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ABSTRACT

This thesis presents a study of plastic design methods for reinforced
concrete slabs. Thevultimate limit state has been considered for both
flexure and shear. The emphasis is on how the various plastic methods
presented in the literature may be applied to the design of flat plates.

Both upper and lower-bound moment fie]dsrhave been examined. Yield-
line theory and the segment equilibrium method were the priﬁary upper-
Bound.solutions considered. A more efficient application of yield-line
theory to the design of slabs is presented than given elsewhere in the
literature. The segment equilibrium method is the logical result of
such an approach and is thus, a special case of yield-line theory.
Hillerborg's strip method and segment method were the primary lower-bound
solutions which were discussed. These methods were examined systematically
from the simple strip method to the load dispersion element and the
advanced strip method, and finally, to the corner supported-element and
the segment method. Design examples have been included to illustrate
the logical progression in the development of these lower=-bound
solutions.

The problem of shear and moment transfer in slab-column junctions
of flat plates has been considered by several methods. The ACI| approxi-
mate elastic analysis, yield-line analysis, and the beam analogy were
‘compared. It was féund that a plastic intera;tion equation which i5 a
variatioﬁ of beam analogy was, in the most instances, the best method for
'predicfing the capacity of slab-column junctions transferring shear and
moments. It was also found that there are cases wﬁere failure occurs by
a yield-line mechanism around the column. For such cases, all methéds

except a yield-line analysis are unsafe.



The questions of pattern loading has been considered with regard
to column ﬁoments énd steel detailing requirements. Several plastic
methods for dealing wifh.pattern loading have been presented. It was
found that while the cut-off points used in current practice cannot be
justified by an elastic analysis, they can be justified by a plastic

analysis.
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1. INTRODUCTION

| Reinforced concrete design procedures have recently
evolved into limit state design procedures. This work
éoncerns the design of reinforced concrete slabs, wifh
particular reference to flat plates, for the ultimate or
coilapse limit state. The scope includes‘f]exure'as well as
shear. At the ultimate limit state, slabs behave plastically
thus, plastic methods of design are considered. Elastic
procedures of analysis are used occasionally as benéhmarKs
for comparison of the various methods.

The plasticity theorems and their implications in terms

. of reinforced concrete slab design are introduced. The

upper -bound procedures of Johansen and Wiesinger are

considered a]ong'with the lower-bound soiutions of

"Hillerborg. Methods of checking the shear and moment

transfer capacity of slab-column connections are compafed.
The questioh of accommédating pattern loading is also
considered.

This thesis has been written to critically evaluate the

above procedures from the point of view of a structural

designer. Many of the procedures have been critically

reviewed by others for their mathematical correctness, but
this work will consider their strengths and weaknesses as
design.tools. The assumptions upon which the procedures are
based will be discussed briefly, but the emphasis will be
on: how the methods are related to each other, how the

methods could or should be applied, the choices the



structural designer is required to make, and how these
choices will effect the overall design of the slab. Several
portions of this discussion cover points not discussed
elsewhere in the literature, but which'are essential to a“
compTete slab design.

| The question of serviceability is not discussed
specifically. Not that serviceability is not important, but
because it is generally satisfied by some empirically
determined minimum slab thickness. Similar empirical rules
“would still be required for plastic design methods. The
present rules may require modification if the plastic
designs used require significantly more plastic

redistribution and cracking than present slab designs.



2. PLASTICITY THEOREMS

2.1 Introduction

A major task in the design of reinforced concrete slabs
is to determine a distribution of moments which is in
equilibrium with the applied loads. Elastic moment fields
can be obfained'with_finite difference solutions or finite
element solutions. However, since slabs do not behave
elastically near ultimate load, and the bending capacity of
the slab is based on a plastic analysis of a cross-section,
it is reasonable to use methods of analysis and design which
recognize plasticity. The plastic methods are somewhat
approximate but, "Is it not just as valuable to Know
approximate]y how a real structure is going tb behave as it
is to know exactly how an approximate structure is going to
_behave?" (Lansdéwn 1967) . | |

Yield-1line theory, the segment equilibrium method and -
thé strip method are methods of plastic design. The basis
for each method will be exam{ned along with the choices a
designer is required to make for their use. The implications

of these choices inldésign.will be discussed.

2.2 Lower-Bound and Upper-Bound Theorems

A11 rational methods of plastic analysis fall into one
~of fwo categories, "upper-bound" solutions and “lower-béund"
solutions. These categories are defined by the upper and

‘lower -bound theorems of plasticity. These theorems as they



~apply. to slabs have been stated by Hillerborg (Hillerborg
1975) as follows:

Lower-bound theorem: 1f there is a load Q, for
which it is possible to find a moment field which.
fulfills all equilibrium conditions and the moment
at no point is higher than the yield moment, then
Q, is a lower-bound value of the carrying
capacity. The slab can certainly carry the load
Q,
Upper-bound theorem: 1f, for a small virtual
“increment of deformation, the inner energy taken up
bybthe slab on the assumption that the moment in |
every point where the curvature is changed equals
' fhe yield moment and this energy is found to equal
the work performed by the load Q, for'the same
increment of deformation, then Q, is an
ubper‘bound value-Qf the carrying capacity. Loads
greater than Q, are certainly high enough to

cause moment failure of the slab.

2.3 Characteristics of Lower-bound and Upper-bound Solutions
2.3.1 Safety and Economy
Lower -bound solutions underestimate the theoretical
co]]apse.load, therefore they are always on the safe side.
The uhderestimate in the theoretical collapse load may be so
large that the resulting design is uneconomic. On the other

hand, upper?bound solutions overestimate the theoretical



COliapse load, therefore they are always theoretically on
the unsafe side. Since upper-bound solutions always produce
a higher estimate for the collapse load than lower -bound
solutions, designs based on upper-bound so]utjons may be
’s]ightly hore economical than designs based 6n lTower -bound

solutions.

2.3.2 Superposition

A lower-bound moment field in equilibrium with a given
loading can be added to a second lower-bound moment field in
equilibrium with a second set of loads. The resulting moment
field will be in equilibrium with the combined loadings and
it is thus still a lower-bound solution. Hence, the
principle of’superposifion is valid for lower-bound
solutioné.

For upper-bound solutions, the sum of the ultimate
moments for a series of loads is always greater than or
_equal.fo the ultimaté moments for the sum of the loads
(Johansen 1962). Thus, superposition is not generally
correct, but the result is always more safe than‘each of the

individual solutions being superposed.

2.3.3 Moments Calculated

With lower-bbund solutions, the entire moment field is
obtained.'ThUS, the cut-off points for the reinforcement may
'be readily determined. With upper-bound solutions, the

moments are only known at discrete points (hopefully the



critical sections). The determination of the cut-off points
requires special investigation and is usually not covered in
a "pure" upper-bound solution procedure since it is usually
assumed that the reinforcement is continuous throughout the
entire slab. Thus, perhaps the most important difference
betweeﬁ practical lower-bound and upper-bound solutions is
that one gives enough information to detail the

reinforcement cut-off points while the other does not.

2.3.4 Analysis vs. Design

Lower -bound solutions remain on the safe side whether
the solution is used for analysis or design. Upper-bound
solufions remain on the "unsafe" side whether the solution
is used for analysis or design. Thus, there is no difference
between analysis and design as far as the plasticity

theorems are concerned.

2.4 Implications of Approximate Lower-Bound and Upper -Bound
Solutions Used for Design

For a given model of a structure, the "unique"” solution
(exact mathematical solution) is ‘obtained when the Tower and
upper -bounds coincide. The unique solution can be obtained
with either an exact lower-bound solution or an exact
upper -bound solution. Unique solutions have been found for a
few spécia] cases (Wood 1961), but these cases are of little
practical value in structural engineering. Therefore, one

must maKe do with approximate solutions.



Fng 2.1 gives a'qualitative indication of the
relationships between lower-bound, upper-bound, and unique
solutions as well as.the true load capacity that would be
‘obtained in a load test. To the left of the figure, the
predicted failure load decreases while to the right, the
- predicted failﬁre load increases. The unique solution is
obtained at the point where the lower and upper-bound meet.
The most striking feature of this figure is that the unique
(mathematically exact) solution underestimates the true load
éapacity. This implies that the usual mafhematica] model of
the structure is not exact due to the neglect of inplane
forées,:strain hardening, etc. This also implies that
upper—bound solutions are not always on the "unsafe" side of
‘the true failure load. One can get acceptably safe designs
Qith reasonable approximate upper-bound solutions, while
poor approximate upper -bound solutions are unsafe. On the
other hand, poor approximate lower-bound solutions are safe
but uneconomical. Examples of good and poor approximations
will be discussed when considering the details of each

method of design.

2.5 Affinity Theorems

There exists a set of affinity theorems which are
sometimes useful.in s]éb design. These theorems were first
proposed by dohénsen (1943) and developed by Jones and Wood
(1968). The theorems can be used to convert a skew or

orthotropically reinforced slab intb an affine slab such



Buiseaiou) Aloeden
peoT] pajejnoen

SQe|S 93342u0) vWULomcwmm 404 SUOLIN|OS
punog-4smoT pue Jaddn 4o uorjedL|du] [°Z S4nbL4

IS8l peOT WOy pauielqo
Ajioeden peo enug

<<

L

Buisessdsq Aloeden
peo-:pajenojen

/ uoirewxoiddy
100d

SUOIIN|Og punog-1addn N\

uonewxoiddy
Folelol3)

uonewixosddy
Jo0d

O
ol WEWW/ / |
I poos) aa«wﬂﬂ//y//ﬁmxmm j0eX3

SUOIIN|OS pUNOg-JoaM0™)

Ak

QeIS 4o [9po fedissel)
© o 40j:uonnjog anbiun



that the affine slab is isotropic and will have the same

: deflections‘ét corresponding points as the original slab. In
this way, solutions which have been derived for isotropic
slabs can be extended to orthotropic and skew slabs if
bertain conditions listed later are satisfied.

The affinity theorems have been summarized by Mills

(1970) as follows:
If, at any poiht on the skew or orthotropic slab,
‘the ultimate moments due to the separate bands of
steel reinforcement are m and um, then the strength

of the isotropic slab at a corresponding point is m

in all directions provided thaf:

1; The affine slab is drawn such that all distances
measured in the direction of the m-reinforcement
remain the same and this direction forms one
co-ordinate axis for both slabs which will be
called the first co-ofdinate axis. See Fig. 2.2.

2. The other (second) co-ordinate axis follows the
direction of the um-reinforcement (and all
measurements must be referred to these axes),
but the affine slab is taken at right-angles to

- the first co-brdinate axis.

3. All distances in the affine slab shown in
Fig. 2.2b are'measured in the second co-ordinate
direction and are obtained by dividing lengths
in the original slab by VCZXﬁ .

4. A1l corresponding total loads in the affine slab
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Figure 2.2 Qriginal and Affine Slabs
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are obtained by dividing the original total

loads by Vv siny
As a result of these points, the affine slab will not
necessarily have the same geometry nor the same loading per
unit area as the original slab. The transformation of a slab
to an affine slab will thus leave the designeh with little
feeling for the behavior of the real slab.

It must be emphasized that in the original slab, the
positive and negative moment capacities may be different,
but &« for the positive moment capacities must be equal
to u« for the negative moment capacities in otder to make
use of the affinity theorems. Also, it is assumed that the
siéb.has homogeneous reinforcement, that is, the reinforcing
mats must be uniform throughout the entire slab. As a result
of these points? the application of the affinity theorems is
somewhat restricted, but they can be used to advantage for
some special cases. Such a case is pointed out in Section

4.3.

2.6 Elastic Solutions

Elastic solutions satisfy the requirements of the
lower -bound theorem, but they also require geometric
‘compatib11ity. There is only one elastic solution to each
particular broblem. Once the elastic properties are assumed
or egtéblished; the designer is not required to use any
Jjudgement. However, fantastic judgement may be required in

the choice of elastic properties as well as 'in interpreting
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and modifying the results of the analysis in order that a

reasonable reinforcement layout can be used.

2.7 Basic-Assumptions Common to All Procedures Considered

A1l of the brocedures investigated assume that fhe slab
is thin and that the displacements are small. It can be
argued that each of these assumptions is on the conservative
side. Plastic or elastic solutions can be obtained without
these assumptions, but such solutions are very difficult to
obtain. |

By assuming small displacements, equilibrium can be
formulated on fhe undeformed shape of the structure. The
practical effect of this is that one ignores the poésibility
of load being carried by catenary ob tensile membrane
action, since the deflections required to develop
significant membrane action are much larger than acceptable
deflections even under full load. It is thus both safe and
convenient to assume that the displacements are small.

Assuming that the slab is thin results in the neglect
of inplane forces. Even with very small def]ections, if the
slab is relatively thick, inplane compressive forces can
carry load by "dome action" and hslab jamming". For this
type of behavior to occur, the stab or building suerunding
the area under.consideration must provide adequate boundary
conditions for a compressive membréne with a rise equal to
the slab thickness. Assuming that the slab is fhin is the

same as setting the rise of the compressive membrane equal
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.fo zero. Slab jamming can greatly enhance the load carrying
capacity of a slab in some instances. Ockleston (13855) load
teéted a portion of a building to failure and found that at
three times the predicted upper-boundAfailure load the slab
had virtually no cracks and no deflection. At this point the
-slab snapped through and carried the load as a tensile
membrane. This type of behavior has not been reported for
flat pate structures, but it can occur under certain
conditionsJ The bossible gains in economy as a result of
considerﬁng the effeéts of inp]ahe compressive forces are
enticing. but at present, practical analytical procedures
are not adequate to consider this effect. Because of this,
along with the uncertainty in actually obtainfng the
required boundary conditions, it is thus both safe and
convenient to assume that the 51ab is thin;
A1l of the procedures require a "yie]d-criteria". That

15, given the yield moment capacity in two d1rect1ons,»what
is the effective yield moment in some 1ntermed1ate
.direction, and do the moments in one direction affect the
yield moment in some other direction. There has been a great
deal of discussion on these points in the literature, but
experimental and analytical_studies (Lenschow and Sozen
1967) indicate that:
1. There is no appreciable increase in moment capacity of a

reinforced concrete section as a result of biaxial

bending. Methods used to determine the.f]exural capacity

of beams can be used to evaluate the flexural strength
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of a slab element in the direction of the reinforcing

bars.

2. The yield moment along a line at some inclination to'the
neinforcﬁng bars can be taken as the vector components
of the yield moments crossing this line. |

3. In practical ranges of bar and SIab'proportiéns, there
is no appreciable effect on moment capacity of
reorientation or "Kinking" of the reinforcing bars at
the yield-Tlines.

These points form what is know as the "square yield
criteria”. It should be noted that each assumption or
observation is on the conservative side, so the square yield
criteria 1slsimple and safe to use. It will be used for the

remainder of this work unless noted otherwise.



3. PLASTIC UPPER-BOUND SOLUTIONS

3.1 Historical Background
The yield-1ine theory is a theory which leads io
upper -bound solutions for sliabs in flexure, and will receive
the bulk of the discussion in this chapter. It was the first
ultimate strength procedure for slabs. It was proposed by
Ingerslev (1923) and was highly developed by Johansen
(1943). This method is extensively used in Scandinavian
countries but is little used in North America. The
literature contains considerable discussion of the details
of yield-1line theory to which one may refer. (Johansen 1962,
1972, Hognestad 1953, Wood 1861, Mills 1970, Simmonds and
Ghali 1976).

‘3.2 Basic Assumption

| The whole yield-line theory is buiit—up by assuming
that the slab behaves as a rigid-plastic material in
flexure. Fig. 3.1 compares the assumed moment-rotation curVe
tc a typical slab moment-rotation curve. Once the slab has
reached its yield momént, there is very little difference
between the real and assumed behavior. Thus, slabs due to
their inherently low steel ratio generally have sufficient
ductility to permit the rotations required to develop
failure mechanisms. This may'not be true for slabs
reinforced with welded wife fabric since some types of

fabric do not possess significant ductility. For such slabs,

15
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one must ensure that very little plastic redistribution of

moments will be required.

The rigid-plastic assumption leads to the following:

t. Since no deformations take place prior to yielding, and
one would not expect yielding at service load, no
information is provided with respect to service load
behavior.

2. Curvatures only occur at points or lines of yielding,
while the remainder of the slab remains plane.

3. Since planes intersect along straight lines, this
implies a failure mechanism of plane segments of slab
bounded by straight yield-lines of constant rotation and
moment .

4. The siab is reduced from a continuum problem to a
discrete failure mechanism with a few degrees of
freedom. .

5. For each failure mechanism, it‘is then possible to
relate the-]oading and moment capacity from

considerations of either equilibrium or energy.

3.3 Overview of Solution Procedure

The formulation of the load-moment relationship may be
done with an energy approach or an equilibrium approach.
Both approaches produce the same results. The salient
features of each formulation are discussed later in this
thesis but first some terms and concepts

A yield-line "pattern" is a particular set of

yield-lines which define a Kinematically admissible
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mechanism.‘Each yield-Tine pattern has its own specific
yield-line locations, whi]e.a yield;line "family" is a set
of yield-line patterns which can be uniquely defined by the
same set of parameters. Each yield-1line family nepresents_al
different failure mechanism. Each of the patterns within a
family will look more or less the same but will have the
yield-lines in slightly different locations, hence, one must
determine the pattern which produces the lowest load
carrying capacity. All possible yield-line families should
be investigated. While it is possible to prove
mathematically that one has found the critical yield-line
pattern within a particular family, there is no way of
proving that one has found the most critical family. For
unusual cases of geometry or loading, finding the critical
yield-1line family may be very.difficult.

Fig. 3.2 shows several different yield-Tine families
for a regular flat plate. The critical yield-line pattern
within each family must be determined. In the parallel
mechanism for example, the critical location of the positive
yield-1line in the exterior spans must be determined. In the
~conical mechanism, the diameter of the failure mechanism
which produces failure at the lowest load must be
determined.

Since yield-1line patterns musf be Kinematically
admissible, it is possible to give some rules for
determining possible yield-1ine patterns (Johansen 1962).

1. The yield-line between two parts of a slab must pass
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through the point of intersection of their axes of
rotation. |

2. For a given segment, an axis of rotation lies either
along a line support, or passes over a column.

3. At a point where yield-1lines of différent signs meet,
there can be yield-lines in not more than three

directions.

3.4 Energy Formulation

In an energy formulation, one takes a yield-line
pattern and gives the mechanism a small virtual
displacement. The external virtual work done by the external
loads is equated to the internal vfrtual work which is
produced along the yield-lines by the yield moments acting
through the virtual rotations. From this, one obtains a
relationship between the external 1Qad and the moment
capacity of the slab for the particular yield-line pattern
in question.

For each yield-1ine family, the geométry of the
yield-lines is expressed by a set of parameters which must
be optimized to obtain the criticial yield-line pattern for
the particular family in question. In design,vthis would be
the values of the parameters which produce the largest
required yield moments in the slab. The optimum values can
be found exactly with calculus or can be found approximately
by tria];

With an energy formulation, the designrmoments required

for the slab are generally not very sensitive to variations



in the yield-1ine locations away from their critical
locations. This can be demonstrated with the example slab
shown in Fig. 3.3. The symmetry of the problem permits
specifying the position of the axes of rotation for the
different segments. Hence, the location of the yield-lines
can be expressed as a function of'the paramefer a only.
The relationship between moment and load as a function of

~a was obtained using an energy formulation. The required
moments for various values of a are plotted in Fig. 3.4.
The most. important point illustrated in this figure is that
the curve is quite flat around the optimum ¢ , thus a
relatively large change in « produces only a small
change in the moment capacity required. This change in «
corresponds to a change in yield-line location. Fig. 3.5
shows the range in yield-line locations which give moment
capacities within 10% of the theoretically correct moment
caﬁacity for this family of yield-lines. This illustrates
that, in general, the results obtained with an energy
formulation are not significantly affected by moderate
deviations of the yield-lines from their critical locations.
Of course a completely different yield-1line family such as a
fan at the column may govern and should be investigated
also.

Since any reasonable layout of yield-lines will produce

acceptably accurate results, one could spend less time
maximizing each yield-line family and spend more design time

ensuring that all the possible families have been
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investigated. It should be pointed out that the energy
formulation is somewhat sensitive to the location of
yield-lines in the vicinity of acute corners. Fig. 3.6

i1lustrates some areas which requires careful consideration.

3.5 Equi1ibrium Formulation

Equitibrium formulations have a number of features
Which are significantly different from the previously
 discussed energy formulations. On the basis of equilibrium
between the external load and the moments along the
yield-lines, one can develop the re]ationship between
external load and moment capacity for each planar segment of
the slab.

With an equilibfium formulation, if the yield-line
‘pattern being considered is not the critical one, the
results of the analysis provide an indication of which way
the yietd-lines should be moved in order to obtain the
critical yield-line pattern for the particular family in
question. In the destgn process, if the yield-line pattern
vis not correct, the yield-1line moment required to
equilibrate the loads applied to the slab segment on one
side of the yield-line will be different from the yield-line
moment required to equilibrate the loads applied to the slab
segment on the othér side of the yield-line. The yield-line
" should be moved towards the segment which.requined the
larger yte]d-lihe moment so that this segment is made

smal]er. The analysis could then be repeated for the new
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yield-1ine locations. Unfortunately, the yield-1line moments
'fequired by adjoining slab segments may differ significantly
even for very small deviations from the correct yield-line
.'locations. It has been suggested (Simmonds & Ghali 1976)
that the equilibrium formulation should be used for one or
two cycles of iteration to obtain a reasonably good estimate
for the correct yield-line locations, then an energy
formulation may be used to obtain the required design
moments.

The above discussion assumes that the applied loads are
given with the required moment capacity to be determined. A
similar argument can be made for the case of‘analysis when
the slab moment capacities are known and it is the collapse
load which must be determined. In this case, while the
moments will be equal on each side of a yield-1line, the load
required on each segment for'equilibrium with these moments
will be different. The yield-lines should be moved so that
the segments with the 1argest distributed load are made
larger, wh11e the segments with the smallest d1str1buted
load are made smaller.

There can be shears as well as twisting moments along a
yie1d-line. In an energy formulation, these shears and
" twisting moments produce zero net work and are ignored, but
in an equilibrium formulation, these shears and twisting
moments are required since they influence the equilibrium of
each segment. The shears and twisting moments can be

accounted for by the introduction of "nodal forces". which
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produce equilvalent equilibrium effects. A node is a point
where yield-lines intersect or terminate. Nodal forces are
applied to the slab segments very near nodes. The sum of the
nodal forces at a node always equals zero.:

Fig. 3.7 illustrates the case of a yield-line
intersecting a free edge at an angle other than a hight
angle. The value of the nodaT force V that produces the Samé
effect as the twisting moment M, is found by
considering the equilibrium of the.differential elements
shown. A similar expression for the nodal forces can be
obtained for the case of three yield-lines meeting.

Not all yield-lines have shearé and twisfing moments
since symmetry will often indicate that these quantites are
zero. For example, a yield-line which intersects a free edge
at right angles'has no nodal forces associated with it.
Also, at a node where the yield-1lines all have the same
sign, all of the nodal forces are zero.

The nodal force method will not handle a}l possible
cases. Fig. 3.8 shows two cases with incongruous nodal
forces. This results when the corner of the opening is
infinitely sharp, so that a different expression for
equilibrium is required when the yield-line is moved away
frém the corner in either direction. The equilibrium
equatfons have a discontinuity at the corner of the opening,
and since the nodal force expressions have been derived for

a continuous equilibrium equation, the nodal force
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expressions are no longer valid. A solution to this problem

has not been found.

3.6 Probable Yield-1line Families

The approach one uses to evaluate the capacity of &
slab for each yield-1line family is not nearly as important
as_ensuring that each possible yield-1ine family has been
investigated. Evaluating a yield-line family approximately
may produce moments which are 10% too low but neglecting to
 investigate the critical yield-line family can result in
much greater errors. For some common cases it is possible to
establish which yield-1ine family will govern the design.
This will now be done for a flat plate on a regular co lumn
layout. |

The yield-line families shown in Fig. 3.2 are typical
of those which one would investigate for a regular filat
plate. There are of course, other yield-line families whiéh
.one should investigate, such as the parallel mechanisms
acting perpendicular to those shown.
. It is apparent that to investigate each family would
require a great deal of work, but it can be shown that most
of these patterns will not be critical. For square panels,
" the diagonal mechanism shown in Fig. 3.2b results ih the
same design moments as the parallel mechanism of Fig. 3.2a.
So, the diagonal mechanism need not be investigated.
Johansen has shown that the combined mechanism and fhe

alternate combined mechanism of Figs. 3.2d and e are always
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less critical mechanisms than the parallel mechanism or
conical mechanism shown in Fig. 3.2a and c. Thus, for
interior panels of a regular flat plate, only the parallel

and conical mechanisms need be investigated.

3.7 Conical Mechanisms

An understanding of conical mechanisms is essential in
slab design. These mechanisms méy'form under point loads as
well as over top of columns, and as indicated in Section
3.6, for flat plates, a conical mechanism may be the
governing mechanism. The discussion will centre on the case
of a typical 1nferior co lumn.

There appears to be a lack of agreement in the
literature on the size of the conical mechanism which
develops and the corresponding design moments. The work 'in
the field can be divided into two distinct groups. The first
uses an energy formulation and includes Wood, CEB, Gesund,
Van den Beukle. The second group uses an equilibrium
formulation and includes only Johansen. The two approaches
differ on two points. The first relates to the assumption
used regarding yield-lines in the vicinity of the column.
The second point relates to the cut-off points of the
reinforcement as they are affected by the conical
mechanisms. The two approaches will be presented more or
less in parallel in order to compare the differences in

assumptions and results.
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Consider a slab with isotrdpic top and bottom steel of
flexural capacity per unit width of m’ and m réspective]y.
It carries a uniformly distributed load w and is supported
on circular columns of radius r spaced at a distance L
'centre-to-centre_in each direction. If the reinforcement is
continuous, the conical mechanism which will form is the
‘“primaby"'conical mechanism. It will have a radius R, which
is the pérametef which must be optimized for the primary
conical family of mechanisms.

The virtual work formulations (CEB) are based on the
yield-1line mechanism shown in Fig. 3.8a. The key assumption
made is that a negative yield-line forms around the column,
thus no work is done over top of the column. This assumption
is probably true if there is a column above the slab, and
would be a suitable assumption for the lower stories of a
multi-story structure. The critical size of the conical

mechanism is:

3/ 312

1 (3.1)
omre 2

R=r

and the required design moments are:

(3.2)

r
(1—w) 2 2
- = 2 ) R4 7R _ mR _ _7r
mAm = wh om [ T TR T

The equilibrium formulation (Johansen) is based on the
yield-1ine mechanism shown in Fig. 3.9b. The major

assumption is that the radial yield-lines go right to the
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centre of the column. This is generally true if there is no
co}umn above the slab and r/L is small, thus this would be a
good assumption for top floors, roofs and single story
slabs. Most flat slab tests have been conducted oh such
slabs and do in fact have numerous cracks directly over the
‘column indicating yielding in this zone. The 3/4 scale slab
tested by Guralnick and La Fraugh (1963), for example,
clearly demonstrates this behavior. The results with this

analysis indicate that:

L2 (3.3)

and

3
e
1- /5 »
_ N LT (3.4)

m+m = wL?
2T

A comparison of Equations 3.1 and 3.2 vs. 3.3 and 3.4
for typical values of r/L indicates that Johansen’ s primary
concial mechanism has a radius about 12% smaller than the
CEB primary conical mechanism. On the other hand, Johansen’s
design moments (m + m' ) are about 12% targer than the CEB
design moments. There is clearly enough difference in the
results to cause one to seriously consider which design
eqUations are most,apbropriate’for any particular slab.

There is however, a more important practical difference
between the CEB recommendations which are simplificiations

of Equations 3.1 and 3.2 and Johansen's work. CEB implies
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that as far as fhe conical mechanisms are concerned, some or
all of the top steel may be.cut—off_at the edge of the
primaﬁy conical mechanism since oufside this zone it is not
required to resist any moments. However, R is not a cut-off
~point. It is simply the size of the primary conical
mechanism that would develop if the top mat was ¢ontinuous;
If the top.bars are curtailed at a radius R, it is possib]e
to form a "secondary" conical mechanism at a lower collapse
load than required to form the primary conical mechanism.
Such a secondary mechanism is fl]ustrated in Fig. 3.9c.

Since heither CEB nor any other author using an energy
approach has considered the possibility of a secondary
conical mechanism, the following equations ‘based on an
energy formulation have been derived in order to provide a
total set of design equations for»the case of slabs with
columns above.

An energy formulation for the yield-]iné mechanism
shown in Fig. 3.9c with all of the top steel terminated at R
such that m'=0 for all the negative yieid-]ines indicates

that the size of the secondary conical mechanism is:
3
3L2 1
— R -1 3.5

with the required bottom mat capacity of:

R
(1‘?)[1_77;02 7pR nRZ]A

(3.8)

‘m = wL? - -
2m 3L° 3L° 3L2

e et
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- Thus, given R, one can calculate p and m. The value of R
is arbitrary but, should be greater than or equal to the
value given in equation 3.1 in order to prevent a primary
conical mechanism. For typical values 6f r/L, R will be such
that » reaches midspan making the analysis somewhat
invalid (but on the conservative side) since the shape of
the mechanism is no longer completely circular. |

ddhansen dea1$ with the‘secondary conical mechanism in
a somewhat different manner . He makes the top bars‘1ong
enough to ensure that the secondary conical mechanism will
form around the primary cohica] mechanism at a load equal to
that of the primary conical mechanish collapse load. A
cross?section of the type of reinforcement considered is
shown in Fig. 3.10a. In this case, the yield-1ine mechanism
is'that shown in Fig. 3.9d. The important difference between
" this case and the previous one is that the top bars are
cut-off at point a so that some of the negative yield~lineé
will have a moment capacity of m'. The resu]té indicate that

the size of the secondary conical mechanism will be:

2
-2 (% -m) @7
and the required cut-off point will be:

(p° ",ﬂ (3.8)
- m

a:ﬂ
3

Thus, given r/L, one can calculate R by Equation 3.3. and (m
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+ m' ) by Equation 3.4 and, having chosen the ratio between m
and m’ , one can determine the réquired cut-off point a. For
usual values of r/L and m/m’, p usually reaches to

approximately midspan and:

L ,
asr+-— .9
a<rt o (3.9)

It is interesting to note that a is quite a bit longer than
the ACI cut-off points.

The discussion thus far has related to circular top
matsAof orthogonal bars, however, current practice is to use
‘square top mats. This Wi]l result in the yield-line
mechanism shown in Fig. 3.9e. As previously pointed out,

p usually reaches midspan or even slightly past so a
value of L/2 for p was used. Given that all the top bars
are cut-off in a square mat of side length 2R, and the
mechaniém forming outside the top mat, an energy formulation

gives:

1_R m TR (B
(E_t)[n—rz)—u*§)t+<4“3"‘1‘)] (3.10)

- wl 2
mo s®) 4 m—or (B
This is somewhat smaller than the moment capacity required
" by Equation 3.6 in the éase of circular bar cut-off. The
differencé may be due to the fact that the mechanism assumed
is'notbthe optimum one, that is, it is possible for the
yield-line to run across the corners of the top mat. This

family was not investigated since even numerical solutions
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would be difficult to obtain. In addition, most top mats
have two cut-off points and if all of the longer bars are

- placed in the middie of the mét with the shorter bars on
each side of these, the corners of the mat will be "rounded"
and the mat will be effectively circular and not squaré. It
is important to note that it is the extent of the lateral
distribution of the top bars, and not Iengfh of the top bars
which is important. This is because the negative yield-lines
which the top bars must resist at the edges of the mat are
radial yield-lines. On this account, ACI detailing
requirements fare somewhat better since they require top
bars across the entire slab width due to the requirement for
middle strip negative reinforcement.

Since the negative yield-lines are predominantly radial
yield-1lines in the case of Fig. 3.9a, and totally radial
yield-lines in the case of Fig. 3.9b, one could provide
circular top bars, which would cross the yield-lines at
right angles. These reinforcement rings only require half as
much steel as an orthogonal mat, since the orthogonal mat
must resist m' in two directions while the rings only need
to resist m’ in one direction. If the rings were welded,
there would also be a large séving in anchorage lengths. The
cost of welding could be avoidéd if the top mat consisted of
a flat spiral. Such "watch spring"” top mats couild be quickly
rolled by machine and attached to a piece of welded wire
fabric to facilitate handling. It should be pointed out that

radial reinforcing bars are not required since, with



41

dohah;en’s formu]atfon, there are no negative circular
yield-iines'which would mobilize radial bars. On the other
hénd, with the CEB formUlation, suph a negative circular
yield-1ine occurs around the column, but the amount of work
done by this yield-line is insignificant when compared to
‘the totél work done by the other portions of the concial
mechanisms, and thus, the omission of the radial bars will
" have negligible effect on the capacity of the conical
‘mechanism. Since top mats comprise about 50% of the total
reinforcement in a slab, watch spring reinfofcement which
réduceS«the weight of top mats by half can potentially
reduce the overall steel weight in a slab by about 25%. The
économic advantages of watch spring top mats will no doubt
spurn studies on fhe behavior of slabs with such top mats.
To this point, the discussion has dealt with top mats
of uniform capacity curtailed at one point only. The case of
two different moment capacities will now be considered. This
case can result if drop panels or two different cut-off
points are used as shown in Fig. 3.10b and c. Generally, the
moment capacity will be maintained or reduced as one moves
>z m and

away from the column, that is mg = my

mg>=m, >m . From Fig. 3.10b, b is the point of the

first change in moment capacity and a is the point of the'
second change in moment capacity such that: between the

colUmn centre-line and b, the slab has capacities my

and  my . between b and a the slab has capacities my

and m, B and past or outside a, the slab has capacities
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m' and m. An equilibrium analysis gives:

3
1_ ’ 7r?
L2
—_—_— _ (3.11)

2
[— .
mg + myg wbL

21
b= ¥ M _ ' (3.12)
3 (mg—my)
where: |
R, = \/% <!"QL?2 —ma—m'a> (5.1.3) |
and
Rg = r 3__77Lr2_2 | | | (3.14)
Also:
" (R3 —R}) (3.15)
3 (mg—m')

‘ _ 2 (wL?
Rz—\[w(ﬁ—m—m’> (3.16)

These equations are for a more general case than
previously considered and can be simplified to obtain
Eduations'3.3 and 3.4 for that special case. An expanded

deriviation of Equations 3.3, 3.4 and 3.11 through 3.16 can
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be found in Appendix A.

| The equations are such that the maximum moments my

and ~ mg are determined based on the primary conical
'mechanisﬁ. A minimum slab thickness can be picked or checked
on the basis of these momenfs. Then with chosen or trial
values of m; | and m, , the first cut-off point is
detérmined to prevent a secondary conical mechanism at a
collapse load less than the primary mechanish.
A]tefnative]y, this cut-off point may be used to determined
the size of the drop pane] in the case shown in Fig. 3.10b
since in this case there will be a change in moment capacity
of the top steel at this point even though the steel remains
the same. For known or trial values of m' and m, the next
cut-off point can be determined in order to prevent a
“tertiary" conical mechanism from forming around the first
two conical mechanisms at a collapse load less fhan the two
previous conical mechanisms. The moment capacities m’ and m
must extend throughout the remainder of:the slab unless a
check of additional conical mechanisms is made. The
equationé however, can be easily iterated to accounf for
more cut-off points and more conical mechanisms.

Both approaches discussed cén be extended to
non-circu]ar columns and non-square bays. Square and
slightly rectangular columns can be treated as round columns
of equal area. Highly rectangular columns must be

investigated by rigorous analysis. Rectangular or other

shape bays may be treated with the conical mechanism
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equations if one uses a square bay of equal area in order to
determine an equivalent L.

The point of this discussion on conical mechanisms is
that CEB and Johansen do not really solve the same problem.
CEB considers the case of slabs with columns above slab
while Johansen considers a slabs where there are no columns
above. The CEB equations fall far short of a complete
so]utioh. They are based upon the assumption that the top
‘mat is continuous. Since this is rarely the case, one must
either resort to Johansen’s equation or further develop the
CEB équations, It should be pointed out that every slab
during construction has no upper column until the next floor
is added. Also every building has a top floor such that
there are no upper columns. It is then reasonable to check
all slabé at this stage of construction with Johansen’s
equations. Since the addition of the upper columns will tend
to increase the strength of the slab, it would presumably be
safe to use only Johansen’'s equations. Thus, the need to
develop more general expressions for the CEB equations may
not exist. Since Johansen’'s equations will be applicable to
all slabs at some point in their life, and since the
equations are very broad in their scope of application, they
will be used through the remainder of the discussion on

yield-1line theory.
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3.8 Conical vs. Parallel Mechanisms

- It was pointed out in Section 3.6 that in flat plates
both the conical and parallel mechanisms must be checked.
Different cases will be examined in order to determine which
mechanism will govern the design.

Consider the case of top mats consisting of isotropic
reinforcement. The reinforcement may be curtailed to form
either a square or circular top mat. The top mat should
however be large enough to contain the primary conicé]
mechanism. The bottom mat is assumed to be uniform and
continuous. Thus, m’ and m will be available to resist
negative and positive panel moments in the paraliel
mechanism. The critical-location for the negative parallel
yield-1line will be at the face of the column. Analysis
indicates that for all cases with r/L = 0.03, the conical
mechanism will require a larger moment capacity (m + m')
than the parallel mechanism. This conclusion is not very
sensitive to the choice of the ratio of the negative panel
moment to the positive panel moment, ¢ . Fig. 3.11 gives
K, an index of the required moment capacities as a function
of r/L, for various v values for both the parallel and
conical mechanisms. Using this figure, one proceeds
verticaliy from the known r/L value up to the appropriate
curve and then horizontally in order to obtain K. The

required moments can then be computed from:
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Figure 3.11 Comparison of Conical and
Parallel Mechanisms with
Orthogonally Reinforced Top Mats
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A summary of some typical ratios of moments required by the
parallel mechanism and conical mechanisms is given in
Table 3.1.

The other case to be considered is that of ring
reinforced or watch spring top mats. In this case only the
appropriate component of fhe ring reinforcement which
_crosseé the negative parallel yield-line is considered in
resisting the negative panel moments. The critical location
of the negative paraliel yield-line is not obvious since, as
one moves from the face of the column towards midspan, the
negative yield-1line capacity decreases. This occurs because
the segment of the ring which is intersected becomes smaller
and the reinforcement is intersected at a flattér angle.
Thus the prdblem fs that as one moves from the colmn toward
midspan, the actual moment capacity reduces along with the
required moment capacity, so that the critical location of
the negative yield-line may not be at the face of the
column. However, analysis indicates that the critical
location of the negative parallel yield-line is still at the
face of the columns. The following conclusions depend
somewhat upon ¢ , but for the most common values of

v . the parallel mechanism will govern the design of the
réinforcement. This 1is il]ustrated in Fig. 3.12 which
corresponds to Fig. 3.11 and gives values for K. The curves
,for ¥ = 1,2,3 and 4 are considerably more spread out on
Fig. 3.12 than on Fig. 3.11 where they are so close that

they are represehted by a single curve. The value of



Table 3.1 Comparison of Conical and Parallel

Mechanisms With Orthogonally Reinforced Top Mats

r (mtm') Parallel
L (mtm') Conical
0.05 0.95
0.10 0.85
0.15 0.74

Table 3.2 Comparison of Conical and Parallel

Mechanisms With Ring or Watch Spring Top Mats

(mtm') Parallel

r v

L {mtm') Conical
0 1 to4d 1.06
0.05 1.80 1.09
0.10 1.87 1.11
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Figure 3.12 Comparison of Conical and
Parallel Mechanisms with Ring
-or Watch Spring Top Mats
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(m*m%m§M\/“MmW0mkd decreases as r/L increases and as m’'/m
and V¥ decrease. Table 3.2 indicates that reinforcemeht
in addition to that required for the conical mechanism is
required to resist the parallel mechanisms. Fortunately, the
amount of extra reinforcement required is small. It may be
added to the bottom mét or better still, it may be added to
the top mat in the form of welded wire fabric which as
previously stated, will aid in handling of the mat.

In order to get an appreciation for the magnitude of
the differences in solutions obtained by the various
methods, consider the following problem which was obtained
from Simmonds and Ghali (1976). A flat plate which carries a
total uniformly distributed load of 395 psf is supported on
24" square columns spaced at 20’ on centre each way! The
results of designs based on the Direct Design Method, the
CEB equations and Johansen’'s equations are summarized in
Table 3.3.

It is apparent from Table 3.3 that the least
conservative approach is the Direct Design Method which
apparently does not adequately account for conica]‘
mechanisms in that the top mats are too narrow and there ﬁs
insufficient moment capacity in the neighbourhood of the
column. (This would be even more so when one calculates the
(m" + m) required for the actual size of the top mat used).
This comparison suggests that either the assumptions used in
the development of the conical mechanism equations are not

valid or most slabs designed by the Direct Design Method are



Table 3.3 Comparison of Results for Various

Design Methods for the Example Problem

Johansen

CEB Direct Design
Size of 15.4" 12.1° 10.0"
square top '
mat
Average m' 13.33 'k/' 11.90 'k/* |10.78 ‘k/'
Average m 6.40 'k/f 5.95 'k/' 5.68 'k/'
Average 19.73 'k/! 17.85 'k/' |16.46 'k/'

(m+m")
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underdesigned and should be exhibiting evidence of conical
failures. It is believed that the answer lies in the fact
that the slab does not behave as a thin plate as far és the
primary conical mechanism is concerned. The slab thickness
relative to the size of the conical.mechanism is much
greater than the slab thickness relative to the.total span.
fhis enables the slab to jam against itself as illustrated
in Fig. 3.13. This phenomenon no doubt accounts for the fact
that conical yield-line failures of flat plates have never
been reported in the literature. This is very similar to
Ockleston’s (1955) observations for slabs supported on
beams. He built scale models of slab panels from plexiglass
which were cut along the "yield-lines" so that the
yield-1line moment capacities were zero. The models carried
considerable load in spite of the fact that a yield-line
analysis, an upper-bound solution, indicated that the model
would carry no load at all!

In light of the satisfactory performance of slabs
designed by the Direct Design Method, it would appear that
the conical yield-1ine mechanisms need not be considered.
However, there may be cases such as exterior and corner
columns where slab jamming may not be relied upon. In the
case of interior columns, if the beneficial effects of slab
jamming were not present, the collapse load would be about
10% less than predicted by Direct Design. Whether the
difference in collapse load would be as small for exterior

and corner panels is not known since no readily applicable
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conical mechanisms have been developed for such cases.

Further research in this area is required.

3.9 Segment Equilibrium

3.9.1 Historical Background

The segment equilibrium method of slab design leads to
upper -bound solutions for slabs in flexure and is ohe of the
newest ultimate strength procedures for slabs. It was
broposed and developed almost entirely by Wiesinger (1973,
1975). This method was used for the design of millions of
square feet of flat plates, most of which were 5 or 5.5
inches thick, and is well suited to flat plates with
irregular as well as regular column layouts. As the name
implies, the method is based on the equilibrium of slab

segments.

3.9.2 Basic Assumptions

The segment equilibrium method assumes that the slab
behaves as a rigid-plastic in'flexure. See Fig. 3.1. This is
the same assumption upon which yiefd-line theory is based,
thus, with this method the slab is also divided into a
series of plane segments which are bounded by straightv1ines
of constant rotation énd moment . However, Wiesingsr referred
to these lines as "zero shear lines" and not yield-]ines.

Even though an equilibrium formulation is uséd,vnodal
forces are not used, that is, the effect of twisting moments

is ignored. This makes the segment equilibrium method
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philosophically the same as the method used by Ingersiev
»(1923). It can be argued with the lower-bound theorem that
it is safe to ignore the twisting moments since the moment
field does not necessarily have to have twisting moments to
meet the first requirement of the lower-bound theorem. The
segment equiiibrium method however, does not satisfy the
second requirement of a lower-bound solution in that the

: moment field is not known everywhere throughout the slab.
While it is possible that at some point within a segment the
yield moment can be exceeded, it is assumed that the
critical locations for moment are along the boundaries of

the segments.

3.9.3 Overview of Solution Procedure

| Wiesinger observed that yielding occurs at points of
maximum moment and that in slabs as in beams, the points of
maximum moment ére also points of zero shear. By using some
éimple rules based on symmetry arguments, it is relatively
easy to determine the location of the lines of zero shear in
a slab.

The designh begins with the establishment of the lines
of zero shear. For a flat plate, the zero shear lines divide
the entire plate into right triangular segments each bounded
by lines of zero shear and sUpported at one of the acute
cbrners. For each segment, one can determine the total
moments required to maintain equilibrium in each of the

directions parallel to the orthogonal sides of the segment.
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As shown in Fig. 3.14, the moments in the direction of

the span are referred to as column strip moments M and
M! , while the moments perpendicular to the span are
referred to as middle strip moments M, and M, . In

Fig. 3.14b, the moments are shown as vectors with half arrow
heads. The reinforcing steel would lie paraliel to these
vectors with bottom steel for vectors which point towards
the segment (positive moments) and top steel for vectors
which point away from the segment (negative moments). For
}he moments in each direction, the designer may choose
whatever distribution of positive and negative moments he
desires as long as equilibrium of the segment is maintained.
In addition, the moments chosen for adjofning segments
should be the same on either side of a zero shear line in
order to maintain equilibrium between segments. 1f you
design for the larger moment you are safe since yoU will
design for more than 100% of staticsf If the mismatch .in
moments is too great, it indicates that the choice of zero
shear lines is not very good.

The key to economy and safety with this method is in
the distributjon of moments. It is_usua]]y convenient to
select the positive moments first, so that they correspond
to'minﬁmum reinforcement, especially if the spans and
loading are small.

Then, the negative moments required for the gquilibrium
of each segment are determinéd. For irregular or non-uni form

column layouts, the negative moments between adjacent
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segments may not be equal, but since negative moments occur _
at supports, the unbalanced negative moment can be "dumped"
into the support. The support must of course be designed for
this moment.

Herein lies the principle difference between yield-line
theory and segment equflibrium. In yield-line theoryvone
chooseé fhe support moments or the ratio of negative to
posftive slab moment capacities, then, after a suitable
number of differentiations or trials, one determines the
critical location of the yield-lines. On the other hand,
with the segmént equilibrium method, the location of the
zero shear lihes is set, suitable distributions of moments
are chosen and the corresponding support moments are
obtained from simple equilibrium. Even for the general case
- of irregular column layout there are simple procedures to
pick lines of zero shear whi]é it would be quite difficult
to start with reinforcement ratios and yield-line theory. It
should be apparent that the segment equilibrium method is
better suited to design than the traditional yield-line
approach. However, since the segment equilibrium method is a
special case of yield-line theory, it must be concluded that
the segment equilibrium method is yield-line theory applied

to design.

3.9.4 Location of Zero Shear Lines
Any reasonable set of zero shear lines can be used to

produce a satisfactory design. It is possible however, to
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produce some simple rules to help determine reasonable
locatiohs for lines of zero shear for the general case of a
flat plate with an irregular column layout.

- First, lines which join column centres are "lines of
symmetry" and are therefore lines of zero shear. The entire
slab can then be divided into triangular segments with
column§ at each corner as shown in Fig. 3.15a. The triangles
should be such that the "circumcentre", that is, the centre
. of the circle which passes through each of the corners of
the triangle falls within that triangle. This is illustrated
in Fig. 3.15a.

The perpendicular bisectors of each of the previon
lines are also "lines of symmetry" and therefore are also
lines of zero shear. The perpendicular bisectors intersect
at the "circumcentre" or panel centre as shown in
Fig. 3.15b.

The lines joining the panel centres to the columns are
also "lines of symmetry" and thus are lines of zero shear.
The result is that the slab has been divided into right
triangular segments bounded by lines of zero shear and
.supported by a column at one of the acute corners as shown
in Fig. 3.15c.

The previous rules will not work when four adjacent
columns define a quadralateral segment with two adjacent
obtuse angles. Fig. 3.16a and b illustrate the problem with
such a case while Fig. 3.16c¢c illustrates a solution to the

problem.
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Figure 3.16 Special Case of Zero Shear Lines
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For exterior spans, the perpendicu]ar.bisector may not
be a line of zerb shear. The line of zero shear may lie
between 1/2 (for very stiff exterior columns), and 3/8 (for
vefy flexible exterior columns) of the span. from the
exterior column, as shown in Fig. 3.17. Some judgement must
be used in locating this zero shear line since the exterior
column moment is somewhat sensitive‘to the choice of its
location.

A further refinement can be made by considering the
area of the columns, thus basing the calculations on the
clear span rather than the centre-to-centre span. This can
be done by converting the column into a column of
"equivalent” area but with a shape geometrically similar to
the pahel around it bounded by the perpendicular bisectors!
One can then consider the column strips of width equal to
the "equivalent” column face as one way strips, while the
remainder of the sliab is still composed of right triangular
segments which are slightly smaller than before.

A refined set of zero shear lines for a typicél flat
plate with a regular column layout is shown in Fig. 3.18.
Note the comparison with Fig. 3.2d which is based on
yield-1line theory. The columns may be circular or even
slightly rectangular, as long as they would have éreas‘equal
to those shown. In the lower right hand.corner of Fig. 3.18
is another possible set of zero shear lines. These would
correspond to a mechanism not considered-by the rules for

locating zero shear lines. This mechanism as well as
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possible conical meéhanisms should be checked after the

“initial design is done to ensure that they will not govern.

3.9.5 Distribution of Moments and Reinforcing

Once the lines of zero shear have been set and the
momenfs'required for equilibrium of each segment have been
calculated, one must,choose a suitable distribution of
positive and negativevmoments. This choice is quite
arbitrary, but one should try and approximate the elastic
moment field in order to minimize the amount of
-redistribufion required.
Ohe can get exactly the same moments as obtained with

the Direct Design Method if:

M; = 0.70 M,
M} = 0.30 M,
M;, = 0.54 M,

M} = 0.46 M,

-Thesevcorrespond to ratios of ME/Mg/M;/hM;

percentages of 49/21/16/14. By way of comparison, Weisinger
used ratios ranging from 60/20/0/20 to 35/50/0/15. The
behavior of these plates under construction loads and
service load is. without exception, entirely satisfactory
(Wiesinger 1973). A controlled test of a portion of a real
sfructure also indicated satisfabtory behavior. (Cardenas

and Kaar 1971). There are no precise rules for distributing
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moments in a slab and as Wiesinger has pointed out, "It is a
matter of individual engineering judgement, responsibility
and background, to decide at present how far to go with the
redistribution of moments" .

One must also choose the width over which the positive
and negative reinforcement are distributed. Again, one
should try and approximate the elastic moment field.
Wiééinger found it economical and practical to use a uniform
isotropic bottom mat with occasional additional bottom bars
as required in the column strips. Wiesinger used top
reinforcement in the form of orthogonal mats over the
columns and to simplify placing, there was no top steel in
the middle strips. The width and length of the top mats
extended to 1/3 of the span on either side of the column,
which in accordance with Equation 3.9 ensures that the
conical mechanisms will not govern. Fig. 3.19 compares the
elastic moment field to the design moment fields for the
. Direct Design Method as well as Wiesinger’s approach.
Clearly, the Direét Design Method models the elastic moment
field more closely than Wiesinger’'s approach, but experience
indicates that his approach is good enough for the type of
slabs which he designed. This indicates that the designer
may have considerable latitude in the choice of moment
fields so that he may at the expense of “exactness”, choose
to simplify the reinforcement layout in order to gain

economy .
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3.9.6 Details of Wiesinger’'s Designs

Several aspects of Wiesinger’s_desiéns are unique and
innovative, which in themselves have nothing to do with
segment equilibrium, but which collectively lead to the
successful applicdtion of the segment equilibrium method.
These points will be discussed in orderrto better understand
the advantages and perhaps the 1imitations of this method.

A11 of Wiesinger’'s slabs had a live load less than the
dead load. This is significant because this reduces the
influence of pattern loading. Since nothing in the segment
equilibrium method accounts for patfern loading, it is
important that the effects of pattern loading be small. One
could of course investigate each case of pattern loading as
a separate load case, but this would require a great deal of
work and make the segment equf]ibrium totally impractical as
a hand (noncomputer).solutibn.

The detailing of the top mats is particularly
important. First, the top mats extend somewhat farther than
the ACI reguirements. This permits the points of inflection
to move farther from the column under pattern loading so
that this enhances the capacity of the design to resist
pattern loading. The extent of the top bars is approximately
in accordance with the cut-off point required by the conical
mechanisms. The choice of moment field also increases the
resistance to the conical mechanisms by providing a larger
negative moment capacity over the whole top mat. Compare

Figs. 3.18b and c. Since the Direct Design Method



69

requirements are only slightly unéonservative with respect
to the conical mechanisns, one would expect Wiesinger's top
mats to be satisfactory with respect to these mechanisms.

. Frequently Wiesinger’'s columns were 3.5 inch diameter
steel pipe columns. Single columns were used for four or
five story structures while double columns were used in
structures up to eight storys. The small diameter enabled
‘them to be hidden in standard partition walls. This in turn
bermitted the structural designer to keep the spans small
(but perhaps irregular) without interferring with the
functional requirements of the building. Since the columns
were relatively flexible in comparision to the slab, the
column moments permitted were very small so moments were
redistributed in order to keep the unbalanced negative
moments at each column very.small. Since the columns were
steel, they were fabricated in sing]e story sections with
shear heads and an aligning device for the columns inithe.
next story. The shear heads provided an efficient, ductile,
"and economical means of dealing with the shear and moment
transfer problem which occurs at the slab column-junction.
And finally, because of their flexibility, the columns were
not used to resist lateral loads.

Wiesinger claims to have effected great economy with
the use of welded wfre fabric. The bottom matsAconsisted of
welded wire fabric corresponding to minimum reinforcement
throughout wifh the addition of extra bottom bars as

required in particular column Strips. The same size welded
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wire fabric was also used.to form the base of the top mats,
to which the requisite number of additional bars were tied.
This slightly modifies Fig. 3.19c so that it is more like
the elastic moment field. The problems associated with the
lack of ductility of welded wire fabric were reduced by
using rather large diameter wires of about 0.263 inch
diameter which are generally more ductile than smaller
diameter wires. It should be pointed out that the slabs were
generally built in nonseismic zones so that ductilities
larger than those required for a moderate amount of
redistribution were not required.

In applying the segment equilibrium method to irregular
slabs, Wiesinger would resolve the negative column strip
momenfs into two global directions. This makes the
calculation of the column moments in each of these |
directions duite simple. It also made it easy to balance the
moments in each of the directions ;o that an isotropic top
mat could be used. If the top mat is isotropjc, it can then

be rotated in any direction, making placement of the steel

somewhat easier.
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4. PLASTIC LOWER-BOUND SOLUTIONS

- 4.1 Historical Background

Praétical lower-bound solutions for reinforced concrete
slabs originated with the development of the strip method of
design. The method was developed almost entirely by
Hillerborg (1956, 1959, 1960, 1975) in order to provide a
design method which always produces designs on the safe
side, (to the left in Fig. 2.1). Hillerborg's techniques are
still the only practical lower-bound solutions for
reinforced concrete slab design. His methods are extensively
..used in the Scandinavian countries, but are little used in
North America. The literature contains a considerable
" discussion of the details and application of the simple
strip method to which one may refer. (Crawford 1962, 1964,
Armer 1968, Kemp 1970, 1971). Rozvany and others have made
considerable use of this method in the study of optimum
reinforcement layouts (Rozvany, 13868, 1871, 1972 etc.).
However, Hillerborg remains essentially alone in the
-development of the central theme of the strip method, and
his book "Strip Method of Design"” (Hillerborg 1975)
represehts the state-of-the-art. In this work, Hillerborg
presents not only the simple strip method but also the
advanced strip method and what amounts to aasegmeht method.
The last two methods have reéeived very little discussion in
the ]iterature.inspite of the fact that they have béen in

existence for over twenty years, and represent a vastly
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superior method of solution to many types of slab problems.

4.2 Simple Strip Method

In addition to the assumptions given in section 2.3
which are common to all of the procedures considered, the
strip method assumes that the slab behaves as an
eiastic-perfectly plastic material in flexure. In the simple
strip method, the twisting moments are also neglected.

The result of.the latter assumption is that the basic

differential equation for the slab becomes:

x y _ (4.1)

?m, _ (4.2 a)
ax2 - qX
2 '

o= m, _ (4.2 b)
oy2 Gy

a, + qy =q (4.2 ¢

Equations 4.2a and 4.2b are the governing equations for
one way beams in the x and y directions respectively. Each
strip may be supported by reactions at the strip ends or by
other strips which are crossed. The design of the slab is

thus reduced to designing one way beams or strips. The load
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not carried byAthe stfip spanning in the x directing must be
carried by the strip spanning in the y direction. Hence, one
" safe load path is designed. The design may not be
economical, but it will be safe.

The elastic-perfectly plastic assumption simplifies the
solution of strips which are continuous or statically

indeterminate. The plastic portion of this assumption also

- eliminates the need to ensure that the deflections of the x

and y strips at a point are equal. Thus, the x and y strips
néed not carry load precisely in proportion to their
relative stiffness, éo the distribution of g into q,

and qy is a rglatively simple matter.

The following discussion presents a basic overview of
the solution procedure. The actual details of the method
wi1l‘be considered in the discussion of some design
examples. The basic procedure is to provide a safe load path
so that all of the load is carried all of the way into the
supports.

Firstly, the slab is divided into "beams" or strips in
each direction. The pértion of load assigned to each strip
( aq and g, ) must be set by the designer
separately. Strips in one'dfrection may be supported by
Astrips acting in the other direction in the same manner as
'joists are supported by beams in typical simple span
siructura] systems. The order in which the strips must be
'designed will be readily apparent. If the strip is

statically determinate, the design is straight forward,
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however, if the strip is statically indeterminate, oné may
make use of plasticity aé well as equilibrium to produce a
design similar to that of a continuous beam by the mechanism
method. It is also adequate and perhaps even preferable to
use an approximate elastic mohent field as long as
equilibrium is maintained. The better the design moment
field approximates the elastic moment field, the better will
be thé serviceability of the slab since less cracking and
less redistribution of moment will result.

In general, it is assumed that the moments are
uniformly distributed across the width of each strip. In
some cases, such as noh-para11el supports or supports which
do not extend across the full width of the strip, there is a
slight violation of the lower-bound theorem. However, it
does result in uniformly spaced reinforcement across the.
width of each strip. The effects of this violation can be
reduced by using more but narrower strips along with a more
refined split of the load in the x and y directions as
suggested by Kemp (1979).

Thqs far thebdiscussion has pertained to uniformly
distributed loads and the simple'strip method. Point loads
and point supports may be accommodated in the simple strip
method by the use of "strong bands;. (Wood and Armer 1968,
Kemp 1871). Hillerborg, however uses a different apprdach |

which he refers to as the advanced strip method.
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4.3 The Advanced Strip Method

The advanced strip method is based on a load dispersion
element which is used to convert a point load to a uniform
patch load. This load dispersion element is rarely treated
in print and is often misunderstood or misinterpreted by
many authors. A compiete derivation and discussion of the
load dispersion element are in order.

Loads which are not uniformly distributed across the
width of a strip produce a non-uniform distribution of
moments across the width of the strip. The worst case occurs
when the load is distributed over a very small area, that
is, a "point” load. Left uninvestigated, this type of
loading can produce a gross violation of the lower-bound
theorem, but Hillerborg provides a lower -bound solution to
this problem with the load dispersion element. The load
~dispersion element is equally applicable to point loads as
well as point supports, however, the values of the support
reaction must be known before the load dispersion element
can be used. The discussion will be in terms of a point
support but is equally applicable to point loads.

Conceptually, the load dispersion element can be
thought of as an inverted footing which is between the slab
and the column. The load dispersion element acts like a
footing since it takes the column reaction and spreads it
uniformly over the area of the load dispersion element. A
moment field is generated in the imaginary footing, as it is

in a regular footing. The distributed column reaction is
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then app]ied to the simple strips as an upward acting load,
and an overall anaiysis is done to determine the éimp]e
strip QOents. The simple strip moments are then

super imposed on the moment field in the imaginary footing
(the lqad‘dispersion element) in order to determine the
total moment fié]d in the vicinity of the column.

Now that the basic concept of the load'dispersion
element has been presented, it is necessary to further
define or.rather redefine the load dispersion element as
one-guar ter of the imaginary footing. This is quite natural
since the'imaginary footing may be made doubly symmetric.
The -1oad dispersion element is then supported at one corner
only énd has moments along only the edges which’péss through
the supporf. The load dispersion e]ément has also been
referred to as "type 3 element” and the "corner suppor ted
element”. | |

The moment field in the load dispersion elements can be
any lower-bound solution which satisfies the boundary
conditions andvis in equilibrium with the loading. Of the
infinite number of lower-bound solutions, some are more
suitable than others. One could use an elastic solution

which results in the moment field as shown in Fig. 4.1. This

figure gives.the m, moments in one load dispersion
element with dimensions C, in the x direction and
Cy in the y direction, and the point support acting at

the origin. As one would expect, the moments rise sharply

over the column. To provide reinforcement to match this



Figuré 4.1

Elastic Moment Field Congruent
to Hillerborg's Preset Moment Field
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moment field would be awkward and geﬁerally would not be
done. The elastic moment field is redistributed so that the
maximum moment is constant or perhaps stepped across the
‘widfh of the load dispersionieléméht. Hi]lérborg has
developed several lower-bound solutions with such maximum
momeht characteristics.

The s1mp1est of H1llerborg s moment fields has a
constant maximum moment. The derivation of this moment f1e1d
is unique and desérves careful discussion. Consider for
»simp]icity a square load dispersion element with side
dimensions of c; carrying a uniformly distributed load q
acting downward, and supported by edge moments rﬁm and -

My and point support reaction P. See Fig. 4.2. (The
affinity theorems discussed in Section 2.5 can be used to
extend the results to rectangular load dispersion elements).

From equilibrium of the element as a whole:

- P=gqc? o | | - 43
o 1.2 - | 4.4
Mme= — ch (4.4) '
m.= —+qc? (4.5)

ys 2 ’

The loading is divided into 3 parts as shown in Fig. 4.3:

1. »Dné-half of the acting load g is carried by strips in
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Figure 4.2 Load Dispersion Element



Figure 4.3 Division of Loading
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the x direction, which are kept in equilibrium by a
polar symmetrically distributed reaction q, from
the’quadrantal area shown and by an edge moment

m

8,8 , which varies along the edge as shown in

Section 1 Fig. 4.3.

2. The other half of g is carried in the same manner by
strips in the y direction (Section 2 Fig; 4.3).

3. The reaction q, is then applied as a‘load on the
quadraﬁta] area is carried by the reaction P and the
edge moment m, . The subscript t indicates that it
is a tangential moment in polar co-ordinates;-

The reasons fop introducihg the pblar symnetric
 distributed reaction are rather obscure but polar symmetric
solutions are already known so this helps to "simplify" the
calculations. Also, since the edge moments from parts
(1),(2) and (3) result in a varying edge moment, a suitably
.varying‘tangential moment . m, A in part (3) must be added
" in order to produce a uniform edge moment. A polar symmetric
distribution of m, has the advantage of being self
equiiibrating. but it does give rise to radial moments

m, which must be taken into account.

A polar symmetriéal distribution of - a, must be

found such that each strip is in Verticél equilibrium. For X

strips of unit width and part (1) of the loading:

N _y2
q

x=~c
fqr dx =
x=0

(4.6)

Nl
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This results in:

qc

q=
" orNE—x2—y2 | | (4.7)

The process of determining the moment field in the load
dispersion element may now begin. The general expression for

the moment due to part (1) of the loading is:

1 .
My = = 7907 48)
Part (2) of the loading need not be considered since it
produces moments in the y direction only, that is,
m, =0. Part (3) of the loading, that is the polar
symmetrica]ly distributed reaction force q, , produces a

moment m,3 - which can be determined by integrating the

expression for q, twice with respect to x.
d?m '
X,3
—X3 = q (4.9)
dx? '

The constants of integration are determined from the

amys =0 for

conditions; ' m,, =0 and <
_ , . "

This gives:

_ ac in—1 .__JL_; el 2_2 X a1
m, 3 = [xsm (\&§:;E>-+ ct-xt-yt - | (4.10)



The edge moment of concern occurs at x=0, therefore:

mxs,s =m t myo | +my3 .
x=0 x=0 x=0

which yields:

XS8,8

_ 1 ac
m ‘4qc +0+ 7Tx/c y

But we wish the total design edge moment

cbnstant. such that:

’
My = 5 qcz

One may add a moment m, such that:
mxs = mxs,s + mt

X8

| to be
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(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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But from a knowledge of the polar symmetric case, this

m, and. q, give rise to a radial moment m, )
such that:
d (rm)  2q0
5 " M = NP (4.16)

Integrating this equation yields:

: 3
C
1o + € Jz 2 4 9177 sin! (L) - (4.17)

m =" 39 21

r
The constant of intergration is found to be zero on the
basis of boundary conditions. Since m, is always
positive and m, is always negative, Hillerborg shows

that the maximum positive and negative moments are given by:

! Ju— O A ) .
m, = m, + q%k + m, 3 + myg : (4.18a)

i |
My = My + My + mg + m - (4.18b)

This simplification puts bounds on the moment field such
ﬁhat two bounds must be investigated. Equations 4.18 are
représented by Fig. 4.4. This figure has perplexed many
engineefs since it implies that one can have a positive as
well as a negative moment acting at the same point, in the
same direction at the same time. This is not really the case

since the surfaces represented are only bounds on the



" Figure 4.4 Hillerborg's Preset Moment Field
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moments. In fact, Equation 4.18a is only correct when x=0,
and Equation 4.18b is only correct when y=0.

The simplification introduced by Hillerborg is not

necessary since one could simply super impose m, and the
appropriate components of m, 5 and m,, Thus:
- O , _
m, = m. + mdy + m 5 + msin6 + m, cos®f (4.19)

where:

0 = tan~" (y/x)

Equation 4.19 is represented in Fig. 4.5 and Table 4.1.

Inspite of its peculiar shape, this moment field requires a
simpler reinforcement layout than the elastic moment field
shown in Fig. 4.1. The only practical difference between
Hi]lerbdrg’s present moment field and the alternative preset
moment field is in the cut-off points for the reinforcement.
These are compared in Fig. 4.6 which illustrates the
silhouettes of Figs. 4.4 and 4.5. The positive steel will
have thé same cut-off points for both solutions while

Hillerborg requires considerably longer top reinforcement .

4.4 Strip Design Examples
The principles just discussed will now be applied to
some examples. First, in order to solidify the concept of

the simple strip method, consider the slab design given in
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Figure 4.5 Alternative Preset Moment Field
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Example 1 Appendix B. In this simple case, the rectangular
slab is to be designed for the uniform loading shown in
_Fig. B1.1. _

The first step is to choose the load dispersion lines.
This defines the strips in each direction. The choice of
strips can influence the total amount of reinforcement
required in of the slab, but it has a more pronounced effect
on the layout of tne reinforcement since the reinforcement
will be designed in bands corresponding to these strips.
Simple reinforcement layouts can be achieved with a suitable
choice of strips. The load dispersion lines whiéh were
chosen are shown in Fig. B1.2.

The second step requires_that one choose the
distribution of load carried in each direction, that is, how
much of the load is carried by strips spanning in the x
direction and how much of the load is carried by strips
spanning in the y direction. The distribution of load can be
done arbitrarily, but better serviceability (less plastic
redistribution at service load), can be achieved by
distributing the load in proportion to the stiffnesses of
the strips. This can be done quantftatively by comparing
deflections as suggested by Kemp (1979), or qualitatively as
done in the example. The final distribution of loads used is
shown in Fig. B1.3.

The third and final step is to design each of the
strips'for the chosen loadings on the basis of either unit

width or total width of strip. Each strip can be treated as
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a separate beam. As pointed out by Afmer (1960), if the
_réinforcement is chosen to exactly match the design moment
field, the result would be the "unique" solution as

- previously defined in Section 2.4. However, if the
reinforcement is proportioned so that the capacity is always
greater than the design moment field, the solution is true
lower -bound. Generally speaking, after calculating the
réquired-area of steel, one usually rounds up the steel
requiﬁements to the next convenient bar size and spacing. A
convenient way of showing the design moment field is
illustrated in Fig. B1.4. Only the maximum moments and their
location are shown in this figure. One would have to look at
the individual strip bending moment diagrams in order to
determine the location of the cut-off points.

Example 2 in Appendix B considers the design of the
same slab as in Example 1, but for two point loads rather
than a uniformly distributed load. This problem demonstrates
the use of load dispersion elements in conjunction with
simp]e strips.

The first step is to choose load dispersion lines. In
this design these lines define strips of slab which carry
the loads to the supports. The area under the point loads
where the stripé in the x and y directions cross defines the
size of the load dispersion elements. A poor choice for the
width of the strips will be reflected in an unreasonable
momen t field. If the strip width is too narrow, the moment

intensity per unit width will be too great for the slab
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thickness chosen. On the other hand, if the strips are too
wide, the reinforcement in the eddés of the strip will be
too far away from where it is needed so that it will not
become effective until large plastic - deformations take
place. Unfortunately there is no warning to the designer
should this be the case. Also, the choice of wide strips
results in somewhat larger total static design moments. So
when in doubt, a designer should choose narrower strips.
This will not only reduce the weight of steel required, but
d1so some indication is given when the strip is too narrow.

The second step is to choose the amount of load carried
.by each of the strips. This choice is arbitrary, but the
better it approximates an elastic solution, the better the
serviceability will be. The distribution of load was chosen
on the basis of the relative strip deflections at the point
1Qads. Tﬁe results indicate, as one would exﬁéct, that most
of the load is carried by the slab in the short direction.
The solution is based on 75% of the load carried in the
short direction.

The third step is to determine the preset field which
is required to convert the point loads into patch load. This
has been done using Hi]lerborg’s moment field the silhouette
of which is shown in Fig. 4.6. This silhouette gives a
conservative bending moment diagram in terms of moments as
well as cut-off points.

The fourth step is to determine the moments in the

simple strips due to the patch loads. It is at this stage
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that the load is distributed in each direction. In the
calculations, the strips are treated as separate beams,
however, the calculations may be done either on a unit width
of strip or for the total strip width.

The last step is to superpose the preset moment field
on the simple strip momen t field'in order to obtain the
design moment field. From the design moment field shown in
Fig. B2.4, it would appear that the moments are reasonable.

Example 3 in Appendix B considers the design of a slab
with columné or point supports. The slab and loading are
similar to those in Example 1, except that two interior
columns haVe been added. Conceptually, perhaps the easiest
way to design such a slab is to treat the columns as upward
jacting point loads. The slab is then designed for two load
cases, first a downward acting uniformly distributed load,
and second two upward acting point loads. These wou 1d
correspond to Examples 1 and 2. In order to determﬁne the
design moment field, the results of both load cases must be
superposed. The details of such an approach as well és the
results shall now be examined.

The first step as always is to chbose load dispersion
lines. The North American concept of column strips and
middle strips is helpful in selecting suitable strip widths.
As pointed out previously, the concepts are not the same,
but setting the simple strib widths approximately equal to
the column and middle strips should result in rgasonéble

banding of reinforcement.
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The second step is to choose the distribution of load
carried in each direction. This was done in more or less the
‘same mannef as in Examples 1 and 2. It should be pointed out
that the Uniform 1oéd can be distributed independentfy from
that chosen for the upward acting patch load.

The third step is to choose column reactfons. The
column reactions are in fact "arbitrary" since they will be
"statically correct" for the design moment fields. A poor ly
chosen reaction will result in an unreasonéble moment field.
It should be pointed out that in somé structures such as
 footings and raft slabs, the column reactions are known and
do not have to'be assumed. The examples have been ¢ontrived
SO fhat the point loads of Example 2 are of the same
magnitude as the column reactions in Example 3. The
techniques and resulting moment fields can then be compared
for point loads versus point supports. |

The fourth step is to determine the preset moment field
required to convert the point loads to two upward aéting
patch loads. Since the load dispersion elements are not
quare, the preset moment field must be determined in each
direction.

The fifth step is to determine the simple strip moments
due to the uniform load acting downwards.

The sixth step;is to determine the simple strip moments
due to the upward acting patch load. The patch loads are of
course distfibuted as assumed in step 3.

The last step is to superimpose the preset moment field
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with the strip moments due to the uniform loads, and the
strip moments, due to the upward acting patch loads, in
order to obtain the design moment field. If the
reinforcement is designed for this moment field, the results
will be lower-bound.

In this particular example éven though the resqlts are
lower-bound, they are not reasonable. For example, it is not
reasonable that negative moments extend over the entire
léngth of strips passing over the columns (2-2, 4-4 and
7-7). Elastic solutions indicate that there should be
positive moments in the midspan regions. The lack of
similarity between the design moment field and an elastic
moment field results from the use of two load cases, one for
the column reactions, and one for the loading. With such an
approach, there is no real way of maKing choices which will
result in a design moment field which will approximate the
“elastic moment field for the two span by three span
structures except by trial and error.

Example 4 in Appendix B considers the design of the
same slab as in Example 3. This time however; an approach
will be used which enables one to control or influence the
final moment field so that it may approach the elastic or
any other desired distribution of moments. In this épproach,
:the,uniform1y distributed load as»We]l as the upward acting
column reactions are considered in oﬁe load case. There will
of course also be preset moment fields.to convert the point

support reactions to patch loads. Only those portions of the
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design which must be changed in order to illustrate the
philosophical differénces in this approach are presented.

The first step is to choose load dispersion lines. This
is done in exéctiy the same manner as Example 3. |

The second step is to choose the distribution of load
carried in each direction. The uniformly distributed load
has been distributed in exactly the same manner as in
"Examplie 3. No distribution is chosen for the patch loads at
this tfme. When the strips in the x direction are designed,
the portion of the patch load distributed in the x direction
will be "adjusted" or chosen to produce reasonable design
moments for these strips. The remaining portion of the patch
1oads.must of course be included in the design of the strips
in the y direction. Hopefully, if the final distribution of"
loads produce reasonable design moments in the x direction,
the design moments in the y direction will also be
reasonable.

The third and fourth steps in the design are the same
- as in Example 3. The co]umn loads and preset moment fields
can be the samé since the only deviation from Example 3 thus
far is ih the distribution of the.column reactions. This
again emphasizes the fact that the load dispersion element
acts as an imaginary footing which must be designed for the
static moment in both.direétions-and that the distributioh
of load is of no consequence to the preset moment field.

The fifth step is to determine the strip moments.

First, the strips spanning in the x direction are
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" manipulated until reasonable moment fields are obtained. As

pointed out previously, for the strips which cross over the

cinmns, one can use whatever portion of the patch load
which is necessary to obtain reasonable moments. This can
solved for after one assumption or "criteria" for what
consitutes a reasonable moment field has been chosen. One
may set the point of zero shear; the poiht of inflection,
~the mément at any point in the span, or the ratio between
moments»within the span. Since the preset moments have
already been ca]cu]ated,rone could fix the final negative
- design moments or even the ratio of the final negative

design moment to the final positive design moments. The

be

strips which do not pass over the columns can be assumed to

be in contact with one or more strips which run in- the y

direction. One can "adjust" this contact pressure until the

b’rdesign moment field in the X direction is suitable. The

strip running in the y direction must of course be designed

for. this contact pressure. In this way strips in the X
direction may be supported to some extent by strips in the
direction and vice versa. After each of the x strips has
been considered, the moment fields for the strips spanning
in the y direction must be determined. For these strips,
there are no choices to be made. One must simply consider
all of the loads not carried in the X direction as well as

any resulting contact pressures between strips.

Y

The final step is to superimpose the preset moments on

the moments from the previous step in order to obtain the
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design moment fields. In spite‘of the efforts to obtain a
solution which approximates the elastic solution, it would
appear that the design moment field does not. One would‘A
expect the strip spanning between the columns to have a
positive moment at midspan while Fig. B4.2 indicates a small
negative design moment. The assumption which should be
changed as well as an outline of how and why it should be
changed are given at the end of the examples. The reworking
of the examp]e is left to the reader.

The use of load dispersion elements in conjunction with
simple strips is referred to as the advanced strip method.
The examples have given a clear progression from the simple
strip method through to the limits of the advanced strip
method. The last exahple not only illustrates the techniques
used to control the design moment field, but also
illustrates the numerous calculations and recalculations and
the detailed knowledge of slab behavior required to obtain a
reasonable solution. The design calculations and choices
become even more difficult if there are column moments or
the columns are offset. Such cases can be handled with the
advanced strip method but the calculations will be 1ong and
tedious with numerous recalculations required since the
correct choices in various steps of the design will not
always be readily apparent. The advanced strip may be useful
for slabs carrying point loads and slabs with few or perhaps
no columns at all, but the advanced strip method is not very

suitable for slabs supported by more than a few columns.
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4.5 Segment Method

One can overcome many of the aifficu]ties with the
strip method by eliminating the combined use of strips and
1ead dispersion elements, and using only large load
dispersion elements such that they cohtact each other. In
this case, all the loads can be carried directly into the
columns by the load dispersion elements with.the distributed
reaction pressure equal to the applied load. Used in this
_ﬁanner, the load dispersion e]ement‘should more properly be
'celled aA"corner suppor ted element” since it is no longer
" used to disperse a point load into a patch load. The use of
corner supported elements enables lower -bound solutions to
be obtained without superimposing simple strip solutions and
without having the problems associated with choosing
suifab1e distributions of load. This is no longer a strip
method, it is a segment method.

The concept behind a 1ower-bound.segment method of
solution is to divide the slab into a number of segments,
then by usihg standardized lower-bound moment fields (preset
moment fields) one can obtain a lower -bound solution for the
_entire slab. Equilibrium must be maintained for each segment
and also between segments. The preset moment fields are
standardized in such a way that a uniform positive moment
field may be superimposed on the breset moment field. This
ensures that there is equilibrium between segments along
edges of positive moment. There may not be equilibrium

between segments along edges of negative moment, but since
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edges of negative moment occur at or over supports, the
imbalance in moment may be assigned to the supporf. In this
way, equilibrium is maintained throughout the entire slab.
Cne only needs a set if standardized moment fields for
various shabed segments.

The preset moment fields discussed to this point have
had uniform edge moments. This is not the only or
necessarily the most suitable moment field for design
purposes. In many inétances it is desirable to concentrate
the reinforcement towards the point support. Thfs can be
done by having a stepped edge moment such that for some
width near the support, the edge moment is 1argér and
uniform, while for the remaining width away from fhe suppor t
the edge moment would also be a constant but of lower value
as shown in Fig. 4.7. Hillerborg refers to such an elemenf
as a "rationalized load dispersion element" however, it is
more meaningful to think of it as a cornerlsupported element
with a rational moment field.

The nomenclature used for the corner supported element
is shown in Fig. 4.7. Any desired distribution of maximum
(design) edge momments can be substituted into Equation 4.13
as long as overall equilibrium of the element is méintafned.
For example, the design edge moment m, can be set equal

to my fory =< B and m for B¢ <y <c¢,

, ‘- B
These values can then be used in Equation 4.14 to obtain the

required distribution of m,_ . The resulting distribution

of m, would have to be determined for the polar
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'symmetric case, and the new expressions for m, and

m,  would then be substituted into equation 4.19. This
is not quite the manner in which Hillerborg appFoaches this
problem but it does convey the desired notion; that is, that
it is at least conceptually possible to bbtain 1ower-bound
solutions for any desired distributibn of edge moments.

The following discussion will only deal with the
rationalized preset momeht fields as developed by Hillerborg
but it should be pointed out that there are other means of
obtaining rationalized preset moment fields. The approach
pointed out in the previous paragraph as well as
Hillerborg’'s solution are in a closed form, however any
elastic plate analysis program could be used to obtain
numerical solutions for any desired edge moments. Whatever
technique is used to obtain the preset moment fie]d; one
should check to ensure that the edge moments are the design
moments for the element, that is the interior moments should
always be less than the edge moments. Numerically obtained,
moment fields have the advantage of being continuous while
the closed form solutions have discontinuoué steps in the
moment field. Fig. 4.8 illustrates a typical Hillerborg
rationalized preset moment field. A numerically obtained
moment field probably would not look as strange and would be
conceptually.easier to accept, but when Hillerborg did this
work in the 1950’ s, computer programs for plate analysis
kwere not readily available. To date no one has published or

even discussed the possibility of substituting numerically



0l<

qc3 10

10

Figure 4.8 Typical Hillerborg Rationalized
Preset Moment Field

1.0

103



104

abtained preset moment fields for those obtained by
Hi11érb0rg. Further discussion of numerically obtained
rationalized preset moment field must await further
deve lopment.

At present, the only preset moment fields one can use
are those developed by Hillerborg. While they appear to be
rather complicated, they are relatively easy to abp]y, The
first thing to note is that the mean value of the edge
moment is still:

o — we? " (4.20)

2
 that is, the total edge mbment musf still be able to keep
the element in equilibrium, as in Equations 4.2 and 4.3. The o
designer can distribute this moment along the edges of the
element in any manner desired as long as overall equilibrium
is satisfied. For Hillerborg's preset moment field shown in
Fig. 4.8, the design moments have two steps, my being the
higher step, and m _g " the lower step. As in the case of
Fig. 4.4, the m,  moments decrease to 0 at x/c=1.0, and
. the dashed lines indicate a possiblekpositive moment field.
For most practical distributions of edge moments there will
be no significant pogitive moments anywhere within the
element. This implies that only one mat of reinforcement
need be used, and that only.one design moment need be
calculated for each direction on the element. However, for

the type of edge distribution shown in Fig. 4.8, it is



105

possible to select values of « , B , m,, and

mp such that sizeable positive moments are developed
over some portions of the element. Hjllerborg obtained two
dimensionless parameters which indicate when the chosen
moment field will have sizeable positive moment for which no

- reinforcement is provided. The dimensionless paramenters

are.

_ Pmpt ) | (4.21a)

1
2 9%

a{—m_ +m,_ :
K, = ( 1“ 1-a) (4.21b)
14e2
2 9%

Hilferborg provided charts which indicate acceptable limits
of these parameters.:Fig. 4.9 is an examnple of one such
chart. The limiting values for K, and K, are based
on restricting the-maximum positive moment anywhere within
the element to 5% of the mean negative edge moment. Since
only a small portion of element would have positive moment
without positive reinforcement, this violation of the
Alower-bound theorem would probably Eeduce the capacity of
the siab by less than 1%. Since there is nothing
intrinsically special about the limit chosen by Hillerborg,
the limiting values of K, and K, are also not
_particularly significant Also, the regions of positive

moment may not even exist since they are the result of

pecu11ar1t1es particular to Hillerborg’'s der1vat1on So the



1.0

CS5 |

Figuf‘e 4.9 K-Limits for =




107

'limits'on K, and Ky should not be viewed too
strictly. In addition, it is usual to provide at least
minimum reinforcing throughout the entire bottom mat.

" Because of the code restrictions on minimum and maximum
reinforcement, it is likely that the bottom steel will
resist a moment of about 10% of the mean‘negétive design
“edge moment. Thus in practical design, the real range in
acceptable K values will be much lafger than Hillerborg
suggésts.

- The guidelines which Hillerborg recommends will aid in
producing designs wifh reinforcement rather similar to
current practice, that is they will aid an ineXperienced
designer by indicating that the chosen moment field is
unusual. With reference to Fig. 4.7, the first important
recommendation is that values of « and - B greater
than 0.6 are seldom suitable. For the most common choice,

a = B =0.5, the permissible range of K is quite large
and varies from 0.3 to 0.75. Hillerborg claims that usually
the values of K vary between 0.5 and 0.6 for most designs.

. However, an interior span of a slab designed by the Direct.
Design Method would have K values of 0.33. On the other
hand, if all the middle strip negative reinforcement is
moved into the column strip as is sometimes done, the K
‘values would be 0.65. This implies that for the ratio of
posifive to negative panel moments chosen in the,Dibect
Design Method, the lateral distribution of negative homents

is about as uniform as one should go. The‘final notewor thy
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characteristic of the moment field is that for

Ca = B = 0.5, and approximately equal K values, the
cut-off point for the my and m’, reinforcement is
at about 0.5c to 0.6c.

The last point that need be discussed before presenting
the final set of examples_is the question of super imposed
uniform positive moment fields. With the slab completely
divided up into corner supported segments, and preset moment
.fields with negative moments only, one must superimpose
uniform positive moment fields in order to obtain reasonable
design moment fields. This is a simple matter since
adjoining corner suppor ted segments will meet in the midspan
regions of the slab where it is easy to evaluate suitable
moments. The existence of these positive moments along the
previously "free" edges of the corner suppor ted elements

will make the limitations on K even more conseravative.

- 4.6 Segment Method of Design Examples

The following design examples will clarify the points
discussed and will present a practica1 commentary on
possible design techniques.

Example 5 in Appendix B deals with the redesign of the
slab from Example 4. This time however, the "segment method”
will be used rather than the strip method or advanced strﬁp
method. Basically, the slab will be divided into segments,
most of which will be corner supported elements. Each

segment must be in equilibrium on its own. The design then
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' dealg with the total static moment and hence the average
static moments in each direction. A moment: field is chosen
such that at the boundaries between segments, the moments
_aretequal in order to satisfy equlibrium between segments.
.The_preset moment fields are used for each segment in order
to ensure a lower -bound solution is obtained.

The first step is to qualitatively choose segements.
The choice is qualitative because the actual location of the
lines defining segments is not sei. This step enables one to
identify corner supported segments along the with other
segments, and to consider how these segments will carry
ldads. The second step is to determine the mean segment

moments. One usually starts by setting the average support

. moment for a corner supported segment. An indication of what

might be a suitable value can be obtained by considering how
the segment will act. Does the segment together with an

~ adjacent segment act as a beam with the far end fixed or
Asjmply supported? What would be the requifed end moment in
the adjacent span? The actual value of the average negative
moment chosen will not influence the safety of the slab,
since the positive moments will be determined from the
requirements of static equilibrium. The choice does however
inf luence serviceabi]ity. By choosing very large negative
moments, the positive design moments will be made smaller,
tending. to cause more cracking on the underside of the slab
"at midspan. On tﬁe other hand, choosing very small negative

moments, will result in more cracking on the top sur face of
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the slab over the supports. The architectural finishes can
have an influence on this choice since carpeting will make
top surface cracks more acceptable while suspended ceilings
will make bottom surface cracks more acceptable. One should
usually try to apphoximate the elastic distribution of
moments in order to minimize cracking, but when the designer
is in doubt as to what the elastic moments might be, the
above considerations wf]l guide him towards an acceptable
solution. Once the support moments have been set, it is a
simple hatter to find the points of zero shear which in.turn
define the size of the segments, since the lines between
segments are general]y lines of zero shear. The expression
is:

(Mpear endw-l: Miar end) | (4.22)

s L
2

where ¢ is the distance to the point of zero shear measured
from the near end of a span with end moments of

Mhear end and The positive moments

1
m1‘ar end

are then determined by equilibrium of the segment.

2
we? (4.23)

In this manner, the moments in both directions can be
determined in the corner supported segments. There are
however, other types of segments which are required to fill

in the boundaries of the slab. In this example, these other
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segments are simply supported on one or two adjacent edges,
but many other types are pessible. The main conditions for
dealing with any segheni are, the equilibrium is fulfilled
for the elements as a whole and, that the dietribution of
moments chosen is reasonable. In this example, this
condition is already fu]fi]led for the segments which are
_simply suppor ted along one edge since they are linked to
adjacent corner suppor ted elements for which the positive
moments have already been found. The moment field in the
segments simply suppor ted on two ad jacent edges must be
determined by some means. There are many possible solutions,
but the fina] design is based on a preset moment field
obtained by Hillerborg for such a segment. This is not the
same preset moment field as for the corner suppor ted
element, but rather a moment field which satisfies the
.boundary condition of two adjacent simply supporfed edges.
Even Hillerborg presents several lower-bound solutions to
this case. The one chosen requires both top and botom
reinforcement over the entire segment. While this solution
“may still lead to cracking due to twisting moments in the
corner of the slab, it does agree with the current practice
of providing top reinforcement fn_the corner of a simply
supported slab. At the end of this step.in the design, the
size of each segment will be known a]ong w1th the average
positive and negative edge moments requ1red to Keep each
segment ‘in equilibrium.

The third step in the design is to rationalize the
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moment field, that is to laterally distribute the average
edge moments previously obtained in a rational manner. This
involves assigning more of the negative moments to the
region of the segments near the corner supports as would
normally occur in an elastic solution. One can also adjust
the distribution of the positive moments so that they too
are concentrated somewhat towards what are commonly know as
the column strips. The suitablity of the chosen distribution
of the moments is investigated by the parameters K, and

Ky . In this case, the parameters indicate that the
lateral distributions are acceptable, and that the results
may be used as the design moment field.

Example 6 in Appendix B considers the design of a
considerably more complex slab than in the previous
examples. The example demonstrates how the segment method
can be épp]ied rather easily to such complex cases and
f]lustrates how offset columns and column moments may be
dealt with.

The first step as before, is to qualitatively select
segments. In this example, the column offset is 1arger.than
permitted by the Direct Design Method, but is moderate |
enough to present no problems in laying out segments. In fhe
y»direction the corner supported elements do not completely
line up with each other, but this is no problem since the
positive moments will be redistributed so that they will
only exist where adjacent corner supported segments are in

direct contact with each other. This will be done in one of
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the later steps.

The second step is to determine the mean segment
'moments required to maintain each segment in equilibrium.

. Again. this starts with setting reasonable negative edge
mohents for the segments. In this example however, becausé
..Qf uneven spans and support conditions the desirable
negative moments on each side of the columnsvwill'be
"different. In an elastic analysis, this difference would be
" distributed between the column and slab in accordance with
the relative member stiffnesses as in moment distribution,
however, in plasticity any distribution of moments between
the slab andAthe columns is acceptable as long as
equilibrium is maintained and the mémbers are capable of
resistfngithe assigned loads.

In order to limit the amounts of plastic redistributidn
required in the structure, one should at least qualitatively
consider the relative stiffness of the slab and columns. The
.CRSI handbook is very helpful in this regard since it gives
values for a . In this particular example it was
 decided that the columns would take about half of the
unbatanced moment between the adjoining slab segments. As in
Example 5, after the negative moments are set, the size of
the segmenfs is determined alohg with the poéitiQe moments.

" The corner segments have different boundary conditions than
in Examp]é'5, and thus will be treated in a different
manner. By using a concept from the simple strip method, one

can very easily deal with these segments. By assuming that
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half the load is carried in each direction, the moments in
these segments will be half those in the adjoiniﬁg segment
parallel to it. Thus, without doing any further
calculations, one would use half as much reinforcement: per
.unit width parallel to the boundary of the slab in the
exterior segments as in the adjoining interior segments.

The third and final step is to rationalize the moment
field. This is done essentially as in Example 5, this time
thever, the positive moment between the columns is
uniformly distributed only over the region of direct contact
between the corner supportéd segments. The top steel in the
column zones should of course be designed for the larger of
the two design moments when they differ on either side of
the column. The calculation of the column reactions has been
included so that all of the forces and moments requiréd to
design the column and slab-column junction are Known.

From Examples 5 and 6 it is clear that the segment
method is distinctly different than the strip method and
that for problems involving column supports, the segment
method is the more appropriate method of solution. The
segment method has great potential in the design of flat

slabs.



5. SHEAR AND MOMENT TRANSFER

5.1 Introduction
In spite of all that has been said about the design of

slabs for flexure, slabs rarely fail in flexure. In the
‘past, numerous methods of design have been used resulting in
a wide range in the amount of reinforcement required.

Fig. 5.1 presents a comparison between steel requirements
for various design methods (Sozen and Siess 1963). It
.indicates that the present day Direct Design Method requires
approximately twice as much reinforcing steel as Turner
vused.‘In view of the fact that by 1910 Turner could claim to
have successfully designed over 1000 flat slabs and the
subsequent satisfactory performance of these slabs along
with thousands of others, it would d@ppear that there is
significant room for variations from current practice
without jeopardizing the safety of the slab. Sozen and Siess
(1963) have said that "a slab will carry almost any uniform
load that is put on it. The problem is to transmit the load
out of the slab to the supporting members ahd to make the
supporting members stiff and strong enough to pbovide the
necessary reactions in the vertical and horizontal planes.
The key to Turner’'s success was in his handling of these
vitally important problems, unwisely considered by some as
mere detai]s."

The research on shear in slabs has been aimed at three

‘different probliems: point loads on s]abs;'shear in column
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footings, and slab-column joints. In this discussion, only
slab-colUmn joints will be investigated. For this parficu]ar
problem some moment cah be transferred from the slab to the
_ column directly by the flexural reinforcement while some
momenf may be transferred to the column by shear stresses in
‘the slab so that there is an interaction between shear and

: moment transferred to the column.

" There are many different approaches to this problem,
but regardless of which method of anaiysis is used, there
are certain concepts which are common. A free body diaéram
of a slab column junction is shown in Fig. 5.2(a). The slab
transfers a vertical force V to the column as well as a
moment. The moment transfefred to the column is not
| necessarily the slab moment M but rather is the difference
‘between the cblumn moments above and below tHe slab

(My — M) . Some of this moment may be introduced into
the column by the eccentricity of the shear force V. Some of
this moment will come directly from the slab moments. And
finai]y, some moments may be introduced into the column by
torsional moments T on the side faces of the columh.
Regardless of where the forces come from, the free body
diagfam of the column in ?ig. 5.2a must be in équi]ibrium
along'with a similar free body diagram for the s]ab.‘Various
approaches differ on the choice of fhe total moment
transferred to the column along with the magnitude of the
moment transfefred by each of the various mechaniSms.

Three different approaches to the problem will be
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Figure 5.2 Elastic Analysis for Shear
- and Moment Transfer
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discﬁssed. The first is an elastic analysis with a brittle
end point and is the approach currently used by ACI and CEB.
The second approach to be considered‘is a p]astic'ahalysis
which permits redistribution of stresses. This approach is

- typified by the beam analogies of Hawkins and Kanoh and
Yoshizaki? The final approach is to recognize that the
problem may not really be a shear problem in the concrete
itself but rather is a conical yield-1ine mechanism. This
last approach has been taken by Gesund in North America and

by Dragosavic and Van den Beukel in Europe.

5.2 Elastic Analysis |

This method of analysis is discussed because it
represents current practice (ASCE-ACI Task Committee 426
1974). It was developed in the context of an overall elastic
approéch to design, including elastic moment fields.
Ho@ever, due to the complexity of exact elastic solutions
only an approximate elastic solution is used.

Generally as a result of an equivalent frame analysis
or some other elastic analysis, one starts with fhe Known
c¢olumn moments and axial loads, above and below the slab.
~Then, as discussed in the previous section, one can
determine how much shear and moment must be transferred from
the slab to the column. The results obtained in this manner
wiT] not neceséari]y be the same as those obtained by taking
the slab moments and shears at tﬁe column cehtre]ine and

reducing them to the face of the support as in the case of a
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continuous beam. The difference is due to the fact that in

the-case of fhe beam, it is assumed the structure is cut in
a straight line across the entire panel while in the former
case, the structure is assumed to be cut around the colbmn

as shown on the free body diagram.

In accordance with the requirements of statics, this
shear and moment must be transmitted across the boundary of
the free body diégram in Fig. 5.2a. This boundary is’
referred to as the critical section since it is on this
section that the stresses will be checked and compared
against some specified maximum permissible stress. The
choice of the location of the critical section is set by ACI
as being located at a distance d/2 from the column face. It
was found empirically that this location of the critical
section produced a better fit of experimental results than
other locations for the critical section.

The sum of the vertical shear stresses over the area of
the critical section must equal V for vertical equilibrium.

The average vertical shear stress is then:

v ‘ (5.1)

critical

V1= A

as shown in Fig. 5.2b. If the centroid of the critical
section does not correspond to the centroid of the column
the eccentricity "e" of the resultant shear force V will
introduce some moment into the column. This moment (Ve) may

account for a considerable part of moment required to keep
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_:the column in equilibrium, thus reducing the amount of
moment required to be transferred by other means. This
possible reduction is generally not pointed out in the
literature. While it is not rational in terms of statics, it
is conservative to ignore this reduction.

Some of the moment to be transferred, either the
corhect moment or the unreduced moment, is transferred
directly to the column by flexural reinforcement. The
fraction of the moment transferred by direct flexure is
gjven by Tt where:

Yy =1 - !
42t | (5.2)
. 3 c,td ‘

This equation is based on the work of DiStasio and Van Buren

(1960) which indicated that 40% of the moment was
transferred by flexure for a square cotumn. Hawkins el al
(1971) then modified the/equation to account for column
rectangularity. ACI requires that there be sufficient
reinforcement within (3/2)h of the column to resist the
- moment transferred by direct flexure. The rationale for
" including reinforcement which does not paes through the
critica] section is that this additional momeht transfer
offsets the torsional moments on the side faces which are
not fully utilized in this particular method of analysis
(Hawkins 1979) . |

The remaining portion of.the moment which must be

transferred to the columh is transferred by a.linearly
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varying shear sfress distribution sueh‘that the net vertical
force is zero and the sum of the moments about any point
.equals the remaining moment to be transferred. Such a
distribution is shown in Fig. 5.2c. Since the total moment
to be transferred to the column for equilibrium of the
column was M, and a portion of that was made up by the
eccentricity of the critical section was (Ve), ahd sbme of
the remaining moment was carried by flexure, the moment to
be trahsferred by the finear]y varying shear stress

distribution M is:

M, = (M—Ve)(1—7y) ' (5.3)

The linearly varying shear stress, v, is then:
L = M - (5.4)
2 Jcritical

where, Joritical is the polar moment of inertia of the

critical section about its centroid, and ¢ is the distance
from the axis passing through the centroid of the critical
section to the point in question.
The shear stresses \Z and Vv, are then

super imposed as éhown in Fig. 5.2d to obtain the total shear
stress distribution. The maximum shear stress must be less
than the specified maximum permissible shear stress. From
Fig. 5.2d it is apparent that much of the critical section

is stressed well below the maximum permissible shear stress,
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.thus much of the shear capacity is_under utilized. This ié
analogous to the design of a short structural steel
'beamfcolumn and limiting the maximum load to that causing
yielding to occur in the most extreme fibre.

For simplicity, moments in one direction only have been
considered. In most instances there can be moments acting in
two directions so that another load case which transfers
moment in the other direction must be added to Fig. 5.2. The
stresses will then superimpose to give a maximum at one |
corner of the critical section. In such a case much of the
critical secfion will be subject to low shear stresSés. In
fact, if the applied moments are large and the applied shear
is small some portions of the critical section may be
carrying upward acting shears when the connection ﬁfai]s"
downward. This_wou]d not appear to be very rational and is
one of the difficulties with this approach. |

For highly rectangular columns, the true shear stress
distribution is not linear along the critical section. Most
of the shear stress is concentrated towards the corneré of
the column, with the middle portions between the corners
Acarrying little or no load. The result is that the apparent
average limiting shear stress at failure for slab column
connections loaded . in pure shear decreases as the column
rectangularily increases. The carrying capacity of the
corners of the critical sections does not,ih‘faqt reduce,
but failure initiafes at the corners before the concrete in

the area of the middle of the column face begins to pick up
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any significant amount of load. The ACI accounts for this
behavior by reducing the permissible shéar stress while
using the total length of the critical section. The CEB on
the other hand uses the full limiting shear stress for that
portion of the critical section near the column corners, and
a permissiblé one way shear stress on the remainder of the
critféal section. This is illustrated in Fig. 5.3. The CEB
would also reduce the limiting shear stress for portions of
the critical section for very large square or circular
columns, while ACI does not. There are other minor
differences between ACI and CEB, but they both use the same
philosophical approach.

The differences between ACI and CEB have béen discussed
in order to illustrate that the procedures used are by no
means exact, and that there are several ways of idealizing
fhe probleh. With each method there will be a number of
expressions and coefficients which must be empirically
determined by experimental observations. The real test of a
method of analysis is not how philosophically pure it is,
but rather how‘well it predicts real behavior.vFig. 5.4
illustrates how well the ACI method predicts the failure
load for slab-column joints transferring both shear and
moment. The applied loads at actual failure are Viest
and Miest while the connection capacity in pure shear
and pure moment transfer are Vv, and M, . Fig. 5.4
represents interaction diagram with the theoretical failure

line joining (Viest/ Vo) =1.0 and (Miggt/ M) =1.0. It
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Figure 5.4 Comparison of ACI Approach
and Test Results
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is ihterésting to note that only the tests by Hawkins fall
beldw the Tine predicting failure. An investigation into the
reasons for such a large discrepancy between experimenters
is beyond the scope of this work, but it should be done
since it may identify particularly bad details or ranges of -

parameters where the ACI approach is not safe.

5.3 Plastic Analysis

This method of analysis is discussed because it is more
representative of actual behavior than the previous elastic
method. In some of its forms, the plastic approach is
simpler to apply than the elastic approach.

Plastic approaches are based on the assumption that the
various mechanisms which transfer shear and moment to the
Acolumn are capable of developing and maintaining their
capacities in spite of plastic deformations. This is akin to
the rigid-plastic assumption for slabs in flexure. The
result is that rather than determining how much force is
transferred by each of the mechanisms and then checKking to
ensure that the mechanism has not exceeded its permissible
stress, one ensures that it is possible to transfer the
required forces to the column by some combination of the
various méchanisms without exceeding the plastic capacity of
all the available mechanismé. One is no longer concerned
with the "elastic” distribution of stresses. What is of
concern {s the maximum strength that can be developed on

each face of the critical section with due regard to the
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interaction of the various mechanism$ acting on each face.

The first significant method of plastic analysis
proposed was Hawkins’ beam analogy (1971). Each face of the
critical section is assumed to behave as beam cross-section
which can transmit moment, shear and torsion to the column.
The forces which are to be transmitted to the column are
distributed between the beam sections so that the connection
develops the maximum strength possible for the particular
failure mechanism or mode of deformation considered. This
requires that one must consider all probable failure modes
and maximize the joint strength for each mode. The mechanism
with the lowest maximum capacity will govern the design.
This is identical in philosophy to yield’line theory where
all possible yield-line families must be investigated, each
of which must be optimized, with the family of lowest
capacity governing the design.

Hawkins intended that this method would be an
‘alternative to, if not a replacement for the present ACI
procedure, so he used many of the choices made by ACI in the
application of his method. He uses the same critical section
and essentially the same equations for the strength of each
beam section as ACI bresent]y does. However, only the steel
actually crossing the critical section as shown in Fig. 5.5
is considered in the calculations. It is assumed that there
is no interaction between the bending moment and the shear
or torsion capacity of a beam section. There is however, an

interaction between the shear and torsion capacﬁty on a
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face. Hawkins uses the interaction equation:

'A% (1
<V5> * (“T’o) =10 (5.5)

"In which V and T are the shear force and torque assigned to
the'face in question, and V, and T, are the
capacity of the face in question for pure shear and pure
torsion, as computed by the ACI equations without

per formance factors.

The governing equations for various cases héve been
presented in the literature by HawKins (1971) and thus will
not be repeated here. However, the possible failure
conditions for corner, exterior and interior columns are
shown in Figs. 5.6, 5.7 and 5.8. From the large number of
possible failure conditions which must be checked, |
especially for interior columns, it is clear that this is
not a practical every day design method. This method can be
used to advantage in certain situations since it does
provide a better estimate of the failure capacity than the
ACIl method, and it a]solprovides an indication of the mode
of failure. This will provide an indication of the most
direct way to increase the capacity of the slab-column
connection.

Kanoh and Yoshizaki (1979) have recently proposed a
simplified version of the beam analogy, which can best be
described as a "plastic interaction equation” approach. This

method is easier to apply than the Hawkins’ beam analogy

[
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failure conditions. It also predicts the failure loads as
well as or .better than Hawkins’ beam analogy. However,
simplicity has it’é price and in this case the plastic
interaction equation gives no indication of the likely mode
of failure. This approach uses a critical section located a
distance d/2 from the columns face, and assumes that the

effects of shear and moment interact as fol]bws:

—_— + £ <10 | © (5.6)

The values in the numerators of Equation 5.6 are V,_the
load transferred to the column, and M, the moment
transferred to the column. The moment M can of course be
reduced by V times e, the eccentricity of the critical
section with respect to the column, as in the elastic
approach.
| Vo and M, are the connection capacities for
the pure shear case and the pure moment case respectively.

( The pure shear capacity is simply the max i mum
permissible shear stress times the total area‘of the
critical section, as shown in Fig. 5.9b. The plastic'
interaction equations have only been applied to relatively
square columns thus far where the limiting concrete shear
stress in Imperial units is 4 A . Since this method
and the approximate elaétic method use the same critical
section and limiting shear stress, the resulting Vv,

will be identical, and both methods will have the same
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safety for the case of pure shear transfer and square
columns. Further development of this method is required
before it can be applied to highly rectangular columns.

The pure moment connection capacity M, is éomposed

of three portions:
My = M + My + M, , (5.7)

- The first portion M, is the moment transferred by shear
stresses action on the front and back faces of the critical
section as shown in Fig. 5.9c. In this case M, is the
sum of the moments due to the limiting shear stress acting
on the front and back faces of the critical section taken
about the centroid of the column. As in the case of pure
shear, fhe plastic interaction equation has only been
applied to square columns, and further work is required
before the method can be applied to highly rectangu]ar
columns. If would appear that the CEB approach using
different shear capacities for different portions of the
critical section would be a more rational approach than ACI
approach since the average limiting shear stress will be
considerably different over the long and short facés of a
highly rectangular column. It would however, be convenient
to maintain the square corners on the critical section as
used by ACI. Weisinger’'s brief discussion (1977) of some
" proposed revisions to ACI 318-71 suggests the use of such

critical stresses and such a critical section and points out
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how these might be appliéd to cases with unusual column
~ geometry and openings in slabs. The development of such a
methodology in the context of the plastic interaction
equation is beyond the scope of this work but it would
appear to be worthy of further study. For the square columns
under consideration, the shear stresses transferring
vertfcal load to the column interact with the shear stresses
transferring moment to the column as shown in Fig. 5.10a.
This figure indicates that when the connection is
transferring its full sheér capacity, that is when the full
limiting shear capacity is developed over the entire
critical section, it is not possible to transfer any moment
by shear stresses as shown in Fig. 5.9c, except for the
moment transferred by Ve. On the other hand when the full
M, is developed, the side faces of the critical section
can carry vertical shear, hence the vertical step in
- Fig. 5.10a. |
The second component of M, is M; , the moment
transferred to the column by reinforcement which crosses fhe
critical section. As shown in Fig. 5.9d, it is possible for
moment to be transferred to the column by top reinforcement
on one face of the column and bottom reinforcement on the
-opposite face of the column. The capacity of the bottom
réinforcemént may be included when the ratio M/V is
éufficient to cause tension on the bottom surface of the

slab. This provides another illustration of the usefqlness

of bottom reinforcement in the column zone. It is assumed
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that there is no interaction betwegn thée vertical shear
stresses and normal bending moment. This results in the
interaction diagram shown in Fig. 5.10b.

The third portion of M, is M, , the moment
trasferred by'torsional stresses acting on the side faces of
the critical section. Kanoh and Yéshizaki make use of a
plastic torsional shear stress of 24 vﬁg' expressed in
Imperial units.‘The sand heap énalogy shown in Fig. 5.9%e is
used to repreéent the moment transferred by M, which is
twice the total volume of the sand heaps. At first sight, it

 would appear that a limiting torsional shear stress of

24 qu is far too large when the direct shear stress
is limited to only 4 V¥ . The limiting value for the

. torsional shear stress was obtained empirically for tests
which were developed specifically to meausre this quantity.
A reanalysis of the available data indicates that the
limiting torsional shear siresses observed are very close to
the shear friction values which could be mobilized on the
critical sections for the particular amount of reinforcement
present in the tests. Also, while the critical section is
assumed to be plane, the cracking due to torsion will
produce a warped failure plane, half of which is forced
closed by gravity forces. So, until further data are
available, 24 v?; would appear to be a reasonable
value for the plastic torsional shear stress. There is
however, an interaction between the direct shear stresses

and the torsional shear stresses acting on the critical
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section. This interaction is illustrated in Fig. 5.10c. It
is assﬁmed that there is no interaction between M, and

M, since they do not even act on the same faces of the
critical section.

The interaction diagrams inkFigs. 5.10a, b and c are
all "concave down", thus the total interaction diagram
between vV /V, and MM, would also be "concave
down", and can conservatively be represented by the straight
line interaction diagram shown in Fig. 5.10d which
represents Equation 5.6. A connection which has values thch
result in a point lying to the right of or above the

interaction line would be unsafe.

As stated previously, this approach automatically
redistributes the stresses on the critical section so that
the maximum capacity is obtained. This method does not
identify any one particular mechanism of failure, it simply
ensures at least one load path to carry the required V and
M. The validity of this approach can be demonstrated by
plotting real (v, /v.) and (M,q/M,) Vvalues obtained in
experimental tests on the interaction diagram as shown in
Fig. 5.11. This figure is compared to Fig. 5.4 in Section

5.5.

5.4 Yield-Line Analysis
This approach to explaining the phenomenon around
slab-column joints is essentially pure yield-line theory.

The slab-column punching shear tests have been analyzed by
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@ Islam & Park’s Tests (1976)
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10 _ ¢ Kikuchi's Tests (1977)
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Figure 5.11 Comparison of Plastic Interaction
Equation with Test Results



142

various researchers using yield-line theory. The governing
yield-line mechanisms for each test set-up were determined.
In most cases a conical yield-line mechanism was found to be
the governing mechanism. The original analysis of many of
the slab-column connection tests included a yield-line
analysis, however, conical mechanisms were never
investigated. The yield-1line collapse loads whiéh_were based
on the wrong mechanisms were too large, thus many fai]uresﬂ
which occurred at loads less than the improperly calculated
yield-1line collapse load were reported as shear failures
when in fact they were conical yield-line fai]ures;
Dragosavic and Van den Beukel (1974) anélyzed the

results of a number of punching shear tests. They determined
the collapse load Viiex based on the governing
yield-1ine mechanism, and Vo the theoretical punching
shear load. These were compared to the real failure load

Viest . The results are shown in Fig. 5.12. When

is greater than \ , failure should be

Vflex o

punching shear, and (Vwm/vo) should equal one. Also,
when Viiex is less than V, , the failure should bé
in a flexural mode at a load less than V, . These facts
are clearly demonstrated in Fig. 5.12.

Gesund (1970) has perfofmed a similar type of analysis
of the punching shear test results. He has developed a
parameter Q in order to differentiate between shear failures
and flexural failures. This paramefer is defined on

Fig. 5.13 on which the yield-1line co]]apsé load divided by
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the test load is plotted against Q for a large number of
punching shear tests. A test specimen will fail in a
yield-1line mechanism unless it fails by punching shear at a

lower load. When a shear failure occurs, /V

Vflex test

will be greater than 1.0. Gesund suggests on the basis of
Fig. 5.13 that if Q is greater than about 4, the slab will

fail in shear since most points with Q greater than 4 have

Viiex/ V

tost greater than 1.0. He also suggests that when

Q is less than about 2, the the slab will fail in flexure,
and when Q is between 2 and 4; the failure will be combined'
shear and flexure. The ratherl]arge scatter of the data on
Fig. 5.13 suggests that Q is not a very statistically strong
bparameter. It should be noted that Gesunds’ yield-line
analysis does not predict the yield-line collapse loads very
well. This is clearly shown in Fig. 5.13 since many of the
results had failure loads in excess of the calculated
yield-line collapse load. These cases have Viiex/ Viest
significantly less than 1.0, while corrected prédiéted

collapse loads would result in Viex/ V equal to

test
exactly 1.0. This, together with the fact that Dragosavic
and Van den Beukel had no similar difficulty predicting the
flexural failure loads by yield-line theory, suggests that
Gesund’s .analysis could be improved. In spife of this,
Gesund should not be discounted since he still arrives at
the correct conclusion, that is, that many of the punching

shear tests which have been reported as shear failures when

they were in fact flexural failures. Gesund (Goli and Gesund
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19789, Gesund 1979) has investigated interior, exterior and
corner columns numerically, and has proposéd a method of
checking the slab-column connections for shear and moment
transfer, recognizing that local fleXural féilures may
occur. In view of the uncertainty in Gesund’'s analysis, and
the complexity of his method for checking column
connections, it will not be discussed further.

If one uses the yield-line approach for slab design,
complete with a thorough investigation of conical
mechanisms, the shear stresses acting on the critical
vsection around a column will be small. Consider a flat plate
with uniform square bays and circular columns, such that r/L
is known. For a given uniform load, the total required
(m*m’ ) can be determined by Equatidn 3.4. For any particular
concrete and steel strength, the minimum depth based on the
maximum permitted steel ratio can be determined. This would
require that m=m’ in order to reduce this depth to an
absolute minimum. In most practical cases m’ is greater than
m so the minimum thickness will be based on m’ and will be
greater than the absolute minimum thickness. In any event,
the shear stress on the critical section at a distance d/2
from the column face can be determined. For a particular
concrete and steel strength, the maximum shear stress is
only a function of r/L and the value of the applied load w.
Fig. 5.14 illustrates the maximum shear stresses which can
be obtained of a slab designed "correctly" by yield-line

theory. Curves for three different column sizes are shown.
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One starts with the factored uniformly distributed load,
proceeds vertically to the applicable column curve and then
horizontaliy.to obtain the maximum possible shear stress
which wouid Eesult if the minimum depth was based on
flexure. For typical loadings of 400 psf, the shear stresses
around a very small column with r/L=0.025 is only about 150
psi. The limiting value of shear stress used by ACI,

4 qu , 1s indicated by the horizontal dashed line.
Clearly, for most practical cases of loading and column
size, the shear stresses will never reach the limiting
value. For very large distributed loads, as in the case of
footings and raft foundations, the limiting shear stress may
be reached if the columns are very small, however such small
columns probably could not resist the large loading so that
it is doubtful that one could ever reach the limiting shear
stress in cases of uniform loading and spans. It should be
noted again that Equation 3.4 requires larger design moments
than most current designs provide for, thus minimum slab
depths based on currently used moment fields will result in
higher shear stresses. However, failures should be by

concial yield-line mechanisms and not by punching shear.

5.5 Discussion and Comparison of Approaches

First, the elastic and plastic approaches will be
discussed and compared since they both consider the
phenomenon as involving shear in the concrete. The same data

base has been used for Fig. 5.4 and Fig. 5.11 so that it is
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possible to compare the accuracy of the ACI approach and the
pléstic interaction equation. A comparison of these figures
indicates that the scatter of the results is much less for
the plastic interaction equation than-ft is for the ACI
equations. The test results which fall to the right of the
theoretical interaction line are predicted much better by
the plastic interaction equation than the ACI equations
"while the same is true for the points which fall to the left
of the interaction line, but to a lesser degreef

Most of the tests which plot on the unconservative side
(belbw interaction line) of Figs. 5.4 and 5.11 are those
'reported by Hawkins. The results of 17 of these tests are
summarized in Table 5.1. A test where the (test
capabity/calculated capacity) is equal to 1.0 would fall on
the interaction line. Results below 1.0 are unsafe and will
plot to the left of the interaction line. The results shown
in Table 5.1 speak for themselves. The beam analogy predicts
the failure load more closely and with less variation than
A;the other two approaches. However, the beam analogy has the
" greatest number of cases where the failure load is under
estimated. It is true that two of the values are very close
~to 1.0 which would mean that ACI and the beam analogy would
both have four unsafe cases. But by the same arguement, the
plastic interaction equation would only give one unsafe
result. The Pesulfs of this particular test are underlined
for all the methods cbnsidered. Clearly all of the

approaches have difficulty predicting the failure load of



Table 5.1 Re-evaluation of Hawkins' Test

150

Test CJpacity

Calculated Capacity

Values of Test Capacity <1.0

Calculated Capacity
Mean C.0.v.
ACI 318 - 71 | 1.09 0.16 0.96 0.93 0.90 0.77
Beam Analogy | 1.08 0.13 0.99 0.92 0.88 0.90 0.84 0.99
Plastic
Interaction
Equation 1.13 0.14 0.99 0.97 0.97 0.80
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this test. This test was reported as a shear failure, but at
the time the load dropped off, the slab deflection was 1.9"
in a span 6f 7' . This test should have been excluded from
the data since it probably was a flexurally induced failure.
V'As an aside, Gesund would have classified all 17 of the
tests as flexural failures since the maximum Q value in the
test series was 1.17.

It is clear that the plastic interaction equation is
the best method for predicting the lower-bound to the test
data. It should be pointed out that there is a slight
difference in the plastic interaction equations used for
Fig. 5.11 and Table 5.1. The results in Table 5.1 neglect
the moment transfer capacity of the bottom reinforcement as
suggested in Fig. 5.9d for cases with large shear and low
moment. On the other hénd, Kanoh and Yoskizaki who are
responsible for Fig. 5.11 did include the capacity of the
bottom reinforcement in the calculation of M

The yield-line treatment of the slab-column junction
 requires further development. Dragosavic and Var. den Beukel
have derived equations for some special cases of shear and
moment transfer, and as stated previously, Gesund has
developed a method for analysing connections with the use of
some computer generated charts. The yield-line approach can
not be directly compared to the other methods for shear and
moment transfer. This method does, howevér, shed some doubt
on the data base used for the establishment of Timiting

Va]ues of shear stress used in the other methods.
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Specifically, it would indicate that the lower limit of the
test data reported as shear failures were probably flexural
failures. This conclusion is reinforced by Fig. 5.15
(Criswell 1970) which illustrates the load deflection curves
for a series of tests which reported all failures as shear
failures. Clearly, the tests which failed at the lower loads
were flexural failures. This is not untypical of many of the
test series reported in the literature. Since the limiting
value of the shear stress used by ACI was based on the lawer
limit of the test results, it would appear to be based on
flexural failures. One should re-evé]uate the data base upon
which the limiting values were determined, and filter out
all of the test results which were flexural fai]ures in
order to determine what the limiting value of the concrete
shear stress really is. A check against flexural failures
_should then be made with & flexural analysis, instead of
hoping to account for this behavior by using a reduced
permissible shear stress.

The type of test specimens used in the investigation of
punching shear becomes ‘an important consideration. Most
tests have been conducted with a single column and a
re1afively small portion of slab. The intention is to model
the slab-column joint to approxihate]y the points of
inflection. In these specimens, once yield starts, the
moments cannot redistribute to other portions of the
structure, so the plastic deformations increase until they

are so gross that the concrete finally fails. Even in
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structures designedﬁby yield-line theory, the required
rotations would not be as large as in these tests, so one
would expect that the shear and moment transfer capacity
with realistic amounts of plastic rotation would be greater
than the test specimens usually indicate. It should also be
noted that the test specimens do not have the benefit of
slab jahmfng against the surrounding slabs. More realistig
data would be obtained by specimen§ with at least two
columns so that the plastic rotations would be

representative of those required in a real structure. -



6. PATTERN LOADING

6;1,1ﬁtroduction

The discussion to this point has dealt with one set of
loads only, however most real structures are subject to some
degree of pattern loading. Pattern loading is an important
consideration since it uill directly effect column moments,
fmaximum\positive moments; max imum negafive moments and the
location of the points of inflection. The points of
inflection will in’turh govern the length of the top bars
(but not the width of the top mat). This is a simple but
impor tant detail which can effect significantly the economy
as well as the safety of slabs. It is not intended that this
discussion should: cOnc]ude what loading patterns slabs.
should be designed for but rather, once the pattern load1ng
is spec1f1ed how one would go about account1ng for 1t with
a plastic approach to slab des1gn The 1ntent_js to present
~various philosophical approaches to the brobléh and not
nécessari]y detailed univérsa1 désign equationa.

The approaches discussed will make use oFbthé principle
of superposition which is valid for lower-bound moment
fields, but not strictly valid for upper-bound solutions.
However, as discussed in Section 2.3.2, superposition will
result in a solution on the consehvative-dee,for
upoer—bound moment fields. As a. result of this fact, the
- methods of handling pattern loadings which are discussed are

generally applicable to both upper and lower- bound
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solutions.

_Each different load pattern could be investigafed as a
separate load case with the design moment field being the
moment field envelope of all the cases. This is often done.
in elastic analysis, but for a plastic analysis, this would
be very complicated and‘time consuming. This analysis need
not .be done for slabs with simple geometry sfhce plastic
formulas have been derived to account for pattern loading.
Unfortunately, for cases with complex or irregular geomefry
there are no closed form plastic solutions and a full
plastic analysis of each load case is required.

Investigations ihvolving elastic analysis of slabs
subjected to various types of pattern loading have concluded
"that checkerboard loading is not aé critical as strip
loading (Jirsa et al 1969). Strip loading involves loading
bays acﬁoss the entire width of the structure; The analysis
considers this type of pattern load and thus takes on a two
dimensional form, very simiiar to that of a continuous beam.
The case of two adjacent spans loaded will only govern the
maximum negative moments, but these moments are limited to
- the plastic slab moment capacity so they are of little

concern, and only a]ternate bay loading will be considered.
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6.2 Degree of Pattern Loading

The degree of pattern 1oading can be described by:

- _Movable Load
fq = | : : (6.1)

Permanent Load

The "permanent load" is that portibn of the loéd per unit
length of span which remains on all of the spans. This would
be the dead 10ad‘p]us perhaps some pbrtidn of the live load.
The "movable load"” per unit length of span is the fraction
of the remaining portion of‘the live load which is applied
to alfernate spans. The loads under consideratioh are of
‘course ultimate (factored) loads. The panamtér fq

reflects not only the type of pattern loading, but aiso the
effects of live to dead load ratio. Besides being a o
mathematically convenient parameter(dofriet and McNeice
1971), it also gives some indication of how much the points
of inflection differ ffom thdse obtained under uniform
loading. Tab]e-6;1'gives values of rd for various load
patterns and various live.to dead load ratios.

The pattern 1oadihgs.tovbe consideredvshould-be
obtained from applicable building codes. The ACI 318-77 as
well as CSA 23.1 are somewhat inconsistent in the pattern
loading for which the slab should be designed! For example,
ACI 318-77 Section 9.2.2 suggests that pattern (3) of
Table 2.1 be.used; ie. (D#L):(D),.while_Section 13.5.9.2

suggests that pattern (1) of Table 2.1 be used ie.



Table 6.1 Degree of Pattern Loading
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No. Load Pattern L/D rq*

' (service)
D 1.0 0.607
| : ' 3 s ©0.911
| K 1| 2.0 1.214
3.0 1.821
| | D+(3/4)L 0.5 0.455
% D . 1.0 0.911
2 1 | $ 1.5 1.366
T ' 2.0 1.821
3.0 2.732
o D+ L 0.5  0.607
3 | D 1.0 1.214
- - I } 1.5 1.821
— 2.0 2.429
3.0 3.643

D+ L

0. 0.23
. D+(1/72)L 1 8 0. 373
4 { § 1.5 0.477
K 7 1 2.0 0.548
3.0 0.646

* rq has built into it a dead load factor

of 1.4 and a 1ive load factor of 1.7
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(D+0.5L):(D), and finally Section 13.7.6 suggests that
pattern (2) of Table 2.1 be used ie. (D+0.75L}: (D).
Designers need better guidance than this on which to base
ratibnal slab designs. The specified pattern loads should
fake due regard of the likelihood or probability of various s

pattern loading cases.

6.3 Possible Plastic Solutions

The method used for the following solutions is based on
the formation of plastic hinges at the face of the supports
and at midspan, along with simple equilibrium. The only

unknowns will be column moments‘and the location of the

" points of inflection. Once one is Known or assqmed the dther

may be obtained from simple statics. The column moment will
of course alWays be the moment required tb»Keep the beam end
moments in equilibrium. However, the design moment for the
column itself should also include the effect of the

eccentricity of the end shear in the slab acting at the face

of the column. A'plastiq analysis also requires that the

value of v needs to be Knowh in order to determine the
positive and negative moments. - |

Four possible solutions have been investigated. They

.are.

1. Set the column moments equal to zero and determine the
location of the points of inflection based on an end
>moment eqUal to that used had all the spans been loaded

with permanent and movable load. See Fig. 6.1. This
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appﬁoach mimimizes the.column moments, but increases the
length of the top bars.

Set the points‘of inflection at the location they would
assume under unifbrm loading and determine the column
moments required to maintain equilibrium at the support
joint. See Fig. 6.2. This approach minimizes the length
of top bars required.

Set the points of inflection at some arbitrary point
(but at least as far from the coluhn as the points of
inflection are under uniform load), and determine the
column moments required for equilibrium. See Fig. 6.3.
This is a more versatile approach than above since it
permits one to reduce. the column moments by increasfng
‘the length of the top bars.

Set the column moments equal to zero, use fhe same
locations for the points of inflection as undér uniform
joad,.andAset the end moments equal to the end moment in
the.unloaded span. The max imum midspaniﬁoment required’
for equilibrium in the loaded span can then be
determined with simple statics. See Fig. 6.4. This
permits one to account for the effects of pattern
loading by the addition of some amount of bottom stee].
The amount of extra refnforcement required will depend .
Upon v , the type of pattern loading and the ratio .
of live to dead load. For example with Y =1.0,
L/D=0.5 and pattern loading case (1), no extra bottom

'steel is required. However, for a more realistic ¢
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of about 1.8, extra steel will always be required.

6.4 Elastic Solutions
Some of the possible solutions just discussed require a

reasonable choice for the location of the points of
inflection, it would therefore be of some benefit to examiné
the location of the points of inflection as obtained from
elastic analysis. The references on pattern 1oadihg make no
reference to the points of inflection so an analysis was‘
conducted by means of indirect stjffness (slope deflection).
Columns were assumed above and below the slab and were
assumed to have various relative stiffnesses a, . The
location of the poihts of inflection are then only a
function of the relative column stiffhess QXec and the
degree of patterh loading fq . By modeling the system as
a plahe frame, one assumes that the poihts of inflection are
in a straight line, whereas the location of the line of
contraflexure varies across the width of the panel. The
.'analysis used gives the "average" location of the point of
inflection, since it will satisfy static equalibrium for the
panel ‘as a whole. | |

| The results of the analysis for equal spans are shown
in Fig. 6.5, while Fig. 6.6 shows the reSths-of an analysis
with alternating short-and'long spans With the short span =
2/3 of the long span. On these figures one starts with the
 known i~ , proceéds horizonta]]y to the Known Qg )

and then drops vertically to obtain x /L the location of
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Figure 6.5 Effect of Pattern Loading and
Column Stiffness on Points of Inflection
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the point of inflection which is measured from the column
centre line and expressed as a faction of the
centre-to-centre span.

Using Fig. 6.5, one can examine'sbme typical cases.
Typically @c  varies between 0.5 and 1.25 and fq  is
approximately equal to 1.0, thus X/L typically varies
between 0.25 to 0.30. Oh the other hand, for the extreme
limits of the Direct Design Methéd, (L=3D) with pattern load
(D):(D+L), fq = 3.B4. With this value of r, and
equal spans, Fig. 6.5 indicates that negative moments will
exist across the entire span for a less than 1.25. For
the case of unequal spans, Fig. 6.6 indicates that negative
moments will exist across the entire short span for‘ Qe
.less than about 5. ACI detailing practice however is to stop
the top bars at about Xx/L= 0.32. Thus, according to
elastic analysis, ACI detailing requirements are probably
safe for typical cases, but wduld be unsafe for cases

approaching the limits for the use of the Direct Design

Method.



7. DISCUSSION AND CONCLUSIONS

7.1 Flexure-General

A1l of the methods discussed in this work are based
upon plasticity. At 1east some of the concepts presented are
"used daily in the design‘of slabs. Even if an elastic
analysis were carried out, thé elastic moment field would be
redistributed across the width of the slab panels so that in
various strips, the reinforcement will be}of uniform
spacing. The degree to which a deéigner makes use of
plasticity is a matter of personal preferance but it will be
influenced to some extent by serviceability requirements.
_ While all of the methods considered are general eﬁough
to be all-around design tools, some are better suited to
-some types of problems thén-othérs. Yield-1ine theory for
example is the only "practicail” method*of analysis for
slabs, while the other methods are onTy suitable for slab
design. No one method is superior over all the others. One
should use the method which is best for the given
circumstances, or even a hybrid combination of methods for
. various portions of a slab design. |

There is no rea] saving in reinforcement with ahy one
hethod of design. Generally, the améunt ofrreinforcément
required Wi]l be at 1east ?s much as or slightly more than
that required by the Dfrect Design Method. A1l the hethods
either require or benefit gréat]y from bottom reinforcement

immediately around the column.

169



170

A few very general points must be considered. The first
is that these design mefhods are‘only applicable to braeed
structures. The second point is that the choice of column
moments is "arbitrary". It is possible to‘hevermany
“correct” designs; one should however,-try to approximate
the elastic moment field in order to improve serviceability.
Given a reasonable amount of engineering expérience,‘a]] of
the methods can be used by a designer to produce
satisfactory designs. In view of Fig. 5.f, there would
appear to be a rather wide range of suitable moment fields
to choose from. This makes it relatively easy to produce a

safe slab design without the use of a computer.

7.2 Upper-Bound Solutions

There is a great deal of discussion in the literature
dealing with yield-1line theory and slab analysis. There is
however, very little discussion of yield-line theory and
slab design. The computations required for design are
greatly simplified if yield-line locations are set at the
beginning of the deeign. Suitable positive slab moments are
then chosen. Finally, the negative moments required to keep
each of the segments in equilibrium are determined. Since
the negative moments occur at supports, any difference in
negative moments between adjoining segments can be assigned
to the support. The location of the yield-lines originally
chosen in the firSf step will then be the mathematically

correct locations for that parficuTar family at yield-line
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mechanisms. The significance of this result cannot be over
| emphasized since not only is the Iarge amount of work
-reQU1red to optimize this yield- ]1ne family eliminated, but
the critical yield-1line pattern within the family is Known
with absolute certainty.

The design approach just suggested can be used to
advantage if the yield-line family considered is the family
which will gdvern the particular slab in question. For a
‘flat plate on a regular column layout with square or
rectangular top mats, the conical yield-line families should
govern as shown in Table 3.1. However, this slab is typical
of those designed by the Direct Design Method which only
| considers parallel yield-line mechanisms. It can be argued
‘that on the basis of slab jamming, the strength of the
conical yier-iine:mechanisms is énhanced to the point where
these mechanisms are no longer the governing family of
mechanisms. The satisfactory performance of slab designs
which ignores the possibility of conical mechanisms suggests
that where's]ab jamming can 6ccur, the governing yield-line
family Wi]] be that of the parallel mechanisms which extend
across the entire width of the structure. If should be
pointed out that while conical yield-1ine failures are
generally not Eeported in test results, it does not mean
f that they do.not exist. Théy are often either miétaken for,
or cause punching shear failures so that the reported cause
of failure is a punching shear failure.

Since the Direct Design Method is essentially a special
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case of yield-Tine theory with elastic embhelishments, much
of what has been said applies to the Direct Design Method.
In particular, the Direct Design Method is satisfactory with
respect to the design'moments, cut-off points and column
moments for the parallel yield-1line mechanisms. However, the
top mats are neither long enough nor do they have enough -
moment capacity to resist conical yield-line mechanisms .
Weisinger’s segment equiiibrium method is clearly a
special case of yield-1iné theory and has been préesented in
'order to ii\ustrate the capabilities and usefulness of
yield-1ine theory for the design of slabs. Much can be
learned from a study of Weisinger’'s designs. Pérhaps the
most important point is the role played by banded
reinforcement and the distribution of positive and negative
moments in the serviceability of slabs. The use of
yield-1line theory as it has been.discussed here only
provides an indication of the total moment required along a
yield-line. The moments and thus the reinforcement should be
distributed along the yield-line approximately in accordance
with elastic theory. Of course there is the possibility that
yield-lines would occur somewhere within the slab segments
between the assigned.yield-lines, but then this possibiiity
also exists with homogeneous isotropic reinforcement and is
really just another family of yield-1line mechanisms. Thus,
banding of the reinforcement should not present any real
safety problem if the slab was designed for the governing

yield-line family in the first place.
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7.3 Lower-Bound Solutions

The discussion of lower-bound design methods has, by
necessity, been brief and somewhat incomplete. However, onde
the concepts used by Hillerborg are understood, they can
easily be extended to other cases. Hillerborg's work
includes the consideration of supports of finite area; and
preset moment fields for many different types of segments
and loédﬁngs such as: point loads within é corner supported
segment; line loads and linearly varying distributed loads;
segments supported on two or three adjacent sides; slabs
with re-enterent corners; trianguiar segments; etc. It is
clear that the development of lower-bound solutions has far
outstripped their application in everday design, and that
further discussion and clarification will be required before
these techniques are assimilated by the design profession.

Chapter 4 has demonstrated that there are basically two
different approaches: the strip method and the segment
method which differ significantly in their application. The
concept of using a previously developed lower-bound moment
field, known as a "preset" moment field, is applicable to
_ both the load dispersion elements which are combined with
"slab strips and slab segments or elements which carry the
load directly to supports. While the strip method is more
easily understood, it is not as useful or powerful a method
as the segment method. For flat plates, the segment method
js particularly versatile but ﬁt relies on the availability

of suitable preset moment fields such that the maximum
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moments occur only along the boundaries of. the slab ?
segments. There is a great deal of potential for the
development of more suitable and more easily understood
preset moment fields with the use of the finite e lement
method-dr other numerical methods. Such solutions would
greatly aid the acceptance of the segment method by the
design profession. For pracfica] design however, the main
condition is that equilibrium is fulfilled for the segments
as .a whole, and that the lateral distribution of moments.

chosen is reasonable.

7;4 Shear and Moment Transfer
It has been illustrated via Fig. 5.1 that slabs will
generally carry almost any amount of load if the loads can
be transferred to the columns. The slab column junction is
often the most critical element in a slab design as far as
the ultimate failure load is concerned. The interaction of
shear and moment must be considered.

Of the various approaches to this problem which were
considered, the plastic interaction equation would appear to
‘be the best approach. For the simple cases considered, it is {
no moré difficult and perhaps even easier fo apply than the
approximate elastic method used by ACI. There remains much
work to be done on the plastic interaction equations before
they can be applied as a general procedure. In particular,
methods of handling round columns, highly rectangular

columns, shear heads, shear reinforcement,. prestressing
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effects; and openings hear columns must be developed. Tﬁe
- conceptual model uséd in the plastic intéraction equation
'approach is so simple fhat practical solutions to these
‘cases will no doubt soon be developed.

The punching shearvtest results indicate that even the
bléstic interaction equation can not predict conical
yield-]iné failures around the columns. Further testing of
specimens with at least two columns are required in order to
model the behavior of complete structures and determine how
the redistribution of moments effects the slab shear
capacity. These tests would also indicate whether there is a
need to specifically design for conical yie]d-]iné

mechanisms.

7;5 Pattern Loading and Column Moments

Chapter 5 has discussed how one would go about eﬁsuring
that a particular slab design is safe for a Specified'
loading pattern. The emphasis was on cut-off points for the
top bars along with the désign moments fbr the éolumns. This
invturn could have a gneat-effect on the shear and moment
transfer problem in the slab column juhction. This has not
really been discussed since fbr cases where pattern loading
produces significant column moments, the shear transferred
to the column is reduced._That'is,,since some of the load is
removed from tﬁe slab, in ofder to produce the pattern |
loading, the total load carried by the slab is reduced.

Further research is required in order to determine the



176

pattern loading which produces the worst probable !
combination of shear and moment to bé transferred to the
co]umn..This must be based on statistical stUdies which
consider the independence or lack of independence of loads
on adjacent spans. This may in fact, depend upon the use or
~occupancy 6f the structUre. In any event, until the proper
pattern loads have been determined, it is safe to design all
slabs for loading pattern 3 which is shown in Table 6.2. One
‘should however, also check the plastic interactioh equafibn
for'the case of full uniform load. It should be pointed out
that many different cases can be checked easily with the
plasfic interaction equation since.> Vv, and M, need
to be calculated ohly once. Each case of V and M can be
quickly substituted into Equation 4.1.

It has been pointed out by Beeby (1980) that on the |
 basis of probability studies, the simple detailing
requirements found in British concrete design codes were
satisfactory. Theif codes, like ACI, have top bars which are
too short-accordihg to the elastic moment enQe]ope resulting
from pattéhn'loadihg. Beeby found that by assuming
independence of live load on adjacent panels, the probable
degree of pattern loading which results requires steel only i
slightly in excess of the current simplified detailing
hequiréments. He also brings up é number of factors which
increase the actual slab capacity but which are usually
neglected in the design calculations. These include slab

jamming as previously discussed, and tensidn stiffening due
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to the tensile strehgth bf'the concrete. He also considers
.-'several 6ther factors, the moét significant being the
'incbeaée in the reliability of the tensi]e'strength of the

‘reinforcement when many bars are uéed. That is, the more

~ bars whfch cross a yield-line, the greater will be the
probable average yield-line cépacity. Because QF these
neglected phenomenon which increase the‘slab strength, Beeby
-conc luded that it would be_safe to design a slab on the
'basis of only the uniform load case. He does not give any
indication of what to do about column moments. It should be
pointed out that Beeby arrived at his conclusions based on a
slab supported by columns of zero flexural stiffnessp'For
slabs with columns of finife stiffness, the effects of
pattern loading on the detailing requirements of the slab
steel will be even less critical. However, the question of
probable column moments must be dealt with. |

Contrary to Beeby, it is recommended'that pattérn

loading be considered explicitly. If the columns are such
that they will carry no moment, the pattern-]oading should
be dealt with by method 1 or method 4 from Chapter 5. 0On the
other hand, if the columns can resist moment, method 2 or
method 3 should be used when cdnsideringvpéttern loading.
‘This will ensure that the column and slab-column connection
will have adequate strength. It can be argued that the
analysis'proposed invChaptér 5 is too.simplistic since
moments may leak arbund the column from one span to the

next. However, in view of'Beéby’s_paper; this can hardly
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make the proposed procedure unsafe.

The column moment used in the Direct Design Method is
approXimately in accordance with methodé 2 and 3 given in
Chapter 5. The column moment requibed is essentié]]y that of
method 2, except that the column moment is divided by

1+ Z&k . For infinitely stiff cb]umns a,. approaches
infinjfy énd the column moment required approaches that
required by method 2. For relatively stiff columns, the
column moment is reduced only slightly so that the length of
the top bars must be increased slightly. This is done in the
standard detailing practice by extending 50% of the top |
steel to 30% of the clear span from the column face so that
‘the design satisfies method 3. However, for flexible
columns, the coiumn moment is substantiale.decreased SO
that the standard detailing requirements will not satisfy
~any of thé methods in Chapter 5. Unfortunately, this is the-

case for many commonly used values of a Thus, the

ec
detailing requirements in the Direct Design Method cannot
always be fully justified on the basis of plastic analysis.
One must therefore look to the factors which Beeby
considered in order to justify the current detailing
requirements. An extension of Beeby’'s analysis to include
columns with non-zero stiffness would be most interesting
since it would shed some light on the probable combinations
of column load and moment as well as on the location of the

cut-off points.

The discussion thus far has been addressed mainly to



179.

interior columns. For exterior columns there is litt]e doubt
that there will be a column moment. The problem lies in the
choice of a suitable column moment. This probiem does not
have a simple answeri_Present design methods utilize column
moments smaller than those obtained from an elastic analysis
'Without_any'ill effect. The following discussion will not
_ihclude firm recommendatiohs but rather an ihdication of
some of the factofs which should be considered when choosing
column moments.

In many instances, the columh type or size will

indigéte the nature of the column moments one should use.
‘The column size may be determined by architectural
.considerations or the axial design loads. Large colUmns will
_tend to bé stiff and should'be assigned relatively large
moments. The converse would be true for small columns. For
slabs supported on steel pipe columns as in many of
‘Wiesinger's designs, the column moment would be set equal to
zero. ' | .

In some instances it may be desirable to sef the column
“moment equal to that resulting from the minimum eccentricity
requirement for the column design. .This could be considered
a "free" moment since there is no extra cost in terms of the
column design. |

In some cases it may bé_desirab1e to.Use small column
moments in order to:minimize_the’problems associated with
Shear,and ﬁomenf trahsfer at the'slab-column“joint. This is

particularly true at exterior columns.
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When in doubt about what is a reasonable column moment,
one is safer with a choice which is too large whan one which
is too smé]l. A choice of large column moments will produce
a design in which yielding of the slab will occur before
sudden failure of the column or slab-column junction. The
inherent ductility of the slab will provide adequate warning
in an overload situation, but there may be serviceability
problems if 1érge column rotétions are required in order to
develop the assigned moments.

The choice of column moment is somewhat
self-fulfilling. If one chooses a large column moment, it
will require'the design of a large, stiff co]umn. This stiff
column will attract significant moment so that the elastic
cd]umn‘moments will be ih the neighbourhood of the moment
chosen. By the same token, selecting a small column moment
will resdlf in the design of a slender flexible column which
will ndt attract significant moments.'
| Special care must be taken at exterior columns when
more steel is provided in the slab at this support than is
required by the design moment field. In such a case, it is
'possible for the slab to transmit a moment to thé column in
excess of the design moments. One should thus always'design
exterior columns and the exterior slab column connection for
the actual slab moment capacity which is provided. This
approach will ensure that shbuld a failure occur, it will be
by yielding in the slab rather than failure in thevcolumn or

slab-column connection.
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7.6 Some Final Thoughts |

' In view of the contradiction bétween the conical
yieldfliné analysis which is an upper -bound solution, and
observed behavior which indicates that the upper-bound to
the collapse load is usually exceeded, the slab probably
should not be treated as a thin plate near point loads or
columns; It appears to be too conservative to model this
érea of the slab as a thin plate. Further reéearch is
required in order to develop a convenient, more realistic
method of dealihg with this area of the slab.

Both Wiesinger's segment equilibrium method and
Hf]lerborg’s'segment are very similar. While Wiesinger uses
thiangular segments with a moment fie]dthicH is only Known
at discrete points, Hillerborg uses rectangularlsegments
with a moment field which is known at every point. It éhould
‘be possib]e to marry the two approaches by:dévéloping
lower -bound moment fields for Wiesinger’s triangular
segments. Thé result would be a more general ]ower;bound
solution method capable of handling most slab designs.

Since most slabs uti]%ze reinforcement in bands of
constant moment capacity, it would be desirable to constrain
‘a finite element analyéis so that the moments at critical
seétions%are uniform across specified_widths'of the slab.
Such anianélysis woufd only require lateral rédistribution
.of'moments as isvdone presently with elastic analysis, but
it would give an indication of what happens to the moment

. field between the critical sections as a result of the
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redistribution. This is not usua]ly addressed, so that the
results of an elastic analysis which have been smoothed of f
for easy reinforcement layout are no longer lower-bound. |
Clearly more work must be done on the establishment of
suitable criteria for determining whether a moment field is
suitable. At present, this must be determined on the baéis
of good engineering Jjudgement. Unfortunately, good judgement
comes from failures which of course are the result of bad
judgement. As more and more designs utilize plastic methaods,
the coTlectiVe judgement of the design profession.as a whole
will increase and perhaps somedéy it will be possible‘to
codify good judgement. Fortunately, even today the plastic
methods of design considered in this paper are sufficiently
developed so that the scope of the designs which can be
carried out are limited by the designersf kKnowledge of the

various methods and not by the state-of-the-art.
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Reference: "Yield-Line Theory”, K.W. Johansen, 1962 . (YLT)

Let: S= column _reaction
~.¢ = column radius .
= uniformly distributed load on the slab

»)

Figure Al (Equivalentto Fig. 69 YLT)

Tne reaction of the column is assumed to be uniformly distributed
over the circle of radius ¢, and will have a stress of:

P = _S
'ﬂ"cz
For a circular yield-line of radius r, the shearing force along the
yield-line is*

q= S —p-ﬂ’r2 (From vertical equilibrium)
21Tr :
Also, g= m'S tmg (From the consideration of knot forces with
—F equation 35 YLT) '
Then: mgtmg = S - pré (A1)
' 297 2

“For the small sector shown in Figure Al, with radius r, summing
moments about I-I gives® _

(m; mg)r d® - rJr dd = ( pr3~ pcb3)d¢
: 3 3

Since q= m;+ms the left side of the above equation is zero.
—-E _

And  r=cfpg (48 YLT)
p - .
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W-ifh this value of r substituted into equation Al,

motm. = S - pcaffla
s +Mg P S 3" 3P
2 2 VP Vp

This simplifies to: -

mg +mg = S (1 -\9p ") (49 YLT)
Coan Pc

Equation (48 YLT) gives us the required moment capacity over the
column (ms +ms) Since this generally Ia[ger than the .usual values of
m and m away from the cofumn, (ie. m and m for the parallel mech-
anism), we can obtain the required moment capacity by adding a drop
panel. But, how large should the drop panel be, and how long should
the top bars be? . '

‘With drop panels, the ultimate moment capdcities do not have the
same value along the radial yield-lines, and so the previous determination
of 9 is no longer applicable. From the equation of moments for a
small element at an arbitrary radius p , bounded by two consecutive
circular yield-lines and by two consecutive radial yield-lines, it can
easily be seen that we stiil have:

(This is still true because (50 YLT)

q = m, +m ,
‘ —IP—-L of equation 35 YLT)
-« 2 o . )
And q= S -4Tpe (This is still true from vertical
2af equilibrium)

From these fwo equations one can obtain:

p2= 2(S -mp -mp) | (51 YLT)

p 2%

This deflnes the vyield-line in the zone with ultimate moment
capacities my, and m,. If, at a distance x, the ultimate moment
 capacities change from m and m, to m and m, , X is determined from
the moment about I-I for ' the element “shown In Figure A2, bounded
by two circular yield-ines correspondnng to m, and m, and two consecutive
radii. The cut off point x is determined so ?hat the coliapse load for
this secondary conical mechanism is still p.
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Figure A2 (Equivalent to Fig 69 YLT)

It should be noted that the circular yield-line at ¢, is a positive yield
" line due to the primary conical mechanism. Consider equilibrium of the
moments about I-1:

e, dd - mvdqﬂm(f x)d(IHm(x P)d([) q?dd) q?d¢+ p_?id(l)
3 3
Which gives:
3
X =£(h—ﬁ3) (52 YLT)
3 (m-m)

In which ¢ and ¢, are determined from equation (5! YLT). -

Referring to Fig 12b orc, the required slab capacities directly over
the column or capital are, ms and mg , and are determined from
equaflon Al.  The moment capacity lS reduced from ms and mg to
mq and mg at some point so that the collapse load will still be p.
This cut off point is determined from equations 51 and 52 YLT. Thus®

b= p(R-r2)
__r__T
3(m -m)
. 2 '
With Ry = 2(S -mgmy)
p 2% :
And . r = C3£__
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At the next reducnon in moment capacity, that is, from mg and mg to
_ m and m, the required cut off point will be: '

a = p(Rz R, )
3(ma’m)

Wi»?h Rg =

These correspond to equations 53 YLT.

For the special case shown in Fig. 14c, equation Al gives the
requred moment capacity:

m+m=S - pr- = plo(I-Ye)
2w 2 21 12

And the cui off point is:

a-= p(R3-r3)

3 S

m
. 2 _
With R.= 2(S -m)
2 p 217
And ro=c\3/L2
\Ca

Ry and R2 are radii of circular yield-lines and are thus limited
to £ (L/2). Johansen makes no mention of this limitation on the equations

which have been developed. This can be deait with in several ways.
1) Simply use sz =(L/2) when equation 5! YLT yields a larger value.
2) Simply use the vaiues of R, and R, as ‘they are.

3) Produce a new analysis which takes into account the fact that the
exterior circular yieid-line has flat spots.

Mechanism corresponding to these cases are shown on the next page.
‘Clearly, (1) is not the optimum mechanism. Thus it wiil under estimate the
design moments. While (2) is not kinematically admissible, the design
would be safe. On the other hand, when only one panel is loaded, (2)
would be kinematically admissible and would govern the design. Finally,
(3) is likely to be the collapse mechanism, but solutions for this mechanism
have not been developed.
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EXAMPLE |
ANY
Simple . Support
* T
o w=l5,._l kN o
a1 r-n2 Q
E & @
N
©
X @
E £
0l h
N
Simple Support 7X
4 m
Figure BI.I Slab Layout

STEP 1. CHOOSE LOAD DISPERSION  LINES

Generally the interior half of the slab will have more or less constant

moment across its width. It is also convenient to have the edge strips
the same width in both directions. Basing the edge strip width on 1/4
of the narrow width will result in smaller moments in the long direction.

Thus: Edge Strip Width=14 =350 m
v : | 4
With: Interior Strip Widths = 14 - 2(3.50) = 7.00 m

And ©=18.2-2(3.50)=1120 m
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| < 9} ©
5
o | I
18/
g 2 2
O
N
£
3 3 3
%
- .
< o) )
350 m 70 m 350 m

Figure Bl.2. Load Dispersion Lines

STEP 2. CHOOSE DISTRIBUTION OF LOAD CARRIED IN
' - EACH DIRECTION

‘Strip 2-2 is much stiffer than strip 5-5, therefore, let strip 2-2
carry 100 % of the load. In the corners, the load can reasonably be
assumed to be carried equally in each direction. Where strip 5-5
crosses strip |-l and 3-3, it is convenient to split the load equally in
each direction since this will produce a uniform design moment in
the y direction across the entire slab. (Strips 4-4, 5-5 and 6-6
all have the same loading.) S



< 0 - ©
0 R 3
'e} 0| e
,.50% , 50% ,50%
,100% , 100% 100%

,90%

,.50%

.:50%

Strip I-1 & 3-3

B50%Y | 50% 50%
Distribution of Load

Figure BIl.3

DESIGN STRIPS

(Per m WwWidth)

7.55 KN/ m

LOAD

- 185 kNm/m

BMD

- 202

[N
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Strip 2-2
15,1 KN/m
LOAD
0] 0
70 kNm/m
BMD
Strip 4-4 , 5-5 & 6-6
’i.55 KN/m : 7.55 KN/m
13.50 m | | 350m
h LOAD
O~ TIg I TTTITIIT] llllll_llllélwo
46.2 kNm/m 46.2 kNm/m

BMD



Figure

— o
-
O
~
0
46.2 ‘
R
[
Moment Field (kNm/m)

Bl.4 Design
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EXAMPLE 2.
AY
Simple Support
£
©
0
F— ® 925 kN N
g Point Load ’g
g q
3 E
£ % @2
N 5 E
n
@ ® 925 kN Z
£ B : Point Load
©
Te)
X AN
Simple Support 7 X
7 m 7 m
' 4 m

- Figure B2.1 Slab Layout
STEP 1. 'CHOOSE LOAD DISPERSION LINES

The width of the strips carrying a concentrated load is rather
arbitrary, but for the dimensions given, 3 m would seem
reasonably conservative. This would be approximately 6 to 8 times
the slab thickness. - '

The shaded areas correspond to the load dispérsibn_ élemenfs which -
convert the point lodds to patch loads which are applied to the
simple strips. ' v v
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.S

3.0m
1.5

.S
N

3.0.m
.5

1)
.5 {1.5
30m

Figure B2.2 [.oad Dispersion Lines

STEP 2. CHOOSE DISTRIBUTION OF LOAD CARRIED BY STRIPS
IN EACH DIRECTION

Deflection of strip I-| at point load P applied at midspan is
approximately : 3 3
PL = P(4) =57.2P

48E| 48E!1 El
Deflection of strip 3-3 at point loads P applied at load locations
is approximately:

2 2 2 2
Pa(3La-3a -a )=56(3(18.2X5.6)-3(5.6) -(5.6) )P =I68.3P
GEI GEI El

Then, the load carried in the x direction is approximately:

1/757.2 x I00% = 75% and load carried in vy
/572 +17168.3 ' direction is 25% .
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The preset moment fieid will however be distributed 50% - 50 %
since the load dispersion element has equal stiffness in each -

- direction.

M0
N
| 75% |
V4
»®
n
N
2l 75% 2
/
N
0

Figure B2.3 Distribution of Load

STEP 3. . PRESET MOMENT FIELD

‘Patch load w=925 =102. 8 kN
3x3 ™2

Maximum preset. moments |
m;= (0.5)wc2= 0.5 (lO3)(I.5)2? 16 kKkNm/m
» 2 2
m’x=(-0.l37) we = -0. 1-37(103)( 1.5)=-31.7 KNm/m

a'3l'7 kKNm/m

' 58 kNm/m (48 kNm/m
116 kNm /m '

PRESET BMD



STEP 4. SIMPLE STRIP MOMENTS (per m width)

Strip I-1 & 2-2

w=0.75(1028)=771 ~kKN/m.

771 kN/m
|  s5.5m 3 m 55m |
1 ' 1
"LOAD
o) o)
\\L\ %
||| |} #6386 kNm/m
223 kNm/m
- BMD
Strip 3-3 ‘
257 kN/m 25.7 kN/m
I, 4.lm Im|l 4m 3m| 4.Im L
7 , 1
LOAD
o) 0
3i6 kNm/m
02 kNm/m
431 KNm/m

BMD

208
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STEP 5. SUPERIMPOSE MOMENT FIELDS TO GET THE DESIGN
MOMENT FIELD (per m width)

Strip 1-1 & 2-2
o) 0]
N\
: é36 kNm/m
~et1T9 694 kKNm/m
LI) 691 kNm/m
. 839 kNm/m
BMD
Strip 3-3
0] 0]

316 kKNm/m

374kNm/m

370 KNm/m
518kNm/m

489 kNm/m -

43| KkNm/m

B8MD
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839

[TTHEZH 58

-
H

839

[T si8

Figure B2.4 Design Moment Field (kKNm/m)




211

EXAMPLE 3.
Ar\y
Simple Support
£ g -
Uniform Load =151 kN
Q 2
0 m
® Column T
o
— [«%
5 o
_ 8 @A
' £
NG o
W\ Qa
o |@8 £
- £ %)
@ ® Column
£
©
T}
—> X
Simple ‘Support-
7. m 7 m
14 m
Figure B3l Siab Layout
STEP |. CHOOSE LOAD DISPERSION LINES

Since, the average span in the x direttion is 7 m, let the width of
the y strips equal: '

70 = 3.5 m

2 4
Since the average span in the y directionis 7+5.6 = 6.3 m, let
the x strip width equal: 2

o 6.3 = 35 m say 32 m
2 _

Centre the strips over the columns so that the load dispersion
elements are baianced.
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© N~ ©
£
o | |
qi

©

o o 2 2
£
© 3 3
)
(\IE ©
w| 9 4| 4
£
o 5 5
v.'

© [l\ ©

175|175
5.25 m 350m| 5.25m

Figure B3.2 Load Dispersion Lines

STEP 2. CHOOSE DISTRIBUTION OF LOAD CARRIED IN EACH
DIRECTION

‘The uniformly distributed load is carried almost entirely in the x
direction for strips 2-2, 33, and 4-4. In the corners, strip I-1 is
stiffer than strip 6-6 and will carry more load, say 60% of the
uniformly distributed load. On the other hand, the opposite is probably
true for strip |-l and 7-7. : ’ '

fhe column load should be‘distributed similarly to the point loads
of example 2, that is, 75% in the x direction and 25% in the y
direction . :
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3 X ?
O o)
R 1 3 <
260 % 240% 260% ™
/7 4 § 4
32
100 % "’I
< T  T5%
L, | 100%
/7
3
L 1 100% "m’\]\
i /75 %
2 R R
o .
o) ol | -
v\]\ ' WJ\ <
/60 % /40%, P 60%7 -
Figure B 3.3 Distribution of | Figure B34 Distribution of
Uniform Load Upward Acting Reaction

- STEP 3. CHOOSE COLUMN REACTIONS

Arrive at the column reactions on the basis of tributary areaq,
taking into account the difference in end moments in exterior spans.

P 2 IS. [(1.25(7)+ 1.25(7)) x (l.25(5.6)+l.0(7))]
P = 925 kN

Patch load = 925 = 82.6 kN



- STEP 4. DETERMINE PRESET MOMENT FIELDS

Maximum preset x moments

m.=(-0.500)We; =(-0.500)(826)(1.75)° = 126 kNm.

m;=( 0.137) wcf=(0.l37)(82.6)(I.75)2= 34.7 kNm

-126 kNm/m

-63 kNm/m

347 kNm /m

BMXD

Maximum preset y moments

m,=(-0.500) w&; =(-0.500)(826)(16)°= -106 kNm
m

my=(0.137) wc =(0.137)(826)(16°= 29.0 kNm
4 m

=106 KNm/m

T

29 kKNm/m

Bm,D
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STEP 5. DETERMINE STRIP MOMENTS DUE TO UNIFORM LOAD
(per m width) '

Strip I-1 & 5-5
6.04kNA 9.06 KN/m
Ju LLLd |
5,25 m 35 m 5.25 m
- LOAD
| 180 KkNm/m
190 kKNm/m
B8MD
Strip 2-2, 3-3 8 4-4
15.1 KN/m

347 kNm/m
370 kNm/m

BMD
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Strip _6-6 & 8-8

6.04 kN/m
4 m _ 10.2 m 4 m
LOAD |
O S T T T T =0
' 483 kNm/m
BMD
Strip_ 7-7
9.06 kN/m
4 m | 10.2 m 4 m
LOAD
0
O‘*LLLLLMIIIILIllHl!lllllIllLLLLLP?
“72.5 kNm/m

BMD -




STEP 6. DETERMINE STRIP MOMENTS DUE TO UPWARD ACTING
PATCH LOADS (per m width)

Strip 2-2 & 4-4

*l' | ﬂ - Gé.OkN/m \Il,

',IL 5.25m 3.5m4|, 5.25 m
‘ " LOAD

/’5‘6\65 kNm/m

,{ N-S?OkNm/m

// N\
// N\

BMD

Strip 7-7

l N .' T 206 kN/m|

I, 40m | 3.2 m 3.8m 32 m|, 40 m

1
LOAD
: -369 kKNm/m
@ -343 KNm/m
-268 XNm/m
0] 0

BMD

217
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STEP 7 SUPERIMPOSE PRESET MOMENT FIELD, STRIP MOMENTS DUE
: TO UNIFORM LOAD, AND STRIP MOMENTS DUE TO UPWARD
ACTING PATCH LOADS TO OBTAIN THE DESIGN MOMENT

FIELD (per m width)

Strip 1-1 & 5-5

SO KNm/m
BMD

Strip 2-2 & 4-4

-421 kNm/m

-286 KNm/m
-223 KNm/m

" BMD

Strip 3-3

370 kNm/m

- BMD

[T
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Strip 6-6 & 8-8

O"“'Hll!.lIII]l,'l,lllllli]llll!llll""o

48.3 kNm/m
BMD
Strip 7-7
-350 kKNm/ m
-297 kNm/m -377 kNm/m
q
-245 kKNm /m
- 192 kNm/m
o s 0
BMD
o
1M
— -377
N
¢ L 1. 1 1y 1 X i 1 LI T 1 . 1 0 & 1.1
) 48.3
o)
~
\ 9]
—

Figure B3.5 Design -Moments in Figure B3.6 Design Moments in
X Direction .{ kNm/m ) Y Direction (KNm/m)
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EXAMPLE 4.

REDESIGN SLAB SHOWN IN FIGURE B3.l.

STEP L CHOOSE LOAD DISPERSION LINES

Use the same load dispersion lines as in example 3. Therefore, Fig. B3.2
is applicable to this example also.

STEP 2. CHOOSE THE DISTRIBUTION OF LOAD CARRIED IN EACH
DIRECTION T

Use the same distribution of the uniformly distributed load as in
example 3. The patch load carried in the x direction will be

determined in order to obtain reasonable design moments in the x

direction. The remainder of the patch load will of course be carried

in the y direction. The design moments in the y strips must be checked
for reasonableness with the distribution of the patch load adjusted, and
the design repeated if necessary.

Thus, Fig. B3.3 is applicable to this example, while Fig. B3.4 is not.

STEP 3. CHOOSE COLUMN REACTIONS
Use the same column reactions as in example 3.
;. P=925 kN

Patch load = 82.6 kN

STEP 4. DETERMINE PRESET MOMENT FIELDS
Since the same load dispersion lines and the same column reactions

have been chosen as in example 3, the preset moment fields will also
be the same. -126 kNm/m ‘

H-63 KNm/m

© 347 kNm /m
X
=106 kNm/m

-53 kNm /m

£

- BMyD %k&m/m
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" STEP 5. DETERMINE STRIP MOMENTS (per m width)

Strip_1-1_8 _5-5

Lef there be some contact pressure q between these strips and
strip 7-7. It is not clear what the value of q should be since the
extent to which strip 7-7 supports strip |-l and 5-5 is not known.

By - assuming a reasonable location of maximum positive moment
(point of zero shear), one can solve for q.

The point of zero shear will vary between (3/8)L and (1/2)L from
the simple support.

Set point of zero shear at (045)L . Therefore x=(045)7=3.15m,
and end reaction = 3.15(9.06)=28.54 kN.

_SO0BKkN/m 4_'% 9.06 kN/m

28.54 kN | 1lq 28.54 kN
| 525m |35m | 525m
7 7

1v=o (3)
0= 2854 -(906)(5.25) - (6.04X3.5) + (q)3.5) - (9.06)5.25) + 28,54
q=_2(9.06)(5.25) + (6.04)(3.5)- 2(28.54) = 16.91 kN

3.5 m
28.54 ' 4 '
fol ' , - 0
-19.03
-2854
SFD (kN)

45 kKNm/m
L25.0 kNm/m
10.7 k Nm/m

BMD
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it would be advantageous to reduce the

10.7 kNm/m moment to zero
since this will reduce the positive steel requirements without requiring
negative steel. Consider the FBD of half the span

906 KN/M ¢ 04 v/m
1L M=0
° H r) V=0
R oW llq”
525 m 175
FBD
2 Mo= Y @
0= -9.06(5.25) -6.04(175)(5.25 + L75) +q(175)(5.25+1.75)
2 : 2 2
2
q= 9.06(5.25) + 604(1.75)(5.25+1.75) = 17.69 kN
2 2 m2
(1.75)(5.25 + 1.75)
2
Left reaction = 9.06(5.25) + 6.04(1.75) - 1769(1.75)
R_ = 2718 kN
' 27!8kN ~
N_-2718 kN/m

'SFD

o

O =zrrrgTT—a—

o

40.8 kNm/m
178 kNm/m

BMD
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Stri - -4
I1S.1 kN/m
ITLILT
q
5.25m 3.5 m 5.25m 7!,

The point of zero shear should be further to the left than in
the previous cases, say x= 2.5 m.

End reaction = 15.1(2.5) = 3775 kN

37.75 kN/m 41.53 kN/m

-41.53 kN/m =37.75 kKN/m

SFD

. 46.3 kNm/m y
0 < ar T TTe S 92 kKNm/m 0
: 47.2 kNm/m

BMD
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Strip 3-3

As in strips I-1.and 5-5, 'set the interior moment on the column

centre-line to zero and determine the upward reaction of strip 7-7.

15.1 KN/m ,
XM=0
0 r V =0
RL q
| 525 m 175),m
=i 1
FBD

OC

0=(- l5l)(7) +q(175)5.25+].75 75)
2

q= 5.1(7)7/2 = 34.5] kN_

175(5.25 +1.79) 2
-2

R_=15.(7) - 34.5|(175) = 453 kN

453 kN/m
Hﬁ\ m‘m
WO kN/m \W
0

O IITIe
68.0 KNm /m

297 kNm/m

-453 kN/m

BMD -




225

Strip_6-6 & 8-8
6.04 kN/m 6.04 kN/m
4.0'm 0.2 m 4.0 m
~ LOAD
O~ I T TTITIITTT] ©
: 48.3 kNm/m
BMD
Strip 7-7
9.06 kN/m 9.06 kN/mM portion of
uniform load
e " carried in this
17.69 kN/m 1769 kN/m direction..
, Reaction from
strips I-1 & 5-5.
34,5 kN/m
. Reaction from
strip 3-3.
Portion of
: . patch load
437 7KkN/m 4377 kN/m carried in this
- direction.
| 26.75 kN/m' 39 2L KN/ 26.75 kN/m
,{el' & L T - ;Ig \ A\ Net loading.
l, L L4377 4377 KN
40m |32m | 38m™ |[3.2m |40m m_[
1 K 4 1 1

- LOAD
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' \ 74.5 kN/m
656 kN/m / ,
35.5 kN/m
-35.5 kN/m
\/ \' -65.6 KN/m
-74.5 kN/m
SFD
35.6 kNm/m
97.9 kNm/m
147 KNm/m

0 <= st
_ 19.8 kNm/m

BMD
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STEP 6. SUPERIMPOSE PRESET MOMENT FIELDS AND STRIP MOMENTS
TO OBTAIN THE DESIGN MOMENTS
Strips |-1, 3-3, 5-5, 6-6, and 8-8 do not have any preset
thus they are unchanged.

moment field to superimpose with,

Strip 2-2 & 4-4

172 kNm/m
729 kNm/m
9.9 kNm /m 0

472 kNm /m

BMD

Strip_ 7-7 . 356 kNm /m
\ < 98.0 kNm/m

51 kKNm/m
2

O =gz — ~Tgrre>
I9.8 KNm/m

BMD
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Figure B4.l Design Moments in Figure B4.2 Design Moments in

X Direction { kNm/m) Y Direction ( kNm/m)

To get a positive design moment in strip 7-7 between the columns,
one should change the moment field for strip 3-3. It would be more
reasondble to set the moment in strip 3-3 over sirip 7-7 at some
small negative value, say I/2 to 2/3 of the positive moment ie.
34 to 45 kNm/m. This would result in a -greater contact pressure
on strip 7-7 which' would infurn make the offending moment in

strip 7-7 more positive. '



EXAMPLE 5.

2
| Simple Support
£ , -
Uniform Load =151 kN
© ~>
0} m
— e Column 1<
. O
-~ Q.
s 1
o ()]
gl g >
~ ”n ©
o ° a
® al E
= £ 2
*rﬂ ® Column
£l
©
n
. . A/x
Simple - Support ,
7 m 7 m
4 m

STEP

Figure B85.1 Slab Layout

|.  DEFINE SEGMENTS

QUALITATIVELY
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1] 2 ]3]

<%41,
N N\\

14 | 5] 16

j»
NN

%

Cyl

L—’

Cx L Cx
7

Figure B 5.2 Qualitative Segment Layout

STEP 2. DETERMINE MEAN SEGMENT MOMENTS

Corner Supported Segments x Direction

There is essentially a two span structure in the x direction, so
suitable moments are:

- 2 2
m.= wL = -(I5.I)7)= -92.5 kNm/m
x5 8 ~8

and mx4= 0
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(-92.5-0) = 4.38 m

C, = L - (mgg-mzg) 7 -
¥ = x5 x4 z BN
w L
mte we?+ mp = 1514387 -92.5 = 523 kNm/m
2 >

From equilibrium between segments 5 and 4

+ = mt
Myq mys

52.3 kNm/m

and from equilibrium between segments 5 and 6
mxs =mx6 ="925kNm/m
From symmetry, the m, moments are known for segments 7 through i3.

Corner Supported Segments y Direction

There is essenticlly a three span structure in the y direction. The
negative momeént at the exterior face of the first interior support

my = Wil = --(IS.I)(5.6)2= -59.2 kNm/m
8

8

The ﬁegative moment at the interior facé of the first interior
support ’

2 . 2. , : '
m-=wL .= -{I15)7) = -61L.7 kNm/m
Yoz T2

Set m;lz = -60 kNm/m =., m'ylo , and m;|5= 0.

gi =56 - (-60-0) =35I m
2 T 15.1(5.6)

Cin= 7 - (£60)(- =35m
y2 . 3 “Lﬁsxs.l(?'“)'@»'

33.0 kNm/m

C

m .= I(3.5I)2- 60
yi2. ——5

= 15.1(3.5)° —60

+ ' '
mwo. 5 32.5 KNm/m

From equilibrium between segments .

= 33.0 kNm/m and m"ys =m* . =32.5kNm/m

+ = + R
Myis ~ Myi2 . ylO

From symmetry the m moments are known for segments 2.'5..6.
8, 9, 10, I, 12, 13, _and 1S.
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These segments can be handled in exactly the same manner as in
Example |, that is, the load could be distributed in each direction so
that it could be carried by positive steel running the entire length of
the slab. However, we do know that twisting moments will produce
negative moments in these segments so one should use some other
moment field which would introduce top reinforcement into these segments.
Hillerborg discusses several, possible moment fields for such a case, but

we will only consider one of them.

Segment Uniformly Loaded,

Reinforcing the entire segment

m'; = 2wa? my =
9 .

m; = 2wb2 m; =
9

N
y
Free
>
| S
(o}
(a1
a1
3
n [ ]
o ole
Al i
£
2 v
a N
Simple Support X%

No Edge Moments
for :

-wa

-W b2

6

will envelope a lower bound solution for the particular segment

and boundary conditions.

+ 2_
My =2(15.1)(2.62) = 23.0_kNm/m

S

2 :
m;(l =-(15.12.62) = -17.3 kNm/m
e S

2
m‘|=2(|5.|)(2.09) = 147 kNm/m

y )

2
m;l =-(156.1)0(2.09) = -1.LO kNm/m

6
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A more detailed investigation into what the preset moment field actually
looks like in order to determine cut off points is not warranted in

this case since these design moments are very small, and the steel

requirements will be based on minimum reinforcement.

_7L

2.09 35Im |350m 1L 330m | 33 m 12.09]

262 | 438 m 7|L 438 m 262

Figure B5.3 Quantitative Segment Layout

STEP 3. RATIONALIZE MOMENT FIELD

For the moment fields over the columns, use = =P = |/2 Therefore,
the design negative moments will be twice as large per unit width as
previously calculated but are only distributed over 1/2 the segment

width.
Leave the positive moments in exterior sbans unchanged.

~ Rationalize the .positive moments between the columns by shifting
2/3 of the moment into the middle half of the segment.

Since M) =2(C,)(m" )= 2(4.38)(32.5) = 2847 KN

= (2/3)(284.7/438)= 43.3 kNm/m

| m;‘_:(l/3)(284.7/4.38)= 21.7 kNm/m
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l ! : !
! 1 ! |
| | ! ] 33.0 I
—""‘: 8 :“' ""_“"rrllll_llllllllllu_] -
H = o H =120
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] - 217 43.3 21.7
] n o = vy ) 3 I R M B ey
u ]
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T A | T : ]
/_Typicol Corner Mat [Typical Corner Mat
my = -17.3 kNm/m my = - 11.0 kNm/m
m* = 23.0 kNm/m mt = 147 kNnvYm
Figure B5.4 Design Moments in . Figure B5.5 Design Moments in

X Direction ( kNm/m)

Y Direction ( kNm /m)

Check the suitability of the rationalized moment fields with K, and Ky.

030< K € 075 :.0K

(1720514 38)

) = 0.5(120+0) = 0.65

x=P = 0.5
K, = ®(-my +my ) = 0.5(185+0) = 0.64
: L4 -e
(I72)w Cy
Ky = .‘(-m-yﬂ\ +m9\_‘.
(|/2)wCy"
Ky = «(-my, +my )

(1/72)151(3.50"

) = 0.5(120+0) =0.65

2
(l/2)wCy

A EDEE.

030 ( K ¢ 0.75 0K

0.30¢ K ¢ 0.75 ..OK
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EXAMPLE 6
My
Simple . F'Supporf
€ Uniform Load = 15.1 kN
e ' m2’
0
o)
® Column |
E
o 5 -
|
0 § S
@ S
® Column 2 o
© ©
= %
i w
©
©
— S
Simple Support . “x
6 m 2m 6 m

-Figure B6.I Slab Layout

STEP |. DEFINE SEGMENTS QUALITATIVELY



et
A
/|
/
> 13
/]
G
5 6.2\
\\an \\c(;a\
AN
Jla i s,
7 8. _
N
\\ N
16 | |_7J 18 |

236

Figure B6.2  Qualitative Segment Layout

STEP 2. DETERMINE MEAN SEGMENT MOMENTS

Corner Supported Segments in__x Direction

m'f.-wl_z = 5.I(6‘)2= -453 KNm/m

12 12
- 2_ 2 _
mF-wL =-IS.N8)" = -80.5 kNmvm
| 12

Then from -equilibrium between segments | and 2,

equivalent column x moment is IS kNm/m@.

m;\f»-sz = -l5.l(6)2= ~ 453 kNm/m
2 12 . .
Set m;m_: -45 kNm/m

Then c¢,, = 6 + (55-43) = 3llm
' 2 15.1(6)

2
And m;l =15.1(3.11)-55 = 18.0 kNm/m
2 4

and  column |, the
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m>z-wl® = -15.1(8%= - 80.5 kNm/m

X 5 12

Set m;“.f -B0.0 kNm/m .

Then c,, = 8+ (70-80) = 3.92 m
2 151(8) |

And m;‘z= l5.l(3.92)2- 70 = 46.0 kNm/m
, 2 o

Segments 3 to 8 are similar since the spans are also ém and 8m.

Corner Supported Segments in y Direction

my”= 0] Since it is simply supported
m; z-sz = -(15.1)(6.6)2 = -82.2 kNm/m
VA ,
8 8. ,
) 2 _ 2 R
muem-WL = {I5.1)(6)" = -45.3 kKNm/m
yS
12 12
Set my_, = ~-70 KkNm /m

And m;s =-55 KNm/m

Then equivalent column y moment ‘required for equilibrium is 15 kNm/m. -+

m-z-sz = -(IS.I)(G)Z = -45.3kNm/m
B 1z 12 |
- 2 _ ‘ 2 _ .
m x-wL™ = -(I5.1)(56)" = -592 KNm/m
A Y 8
Set m;n = -45 kNm/m
m;“ =_-6O kNm/m

Then equivalent’ column vy rh‘ornem is IS kNm/m — .

My © |

Then c¢,,= 6.6 + (70+ 0) = 400 m
2. 15.1(66)

Cys= 6 + (55-45) = 3l m

2 15.0(8) |

cya = 6 - 3.l = 2.89m
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c. =56 + (60+r0) = 35 m

Tz 15.1(5.6)

+t = 2 _ = ’ = +
my li.zlfﬂz - 70 50.8 kNm/m my,_r
mt_ = 15.|(3.l|)2- 55 = 18.0 kNm/m = m'

ys o . S y3
mt = I51(3 51)2'- 45 = 480 kNm/mv = m?

Y1 —_— . _ y1o

2

Corner Segments

A different approach shall be illustrated in this example. The load
is to be distributed equally in each direction. For example, segment S
would carry 755 kN/m> in each direction. Thus, the moments in the
x direction will be exactly (1/2) of those in segment 12, and in the
y direction the moments will be exactly (1/2) of those in segment |O.
The positive steel from segment 9 in the x direction must be continued
right across segment |0, and the positive steel in the y direction must
be cortinued right across segment 12. Thus, there will be halt as much
reinforcement parallel to the boundaries of the slab in the exterior segments
as in the adjoining interior segments. :

1 2.89 3lm 1392 m .408m

‘IL

(9]
(@)
ol
£
0
]
R °
(13
®
ol
£
e - °
£
o
<t
(O]
i

408 m 392 m ’!‘B.Il m 4],2.89 ;,L

Figure B6.3 Quom‘ifc?ive Segment Layout
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STEP 3. RATIONALIZE MOMENT FIELD

For the negative moments over columns, use =x= B = |/2. Thus, the
negative design moments are twice as large as the mean moments.
(Base on the larger of the two moments.) The positive moments between
the columns should be concentrated so that all of the positive moments occur
where there is direct contact between corner supported segments. Therefore:

;/4- ;/5= m;lb: [8.0(3.11 +3.92) = 21.7 kNm/m

m;s =m
14 -(4.08+4.08)

)
qN o ‘EH n _
iN i N ¢ 24 48 24
] i u 1 P TTTTTTTIOT
u ] O n o]
m T H e 120
=LA ] ] ]
mig ; ] 1 | o 217 9
t E —J: _F =l L 1L I I'TTITITTTI
— H -
] n o B ]
— ©[] ¢ @©f 140
— <+ = 8 <
— - ]
o ] -
-._.m bt -
] [~ 254 50.8 . 254
mf"—'—‘—‘-'—“—ﬂillllllllllll
O o 19)) ! ;
< N ~ [ N
Figure B6.4 Design Moments in Figure B6.5 Design Moments in
X Direction ( kNm/m) Y Direction ( kNm/m)

STEP 4. DETERMINE COLUMN LOADS AND MOMENTS

Column I. P =I51(311+3.92)(2.89+3.5)) = 679 KN
My =15 (2.89 + 3.51) = 96 kNm }
My =15 (31i+ 3.92) = 105 kNm aa
Coumn 2. P =15 (3.92+3ID@0+311)= 755 KN
My =15 (4.0 + 3.11) =107 kNm }
My =15 (3.92 +3.1I) =105  KNm —w





