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Abstract

Recent years have witnessed a growth in the deployment of IoT devices in

homes and workplaces. The number of IoT devices is projected to surpass

tens of billions in the near future. This rapid growth can be credited to

useful insights and convenience offered by IoT services and applications. A

typical IoT device is equipped with one or several sensors which are capable

of collecting high-fidelity and high-sample-rate data from the environment,

often without notifying the user. This ubiquitous and inconspicuous data

collection threatens user privacy as the collected data may contain private or

sensitive information which can be extracted by malicious applications through

unsolicited inferences. This thesis investigates potential solutions based on

generative machine learning models to limit the accuracy of privacy-intrusive

inferences with an imperceptible impact on the accuracy of useful and desired

inferences.

We begin this thesis by surveying different approaches to privacy-preserving

data collection and processing. As the first contribution of this thesis, we

investigate the ability of variational autoencoder (VAE) models to learn rep-

resentations that enable hiding the private information embedded in sensor

data. Specifically, we modify the loss function of standard and conditional

VAE models to obtain two different anonymization techniques. These tech-

niques perform deterministic and probabilistic manipulations in the learned

latent space of autoencoders. These manipulations effectively support data

anonymization when the corresponding latent variable is used to reconstruct
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the original data.

To evaluate our methods, we use two publicly available Human Activ-

ity Recognition (HAR) datasets, namely the MobiAct and the MotionSense

datasets. These datasets contain both public and private information about

users which can be detected using inference models (desired and sensitive in-

ferences, respectively). Our goal is to use the proposed techniques to conceal

private information while maintaining the accuracy of the desired inference as

much as possible.

We evaluate the efficacy of each technique in concealing private informa-

tion through ablation studies and comparison with multiple baseline meth-

ods, including recent techniques proposed in the literature. We evaluate our

techniques by treating the activity attribute in both datasets as public infor-

mation, and the gender and weight of subjects as private information. We

show that state-of-the-art anonymization techniques are vulnerable to a user

re-identification attack, while our techniques are less susceptible to this attack

thanks to the proposed non-deterministic manipulations. In comparison to

the best autoencoder-based baseline method, we achieve 13.48% lower privacy

loss on average in the two HAR datasets while getting a comparable activity

inference accuracy. This indicates that a better trade-off between utility and

privacy is achieved by our techniques. Moreover, we discuss how users can

navigate the utility-privacy trade-off (according to their own needs and val-

ues) by tweaking the weights in the modified loss functions of the generative

models. We show that one of the proposed anonymization techniques can si-

multaneously conceal multiple private attributes with only a small decrease in

the anonymization performance.
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Preface

This thesis is original work by Omid Hajihassani. Two chapters are based on

publications co-authored by the author of this thesis. In particular, Chapter 3

is inspired by the paper published in the SenSys-ML workshop [22]. This paper

presents the re-identification attack and proposes an anonymization technique

based on a VAE. More recent results from [23] are added to Chapter 3. The

author of this thesis was responsible for designing the algorithms, training the

VAE models, analyzing the results, and producing figures.

Chapter 4 discusses the original work accepted in 2021 IoTDI conference.

This work discusses supervised latent representation learning and manipula-

tion using conditional VAEs. This article discusses different baseline methods

for better comparison with the CVAE technique. The author of this thesis

was responsible for the design and evaluation of the algorithms, implementing

baseline methods and writing the paper.
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Chapter 1

Introduction

1.1 IoT and Pervasive Sensing Technologies

In recent years, there is an uptake in the use of Internet of Things (IoT)-

enabled devices and services in homes and work environments. Their increas-

ing popularity can be attributed to the valuable insights they offer. The IoT

devices integrate various sensors and actuators enabling them to collect in-

formation about their surrounding environment and act on this information

subsequently. We use the term “IoT-enabled technologies” to refer to systems

and services that, in one way or another, use the backbone of the Internet to

deliver insights, services, and control to home or enterprise users.

Nowadays, IoT devices span a wide range of consumer electronics, includ-

ing virtual assistants (e.g., Alexa, Siri, or Google Home), smart thermostats,

home security devices, and health monitoring devices. These devices can dif-

fer in shape, size, and the interface through which consumers interact with

them. Nevertheless, they come with one or several sensors for monitoring the

environment. The sensor data can be processed locally (on-device), be sent

to third-party servers, or processed in the edge and cloud in a cooperative

manner. The result of processing this time-series data is then returned to the

user or stored for further analysis. This large-scale collection and processing

of sensor data, which in many cases contains patterns that reveal consumers’

private information, poses a privacy risk to IoT users.

With inconspicuous data collection, private information can be collected

together with public and useful information. This poses a grave privacy threat
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to users, which can cause users to become wary of IoT-enabled technologies,

and in turn, hinder the development and widespread use of numerous IoT

devices. Consider a household that intends to use a smart thermostat to

control their HVAC system. Despite the potential cost and energy saving

benefits [27] the smart thermostat offers, users could abstain from installing

it as they worry it may be capable of detecting the occupancy state of their

households. The subsequent leak of occupancy information to malign parties

can pose a significant privacy risk and even lead to thefts.

There are multiple other examples of the privacy risks associated with IoT

devices. In a different context, IoT devices can be used to violate privacy of

employees. An example of this is when a company utilizes sensor data and

analytics to detect slackers [31]. This can indeed be beneficial to the company

and its management, but can be regarded privacy-intrusive by the employees

if done without their prior knowledge and consent.

It has been further shown that the collected data from accelerometer and

gyroscope sensors in smartphones and smartwatches, apart from useful insights

like activity tracking, can be used to infer the consumers’ gender, age, weight,

height, and race, which are considered private information [42], [43]. These

examples show that their proliferation could endanger users’ privacy despite

numerous benefits of IoT services.

Researchers show that a large fraction of IoT users are unaware of private

inferences that could be performed on their data collected by non-audio/visual

devices which are part of their smart home solutions [71]. Consumers, by and

large, prefer the provided benefits over the associated privacy risks with their

IoT devices. In a similar study [44], it is stated that 10% of smart assistant

users’ recordings were unintentional and not user-invoked, and around 5% of

these were from guests. These examples emphasize the need for consumer

awareness about the privacy risks associated with these devices and further

development of privacy-preserving data analytic techniques that inhibit intru-

sive inferences [66].
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1.2 Trade-off between Data Utility and Pri-

vacy

We model the relationship between private information leakage and usefulness

of the collected data by the utility-privacy trade-off. All anonymization solu-

tions address this trade-off between the data utility and privacy loss. In the

collected time series sensor data, the private and public information cannot

be ideally disentangled and attributed to specific, identifiable data sections.

Hence, any attempt to hide, remove, or sanitize private information from col-

lected data eventually results in degraded data utility.

In particular, solutions that aim to sanitize the original data through ran-

dom perturbations, masking, and down-sampling typically lead to significant

reduction of data utility. Both the amount of this degradation and the sanitiza-

tion process must be taken into account while studying different anonymization

solutions. The most effective anonymization solution is the one that removes

the greatest amount of private information from the data while keeping the

utility of the anonymized data as high as possible.

1.3 Existing Solutions and their Shortcomings

Various techniques and solutions have been proposed in different contexts that

aim to sanitize private information from the collected sensor data while re-

specting the aforementioned utility-privacy trade-off. These solutions range

from the addition of noise and perturbations to data [14], [58] to using gener-

ative models to learn and manipulate private attributes of the data [42]. The

solutions that are most suitable for the anonymization of big, public datasets

include k-anonymization [58] and differential privacy [13]. They provide plau-

sible deniability to end-users and are best suited for anonymizing users’ iden-

tities in public datasets. Through k-anonymization, it is possible to guarantee

that every entry in the dataset resembles at least k-1 other entries in that

dataset. Hence, the possibility of pinpointing any single end-user given each

data entry is greatly reduced. k-anonymity shows to be useful in de-ifentifying
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the dataset, even in cases where the attacker incorporates prior knowledge.

These techniques, including k-anonymity, are not suitable as on-device so-

lutions deployed at the edge. Moreover, it is our assumption that the cloud

servers that collect and then anonymize the datasets cannot be trusted, and

it would compromise users’ privacy if we send their data over the Internet to

cloud servers. Due to these reasons, more secure on-device techniques are re-

quired to perform anonymization at the edge, which provide better anonymiza-

tion performance compared to techniques such as k-anonymity.

On-device anonymization solutions can be widely categorized into operat-

ing system and hardware level solutions and generative models. The former is

a category of solutions that include specialized techniques tailored to the hard-

ware and software of edge devices to provide privacy to users and avoid data

leakages. These solutions answer different privacy threats such as safeguarding

against the membership inference attacks (MIA) [53] on deep learning models

and user data leakages. If successfully performed, the MIA attack is shown to

detect whether a given data has been part of the training set of a white-box or

black-box neural network model. Authors from [46] propose using the trusted

execution environments (TEE) in the ARM processor used in edge devices.

This technique provides a resilient approach to executing (training and infer-

ence) of a neural network model. By showing that MIA accuracy is attributed

to the few final layers of a neural network, the DarkNeTZ framework executes

the last layers of each model in the TEE section of the processor to protect

against the MIA technique.

There are multiple hardware and operating system level solutions that

avoid the leakage of users’ private information through unauthorized memory

accesses or third-party applications with access to data. If third-party applica-

tions running on the edge device transmit users’ data to cloud servers without

the users’ knowledge, it will endanger users’ privacy by sharing their private

information. Authors from [16] propose taint tracking combined with TEE to

control applications’ user data accesses. In this technique, by treating the sen-

sors on edge devices as the source and the network interface card as the sink,

taint-tracked data cannot move from any source to a sink without first going
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through a sanitization module. In the sanitization module, the FlowFence

framework ensures to sanitize the sensitive parts of information before send-

ing the data to the sink. Moreover, through sandboxed execution and memory

access abstraction of sensitive data, FlowFence helps prevent direct access to

users’ sensitive data by third-party applications.

A common shortcoming of these hardware and operating system level so-

lutions, is that even when techniques such as FlowFence are used, there is no

guarantee that on-device sensitive inferences are not prevented. So, on-device

data anonymization techniques are required to stop sensitive inferences. In this

thesis, we propose using generative models to manipulate private attributes of

the original data by first learning a latent representation of the data and then

manipulating it. Data generative frameworks such as Generative Adversarial

Network (GAN) [20], Autoencoder (AE), Variational Autoencoder (VAE) [29],

or Conditional Variational Autoencoder (CVAE) [30] techniques have been re-

cently successfully applied to data synthesis in different fields. GANs have

been applied to image inpainting with contextual attention [68], medical im-

age synthesis [48], or even creative tasks such as photo cartoonization [7].

Variational autoencoders have also been used for tasks where learning a rep-

resentation of the input data is required. Compared to AEs, VAEs can help

learn salient features that capture and mimic the true posterior distribution

of the data.

Apart from using generative models in data synthesis such as synthesis of

human motion activity [72] and medical images [48] that can help solve the lack

of data in many research communities. Multiple researchers have explored the

use of generative models to manipulate features before reconstructing the data.

GAN and VAE frameworks can alter the features of their input images to make

subtle changes in their reconstructed data. For example, authors from [34]

show how it is possible to change and morph one input image subject’s gender

from male to female and vice versa.

In data anonymization, high data utility loss is not tolerable. Hence, tech-

niques that are proposed need to preserve the intended data utility. Authors

from [69] train an autoencoder that learns to inject noise and perturbations
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into the data to diminish the sensitive information inference accuracy on the

anonymized data. This proves to be effective on two Human Activity Recogni-

tion (HAR) datasets in hiding the subjects ID, gender, height, and age. Like

this work, instead of addition of noise and perturbations, authors from [42]

use adversarial training for autoencoders to diminish the accuracy of private

inference models. Authors evaluate their results on the MotionSense HAR

dataset, where the Anonymization Autoencoder (AAE) technique essentially

removes the gender identity of the users from the sensor readings.

In this thesis, instead of using perturbations or fixed adversarial models,

we propose manipulations in the latent representations learned by a CVAE or

a VAE to protect user data privacy. We discuss two manipulation techniques

that change the private attributes of the reconstructed data such that the

accuracy of privacy-intrusive inferences is degraded.

1.4 Research Questions and Contributions

This thesis builds on the previously proposed autoencoder-based generative

models which despite being able to sanitize the reconstructed data, cannot

withstand an attack referred to as the re-identification attack [22]. We hy-

pothesize that this is due to the deterministic nature of the operations and

the fixed adversarial models used in the previous anonymization techniques.

By exploiting this deterministic nature, the adversary can learn to re-identify

private attributes of the anonymized data.

We propose two different frameworks, one based on VAE in Chapter 3,

and another based on CVAE in Chapter 4. We evaluate these two anonymiza-

tion frameworks on two publicly available HAR datasets including the Mo-

tionSense [42] and MobiAct [60] datasets. We study multiple baselines that

use mean manipulation with VAE and conditional variable modification with

CVEA. The contributions of this work are as follows:

• We evaluate the ability of conditional variable modification with CVEA

and mean manipulation with VAE in obscuring private attributes in the

anonymized data. We further compare them with multiple baselines by
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performing experiments on two HAR datasets, namely MotionSense [42]

and MobiAct [60].

• We present ObscureNet, our technique based on the CVAE framework,

and show that the anonymization performed by ObscureNet outperforms

all the other baselines and explain how the CVAE loss function can be

modified to anonymize multiple private attributes instead of a single

private attribute.

• We show that by tuning weight factors in the loss function of our anonymiza-

tion methods, it is possible to achieve different trade-offs between the

utility and privacy.

Below, we list four different research questions which we aim to answer in

this thesis.

RQ 1. How successful are the two anonymization techniques con-

sidering data utility and privacy?

RQ 2. What results do these techniques yield in terms of anonymiza-

tion performance and vulnerability to the re-identification attack

when using non-deterministic manipulations?

RQ 3. Can VAE and CVAE-based techniques be used to trade pri-

vacy for data utility?

RQ 4. Can our manipulation techniques be used to anonymize

multiple private attributes all at once?

We discuss possible solutions to these research questions in Chapter 6.

1.5 Roadmap

This thesis is organized as follows. In Chapter 2, we discuss the related work

and the background knowledge of our work. Chapter 3 proposes the mean
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manipulation VAE-based anonymization framework. It introduces the mod-

ification of the VAE’s loss function to include a classification loss that helps

learn manipulation-friendly latent representations. Chapter 4 discusses our

CVAE-based anonymization framework dubbed as ObscureNet. Chapter 5

provides our evaluation results and the details of the datasets used in our

evaluation. We further outline different baselines and present our ablation

studies. Chapter 6 concludes this work and discusses answers to our proposed

research questions.
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Chapter 2

Background and Related Work

In this chapter, we survey different techniques that are used to preserve user

privacy in IoT applications. These techniques range from primitive meth-

ods such as direct, physical disruption of the data collection process to ma-

chine learning models used for data anonymization. The following gives an

overview and a taxonomy of the related literature on anonymization and

privacy-preserving techniques.

As this thesis aims to address on-device IoT privacy, in next section we

mostly delve into the methods proposed for on-device data anonymization,

and we forgo a detailed discussion about cloud-based privacy solutions. Here,

we assume users do not trust cloud servers and third-party service providers.

2.1 Disrupting Physical Data Collection

Perhaps the most primitive and yet effective solution for addressing the IoT

data privacy issue is the direct and physical disruption of the data collec-

tion process in sensor systems and IoT devices. One such privacy-preserving

measure is the incorporation of a physical mute button on Google Nest Mini

devices, which helps with promoting user privacy by enabling users to pause

or disable data collection [18]. This proves to be 100% effective in cutting off

the sensors’ access to the environment and user data.

In [57], authors propose MicShield, a technique and a device for jamming

microphones of smart voice assistants (VA). MicShield prevents the private

speech of users from reaching VAs. MicShield generates jamming signals to
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shift the speech in audible range to inaudible speech. Another appealing ex-

ample of physical disruption of the data collection process is proposed by [74].

To disrupt visual data collection from restricted areas and sights, a smart LED

is used in [74] to generate flickering patterns. This way, the photograph of the

scene becomes noisy and not usable. However, users must have control over

the sensor or have the ability to meddle with the environment to accomplish

this, hence, interfering with the data collection process is not always possible.

Furthermore, most related work assumes that sensor data is already collected.

Despite being effective, such measures fail to become widespread, adaptable

solutions for two reasons. One reason is that when the user decides to start

using the device again to its fullest capacity, private data can be collected and

processed. Moreover, adopting such solutions at a large scale is sometimes

infeasible due to the lack of access to the IoT sensors.

2.2 Low-level Anonymization Techniques

This category of anonymization techniques includes fine-grained access-control

mechanisms and isolated execution environments [35], [46], [49], [54], privacy-

preserving and secure communication protocols [4], [15], [56], blockchain-based

privacy schemes [6], [11], [52], federated learning techniques [33], [40], and

hardware design choices [59], [64].

2.2.1 Access-control Mechanisms

These solutions aim to control and manage data flow between applications

running on an edge device or over the Internet. The idea is to provide fine-

grained and user-friendly access control mechanisms so that users have control

over their collected data and determine what happens to it. These solutions

combine different techniques, including operating system-level data abstrac-

tion, sandbox execution of third-party code, and taint tracking, to minimize

user privacy loss.

Authors in [16] promote user privacy through sandboxed execution of devel-

opers’ code in quarantined execution modules, and taint-tracked data handles.
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To be specific taint-tracked opaque data handles help prevent applications from

accessing sensitive data and sharing it via the network interface. This frame-

work is referred to as FlowFence. This way, by applying taint to different

parts of the collected data, a sink in this scheme (third-party application or

network interface card) cannot read the raw, tainted sensor data without it

being, first, sanitized through a sanitization module. The sanitization modules

call on users’ access preferences to check which part of the data is authorized

to be sent to a sink. After the omission of specific sensitive information in the

data, the data is sent to the sink. In [54], authors propose a privacy abstrac-

tion technique to manage access tussles to sensor data at the operating system

level. Moreover, the authors suggest a mechanism for managing sensor data

access tussles by leveraging a specific functionality and privacy trade-off.

The FlowFence framework in [16] accommodates indirect access to private

and sensitive information in the data through the use of quarantined execution

environments. Developers address the data stored in the secure memory of IoT

devices by using opaque data handles that do not enclose data attributes to

developers. In the execution phase, the opaque handles are resolved by the

FlowFence framework in a secure execution environment, and real data values

are kept from being exposed to third-party applications. Another technique

that uses taint tracking is TaintEraser [73]. The TaintEraser tool provides

an efficient and applicable solution to prevent information leakage through

data tainting. The authors implement dynamic taint analysis techniques that

enable the study of information flow from applications to the network and

the local file system. By providing users with simple privacy policies, they

can specify sensitive parts of the input data for the TaintEraser tool to replace

them with random noise when data from these sensitive inputs is being written

to the local file system or is being sent over the network.

Apart from FlowFence that proposes taint tracking for preventing sensitive

information leakage in IoT devices, authors in [5] propose SAINT, a tool that

provides static taint analysis for IoT use cases. In contrast to FlowFence,

SAINT is proposed as the first approach that detects the flow of sensitive

information between the IoT applications. SAINT proves to be able to identify
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sources and sinks in IoT applications by translating IoT applications source

code into an Intermediate Representation (IR) and performing static analysis

on the retrieved IR of each application.

Although all these solutions are robust and useful to prevent information

leakage from sensitive information sources to third-party destinations, they

fail to prevent unwanted and private inferences on the user data which are

performed by third-party applications. Third-party applications can still run

privacy-intrusive inferences on users’ data and infringe the user privacy. Our

goal is to prevent this by proposing generative model-based solutions to ob-

scure private information in the collected sensor data before third-party appli-

cations process it. Our approach can be combined with taint tracking solutions

to provide a comprehensive solution for preserving privacy.

2.2.2 Trusted Execution Environments

Multiple privacy-preserving techniques have adopted Trusted Execution Envi-

ronments (TEE). As it is the case with the FlowFence framework [16], sand-

boxed execution and TEE are essential tools for providing privacy-preserving

data analytics to users. TEE, in contrast to Rich Execution Environments

(REE), provides an abstraction of operating system and hardware resources

that are kept separate from the rest of the applications and resources running

on a device. By providing secure registers, memory segments, and OS data

structures, TEEs enable safe and secure execution of sensitive code. Intel’s

Software Guard eXtensions (SGX) [45] supports private and secure enclaved

software execution of code, for example, cloud-based execution of secure DNN

models [21], [24].

Given that most IoT devices use ARM-based CPU platforms, for TEE.

We consider ARM TrustZone, which is an ARM solution to providing secure

execution environments for mobile and edge devices. Each System-on-Chip

(SoC) that comes enabled with TrustZone provides hardware resources for

both normal and secure execution of programs. Similar to the concept of TEE,

applications running in the trusted and secure zone are provided with secure

resources. Recently, numerous IoT applications have benefited from ARM
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TrustZone including StreamBox-TZ [50], TruZ-Droid [67], and SeCloak [35].

StreamBox-TZ [50] (SBT) is a stream analytics engine designed for IoT devices

which provides user privacy. Moreover, TruZ-Droid [67] integrates TrustZone

with the Android operating system to protect users’ information from being

sent to third-party servers and ultimately misused.

SeCloak provides a solution for on-off control of smartphone peripherals

using ARM TrustZone and TEE [35]. By using TEE, SeCloak provides security

and privacy even when the system is compromised. This framework uses a

secure kernel alongside the operating system (Android or Linux), diminishing

the need for code changes in the operating system. SeCloak provides reliable

control of peripherals without inflicting costly performance overheads on the

device.

The authors in DarkneTZ [46] propose a framework that utilizes the TEE

resources provided by ARM TrustZone to protect the IoT models data privacy.

Concretely, DarkneTZ is designed and proposed to ward of Membership Infer-

ence Attacks (MIA) on the trained inference models and DNNs downloaded

from cloud servers for on-edge inferences. In MIA, which has white-box and

black-box variants, the attacker can, to a reasonable extent, infer whether a

given data point was part of the original training set or not [53]. Given the

limited resources of TEEs and the increasing size of modern DNNs, not all

layers of the model can be executed in the TEE of the edge device. Hence, the

main contribution of DarkneTZ is studying how, by executing only the final

layers of the DNN models in the TEE, the MIA’s precision can be diminished.

It is shown that the final layers of a neural network are more sensitive

to the MIA. Hence, the precision of the MIA can be significantly reduced by

executing the few final layers of a DNN model in the trusted zone. This way less

execution overhead is incurred on the system. All in all, Trusted Execution

Environments enhance the privacy and security of data in IoT devices to a

great extent. However, TEE cannot stop local or cloud-based sensitive and

privacy-intrusive inferences into the users’ data, as was the case with access

control mechanisms. This is because malicious applications can still perform

privacy-intrusive inferences on users’ data. This calls for the design of better
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techniques that protect user data privacy against sensitive inferences.

2.2.3 Privacy-preserving Protocols

In [4], an efficient privacy-preserving querying protocol is proposed for sensor

networks, assuming that client queries are processed by servers controlled by

multiple mutually distrusting parties. Client queries reveal both an array

of specific sensors of interest to each client and the temporal relationships

between subsequent queries. The privacy risks will dissuade organizations from

sharing resources to build large-scale shared sensor networks. To address these

risks, the authors propose the SPYC protocol [4], which guarantees privacy

protection if query processing servers do not cooperate to attack the clients’

privacy. They also discuss possible solutions when servers cooperate to infringe

the privacy of clients.

The SPYC protocol has been proposed for large-scale sensor networks and

processing of these queries. In [56], a new cost-effective, secure, and privacy-

preserving protocol for Smart Home Systems (SHSs) is proposed. By eaves-

dropping on the network’s communication an attacker can infer who the SHS

user is and when the devices are used. This is done by analyzing the frequency

and type of communication from SHS IoT devices to their central controller.

This fact can lead to grave security and privacy implications that might cause

break-ins or life threatening situations. The authors in [56] outline two of the

main challenges in designing SHS communication schemes namely privacy and

efficiency concerns. To ensure users’ privacy and security, the authors pro-

pose chaos-based cryptography and one-time key generation using well-known

chaotic systems and Message Authentication Codes (MACs) for encrypted and

secure data transmission.

The backbone of generic SHSs is comprised of Radio Frequency Identifica-

tion (RFID) tags, sensors, central controllers, and monitoring interfaces [56].

The authors in [15] propose a secure and private RFID communication pro-

tocol and study the security implications of using RFID tags in the medical

context. Unlike many others, the proposed protocol provides tag anonymity,

which is a step toward patient privacy and is shown to be in line with medi-
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cal and hospital security standards. This protocol is shown to be resistant to

typical RFID attacks, including the Replay, Synchronization, and DoS attacks.

Although communication security of IoT devices in SHSs and sensor net-

works is a critical and indispensable part of any IoT security scheme, secure

communication protocols cannot solely address privacy concerns given data

pervasive and inconspicuous data collection by IoT devices in our living envi-

ronments.

2.3 Blockchain-based IoT privacy

Several research teams are currently investigating blockchain (BC) technology

and its applications to IoT security and privacy [6], [10], [11], [52]. Blockchain

offers three major benefits [52]. One advantage of using BC as the framework

for designing SHS and other IoT networks is that multiple miners in the net-

work verify the generated sensor data’s authenticity before adding the data

record into the ledger. This decentralized verification and authentication of

sensor readings before adding them to the dataset helps the IoT system to

ward off several security attacks, including data manipulation attacks from

malicious actors [52].

Another security and privacy contribution of BC to IoT is that the accepted

and added data to the ledger cannot be tampered with and changed. The third

and another essential attribute of BC augmented IoT networks is the absence

of central authority and storage servers [52]. In this scheme, malicious and

adversary nodes can be detected and identified by miners and then terminated.

The authors in [12] propose a BC-based smart home architecture by propos-

ing modifications to the Bitcoin cryptocurrency for security and privacy of IoT

devices. Although the efficacy of the proposed BC-based technique is exem-

plified in the scenario of smart home IoT devices, the authors claim that

their proposed methodology is application-agnostic and can adapt to new IoT

schemes and use cases. The main contribution of this technique is in the con-

version of the conventional Bitcoin BC to a lightweight instantiation, which is

suitable for resource-constrained IoT devices. The authors eliminate the need
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for proof of work when submission is happening to the local Immutable Ledger

(IL). This reduces the overhead and computation demand on the edge devices

and sensors. The authors introduce the smart home tier, which consists of

all local devices or overlay nodes that generate transactions with the locally

managed IL. The IL is kept in the smart home manager or SHM, which can be

a resourceful mobile device or even the homeowner’s personal computer. The

SHM then uses the policy header in the local IL defined by the homeowner to

authorize the received transactions.

The authors in [52] point out the fact that using symmetric key encryption

and decryption schemes such as AES would lead to privacy and confidentiality

issues concerning the data shared by the IoT networks as miners can have

access to the collected data. The authors propose using attribute-based en-

cryption (ABE) to encrypt the data shared in the BC-enabled IoT network.

In the proposed attribute-based encryption scheme, the data owner is referred

to as the cluster head, which uses ABE to anonymize the data received from

sensors. The cluster head aggregates data and encrypts the data using the

attribute-based encryption scheme by defining a set of attributes so that the

miners can see and verify the transactions. As an example, the cluster head

can define attributes such as “DOCTORS” or “NURSES” so that only miners

having the “DOCTORS” or “NURSES” attribute can decrypt, verify, and use

the appended data in the blockchain.

These proposed blockchain-based IoT architectures are suitable for secure

and confidential storage, communication, and decentralized verification of sen-

sor data generated by distributed sensors. However, just like the privacy-

preserving techniques discussed earlier, the proposed blockchain-based IoT

techniques fail to address privacy-intrusive inferences made by third-party ap-

plications and servers on the user data.

2.4 Hybrid and Federated Learning

The training process of inference models in the IoT environment and the ex-

ecution of the trained models on edge devices with limited resources call on
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different computing paradigms to make sure user privacy is preserved with a

reasonable computation overhead. Different techniques are proposed to ad-

dress these issues by discussing different computing paradigms such as cooper-

ative edge and cloud computation [49] and federated learning techniques [33].

In the latter, the possibility of distributed or decentralized training of infer-

ence models is provided while diminishing the need for publicly available data.

Works such as [40], [70] combine the idea of federated learning with BC tech-

nologies to provide convenient, secure, attack-resilient, and privacy-preserving

decentralized model training processes.

Specifically, in [70], the authors propose a technique using federated learn-

ing and BC technology to eliminate the need for central data and model ag-

gregators by replacing them with trusted miners in BC. In this scheme, the

consumer uses resourceful local edge devices such as mobile phones or mobile

edge computing (MEC) servers to train an initial model. This initial model

is signed and sent to the blockchain. This way, it can easily protect the pro-

cess against malicious consumers as all the transactions are traceable to the

malicious party. To provide data privacy and further protection for users, the

authors in [70] enforce differential privacy through the addition of noise to the

consumers’ data before the local training process for the initial model begins.

The improvised data perturbation is performed through a normalization step

based on [28].

In the domain of Industrial Internet of Things (IIoT), the concept of pri-

vate multi-party data sharing has drawn a lot of attention [33]. The goal of

multi-party data sharing is to address storage and computation constraints by

sharing data from multiple distributed data owners. In [33], the authors note

that most of the published work in this domain endanger consumers’ privacy

by using central data curators. Instead, in [33], permissioned blockchain, which

is a differentially private multi-party data model sharing method, is proposed

that shares the models learned by federated learning instead of raw data. Es-

sentially, the proposed method turns the data-sharing problem into a machine

learning one. This is done by using federated learning techniques integrated

with differential privacy to protect privacy of the collected data. Moreover, the
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need for a central data curator is eliminated by using blockchain technology’s

collaborative architecture.

In addition to distributed model training and data sharing practices, dis-

tributed computing paradigms can be used for inference and model execution

on both the edge devices and servers. With the growing size and compu-

tational demand of inference models that are running on edge devices, the

authors in [49] propose a methodology on how to safely and securely divide

the computation process between edge devices and servers while ensuring user

data privacy. By fine-tuning the trained models with their suggested Siamese

architecture, this technique preserves users’ data privacy while achieving a rea-

sonable inference accuracy. Authors in [65], propose using an encoder-decoder

architecture in compressing the data sent from the edge to the cloud. Deep-

COD uses an encoder-decoder architecture with a simple encoder and a deep

decoder neural network where the goal is to achieve the best inference results

rather than precisely reconstructing the input data.

2.5 Cryptographic Techniques for Enhancing

Privacy in Data Analytics

Cryptographic data security and privacy approaches are perhaps the most

common solutions for secure and private data storage and transfer. The appli-

cation of cryptography to IoT security and privacy has recently gained trac-

tion. This includes lightweight hardware cryptosystems [51], [59], [64] and

Homomorphic encryption [63] for Neural Networks. In [59], authors propose

SecureData, a secure encryption scheme for IoT secure data collection. Se-

cureData provides secure data collection measures using a lightweight FPGA

implementation of KATAN [8]. KATAN [8] is a hardware-optimized block ci-

pher with an 80-bit key size. SecureData uses the KATAN secret cipher in the

network data transmission layer. The authors in [59] evaluate and show the

efficacy of SecureData in providing data security and privacy for healthcare

IoT use cases with various threat models, including eavesdropping and data

leakage scenarios.
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The authors in [64] present a survey of hardware-based optimization of

cryptosystems in the IoT security and privacy area. These works include

lightweight implementations of the widely used AES block cipher, techniques

to prevent side-channel attacks, and pseudo and true random number gener-

ators (PRNGs and TRNGs) for ultra-low-power (ULP) devices. Apart from

secure IoT data collection and communication, privacy of core IoT technolo-

gies have been extensively studied. For example, the widely adapted RFID

technology requires a robust authentication protocol to help eliminate pri-

vacy and security risks and attacks, such as the Replay attack. The authors

in [51] propose the Gossamer protocol for secure and private authentication of

lightweight RFID devices.

Apart from hardware-based optimization and secure and private data col-

lection protocols, techniques such as Homomorphic encryption [19] are being

studied for their use in secure DNN execution on edge and in cloud plat-

forms. Homomorphic encryption allows performing operations on encrypted

data without the need for decrypting it first. This means that there is no longer

a need for decryption of the ciphertext from consumers to perform data ana-

lytics. The ingenuity of this encryption scheme is that the decrypted output of

operations on the encrypted data is the same as the output of operations on the

original, unencrypted data. Reference [63], introduces the idea of Crypto-Nets,

which discusses deep neural networks that, with the help of Homomorphic en-

cryption, allow for operations on encrypted user data rather than the original

user data. If a hybrid execution paradigm is selected for the cooperative exe-

cution of models on edge and cloud servers, the need for decrypting the user

data is eliminated. However, due to its high resource demand, Homomorphic

encryption has not seen widespread use on ultra-low-power edge devices.

Despite the benefits of these security measures and the necessity of adopt-

ing some of these measures (at any cost) for data security, their need for mak-

ing drastic design changes and their high computational costs render these

techniques unpopular. We argue that although it is vital to have secure and

encrypted communication and data storage on edge and cloud servers, these

measures alone do not guarantee user privacy. The fact that third-party appli-
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cations and services can still misuse user data underlines the need for adaptive

privacy-preserving solutions.

2.6 Differential Privacy and k-anonymity

Differential privacy [13], [14] and k-anonymity [58] can be categorized as al-

gorithmic solutions to user data privacy-preservation problem. Differential

privacy allows service providers and third-party applications to collect infor-

mation from users to build and further develop new systems without compro-

mising the privacy of the users [14]. In differential privacy, a carefully tailored

perturbation is added to the personal identifier information in the dataset,

which provides privacy guarantees for owners of the data entries. This way,

differential privacy enables the publication of aggregated datasets, thereby

paving the way for further research and development in needed areas.

In most previous work, differential privacy has been used as a further guar-

antee of user data privacy (see for example [33], [70]). As we have already

discussed attacks, such as the model inversion attack [17] or the membership

inference attack [53], endanger the privacy of users in the dataset used for

training the inference models in the deep learning community. Specifically,

the attacker can identify whether a given data point has been used for train-

ing [53] or obtain the whole or parts of the training dataset [17]. To protect

against such attacks, reference [1] proposes the use of differential privacy tech-

niques to provide privacy guarantees to deep learning models.

Another technique that can be applied to users’ privacy protection in ag-

gregated datasets is the k-anonymity technique [58]. k-anonymity provides

plausible deniability to data owners in a dataset by ensuring that each data

entry’s attributes and features in the dataset resemble at least k-1 other data

entries. This way, data owners cannot be readily re-identified, while data

still holds its utility. Other variants of k-anonymity include `-diversity [41]

and t-closeness [36]. The authors in [39] propose a new technique which uses

clustering-based k-anonymity for sharing data from wearable devices.

These techniques show great promise in promoting privacy when sharing
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public data by mitigating threats such as user re-identification. However, as we

will see in the next chapters, when private attributes are present in time series

data, it is not feasible to pinpoint specific attributes in the recorded sensor

data that directly contribute to sensitive information. Thus, these techniques

cannot prevent sensitive inferences.

2.7 Generative Models

Deep generative models, including GANs [20], Autoencoders, and Variational

Autoencoders [29], are being extensively used to generate a realistic version of

an image which has a few differences with the original version (e.g., an image

that has a different color) [32], [34]. Apart from image synthesis, generative

models have been utilized to produce synthetic time series datasets [2], [37],

[38], [61]. For instance, in [2] a Wasserstein GAN is used to generate balanced

and realistic sensor data for HAR. In a recent study [38], the authors propose

a framework based on GAN, called DoppelGANger, to generate network time

series data with 43% higher fidelity compared to other baselines. Moreover,

variants of autoencoders are commonly used to learn useful representations,

especially when multiple sensing modalities are present. For example, au-

toencoders are used in [47] to learn a shared representation between multiple

modalities.

Many studies utilize generative models to provide different levels of sen-

sor data anonymization in IoT devices. Thus they can be regarded as on-

device privacy-preserving solutions. These algorithmic solutions rely on ma-

chine learning techniques that use deep neural networks (DNN), and generative

models such as generative adversarial networks (GAN) [20] and variational au-

toencoders (VAE) [29].

For instance, the use of deep generative adversarial networks for full-body

and face de-identification in images is proposed in [3]. In particular, subjects’

faces in an image are replaced by other faces generated by a deep generative

network so that the camera feed can be used in applications such as activity

detection, while protecting the identity of subjects in the image. But if the
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camera feed was meant to be used in biometrics face recognition, this data

anonymization technique would not be suitable because of the distortion of

facial features of the subjects. In a recent line of work [62], the application of

GANs to face de-identification is discussed. Several studies also focus on using

neural networks to anonymize patients’ data in the public health domain. An

automated system based on recurrent neural networks (RNNs) is proposed

in [9] to de-identify patient notes (by removing protected health information).

Inspired by advances in deep generative models, recent works on data

anonymization [42], [43] use autoencoders to reconstruct the input data such

that private attributes are no longer identifiable. This approach provides a

reasonable trade-off between data utility and privacy by minimizing the leak

of private information while preserving the utility information content of the

input data. However, the data anonymized by these networks is shown to be

susceptible to the re-identification attack [22].

In [26], segments of time series data that can be used for sensitive infer-

ences are black-listed, while other segments that can be used to make desired

inferences are white-listed. The authors propose the Generative Adversarial

Privacy (GAP) framework to offer a trade-off between utility and privacy.

Replacement Autoencoder [43] builds on this idea by adding grey-listed in-

ferences, i.e., non-sensitive inferences, to the white-listed and black-listed in-

ferences introduced in [26]. These techniques are more suitable for replacing

activities that are privacy intrusive, for example, smoking and drinking. Ac-

cording to our evaluations, race, gender, or other private attributes cannot be

obscured using these techniques as white-listed segments also carry informa-

tion about these attributes.

In [69], anonymization is performed through learning perturbations in

transforming raw sensor data. The goal of these transformations is to re-

duce the sensitive data inference accuracy while maintaining the accuracy of

desired inferences as high as possible. The authors refer to private attributes

as style and public attributes as content. A transformation is used to map the

style of a time series to random noise.

None of the above techniques enforce structure into the latent representa-
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tion of autoencoders and utilize it to control data attributes in the synthesis

process. In Chapters 3 and 4, we show that by using VAEs to learn and manip-

ulate latent representations, we can achieve various anonymization techniques

that differ in how they modify the private attributes.

2.8 Representation Learning with Variational

Generative Models

We present two autoencoder architectures below, and give a mathematical

derivation of the loss function in each case. The main distinction between

these architectures lies in their ability to impose structure into the latent

space. The reason we focus on variational autoencoders rather than GANs is

that they represent the original data distribution more faithfully and provide a

simple way to map data to its latent representation, which can be manipulated

to anonymize data.

Let X be the domain of fixed-length embeddings of time series data gen-

erated by one or several sensors, and Y and Ȳ be respectively, domains of

private and public attributes associated with embeddings in X . Our dataset,

D = {(x1, y1, ȳ1), ..., (xm, ym, ȳm)} consists of m data embeddings, each de-

noted by xi, and their corresponding private and public attributes denoted

by yi and ȳi. We assume this dataset is publicly available, and can be used

by anyone to train models for desired and sensitive inferences1. We consider

categorical attributes such as mood, activity, and gender. Hence, the private

attribute takes value from A = {a1, · · · , aK} and the public attribute takes

value from B = {b1, · · · , bK̄}.

2.8.1 Vanilla Variational Autoencoder

A VAE is an autoencoder comprised of a probabilistic encoder and a probabilis-

tic decoder which are instantiated as two neural networks. The probabilistic

encoder qθ(z|xi) maps sensor data xi (or an embedding of it) to a distribution

(e.g., a multivariate Gaussian) over low-dimensional continuous latent repre-

1Preventing the membership inference attack is outside the scope of this thesis.

23



sentations from which xi could have been generated. The probabilistic decoder

pφ(xi|z) produces a distribution over xi given its latent representation z. This

model can be used to generate a new version of the sensor data denoted by x̃i.

Note that θ and φ are network parameters that can be learned jointly.

Instead of maximizing the typically intractable marginal likelihood, VAE

is trained to maximize a lower bound on the marginal log-likelihood which is

known as the evidence lower bound (ELBO) [29]. This lower bound can be

written for an individual data point denoted by xi as follows:

ELBOi(φ, θ) = Ez∼qθ(z|xi)log pφ(xi|z)−DKL

(
qθ(z|xi)||p(z)

)
(2.1)

The Kullback–Leibler divergence term in ELBO acts as a regularizer for the

approximate posterior. In the training phase, we maximize the sum of ELBOi

over all samples in D. This ensures that the encoder maximally preserves the

information content of the input data and the decoder produces data as close

as possible to its original input.

2.8.2 Conditional Variational Autoencoder

While variational autoencoders are suitable for learning unsupervised latent

representations of data, the learned latent variables cannot be explained or

mapped to salient attributes of input data. Learning useful latent variables

which correlate to specific attributes in the dataset has received a lot of atten-

tion in recent years [30], [32]. Several efforts have been made to date to incor-

porate structure into latent representations in a supervised or semi-supervised

fashion. Works such as [30], [55] introduce structure in the latent space by

conditioning latent variables on data attributes. This can be accomplished by

directly incorporating these features into latent representations in conditional

VAE (CVAE). Specifically, a CVAE conditions the encoder, the decoder, or

both on random variables representing data attributes. Thus, the probabilis-

tic encoder and decoder can be written as qθ(z|xi, c) and pφ(xi|z, c), where the

condition c can be a certain attribute of input data that we wish to encode.

For example, it can be the private or public attribute(s) associated with an

individual data point in a labeled dataset.
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Figure 2.1: Graph diagram of encoder and decoder of a CVAE.

The variational lower bound of a CVAE can be derived from (2.1). The

lower bound for an individual data point can be written as:

Ez∼qθ(z|xi,c)log pφ(xi|z, c)−DKL

(
qθ(z|xi, c)||p(z)

)
(2.2)

This objective is maximized using a stochastic optimization method to train

the autoencoding model. In practice, the condition and learned latent variables

can be concatenated before they are passed to the decoder for reconstructing

the data. Figure 2.1 shows the encoder and decoder of a CVAE with condition

variable, y.

In Chapters 3 and 4, we propose two different approaches that build on

the VAE and CVAE frameworks that manipulate the latent representations

learned by these models to change the private attributes of the original data

in order to anonymize and obscure these private attributes.
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Chapter 3

Unsupervised Learning and
Manipulation of Latent
Variables

3.1 Augmenting VAE with Classification Loss

This section describes how we learn a useful representation for an embedding

of time series data generated by a sensor using a VAE with a modified loss

function. We explain the details of the Mean Manipulation technique and

discuss how manipulating the VAE’s learned latent representations can trans-

form the reconstructed data’s private attributes. These steps are illustrated in

Figure 3.1. Instead of using a single general VAE, we use multiple attribute-

specific VAEs, one per each public attribute class. We further explain the idea

of attribute-specific VAEs in Section 3.1.3.

3.1.1 Manipulating Latent Representations

Suppose a VAE is trained on D = {(x1, y1, ȳ1), ..., (xm, ym, ȳm)} introduced

in Section 2.8. The VAE maps each input embedding to its corresponding

latent representation. Here, each latent representation is a vector of multiple

latent variables. If we exactly knew which latent variable or a group of latent

variables correspond to a given private attribute, we would be able to change

these attributes before the decoder reconstructs the new version of data. This

subsequently would change the private attribute of the reconstructed data and

anonymize the data. Unfortunately, this is not possible because our VAE’s la-
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Figure 3.1: Data anonymization on an edge/IoT device using the proposed
anonymization technique. The mean latent representation for each pair of
private and public attribute labels is assumed to be stored in a central (cloud)
server.

tent representations are learned in an unsupervised fashion, and pinpointing

one or a group of latent variables that correspond to each private attribute is

not feasible. Hence, to perform anonymization, we have to modify all the la-

tent representation variables by performing a translation in the latent variable

space.

This idea is at the core of the mean manipulation technique proposed in

our work [22]. To perform anonymization, we calculate the center of mass for

latent representations of all samples in D which have the same pair of public

and private attributes. These mean latent representations are then used to

manipulate the latent representation of input data before it is passed to the

decoder.

In the mean manipulation technique, by translating each latent represen-

tation from one region of the latent space to another and then reconstructing

that through the VAE’s decoder, we ideally change and manipulate the private

attributes in the data public attributes are not altered.

The transformation of a latent representation in the mean manipulation

technique involves a sequence of simple arithmetic operations. Consider a

latent representation zk with public attribute ȳ and private attribute y, and

27



-

Figure 3.2: Overview of the mean manipulation anonymization technique as-
suming a 3-dimensional latent space. Latent representations which have a
public attribute other than ȳ are not shown in this figure.

let us denote the average of all latent representations with public attribute

ȳ and private attribute y by z̄yȳ . We obtain the transformed representation

of xk, denoted ẑk, by subtracting z̄yȳ from zk and adding z̄y
′

ȳ to the result.

The probabilistic decoder takes ẑk instead of zk to reconstruct the data. We

refer to z̄y
′

ȳ − z̄yȳ which is the Euclidean distance between the average of all

representations with private attribute y and public attribute ȳ and the average

of all representations with private attribute y
′

and public attribute ȳ as the

transfer vector.

Figure 3.2 illustrates the transfer vector in a three-dimensional latent space.

The markers show only the latent representations of embeddings with public

attribute ȳ. Circles and squares represent data embeddings with private at-

tribute classes y
′

and y, respectively. The mean latent representation is shown

as a cross in each case. Once the transfer vector is found, it can be applied to

modify a given data embedding’s private attribute.

The mean manipulation technique can lower the accuracy of intrusive in-

ferences but at the cost of reducing the accuracy of desired inferences. In

the next two sections, we first discuss how the loss function of the VAE can

be modified to learn anonymization-friendly latent representations. Later, we

discuss how using multiple public attribute-specific VAEs helps with dealing

with the class imbalance problem.
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3.1.2 A Modified Loss Function for VAE

The loss function we use in this chapter builds on the original VAE’s loss func-

tion proposed in [29] and in Equation 2.1. We modify the said loss function

by adding an extra loss term that corresponds to the private attribute classifi-

cation error, i.e., Encθ + fη. Essentially, the encoder network is supplemented

with a classification layer, fη, to encourage learning representations that are

more representative of the private attributes associated with the input data.

We first introduce this loss function and then discuss why minimizing this loss

function can result in a more effective anonymization. The augmented loss

function can be written as:

−
K∑
k=1

(
Ezk∼qθ(zk|xk) [log pφ(xk|zk)]− β DKL

(
qθ(zk|xk)||p(zk)

)
+α

M∑
i=1

yik log
(
f iη(zk)

)) (3.1)

where zk denotes the latent representation of the kth input data embedding,

yk denotes the true private attribute class label of that embedding1, and fη is

the classification layer.

The learned distribution over latent representations given xk can be a mul-

tivariate Gaussian or a Bernoulli distribution. In our case, we choose a multi-

variate Gaussian since we are dealing with real-valued data. Note that the first

two terms in this loss function are the two terms in Equation (2.1). The only

difference is the introduction of the β weight factor for the Kullback–Leibler

divergence term as explained in [25].

The main limitation of the β-VAE’s loss function for data anonymization

is the inherent trade-off between the quality of the reconstructed data and the

disentanglement of the learned latent representations. In general, lower β val-

ues would yield better accuracy in the data reconstruction task (higher data

utility), and higher β values would train the VAE to generate more disentan-

gled latent representations (lower private attribute inference model accuracy).

1Note that yik is 1 if and only if xk belongs to the private attribute class ai, and is 0
otherwise.
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The best anonymization performance by a VAE is achieved when the data

utility is the highest and the accuracy of the private inference model is the

lowest. Thus, we need to tweak the loss function to have the highest data

utility in the anonymized data (determined by the reconstruction loss and KL-

divergence), while having as much disentanglement as possible (determined by

KL-divergence) for the lowest private inference accuracy. As discussed in [25],

there is a limit to the learning capacity of a conventional VAE’s loss function.

Hence, to increase the anonymization capability of the trained VAE, we add

the private-attribute classification loss to the ELBO. Specifically, we use the

latent representation of the original input data as input to a single-layer neural

network, which infers each data embedding’s private attribute class. This

neural network, represented as fη, will be trained alongside the VAEs encoder.

In essence, the classification layer, fη, and the VAE’s encoder together form a

classification network. As a result, the learned latent variables become more

representative of private attributes in the data.

We use the cross-entropy loss, which is the distance between the predicted

private attribute class of each anonymized data embedding and its ground-

truth value, yik
1. We create a simple classification layer that maps the latent

representations generated by VAE to the private attribute class labels of each

of the corresponding input data entries as illustrated in Figure 3.3. Thus, the

addition of the classification loss to the loss function encourages the VAE to

learn more anonymization-friendly representations.

We argue that adding the classification layer, fη, will force the probabilistic

encoder to learn latent representations that are separable along the private

attribute class labels, yk’s. Our results confirm that the added term to the

objective function improves the performance of VAE in the anonymization task

by introducing structure and enforcing a clear separation between different

classes in the latent space. We instantiate fη as a single layer of neurons with

a softmax activation function. In particular, this layer contains K neurons,

n0, ..., nK−1, where K represents the number of private attribute classes in the

original dataset. The trainable set of weights used by the classification layer

is denoted by η. Suppose each latent representation is a vector of J latent
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Figure 3.3: Variational Autoencoder with an additional classification layer
denoted by fη.

variables, z
(0)
k , · · · , z(J−1)

k . Thus, each ηmj is the weight connecting input zjk to

neuron nm. The output of the mth neuron in the classification layer can be

written as zkη
>
m. The output of all the neurons goes through softmax activation

to produce a probability distribution over private attribute classes given the

input data: fmη (zk) = ezkη
>
m∑

i e
zkη

>
i

.

The two hyperparameters in Equation (3.1), namely α and β, must be

tuned for each VAE as discussed later in Chapter 5. The VAE and the classi-

fication layer are depicted in Figure 3.3.

3.1.3 Representation Learning with a VAE Customized
for Each Public Attribute Class

By having attribute-specific VAEs instead of just one general VAE, which

learns latent representations for all input data regardless of their public and

private attribute classes [22], we break down the model into multiple models

that are smaller in size. Each of these models is trained to reconstruct data

for a given public attribute class.

One key advantage of using public attribute-specific VAEs is the reduction

in the size of the model. It also allows for applying a higher disentanglement

constraint (i.e., the weight β) in the training process. We get a 12-fold reduc-

tion in the model size and the number of trainable weights, from roughly 24

million weights in the case of a general VAE to a total of 2 million weights for
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all attribute-specific VAEs in the MotionSense dataset. Moreover, using par-

simonious models enhances the anonymization performance when compared

to [22].

Since we have multiple public attribute-specific VAE models, it is necessary

to predict the public and private attribute classes of a given data embedding

at the anonymization time. This information is used to determine which VAE

must be selected for anonymization. We do this using the pre-trained classifiers

shown in Figure 3.1.

3.1.4 Transforming Latent Representations

Algorithm 1 shows different steps of the proposed anonymization technique

assuming that a VAE is already trained for each class of the public attribute.

This algorithm operates on fixed-size embeddings of the input time series data.

These embeddings are created by considering a window that contains a number

of consecutive data points in the time series data. After the first embedding,

a new embedding is created after a certain number of new data points are

received (determined by the stride length).

Suppose, we have k data embeddings, denoted by x1, ..., xk. Each embed-

ding has corresponding public and private attributes. Our proposed algorithm

takes as input an embedding along with encoder and decoder parameters of

different VAEs, and the average latent representation denoted by z̄yȳ for each

public attribute class ȳ and private attribute class y. These average represen-

tations are calculated from the training dataset in the cloud or at the edge

provided that the IoT device retains a copy of the training dataset.

In the next step, it loads the pre-trained public and private attribute clas-

sifiers (not to be confused with fη) which are used to identify the predicted

public attribute class ˆ̄y and the private attribute class ŷ for each data embed-

ding xk. After inferring the public and private attribute classes, we load Encθ ˆ̄y

and Decφ ˆ̄y
models for the predicted public attribute class ˆ̄y. The encoder part

of this attribute-specific VAE encodes xk in a probabilistic manner. The cor-

responding latent representation, zk is achieved from the encoder. Once we

have the representation, we change the inferred private attribute class label of
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Algorithm 1: Anonymization with representation learning and
transformation

Data: data embedding xk, average latent representations,
autoencoder parameters θȳ and φȳ for each public attribute
class ȳ, pretrained classifiers for public and private attributes

Result: anonymized data embedding x̂k
ŷ, ˆ̄y ← Classify(xk);
zk ← Encθ ˆ̄y

(xk);

y
′ ← Modify(ŷ);

z̄ŷˆ̄y , z̄
y′

ˆ̄y
← Load mean latent representations;

ẑk = zk − z̄ŷˆ̄y + z̄y
′

ˆ̄y
;

x̂k ← Decφ ˆ̄y
(ẑk) ;

xk via a simple function which we refer to as Modify. This function converts

the predicted private attribute class label of xk from ŷ to an arbitrary private

attribute class label denoted by y
′
.

We note that the Modify function can be either deterministic or proba-

bilistic. When the private attribute is binary, the deterministic modification

converts one class label to the other one at all times. When the private at-

tribute class is not binary, an arbitrary bijective function can be used. In the

case of probabilistic transformation, a probabilistic modification function is

used. Specifically, for each data embedding, we decide whether to perform

the mean manipulation based on a cryptographically secure stream of pseudo-

random numbers. We use the CPRNG Secrets2 python module to generate

random numbers.

2https://docs.python.org/3/library/secrets.html.
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Chapter 4

Introducing Structure in the
Latent Space

4.1 CVAE with Information Factorization

We refer to our technique implementing the CVAE framework for anonymiza-

tion as ObscureNet. ObscureNet is an encoder-decoder architecture aug-

mented with as many discriminator networks as private attributes. Figure 4.1

shows the architecture of ObscureNet when there is only one private attribute

associated with the sensor data that we wish to protect. ObscureNet condi-

tions the decoder on the private attributes (similar to a CVAE) and performs

adversarial information factorization to ensure that learned latent representa-

tions are invariant to private attributes. To this end, it utilizes discriminator

networks trained using an adversarial method, each predicting the probability

distribution over one private attribute given the latent variables.

We now describe how ObscureNet is trained given a dataset of samples with

known private and public attributes and how the private attribute modification

technique anonymizes the input data. This training can be done in a cloud

server or on the IoT device if it has access to the public dataset used for

training (i.e., D). If the network is trained in the cloud, the weights and

parameters of the encoder and decoder networks must be sent to IoT devices

that run ObscureNet locally to anonymize their data.
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4.1.1 Modification of Conditional Variables for data pri-
vacy

This section discusses how a CVAE model can be used to anonymize the

private data attributes. Unlike the mean manipulation technique discussed in

Chapter 3, the modification of the CVAEs conditional variable does not require

calculation and propagation of the average values of latent representations to

perform data anonymization.

Similar to Chapter 3 take into account the dataset D = {(x1, y1, ȳ1), ...,

(xm, ym, ȳm)} which is introduced in Section 2.8. Here, we discuss how by

training a CVAE on this dataset and conditioning the decoder of the CVAE

on the private attributes of the data, we can anonymize the reconstructed data

through simple modification of the condition variable of the CVAE model.

Concretely, in the deployment phase, by encoding the input data embed-

dings, xk through the CVAE, and conditioning the CVAE on the private at-

tributes of data, yk, we can manipulate the private attributes of the recon-

structed data, x̃k, through a simple modification of the condition variable. In

this technique, by changing the condition of CVAE from yk to y′k, the private

attribute of the reconstructed data ideally changes from yk to y′k.

Essentially, through the conditional variable of the CVAE, we are alle-

viating the issue of the VAE and the mean manipulation technique. In our

discussion for the mean manipulation technique, we mentioned that due to our

lack of ability in pinpointing specific latent variables corresponding to each pri-

vate attribute, we perform the mean manipulation of all the latent variables.

We are now using the private attribute input to the conditional variables of

the CVAE to play the role of the deciding factor corresponding to the private

attributes in the reconstructed data.

We can see that through the artificial injection of private attributes as input

variables to the CVAE and changing those input variables, we can directly

anonymize the data rather than using the mean manipulation technique.
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4.1.2 The Need for Adversarial Training

Unfortunately, apart from the artificially injected private attributes as con-

ditional variables to the CVAE, the original data and the rest of the latent

variables generated by the encoder include information about the data’s private

attributes. Consequently, the leak of information about the private attributes

through the rest of the latent variables undermines our ability to change the

reconstructed data’s private attributes.

This problem can be mitigated by enforcing and maximizing the disen-

tanglement between latent variables and the condition variables. Fortunately,

learning private attribute-invariant and attribute agnostic latent variables can

be achieved by incorporating an adversarial objective into the CVAE’s ELBO

expressed in (2.2).

Through adversarial training, the networks can be trained to disentangle

the condition from the latent representation [34]. We discuss this in the next

section and see how we can modify the loss function to achieve this favor-

able disentanglement. Here, we train a neural network, Disc : Z → C that

is trained in conjunction with the training of the CVAE. The neural network

Disc is trained to infer the true condition corresponding to each latent repre-

sentation z. Moreover, the encoder is trained to undermine the accuracy of the

adversarial model by learning latent variables that capture the least possible

amount of information about the condition.

4.1.3 Adversarial Training for Private Information Min-
imization

We first describe how the ELBO of a CVAE is modified for training an encoder-

decoder architecture that learns a latent representation which contains little

or no information about the private attributes. We then outline the process

of training ObscureNet using an iterative minimax algorithm [34]. Without

loss of generality and for ease of presentation, in the following, we consider

the case that there is only one private attribute we want to conceal. Should

there be more private attributes, the decoder must be conditioned on all these
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Figure 4.1: Training of ObscureNet

attributes and the adversarial loss function should include the cross-entropy

loss of multiple discriminators.

Figure 4.1 shows the architecture of ObscureNet and the flow of gradients

through the networks. In ObscureNet, the CVAE is augmented with a discrim-

inator network which outputs Pη(y|z), i.e., private attribute class-membership

probabilities given the latent representation of input data. Here, η represents

trainable parameters of the discriminator. If the private attribute and learned

latent variables are completely disentangled, the discriminator would not be

able to predict the private attribute.

The discriminator network can be trained using binary or categorical cross-

entropy loss depending on whether the corresponding private attribute is bi-

nary (e.g., male or female) or categorical (e.g., weight). The loss of the dis-

criminator network, Ldisc, can be expressed as follows:

Ldisc(η|θ) = − 1

m

∑
(x,y)∈D

logPη(y|z) = − 1

m

∑
(x,y)∈D

logPη(y|Gθ(x)), (4.1)

where m is the number of samples in D and Gθ(x) is a function that compactly

represents both encoding of x and sampling z from a multivariate Gaussian

distribution. This is similar to the reparameterization trick used in [29].

The adversarial loss function can be written as:
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Ladv(θ, φ|η) = − 1

m

∑
(x,y)∈D

(
Ez∼qθ(z|x)log pφ(x|z, y)

− β DKL

(
qθ(z|x)||p(z)

)
− α logPη(y|Gθ(x))

)
(4.2)

It combines the discriminator loss (4.1) with CVAE’s ELBO from Equation (2.2).

We use the standard scalarization method and introduce weights which deter-

mine the relative importance of different terms in the adversarial loss function.

The weights α and β are respectively assigned to the discriminator loss and

the KL-divergence term. We treat these weights as hyperparameters and tune

them in Chapter 5 to navigate the trade-off between utility and privacy.

ObscureNet is trained using an iterative algorithm, described in Algo-

rithm 2. The discriminator is trained to predict y given z while the CVAE is

trained to minimize the accuracy of the discriminator and minimize the loss

function of the CVAE. While training the discriminator with the parameter,

η, gradients are stopped from updating the CVAE network parameters: θ and

φ. In the same respect, gradients are stopped from updating the discriminator

network’s parameter when training the CVAE.

Algorithm 2 shows the minibatch gradient descent for training ObscureNet,

where B is the size of the minibatch. Both forward and the backward passes

of ObscureNet’s adversarial training can be seen in the pseudocode.

We make a critical remark that ObscureNet utilizes a different set of en-

coder and decoder networks for each public attribute. Each pair of these

networks are trained separately using only samples in D that have the same

public attribute. We argue that this helps to reduce the number of layers

and neurons in the neural networks, making it easier to run ObscureNet on

resource-constrained devices1.

4.1.4 Anonymization with ObscureNet

After training the networks in an adversarial setting, we use them to per-

form anonymization before sharing sensor data with third-party applications
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Algorithm 2: Training ObscureNet

Data: Training dataset D, learning rate λ, minibatch size B
Result: Network parameters θ, φ, η
θ, φ, η ← initial values
repeat

Sample a minibatch: {x1, · · · ,xB}
/* pass samples through the networks */

µ,σ ← Enc(x; θ)
ε ∼ N(0, I)
z ← µ+ σ � ε
x̃← Dec(z, y;φ)
P (y|z)← Disc(z; η)
Estimate gradients of minibatch
/* Update parameters using gradients */

η ← η - λ∇η Ldisc(η|θ)
{θ, φ} ← {θ, φ} - λ∇{θ,φ} Ladv(θ, φ|η)

until convergence of parameters (θ, φ, η)

that run locally or uploading it to cloud servers that host these applications.

In particular, sensor data embeddings are passed through ObscureNet which

obscures their private attributes, i.e., it generates a new version of each em-

bedding with private attribute(s) that might be different from the original

version. This process is depicted in Figure 4.2. Keep in mind that the encoder

and decoder are the same networks trained using samples in D. As it can

be seen, in addition to encoder and decoder networks, we take advantage of a

classification model that is trained separately to identify the public and private

attributes associated with each sample in the test dataset. These attributes

are denoted by ˆ̄y and ŷ respectively. The classification model will be needed as

the true public and private attributes associated with the input data are not

known at anonymization time. Identifying public attributes is necessary to

select a CVAE network for ObscureNet, as discussed in the previous section.

Three different anonymization techniques can be implemented using Ob-

scureNet. We refer to these techniques as deterministic modification, proba-

bilistic modification, and randomized approach. They differ in whether they

utilize the identified private attribute, and how they modify this attribute be-

fore it is used as a condition for the probabilistic decoder. We explain each of
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Figure 4.2: Anonymization with ObscureNet.

these approaches below.

Deterministic modification of the identified private attribute

This anonymization technique involves an injective function which determin-

istically maps each private attribute class in A to a different class in that set.

This injective function is labelled as private attribute modifier in Figure 4.2.

The identified private attribute (i.e., the output of the Classifier) is changed

through the use of this modifier. We then pass the one-hot encoding of its out-

put along with the latent representation of input data to the decoder, which

produces a new version of the input data, denoted by x̃.

Probabilistic modification of the identified private attribute

Probabilistic modification is similar to the deterministic one with one excep-

tion: the mapping of private attributes is done probabilistically. That is, one

of the K private attribute classes, a1, · · · , aK , is picked at random for each

sample in the test dataset, and the decoder is fed the one-hot encoding of this

private attribute class along with the latent representation of data. The prob-

abilistic modification is an effective defense against the user re-identification

attack as we discuss in Chapter 5.

Randomized approach

The third anonymization technique eliminates the need for a classification

model to identify the private attributes. Rather than identifying the private

attribute first and modifying its one-hot encoding, it simply passes a stochastic
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Algorithm 3: Sensor Data Anonymization w/ ObscureNet

Data: Data embedding x, autoencoder parameters θ, φ
Result: Anonymized embedding x̃
ŷ, ˆ̄y ← Classify(x)
µ,σ ← Encˆ̄y(x; θ)
ε ∼ N(0, I)
z ← µ+ σ � ε
y′ ← Modify(ŷ) // or y′ ← Randomize()

x̃← Decˆ̄y(z, y
′;φ)

vector along with the latent representation of data to the decoder to produce

a new version of this data. A stochastic vector is a vector of size K with

non-negative entries that add up to 1. This technique aims to prevent user re-

identification but is more straightforward than the probabilistic modification

technique as it does not require training an additional classification model for

the private attribute.

Algorithm 3 shows the steps of the deterministic and probabilistic mod-

ification techniques. Similar to the methodology used in Chapter 3, we use

attribute-specific CVAEs with encoder and decoder networks tuned for each

public attribute. We use the inferred public attribute values from the Classi-

fier, ˆ̄y to select the proper encoder and decoder networks. In the randomized

approach, a randomly generated stochastic vector is used instead of the one-hot

encoding of y′. In Chapter 5, we compare the three anonymization techniques

presented above in terms of their ability to prevent user re-identification.
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Chapter 5

Evaluation

5.1 Dataset

We use two open HAR datasets to evaluate the efficacy of our anonymization

techniques in reducing the accuracy of intrusive inferences while maintaining

the accuracy of desired inferences. We describe these two datasets (Motion-

Sense and MobiAct) below and elaborate on the process of creating embeddings

of time series sensor data.

5.1.1 MobiAct Dataset

The MobiAct [60] dataset is comprised of IMU readings from accelerometer

and gyroscope sensors. The readings are collected from 66 subjects performing

12 different activities, including walking, running, climbing up and down the

stairs. We consider data from a group of 37 subjects only to create a more

balanced dataset that has roughly the same number of male and female sub-

jects. Out of the 37 subjects we select, 17 are female, and the remaining 20

are male. Also, from the 12 different activities captured in the dataset, we

consider the following 4 activities: walking, standing, jogging, and climbing

up the stairs. We choose these activities for two reasons. First, these are the

same activities captured in the MotionSense dataset, so we can compare the

two datasets. Second, limiting our study to these activities partly addresses

the class imbalance problem.

In our experiments, we assume that the activity exercised by a subject is

the public attribute and must be inferred by a fitness tracking application.
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However, the subject’s weight and gender are deemed private, and their in-

ference by this application or other third-party applications is regarded as a

violation of user privacy. We model gender as a binary attribute since these

are the two classes that are present in our dataset. We model weight as a

ternary attribute using a simple binning strategy that tries to assign roughly

the same number of subjects to each bin. This helps to address the class im-

balance problem. In particular, subjects who weigh less than or equal to 70 kg

are assigned to weight-group 0. Subjects who weigh between 70 and 90 kg are

assigned to group 1, and the rest are assigned to weight-group 2.

5.1.2 MotionSense Dataset

The MotionSense [42] dataset is collected by accelerometer and gyroscope sen-

sors of an iPhone 6s. The data obtained from accelerometer and gyroscope

sensors has a sampling rate of 50 Hz. Each reading consists of 12 features, in-

cluding attitude (roll, pitch, yaw), gravity, rotation rate, and user acceleration

in three dimensions.

MotionSense contains data from 24 subjects (14 male and 10 female sub-

jects). Each individual in this dataset performs 15 trials of 6 different activities.

These activities include climbing up and down the stairs, walking, jogging, sit-

ting, and standing. This dataset’s subjects have a wide range of values for their

age, weight, and height. Following [42] we combine the standing and sitting

activities into one activity. This is done because the sensor reading is the

same and distinguishing between these two activities is simple. Similar to the

MobiAct dataset, we assume in our experiments that the activity exercised by

a subject is the public attribute. We also assume that the gender identity of

subjects is a private attribute and a third-party application should not be able

to detect it. From all the 15 trials, we use trials 11, 12, 13, 14, 15, and 16 to

build our test set. This is similar to the test set used in [42].

5.1.3 Embedding Sensor Data

It is shown in related work that activities can be identified more accurately

if several consecutive IMU samples are analyzed at once. We call this an
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embedding of sensor data. To create our data embeddings, we use windows

of size 128 samples. These windows are moved with strides of 10 samples to

create the next embedding. For the MotionSense dataset, we combine features

along the three axes to create one feature (i.e., the magnitude). However, for

the MobiAct dataset, we use readings along the three axes as three separate

features. Our experiments suggest that using three-dimensional sensor data

increases the model accuracy for the MobiAct dataset. We use a trial-based

partitioning of training and test data for MotionSense, and a partitioning for

MobiAct dataset with 80% training set and 20% test set.

5.2 Comparison with Baselines

We compare ObscureNet, Chapter 4 and the augmented VAE network, Chap-

ter 3 with baseline anonymization methods discussed below. Unless otherwise

stated, ObscureNet is trained with hyperparameters that are set as follows:

α = 0.2 and β = 2. We consider the following baseline methods:

• ‘General VAE’ and ‘Attribute-specific VAE’ which rely on the mean ma-

nipulation technique explained in Section 3.1.1. The only distinction

between these two methods is that the former, which is the method

proposed in our previous work [22], uses a single VAE to anonymize

all samples regardless of the value of their public attribute. The lat-

ter, however, trains separate VAEs for different public attributes. At

anonymization time, it first detects the public attribute of input data

and then chooses the appropriate VAE for learning and manipulating

the latent representation.

• ‘Attribute-specific CAE’ and ‘Attribute-specific CVAE’ are conditional

generative models where the condition represents the private attribute.

Data is anonymized by altering the condition variable before sending

it to the decoder as discussed in Section 4.1.1. The difference between

these two baselines is that in the former, the condition is introduced

in a vanilla autoencoder (resembling the architecture of Fader Networks,
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which are developed for manipulating images [34]), whereas in the latter,

the condition is introduced in a variational autoencoder. Both methods

train and utilize different autoencoders for different public attributes.

• ‘Anonymization Autoencoder (AAE)’ which is proposed in [42]. It does

not use conditional generative models. Instead, it takes advantage of

several regularizer models for adversarial training.

Moving from the top to the bottom of this list, the baseline methods combine

different ideas to increase disentanglement of latent variables, making them

more efficient and capable of concealing private attributes. Through abla-

tions, we highlight the importance of incorporating each of these ideas in the

design of ObscureNet, which essentially adds adversarial information factoriza-

tion to the ‘Attribute-specific CVAE’ baseline and leverages non-deterministic

private-attribute modifiers to prevent re-identification of private attributes af-

ter anonymization.

Accuracy of Sensitive and Desired Inferences

As the first step in our evaluation, we look at the accuracy of sensitive and

desired inference models when their input is the original data and when it is

the data anonymized by ObscureNet (Chapter 4), augmented VAE network

(Chapter 3), and other baselines. We evaluate these methods in three differ-

ent anonymization tasks: gender anonymization in MotionSense (desired =

activity, sensitive = gender), gender anonymization in MobiAct (desired =

activity, sensitive = gender), and finally weight-group anonymization in Mo-

biAct (desired = activity, sensitive = weight-group). We only study the

problem of hiding a single private attribute. An extension to the case where

there are multiple private attributes to be obscured simultaneously is discussed

in Section 5.4.2.

The results reported for anonymization in this section are obtained using

deterministic private attribute modifier and mean manipulation techniques.

We argue that if these techniques can reduce the accuracy of a sensitive infer-

ence to zero, we can achieve the accuracy of a random guess through random-
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ization. This also prevents the re-identification of private attributes. Thus,

we favor lower accuracy results for our deterministic anonymization results.

Table 5.1 shows the inference accuracy achieved when using the output

of different baselines and our proposed methods in the MotionSense gender

anonymization task. Moreover, the overall F1-scores for activity and gender

inferences are given in the last two columns. The first row, labeled ‘Origi-

nal Data’, indicates the accuracy of activity and gender inference models on

the original (unanonymized) data. It can be readily seen that using attribute-

specific VAEs improves the F1-score of activity inference from 65.51% obtained

by a General VAE to 72.45%. This can be attributed to the fact that having a

specific VAE for each public attribute can partly address the imbalance prob-

lem in the training data1. Unfortunately, this comes at the price of increas-

ing the F1-score of gender inference. Comparing attribute-specific CAE and

attribute-specific CVAE, we observe that both methods achieve comparable

results for activity inference, but attribute-specific CVAE can effectively lower

the gender inference accuracy and F1-score. We attribute this to the fact that

variational autoencoders increase the latent variables’ disentanglement and al-

low for straightforward generalization compared to vanilla autoencoders. We

witness that the four baseline methods we discussed so far either fail to obscure

the private data or significantly reduce its usefulness for desired inferences. We

see that the augmented VAE network technique, Chapter 3 performs roughly

similarly compared to the ObscureNet technique for the MotionSense dataset

in anonymization of the gender attribute. However, as we see for the Mobi-

Act dataset, Tables 5.2 and 5.3 indicate that the ObscureNet technique out-

performs the augmented VAE network in gender and weight anonymization

tasks.

The Replacement Autoencoder [43] cannot successfully obscure gender as

1It also reduces the size of the model. To illustrate this, we calculated the total size of
the general VAE and multiple VAEs models. The general VAE model, for the MotionSense
dataset, has 24.5 million trainable parameters. In the case of the MobiAct dataset, the
general model has 8.7 million trainable parameters. Each of the attribute-specific VAEs has
1.7 million trainable parameters in the case of the MobiAct dataset (a total of roughly 7
million trainable parameters for all VAEs) and 0.5 million trainable parameters in the case
of the MotionSense dataset (a total of 2 million trainable parameters for all VAEs).
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Table 5.1: Gender anonymization results from the MotionSense dataset For
each activity, the number of embeddings in the test set used for evaluation is
shown in parentheses.

Method
Inference Accuracy Accuracy/F1-score

Downstairs (1.9k) Upstairs (2.5k) Walking (6.2k) Jogging (2.7k) Overall
Activity Gender Activity Gender Activity Gender Activity Gender Activity Gender

Original Data 95.58% 87.67% 93.19% 90.86% 98.71% 95.16% 97.28% 95.5% 96.93 / 95.90% 93.35 / 93.10%

General VAE 71.49% 38.62% 80.24% 28.34% 91.5% 45.12% 83.43% 38.61% 84.80 / 65.51% 39.72 / 38.05%
Attribute-specific VAEs 91.94% 76.22% 85.09% 64.05% 93.14% 77.9% 97.02% 23.12% 77.77 / 72.45% 63.94 / 61.95%

Attribute-specific CAEs 92.81% 63.74% 92.75% 77.60% 98.46% 76.13% 97.21% 85.52% 96.33 / 95.23% 76.54 / 74.81%
Attribute-specific CVAEs 92.09% 60.25% 93.31% 71.78% 96.13% 52.98% 96.8% 72.90% 95.39 / 94.05% 61.60 / 59.30%

AAE [42] 84.65% 57.91% 97.18% 57.64% 91.82% 52.89% 99.65% 46.23% 93.39 / 92.01% 53.15 / 42.83%

Augmented VAE network 89.73% 26.25% 93.47% 17.03% 98.49% 15.34% 97.28% 18.39% 96.04 / 94.76% 17.84 / 17.74%
ObscureNet 87.52% 27.48% 92.83% 19.0% 98.71% 15.94% 96.87% 10.5% 95.63 / 94.23% 17.06 / 16.34%

Table 5.2: Gender anonymization results from the MobiAct dataset. For each
activity, the number of embeddings in the test set used for evaluation is shown
in parentheses.

Method
Inference Accuracy Accuracy/F1-score

Walking (42.9k) Standing (43.2k) Jogging (4.2k) Upstairs (1k) Overall
Activity Gender Activity Gender Activity Gender Activity Gender Activity Gender

Original Data 98.09% 99.63% 99.53% 95.52% 99.78% 99.28% 95.45% 94.47% 98.82 / 91.46% 97.61 / 97.52%

General VAE 92.34% 88.53% 98.56% 63.83% 90.52% 87.07% 52.93% 66.47% 94.77 / 77.55% 76.54 / 76.49%
Attribute-specific VAEs 95.48% 90.06% 99.63% 52.73% 98.14% 93.36% 93.32% 82.68% 97.54 / 86.23% 72.53 / 75.63%

Attribute-specific CAEs 93.22% 25.06% 99.59% 80.89% 97.47% 75.68% 94.82% 78.45% 96.45 / 83.15% 54.39 / 54.37%
Attribute-specific CVAEs 92.66% 14.65% 99.65% 28.75% 96.55% 25.67% 94.3% 58.81% 96.16 / 81.86% 22.31 / 22.35%

AAE [42] 96.96% 58.13% 99.61% 42.12% 99.61% 56.72% 84.44% 58.60% 98.19 / 87.98% 50.49 / 45.73%

Augmented VAE network 87.57% 10.53% 99.67% 31.98% 96.75% 16.51% 94.63% 28.99% 93.79 / 78.51% 21.16 / 23.66%
ObscureNet 91.82% 5.39% 99.54% 23.48% 96.11% 10.55% 91.10% 24.46% 95.66 / 81.23% 14.39 / 14.28%

the average accuracy results of activity and gender inferences are 96.3% and

97.1%, respectively. AAE [42] significantly reduces the gender inference ac-

curacy but cannot beat ObscureNet and the augmented VAE network. Ob-

scureNet reduces the F1-score of gender inference by an additional 36%. This

is done while achieving a comparable activity inference F1-score with the best

baseline methods. It is worth mentioning that going downstairs is the most

challenging activity to detect after concealing the gender attribute. Compar-

ing ObscureNet with the technique proposed in [69], which reduces the gender

inference accuracy to roughly 60% as reported by the authors, we can conclude

that our anonymization technique is superior2.

Next, we investigate gender anonymization results for the MobiAct dataset.

Table 5.2 shows the accuracy of activity and gender inferences on the original

2We were unable to reproduce the results of [69] and did not find their code in a public
repository. Hence, we cannot use it as a baseline in the MobiAct dataset.
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Table 5.3: Weight-group anonymization results from the MobiAct dataset. For
each activity, the number of embeddings in the test set used for evaluation is
shown in parentheses.

Method
Inference Accuracy Accuracy/F1-score

Walking (42.9k) Standing (43.2k) Jogging (4.2k) Upstairs (1k) Overall
Activity Weight Activity Weight Activity Weight Activity Weight Activity Weight

Original Data 98.17% 97.42% 99.55% 85.85% 99.74% 93.36% 95.16% 76.69% 98.86 / 91.96% 91.53 / 91.95%

General VAE 81.88% 46.86% 90.34% 44.59% 54.73% 56.13% 18.47% 47.15% 83.94 / 59.84% 46.22 / 37.14%
Attribute-specific VAEs 92.83% 70.04% 99.66% 71.79% 97.7% 53.87% 93.33% 61.34% 96.29 / 81.79% 70.03 / 65.51%

Attribute-specific CAEs 94.23% 49.75% 99.65% 76.85% 97.82% 88.21% 94.87% 59.79% 96.97 / 84.22% 64.45 / 64.21%
Attribute-specific CVAEs 94.88% 26.59% 99.7% 19.37% 94.59% 53.55% 95.44% 51.41% 97.15 / 84.28% 24.69 / 21.46%

AAE [42] 97.39% 63.77% 99.35% 50.15% 98.91% 72.66% 90.91% 57.16% 98.32 / 88.50% 57.66 / 56.44%

Augmented VAE network 89.15% 22.41% 99.75% 37.93% 94.43% 31.25% 95.36% 41.69% 94.48 / 83.52% 30.37 / 25.47%
ObscureNet 94.22% 7.58% 99.59% 14.12% 96.40% 21.07% 91.37% 29.5% 96.83 / 83.40% 11.54 / 10.80%

data and the data anonymized by ObscureNet and other methods. The results

are quite similar to the gender anonymization results from the MotionSense

dataset. In this case, going upstairs is the most challenging activity to detect

after concealing the gender attribute. Compared to AAE, ObscureNet can

significantly decrease the accuracy and F1-score of gender inference (by more

than 30%) with a small loss of data utility (∼ 6%).

Lastly, we consider weight-group anonymization results from the MobiAct

dataset. Recall that weight-group is a ternary private attribute; thus, this

experiment is to check if ObscureNet can hide non-binary private attributes.

It can be readily seen from Table 5.3 that ObscureNet outperforms all baselines

in terms of the intrusive inference accuracy by a considerable margin. This

is while it only reduces the data utility insignificantly, i.e., less than ∼ 6%

compared to AAE.

To conclude, our experiments show that ObscureNet outperforms the base-

lines and autoencoder-based anonymization techniques from related work in

all three tasks, we studied in this section. Compared to the augmented VAE

network technique introduced in Chapter 3, ObscureNet, which is based on

the CVAE framework, performs comparably better in the private attribute

anonymization. Hence, from now, we establish ObscureNet as our selected

anonymization technique to perform further studies.

In the MobiAct dataset, it completely obscures gender and weight-group

with a small loss of data utility. We believe that data utility can be further
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Table 5.4: Accuracy of sensitive and desired inferences using ObscureNet with
different private-attribute modifiers in the three anonymization tasks.

Original data Random guess Deterministic Probabilistic Randomized
Activity Private Private Activity Private Activity Private Activity Private

MotionSense (Gender) 96.94 93.33 50.00 95.61 16.95 96.02 54.32 95.99 58.49
MobiAct (Gender) 98.82 97.52 50.00 95.72 14.43 97.02 52.70 96.26 54.20

MobiAct (Weight-group) 98.84 91.67 33.33 96.86 11.47 97.57 49.78 97.45 43.02

improved by using different hyperparameters as discussed in Section 5.4.1. In

the next section, we examine the effects of different private-attribute modifiers

and corroborate that ObscureNet can prevent re-identification of private at-

tributes thanks to non-deterministic modifications of these attributes. This is

a significant improvement over other autoencoder-based anonymization tech-

niques [42], [43].

5.3 Non-deterministic Anonymization

In this section, we compare the three anonymization techniques which can be

implemented using ObscureNet and were described in Section 4.1.4. Two of the

three techniques, namely probabilistic modification and randomized approach,

add randomness to the anonymization process. This can effectively prevent

an adversary from passing a dataset with known private attributes through

ObscureNet and training a model to recover the original data based on the

anonymized data and true private attributes.

Table 5.4 shows the accuracy of desired and sensitive inferences when the

private attribute (noted in parentheses) is obscured using ObscureNet. Expect-

edly, the deterministic modifier yields the lowest sensitive inference accuracy

because, unlike the other two techniques, it modifies the private attribute at

all times. However, as we discuss in the next section, private attributes can be

easily re-identified due to this anonymization’s deterministic nature. Results

for the other two techniques are quite similar; they can reduce the intrusive

inference accuracy to the level of a random guess. The randomized approach’s

nice property is that it does not need to use a model to detect the private

attribute before modifying it. This makes it a suitable and more practical

choice for anonymization on resource-constrained devices.
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5.4 Re-identification Accuracy

In the previous section, the ability of ObscureNet to anonymize private data

was evaluated in deterministic and non-deterministic cases. Although the de-

terministic private-attribute modifier does a better job of reducing the accu-

racy of sensitive inferences, we show that it cannot prevent the re-identification

attack.

The re-identification attack exploits the deterministic nature of anonymiza-

tion to foil the anonymization process [22]. Suppose 20% of the anonymized

data is leaked to the attacker, i.e., they know the true private attribute as-

sociated with this data and can leverage this knowledge to train a model to

re-identify the true attribute for the rest of the data. To get this 20%, we ran-

domly choose 20% of the anonymized data and evaluate the accuracy of the

re-identification attack. We do 20 independent runs and report the average and

standard deviation of the accuracy of the re-identification model. Figure 5.1

illustrates that both ObscureNet and Anonymization Autoencoder [42] fail to

completely ward off the re-identification attack due to the deterministic nature

of anonymization they perform. However, from Figure 5.1, we can conclude

that probabilistic modification and randomized approach can significantly re-

duce the accuracy of a re-identification model.

Figure 5.1 shows that the randomized approach which is easier to deploy

than the probabilistic attribute modifier, has nearly the same performance as

the probabilistic one in the gender anonymization task. But, in the weight-

group anonymization task, it further reduces the re-identification accuracy by

roughly 13%.

5.4.1 Investigating Utility-Privacy Trade-offs

In this section, we investigate how the anonymization performance of Ob-

scureNet can be enhanced by adjusting the two hyperparameters, α and β,

when networks are being trained. Furthermore, we explore if users can trade

utility for privacy by adjusting the hyperparameters. For brevity, we only

study the gender anonymization problem using the MotionSense dataset and
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Figure 5.1: Comparison of the inference accuracy of re-identification model
averaged over 20 runs on the sensor data anonymized by ObscureNet using
different attribute modifiers. Error bars show 2σ from the mean.

report the results when the deterministic attribute modifier is adopted. Since

we neglect the possibility of user re-identification in this stage, the best anonymiza-

tion technique would be the one that reduces the accuracy of the sensitive

inference to zero.

Recall the adversarial loss function of ObscureNet expressed in Equa-

tion (4.2). Intuitively, higher α encourages information factorization, which

subsequently prevents the leak of private information through the latent rep-

resentation. But it can lower the reconstruction quality because VAE’s ELBO

gets a lower relative importance. Similarly, higher β encourages the disentan-

glement of latent variables but reduces the reconstruction quality. Thus, it is

possible to achieve different utility-privacy trade-offs by tuning α and β.

Figures 5.2 and 5.3 show respectively the accuracy of desired and sensitive

inferences and how it changes with α and β values. We consider 6 values of β

and 4 values of α; these values are intentionally chosen from the logarithmic

scale to examine the range of behavior we can expect from ObscureNet. We

assume β can take values from {0.1, 0.2, 0.5, 1, 2, 10} and α can take values

from {0.1, 0.2, 1, 10}.

As it can be seen from Figure 5.2, for a fixed value of α, shifting β to the
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two extremes, i.e., 10 or 0.1, would diminish the utility of data, although the

decline in utility is more pronounced when β = 10. Another observation is

that for a fixed β, the value of α does not seem to drastically affect the utility

of data unless it is equal to 10. We attribute this to the fact that when α = 10,

information factorization overwhelms the VAE’s reconstruction loss.

In Figure 5.3, we can seen that increasing the value of β from 0.2 to 2

lowers the accuracy of the sensitive inference in general. However, moving β

to any of the two extremes diminishes the anonymization performance of the

ObscureNet for all α values. Comparing the curves for different values of α

suggests that α = 0.1 is almost always better than other values of α regardless

of the value of β.

Considering the accuracy of both desired and sensitive inferences, it turns

out setting α to 0.2 and changing β between 0.1 and 2 yields the Pareto

frontier. For example, the user can trade utility for privacy by setting β to 2

and do the opposite by setting β to 0.1. While we only tried a small number

of choices for α and β, we already showed that it is possible to navigate the

privacy-utility trade-off by tuning these weights.

5.4.2 Obscuring Multiple Private Attributes

We now turn our attention to the case where there are multiple private at-

tributes. Specifically, we treat gender and weight-group of subjects in the

MobiAct dataset as private attributes and consider their activity as the public

attribute. We evaluate the anonymization performance of a single ObscureNet

model, which can hide both private attributes simultaneously, with deter-

ministic, probabilistic, and randomized modifiers. In this case, ObscureNet

conditions the probabilistic decoder on both private attributes and uses two

discriminator networks, one for each private attribute. We train ObscureNet

in an adversarial setting, as described in Section 4.1.3.

This problem is interesting as, in practice, the user often wishes to anonymize

multiple private attributes simultaneously. Figure 5.4 shows the result of joint

anonymization of gender and weight-group attributes while preserving infor-

mation about the activity in the anonymized data. It is evident that Ob-
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Figure 5.2: The accuracy of activity inference with varying α and β values.
Note that the x-axis has logarithmic scale and the y-axis is exaggerated.
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Figure 5.3: The accuracy of gender inference with varying α and β values.
Note that the x-axis has logarithmic scale.
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Figure 5.4: Inference accuracy of ObscureNet with different attribute modifiers
when it is trained to hide two private attributes at the same time.

scureNet with a deterministic attribute modifier can successfully reduce the

accuracy of both sensitive inferences to less than 25% while achieving the

accuracy of 94.8% for the desired inference. Should we use the probabilistic

modifier or the randomized approach, the accuracy of both sensitive inferences

would get close to the level of a random guess. This indicates that a single

ObscureNet model can effectively hide multiple private attributes.

Nevertheless, comparing this result with the result of removing each private

attribute using a separate ObscureNet model (cf. Table 5.2 and Table 5.3), we

can see that the anonymization performance is slightly degraded. Therefore,

if the execution time and required resources are not an issue, an alternative

approach for anonymizing several attributes could be to create an anonymiza-

tion pipeline by utilizing multiple ObscureNet models (each concealing only

one private attribute) and feeding the output of one model to the next model

in the pipeline.

5.5 Performing Anonymization on IoT Devices

We finally investigate if ObscureNet can run on a Raspberry Pi 3 Model B

to anonymize sensor data in real time. We use the Raspberry Pi as an IoT
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Table 5.5: The running time of ObscureNet when anonymizing one embedding
in different tasks

Anonymization task
Running time (ms)/Embedding Total running time (ms)

Desired Inference Sensitive Inference Probabilistic Encoder Probabilistic Decoder per embedding

MotionSense (Gender) 0.60 0.62 0.86 0.83 2.91
MobiAct (Gender) 10.39 10.14 9.33 1.15 31.01
MobiAct (Weight-group) 10.05 10.05 9.78 1.18 31.06

device that collects data from several sensors and runs ObscureNet locally to

anonymize the collected data. We install Keras and PyTorch libraries on the

Raspberry Pi, and report the running time of ObscureNet when the private

attribute is modified in a probabilistic fashion3. We assume the encoder and

decoder networks of ObscureNet are trained in a server, where the training data

resides, and the weights are sent to the IoT device prior to anonymization.

To make real-time anonymization possible on the the Raspberry Pi, Ob-

scureNet must be able to anonymize an embedding before the next one be-

comes available. Recall that in both datasets, we set the stride length to 10

samples, which means that the next embedding is created after receiving 10

sensor readings. The sampling rate of the IMU sensor is respectively 50Hz and

20Hz in MotionSense and MobiAct. Hence, a new embedding is created every

200 milliseconds in MotionSense, and every 500 milliseconds in MobiAct. If

the running time of ObscureNet per embedding is less than this, it will be able

to perform anonymization in real time.

As illustrated in Figure 4.2, an execution of ObscureNet can be divided

into four main steps: (1) predicting the public and private attributes associ-

ated with the original data using the pre-trained desired and sensitive inference

models, (2) encoding the input data through an attribute-specific encoder, (3)

modifying the predicted private attribute, and (4) decoding the latent repre-

sentation together with the modified attribute through an attribute-specific

decoder. The first step involves running both inference models. The second

and fourth steps require selecting the attribute-specific encoder and decoder

networks according to the predicted public attribute. The third step involves

generating a random number to determine how the private attribute should be

3the running time would be even lower if we adopt the randomized approach. This is
because we do not need to predict the private attribute before modifying it.
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modified. We ignore the running time of this step as it is negligible compared

to the running time of the other three steps.

Table 5.5 shows the running time (in milliseconds) of the main steps in Ob-

scureNet in three different anonymization tasks, namely gender anonymization

in MotionSense, and gender and weight-group anonymization in MobiAct. To

obtain the running time per embedding, we calculated the total running time

of each step for approximately 8,000 embeddings and then divided this by the

number of embeddings. Note that the running times of the attribute-specific

encoder and decoder networks depend on the predicted public attribute. In

this table, we only report the worst-case running times of the attribute-specific

encoder and decoder networks across different activities (i.e., values of the pub-

lic attribute).

Considering the gender anonymization task in MobiAct, the activity and

gender inference models take roughly 10 milliseconds each to predict the pri-

vate and public attributes of one embedding. The encoder and decoder run-

ning times for one input data embedding are around 9 and 1 milliseconds,

respectively. These add up to 31 milliseconds per embedding. In the case

of weight-group anonymization, the running times also add up to roughly 31

milliseconds. Given the time budget of 500 milliseconds, our results show that

ObscureNet can anonymize the gender and weight-group attributes of partic-

ipants in the MobiAct dataset in real time on a Raspberry Pi 3 model B.

Turning our attention to the gender anonymization task in MotionSense,

we find that predicting the private and public attributes takes much less time.

In particular, gender and activity inferences complete in 0.62 and 0.60 mil-

liseconds, respectively. Moreover, the encoder and decoder networks take re-

spectively 0.86 and 0.83 milliseconds to run. Thus, the total running time of

ObscureNet would be 3 milliseconds per embedding. Given the time budget of

200 milliseconds, we corroborate that ObscureNet is capable of anonymizing

input data embeddings of MotionSense in real time.
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Chapter 6

Conclusion

In this chapter, we revisit the research questions outlined in Chapter 1 and

explain how we addressed them in this thesis. We discuss the limitations of

each of our proposed techniques and make some concluding remarks.

This thesis proposes anonymization solutions based on generative models

which aim to offer acceptable levels of utility and privacy loss, while pre-

venting user re-identification. Specifically, we proposed two techniques: an

augmented VAE network described in Chapter 3 and a CVAE-based network

called ObscureNet which was described in Chapter 4. To our knowledge, these

ideas have not been previously applied to the sensor data anonymization prob-

lem. The proposed anonymization techniques are well-suited for deployment

on resource-constrained edge devices.

In Chapter 3, we propose the augmented VAE network that utilizes our

suggested mean manipulation framework for data anonymization [22]. The

technique discussed in Chapter 3 is an extension of our work [23]. The mean

manipulation technique uses a transformation function visualized in Figure 3.2.

In Chapter 3, we augment the loss function of the VAE expressed in Equa-

tion (2.1) with a classification loss which results in the loss function in Equa-

tion (3.1).

Moreover, in Chapter 4 of this thesis, we propose a different take on the

anonymization task by using CVAE-based conditional attribute modifications.

We dub this technique as the ObscureNet anonymization technique. We dis-

cuss how the CVAE can be used along with the modification of its condition
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variables to change the private attributes in the reconstructed data. Here, we

also, modify the original objective function of the CVAE, indicated in (2.2) by

adding our proposed adversarial classification loss, shown in Equation (4.2).

The goal here is that in order to increase the role of the condition variable in

deciding the private data attributes, we minimize the amount of information

about the private attributes in the learned latent representations of the CVAE

model.

6.1 Addressing Research Questions

RQ 1. How successful are the two anonymization techniques con-

sidering data utility and privacy?

Answer. Given our discussions in Chapter 3 and the results presented in

Chapter 5, we conclude that compared to our attribute-specific VAE baseline,

which uses the ELBO in Eq.(2.1), the modified VAEs’ ELBO expressed in

Eq.(3.1) proves to be more anonymization friendly and gives better determin-

istic anonymization results. We compare our anonymization baselines given

deterministic manipulations of latent representations. This is because manip-

ulation techniques that yield better sanitization of data in the deterministic

case are shown to reduce inference accuracy to accuracy of random guess in

the probabilistic case.

By examining the results from our evaluations, given in Chapter 5, it is

evident that both the VAE and CVAE-based techniques proposed in this work

outperform all the other baseline methods and the best-in-class techniques

from related work. Upon further analysis of our techniques on three different

anonymization tasks for the MotionSense and the MobiAct datasets, we see

that ObscureNet outperforms our augmented VAE network anonymization

method.

RQ 2. What results do these techniques yield in terms of anonymiza-

tion performance and vulnerability to the re-identification attack

when using non-deterministic manipulations?
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As discussed in Chapter 4, we can utilize multiple modification techniques

while changing the private attributes of the data. We discussed deterministic,

probabilistic, and randomized manipulations in Section 4.1.4. In our evalua-

tion chapter, we study different characteristics of each of these modification

techniques. As shown in Table 5.4, the deterministic modification renders the

ObscureNet technique to be most effective in hiding the most amount of pri-

vate attributes in the data. For example, in the anonymization of the gender

attribute of the subjects in the MobiAct dataset, the deterministic anonymiza-

tion reduces the gender inference accuracy from 97.52% to 14.43%. The prob-

abilistic anonymization reduces the gender inference accuracy to only 52.70%.

However, due to its deterministic nature, the deterministically modified data

is vulnerable to the re-identification attack, as shown in Figure 5.1.

Moreover, in anonymization of the MobiAct gender private attributes, Fig-

ure 5.1 shows that the re-identification attack achieves a gender re-identification

accuracy of 94.54% in the deterministic case. However, in the probabilistic

anonymization, the gender re-identification accuracy achieves a comparably

lower 78%. Hence, although the private attribute inference accuracy is re-

duced to a random guess accuracy for each case, we favor probabilistic and

randomized methods because the anonymized data becomes less susceptible

to the re-identification attack.

RQ 3. Can VAE and CVAE-based techniques be used to trade pri-

vacy for data utility?

As discussed in Chapter 1, there is an inherent trade-off between utility

of anonymized data and privacy. The utility-privacy trade-off indicates the

trade-off between the amount of useful information removed in the process

of concealing the private attributes of the data. The utility-privacy trade-off

can be navigated by introducing training weights in the loss function of our

proposed ObscureNet (refer to Eq. (4.2)).

Concretely, by introducing weights α and β in the loss function of our

proposed ObscureNet, we can trade privacy for utility. As we see in Figures 5.2

and 5.3, changing the values of the α and β parameters forms a Pareto frontier
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for the utility-privacy trade-off. Hence, we can tune the anonymization process

according to user needs and requirements.

RQ 4. Can our manipulation techniques be used to anonymize

multiple private attributes all at once?

In Chapter 5, we study how the ObscureNet technique can be utilized for

the anonymization of two different private attributes at once, namely gen-

der and weight-group attributes from the MobiAct dataset. These results

are shown and presented in Figure 5.4, where the inference accuracy of both

the gender and weight attributes are reduced to less than 25% while achiev-

ing an accuracy of 94.8% for the desired inference. However, by comparing

these results with the result of removing each private attribute using a sep-

arate ObscureNet model, we can see that the anonymization performance is

slightly degraded. Therefore, if the execution time and the required resources

for anonymization are not our primary concerns, an alternative approach to

anonymizing several attributes could be to create an anonymization pipeline

by utilizing multiple ObscureNet models (each concealing only one private at-

tribute) and feeding the output of one model to the next model in the pipeline.

6.2 Final Remarks

Given the rapid speed of adoption of consumer IoT devices, from indoor fly-

ing camera drones to smart vacuums and HVAC controllers, homes will soon

be equipped with multiple sensing devices collecting information about their

surroundings. Since the collected data can provide useful services, it is antici-

pated that consumers choose to buy many IoT devices for their convenience,

essentially preferring convenience over their potential privacy risks. This in-

dicates a need for privacy-preserving techniques that allow for safe and secure

user data anonymization without limiting the penetration of IoT devices in

the built environments.

Our experiments on two HAR datasets, MotionSense and MobiAct, suggest

that among our two proposed methods, ObscureNet can reduce the accuracy
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of intrusive inferences by an additional 13.48% on average compared to the

best autoencoder-based anonymization baseline without causing a significant

drop in the accuracy of desired inferences. Compared to augmented VAE

network, ObscureNet reduces the accuracy of intrusive inferences by 8.79%

on average over the three anonymization tasks. In addition to giving better

anonymization results, ObscureNet’s modification of the condition variable is

comparably easier and less costly than the mean manipulation technique used

in the VAE anonymization. The need to calculate, update, and propagate

new values of the average latent representations used in the mean manipu-

lation process presents technical challenges for real-world deployment of this

technique.

Furthermore, we demonstrate the ability of ObscureNet in concealing mul-

tiple private attributes at once. We investigate how by tuning hyperparameters

in the training of ObscureNet, users can navigate the trade-off between utility

and privacy. We argue that this is an essential property of our anonymization

technique as users of IoT devices naturally have different expectations and

concerns about applications they use, which work on their data.

In future work, We aim to provide users with abstract ways to describe

their privacy concerns and add a slider knob to the anonymization technique

to adjust their privacy in return for higher utility. Furthermore, We plan to

study whether anonymization results vary with the subject/participant of the

study. We will also look into ways to relax the assumption of having training

data in a central repository and investigate how our VAE models can be trained

in a federated learning setting.
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