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Abstract

This thesis applies the Monte Carlo Random Walk method (MRW) to motion

planning. We explore different global and local restart strategies to improve

the performance. Several new algorithms based on the MRW approach, such

as bidirectional Arvand and optimizing planner Arvand*, are introduced and

compared with existing motion planning approaches in the Open Motion Plan-

ning Library (OMPL). The results of the experiments show that the Arvand

planners are competitive against other motion planners on the planning prob-

lems provided by OMPL.
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Chapter 1

Introduction

1.1 Motivation

Planning is a branch of artificial intelligence that chooses and organizes strate-

gies or actions by anticipating expected outcomes. The process of planning

requires the understanding of applicable actions and their effects on the envi-

ronment. Planning exists in our everyday activities, such as cooking a meal or

playing chess. It is very natural to look for an explicit plan to finish a task effi-

ciently. With the help of powerful computers, we hope they can automatically

find a good plan or even optimal plan for us.

1.2 Motion Planning

Motion planning refers to breaking down a movement task into discrete mo-

tions that satisfy movement constraints. For example, to pick up an object

in an environment, the arm of the robot must move to the target location by

using its existing actuators, and without colliding with other objects. Motion

planning has many applications including robot navigation, manipulation, an-

imating digital characters, automotive assembly and video game design [12].

Among the many approaches to the motion planning problem, sampling

based methods have been very popular. A large number of these methods sam-

ple randomly from the state space, which is usually called configuration space,

or short C-space, in motion planning. The Probabilistic Roadmaps (PRM) [7]

algorithm constructs a roadmap, which connects random milestones, in order
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to approximate the connectivity of the configuration space. RRT [13] grad-

ually builds a tree that expands effectively in C-space. EST [4] attempts to

detect the less explored area of the space through the use of a grid imposed

on a projection of C-space.

In contrast to sampling from C-space directly, KPIECE [17] is a tree-

based planner that explores a continuous space from the given starting point.

KPIECE uses a multi-level grid-based discretization for guidance. Given a

projection of state space, KPIECE samples a chain of cells from multiple

levels in each iteration when building the exploring tree. The goal of KPIECE

is to estimate the coverage of the state space by looking at the coverage of the

different cells, and reduce the time used for forward propagation.

Two main criteria for motion planning are feasibility and optimality of

plans. The motion planners mentioned above all return the first feasible plan

they find. In contrast, planners such as RRT* keep improving their best plan

over time, and some are proven to be asymptotically optimal [6].

Motion planning discussed in this thesis only accounts for the geometric

and kinematic constraints of the system. It is assumed that any feasible path

can be turned into a dynamically feasible trajectory.

1.3 Monte Carlo Random Walk

Monte Carlo Random Walks (MRW) are the basis for a successful family of

algorithms for classical deterministic planning with discrete states and actions

[15, 14, 16]. The method uses random exploration of the local neighbourhood

of a search state. Different MRW variants have been implemented in the

Arvand planning systems.

1.4 Contributions of Thesis

This work applies the Monte Carlo Random Walk method to motion plan-

ning. Different global and local restart strategies are explored to improve

the performance. Several new algorithms based on the MRW approach, such

as bidirectional Arvand and optimizing planner Arvand*, are introduced and
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compared with existing motion planning approaches in the Open Motion Plan-

ning Library (OMPL)[18]. Part of this work was presented at the PlanRob

workshop during ICAPS 2015 [1].

1.5 Summary of contents

The remainder of this thesis is organized as follow: Chapter 2 introduces

the background of classical planning and motion planning and describes the

Monte Carlo random walk approach. Chapter 3 describes the application of

the MRW method to motion planning and several new algorithms based on

MRW. Chapter 4 evaluates the performance of the new planners on planning

benchmarks from OMPL [18]. Chapter 5 is dedicated to concluding remarks

and some potential directions for future work.
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Chapter 2

Background and Related Work

2.1 Classical Planning

The following definition of classical planning is from Automated planning: the-

ory & practice [2]:

A restricted state-transition system is a deterministic, static, finite, and

fully observable state-transition system with restricted goals and implicit time.

Such a system is denoted Σ = (S,A, γ), where S is a set of states, A is a set

of actions, and γ : S × A→ 2S is a state-transition function. Here, S, A and

γ are finite, and γ(s, a) indicates a new state when action a is applied to state

s.

A planning problem for a restricted state-transition system Σ = (S,A, γ)

is defined as a triple P = (Σ, s0, G), where s0 is an initial state and G is

a set of goal states. A solution to P is a sequence of actions (a1, a2, ..., ak)

corresponding to a sequence of state transitions (s0, s1, ..., sk) such that s1 =

γ(s0, a1), ..., sk = γ(sk−1, ak), and sk is a goal state. The planning problem is

to synthesize such a sequence of actions.

Classical planning refers generically to planning for restricted state-transi-

tion systems. The most popular way to represent classical planning problems

is classical representation. States are represented a sets of logical atoms that

are true or false. Actions are represented by planning operators that change

the truth values of these atoms.
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Figure 2.1: Example of classical planning.

Figure 2.1 shows an example about moving blocks on a table. There is one

robot hand and three blocks: a, b and c. Using classical representation, here

are the predicates:

• ontable(x): block x is on the table

• on(x,y): block x is on block y

• clear(x): block x has nothing on it

• holding(x): the robot hand is holding block x

• handempty: the robot hand is not holding anything

The current state in Figure 2.1 is represented as {ontable(a), on(c,a),

clear(c), holding(b)}. An example of an applicable operator is putdown(b):

• Precondition: holding(x)

• Effect: ¬ holding(x), ontable(x), clear(x), handempty

The effect of applying putdown(b) is a transition to the new state: {on-

table(a), on(c,a), clear(c), ontable(b), clear(b), handempty}.

2.2 Motion Planning

2.2.1 Introduction

Motion planning is a term used in robotics for the process of breaking down a

desired movement task into discrete motions that satisfy movement constraints

5



and possibly optimize some aspect of the movement. A famous motion plan-

ning problem is to move a piano through a room with obstacles. Motion

planning has many applications, such as robot navigation, manipulation, ani-

mating digital characters, video game design and robotic surgery.

Motion planning has the following basic ingredients [12]:

• State Planning problems involve a state space that captures all possible

situations. The state could, for example, represent the position and

orientation of a robot, or the position and velocity of a helicopter. The

state space of motion planning is continuous (uncountably infinite) and

impossible to represent explicitly.

• Time A decision in a motion planning problem must be applied over

time. Time might be explicitly modelled, as in a problem such as driving

a car as quickly as possible in the presence of obstacles. Time can also

be implicit. For example, when moving a piano, the particular speed

does not need to be specified in the plan.

• Actions A plan generates actions that change the states. In motion

planning, actions are applied over time. For most motion planning prob-

lems, explicit reference to time is avoided by directly specifying a path

through a continuous state space.

• Initial and goal states A planning problem usually involves starting

in some initial state and trying to arrive at a specified goal state, or any

state in a set of goal states.

• Criterion: Feasibility or Optimality A feasible plan arrives at a

goal state regardless of efficiency, while an optimal plan optimizes some

performance objective, such as finding the shortest path.

• A Plan In general, a plan imposes a specific strategy or behaviour on a

decision maker. It may simply specify a sequence of actions to be taken,

or be more complicated, such as a mapping of states to actions.
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2.2.2 Representation

Formulating and solving motion planning problems requires defining and ma-

nipulating complicated geometric models of a system of bodies in space. There

are generally two approaches for geometric modelling: a boundary represen-

tation, and a solid representation. Suppose we would like to define a model of

a planet. In a boundary representation, an equation of a sphere can represent

the planet’s surface. Using a solid representation, we describe the set of all

points in the sphere.

For the world W , there are two standard choices: 1) a 2D world, in which

W = R2, and 2) a 3D world, in which W = R3. The world generally contains

two kinds of entities [12]:

1. Obstacles: Portions of the world that are “permanently” occupied, for

example, the walls of a building.

2. Robots: Movable bodies that are modelled geometrically and are con-

trollable via a motion plan.

Both obstacles and robots can be represented using polygonal and polyhe-

dral models, semi-algebraic models, 3D triangles, or bitmaps. From here on,

only the case of a single robot is discussed further.

The state space for motion planning is referred to as the configuration space

[10]. The dimension of the configuration space corresponds to the number of

degrees of freedom of the robot. Motion planning is viewed as a search in

a high-dimensional configuration space that contains implicitly represented

obstacles. A motion plan is defined as a continuous path in configuration

space.

A configuration describes the pose of the robot, and the configuration space

C is the set of all possible configurations. For example, if the robot is a single

point moving in a 2-dimensional plane, C is the plane and a configuration

can be represented using two parameters (x, y); if the robot is a 2D shape

that can translate and rotate, C is the special Euclidean group SE(2) =

R2 × SO(2), where SO(n) is the group of all rotations about the origin of

7



n-dimensional Euclidean space under the operation of composition [5]. In this

case, a configuration can be represented using 3 parameters (x, y, θ). If the

robot is a 3D shape that can translate and rotate, C is the special Euclidean

group SE(3) = R3×SO(3), and a configuration requires 6 parameters: (x, y, z)

for translation, and Euler angles (α, β, γ) for orientation.

The set of configurations that avoids collision with obstacles is called the

free space Cfree. The complement of Cfree in C is called the obstacle space

Cobs. The following gives the definition of a motion planning problem [12]:

Definition:

1. A world W , either W = R2 or W = R3.

2. An obstacle region O ⊂ W in the world.

3. A robot A ⊂ W .

4. The configuration space C. From this, Cfree and Cobs are derived.

5. An initial configuration qI ∈ Cfree.

6. A goal configuration qG ∈ Cfree.

7. A complete algorithm must either compute a (continuous) path, τ :

[0, 1] → Cfree, such that τ(0) = qI and τ(1) = qG, or correctly report

that such a path does not exist.

2.2.3 Examples of Motion Planning Problems

This section shows several examples of motion planning [12].

A Motion Planning Puzzle

Figure 2.2 shows a problem that requires planning in continuous space. This

puzzle was designed to frustrate both humans and motion planning algorithms.

It can be solved in a few minutes on a standard personal computer (PC) using

the rapidly exploring tree (RRT) algorithm in the next subsection.
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Figure 2.2: The Alpha 1.0 Puzzle, created by Boris Yamrom and posted as a
research benchmark by Nancy Amato at Texas A&M University. Solution by
James Kuffner [12].

Sealing Cracks in Automotive Assembly

Figure 2.3 shows a simulation of robots performing sealing at the Volvo Cars

assembly plant in Torslanda, Sweden. Sealing is the process of using robots

to spray a sticky substance along the seams of a car body to prevent dirt and

water from entering and causing corrosion. Using motion planning software,

engineers need only specify the high-level task of performing the sealing, and

the robot motions are computed automatically. This saves enormous time and

expense in the manufacturing process.
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Figure 2.3: An application of motion planning to the sealing process in automo-
tive manufacturing. Planning software developed by the Fraunhofer Chalmers
Centre (FCC) is used at the Volvo Cars plant in Sweden [12].

Virtual Humans and Humanoid Robots

Figure 2.4 shows humanoid robots from the Japanese automotive industry.
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Figure 2.4: Humanoid robots from the Japanese automotive industry: (a) The
2011 Asimo robot from Honda can run at 9 km/hr (courtesy of Honda); (b)
planning is incorporated with vision in the Toyota humanoid robot so that it
plans to grasp objects [12].

Designing Better Drugs

Planning algorithms are even impacting fields as far away from robotics as

computational biology. Two major problems in this area are protein folding

and drug design. In both cases, scientists attempt to explain behaviours in

organisms by the way large organic molecules interact. Such molecules are

generally flexible. Drug molecules are small (see Figure 2.5), and proteins

usually have thousands of atoms. The docking problem involves determining

whether a flexible molecule can insert itself into a protein cavity, as shown in

Figure 2.5, while satisfying other constraints, such as maintaining low energy.

11



Figure 2.5: On the left, several familiar drugs are pictured as ball-and-stick
models (courtesy of the New York University MathMol Library). On the right,
3D models of protein-ligand docking are shown from the AutoDock software
package (courtesy of the Scripps Research Institute) [12].

2.2.4 Algorithms for Motion Planning

There are two main methods for solving motion planning problems. One

approach is sampling-based, the other one is combinatorial. The following

are some of the most popular algorithms in motion planning.

RRT: Rapidly Exploring Random Tree

The rapidly exploring random trees (RRT) algorithm is designed to efficiently

search nonconvex, high-dimensional spaces by randomly building a space-filling

tree. The tree is constructed incrementally from samples drawn randomly from

the search space and is inherently biased to grow towards large unsearched

areas of the problem [11].

Algorithm 1 shows the process of growing the tree. Given an initial con-

figuration qinit and a maximum incremental distance 4q, the task is to grow a

tree of K vertices. In each iteration, a vertex qrand is sampled randomly from

the configuration space, then a new vertex qnew is obtained by moving from

the nearest existing vertex qnear an incremental distance 4q, in the direction

of qrand. If the path from qnear to qrand is blocked by an obstacle, qnew is the

closest vertex towards the obstacle from qnear. Finally, a new vertex qnew and

a new edge from qnear to qnew is added. Figure 2.6 shows an execution of the
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algorithm. In the early iterations, RRT quickly reaches the unexplored parts.

However, RRT is dense in the limit (with probability one), which means that

it gets arbitrarily close to any point in the space [12].

Algorithm 1 RRT

Input Initial configuration qinit, number of vertices K, incremental distance
4q

Output RRT graph G

G.init(qinit)
for k = 1 to K do
qrand ← RAND CONF()
qnear ← NEAREST VERTEX(qrand, G)
qnew ← NEW CONF(qnear, qrand, 4q)
G.add vertex(qnew)
G.add edge(qnear, qnew)

end for
return G

Figure 2.6: Sample RRT execution in the 2D plane without obstacles after 45
and 2345 iterations [12].

PRM: Probabilistic road maps

The basic idea of PRM is to take random samples from the configuration

space of the robot, test them for whether they are in free space, and use

a local planner to attempt to connect these configurations to other nearby

configurations. The initial and goal configurations are added in, and a graph

search algorithm is applied to the resulting graph to determine a path between

the initial and goal configurations [7].
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A probabilistic roadmap planner consists of two phases: a construction

and a query phase. In the construction phase, a roadmap is built, approxi-

mating the motions that can be made in the environment. First, a random

configuration is created. Then, it is connected to some neighbours, typically

either the k nearest neighbours or all neighbours less than some predetermined

distance, as shown in Figure 2.7. Configurations and connections are added to

the graph until the roadmap is dense enough. In the query phase, the initial

and goal configuration are connected to the graph, and the path is obtained

by a Dijkstra’s shortest path query.

Figure 2.7: The sampling-based roadmap is constructed incrementally by at-
tempting to connect each new sample, α(i), to nearby vertices in the roadmap
[12].

KPIECE: Kinodynamic Planning by Interior-Exterior Cell Explo-
ration

KPIECE (Kinodynamic Planning by Interior-Exterior Cell Exploration)[17], a

sampling-based motion planning algorithm, is specifically designed for use with

physics-based simulation. It can perform motion planning for complex realistic

systems, which may need to deal with friction or gravity with other bodies.

KPIECE is able to handle high dimensional systems with complex dynamics.

It reduces both runtime and memory requirements by making better use of

information collected during the planning process. Intuitively, this information

is used to decrease the amount of forward propagation the algorithm needs.
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Figure 2.8: An example discretization with three levels. Interior cells in red
and exterior cells in blue. [17]

KPIECE iteratively constructs a tree of motions in a projection of the state

space. To decide which areas of the state space merit further exploration,

multiple levels of discretization are defined for evaluation of the coverage of

the state space, as shown in Figure 2.8. Cells on one level all have the same

size and they are created when needed, to cover the tree of motions as it

grows. For any motion µ, each level contains a cell that µ is part of. Cells are

distinguished into interior and exterior:

• Interior cells are ones that have 2n neighbours in a n-dimensional space.

In the example picture, we have a 2-dimensional space, so 4 neighbours

are needed. This is the maximum number of possible neighbours: we do

not consider cells on the diagonals to be neighbouring.

• Exterior cells are cells that cover the tree of motions but are not interior.

At each iteration, a chain of cells from different levels is sampled (one cell

per level). The sampling of cells starts from the highest level. At each level,

KPIECE first decides to expand from an interior or exterior cell, with a bias

towards exterior cells. An instantiated cell, either interior or exterior with

highest importance, is then deterministically selected. The importance of a

cell is affected by the number of times this cell was selected, the number of

instantiated neighboring cells and other factors. After the cell in the lowest

level is selected, a motion µ in this cell is picked according to a half-normal
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distribution. A state s along µ is then chosen uniformly at random to continue

expanding the tree of motions.

Given the state s from the above sampling process, the next state s′ is

selected uniformly at random from the state space, or selected by other meth-

ods, if available. If the new motion µo from s to s′ is valid, µo is added to the

tree motions and the discretization is updated. If µo reaches the goal region,

the algorithm returns the path to µo.

Other Types of Motion Planners

Other types of motion planners include the tree-based planner EST [4] and

PDST [9]. EST attempts to detect the less explored area of the space through

the use of a grid imposed on a projection of the state space. Using this

information, EST continues tree expansion primarily from less explored areas.

PDST detects the less explored area through the use of a binary partition of a

projection of the state space. Exploration is biased towards larger cells which

contain fewer path segments.

Some motion planners, such as RRT and KPIECE, have many variants.

One important idea is bidirectional search. RRT-Connect [8] is the bidirec-

tional version of RRT, which builds two rapidly exploring trees rooted at the

start and the goal configurations. The trees each explore state space and also

advance towards each other through the use of a simple greedy heuristic.

The motion planners mentioned above all return the first feasible plan they

find. In contrast, planners such as RRT* keep improving their best plan over

time, and some are proven to be asymptotically optimal [6].

2.2.5 OMPL: Open Motion Planning Library

OMPL (Open Motion Planning Library) [18] contains many state-of-the-art

sampling-based motion planning algorithms such as PRM, RRT, EST, PDST,

KPIECE, and several variants of these planners. All these planners operate on

abstractly defined state spaces. Many commonly used state spaces are already

implemented, such as SE(2), SE(3) and Rn.
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Components

OMPL provides the components needed for most sampling-based motion plan-

ners. The following OMPL classes are analogous to ideas in traditional samp-

ling-based motion planners:

• StateSampler The StateSampler class implemented in OMPL provides

methods for uniform and Gaussian sampling in the most common state

space configurations. Included in the library are methods for sampling

in Euclidean spaces, in the space of 2D and 3D rotations, and in any

combination thereof with the CompoundStateSampler.

• NearestNeighbors This is an abstract class that provides a common

interface to the planners for the purpose of performing a nearest neighbor

search among samples in the state space.

• StateValidityChecker The StateValidityChecker evaluates a state to

determine if this configuration collides with an environment obstacle and

respects the constraints of the robot.

• MotionValidator The MotionValidator class (analogous to the local

planner) checks whether the motion of the robot between two states is

valid. At a high level, the MotionValidator must be able to evaluate

whether the motion between two states is collision free and respects all

the motion constraints of the robot.

• OptimizationObjective Some motion planners optimize objectives

that correspond to different cost functions. The OptimizationObjective

class provides an abstract interface to the relevant operations with costs

that these planners need. The costs could be path length or path clear-

ance.

• ProblemDefinition A motion planning query is specified by a Prob-

lemDefinition object. Instances of this class define a start configuration

and a goal configuration for the robot, and the optimization objective
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to meet, if any. The goal can be either a single configuration or a region

surrounding a particular state.

Graphical User Interface

OMPL provides a graphical user interface for visualization of the planning

environment and solution path, shown in Figure 2.9.

Figure 2.9: Graphical User Interface to OMPL

Benchmark

OMPL provides a Benchmark class that attempts a specific query for a given

number of times, and allows the user to try any number of planners. When

the benchmarking has finished, the Benchmark instance writes a log file that

contains planning information for further analysis. This makes it easy to

compare the performance of different motion planners using OMPL.

Test Cases

OMPL provides 20 geometric planning problems. Because 6 of the problems

are too hard to solve within 5 minutes, only 14 of the problems are used in

the experiments, described in Chapter 4. Four of the planning problems are

shown in Figure 2.10.
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(a) Maze (b) Barriers

(c) Abstract (d) Apartment

Figure 2.10: Planning scenarios

2.3 Random Walk Planning Framework

Arvand [15, 14, 16] is a successful family of stochastic planners in classical

planning. These planners use Monte Carlo random walks to explore the neigh-

bourhood of a search state.

A MRW algorithm uses the following key ingredients:

• A heuristic function h to evaluate the goal distance of the endpoints of

random walks. Strong heuristics lead to better performance.

• A global restart strategy is used to escape from local minima and plateaus.
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• A local restart strategy is used for exploration.

In MRW, given a current state s, a number of random walks sample a

relatively large set of states S in the neighbourhood of s: the endpoints of

each walk. All states in S are evaluated by the heuristic function h. Finally,

a new state s ∈ S with minimum h-value is selected as the next current state,

concluding one search step, and the process repeats from there. Figure 2.11

demonstrates the process of MRW. The length of each random walk is decided

by the local restart strategy, and can be fixed or variable. Different choices

will be discussed in Section 3.3. If the best observed h-value does not improve

after a number of search steps, as controlled by the global restart strategy,

the search will restart. A good global restart strategy can quickly escape from

local minima, and recover from areas of the state space where the heuristic

evaluation is poor. The MRW approach does not rely on any assumptions

about local properties of the search space or heuristic function. It locally

explores the state space before it commits to an action sequence that leads to

the best explored state.

Figure 2.11: Illustration of Monte Carlo Random Walks [21].

2.3.1 Framework of MRW

Algorithm 2, abstracted from [15], shows an outline of MRW planning. This

high-level outline is nearly identical for classical and for continuous planning.
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The only difference is that the test for achieving the goal G uses a goal condi-

tion in classical planning and a goal region in continuous planning.

The algorithm uses a forward-chaining search in the state space of the

problem to find a solution. The chain of states leads from initial state s0 to

goal state sn. Each transition sj → sj+1 is generated by MRW exploring the

neighbourhood of sj. If the best h-value does not improve after a given number

of search episodes, MRW simply restarts from s0.

Algorithm 2 Monte Carlo Random Walk Planning

Input Initial State s0, goal G
Output A solution plan

s← s0
hmin ← h(s0)
while s /∈ G do

if h-value does not improve fast then
s← s0 {restart from initial state}

end if
s← randomWalk(s,G)
if h(s) < hmin then
hmin ← h(s)

end if
end while
return the plan reaching the state s

The main motivation for MRW planning is to better explore the local

neighbourhood, compared to the greedy search algorithms which have been

the standard in classical planning. The simplest MRW approach uses a fixed

number of pure random walks to sample the neighborhood of a state s. Al-

gorithm 3 shows a pure random walk method similar to the one in [15], but

adapted to the case of continuous planning. In classical planning, a random

legal action is sampled given a current state s′ in a random walk, and then ap-

plied to reach the next state s′′. For continuous planning, instead of an action,

the next state is sampled from a region of the state space near s′. Before s′′

can succeed s′ as the current state, a check is performed to make sure there is a

valid motion from s′ to s′′. A random walk stops either when a goal state is di-

rectly reachable, or when the number of consecutive motions reaches a bound
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LENGTH WALK. The end state of each random walk is evaluated by the

heuristic h. The algorithm terminates when either a goal state is reached, or

NUM WALK walks have been completed. The function returns the state smin

with minimum h-value among all reached endpoints, and the state sequence

leading to it. If no improvement was found, the algorithm simply returns s.

The chosen limits on the length and number of random walks have a huge

impact on the performance of this algorithm. Good choices depend on the

planning problem. While they are constant in the basic algorithm shown

here, Section 3.3 discusses different adaptive global and local restart strategies,

which are used by Arvand and can be applied in continuous planning as well.

Algorithm 3 Pure Random Walk

Input current state s, goal G
Output smin

1: hmin ←∞
2: smin ← NULL
3: for i← 1 to NUM WALK do
4: s′ ← s
5: for j ← 1 to LENGTH WALK do
6: s′ ← sampleNewState(s′)
7: if s′ satisfies G then
8: return s′

9: end if
10: end for
11: if h(s′) < hmin then
12: smin ← s′

13: hmin ← h(s′)
14: end if
15: end for
16: if smin = NULL then
17: return s
18: else
19: return smin

20: end if
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Chapter 3

Application of Random Walk
Planning to Motion Planning

3.1 Introduction

The Monte Carlo random walk method (MRW) is successful in classical plan-

ning [15, 14, 16]. The framework of MRW is presented in Section 2.3. This

chapter applies MRW to motion planning.

The differences of using MRW in classical planning and motion planning are

explained in Section 3.2. MRW parameters such as the number and length of

random walks, and the maximum number of search episodes, have huge impact

on the performance. Section 3.3 shows how to utilize these parameters better

and introduces other enhancements for MRW. Section 3.4 shows the algorithms

for the continuous versions of MRW, including a bidirectional variant and an

optimizing variant. The implementation details of MRW are presented in

Section 3.5.

3.2 Approach

The high-level view of MRW for continuous planning is similar to classical

planning: Random walks are used to explore the neighbourhood of a state

and to escape from local minima. A heuristic function which estimates goal

distance is used to evaluate sampled states. The main differences between

MRW for classical and continuous planning lie in the mechanisms for action

selection and action execution within the random walks. In classical planning,
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for each state s in a random walk, the successor state s′ is found by randomly

sampling and executing a legal action in s. In contrast, in continuous planning

random actions are not generated directly. Instead, a nearby successor state

s′ is sampled locally from the state space, and the motion planner is invoked

to try to generate a valid motion from s to s′. In classical planning, actions

take effect instantly. The solution to a planning problem is simply an action

sequence that achieves a goal condition. In continuous planning, each motion

action takes time to complete. A solution is a sequence of valid, collision-free

motions that get “close enough” to a goal. Table 3.1 summarizes some main

differences of applying MRW to classical and motion planning.

Component Classical planning Motion planning
State space discrete continuous

Goal checker deterministic approximate
Action execution instant gradual

Random walk
sample action
→ new state

sample state
→ new motion

Heuristic
Instance-specific,
e.g. Fast Forward

C-space-specific, e.g.
geometric distance

Table 3.1: Main differences between using MRW in classical and motion plan-
ning.

3.3 Enhancements for MRW

3.3.1 Global and Local Restart Strategy

MRW parameters such as the number and length of random walks, and the

maximum number of search episodes, are tedious to set by hand. Nakhost and

Müller [15, 16] introduce several global and local restart strategies.

Random Walk Length

While the simplest approach is to use fixed length random walks, a better

strategy in classical planning uses an initial length bound, and successively

increases it if the best seen h-value does not improve quickly enough. If the

algorithm encounters better states frequently enough, the length bound re-

mains the same. A third strategy uses a local restarting rate to terminate a
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random walk with a fixed probability rl after each motion. In this case, the

length of walks is geometrically distributed with mean 1/rl. The fourth strat-

egy called adaptive local restarting (ALR) uses a multi-armed bandit method

to learn the best rl from a candidate set based on the heuristic improvement

of previous search episodes [16].

Number of Random Walks

The first version of Arvand used a fixed number of random walks in each

search episode, then progressed greedily to the best evaluated endpoint. An

adaptive method called acceptable progress is a better approach, which stops

the exploration of an episode if a state with small enough h-value is reached

[15]. A simple strategy followed here is to have only one random walk in a

local search [14], which is faster than choosing from among several walks, at

the cost of solution quality.

Number of Search Episodes and Global Restarting

The simplest global restart strategy restarts from initial state s0 whenever the

h-value fails to improve for a fixed number tg of random walks. An adaptive

global restarting (AGR) algorithm described in [16] is a robust method to

adaptively adjust tg during the planning process. Let Vw (V for velocity, w for

walks) be the average heuristic improvement per walk, s0 be the initial state,

so on average, about h(s0)/Vw walks should reach h = 0. AGR adjusts tg by

continually estimating Vw and setting tg = h(s0)/Vw.

3.3.2 The Rate of Heuristic Evaluation

While heuristic state evaluations provide key information to guide search, the

MRW framework in Section 2.3 evaluates only the endpoint of a random walk

as it takes much more time to evaluate every state along the walk. If we evalu-

ate the intermediate states along the walk, what happens to the performance?

Instead of evaluating all states, another strategy introduced in [16] is to

evaluate:

• the endpoint of each random walk as in MRW, and
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• intermediate states with probability peval.

This interpolates between evaluating every state with peval = 1 and MRW with

peval = 0.

3.3.3 Path Pool

Standard MRW requires very little memory. A path pool can store a number of

random walks and utilize them for improving later searches [14]. The technique

of Smart Restarts (SR) is based on a fixed-capacity pool which stores the most

promising paths encountered so far. SR is used for global restart: instead of

always restarting from s0, the search restarts from a random state on a random

path in the pool.

3.3.4 On-Path Search Continuation

In the MRW framework, after completing a new random walk with endpoint

e, the search commits to all the actions on the path to e. The drawback of

this is that, if some of the random actions leading to e consume too many

resources and the problem becomes unsolvable, then all search effort from this

point until the next restart is wasted.

On-Path Search Continuation (OPSC) avoids commitment to all actions

leading to e [14]. OPSC randomly picks a state along the existing path to

start a new search episode, instead of always starting from an endpoint. If the

endpoint of this new search episode has better heuristic value, the new search

path is adopted.

3.4 Algorithms

3.4.1 Monte Carlo Random Walk Planning

Algorithm 4 outlines the continuous version of MRW. The main difference

from the MRW framework is that it counts the number of consecutive episodes

without heuristic improvement. If this number reaches MAX EPISODE, the

algorithm restarts from initial state s0. MAX EPISODE can either be a fixed

number or adaptively adjusted as mentioned in Section 3.3.1.
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Algorithm 4 Monte Carlo Random Walk Planning

Input Initial State s0, goal region G
Output A solution plan

s← s0
hmin ← h(s0)
counter ← 0
while s /∈ G do

if counter > MAX EPISODE then
s← s0 {restart from initial state}
counter ← 0

end if
s← randomWalk(s,G)
if h(s) < hmin then
hmin ← h(s)
counter ← 0

else
counter ← counter + 1

end if
end while
return the plan reaching state s from s0

3.4.2 Pure Random Walk

Algorithm 5 shows the continuous version of pure random walks. It contains

more details of applying random walks in motion planning than the abstract

algorithm in Section 2.3.1. The algorithm first samples a goal state g from the

goal region, and tries to reach state g in the search. Function validMotion(a,

b) checks whether a motion from state a to state b is valid within the state

space. When sampling a new state from the current state s′, it always tries to

reach g directly from s′ first. If such a motion is valid, then a solution is found,

otherwise, a state s′′ near s′ is sampled. This step is repeated if the motion

from s′ to s′′ is invalid. The parameters NUM WALK and LENGTH WALK

can be set as fixed numbers, or adaptively adjusted as described in Section

3.3.1.
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Algorithm 5 Pure Random Walks.

Input current state s, goal region G and state space S
Output smin

1: hmin ←∞
2: smin ← NULL
3: g ← sampleFromGoalRegion(G)
4: for i← 1 to NUM WALK do
5: s′ ← s
6: for j ← 1 to LENGTH WALK do
7: if validMotion(s′, g) then
8: return g
9: end if
10: repeat
11: s′′ ← uniformlySampleFromNear(s′, S)
12: until validMotion(s′, s′′)
13: s′ ← s′′

14: end for
15: if h(s′) < hmin then
16: smin ← s′

17: hmin ← h(s′)
18: end if
19: end for
20: if smin = NULL then
21: return s
22: else
23: return smin

24: end if

3.4.3 Path Pool and New Selection Algorithm

The technique of Smart Restart mentioned in Section 3.3.3 stores the path

of the current search and the heuristic value of its endpoint in a path pool if

MRW needs restart. After the pool is full, SR is triggered to restart the search

from a random state on a random path in the pool. When adding new path

to a full pool, the path with worst h-value is deleted.

Another idea of utilizing a path pool is: to start a new search episode,

a path p from the pool is either selected by minimum h-value or randomly

picked according to a distribution; then a fixed fraction of the pool contents

is replaced by newly generated random walks which extend p. Algorithm 6
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shows details. The algorithm begins with an empty pool at each global (re-

)start. A fixed number n, for example 10% of the pool size, is chosen for

addition/replacement. n random walks are performed from start state s0 and

stored in the pool. During the search after (re-)start, one path in the pool is

selected and expanded by local exploration to generate n new paths. If the

pool is full, n randomly selected existing paths are replaced by new paths.

Each path in the pool is a state sequence from s0 to an endpoint sj. If a

solution is found during expansion, the plan is returned immediately.

Algorithm 6 Expand

Input current state s, goal state g, existing path p with endpoint s, number
of new paths n, pool P

Output n new paths added to P , returns whether a solution was found
for n iterations do

new walk ← randomWalk(s, g)
new path ← connect(p, new walk)
store(P , new path)
if solution found then

return true
end if

end for
return false

3.4.4 BArvand: Bidirectional Arvand

Motion planners such as RRT [13] and KPIECE [17] have bidirectional variants

with good performance, as mentioned in Section 2.2.4. Bidirectional Arvand

(BArvand) uses a similar approach to solve planning problems. It maintains

both a forward and a backward path pool. Like RRT and KPIECE, it grows

two trees, but the number of branches is limited and a branch can be replaced.

Explorations start from both the start state s0 and a goal state g0, and try to

connect two search frontiers. For each pair of paths (pf , pb) in the two pools,

the heuristic distance of their endpoints is stored. If the size of each pool is

m, the time complexity of replacing n paths in the pool in each episode and

updating the heuristic values is O(nm).
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Algorithm 7 Bidirectional Arvand

Input current state s0, goal state g0, number of new paths n
Output A solution path
1: hmin ←∞
2: init ← true
3: repeat
4: if counter > MAX EPISODE or init then
5: counter ← 0
6: fPool,bPool ← ∅
7: p← NULL
8: expand(s0, g0, p, n, fPool)
9: s← closest endpoint towards g0 in fPool
10: expand(s, s0, p, n, bPool)
11: current ← fPool
12: init ← false
13: end if
14: reserve(n, current) {reserve room for n new paths}
15: s, g ← arg minf∈fPool ,b∈bPool h(f, b)
16: p← complete path towards s
17: expand(s, g, p, n, current) {try to connect two paths}
18: if h(fPool, bPool) < hmin then
19: hmin ← h(fPool , bPool)
20: counter ← 0
21: else
22: counter ← counter + 1
23: end if
24: switch forward and backward search direction
25: until a solution is found
26: return solution path

Algorithm 7 shows the outline of bidirectional Arvand. When it (re-)starts,

fPool and bPool are reset and an initial forward episode starting from s0

is conducted using expand() in Algorithm 6, then a initial backward search

starts from the closest endpoint towards g0 in fPool . If a solution is found,

the algorithm stops and returns, otherwise the initialization is done. In the

code, h(fPool , bPool) = minf∈fPool ,b∈bPool h(f, b). Function reserve(n, current)

reserves room in the pool for n new paths. It randomly deletes n existing

paths if the pool is full. In a normal search episode, search starts from the

endpoint of one chosen path s, treats the endpoint of the other chosen path

as the search goal g, and tries to connect them. s and g are chosen such that

30



h(s, g) = h(fPool , bPool). After each normal search episode, the forward and

backward search direction is switched.

Enhancements for Bidirectional Arvand

Some enhancements introduced in Section 3.3 also work for Bidirectional Ar-

vand. Adaptive global restarting (AGR), adaptive local restarting (ALR), stop-

ping randomly using a local restarting rate and having more evaluation in

BArvand is done in the same way as in Arvand. On-Path Search Continuation

(OPSC) and Smart Restart (SR) are a little different in BArvand.

OPSC in Arvand chooses the best random walk among N walks, and it

keeps this new walk only if the endpoint has lower h-value than the endpoint

of the previous search path. OPSC in BArvand keeps all N random walks

in the pool after expanding the previous path from a random intermediate

state. In Arvand, after SR is triggered, only one random path in the pool

is used for the new search. Other paths are only kept for the next restart.

In BArvand, SR selects one path from fPool and one path from bPool , and

randomly chooses two intermediate states of these two path as s and g for new

search exploration. Other paths remain in the pools, and can be chosen in the

following normal search episode.

3.4.5 Improving Plan Quality

The algorithms described above stop immediately after a solution is found.

An optimizing planner such as RRT* [6], which is an asymptotically-optimal

incremental sampling-based motion planning algorithm, keeps optimizing the

solution within a time limit. RRT* improves plan quality (path length) by

pruning the tree. We use a different method of improving plan quality.

Arvand*, shown in Algorithm 8, is an optimizing version of Continuous Ar-

vand, which keeps restarting even after the first valid plan is found. Function

simplify() uses post-processing techniques, such as shortcutting and smooth-

ing, to simplify each newly found solution. Every time MRW returns a new

solution sol, simplify() is called to check whether the new solution has shorter

path length. Only the shortest solution after postprocessing is returned.
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Algorithm 8 Arvand*

Input current state s0, goal region G
Output A solution path with shortest length

solmin ← NULL
while keep going() do

sol ← monteCarloRandomWalk(s0, G)
sol ← simplify(sol)
if solmin = NULL or length(sol) < length(solmin) then

solmin ← sol
end if

end while
return solmin

Another idea of improving plan quality is to run an optimizing planner such

as RRT* for a small amount of time, put the solution path into a path pool,

and use Arvand* to improve the initial solution. The search always restarts

from a random state on a random path in the pool.

3.5 Implementation Details

Continuous Arvand implements a framework for MRW motion planning, and

several different planners. The program is built on top of OMPL, the Open

Motion Planning Library [18]. OMPL provides implementations of all motion

planning primitives as mentioned in Section 2.2.5. The heuristic in Continuous

Arvand is the distance function provided by OMPL, which differs depending

on the type of state space. For instance, for state space SO(3,R) the dis-

tance is the angle between quaternions, while R3 uses euclidean distance. The

simplify(path) post-processing function provided by OMPL is used in all ex-

periments to shorten the solutions.

Three motion planners were implemented: Arvand, BArvand and Arvand*.

BArvand is the bidirectional Arvand. Besides using fixed parameters, the

enhancements for MRW from Section 3.3 and 3.4 are implemented in both

Arvand and BArvand. Each enhancement can be switched on and off inde-

pendently. Some enhancements can not work together as they control one

parameter in different ways. For example, regarding the random walk length,
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only one enhancement can be selected among increasing walk length, using a

local restarting rate and using adaptive local restarting. Considering the num-

ber of random walks, either acceptable progress or running one random walk

per episode can be selected. For Smart Restart, On-Path Search Continua-

tion and enhancements manipulating different parameters can work together

perfectly.
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Chapter 4

Experiments

4.1 Experimental Environment

In the experiments, the features of the Arvand planners described in Chap-

ter 3 are tested. Four Arvand planners are compared with a selection of the

best-performing planners available in OMPL: RRT [13], KPIECE [17], EST

[4], PDST [9], and PRM [7]. Arvand* is tested against RRT* [6], which is

an asymptotically-optimal incremental sampling-based motion planning algo-

rithm.

4.1.1 Benchmarking

Experiments used 14 built-in benchmark scenarios from OMPL: Maze, Barri-

ers, Abstract, Apartment, BugTrap, RandomPolygons, UniqueSolutionMaze,

Cubicles, Alpha, Easy, Home, Twistycool, Pipedream ring and Spirelli. These

scenarios are chosen as they can be solved by most available planners in reason-

able time (less than 10 minutes). We grouped these scenarios into four cate-

gories: easy problems (Maze, BugTrap, RandomPolygons, Easy), intermediate

problems (Alpha, Barriers, Apartment, Twistycool), intermediate problems

with long detour (UniqueSolutionMaze, Cubicles, Pipedream ring, Abstract)

and hard problems (Home, Spirelli). The configuration space used in these

problems is either SE(2) or SE(3). We used the recommended time limit

provided in OMPL for each scenario in our experiments.
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4.1.2 Machines Used

All experiments were run on three machines with the same 8-core CPU Intel

Xeon E5420 @ 2.5GHz and 12GB memory (muriel, muriel1 and willingdon

with 8GB memory).

4.1.3 Metrics

In the experiment, except for the one run experiment, results for each planner

are the median over 10 runs per scenario. The metrics of memory use (MB),

path length, simplified path length, planning time and simplification time (in

seconds) are considered. The simplified path length is considered as plan

quality. From here on, path length refers to simplified path length.

4.2 Stage 1: One Run Experiment

The one run experiment is intended to provide the preview of performance of

Arvand planners. The result shows the effect of enabling different features.

4.2.1 Basic Arvand

The basic Arvand uses three parameters N (number of random walks), L

(length of random walk) and maxE (maximum number of episodes before

restart). The range of N is [10, 20, 50, 100, 200, 500, 1000]; the range of L is

[10, 20, 50, 100, 200, 500, 1000]; the range of maxE is [5, 10, 20, 50]. In the one

run experiment, we varied all three parameters to get 196 settings for each

planning scenario. To see the effect of parameters, we design a “battle” be-

tween parameters based on the experimental data. For example, for parameter

N = 10 and N = 20, we compare the path length and planning time of these

two “players” with the same setting of other parameters. If N = 10 uses

less planning time than N = 20 on setting L = 100, maxE = 5 in planning

scenario Maze, it means N = 10 wins in this round. If one player wins its

“battles” against all other players, it is considered as the best setting for this

parameter.
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N 10 20 50 100 200 500 1000

10 0 176 186 190 178 206 207
20 169 0 172 160 187 175 182
50 160 159 0 167 181 180 182
100 154 170 157 0 166 167 168
200 168 146 142 152 0 159 170
500 138 159 147 150 146 0 153
1000 138 151 146 151 139 145 0

Table 4.1: The battle of different N on path length. There are 392 test cases
in a “battle”. Test cases in which both “players” time out are not counted.

L 10 20 50 100 200 500 1000

10 0 143 154 175 168 171 166
20 157 0 167 188 185 184 178
50 147 127 0 170 153 169 169
100 143 125 135 0 150 157 152
200 175 161 187 185 0 184 177
500 190 176 191 201 180 0 184
1000 195 185 195 208 184 180 0

Table 4.2: The battle of different L on path length. There are 392 test cases
in a “battle”. Test cases in which both “players” time out are not counted.

MaxE 5 10 20 50

5 0 276 288 286
10 284 0 257 285
20 274 297 0 286
50 280 272 267 0

Table 4.3: The battle of different maxE on path length. There are 686 test
cases in a “battle”. Test cases in which both “players” time out are not
counted.
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N 10 20 50 100 200 500 1000

10 0 208 224 226 215 232 215
20 137 0 194 189 191 204 187
50 122 137 0 181 191 188 173
100 118 141 143 0 169 189 173
200 131 142 132 149 0 174 174
500 112 130 139 128 131 0 149
1000 130 146 155 146 135 149 0

Table 4.4: The battle of different N on planning time. There are 392 test cases
in a “battle”. Test cases in which both “players” time out are not counted.

L 10 20 50 100 200 500 1000

10 0 131 125 124 92 83 83
20 169 0 132 130 96 80 82
50 176 162 0 142 119 96 100
100 194 183 163 0 124 105 96
200 251 250 221 211 0 150 142
500 278 280 264 253 214 0 155
1000 278 281 264 264 219 209 0

Table 4.5: The battle of different L on planning time. There are 392 test cases
in a “battle”. Test cases in which both “players” time out are not counted.

MaxE 5 10 20 50

5 0 294 284 289
10 266 0 280 262
20 278 274 0 286
50 277 295 267 0

Table 4.6: The battle of different maxE on planning time. There are 686
test cases in a “battle”. Test cases in which both “players” time out are not
counted.

Table 4.1 shows the battle outcome for parameter N . The number in

each row are the number of games this setting wins, when playing against

the parameter setting in the given column. From this table, we can see that

smaller numbers of random walks tend to provide better plan quality (shorter

path length). From Tables 4.2 and 4.3, it is hard to see the effect of parameter
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L and maxE on plan quality. Tables 4.4 and 4.5 show that choosing a smaller

number of random walks and longer length of random walks is faster. The

parameter maxE shows no large effect on performance according to Table 4.6.

It seems that the Arvand planner seldom restarts in these planning scenarios.

4.3 Stage 2: 10 Run Experiment

The second stage of the experiment is based on 10 runs per setting per scenario.

The data in this and the following sections is the median over 10 runs (the

average of 5th and 6th largest number) by default. This section discusses the

effect of different enhancements.

4.3.1 Baseline: Basic Arvand

Based on the result of the one run experiment, we narrowed the range of param-

eters in the following experiments. The new range of N is [5, 10, 20, 50, 100];

the range of L is [10, 100, 1000]; and maxE is fixed to 10 because larger maxE

cannot improve performance as it rarely restarts. Because there is no best set-

ting for all planning scenarios, we need to choose a setting that works well for

all problems as our baseline. First, we sort the settings based on path length

for each planning scenario. The top 20% are considered as good settings for

this planning scenario. We define score for a setting as the number of planning

scenarios in which this setting is a good one. After repeating the same pro-

cess on planning time, each setting has a score on path length and a score on

planning time. The setting that has highest scores on both metrics is the best

one. Using this approach, we choose a setting [N = 20, L = 1000,maxE = 10]

as the baseline of Arvand planners. This approach is also used for choosing

the best settings when enabling enhancements.

Table 4.7 shows the median result of the baseline on three metrics for all

planning scenarios. The time limit for all planning scenarios is 5 minutes. The

results show that basic Arvand cannot solve planning scenarios Home and

Spirelli within 5 minutes.
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Planning Scenario Memory Path Length Time Rate of Time Out

Abstract 1.59 791.10 44.85 -
Alpha 0.38 427.13 4.20 -
Apartment 0.32 417.70 17.52 -
Barriers 1.00 1,472.27 3.34 -
BugTrap 0.86 174.02 0.45 -
Cubicles 1.06 2,419.55 1.33 -
Easy 1.16 204.40 0.37 -
Home - - - 1
Maze 0.77 113.13 0.68 -
Pipedream ring 0.50 103.85 1.15 -
RandomPolygons 0.66 129.46 0.10 -
Spirelli - - - 1
Twistycool 11.86 228.87 62.79 0.4
UniqueSolutionMaze 1.30 360.24 5.18 -

Table 4.7: The baseline of Arvand planners

4.3.2 Enhancements for Single Directional Arvand

The result discussed in this subsection is shown in Figures 4.1 and 4.2. The

approach of choosing the best setting described in Section 4.3.1 is used in this

subsection.

One Random Walk per Episode

This enhancement sets the number of random walks as 1. In the experiment,

the path length before simplification can be 10 times longer than for other

planners. But the path length after simplification is basically the same as

the baseline. The best setting for L is 1000. Figure 4.1(a) shows that it is

two times faster in planning scenario UniqueSolutionMaze and 60% faster in

scenario Apartment, but slower in scenario Easy. The result shows that this

feature has little influence on both plan quality and planning time.

Using a Local Restarting Rate

Introduced in Section 3.3.1, this enhancement involves a local restarting rate

r ∈ {0.1, 0.01, 0.001}, while N ∈ {5, 10, 20, 50, 100}. A good setting is [N =

5, r = 0.001]. It is faster in Apartment and UniqueSolutionMaze, but much
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slower in other scenarios, as shown in Figure 4.1(b). The plan quality is 20%

worse than the baseline in Abstract and Alpha. Overall, this is not a good

enhancement.

Acceptable Progress

Described in Section 3.3.1, Acceptable Progress adaptively calculates the num-

ber of random walks (N) during the search. A good choice of L is 1000 among

[10, 100, 1000]. Figure 4.1(c) shows that this setting is 3 times faster than the

baseline in Abstract and Apartment, but about 40% slower in Barriers, Bug-

Trap, Easy, Maze and UniqueSolutionMaze. This setting has no improvement

on plan quality.

Adaptive Global Restarting

Adaptive Global Restarting (AGR), described in Section 3.3.1, adaptively cal-

culates the maximum number of episodes before restart. The range of N is

[5, 10, 20, 50, 100], and the range of L is [10, 100, 1000]. A good setting for AGR

in our experiments is [N = 5, L = 1000]. Compared to the baseline, this set-

ting uses much more time in Abstract, Twistycool and UniqueSolutionMaze,

but runs twice faster in Apartment, as shown in Figure 4.1(d). Also in 2 out

of 10 runs it solved the planning problem Home within 4 minutes.

Adaptive Local Restarting

Adaptive Local Restarting (ALR), described in Section 3.3.1, chooses the best

value of r among [0.1, 0.01, 0.001] during the search according to statistics.

Among [5, 10, 20, 50], N = 20 is the best setting due to the result. According

to Figure 4.1(e), this setting is about 50% faster than the baseline in Apart-

ment, Barriers and BugTrap, but 40% slower in Cubicles, RandomPolygons,

Twistycool and UniqueSolutionMaze. The plan quality in Alpha is 30% worse

than the baseline.
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The Rate of Heuristic Evaluation

As introduced in Section 3.3.2, instead of only evaluating the endpoint of each

walk, this enhancement evaluates the intermediate states with probability peval,

for peval ∈ {0, 0.25, 0.5, 0.75, 1}. The range of N is [5, 10, 20, 50, 100], and the

range of L is [10, 100, 1000]. Using the same method as in Section 4.2.1, we

compared the effect of different peval. The result is shown in Tables 4.8 and

4.9.

0 0.25 0.5 0.75 1

0 0 99 78 96 92
0.25 77 0 81 83 81
0.5 101 97 0 95 100

0.75 81 93 84 0 86
1 85 95 79 91 0

Table 4.8: Result of different peval on plan quality. There are 210 test cases in
a “battle”. Test cases in which both “players” time out are not counted.

0 0.25 0.5 0.75 1

0 0 55 57 50 55
0.25 121 0 79 74 78
0.5 122 99 0 78 86

0.75 127 102 101 0 91
1 122 98 93 86 0

Table 4.9: Result of different peval on planning time. There are 210 test cases
in a “battle”. Test cases in which both “players” time out are not counted.

From the tables, peval = 0.5 is the best setting for plan quality, while

peval = 0.75 is good for planning time. The setting we used to compare with

the baseline is [N = 10, L = 1000, peval = 0.5]. This setting runs 6 times faster

in Twistycool, but 50% slower in Alpha, BugTrap, Easy and Maze, as shown

in Figure 4.1(f).

Smart Restarting

Smart Restarting (SR), described in Section 3.3.4, uses a path pool to keep

promising paths every time it restarts. It does not utilize a previous path until
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the pool is full (pool size = 100), so it is only triggered in harder problems.

The range of N is [5, 10, 20, 50, 100], and the range of L is [10, 100, 1000]. A

good setting is [N = 10, L = 1000]. Compared to the baseline, this setting

is 50% faster in Apartment, RandomPolygons and UniqueSolutionMaze, but

25% slower in other problems, as shown in Figure 4.1(g). The plan quality in

Alpha is 40% worse than the baseline.

On Path Search Continuation

The technique of On-Path Search Continuation (OPSC) is described in Section

3.3.4. In the experiment, the range ofN is [5, 10, 20, 50, 100], and the range of L

is [10, 100, 1000]. The best setting is [N = 10, L = 1000] is [N = 5, L = 1000].

This setting runs 50% faster in Apartment and Maze, but about 40% slower

in other problems, as shown in Figure 4.1(h).

AGR + ALR

Using AGR and ALR, the only parameter is N , N ∈ {5, 10, 20, 50, 100}. N =

10 is the best setting. Compared with the baseline, this setting runs more

than 50% faster in Apartment, BugTrap, Maze and Pipedream dream. It is

30% slower in other problems, as shown in Figure 4.2(a).

Arvand+: AGR + ALR + Acceptable Progress

This combination of enhancements requires no setting of parameters. This

variant of Arvand is named as Arvand+. Figure 4.2(b) shows that it is two

times faster in UniqueSolutionMaze, compared with the baseline. Although

the planning time for Cubicles, Easy, Maze, RandomPolygons and Twistycool

is 40% slower, it is still reasonable. The plan quality of Arvand+ is basically

the same as the baseline. Arvand+ is the ideal variant for a normal user to

use Arvand for planning.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: Results of the enhancements for single directional Arvand, com-
pared with the baseline. Plan quality in blue, planning time in red.
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(a) (b)

Figure 4.2: Results of the enhancements for single directional Arvand, com-
pared with the baseline. Plan quality in blue, planning time in red.

4.3.3 Enhancements for Bidirectional Arvand

The result discussed in this subsection is shown in Figures 4.3. The approach

of choosing the best setting described in Section 4.3.1 is also used in this

subsection.

BArvand: Basic Bidirectional Arvand

The basic bidirectional Arvand (BArvand), as discussed in Section 3.3.4, has

one parameter L, the length of a random walk. Among [10, 100, 1000], L =

1000 works well for most problems, and is used in the following discussion.

Compared with basic Arvand, BArvand runs 4 times faster in planning

scenarios Apartment, but about 50% slower in other problems, as shown in

Figure 4.3(a). The plan quality in Abstract and Barriers is about 25% worse.

In 2 of 10 runs, it solved the hard problem Home.

BArvand + AGR

As shown in Figure 4.3(b), this combination runs faster than BArvand except

for Apartment and Twistycool, and solved problem Home in 3 of 10 runs. Plan

quality is good except for Home. The path length in Abstract is also shorter

than the baseline.

44



BArvand + ALR

Figure 4.3(c) shows that this variant has similar result on planning time as

using AGR. Home is only solved in one run and the path length is much

shorter, compared with BArvand.

BArvand + a Local Restarting Rate

Among [0.1, 0.01, 0.001], r = 0.001 is the best setting for this variant. Figure

4.3(d) shows that it is two time faster than BArvand in Barriers and Cubicles.

Plan quality is much better than BArvand in Abstract.

BArvand + Full Evaluation

The setting for this variant is L = 1000, peval = 1. Figure 4.3(e) shows that it

uses much more time on the easy problems. In 4 of 10 runs, it solved the hard

problem Home and the median time for these 4 runs is 79s, less than in the

previous experiments.

BArvand + Smart Restarting

From Figure 4.3(f), the result is very similar to the experiment of using a local

restarting rate. Smart Restarting is rarely triggered.

BArvand + OPSC

Figure 4.3(g) shows that this variant is 5 times faster than BArvand in Twisty-

cool. It has no improvement on plan quality.

BArvand+: BArvand + AGR + ALR

This adaptive version of bidirectional Arvand is 60% slower than BArvand

in Apartment and Twistycool, shown in Figure 4.3(h). The plan quality is

similar.

Among the enhancements of BArvand, AGR and ALR are better. Com-

pared with basic Arvand, BArvand can solve the hard problem Home in some

runs within 5 minutes, instead of all time out. We can use Arvand to handle

easy problems, and use BArvand to try solving harder problems.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: (a) Result of BArvand compared with the baseline; (b)-(h) Results
of enhancements for BArvand compared with BArvand. Plan quality in blue,
planning time in red.
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4.4 Comparison with Other Planners

We select the basic Arvand, BArvand and their adaptive variants Arvand+,

BArvand+ to compare with other planners: RRT, KPIECE, EST, PDST and

PRM.

Tables 4.10-4.23 show the benchmark result. The result is the median

over 10 runs. For the metric of memory use, almost all Arvand versions use

less memory than all the other planners in most planning scenarios. The two

exceptions are BArvand and BArvand+ in scenario Twistycool, which used

more memory to maintain two path pools. Another exception is scenario

Home for Arvand+ and BArvand+ since this scenario has long detours, and

Arvand planners need much longer paths to reach the goal.

Considering the simplified path length, in scenarios Abstract and Apart-

ment, basic Arvand outperforms all other planners. In scenarios Alpha, Bar-

riers, BugTrap, Cubicles, Twistycool and UniqueSolutionMaze, all 4 Arvand

versions provide competitive simplified path length.

The total time in the experiments consists of planning time plus simplifi-

cation time. The simplification time is insignificant: it is usually below 0.1s

for all planners, and never reached 0.5s in any of the experiments. Therefore,

only the total time is shown in the tables.

All Arvand planners can solve easy planning problems as fast as other plan-

ners, such as the scenarios Alpha, BugTrap, Easy, Maze and RandomPolygons.

For intermediate problems with long detours, such as Cubicles and BugTrap,

using wrong parameter settings can significantly drag down the performance.

For example, if the length of random walk is set as 10, basic Arvand can never

solve Cubicles within 5 minutes. The reason is that Arvand uses a heuristic

to guide the exploration, and a detour requires the exploration to go multiple

steps against the heuristic. We need longer walks to grab the chance to go

against the heuristic. However, if we use the adaptive versions of Arvand, a

good setting of parameters is automatically calculated by the algorithm.

For problems with long narrow passages, such as Spirelli and Home, Arvand

takes a long time or fails to solve them within the time limit. The main reason
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is that a narrow passage makes it harder to sample a valid new state for

a valid motion from the current position. When the search is trapped in a

narrow passage, most of the time is spent on sampling and validating since

most sampled states are impossible to reach. RRT works better on these

problems. It samples states from the whole state space and builds a tree.

When the tree is dense enough around the passage, it can find a way out.

Planner Memory Path Length Total Time Rate of Time Out

KPIECE 13.41 1,146.80 7.31 -
EST 7.02 808.56 8.56 -
PDST 211.44 1,104.24 6.54 -
RRT 116.93 998.84 26.60 0.5
PRM 153.09 510.58 96.97 0.9
Arvand 1.59 791.10 44.85 -
Arvand+ 1.68 925.01 40.47 -
BArvand 2.96 1,197.49 28.26 -
BArvand+ 3.57 1,043.58 23.50 -

Table 4.10: Abstract

Planner Memory Path Length Total Time Rate of Time Out

KPIECE 1.08 667.09 3.88 -
EST 0.61 607.46 4.56 -
PDST 30.50 714.01 1.29 -
RRT 0.32 500.28 5.98 -
PRM 430.01 288.14 133.41 0.30
Arvand 0.38 427.13 4.20 -
Arvand+ 0.39 568.43 6.94 -
BArvand 0.35 569.19 3.67 -
BArvand+ 1.85 522.81 3.98 -

Table 4.11: Alpha
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Planner Memory Path Length Total Time Rate of Time Out

KPIECE 0.65 451.10 9.48 -
EST 0.52 431.52 10.41 -
PDST 178.74 430.89 19.45 -
RRT 0.76 437.92 9.61 0.2
PRM 60.04 418.55 106.33 0.1
Arvand 0.32 417.70 17.52 -
Arvand+ 0.31 436.97 14.87 -
BArvand 0.28 445.91 4.34 -
BArvand+ 1.93 425.55 13.15 -

Table 4.12: Apartment

Planner Memory Path Length Total Time Rate of Time Out

KPIECE 1.09 1,690.77 0.61 -
EST 2.37 1,407.06 2.51 -
PDST 29.21 1,903.69 1.00 0.2
RRT 268.24 1,562.04 0.71 0.4
PRM 4.21 1,244.04 1.37 -
Arvand 1.00 1,472.27 3.34 -
Arvand+ 1.68 1,484.91 3.02 -
BArvand 2.12 1,717.66 5.37 -
BArvand+ 0.88 1,735.41 3.01 -

Table 4.13: Barriers

Planner Memory Path Length Total Time Rate of Time Out

KPIECE 0.87 169.11 0.40 -
EST 0.83 163.78 0.25 -
PDST 13.82 166.71 0.34 -
RRT 0.85 175.54 0.27 -
PRM 3.33 137.44 1.04 -
Arvand 0.86 174.02 0.45 -
Arvand+ 0.63 178.67 0.47 -
BArvand 0.98 167.14 0.57 -
BArvand+ 1.32 166.53 0.59 -

Table 4.14: BugTrap
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Planner Memory Path Length Total Time Rate of Time Out

KPIECE 1.30 2,568.59 1.06 -
EST 2.02 2,437.99 6.50 -
PDST 32.90 2,617.90 1.81 -
RRT 0.37 2,528.90 0.47 -
PRM 8.71 2,345.25 2.33 -
Arvand 1.06 2,419.55 1.33 -
Arvand+ 1.56 2,519.44 2.88 -
BArvand 0.99 2,463.48 2.73 -
BArvand+ 1.73 2,468.85 2.92 -

Table 4.15: Cubicles

Planner Memory Path Length Total Time Rate of Time Out

KPIECE 2.63 289.69 0.54 -
EST 0.79 280.71 0.12 -
PDST 0.73 212.02 0.05 -
RRT 0.99 219.57 0.14 -
PRM 1.95 227.65 0.58 -
Arvand 1.16 204.40 0.37 -
Arvand+ 1.60 204.75 1.22 -
BArvand 1.57 204.68 0.73 -
BArvand+ 2.46 204.36 0.83 -

Table 4.16: Easy

Planner Memory Path Length Total Time Rate of Time Out

KPIECE - - - 1
EST 17.69 2,269.98 27.85 -
PDST 3,015.54 2,343.02 128.48 0.1
RRT 6.54 2,329.22 9.38 -
PRM 75.90 1,508.49 67.31 -
Arvand - - - 1
Arvand+ - - - 1
BArvand 116.57 1,454.94 228.09 0.8
BArvand+ 162.03 2,098.00 241.48 0.8

Table 4.17: Home
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Planner Memory Path Length Total Time Rate of Time Out

KPIECE 0.80 149.84 0.85 -
EST 0.71 116.01 1.17 -
PDST 31.86 123.65 0.74 0.2
RRT 0.39 84.35 0.32 -
PRM 0.93 84.96 0.83 -
Arvand 0.77 113.13 0.68 -
Arvand+ 0.55 121.73 1.08 -
BArvand 0.69 116.97 1.58 -
BArvand+ 0.73 136.15 0.96 -

Table 4.18: Maze

Planner Memory Path Length Total Time Rate of Time Out

KPIECE 25.07 95.21 36.80 0.1
EST 4.41 95.49 1.74 -
PDST 8.22 90.88 0.53 -
RRT 0.27 92.17 1.07 -
PRM 106.01 83.71 26.73 -
Arvand 0.50 103.85 1.15 -
Arvand+ 0.35 112.01 1.37 -
BArvand 0.37 96.53 2.31 -
BArvand+ 0.33 115.58 1.87 -

Table 4.19: Pipedream dream

Planner Memory Path Length Total Time Rate of Time Out

KPIECE 0.44 131.37 0.07 -
EST 0.40 130.05 0.24 -
PDST 2.80 127.88 0.05 0.10
RRT 0.33 131.33 0.03 -
PRM 0.73 130.85 0.03 -
Arvand 0.66 129.46 0.10 -
Arvand+ 0.71 136.60 0.15 -
BArvand 0.49 137.36 0.16 -
BArvand+ 0.38 135.38 0.13 -

Table 4.20: RandomPolygons
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Planner Memory Path Length Total Time Rate of Time Out

KPIECE - - - 1
EST - - - 1
PDST 1,931.83 159.21 237.95 0.9
RRT 0.58 167.42 135.24 -
PRM - - - 1
Arvand - - - 1
Arvand+ - - - 1
BArvand - - - 1
BArvand+ - - - 1

Table 4.21: Spirelli

Planner Memory Path Length Total Time Rate of Time Out

KPIECE 256.31 236.38 28.27 0.2
EST 92.75 224.15 8.60 0.1
PDST 1,462.24 233.61 24.34 -
RRT 9.17 221.31 4.31 -
PRM 18.33 243.00 7.86 -
Arvand 11.86 228.87 62.79 0.4
Arvand+ 63.79 228.27 104.74 0.2
BArvand 129.30 224.03 48.88 0.3
BArvand+ 204.80 227.65 116.90 0.1

Table 4.22: Twistycool

Planner Memory Path Length Total Time Rate of Time Out

KPIECE 1.17 393.80 1.27 -
EST 1.18 364.59 3.53 -
PDST 148.63 341.07 7.14 0.2
RRT 2.41 345.21 2.31 -
PRM 1.87 323.22 2.04 -
Arvand 1.30 360.24 5.18 -
Arvand+ 1.47 346.49 2.59 -
BArvand 2.09 348.71 7.36 -
BArvand+ 1.55 345.90 6.65 -

Table 4.23: UniqueSolutionMaze
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4.5 Improving Planning Quality

The optimizing planner Arvand* is implemented based on Arvand+. The

performance of the optimizing planners RRT* and Arvand* with a 10 min-

utes limit is shown in Table 4.24. On the main metric of simplified path

length, Arvand* is better than RRT* in scenarios Alpha, Apartment, Easy,

Pipedream ring and RandomPolygons. Arvand* can not solve Home and

Spirelli within the time limits.

A combination of RRT* and Arvand* runs RRT* for 10s to get a solution,

then uses Arvand* to improve this solution for the remaining time. Figures 4.4

and 4.5 show the plan improvement over time for all 14 scenarios. For most

planning scenarios, the initial solution found by Arvand* is of rather poor

quality, its path length decreases rapidly in the first two minutes and then

becomes more stable. For scenarios Barriers, BugTrap, Cubicles, Maze and

UniqueSolutionMaze, there is a performance gap between Arvand* and RRT*.

RRT* performs better than Arvand* in these problems. Seeding Arvand* with

RRT* paths narrows the gap.

For generating Figures 4.4 and 4.5, RRT* is run separately for different

time limits, since the intermediate paths when RRT* is optimizing its plan

are not accessible. Each data point is the median of path length over 10 runs,

or less number of runs if some runs have no solution at that point. In Figures

4.4(b), 4.4(c) and 4.5(e), the lines of Arvand* go up at some data points

because some runs output their first solutions, which are poor, and drag down

the medians.
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(a) Abstract (b) Alpha

(c) Apartment (d) Barriers

(e) BugTrap (f) Cubicles

(g) Easy (h) Home

Figure 4.4: Plan improvement over time for RRT*, Arvand* and their combi-
nation. Median of path length over 10 runs. RRT* in blue, Arvand* in red,
combination of RRT* and Arvand* in orange.
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(a) Maze (b) Pipedream ring

(c) RandomPolygons (d) Spirelli

(e) Twistycool (f) UniqueSolutionMaze

Figure 4.5: Plan improvement over time for RRT*, Arvand* and their combi-
nation. Median of path length over 10 runs. RRT* in blue, Arvand* in red,
combination of RRT* and Arvand* in orange.
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Problem Planner Memory Path Length Rate of Time Out

Abstract
RRT* 173.02 552.50 0.3
Arvand* 14.24 576.99 -

Alpha
RRT* 371.74 266.60 -
Arvand* 12.05 260.49 -

Apartment
RRT* 86.41 381.63 -
Arvand* 2.30 380.71 -

Barriers
RRT* 343.99 749.24 0.2
Arvand* 189.85 929.91 -

BugTrap
RRT* 618.72 116.38 -
Arvand* 564.37 124.96 -

Cubicles
RRT* 131.27 1,736.56 -
Arvand* 208.22 2,084.80 -

Easy
RRT* 310.23 202.70 -
Arvand* 591.30 200.55 -

Home
RRT* 156.00 1,220.66 -
Arvand* - - 1

Maze
RRT* 321.81 64.46 -
Arvand* 233.67 72.46 -

Pipedream ring
RRT* 292.81 73.00 -
Arvand* 79.82 68.81 -

RandomPolygons
RRT* 407.08 105.84 -
Arvand* 574.21 104.95 -

Spirelli
RRT* 32.91 108.88 -
Arvand* - - 1

Twistycool
RRT* 257.18 208.05 -
Arvand* 142.63 212.02 -

UniqueSolutionMaze
RRT* 361.36 262.86 -
Arvand* 130.28 313.25 -

Table 4.24: Comparing RRT* and Arvand* with a 10 minutes limit.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

This thesis developed algorithms that apply the Monte Carlo Random Walk

method to motion planning. The differences of using MRW in classical plan-

ning and motion planning are discussed and the approach of applying MRW

in motion planning is introduced in Section 3.2. There are several global and

local restart strategies in MRW that adapt the parameters, as explained in

Section 3.3. These strategies have huge impact on performance, as shown

in Sections 4.3.2 and 4.3.3. Besides the existing techniques, a bidirectional

search algorithm is proposed in Section 3.4.4, and an optimizing algorithm

is introduced in Section 3.4.5. Five planners, Arvand, Arvand+, BArvand,

BArvand+ and Arvand* are implemented and compared with other popular

motion planners RRT, KPIECE, EST, PDST, PRM and RRT*. The result

shows that the Arvand planners are competitive against other planners on

the planning problems provided by OMPL. The Arvand planners use much

less memory than other planners, which makes them attractive for embedded

applications with limited resources.

5.2 Future Work

Portfolio planning [3] combines several algorithms into a portfolio and runs

them in sequence or in parallel. This is a very successful approach in classi-

cal planning. The ArvandHerd system, winner of the parallel satisficing track
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of the 2011 and 2014 International Planning Competitions, is such a portfo-

lio which combines (classical) Arvand with another state of the art planner,

LAMA [19, 20]. Our results indicate that adding Continuous Arvand to a

motion planning portfolio will very likely strengthen its performance.

Finally, there is work to do to research the many different ways of using

memory, such as different strategies for using path pools, adding a tree as in

RRT, or a UCT-like approach.
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