least square fit is as follows:
A single scan of N sensors yields N measurements. The linear equations from these

measurements form two N-dimensional vectors, X and Y, which are of the form

Y =[X 1] [‘;] (3.17)

T
:L‘l..:BN T R .
where [X 1] = { } and Y = [y1..yn] are the coordinates of the N readings.
1.1

The weighted least square approximations of parameters a and b are given by

[Thomas, 1987]

[Z } =[x 11" R[X 1]] “ix 1T RY (3.18)
LS

Ris the N x N diagonal weighting matrix where the diagonal elements are the
computed weights of the sensors’ readings. Figure 3.8 shows a sample fit. The lines
resulting from these points are compared with their corresponding segments in the
world model to find the estimated orientation error. This error is then fused into the

system as we will explain in the next section.

3.6 Final Fusion of the Data

The Maximum Likelihood method is used in the fusion of the data coming from
the two types of sensors. We apply the method using the conditional probabilities of

the sensor observations, S, given that the estimated position is P.

= LaastSquareslins

........ Muching line in the world mode!

(Bigger spots have more weight in the final line)

Figure 3.8: A sample weighted least square fit,

In the decision process, the maximum likelihood estimator is obtained by max-

imizing the likelihood defined by the conditional density function

=p(P|5) = HELRRE)

with respect to S. In other words, we compute P such that the following equation is

(3.19)

maximized
1=p(P|S)=]]n(P|S) (3.20)
=1

where, n is the number of sensor outputs and S; is the output of i** sensor.

Equation 3.20 can be maximized by maximizing its natural logarithm.

L(P) =Y. In(u(P | 5))- (3.21)

i=1
When we use our assumption that the sensors are modeled by a normal distribution

function we get

n

LP) =Y In (mezp (Izl [5: = PIT A7 (S: — p])) (3.22)

i=1

33

34

e
L

vh
)

Figure 3.9: Detecting a deviation from the estimated path

where A; is the n x n covariance matrix.

We can obtain the maximum likelihood estimate for Py g by maximizing equa-

tion 3.22. Differentiating it with respect to P and setting it to zero, we get

() IF—;IMLE 0
5P

(3.23)

Solving the above equation using equation 3.22 we get [Sage and Melsa, 1971]
n -1 n
PMmLE = [Z A,-"] [Z A:‘s.-] (3.24)
i=1 i=1

In our case where n = 2 the equation becomes
-1 1171 [p-1 -1
PMLE = [A1 + A2] [Al 51 + A2 52] (325)

which also states that the weights of each sensor are inversely proportional to their

variances.

The computation of the covariances from the sensor readings is not always an
easy task because of the inadequate number of available samples. Thus, the question
of how to proceed arises. A solution is to reduce the dimensionality by redesign-

ing the feature extractor [Duda and Hart, 1973]. The feature extractor in our case

Second-degree polynomial fit
------- Tenth-degree polynomial fit

Figure 3.10: Fitting curves to a set of data points

is the position of the robot composed of three identifiers, the two coordinates and
the orientation of the robot,(z,y,#). Reduction can be done by computing only one
or two of these identifiers. To provide stability of the solution, the correlations can
be heuristically removed by thresholding the sample covariance matrix!. It may be
assumed that all covariance for which the magnitude of the correlation coeflicient is
smaller than a value is actually zero. We use both of the two methods for our appli-
cation. This solution is obviously suboptimal, but under the existence of the problem
of insufficient data, the resulting heuristic estimates often constitute an acceptable
solution. The reasons for these are explained briefly in [Sage and Melsa, 1971). In an
estimation process a large amount of samples would be needed to get a good fit for
higher order solutions to the problem. For example a tenth degree polynomial can
fit perfectly to a set of sample points where one can hardly expect such a curve to
fit new data well; therefore, a second degree polynomial solution to the set of data is
preferred. Figure 3.10 simply illustrates this problem. Although the curve formed by
the tenth degree polynomial fit exactly passes through the data points, it is usually

unlikely that the next data points will be consistent with this curve.

1As the data is normalized, the biggest effect of this method may be assigning an equal weight
to each sensor

35

3.7 Summary

We have introduced a method for sensor data interpretation in order to provide
a means of localization for the robot. This method helps the robot to position itself
using multiple sensors. The basic aspect of the method is that it employs the current

estimated position of the robot in an iterative algorithm to provide localization.

A probabilistic modeling of the sensors is used to obtain the weight of sensor
readings in position determination. The physical considerations are done for sonar
sensors and differential encoders. However, the method is extendable to other sensory
systems. The required modifications will be introducing the localization method for
the sensor. Finally, a general data fusion scheme is used to achieve a final position
estimate. The fusion process does not make any particular assumptions about the

types of sensors, except that the sensor uncertainties are normally distributed.

The method is implemented in our mobile robot system. The computations are
time efficient, so the localization process, along with the route planning which will
be explained in Chapter 4, can be done efficiently in real-time. Some test results are

presented in Chapter 5

36

Chapter 4

Trajectory Planning and

Execution

4.1 Introduction

Trajectory planning has always been an active research area in robotics. Many
trajectory generation methods have been described in literature for both robot manip-
ulators and mobile robots. For the case of a mobile robot, navigating in an environ-
ment which is not strictly constrained (e.g. within corridors), a complex algorithm
will be very time consuming. Thus, straightforward path generation methods are
preferred. Also, because of servo errors, path pianning for robot motion must be fre-
quently repeated. In some autoncmous vehicie controlling systems employing sensor
feedback [Kanayama and Miyake, 1986] [Wallace et al., 1986}, a central control pro-
gram updates the trajectory to be followed every T seconds, where T is the processing
time of the sensory module. The navigation of a mobile robot is similar to that in
Figure 4.1. The control program receives & sequence of data related to the current

position and orientation of the vehicle, and generates trajectories in real time.

37

[

G~ P55

Figure 4.1: A sample trajectory for the mobile robot

Current studies involve many levels of computation in trajectory generation.
One of the main approaches is solving the problem using polygonal paths, and smooth-
ing the intersections of the straight line segments with linear curvatured geometries to
maintain continuity with respect to the physical movement capabilities of the robot at
hand [Kanayama and Miyake, 1986] [Tsumura et al., 1981]. The constraints restrict-
ing the movement of the robot become of utmost importance when the environment is
complex. In such cases, trajectory generation becomer a complicated task, involving
the detailed investigation of the geometric aspects of the robot and the environment
[Laumond, 1989] [Tournossoud, 1988]. Even though these trajectories are quite de-

tailed and hard to control, they are theoretically safe.

In the next few sections, after a brief review of the existing methods in mobile
robot motion planning, we will describe the kinematics of the robot. We will also
explain a new method we use to generate trajectories, based on previous ones found
in the literature. Then we will concentrate on the execution of the trajectory we
generated and the motion control of the robot, which; in our experiment is the TRC

Labmate [Tra, 1989b).

4.2 Motion Planning of Mobile Robots

Trajectory planning is only one aspect of the navigation problem. The plan-

ning process involves issues such as environment modeling and perception, ac-

38

counting for inaccuracies, real time decision making, and special structure learning
[Chatila and Giralt, 1986]. One can classify the algorithms for trajectory planning
into the following three categories: local methods, global methods and highly con-
strained methods. The classification is done in terms of the a priori knowledge that
the robot has about the environment and the constraints the environment imposes

on the robot.

1. Local Methods These methods assume no knowledge about the environment
and generate trajectories by making use of local, that is usually poor, but fuickly
acquired information about the environment, in real time. The approach of
using potential fields is a good exampie [Khatib, 1986]. The robot assumes itself
to be going in a fictitious potential field wherein obstacles are associated with
repulsive fields, and the goal is an attractive field. The obstacles can be thought
of as hills and the robot, modeled as a ball, rolls towards the goal. The potential
field method is quite useful in situations involving convex obstacle avoidance,
but it has many drawbacks in constrained spaces, where the obstacles are very
near. [Faverjon and Tournossoud, 1987] state some of the drawbacks of this
method by approaching the problem wherein collision free constraints appear
as linear constraints in a quadratic criterion minimization problem associated
to the goal. As it uses only a local view of the environment, these methods do

not guarantee that an existing solution will be found.

2. Global Methods These methods deal with the cases where a global map of the
environment is known, so the trajectory planning is done globally. There are
several methods dealing with these cases. Particular approximation schemes
are used to structure the Euclidean space. One method assumes the robot
to be circular [Laumond, 1987] and uses a generalized visibility graph in a
general environment. Trajectories thus produced are smooth without sharp
angles. Some methods decompose the environment into elementary spaces

[Brooks and Lozano-Perez, 1983] which are structured i...0 a graph whose adja-

39

cency relation indicates the possibility of moving from one place to another.All
these methods are applicable to cases where the free space is large with respect

to the robot’s geometric and kinematic constraints.

When the environment is highly constrained, there is a need for the formal-
ization of the configuration space CS. In [Laumond, 1987} the space is formed
of independent parameters that characterize the position and orientation of a
mobile body. CS is divided into many subsets (subspaces). These are: the ad-
missible space, ACS, where the robot does not intersect with obstacles, the free
space, FCS, which is the closure of the interior, and the occupied space, OCS,
which is the complement of ACS. The trajectory is generated by searching into
the CS and comparing the feasibility of the formed trajectories.

3. Highly constrained methods The last class of methods deals with complex
environments where there are a several constraints restricting the movement of
the robot. These methods are generally referred to as the piano mover problem.
[Schwartz and Scharir., 1583] state the problem as representing the free space
in the configuration space as a connectivity graph of free regions, which can be
searched for a path. The free space is limited for the robot, and the trajectories
generated under geometric constraints employ a number of maneuvers to change

the direction of travel. Thus the execution of these methods is quite complex.

In our study, we are concerned with both the global and the local methods of
trajectory generation. Moreover, we will concentrate on the execution of the tra-
jectory. The free space is regular, i.e. there exists a finite set of straightforward
transformations which can carry the robot between any two points in the free space
[Tournossoud, 1988]. The time spent in real time sensor interpretation and trajectory

generation is important, so a simple and robust real-time algorithm is required.

40

4.3 Kinematics of the TRC Robot

In this section we will consider some basic kinematic relations describing the
TRC Robot’s motion synthesis. They include the relationship between external world
coordinates and angular or linear displacements of the robot, the Jacobian matrix
that relates the robot’s wheel velocities to its velocity in Cartesian coordinates, and
snother Jacobian matrix that relates velocities in the robot’s Cartesian coordinate

frame to the world coordinate frame.

The TRC mobilerobot is a vehicle with two parallel wheels mounted on the same
axis and controlled independently. There are four free wheels on the corners of the
robot. As mentioned before, we define its position and orientation by a configuration
vector which is a 3-tuple (z,y,0), where z and y are the Cartesian coordinates of the

origin of the robot and 9 is its orientation.

Another property of the TRC Robot is that it is non-holonomic!. The differen-
tial equation
dy = tan(0)dz,
shows that any of the configuration parameters can be written using the other two.

It alsc states that the robot (actually, the wheels) can only move in the direction

normal to the axis of the driving wheels.

In oider Lo analyze the kinematics of the robot, first of all we must derive the

equations of motiun. Using Figure 4.2, the following are derived for the TRC robot.

i = —sptu (4.1)
i = oo™ (4.2)
. Vy — Y

.3
o - (4.3)

!The number of configuration parameters is less than the degrees of freedom. In our case the
configuration is defined by three parameters, whereas the degree of freedom is two.

41

Figure 4.2: The TRC in World Coordinates

where, d is the lateral distance between the Y axis of the robot and the wheels. v,

and v; are the velocities of the right and left wheels respectively. Let us define

g =] (4.4)

The only control variables we have are the velocities of the two wheels, and they are

related to ¢ by ¢ = K(8)v, where

~-50 -56
1
K@) =35| co co (4.5)
1 -1
d d

v = [o] (4.6)
LU

The matrix K is useful for mapping v into ¢, but inverse kinematic analyses

cannot be made as K-! cannot be computed to do the inverse mapping. In order to

42

find a non;singular matrix which relates the robot’s coordinates to the world coordi-
nates, we will introduce the non-holonomicity constraint into the equation, and derive
a Jacobian matrix which is a function of 8. For any point m, its coordinates (p,r),
defined with respect to the origin of the robot, and its coordinates (m,,m,), defined

with respect to the world coordinate frame, are related by: [Tournossoud, 1988]

m, = z—rS0+pCh (4.7)
my, = y+rCO+pSo (4.8)
o= M 4.9
S (4.9)
me = &—(rC6)d — (p50)0 (4.10)
m, = g-—(rS)0+ (pC0)0 (4.11)

where z,y, and 6 are the coordinates of the center of the robot. From 4.4, 4.10,and

4.11, we get

¢ (4.12)

i o= L(0); = [1 0 (—rC0-pS0) }

01 (—rS0+pCh)

The standard differential relation rh = Jv, where J is the Jacobian matrix at

point m for configuration ¢ is derived from 4.12 and 4.4 as follews [Tournossoud, 1988)

m = L{f)¢§=LOK(@®)w (4.13)
J(0) = L(OK(9) (4.14)
1| (CO-](rCO+pSO) (SO+5(rCO+pS0)

o) = (4.15)

2

CO—L(rS0—-pCh) (SO +1(rS0—pCo)
d d

The Jacobian matrix above is used for the motion control of a trajectory, using
the inverse kinematic equation » = J~1(0)7h. Also the constraint checking of any

point on the robot, to ensure that a generated trajectory is safe, is done by Equation

4.15.

The speeds of the wheels are set to achieve the desired curvature, which is com-

puted by the trajectory planning module. The radius of curvature, p, of a trajectory

43

44

(see Figure 4.3) is calculated by:

p = d(”’“”) (4.16)

trom the above equation we derive:

o _ptd (4.17)

vy p—d
Thus, the ratio of the speeds of the two wheels can be set to achieve any desired

curvature.

Figure 4.3: The Turn Motion

Let s(t) be the distance traveled within a certain time £. It is computed using

s(t) = / 52+ gt (4.18)

The equations given above are used both for monitoring the motica of the robot

the following equation:

and for the executizn of a generated trajectory.

4.4 Trajectory Generation

The purpose of this section is to give a method of describing trajectories for
1.,0bile robots. The basic property that the motion generation algorithms should
1 ssess is the provision for the functionality of the motion, i.e. to provide continuity
and smoothness of motion. Besides this basic requirement, additional properties are
also needed to increase the adaptivity and feasibility of the robot. For example the
algorithm should provide the proper adaptivity for multiple sensors, i.e. it should be
accepting modifications because of possible position errors detected by the proximity

Sensors.

We will first give a formal definition of the problem of finding a trajectory, and
then we offer a solution which divides the main goal of reaching a final configuration
into a finite set of sub-goals. A trajectory will be generated for each of these sub-
goals, where the continuity of the complete trajectory is guaranteed. At the end of

the section we will examine the possible problems we may encounter.

4.4.1 Basic Formulation of the Solution

We will approach the problem by dividing it into sub-goals and then finding a
solution to these sub-goals, which can be added together to form a solution to the

original problem.

We intend to use a method that generates the trajectory with a finite sequence

of distinct curves, and specify each curve with as little information as possible?.

We define the solution for a trajectory as follows:

2Since the trajectory information will be sent from the controller to the vehicle. the amount of
control data should be as little as possible.

45

46

Definition 4.1 Let P be a sequence of position vectors that define the trajectory the

robot is to follow, where
P= (PO, p,..., Pn) = ((30’ y0a00)1 ey (:E,,, Yn, on)) n>0

If a directed curve C starts at Po, ends at P, and passes through each P; in order, then

C is said to be a solution of P. We denote the solution by the relation : S(C,P).

Let C; be a trajectory formed of a finite number of segrnents with constant
curvatures. From the above definition we may conclude that, if C; satisfies the position
transformation P; (¢ = 0,..,n), S(Ci, P;), then the sequence of directed curves C =
(Co, ..., Cn) satisfies the transformation P = (Po,..., P.) which is the trajectory. In

other words:

(S(Ci, P.),i = 0,..,n) = (3C | S(C = (Co, -+, Ca), P = (Poy s Pa)))

The aforementioned sub-goals are found by connecting the initial and final
configuration using straight lines. These lines must be within the free space, FS
(see Figure 4.4). The intersection points of these lines, which are called the turn
points, will be connected using a curvature to provide continuity of the motion.
[Kanayama and Miyake, 1986] uses a clothoid to approximate a continuous curvature
in solving the problem. However, for our purposes a circular arc is more appropriate

as the control is simpler.

Let a segment be a continuous path function between twe points where the
curvature remains constant throughout the segment. Each trajectory is defined by
a sequence of segments, and each segment can either be a straight line or an arc.
Thus, each segment can be expressed by a two tuple (p,), which are the radius of
curvature and the amount of change in the orientation respectively (Figure 4.5). Any
trajectory is then represented by a sequence 7 = ((po, @0), ---» (pnyn)) n 2 0. This is

the output of the path generation function.

A AN AN T TR
RASRERASRTRNSES SRR

R P P R A e

S

. TS
b) Subgoals S , 8,8 5

z

rigure 4.4: Dividing the goal into sub-goals

& (P2.a2) M

Figure 4.5: Segments of a trajectory

Solutions to the problem can be classified according to the number of non-
linear segments they include by calling the number of curves in the solution as the
degree of the solution. Our algorithm tries to find solutions of at most degree two.
The following are the rules used in the algorithm for generating a trajectory for two

position vectors Pp and P,.

In [Kanayama and Miyake, 1986] the authors offer a trajectory as in Figure
4.6a. Since such a motion is not desired within a corridor as it may bring the robot

too close to a wall, we adopt a trajectory of the form in Figure 4.6b.
To compute motion parameters for a degree two solution we introduce the ezit

distance, ed.

Definition 4.2 The ezit distance is the distance between the start of the turn and

the intersection point Q (See Figure 4.3).

47

b)

XN Solution of [Kanayama] RN\ Adopted solution N

Figure 4.6: Alternative solutions for trajectory generation

Then the trajectory for any sub-goal can be computed as follows: a straight
line is drawn between two points (Qo,@1) which are ed away from the initial and
final points respectively. Then the radii of curvature and the turning angle can
be calculated according to this line and the exit distance (see Figure 4.10). The

computation of these parameters are explained at the end of this section.

4.4.2 Determination of the Solution Degree and Exit Dis-

tance Selection

Assuming there are no obstacles along the straight line segments between two
sub-goals, if an intersection exists between the two lines tangent to the position
vector pair at hand (see Figure 4.7a), a solution of degree one exists. However, in
some cases, where the intersection point @ does not lie in the free space, this solution

is not desirable. For such cases we select a solution of degree two (See Figure 4.7b).

48

49

W
2

W 5

Ql

\

\ \

\ D

N 3
N

N
Qo
o, RO

N " D)
) Solution of degree 1 b) Solution of degree 2

Figure 4.7: Two different solutions for the same trajectory

Note that the radius of curvature is computed with an assigned exit distance.

There are two cases where the default exit distance may have to be changed:

1. If the vehicle is likely to collide with an object, as in Figure 4.8a within the

default exit distance, then exit distance is tuned accordingly(see Figure 4.8b).

9. If the remainder of the motion segment is less than the default exit distance,

as shown in Figure 4.9a, the exit distance must be changed to that shown in

Figure 4.9b.

Calculation of the Radius of Curvature

Finding the intersection points of the lines forming the trajectory has been
explained in the previous section. Now, we will derive the equations that allow us to

compute the radius of curvature, p, of the arc which connects pairs of segments. The

50

Y

X

2

A\ R \
a) The robot collides with the wall b) Collision is avoided by changing the
at point C exit distance

Figure 4.8: Avoiding collision by changing the exit distance

property used in calculation of p is that the arc is tangent to the linear paths at a
distance equal to the assigned exit distance. The intersection of the normals to the
lines at these points will be the center of the arc, and the radius of curvature will be

the distance from this point to one of the lines.

The calculation uses the following input parameters: Po and P;, which are the

initial and final configurations, and fo and B, are the initial and final orientations,

The calculation process is as follows (refer to Figure 4.10): first, we find the
point Qo using the fact that it is at a distance ed away from Fo in the direction of

the initial orientation.

PQo = ed
Qo = (go1%,) = (Po= + edSfo, Po, + edCﬂo)) |

Using the same fact, @; becomes,

Qi = (qu,m,) = (P +edSBi, Py, — edCB)).

51

\ -
/
e T
0 L&
Q
il
edl

a) The robot passes the destination b) Sharpness is increased by
within exit distance decreasing the exit distance

Figure 4.9: Destination constraint on the exit distance

In order to find the coordinates of :he point S, we will first find the angle v that the
line QoQ)1 makes with the Y axis, that is:

(g0, — 411,))

¥4 = arctan (
(qlv - qou)

the turning angle, a, is
a=7+fo
and S becomes,
S = (8z,8) = (qo, -~ edS7,qo, + edC7)

At this point we draw two lines [y and {1 the normals to the trajectorics at points P

and S respectively. These normals to the lines PyQp and Q¢S intersect at the center

of the arc.

Ry = intersection(lp,l)

B0 : Initial Orientation
B1 : Final Orieniation
P :Radius of Curvature
PO : Initial Coordinates
P1 :Final Coordinates
Q : Intersection Point
R :Center of Rotation

a=y+p0

52

p
e
Pl 9
Q
s \r |Bo
2
4
&
po

|

Figure 4.10: Details of a curvature

53

and the radius of curvature will be:

p= |Po_R.7|

The two-tuple (a, p) will be calcuiated for all segments with non-zero curvatures.

4.5 Motion Control

Having solved the kinematic problem, in this section we shall analyze the motion

control of the robot.

4.5.1 Setting Wheel Velocities

The robot achieves a desired motion by setting the speed of the two independent

wheels.

The types of commands that the robot can execute are

1. Straight line motion: the robot moves along a straight line between two points,

the speeds «f hath wheels are v, = v # 0.(see Figure 4.11a)

2. Turn motion: This type of motion causes the robot to move along an arc of
a circle of radius p as shown in Figure 4.11b. The target speeds of the right
and left wheels are f’-fiv and ”—;—“-v respectively. The sign of p designates the

direction of the turn (clockwise or counter-clockwise).

By a sequence of straight line motion and turn motion commands a trajectory defined

in the previous sections can be achieved.

54

An example of a motion sequence is given in Table 4.1, the corresponding tra-
jectory in Figure 4.12a, and the velocity profiles of the two wheels in Figure 4.12b.
The acceleration of the wheels is handled by the robot.

[A 7
LV
/
B /
RN /o
/
/
b0 /
N ~
\>po 20
a) Straight Travelling b) Turn Motion
Figure 4.11: Possible types of motion
[Motion Type ~ | Time |Path |
Straight line with v, for Sp [0 - %o S(t0,0) = Sp
Turn with Po, V1 for Sl to - t3 S(t3,to) = Sl

Straight line with v; for S; | ta —t4 | S(t4,3) = S2
Turn with —py, vy for S3 tq—tr | S(tr,te) = Ss
Strdﬁ.{i:t Fuewith v for Sy [t7—12g | S (tsyt7) = Sa
Turn with pg,vq for Ss ts —t1a | S(tin,ts) = Ss

Table 4.1: An Example Motion Sequence

4.5.2 Execution of the Trajectory

Over a short run, the encoders generaily give an accurate information of the

distance traveled. However, the orientation may be off by a few degrees. This error in

\10

t1

e - 4. i
L] T T
0o ® u 2 v w56 0 B 9 o time

b)

Figure 4.12: A sample motion and its corresponding velocity profile

orientation will lead to large Cartesian position errors in the direction orthogonal to
the path. The analogy that is made by [Kriegman et al., 1987] explains the concept
briefly: "when a flagpole moves in the wind, its height will not change drastically,

but the top of the pole may move parallel to the ground by many feet”.

To determine the necessary modifications, changes in the robot’s location are
monitored. The corresponding path errors are computed by processing sensor data,
as explained in Chapter 3 . Correction is domne by computing a new path if the
estimated error is larger than a threshold value. As new trajectories are computed,
the previous ones are eliminated for the current sub-goal. Updating the trajectory at
each correction time will give a control scheme similar to a bang-bang controP. Figure

4.13 illustrates a sample trajec.ory update.

Our trajectory generation function does not thoroughly address the unexpected
obstacle avoidance problem in complex environments. Necessary action, when an ob-
stacle is detected, is taken by the trajectory execution module. This action may either
be regenerating the sub-goals or waiting until the obstacle disappears, depending on

the geometry of the detected obstacle and the free space constraints.

4.6 Summary

In this chapter we have devised a trajectory generation method which has been
developed on a basis of the previously introduced methods in the literature. The
control issues in the chapter are system specific for the TRC Labmate. However,
the functions are flexible to adopt another system. In addition, the path generation
function is not bound to certain type of mechanics, so the method can be used with

other types of mobile robot machinery as well.

3Bang-bang control is the control scheme which uses maximum deceleration for the motor in
order to stop at a poiat.

56

7

Z

A2

G4

" Initial Trajectory Deviaied Path) " New Trajectory

Figure 4.13: Updating a trajectory during navigation

The two basic aspects of the method are: its continuity and simplicity in comn-
putation. A real-time system can easily update the trajectory if a deviation from
the expected path is detected with the help of a position estimation algorithm. The
linear and curvatured segments used in the method are practically continuous. This
provides a smooth trajectory execution and reduces possible errors that might have

been caused by discontinuity.

57

Chapter 5

Implementation

In this chapter we will describe the application of the localization and trajectory
generation methods described for the problem of autonomous mobile robot navigation.
The methods are implemented on the robot system which has been described in

Chapter 2.

The goals of the system are to provide a robust autonomous robot system in
which sensors are used to achieve autonomy. The autonomy in our case is described
as the ability to navigate in a known environment. The environment of concern is
the corridors of one floor of an office building. Most of the implementation is devoted
to manipulation, coordination and integration of sensory information. The domain
of operation is restricted to a simple polygonal world. The trajectory generation
module generates simple trajectories on a feedback mechanism between the sensory
systems and the control variables of the robot. The system is programmed in high

level language C.

In the following sections we will first describe the implementation of the commu-
nication within the system. Then we will explain the basic robot motion and sensor

control routines. In Section 5.3 the implementation of the localization processes is

58

explained. The localization process involves observing the position information from
multiple sensors and fusing this information into a final position estimate using the
estimator described in Chapter 3. In section 5.4 we will discuss the trajectory genera-
tion and control methods and the .c2dback they impose on the system along with the
perception method. Finaliy in section 5.5, we will discuss the experimental results

and the problems encountered.

5.1 Communication

The communication of the system is done physically through two RS-232 lines
with a baud rate of 9600 bps as shown in Figure 2.3. The Sun workstation is the
main computational power that coordinates the whole system. The implementa-
tion of the communication is designed to allow modularity and flexibility for future
development. The structure of the communication is similar tc read-write opera-
tions in UNIX. A common library of functions to transfer particular data structures
between named processes has been developed. This library consists of the basic com-
munication routines between the host (Sun workstation) and the TRC mobile robot
base and the proximity system. The litrary includes general-purpose routines like
sendbyte(), receivebyte(), handshake() etc., and the built-in functions such as

enablesensor(sensorno), point_to_point go(dist) etc.

The messages between the coordinator and the centrollers (motion and sensory
controllers) follow a fixed format, with a header comprising the destination tag and
the message length, messagz identifier and the message body. To provide flexibility,
the length of a message is not fixed. A variety of commands have been implemented
including motion control, sensory control and information handling commands, using

this communication schene.

59

60

Trajectory Planner y@——— Perception

Emergency Sensors

‘F Event Scheduler

L

Encoders Motion Controlier Sonar Controller

-

Figuie 5.3: 'Ibe communication between processes

5.1.1 Scheduler

In order to provide quick reactions to external events, the system is ::.ierrupt
driven. The Unix library function setitimer() [Sun, 1989] initiates the timer to gen-
erate a periodic SIGALRM signal each time the period expires. Decrements in the timer
are made in real time without considering if the system (CPU) may be running on
behalf of other processes. The interrupt vector is set to the routine tlarmHandler()
which temporarily disables the timer and activates event_scheduler() to execute
the scheduled commands and the communication with the servo controller. The com-
munication with the servo control system involves reading the encoder information

and issuing scheduled commands.

The scheduler is responsible for scheduling the events and their execution. It is
the main coordinator of the system which receives scheduling requests from the per-
ception module and the trajectory planner. The perception module sends requests
which include the scheduling of emergency actions. The trajectory planner sends
requests for scheduling motion commands of the trajectory, and cancelling some pre-
viously scheduled events. The interprocess communication of the program is shown

in Figure 5.1.

The structure of an event is as follows:

struct t-event {
void (*callto) (); /* the function to be activated */
int parcount; /# no of parameters */
long **parameters; /* parameters to the function */
double s_time; /* starting time */
struct t_event *next; /*next event in the list */

} t-event;

Each entry in the list contains the details of an event, i.e. the parameters and
the time that the action is going to be executed.The s_time field is also used for
priority assignment, as the scheduler scans the list and activates the event with the

earliest starting time, if its starting time is smaller than the system time.

The alarm time set for each interrupt is 100msec. The main program is
interrupted after it is executed for 100msec and the AlarmHandler() takes over.
AlarmHandler() activates EmergencyCheck() function at the first place, which con-
trols exceptions like bumper contacts, power failures etc. After the emergency
checks, UpdateReckon() is run to update the dead reckoning information. Then
EventScheduler() is called which activates the first event in the event queue. After
the event’s execution, if the time elapsed since the beginning of the interrupt is less
than 7T0msec, another event is scheduled. At the end of the interrupt the alarm time
is set to 100msec again and the main program resumes execution. The above scheme
is illustrated in Figure 5.2. Using this scheme the average execution time for the

routine AlarmHandler() is about 80msec on a SPARCstation SLC.

The communication with the servo controller and the proximity system is also
activated by the scheduler. This avoids the blockage of any communication (especially
emergency commands). A deficiency of this method is that an emergency case cannot

be realized as soon as it occurs. The maximum delay time is about 170msec. However,

61

62

UpdateReckon();

EmergencyCheck();

While (intr_time < 70 msec)
ScheduleEveni{execute_event)

return()

Figure 5.2: The interrupt scheme

the servo control system is able to perform an emergency stop by itself as soon as an

emergency occurs, in order to ensure that catastrophic failures are properly prevented.

}

Execution of
scheduled events
(AlarmHardling)

Perception
and Planning

i " 3 + I + I A’ﬁm

* = 100 msec. \ ,: ;

- T
*E 80 msee. ' ‘,

Figure 5.3: The scheduling mechanism

5.2 Motion and Sensory Control

5.2.1 Motion

The trajectories generated by the trajectory planner require two types of motion,

straight traveling and turn motions. The availability of a jog() command in the TRC
mobile robot software [Tra, 1989b] allows us to combine a certain turn velocity with
the current straight line velocity to perform a turn. The servo control system of TRC

implements three modes of operation. Specifically,

Go mode moves the robot in a straight line at the current velocity setting. This

motion continues until another mode command is issued.

— point_to_point_go(dist) performs a point to point travel for a given
distance. The parameter dist is the amount of distance to be traveled

in millimeters.

— go(velocity) The robot starts moving in a straight line motion with
a velocity equal to velocity. The movement continues unless another

command is received.

Jog mode Superimposes a continuous turn rate atop an existing forward velocity.

Turning continues until a go mode or another jog mode command is issued.

— jog(rate) This command puts the robot in jog mode. The single

parameter rate is the turn rate in degrees/second.

Turn mode The robot performs a discrete turn in this mode with the desired

amount of turn.

— ptp.rel_turn(degrees,radius) This command is used to perform
a turn of degrees with a radius of curvature equal to radius. The
amount of turn is relative to the initial orientation. The robot stops

after it completes the turn.

The velocity of the robot is set to 300mm/sec in our experiments. This is a
pragmatic value which tolerates the response time of the perception system to possible

errors within the corridors.

63

To illustrate how a motion trajectory can be accomplished using the above
commands, refer to the example in Table 4.1. The necessary commands for this

motion will be:

point.to_point_go(length(S0));

jog (@)

point_to_point_ge(length($52));

jog (i)

point_to_point_go(length(S4));

jog (wim);
5.2.2 Exception handling

There are a number of failures that the TRC mobile robot base can detect.

These may be listed as

— A bumper contact
— A current overload
— An encoder failure

— A blown fuse

When any of these failures is detected, a certain condition bit of the robot controller is
set. The command readstatus(statbyte) reads this register and if there exists an
emergency condition, activates the routine EmergencyHandler () immediately. This
command is issued at the beginning of each interruption of the communication mod-
ule, thus the maximum time between the detection of and reaction to an exceptional

condition is limited by approximately 180ms (See Figure 5.2).

64

5.2.3 Sersor Control

The system: employs two types of sensors, the wheel encoders and the sonar
proximity systen:. Encoders are simply counters which monitor the angular dis-
placements of tiie = heel~. In order to find the position change of the base coordi-
nate of the robot, th: encoders are read through the serial line by the command
ReadEncoders(righi=2g,leftreg). The encoder registers are 16 bits and contain
the amount of distance traveled by each wheel in millimeters. These values are
mapped to the Cartesian coordinate frame through the kinematics of the robot, using

equation 3.12.

The 16 ultrasonic transducers of the proximity system are controlled by two
sonar ranging modules [Tra, 1989a]. The sensors are numbered 0 through 15. The first
module controls transducers 0 through 7 (first set), and the second module controls
transducers 8 through 15 (second set). The sonar sensors are scanned individually
in a round robin manner. Since the time required for a sonar scan is limited by the
speed of the sound and by the triggering delays of the relays controlling the sensors,
each scan may take tens of milliseconds. This constitutes a bottleneck for the system
which limits the period in which a localization is made. An update flag is sct for
each sensor whenever a new reading is made. The flag is reset when the information
is retrieved. This provides continuous scanning of the sensors, while the host is busy

with some other process.

The exact location of the robot when an echo is received has significant impor-
tance as the reflection point will be computed relative to this location. However, the
proximity system does not provide a parameter (time or position) associated with
each echo reception. It is not possible to figure out the exact value of this parame-
ter unless the robot is stationary during the sonar reading. We assume the location
of concern to be the estimated position of the robot at the instant when the sonar

register is read. Each reading is assigned the position kept by the encoders. The

65

encoder positioning is used for this purpose which is updated every 180 msec. This is
the best estimate we have at the time of the reading. The encoder positions are kept
in global variables, ENCX, ENCY and ENCTHETA. With the current system parameters?

this assumption may cause an error less than 30 mm in each reading.

There are many ways to control the sensors. One way is enablin; one sensor
at a time and then waiting for a response. In such a case the error in h reading
decreases to less than 15 mm but the total tir. - for the complete sca. of the 16
sensors goes up to approximately 3.2 seconds from 1.3 seconds because of the delays
in the relays. This is a more critical factor than the error as the robot moves about
1 meter in 3 senonds, so the above method is not used. Another way to control the
sonar sensors, which we actually use for our system, is to enable all sensors and poll
for echoes in a round robin fashion. As a result the position uncertainty associated

with an echo is increased but the total delay is minimized.

5.3 Localization

The perception module is composed of three main components (see Figure 2.7),
the sonar sensor localization module, the encoder localization module and the data

integration module which fuses the outputs of the two.

5.3.1 Sonar Sensor Localization

The sonar transducers mounted on the robot base are represented by an array
which consists of their positions with respect to the robot’s coordinate frame and

their calibration factor. Sonar readings are represented by a structure as follows

nterrupt time = 100msec, Velocity = 300 mm/sec

66

struct sonarpoints {

double robotx, roboty, dist, robottheta;

int sensorno, update; /* sensor no and flag */
int comment; /* to be used later*/

struct mapnode *mnode; /* associated mapnode */

struct sonarpoints *next; /*next reading */

} sonarpoints;

where robotx, roboty, robottheta are the approximate location identifiers
of the robot when the sonar echo is received. dist is the reading of the sensor in
mm, and updates the flag indicating whether the sensor has been updated since the
last reading or not. mapnode is a segment of the a priori world map from which the

reading is found to be reflected.

Sensor localization is done after each scan of the 16 sensors and it will be referred
to as a complete scan. The equations 3.13 and 3.14 are solved for each consistent data
point. Each point is searched through the world map 2 for a candidate reflection point.

Each node of the world map has the following structure

struct mapnode {
int nodeid; /* encoded id */
struct line nodeinfo; /* physical information/

struct mapnode *brother, *sibling, *parent; /*pointers*/

} mapnode;

The nodeid field is used to group the nodes belonging to a certain segment.

The info field has the following structure

2The world modeling was explained in section 2.2.1.

67

68

struct line {
double a, b, c; /* coefficients*/
long length, midx, midy; /* location */
double adjacency; /* thickness */

/* in the form y/a + x/b = c */

} line;

which consists of the information of a line segment plus the adjacency field
indicating the thickness of this line in order to span the physical locations of its

siblings, if any (See Figures 2.9, 5.4).

nodeid (root)
nodeinfo
parent | sibling| brother

nodeid nodeid nodeid
nodeinfo nodeinfo nodeinfo

parent [siblingl brother parent_Lsiblingl brother parent [siblingl brother ‘—JL

Figure 5.4: The world map

The search through this map is done with a recursive function
search(rootnode,x,y). The search algorithm is shown at figure 5.6. The algorithm
searches for a candidate segment of reflection by traversing the world model in a depth-
first manner. The consistency tests described in section 3.3 (visibility, proximity and

cone of reflection tests) are applied by the function consistent(mapnode,x,y).

To show the search program in realistic terms, consider a sample scan in the

corridor which is shown in Figure 5.5. The point P from sensor 4 satisfies the con-

sistency tests for both of the lines l; and l,. It is associated with /; as the distance

between them is smaller.

Figure 5.5: Associating a point with a line

mapnode

* search(rootnode, x, y, slist)
mapnode *rootnode;
double X, Y;
mapnode *slist;

mannoc> “node;
e .ot

T aXyy)

=g

%'is search{node->sibling,x,y,slist);
ist(slist,node);

r-we = node->brother;

return (slist);
Figure 5.6: The search algorithm

After the inconsistent points are eliminated, the remaining consistent rcadings
are used to solve equations 3.13 and 3.14 to get a position estimate (z,y) using the
weighted average of the resulting solution from each sonar sensor. The orientation is
computed by the routine WeightedLeastSquare(sonarlist,sonarweights) which
uses the weighted least square fitting method described in section 3.5 The weights

are computed using the methods described in section 3.2.

In order to use as much data as possible for a single segment, readings from

the doors, which are a few centimeters from the wall, are transformed to the wall’s

69

70

position. This is illustrated in Figure 5.7a. The readings marked with d in the figure
are transformed to the left by an offset equal to the depth of the door in the ~wall.
Figure 5.7b shows the line segments formed when this technique is not used. The
segments to be combined together to form a line are identified on the a priori world

map by encoding their nodeid’s.

a) points are transformed b) points are not transformed

Figure 5.7: F:rming lines by point transformation

5.3.2 Encoder Localization

The function UpdateReckon() reads the encoder values of the wheels and up-
dates the encoder positioning using equation 3.12. The routine is activated at the

beginning of each interrupt after emergency checks.

The following example illustrates the encoder localization:
the readings from the left and right encoders have the values Ey; = 154mm and E,, =
162mm where the previous measurements were Ey,_, = 141mm, E,,_, = 140mm and
Py = (z,y,0)T = (105mm, 4562mm, 1.40°)7. The distance between the wheels is
300mm.

We calculate AE, AP and P; as follows

AE, = 22,AE =13
hAa:
AP = | Ay
Ab

L.
-

Sin(f;_,) 2525
AP = | Cos(;-,)2Et0E

AE.~AE;
a'tan(wheeldsst)

0.8551
AP = | 34.9595
0.0300
P, = 1.%-_1 + AP = (155mm, 197mm, 1.43°)7

Figure 5.8 shows a sample transformation of the robot from P;_, to P;.

Figure 5.8: Encoder geometry

The weights assigned to each sensor are computed after a complete scan. The
method uses the last k scans in order to account for the recent consiraints of the

environment. The value of k used in our implementation is 10.

Two arrays, samplemean[16] and samplecovariance[16], for the sonar trans-
ducers are updated after each complete scan. They are computed using the equations
3.4 and 3.6. The error term of the last k readings is found using the position esti-
mates found at their localization steps by subtracting the reading from the estimated

reflection point. As mentioned before the robotx, reboty and robottheta ficlds of

71

each sensor data of the last scan are updated using linear approximation after each

localization. These will be used in the next weight computation.

The encoder weights are also computed from the last k location differences at
each localization step where the encoder position and the estimated position are kept

in an array which is updated after each localization.

5.3.3 Data Fusion

The maximum likelihood estimator which was explained in section 3.6 fuses
the data using the covariance matrices of the errors of the two sensory systems.
Sample covariances which was explained in section 3.2 are used to compute the
sample covariance matrices of the sensors. The three arrays, SonarLocationlk],
EncoderLocation[k] and Estimate(k] are used to compute the sample mean and
covariances using equations 3.4 and 3.6.The final position estimate is computed using
equation 3.25. The library utility InverseMatrix(matrix,size) is used td e¢valu-
ate this equation. After the fusion process, the three arrays, SonarLocation(k],
EncoderLocation[k] and Estimate(k], are updated so that they will contain the

last k lc-alization results.

The critical resource for final localization is the input from sonar proximity sys-
tem. A complete scan of the sere-rs takes an average of 1.3 seconds which constitutes
the bottleneck for sonar localization, whereas an encoder localization is done in every
180 msec. Thus data fusion is made when the position information from the sonar

perception system arrives.

This fusion architecture can be extended in order to include more sensory sys-
tems. To introduce a new sensory system into the program, it is necessary to specify
the characteristics of vhe sensor, declare its structure and implement its localization

method. An example of final sensory fusion will be given in section 5.5.

Sonar Sensors
| Filterihg (Consistency tests}J Encoders
w q | |
Position (x,y) Orientation o
Computation Computation Encoder Localization
(x.y) Sonar 6
calization
FUSION
(xy8)

iigure 5.9: Data flow of localization

5.4 Trajectory Generation and Control

At present, the only task that our robot can perfornt is to travel betv.cen lo-

cations. Thus, a goal is

represented as one or more positions in the free space. The

trajectory generated for this goal is represented as a list of nodes wherc each node

describes a motion segment. The structure of a node is as follows.

struct trajnode
double
double
double
byte
double

} trajmode;

{

velocity; /* the velocity during this motion */
startx, starty, starttheta; /#start point*/
destx,desty,desttheta; /*end point*/
straight.motion; /* flag for no turn */

turn_radius; /* the radius of curvature (if any) */

74

Figure 5.10: A sample run within the corridors

The motion described by the above structure can be defined as “traveling
at a given speed between the start and end points with a given radius of curva-
ture”. A straight line motion is identified by the variable straight motion. If

straight.motion is true then the turn_radius is not considered.

The trajectory list is generated using the methods described in chapter 4. The
trajectory generation is done at the beginning of navigation, and the successful exe-
cution of this trajectory is controlled throughout the program by Traj éheck(). The
scheduler activates TrajCheck() which scans the trajectory list for the next motion
to be executed once the current one is completed. Completion is detected by checking

the current position with the destination points. In that case the completed node is

disposed and the motion control parameters of the robot are set to the next node’s
specifications. The trajectory controller also checks the deviations from the planned
trajectory. This is done only during straight traveling motions or turns with a small
curvature (less than 5°/sec), because the sensor data is unreliable during turn motions
with considerable curvatures. When a deviation over a certain threshold is observed,
corrections on the trajectory list is done by modifying the necessary trajectory nodes
and introducing additional ones. Figure 5.11a shows a deviation from the path. Fig-
ure 5.11b shows the correction of TrajCheck(), the two nodes I and IT are replaced
i, new nodes I, II aﬁd IIL. The threshold values are set accordingly with the response

-evel of the servo system, for example the smailest turn that can be realized is 2°/sec.

Trajectory List Updated Trajectory List
. A <
X :
! N 1
1I § *
‘ N
t N .
§ {4
I \
N 1
\ 5
§ 1
§
N
\
\
N
\
N
X
N
X
a) Old trajectory b) TrajControl() overrides the old trajectory

Figure 5.11: Correction of a trajectory by overriding the last two nodes

The constraints of the ervironment we realized in our implementation do not
require complex or precise maneuvers to reach a destination point. Because of this,
the velocity can be set high during navigation as much as the sensitivity of the error

in positioning allows it to be. The control parameters, like velacity and turn rate, arc

set accordingly and have maximum values of 300mm/sec and 30°/sec respectively.

There are two cases in which the robot faces an unexpected situation, and the

worst outcome may result in a collision. These two cases and their remedies are:

1. The robot recognizes an unexpected obstacle in front. The action taken is to
stop and wait for the obstacle to move out of its way. If it does not move within
a certain time, a new trajectory, considering this obstacle, is generated (in our

case in the opposite direction), and executed.

2. If one of the sides of the robot is very close to a wall, the robot changes its
mode from achieve-goal to relocate, i.e. it tries to re-position itself by backward

and forward motion, temporarily abandoning the goal.

Another function TrajCheck() provides is decelerating as the robot approaches turns
with an angle greater than 30°. This is done in three steps by scheduling three
SetVelocity() events with starting times computed using the approach velocity to

the point.

5.5 Experimental Resuits

The performance of the robot depends on the performance of the sensors which
depend on cnvironmental constraints. The environment in our experiments was one
floor of an office building. As indicated before, the two types of sensors employed in
the implementation were optical wheel encoders and sonar proxi.nity sensors. Optical
encoders are sensitive to surface characteristics of the floor, and sonar sensors are

seasitive to flat, vertical surfaces within the environment.

In the experimental environment, the translational accuracy® of the wheels’

3When the reboi travels in a straight line motion.

76

encoders is about 95%. However, the rotational accuracy! is about 80%. The latter
poses a serious problem as it leads tc considerable disorientation of the robot, which
in turn leads to large orientation errors. For example, with a velocity of 300mm/scc,

a disorientation of 15 degrees may cause the robot to crash into a wall in 5 scconds.

The structure of the walls provides a convenient reflection source for the sonar
sensors. Usually 9 of the 16 sensors receive consistent sonar echoes when the robot is
inside the corridor. The accuracy of the sonar readings depends on the distance from
the object and the reflection angle®. For example reflections with a zero degree of
reflection angle gives an accuracy of 95% whereas this accuracy goes down to 75% for
15 degrees. Experiments showed that the maximum distance for a recognizabie object
inside the corridor is approximately 10 meters. For larger distances we encounter

multiple reflections (See Figure 3.3).

Turning a corner so far has been the most difficult segment of a trajectory for
the robot to execute. This can be attributed to three factors. First, the encoders arc
error prone during turn motions. Secci:d, t:2 number of consistent reflections from
the sensors is quite low (2-5 reflections). Third, the robot position associated with the
sonar readings when the eche is received is also inaccurate due to the inaccuracies of
the encoders. The positioning errors caused by above factors may reach a maximum
of 500mm and 15 degrees. The correction is done by deceierating the robot and
executing relocalization procedures after the turns. This error may be avoided by

introducing a sensor which does not fail a* these locations (e.g. a CCD camera).

The overall performance of the system suffices well for our initial goal of contin-
uous navigation through the corridors. Figure 5.12 shows a sample navigation. The
real path is marked by a dotted line and the robot’s position estimation is marked
with a solid line. As seen in the figurc, the robot recognizes the deviations from

the path and corrects them accordingly. Figure 5.13 illustrates another path with

4When the robot performs a turn at standard speed (v=300mm/sec, w=20°/sec).
5The angle that the sonar beam makes with the normal to the reflect on surface.

77

78

Estimated Pe:t

Figure 5.12: Real and estimated path

the error-time plots. The akenlute error in the position parameters (z,y,8) show a
fluctuating pattern. However, they do not exceed a limit, unless a drastic failure

occurs.

In Figure 5.13 we analyze localization errors along the three coordinates. In
Figure 5.13b, the error increases between 20th and 60th second. This is because the
robot is in corridor b where the walls are parallel to the z axis. Thus, there are not
much reflection points to obtain the z position of the robot. The corrections seen in
the graph are done by means of reflections from door gaps. The corners of the door
gaps almost always give a reflection once they are inside the cone of reflection of a
sensor. The error in z coordinate in this region rises up to 250 mm. However, this is

not a critical error as the robot is traveling along the z axis. A similar situation can

be observed in Figure 5.13d for the z axis in corridor a. The turn points at 25th and
60th second result in high errors in all the three plots, because of the aforementioned

reasomns.

One critical error for the robot is the relative positioning error with respect to
the walls. It is critical as it may cause the robot to collide with the wall. This ¢ ,r
in our test trajectories has a maximum value of 60mm. Another critical crror is the
orientation inaccuracy which has a maximum value of 5 degrees within the corridors

but may go up as high as 15 degrees when a turn from one hallway to another is

involved.

The response time of the robot to a critical error is approximately 2 seconds.
As the error increases, the response time approaches 1.3 seconds which is the time
for a single localization process. This is sufficient considering the inaccuracies of the
sensors used. With the current response time and accuracies, the robot is able to

navigate at most 300 meters witkout colliding with an object.

Figures 5.14 to 5.19 show the x and y coordinates of the trajectory and the
corresponding localizations of the sensors and the final estimate. Sampling is done
in discrete intervals of 1 second. Figures 5.20 to 5.25 illustrate the errors ir. sensor
localization in z and y directions, and the error in orientation. The sensors’ crrors
are compared to the error in the final estimate. As seen in the figures, along the time
axis, the error in the final estimation is usually biased to the sensor which has the
smaller error. This result shows the validity of our uncertainty computation method

and the fusion algorithm of sensor localization.

5.6 Summary

This chapter has discussed the implementation of the methods developed for

“oa™n=oo0

. time
corridor '’ SRR RRAREERERARREALES AN R RN AR AARE L
— 0 20 406 60 8 100 120 140 160
a) Real and Estimated Path b) Error in x position
oﬁmduﬁonumr (Real -Estimated)

(degrees) y emror (Real -Estimated
ﬁ"“ o) ®)

6 600
5 500
4 400
3 300
2 200
1 100

\

4] ' (“l TEpeeee L Vo VR N | O O

-1 -100

2 -200

3 300 |

| :

4 time 40 | time
T RN RALANRRRRRRATRERLY R pre e
0 0 40 6 8 100 120 140 160 0 20 40 60 80 100 120 140 160

b) Error in orientation d) Error in y position

Figure 5.13: Localization errors along the path

30

localization and trajectory generation in the previous chapters. The implementation
is done in C language to facilitate future modifications. Other software used in
the implementation include the low level control routines for the TRC mobile robot
and the proximity system which reside on eproms on their control boards. The
resulting system is well functioning and it fulfills our initial requirements for the
robot. The experimental results have shown the validity of our approach to robust
robot localization using sensory fusion techniques. Without these techniques the
robot performance will be considered seriously or completely unsatisfactory, if only

one sensor system, either the sonar system or the wheel encoders, is used.

81

82

x (mm)

5000 1

4500

4000 1

3500

3000 1

2500 1

2000 1

1500 1

1000 1

500 1

0
S04 L Actual Trajectory time
(seconds)
: : —t = : — ’ "
0 20 40 ' 60 80 100

Figure 5.14: x coordinate of the actual location and the sonar localization

x (mm)

5000 1

4500 -

4000 1

35001

3000

2500 1

an

500 1

83

0
—— Encoder Localization
5009 . Actual Trajectory time
(scconds)
i { } + + ! { } } -
0 20 40 60 80 100

Figure 5.15: x coordinate of the actual location and the encoder localization

X (mm)

84

—— Estimated Traiectory
-500 + . .
-------- Actual Trajectory time
(seconds)
{ — i } } t } } l-
0 20 40 80 100

Figure 5.16: x coordinate of the actual and the estimated location

85

y (mm)

10000 1

-2000 -
-4000 -
6000 -
-8000 -
} —— Sonar Location
_— time
-------- ctual Trajectory d
0. | | ! ! ! ! ! ! ! , (Sei:on 5)
0 20 40 60 80 100

Figure 5.17: y coordinate of the actual location and the sonar localization

y (mm)

10000

86

-2000 -
-4000
-6000
-8000 -
1 —— Estimated Location
Actual Trai time
ereaenes ctual Trajectory d
-100007 e ! | - e e L e
0 20 40 60 80 100

Figure 5.18: y coordinate of the actual location and the encoder localization

87

y (mm)

10000 1

-2000
-4000
-6000 -
-8000 -
| —— Estimated Location
N time
........ ctual Trajectory d
-10000- ! A |) } } } } } { (:Cfon S)
0 20 40 60 80 100

Figure 5.19: y coordinate of the actual and the estimated location

100

80

-40

83

x (mm)
!
.
'i
k|
4 e Final Estimation Error
lime
——— Encoder Localization error N (seconds)
i | | | e e k! | | | | —
0 20 40 60 80 100

Figure 5.20: Error in Encoder localization and final estimation in x coordinates

100

80

20

89

x {(mm)

Situne

2352800800

AR

.-—'-ool%:::.. .

4 e Final Estimation Error

——— Sonar Localization ervo
1l i 1 1

0 20 40

-
\ \ (seconds)
e w1 } | ! -
60

80 100

Figure 5.21: Error in Sonar localization and final estimation in x coordinates

100

80

90

_40 .
_60 =
-80 1

B Final Estimation Error

time
——— Sonar Localization error (scconds)

100 _ | e s s ' s | ' e s -

0 20 40 60 80 17

Figure 5.22: Error in Encoder localization and final estimation in y coordinates

100

80

40

20

-40

y (mm)

Jitree..

st

91

] \
B Final Estimation Error
time
—— Sonar Localization error (seconds)
] e | ; ' ! !
0 20 40 80 100

Figure 5.23: Error in Sonar localization and final estimation in y coordinates

15

10

5

e {degrees)

/

J o eeeneeee Final Estimation Error
time
—— Encoder Orientation error (scconds)
] } ! 4 } + I } ! } } -
0 20 40 60 80 100

Figure 5.24: Error in Encoder localization and final estimation in orientation

15

10

© (degrees)

] e Final Estimation Error

——— Encoder Orientation error
1 [[1

93

time
(seconds)

20 40 80 100

Figure 5.25: Error in Sonar localization and final estimation in orientation

Chapter 6

Conclusion

6.1 Summary Discussion

We have presented an autonomous mobile navigation system in a previously
known environment. There are two key elements of the system: a positior: estimation

algorithm and a real-time trajectory generation and control method.

The position estimation algorithm is composed of three components: the world
model, the sensor models and the data fusion method. The world model provides
a precise description of the environment’s geometric features. The sensor models
describe the behavior of the sensors and the uncertainties related to them. The
fusion method is a general scheme which combines multiple sensory inputs into a

single estimate based on their uncertainties.

The methods introduced for sensor localization and data fusion are based on
a probabiliziiv: Jezcripticn of the uncertainty involved in sensor readings. Heuris-
tic and statisiice! decivion making criteria are used to cluster and integrate sensory
information in a corsistent manner. The localization method is sensitive to rzcent

characteristics of the environment. A data fusion scheme integrates location informa-
94

tion from the sensory systems. A Bayesian maximum likelihood estimation method is
used to obtain the final position estimate which provides a general scheme for sensory

data fusion.

The trajectory generation method introduced in this thesis has been developed
on the basis of previously introduced methods. The method uses linear and constant
curvatured segments to provide an efficient and practically continuous trajectory.
The continuity of the trajectory maintains smooth navigation. It is computationally
simple, so a real-time system can use the method without a burden of computation.
In addition, the path generation functions are not bound tv certain types of actuation
mechanisms. They are designed to be flexible so that they can be adopted by other

systems.

Unlike many other previous attempts [Elfes, 1986] [Crowiey, 1985], we presented
a navigation method where the perception and trajectory control are done during a
continuous motion of the robot. The resulting system is able to maintain a robust

position estimate while it is navigating in an a priori environment.

We have experimentally verified the validity of the introduced autonomous nav-
igation method on our mobile robot. The implemented application tests the local-
ization, sensory fusion and trajectory generation and control techniques using a two
wheeled robot with 16 sonar proximity sensors and 2 optical differential encoders
mounted on the wheels. The robot navigates successfully through the corridors and

it reacts to the deviations from desired paths.

5.2 Future Research

The system we developed will act as a basis for future development. The planned

enhancements on top of the system include: using machine vision for recognition of

95

objects including landmarks of geometric features of the environment for position
estimation, reducing sensor uncertainty, detecting physical reflection patterns from
sonar range data, and improvements on the hardware and the computational power

of the system.

Our localization method facilitates redundant sensors to be introduced into the
system. Vision (passive sensing) is one of the first candidates for future enhance-
ments of the robot. Machine vision is useful for locating and examining objects in
disordered environments. A reliable vision system for a mobile robot requires evalu-
ating image sequences in order to detect and differentiate between objects. Scveral
position estimation techniques using correspondences between landmarks in the en-
vironment have been developed in the literature [Krotkov, 1989}, [Sugihara, 1987].
These methods need to be further developed to consider the uncertainties in noisy
rays in subsequent images. The developed uncertainty model can be used to introduce

the vision system into our localization scheme.

The uncertainty in sensor readings can be further reduced using an optimum
linear filter. A powerful technique for real time estimation of dynamic systems is the
Kalman filter [Sage and Melsa, 1971]. This formulation allows the integration of infor-
mation over time, and is robust with respect to sensor noise. The sensor models must
be further analyzed to compute the prediction and update phases of the Kalman gain
factor. Some applications have been done using this method [Mathies et al., 1988],
[Crowley, 1989b]. However, more research for a general solution for non-lateral motion

and for non-biased estimates in unstructured environments are required.

The physical characteristics of sonar reflections can be used to recognize diflerent
objects in the environments. Some physically based simulation models have been
proposed for acoustic sensors [Miwa and Kuc, 1986], [Kuc and Siegel, 1987]. These
methods may be further elaborated for pattern recognition to help positioning of the

robot.

96

A significant problem with the sensor system is not knowing the exact location
of the robot when an echo is received. This may be improved by modifying the
proximity sy.stem hardware so that it will issue a relative time or position parameter
when an echo is received. This improvement will lead to a significant improvement

in the precision of the sonar localization algorithm.

Further improvements of the computational power for a mobile robot is an
essential requisite in mobile robotics. New improvements and techniques are rapidly
being developed in the field. With the introduction of these new techniques, it is
inevitable that the burden of computation will reach a high level of complexity. This
will require a powerful multi-processing, real-time and onboard computational power.
Currently a MC68030 VME board [Mot, 1989] is being planned to be mounted on
the robot in order to take over the computational tasks. The MC68030 board will
not only improve the computational power of the robot, but it will also provide
full autonomy i)y eliminating the serial connections between the robot and the host

computer. However, the development of an operating system kernel will be required.

97

Bibliography

[Brooks and Lozano-Perez, 1983] R.A. Brooks and T. Lozano-Perez. A subdivision
algorithm in configuration space for findpath with rotation. IEEE Journal on
Systerns, Man, and Cybernetics, 2(3), 1983.

[Brooks, 1988] R. Brooks. Tutorial Notes # 7, Autonomous Mobile Robots. CSCSI8S,
Edmonton, 1988.

[Chatila and Giralt, 1986] R. Chatila and G. Giralt. Task and path planning for mo-
bile robots. In NATO ARW on Machine Intelligence and Knowledge Engineering,
Maratea,ltaly, May 1986.

[Crowley, 1985] J. Crowley. Navigation for an intelligent mobile robot. IEEE Journal
of Robotics and Automation, 1(1):31-41, 1985.

[Crowley, 1989a] J. Crowley. Asynchromous control of orientation and displacement
in a robotic vehicle. In IEEE International Conference on Robotics and Automa-

tion, pages 1277-1282, 1989.

[Crowley, 1989b] J. Crowley. World modeling and position estimation for a mobile
robot using ultrasonic ranging. In IEEE International Conference on Robotics and

Automation, pages 674-680, 1989.

[Drake et al., 1985] K.C. Drake, E.S. McVey, and R.M. Inigo. Sensing error for a
mobile robot using line navigation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 7(4):485-490, July 1985.
98

99

[Drumheller, 1987] M. Drumbheller. Mobile robot localization using sonar. I[EEE
Transactions on Pattern Analysis and Machine Intelligence, 9(2):325-332, March
1987.

[Duda and Hart, 1973] R.O. Duda and P.E. Hart. Pattern Classification and Scene
Analysis. John Wiley and Sons Inc., 1973.

[Durrant-Whyte, 1987] H.F. Durrant-Whyte. Consistent integration and propaga-
tion of disparate sensor observations. International Journal of Robotics Research,

6(3):3-24, 1987.

[Elfes, 1986] A. Elfes. A sonar based mapping and navigation system. In IEEE 1986
International Conference on Robotics and Automation, pages 1151-1156, 1986.

[Faverjon and Tournossoud, 1987] B. Faverjon and P. Tournossoud. A local based
approach for path planning of manipulators with a high number of freedom. In

IEEE, International Conference on Robotics and Automation, Raleigh, 1987.

[Giralt et al., 1979] G. Giralt, R. Sobek, and R. Chatila. A multi level planning and
navigation system for a mobile robot. In Proceedings of the 6% IJCAI Tokyo,
Japan, pages 13-20, October 1979.

[Giralt et al., 1987] G. Giralt, R. Chatila, and M. Varsoff. An integrated navigation
and motion control system for autonomous multisensory mobile robots. In Brady

M and R. Paul, editors, Robotics Research The First International Symposium.
MIT Press, 1987.

[Giralt, 1984] G. Giralt. Mobile robots. In Brady et.al., editor, Robotics and Artificial
intelligence, pages 365-393. Springer Verlag, 1984.

[Hackett and Shah, 1990} J.K. Hackett and M. Shah. Multi sensor fusion, a perspec-
tive. In IEEE 1990 International Conference on Robotics and Automation, 1990.

[Hirose, 1984] E. Hirose. Adaptive gait control of a quadroped walking machine. In
The First International Symposium on Robotics Research, pages 253-277, 1984.

100

[Hoppen et al., 1990] P. Hoppen, T. Kierman, and E. von Puttkamer. Laser-radar
based mapping and navigation for an autonomous mobile robot. In IEEE 1990

International Conference on Robotics and Automation, pages 948-953, 1990.

[Hu and Stockman, 1986] G. Hu and G. Stockman. 3-d scene analysis via fusion of
light stripped image and intensity image. In F.C.A. Groen and L.O. Hertzberger,
editors, 1987 Workshop on Spatial Reasoning and Mulii Sensor Fusion, pages 138-
147, October 1986.

[Kanade, 1987] T. Kanade. Three Dimensional Machine Vision. Klower Academic
Publichers Inc., 1987.

[Kanayama and Miyake, 1986] Y. Kanayama and N. Miyake. Trajectory generation
for mobile robots. Robotics Research 3, pages 333-340, 1986.

[Kent et al., 1986] E.W. Kent, M.O. Scheiner, and T. Hong. Building representations
from fusion of multiple views. In IEEE, International Conference on ftobolics and

Automation, pages 1634-1639, April 1986.

[Khatib, 1986] O. Khatib. Real time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 1(5), 1986.

[Kriegman et al., 1987] D. Kriegman, E. Triendl, and T. O. Binford. A mobile robot:
Sensing planning and locomotion. In IEEE 1987 International Conference on

Robotics and Automation, pages 402-408, 1987.

[Krotkov, 1989] E. Krotkov. Mobile robot navigation using a single image. In IEEE
1989 International Conference on Robotics and Automation, pages 978-983, 1989.

[Kuc and Barshan, 1989] R. Kuc and B. Barshan. Navigating vehicles vhrough an
unstructured environment using sonar. In IEEE 1989 Internaticnal Conference on

Robotics and Automation, pages 1422-1426, 1989.

101

[Kuc and Siegel, 1987] R. Kuc and M.W. Siegel. Physically based simulation model
for acoustic sensor robot navigation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 9(6):766-778, 1987.

[Lao et al., 1986] Z.L. Lao, J. Ronning, and E.L. Hall. Omnidirectional vision navi-
gation integrating beacon recognition with positioning. In F.C.A. Groen and L.O.
Hertzberger, editors, Proceedings of the SPIE Conference on Mobile Robots, pages
213-221, October 1986.

[Laumond, 1987] J.P. Laumond. Feasible trajectories for mobile robots with kine-
matic and environment constraints. In F.C.A. Groen and L.O. Hertzberger, editors,

Intelligent Autonomous Systems. North Holland, 1987.

[Laumond, 1989] J.P. Laumond. Trajectory planning and motion control for mobile
robots. In J.D. Boissonnat and J.P. Laumond, editors, Geometry and Robotics,

pages 133-149. Springer Verlag, 1989.

[Levitt et al., 1987) T.S. Levitt, D.T. Lawton, D.M. Chalberg, and P.C. Nelson.
Qualitative landmark based path planning and following. In Proceedings of the
AAAI Conference.Seattle, Washington, pages 689-694, July 1987.

[Lin et al.,, 1989] L. Lin, T.M. Mitchell, A. Philips, and R. Simmons. A case study
in robot exploration. Technical Report TR-89-1, Carnegie Mellon university, The
Robotics Institute, 1989.

[Luo et al., 1988] R.C. Luo, M. Lin, R.S. Scharp, and P.E. Wessel. Object recognition
using tactile image array sensors. IEEE Journal of Robotics Research, pages 568-

573, 1988.

[Maeda, 1985] Y. Maeda. Prototype of multifunctional robot vehicle. In ICAR Con-
ference, Tokyo, pages 421-428, 1985.

102

[Mathies and Elfes, 1988] L. Mathies and A. Elfes. Integration of sensor and stereo
range data using a grid based representation. In IEEE 1988 International Confer-
ence on Robotics and Automation, pages T27-733, 1988.

[Mathies et al., 1988] L. Mathies, R. Szeliski, and T. Kanade. Kalman filter based
algorithms for estimating depth from image sequences. Technical Report TR-88-1,
Carnegie Mellon university, The Robotics Institute, 1988.

[Miller, 1984] D. Miller. Two dimensional mobile robot positioning using onboard
sonar. In IEEE 1984 International Conference on Robotics and Automation, pages

766-778, 1984.

[Miwa and Kuc, 1986] H. Miwa and R. Kuc. A computer model for simulating re-

flected ultrasonic signals. Journal of Acoustic Society, 80(3):951-954, September
1986.

[Moravec and Elfes, 1986] H.P. Moravec and A. Elfes. High resolution maps {rom
wide angle sonar. In IEEE 1986 International Conference on Robotics and Au-

tomation, 1986.

[Mot, 1989] Motorola Corporation. Motorola MVME147 Monoboard Computer, 3
edition, 1989.

[Perez and Rouchy, 1987] J.C. Perez and I. Rouchy. Increasing autonomy of assembly
robots. In F.C.A. Groen and L.O. Hertzberger, editors, Intelligent Autonomous
Systems. North Holland, 1987.

[Raibert, 1984] M.H. Raibert. Robots that walk. In Brady et.al., editor, Robotics
and Artificial intelligence, pages 345-364. Springer Verlag, 1984.

[Rembold and Levi, 1987} U. Rembold and P. Levi. Sensors and control. In F.C.A.

Groen and L.O. Hertzberger, editors, Intelligent Autonomous Systems, pages 79~

95. North Holland, 1987.

103

[Rodger and Browse, 1986] J.C. Rodger and R.A. Browse. An object based represen-
tation for multisensory robotic perception. In F.C.A. Groen and L.O. Hertzberger,
editors, 1987 Workshop on Spatial Reasoning and Multi Sensor Fusion, pages 213-
221, October 1986.

[Sage and Melsa, 1971] A.P. Sage and J.L. Melsa. Estimation Theory with Applica-

tions to Communications and Control. McGraw-Hill P2k Company, 1971.

[Schmidt, 1971] R.A. Schmidt. A study of a real-time control of a computer driven
vehicle. PhD thesis, Stanford University, 1971.

[Schwartz and Scharir., 1983] J.T. Schwertz and M. Scharir. On the piano mover:
the case of a two dimensional rigid polynomial body moving amidst polygonal

barriers. Communication on Pure and Applied Math, 36, 1983.

[Silk, 1983] M.G. Silk. An extended model of the ultrasonic transducer. Journal of
Physics, E, 16:879-887, 1983.

[Smith and Cheeseman, 1987] R Smith and P. Cheeseman. On the representation of
the estimation of spatial uncertainty. International Journal of Robotics Research,

5(4):56-68, 1987.

[Stefik, 1985] M. Stefik. Strategic computing at DARPA. Communications ACM,
28(7):690-704, 1985.

[Sugano, 1985) S. Sugano. Limb control of the robot musician. In ICAR Conference,
Tokyo, pages 471-476, 1985.

[Sugihara, 1987] K. Sugihara. Location of a robot using visual information. In The

Fourth International Symposium on Robotics Research, pages 81-88, 1987.
[Sun, 1989] Sun Microsystems. Uniz Manuals, C library Routines, a-1T7 edition, 1989.

[Thomas, 1987} J.B. Thomas. Applied Probability and Random Processes. John Wi-
ley and Sons Inc., 1987.

104

[Thorpe and Kanade, 1986] C. Thorpe and T. Kanade. Vision and Navigating for
the CMU Navlab. In SPIE Conference on Mobile Robots. Cambridge, Mass, pages
260-266, October 1986.

[Tournossoud, 1988] P. Tournossoud. Motion planning for a mobile robot with a kine-
matic constraint. In IEEE International Conference on Robotics and Automalion,

1988.

[Tra, 1989a] Transitions Research Corporation. Prozimity Subsystem User’s Manual,

release 4.6e edition, 1989.

[Tra, 1989b] Transitions Research Corporation. TRC Labmate, Autonomous Mobile
Robot Base, release 5.4f edition, 1989.

[Tsumura et al., 1981] T. Tsumura, N. Fujiwara, T. Shirikawa, and N. Hashimoto.
An experimental system for automatic guidance of robot, a vehicle following the
road stored in memory. In 11** International Symposium on Industrial Robuts,

pages 187-193, October 1981.

[Wallace et al., 1986] R. Wallace, K. Matsuzaki, Y. Goto, J. Crisman, J. Webb, and
T. Kanade. Progress in robot road following. IEEE International Conference on

Robotics and Automation, 1986.

[Zhimin and Dongying, 1985] S. Zhimin and G. Dongying. Kinematics of six legged
vehicle on irregular terrain. In ICAR Conference, Tokyo, pages 389-39¢, 1985,

