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ABSTRACT

Ir this thesis, ave gate some finiteness conditions on the subelass of
torsic ree gr¢ o~

“

In chapter 2. we  mnt out that ordered groups satisfying bounded Engel

condition are nilpotent Ve then show that se:eral other finiteness conditions

also give a similar nic ~ wetwe to orderable groups. The techniques used come
from recent studies .. resid: 7 Hinite p-groups and from results of Zelmanov
for Engel groups. In follow - c'ipter, iore relaxed finiteness conditions are

introduced and we characterize orderable groups . ith these conditions.

In chapter 4, we call a group G restr neld if there exist i integer
n such that (:c(”)) can be generated by n clements for all -,y in 6.
We show that a group G is polycyclic-by-finite if and only if G is a finitely
generated restrained group in which every non-trivial finitely generated subgroup
has a non-trivial finite quotient. This provides a generad setting for various
results in soluble and residually finite groups that have appeared recently.

In chapter 5, we introduce a new group concept, namely, finite base vhich
is similar to the concept of finite rank for the class of orderable groups.

In last chapter, a group G is said to preserve the cardinality of 2-element
subsets product under permutations, or G is a PC(2,n)-group if G ~ 1 wor
for each n-tuple (Si,...,5r) of 2-clement subsets of G, there s a non-
identity permutation ¢ in I, such that the cardinalitios of $\5,---S, and
So(1)Se(2) - - - Se(n) are same. Some characterizations of PO(2,7 400 ps are

presented.
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CHAYTER 1
INTRODUCTION

In this thesis, we shall investigate some torsion-free groups with full orders
under certain conditions. Each chapter contains the definitions and 1. coperties
of the conditions needed. In this chapter we recall only the definitions and
relations of groups with full order and describe the main theorems of each
chapter.

In chapter 2, we study orderable groups satisfying an additional condition
such as n-Engel, collapsing or PSP. A group G is said to be orderable (or
an  O-group) if there exists a full order relation < on the set G such that
a<b implies zay < zby for all a,b,z,y in G. The term “ordered group”
is used to denoie a group endowed with a fixed order. We shall denote the
identity clement of G by e. A subgroup C of an ordered group G is said
to be convex under < if z € whenever e <z <c¢ for some c€C.

In [R3], an O-group G was characterized in terms of the system of its
subgroups. Convex subgroups of an ordered group G play important roles in
studying the whole group G. For example, if the convex subgroups of G are
all normal, then G' has a central system with torsion-free factors. So we start

chapter 2 by showing this property. The main results of chapter 2 will be the

following.
THEOREM 2.3. A bounded Engel O-group is nilpotent.

THEOREM 2.4. A group is torsion-free nilpotent if and only if it is orderable

and collapsing.



THEOREM 2.5. An orderable group is a PSP-group if and only if it is abelion,

In chapter 3, we continue orderable groups under more relaxed conditions,
the restricted Engel and WPSP conditions. We have the following charae

terizations of orderable groups with these conditions.
THEOREM 3.5. A restricted Engel O-group is locally nilpotent.
THEOREM 3.12. An orderable W PSP-group is abelian.

Now we extend our study to the larger class of groups, for example,
locally indicable groups or right-orderable group.. We give definitions and some
relations of these groups and refer the reader to [B5] for a further reference.

A group G is called right-orderable (or an RO-group) if there exists a
full order relation < on the set G such that a <b implies ae < be for all
a,bec in G. f a>e, a is called positive. A group G is called locally
indicable if every finitely generated non-trivial subgroup of G has an infinite
cyclic quoticnt,

Let G be a right-ordered group. Just as with orderable groups, we define
a subgroup N of G to be convex if for every g€ G and c€ N, ¢ < g < ¢
implies ¢ € N. A group G is a C-group if it admits a right-order that
satisfies the following property:

If C—-D isaconvex jumpin G, then CaD and D/C is isomor-
phic to a subgroup of the additive group of the real numbers.

Let C* denote the class of those right orderable groups in which every

right-order has the above property. In [C3], P. Conrad showed that the above

property is equivalent to the following one:
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For cach pair of positive elements a,b in G there exists a positive
integer 1 such that «™b > a.

Clearly the elass of orderable groups is properly contained in the class of
C-groups. Every C-group is locally indicable. And locally indicable groups
are RO-groups. In [B1}, G. Bergman gave examples of RO-groups which are

not locally indicable.

Our theorems in chapter 4 include the following.
THEOREM 4.7. A locally indicable bounded Engel group is nilpotent.
THEOREM 4.11. A finitely generated collapsing RO-group is nilpotent-by-finite.

In chapter 5 we study a new group property, namely, finite base which is

similar to the concept of finite rank for the class of orderable groups. One of

the results is the following.

THEOREM 5.9. If G is a C-group with finite base, then it is soluble.

Recently there has been a big progress in the study of groups satisfy-
ing “finiteness conditions”. For example, groups with various permutability
conditions were studied in [C2], [B2] and [R5]. Now we consider groups with
another type of permutability condition. For an integer n > 1, a group G
is said to preserve the cardinality of 2-element subsets product under permuta-
tions, or G is a PC(2,n)-group if G =1 or for each n-tuple (Si,...,S,)

of 2-element subsets of G, there is a permutation o(# 1) in ¥, such that

[S182 - - - Sal = |Se(1)So(2) * - * So(m)l-



where  |S] means the cardinality of the set S0 Let PC(2) be the class
Unsi £(2,n). In chapter 6 we will show the following,

THEOREM 6.7. A finitely generated PC(2)-group with finite local trace is center
by-finite.

THEOREM 6.8. A finitely generated non-periodic  PC(2)-group G is center-

by-finite.



CHAPTER 2
BOUNDED ENGEL ORDERABLE GROUPS

We begin with the definitions and properties of classes of groups which
we study in this chapter.

BounDED ENGEL CONDITION: Let n be a positive integer. A group
G is called an n-Engel group if [z,,y]=1 for all z,y in G, where [z,ny]
is defined inductively as follows: [z,1y] = [z,y] and [z,iy] = [[z,i-1y],y] for
i>1. G is a bounded Engel group if it is an n-Engel group for some n.
For basic properties of this class of groups see [R6].

CoLLAPSING CONDITION: A group G is said to be n-collapsing if for
any n-element subset S of G, we have |S"| < n". We say that G is
collapsing if it is n-collapsing for some n. Note that G is n-collapsing if
and only if for every zi,...,zn in G, we have zj4): - Zgn) = Zg0) " Ty(n)
for some distinct functions f,g: {1,...,n} — {1,...,n}. In [S1}, J. Semple

and A. Shalev introduced this condition and proved the following theorem.

THEOREM. Let G be a finitely generated residually finite group. Then G is

collapsing if and only if G is nilpotent-by-finite.

PSP ConDITION: Let G be a group. If there exists an integer n > 1
such that for each n-tuple (H,,...,H,) of subgroups of G, there is a
permutation o(# 1) in ¥, such that the two complexes H;H; --- Hp
and Hy(1)Hy(2) - - - Ho(n) are equal, then G is said to have the property of
permutable subgroup products, or G is a PSP-group. This condition was
discussed by A. Rhemtulla and A. Weiss in [R2] where they proved the

following result.

[$13
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THEOREM. A finitely generated soluble group G is a PSP-group if and only

if it is finite-by-abelian.

From now on we study orderable groups under cach of the above condi-

tions. As we promised in chapter 1, we start with following.

LEMMA 2.1. Let C be a convex subgroup of an ordered group (G,<). Then
C is normal in each of the following cascs.

(i) G is an Engel group.

(ii) G is n-collapsing for some positive integer n.

(ili) G is a PSP-group.

Proof. (i) Suppose not. Then C < C* or C* £ C for some z in
G because the set of convex subgroups forms a chain. Let C < C* and
a* € C*\C where a in C. Since G is an Engel group, there is an integer
n >0 such that [a,,z] =1. Hence (a,a’,a’z,. ..) = (a,d*,... ,a’"—'). Thus
a* € C’"_l, and it follows that a® € C. This is a contradiction.

(ii) If C is not normal in G, then for some ¢ in C and z in G,
a* € C*\C. Let S = {az~',az™2,...,az™}. Then there exist two distinct

functions f,g from {1,2,..,n} to {-1,-2,..,—n} such that

H az/ = H azd®.

i=1,...,n i=1,...,n

Let r be the largest integer such that f(r) # g(r), let s(z) = f(1)+---+ f(2)

and t(i) = g(1)+---+g(¢). Then we get the equality:

—~a(1) —-2(2) -a(r-1) —~t(1) -t(2)
z a e a® za(r) = ad® z .

—t{r—1) .
a z ",

aa e
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Since s(r) = t(r) and f(r) # g(r), 8(r—1) # ¢(r —1) and hence one of
the above is infinitely greater than the other. This is a contradiction. Thus C
must be normal.

(iti) f C is not normal in G, then a* € C’\C. for some a€ C and
some z € G. Let py,...,pn be distinct primes and let ¢; = p1...pn/pi for
i = 1,..,n. For each i = 1,...,n, pick positive integers s; to satisfy the
condition 8i4; > 2(8;1 + - -+ 8i). Consider the n cyclic subgroups H; =
((a*%z™%)) of G. By hypothesis there is a permutation o(# 1) such that
the two complexes HyHz--H, and Hg1)Hy 2y -Ho(n) are equal. Let j be
the smallest integer such that o(j) # j. Say o(j) =k, and pick an element
y=(az™")---(a®*z"%*) in HiHy---H,. Since y € HyyHo(2) - Ho(n)s
we have (a®*z~%)...(a*z7%) = (a’c(l)x"‘v(t))r“(‘) e (a’o(n)z_ta(n))r’(”) for
some integers r;, ¢ = 1,...,n. From now on we write a(s;,?;) for (a"")z".
Then, by collecting the z’s to the right on both sides of the above equality,

we obtain
a(s1,0)a(s2,t1) - - - a(sk, b1 + -+ -+ tg—1 )z OFT ) = (B, 1) - - By o )T,

where f; € { +s1,...,%s, } and «;,t are integers. Since #;+ta+--+tr =1,
we get a(s;,0)a(sz,t1) -« a(sk,t1 + - - +tem1) = a(B1,01) - - - a(Bm, am). Let
a =maz{a;;i = 1,...,m} and suppose there are ¢ a(B;,a;)’s with o; =a,
say, a(B1,a),...,a(Pig,a). Then by moving all these terms to the right end

as above, we get

a(s1,0) - - a(sk,ty +--- +tr-1)=cicp - 'Cm—qa(ﬂn 4. +ﬂ1q,a),
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where c¢; are conjugates of a(f;,a;) Wwith «a; < a. Here note that all gy,
are distinct and fy; ++ B1; # 0. Morcover we know that all ¢; < a(1,a) and
so a>2ti+---Ftpgr. B a>ty 4 +tk-1, then S+ 4 fig =0
This is impossible by the choice of s;. This means that « = ZiS i ity =
myty +---+mjitj_y + mity where mg(;) are integers. So t;j = E,-#j rit; for

some integers r; contrary to the choice of tj. This completes the proof. O

THEOREM(P. HaLL). Let G be a finitely generated group, let¢ N < G and
suppose that G/N is finitely presented. Then N is finitely generated as a
G-group.

LEMMA 2.2. Let G be an ordered group in which every convex subgroup is
normal. If D is a convex subgroup of G and D is finitely generated as
a G-group, then there exists a convex subgroup C such that C — D is a

jump.

Proof. By hypothesis, D = (X€) for some finite subset X = {z;,...,7n}
of G. Suppose |z1] £ -+ < |za|l. Let C be the largest convex subgroup
of G that does not contain z,. Then C — D is a jump since D is the

s:nallest convex subgroup that contains z,. O
THEOREM 2.3. A bounded Engel O-group G is nilpotent.

Proof. Let G be finitely generated and let G = Gy. Then there exists
a convex subgroup Gi such that G; — Go forms a jump since Gy 1s
finitely generated. Here G/G; is a finitely generated abelian group and so
finitely presented. By Theorem(P. Hall) G; is finitely gencrated as a G-

group. Moreover all convex subgroups are normal in G by Lemma 2.1. Hence
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the convex subgroup G2, where G -+ G forms a jump, exists by Lemma
2.2. Now G/Gy is a finitely generated torsion-free soluble n-Engel group and
hence nilpotent (sec [R6], p.64). Note that finitely generated nilpotent groups
arc finitely presented (see [R5], p.33). So G: is finitely generated as a G-
group and hence the convex subgroup G3, where G3 — G is a jump, also
exists. This produces a descending central series G = Go > G, > -+, with
torsion-free factors. Let N be the intersection of the G;’s so that G/N is a
residually finite p-group for all primes p. Pick any odd prime p. Since G is
an n-Engel group, it can not have any section isomorphic to the wreath product
of a cyclic group of prime order p and a cyclic group of order greater than p".
Thus it follows that G/N is linear (see [W], in the proof of Theorem 2). Now
since nonabelian free groups are not Engel groups, it follows by Tits’ Alternative
[T1] that G/N is soluble-by-finite and so nilpotent. Thus N =G for some
m and hence N =1 and G is nilpotent. Since G is torsion-free, the
n-Engel condition implies that G is nilpotent of class depending only on n,
independent of the number of generators of G, as shown by Zelmanov in [Z)].

Thus an n-Engel orderable group is nilpotent of class ¢ =¢(n). O

THEOREM 2.4. A group G is torsion-free nilpotent if and only if it is orderable

and collapsing.

Proof. Let G be a finitely generated n-collapsing orderable group and
let K be the isolator of G' in G. Then we can put an order < on G
so that K — G is a jump under this order. For any other jump C — D, we
get [D,K] < C. For the convex subgroups are normal in G by Lemma 2.1,

and since the group of order preserving automorphisms of any subgroup of the
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additive group of reals is isomorphic to a subgroup of the multiplicative group of
positive reals, the centralizer of D/C contains the isolator K of G'. Thus
if J is any finitely generated subgroup of K, then under the restriction of
the order < to J, we get, as in the proof of Theorem 2.3, a descending
central series J = Jy > Jy > ---, where the factors are all torsion-free. Let
N be the intersection of the J;’s. Then J/N is a residually finite p-group.
Now applying Corollary E in [S2] and, ncting that if a group is orderable and
a finite extension of a nilpotent class ¢ group, then it is itself nilpotent of
class ¢, it follows that J/N is nilpotent of class at most ¢ = ¢(n). Thus
N =1 and hence K is nilpotent of class at most ¢. Since K is finitely
generated as a G-group, there is a subgroup K; such that K; - K is a
jump under < . This follows by Lemma 2.1 and Lemma 2.2. Now G/K,
is a finitely generated metabelian group. Thus by Theorem 4.2 of [S1], it is
nilpotent-by-finite. But it is orderable, hence it is nilpotent. Thus G/K, is
finitely presented and hence K is finitely generated as a G-group, and there
is a subgroup K, such that K; — K; is a jump under <. Thus G/K, is
a finitely generated abelian-by-nilpotent group. Repeat the above argument and
deduce that G/K, is nilpotent. In this way we get G/K,; to be nilpotent
for all positive integers m, where G > K; > Kj > --- is the descending
chain of convex subgroups of G under < . Since G/Kpn is nilpotent of
class at most c¢+1 for all m, we get K, =1 for some m. We have so far
shown that if G is a finitely generated ordered n-collapsing group then it is
torsion-free nilpotent of class bounded by some function of n, independent of

the number of generators of G. Thus we can remove the condition that G is
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finitely generated. To complete the proof we only need observe that a torsion-

free nilpotent group is orderable, and n-collapsing for some n by Corollary

2.4 of [S1]. O

THEOREM 2.5. An orderable group G is a PSP-group if and only if it is
abelian.

Proof. The proof of this theorein is similar to that of Theorem 2.4. The
only changes are that we refer to the main result in [R2] where it is shown that a
torsion-free soluble PSP-group is abelian, and to the main result in [L2] where

it is shown that a torsion-free residually finite-p PSP-group is abelian. [J

Recall that a group G is said to have finite rank if there is a positive
integer d such that every finitely generated subgroup of G can be generated
by d elements. The structure of soluble groups of finite rank is reasonably
well known (see [R6]). More recently, A. Lubotzky and A. Mann have shown
in [L5] that a residually finite group of finite rank has a locally soluble subgroup
of finite indez. The following result is one of the instances that the finite rank

condition gives a nice structure to certain orderable groups.

THEOREM 2.6. Let G be an ordered group of finite rank. If the convex sub-

groups of G are all normal then G is nilpotent-by-abelian.

Proof. By hypothesis, there is a total order < on G such that all the
convex subgroups of G under this order are normal. Let H be a finitely
generated subgroup of G and order H by restricting the order on G to
H. Then the convex subgroups of H under < are normal in H. Let K

be the isolator of H' in H. Then the restriction of the order < to K
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gives an H-order on K. The convex subgroups of KA under this order are
again normal in H and as H/K is a finitely generated torsion-free abelian
group, we can put an order on H so that K — H is a convex jump and
all the other convex jumps in H arise from the convex jumps in KA under
<. Just as in the proof of Theorem 2.4, KA centralizes all convex jumps and
there is a descending central series K = Ko > K} > --- | where the factors
are all torsion-free. Let N be the intersection of the K,’s. Then K/N
is a residually.'ﬁnite p-group of finite rank, and by the main result of [L5],
it is soluble-by-finite of finite rank. Thus there are only finitcly many convex
subgroups of K and hence N = K, for some integer i, and hence N =1.
This implies that K is nilpotent and it follows that the derived subgroup
G' is locally nilpotent. It is also torsion-free and of finite rank. Thus it is
nilpotent by the result of Mal’cev in [M] and so G is an abelian extension of

a nilpotent subgroup. This completes the proof. 0



CHAPTER 3
WPSP-GROUPS

DEFINITIONS. A group G is called a generalized Engel group if for all
x,y in G there exist positive integers r,s such that [z,,y°] =1, where
[z,,y"] is defined inductively as follows: [z,:y°] = [z,%°], and [z,i¥°] =
[[z,i-1%¥"],¥°] for i> 1. In particular, if s=1, we call G an Engel group.
A group G is called a restricted Engel group if there exist positive integers
r,s such that for all z,y in G, [z,,y°’]=1. In particular, if s =1, we
call G a bounded Engel group.

Clearly a restricted Engel group is a generalized Engel group.

LEMMA 3.1. Let C be a convex subgroup of an ordered group G. Then C

is normal if G is a generalized Engel group.

Proof. Look at Lemma 2.1. [J

Let A be a torsion-free abelian group of finite rank and T < Aut(A).
We extend the action of T to the rational vector space V =A®zQ in a
natural way, where Q is the field of rational number. T acts rationally irre-
duciblyon A if A/B is periodic whenever B is a nontrivial T-admissible
subgroup of A. Then it is easy to see that T acts rationally irreducibly on

A if and only if T is irreducible as a group of linear transformation of V.

LEMMA 3.2. Let G =(A,y) where A is a torsion-free abelian group of finite
rank on which (y) acts rationally irreducibly. If G 1is a generalized Engel

O-group, then G is abelian.

13
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Proof. Assume, if possible, that [a,y] #1 for some a € 4. Now V =
A®zQ is an irreducible Q(y)-module, hence by Schur’s Lemma, the centralizer
ring I' = Endg,)V is a division ring, finite dimensional over Q. The image of
(y) in EndgV clearly lies in and spans I' so that [ is an algebraic number
field. Moreover, regarded as a I'-space, V is one dimensional. Thus we may
consider A to be an additive subgroup of Q(n) for some algebraic number
n and the action of conjugation by y as multiplication by 7. Since G is
a generalized Engel group, [a,,y*] = 1. In additive notation, 0 = [a,,y*] =
[~a+a*, ao1yt] = (7% — 1)a, no19*] = (1 = Da, ny¥] = (0 = 1), nap] =
a(n* —=1)". Thus 7* = 1. So [a,y*] =1 and [a,y] =1 for G is an

O-group. Thus y acts trivially on A. O

We recall that a soluble group G is said to be minimar if and only if
it has a series 1 =Gy <9 G; <++- 4 Gn =G in which the factors are cyclic or
quasicyclic. We shall call a group constrained if and only if there is no prime
p for which it has a section isomorphic to Cp1Coo, the standard restricted
wreath product of a cyclic group of order p by an infinite cyclic group. This
terminology is due to P. H. Kropholler [K3|, who proved that every finitely

generated constrained soluble group is minimez and hence has finite rank.

LEMMA 3.3. Let G be a finitely generated soluble O-group. If G is a

generalized Engel group, then it is niipotent.

Proof. Note that G has no section isomorphic to Cp1Cx because
G is a generalized Engel group. Hence G has finite rank. Write G =

(A,z1,...,2,) where A is a non-trivial normal abelian subgroup of G. Let
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Mi(# 1) be a subgroup of A on which z; acts rationally irreducibly. By
Lemma 3.2, [My,z;] =1. Let My(# 1) be a subgroup of M; on which
zp acts rationally irreducibly and then [Ma,z] = [M3,z2] = 1. After finitely
many steps we get a non-trivial center Z of G. Recall that in an orderable
grop G, G/Z and G/H are orderable where Z is the center and H
the hypercenter of G (see [F'1]). So if necessary, we may replace G by G/Z.

And repeat the above argument to deduce that G is hypercentral and so

locally nilpotent. O

For a group G, d(G) denotes the minimal cardinality of a set of gen-
erators and G™ = (g™ : ¢ € G). Recall that a finite p-group G is powerful
if p is odd and G/GP is abelian, or p=2 and G/G* is abelian. In [L4]
A. Lubotzky and A. Mann proved the following theorem: if G s a powerful
p-group and H <G then d(H) < d(G), and in [L2], the authors showed that
if a finite p-group G has no section isomorphic to CplCpe-1, then lelank

is powerful. In the following lemma, ~(G)= [¥r-1(G),G] and 7(G)=G.

LEMMA 3.4. If G is a finitely generated residually finite p-group and

restricted Engel group, then it is soluble-by-finite.

Proof. Let Gy =7, (G)G? for all r and d(G)=n. Then G/G, is
a finitely generated nilpotent group with finite exponent and so it is a finite
pgroup and [),Gr = 1. Since G/G" is a restricted Engel group, it has
no section isomorphic to CplCpe-2 for some k. By [L2], G.G*" /G, is a
powerful p-group for all r. Now we consider the subgroup H = (), GrG”k

of G. Then G/H is a finitely generated residually finite group with finite
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exponent p*. By Zelmanov’s theorem in [Z], G/H is finite and nilpotent.
Let G/H be nilpotent of class ¢ and [G : H] = m. Then for all r >
¢>a=ck, dG,G"/G,) < d(G,G")<2nm for [G:G.G"]| < m. Note
that 4,(G) C G,G*" and G; = 7(G)G* C G.GP" if ¢ is a multiple of
k. Since GrG”k/G, is powerful, d(G¢/G,) < d(G,G”k/Gr) < 2nm. Hence
G D GaDGya DG3g D -+ forms a p-congruence structure with a bound 2nm
introduced by A. Lubotzky [L3]. Thus G is a finitely gencrated linear group
by the main theorem in [L3]. Since non-abelian free groups are not restricted

Engel groups, G is soluble-by-finite by Tits’ Alternative. O

Now the proof of the following theorem is quite similar to that of Theorem

2.3. However for the completeness, we include it.
THEOREM 3.5. A restricted Engel O-group G is locally nilpotent.

Proof. Let G = Gy be finitely generated and let G; be a convex
subgroup of G such that G; — Gy forms a jump. G; exists since Gy
is finitely generated. The convex subgroup Gi, where G; — G; forms a
jump, exists by Lemma 2.2, since all convex subgroups are normal in G by
Lemma 3.1 and G; is finitely generated as a G-group. Now G/G, is a
finitely generated restricted Engel soluble O-group. By Lemma 3.3, G/G; is
nilpotent. Since finitely generated nilpotent groups are finitely presented, G»
is finitely generated as a G-group and hence the convex subgroup G3, where
Gz — G, is a jump, also exists. This produces a descending central series
G =Gy >G; >---, with torsion-free factors. Let N be the intersection of

the G;’s so that G/N is a residually finite p-group for all primes p. By
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Lemma 3.4, G/N is soluble-by-finite. Since G/N is orderable, it is nilpotent

by Lemma 3.3. Thus N = G,, for some m and hence N =1. O

DEFINITION. Let G be a group. If there exists an integer n > 1 such
that for cach n-tuple (Hi,...,H,) of subgroups of G, there are two distinct
permutations o,7 such that the two complexes Hy1)Hy(2) - - - Ho(n) and
H,1yHy(2) - - Hyn) are equal, then G is said to have the property of weak

permutable subgroup products, or G is a WPSP-group.

LEMMA 3.6. Let G bea WPSP ordered group. Then the convex subgroups

of G are all normal.

Proof. If C is not normal in G, then a* > a for some a€C and
r € G. Let pi,p2,...,pn be distinct primes and let ¢; = pyp2 - pn/pi for
t=1,2,..,n. Foreach i=1,2,...,n, pick a pusitive integer s; to satisfy the
condition s;41 > 2(s;+s2+---+3;). Now we consider the n cyclic subgroups
H; = ((a*z%)) of G. Since G is a WPSP-group, there are two distinct
permutations o,7 such that H,)Hs) -+ Hye(n) and Hpq)Hy) -+ Hy(n)
are same. Let j be the smallest integer such that o(j) # 7(j) and let
0(7) < 7(j) = o(q). Suppose there are k positive integers y; < y2 < -+ < yk

such that y; < ¢ and o(yi) < o(q). We pick an element

y = (a® o0z 7le ). .. (g’ gl ) (@ (0 z 7l @) in HoyHy2) -+ Hony-

sillce y € HT(I)HT(Z) e Hr(n)a y — (aSr(l)m—'f‘r(l))rr(l) .. (as’r(n)z—tr(n))rr(ﬂ)

.
. . . . 3 E
for some integers 7;,i = 1,2,...,n. We write a(s;j,t;) for (a%)*". Then,
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by collecting the =z’s to the right on the above two expressions of y and

cancelling =, we get

a(sﬂ(yl ) O)a(sd(!lz)’ tﬂ'(yl)) Tt a(sﬂ(q)’tﬂ‘(!h) o +t0(yk)) = a(fr,ay)--- a(fm, ),

where f; € { £s1,.... %8, } and «; are integers. Let o = mar{ag;i =
1,...,m} and suppose there are d a(fi,a;)’s with «; = «o, say, a(fh,a),
...ya(Pra,a). Then by moving these d factors to the right end as above, we

get
a(sa(yt)vo) e a(so(q)vta(yl) +-- 4 to(yk)) =ac ;e cm—-da(ﬂll + -+ ,Hlds“’)a

where ¢; are conjugates of a(fi,a;) with a; < a. Note that all fy; are
distinct and Bi1; + B1; #0. Moreover c¢; € a(l,a) and so a2 t5¢,)+ -+
ta(y)- K a>toy)t +tow): then By1+---4 614 = 0. This is impossible by
the choice of s;. So a =1g(y,)+ - +1i5y,). Hence Byi+---+f1a = 54y By
the choice of s;, d must be 1, i.e., Bi1 = $4(q). Furthermore
@= ) Miyte() = Me()tea) + 0+ Wl TGyt
i<j
=Moe()to) T+ + Ma(i-ntagi-1) T Ma(g)tacy):

So t.(;) = Z#a(j) rit; for some r; € Z. This is a contradiction to the choice
of t;. O
LEMMA 3.7. The wreatk. product of a cyclic group of order p and an infinite
cyclic group is not a WPSP-group.

Proof. Suppose that G = (a) 1 (z) is a WPSP-group where (a) is a

cyclic group of order p and (z) an infinite cyclic group. And we denote
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Driez{a;) as the base group of G. Let pi,p2,...,pn be distinct primes
greater than n, t; = pip2 - - - pa/pi and s; = tu where a prime u >
pipz - pn for i = 1,2,...,n. Now we consider the n cyclic subgroups
H; = ((¢;)z"%a,;)) of G. Then there are two distinct permutations o,7
such that Hy)Hy(z) - - Hony and HyyHpe) - - Hy(n) are same. Let
be the smallest integer such that o(j) # 7(j) and let o(j) < 7(j) = o(q).
Suppose there are k positive integers y; < y2 <--- < yx such that yi <g¢

and o(y;) < o(q). Note that j = y; for some i. We pick an element in

HyyHo2) +* * Ho(n)

- -~ -1t -1 -t
y = (a2 00as,,,) (a5, @708, )8 2T Vs, ).

_ -1 -t Tr(z1) |, . (,—1 -t
y = (as,(,l)m r(z))aar(q)) (G, T r(:m)asr(:m))

3r(zm)

for some integers rrr) #0, :=1,2,...,m. We write a(s;+1t;) for (a,j)z‘j
and a”'(sj+tj) for (a,;,~1)* 7 Then, by collecting the =z ’s to the right on

the above two expressions of y and cancelling z, we get

(3.8) a7 (Sa(y))alSa(yr) F to(y)) " - USa(g) Hio(y) T Fiaqm) +ta(g)

= a7 (Sr(21))8(S7(2y) F Tr@)tr(z)) * Use(zm) T Tr(z)tr(z) T+ Tr(zm)ir(zm))

Note that tyey,) + -+ to(y) + to(q) = Tr(z))tr(z) T+ Tr(zm)ir(zm)-
Case (i). ¢g=n and o(q) =n.
Then a(sqjy + rrytrq) + - + Tri—1)tr(j-1)) is different from all other

factors in the left hand side of (3.8).
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Case (ii). In other casc.
By the choice of t; and s;, all factors in each side of (3.8) are distinet.

Moreover a(sg(y,)) must be a(srz,)). So o(y) = 7(xy). Similarly we get
o(y1) = 7(z1), o(y2) = 7(z2), ..., o(q) = T(xm) = 7(J)

Hence o(j) = 7(z¢) for some z¢< j, a contradiction. O
Note that the above Lemma 3.7 implies that finitely generated soluble

W PSP-groups have finite rank.

LEMMA 3.9. Let G = (A,t) where A is a torsion-free abelian group of finite
rank on which (&) acts rationally irreducibly. If G is a WPSP-group, then

(t) acts trivially on A.

Proof. Suppose that [a,t] 96.1 for some a € A. Then as in the proof
Lemma 3.2, we may consider A to be an additive subgroup of Q(7) for some
algebraic number 7 and the action of conjugation by ¢ as multiplication by
n. Now there are two cases according as 7 is a root of 1 or not.

If 5 is a root of 1, say it is a primitive & th root of 1, then pick any
1#£b in A. Let a=[t,)) =b(1—n) and m a positive integer to be fixed.
Now we consider n subgroups H; = ((a'"it")). Since G is a WPSP-
group, there are two distinct permutations 0,7 such that Ho)Ha(2) - Ho(n)
and H,q)H2) - Hy(n) are same. Note that there arc i < 7,i' < j' such
that ¢ = o(¢) = 7(j') and o(j) = 7(i') = p. Now we consider an element, in

(i’ v’ -1 . )
HeyHe@y Hemyy ¥ = (@ 7))@t = b(m ) —me0))(1-7) =
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b(m? —mi)(1 —n). Since y lies in Hy1)Ho(2) * - - Ho(n), we have another

expression of y, say,

y= (ama(n)t_l)Aa(l)(amo(z)t_l )a\.,(z) . (ama(n)t_l)a\a(n)

— b(ma(])(l _ 77['\:;(1)]) + mﬂ(2)(1 - 1’[’\0(2)])”['\0(1)] +oen

oo moM(1 — n["a(n)])nlf\a(l)+'\c(2)+---+z\a(n_n])_

where [ | denotes residue class modulo k. Note that each power of m has
only finitely many possible coefficients which are independent on A,(;). Let S
be the set of all possible coefficients of m°® i = 1,...,n. Now we can fix a
required m such that if s;m!+:--45,m" =8iml 4.--+s;m", then s;=s
for all i where s;,s{ €S. Then [\]=0 for £#p,q and [Ap+ A =0.

And so we get

(mP — m9)(1 — ) = m9(1 — pl*dd) + mp(1 — ylAel)plAdl

= m? — mInPe 4 mpylhd — P,

So 2(mP —m9) = (mP — m9)(n + ™). This is impossible.

Suppose that 7 is not a root of ynity. Note that I' = Endg)V can be
embedded in C so that [g|>1 (see [H1], p-122) where V = A®zQ . So we
assume |p| > 1. Let m(i)=m’, m > 2n and k be any integer not equal to
zero. And consider n subgroups H; = ((tk)amm) of G. Now we have two

distinct permutations o¢,7 such that H,)He(2) **Hyn)y = Hr1)yHr(2) * Hr(n)-

Note there are ¢ < j,?’ < j' such that o(i) = 7(j') and o(j) = 7(').



m(r(i! -k m(r(;' k .
Consider an element y = (¢* e ))) (t¢ v ))) in HyyHey o Hey. In

additive notation, this is

y = —m(r(i"))a+m(r(i")a+ (m(r(")) - m(r(;"))ay*
= —m(0(j))a + m(o())a + (m(a(7)) ~ m(a(i)))an*

= a(—m(a(j)) +m(o(3)) + (m(o(j)) - m(a(i)‘)-:)k).

m(o(s kvyq(i, m(a(ir ka.".
Since y isin Hya)Hs@) ' Hom), ¥ =(t° ety 7(‘)---(#‘ (stiry Yo(ir)

where Yo(i;) #0, j =1,...,7 Then

y= a(—m(a(il)) + (m(a(z])) - m(a’(i2)))'[’k‘y°("1) 4

- b{m(oin-1)) = mo(ir )T ) (o))

Hence for each k& we have the following expression.
~m(a(j)) + m(o(i)) = cin*¥* + con*¥e2 4 - cl(k)nk-”““‘)

where yx1 < yr2 < + -+ < yrek) and no subsum of the right hand side is
zero. Note that there is an integer M such that Ei(:k,) le;] £ M for all &
because each power of 75 has only finitely many possible coefficients which
are independent on 7,(;). Now pick k such that [nF| >M-1+ |r(a(Z)) —
m(a(7))l. Then we get a contradiction. O

Here we mention the following properties. The proofs are the same as the

ones of corresponding ones in [R2].
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LEMMA 3.10. A torsion-free nilpotent W PSP-group is abelian. O

THEOREM 3.11. Let G be a finitely generated soluble group. Then G is a

WPSP-group if and only if G is finite-by-abelian. J

THEOREM 3.12. An orderable W PSP-group is abelian.

Proof. Follow the same procedure in the proof of Theorem 2.5 with above

two results. [J



CHAPTER 4
LOCALLY INDICABLE GROUPS

DEFINITIONS. A group G is said to be weakly restrained if (x(¥) is
finitely generated for all z,y in G. And we call G restrained if there exists
an integer n such that (z{*)) can be generated by n elements for all =,y

in G. In this case, G would be called n-restrained.

LEMMA 4.1. A group G is restrained if
(i) it is an n-Engel group for some positive integer n , or

(ii) it is n-collapsing for some positive integer n.

Proof. (i) Let z,y be elements in G. Then the subgroup generated by
{z,[z,y],---,[z,ry]} is precisely the subgroup generated by {z,z?,..., zv' ).
This can be easily seen by inducting on r. Thus if G is an n-Engel group,
then (z9) = (z,zY,... ,z¥" .

(i) Let S={=zy™?, zy~%,..., xy™™ }. Then there exist two distinct
functions f,g from {1,2,..,n} to {~1,-2,..,—n} such that

[ =®= ] av*®.
i=1,...,n

i=1,...,n

Let r be the largest integer such that f(r) # g(r), let s(z) = f(1)+---+ f(2)

and t(z) = g(1)+---+¢g(¢). Then we get the equality;

—3a(1) ~8(2) —-a(r-1) -t(1) —-t(2) —-t{r-1)
z¥ R ys(r) = zz¥ oo ¥ yl(").

zz¥ z¥

If s(r) #t(r), then y* € (z¥?) for some k > 0. Letting m be the least
positive integer such that y™ € (z{¥’), we get () = (y"‘,zy‘;() <1i < m).

24
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Note that m < n? If s(r) =t(r) and f(r) #g(r), then s(r—1)#t(r—1),

say, s(r —1) <t(r —1). Then 2" e (z,xy,...,zy’('—”—l) and (z{¥) =

(:c”i;.s(r ~1) <i < —s(r —1)), requiring fewer than 2n? generators. O

LEMMA 4.2. A group G is weakly restrained if
(i) it is a generalized Engel group, or
(ii) it is collapsing, or
(iii) it satisfies the maximal condition locally.
Proof. (i) and (iii) are clear. The proof of (ii) is identical to that of

Lemma 4.1. O

LEMMA 4.3. Let G be a finitely generated weakly restrained group. If H

is a normal subgroup of G such that G/H is cyclic, then H is finitely

generated.

Proof. For some g € G, we can write G in the form H(g). Since
G is finitely generated, there exist hj,hg,...,h, in H such that G =
(h1,hay... hr,g) and H = (h],hg,...,hr)G. For each i =1,...,7, (hg<g))
is finitely generated, say, (h,-<9>) = (hi1,hiz,..., hia@)). Now let H; =
(Rieiy;l < ¢ < 1,1 < £(z) £ d(2)). Then clearly g lies in Ng(H,), the
normalizer of H; in G and (h1,...,h;) < Hy. Hence Ng(H:)=G. This

means that Hy = H and H is finitely generated. O

COROLLARY 4.4. Let G be a finitely generated weakly restrained group. Then

G' is finitely generated.

Proof. This result follows readily from repeated use of Lemma 4.3. O
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In particular if G is a finitely generated weakly restrained soluble group
then G is polycyclic. Using Tits’ Alternative it also follows that a finitely

generated weakly restrained linear group is polycyclic-by-finite.

Now we need to recall the definition of twisted wreath product (se  N3J)
to introduce the theorem proved by J. Wilson in [W]. Let E,H be fii o
groups and L a subgroup of H, and suppose that a faithful action o of L
on E is given. We may form the direct product B of |H :L| copics of E,
and define a faithful action of H on B in such a way that H permutes
transitively the copies of E and L acts on the first of these copies according
to the action o. The split extension of B by H with this action is the
twisted wreath product of E by H ; it will be denoted by E twrp,H and
reference to the action ¢ will be suppressed. In particular if L = 1, the

group becomes the standard wreath product E H.

THEOREM(J. WILSON). Let G be a finitely generated residually finite group
and let n be a positive integer. Suppose that G has no sections isomorphic
to groups E twry H, with H finite and cyclic, E an clementary abelian
p-group on which L acts faithfully and irreducibly, and [H : L} > n. Then

G is a finite extension of a soluble minimax group.

NOTE 4.5. If G =E twrp H is a twisted wreath —roduct with [H : L] > n,

then G is not n-restrained. O

DEFINITION. We say a group G has finite local trace, or G is a locally
graded group if every finitely generated non-trivial subgroup of G has a non-

trivial finite quotient.
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Now we introduce an example in which the short Lemma 4.3 plays some
role in the study of infinite groups which have appeared recently.

In [P], O. Puglisi and L. Spiezia have defined the class of groups, &
which consists of groups satisfying the following property: For every pair X,Y
of infinite subsets of G, there exist some z in X and y in Y, such
that [z,xy] = 1. And they proved that every infinite hyperabelian Eg-group is
a k-Engel group.

Now we prove that every infinite £f-group G with finite local trace is
a k-Engel group. Note that every hyperabelian group has finite local trace.
Here we can assume that G is not locally finite because of Theorem B in [P].
Let G be finitely generated and let N be the finite residual of G. Write
N = ), Nr» where Ny < G and G/N, is finite. Since G is infinite,
N, is infinite. Hence G/N, is a k-Engel group for all A and sois G/N.
Thus G/N has no section isomorphic to E twr H with [H:L]> k. By
Theorem(J. Wilson) G/N is soluble-by-finite and nilpotent. Note that G is
weakly restrained. So N is finitely generated by Lemma 4.3. Let N be
infinite. Since N has finite local trace, there is a normal subgroup K of N
such that N/K is finite. Since K is infinite, N/K is a k-Engel group and
so nilpotent. Thus N # N’ and G/N' is abelian-by-nilpotent. Hence G/N'
is residually finite. This contradicts to the choice of N. So N is finite. Thus
Cg(N) has finite index in G. So it contains an infinite abelian subgroup A.
For every z,y in N, [za,x(yb)] = [z,xy]=1 for some a,b in A. Thus
N is a finite k-Engel group and nilpotent. Again G/N' is residually finite.

Hence G 1is a k-Engel group. O
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o

DEFINITION. Let G be an infinite group. For every pair XY of
infinite subsets of G, there exist some x in X and y in Y, such that
(z¥) is generated by n elements. Then G is called an R} -group.

Clearly every infinite restrained group is an RY-group for some n. Let
G be an R!-group and z,y in G. If y has finite order or some power
of y centralizes z, then (zf¥) is finitely generated. In the other case we
consider two infinite subsets of G, X = {m,x!‘,myz,. ..} and Y = {y,9%,... }.
Then ((zym)(yl)) is finitely generated for some m,¢ and sois (). Thus

we get the following,.
NOTE 4.6. If G is an R -group, then it is weakly restrained. O

THEOREM 4.7. An infinite group G is polycyclic-by-finite if and only if it is

a finitely generated R} -group with finite local trace.

Proof. If H is polycyclic and r is the length of a series from 1 to H
with cyclic factors, then every subgroup H can be generated by r clements
as can be seen via induction on r. Now if H <G and G/H is of order
s then every subgroup of G can be generated by s+ r eclements and G
is restrained. That a polycyclic-by-finite group G 1is residually finite is well
known. Thus we have shown one way implication.

First we assume that G is a finitely generated residually finite group.
We claim that G has no section isomorphic to E twr,H with [H : L] >
n. Suppose that G has a section K < M such that M/K = E twr H.
Let M be infinite. For every z,y € M\K, consider two infinite scts Kz
and Ky. Since G is an R}-group, there exist kj,kz in K such that

((klm)«kzy))) is generated by n elements. Modulo K, M/K is n-restrained
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and so is E twrpH. This is a contradiction. Suppose that M is finite. Write
M = {z,,22,...,z,}. Since G is residually finite, there is N; 9 G such
that z; ¢ N; and G/N; is finite. Let N ={\_, N;. Then MNN =1
and G/N is finite And MN/N 2 M/MNN = M. Now MN/KN =
M/K = E twr,H. If we replace M by MN and K by KN, then we
are in the above case. So by Theorem(J. Wilson) G has a soluble subgroup
of finite index. By the remark following Corollary 4.4, we conclude that G is
polycyclic-by-finite.

Now let G be a given group. Let R be the finite residual of G.
Then G/R is polycyclic-by-finite by the above argument. Since G is weakly
restrained, R is finitely generated by Lemma 4.3. Here G has finite local

trace. So R=1. 0O
THEOREM 4.8. A locally indicable n-Engel group G is nilpotent.

Proof. Let G be finitely generated. Then G has a subgroup G; such

that G/G, is infinite cyclic. Hence G; is finitely generated by Lemma 4.3.
Now let G = Ig,(G}), the isolator of G} in G;. Since G is locally
indicable, G2 # G1 and G2 < G. Furthermore there is a series, G2 <1 G2; <
- < Gz,(1y < Gy with infinite cyclic factors. By repeated applications of
Lemma 4.3 we get G is finitely generated. Let G; = Ig,(G}), the isolator
of G in Gs. This procedure gives us a normal series G = Go > G; > G2 >
with torsion-free abelian factors. Note that G/G; is finitely generated
soluble, hence nilpotent. Let N be the intersection of the G;’s so that G/N
is residually torsion-free nilpotent for all ¢. Now since G/N is an n-Engel

group, by Zelmanov’s theorem, G/N is nilpotent. Thus N = G, for some
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m. This means that N =1 and G is nilpotent. Since G is torsion-free,
the n-Engel condition implies that G is nilpotent of class depending only on
n, independent of the number of generators of G, as shown by Zelmanov in

[Z). Thus a locally indicable n-Engel group is nilpotent. O

Note that in [Cl], the authors proved the following result: if G s a
finitely generated generalized Engel soluble group, then it is nilpotent-by-finite.
Using this result, we can get the following analogous result of Theorem 4.8 under
a restricted Engel condition. Of course, Lemma 3.3 could also be obtained as

an easy consequence of that.

COROLLARY 4.9. Let G be a finitely generated group with finite local trace.

If G is a restricted Engel group, it is nilpotent-by-finite.

Proof. Let R be the finite residual of G. Then G/R is residually fi-
nite. Since G is a restricted Engel group, G/R is n-restrained for some
n. By Note 4.5 G/R has no section isomorphic to E twr; H where
[H : L] > n. Hence G/R is soluble-by-finite and polycyclic-by-finite by the
remark following Lemma 4.4. Let R # 1. Since R is finitely generated, it
has a proper finite quotient R/M. Then coreg(M) <G and R/corcq(M)
is finite. Thus G/coreg(M) is polycyclic-by-finite and so residually finite,
contrary to the choice of R. Thus G is polycyclic-by-finite and nilpotent-by-

finite. O

COROLLARY 4.10. Let G be a torsion-free n-Engel group. If G has finite

local trace, then G is nilpotent.
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Proof. We claim that G is a locally indicable group. Then it is nilpotent
by Theorem 4.8. Let H be a finitely genecrated non-trivial subgroup and
let N be the finite residual of H. Then H/N is a finitely generated
residually finite group and so nilpotent. If H/N is infinite, the quotient group
by the torsion subgroup is torsion-free. If H/N is finite, then N is finitely
gencrated. Let K be the finite residual of N. Since N is the finite residual

of HA N =K, a contradiction. O
LEMMA 4.11. If G is a collapsing RO-group, then G is a C*-group.

Proof. Let P be the positive cone of a given right-order on G and
a,b in P. Suppose, if possible, that a™b < a for all positive integers, m.
Consider the set S = {ba,ba?,...,ba™} where 7 is an integer such that
|S"| < n™. Since G is n-collapsing, there exist two distinct functions f,g
on the set {1,2,..,n} such that

bal ) = bad().
II I ¢t

i=1,...,n i=1,...,n

Hence for some 0<r <n we have ba/(Mbaf®)...0af(r) = pa9(V)pqas(?) ... paa(r)

and f(r) # g(r). Say f(r) < g(r) and let s = g(r)— f(r). Then we have

ba/) ... b =ba%M) ... pa* and afM...p=a%1) ... ba*. Now a™b<a for
all m >0 implies a/Mbaf/@ ...b < aafPpaf® ... b < aaf®b---b<-.- < a.
On the other hand, a9(!)...b>e so that a9!)...ba® > a® > a, giving the

required contradiction. O



32
THEOREM 4.12. A finitely generated RO-group G is collapsing if and only

if it is nilpotent-by-finite.

Proof. Suppose G is collapsing. Then by Lemma 4.11 it is locally
indicable, Hence by the same argument as in Theorem 4.8, we get a normal
series G =Gy > G > Gy > - -+ with torsion-free abelian factors. Note that
G/G; is finitely generated soluble and collapsing, hence nilpotent-by-finite for
all : by [S1]. Hence G/G; is residually finite. Let N Dbe the intersection
of the G;’s so that G/N is residually finite. Now since G/N is collapsing,
by [S1] G/N is nilpotent-by-finite. Thus N = G,, for some . This means

that N =1 and G is nilpotent-by-finitec. The converse is clear. [



CHAPTER 5
FINITE BASE

DEFINITION. Let N, K be subgroups of a group G and N < K.
We denote by RL.(N) the subgroup generated by the set { g € K;g" €
N for some n>1}. Let Ri'(N)=R4(RL(N)) and Rg(N)=UZ, Rk(N)
We call Ryg(N) the root of N in K.

Note Rx(N) is isolated for if z" € Rk(N), then z" € Ry (N) for
some i and z € RY!(N). Hence z € Rg(N). So Rk(N) is exactly the
smallest isolated subgroup of K containing N. The following example is one
which shows how the root grows.

EXAMPLE. Let N = ( a,b ;[a,b] = ¢,[c,a] = [c,b] = ¢ ) be a free
nilpotent group of class 2 and let t be the automorphism of N defined
by a! = bb' = (ba)”'. Then G = ( a,b,t ;a* = b,b' = (ba)™',#* =c ) is
a polycyclic group. Now we consider the root Rc((e)) of (e) in G. We
claim that RL(({c)) # R%({¢)) and Rc((e)) = R%({e)) = G. Let P be
R.L({e)) which is a subgroup generated by all periodic elements of G. We

show that G/P is isomorphic to a cyclic group of order 3.

NoTE 5.1. The group G as above has the following properties.
(i) a"b™ =b™a"c"™ for all integers, n,m.
(i) (a='b~1)" = b~ "a "c*"*t)/2 for all integers, n.

(iii) @®,b® and t* liein P.

Proof. (ii) Let n > 0. Induction on n.

For n=1, a 'b!'=bla a !0 |=b"ta"e.

33



34

Suppose that (a~'b~')""" = hntlg=ntlen(=1/2 Then

(a—lb_l)n =(a"'b7")- ((1_111_1)'1—l =bla e pH gt en(n-1)/2

— b—la—lb—vl+1a—n+lcr.1(n—l)/2+l — b—l b—-n+la—la-n-{-lcu—l-f-n(n—l)/2+l

= b_"a—"cn("+l)/2.

Similarly for n < 0.

i) (at™!)® = aa'a®t™3 = a-b-(ba)"'c™! = e by (i). So at~! €
P. Hence (at~!)' = bt~!, (bt~1)' = a~'b~1¢"*, and (at‘l)a—‘ = a2h~ 1!
liein P. So a?b~'t~!.tha = a® € P and so does b = (a®). Morcover
at=l- (bt~ = ab?, (bt=1)'-(bt1) ' =a"'6"2€ P and a?-ab”!-(b7%)

a2 =agtbab'=c1'€eP. So t*eP. O

Let K = (a3,b3,t3)G <N and Q = (K,at‘l)c < P. Now we claim
P = Q by showing that every periodic element of G is in Q. Let x =
cfa™b™t¢, where e=1,—1, be a periodic element of G. Let €= —1.

Then z2 = cla™b t~1cla™bmt~! = c2ttmntn(nt)2gm-npmy=2 4p(

73 = dttmntn(ndl)/24m(m+1)/2-1 by ysing Note 5.1.

Since z is periodic, 3¢ +mn+n(n+1)/2+m(m+1)/2-1=0. We
consider this relation modulo 3. There are nine possible cases of m,n that
must be checked. For example, suppose m =0 and n =1 mod 3. Then
z = cta®3™ ¥ +1¢-1 for some integers m',n'. Since bt~! = (at™! ) €Q and
Kc@Q, ze@Q. We can apply the same argument for e=1 to get P = Q.
Recall that if a group G is a 2-Engel group then (a:)G is abelian for all

z € G. Since G/K has an exponent 3 and |G/K| =27, it is a 2-Engel
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group. Note P/K = ((at"’))G/K and so P/K is abelian. If G =P, then
G/K is abclian. This is a contradiction. From the proof of (iii), we have
a2 . b = [a,t] € P. Moreover [b,a]-a~'b"1¢t71. (at™)' = b-la"2 € P.
So (b~'a"2)'-b® =bab = [t,b] € P. Hence P>G' and G/P is elementary

abelian. In fact G/K = (C3 xC3)xC; and G/P = ((aP))=C;. O

DEFINITION. We will say that a group G has finite base n if there is an
integer n such that every subgroup H of G has an n-generated subgroup
K of H with Ry(K)=H andif n is the least integer with the property.
In particular, if H = Ry({e)) for each subgroup H of G then we shall say
that G has base 0.

Clearly the additive group of rational numbers has finite base 1. Since
all periodic groups have finite base 0, this concept is not useful in studying
periodic groups. So it makes sense to restrict our groups to torsion-free groups,
for example, O-groups. Here we have the closure properties of groups with

finitc base. We follow the notations in [R5].
LEMMA 5.2. The class of groups with finite base is S,H and P-closed

Proof. S and H-closure are immediate. For P-closure, let N <
G and suppose that N has finite base r and G/N has finite base s.
Let H be a subgroup of G and HNN = L. Then modulo L, H =
Rﬁ((.’f,,...,f,)) for some z; € H and L = Rp({y1,...,yr)) for some
y; € L. Clearly L C RH((yl,...,yr,ml,...,zs)). For = € H\L, = €
Ri((T1,..,Ta)). Let T € RL((%1,...,Ts))- Then T=7,;---g, and z=g1--

grly. where g" € (T1,...,%s). So g =z --zi, s € (21,...,25,L). Thus z €
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RL({z1,...,2s, L)) C Ru((z1,...,xs,L)). Suppose that if T€ RV (F1y ey Ta)),

then = € Ry({z1,...,%s,L)). Let T € RY({Z1,....Ts)). Then T =g,---g, and

€ =gy gsls where g € Ri7'((Z1,...,Ts)). By induction hypothesis, ¢ €

Ry({z1,...,%s,L)). Thus z € Ry(Ru({z1,...,2s, L))) = Ryy({x1,.-., 4, L)). So
if 7€ Ry({T1,.-..Ts)), then z € Ru({z1,...,zs,L)).

Note that Ry({Z1,..;Ts,Y1;..1Yr)) contains xj,...,x,, L and isolated.

Thus Ry({Z1,--y 74, L)) = Ru({Z1, .y Ts, Y1, .-r ¥r)). O

LEMMA 5.3. Let G be a torsion-free abelian group with finite base 1. Then

G is isomorphic to a subgroup of the additive group of rational numbers.

Proof. Since bG)=1, G = Rg({(z)) for some z in G. For g€G,

gt = z" for some ¢,n. Hence G is indecomposable. Let H be a finitely

1R

generated subgroup of G. Then H is also indecomposable, je., H=Z.

This means that G is locally cyclic and torsion-free. Hence G is isomorphic

to a subgroup of Q. 0O

LEMMA 5.4. Let G be a torsion-free nilpotent group with base 1. Then it is

isomorphic to a subgroup of the additive group of rational numbers.

Proof. Induction on the nilpctent class n. By Lemma 5.3, it is clear if
n = 1. Suppose that it is true if n < r. For a group G of the nilpotent
class r, (G',g) has the nilpotent class <r for all g in G. In particular
for g € Z(G), the center of G, (G',g) is isomorphic to a subgroup of Q.
Hence z¢ = g" for some z € G'. Forall y€ G, (G',y) is isomorphic to
a subgroup of Q. Hence y®* = z? and y*¢ = 2Pt = ¢"f. So y** lies in

Z(G). Since the center of a torsion-free nilpotent group is isolated, y lies in

Z(G). Hence G is abelian. O
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Clearly a torsion-free locally nilpotent group with base 1 is isomorphic to
a subgroup of Q. We can not extend the above argument to the larger class
of groups even for polycyclic groups for G = (z,y : z = y?,2¥ = z7!) is an

casy example.
LEMMA 5.5. If a group G has finite base, then it satisfies maximal condition

on isolated subgroups.

Proof. Supposc that there is a proper ascending series of isolated
subgroups, H), < Hp <---. Let H =J;2, Hi. Then there is an n-generated |
subgroup K = (z1,...,z,) of H with Ry(K)= H. Take a subgroup H,
containing zj,...,z, and then H,= Ry(H;)=Ry(K)=H. O

Since every relatively convex subgroup of an O-group is isolated, we get

COROLLARY 5.6. If G is an orderable group with finite base, then every rel-

atively convex subgroup is normal in G. O

Let G be an abelian group with finite rank 7. Then the factor group
of G with respect to its torsion subgroup is isomorphic with a subgroup of
a direct product of ro(<r) copies of the additive group of rational numbers.
Hence G has finite base. From this and the P-closure it follows that solu-
ble groups with finite rank have finite base. For a locally soluble group G
with finite rank r, there is an integer n depending only on r such that
G is periodic (see [R6]). Hence a locally soluble group ¢ with finite rank
has finite base. Moreover it follows from [L5] that a residually finite group
with finite rank has finite base. Conversely let G be a torsion-free abelian

group with finite base and A a subgroup such that G/A = (t) is infinite
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cyclic. If s is the smallest integer such that A = R,\((;rl,...,:r,)), T € A,
then G has finite base > s. Now suppose G has finite base s. Then
(A,1) = Rian((t*a1,...,t%ap,aps1,...,a,)) where a; € A. Here we have
an expression for ¢ in the right hand side. Since ¢ is torsion-free, we have
1=al-.- a;’,’ af,’_fl‘ ..-ab where b; € Z and b; # 0 for some i. Hence
A= RA((al,...,a.-._l,ag+1,a,)), a contradiction. Thus G cannot have in-
finitely many independent elements. This means that G has finite rank. So
it follows that a torsion-free nilpotent group with finite base has finite rank.

Recall that for an abelian group A, the 0-rank of A is the cardinal

of a maximal independent set consisting of elements of A with infinite order.

COROLLARY 5.7. If G is a locally nilpotent group, the following properties of
G are equivalent.

(i) G has finite base.

(ii) Each abelian subgroup of G has finite 0-rank.

(iii) The factor group G by its torsion subgroup is a torsion-free nilpotent

group of finite rank. O

COROLLARY 5.8. A torsion-free locally nilpotent group with finite basc has

finite rank. O
THEOREM 5.9. If G is a C-group with finite base, then it is soluble.

Proof. Since G has finite base, there is a finitely gencrated subgroup
H = (zy,...,2;) with e<z; <---<az, such that G = R (H). Note that
z, determines a jump G; — Go and Gy =G. Now let G, = I, (G'y) , the

isolator of G} in G;. Since G; isa C-group with finite base, G2 9 G and
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G, # G, by the above argument. Repeat this setting Gs = Ig,(G3). Then
we get a normal series G = Go > Gy > G > -+ with torsion-free abelian
factors. For each positive integer m, modulo G, let A be a maximal
normal abelian subgroup of G. Since G has finite base, A has finite rank
and is torsion-free. Hence G/A can be considered a subgroup of GL(n,Q).
By the Mal’cev’s theorem, G/A has a bounded soluble length dependent on

n only and so does G. This means G/ N Gp is soluble. Hence G is

soluble. O

LEMMA 5.10. If G is an O-group with finite base, then it has finite rank.

Proof. Note that G is soluble by Theorem 5.9. Let s be the solubility
length of G. By Lemma 5.5 and Corollary 5.6, the isolator J of G in G
has a descending central series C; > Cy > --- . We claim that for every m,
J/Cm has finite rank r, depending only on base n and solubility length s.
Write H = J/Cy,. Note that H is torsion-free nilpotent and so an O-group.
Morcover H/L has a solubility length < s where L = I(H (s=1)) is the
isolator of H¢~1 in H. By induction H/L has finite rank. Since H is

an O-group, L is torsion-free abelian. Thus H has finite rank. 0

In [B6], B. Mura and A. Rhemtulla introduced the class O,-groups of all
ordered soluble groups satisfying the maximal condition on isolated subgroups.
By Lemma 5.5 and Theorem 5.9, an O-group with finite base is an O2-group.
And the converse is also true by Theorem 2 in [B6]. The following are imme-

diate corollaries of the results in [B6).
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THEOREM 5.11. If G is an O-group with finite base, then it is nilpotent-by-

abelian. O]

THEOREM 5.12. If G is an O-group with finite base, then every torsion-free

quotient of G is orderable. [

We recall that a group G is called an R*-group if ¢* -.g™" = ¢ implics
g=e forall g,z;,...,2, in G. Clearly an O-group is an R*-group. Here
we mention another property of finite base which corresponds to analogous one
of finite rank for orderable groups. The proof is quite similar to Theorem 4.1.1

in [B5].

THEOREM 5.13. Let G be a group with finite base. Then G is orderable if

and only if it is a soluble R*-group. O]

There exist polycyclic O-groups with trivial center. As an cxample, let
H = (1,%@) be a subgroup of (R,+) and 7 an automorphism of H
which acts on H as multiplication by l—%‘@ Then the split extension of
H by (r) is a required one. So we get a certain limitation to the above
Theorem 5.9 and Corollary 5.11. An O-group with finite base need not be
soluble minimax for (Q,+) is an easy example. But using Theorem 5.9 and

Lemma 5.10, we have that a finitely generated O-group with finite base is a

soluble minimax group.



CHAPTER 6
PC-GROUPS

In the previous chapters, we discussed groups with the property of
permutable subgroup products. Now we consider a similar notion of permutable
products, for 2-element subsets of G instead of subgroups of G.

NoTaTIiONS. For subsets §,5;,...,S, of G and ¢ Im G, S-g=
{sg;s€ 85}, g-S={gs;s€S} and 5153+ Spn ={s1-"-8a;8i € S;}. And
|S| means the cardinality of the set S.

DEFINITION. For an integer n > 1, a group G is said to preserve
the cardinality of 2-element subsets product under permutations, or G is a
PC(2,n)-group if G =1 or for each n-tuple (S1,...,S,) of 2-element subsets

of G, there is a permutation o(#1) in %, such that
(6.0) 1S152 « -« Snl = 1S+(1)Se(2) * * * So(n)l-

Let PC(2) be the class |J,5, PC(2,n). The following note is one which

explains why it makes sense to fix one side of 6.0.

NOTE 6.1. For n >3, a non-trivial group G has the following property ;
For each n-tuple (Si,...,Sn) of 2-element subsets of G, there exist distinct
permutations 0,7 € ¥, such that the cardinalities of Sy(1) - Syn) and

Sr(1y "+ Sr(n) are same.

Proof. Note |[S1S2:--Sp| <2". If n >4, then n!>2". So the number
of permutations is strictly greater than the number of possible cardinalities of

all permutable products. Hence there are two distinct permutations with above

41
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property. Suppose n = 3. Let S1,52 and S3 be three given 2-clement
subsets of G. If |S5(1)Ss(2)S0(3)| # 2,3 for all o € T3, we are already done.
So we can assume |Sy(1)Ss(2)Se3)| =2 or 3 for some o € X3. Write S5 =
{z1,212},52 = {y,yn} and S3 = {z1,2z1}. Suppose |515:53] = 2. Then
|5152| = |S283| = 2. Now by the simple calculation, we get ]$351S52| and
|S2838;| are 2 or 4. Let |S152S3] =3. Write S§) ={1,z} and S3= {1,z}.
K |5:5:] = |SiS2] = 2, then we have y = zy; and y = zy. Moreover
518,88 = {y, y1, yz, y1z}. Since [5]528;| =3, we have y=yiz or y =
yz. Note that y =y12 & zy1 = y12 = zyz © ¥y = yz. Hence [515:5] = 2,
a contradiction. So [5]S2| = [{y,y1,zy,zy1 }| = 3. Without loss of generality,
we can assume y = zy;. Since S]S525; = S51S2U 51522, there are two cases
to examine.

Case (). y==zyz, y1 =yz and zy=y=2.

Then y =zy-2z =y12-2z = yz° and y = zyz = zzy;z = 'y. Thus
z3 = 23 = 1. Note that 529351 = 9283 - ) U 5253 - oz and 5253 =
{yz1, yzz1, yzzz1}. Now suppose |525351| < 6. Then at least one element in
S25; -7 lies in S283-z;z. Note that yzz1z) = yz1717 & 2212) = 212512 &
Yzz21T1 = Y221 71T < Y21T1 = Y22221T) = Y2227 and yzza1L) = Y24 T
yz121 = Y2z1T1T & yzz1T) = yzzz1Z;z. So that one clement in S28y - a1y
lies in 5393 - z;z implies that other two elements in S3S3 - x; belong to
S2S; - z1z. Hence [S253S1] =6 or 3. Similarly we can show |$35,52| = 6
or 3.

Case (ii). y=wv12, y1 =zryz and zy =yz.

This case can be checked by the same argument as in case (i). O
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Clearly PC(2) contains all finite groups. So for a given n, it seems

hard to characterize PC(2,n)-group. However in a very particular case, we have

an affirmative answer.

LEMMA 6.2. Let G be a PC(2,2) or PC(2,3)-group. Then
(i) if z* =1, then z € Z(G), the center of G,
(i) if [z,y] #1, then z¥=2z71,

(iii) if [z,y] #1, then (z,y) Is a quaternion group of order 8.

Proof. (i) If z has an order 2 and [z,y] #1, take S;={1, z},5; =
{zy, y} and S3 = {1, y~lzy}. Then [515253] # [Ss(1)Ss(2)So(3)l for all
a(#1) € Z; and |5152] # |525].

(ii) Let G be a PC(2,3)-group. For S; = {1,z},52 = {y,z"'y} and
Sz = {1,y 'zy}, thereis o(# 1) € 3 such that |S1525:| = |Ss1)Se(2)Se(3)l-

There are five cases to check. We consider one of them (the others are
similar). Suppose |51528:3] = [S35152] < 4. U |$15:] =2, z? =1 and
so ¢ € Z(G), a contradiction. Hence |$15:| = |{y,zy,z"'y}| = 3. Note
that S$351S2 = S1S2 Uy lzy - 5152. So at least two elements in y~lzy-S$1S,

‘oyey, (i) oy =

are in $,5;. The non-trivial possible cases are (i) y =y~
y“lzyz~ly, (iii) z7'y = y~lzyy and (iv) z~ly = y~lzyzy. Note that (i)
or (iii) is equivalent to the relation we want. If (ii) and (iv) are true, then
y~'ry = 272 = z%2. Since z? lies in the center of G, y lzy =z? gives a
contradiction. If G is a PC(2,2)-group, take S; ={1, z} and S; = {zy, y}.

We then get the same result by the simple calculation.
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(i1i) Note that in (ii) we only used the non-commutativity of = and y.
If we consider [zy,y] # 1 and [z~ 'y,y] # 1, then we get z* = y* and

z =1. Since (z,y) is nonabelian, we are done. O

THEOREM 6.3. G is a PC(2,2) or PC(2,3)-group if and only if G is
abelian or the direct product of a quaternion group of order 8 and an elementary

abelian 2-group.

Proof. Let z,y € G and [z,y] # 1. Then Q= (z,y : z' = 1,z =
y?,zy = yz~!) is a quaternion group by (6.2)Lemma. Now we claim G = CQ
where C is the centralizer of Q in G. Suppose g € G\CQ. Then [g,z] #
1 or [g,y]#1. Let [g,9]#1 and y9=y~'. Then y9* =(y~')* =y, iec,
[¢9z,y] = 1. Since g € G\CQ, [gz,z] # 1. Hence [z,gzy] = [y,g7y] =1 and
so g € CQ, a contradiction. So G = CQ. Suppose C has an clement ¢
of order 4. Then [z,gy] = [z,y] #1 and (gy)* = 1. So (gv)" = (9v)”"
and [gy,2] = (gy)™2 = ¢g7%y~%. Since [gy,7] = [y,2] =y 7%, weget g% =1,
a contradiction. Note that C lies in Z(G). For, if g € C\Z(G), then
[g,w] # 1 for some w and so g* =1, contrary to the above argument.
Suppose that C has an element g of order prime p # 2. We consider
2-element subsets S; = {z,gzy} and S = {¢7'y,¢7 %} if G isa PC(2,2)
group and S = {1,9z},S2 = {gy,y"'z7'} and S3={g7',z7'} if G B a
PC(2,3)-group. Then |5152| # |5251| and |S515253| # |S0(1)Sa(2)Sas)| for
all o(#1)€ Z3. Hence C is an elementary abelian 2-group. Let z = [x,y]

and D be the maximal subgroup of C not containing z. Then z € (D,w)

for all w e C\D. Since w?=2*=1, (D,z) =(D,w). Hence C = (D,z)
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and Dri(z) =1. So C =D x(z). Moreover QND =1 and QD = QC.
Hence G = Q x D, where D is a subgroup of C.

For the converse, let G = Q x D where D is an elementary abelian
2-group and Q a quaternion group of order 8. First we show that G is
in PC(2,3). Let A,B and C be three given 2-element subsets of G.
Write A = {g1,q1az},B = {by,cz} and C = {g2,dwgz}, where a,b,c,d €
Q, z,y,2,w € D and ¢1,92 € G. Then |ABC| = |A'BC'| and |CAB| =
|C"A'B|, where A' = {l,az},C' = {l,dw} and C" = {1,d‘w}. Note that
in C", e=1 if gog, lies in the centeralizer of d, and €= —1 if not.

Case (i). |AB|=4.

Since C'={l,dw} and C" ={l,d‘w}, A'BC'=A'BUA'B.dw and
C"A'B = A'BUd‘w-A'B. Note that if there is one element in A'B-dw which
is in A'B, then there is one element in d‘w- A'B which is in A'B. The
converse is also true. For example, suppose that by = abdryw. Then by =
abdzyw & d"abzyw & d'abzyw if e=1n, and dby = abryw & dbyw = abry
if not. This means |A'BC'|=|C"A'B| and so |ABC|=|CAB|.

Case (ii). [AB|=3.

This case can be checked by the same argument as in case (i).

Case (iii). |AB|=2.

Since |A'B| = |{1,az}{by,cz}| = 2, we have b = ac and c¢ = ab.
So ¢ =ab=aac and a> = 1. Hence A' lies in the center of G. Thus
|A'BC'| = |BC'A'|. Clearly |BC'A'| =|BCA.

It is shorter to show that G isin PC(2,2). Let A = {g1,g10z},B =

{g2,byg2} be two given 2-element subsets of G, where a,b€ Q, z,y € D
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and ¢;,92 € G. Write A' = {l,ax}, 4" ={l,a'r} and B' = {1,by} where
e=1 if gog; lies in the centeralizer of a, and e = -1 if not. Then |AB| =
|A'B'| and A'B' = {1,by,az,abry}. And |BA| = |[B'A"| and B'A" =
B'UB'-a‘z = {1,by,a‘z,ba‘zy}. If e=1, then abry =1<¢ bary =1. If

not, by =ar & 1=ba"'zy and 1=abzy & by=a"'r. O
LEMMA 6.4. A PC(2,n)-group is center-by-(finite exponent f(n) ).

Proof. We claim that there exists an integer & such that [y*,z] =1 for
all z,y€ G. Let z,y € G. We consider a n-tuple (S),...,S,) of 2-clement
subsets of G where S; = {y, y'~'zy'}. Since G is a PC(2,n)-group, there
is a permutation o(# 1) € ¥, such that |S1S2---Su| = [Se(1)Sa(2) * * * Sa(m)l
and |$1S2--- Sn| = min(lz|,n+1). Write g¢(4,7) = So(i)Sa(i+1) -~ Sagzy for
i <j.

I |g(:,€)] and |g(¢,5)| are strictly increasing functions of 2,5 for all
¢, then for an integer j such that o(j)+1#0(j +1), [Sej)Seii+nl <4.
Here S,(; = {v, yt=o0)zy()} and Sei+1) = {¥s y! =00+ gy} S, we
have a relation z =z¥ where s(#0) depends on o and so z,y. However
note that there are only finitely many choices of s independent of z,y, say,
S1y-..,8m. Let k=lemfs;:i=1,...,m}. Then [r,y*] =1 for all x,y
with |z| >n+ 1.

Suppose that |g(z,£)] or |g(¢,5)| is not strictly increasing.

Case (1). |z|>n+ 1L

Let |g(¢,7)| = |9(€,5+1). Then g(£,j+1) = g(£,j)-yUg(l,5)"" """y
and so g(£,7) = g(£,5)z¥""*"7". Since |g(£,j)| <n+1, [¢| <n+1. This

is a contradiction. The other case is similar.
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Case (11). [z|<n+1.
For S,01)S0(2) * * * Se(n)» let j be an integer such that o(j) +1 #
7(j +1). Now we can assume that |S,(j)So(j+1)| = 4. Then since [$;5;---
Sa| = |z|, we can find p,g with p<j<j+1<gq such that lg(p,q)| =
lg(pa+1)] or lg(p—1,9)| = lg(p,q)|- Let lg(p,q)| = lg(p,q+1)|. The other
case is similar. Without loss of generality, we can assume Sy(p) - So(q) =
{y"‘,x”o_mym,z”ﬁ—mym,cly’",...,c,-y"‘} where m = ¢—-p+1, and ¢ is
a product of conjugates of z. Then |g(p,q)| = |g(p,q + 1)| gives relation
2 = (') or ¥ = (z¥" )b where 2<a,b<|z|] and r =0(g+1) -1
In any case we have z¥' = z? for some 2 < d < |z]. Since |z| < n+1,
[y*,z] =1 for some k. In every case our s and k depend on z,y. However
there are still only finitely many choices of s and k that are independent of

z,y. This completes the proof. O

Now we mention the closure properties of PC(2) as immediate conse-
quences of Lemma 6.4. As before, we follow the notations in [R5]. Consider
a restricted direct product & = DrA,, where A, is an alternating group
of degree n > 4. Then G is locally finite but has no center. Clearly the
standard wreath product of two infinite cyclic groups is not center-by-(finite
exponent). Neither is a free product of two infinite cyclic groups. Moreover

there exist finitely generated non-abelian torsion-free nilpotent groups. So

COROLLARY G.5. (i) A PC(2)-group is collapsing.

(ii) A PC(2)-group is n-restrained for some positive integer n.
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(ii) The class of PC(2)-groups is not closed under any of the closure

operations P,D,C,W,F,R,L. 0

COROLLARY 6.6. A finitely generated soluble PC(2)-group G is center-by-

finite.

Proof. By Lemma 6.4, G is center-by-(finite exponent.) And a finitely
generated soluble group with finite exponent is finite. [J
Note that the converse is not true. An infinite dihedral group has a trivial

center. So it cannot be a PC(2)-group by Lemma 6.4.

THEOREM 6.7. A finitely generated PC(2)-group G with finite local trace is

center-by-finite.

Proof. Let N be the finite residual of G. By Lemma 6.4 G is center-
by-(finite exponent). Thus G/N is a finitely generated residually finite center-
by-(finite exponent). Since a finitely generated residually finite group of finite
exponent is finite by Zelmanov’s theorem, G/N is center-by-finite. G is
restrained and so N is finitely generated by Lemma 4.3. Let N # 1. Since
G has finite local trace, N has a non-trivial finite factor group N/K. But
then N/coreg(K) is finite and G/corec(K) is finite-by-(center-by-finite).
This group is polycyclic-by-finite and so it is residually finite, contrary to the

choice of N. O

An element ¢ of a group G is called an FC-clement if it has only a
finite number of conjugates in G. In particular if there is a positive integer

such that no element of G has more than m conjugates, then G is called
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a BFC-group. In [N1], B. H. Neumann gave a precise description of BFC-
groups; a group G is a BFC-group if and only if the commutator subgroup
G' is finite.

THEOREM 6.8. A finitely generated non-periodic PC(2)-group G is center-by-

finite.

Proof. Let G = (r1,%2,...,2,) be a PC(2,n)-group and let 2 be an
clement of infinite order in Z(G), the center of G. For w€ G, let Ny be
a right coset of N, the normalizer of (z) = (wz) if w has finite order, and
(z) = (w) if not. Suppose that y is reduced and #(y) =m 2 n where Uy)
denotes the length of the shortest word for y. Write S = (' :i=1,.,7}
and y = y1Y2 +* - Ym, where y; € S. If m > n, then we consider a n-
tuple (S),...,5n) of 2-element subsets of G where S; = {yi, ™1y}, mo =
1, 7; =y1y2---yj. Since G is a PC(2,n)-group, there is o(# 1) € B, such
that |S1S2 - - - Sal = |Se(1)So(2) * * * Se(n)l- Write ¢(4,5) = So(i)So(i+1) * -
S,jy for i < j. Since z is of infinite order, |g(i.£)| and |g(¢,5)] are
strictly increasing functions of ¢,j for all £. Let j be an integer o(j)+1#
o(j +1). Note that |S1S2---Sn| =n+1. Hence |Sy(j)So(j+1)l < 4. Since
Soti) = Wotiyr 2™ o)} and So(isn) = {Ya(i+1)s TUHIYe(in}, We
get z7el) = gTeli+1)-1, or (m—l)”v(:') = g™eG+1)-1, Hence 7r,(j)7r;(1j+l)_1 lies
in N. So Nm,y = N7g(js1)-1- By the repeated applications of the above
argument, we can assume that Ny = Ny', where £(y') <n. Hence N has
finite index in G and so does C(wz) = C(w). In fact |G:N|<(2r)" and

N/C(wz) is isomorphic with a subgroup of the automorphism group of ((wz)).



50
Thus |G:C(w)| <2(2r)" for all w€ G. Hence G is a BFC-group. Since

G is finitely generated, it is center-by-finite. O

COROLLARY 6.9. A torsion-free PC(2)-group is abelian. O
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