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To whom. I  trust in,
The one who’s my everything, 

and
Those who are seeking the truth and the beauty o f life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

After the emergence of iterative decoding in the late 1990’s, analog decoding design 

became a powerful alternative to conventional digital implementation. Our goal is 

to design and implement an entire analog receiver including an analog decoder and 

a low power analog Fast Fourier Transform (FFT) input interface. The analog de

coder part of the design was recently demonstrated by a doctoral candidate. This 

project focuses on the design of a novel analog FFT processor. The methodology of 

the design is based on mutually considering system and circuit levels. We simulated 

the system considering different circuit issues. We modeled an accurate mathemati

cal input referred mismatch source for the iV-FFT. We showed that the higher radix 

FFT structures like DFT have reduced sensitivity to mismatch and reduced number 

of current mirrors. Subsequent to our work a 180-nra realization was designed and 

fabricated in collaboration with another M.Sc. candidate.
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Chapter 1 

Introduction

Due to the low power consumption constraint of recent System On a Chip (SOC) 

designs, analog implementations of communication receivers recently have been 

considered and compared to their digital counterparts. This research has been fo

cused on building a low power analog input interface for an analog receiver which 

takes received signals and generates the Log-Likelihood Ratios (LLR) required by 

an analog decoder.

In Chapter 2 we provide a brief background introduction to the idea of analog 

receiver design. As a motivation we compare conventional digital implementation 

of decoders, the main part of the receiver, with recent analog implementations of 

decoders. We introduce some novel codes which are suitable for analog implemen

tations and we discuss the potential possibility of having a receiver with such a low 

power consumption suitable for energy scavenging design. Also in this chapter we 

explain our design methodology, which is divided into system and circuit level de

sign. At the system level we propose our communication system model which uses 

Orthogonal Frequency Division Multiplexing (OFDM) transmission with differen

tial Binary Phase Shift Keying (BPSK) modulation. Having OFDM as a transmis

sion format requires an FFT at the receiver side. At the circuit level we explain how 

an analog FFT can be implemented using simple current mirrors as basic blocks.

Chapter 3 describes the novel design of an analog FFT processor. In the first 

section we explain the butterfly structure of an 8-symbol FFT (denoted 8-FFT) and 

we provide the extending algorithm for larger FFTs. Then we consider the 256-FFT 

structure as a system model for our analog FFT processor. The next section is about

1
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basic circuit blocks for expandable analog FFTs, which are current mirrors. Then 

we discuss some circuit issues about where to use NMOS or PMOS transistors and 

a routing algorithm for an entire jV-FFT. In the next section of chapter 2 we derive 

a model of the current mirrors which provides an output function of input signals 

to use this function on our system code, written in Matlab, to examine the behavior 

of our actual circuits. The next section talks about threshold voltage mismatch as 

a dominant source of mismatch in a transistor pair. We consider it as a normally 

distributed random variable with zero mean and a specific variance. We also provide 

an input referred mismatch model for our analog iV-FFT. At the end of this chapter 

we discuss the power consumption of the proposed analog FFT circuit.

In Chapter 4 we discuss our simulation results and the system performance un

der the different design issues. First we explain the performance of differential 

BPSK and compare it to a Quadrature Phase Shift Keying (QPSK) modulation sys

tem and discuss the tradeoffs between their Bit Error Rate (BER) performance and 

their spectral efficiency. Then we look at FFT simulations under different circuit 

issues. We examine the BER performance of FFT to see how sensitive it is to the 

different bias currents, the current mirror model, and the simplification of Weight

ing Factors (WF) inside the FFT structure. We compare the impact of mismatch 

on the FFT performance in strong and weak inversion. We also show that the BER 

curve of our input referred mismatch model follows the curve of the FFT, which 

has mismatch at each current mirror. We discuss using a higher radix FFT structure 

to minimize the effect of mismatch. At the end we show how the decoder improves 

the performance of FFT due to mismatch loss.

Chapter 5 concludes the thesis and provides future research directions.

In this work first we look at the system level design and its mathematical repre

sentation. Then we explain the FFT structure and some circuit considerations. At 

the end we discuss the system performance and the simulation results.

2
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Chapter 2 

Background and Motivation

2.1 Analog Receiver Design and Implementation

Due to their capacity-approaching potential, latest-generation error control codes 

such as Turbo Codes [3] and LDPC Codes [4] have been incorporated into many 

recent data communications standards such as IEEE 802.11a, IEEE 802.16 and 

DVB-S2, and have been proposed for the emerging IEEE 802.3 10GBASE-T Eth

ernet standard [5].

Conventional VLSI implementations of iterative decoders have largely used dig

ital circuitry due to the ease of design of such circuits [6]. However, these imple

mentations consume large amounts of power and silicon area [1]. Because of these 

limitations, analog decoding circuits have recently been considered as an alterna

tive to digital processing. Initial results for analog decoders by a number of research 

groups have shown impressive results. Some decoders consuming approximately 

one orders of magnitude less energy per transmitted bit than comparable digital 

decoders, at similar error rate performances [1, 7, 8, 9].

2.1.1 System On A Chip

The goal of the proposed project is to move towards a full system-level integra

tion of analog decoders with other basic communications receiver components, 

while maintaining the power consumption advantages of analog decoders. This 

will involve the incorporation and interfacing of a receiver front-end with an analog 

decoder. Such a task will require research innovations both at the systems level,

3
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Error Control Code CMOS Energy Efficiency Normalized Size
Type Technology (■n J /b ) (m m 2 /N )

(8,4) Hamming 0.18/im 0.041 2.5(10~4)
Trellis Graph[7] Analog Core Core
(8,4) Hamming 0.18 fim 0.218 2.5(10-3)
Factor Graph [7] Analog Core Core

(16,11) Hamming 0.18 fxm, 0.02 1.5(10-2)
[1] Analog Core Core

(8,4) Hamming 0.5 fim 1 1.012(10_1)
Tail-biting [9] Analog Core Core

(16,11)" 0.18 fim 0.17 1.56(10-2)
Turbo Product Code [1] Analog Core Core

(32,8) 0.18 nm 0.83 1.78(H)-2)
LDPC [8] Analog Chip Core

Turbo Code 0.35 fim 3.4 3.11(10-2)
(40-Bit, N=132) [11] Analog Core Core

Turbo Code 0.35 fim 13.9 2.75(10-2)
(16-Bit, N=48) [12] Analog Chip Core

(1024,512) 0.16/j.m 1.38 5.13(10-2)
LDPC [6] Digital Core Core

(2048,1024 : 1792) 0.18 jum 2.46 7(10-3)
Programmable LDPC [13] Digital Core

Table 2.1: Energy efficiency and size efficiency of recent analog/digital decoders.

where the choice of receiver structure will impact on overall system performance 

and power consumption, and at the circuits level, since some receiver blocks will 

require novel computational processing nodes.

2.1.2 Energy Scavenging Approach

The target application behind this project is an ultra low-power radio receiver and 

data decoder which could operate with power levels so low that energy scavenging 

methods [10] could provide sufficient power to operate the entire receiver. Such 

a receiver might well find application in sensor networks or medical monitoring, 

where extremely low power consuming communications devices will be a necessity.

In Table 2.1 we compare the major recent analog and digital decoders in terms of 

energy efficiency versus size efficiency. The measure for power is energy efficiency 

(nJ/b it), amount of nano-Jules per decoded information bit, and the measure for

4
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area is the size of the core normalized with the code length, (m m 2/N  unit code 

length).

More explanations about recent analog decoders and their characteristics, ad

vantages of analog design compared to their digital counterparts, topology of ultra 

low power circuits using subthreshold CMOS techniques and important considera

tions of analog FFT design will be covered in the following sections.

2.2 Analog Decoder (Receiver Core)

2.2.1 Novel Recent Codes

From the time when Shannon introduced his channel capacity as a limit for any 

communication channel in 1948 [14], people have been trying to produce a system 

which achieves this bound. By introducing Turbo codes, in 1993, Berrou et. al 

first presented practical capacity-approaching codes for the additive white Gaussian 

noise (AWGN) channel [3,15]. After that other types of known codes such as Block 

Product codes and LDPC codes were quickly realized to also approach capacity on 

the AWGN channel using iterative decoding [16, 17, 18].

In addition to approaching capacity, the complexity and cost of a coding system 

must be considered to define the efficiency of a system [19].

2.2.2 Digital Decoder Implementation

With digital implementation these iterative algorithms require digital circuitry per

forming hundreds or thousands of calculations per decoded bit, i.e. for desired large 

data rates we need a very high clock frequency decoder. However such a decoder 

has its problems such as dissipating a lot of power, generating large amounts of heat 

and probably causing high-frequency interface in other adjacent circuits [1,6]. For 

example, a high speed Analog-to-Digital Converter (ADC) is required for a digital 

receiver, which is a power hungry component for digital implementation.

5
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2.2.3 Analog Decoder Implementation

An alternative solution to have a high-speed decoder is a fully parallel analog de

coder. A parallel implementation of a decoder is desirable due to intrinsic parallel 

and distributed nature of iterative decoding algorithms. Therefore, by parallelizing, 

using analog circuitries, we can reduce the operating time, which can be compared 

to the operating clock of the digital decoders, by an amount proportional to data’s 

block rate [1],

10°

10- '

t
E 
E.

.§
“ 10'2 
©N

E 
o  
Z

10-3 

nr4
io"2 io~1 io° io1

Energy Efficiency (nJ/bit)

Figure 2.1: Comparison of energy efficiency versus size efficiency of recent Analog/ Dig
ital Decoders.

Fig. 2.1 illustrates a graphical performance comparison in terms of energy ef

ficiency versus size efficiency of the major recent analog/digital decoders based on 

the data given in Table 2.1. We represent energy efficiency (n J /b it) on the x-axis, 

and normalized size, (m m 2/N )  on the y-axis. Most of the analog decoders are 

closer to the good comer on this graph compared to their digital counterparts.

For ultra-low power applications Winstead et. al have designed an analog de

coder with the length of 256, (16, l l ) 2 Turbo Product Code (TPC) [1], and we want 

to build an analog 256-FFT interface to extend this project eventually to obtain an 

analog receiver.

6

&
Bad C om er

Analog (8,4) Hamming/Tail-biting 
*

Digital (1024,512) LDPC

D Analog (40-bit) Turbo

Analog (16,11) Hamming Analog (32,8) LDPC
*  *

Analog (16,11)2 Turbo Product C ode Digita| (2048,1024) LDPG
□

Analog (8,4) H amm ing/Factor G raph *

Analog (8,4) Hamming/Trellis G raph *
q  G ood Corner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



H.+l}
b . c

^  Encoder

MN coded bits [_T ^^jJsjjm bols_|

d  r...........Symbol
Serial i . Mapping

To
Parallel j . j Circular 

,__». Differential
IFFT

S_W RF
j NQ ! UP 
! converikin

O ffset
frequency AWGN

y2*v<r)e rit)

« Modulator , ;c'n  - j d:
Transmitter Channel

MN estimated bits I jJ ^ ^ M ^ r ^ jm b c d r ]  , ,v. Timing information available
P  f t ,  I

b ; . r r
Decoder ;

H-r
Complex j 
Multiplier

— H:
FFT

■ -  T .V .

e n,
Serial !

To j. 
Parallel-

v(nr,)

T . '  WJ
1  S

RF !
! \  U 

Down ; y  
conversion I

Receiver Channel model at the receiver

Figure 2.2: OFDM communication system model.

2.3 Low-power Analog Interface: Analog FFT

An adequate high-speed analog interface needs to be built which takes a received 

noisy signal and generates the log-likelihood ratios required by an analog decoder. 

This interface needs to observe strict low power requirements and must not ad

versely affect the performance of the analog decoder.

2.3.1 OFDM Advantages and Analog FFT Processor

We propose to use OFDM as the transmission format for a wireless test chip [20]. 

This requires that the receiver processes received signal samples by a Discrete 

Fourier Transform (DFT) to generate the LLR values required by the analog de

coder. The DFT can be represented by a graph that has similarities to the graph 

describing the error control code. These graphs describe the high level layout of 

the analog decoder circuits and it is expected that the DFT design can be imple

mented using comparable analog circuits as those used in analog decoders. We 

propose to use an FFT, Fast Fourier Transform version of the DFT because FFT’s 

computational complexity is of the order NlogN which is remarkably lower than the 

DFT’s, 0 (N 2), for a large number of bits [21,22]. The analog implementation of an

7
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iV-FFT has some advantages compared to its digital implementation; The addition 

operation in digital design is a computation while in analog design the addition is 

tying wires together hence it is cost free, also the number of wires per input in ana

log design is two for having differential values while in digital design it is equal to 

log2(Q), where Q is the number of quantization levels, which leads us to the higher 

number of wires per input. The design and implementation of an analog FFT pro

cessor is the novel part of this research since all the existing FFT processors have 

been implemented using digital circuits.

There are several ways to choose a transmission format for our receiver. We 

propose to use Orthogonal Frequency Division Multiplexing known as OFDM. 

OFDM is a version of frequency division multiplex (FDM) multicarrier modula

tion (MCM). This modulation, by using a large number of parallel narrow-band 

orthogonal sub-carriers, improves the performance of transmission such that no in

tercarrier guard bands are needed. It provides controlled overlapping of bands and 

maximum spectral efficiency. Also it has been adopted for various standards such 

as DSL, 802.1 la, DAB, DVB. Some advantages of using OFDM are an easy imple

mentation using IFFT's (Inverse Fast Fourier Transforms), efficiency in dealing with 

multi-path propagation and robustness against narrow-band interference [20]. Ac

cording to these features, OFDM is a proper candidate for the transmission format 

of information signals used in our receiver.

The system level is the first level of design and after these considerations, we 

can look at the signal specification of the system.

2.4 Design Methodology

To be able to complete our entire analog receiver design, a well thought-out method

ology is unavoidable. It is divided into three separate levels that are system level, 

signaling level and circuit level in each of which we focus on different levels of 

the design with specific considerations. At the system level we focus on theoretical 

methods that can achieve our goal such as choosing a proper modulation scheme 

with specific constellation like QAM, BPSK or MSK, using a well-behaved er

8
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ror correcting code such as Turbo codes or LDPC codes, and choosing a best-fit 

transmission format out of existing scheme like OFDM, CDMA. Representing our 

existing model at the system level by electrical signals, all input, output and noise 

signals are considered as currents or voltages, leading us to the signal level of de

sign to implement our design using CMOS technology. At the circuit level we look 

at circuit topology, the way we can implement our design using physical compo

nents, and their non-ideal behavior. We explain these design levels in the following 

chapters.

2.4.1 System Level Transceiver Model

At the system level we look at the entire communication system model which con

sists of a transmitter, communication channel, and receiver shown in Fig. 2.2. We 

explain each individual part in this model and compute the bit error rate perfor

mance results.

At the transmitter binary information bits are encoded by an error correcting 

code such as a Turbo or LDPC code. A serial-to-parallel data converter gives M*N 

coded bits to a symbol mapping block to generate N  2M~ary symbols. We will con

centrate on BPSK, i.e., M =l. The mapping is differential to avoid phase recovery. 

The inverse fast Fourier transform (IFF! ) creates an OFDM transmission signal. 

The IFFT creates both in-phase and quadrature channels. After RF up-conversion, 

the complex equivalent baseband signal S(t) with a symbol period [0,T], containing 

Si(t) and SQ(t), is transmitted.

At the receiver, the RF signal is down-converted. The signal is sampled at times 

nTs producing S(nTs) =  Sn where Ts — We assume that the timing information 

is available at this point. After sampling, we can model the channel at the receiver. 

We add AWGN, and consider frequency offsets, ej27rA/fc, multiplying each sample. 

The n noisy samples are demodulated by an N  point FFT processor. For symbol 

detection, we use a circular differential demodulator in which we multiply adjacent 

samples to cancel out the unknown common phase offset. The estimated samples 

are delivered to the error control decoder to recover the original transmitted bits.

9
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Mathematical View of OFDM Transmitter

The data symbols dn for the different frequency channels are in general complex, 

i.e., dn = an + jb n. Using the IFFT generates the I /Q  baseband waveform Sb(t) = 

Si(t) +  j S Q(t) where

Sb(t) = ( E  dkePUkt
\k =0

/ N - l  \  N - l
S i( t) =  Re I E  4 ^ “* J =  E  (ak cos(cjkt) — bk sin(u/kt)); 0 < t  <  T

\k=0 /  k=0
(2.2)

0 < t < T (2 .1)

/ N - l  \  N - l
SQ(t) = Im E  d kei^kt (ak sin(wkt) +  bk cos(w k t)); 0 <  t <  T.

\k=0 /  k=0
(2.3)

In (2.1) u>k = 2nfk, where fk = k A f ,  and A /  =  ^  is the frequency spacing to 

generate the different baseband frequency channels.

After generating baseband OFDM signals, we up-convert them by the RF carrier 

frequency f c,

/ N - l  \  N - l
SnF(t)=Re  I E  SbifyeP^1 j =  E  (-s'l(i ) cos(uct) - SQ(t) sin(o;c£)) 0 < t < T.

\ k=0 J k=0
(2.4)

In (2.4) <jjc =  2irfc. We transmit

S rp (()  =  Re ( f ;  Sb( t ) e ^
\k=0

where rect( t /T)  is 1 if 0 < t  < T  and zero elsewhere.

To discuss the receiver architecture and the recovery technique we look at the 

baseband received OFDM signals after down-conversion in which f c is removed. 

We consider it as a complex envelope signal, Sb(t).

J  rect (t/T ), (2.5)

10
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Mathematical View of the Receiver

At the receiver we sample the signal Sb(t) at tn =  nTs, where Ts =  ^  to create the 

discrete samples for the FFT given by:

N - l
Sn = E  dke>2nkAfnTs,0 < n <  N - l .  (2.6)

k=0

We rewrite (2.6) by substituting dn = an + jbn, A /  =  ^  and Ts =  ^  :

J V -1  ,2jr/jn

'S'n =  +j(>fc)e'L̂ r!i,0  <  n < N  -  • (2.7)
fc=o

Both the real and imaginary parts of Sn, in general, contain our transmitted data,

ak and bk:

„ Ĵ 1 /  f  2irkn\ . /  27rkn \\
Sin = ^Qfccos ~  h s m  —  j j  ; 0 < n < N  — 1 (2.8)

_ Ĵ A1 /  . (  2tt k n \  { 2 ir k n \ \
s Qn = (̂ afc sm —iv- y +  cos N ~  J J ’ ~  n “  ~~

We can recover our transmitted data using the FFT as follows:

i N -iJ . ■ ~  —i 2 t t  k n
Vk = dk = — ^ 2  Sne n . (2.10)

-/V n=0
Substituting Sn from (2.7) we obtain

-i i V - l i V - lj “ J- ^  , j27rn(t fc)
Dk = dk = — 22 z 2  die N • (2.11)

iV  n = 0  Z=0

By reordering the sums in (2.11) we obtain

iV  Z=o n = 0

and

i  N - l

Vk = dk = — ^ 2  diN6(l -  k) = dk. (2.13)
iV  Z=0

Thus far we have assumed that the channel is ideal and we showed that data 

recovery can be accomplished via an FFT transformation.

11
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Phase Offset Consideration

Now consider the receiver samples when there is a phase offset 9 . The new samples 

Sn are now given from (2.7) by:

which is a rotation of the original data, ak and bk, by 9. Here we assume that the 

phase offset is constant for all n samples. If this phase offset is not known we may 

use differential modulation.

Consider the following differential QPSK modulation as example, in which the 

data are modulated differentially as

where $ k -i  is a phase reference for symbol dk, and A $ fc is our original coded 

information bit, ck. If we conjugate each coming complex symbol at the receiver 

and multiply it by the next symbol, we obtain the original data regardless the phase 

offset:

(2.14)
fc=o

where we expand Sn into:

(2.15)

and

, ... ,2-nkn. , . . ,2Trkn.\
+bk cos(9) cos( — ) -  bk sin(0) sin(—— ) j , (2.16)

dk = e>*k = A $ fc =  0,

12
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rk = (y*k-i)(yk) = (d*k- i )e  30d ke>6 =  e J(**-i)e*(**-i+A**) _  ej (A$ k) _  Cfc

(2.18)

To generate the phase reference for the first symbol d\  we use a tail-biting 

method; we consider c n  as a refrence for d \ .  At the circular differential modu

lator we add the phase of adjacent coded information bits ck, using multiplication

d k  = cfc_i • cfc; 2 < k < N  (2.19)

d \  =  c n  ■ ci; fc =  1, (2.20)

and at the demodulator we subtract the phase of adjacent noisy symbols yk, 

using complex multiplication

y*k.  1 ■ yk = ck- 2 < k < N  (2.21)

V*n  ' 1 h  =  c u  fc =  l. (2.22)

After differential demodulation, A estimated symbols are delivered to the de

coder to extract information bits as depicted in Fig.2.2.

The phase offset is taken care of by using this differential scheme at the cost of 

N=256 number of complex multipliers at the receiver front end between the FFT 

processor and the decoder.

Then we model our analog FFT design using Matlab, considering how different 

parameters affect its result due to non ideal characteristics of the circuit, mismatch 

for instance, as a specific function. As we will mention later on, the basic block 

of the analog FFT processor is its current mirror and we try to find the piece-wise 

linear function of our current mirror for the different input values and model this 

new function in our Matlab code to consider the effect of non ideal characteristics. 

The purpose is to design our analog FFT block in such a way as to be tolerant to 

device non idealities in terms of BER performance.

13
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2.4.2 Circuit Level Modeling

The strength of analog computation for decoder implementation is related to the 

fact that it is possible to generate the basic operations needed for iterative decoding 

by using very simple analog circuits. The two fundamental operations are multi

plication and addition in iterative decoding using the sum-product algorithm. By 

using a simple Gilbert Multiplier circuit based on the translinear concept, which is 

explained in more detail later in this section, we implement multiplication opera

tions. Addition can be done by tying two wires based on Kirchhoff’s Current Law 

(KCL) to sum these currents [23]. Thus the implementations of analog iterative 

decoders are smaller than their traditional digital counterparts, and often have less 

power consumption by about one order of magnitude [1].

Small Size Code

Large Size Code

Threshold
Time
For

Analog
Decoding

Small Size Code

Analog Iterative Decoding

Large Size Code

Digital Iterative Decoding 

Figure 2.3: Analog iterative decoding compared to digital iterative decoding

In a digital iterative decoding approach, information symbols are decoded by 

sweeping all rows and columns iteratively. However information is diffused in ana

log iterative decoding architectures. The diffusion time in analog decoders is lim

ited by a constant threshold based on the physical characteristics of such circuits 

and signals. After this threshold the signals start converging to their final values. 

Thus for a large code analog decoding can be considered instead of digital decod
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ing. However for a small code digital decoders perform faster than analog decoders 

due to the intrinsic threshold delay of analog decoders [1]. These two different ap

proaches are illustrated in Fig. 2.3. For small size codes the intrinsic threshold time 

of analog iterative decoding is longer than the sweeping time of the digital design 

architecture to stabilize the values. However for large sized codes analog iterative 

decoder’s diffusion time is shorter than the sweeping time of the digital iterative 

decoder to settle down.

Fully Differential Circuit Architecture

Another beneficial feature of analog implementation is a fully differential architec

ture. That is, signals are transmitted as the relative proportion of two or more ana

log currents, instead of an absolute value on a single wire. Since the effect of many 

error-causing events such as signal interference or device imperfection is equal for 

all signals, differential processing will eliminate them. Even though common mode 

disturbances can be remarkably large, the differential values remain unchanged and 

the signals containing information remain reliable [1].

Now we briefly explain the basic topology of analog circuits used in analog iter

ative decoders and point out their characteristics, for instance, its operation region 

and power consumption.

Translinear Circuits and Logarithmic Characteristics

The translinear circuit is the basic building block of analog decoder. The word 

translinear stands for describing exponential current-voltage characteristic of cir

cuits such as bipolar transistors or CMOS transistors in the subthreshold region. In 

such a circuit voltages can be represented as a logarithmic function of currents, and 

by translation of nonlinear operation into the linear one, using translinear circuit, 

we can easily implement nonlinear operations. In particular, to multiply two input 

currents it is possible to add their corresponding voltages due to the logarithmic 

characteristic of the translinear device [23].

Moreover, the logarithmic domain gives us a large dynamic range of operation 

and makes translinear circuits suitable to implement traditional digital computation

15
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circuits requiring massive multiplications with wide ranges of operation [23]. 

CMOS Cell in Saturated Weak Inversion Region

The CMOS transistor can be an element to implement a translinear circuit according 

to its intrinsic physical characteristic under the saturated weak inversion condition 

expressed by [1]

I d  — I s  • ■ [1 — e vt \. (2.23)

where I d is the device current. Weak inversion, or subthreshold, is the condition 

when the gate voltage is less than the threshold voltage of the device, which is a 

constant process parameter i.e., Vgs < Vth, and ID is less than ^  of Is , the device 

specific current defined by physical parameters of device. Saturation occurs when 

Vds > Vgs» and under this condition we can neglect the second term of Equ. 2.23 to 

extract the basic equation expressed in Equ. 2.24 to build a translinear circuit [1].

ID oc eCon-v°° (2.24)

x+

Vref Vref

Figure 2.4: Basic block of analog differential multiplier with translinear loop [1].

The subthreshold current of CMOS transistors is very low, nano amperes for 

minimum size in 0.18/im  CMOS technology, and comparing to BJT, (bipolar tran

sistors), they do not have biasing currents. Therefore CMOS transistors are a good 

choice for a basic element of our low power analog circuit. For example Fig. 2.4 

shows a basic multiplier which multiplies Ix+ by I y+ and gives the normalized 

value of it to output, I\. The analysis of this circuit is very simple. The 4 top cells 

in a row build a translinear loop. By starting from the left Vref  node and applying
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Kirchhoff’s Voltage Law (KVL) over the loop ending on the right VTej  node, we 

extract

I x +  • I y +  =  l u '  h  (2.25)

by using Equ. 2.24 for all cells in the loop. Dividing both sides of the equation 

above by a normalization current, Iu, we obtain our multiplication at the output:

l o u t  = Ix+TIy+ (2.26)
lu

The 5th transistor at the bottom is for biasing the translinear loop.

Although we explained the translinear circuit concept used in analog decoders, 

we do not need to use them to build multipliers for the FFT. This is due to the fact 

that for the FFT we do not need two-input multipliers; All we need is a multiplica

tion of an input with a constant, which we will discuss in the next Chapter.

Ultra Low Power Circuits

Because of the dynamic current due to the switching characteristic of digital cir

cuits, the power consumption of analog circuits can be less than that of their digital 

counterparts. Not only is such a general rule remarkable in this case, but also the 

subthreshold operation region by itself means that the circuit works under very low 

current requirements and the power supply, Vm , is less than that of normal CMOS 

circuits according to the fact that the gate voltage is usually under the threshold 

voltage for proper work.

In addition to these physical characteristics of analog circuits, we can change 

the topology of the basic multiplier circuits shown in Fig.2.4 to decrease the power 

consumption. The essential modification to this circuit to have less power consump

tion is to eliminate the Vref  based on the method proposed in [1].

2.5 Chapter Conclusion

In this Chapter, we motivated the design of an analog receiver based on recent 

analog decoder implementations. The goal is to take advantage of the low power 

consumption and the small required silicon area of analog circuitries to build an
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entire analog receiver. The design of an analog FFT processor, which is the input 

interface between the RF front end and the decoder in our OFDM transmission 

scheme, is the main part of this work, which we will discuss in the next Chapter.

18
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Chapter 3 

Analog FFT Processor

By choosing OFDM as our transmission format, we have defined the type of input 

interface at the receiver front-end, which is the main part of this thesis. We need an 

interface to demodulate the received OFDM signal. As mentioned before, OFDM 

modulates information signals from the frequency domain to the time domain by 

using an IFFT to transmit over the communication channel and at receiver side we 

need to demodulate the signals by FFT processing. This leads to the design of an 

analog FFT processor. To build a low power receiver, the available digital FFT 

processors are not good choices since they need a very power hungry ADC running 

at high frequency, RF, and consume large silicon area which both directly increase 

the product cost [24, 25, 26].

3.1 Radix-2 FFT Butterfly Structure

3.1.1 8-FFT Structure

The butterfly diagram of an 8-FFT processor is depicted in Fig. 3.1 [27]. Dark 

circles on this graph represent the addition of the corresponding two input signals, 

white circles generate two copies of their single input, circles with -1 labeled inside 

are sign inverters and crossed circles are complex multipliers.

Each input in the butterfly graph is a complex differential value

(*£fci+ ) “I- j^kq+  ■Kkq—) (3-1)

and the WNks, FFT multiplicands, are complex constants on the unit circle
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x[0] o

x[l] X[4]

x[2] X[2]O

x[3] X[6]

X[l]

x[5] X[5]

x[6] X[3]

x[7] X[7]

Figure 3.1: Butterfly Diagram of an 8-FFT. The inputs and outputs are complex differential 
values and Wg1, Wg2 and Ws3 are complex constants [2],

WNk =  =  cos ^  +  j  sin ^  =  W F ki +  jW F kq 1 <  A: <  y  -  1, (3.2)

where N  is the number of points in the FFT and the WFki and the W Fkq are the 

real and imaginary parts of the complex multipliers respectively. To make it simple 

from now on we call them Weighting Factors, WFs.

Modified WFs on Butterfly Diagram for 8-FFT

To have a better understanding of the WFs shown on the 8-FFT butterfly diagram 

we use the trigonometric circle view of them. In Fig. 3.2 one can see the circular 

view of all existing WFs in 8-FFT and their corresponding values. Since each input 

in our FFT structure contains four values to have complex differential values, we 

do not need to build each individual WF one by one. We can build some of the WFs 

and create the rest out of them by simply interchanging the positive/ negative input 

or/and the in-phase/quadrature input, which is in essence a rotation on trigonometric 

circle.
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Quadrature

WFt = WFV + jWFlq =-

2 In-phase
WF2 = WF2i + jW Flq = 0 + 7

WF3 -*WF,; !/ + / « • - /
W F ,=W F3l + jW F3tj= - ^ -  + J ^ -

Figure 3.2: 8-FFT Weighting Factors on trigonometric circle.

W83 modified to Wg1 W82 modified to 1

x[0] X[0]x>

x[l] X[4]

x[2] X[2]

x[3] X[6]I <—> Q

x[4] X[l]

x[5] X[5]
W >

x[6] X[3]I <—> Q K>

x[7] X[7]I <—> Q

Figure 3.3: Modified Butterfly Diagram for 8-FFT .
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For instance, as shown in Fig. 3.2, we can obtain W F3 out of W Fi by inter

changing positive in-phase input and negative in-phase input or to create W F2 we 

just need to interchange quadrature input and in-phase input to make it 1 and elim

inate the multiplier of W F2 in all over the 8-FFT diagram.

Doing the above modification, we build a new butterfly diagram for an 8-FFT 

as shown in Fig. 3.3

It is beneficial that we only need W F\ for making an 8-FFT. We have simplified 

the FFT structure, eliminating three multiplier blocks out of five, without losing 

any accuracy on its computation just by judiciously using our complex differential 

values. It is obvious that we do not need any multiplier for sign inverters appearing 

in some parts of the diagram since we can use the same idea to achieve that.

To continue towards creating a 256-FFT it is instructive to look at the butterfly 

structure of FFT and find an algorithm to extend the 8-FFT to its larger version.

x[0] X[0]O
2f:

x[l] X[4]

x[2] X[2]
2f:

x[3] X[6]

x[4] X[l]o
2F

x[5] X[5]

x[6] X[3]O
2F

x[7] X[7]

Figure 3.4: Butterfly Structure of FFT.
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3.1.2 Extending Algorithm for Larger FFT

Fig. 3.4 is exactly the same as Fig. 3.1, only that here we want to show the butterfly 

structure of the FFT. Notice that to build a 4-FFT we have used two copies of a 

2-FFT block, a multiplier and a few well-defined connections right at the input of 

these blocks. With the same argument we can obtain an 8-FFT as well. To find 

the algorithm to do that we divide each FFT block into upper half and lower half 

subsequences.

To build an iV-FFT block using two y  — bit FFT blocks for the upper half part 

we need to add the inputs of these two blocks respectively and for the lower half 

part we need to subtract the inputs of the lower block from the inputs of the upper 

block respectively as well. After these summations and subtractions we use y  — 1 

multipliers based on Eq. 3.2 to create the W Fks only for the lower half block to 

use in sequence as shown in Fig. 3.4. We will explain how to obtain these WFs in 

different stages on 256-FFT structure section later on. The next step is to explain 

how to sort the indices through the FFT butterfly diagram.

3.1.3 Index Sorting Algorithm

Input Stages m =l m=2 m=3 Output

x[0] — ► x[0] x[0] x[0] x[0] —  X[0]
x[l] — x[l] x[2] x[4] x[4] —> X[4]
x[2] — '- x[2] x[4] x[2] x[2] — ► X[2]
x[3] — ► x[3] x[6] x[6] x[6] — ► X[6]
x[4] — ► x[4] x[l] x[l] x[l] — ► X[l]
x[5] — ► x[5] x[3] x[5] x[5] — * X[5]
x[6] — ► x[6] x[5] x[3] x[3] —  X[3]
x[7] — x[7] x[7] x[7] x[7] —  X[7]

Figure 3.5: Index sorting algorithm for 8-FFT.

The idea is to split the inputs, as above, into two up and down groups in each
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stage of the diagram. The number of stages is m for a 2m-FFT. Starting with x[0], 

the first input, we choose every other input to make the up group, upper half block. 

Then starting with x[l], the second input, we do the same to make the down group, 

lower half block. Now we have two subsequences of even and odd indices. We 

continue doing this algorithm for each of the subsequences and so on to complete 

all the stages. For example if we consider the 23-FFT, which is the 8-FFT shown in 

Fig. 3.4, it has three stages to provide the output sequence. Through the graphical 

view of Fig. 3.5 one can follow the above algorithm to grasp it better [27].

Looking at the input and output columns in Fig. 3.5, one can show that some 

of the indices have remained in their initial positions after applying a sorting al

gorithm through all the stages, like 0, 2, 5, and 7. This might lead us to a smart 

way of looking at the algorithm, which will be easier to see when we use the binary 

representations of these indices. Fig. 3.6 shows the binary representations of both 

input and output indices. We notice that on the both sides the binary sequence of 

each output could be derived by reversing its corresponding input binary sequence. 

This is a well-known bit reversal step in the FFT algorithm and to find the differ

ent efficient bit reversal algorithms refer to [28]. Therefore we realize that the bit 

reversal of all 0, 2, 5, and 7 indices give us the same indices and that is why they 

remain on their initial place even after sorting.

Binary 
Input Mirror Output

x[0], 000 
x[l], 001 
x[2], 010 
x[3], 011 
x[4], 100 
x[5], 101 
x[6], 110 
x[7], 111

000, X[0]
100, X[4]
010, X[2]
110, X[6]
001, X[l]
101, X[5]
011, X[3]
111,X[7]

Figure 3.6: Binary representations of 8-FFT’s input and output, and their bit reversal de
pendency.
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3.1.4 256-FFT Structure

In Fig. 3.7 we have extended the 8-FFT diagram to obtain a 256-FFT structure 

based on the extending algorithm explained above. One can see that the WFs of the 

4-FFT and 8-FFT sub-blocks in this graph are exactly the same as those depicted in 

Fig. 3.1. It is fairly straightforward to follow the extending algorithm to generate 

any other large FFT.

N=256

Stages:

2 5 6  ! 128 
: 128

6 4 3 2

3 2 16

16

From one stage 
to the next w ••

W N120

m=0 m=l m=2 m=3 m=4 m=5 m=6 m=7

256FFT 128FFT 64FFT 32FFT 16FFT 8FFT 4FFT 2FFT

(w '/)2(w'„*)2 (w/ ) 2 (iv„‘)2 (w„‘f  (w/ ) 2 (tv/ ) 2 (tv/ ) 2

k:

#WFs:

0:127 0:63 0:31 0:15 0:7 0:3 0:1

128-1 64-1 32-1 16-1 8-1 4-1 2-1 1- 1=0

Figure 3.7: Generating Weighting Factors for different butterfly stages in the 256-FFT.

Now, the question is, what procedure can we use to generate all the WFs in 

different stages for such an extended 256-FFT. First of all, we briefly define the 

parameters mentioned in Fig. 3.7 and then explain the generating procedure for 

different WFs. The N  is the number of points in the FFT, which is equal to 256 for 

our model. The m  is the number of times we need to divide our block into the two 

upper and lower half groups based on butterfly structure to create 256-FFT using 

2-FFT as a basic block. The W ^s  are the complex values for Weighting Factors in
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256-FFT based on Eq. 3.2. The k indicates the different WFs in each stage. For 

example in the 256-FFT we have 128 WFs with k starting from 0 to 127. Since, in 

each following stage we divide the inputs into the two half groups; we have 64 WFs 

in the 128-FFT and if we keep doing that we end up with 2 WFs for the 4-FFT and 

finally 1 WF for the 2-FFT. Actually the number of real WFs, shown as # W F s  

on the figure, is one less than the number of indicator k  due to the fact that W% is 

always 1 and we do not need any multiplier to create a multiplicand that equals one. 

So, for instance, we do not have any multiplier for the 2-FFT and we have only one

multiplier for the 4-FFT as we can see in both this figure and the previous figure,
, 2m

Fig. 3.1. Now is the time to explain the terminology (Wfa) we used in different 

stages on the figure and the procedure to generate WFs in different stages. As we 

mentioned above in each stage the number of WFs is half of the WF’s number of 

previous stage since we divided the iV-FFT into two y-FFTs. For example if we

have Wfr in the iV-FFT for 0 <  k <  y  — 1, then the WFs in the y-FFT is W%
2

for 0 <  k < y  — 1. Also based on the Eq. 3.2 we can represent W^_ in the form
2

of Wffi or equally (Wfc) . This representation helps us to have our basic form of 

WFs, Wfc, in all the stages. So after each division in every stage we use our basic 

form of Wfo with the power of 2m, to generate the WFs for all different stages as
, 2 m

(Wjv) . Therefore following this algorithm, we can easily create an iV-FFT for 

any given N . Refer to [27] for more details and different mathematical approaches.

Modified WFs in the 256-FFT

The WFs on the last stage of the 256-FFT consist of 127 different values as shown 

in Fig. 3.7. These WFs have all other WFs in all other lower FFT stages. Therefore 

the maximum number of different weighting factors is 127. Due to the circular 

distribution of WFs on the unit circle and our complex differential signal model, 

as mentioned before we actually do not need to generate all different values of 

WFs shown in the 256-FFT diagram. We can interchange the in-phase/quadrature 

and/or positive/negative signals properly to reduce the number of different values 

for WFs by a factor of four, i.e., 32 different values for all WFs existing on 256- 

FFT. This idea has been illustrated graphically in Fig. 3.8. This graph contains 7
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Figure 3.8: The circular view of the Weighting Factors on the unity circle.

circles representing specific FFT stages from 4-FFT up to 256-FFT. The number of 

WFs at each stage is displayed on the bottom of the graph. All the WFs exist on the 

top half of the unit circle. This area is divided into four different regions: available 

and three other regions called 1, 2, and 3. The only WFs that exist in available 

region are the ones we need to generate and the rest can be created from these by 

properly interchanging the in-phase/quadrature and/or positive/negative signals as 

illustrated for each region on this graph. For example, if we consider the last WF 

on the third circle, related to 16-FFT, which is represented as a white dot W 25q112, 

it is equal to W 167 due to the previous discussion by dividing both N  and k by 

factor 16 to get WF for stage 16-FFT. Also W i67 can be created from W ^ 1 by 

interchanging positive in-phase signal with negative in-phase signal as we can also 

see it graphically. Therefore the number of WFs in the available region is decreased 

by a factor of 4 as illustrated in this graph.
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3.2 Expandable Analog FFT Circuit Design

Looking at the FFT diagram shown in Fig. 3.1 we observe that besides copying 

operations, additions and multiplications by constant complex values, W 1, W 2 and 

W 3, are the only two operations required to create an FFT processor. It is well 

suited for implementation using analog CMOS circuits based on the fact that adding 

currents is just tying two wires together and weighting can be achieved by transistor 

sizing. Therefore the FFT block can be simply implemented in CMOS technology 

by using current mirrors as basic blocks.

In Fig. 3.1 all white dots are current mirrors without scaling, i.e. have the same 

W /L  ratio. The dark crossed circles are complex multipliers which contain 4 cur

rent mirrors with different scaling factors to generate the complex multiplication of 

Eq. 3.1 and Eq. 3.2. The black dots are summation nodes realized by tying wires 

together. The current mirror shown in Fig. 3.9 can be used as a basic circuit for 

entire FFT. To use this circuit just for mirroring the scaling factor, WF, should be 1.

Before going more in detail at the circuit level, first we need to translate our 

existing algorithm from the system level to electrical signals such as currents or 

voltages. In an analog FFT interface, to process the unit-less input values, we need 

to define an expression in terms of current and a constant with -̂ 4— dimension as 

follow:

Where: x[0] is unit-less input and C is constant that can be considered to

I

Figure 3.9: Current mirror: basic circuit to implement FFT.

*[0] =  [(/[0 W  -  / [0]*i_) +j{I[0]xq+ -  I[0]xq-)].C  (3.3)

b e I ^ fornow-
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Also in terms of differential signals, we need to choose a biasing current so that 

all the positive and negative values can be represented by the circuit shown in Fig. 

2.3. Because this topology allows us to have just positive currents, we define I b i as  

as follows to avoid having negative currents:

M i n { I [n]xi+, I\n \Xi— } =  Ibias (3-4)

A l i  t l^ I^ T lA  rq ^ , I  } — I b ia s • (3.5)

It means:

If an absolute input value, ABSV, is positive:

I  I  bins ■ I [̂ ],r? ) Ib ia s  "F A B S V , (3.6)

otherwise:

I [ n \ x i+  = I b i a s , I[n)xi- = Ib ia s  + AB SV . (3.7)

Similarly, we define the quadrature parts.

3.2.1 Basic Circuit Block for Mirrors and Weighting Factors

In Fig. 3.4 each node consists four signals representing differential complex values. 

Translating it into the circuit level means that we have four wires for each node 

defined as I i + , I q + , and I q -  shown in Fig. 3.10.

Since we always have two copies of each input nodes, represented as white 

nodes in Fig. 3.4, we have four inputs with two mirrors for each white node as a 

basic block for the FFT. The dark nodes do not have any circuit component since

addition is tying two wires together. Therefore the basic block of the FFT has 12

transistors, 4 inputs and 8 outputs.

The only remaining block in the FFT structure is the multiplier which creates 

WFs. To create a differential complex multiplier using W F i  and W F q shown in 

Fig. 3.2 we need to have a circuit to give us the four outputs of Eq. 3.8 as a differen

tial complex values of the multiplier. We have four input signals and two weighting 

factors as follows:
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((Ii+ -  /»_) +  J ( V  -  /,_ )) • {WFi +  J  ■ WFq)

Iouti+ = Ii+-WFi + Iq- ■ WFq 

IOUti— = Ii_ ■ WFi +  Iq+ • WFq 

IOUtq+ = Ii+ ■ WFq +  Iq+ ■ WFi 

lOUtq_ =  / •  WFq + Iq_ • WFi. (3.8)

As we see from the above equations, although the multiplier has only four out

puts, it uses two mirrors per each output, and it means that we can also use the 

introduced basic block as a multiplier. We only need to change the transistor sizes 

to get different weighting factors.

3.2.2 NMOS/ PMOS Consecutive Stages

To build an FFT processor using the butterfly structure shown in Fig. 3.4 we need 

to use both NMOS and PMOS mirrors to let currents flows through the circuit. For 

example if we use NMOS mirrors as a basic block for building 2-FFT since we need 

to drive its inputs by PMOS transistors we can use PMOS mirrors for the 4-FFT and 

for the next stages we keep using NMOS and PMOS alternately.

3.2.3 Dummy Mirrors for Each WF Block

Since we have WF blocks in some nodes of each FFT larger than 8-bit, we need to 

think how we can use our NMOS/ PMOS consecutive topology having these extra 

blocks. In other words let us say in Fig. 3.4 we have a PMOS 4-FFT and we want 

to use NMOS mirrors to build an 8-FFT stage based on the above argument. What 

type of mirrors can we use for WF blocks, as not to change the direction of currents 

at the inputs of 4-FFT blocks? Since WF blocks are only in some places, not all 

nodes have multipliers in front, so we cannot use either of them without adding a 

dummy block at the end of each multiplier. So we add 4 mirrors of the opposite
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FFT Size Number of Transistors
2-FFT 2{FFTsize) • \2{BasicBlock) = 24
4-FFT 4 • 12 +  2(B u tterfly ) • 24(PreviousStage) = 96
8-FFT 8 • 12 +  2 • 96 +  2(W Fs) ■ (12 +  8(dum m y)) = 328
16-FFT 16 • 12 +  2 • 328 +  6 • (12 +  8) = 968
32-FFT 32 • 12 +  2 • 968 +  10 • (12 +  8) = 2520
64-FFT 64 • 12 +  2 • 2520 +  22 • (12 +  8) = 6248
128-FFT 128 • 12 +  2 • 6248 +  46 • (12 +  8) = 14952
256-FFT 256 • 12 +  2 • 14952 +  94 • (12 +  8) = 34856

Table 3.1: Number of transistors used in each FFT stage.

type, 8 transistors, at the end of each multiplier to make the current direction proper 

for the following stage.

3.2.4 Routing Algorithm for the Entire 256-FFT Circuit

Before explaining how we can route the FFT circuit, first it is worthwhile to have 

an idea about how big the circuit is and how many transistors are involved in each 

FFT stage on butterfly diagram shown in Fig. 3.7. The number of transistors used 

in each FFT stage is listed in Table 3.1. For a 2-FFT we have two basic blocks of 

12 transistors; therefore the total number of transistors is 24 for a 2-FFT block. In 

the next stage, 4-FFT, there are four basic blocks right at the input of the stage in 

addition to two previous FFT blocks, 2-FFTs, based on the butterfly structure which 

give us the total number of 96 transistors for a 4-FFT block. For the other stages 

we can keep track of doing this plus the number of WFs that we have in each stage. 

Remember that the total number of each WF block is equal to 12, the number of 

transistors in a basic block, plus the number of transistors in a dummy mirror which 

is 8. In an 8-FFT block we have two WFs and it will go up in every larger FFT up 

to 94 which is the number of WFs in a 256-FFT block as represented in Table 3.1. 

Notice that the number of WFs in each stage of the FFT in the system diagram in 

Fig. 3.8 is higher than these in circuit. That is due to the modification we used in 

the circuit; the WFs with the quadrature values close to 1 could be created simply 

by interchanging the differential wires without using an extra multiplier. As shown 

the total number of transistors for a 256-FFT block is about 35000. To explain the
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routing algorithm we focus on the 8-FFT shown in Fig. 3.3; however readers can 

easily use the argument here to extend it into any larger FFT structure.

Since we have 8 differential complex inputs, there are 32 input wires, to have an 

easy access to any of these wires we define the following terminology. We group all 

the four wires representing Ii+, Ii_, I g+, and Iq-  always in this sequence. It means 

that for instance if we want to reach the positive quadrature value of the first input, 

we can have a look at the third wire, or the fourteenth wire is the negative inphase 

value of the fourth input. In general we can follow these equations to find any input 

wire we are looking for:

I[n\i+ =  4n +  1 ,1[n]i- = An +  2 ,1[n]q+ =  4n +  3, /[n]9_ =  4n +  4. (3.9)

Also we have 8 basic blocks right at the input of the 8-FFT. To name the output 

of the basic blocks we divide them into two groups of upper half part and lower half 

part as we are already familiar from previous sections. The reason why we do that 

is the negative signs existing in the lower half part which cause interchanging the 

differential wires at their output. We name all the outputs of the upper half part in 

the sequence proposed above and for the lower half part we use the same numbers 

to tie them together. Since we have two copies of each input signal in the butterfly 

structure, in the upper half we first name the all first copies and then all second 

copies in sequence.

For example consider the first and the fifth dark nodes in Fig. 3.3. The first input 

copy of those simply ties together and their second input copy ties together after 

interchanging the differential values of the lower basic block. All the individual 

wires of these can be found in the following Figures 3.10 and 3.11

This way of naming the wires gives us the advantage of using bus vectors for a 

long sequence of inputs whenever we do not need to change the order or after in

terchanging the wires. For instance, all the outputs of the upper half part after tying 

the corresponding pair will directly feed into the previous FFT block in butterfly 

diagram, 4-FFT here, simply by using a wire name like Input < 1 : 16 >.

The rest is to explain how we can build all different types of WFs and name
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Figure 3.10: First basic block of the upper half part of the 8-FFT stage.
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ad d _ 8 f f t< 1 8 >
™ a d d _ 8 f f t< 1 7 >
"  a d d _ 8 f f t< 2 0 >

-------■—
ad d _ 8 f f t<  19>

Figure 3.11: First basic block of the lower half part of the 8-FFT stage.

them properly. In Fig. 3.2 we have three types of WF called Wg1, Wg2 and Wg3. 

They can be considered as a midpoint of a region for larger FFTs which have more 

WF and readers can apply the argument here for larger FFTs.

For the region of Wg1 we can use the multiplier structure we explained early 

on using Eq. 3.8. In the second region related to W82 we use the same argument 

with knowledge of W Ft =  0 and W Fq — 1. It gives us the way to interchange the 

in-phase and quadrature wires correctly as follows:

((/i+ -  Ii-) +  J(Iq+ -  Iq-)) ■ J  -W Fq :

IO U ti+ = Iq— 

Iouti— — L -!-

I  Olltq— —  I  j .

Ioutg_ — Ii_.

33

(3.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



From a circuit’s point of view, it means the wire interchanging of the I(n) dif

ferential complex group like

I[n\i+ =  4n +  4, /[n]j_ =  An +  3 ,1[n\q+ =  4n +  1 ,7[n],_ =  4n +  2. (3.11)

The final region is related to W83 =  —W Fi + J  W Fq. It means that we need 

to create a multiplier block to give the same output as the following Eq. 3.12.

((Ii+ -  /,_) +  J (Iq+ -  /,_ )) • (—WFi +  J  ■ W Fq) :

Iouti+ = Ii_ - WFi + Iq_ • WFq 

Iouti_ =  Ii+ ■ WFi +  Iq+ ■ WFq 

Ioutq+ = I i+ ■ WFq +  Iq- ■ WFi

l0Utq_ =  Ii-  ■ WFq + Iq+ • W Ft. (3.12)

Again if the — WFi =  — 1 and W F q = 0, the outputs only change their signs, 

interchanging the positive and negative wires.

3.3 Current Mirror Model

To model the FFT circuit behavior, we modeled the basic components: NMOS and 

PMOS current mirrors. To find the actual output of each mirror we simulated an 

NMOS mirror with a PMOS diode connected load and a PMOS mirror with an 

NMOS diode connected load shown in Fig. 3.12. The reason that we can use such 

a model for the entire FFT circuit is due to the fact that if we tie a second current 

mirror at the output node it is the same as if we increase the first current by that 

new current. The loading effect of the second mirror does not change the mirror 

characteristic since we have a diode connected load as a next stage everywhere in 

the FFT. We also checked this behavior by simulations. All the other nodes on the 

circuit are isolated from this output node through the gate of the loads.
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Figure 3.12: Basic model to find the mirror characteristic over the large input range.

The DC parameters and the / out versus Iin characteristic of both the NMOS 

current mirror with PMOS load and the PMOS current mirror with NMOS load 

are listed in Fig. 3.2 and Fig. 3.3 respectively. Different operation regions can be 

realized by increasing the input current. By comparing the corresponding 14s and 

Vdsat in each row we can define the saturation/ triode region and through comparing 

VgS and Vth we can define the weak / strong inversion region.

Since by increasing the input current, Vds get decreased and Vgs get increased, 

we face three different regions. First we are on weak inversion / saturation region 

since Vgs «  Vth and 14s > Vgs — Vth- Then we have strong inversion / saturation 

region, since Vgs > Vth and still 14? > Vgs — Vth- The last region is strong inversion 

/ triode region, since Vgs > Vth and 14s < Vgs — Vth- All these regions are plotted 

in Fig. 3.13. However the data for last region are not provided on these tables since 

we do not want to operate in triode region.

To consider the actual behavior of the mirrors based on the results given above 

we fitted a linear curve to them in the log domain and used these curves in our 

Matlab code. As it is clear in Fig. 3.13 the actual mirror’s outputs are slightly larger 

than the inputs, shown as a line on the plot. It is mostly due to different values of 

14s on each branch of the mirror. For example if we consider an NMOS mirror with 

PMOS diode connected load shown in Fig. 3.12, the input transistor has a 14s equal 

its Vgs which is typically smaller than the output transistor’s 14s > Vdd minus load 

Vgr
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lin iP'-ty IoutiP'-A) Vds(v) Vdsat
-  Vth{mV)

= 475(mF) 
V9S(mV)

0.1 0.14 1.67 43 67
0.5 0.66 1.62 44 119
1 1.29 1.59 44 142
5 6.3 1.54 45 196
10 12.42 1.52 45 219
50 60 1.46 45 276
100 119 1.43 47 302
500 581 1.36 49 366
1000 1143 1.32 58 396
5000 5490 1.22 75 473

10,000 10690 1.15 93 512
50,000 51,000 0.862 173 637
100,000 99,300 0.642 233 723

Table 3.2: NMOS mirror characteristic over the wide input/output range.

1 in (tt-A) vds(y) Vdsat —
Vg. -  Vth(mV)

Vth = 475(mF) 
Vgs(mV)

0.1 0.13 1.72 39 117
0.5 0.63 1.67 39 140
1 1.24 1.65 40 193
5 6.1 1.59 40 241
10 12.08 1.57 40 272
50 59 1.51 42 334
100 116.7 1.49 46 362
500 564 1.43 53 430
1000 1108 1.4 75 469
5000 5314 1.33 130 583

10,000 10460 1.29 185 645
50,000 50,610 1.17 375 916
100,000 99,570 1.08 545 1160

Table 3.3: PMOS mirror characteristic over the wide input/output range.
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A Linear curve for PMOS mirror is slightly closer to the ideal mirror since a 

PMOS transistor has smaller mobility and it causes less difference in the values of 

Vds on their mirror branches.

S a tu ra tio n  R egion 

V ds>  V gs-V th  

S tro n g  Inversion 

V gs >  Vth

S a tu ra tio n  R egion 

V ds>  V gs-V th  

W e ak  inversion  

V g s « V th

T riode R eg ion  

V ds <  V gs-V th

S tro n g  Inversion 

V gs >  Vth

<c
3O

lin (nA)

Figure 3.13: Iout versus I{n characteristic of NMOS current mirror with PMOS load.

3.3.1 Current Scaling at Every FFT Stage

Since we add currents in each FFT stages, the absolute value of currents get bigger 

and bigger in each stage when we go further in butterfly structure. This will result in 

more power consumption and more nonlinearity as well. We scale the ^  of the out

put transistor of each current mirror participating in addition, white circles shown 

in butterfly diagram in Fig. 3.1, in every stage of FFT to get the same input/output 

current range after each addition. We chose the 0.45 as a scaling factor to make the 

absolute amount of output current in the same range of those of inputs. We discuss 

the impact of such a modification in greater detail in the simulation chapter.

After scaling transistors, since we have roughly the same input output current 

range for any iV-FFT block, we can define and choose a specific bias current in the
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range of our operation, from 100(pA) to lOO(itA), represented in Fig. 3.13. Having 

an operational bias current for our FFT block makes it possible to compensate the 

existing offset on linear curve fitted in Fig. 3.13 by again slightly changing ^  of 

the output transistor of each current mirror participating in addition.

There are many considerations to take into account in analog design such as de

vice mismatch, body effect and channel-length modulation. However most of the 

error due to channel-length modulation and body effect is common-mode. Thus 

by using a fully differential circuit, just the differential errors occur. On the other 

hand, mismatch for small devices can have a significant impact to cause an error. 

Based on the device characteristics, the magnitude of mismatch is approximately 

inversely proportional to device area. Therefore the consideration of device sizing 

is important at this point.

First we modeled the mismatch for each transistor pair due to their threshold 

voltage, Vth, in each current mirror as an additive white Gaussian random variable 

and we checked the sensitivity of the FFT due to the different values of the variance 

of this random variable.

Also, to analyze the impact of mismatch over the entire iV-FFT block, we model 

the mismatch of all inside nodes of FFT block as an additive input referred mis

match source, shown in Fig. 3.20, which is also a normal random variable with 

calculated variance. Both models produce the same BER simulation performance 

which we discuss in the simulation results section.

3.4 Mismatch model

Input Referred 
■> Mismatch 

Source

Inputs
^  Ideal

Outputs

N-bit FFT ►

Figure 3.14: Input Referred Mismatch model for the N-tb'l block .
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3.4.1 Mathematical View for Mismatch Model

We explain our mismatch model both for strong inversion and subthreshold region 

and compare them.

Mismatch for Strong Inversion

The threshold voltage, Vth, variation is the dominant source of mismatch compared 

to the other sources like (W / L ) or K  which are physical parameters [29]. The Vth 

variation can be modeled as a normally distributed random variable with zero mean 

and variance of 5% [29, 30]. We assume A Vth as a Vth variation for I D in saturated 

strong inversion as expressed by

W
ID = (— )K (Vgs -  Vth -  AVth) . (3.13)

If we expand this equation we will obtain Eq. 3.14

W  W  W
I d  =  (T )K(V9S -  Vth)2 -  2 • (— )K(Vgs -  Vth)AVth + (— )K A V 2h. (3.14)

The first term is our ideal current, and the second part is the dominant mismatch 

part since the last term can be ignored due to small variance of AVt2h. We rewrite it 

as follows:

I D = I i d e a l - ( l - * ' AV* ). (3-15)
V g s  ~  V t h

AVth as we mentioned above can be represented as Vth ■ £ where £ is a normal 

distributed random variable, e : A (̂0, S^). Therefore the Equ. 3.15 turns to the 

following equation:

I d  = lideai ■ (1 + Constr ■ e ) ,  (3.16)

where Constr is a normalizing factor in strong inversion equal to VgJ-vth • 

choosing Vgs = 2Vth this normalizing factor becomes 2. Therefore we acquire a 

normally distributed additive mismatch term for Vth-
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To have an idea about the order of its variance, 82, we choose a threshold voltage 

variation, AVth, equal to ±45 (mV), hence e is 10% for typical value of Vth =  

450(mV)  in our process technology, 180 nm [31]. Since for normal distribution we 

can assume that 97% of our outcomes are less than the three time of the standard 

variation, 3 • S£, so the S£ is about 0.033 and 52 is equal to 0.001 times Con2atr, 

normalizing factor.

Mismatch for Subthreshold (Weak Inversion)

To model the mismatch in subthreshold we look at the current equation given in 

Eq. 2.23.

I d =  k! ■ en^T • [1 — e (3.17)

The k' is a process parameter which is exponentially dependent on Vth, VT is the 

temperature coefficient known as kT /q . For saturation region we can neglect the 

Vds term since V<is is higher than 100(m V ), 4kT/q, to obtain the following equa

tion [32],

I D = k f . e ^ f c ,  (3.18)

where k' is in form of e n V>T, so we can rewrite the Eq. 3.18 as follows:

- V th -^ V th  Vos
I d  o c  e n Vr . e ™ v T . (3.19)

I d  =  lideal ■ e  n-vT . (3.20)

As we mentioned in previous section A Vth can be represented as Vth • £ where 

e is a normal distributed random variable, e : N ( 0 ,82), therefore eConsub'£ is a log

normal random variable as a mismatch source of transistor pairs in weak inversion 

region where Consub, subthreshold normalizing factor, is equal to This normal

izing factor, for Vth = 450(ml/)and VT = 25(mV), is about an order of magnitude 

higher than Constr, strong inversion normalizing factor.

If we expand the Taylor series of eConsub'£ in Eq. 3.20 we obtain
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Con?ub-e2 Conlub-e3 .
Id  — hdea i • (1 +  Consub ■ e H —------------1------------—------------1- ...) (3.21)

We can compare Eq. 3.16 for strong inversion with this equation. In addition to 

have all these higher order terms in Eq. 3.21, for subthreshold region, the order of 

magnitude difference between the normalizing factors Constr and Consub, makes 

subthreshold operation much more sensitive to mismatch as we discuss in Chapter 

4.

10% Mismatch for weak inversion 10% Mismatch for weak inversion
 1 1 1 1 10001 1 ■ 1-----------

Figure 3.15: Log-normal distribution for weak inversion operation, 10% Mismatch. Its 
mean is a positive value 0.24 and its variance is about double

We also can see the effect of higher order terms in the Taylor series from proba

bility studies where the log-normal distribution can be estimated by normal distribu

tion for small values of variance and it starts to have log-normal distribution shape 

for larger values of variance. We depict these characteristics for different values of 

Vth mismatch in Fig. 3.15 up to Fig. 3.17. As we increase the mismatch from 1 % to 

10 % the shape of the log-normal distribution tends to differ from normal, its mean 

deviates from zero, and its variance becomes larger. All these behaviors cause more 

impact in weak inversion compared to strong inversion. Again remember that this is 

not the major cause of the higher mismatch sensitivity in weak inversion compared 

to strong inversion. The major reason is due to the difference of their normalizing 

factor.
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5% Mismatch for weak inversion 5% Mismatch for weak inversion

Mean:0.05; Var:0.13

Figure 3.16: Log-normal distribution for weak inversion operation, 5% Mismatch. Log
normal distribution has small difference in mean and variance compared to normal distri
bution.

1% Mismatch for w eak invepion 1% Mismatch for weak inversion

- 2  0 2 4  -0 .4  -0 .2  0  0.2 0.4
Mean:0; Van0.0044 Mean:0; Var:0.0044

Figure 3.17: Log-normal distribution for weak inversion operation, 1% Mismatch. Log
normal distribution can be estimated by normal distribution.
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3.4.2 Input Referred Mismatch Model

2FFT

Figure 3.18: Mismatch for the 2-FFT block. Each current mirror has its esci where s 
indicates the stage, c is either 1 or 2 representing the first or second copy of an input i.

For the 2-FFT we can model the mismatch as an external block as follow. Con

sidering the mismatch of two current mirrors in the 2-FFT shown in Fig. 3.18, the 

following equation can be derived :

l o u t l  — - f i n 2 l ( l  +  £ 211 )  +  / i n 2 2 ( l  +  £ 212 )  — (3.22)

h n 2 l  +  h n 2 2  +  I in 2 1 ^ 2 U  +  h n 2 2 ^ 2 l2 i

which can be seen as an ideal FFT plus an external mismatch term. If we substi

tute the input currents of 4-FFT coming into the 2-FFT on butterfly diagram shown 

in Fig. 3.19 we will find the same structure of the mismatch block for the 4-FFT as 

follows:

2FFT
4 o u tl

2FFT
[<->Q

Figure 3.19: Mismatch for the 4-FFT block. Each current mirror has its eaci where s 
indicates the stage, c is either 1 or 2 representing the first or second copy of an input i.
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I<mtl ~  l i n i l  (1 +  £ 4 1 l)(1 +  ^2 1 l)  +  I ira42(1 +  £412)(1  +  £ 212 ) +

-^in43(l +  £ 41 3 ) (1  +  £ 21 l) +  linAA  (1  +  £ 414 ) ( l  +  £212) =

^ i n i l  (1 +  a 4 l)  +  I in 4 2  (1 +  <*4 2 ) +  I  in  A3 (1 +  £*43 ) +  I  in  A A (1 +  £*4 4 ) ,  (3.23)

where a  is in general in the form of e +  e' +  £ ■ s ' . So the mismatch model 

for the 4-FFT has still the same structure as 2-FFT and the only differences are the 

coefficients in this model.

The input referred mismatch variance for the 4-FFT' now can be derived from 

the above equations. In general for any IoutAk  we have 4 statistically identical terms, 

I  m i  (1  +  c t i ) ,  add together. Since the input signals are roughly in the same range, we 

can assume that statistically they are the same and we can say we have 4 times vari

ance of a. Also a  itself has roughly 2 times variance of each transistor mismatch, 

since the term e ■ s' is negligible. So the input variance of our mismatch model for 

the 4-FFT is roughly 8 times of that of each transistor pair.

We can use the same argument for the 8-FFT to obtain the input variance as 

follows:

8 8

Io u t8 k  =  +  £*) =  ^ in i iX  "F £ +  s '  +  s "  +  £■ e ' + . . .  +  E - e '- e " )
i = 0 i= 0

8

/ OUt8fc =  £ / im(1 +/3). (3.24)
i= 0

However it is in the first stage that we have WFs involved. The effect of WFs 

is not just the mismatch of its transistor pairs. If we refer to Eq. 3.8, we will notice 

that each output of complex multiplier consist of two adding current together, so it 

produces double variance for each output. Therefore using the above argument for 

the upper half part of 8-FFT we obtain 8 ■ 35^, and for the lower half part of 8-FFT 

we obtain 2 • 8 • 36^, so in total we have 3 • 8 • 3<5f as an input referred mismatch 

variance for 8-FFT. We can keep doing this algorithm to find the overall variance of 

any larger FFT shown in Table. 3.4.
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FFT Stages Input Mismatch Variance Radix-2 FFT
( 1 - 1 ) . £  = *2
(4 • 2) • <5* = 88‘i

<5*: (8 • 3) • 3 • Si = 72 Si
1̂6 : (16 • 4) ■ 3 • (3 • 0.7) • <5* = 403.2<5*
3̂2 : (32 • 5) • 3 • (3 • 0.7f  ■ Si = 2.1(103) • Si
6̂4 : (64 • 6) • 3 • (3 • 0.7)3 • Si = 10.7(103) • 5‘i
1̂28 : (128 • 7) • 3 • (3 • 0.7)4 • 8'i = 52.3(103) • Si
2̂56 : (256 • 8) • 3 • (3 • 0.7)5 • 82£ = 251(103) • Si

Table 3.4: Input referred mismatch variance for N-bit (radix-2) FFT from 2-FFT up to 
256-FFT.

'N-FFT

Inputs Outputs
Ideal 

N-bit FFT

Figure 3.20: Input Referred Mismatch Variance for the IV-FFT block.

Therefore we can generalize the input referred mismatch variance for an iV-FFT 

as the following equation.

6% = (N  ■ m) • 3 • (3 ■ A V E .W F )(m“3) • <5*, (3.25)

where m  is the number of stages in butterfly structure, the first 3 is the average 

input factor for current stage due to WFs as explained above, the second factor 3 in 

this equation is the average input factor for previous stage due to WFs as well. The 

constant A V E .W F  is the average amount for WFs in every stages, which is 0.7. 

For m less than 4 the m-3 term should be 1 since there is on previous stage having 

WFs.

The reason that we do not consider A V E .W F  for 8-FFT, the first FFT stage 

with WFs, is due to the fact that the amount of currents in the lower half part of 

butterfly structure get increased because of addition inside the complex multiplier 

rather than those of upper half part. This factor is about 1.5 and can be cancelled out
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FFT Stages Radix-2 FFT Radix-4 FFT Radix-16 FFT
si-. 1 -S i - -
S i: 8 -S i 4 -S ‘i -
S'l: (8 • 3) ■ 3 -5'j - -
1̂6 1 (16 • 4) • 3 • 2.1 • £2 (42 • 2) • 3 • 2.1 • 5‘i 16 • 3 • 2.1 • 5‘i

$52 : (32 • 5) • 3 • 2.12 • Si - -
$54 : (64 • 6) • 3 • 2.13 • 5‘j (43 • 3) • 3 • 2.12 • S'i -
p  .

128 • (128 • 7) • 3 • 2.14 • Si - -
X2 . 

256 • (256 • 8) • 3 • 2.15 • 6‘i (44 • 4) • 3 • 2.13 • 5‘i (162 • 2)3 • 2.12 • S'i

Table 3.5: Estimation of Input referred mismatch variance for different radix 7V-FFT struc
tures.

by 0.7. Therefore the 8-FFT only has factor 3 as an average input factor and there is 

no 0.7, the average amount for WFs factor, for this stage. For the 16-FFT and larger, 

we take into account both the average input factor 3 and the average values of WFs 

0.7 for each stage. This approximation works fairly good up to the 256-FFT. After 

several stages, to make our model better fitted, we need to again compensate the 

impact of increasing the amount of currents in the lower part of butterfly structure. 

For instance for the 256-FFT we change the last 0.7 factor to 0.9 in Eq. 3.25.

We can add the mismatch of each mirror inside the multipliers and each dummy 

transistor at their output, which are also normal random variable named ewf  and 

£ dummy respectively.

Looking at Table 3.4, we will find that the input referred mismatch variance 

is highly dependent on the number of stages and for example for the 256-FFT the 

variance is in order of 105 of the variance of a single transistor pair. So to make 

our iV-FFT less sensitive to transistors mismatch one good idea is to decrease the 

number of stages in FFT butterfly structure. This fact leads us to use an FFT with a 

higher radix structure.

For instance, in a radix-4 FFT, at each stage we can add four currents rather than 

two currents, which we have done in our radix-2 FFT butterfly structure, since the 

addition of currents in analog domain costs nothing but tying wires together. By 

this type of change in the butterfly diagram, we obtain half the number of stages, it 

means only four stages for the 256-FFT. Also if we consider a radix-16 FFT we only
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FFT Stages Radix-2 FFT Radix-4 FFT Radix-16 FFT
%■ 1 -S j - -
si-. 8 • s 'i 4 - i ? -

72-Sj - -
^16 : 403.2 • Si 201.6 • S'i

OO00

3̂2 : 2.1 • (103) • S'i - -
S$4 : 10.7 • (103) • S'i 2.55 ■ (103) • S'i -
1̂28 : 52.3 • (103) ■ S'i - -
2̂56 : 251 • (103) • S'i 28.4 • (103) • S'i 6.76 • (103) • S'i

Table 3.6: Input referred mismatch variance comparison of iV-FFT for radix-2,4, and 16.

FFT Type Input Mismatch Variance: 256-FFT
Radix-2 (28 • 8) • 3 • 2.15 • S'i = 251 • (103) ■ S'i
Radix-4 (44 • 4) • 3 • 2.13 ■ S'i= 28.4 • (103) ■ S'i

Radix-16 (162 ■ 2) • 3 • 2.12 • S'i = 6.76 • (103) • S'i
DFT (2561 • 1) • 3 • 2.1 • S'i = 1.61 • (103) • S'i

Table 3.7: The comparison of the Input referred mismatch variances for different types of 
the 256-FFT.

need two stages to implement the 256-FFT. We have estimated the input referred 

mismatch variance for the radix-4 and the radix-16 FFT based on our radix-2 FFT 

and compared these in Table 3.5 and Table 3.6 respectively.

Based on this argument, we can also think of implementing a 256-FFT in one 

single step, which is implementing the DFT expressed in Eq. 2.7. We provide the 

input referred mismatch variances for these different structures in Table 3.7. As it 

is clear that the DFT has the least variance, its implementation is less sensitive to 

the mismatch of transistor pairs compared to other FFT structures. Using a DFT we 

obtain about 100 times less input referred mismatch variance, the impact of which 

will be discussed in Chapter 4. Also if we look at the number of current mirrors 

needed to build a 256-FFT using different radix structures, as shown in Table 3.8, 

we will notice that the number of current mirrors decreases as we increase the radix 

of the 256-FFT' and hence decrease the number of stages. So there is a win-win 

senario in terms of the circuit complexity and the mismatch sensitivity to implement 

an analog DFT processor.

The win-win senario in terms of the circuit complexity and the mismatch sen-
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256-FFT Type Number of Current Mirrors/Output
Radix-2 2 -(1 +  2 +  4 +  8 +  16+  3 2 +  6 4 +  128) = 510
Radix-4 4 • (1 +  4 +  16 +  64) = 340

Radix-16 16 • (1 +  16) = 272
DFT 256 • (1) = 256

Table 3.8: The comparison of the number of current mirrors in 256-FFT for different radix 
structures.

sitivity for the analog DFT implementation is due to the different cost items that 

we face in digital versus analog FFT design. In a digital DFT implementation the 

addition is costly so we like to decrease the number of additions as much as possi

ble. By sorting the inputs and using several stages we can minimize the number of 

additions and obtain the DFT, structure which is called FFT. Increasing the number 

of stages does not increase the cost of copying in digital implementation since we 

have registers and we can use our signals as many times as we need. However in an 

analog FFT implementation the copying of signals is a real cost since we need to 

use a current mirror to do so. Furthermore, there is no cost for additions in analog 

design. Therefore we need to decrease the number of stages to decrease the number 

of current mirrors as well. Clearly the FFT is not an optimum way to perform the 

DFT using analog circuitry. The DFT is better for an analog implementation due 

to its reduced number of current mirrors and its reduced sensitivity to mismatch 

compared to the radix-2 FFT structure.

Higher radix FFT structures, due to the large number of wires adding at one 

node, bring some design issues like large capacitances and output impedances. The 

large capacitance decreases the speed of the FFT. However, the speed of the receiver 

is limited by the speed of the iterative decoder. Also, we can obtain the proper 

output impedance by sizing the load transistors at each FFT stage.

3.5 Power Consumption

The possible current operating range is from 100 (pA) to 100 (uA) based on the 

current mirror model shown in Fig. 3.13. To have less power consumption we 

like to choose as low a bias current as possible. However based on the mismatch
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argument we would like to operate in strong inversion. So we choose a low bias 

current in strong inversion by making the length of transistors larger. This also 

helps to minimize the mismatch due to minimum length.

We choose the bias current equal to 100 (nA) and the power supply, Vdd, for a 

180-nm technology is 1.8 (V). So on average for a radix-2 256-FFT since we have 

256 complex differential inputs, 1024 inputs, and 8 stages, the power consumption 

is on order of 1024 • 8 plus the number of multipliers in every stage times I  bias ■ Vdd- 

The numbers of multipliers in the 256-FFT stage down to the 8-FFT stage is about 

128 +  2 • 64 +  4 • 32 +  8 • 16 +  16 • 8 +  32 • 4 =  768. Therefore the total power 

for Ibias 100 (nA), and Vdd 1.8 (V) is in order of (1024 • 8 +  768) • 18(nVF) which 

is about 1.6 (mW).

3.6 Chapter Conclusion

In this Chapter, we presented a design methodology for an analog N - tFT using 

only current mirrors. We analyzed the mismatch of the current mirrors and we 

obtained an input referred mismatch model for the iV-FFT. We showed that the 

radix-2 FFT structure has a very large input referred mismatch variance. The higher 

radix FFT structures have smaller input referred mismatch variances. Also, the 

number of current mirrors for the higher radix FFT structures is less than that of 

the radix-2 FFT structure. Hence although FFT is a good option for digital design, 

DFT is more proper for analog design. In the next Chapter we look at the BER 

performance of our system considering the design issues discussed in this Chapter.
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Chapter 4 

Simulations and System Performance

This chapter studies how we can estimate the performance of the analog FFT pro

cessor and what level of reliability we need. To answer these questions, first we 

should look at inputs and outputs as random variables and then compare input Sig

nal to Noise Ratio (SNR) to output SNR of the FFT block.

The input signal, y[n], consists of OFDM signals, x[n], plus AWGN, n[n]: 

N (0, a2) out of the channel.

Where Y[n] is analog FFT output, X[n\ is the actual FFT value and N[n] rep

resents all existing noise after the analog FFT processor including channel noise, 

circuit noise and any defect coming out of the analog FFT block. The output SNR 

is defined as:

Finally, we can find the performance of the analog FFT processor by comparing 

these two input and output SNRs and we need a design which does not decrease the 

performance of the existing decoder remarkably nor wastes complexity in designing 

the input interface to be too accurate.

y[n] = x[n] +  n[n]. (4.1)

Hence, the input SNR can be represented as:

Input S N R (4.2)

The same approach is applicable for FFT output, we can assume:

Y[n\ = X[n\ + N[n]. (4.3)

Output S N R (4.4)
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4.1 Differential BPSK System Performance

Considering the BER vs. SNR performance, the noise power is doubled when using 

differentially coherent detection versus the original coherent technique [22].

The power performance of differential QPSK compared to common coherent 

PSK is about 2.3 dB  worse at BER of 10-4 . However for differential BPSK it is 

less than 1 dB  [22]. Theoretical BER vs. SNR performances are shown in Fig.4.1.

Differential QPSK

Different̂  BPSKa>
15
<E

I
UJ

a
Coherent BPSK/QPSK

SNR = Eb/NO (dB)

Figure 4.1: Ideal 256-FFT performance; Coherent demodulation compare to differential 
demodulation.

This probability of error for coherent BPSK/QPSK is the well-known Q func

tion given by (4.5).

Coherent : Pb = Q • (4.5)

The probability of error for differential coherent BPSK is expressed by

1 ~ B h

D if  .C oheren t: Pb = - e  N° , (4.6)
z

and for differential coherent QPSK the probability of error is based on the Mar

cum Q function and the modified Bessel function of order zero explained in [22].
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In a spread spectrum scenario the limiting factor is interference of different 

users. Therefore by using higher order modulation people try to get higher spectral 

efficiency, in other words the differential QPSK in general is more spectrally ef

ficient than differential BPSK. However in spread spectrum communications with 

a multiuser channel the spectral efficiency of N QPSK system is the same as 2N 

BPSK.

The advantage of using differential BPSK in this standard is to gain more in 

power efficiency while remaining the same in the spectral efficiency as compared 

to differential QPSK modulation.

We first simulated our ideal butterfly-structured FFT to check its functional

ity using the IFFT at the transmitter and AWGN channel. We obtained the same 

theoretical performance for this coherent BPSK model. Then we add a circular 

differential QPSK modulator and complex multiplier as our demodulator at trans

mitter and receiver respectively. This new result follows the theory as well. Both 

simulation results are shown in Fig.4.2.

256-bit FFT Performance

Ideal FFT Design (Differential QPSK)

<3
cc

I
lli

10"
m

Ideal FFT Design (Coherent BPSK/QPSK)

10“*

SNR = Eb/NO (dB)

Figure 4.2: Ideal 256-FFT design for coherent versus differential design.
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4.2 BER/SNR FFT Simulations

We simulated the OFDM communication system model shown in Fig. 2.2 using 

Matlab and a C program to characterize our FFT block considering different design 

issues as discussed in following sections. We ran the Monte Carlo simulation for 

106 bit samples. We demonstrate the BER performance curve of the system versus 

S N R  = First we look at the FFT performance without using decoder and then 

we explain how decoder can improve our performance.

4.2.1 Current Mirror Model for 256-FFT Simulations

<D13
cc
g

m
.«m

0 1  2 3 4 5 6 7 8 9  10
S N R  =  Eb/N O  (dB )

Figure 4.3: Statistical simulation of 256-FFT having current mirror model for different 
bias currents.

In this section we examine the performance of the 256-FFT using our current 

mirror linear curve model explained in previous chapter. We used this model at 

each current mirror and ran the statistical simulation for different bias currents to 

compare the 256-FFT performance with that of having exact current mirror, which
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we call mathematical 256-FFT. The bias current range can be varied from 100(pA) 

to 100(uA) based on the model shown in Fig. 3.13. As it is clear in this figure, the 

more we increase the bias current the better curve fitting we have, in other words, 

the linear fit curve gets closer to the ideal line as we move from subthreshold into 

the strong inversion region. This behavior shows up in the statistical simulation as 

well shown in Fig. 4.3.

The loss in performance due to different bias currents can be mostly compen

sated by using the offset cancelation technique of the current mirror fitted linear 

curve, explained in mirror model section.

4.2.2 Current Scaling in every FFT Stage for 256-FFT Simula
tions

- s —  S c a l in g  lb ia s :1 0 0 p A  

^  -  N o n S c a l in g  lb ia s :1 0 0 p A  

 T h e o r y  D if fe re n t ia l B P S K  D e m o d u la t io n

(0
cc

SLU
CO

S N R  =  E b /N O  (d B )

Figure 4.4: Statistical simulation of 256-FFT with scaling/non-scaling current at each 
stage for 100 (pA) bias current. The dashed line is a non-scaled version and the solid line 
is a scaled version.

We decided to scale the output mirror at each stage, based on the previous chap-
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— ©—  S caling  lbias:10nA  
-  © -  N onScaling  lbias:10nA  
 T heo ry  Differential B PSK  D em odulation

10-'

73
cc

§
ill

CD

S N R  =  Eb/NO (dB)

Figure 4.5: Statistical simulation of 256-FFT with scaling/non-scaling current at each 
stage for 10 (nA) bias current. The dashed line is a non-scaled version and the solid line is 
a scaled version.

— h —  Scaling  lbias:100nA  
-  b  -  N onScaling  lbias:100nA  
 T heory  Differential BPSK  D em odulation

10-'

©<d
CC

§
UJ

m

SN R = Eb/NO (dB)

Figure 4.6: Statistical simulation of 256-FFT with scaling/non-scaling current at each 
stage for 100 (nA) bias current. The dashed line is a non-scaled version and the solid line 
is a scaled version.
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ter explanation, to obtain roughly the same input output current range. We scaled 

the output of each adding mirror with a factor of 0.45 at each FFT stage. This scal

ing causes a degradation in the FFT performance for different bias currents. The 

following statistical simulations represented in Fig. 4.4, Fig. 4.5, and Fig. 4.6 show 

the impact of current scaling for 256-FFT.

Again, this loss in performance can be mostly compensated by using the off

set cancelation technique of the current mirror fitted linear curve, explained in the 

current mirror model section (S. 3.3).

4.2.3 Simplification of WFs for 8-FFT up to 256-FFT Simula
tions

10°

icf1

COCC
2>_
LD

“  KT3

10-4

1 0 5
0 1 2 3 4 5 6 7 8 9  1 0

S N R  =  E b /N O  (d B )

Figure 4.7: Statistical simulation of FFT, from 8 to 256 bit, with only three different values 
for WFs, 0.4, 07, and 0.9.

We simplified the FFT structure by using only 3 different values for WFs rather 

than 64 for all the complex multiplier inside FFT stages up to 256-FFT demon

strated in Fig. 3.8. The impact of such a simplification on the FFT BER perfor-
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mance is illustrated in Fig. 4.7. The maximum loss of about 2 dB at BER of 10-3 

is for the 256-FFT.

By such a simplification we do not save remarkable space on silicon area, be

cause we still need complex multipliers at those nodes and the only difference is 

that the value of their WFs can be selected from three options rather than sixty four. 

Therefore by making WFs as precise as possible we compensate this 2 dB loss. One 

possible way to increase the number of WFs is to use higher number of fingers for 

making the width of transistors in layout design.

4.2.4 Mismatch Model for 8-FFT up to 256-FFT Simulations

In this section we discuss the sensitivity of the FFT for different mismatch variances 

of threshold voltage in transistor pairs. In the following simulations we examined 

two different models for mismatch. One is the FFT which has mismatch at each 

current mirror, shown as a solid line in all figure in this section, and the other one 

is our input referred mismatch model, which has its calculated equivalent variance 

defined in Eq. 3.25, adding at the output of ideal FFT, shown as a dashed line in all 

figure in this section. The mismatch of transistor pairs considered a normal random 

variable with zero mean and variance of 5% for strong inversion and a log-normal 

random variable for weak inversion based on the discussion in the previous chapter.

Normal Distributed Mismatch for Strong Inversion

In Fig. 4.8 we simulated an 8-FFT for different Vth variances. For instance the 

variation of 50(mF) is 10% of Vth = 500(mL). For this variation we can find the 

variance S^10% =  (0.1/3)2 =  1.1 • 10-3. Likewise for variations of 2.2% and 1%, 

the variance can be calculated as 5 ■ 10-5 and 1.1 ■ 10-5 respectively.

As it is clear in Fig. 4.8, The FFT is very sensitive to mismatch. On this plot 

as we increase the AV^ from 1% to 10%, the performance degrades severely. The 

performance loss due to 2.2% mismatch is about 3 dB at BER 10-3, and for 10% 

mismatch the BER curve is almost flat.

In Fig. 4.9 we simulated 8-FFT up to 64-FFT for Vth variation of 1%. And in 

Fig. 4.10 we simulated 64-FFT up to 256-FFT for Vth variation of 0.1%. Referring
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 T heo ry  Differential B PSK  D em odulation______

S N R  = Eb/NO (dB)

Figure 4.8: Mismatch simulation of 8-FFT for different threshold voltage variations, 10%, 
2.2%, and 1%.

to these two simulations, we can observe that after four stages in the butterfly struc

ture the impact of mismatch on FFT performance will cause an almost flat BER 

curve. This high degradation in performance depends on the number of previous 

stages in butterfly structure of FFT, explained on mismatch model section based on 

Eq. 3.25. Therefore as a next step it is worthwhile to change the butterfly structure 

to have a smaller number of stages. For example we can combine two successive 

stages in a butterfly structure having advantage of free addition by adding four cur

rents at each node in each stage rather than two currents, which we used in existing 

design.
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0 —  6 4 -F F T  with M ism atch 
0  -  Input R efe rred  M ism atch  M odel 6 4 -F F T

3 2 -F F T  with M ism atch 
Input R efe rred  M ism atch  M odel 3 2 -F F T  
1 6 -F F T  with M ism atch 
Input R efe rred  M ism atch  M odel 1 6 -F F T  
8 -F F T  with M ism atch 
Input R efe rred  M ism atch  M odel 8 -F F T  
M athem atical FFT  Sim ulation 
T heory  D ifferential B PSK  D em odulation

4  5 6
S N R  =  Eb/NO (dB)

Figure 4.9: Mismatch simulation of FFT, from 8 to 64-FFT with 1% mismatch.

- 0 —  2 5 6 -F F T  with M ism atch 
6  -  Input R efe rred  M ism atch M odel 2 5 6 -F F T  

- e —  1 2 8 -F F T  with M ism atch 
e -  Input R efe rred  M ism atch M odel 1 2 8 -F F T  

- 0 —  6 4 -F F T  with M ism atch 
a -  Input R efe rred  M ism atch M odel 6 4 -F F T  

- * —  M athem atical 2 5 6 -F F T  Sim ulation 
 T heo ry  Differential B P S K  D em odulation

4  5  6
S N R  =  Eb/NO (dB)

Figure 4.10: Mismatch simulation of FFT, from 64 to 256-FFT with 0.1% mismatch.
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Log-normal Distributed Mismatch for Weak Inversion

Fig. 4.11 demonstrates the performance of an 8-FFT operating in weak inversion 

for different values of mismatch. If we compare the results shown in this figure to 

those of Fig. 4.8, we find that the sensitivity of FFT in weak inversion is much more 

than its sensitivity in strong inversion as we explain it in previous chapter.

In Fig. 4.8, for strong inversion the BER curve for 10 % mismatch is about 10_1 

at SNR 10 dB, however for weak inversion in Fig. 4.11 the BER curve for 0.22 % 

mismatch is also about 10_1 at SNR 10 dB.

I
I
£

0 1 2 3 4 5 6 7 8 9  10
S N R  = Eb/N O  (dB )

Figure 4.11: Mismatch simulation of 8-FFT in weak inversion for different threshold volt
age variations, 0.22%, 0.17%, and 0.1%.

4.2.5 Radix-4 and Radix-16 Estimated Mismatch Model Simu
lations for 256-FFT

As we explained in previous chapter, to mitigate the impact of mismatch we can 

use higher radix structure to implement FFT with less number of stages since the

60

—  8 - F F T  w ith  L o g -n o rm a l M ism a tc h  0 .2 2 %
-  In p u t R e fe r re d  (0 .2 2 % ) L o g -n o rm a l M ism a tch  M odel 8 - F F T
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S N R  = Eb/NO (dB)

Figure 4.12: Mismatch simulation of radix-2 256-FFT for 0.1%, 0.2%, and 1%, mismatch.

-S—  2 5 6  D FT w ith 0 .2 %  M ism atch  
❖ -  2 5 6  D FT w ith 1%  M ism atch  
■Q—  R a d ix -1 6  2 5 6  F F T  w ith 0 .2 %  M ism atch  
© -  R a d ix -1 6  2 5 6  F F T  w ith 1 %  M ism atch  
-B—  R a d ix -4  2 5 6  F F T  w ith  0 .2 %  M ism atch  

R a d ix - 4  2 5 6  F F T  w ith  1%  M ism atch  

"* Id ea l 2 5 6  F F T  S im u la tion  
 T h e o ry  D ifferential B P S K  D em o d u la tio n

S N R  = Eb/NO (dB)

Figure 4.13: Mismatch simulation of 256-FFT for radix-4, radix-16 and DFT structure.
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number of stages directly increases the impact of mismatch due to the discussion 

on our input referred mismatch model.

We simulated the model for radix-4, radix-16 and DFT that we have calculated 

previously, shown on Table 3.7. The input referred mismatch variance of DFT is 

roughly two orders of magnitude less than that of a radix-2 256-FFT, therefore DFT 

structure for 256-FFT with 10 times in mismatch percentage give us about the same 

performance of the radix-2 structure for the 256-FFT. For example, if we compare 

the plots shown in Fig. 4.12 and Fig. 4.13, we will see that the BER performance of 

a radix-2 256-FFT with 0.1% mismatch, as shown in Fig. 4.12, is about the same as 

the BER performance of a DFT with 1% mismatch, as shown in Fig. 4.13.

The difference between the performance of radix-4, radix-16 and DFT struc

tures for the 256-FFT is shown in Fig. 4.13. As we can also observe from their 

input referred mismatch variance shown on Table 3.7, the radix-4 structure for the 

256-FFT gives us about 4 times the input referred mismatch variance compared to 

the radix-16 structure and the radix-16 structure for the 256-FFT also gives us about 

4 times the input referred mismatch variance compared to the DFT structure.

4.2.6 Decoder Simulations

We use a Hamming (16, l l ) 2 Turbo Product Code (TPC), which has written by an

other PhD candidate [33], to simulate our 256-FFT and see how the decoder affects 

the performance of the 256-FFT for different values of mismatch. In Fig. 4.14 we 

simulated the radix-2 256-FFT having 0.1%, 0.22%, and 1% mismatch using TPC 

Decoder for BPSK Demodulation. Comparing the performance of 256-FFT with

0.1% mismatch without using decoder, shown in Fig. 4.12, with the correspond

ing performance having decoder shown here, we will find that decoder effectively 

mitigates the mismatch loss. For instance the 4 dB loss at BER of 10-2 for 1% 

mismatch turns to half a dB loss at BER of 10~2 up to 10-4.

For higher percentage of mismatch the decoder does not have that much im

proving impact. To obtain a better performance one idea is to give the output of 

our input referred mismatch block to the decoder as an external source of noise. By 

doing this decoder includes this noise as a model of the new channel for finding the
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probability of total noise in each iteration.

If we use a DFT we obtain roughly the same performance shown but for 1%, 

2.2%, and 1% mismatch respectively.

10"

.-2

<3CC
£HI
CD

Ideal 256FFT 
■#—  0.1% Mismatch 256FFT 

0.22% Mismatch 256FFT 
-e—  1% Mismatch 256FFT 
 BPSK Lower Bound of TPC

0.5 2 2.5 I
SNR = Eb/NO (dB)

3.5 4.5

Figure 4.14: Radix-2 256-FFT performance using TPC Decoder for BPSK dimodulation

4.3 System Performance Matrix

We provide the system performance matrix shown in Table 4.1 to present design 

trade offs on the power consumption and the silicon area for different mismatch 

values and FFT types having a desirable BER performance. The idea is to increase 

the Vgs of transistors to decrease the normalizing factor in strong inversion, Constr, 

which is equal to v^ l y th • Increasing the Vgs will cost an extra power consumption 

since we have to increase the Vdd as well. Also by increasing the Vgs we need to 

increase the length of transistors, L, to maintain our desirable bias currents; hence 

extra silicon area is required as well.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



256-FFT Type Mismatch C  On3tr F1 im p V d d ( V ) P fa c to r <5fa c to r

Radix-2 10% - l - - -
Radix-4 10% - 3 - - -
Radix-16 10% 0.06 6 27.5 15.28 278

DFT 10% 0.12 12.5 14.1 7.83 69
Radix-2 5% - 1 - - -
Radix-4 5% 0.06 3 27.5 15.28 278

Radix-16 5% 0.12 6 14.1 7.83 69
DFT 5% 0.25 12.5 7.2 4.00 16

Radix-2 1% 0.1 1 16.8 9.33 100
Radix-4 1% 0.3 3 6.1 3.39 11
Radix-16 1% 0.6 6 3.4 1.89 2.6

DFT 1% 1.25 12.5 2.1 1.17 0.7

Table 4.1: The system performance matrix for having BER loss of 0.5 dB for different 
values of Vth mismatch. Constr is v 2̂ -vth» is the standard deviation improving factor 
for different FFT types, Pf actor is a factor representing an extra power consumption due to 
increasing Vdd from 1.8 (V), and Sfactor is a factor representing an extra Silicon area due 
to increasing L from minimum feature size, 0.18jim.

In Table 4.1 we assumed the 0.5 dB  loss for the TPC decoder BER performance. 

To satisfy this performance we find the Constr by comparing the input mismatch 

variances calculated in Table 3.7. Having a specific value of Constr, we calculate 

the Vgs. Then we calculate the Vdd and L, the length of transistors, to find the cost 

of power and area for having this performance for different FFT types. The Pfactor, 

is a factor representing an extra power consumption due to increasing Vdd from 

1.8 (V) for constant input bias currents, and the S factor is a factor representing an 

extra silicon area due to increasing L  from minimum feature size, 0.18ftm  to have 

such constant input bias currents.

For example, if we consider the 256-FFT type of radix-2 with 1% mismatch in 

Table 4.1, to have a BER performance loss about 0.5 dB  we want to find a required 

Constr. To do so, we look at the BER curve shown in Fig. 4.14, it is 0.5 dB  off but 

this curve is for 0.1% mismatch. Based on Eq. 3.16 we need a Constr equal to 0.1 

to compensate this factor 10. It leads to Vgs = 21 • Vth- If we assume Vth — 400 

(m V), Vgs turns to be 8.4 (V). Since we have two transistors on top off each-other 

at every Vdd to V̂ s =  0 path, shown in Fig. 3.12, and we like them to operate in the
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saturation region, the Vdd should be 2 • Vgs =  16.8 (V). To find S factor, we know 

that L is proportional to where K s_nom, the assumed value for Vqs
\ V g s —n o m ~ v t h )

for minimum feature size, is equal to 3 • Vth-

For other types of FFT illustrated in Table 4.1 we follow the same steps to find 

all different given parameters. The only thing we need to take into account is that to 

obtain these parameters for other types of FFT from the BER performance shown in 

Fig. 4.14, we need to find the proper coefficient due to their different input referred 

mismatch variances given in Table 3.7. For instance, if we consider the DFT with 

1% mismatch instead of the radix-2 256-FFT at which we just looked, we also need 

to calculate — 12.5 as an improving factor, Fimp, for the standard

deviation of the e, which can be added in Eq. 3.16 to obtain (1 -I- Conatr ■ • e).
v -T  imp

4.4 Chapter Conclusion

In this Chapter, we showed that for analog front end processing weak inversion 

operation is too sensitive to the mismatch of transistor pairs, so we do not want to 

operate in this region. To build an analog FFT we showed that the higher radix FFT 

structures outperform compared to the radix-2 FFT. The simplification of WFs is 

not beneficial considering the tradeoff between BER performance gain and design 

complexity. The output of our mathematical input referred mismatch model for the 

FFT matches the simulated FFT output, which has mismatch at each current mirror. 

Hence it is a useful tool to analyze the analog FFT processor.
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Chapter 5 

Conclusions

The idea of designing analog decoders recently arose out of work on capacity ap

proaching codes such as Turbo codes and LDPC codes. Therefore the idea of an 

entire analog receiver including the decoder and all other interfaces on a single chip 

has been studied to replace the traditional digital design. Although digital proces

sors are very fast and accurate, they are very power hungry and need a large amount 

of silicon. The parallel nature of analog design in iterative algorithms makes it 

more suitable for decoder designs than digital circuits, without excessive power 

consumption of the digital circuits due to high frequency switching and with ac

ceptable speed due to parallel structures. The fundamental goal of our project is 

to move towards system-level integration of analog decoders with other basic com

munications receiver components, while maintaining the power consumption ad

vantages of analog decoders to make them suitable for use with energy scavenging 

methods.

5.1 Contributions

We designed and simulated an analog 256-FFT as an input interface to the analog 

decoder in an analog receiver. Our design has considered both system and circuit 

issues. At the system level we chose an OFDM communication transceiver model 

using differential BPSK modulation. At the circuit level we modeled the basic 

blocks of analog FFT, current mirrors, and explained how we can use them to build 

an analog FFT. We considered different circuit issues like choosing bias currents
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to define the operational region of transistors, strong or weak inversion, and we 

proposed the idea to have the same input and output current range to save on power 

consumption, and we examined the performance of a simplified FFT by having 

different values for WFs to simplify the circuit.

Considering the mismatch of each transistor pair inside the analog FFT as a 

Gaussian random variable, we modeled an input referred mismatch source of noise 

for an entire FFT which is also a Gaussian random variable with a calculated vari

ance from the mismatch variance. This model is very simple and fairly accurate 

based on the simulation results.

We simulated our analog 256-FFT using our proposed communication system. 

We analyzed the BER performance of the system considering different circuit issues 

like different bias currents, having current scaling at each FFT stage to obtain the 

same input/output current range, simplification of weighting factors inside the FFT 

structure, and different mismatch values for each transistor pair inside the analog 

FFT.

We examined our input referred mismatch model using two different simula

tions: first we used our analog 256-FFT' which has mismatch at each transistor pair, 

and in the second simulation we used an analog FFT without mismatch and we 

added the output of our input referred mismatch model to the output of the analog 

FFT; both BER simulations matched.

We also examined our analog FFT using a TPC decoder to find how the decoder 

mitigates the effect of mismatch on BER performance for our analog FFT. The 

decoder decreased the performance loss due to the circuit mismatch. Therefore the 

analog 256-FFT could be used as an input interface for our analog decoder to satisfy 

the low power consumption constraint.

Simulation Conclusions

At the current mirror model and current scaling simulation sections for different 

bias currents, we discussed how we can compensate the offset due to the specific 

bias current by slightly changing the (W /L) of the output transistors of each pair. 

This provides us a better BER performance, however it means that the 256-FFT is
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very sensitive to minor changes of the physical parameters of transistors.

The simplification of WFs in the analog FFT is not remarkably beneficial, as 

discussed before, compared to its cost of BER performance loss, so we try to create 

fairly accurate WFs to minimize this loss.

Mismatch simulations shows that the analog FFT operating in weak inversion 

has a mismatch variance about two orders of magnitude larger than that of analog 

FFT working in strong inversion. Therefore analog FFT operating in weak inversion 

is more sensitive to mismatch compared to that of strong inversion operation.

The radix-2 analog 256-FFT, the proposed FFT butterfly structure in this re

search, is highly sensitive to the mismatch of transistor pairs, due to the high num

ber of stages in its butterfly structure, 8 stages. We calculated the input referred 

mismatch model for higher radix FFT structures. We showed that for a DFT im

plementation of the 256-FFT, which has only 1 stage, we achieve about two order 

of magnitude less equivalent variance of our model compared to that of the radix-2 

analog 256-FFT. Also the number of current mirrors in DPT is less than that of the 

other different radix 256-FFT structures. Hence the DFT in analog design is the 

best option compared to the other FFT structures.

The TPC decoder has an effective improvement on the BER performance of 

the analog 256-FFT. The BER performance of a radix-2 analog 256-FFT with mis

match of 0.1%, which is ±0.5(m F) tolerance in Vth — 500(mF), is only half a dB 

off compared to an analog 256-FFT without mismatch. If we use a radix-16 FFT 

structure instead, we obtain the same performance but for mismatch of 1%, which 

is ± 5 (m 7) tolerance in Vth — 500(mV).

5.2 Future Work

There are several potential research directions to continue this thesis. The main 

directions of the future work include:

1. Input Referred Mismatch Model as Extra Noise for Decoder Use

To estimate the final value of the received bits, the decoder uses the channel noise 

PDF and performs several iterations to obtain the final probability of being 1 or
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-1 based on the LLR values. By considering our input referred mismatch model as 

extra channel noise and estimating the PDF of this additive noise at the output of the 

ideal FFT, we can modify the channel noise, AWGN, PDF used inside the decoder 

to provide the decoder a better estimation of our new channel noise to improve the 

BER performance.

2. Higher Radix FFT Design

Based on the outcome of this thesis, the radix-2 FFT butterfly structure is highly 

sensitive to the mismatch of transistor pairs due to the large number of sub-stages 

used in this structure. Higher radix FFTs, radix-4 , radix-16 and DFT, show a better 

BER performance for different mismatch variances. A new circuit implementation 

of an analog FFT based on a higher radix FFT structure will be the next step.

3. Optimum Bias Current for Noise versus Speed Analysis

To operate at high frequency, we need to increase the bias currents. The equivalent 

noise current however gets increased in higher frequencies. Also at a very low 

amount of bias currents (p-Amp) circuit provides more noise. Therefore finding the 

optimum bias currents to minimize the equivalent noise current versus frequency is 

another research direction for this thesis.

4. Fabrication and Test

We have already fabricated a test chip of the analog FFT using 180-nm CMOS 

technology in collaboration with another M.Sc. candidate. Testing of this chip is 

the next step.

The intention is to design, fabricate, and test a complete baseband analog re

ceiver in CMOS technology to verify the design.
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