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ABSTRACT

The Antarctic bacterial isolate Sphingomonas paucimobilis ANT 17 has the ability to
degrade crude oil in cold and growth-limiting environments. ANT 17 grows at
temperatures from 1°C to 35°C. The optimum pH for growth of ANT 17 is near 6.4 at
22°C, but at colder temperatures the optimum pH is less defined. Seventy-five aromatic
and non-aromatic substrates were incubated with ANT 17, and the majority served as
growth or cometabolic substrates. For example, phenanthrene was mineralized to CO,,
but fluoranthene and pyrene were partially oxidized. ANT 17 grew on and degraded the
aromatic fraction of several crude oils and a refined oil product under cold and nutrient-
limiting conditions, but did not grow on the saturate fraction. Molecular studies revealed
that ANT 17 was phenotypically stable and plasmidless, suggesting that the genes
required for aromatic degradation are chromosomal. ANT 17 may be a good model for
studying cold climate bioremediation, due to its broad aromatic substrate range and

ability to grow at cold temperatures.
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1. INTRODUCTION

1.1. Petroleum contamination

As a consequence of utilizing petroleum and its refined products to satisfy our
energy requirements, contamination of the environment has occurred and will continue to
occur. The removal and transport of petroleum from reservoirs (both on land as well as
from offshore drilling sites), refining crude oil to useable products and the eventual
disposal of used products results in contamination of ecosystems with many different
compounds. Although petroleum has always entered the environment through natural
seepage from reservoirs and photosynthetic hydrocarbons produced by plants, the amount
entering the environment by natural sources is much less than the amount of petroleum
introduced into the environment by industrial practices or anthropogenic sources
(Floodgate, 1984).

The results of this contamination are diverse with often severe consequences. Oil
floating on receiving waters is destructive to birds and aquatic life. In addition to killing
effects, subtle effects on marine life can be observed (Alexander, 1999). These include
the disruption of feeding and mating behavior of higher organisms by masking
chemoreception, as well as carcinogenic effects of compounds resistant to detoxification,
such as polycyclic aromatic hydrocarbons (PAHs), which accumulate through the food
chain. The world’s oceans are the largest and ultimate receptor of petroleum pollution
(Atlas, 1981). Floodgate (1984) reviewed the effects and fates of petroleum in marine
ecosystems and found that the largest input of petroleum into the oceans is from rivers
and urban runoff; other major inputs are from the shipping industry. The residence time
of petroleum contaminants is greater in estuaries and shelf waters than in the open ocean
as many of the contaminants will settle. Petroleum in marine ecosystems exists as slicks,
emulsions, in solution, and as tar balls. Freshwater ecosystems are contaminated directly,
by rainfall from atmospheric contaminants or by runoff, and these contaminants
accumulate in the air:water interface of rivers and lakes as well as in sediments (Cooney,
1984). Freshwater contaminants are subject to the formation of slicks, emulsification,

and solublization, much like marine contamination.



In soil ecosystems, petroleum contamination does not spread horizontally as in
aquatic ecosystems; instead the contaminants spread vertically. Contamination of
terrestrial sites can be classified as surface and groundwater (or sub-surface)
contamination. Sources of petroleum contamination are from accidental spills on land,
especially from transportation within pipelines, production, and storage, as well as from
natural seeps (Bossert and Bartha, 1984). Other less obvious sources of petroleum
contamination arise from oiled roads and from wood preservatives such as creosote
which are made up of 85 to 90% PAHs (Cerniglia, 1992). The effects of petroleum
contamination on plants include direct toxicity, oxygen depletion by hydrocarbon
degrading bacteria and the resulting production of H>S. Soil invertebrates are also
adversely affected by petroleum contamination due to direct contact toxicity, blockage of

organs of respiration, as well as reduced oxygen concentrations.

1.2. Composition and properties of petroleum

Petroleum is formed by the transformation of sedimented organic debris to liquid
and gaseous hydrocarbons caused by heat in the sedimentary bed. Compaction forces
this matter into adjacent permeable rock, which forms a reservoir for the hydrocarbons.
Due to the organic origin of petroleum, it is a complex mixture of hydrocarbons. These
can be fractionated into a saturated or aliphatic fraction (paraffins), aromatic fraction,
asphaltenes, and a polar or resin fraction (Atlas, 1981) that is composed mostly of
aliphatic, alicyclic, and aromatic hydrocarbons, as well as non-hydrocarbon components
(containing sulphur, nitrogen, and oxygen) such as thiols, heterocyclic nitrogen and
sulphur compounds, metalloporphyrins, carboxylic acids, and phenols (Atlas, 1981).
Alkenes are found in refined petroleum but not in crude oil (Cooney, 1984). Examples of
the types of compounds found within petroleum are illustrated in Figure 1.1. Crude oils
contain several hundred individual components, and vary with origin. Other properties
that can vary with origin include viscosity, density, and pour point.

“Weathering” is the result of chemically and biologically induced changes in the
composition of petroleum (Atlas, 1981), including evaporation, photooxidation, and
microbial degradation (Floodgate, 1984). As weathering occurs, the oil becomes more

viscous and dense. In addition, as readily degraded compounds are removed, the residual
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oil becomes more resistant to microbial attack, but also is less susceptible to migration in
the environment. The remaining discussion will focus on the biological processes
involved in the weathering of petroleum, biodegradation pathways utilized, and

limitations to these processes.

1.3. Bioremediation of petroleum contaminated sites

Methods for remediating contaminated sites have traditionally involved physical and
chemical methods. These methods involve removing contaminated soils to new sites,
incineration of the contaminated soil, or chemically extracting the pollutant from soil, all
of which are invasive and costly. For instance, the cost of transporting large volumes of
soil to a treatment facility is greater than the cost of treatment within the contaminated
site itself. In addition, these methods are not suitable for marine, surface, or groundwater
contamination. Cleanup of marine oil spills has involved dispersing the oil with
detergents or sinking the oil with chalk or siliconized sand which is merely cosmetic, as
the contamination still exists in sediments. It is for these reasons that the interest in
utilizing in situ remediation techniques has increased. One such in situ method involves
the use of microorganisms (bacteria and fungi) for the purpose of remediating a
contaminated site through a process known as bioremediation, which can be applied to
surface soil, subsurface soils, aquifers as well as marine contamination (Atlas and Bartha,
1992).

Bioremediation involves the use of microorganisms with the goal of degrading a
pollutant to either a less harmful or less toxic metabolic product (transformation) or to
completely degrade the pollutant to CO,, water, and biomass (mineralization).
Bioremediation can be applied to many pollutants from industrial and commercial
sources such as pesticides, waste chemicals from a variety of manufacturing industries,
heavy metals and mining wastes, and petroleum products. The following discussion will
focus on the bioremediation of petroleum and petroleum-related compounds.

Many bacteria and fungi are known to degrade compounds found within. This has
been extensively reviewed in the literature (Cerniglia, 1992; Sutherland et al., 1995;
Shuttleworth and Cemniglia, 1995; Atlas and Bartha, 1992, Leahy and Colwell, 1990).

These organisms have been identified from diverse environments spanning marine,



freshwater, and soil habitats. Many of the hydrocarbon-degrading isolates belong to the
genera Pseudomonas, Arthrobacter, Micrococcus, Flavobacterium, Mycobacterium,
Sphingomonas,  Rhodococcus, Nocardia, Vibrio, Beijerinckia, Aspergillis,
Cunninghamella, Phanerochaete, and Penicillium.

Interest in microbial biodegradation pathways was initiated during the 1950s and
1960s. Petroleum was investigated as a potential low-cost carbon source for the
production of single cell protein as an alternative food source for livestock (Atlas and
Bartha, 1992). With the increase in cost of petroleum and the realization that the removal
and transport of petroleum resulted in contamination problems of the environment,
interest in the metabolism of petroleum was redirected toward biodegradation of

hydrocarbons for the purpose of remediation.

1.3.1. Alkane and alicyclic hydrocarbon biodegradation pathways

The biodegradation of straight chain and branched alkanes has been extensively
studied and reviewed (Atlas, 1981; Singer and Finnerty, 1984b; Atlas and Bartha, 1992).
A general degradation pathway for n-alkanes (Figure 1.2) can be described as beginning
with the formation of a primary alcohol via monoterminal oxidation by a
monooxygenase. Two other methods are known to convert an n-alkane to a primary
alcohol (Figure 1.2). Dehydrogenation of n-alkanes can occur to form an alk-l-ene
intermediate followed by rehydration to form a primary alcohol. Hydroperoxidation
incorporates molecular oxygen into the n-alkane via a dioxygenase, which results in the
formation of an n-alkyl hydroperoxide. This is then reduced to form a primary alcohol.
Following the formation of a primary alcohol, the formation of an aldehyde (by an
alcohol dehydrogenase) and a carboxylic acid (by an aldehyde dehydrogenase) occurs as
shown in Figure 1.2.

An alternate to monoterminal oxidation in the formation of a carboxylic acid product
is subterminal oxidation (Figure 1.3a). This scheme is more common in fungi and yeasts
than in bacteria. The formation of a secondary alcohol results from the subterminal

oxidation of the n-alkane. This is further oxidized to form a ketone and a subsequent
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Finnerty, 1984b).
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ester. The ester is hydrolyzed to a primary alcohol and acetate. If subterminal oxidation
occurs at another C atom within the n-alkane, a carboxylic acid longer than acetate may
be formed. The resulting carboxylic acid (shown as acetate in Figure 1.32) can be used
via the tricarboxylic acid (TCA) cycle, but the resulting primary alcohol must be further
transformed to a carboxylic acid as described earlier. In some cases diterminal oxidation
(w-oxidation) occurs (Figure 1.3b), resulting in the formation of a dicarboxylic acid.
This occurs as monoterminal oxidation proceeds on both ends of the n-alkane. This
degradation scheme is utilized to attack branched or methyl-substituted alkanes.

All of these methods of oxidation of an n-alkane to a carboxylic acid result in the
ability to further metabolize the carboxylic acid (Figure 1.2) through B-oxidation to form
acetyl CoA and two-carbon-unit-shorter fatty acids. Acetyl CoA is converted to CO,
through the TCA cycle. When an n-alkane has undergone the complete process of
oxidation, dehydrogenation, and B-oxidation with the formation of CO, and H,O via the
TCA cycle, mineralization has occurred. When the process is halted at any of the steps
prior to the formation of CO,, transformation has occurred. Transformation of n-alkanes
has certain biological results. Generalizations have emerged regarding the composition
of cellular and extracellular fatty acids based on the carbon number of the alkane
transformed (Singer and Finnerty, 1984b). Growth on odd-carbon numbered alkanes
results in odd-carbon numbered cellular fatty acids and even-carbon numbered alkanes
results in even-carbon numbered cellular fatty acids.

The metabolism of alicyclic hydrocarbons has been extensively reviewed (Perry,
1984; Atlas and Bartha, 1992). In general, the alicyclic hydrocarbon is oxidized to form
an alicyclic alcohol via a monooxygenase (Figure 1.4). Dehydrogenation leads to the
formation of a ketone. Additional oxidation often by a different monoxygenase inserts
oxygen into the ring forming a lactone. The ring is then cleaved by hydration to form a
ring cleavage product consisting of an alcohol and a carboxylic acid. The alcohol is
further metabolized to a dicarboxylic acid, which then is able to undergo B-oxidation.
Cometabolism (which can be defined as the transformation of a compound by a
microorganism that is unable to utilize the substrate as source of energy; Alexander,
1999) is often required for this process. Alkyl substituted alicyclic hydrocarbons are
often more readily degraded than their unsubstituted counterparts. Even-numbered n-

8



NADPH, P
N
0, H,O
cyclohexane alicyclic alcohol

NADP>

NADPH,

I

NA@MPHg
/N
"
H-O 0,

lactone - -

ketone
H,0
/
v
HOOC-(CH,);~-CH,OH —»—» HOOC-(CH;),~-COOH
ring cleavage product dicarboxylic acid

Figure 1.4. Metabolism of cyclohexane, a representative of alicyclic

hydrocarbon degradation. (Perry, 1984).



alkane side chains are more resistant to ring cleavage than odd-numbered carbon rn-alkane

side chains, as the side chain is attacked through p-oxidation.

1.3.2. Aromatic hydrocarbon biodegradation

The degradation of aromatic hydrocarbons, and PAHs in particular, is of great
interest. Several PAHs are toxic, mutagenic, and carcinogenic and have been designated
as priority pollutants by the EPA. Figure 1.5 illustrates various PAHs commonly studied.
The possible fates of PAHs in the environment include volatilization, photo- and
chemical- oxidation, bioaccumulation, adsorption to soil, and microbial degradation
(Cerniglia, 1992). Microbial degradation can be complete (mineralization to CO,) or
incomplete (transformation to oxidized products by either individual organisms or
communities). Microbial degradation pathways for aromatic compound biodegradation
have been extensively reviewed (Cemiglia, 1984; Cemiglia, 1992; Sutherland et al.,
1995; Atlas and Bartha, 1992) and much is known regarding the pathways utilized for
toluene, naphthalene, phenanthrene, anthracene, and acenaphthene, whereas less is
known about the higher molecular weight compounds. Oxygen is a general requirement
to initiate enzymatic attack on PAH rings. Furthermore, metabolism of PAHs are highly
regio- and stereo-specific (Cerniglia, 1992).

Initial oxidation of aromatic hydrocarbons by bacteria usually involves the action of
a dioxygenase, which incorporates the two atoms of molecular oxygen to produces a cis-
dihydrodiol (Figure 1.6). Dioxygenase enzymes are multi-component in nature consisting
of a flavoprotein, an iron-sulphur protein, and a ferredoxin (Cerniglia, 1984). Once the
cis-dihydrodiol is formed, it is further oxidized to a catechol. Oxidative cleavage results
in either ortho cleavage of the aromatic ring between the two hydroxyl groups (to form
cis, cis-muconic acid) or meta cleavage of the ring adjacent to the two hydroxyl groups (to
form 2-hydroxy-cis,cis-muconic semialdehyde). These are subsequently degraded to
intermediates of the TCA cycle as shown in Figure 1.6. Variations of this pathway can
include the oxidation of alkyl substituted aromatic hydrocarbons, where the ring is
oxidized adjacent to the alkyl substitution to form an alkylated catechol which is then
oxidized by ring fission. Another possibility of attack on an alkylated aromatic
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compound is the oxidation of the alkyl substituent directly to form an alcohol, aldehyde,
and carboxylic acid (benzoic acid) which is then oxidized to form a catechol.

Metabolism of PAHs by bacteria has been described for naphthalene, acenaphthene,
acenaphthylene,  fluorene, anthracene, phenanthrene, fluoranthene, pyrene,
benz[a]anthracene, chrysene, and benzo[a]pyrene (Cemniglia, 1984; Cemiglia, 1992;
Sutherland et al., 1995). The specifics of the phenanthrene pathways are illustrated in
Figure 1.7. Once phenanthrene is oxidized to 1-hydroxy-2-naphthoic acid, two pathways
are known to exist. One parallels the naphthalene pathway, by the formation of 1,2-
dihydroxynaphthalene and continued metabolism to catechol. The metabolism of
catechol can then proceed as illustrated in Figure 1.6. This pathway has been described
for Pseudomonas spp. (Sutherland et al., 1995). The second phenanthrene pathway
converts 1-hydroxy-2-naphthoic acid to o-phthalic acid and continues with the formation
of protocatechuic acid. This phenanthrene pathway has been described for deromonas
spp. and Mycobacterium spp. (Sutherland et al., 1995).

Many fungi, some bacteria, and cyanobacteria attack the aromatic ring by the
formation of an arene oxide and a trans-dihydrodiol, by incorporating one molecule of
oxygen via cytochrome P,sg-catalyzed monooxygenase and epoxide hydrolase reactions.
Figure 1.8 outlines the general mechanism for fungal formation of a trans-dihydrodiol.
Additionally, the arene oxides may undergo non-enzymatic rearrangements to form
phenols. Fungal oxidation is known for naphthalene, acenaphthene, fluorene, anthracene,
phenanthrene, fluoranthene, pyrene, benz[a]anthracene, and benzo[a]pyrene (Sutherland
et al., 1995). Fungal oxidation of PAHs plays a role in detoxification as opposed to
catabolism and assimilation (Cemiglia, 1992). The oxidation of aromatic hydrocarbons
by fungi is similar to their oxidation by mammals. Many of the arene oxides produced by
fungi are potent carcinogens, whereas the cis-diols produced by bacteria are not
(Sutherland et al., 1995).

Some white-rot fungi, which decay lignin and wood cellulose, are able to oxidize
PAHs without the formation of cis- or trans-dihydrodiols (Sutherland et al., 1995).
Quinones are one class of the major metabolites produced by these fungi. Mineralization

and the production of polar metabolites has also been reported (Cerniglia, 1992). Figure
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