
THE TRANSPORT OF CHARGED PARTICLES IN A FLOWING MEDIUM

J. Y. Lu
1

Department of Physics, University of Alberta, Edmonton, AB T6G 2J1, Canada; jlu@space.ualberta.ca

G. P. Zank

Institute of Geophysics and Planetary Physics, University of California, Riverside, CA 92521;
zank@ucrac1.ucr.edu

and

R. Rankin and R. Marchand

Department of Physics, University of Alberta, Edmonton, AB T6G 2J1, Canada;
rankin@space.ualberta.ca, marchand@phys.ualberta.ca

Received 2002 February 18; accepted 2002May 10

ABSTRACT

The propagating source method for solving the time-dependent Boltzmann equation describing par-
ticle propagation in a magnetically turbulent medium is extended to a more realistic case that includes
focusing and adiabatic deceleration. The solutions correspond to beam propagation in the solar wind.
Pitch-angle scattering away from 90� is described by standard quasi-linear theory (QLT), while scattering
through 90� is approximated by a BGK operator representing a slow mirroring process. The detailed
numerical technique for solving the Fokker-Planck equation for two particular spectra is presented.
Comparisons are made between our modified QLT (MQLT) model and a BGK model, between highly
anisotropic scattering and moderately anisotropic scattering, and between fast particles and slow par-
ticles. It is shown that: (1) for moderately anisotropic pitch-angle scattering, the initial ring-beam distri-
bution finally evolves into a broad Gaussian distribution and the QLT isotropic and MQLT anisotropic
models could be rather well approximated by the simple relaxation time operator. (2) For highly aniso-
tropic pitch-angle scattering, a moving pulse with a spatially extended flat tail is formed, and there exist
some differences between the MQLT and BGK models. Specifically, at a particular pitch angle, the spa-
tial distribution from MQLT model occupies a much wider region than that in the BGK model. (3) In
the highly anisotropic scattering medium, more particles are cooled by adiabatic deceleration, some par-
ticles move a little faster, and the spatial distribution at a specific pitch angle is much more dispersed
than that in the case of moderately anisotropic scattering. (4) Compared with the BGK model, the ani-
sotropy persists for a little longer and some particles move a little slower; consequently, intensity profiles
have a greater amplitude at later times in the MQLT model. (5) Finally, fast and slow particles have
similar distribution characteristics, except that convection is much more important for slow particles.
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1. INTRODUCTION

Pitch-angle scattering in random magnetic fields is one of the basic mechanisms that control the propagation of
charged particles in space or astrophysical environments. Thus, particle populations such as Galactic and anomalous
cosmic rays, energetic solar particles, and interstellar and cometary pickup ions have distributions that are shaped by
pitch-angle scattering. Since magnetic fluctuations are present in the solar wind (and undoubtedly in the interstellar
medium as well) on all scales and amplitudes, particle transport is likely to be a combination of small-angle and large-
angle scattering. We have written a series of papers to introduce a new approach, the propagating source method, to
solve the time-dependent transport equation for charged particles: Zank et al. (2000, hereafter Paper I) solved the BGK
Boltzmann equation under the assumptions of isotropic pitch-angle scattering and large particle energies. Lu, Zank, &
Webb (2001, hereafter Paper II) extended Paper I and developed a numerical solution for fast and slow particles experi-
encing anisotropic pitch-angle scattering. The scattering was modeled by a two-timescale BGK operator, and the model
was subsequently applied to investigate the propagation of interstellar pickup ions (Lu & Zank 2001). Recently, the
propagating source method was extended to the quasi-linear scattering operator (Zank, Lu, & Dröge 2002, hereafter
Paper III), but was limited by the neglect of focusing and adiabatic deceleration. Here we extend the propagating source
method to a more realistic Boltzmann equation that includes focusing and adiabatic deceleration, and compare large-
angle and small-angle scattering models.
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The transport of charged particles along a magnetic field is governed by the Fokker-Planck equation. By assuming
that the charged particle distribution function f ðx; t; vÞ is nearly gyrotropic, the gyrophase-averaged Boltzmann equation
in a stationary frame can be expressed as (Skilling 1971; Kulsrud 1983; Isenberg 1997)
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In equation (1), the distribution function f ðx; t; vÞ ¼ f ðx; t; l; vÞ, where the pitch angle l � v x b=v ¼ cos �, b ¼ B= Bj j is
the unit vector aligned with the large-scale magnetic field B, v denotes the particle speed, and v and l refer to the plasma
reference frame. Here U is the large-scale bulk flow velocity. The variables x and t denote the particle position and time,
respectively, and ð�f =�tÞc is the pitch-angle scattering operator. The terms S and L are source and loss terms, respec-
tively. We do not consider energy diffusion, perpendicular diffusion, drift, or sources and losses, but restrict ourselves to
a constant flow speed U and radial magnetic field. Then, equation (1) reduces to
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The pitch-angle scattering operator ð�f =�tÞc is given usually by weak turbulence quasi-linear theory (QLT),
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with the coefficient of pitch-angle scattering given by (Jokipii 1966; Hasselmann & Wibberenz 1968)

Dll ¼
lj jq�1ð1� l2Þ

�
; ð4Þ

where q is the spectral index of magnetic field turbulence, and � is the effective scattering time [� ¼ 3�s=ð2� qÞ �ð4� qÞ;
�s is the scattering time].

Although QLT has been applied to explain many space or astrophysical problems, it obviously fails at producing scattering
through l ¼ 0, and the 90� problem has not yet been resolved. The BGK collision operator or relaxation-time approximation
is sometimes used instead of equation (3) (Fisk & Axford 1969; Gombosi et al. 1993; Kóta 1994; Schwadron 1998; Lu & Zank
2001). In attempting to resolve the 90� problem associated with QLT, several modifications to QLT have been suggested.
Among these are mirroring by fluctuations of the magnetic field magnitude (Goldstein, Klimas, & Sandri 1975; Smith 1992),
nonlinear extensions of QLT (Goldstein 1976; Jones, Birmingham, &Kaiser 1978; Owens 1974; Völk 1975), resonance broad-
ening (Völk 1973), wave-propagation effects (Schlickeiser 1988, 1989; Schlickeiser, Dung, & Haekel 1991; Dröge & Schlicke-
iser 1993; Dröge 2000a), dynamical turbulence (Bieber &
Matthaeus 1991, 1992; Bieber et al. 1994), and nonresonant pitch-angle scattering (Ragot 1999, 2000). A review of models
describing various approaches to particle scattering through 90� is given by Dröge (2000b). By using a simple model, Paper III
considered four augmentations to QLT and compared the behavior of different scattering mechanisms through 90�. In this
paper we neither discuss those mechanisms nor suggest any new mechanism. Our purpose is to develop a new numerical
approach to solving the Fokker-Planck equation.

Recently, Felice & Kulsrud (2001) presented a self-consistent theory that attempts to resolve the problem of scattering
through 90� by including a mirror interaction with self-generated waves. In their model, QLT is assumed to hold to down to a
value of l ¼ 10�4. Mirror effects and the quasi-linear wave interactions act over all pitch angles, after which the mirror-linear
interaction dominates for � � 90�. As noted, quasi-linear interactions dominate outside of the small region.

In this paper, we use an assumption similar to that of Felice & Kulsrud (2001): the quasi-linear interaction holds within the
forward and backward hemisphere, while the mirror-linear interaction is responsible for the scattering through 90�. We intro-
duce two scattering timescales, �1 and �2, where �1 is the quasi-linear pitch-angle scattering time, and �2 is mirroring scattering
time. In order to distinguish our approach from the standard QLTmodel, we refer to it here as theMQLTmodel.

2. ISOTROPIC SMALL-ANGLE SCATTERING MODEL

Consider first the special case of q ¼ 1, which corresponds to isotropic scattering with no singularity at 90� in equation (4).
If we assume a constant radial flow as the background, and a large-scale magnetic field pointing away from the Sun, the
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Boltzmann equation (2) becomes
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where � is the quasi-linear small-angle scattering time. As in Papers I, II, and III, we consider the Cauchy problem of equation
(5) with arbitrary initial data given by

f ðr; t ¼ 0; l; vÞ ¼ Fðr; 0; l; vÞ : ð6Þ

Note that no restrictions are imposed on the form of the initial data, i.e., they need not be isotropic, and we consider an initial
ring-beam distribution

F r; 0; l; vð Þ ¼ N rð Þ� v� v0ð Þ� l� l0ð Þ
2�v2

; ð7Þ

where NðrÞ is the particle number density as a function of position. We shall frequently consider a localized number density
NðrÞ ¼ Hðr� r1Þ �Hðr� r2Þ between r1 and r2 (whereH is the Heaviside step function). Throughout this paper, the subscript
‘‘ 0 ’’ denotes the parameter values of particles in a ring-beam distribution.

As discussed in Papers I and II (also see Gombosi et al. 1993) in the context of large-angle scattering, at very early times an
initial particle distribution should propagate almost ballistically until such time as scattering begins to modify the distribution.
Thus, particle scattering may be viewed as a loss process for the unscattered streaming particles with a decay time given by the
scattering time � . Conversely, no scattered particles exist at early times, and instead the scattered distribution grows from zero
as the unscattered streaming distribution decays. Thus, initial data can be prescribed for the unscattered particle distribution,
which, as it decays, leads to the formation of a scattered particle distribution. This approach was discussed originally by Zank
et al. (1999) and is reminiscent of the multiple scattering solution of the Boltzmann equation presented by Webb et al. (1999).
Since we are at liberty to separate the distribution function in any way we choose, provided that we ensure that the appropriate
initial and boundary conditions hold, the above comments suggest that we split the distribution function f into an ‘‘ unscat-
tered ’’ part F and a ‘‘ scattered ’’ part f s according to the decomposition

f ¼ F þ f s : ð8Þ

A similar separation has been used by Gombosi et al. (1991), Zank et al. (1999), Fedorov, Stehlik, & Kudela (1999), Webb,
Pantazopoulou, & Zank (2000), and Lu & Zank (2001). Since the unscattered part F experiences no scattering and is therefore
not described by a diffusion term in l, equation (5) can be expressed as
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Note that F can only lose particles unless an explicit source term is present (such as occurs for pickup ions in the inner and
outer heliosphere; Lu & Zank 2001). Evidently, F is a source term for the scattered particle distribution and, unlike the pre-
scribed initial data, is a moving source. As discussed in Paper I, such a distributed source of scattered particles acts to eliminate
the possibility of coherent pulses forming for isotropic scattering when a low-order truncation to a polynomial series solution
to equation (5) is used.

Paper II gave the analytic solution of equation (9) for the unscattered particle distribution functions:

Fðr; t; l; vÞ ¼ Fð~rr0; 0; ~ll0;~vv0Þe�t=� ; ð11Þ
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where D and C are constants determined only by the initial condition of the charged particles: D ¼ ~rr0~vv0 1� ~ll20
� �1=2

and
C ¼ 1

2
~vv20 þ ~ll0U~vv0, where ~ll0 and ~vv0 are the pitch angle and speed of particles at the initial location ~rr0. Since equation (12) is

essentially the implication of Liouville’s theorem, the inverse relation of initial values as function of r, v, l, and t is simply
changing t to�t.

To solve the scattered particle distribution, we first expand f s in an infinite series of Legendre polynomials in the form of

f s ¼
X1
n¼0

ð2nþ 1ÞPnðlÞfn ; ð13Þ

where fn ¼ 2�
R 1

�1 PnðlÞf sðr; t; l; vÞdl is the nth harmonic of the distribution functions f s, and Pn represents the nth Legendre
polynomial.

By means of the recursion relations ðnþ 1ÞPnþ1 þ nPn�1 ¼ ð2nþ 1ÞlPn, lP0
n � P0

n�1 ¼ nPn, and ðl2 � 1ÞP0
n ¼

nlPn � nPn�1 (the prime denotes differentiation), we obtain an infinite set of partial differential equations for the harmonics of
the distribution functions fn,
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where the source term Fn is the nth harmonic of the decaying unscattered distribution F, i.e., F ¼
P1

n¼0ð2nþ 1ÞPnðlÞFn and
Fn ¼ 2�

R 1

�1 PnðlÞFðr; t; l; vÞdl.
Papers I and II have shown that low-order expansions can be used to investigate particle transport at arbitrarily small times.

For the f1 truncation, equation (14) yields the coupled system
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Equations (15) and (16) are very similar to those of Papers I or II, and therefore can be solved numerically by using the oper-
ator split procedure described in Papers I and II, together with the analytic solution in the form of equation (11).

3. ANISOTROPIC SMALL-ANGLE SCATTERING AND MQLT MODEL

In space and astrophysical plasma, significant anisotropies are usually observed in the particle distributions. One such
example is interstellar pickup ions. At high latitudes or very close to the Sun, where the B field is oriented more radially, the
velocity distribution of pickup ions is found to be highly anisotropic, with little scattering into theV=U > 1 phase-space hemi-
sphere (Gloeckler et al. 1995; Gloeckler &Geiss 1998). Another example is solar particle events (Palmer 1982). For fully devel-
opedMHD turbulence, Kolmogorov theory yields a power spectrum in magnetic fluctuation with an exponent of�5/3. In the
solar wind, the power spectrum of magnetic fluctuations is frequently a broken power law with an inertial range exponent of
�5/3 (Matthaeus et al. 1994). To illustrate our approach, we extend the propagating source method to investigate particle
transport in such a turbulent medium (i.e., q ¼ 5=3).

The nonisotropic diffusion coefficient Dll in equation (4) is zero at 90�. Particles of large pitch angle experience very slow
scattering across 90� when 1 < q < 2 or are unable to scatter through l ¼ 0 when q � 2. Here we do not discuss mechanisms
for solving this problem, but simply assume that mirroring is responsible. A combination of mirroring and quasi-linear wave
interactions act over all pitch angles, but the quasi-linear interaction dominates in the backward and forward hemisphere,
while only the mirror-linear interaction acts to scatter particles at � ¼ 90�. This assumption is in basic agreement with the
recent analysis of Felice &Kulsrud (2001).

In our mathematical model, we introduce a two-timescale, anisotropic scattering operator. In the l < 0 hemisphere and the
l > 0 hemisphere, the quasi-linear scattering proceeds at the effective rate ��1

1 . However, scattering from one hemisphere to
the other in velocity space is due to mirroring, and this effect can be approximated by a BGK relaxation-time operator at an
average mirror scattering rate �2. As in Paper II,We use f þ to represent the forward-moving particles (l > 0), and f � the back-
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ward-moving particles (l < 0). We have
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where f �h i ¼ 1
2
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2
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þdl. Obviously, �24�1 means highly anisotropic pitch-angle scattering, i.e., particles

are typically scattered many times before being scattered through l ¼ 0. The above model is denoted theMQLTmodel to dis-
tinguish it from the standard QLTmodel.

Following the procedure in x 2, we split the distribution function f � into scattered and unscattered particle distributions,
i.e.,

f � ¼ F�ðr; t; l; vÞ þ f s�ðr; t; l; vÞ : ð18Þ

Then rearranging equation (17) yields
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��� ¼ �1�2=ð�1 þ �2Þ is the average time of all effective scattering.
The analytic solution of equation (19) for the unscattered particle distributions is

F�ðr; t; l; vÞ ¼ F�ð~rr0; 0; ~ll0;~vv0Þe�t=��� ; ð21Þ

where r, l, and v satisfy the equations (12a)–(12c).
To solve (20), we again expand f s� in terms of Legendre polynomials,
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functions f sþ and f s�, respectively. On substituting the Legendre polynomial expansion of equation (22) into equation (20),
we obtain an infinite number of partial differential equations in the forward and backward harmonics f �n :
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where the source term F�
n is the nth harmonic of the decaying unscattered distribution F�, i.e., Fþ
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For the f s�1 approximation, we have f s� ¼ P0f
�
0 þ 3P1f

�
1 ¼ f �0 þ 3ð2l� 1Þf �1 . Thus, equations (23) reduce to

@f �0
@t

þ U � v

2

� 	 @f �0
@r

þ v

2

@f �1
@r

� 2Uv

3r

@f �0
@v

�Uv

2r

@f �1
@v

¼
F�
0

�1
�
f �0
�2

þ
f �0 þ F�

0

�2
� v

2r
f �0 � 5v� 3U

2r
f �1 ; ð26Þ

Fig. 1.—MQLT solution of a ring beam for fast particles, v0=U ¼ 10, in a moderately anisotropic scattering �2=�1 ¼ 3. (a) Distribution function f in pitch
angle l and position r at t ¼ 1 and 15. (b) Spatial distribution of the omnidirectional distribution fh i at v=v0 ¼ 1 when t ¼ 0:1, 1, 5, 10, and 15. (c) Spatial and
temporal evolution of fh i at v=v0 ¼ 1. (d ) Particle distribution in velocity phase space at r ¼ 3 when t ¼ 5 and 15, and at r ¼ 28 when t ¼ 15.
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Equations (26) and (27) are of the same form as given in Paper II (eq. [29]), with the only difference residing in the right-hand
source terms. Therefore, the operator-splitting approach of Paper II can be used directly.

4. COMPARISON OF BGK AND MQLT

It was shown in Paper III that the QLT isotropic and anisotropic models could be rather well approximated by relaxation
time scattering models for the Boltzmann equation in the absence of focusing and adiabatic deceleration. We consider here
whether this conclusion continues to hold when focusing and adiabatic deceleration are included.

Consider an initial ring beam distribution

Fþð~rr0; t ¼ 0; ~ll0;~vv0Þ ¼
Nð~rr0Þ�ð~vv0 � v0Þ�ð~ll0 � l0Þ

2�~vv20
: ð28Þ

In our calculation, the initial beam is located at the region 30 < ~rr0 < 31, and l0 ¼ 0:25. For the unscattered particles, from
equation (21) and the average over lwe have

Fþ
0 ðr; t; vÞ ¼

Nð~rr0Þ�ð~vv0 � v0Þ
4�~vv20

e�t=��� : ð29Þ

Two anisotropic scattering rates are considered: �2=�1 ¼ 3, corresponding to strong scattering of particles through 90�, and
�2=�1 ¼ 10, corresponding to weak scattering through 90�. The first represents a nearly isotropic scattering model, but the sec-
ondmodel is highly anisotropic.

Fig. 2.—BGK solution of a ring beam for fast particles, v0=U ¼ 10, in a moderately anisotropic scattering �2=�1 ¼ 3. (a) Distribution function f in pitch
angle l and position r at t ¼ 15. (b) Spatial distribution of the omnidirectional distribution fh i at v=v0 ¼ 1 when t ¼ 0:1, 1, 5, 10, and 15. (c) Spatial and
temporal evolution of fh i at v=v0 ¼ 1. (d ) Particle distribution in velocity phase space at r ¼ 3 when t ¼ 5 and 15, and at r ¼ 28 when t ¼ 15.
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4.1. Fast Particles: v0=U ¼ 10

Figure 1 shows solutions of the MQLT model in the presence of strong particle scattering through 90�, �2=�1 ¼ 3, for very
fast particles, v0=U ¼ 10. Figure 1a gives the spatial and pitch-angle distribution for two different normalized times. At early
times t ¼ 1, the distribution remains highly anisotropic. By t ¼ 15, the distribution evolves into an isotropic state in pitch
angle and the spatial distribution at a particular pitch angle occupies a region of Dr � 8. Figure 1b shows the omnidirectional
distribution fh i for a particular v=v0 ¼ 1:0. The ring beam at t ¼ 0:1 dominates initially before finally evolving into a broad
Gaussian distribution by t ¼ 10. A related color plot is given in Figure 1c, which shows the temporal evolution and spatial dis-
tribution of fh i at v=v0 ¼ 1. Figure 1d shows a two-dimensional color intensity plot in velocity phase space. Here vk and v?
denote the velocities parallel and perpendicular to the magnetic field, respectively. At t ¼ 5; r ¼ 33, the forward-moving par-
ticles have not experienced strong adiabatic cooling. However, by t ¼ 15, the right hemisphere exhibits a very strong cooling
and the distribution is isotropic within each hemisphere. At t ¼ 15; r ¼ 28, the backward-moving particles dominate but have
not experienced very much cooling. Note that the blank areas in the velocity distribution are not physical limits for the
deceleration at the given time, but due to the numerical boundary we used in our calculations.

Figure 2 shows solutions from the relaxation time scattering (BGK) model in Paper II for the same model parameters as in
Figure 1. Compared with the MQLT results of Figure 1, the backward-moving particles now take longer to evolve into an iso-
tropic state (Fig. 2a), and the anisotropy in velocity phase space persists for a little longer (see t ¼ 5; r ¼ 33 in Fig. 2d). How-
ever, there are no significant differences between these two sets of results.

Figure 3 shows solutions from theMQLTmodel for weak scattering of particles through 90�, �2=�1 ¼ 10. As before, the dis-
tribution at t ¼ 15 is isotropic within each hemisphere (Fig. 3a). However, the spatial distribution at a particular pitch angle is
now much broader, with Dr � 16 (Fig. 3a). The ring beam still dominates at t ¼ 0:1. Since particles have difficulty being scat-
tered through 90�, a rightward-moving pulse with a spatially extended flat tail is formed, and the forward-moving particles
dominate (Fig 3b). A related color plot is also given in Figure 3c, which shows the temporal evolution and spatial distribution
of fh i at v=v0 ¼ 1. In the two-dimensional color intensity plot in velocity phase space shown in Figure 3d, the forward-moving
particles have not experienced important adiabatic cooling at t ¼ 5 and r ¼ 33. At t ¼ 15, both the forward and backward
hemisphere exhibit very strong cooling, and the distribution is isotropic everywhere. At t ¼ 15; r ¼ 28, the backward-moving
particles also experienced important cooling. A comparison of the moderately and the highly anisotropic scattering MQLT
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Fig. 3.—MQLT solution of a ring beam for fast particles, v0=U ¼ 10, in a highly anisotropic scattering �2=�1 ¼ 10. (a) Distribution function f in pitch angle
l and position r at t ¼ 15. (b) Spatial distribution of the omnidirectional distribution fh i at v=v0 ¼ 1 when t ¼ 0:1, 1, 5, 10, and 15. (c) Spatial and temporal
evolution of fh i at v=v0 ¼ 1. (d ) Particle distribution in velocity phase space at r ¼ 3 when t ¼ 5 and 15, and at r ¼ 28 when t ¼ 15. [See the electronic edition
of the Journal for a color version of this figure.]
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models suggests that (1) more particles are cooled by adiabatic deceleration, but some particles move a little faster in the highly
anisotropic scattering medium (see Figs. 3d and 3b), and (2) for the same pitch angle, the spatial distribution is much more dis-
persed in the case of highly anisotropic scattering (see Fig. 3a).

Figure 4 shows the solutions of the BGK model in Paper II for the same model parameters as in Figure 3. The evolution of
the omnidirectional distributions from the BGK and theMQLTmodels is very similar, except that some particles move a little
slower, and intensity profiles have a greater amplitude at later times in the MQLT model (see Fig. 4b). The velocity distribu-
tions at r ¼ 33 when t ¼ 5 and r ¼ 15 when t ¼ 15 still remain anisotropic in the BGKmodels (Fig. 4d). For a particular pitch
angle, the spatial distribution occupies a much narrower region (Dr � 9) than that in the MQLT model, and is only a little
wider than that of the moderately anisotropic scattering case (see Fig. 4a).

4.2. Slow Particles: v0=U ¼ 1

Figure 5 shows solutions from a MQLT model in which strong scattering of particles through 90� occurs, �2=�1 ¼ 3, but
now for slow particles, v0=U ¼ 1. Although convection is now important, the character of the evolving distribution is very
similar to that of the fast-particle example shown in Figure 1, i.e., at early times t ¼ 1, the distribution remains highly aniso-
tropic, but by t ¼ 15, the distribution evolves toward isotropy in pitch angle, and the spatial distribution at a particular pitch
angle occupies a region of Dr � 10 (Fig. 5a). The convecting ring beam at t ¼ 0:1 propagates to the right and left, and evolves
into a broad Gaussian distribution at t ¼ 10 (Figs. 5b and 5c). In velocity phase space at t ¼ 3 and r ¼ 36, the forward-moving
particles in the forward hemisphere dominate and experience some adiabatic cooling, and the distribution is close to isotropy.
However, at the same location when t ¼ 7, the backward-moving particles dominate because of convection and have experi-
enced significant cooling, with the result that the distribution becomes more isotropic. At t ¼ 7; r ¼ 40, the forward-moving
particles dominate, experiencing important adiabatic cooling, and the distribution is also isotropic.

Figure 6 shows solutions from the BGK model of Paper II for the same model parameters as used in Figure 5. Compared
with Figure 5, there exist some slight differences in pitch-angle and velocity distributions. At t ¼ 7; r ¼ 36 and t ¼ 7; r ¼ 40,
the particle distribution in velocity phase space is not as isotropic as the MQLT model (Fig. 6d). However, this difference is
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Fig. 4.—BGK solution of a ring beam for fast particles, v0=U ¼ 10, in a highly anisotropic scattering �2=�1 ¼ 10. (a) Distribution function f in pitch angle l
and position r at t ¼ 15. (b) Spatial distribution of the omnidirectional distribution fh i at v=v0 ¼ 1 when t ¼ 0:1, 1, 5, 10, and 15. (c) Spatial and temporal
evolution of fh i at v=v0 ¼ 1. (d ) Particle distribution in velocity phase space at r ¼ 3 when t ¼ 5 and 15, and at r ¼ 28 when t ¼ 15. [See the electronic edition
of the Journal for a color version of this figure.]
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small enough to suggest that the simple relaxation time operator is a reasonable approximation to the MQLT operator for a
moderately scattering medium, at least when q ¼ 5=3.

Figure 7 shows solutions from a MQLT model with weak scattering of particles through 90�, �2=�1 ¼ 10. The evolving dis-
tribution in this case is similar to that of the fast particles illustrated in Figure 3 except that convection effects are stronger. At
t ¼ 15, the distribution is isotropic within each hemisphere, and the spatial distribution at a particular pitch angle occupies a
very wide region (Dr � 20; Fig. 7a). In the evolution of the omnidirectional distribution fh i shown in Figures 7b and 7c, a
rightward-propagating pulse with an extended flat tail is formed, and the forward-moving particles dominate. Figure 7d shows
a two-dimensional color intensity plot in velocity phase space. At t ¼ 3; r ¼ 36, the forward-moving particles have experi-
enced some adiabatic cooling. At t ¼ 7, forward-moving particles convect away to be replaced by a population of backward-
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Fig. 5.—MQLT solution of a ring beam for slow particles, v0=U ¼ 1, in a moderately anisotropic scattering �2=�1 ¼ 3. (a) Distribution function f in pitch
angle l and position r at t ¼ 1 and 15. (b) Spatial distribution of the omnidirectional distribution fh i at v=v0 ¼ 1 when t ¼ 0:1, 1, 5, 10, and 15. (c) Spatial and
temporal evolution of fh i at v=v0 ¼ 1. (d ) Particle distribution in velocity phase space at r ¼ 36 when t ¼ 3 and 7, and at r ¼ 40 when t ¼ 7. [See the electronic
edition of the Journal for a color version of this figure.]
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moving particles, which have cooled and are partially isotropic. At t ¼ 7; r ¼ 40, the forward-moving particles have experi-
enced significant cooling and the distribution is isotropic. The differences between the moderately and highly anisotropic scat-
tering models for fast particles continues to hold for the slow particles.

Figure 8 shows solutions from the BGK model in Paper II for the same model parameters as in Figure 7. As before, the
solution of the distributions governed by theMQLT and BGKmodels exhibits only small differences.

5. SUMMARY

The propagating source method for solving the Fokker-Planck equation has been extended to a generalized case that
includes small- and/or large-angle scattering, focusing, and adiabatic deceleration in a radial magnetic field. Specifically, in
this paper we have considered aMQLTmodel, i.e., a standard QLT pitch-angle scattering within each hemisphere, plus a mir-
ror-linear interaction that is responsible for scattering through 90�. We furthermore compare the results from the QLT iso-
tropic and MQLT anisotropic models with those from relaxation time scattering (BGK) models for an initial ring beam
distribution in the cases of fast and slow particles. We present the detailed numerical technique for two specific power spectra,
q ¼ 1 and 5/3. The first spectrum corresponds to isotropic scattering, and the second is the Kolmogorov spectrum, which is
frequently observed in the solar wind fluctuations. However, the technique developed here can be applied to arbitrary spectra.

This paper and our previous papers in this series have developed an effective and accurate numerical approach to solving
the Fokker-Planck equation. A comprehensive investigation of various solutions has been presented. We summarize our
results as follows:

1. The particle distribution function can be separated into an unscattered part and a scattered part. By using Legendre poly-
nomial expansions, the Boltzmann equation can be reduced to an infinite series of partial differential equations in the harmon-
ics of polynomial expansions.
2. In the absence of focusing and adiabatic deceleration, the lowest order truncation of the coupled set of equations yields

an inhomogeneous form of the telegrapher equation. Unlike the homogeneous telegrapher equation, the inhomogeneous tel-
egrapher equation does not introduce physically unrealistic pulse solutions.
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Fig. 6.—BGK solution of a ring beam for slow particles, v0=U ¼ 1, in a moderately anisotropic scattering �2=�1 ¼ 3. (a) Distribution function f in pitch
angle l and position r at t ¼ 15. (b) Spatial distribution of the omnidirectional distribution fh i at v=v0 ¼ 1 when t ¼ 0:1, 1, 5, 10, and 15. (c) Spatial and
temporal evolution of fh i at v=v0 ¼ 1. (d ) Particle distribution in velocity phase space at r ¼ 36 when t ¼ 3 and 7, and at r ¼ 40 when t ¼ 7. [See the electronic
edition of the Journal for a color version of this figure.]
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3. Low-order truncations can be used to investigate particle propagation and transport in an isotropic/anisotropic scatter-
ing medium. A powerful and accurate numerical technique, a characteristic method with operator splitting, is developed. A
decided advantage of this approach over others is its ability to model nonisotropic initial data easily.
4. For an isotropic or a moderately anisotropic pitch-angle scattering, the initial ring-beam distribution finally evolves into

a broad Gaussian distribution, and the QLT isotropic and MQLT anisotropic models could be rather well approximated by
the simple relaxation time operator.
5. For a highly anisotropic pitch-angle scattering, a moving pulse with a spatially extended flat tail is formed, and there exist

some differences between the MQLT and BGK models. Specifically, at a particular pitch angle, the spatial distribution from
MQLTmodel occupies a much wider region than that in the BGKmodel.
6. In the highly anisotropic scattering medium, more particles are cooled by adiabatic deceleration, some particles move a

little faster, and the spatial distribution at a specific pitch angle is much more dispersed than that in the case of moderately ani-
sotropic scattering.
7. Compared with the BGKmodel, the anisotropy persists for a little longer and some particles move a little slower; conse-

quently, intensity profiles have a greater amplitude at later times in the MQLTmodel. For a particular pitch angle, the spatial
distribution from the BGKmodel occupies a much narrower region than theMQLTmodel.
8. Fast and slow particles have similar distribution characteristics except that convection is much more important for slow

particles.

In our work, we have not considered perpendicular diffusion and drifts. As pointed out by Webb et al. (2001), in a nonuni-
form magnetic field there may exist nonzero contributions to the divergence of the particle current due to curvature and gra-
dient drifts associated with the antisymmetric diffusion coefficient. Further work that incorporates the effects of drifts and
cross-field diffusion in an arbitrary magnetic field topology is required.

J. Y. L. benefited from Y. C. Whang in the programming. J. Y. L., R. R., and R. M. are supported by the Canadian Space
Agency, the Natural Science and Engineering Research Council of Canada. G. P. Z. is supported in part by NASA grants
NAG5-10932 and NAGS-11393, and NSF grants ATM-0296113 and ATM-0296114.
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Fig. 7.—MQLT solution of a ring beam for slow particles, v0=U ¼ 1, in a highly anisotropic scattering �2=�1 ¼ 10. (a) Distribution function f in pitch angle
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