
Extending Tables using a Web Table Corpus

by

Saeed Sarabchi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c⃝ Saeed Sarabchi, 2020

Abstract

The web contains a large volume of tables that provide structured information about entities and

relationships. This data may be used as a source for exploratory searches and to gather information

about desired entities. This thesis focuses on one particular exploratory search where given a query

table and a corpus of web tables, the goal is to find a ranked list of additional columns (from the

table corpus) that describe the entities of the query table. We refer to this task as “table extension.”

There are challenges in performing a table extension. A main challenge is that in the absence

of schema information for web tables, it is not often clear which tables and/or columns may be

relevant to the query. Also, multiple related columns may represent the same concept and this

can lead to duplicate columns in the extended table. In this thesis, we propose a 5-step frame-

work to address these challenges. Our framework establishes functional dependency relationships

between columns and uses those dependencies in identifying more appropriate extensions. Du-

plicate columns are also detected and consolidated through some form of clustering. We evaluate

our framework on a publicly available gold standard containing 233 web tables, using DBpedia as

ground truth. Our evaluation reveals that the number of unique relevant columns extended by our

proposed solution is on average 3 times more than that of two state-of-the-art baselines. Further-

more, the precision of extending a table using our method is higher than that of both baselines,

meaning that fewer irrelevant columns are retrieved.

ii

Acknowledgements

Firstly, I would like to express my deepest and sincerest gratitude to my supervisors, Professor

Davood Rafiei and Professor Joerg Sander. This work would not have been possible without their

utmost support and guidance. Prof. Davood Rafiei and Prof. Joerg Sander put a great deal of time

and energy into my research by bringing brilliant ideas and encouraging me to think deeper and

more critical about problems, while providing insightful and constructive feedback. They were

extremely patient and understanding in times that I needed help. It was an honour for me to have

such great mentors, in both personal and professional manner.

I would like to thank Professor Osmar Zaiane, whom I learned a lot from during my MSc

program.

I would also like to thank my friends Ehsan Kamalloo, Ali Jahani, Sepehr Kazemian, Moham-

mad Motallebi, Farzane Aminmansour, Kamyar khodamoradi, Shadan Golestan, Athar Mahmoudi-

nezhad, Anahita Dousti, Sara Soltani-nezhad, Amir Pournajib, Nouha Dziri and all others for mak-

ing this program more fun and interesting for me.

Lastly, I would like to thank my family, especially my mother and my father, for their uncon-

ditional love and support.

iii

Contents

1 Introduction 1
1.1 Motivating Example . 1
1.2 Problem Statement . 4
1.3 Challenges . 4
1.4 Overview of our Approach . 6
1.5 Research Contributions . 6
1.6 Thesis Organization . 7

2 Related Work 8
2.1 Table Extension . 8
2.2 Other Related Work . 12

2.2.1 Table Extraction . 13
2.2.2 Table Search . 13
2.2.3 Schema Matching . 15
2.2.4 Table Stitching . 15

3 Proposed Framework 17
3.1 Table Search . 17
3.2 Column Selection . 18
3.3 Column Grouping . 24
3.4 Grouped Column Consolidation . 26
3.5 Column Ranking . 27

4 Experimental Evaluation 30
4.1 Dataset . 30
4.2 Evaluating Table Extension Compared to Baselines 32
4.3 Evaluating FD-Detection Methods . 39
4.4 Column Ranking Analysis . 40
4.5 Summary of Results . 41

5 Conclusion 43

References 45

Appendix A Dataset Detailed Statistics 50

iv

List of Tables

1.1 Sample query table . 1
1.2 First Table about countries, with key column ’Country’ 2
1.3 Second Table about countries, with the first column as the key 2
1.4 Third Table about countries, with the first column as the key 2
1.5 Table about companies, with “Company” column as the key 2
1.6 Table about largest cities with their mayors, with key column ’City’ 2
1.7 Table about caves, with key column ’Cave’ . 3
1.8 Sample extended table . 3

3.1 A table about companies, with “Company” column as the key and no duplicates in
the country column . 23

4.1 Dataset Overview . 31
4.2 Comparison between FD-Detection methods . 39
4.3 Column Ranking Evaluation . 42

A.1 Dataset Detailed Overview . 51
A.2 Mapped Attributes to DBpedia . 60

v

List of Figures

1.1 Proposed Framework . 6

4.1 Sample web table [37] . 31
4.2 Dataset Sample Json File associated to Figure 4.1 32
4.3 Sample extension . 34
4.4 Evaluations on Random Queries . 36
4.5 Evaluations on Pre-selected Queries . 38

vi

Chapter 1

Introduction

The web contains a vast corpus of tables, consisting of relational and non-relational tables. Rela-

tional tables provides structured data about entities and relationships and may be used as a source

for exploratory searches and to gather information about entities [1–4]. This is in contrast to HTML

tables that are solely used for formatting text. In this thesis, we focus on relational HTML tables,

which we refer to as “web tables”. A challenge regarding using web tables as a data source is

the fact that there is no explicitly defined schema attached to a web table. Although a number of

web table datasets use some form of heuristics to identify the key column and the headers of a web

table, that only gives a partial view of a web table’s schema.

One particular exploratory query, which is our focus in this thesis, is given by a set of entities of

interest, for which we want to find more information in the form of columns that describe the given

entities. We may also require the additional columns to be ranked with regard to their relatedness

to the given entities. We refer to this query as “table extension.”

1.1 Motivating Example

Countries

Canada

Spain

USA

India

Table 1.1: Sample query table

Suppose a user wants to gather information about a table that de-

scribes a set of countries shown in Table 1.1. We refer to this table

as a query table. Given a corpus of tables consisting of 6 relational

tables about countries, companies, cities and caves as depicted in

Tables 1.2, 1.3, 1.4, 1.5, 1.6 and 1.7, a possible extended table

is shown in Table 1.8. It would be helpful for the user to see a

1

ranked list of extended columns based on the “relatedness” of the

extended columns to the provided country entities, so that “more related” columns come before

“less related” ones as is the case for Table 1.8.

Country Capital Latitude Longitude

England London 51.50◦ N 0.12 W◦

Canada Ottawa 45.42◦ N 75.69 W◦

Spain Madrid 40.41◦ N 3.70 W◦

India Delhi 28.61◦ N 77.20 W◦

Table 1.2: First Table about countries, with key
column ’Country’

India New Delhi

France Paris

USA Washington D.C.

Canada Otawa

Table 1.3: Second Table about countries, with
the first column as the key

Country Capital

India New Delhi

Canada Ottawa

Table 1.4: Third Table about countries, with
the first column as the key

Company Country NASDAQ Symbol

Apple USA AAPL

Infosys India INFY

Shopify Canada SHOP

Table 1.5: Table about companies, with
“Company” column as the key

World Rank City Country Mayor

30 Bangalore India Padmavathi G

48 Ahmadabad India Gautam Shah

112 Toronto Canada John Tory

114 Chicago USA Rahm Emanuel

183 Montreal Canada Valérie Plante

197 Barcelona Spain Ada Colau Ballano

200 Agra India Sri Aditya Nath Yogi

237 Dallas USA Mike Rawlings

Table 1.6: Table about largest cities with their mayors, with key column ’City’

2

Cave Length (m) Depth (m) Country Continent

Kazumura Cave 65,500 1,101 USA North America

Hellhole Cave 67,500 225 USA North America

Hölloch 200,421 938 Switzerland Europe

Siebenhengste-Hohgant-Höhle 164,500,000 1,340 Switzerland Europe

Grotte aux Fées 3,630 249 Switzerland Europe

Cadomin Cave 2,791 220 Canada North America

Castleguard Cave 20,357 384 Canada North America

Cuevas del Drach 115 12 Spain Europe

Grotto of Casteret 500 60 Spain Europe

Table 1.7: Table about caves, with key column ’Cave’

Country Capital Latitude Longitude Continent Cave City Company Mayor

Canada Ottawa 45.42 N◦ 75.69 W◦ North America
Cadomin Cave

Castleguard Cave
Montreal
Toronto Shopify

John Tory
Valerie Plante

Spain Madrid 40.41 N◦ 3.70 W◦ Europe
Cuevas del Drach
Grotto of Casteret Barcelona - Ada Colau Ballano

USA Washington D.C. 38.90 N◦ 77.03 W◦ North America
Kazumura Cave
Hellhole Cave

Dallas
Chicago Apple

Rahm Emanuel
Mike Rawlingse

India New Delhi 20.59 N◦ 78.96 W◦ Asia -
Bangalore

Ahmadabad Infosys
Padmavathi G
Gautam Shah

Sri Aditya Nath Yogi

Table 1.8: Sample extended table

Consider the alternative scenario where the user wants to put together an extended table such

as Table 1.8 by finding the attribute names related to the entities in the query column. For each

attribute name, she may search for the values associated with each of the entities. This task can be

difficult because the user may not already know all the related attributes to the entities of interest

and she might miss some of the related columns. Also, the related columns can vary based on the

tables in the given corpus. As an example, if the corpus has geographical data about locations, then

an output table may contain columns such as capital, coordinates and area of the input countries.

However, if the given corpus has financial data, then the user may be able to augment her query

with related financial columns such as GDP and currency and she may not find related location

data.

3

1.2 Problem Statement

For simplicity, we assume that each table in our given corpus as well as the query table can have

multiple columns, but only one of those columns is tagged as the table’s key column. Plus, we

consider the key column of the query table as the query column from now on.

Definition 1. Table Extension: Given a query column Q consisting of values {q1, q2, . . . , qm}, plus

a corpus of tables T ∈ T , a table extension of Q with respect to T is a ranked list of additional

columns [c1, c2, . . . , ck] satisfying the following conditions:

• Each valuei|1≤i≤m in cj|1≤j≤k is either an atomic value or a set of atomic values describing

qi.

• All values in column ci have the same relationship with the corresponding entities of the

query column Q.

• Each column ci contains values for at least θcover percent of the entities in the query column

Q.

1.3 Challenges

A major challenge in a table extension is to determine which tables and columns should be selected

to be used in the final extended table. A possible solution is to pick all columns in those tables

that contain values from the query column. However, this solution can result in many extended

columns that are not correct since in a relational table, a column is not necessarily described by

other columns mentioned in that table. As an example, we can notice that not all the columns in

tables containing the query column entities describe those entities (such as “NASDAQ Symbol” in

Table 1.5 and “Length” and “Depth” in Table 1.7). Therefore, a viable method should be selec-

tive, picking only those columns from the input corpus that describe the query column. This is a

challenging task.

We break down the columns suitable for performing a table extension into 2 categories:

• Columns in tables containing the values of the query column Q in their key column

• Columns in tables containing the values of the query column Q in their non-key column
4

In the following, we will investigate the questions and challenges faced when trying to identify

each of the mentioned column categories.

In a relational table, each table has a key column and all non-key columns in that table describe

the key column. Consequently, a method to perform a table extension can select those tables with

key columns that have a high overlap with the query column and then pick all of their non-key

columns since those columns describe the key of their tables, hence the query column. These

selected columns contribute to the first column category. In our example, Tables 1.2 and 1.3 have

this characteristic, i.e. the country columns of both tables appear to be their key columns and they

highly overlap with the query column. Hence, all non-key columns of the tables can be picked as

the columns of the desired extended table.

One challenge with this method is that if there are multiple tables with overlapping key columns,

there is a chance that a few selected columns describe the same property or originate from the same

concept. In our example, the second column in tables 1.2 and 1.3 are both characterizing the capital

of countries. However, presenting duplicate columns in the output result is not desirable for users.

Hence, a question is how to detect and merge duplicate columns into a single column in the output.

A challenge with merging multiple columns is that there can be multiple values for the same

entity, each coming from a different table and those values may not be consistent with each other

and cannot be reduced to a single value. Referring to our example, if we group the second columns

in tables 1.2, 1.3 and 1.4, there would be two candidate values “Otawa” and “Ottawa” for the

capital attribute associated with “Canada”. A question here is which value should be selected for

the cell associated with the “Capital” attribute for “Canada” in the extended table.

A shortcoming of finding related columns by selecting tables with overlapping key columns is

that we may miss suitable columns form those tables that contain the query entities under a column

other than the key column. As an example, if we take a look at Table 1.7, we can notice that the key

column of this table does not overlap with the query column and the column that contains values of

the query column is not the tagged key column of the table. However, the “Continent” column also

describes the query column. A challenge is to identify such related tables and columns in those

tables that describe the query column. These columns contribute to the second column category.

Furthermore, in tables containing the entities in the query column in a non-key column, there

may exist columns that could give meaningful information about the query values when aggregated

5

for each of those query entities. For instance, the columns “Company” in Table 1.5, “City” in Table

1.6 and “Cave” in Table 1.7, when aggregated for each of the entities in “Country” column, can

give meaningful information about countries, in the sense that they specify which cities, caves and

companies are located in which countries. Here the challenge is how we can identify such columns,

which we will also address in this thesis.

1.4 Overview of our Approach

To perform a table extension, we first extract those tables from the corpus that are potential can-

didates for having suitable source columns to be used in an extended column. From those tables,

we select suitable columns for performing a table extension. Then, we merge those columns that

represent the same concept but coming from different tables into separate clusters. After this step,

we consolidate each column-cluster into a single extended column by selecting a single value or

a set of values for each column-cluster and query value. In the last step, we rank the extended

columns based on their relatedness to the query column.

1.5 Research Contributions

We present a table extension framework, as depicted in Figure 1.1, where given a query consisting

of a set of entities, outputs a ranked list of related columns w.r.t. the query. We address each of

the steps in the framework, however our major contributions are in steps Column Selection and

Column Ranking.

Figure 1.1: Proposed Framework

Contributions in Column Selection step: We identify related columns to a query column in

tables that their non-key column overlap with the query column. To the best of our knowledge,

this has not been studied in the previous works. For doing so, we utilize the notion of Functional

Dependency (FD) as well as co-occurencies between column values to capture the relatedness

between two columns.

6

We also study 3 methods for detecting Functional Dependencies: (1) Error Threshold, which

is based on the number of violations in a table for an FD to be satisfied, (2) Violation Detectability,

which tries to detect positive evidence in a table for an FD to hold over a schema, and (3) Violation

Detectability with Column Grouping, which tries to find positive evidence from other tables for an

FD to hold over a schema. We analyse the effects of each method on table extension results as

well.

Contributions in Column Ranking step: We introduce methods for ranking an extended

column based on the Header Relatedness and Row Relatedness between the query column and the

extended column. We measure how effective each method is on ranking extended columns.

Moreover, we use a novel automatic evaluation method based on DBpedia [5] as the ground

truth in order to cross-check the values in an extended table.

1.6 Thesis Organization

In the remainder of this thesis, we will first discuss related work. Following the related work, we

will describe our proposed table extension framework. In the fourth chapter, we will present the

results of our evaluations and we will conclude the thesis in the last chapter.

7

Chapter 2

Related Work

In this chapter, we will review the related work on table extension and other related work, namely

table extraction, table search, schema matching and table stitching.

2.1 Table Extension

In table extension, the goal is to add relevant column(s) to an input column or table by leveraging

a corpus of web tables. There are a number of works that address this task; however, the input

and output in those works are not always the same. In the following, we will present some of the

related works on this topic

InfoGather In this work [4], a function named Augmentation By Attribute name (ABA) is

proposed with the following aim: given a query column Q, an attribute name a as well as a corpus

of tables T ∈ T , output the value corresponding to each query row q ∈ Q on attribute a using

the corpus data. For doing so, it first splits each table in the corpus into multiple 2-column-tables

called Entity Attribute Binary tables (EAB), in which the first column is the key column or the entity

column of the table1 (T.K) and the attribute column, denoted as T.A is any column other than

T.K. Then, those EABs that have an attribute column T.A with header name ‘a’ are selected and

scored based on their “direct” and “indirect” similarity to the query column. A direct similarity is

calculated by overlap similarity between each EAB and the query, whereas an “indirect” similarity

to the query is calculated via a method called Holistic Matching, which propagates the direct

similarity scores to EABs that do not have enough overlap similarity with the query, but are similar

1In InfoGather, it is assumed that the key of each table is a single column.

8

to the direct matches. For selecting the output value corresponding to each query row, all matched

values from the high-scored EABs are grouped together and a representative value of the group is

considered as the output value.

ABA is similar to our work in the way that it tries to augment a query column, however, its

difference is that this augmentation is only done for one column for which an attribute name is

given. The strength of this work is the Holistic Matching which considers indirect matches with

the query. However, this method has a limitation in scoring those EABs coming from the same or

a similar webtable. The reason is that the similarity scores in Holistic matching are computed for

each EAB pair based on a classification method, which assigns a relatedness score between each

pair of EABs using a number of features such as EAB’s content, source URL and context (i.e. a

fixed number of words before and after the EAB’s source webtable in its HTML page). Here, the

issue is that the similarity score between EABs coming from the same source table (or even similar

source tables) is very high even if those two EABs represent completely different concepts, which

makes the classification results (i.e. the similarity scores) biased towards the EABs from the same

(or similar) original tables. This results in poor “indirect” EAB matches to the query column which

results in poor output values corresponding to query rows. The reason for this bias stems from the

labelling and training process of the classification method in Holistic Matching. In order to get the

labelled pairs of EABs to train the classifier, InfoGather searches for those EABs which slightly

differ in content, and those EABs are mostly coming from the same tables or from those tables

which differ only in a few rows or columns, with very similar (or even the same) source URL and

context. Hence the classifier is trained to assign a high similarity score to the mentioned EABs.

Another function introduced in InfoGather is called Attribute Discovery (AD) that, given a

query column, outputs a set of relevant column names in groups, each group consisting of an

attribute-name with their synonyms. To do this, AD first selects those EABs with high value

overlap between their key column (T.K) and the query column. Then it finds the synonyms for

each of the EAB’s attribute column (T.A) based on the previously calculated pairwise similarities

in Holistic Matching Framework.

This function is different from the problem studied in this thesis since InfoGather outputs only

a set of attribute-name groups, without any value attached to them, and is similar in that each

of those attribute headers can be used for augmenting the query with related columns. The bias

9

problem in Holistic Matching, as discussed above, applies to the AD function as well, and this

results in placing a number of attribute-names that are coming from the same web table and are not

necessarily synonyms, in the same group.

Table extension for a query column can be implemented via combining the two aforementioned

functions by first, performing Attribute Discovery (AD) on the input query column which results

in a set of output header groups to fill the extended columns with some values. Attribute discovery

may be followed by Augmentation By Attribute name (ABA) for each attribute header in each

output header group. A problem with this method is that for each attribute header group, which

represents a single concept, there exists multiple values corresponding to a query value, coming

from applying ABA for each element in the attribute header group. A solution is to consolidate the

output values for each query row in each output header group. We have implemented this solution

and used it as one of our baselines for our evaluations.

In [6], the authors extend InfoGather to support numeric and time-dependent attributes. Their

approach is to extract numeric units and timestamps from the contents and context of the source

tables if possible, and propagate it to similar tables that lack such information, based on their

previously calculated pairwise similarities.

Mannheim Search Join In this work [3], an operation is presented named Unconstrained

Queries. The goal of this operation is the following: given a query table Q, its key column Q.k,

and a corpus of webtables, output as many columns as possible that describe Q.k using the corpus

data, which is similar to our problem statement. To perform this operation, it first searches for web

tables with overlapping key columns and selects those with an overlap higher than a threshold.

Then it selects all of the non-key columns and puts them into separate groups, so that each group

represents a single concept describing Q.k. Then each group is consolidated into one column and

those columns are the output of this operation.

Another operation proposed in Mannheim Search Join is Constraint Query, where given a

query table and an attribute name, it tries to fill the attribute column. This is similar to Augmen-

tation By Attribute Name in InfoGather. For doing so, it selects tables where the key-column of

the table overlaps with the the query key column and the size of the overlap is more than a given

threshold. From those selected tables, it picks attributes with the same header name as the input

header name. Then it consolidates the results for each query row from the selected attribute values.

10

One of the limitations of Mannheim Search Join is that it does not utilize all related columns

in the corpus tables for table extension: this method discards tables containing relevant columns to

the query whose key column does not represent the query column. Plus, there is no ordering for

the output columns in terms of relatedness to the query table.

Octopus In this work [1], a function named MultiJoin is introduced similar to Augmentation

By Attribute Name [4] and Constraint Query [3], with the goal of extending a query column Q

with one or more additional columns which describe an input attribute name A. This is similar to

Augmentation By Attribute Name in Infogather [4] and Constraint quey in Manheim [3] with the

difference that the corpus of web tables is not given as an input. MultiJoin extracts tables using a

web-search engine, so that for each value v in the query column, it searches for ”v + A” over the

web. All tables t ∈ T from the high-ranked result web pages are extracted and are scored based

on their relatedness to the input attribute name A. The authors define this relatedness based on

the co-occurrence counts of v and the text of A in web documents. For each related table t that

is retrieved, MultiJoin makes a group g of tables based on column-matching between t and tables

similar to t, and scores each group based on the weighted table-score of t and the overlap between

the values in the tables in g and the input table’s key values. Finally, MultiJoin picks the highest

scoring group and uses the tables in that group for extension.

One of the limitations in MultiJoin is the way it extracts tables using a search engine, since

those tables may not be necessarily related to the search query, hence the extension maybe done

using unrelated data. Another limitation is the grouping algorithm that is used in this approach.

The pairwise distance/similarity function used for grouping tables is based on the sum of per-

column distance/similarity scores for the best possible column-to-column matching. This scoring

is biased towards tables with a small number of attributes when the pairwise distances are summed,

or towards tables with a large number of attributes when the similarity scores are added. In either

situation, certain tables that semantically belong to a group may not be included in the cluster

because of their sizes.

WikiTables In this work [7], the authors introduce a function called Relevant Join which takes

a query table and outputs a ranked list of columns relevant to the query table from the set of

relational tables in Wikipedia pages. The goal of this function is similar to the problem studied in

this thesis in that it extends a query table by a set of related columns, except that it is specific for

11

Wikipedia tables. To do a table extension, Relevant Join first selects a set of candidate columns

from the set of tables that have at least one overlapping column with the query table. The candidates

columns include all columns other than the overlapping column. Then each column is classified as

either “relevant” or “non-relevant” to the query table. This classification is similar to the Holistic

Matching Framework used in InfoGather [4] with both table-related features (e.g. column values)

as well as features specific to Wikipedia (e.g. the in-links and out-links in table source pages).

Finally, the relevant columns are ranked by a feature-based ranking model with the same features

used in their classification model.

One limitation of Relevant Join is that, since the output columns are directly coming from the

table columns without performing any aggregation or grouping of similar columns, there can be a

large number of duplicates in the output columns. Another limitation is that the labelling process

in training the classifier is done manually without clear instructions, and this is a challenge for

reproducibility. Also, the classifier may not be extended to tables other than Wikipedia tables,

since the Wikipedia-specific features are reported as the major contributors to the classification

method.

Top-K Entity Augmentation In this work [2], an entity augmentation operation is also pro-

posed. Given a query column, an attribute name, as well as a corpus of tables, the proposed

method augments the attribute column with values associated with each query key using the cor-

pus data. This is similar to operations such as Augmentation By Attribute Name, Constraint Query

and MultiJoin . A difference with these methods is in the value selection step, where Top-K Entity

Augmentation outputs a ranked list of k possible augmentations for the attribute column, compared

to the other operations where the augmentation is a single column. The augmentation columns in

this work are constructed in a way that the number of source tables from which the values of an

augmentation column come from is minimized. This is to ensure that the consistency between the

values of each column is the highest. Meanwhile, the number of source tables constructing the

augmentation columns are also maximised to ensure the diversity of the output.

2.2 Other Related Work

In this section, we provide an overview of related works which are not directly addressing the

problem of table extension, but are applicable in some of the steps for table extension. These

12

works are grouped into Table Extraction, Table Search, Schema Matching and Table Stitching. In

the rest of this chapter, we review each group and its relationship to the problem studied in this

thesis.

2.2.1 Table Extraction

Table extraction can be considered as the initial phase for any operation on web tables, since it

provides the input table corpus for any of these operations.

Early work on extracting HTML tables starts with differentiating between genuine tables, also

known as relational data, from non-genuine tables used for web-page formatting, based on rule-

based methods [8, 9]. Many of these rule-based methods are domain-specific, and they may not

yield good results on domains where those rules are not satisfied.

Wang and Hu [10] trained a classifier to tag genuine tables. They used layout features such as

“average number of columns and rows” and “average value length”, content type features which

deals with different data types included in a table (e.g. image, form, hyperlink, alphabetical, digit,

etc), as well as a feature which deals with the content of a table and the words used in a table which

the authors refer to as word group feature.

In 2008, Cafarella et al. [11] extracted 154 million genuine tables from a 14.1 billion HTML

table corpus from Google’s web crawl. Their approach was based on a classification method

similar to [10], but with a richer set of layout and content features.

Lehmberg et al. [12] gathered a web table corpus containing 233 million tables from the 2015

version of the CommonCrawl2, using a table extraction method similar to that of [11]. The table

corpus constructed in this work contains a richer set of metadata for each table including table

orientation, table caption, header row and key column, as well as context information such as the

text before and after the table the title of the HTML page. This metadata sometimes provide useful

information about the semantics of tables.

2.2.2 Table Search

The goal of table search is to find and rank tables with regard to a specific query. Table search can

be considered as one of the steps in a table extension, where candidate tables are retrieved first and

2https://commoncrawl.org/about/

13

are then used to extend columns.

Early work on table search [1, 13] focused on the following problem: given a query consist-

ing of a set of keywords and a corpus of tables, output a ranked list of tables w.r.t. the query.

Cafarella et al. [13] proposed several ranking algorithms and the most effective one (referred to

as schemaRank) ranks each table based on text-derived features such as the number of query hits

(i.e. the query keywords that are found) on table header and body, as well as the coherence of

attributes in the table schema. The schema coherency was computed based on the average “Point-

wise Mutual Information” of all possible pairs of attributes in a schema. In [1], a ranking function

is proposed which ranks the tables related to a query based on the correlation between the query

phrase and table values, as computed based on their co-occurrence in web documents. This cor-

relation, named “Symmetric Conditional Probability”, determines how likely a query phrase and

table value appear together in a web document.

Das Sarma et al. [14] proposed algorithms that take a table as input and outputs a ranked list of

related tables in the sense that they are either joinable and unionable. For finding joinable tables,

the authors score each table based on the overlap between the key column of the table and that of

the query table, as well as a schema-relatedness measure between the two tables. They define this

relatedness measure as the probability of co-occurrence between the attributes of a matching table

with that of the input table. This co-occurrence probability is computed based on the Attribute

Correlation Statistics Database (AcsDB) introduced in [13], which contains the frequencies that

each pair of attributes co-occur in the same schema. In order to find unionable tables, the authors

score each corpus table based on the consistency of its key column with the key column in the

query table. The consistency between two sets is computed based on an Is-A database [15], which

is basically a set of tuples in the form of (subject, type) where each tuple identifies the type of

a subject gathered from the web. The other factor for finding unionable tables is the schema

consistency between a corpus table and the query table, calculated based on their pairwise attribute

matching scores, with the aid of column annotations in the Is-A database.

There are other works [15, 16] that aim at improving table search by annotating table com-

ponents. In [15], the authors assign label(s) to each table column based on an Is-A database.

Furthermore, they assign appropriate label(s) to each pair of columns in a table based on a “re-

lation” database, which is a set of triples in the form of (subject, relation, object). In the triples,

14

“relation” denotes the relationship between the subject and the object. Both the Is-A database

and the relation database are gathered from YAGO knowledge base. In this work, columns are

annotated with types, and column pairs in a table are annotated with relations. The authors also

annotate table cells with related entities from YAGO.

2.2.3 Schema Matching

The problem of schema matching can be defined as given two schemas of any type, output all

possible correspondences between them. In this setting, a schema is a “formal structure that that

represents an engineered artifact” [17], such as table structure, ontology definition, etc. Schema

matching is directly related to the column grouping step in our proposed table extension framework,

in that both associate columns with the same concepts to each other.

There is a large body of work on schema matching [17–19]. Rahm and Bernstein [18] proposed

a taxonomy on schema matching approaches. They categorized the existing approaches into 4

broad categories, namely schema-only based matchers, contents-based matchers, hybrid matchers

and composite matchers. Also, the matchers can be based on machine learning techniques [4],

non-learning methods [3], or a combination of both [20].

A vast body of work has been done for matching webtables to knowledge bases [21]. This

matching can be used for table annotation [16], knowledge base construction [22] and knowledge-

based extension [23, 24]. Zhang et al. [23] proposed an instance-based schema mapping solution to

statistically find an effective mapping between a web table and a knowledge base via the matched

data examples. Sekhavat et al. [24] proposed a probabilistic method that augments an existing

knowledge base with facts from web tables by leveraging a Web text corpus and natural language

patterns associated with relations in the knowledge base. Dong et al. [22] augmented Freebase

using web tables and other web sources. Ritze et al. [25] proposed an iterative instance and

schema matching method to annotate rows with entities, columns with properties and tables with

types in DBpedia.

2.2.4 Table Stitching

The goal of table stitching is to combine tables into a single meaningful union table. Table stitching

is different from our work in that it tries to extend tables vertically, while we aim to extend tables

15

horizontally.

Lehmberg and Bizer [26] proposed a table stitching method consisting an instance-based match-

ing phase to generate the attribute correspondences between tables, followed by a holistic corre-

spondence refinement. Ling et al. [27] utilize attribute names in table headers to align columns for

creating union tables. This method performs a table annotation technique developed earlier [15] to

find proper attribute names for table columns. Gupta and Sarawagi [28] proposed a method that,

given a few example rows, assembles a unified vertically extended table using lists on the web

and through mapping the list records to the query schema using a statistical model. Pimplikar and

Sarawagi [29] proposed a method that, given a set of query keywords and a corpus of web tables,

compiles a set of tables matching each keyword. Those tables are later merged into one table..

For merging the tables, the method identified the mapping between the columns of corpus tables

and each query keyword based on a graphical model that jointly maps all tables by incorporating

diverse sources of clues such as matches in different parts of the table, corpus-wide co-occurrence

statistics, and content overlap across table columns.

16

Chapter 3

Proposed Framework

In this chapter, we present our table extension framework. It consists of 5 steps, namely Table

Search, Column Selection, Column Grouping, Grouped Column Consolidation and Column Rank-

ing depicted in Figure 1.1. In the following, we will describe the details of each steps.

3.1 Table Search

In this step, our goal is finding tables which can be used for a table extension, i.e. those tables that

describe the entities in the query column. Hence such tables must contain entities from the query

column and at least one column that describes the query column. Therefore, our problem in this

step can be stated as follows:

Definition 2. Table Search: Given a set of tables T ∈ T , plus a query column Q, find candidate

tables containing at least a column that describes Q.

To be qualified as a candidate, the table should have a column which characterizes the query

column Q. To find this column in a table, we want the value overlap between a column of that

table T.C and Q to be high, so that we make sure those two columns refer to the same entities. If

this measure is low, it can be an indication that the two columns may represent different concepts.

To compute the value overlap between T.C and Q, we use the following measure:

V alueOverlap(T.C,Q) =
|T.C ∩Q|

min(|T.C|, |Q|)
. (3.1)

Where |T.C ∩ Q| = |{c|c ∈ T.C & c ∈ Q}|. As an example, if we consider Table 1.1 as

Q and “Country” column in Table 1.2 as T.C, then the value overlap between T.C and Q is
17

V alueOverlap(T.C,Q) = 3
4
= 0.75. We select those tables that have at least one column with

ValueOverlap higher than a threshold and in each of those selected tables, we denote the column

which has the highest V alueOverlap with the query column as Q̂, and because of this overlap,

we assume that Q̂ represents Q. In case of ties in V alueOverlap, Q̂ is randomly chosen from

the columns having the highest V alueOverlap with the query column. We use an inverted index

on the values that have appeared in table columns to speed up the computation for value overlap

between query columns and corpus table columns.

3.2 Column Selection

In this step, we aim to select those columns from tables that describe the query column Q. The

output from the Table Selection step is the input for this step. As discussed in Section 1.3, a

challenge in a table extension is to pick suitable columns from the corpus tables containing Q,

since not all the columns in those tables describe the query column. Our problem here can be

defined as follows:

Definition 3. Column Selection: Given a table T containing a column Q̂ having high V alueOverlap

with the query column Q, find columns T.C ∈ T that describe Q and output column pairs (Q̂,T.C).

The reason we output the column pair rather than the columns alone is the fact that we want

to preserve the mappings between the query values and the column values, so that we can assign

associated values to each query value in the extended columns.

In the following, we discuss the methods we use to select the two column categories discussed

in Section 1.3, namely the columns describing Q in tables with Q̂ as their key column, and the

columns describing Q in tables with Q̂ as a non-key column.

We use a straightforward way to pick the first column-category. We select all non-key columns

in tables with a key-column that overlaps with the query column Q, since in a relational table,

non-key columns describe the key-column of the table. Furthermore, these columns extend the

query column with atomic values, not set-values.

In order to pick the second column-category, we first select those tables from the Column

Selection output where Q̂ is a non-key column. From those selected tables, we pick columns T.C

such that each value q ∈ Q̂ is in a relationship with one and only one value c ∈ T.C. In this case,

18

we can argue that Q̂ identifies T.C, hence T.C describes Q̂, consequently T.C can be considered

as a property of Q̂, and since Q̂ is assumed to represent the same concept as T.Q, then T.C can be

regarded as a property of T.Q. As an example, referring back to the motivating example in Section

1.1, in Table 1.7, “Country” can be considered as Q̂ and “Continent” can be regarded as T.C, and

we can notice that each value in “Country” is in a relationship with one and only one value in

“Continent”. Hence, similar to the first column-category, these columns extend the query column

with atomic values as well.

To capture the mapping relationship between T.C and Q̂, we leverage the concept of Functional

Dependency, since if column T.C is functionally dependent on column Q̂ (i.e. Q̂ → T.C), then

the mentioned mapping constraint will be satisfied by T.C. Functional dependency can be defined

as below [30]:

Definition 4. Given a relational schema R and attributes X and Y in R, a functional dependency

(FD) constraint of the form X → Y holds in R if for every instance of R, for every pair of tuples

t and s in those instances: if t and s agree on X , then t and s agree on Y .

Based on Definition 4., a functional dependency is defined over a schema and it should be

satisfied in every instance of the given schema. However, since we have no prior knowledge about

the functional dependency constraints imposed over our given table corpus, we try to detect them

based on the table corpus data. In other words, although defining a functional dependency is a top-

down process, we try to detect it from a bottom-up perspective. As a naive solution, we consider

a functional dependency as true if it holds on at least one instance. This solution would introduce

“accidental” functional dependencies as well since an FD may hold in one instance but not in other

instances. To overcome this issue, we look for evidence in other tables to make sure if an FD is

true or not which we will discuss later in the chapter.

We can find related columns such as “Continent” in a table where the schema attached to

the table is not normalized, and to be specific, is not in Boyce-Codd normal form (BCNF). The

reason is that in such tables, a column T.c is describing another column Q̂ which is not the key

column of the table. Hence the FD: Q̂ → T.C is present in the schema where the left-hand-

side of the FD is a non-key column. This violates that the schema is in BCNF, since each left-

hand-side in each FD in a BCNF schema is a super-key [30]. If we were to decompose this

19

non-BCNF table into BCNF tables, Q̂ would become the key column of one of the decomposed

tables. Therefore, similar to the first column-category, we would be able to pick all columns in

that BCNF table (except its key column Q̂) as the properties of Q̂. In our previous example,

Table 1.7 is a non-BCNF table and if we were to decompose this table into BCNF tables, we

would have 2 tables T1:(“Cave”,“Length”,“Depth”,“Country”) and T2:(“Country”,“‘Continent”),

and since “Continent” is a non-key column in T2 and the key column of this table is “Country”,

hence, “Continent” can be regarded as a property of “Country”.

The definition of functional dependency in Definition 4. can be referred to as exact functional

dependency. However, functional dependency between Q̂ and T.C may be violated due to name

ambiguity or null values introduced by low quality data in web tables [31, 32]. Hence, we use

a relaxed version of functional dependency called approximate functional dependency to handle

those violations caused by poor quality data. The idea behind this type of functional dependency

is to accept a small portion of violations less than a threshold ϵ. In this case, we can claim that

the functional dependency is “approximately” satisfied and we denote this type of functional de-

pendency as approximate functional dependency. The formal definition of this type of FD is as

follows [32]:

Definition 5. Approximate Functional Dependency: Given a relational schema R, attributes X

and Y in R and error threshold ϵ, an approximate functional dependency constraint of the form

X
≈−→ Y holds in R if, for every instance r ∈ R, there exists r′ ⊆ r with ϵ < |r′|

|r| , so that for every

pair of tuples t and s in r′, if t and s agree on X , then t and s agree on Y .

In Definition 5., |r| and |r′| are the number of rows in r and r′ respectively. Also, similar to ex-

act functional dependency, as a naive baseline, we consider an approximate functional dependency

as true if it holds on at least one instance.

We use Definition 5. in our baseline method for detecting related columns in the second

column-category. In this method, for each candidate table T from the Table Selection step where

Q̂ is a non-key column, we check each column C in T and determine if an approximate func-

tional dependency (AFD) Q̂ ≈−→ T.C holds, given an error threshold ϵ, and if yes, then we output

column-pair (Q̂,T.C). We call this baseline Error Threshold.

Discussion on selecting the error threshold: If we lower the error threshold, fewer FDs are

satisfied but with fewer number of violations. Hence the number of extended columns decreases
20

and from those extended columns, a larger portion is relevant to the query column. Whereas if we

raise the threshold, more FDs are satisfied but with higher number of violations, hence a smaller

portion of extended columns are relevant to the query column. We varied the error threshold in

our experiments from 0 to 0.3, and we identified a sweet spot to balance the number of relevant

columns with the portion of relevant columns in the final extension when the error threshold is set

to 0.05.

Error Threshold has a shortcoming similar to that of exact FD detection, i.e. introduction of

accidental FDs. As an example, If we apply this method to Table 1.5 assuming that the query

column is about countries, then “NASDAQ Symbol” will be detected as a related column to coun-

tries since the FD Country → NASDAQ Symbol is satisfied over this table. However, “NAS-

DAQ Symbol” is a property of “Company”, not “Country”. The reason of this “error” is that

Country → NASDAQ Symbol is accidentally satisfied and is not true. However, if we ap-

ply Error Threshold to Table 1.7, “Continent” will be detected as a related column since the FD

Country → Continent is satisfied in this table, which holds over the schema associated with

this table as well. Here the challenge is to differentiate between the schema constraints FDs and

accidental FDs.

As a naive way to address this challenge, we reject those FDs that have no “positive evidence”

in their instances that shows the FD is true, i.e. holds over its associated schema. We define this

“positive evidence” as having duplicate values in the left-hand-side (lhs) of the FD. We argue that

these duplicate values increase the chance of violation in an FD, since if the associated values of

the duplicates in the righ-hand-side of that FD differ from each other, then the FD is violated and if

those associated values are the same, then we can claim with higher confidence that the FD is true.

In case of having no positive evidence, i.e. no duplicates in the right-hand-side of the FD, then we

take a conservative path and consider the FD as accidental, hence we reject the FD. We compute

this positive evidence as below:

FD PositiveEvidence(X → Y) =
|Duplicate(X)|

|X|
. (3.2)

Where Duplicate(X) is the multi-set of duplicate values in column X . Formally, Duplicate(X) =

{{vi|vi ∈ X & ∃ j s.t. vj ∈ X & vi = vj & i > j}}. We reject those FDs with FD PositiveEvidence

less than a threshold. We call this method Violation Detectability. As an example, in Table 1.7,

21

FD PositiveEvidence(Country → Continent) = 5
9

and in Table 1.5,

FD PositiveEvidence(Country → NASDAQ Symbol) = 0
3
= 0. Hence, given a threshold of

higher than zero, we reject Country → NASDAQ Symbol and accept Country → Continent.

The effects of varying the FD PositiveEvidence threshold is opposite to that of the error thresh-

old in Approximate Functional Dependencies, since if we lower the threshold, more FDs are ac-

cepted but with a higher chance of being accidental, hence a smaller portion of extended columns

are relevant to the query column. If we raise the threshold, few FDs are accepted but with a lower

chance of being accidental, hence a larger portion of extended columns are relevant to the query

column. In the experiments, we varied the FD PositiveEvidence from 0 to 0.3 and found that 0.05

is a sweet spot to achieve a balance between the portion of relevant columns with the number of

relevant columns in the final extension.

Violation Detectability is a naive way of rejecting accidental FDs. One issue with this method

is that the number of violations is regardless of the values in the FD’s lhs. We can improve this

method by associating the number of violations to each value in the FD’s lhs values, so that it can

differentiate between the case when more lhs values are violated versus few of them are violated.

Another problem with the mentioned method is that if there is no duplicate value in the lhs of an

FD, it will be rejected, since the value of FD PositiveEvidence for that FD is zero even if it is

true. For example, if we look at Table 3.1, the constraint Country → Continent holds, however,

there is no duplicate value in the “Country” column. Hence, by using the Violation Detectability

method, this table will be rejected although “Continent” describes “Country”. One way to address

this problem is to look for evidence in other tables. In other words, we search for duplicate values

in the columns of other tables with the same left-hand-side and right-hand-side columns in the FD.

Let’s assume the FD PositiveEvidence for FD X → Y is zero. If we can find other columns in

other tables containing X and Y and merge them together, we may increase the violation chance.

Hence we can be more confident in rejecting or accepting an FD. We call this method Column

Grouping.

As an example, if we merge the columns “Country” and “Continent” in Table 3.1 with the corre-

sponding columns with the same name in Table 1.7, then the FD PositiveEvidence(Country →

Continent) for the merged columns is 7
12

= 0.58, plus there is no violation of the functional de-

pendency Country → Continent. Hence, Column Grouping will pick the column-pair (“Coun-

22

Company Country Continent

Apple USA North America

Infosys India Asia

Shopify Canada North America

Table 3.1: A table about companies, with “Company” column as the key and no duplicates in the
country column

try”,“Continent”) from Table 3.1 to be used in the extended table. Also, by picking this column-

pair, the coverage in the extended column “Continents” will increase, since the value pair (“In-

dia”,“Asia”) did not exist before using the Column Grouping method, and now we can use this

new value pair to extend the continent value for “India” with “Asia”.

Following our efforts to pick related columns from the second column-category, i.e. columns

in tables where Q̂ is a non-key column, we can find additional columns that do not necessarily

describe query column Q, but are “related” to Q and give more information about it, such as

“Cave” in Table 1.7 and “City” in Table 1.6 and “Company” in Table 1.5. In order to pick such

columns, by taking a closer look at column-pairs (“City”,“Country”), (“Cave”,“Country”) and

(“Company”,“Country”) in the table corpus, we speculate that their pairwise value occurrences

are more than pure coincidence. Hence, there could be a correlation between those value pairs

over the corpus tables. As an example, there are multiple tables that contain value pairs (“Mon-

treal”,“Canada”) or (“Chicago”,“USA”) in the column-pair (“Country”,“City”). As a result, we

can speculate that “Country” and “City” can be related to each other since there is a strong corre-

lations between the pairwise values in the column-pair. Here, a question is how we can calculate

such correlations among value-pairs.

One way to calculate correlations between two values is to leverage Point-wise Mutual Infor-

mation (PMI), defined at row-level in tables. PMI is defined as below [33]:

PMI(v1, v2) = log
p(v1, v2)

p(v1)p(v2)
. (3.3)

Where p(v) is the probability that a value v occurs in a table in the corpus, which can be

estimated as follows:

p(v) =
|T (v)|
N

. (3.4)

23

Where |T (v)| is the number of tables that contain value v, and N is the number of tables in the table

corpus. The probability of values v1 and v2 co-occurring in one row p(v1, v2) can be estimated as

follows:

p(v1, v2) =
|T (v1, v2)|

N
. (3.5)

Where |T (v1, v2)| is the number of tables where v1 and v2 occur in one row. PMI computes the

logarithmic ratio between the probability that v1 and v2 co-occur in a row and the probability that

they co-occure by chance. This measure is usually normalized to the range of [−1,+1] which is

called Normalized PMI (NPMI) based on the following formula [33]:

NPMI(v1, v2) =
PMI(v1, v2)

− log p(v1, v2)
. (3.6)

In order to accept or prune a column-pair, we compute the average NPMI scores over all the

pairwise-values of the column-pair and if this score is lower than a threshold, we prune the column-

pair.

It is worth mentioning that such columns extend the query column with set-values, because

each query value may be in a relationship with one or more value. As an example, if we consider

Table 1.6, the query value “Canada” is in a relationship with the set {“Toronto”,“Montreal”}, as

well as the query value “USA” which is in a relationship with the set {“Chicago”,“Dallas”}.

3.3 Column Grouping

As discussed in the challenges section in Chapter 1, there is a chance that a few selected columns

represent the same concept. For example, the “Capital” column in tables 1.2 and 1.3 both charac-

terize the same concept which is the country capitals. However, it is not desirable for the user to

see duplicate columns in the result table. Hence, we need to group selected column pairs from the

previous step so that the columns with the same concept fall under the same cluster. To define our

task:

Definition 6. Column Grouping: Given a set of column-pairs c ∈ C, cluster all column-pairs in

C into column-pair groups g ∈ G so that each cluster g contains a set of column-pairs with the

same concept.

24

We use a method similar to Agglomerate Hierarchical Clustering [34] in order to perform col-

umn grouping. Note that hierarchical clustering is one possible choice, and alternative clustering

methods can also be used, as long as the columns with the same concept are grouped together. Our

reason to use hierarchical clustering in this step is that it does not require the number of clusters to

be known in advance.

In our approach, we compute the clusters in this way that first, each column-pair is a cluster.

Then the distances between each pair of clusters is computed and those clusters with distance

lower than a merge threshold are merged with each other. This cycle repeats for each hierarchy

level until there are no cluster with distance lower than the merge threshold or all clusters are

merged into one. Also the clustering hierarchy levels can be cut in any desired level. We define the

distance between two column-pairs based on the header string distance of their Q̂ as well as the

tuple overlap distance between their Q̂ as follows:

dist(cp1, cp2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if Type(cp1) ̸= Type(cp2)

stringdist(cp1.header, cp2.header), if Type(cp1) = Type(cp2) = ‘numeric’
stringdist(cp1.header, cp2.header), if Type(cp1) = Type(cp2) = ‘date’
H(stringdist(cp1.header, cp2.header), overlapdist(cp1, cp2)), otherwise

(3.7)

Where H is the Harmonic Mean between the string distance of the non-query-mapped column

headers and the tuple-overlap distance of column-pairs. By using Harmonic Mean, we tend to

mitigate the negative impact that a high header dissimilarity or a low tuple overlap introduces in

the distance of the column-pairs. The stringdist function is defined as character-wise edit distance.

The overlapdist is equal to (1− overlapsim), where overlapsim defined as follows:

overlapsim(cp1, cp2) =
|cp1 ∩ cp2|

min(|cp1|, |cp2|)
. (3.8)

Where |cp1 ∩ cp2| is the number of tuples that cp1 and cp2 have in common, and |cp1| and |cp2|

are the sizes of column pairs in cp1 and cp2 respectively.

In order to compute the distance score between merged clusters, we follow the single link

clustering, which uses the shortest distance between any column of one cluster to any column of

the other cluster.

Also, we tag each column with its type (i.e. either text, numeric or date) by using a rule-

based engine and pattern matching; For doing so we tag each value of a column with its identified

type, then we tag the entire column based on the majority vote for the value types. Plus, in any
25

hierarchy level of our clustering method, if the columns of the clusters being compared are from

different types, then they are not merged with each other. In this case, the difference between those

two clusters would be 1. If the columns are of type ‘numeric’ or ‘date’, we ignore the overlap

similarity in this case and only return the string distance between their non-query-mapped column

header as their column distance.

3.4 Grouped Column Consolidation

Referring back to Section 1.3, a challenge with column grouping is that there can be multiple val-

ues associated with a query entity for an extended column that comes from different table sources

and the values can not be reduced to a single value. Recall the motivating example: if we group

the second columns in tables 1.2, 1.3 and 1.3, there would be two candidate values “Otawa” and

“Ottawa” for the capital attribute associated with “Canada”. The goal of Grouped Column Con-

solidation is to consolidate an extended column by selecting a set of canonical values for each

query entity q from the values associated with q in the given column-pairs. We formally define this

problem as below:

Definition 7. Grouped Column Consolidation: Given a column-pair group g consisting of a set

of column-pairs (Q̂, C) ∈ g, where Q̂ has a high V alueOverlap with the query column Q and C

describes Q̂, output extended column-pair (Q, V) so that for each value-pair (q, v) ∈ (Q, V):

• v = Canonical V alues(multi set).

• multi set = {{c|(q̂, c) ∈ (Q̂, C) & q = q̂}}.

In Definition 7., The reason of using a multi-set is that duplicate values are allowed in multi-

sets. This enables us to calculate the frequencies of the elements of a multi-set. In the mentioned

definition, the function Canonical V alues selects the canonical values from a multi-set of values

c ∈ C corresponding to a query value q̂. In this function, we use a method similar to fuzzy

grouping [35] which clusters the values in the given multi-set based on their edit distance, so that

those values with edit distance lower than a threshold are clustered together and for each cluster, it

outputs the value with the highest frequency.

26

3.5 Column Ranking

After selecting related columns to the query and collapsing those columns with the same concepts

into a single grouped column, it would be helpful for the user to see a ranked list of extended

columns based on the “relatedness” of the extended columns to the query column, so that “more

related” columns come before “less related” ones. The challenge here is how to quantify this

relatedness and output the ranked list of extended columns. In the Column Ranking step, we

address the mentioned challenge.

Definition 8. Column Ranking: Given a set of consolidated column pairs c ∈ C, plus a query

column Q, output a ranked list of consolidated columns based on their relatedness to Q.

Here, we claim that ”relatedness” of a column c to a query column q is dependent on two

factors: (1) The relatedness between the header of the query column Q and the header of column

c which is to be added as an extended column, and (2) the relatedness between the contents of two

columns.

We can formalize the first factor by utilizing the concept of relatedness of a new attribute to

an existing attribute in a schema used in [14] which we call Header Relatedness. The Header

Relatedness between the query column q and column c can be defined as below [14]:

HeaderRel(q, c) = P (c.header|q.header) = |(c.header, q.header)|
|q.header|

. (3.9)

In equation 3.9, |(c.header, q.header)| is the number of co-occurrences where both attributes

are present in one table over the table corpus and |q.header| is the number of tables containing

q.header as one of their attributes. In case the header is a set-value C, we average over the

HeaderCons of each header value w.r.t. q.header as follows:

HeaderRel(q, C) =

∑
c∈C P (c.header|q.header)

|C|
. (3.10)

These co-occurrences can be calculated using Attribute Correlation Statistics Database (ACSDb)

[13] which basically records the count of each unique schema over the corpus of web tables. From

this information, the co-occurrences between each pair of attributes can be computed, which is in

fact the correlation between those attributes in the corpus.

27

In order to formalize the second factor, we can use the definition of Header Relatedness for for

a single row as well. For this, we define a measure called Row Relatedness:

RowRel(q.vi, c.vi) = P (c.vi|q.vi) =
|(q.vi, c.vi)|
|q.vi|

. (3.11)

Similar to HeaderCons, in case of a set-valued c.vi, we average over the RowCons of each

value in the set w.r.t. q.vi. The difference between Header Relatedness and Row Relatedness is

in the calculation of co-occurences. In Header Relatedness, we use the corpus statistics which

deals with table headers (Header Statistics). However, in Row Relatedness we use another type of

statistics which deals with table content (Content Statistics). We use Algorithm 1 to build these

statistics.

Algorithm 1: CreateStatistics
Input: TableCorpus
Output: HeaderStatistics, ContentStatistics

1 HeaderStatistics← {}
2 ContentStatistics← {}
3 for table ∈ TableCorpus do
4 for column ∈ table do
5 header ← column[table.headerRowIndex]
6 HeaderStatistics[header].AssignOrAppend(table.id)

7 for i← 1 to table.columnCount do
8 for j ← 1 to table.rowCount do
9 cellV alue← table[j][i]

10 ContentStatistics[cellV alue].AssignOrAppend(table.row id)

11 return HeaderStatistics, ContentStatistics

In Algorithm 1, we iterate through each column of the corpus tables to create the Header

Statistics and Content Statistics. From lines 3 to 6, we create a mapping between column headers

and table ids and call it HeaderStatistics. In the remaining, we create a mapping between each

value of columns and their row ids and call it ContentStatistics

Since Header Relatedness and Row Relatedness have similar formula but use different statis-

tics, then each time we want to compute the relatedness score we can use Algorithm 2 in which we

input the header or contents statistics as required.

28

Algorithm 2: GetRelatednessScore
Input: V al1, V al2, Statistics
Output: RelatednessScore

1 set1 ← Statistics[V al1]
2 set2 ← Statistics[V al2]
3 intersect← set1.intersection(set2)

4 RelatednessScore← len(Extract Table ID(intersect))
len(Extract Table ID(set1))

5 return RelatednessScore

Note that HeaderRelatedness and RowRelatedness differ from the PMI measure in Section

3.2 in that PMI computes the logarithmic ratio between the probability that query value and its

associated extended-column value(s) co-occur in a row and the probability that they co-occure by

chance, however, HeaderRelatedness and RowRelatedness measure the probability of occurrence

of extended-column value(s), given that the query value is present, which is what we would like to

measure in Column Ranking step.

We can aggregate Row Relatedness for each row of query column q and column c to capture the

relatedness between the two columns. We call this measure Content Relatedness which is defined

as follows:

ContentRel(q, c) =

∑N
i=1RowRel(q.rowi, c.rowi)

N
. (3.12)

Where N is the number of rows.

Finally, we define the relatedness between the query column q and an additional column c as

the combination of Header Relatedness and Row Relatedness of the two columns. Any aggregation

method can be used to combine the two measures. We use average in our solution, as follows:

Relatedness(q, c) =
HeaderRel(q, c) + ContentRel(q, c)

2
. (3.13)

29

Chapter 4

Experimental Evaluation

In this chapter, we discuss the experimentation and evaluations conducted on our proposed frame-

work for table extension. The goals of the study are:

• To compare our proposed method with two state-of-the-art baselines in terms of the number

of unique relevant columns returned, the quality of merging columns with the same concept,

and the precision of the extension.

• To measure how different FD-detection methods affect the extension results.

• To measure the effectiveness of the column ranking method.

In the rest of the chapter, we describe the dataset used for the experiments. Then we present

our results and compare them with the results from baseline methods.

4.1 Dataset

We use WDC Entity-Level Gold Standard1 for our experimental evaluation. This dataset contains

233 web tables selected from a random sample of Web Data Commons Web Tables Corpus [12], a

web table corpus extracted from a web crawl in 2015. For schema matching purposes, each table

in this dataset is mapped to a class in the DBpedia ontology,2 and each table column in the dataset

is mapped to a property in DBpedia, if possible. This dataset has also been used in a number of

previous works for schema matching [25, 26, 36]. An overview of the table mapping is presented

in Table 4.1. A detailed statistics of this dataset mapping is presented in Appendix A.
1http://webdatacommons.org/webtables/goldstandard.html
2http://mappings.dbpedia.org/server/ontology/classes/

30

Superclass Classes #Tables

Place Country, City, Mountain, Airport, etc. 102

Agent Company, Political Party, Scientist, Baseball Player, etc. 71

Work Film, Video Game, Book, Newspaper, etc. 46

Species Animal, Bird, Plant, etc. 14

Total 233

Table 4.1: Dataset Overview

Figure 4.1: Sample web table [37]

For each table in our dataset, table content as well as the key-column and the header row

of the table are specified by properties named relation, Key Column Index and Header Row Index,

respectively. Values from these three properties are mainly used for a table in a table extension. The

dataset also stores additional metadata for each table such as Source Page URL and Text Before and

after Table, which are not used in our solution, but are used in other methods such as InfoGather

[4]. A sample table in our dataset, stored in a Json file, is shown in Figure 4.2, which describes the

table in Figure 4.1.

31

Figure 4.2: Dataset Sample Json File associated to Figure 4.1

4.2 Evaluating Table Extension Compared to Baselines

Based on the related work discussed in Section 2.1, Mannheim Search Join is the only method

which is capable of performing a table extension and is not targeted for a specific domain. Hence

we use this method as one of the baselines for our evaluation. In order to perform a table extension,

we can also apply Attribute Discovery [4] to methods that try to fill an attribute column. From those

methods, we pick InfoGather as another baseline. We evaluate and compare the following table

extension methods:

1. Proposed Solution: We have implemented the proposed solution explained in Chapter 3,

with Error Threshold as the FD-detection method.

2. InfoGather [4]: InfoGather does not directly support table extension, however, we can per-

form a table extension by combining Attribute Discovery and Augmentation By Attribute

name. For this reason, we have implemented and combined the two operations in the follow-

ing way: we first perform Attribute Discovery for an input query column which outputs a set

of attribute-name groups, with each group representing a single concept. For example, sup-
32

pose the query column is consisted of a number of camera models. A sample attribute-name

group may consist of a set such as {brand,manufacturer,maker, vendor} where all of its

elements refer to a single concept which is the manufacturer of the camera model. After this

step, we execute Augmentation By Attribute name for each attribute name in each group. We

consolidate the output values for each query row in each output header group as discussed

in Section 2.1. We use the same consolidation method in this baseline as the one we used in

the Grouped Column Consolidation step in our proposed framework so that the comparisons

between the methods are fair.

3. Mannheim SearchJoin [3]: We have also implemented Mannheim SearchJoin. However,

since this work has similar steps for Column Grouping and Grouped Column Consolidation,

for consistency we have used the same methods that we used in our solution so that the

methods can be compared fairly.

We evaluate the quality of our table extension, compared to the baselines discussed above,

under two settings:

1. Pre-selected queries: We choose 7 queries from the topics used in our dataset that cover a

wide range of distribution of tables about those topics. The name of these topics, ordered

by the number of tables about them are as follows: Country, Video Game, Film, Company,

Cities, Language, Currency. In order to pick the query values for each topic, we select a

random column from each topic in our dataset, and from that column, we pick 10 random

entities.

2. Random Queries: We randomly select 5% of columns in our table corpus, which amounts

to 57 queries, and use each selected column as a query column for table extension evaluation.

We use DBpedia [5] as the ground truth in order to cross-check the values in an extended table.

Since each DBpedia triple is in the format of ⟨subject, predicate, object⟩, we perform the cross-

check in the way that for each value v associated with a query value q in an extended column c, we

match triples ⟨q, predicate, v⟩ and ⟨v, predicate, q⟩ with DBpedia triples and gather all matched

predicates. Each value v is tagged with the most frequent matched predicate. In the case that v

is a set-value, it is tagged with the most frequent matched predicate in the set, and in case of ties,

33

v is tagged with all most frequent matched predicates. Finally, each extended column c is tagged

with the most frequent tag associated to the values in c, and in case of ties, c is tagged with all

most frequent tags associated to values in c. We consider each value v in an extended column c as

‘correct’ if the DBpedia tag associated with v is the same as the DBpedia tag of column c.

For example, assume the query column is consisted of a number of countries, and a table ex-

tension is performed as shown in Figure 4.3. In order to cross-check the first extended column over

DBpedia, we issue ⟨Canada, predicate, Ottawa⟩ and ⟨Ottawa, predicate, Canada⟩ for its first

row, ⟨Spain, predicate,Madrid⟩ and ⟨Madrid, predicate, Spain⟩ for the second row, ..., and

⟨Egypt, predicate, Africa⟩ and ⟨Africa, predicate, Egypt⟩ for the last row. The value tag for

the first, second and fourth column value is Capital. For the third value no predicate can be found

in DBpedia, which may suggest that the value is incorrect. The fifth value is tagged as Continent.

Since Capital is the majority among the value tags, the column is tagged as Capital. We consider

Ottawa, Madrid and London as ‘correct’ since their value tags are the same as the column tag,

while Australia and Egypt are considered ‘incorrect’ because their tags differ from the column

tag.

Figure 4.3: Sample extension

We have executed the algorithms on the gold standard dataset described earlier and compared

the results based on the following criteria:

• Number of Unique Relevant Columns: We report the number of unique relevant columns

extended by each method. We expect that our proposed method returns more unique relevant

columns than the baseline methods since our method is utilizing more useful columns from

the table corpus than the other baselines. We consider an extended column as ‘relevant’ if the

precision of the contents of that column is higher than a threshold. By raising this threshold,

34

the number of relevant columns returned by each method becomes smaller, and by lowering

the threshold this number grows. We set this threshold to 20% in our experiments. We

compute this measure as below:

Column Content Precision =
#correct values

#values
. (4.1)

• Grouping Factor: For each method, we measure the quality of combining extended columns

with the same concept and outputting unique columns as follows:

Grouping Factor =
#unique relevant columns

#relevant columns
. (4.2)

The expectation is to have the highest possible grouping factor in an extension, hence the

least possible number of duplicates in extended columns. To identify duplicate columns, we

check whether the columns have the same DBpedia tag or not. However, due to DBpedia’s

triplet structure, it is sometimes difficult to determine whether two columns with the same

tag represent the same concept. For example, in an extended table with countries as query

values, DBpedia fails to detect that columns ‘lakes’ and ‘mountains’ are not duplicates, since

they are both tagged as ‘location’. To avoid such cases, we perform an additional step where

we check the overlap between columns with the same tag. This is measured as the number

of rows where the two columns have the same values for a corresponding query value. If

this overlap is higher than a threshold, we mark those columns as duplicates. We check the

overlap of only those values associated with the same query value. For set-valued columns,

two column values match if the intersection between the two sets is not empty, since this

indicates that the two sets are about the same concept.

• Precision of Extension: We also measure the precision of an extension as follows:

Precision of Extension =
#unique relevant columns

#all extended columns
. (4.3)

Based on the equation above, higher precision of an extension results in larger portion of

extended columns that are relevant to the query column, which means that fewer irrelevant

columns would be returned.

Figure 4.4 reports the evaluation results averaged over 57 randomly selected queries. As shown

in Figure 4.4a, the number of unique relevant columns extended by our proposed solution is on
35

average 3 times higher than that of Mannheim and InfoGather. This is mainly due to the fact

that both Mannheim and InfoGather only use in their extensions those tables in which the query

column matches the key column, referred to Q̂ in Chapter 3.2. However, the proposed solution

pulls columns from tables where Q̂ is a key column, as well as from tables where Q̂ is a non-key

column. As depicted in Figure 4.4b for our table extension algorithm, a random query on average

retrieves more columns from tables where the query matches a non-key column of a table.

(a) Unique Relevant Columns (b) Column Contribution for Proposed Method

(c) Grouping Factor (d) Precision of Extension

Figure 4.4: Evaluations on Random Queries

InfoGather consistently retrieves the smallest number of relevant columns. This is because the

extended columns are populated based on a given attribute name (within the Augmentation By

Attribute Name step), and attribute names may not be present in all columns or if present, may not

be informative. Hence, the extended columns cannot be populated to the full extent.

Our proposed method retrieves more relevant columns than our competitors, and a large por-

tion of those relevant columns are unique and not redundant. This is shown in Fig 4.3c where
36

the grouping factor for our method is in the same scale as Mannheim. InfoGather has the low-

est grouping factor because an extended column returned from this method does not necessarily

represent a single attribute and may share some values with other columns, hence the column can

be detected as a duplicate column. The reason of this limitation is in the Attribute Discovery step

where a number of attribute-names coming from the same web table which are not necessarily

synonyms, are placed in the same attribute-name group. This comes from a bias in the Holistic

Matching method towards EABs coming from a same source table as discussed in Section 2.1.

Figure 4.4d shows that the precision of extending a table using our method is higher than that

of both Mannheim and InfoGather, meaning that a larger portion of the retrieved columns are

relevant.

Figure 4.5 shows the evaluations of pre-selected queries. We observed similar results for these

queries as well. It is noteworthy that when the query is about currencies or languages, there are no

tables in the dataset with a key column matching our queries. Hence, Mannheim and InfoGather

cannot extend those queries. However, our proposed solution leverages the columns in those tables

with Q̂ among their non-key columns. For example, in the case of the language query, there exists a

table with a key column about countries, containing a column about the languages spoken in those

countries. In this example, there is a correlation between the value-pairs (country, language) in

our corpus tables since their pairwise value occurrences are higher than expected by pure coin-

cidence. Hence the country column is picked up by the proposed method as an extension of the

language query. In another case, with a list of currency names as query, there exists a table about

countries, which lists both the currency name and currency code for each country. Clearly, the

query does not match the key column of the table, but there is a functional dependency between

‘Currency Name’ and ‘Currency Code’ in the form of Currency Name → Currency Code,

which suggests that the table is not in BCNF. This table can be decomposed into smaller BCNF

tables, such that one of the BCNF tables contains ‘Currency Name’ as its key column and ‘Cur-

rency Code’ as its non-key column. Our proposed method picks up ‘Currency Code’ as a property

or extension of ‘Currency Name’.

On query columns games, films and companies, both the proposed method and Mannheim have

the same results since both methods pick the same source columns from tables where the query

matches the key column of the table. The other steps in both algorithms, namely column grouping

37

(a) Unique Relevant Column

(b) Column Contribution for Proposed Method

(c) Grouping Factor

(d) Precision of Extension

Figure 4.5: Evaluations on Pre-selected Queries

38

and value selection, also function in the same manner.

4.3 Evaluating FD-Detection Methods

In this section, we evaluate the quality of functional dependency detection methods discussed

in Section 3.2. The goal of the evaluation is to measure how different FD-detection methods

affect the extension result. We use 3 methods in this evaluation: Error Threshold (ET), Violation

Detectability (VD), and Violation Detectability with Column Grouping (VDCG)

We compare the quality of table extension using each of the aforementioned FD-detection

methods. The queries were selected randomly from the set of columns in the table corpus. How-

ever, since in 75% of the queries, all 3 methods yield the same result for a query, we set a condition

to select a query only if it yields different results for at least 2 methods.

Table 4.2 shows the evaluation of different FD-detection methods. We notice that VDCG ex-

tends the query table with more relevant columns than VD, but less relevant columns than ET. This

is due to the fact that some of those approximate FDs that are accepted by ET have no duplicate

values on their right-hand-sides and are rejected by VD. However, the attributes of some of those

rejected FDs occur in other tables, and those FDs are recovered after a column grouping in VDCG.

The same trend can be seen in the average number of source columns that are selected from ta-

bles matching a non-key column with the query column. As shown in Table 4.2, ET selects 35.45

columns on average, VD rejects 22.05 columns on average from those returned by ET, and VDCG

recovers 8.3 of those rejected columns.

ET VD VDCG

Avg # of Unique Relevant Columns 7.55 3.45 4.90

Avg # of Source Columns Picked from
Tables with Q̂ under their Non-Key Column

35.45 13.40 21.70

Avg Grouping Factor 1.00 1.00 1.00

Avg Table Size 17.05 7.65 9.75

Precision of Extension 0.44 0.45 0.50

Table 4.2: Comparison between FD-Detection methods

39

Despite the fact that table extension using ET augments the query table with more relevant

columns (compared to other FD-detection methods), we cannot claim that ET is a better method

overall. Selecting columns that are thought to be functionally dependent on the query column

without additional evidence from other tables may result in picking more irrelevant source columns

and rejecting functional dependencies with no duplicates in the rhs of the FD may result in losing

relevant source columns. VDCG is a trade-off that compromises between these two extremes. This

is also shown in Table 4.2, where the average table size of a table extension using VDCG is smaller

than the average table size of an extension using ET and larger than that of VD but its average

precision of extension is the highest among these methods.

4.4 Column Ranking Analysis

As discussed in Section 3.5, users prefer to see extended columns that are more related to the query

column first. Hence the proposed method returns a ranked list of extended columns ordered by

their relevance to the query. In this section we evaluate the Column Ranking step in our proposed

solution. We evaluate the column ranking step using each of the pre-selected queries in 3 settings:

The relatedness between an extended column and the query column based on their (1) Header

Relatedness, (2) Row Relatedness, and (3) the combination of the two, which were all discussed in

Section 3.5. The goal of this evaluation is to measure how effective the column ranking method is.

To assess the effectiveness of Column Ranking, we calculate the R-precision (a.k.a. the preci-

sion at R) [38] of the relevant columns for each ranking setting as below:

R-Precision =
#relevant columns in the top-R extended columns

R
. (4.4)

For each query, R is chosen as the total number of unique relevant columns for that query. In this

experiment, since R-precision is measured for each query, we average this quantity over queries in

our query set to compare the results of the ranking settings.

Table 4.3 shows the R-precision for each of the pre-selected queries in each column ranking

setting. Based on the results, when the relatedness score is based on Row Relatedness, the average

R-precision is higher than the Header Relatedness setting. This is partly due to the fact that some

of the columns in the dataset lack header names or contain header names that are not informative

for the column. Plus, by using row relatedness, more evidence can be found in the table corpus
40

that shows whether the values of 2 columns co-occur with each other or not. However, based on

the evaluation results, the best ranking setting is when header relatedness and row relatedness are

combined and used as a single relatedness measure which leverages the benefits of both measures.

4.5 Summary of Results

Our evaluation reveals that:

• The number of unique relevant columns extended by our proposed solution is on average 3

times higher than that of two state-of-the-art baselines.

• The precision of extending a table using our method is higher than that of both baselines,

meaning that fewer irrelevant columns are retrieved.

• The Error Threshold method for Functional Dependency detection results in picking more

irrelevant source columns and the Violation Detectability method results in losing relevant

source columns. Violation Detectability with Column Grouping is a trade-off that compro-

mises between these two extremes.

• In the Column Ranking step, when the relatedness score is based on Row Relatedness, the

average R-precision is higher than the Header Relatedness setting. The best ranking setting

is when these two measures are combined and used as a single relatedness measure, which

leverages the benefits of both measures.

41

Relatedness Score = HeaderRelatedness

Query #Rel @Top #TotalRel #TotalRel TotalExtended R-Precision

Games 3 4 9 0.75

Films 0 2 13 0.00

Companies 0 2 8 0.00

Currencies 0 2 4 0.00

Languages 2 2 6 1.00

Cities 3 7 19 0.43

Countries 5 10 59 0.5

Average 0.38

(a) Column ranking evaluation when Relatedness Score is solely based on HeaderRelatedness

Relatedness score = RowRelatedness

Query #Rel @Top #TotalRel #TotalRel TotalExtended R-Precision

Games 3 4 9 0.75

Films 1 2 13 0.00

Companies 1 2 8 0.00

Currencies 1 2 4 0.00

Languages 2 2 6 1.00

Cities 3 7 19 0.43

Countries 4 10 59 0.5

Average 0.58

(b) Column ranking evaluation when Relatedness Score is solely based on RowRelatedness

Relatedness Score = Avg(HeaderRelatedness, RowRelatedness)

Query #Rel @Top #TotalRel #TotalRel TotalExtended R-Precision

Games 3 4 9 0.75

Films 1 2 13 0.00

Companies 1 2 8 0.00

Currencies 1 2 4 0.00

Languages 2 2 6 1.00

Cities 4 7 19 0.43

Countries 5 10 59 0.5

Average 0.62

(c) Column ranking evaluation when Relatedness Score is based on the average of HeaderRelat-
edness and RowRelatedness

Table 4.3: Column Ranking Evaluation

42

Chapter 5

Conclusion

In this thesis, we propose a framework of table extension, where given a query table and a corpus of

web tables, the goal is to find a ranked list of additional columns from the table corpus that describe

the entities of the query table. The framework consists of 5 steps: (1) Table Search, which extracts

tables from the corpus that are potential candidates for having suitable source columns to be used in

an extended column, (2) Column Selection, which selects suitable columns for performing a table

extension from the candidate tables returned by the previous step, (3) Column Grouping, which

merges columns that represent the same concept but are coming from different tables into separate

clusters, (4) Grouped Column Consolidation, which consolidates each column-cluster from the

previous step into a single extended column by selecting a single value or a set of values for each

column-cluster and query value, and (5) Column Ranking, which ranks the extended columns based

on their relatedness to the query column.

In the Column Selection step, we use the notion of functional Dependency in order to capture

the relatedness between suitable columns and the query column. To detect Functional Dependen-

cies, we present 3 methods: (1) Error Threshold, which is based on the number of violations in a

table for an FD to be satisfied, (2) Violation Detectability, which tries to detect positive evidence

in a table for an FD to hold over a schema, and (3) Violation Detectability with Column Grouping,

which tries to find positive evidence from other tables for an FD to hold over a schema. We study

the effects of each method on table extension results. The study shows that Error Threshold results

in picking more irrelevant source columns and Violation Detectability results in losing relevant

source columns. Violation Detectability with Column Grouping is a trade-off that compromises

between these two extremes.

43

We introduce methods for ranking an extended column based on the Header Relatedness and

Row Relatedness between the query column and the extended column. We show that when the

relatedness score is based on Row Relatedness, the average R-precision is higher than the Header

Relatedness setting. The best ranking setting is when these two measures are combined together,

which leverages the benefits of both measures.

Our evaluation demonstrates that the number of unique relevant columns extended by our pro-

posed solution is on average 3 times higher than that of two state-of-the-art baselines. Plus, the

precision of extending a table using our method is higher than that of both baselines, meaning that

fewer irrelevant columns are retrieved.

As a possible direction for future research, one can improve on the matching method between

the values of table columns. Currently, we are using a character-based matching. However, in web

tables, there are multiple cases where this method may not work for matching two values. For

example, matching a word with its abbreviated form may not be done via this method, since the

character-wise similarity between the two words may not be high enough. As another example,

character-based matching may not work for synonyms where the words do not have enough shared

characters.

A limitation of our proposed framework in detecting Functional Dependencies is that, after

applying any of the FD-detection methods, there are still some accidental FDs that are accepted

as true FDs. As another area for future research, one can improve the FD-detection method in

order to identify and reject accidental FDs with more accuracy. Also, one can improve on the time

complexity of the proposed framework by proposing a more efficient column grouping method

than the hierarchical clustering in which the time complexity is O(n3).

44

References

[1] M. J. Cafarella, A. Halevy, and N. Khoussainova, “Data integration for the relational web,”
Proc. VLDB Endow., vol. 2, no. 1, pp. 1090–1101, Aug. 2009, ISSN: 2150-8097. DOI: 10.
14778/1687627.1687750. [Online]. Available: https://doi.org/10.14778/
1687627.1687750. 1, 11, 14

[2] J. Eberius, M. Thiele, K. Braunschweig, and W. Lehner, “Top-k entity augmentation using
consistent set covering,” in Proceedings of the 27th International Conference on Scientific
and Statistical Database Management, ser. SSDBM ’15, La Jolla, California: ACM, 2015,
8:1–8:12, ISBN: 978-1-4503-3709-0. DOI: 10.1145/2791347.2791353. [Online].
Available: http://doi.acm.org/10.1145/2791347.2791353. 1, 12

[3] O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel, H. Paulheim, and C. Bizer, “The mannheim
search join engine,” Web Semant., vol. 35, no. P3, pp. 159–166, Dec. 2015, ISSN: 1570-
8268. DOI: 10.1016/j.websem.2015.05.001. [Online]. Available: http://dx.
doi.org/10.1016/j.websem.2015.05.001. 1, 10, 11, 15, 33

[4] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri, “Infogather: Entity augmenta-
tion and attribute discovery by holistic matching with web tables,” in Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD
’12, Scottsdale, Arizona, USA: ACM, 2012, pp. 97–108, ISBN: 978-1-4503-1247-9. DOI:
10.1145/2213836.2213848. [Online]. Available: http://doi.acm.org/10.
1145/2213836.2213848. 1, 8, 11, 12, 15, 31, 32

[5] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, and C. Bizer, “Dbpedia - a large-scale, multilingual
knowledge base extracted from wikipedia,” English, Semantic Web, vol. 6, no. 2, pp. 167–
195, 2015. DOI: 10.3233/SW-140134. [Online]. Available: https://madoc.bib.
uni-mannheim.de/37476/. 7, 33

[6] M. Zhang and K. Chakrabarti, “Infogather+: Semantic matching and annotation of numeric
and time-varying attributes in web tables,” in Proceedings of the 2013 ACM SIGMOD In-
ternational Conference on Management of Data, ser. SIGMOD ’13, New York, New York,
USA: ACM, 2013, pp. 145–156, ISBN: 978-1-4503-2037-5. DOI: 10.1145/2463676.
2465276. [Online]. Available: http://doi.acm.org/10.1145/2463676.
2465276. 10

45

https://doi.org/10.14778/1687627.1687750
https://doi.org/10.14778/1687627.1687750
https://doi.org/10.14778/1687627.1687750
https://doi.org/10.14778/1687627.1687750
https://doi.org/10.1145/2791347.2791353
http://doi.acm.org/10.1145/2791347.2791353
https://doi.org/10.1016/j.websem.2015.05.001
http://dx.doi.org/10.1016/j.websem.2015.05.001
http://dx.doi.org/10.1016/j.websem.2015.05.001
https://doi.org/10.1145/2213836.2213848
http://doi.acm.org/10.1145/2213836.2213848
http://doi.acm.org/10.1145/2213836.2213848
https://doi.org/10.3233/SW-140134
https://madoc.bib.uni-mannheim.de/37476/
https://madoc.bib.uni-mannheim.de/37476/
https://doi.org/10.1145/2463676.2465276
https://doi.org/10.1145/2463676.2465276
http://doi.acm.org/10.1145/2463676.2465276
http://doi.acm.org/10.1145/2463676.2465276

[7] C. S. Bhagavatula, T. Noraset, and D. Downey, “Methods for exploring and mining tables on
wikipedia,” in Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration
and Analytics, ser. IDEA ’13, Chicago, Illinois: ACM, 2013, pp. 18–26, ISBN: 978-1-4503-
2329-1. DOI: 10.1145/2501511.2501516. [Online]. Available: http://doi.
acm.org/10.1145/2501511.2501516. 11

[8] G. Penn, Jianying Hu, Hengbin Luo, and R. McDonald, “Flexible web document analysis for
delivery to narrow-bandwidth devices,” in Proceedings of Sixth International Conference on
Document Analysis and Recognition, Sep. 2001, pp. 1074–1078. DOI: 10.1109/ICDAR.
2001.953951. 13

[9] H.-H. Chen, S.-C. Tsai, and J.-H. Tsai, “Mining tables from large scale html texts,” in
Proceedings of the 18th Conference on Computational Linguistics - Volume 1, ser. COL-
ING ’00, Saarbrücken, Germany: Association for Computational Linguistics, 2000,
pp. 166–172, ISBN: 1-55860-717-X. DOI: 10.3115/990820.990845. [Online]. Avail-
able: https://doi.org/10.3115/990820.990845. 13

[10] Y. Wang and J. Hu, “A machine learning based approach for table detection on the web,”
in Proceedings of the 11th International Conference on World Wide Web, ser. WWW ’02,
Honolulu, Hawaii, USA: ACM, 2002, pp. 242–250, ISBN: 1-58113-449-5. DOI: 10.1145/
511446.511478. [Online]. Available: http://doi.acm.org/10.1145/511446.
511478. 13

[11] M. J. Cafarella and E. Wu, “Uncovering the relational web,” in Proceedings of the 11th
International Workshop on Web and Databases, ser. WebDB ’08, 2008. 13

[12] O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer, “A large public corpus of web tables
containing time and context metadata,” in Proceedings of the 25th International Conference
Companion on World Wide Web, ser. WWW ’16 Companion, Montréal, Québec,
Canada: International World Wide Web Conferences Steering Committee, 2016, pp. 75–76,
ISBN: 978-1-4503-4144-8. DOI: 10.1145/2872518.2889386. [Online]. Available:
https://doi.org/10.1145/2872518.2889386. 13, 30

[13] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang, “Webtables: Exploring the
power of tables on the web,” Proc. VLDB Endow., vol. 1, no. 1, pp. 538–549, Aug. 2008,
ISSN: 2150-8097. DOI: 10.14778/1453856.1453916. [Online]. Available: http:
//dx.doi.org/10.14778/1453856.1453916. 14, 27

[14] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F. Wu, R. Xin, and C. Yu, “Find-
ing related tables,” in Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’12, Scottsdale, Arizona, USA: ACM, 2012, pp. 817–
828, ISBN: 978-1-4503-1247-9. DOI: 10.1145/2213836.2213962. [Online]. Avail-
able: http://doi.acm.org/10.1145/2213836.2213962. 14, 27

[15] P. Venetis, A. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu, G. Miao, and C. Wu, “Re-
covering semantics of tables on the web,” Proc. VLDB Endow., vol. 4, no. 9, pp. 528–538,
Jun. 2011, ISSN: 2150-8097. DOI: 10.14778/2002938.2002939. [Online]. Available:
http://dx.doi.org/10.14778/2002938.2002939. 14, 16

46

https://doi.org/10.1145/2501511.2501516
http://doi.acm.org/10.1145/2501511.2501516
http://doi.acm.org/10.1145/2501511.2501516
https://doi.org/10.1109/ICDAR.2001.953951
https://doi.org/10.1109/ICDAR.2001.953951
https://doi.org/10.3115/990820.990845
https://doi.org/10.3115/990820.990845
https://doi.org/10.1145/511446.511478
https://doi.org/10.1145/511446.511478
http://doi.acm.org/10.1145/511446.511478
http://doi.acm.org/10.1145/511446.511478
https://doi.org/10.1145/2872518.2889386
https://doi.org/10.1145/2872518.2889386
https://doi.org/10.14778/1453856.1453916
http://dx.doi.org/10.14778/1453856.1453916
http://dx.doi.org/10.14778/1453856.1453916
https://doi.org/10.1145/2213836.2213962
http://doi.acm.org/10.1145/2213836.2213962
https://doi.org/10.14778/2002938.2002939
http://dx.doi.org/10.14778/2002938.2002939

[16] G. Limaye, S. Sarawagi, and S. Chakrabarti, “Annotating and searching web tables using
entities, types and relationships,” Proc. VLDB Endow., vol. 3, no. 1-2, pp. 1338–1347, Sep.
2010, ISSN: 2150-8097. DOI: 10.14778/1920841.1921005. [Online]. Available:
http://dx.doi.org/10.14778/1920841.1921005. 14, 15

[17] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema matching, ten years later.,”
PVLDB, vol. 4, no. 11, pp. 695–701, 2011. [Online]. Available: http://dblp.uni-
trier.de/db/journals/pvldb/pvldb4.html#BernsteinMR11. 15

[18] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema matching,”
The VLDB Journal, vol. 10, no. 4, pp. 334–350, Dec. 2001, ISSN: 1066-8888. DOI: 10.
1007/s007780100057. [Online]. Available: http://dx.doi.org/10.1007/
s007780100057. 15

[19] Z. Bellahsene, A. Bonifati, and E. Rahm, Schema Matching and Mapping, 1st. Springer
Publishing Company, Incorporated, 2011, ISBN: 9783642165177. 15

[20] J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy, “Corpus-based schema matching,”
in Proceedings of the 21st International Conference on Data Engineering, ser. ICDE ’05,
Washington, DC, USA: IEEE Computer Society, 2005, pp. 57–68, ISBN: 0-7695-2285-8.
DOI: 10.1109/ICDE.2005.39. [Online]. Available: https://doi.org/10.
1109/ICDE.2005.39. 15

[21] G. Weikum and M. Theobald, “From information to knowledge: Harvesting entities and re-
lationships from web sources,” in Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, ser. PODS ’10, Indianapolis, Indi-
ana, USA: ACM, 2010, pp. 65–76, ISBN: 978-1-4503-0033-9. DOI: 10.1145/1807085.
1807097. [Online]. Available: http://doi.acm.org/10.1145/1807085.
1807097. 15

[22] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, and
W. Zhang, “Knowledge vault: A web-scale approach to probabilistic knowledge fusion,” in
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’14, New York, New York, USA: ACM, 2014, pp. 601–610,
ISBN: 978-1-4503-2956-9. DOI: 10.1145/2623330.2623623. [Online]. Available:
http://doi.acm.org/10.1145/2623330.2623623. 15

[23] X. Zhang, Y. Chen, J. Chen, X. Du, and L. Zou, “Mapping entity-attribute web tables to
web-scale knowledge bases,” in Database Systems for Advanced Applications, W. Meng, L.
Feng, S. Bressan, W. Winiwarter, and W. Song, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 108–122, ISBN: 978-3-642-37450-0. 15

[24] Y. A. Sekhavat, F. di Paolo, D. Barbosa, and P. Merialdo, “Knowledge base augmentation
using tabular data,” in 7th Workshop on Linked Data on the Web, CEUR-WS.org, 2014.
[Online]. Available: http://ceur-ws.org/Vol-1184/. 15

47

https://doi.org/10.14778/1920841.1921005
http://dx.doi.org/10.14778/1920841.1921005
http://dblp.uni-trier.de/db/journals/pvldb/pvldb4.html#BernsteinMR11
http://dblp.uni-trier.de/db/journals/pvldb/pvldb4.html#BernsteinMR11
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
http://dx.doi.org/10.1007/s007780100057
http://dx.doi.org/10.1007/s007780100057
https://doi.org/10.1109/ICDE.2005.39
https://doi.org/10.1109/ICDE.2005.39
https://doi.org/10.1109/ICDE.2005.39
https://doi.org/10.1145/1807085.1807097
https://doi.org/10.1145/1807085.1807097
http://doi.acm.org/10.1145/1807085.1807097
http://doi.acm.org/10.1145/1807085.1807097
https://doi.org/10.1145/2623330.2623623
http://doi.acm.org/10.1145/2623330.2623623
http://ceur-ws.org/Vol-1184/

[25] D. Ritze, O. Lehmberg, and C. Bizer, “Matching html tables to dbpedia,” in Proceedings
of the 5th International Conference on Web Intelligence, Mining and Semantics, ser. WIMS
’15, Larnaca, Cyprus: ACM, 2015, 10:1–10:6, ISBN: 978-1-4503-3293-4. DOI: 10.1145/
2797115.2797118. [Online]. Available: http://doi.acm.org/10.1145/
2797115.2797118. 15, 30

[26] O. Lehmberg and C. Bizer, “Stitching web tables for improving matching quality,” Proc.
VLDB Endow., vol. 10, no. 11, pp. 1502–1513, Aug. 2017, ISSN: 2150-8097. DOI: 10.
14778/3137628.3137657. [Online]. Available: https://doi.org/10.14778/
3137628.3137657. 16, 30

[27] X. Ling, A. Halevy, F. Wu, and C. Yu, “Synthesizing union tables from the web,” in Proceed-
ings of the Twenty-Third International Joint Conference on Artificial Intelligence, ser. IJCAI
’13, Beijing, China: AAAI Press, 2013, pp. 2677–2683, ISBN: 978-1-57735-633-2. [Online].
Available: http://dl.acm.org/citation.cfm?id=2540128.2540514. 16

[28] R. Gupta and S. Sarawagi, “Answering table augmentation queries from unstructured lists
on the web,” Proc. VLDB Endow., vol. 2, no. 1, pp. 289–300, Aug. 2009, ISSN: 2150-8097.
DOI: 10.14778/1687627.1687661. [Online]. Available: https://doi.org/10.
14778/1687627.1687661. 16

[29] R. Pimplikar and S. Sarawagi, “Answering table queries on the web using column key-
words,” Proc. VLDB Endow., vol. 5, no. 10, pp. 908–919, Jun. 2012, ISSN: 2150-8097. DOI:
10.14778/2336664.2336665. [Online]. Available: http://dx.doi.org/10.
14778/2336664.2336665. 16

[30] M. Kifer, A. Bernstein, and P. M. Lewis, “Database design with the relational normaliza-
tion theory,” in Database Systems: An Application Oriented Approach, Complete Version
(2Nd Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2005,
pp. 193–250, ISBN: 0321268458. 19

[31] Y. Wang and Y. He, “Synthesizing mapping relationships using table corpus,” in Proceedings
of the 2017 ACM International Conference on Management of Data, ser. SIGMOD ’17,
Chicago, Illinois, USA: ACM, 2017, pp. 1117–1132, ISBN: 978-1-4503-4197-4. DOI: 10.
1145/3035918.3064010. [Online]. Available: http://doi.acm.org/10.
1145/3035918.3064010. 20

[32] J. Kivinen and H. Mannila, “Approximate dependency inference from relations,” in Database
Theory — ICDT ’92, J. Biskup and R. Hull, Eds., Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1992, pp. 86–98, ISBN: 978-3-540-47360-2. 20

[33] K. W. Church and P. Hanks, “Word association norms, mutual information, and lexicogra-
phy,” Comput. Linguist., vol. 16, no. 1, pp. 22–29, Mar. 1990, ISSN: 0891-2017. [Online].
Available: http://dl.acm.org/citation.cfm?id=89086.89095. 23, 24

[34] L. Rokach and O. Maimon, “Clustering methods,” in Data Mining and Knowledge Discov-
ery Handbook, O. Maimon and L. Rokach, Eds. Boston, MA: Springer US, 2005, pp. 321–
352, ISBN: 978-0-387-25465-4. DOI: 10.1007/0-387-25465-X_15. [Online]. Avail-
able: https://doi.org/10.1007/0-387-25465-X_15. 25

48

https://doi.org/10.1145/2797115.2797118
https://doi.org/10.1145/2797115.2797118
http://doi.acm.org/10.1145/2797115.2797118
http://doi.acm.org/10.1145/2797115.2797118
https://doi.org/10.14778/3137628.3137657
https://doi.org/10.14778/3137628.3137657
https://doi.org/10.14778/3137628.3137657
https://doi.org/10.14778/3137628.3137657
http://dl.acm.org/citation.cfm?id=2540128.2540514
https://doi.org/10.14778/1687627.1687661
https://doi.org/10.14778/1687627.1687661
https://doi.org/10.14778/1687627.1687661
https://doi.org/10.14778/2336664.2336665
http://dx.doi.org/10.14778/2336664.2336665
http://dx.doi.org/10.14778/2336664.2336665
https://doi.org/10.1145/3035918.3064010
https://doi.org/10.1145/3035918.3064010
http://doi.acm.org/10.1145/3035918.3064010
http://doi.acm.org/10.1145/3035918.3064010
http://dl.acm.org/citation.cfm?id=89086.89095
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1007/0-387-25465-X_15

[35] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and efficient fuzzy match
for online data cleaning,” in Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, ser. SIGMOD ’03, San Diego, California: ACM, 2003,
pp. 313–324, ISBN: 1-58113-634-X. DOI: 10.1145/872757.872796. [Online]. Avail-
able: http://doi.acm.org/10.1145/872757.872796. 26

[36] A. L. Gentile, P. Ristoski, S. Eckel, D. Ritze, and H. Paulheim, “Entity matching on web
tables: A table embeddings approach for blocking,” English, in Advances in Database Tech-
nology - EDBT 2017 : 20th International Conference on Extending Database Technology,
Venice, Italy, March 21?24, 2017, Proceedings, Online-Ressource, Konstanz: OpenProceed-
ings, 2017, pp. 510–513. DOI: 10.5441/002/edbt.2017.57. [Online]. Available:
http://ub-madoc.bib.uni-mannheim.de/41887/. 30

[37] Wdc dataset instructions, http://webdatacommons.org/webtables/2015/
downloadInstructions.html, Accessed: 2019-04-01. 31

[38] N. Craswell, “R-precision,” in Encyclopedia of Database Systems, L. LIU and M. T. ÖZSU,
Eds. Boston, MA: Springer US, 2009, pp. 2453–2453, ISBN: 978-0-387-39940-9. DOI: 10.
1007/978-0-387-39940-9_486. [Online]. Available: https://doi.org/10.
1007/978-0-387-39940-9_486. 40

49

https://doi.org/10.1145/872757.872796
http://doi.acm.org/10.1145/872757.872796
https://doi.org/10.5441/002/edbt.2017.57
http://ub-madoc.bib.uni-mannheim.de/41887/
http://webdatacommons.org/webtables/2015/downloadInstructions.html
http://webdatacommons.org/webtables/2015/downloadInstructions.html
https://doi.org/10.1007/978-0-387-39940-9_486
https://doi.org/10.1007/978-0-387-39940-9_486
https://doi.org/10.1007/978-0-387-39940-9_486
https://doi.org/10.1007/978-0-387-39940-9_486

Appendix A

Dataset Detailed Statistics

Table Labels #Tables Level 2 DBPedia Class Level 1 DBPedia Class

Company 17 Organization Agent

PoliticalParty 13 Organization Agent

Scientist 9 Person Agent

Monarch 9 Person Agent

BaseballPlayer 6 Person Agent

RadioStation 5 Organization Agent

Saint 3 Person Agent

Wrestler 2 Person Agent

Person 2 Person Agent

Airline 2 Organization Agent

FictionalCharacter 1 FictionalCharacter Agent

University 1 Organization Agent

GolfPlayer 1 Person Agent

Country 40 Populated Place Place

Mountain 13 Natural Place Place

Lake 12 Natural Place Place

Hospital 9 Architectural Structure Place

City 9 Populated Place Place

50

Airport 7 Architectural Structure Place

Museum 7 Architectural Structure Place

Building 3 Architectural Structure Place

AdministrativeRegion 1 Populated Place Place

Hotel 1 Architectural Structure Place

Animal 6 Eukaryote Species

Bird 5 Eukaryote Species

Plant 3 Eukaryote Species

VideoGame 19 Software Work

Film 17 Film Work

Newspaper 4 Written Work Work

Book 2 Written Work Work

AcademicJournal 2 Written Work Work

Work 1 Work

TelevisionShow 1 TelevisionShow Work

Table A.1: Dataset Detailed Overview

Row Labels Sum

Country

rdf-schema#label 40

capital 17

populationTotal 14

currency 12

currencyCode 8

language 6

grossDomesticProduct 6

governmentType 6

51

formerName 5

foundingYear 4

PopulatedPlace/area 4

iso31661Code 4

subdivision 3

capitalCoordinates 2

circle 2

frenchName 1

PopulatedPlace/populationDensity 1

GeopoliticalOrganisation/populationDensity 1

giniCoefficient 1

diocese 1

lifeExpectancy 1

topLevelDomain 1

officialLanguage 1

fipsCode 1

perCapitaIncome 1

code 1

PopulatedPlace/areaTotal 1

income 1

creationYear 1

infantMortality 1

region 1

catholicPercentage 1

timeZone 1

isoCode 1

date 1

continent 1

52

Country Total 154

VideoGame

rdf-schema#label 19

computingPlatform 11

releaseDate 10

developer 9

genre 9

publisher 8

year 6

category 2

Software/fileSize 1

manufacturer 1

usk 1

cost 1

numberOfPlayers 1

number 1

VideoGame Total 80

Film

rdf-schema#label 17

releaseDate 17

director 17

country 1

writer 1

duration 1

rating 1

Film Total 55

Company

rdf-schema#label 17

53

industry 17

sales 4

assets 4

revenue 3

symbol 3

collectionSize 2

country 2

founder 1

headquarter 1

Company Total 54

City

populationTotal 9

country 9

rdf-schema#label 9

mayor 9

populationMetro 9

City Total 45

Lake

rdf-schema#label 12

location 6

areaTotal 5

elevation 4

country 2

depth 1

Lake/volume 1

length 1

Lake Total 32

Mountain

54

rdf-schema#label 13

elevation 8

mountainRange 4

locatedInArea 2

firstAscentYear 2

continent 1

Mountain Total 30

Airport

city 7

rdf-schema#label 7

iataLocationIdentifier 7

Airport Total 21

Animal

rdf-schema#label 6

class 3

child 2

otherName 2

description 1

type 1

range 1

family 1

water 1

movement 1

origin 1

Animal Total 20

Museum

location 7

rdf-schema#label 7

55

numberOfVisitors 2

Museum Total 16

Hospital

rdf-schema#label 9

location 3

owner 1

circle 1

bedCount 1

country 1

Hospital Total 16

Scientist

rdf-schema#label 9

doctoralAdvisor 1

knownFor 1

birthDate 1

almaMater 1

deathDate 1

Scientist Total 14

PoliticalParty

rdf-schema#label 13

PoliticalParty Total 13

RadioStation

rdf-schema#label 5

programmeFormat 2

frequency 2

owner 1

broadcastArea 1

city 1

56

RadioStation Total 12

Building

location 4

rdf-schema#label 3

floorCount 2

elevation 2

openingDate 1

Building Total 12

Monarch

rdf-schema#label 9

alias 2

spouse 1

Monarch Total 12

BaseballPlayer

rdf-schema#label 6

team 2

statisticValue 1

activeYearsStartDate 1

activeYearsEndDate 1

BaseballPlayer Total 11

Bird

rdf-schema#label 5

conservationStatus 2

genus 2

synonym 1

Bird Total 10

Book

author 2

57

rdf-schema#label 2

religion 1

releaseDate 1

Book Total 6

Plant

rdf-schema#label 3

commonName 1

family 1

Plant Total 5

Saint

rdf-schema#label 3

deathYear 1

Saint Total 4

Airline

rdf-schema#label 2

iataAirlineCode 2

Airline Total 4

Wrestler

rdf-schema#label 2

Person/height 1

Person/weight 1

Wrestler Total 4

Newspaper

rdf-schema#label 4

Newspaper Total 4

Work

artist 1

rdf-schema#label 1

58

genre 1

Work Total 3

University

city 1

type 1

rdf-schema#label 1

University Total 3

AcademicJournal

rdf-schema#label 2

publisher 1

AcademicJournal Total 3

Person

rdf-schema#label 2

Person Total 2

FictionalCharacter

rdf-schema#label 1

portrayer 1

FictionalCharacter Total 2

Hotel

rdf-schema#label 1

address 1

Hotel Total 2

AdministrativeRegion

rdf-schema#label 1

AdministrativeRegion Total 1

GolfPlayer

rdf-schema#label 1

GolfPlayer Total 1

59

TelevisionShow

rdf-schema#label 1

TelevisionShow Total 1

Grand Total 652

Table A.2: Mapped Attributes to DBpedia

60

	Introduction
	Motivating Example
	Problem Statement
	Challenges
	Overview of our Approach
	Research Contributions
	Thesis Organization

	Related Work
	Table Extension
	Other Related Work
	Table Extraction
	Table Search
	Schema Matching
	Table Stitching

	Proposed Framework
	Table Search
	Column Selection
	Column Grouping
	Grouped Column Consolidation
	Column Ranking

	Experimental Evaluation
	Dataset
	Evaluating Table Extension Compared to Baselines
	Evaluating FD-Detection Methods
	Column Ranking Analysis
	Summary of Results

	Conclusion
	References
	Appendix Dataset Detailed Statistics

