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ABSTRACT 

A plume rise model is derived from the equations of turbulent 

motion, retaining the turbulent flux terms. The solutions are 

similar to those proposed earlier by Csanady but containing 

an exponential decay term. The model finds particular value in 

predicting a leveled-of£ plume traje.ctory in neutral atmospheric 

conditions. In unstable atmospheric conditions the ultimate mode 

of behavior depends on whether the atmospheric turbulence or the 

unstable stratification'finally dominate the plume motion. 
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ON THE RISE OF BUOYANT PLUNES IN TURBULENT ENVIRONMENTS 

Current Modeling Practices 

Historically, in describing the motion of buoyant chimney plumes, two 

rather different theoretical models have been employed. In both models 

the mixing with the environment has been found to have an important 

effect on the motion, although this mixing is supposed to occur in 

different ways. The first theory considers a "thermal .• " In this case 

mixing is the result of turbulent motion produced by buoyancy forces 

within the plume and the plume grows by entraining external fluid. 

This theory demands that the entrainment velocity is everywhere 

proportional to the upward plume velocity and so applies exactly in 

a quiescent environment. The approach was first suggested by Horton 

et al (1956). The second theory regards the buoyant plume element as 

a region which is mixing fluid with its surrounding at a rate governed 

by the level of turbulence in the environment. In this case plume 

growth or plume dispersion depends on such quantities as the size of 

the plume element and the environmental turbulence intensity (Batchelor, 

1950). 

Environmental turbulence produced independently of the motion of 

buoyant plumes will almost certainly have an effect on this motion and 

should therefore be included in the description of plume motion in a 

turbulent environment. Each of these theories could be relevant at a 

different stage in the development of a buoyant plume. When the 

velocity of the plume is high the environmental turbulence will be 

relatively unimportant and the first theory is then an appropriate 

model. But when the plume and environmental turbulence velocities are of 

similar magnitude the second theory provides the more accurate predict

ions. One way of describing the complete history ofa buoyant plume 

would be to superpose the two separate theories. In fact this is the 

method used by among others, Slawson and Csanady (1967), Briggs (1969) 

and Bringfelt (1969). However, this approach necessitates the 

introduction of rather arbitrary transition points, the concept of 



which only adds to the complexity of the problem. Furthermore the 

approach never accounts for the leveled-of£ plume trajectory antici~ 

pated in near-neutral and neutral atmospheric conditions. In the 

present paper a comparable theory will be developed but one which 

describes the entire history of plume motion in a single formulation. 

Governing Equations 

The present theory encompasses the two plume phases described above, 

but in the case of the atmospheric phase the plume element is regarded 

as a region of constant size or an "open parcel.'-' This concept has 

previously been used by Priestly (1953) in describing the motion of 

natural thermals. 

Following Csanady (1973) the approximate equations of vertical 

momentum and potential temperature for the mean component of turbulent 

flow are: 

e, 
= g e (1) 

a 

(2) 

2 

where e' is the excess plume potential temperature and~ and~ are 

the turbulent transfer coefficients for momentum and heat respectively. 

Since the Laplacian expresses a difference in quantity between neigh

boring points the turbulent flux terms may be written as (Priestly 

(1953), Csanady (1973)): 

/ 

where c
1 

and c2 are constants depending only on the shape of the 
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distribution of w and 8. R is the characteristic constant size (radius) 

of the plume element. If it is ass.umed that momentum and heat are 

transported in the same way with the same effectiveness, by the turbu

lence one w·ould expect that Km/~ .== 1. Also assuming, for the purpose 

of this study, constancy of Km == ~ = K as well as identical shapes of 

the distribution of wand e i.e. cl = c2 = c we obtain: 

CK k = 
R2 = 

constant. 

In view of this expression Eq. 's (1) and (2) now become: 

aw -;-+V.i7w+kw 
ot -

' 8 
= g e 

a 

ae 
~ + v • ve' + ke' + w ~ = o at az 

(3) 

(4) 

where instead of studying the variation in plume potential temperature 

we selected to study the variation in plume excess potential temper

ature i.e., e = e + e'. In addition it was assumed that e varies 
a a 

essentially only in the vertical direction. 

Consider a buoyant chimney plume rising in a constant cross-wind U. 

The change in total momentum and buoyancy (in kinematic units) is now 

obtained by integrating Eq. 's (3) and (4) over the entire plume 

cross-section. Thus: 

~ t ./! wdydz + k Jf w_dydz = /Jg ~' dydz 
F F F a 

·, 

dd fie' dydz + k /e 'dydz 
t F F 

ae r 
=- ~ Jfwdydz 

q z F 

where a linear profile of ambient potential temperature is assumed. 

Following Csanady (1973) it is .now convenient to introduce the flux 

of total momentum and buoyancy respectively; 

(5) 

(6) 



M/U = IJ~dydz 
F 

F/U = ~~8'/8 dydz 
F a 
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Then multiplying Eq. (6) by the ratio g/$-a' considered constant, and 

making use of the above definitions, Eq. 1s (5) and (6) finally become:· 

&'1 
-=F-kM 
dt 

dF 2 
dt = -N M- kF 

2 
where N = (g/8 )38 /3z =constant (N = Brunt-Vaisala frequency). 

a a 

Plume Motion 

By eliminating F from Eq.'s (7) and (8) the equation governing the 

vertical motion of the plume is arrived at. Thus: 

This is a second order linear differential equation with constant 

coefficients the solution of which depends on the sign of N
2

• 

(7) 

(8) 

2 Different signs of N correspond to different atmospheric stability 

conditions. 

2 
Suppose that the atmosphere is stably stratified, N > 0. In this case 

the solution of Eq. (9) is: / 

sin l:t + arctan ::j e -kt (10) 

for the initial conditions H = M , F = F at t = 0. This solution is 
. 0 0 

similar to that given by Csanady (1973) with the exception of the term 



-kt e The motion is oscillatory, the plume rising to a global maximum 

when M = 0 after which it executes damped harmonic oscillations about 

a lower equilibrium height. As k + 0 the motion becomes strictly 

periodic corresponding to the solution proposed by Csanady (1973). 

2 
For neutal atmospheric conditions, N = 0, the solution of Eq. (9) is: 

M = (M + F t) e -kt. (11) 
0 0 

The motion is asymptotic, i.e. a final rise is observed as M + 0. 

For unstable stratification, N
2

< 0, the solution of Eq. (9) is: 

F ~ G M = ...c.2... )1 -~ sinh Nt 
N F 2 

0 . 

M7j -kt 

+ artanh F~_t (12) 

2 ~ where N = jN! • There are-two-different modes of behavior depending 

on whether the exponential of hyperbolic term ultimately dominates. 

For sufficiently large k the exponential term is finally dominant and 

the plume approaches its final height asymptotically. On the other 

5 

hand when k is sufficiently small the plume's vertical momentum flux will 

ultimately increase exponentially with time, i.e. the plume becomes 

absolutely buoyant. 

Plume Trajectories 

The definition of vertical momentum flux provides a suitable expression 

from v1hich to calculate the plume trajectory. Hriting rrM/U = fwdydz, 

the integration is carried out over a circular plume region to yield: 

M 
2- 2 

UR w = UR dz/dt 
/ 

(13) 

where w is the vertical plume velocity averaged over the cross-sectional 

plume area. Given an appropriate relationship for the plume radius R, 

Eq. (13) can be integrated to yield the time-dependent trajectory. The 

present theory requires that the pl~~e grows during its self-structured 

phase only, by entraining external fluid. Then in accordance with 



ea,rlier plume rise models (see eg. BJ;iggs~ 1969) we may adopt; the 

simple linear growth relationship, R ;::: qz. The derivation of the 

complete plume trajectory is now a relatively straightforward matter. 

Here it will suffice to illustrate the different trajectories graph

ically. For this purpose Figures 1 and 2 were prepared, The 

trajectories were calculated assuming a buoyancy~dominated plume, 
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i.e. one where M N/F « 1. Of particular interest is the leveled-off-
0 0 2 

plume trajectory in neutral atmospheric conditions (N = 0) as t ~ oo. 

Also noteworthy is the asymptotic rise in unstable conditions (N
2 

< 0) 

when k is sufficiently large, a point to be discussed later. 

In dispersion calculations we are not so much interested in the plume 

trajecto.ry as in the final rise of the plume. This rise may be defined 

as the height above the physical source when the plume centerline is 

in equilibrium. This concept applies in all instances of oscillatory 

and asymptotic motion since then w and dw/d t tend to zero as t tends to 

infinity. The final plume rise is obtained from Eq.'s (9) and (13) and 

is: 

(14) 

Eq. (14) holds for all values of N
2. However in unstable atmospheric 

conditions, N
2 

< 0, a final plume rise can be attained only when the 

denowinator in Eq. (14) is greater than zero. Of special interest is 

the global maximum rise obtained in stable atmospheric stratification 

(N
2 

> 0), i.e. 

Z /Z = (1 + e-nk/N) 113 when t = n/N. 
m f 

(15) 

Eq. (15) is strictly valid for a buoyancy-dominated plume but is also 

an excellent approximation to a plume with relatively large exit 

velocity. 
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Unstable Plume Behavior 

In unstable atmospheric conditions the ultimate mode of behavior depends 

on whether the atmospheric turbulence level (represented by k) or the 

unstable stratification (represented by -N2) finally dominates the 
2 ;.,; 

plume motion. For high atmospheric turbulence level, k > IN I Z, the 

plume breakup may be so vigorous that both buoyancy and vertical 

momentum are rapidly dissipated and further rise is prevented. This 

corresponds to the asymptotic case. On the other hand when the 
2 k: 

atmospheric turbulence level is low, k < IN I 2 , the plume remains 

coherent and the effects of the unstable atmosphere dominate the motion 

of the plume. The plume becomes absolutely buoyant. 

In order to use the present model the mixing ratio, k, must be known 

or estimated. Future work will therefore concentrate on establishing 

relationships for this parameter, the value of which presumably 

depends on the stability of.the atmosphere, the level of atmospheric 

turbulence, and some characteristic plume size. 
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