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Abstract

The idea of an amputee playing the piano with all the flair and grace of an able-

handed person may seem like a futuristic fantasy. While many prosthetic limbs look

lifelike, finding one that also moves naturally has proved more of a challenge for

both researchers and amputees. Even though sophisticated upper extremity prosthe-

ses like the Modular Prosthetic Limb (MPL) are capable of effecting almost all of

the movements as a human arm and hand, they can be useful only if robust systems

of control are available. The fundamental issue is that there is a significant mis-

match between the number of controllable functions available in modern prosthetic

arms and the number of control signals that can be provided by an amputee at any

given moment. In order to bridge the gap in control, we require a neural interface

that can translate the physiological signals of the user into a large number of joint

commands for simultaneous, coordinated control of the artificial limb.

In this thesis, we focus on a collaborative approach towards the control of pow-

ered prostheses. In our approach, the user shifts greater autonomy to the prosthetic

device, thereby sharing the burden of control between the human and the machine.

In essence, the prosthesis or rehabilitative device learns to “fill in the gaps” for the

user. With this view in our mind, we developed a method that could allow someone

with an amputation to use their non-amputated arm to teach their prosthetic arm

how to move in a natural and coordinated way by simply showing the prosthetic

arm the right way to move in response to inputs from the user. Such a paradigm

could well exploit the muscle synergies already learned by the user. Consider cases

where an amputee has a desired movement goal, e.g., “add sugar to my coffee,”

“button up my shirt,” or “shake hands with an acquaintance”. In these more com-

plicated examples, it may be difficult for a user to frame their objectives in terms
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of device control parameters or existing device gestures, but they may be able to

execute these motions skillfully with their remaining biological limb.

As a first contribution of this thesis, we present results from our work on learn-

ing from demonstration using Actor-Critic Reinforcement Learning (ACRL), and

show that able-bodied subjects (n = 3) are able to train a prosthetic arm to perform

synergistic movements in three degrees of freedom(DOF) (wrist flexion, wrist ro-

tation and hand open/close). The learning system uses only the joint position and

velocity information from the prosthesis and above-elbow myoelectric signals from

the user. We also assessed the performance of the system with an amputee partic-

ipant and demonstrate that the learning-from-demonstration paradigm can be used

to teach a prosthetic arm natural, coordinated movements with the intact arm.

For our second contribution, we describe a sensor fusion and artificial vision

based control approach that could potentially give rise to context-aware control of

a multi-DOF prosthesis. Our results indicate that the learning system can make

use of the addition sensory and motor information to determine and context and

differentiate between different movement synergies.

Our results suggest that this learning-from-demonstration paradigm may be well

suited to use by both patients and clinicians with minimal technical knowledge, as

it allows a user to personalize the control of his or her prosthesis without having to

know the underlying mechanics of the prosthetic limb. This approach may extend

in a straightforward way to next-generation prostheses with precise finger and wrist

control, such that these devices may someday allow users to perform fluid and in-

tuitive movements like playing the piano, catching a ball, and comfortably shaking

hands.
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Preface

A version of Chapter 3 has been accepted for publication and presentation as Gau-

tham Vasan, Patrick M. Pilarski, Learning from Demonstration: Teaching a Myo-

electric Prosthesis with an intact limb via Reinforcement Learning, for the Proc. of

the 2017 IEEE International Conference on Rehabilitation Robotics (ICORR). Lon-

don, United Kingdom, 2017. It was presented as a poster and also as a fast-forward

session podium talk for 60 seconds. Our work was nominated for the best poster

award (top 20 among 600+ posters) as a part of Rehab Week 2017.

An extended abstract of this paper was also presented as a poster and podium

talk (20mins) at the Multidisciplinary Conference on Reinforcement Learning and

Decision Making (RLDM), Ann Arbor, Michigan, June 11-14, 2017. I was re-

sponsible for experimental design, implementation, execution, and analysis and

for the bulk of manuscript composition. Pilarski was the supervisory author and

contributed to the manuscript and provided implementation feedback and insights

throughout.

This research received ethics approval for two protocols from the human re-

search ethics board at the University of Alberta
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We have a brain for one reason one reason only:

to produce adaptable and complex movements

– Daniel Wolpert
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Chapter 1

Introduction

Humans often exploit the dynamics of their complex musculoskeletal system in in-

genious ways to generate efficient and coordinated movement. When the central

nervous system (CNS) produces voluntary movement, various muscles, each com-

prising thousands of motor units, are simultaneously activated and coordinated.

Computationally, this is a daunting task since the CNS needs to handle the large

number of degrees of freedom (DOF) that must be continually adjusted and con-

trolled (i.e., the degrees-of-freedom problem described in Turvey et al. (1982)). The

CNS also needs to consider the highly complex, nonlinear relationship between

alterations in the settings of the degrees of freedom and the effects of those alter-

ations. However, according to Bernstein (1967), humans do not control elementary

degrees of freedom, but instead use muscle synergies—the coordinated activation of

a group of muscles—to handle their degrees-of-freedom problem. Recent findings

of d’Avella et al. (2006) suggest that the CNS encodes a set of muscle synergies, and

that it combines them in a task-dependent fashion in order to generate the muscle

contractions that lead to desired movements. When someone loses an body part,

it can be replaced with an artificial device known as a prosthesis. While modern

hand prostheses now include a limited number of predefined synergistic grasping

patterns, synergistic actuation of the kind described by d’Avella et al. is largely

missing from most if not all commercial prosthetic devices.

Since the 1960s, the most common way of controlling powered prostheses has

been through surface electromyography (sEMG), termed myoelectric control, which

involves measuring the electrical manifestation of muscle contraction. Despite sig-
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nificant technological advancements, a large proportion of amputees stop using my-

oelectric prostheses due to non-intuitive control, lack of sufficient feedback, and in-

sufficient functionality (Peerdeman et al. (2011)). Even though sophisticated upper

extremity prostheses like the Modular Prosthetic Limb (MPL) are capable of effec-

tuating almost all of the movements as a human arm and hand and with more than

100 sensors in the hand and upper arm (26 DoF and 17 degrees of control) (Bridges

et al. (2011)), they can be useful only if robust systems of control are available.

1.1 What Should the Ideal Prosthetic Control System
Do?

There is a significant mismatch between the number of controllable functions avail-

able in modern prosthetic arms (e.g., MPL) and the number of control signals that

can be provided by amputee at any given moment. This is a fundamental open prob-

lem that is relevant to prosthesis as well as Human Computer Interaction (HCI) do-

mains. One of our goals at the Bionic Limbs for Improved Natural Control (BLINC)

lab at the University of Alberta is to create intelligent systems that bridge this gap

in control; we want to develop assistive/rehabilitative devices (predominantly pros-

thetic arms) that understand a user’s needs, anticipate them and take appropriate

actions to assist the user. Such devices must adapt to changes in the user’s be-

havior, in their environment, and their own capabilities (Sherstan (2015)). In this

thesis work, we are working towards developing a highly intelligent robotic arm

that could be worn as a prosthetic arm. Such an intelligent prosthetic arm should

have the following capabilities from Pilarski et al. (2011):

• Translate physiological signals (e.g., brain/muscle signals) into usable control

commands for a powered prosthetic/robotic limb.

• Automatically tailor the control system to the needs and specific physical

conditions of individual patients, without constant manual intervention, re-

training, and periods of frustration or reduced function for the patient.

• Improve limb control based on (sparse) patient feedback.
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1.2 Our Approach to Addressing These Challenges

State of the art approaches in myoelectric control are trying to address a funda-

mental issue—how to overcome the significant mismatch between the number of

functions available in a modern powered prosthesis and the number of functions

an amputee can attend to at any moment. With this goal in mind, in the present

work we develop a method that could allow someone with an amputation to use

their non-amputated arm to teach their prosthetic arm how to move in a natural and

coordinated way. Such a paradigm could well exploit the muscle synergies already

learned by the user. Consider cases where an amputee has a desired movement

goal, e.g., “add sugar to my coffee,” “button up my shirt,” or “shake hands with an

acquaintance.” In these more complicated examples, it may be difficult for a user to

frame their objectives in terms of device control parameters or existing device ges-

tures, but they may be able to execute these motions skillfully with their remaining

biological limb.

One approach that has been shown to reduce barriers for humans specifying

a complex control policy (i.e., a desired behavior) is learning from demonstration

(LfD) (Argall et al. (2009)). In LfD, a policy that map states to actions is learned

from the examples or demonstrations provided by the teacher. The examples are de-

fined as a sequence of state-action pairs or trajectories that are recorded during the

teacher’s demonstration of the recorded behavior (Argall et al. (2009)). By formu-

lating prosthetic limb training as a LfD task, we present a new scenario wherein an

amputee could teach their prosthesis how to move by showing desired movements

via the movement of his or her non-amputated limb.

1.3 Outline

We have attempted to use an informal tone to ensure that the work is accessible to a

multi-disciplinary audience. However, that is largely limited to using illustrative ex-

amples and terminology to explain certain aspects of our experiments or to describe

Reinforcement Learning (RL) to researchers outside the Computing Sciences. All

the equations and parameters presented in this thesis use the standard RL notation
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as described in Reinforcement Learning: An Introduction by Sutton and Barto.

Chapter 2 summarizes information about state of the art prosthetic devices, cur-

rent approaches for myoelectric control and their associated challenges. In addition,

it also introduces the RL techniques used in Chapters 3, 4, 5 and 6. We also look at

some of the challenges in applying RL to real-world robotics domains.

Chapter 3 introduces a novel learning-from-demonstration paradigm via Actor-

Critic Reinforcement Learning (ACRL). We describe an intuitive approach to train-

ing a prosthetic control system that involves the participant using their intact arm to

teach the prosthetic arm various movement synergies corresponding to their inputs.

This chapter should be considered the most significant contribution of this thesis.

In Chapter 4, we evaluate the learning-from-demonstration paradigm on an am-

putee subject. We discuss the experiments used to test the control algorithm de-

scribed in the previous chapter and the results of these experiments.

Chapter 5 presents the preliminary results of context-dependent predictions based

on contextually relevant representations. We use artificial vision and other sensory

information to distinguish between different context-dependent motor behaviors.

Lastly in Chapter 6, we talk about the future directions of research, some of

which were discussed in the previous chapters. We examine its significance, limita-

tions and potential applications. The concluding chapter includes final remarks and

a summary of this work.

1.4 Key Contributions

The contributions of this thesis are summarized as follows:

1.4.1 Extending Learning from Demonstration to Powered Pros-
thesis Domains

As a first contribution of this thesis, we present an actor-critic reinforcement learn-

ing method that for the first time promises to allow someone with an amputation to

use their non-amputated arm to teach their prosthetic arm how to move through a

wide range of coordinated motions and grasp patterns. We evaluate our method dur-

ing the myoelectric control of a multi-joint robot arm by amputee and non-amputee
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users, and demonstrate that by using our approach a user can train their arm to per-

form simultaneous gestures and movements in all three degrees of freedom in the

robot’s hand and wrist based only on information sampled from the robot and the

user’s above-elbow myoelectric signals.

1.4.2 Context-Aware Learning from Demonstration

For our second contribution, we describe a method to achieve situation-dependent

movement based on muscle excitation. We hypothesize that the control system

should be given the relevant contextual information and meta-data about the user,

the robotic limb and its environment in order to achieve situation-dependent motion.

We provide camera data and additional sensory information from the socket of a

prosthesis to allow an ACRL system to produce varied motor synergies in response

to similar EMG signals from the user. Our results indicate that a system can use

additional sensor and state information to help manage the user’s degree-of-freedom

problem, generating synergies that artfully align to different situations in the user’s

daily life.

1.4.3 Development of Delsys Trigno, CyberTouch II, Thalmic
Myo and Bento Arm Control and Software Interface

A significant part of my research involved working with multiple sensory systems

to obtain both physiological and non-physiological signals from the user and state

information from the robotic arm. While this is not the main part of my thesis, the

software developed for interfacing the EMG system (Delsys Trigno Wireless Lab),

the motion capture glove (CyberTouch II), a wearable gesture recognition device

(Thalmic myo) and the Bento Arm was a significant measurable output of the work

of my MSc degree. This is described in Appendices (A-E).
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Chapter 2

Background

Recently, there has been a lot of coverage on sophisticated upper-limb prostheses

often dubbed as “mind-controlled bionic arm” (Barbour (2012)). Several advance-

ments in signal processing of EMG signals and surgical innovations (e.g., targeted

muscle reinnervation TMR, targeted sensory reinnervation TSR) have paved the

way for these achievements. Nevertheless, there exist significant challenges that

should be addressed before these advancements can be beneficial to the amputee

population. In this chapter, I will discuss the basic idea of myoelectric control and

the state of the art control approaches.

This chapter then introduces Reinforcement Learning (RL) and a subclass of

control algorithms known as Actor-Critic methods. I also briefly discuss a pre-

dictive RL algorithm, known as general value functions (GVFs), and a method of

constructing features from real-valued signals, known as tile coding.

2.1 Myoelectric Control

The electrical activity in muscle tissue can be recorded with electrodes placed over

the skin. The electrical manifestation of the muscle contractions is called elec-

tromyography (EMG), and it contains information about the neural signals sent

from the spinal cord to control the muscles 1. In the case of a powered upper-limb

1The central nervous system (CNS) controls the force generated by a muscle with recruitment
of motor units and adjustments in their discharge rates (Adrian and Bronk (1929)). These motor
units discharge action potentials which innervate the muscle and give rise to electrical activity. The
number of action potentials discharged by the motor neurons innervating the muscle accounts for
the neural drive from the spinal cord to the muscle.
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prosthesis user, the electrodes are placed directly above the remnant muscles that

provide strong, repeatable signals. Myoelectric signal as control input has several

advantages over other inputs (Parker et al. (2006)):

• The user is freed of straps and harnesses

• The signal is non-invasively detected on the surface of the skin

• The muscle activity required to provide control signals is relatively small and

can resemble the effort required of an intact limb,

• It can be adapted to proportional control with relative ease

• The required electronic circuits (whether analog or digital) can be continu-

ously improved, miniaturized and have better long-term reliability.

Although control of prosthetic functions (e.g., hand open/close, etc.) is possible

through physiological signals other than EMG (e.g., brain or nerve signals), surface

EMG has virtually been the only control signal for commercial, everyday use of

upper limb prosthesis since the 1950s (Jiang et al. (2012)). Despite decades of

research and development, however, myoelectric control of upper limb prostheses

still generates relatively limited clinical (and commercial) impact, as only one out of

four upper limb amputees chose to use myoelectric-controlled prostheses (Wright

et al. (1995)).

2.1.1 Degrees of Control

Degrees of Freedom (DOF) of a system refer to the number of functions that can

be operated independently. In physical systems, this is the number of independent

movements a system can make. Degrees of control (DOC) are the number of con-

trollable functions actually available to the user, which may be a subset of a systems

DOF or aggregations of multiple DOF (Sherstan (2015)). That is, the DOC can be

less than, equal to, or greater than the DOF of a system. Take, for example, the

MPL, which has 26 DOF and 17 DOC. This essentially means that the MPL user

can send 17 independent control commands that could result in 26 discrete joint

movements.
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Figure 2.1: The Modular Prosthetic Limb (MPL). It is arguably the most advanced
prosthetic arm till date. It has 26 DOF, 17 DOC, and 100+ sensory percepts. The
MPL can effect almost all the movements of a biological arm. The MPL therefore
promises to provide patients with improved, dexterous control of a prosthetic arm
and hand, including a sense of touch.

In the prosthesis domain, DOC can vastly outnumber the number of input chan-

nels the user has available, with disparity increasing as the level of amputation

increases (e.g., a person with hand amputation can provide more control signals

compared to those with transhumeral amputations). For example, in the case of a

transhumeral amputee (i.e., amputation at the level of elbow disarticulation), the

user could provide signals from the biceps, triceps, deltoid and pectorals. Unfor-

tunately, this user cannot simultaneously control all the joints of the MPL because

the number of controllable functions vastly outnumber the number of input signals

from the user.
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2.1.2 Conventional Myoelectric Control

The most widely used approach to myoelectric control is still direct proportional

control (Pilarski and Hebert (2017)). These schemes use an amplitude measure at

each electrode site (e.g., root mean square or mean absolute value of the EMG) to

quantify the intensity of contraction in the underlying muscles. In direct control,

the magnitude of muscle contraction is used to move a degree of control (DOC,

involving one or more prosthetic joints) of the prosthesis using a proportional map-

ping (Parker et al. (2005)). This allows the selection of control muscles based on

physiological functions but has the disadvantage of typically requiring two control

muscles for each prosthetic DoC (Parker et al. (2005)). If physiologically appropri-

ate muscles are available to restore lost function, the EMG signals obtained from

the user can be used intuitively. In the absence of physiologically appropriate mus-

cles, we substitute them with alternate signals that can control the desired joint. In

a scenario with multiple DOCs and limited physiological control signals from the

user, a mode switching strategy (using a hardware switch or co-contraction of mus-

cle pairs) is often employed. Adaptive switching methods use RL methods to se-

quentially transition between different DOCs (c.f., Edwards et al. (2016); Edwards

(2016)). These simplistic methods provide reliable control, but lack the functional-

ity to smoothly operate multiple DOCs.

2.1.3 Pattern Recognition

Figure 2.2: States of signal processing for EMG pattern recognition adapted from
Scheme and Englehart (2011).

More recently, pattern recognition methods have started to see commercializa-

tion and clinical use (Scheme and Englehart (2011); Castellini et al. (2014)). Pattern

Recognition methods use classification (Scheme and Englehart (2011)) and regres-
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sion (Hahne et al. (2014)) techniques to translate EMG signals into usable con-

trol commands for a multi-function prosthetic limb. All EMG pattern recognition

approaches have the fundamental processing stages shown in Fig 2.2. The EMG

signals are filtered to remove unwanted interference (e.g., motion artifacts due to

electrode movement, power line harmonics, etc.). Data windowing (also known

as segmentation) is usually performed in the intervals of 150 − 200ms to obtain

an acceptable control delay. A feature extraction stage is added to increase the

information density of the EMG signals. Ideally, contraction discrimination infor-

mation should be retained while other irrelevant information is discarded (Scheme

and Englehart (2011)). EMG feature extraction methods including time-domain

(TD), autoregressive (AR), and cepstral features have been extensively investigated

(Scheme and Englehart (2011)). Joint time-frequency methods have been shown to

effectively represent transient EMG patterns resulting from dynamic contractions.

A comparison of the different feature extraction methods has shown that for slowly

varying EMG patterns, a concatenated TD/AR (TDAR) feature set outperforms all

others (Huang et al. (2005); Hargrove et al. (2007)). But the TDAR feature set

incurs considerable processing overhead for a slight improvement in performance

over simple TD features. (Scheme and Englehart (2011)) have reported that linear

discriminant analysis (LDA), support vector machines (SVM) and hidden markov

models (HMM) are the most popular choices of classifiers in recent work based on

marginal advantages in classification performance.

Myoelectric classification for prosthetic control is not only possible but also

highly accurate, even with a large number of functions (> 10) (Gijsberts and Caputo

(2013); Atzori et al. (2013)). Currently, the only commercially available example

of pattern recognition is Complete Control (Coapt LLC). In the Coapt system, all

electrodes in a prosthesis socket are fed into a single pattern recognition module,

which then provides output signals to a set of actuators.

The main problem with pattern classification is that it inherently leads to a

control scheme that is substantially different from natural control. While natural

movements are continuous and require simultaneous, coordinated articulations of

the multiple DoFs, pattern classification provides only a discrete approximation of
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the continuous parameter space. Current methods can typically generate reliable

activation in only one class. Additionally, proportional control is not directly ob-

tained from the classification, but instead requires additional processing (Jiang et al.

(2012)).

2.1.4 Motor Skill Learning

Few alternative methods employ ideas drawn from motor skill learning and brain

plasticity to extend direct control principles to multiple DOFs. Pistohl et al. and

Ison et al. showed that users adapt to controls within a single session regardless of

their initial intuitiveness or relationship with kinematics and develop muscle syn-

ergies associated with enhanced control of the myoelectric interface (Pistohl et al.

(2013); Ison et al. (2016)).

Even though this approach promises improved control for prosthetic users, it

relies completely on the human user to adapt to his/her prosthetic device rather than

vice versa. Great utility may arise from a bidirectional partnership between the

prosthetic device and its human user—while the user improves his or her ability

to communicate their intentions to the prosthesis, the prosthesis would learn to

anticipate and adapt to that specific needs of the user and improve its own ability to

satisfy them (Pilarski et al. (2015)).

2.2 Reinforcement Learning (RL)

2.2.1 The Agent-Environment Interface

Reinforcement Learning (RL) has been identified as a promising approach to learn

from incremental experience and discover successful decision-making and control

policies. The reinforcement learning problem is meant to be a straightforward fram-

ing of the problem of learning from interaction to achieve a goal. The agent learns

from the environment and makes decisions. Everything the agent can interact with

(outside the agent) is called the environment. These interact continually, the agent

selecting actions and the environment responding to those actions and presenting

new situations to the agent. The environment also gives rise to rewards, special
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Figure 2.3: The agent-environment interaction in reinforcement learning adapted
from Sutton and Barto (1998).

numerical/scalar values that the agent tries to maximize over time. A complete

specification of an environment defines a task, one instance of the reinforcement

learning problem (Sutton and Barto (1998)).

Characteristics of RL:

• The environment responds to the agent’s actions and presents new situations.

• Actions may have long term consequences.

• There is no supervisor, only a scalar reward signal.

• Feedback (i.e., rewards) could be temporally delayed, not instantaneous

• Time really matters (sequential, non i.i.d data)

2.2.2 RL Notation

Classical reinforcement learning approaches are based on the assumption that we

have a Markov Decision Process (MDP) consisting of the set of states S , set of

actions A, the rewards R and transition probabilities P a
ss′ that capture the dynamics

of a system. Markov decision processes, and the associated dynamic programming

(DP) methodology (Sutton and Barto (1998)), provide a general framework for pos-

ing and analyzing problems of sequential decision making under uncertainty.

State st: Immediate information available to the agent at the current time-step t
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Action at: Choice made by the agent from some set, based on current state, which

in general affects the next state and reward received

Reward rt: Scalar value supplied by the environment after each action, the agent

tries to maximize the cumulative reward (also called return)

Policy π: Probability distribution defining probability of taking each action from

each state π(a|s)

Value V (s): Expected sum of rewards received by the agent if they start from state

S and then follow policy π (i.e., “goodness” or “badness” of a state)

Return Rt: Some specific function of the reward sequence (for e.g., Rt = rt+1 +

rt+2 + rt+3 + · · ·+ rT )

The agent and environment interact at each discrete time step (t = 0, 1, 2, 3...).

At each time step the agent receives some representation of the environment’s state,

st ε S , where S is the set of possible states, and on that basis selects an action,

at ε At , where At is the set of actions available in state st. One time step later, in

part as a consequence of its action, the agent receives a numerical reward, rt+1 εR

, and finds itself in a new state st+1.

The purpose or goal of the agent is formalized in terms of a special reward

signal passing from the environment to the agent. At each time step, the reward

is a simple number, rt ε R . Informally, the agent’s goal is to maximize the total

amount of reward it receives. This means maximizing not immediate reward, but

cumulative reward in the long run. The field of reinforcement learning is primarily

the study of methods for tackling this challenge.

A reinforcement learning agent chooses actions according to a policy π(a|s)

which is a probability distribution over all possible actions for the current state.

The policy may be deterministic or stochastic.

A wide range of RL algorithms are based on estimating value functions—functions

of states (or of state-action pairs) that estimate the goodness or badness of state. The

notion of goodness or badness here is defined by the future rewards to be expected

(i.e., expected return). The agent tries to choose actions such that the sum of the

discounted rewards it receives over the future is maximized (i.e., it chooses action

at to maximize the expected discounted return).
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Rt = rt+1 + γrt+2 + γ2rt+2 + · · · =
∞∑
k=0

γkrt+k+1

The rewards the agent can expect to receive in the future depend on the policy

it follows (the action/sequence of actions) it will take. Accordingly, value functions

are defined with respect to particular policies.

Vπ(s) = E
π
{Rt|St = s} = E

π
{
∞∑
k=0

γkrt+k+1|st = s}

where Eπ denotes the expected value given that the agent follows policy π,

and t is any time step, γ is a discount factor indicating how much more to credit

immediate reward than long term reward 2. The value of the terminal state, if any,

is always zero. We call the function Vπ(s)the state-value function for policy π . For

a given problem we define the optimal policy π∗ as that which produces the highest

value in every state. 3

Similarly, we define the value of taking action a in state s under a policy π,

denoted Qπ(s, a), as the expected return starting from s, taking the action a, and

thereafter following policy π:

Qπ(s, a) = E
π
{Rt|St = s, at = a} = E

π
{

inf∑
k=0

γkrt+k+1|st = s, at = a}

We call Qπ(s, a) the action-value function for policy π.

2.2.3 Value Function Approaches (Critic-Only Methods)

One of the main challenges in RL is to make predictions about the (discounted) sum

of future rewards (i.e., return), in an initially unknown environment. With temporal

difference (TD) learning it is possible to learn good estimates of the expected return

quickly by bootstrapping from other expected-return estimates.

2This is generally necessary to ensure that reward is finite if the agent-environment interaction
continues indefinitely. However it may be omitted if the interaction ends in bounded time (e.g., in a
game of chess)

3Note that neither Vπ(s) or V ∗(s) are computationally tractable to compute in general, however
it is the task of a wide variety of RL algorithms to estimate them from the agent’s experience.
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Temporal difference (TD) learning uses changes or differences in predictions

over successive time steps to drive the learning process. It learns how to predict

a quantity that depends on future values of a given signal. The prediction at any

given time step is updated to bring it closer to the prediction of the same quantity

at the next time step. It can be thought of as a supervised learning process in which

the training signal for a prediction is a future prediction. TD algorithms are often

used in reinforcement learning to predict the expected return or any other relevant

measure.

δt = rt+1 + γV (st+1)− V (st) (2.1)

The TD error (shown in equation 2.1) is the difference between the old estimate

and a new estimate of the value function (taking into account the reward received in

the current sample). These updates are done iteratively and, in contrast to dynamic

programming (DP) methods, only take into account the sampled successor states

rather than the complete distributions over successor states. Like the Monte Carlo

methods, these methods are model-free, as they do not use a model of the transition

function to determine the value function. Like DP, TD methods update estimates

based in part on other learned estimates, without waiting for a final outcome (they

bootstrap). The relationship between TD, DP, and Monte Carlo methods is a recur-

ring theme in the theory of reinforcement learning (Sutton and Barto (1998)).

Bootstrapping is an efficient way to update predictions, however, it can have

high bias due to errors from inaccurate estimates. On the other hand, Monte Carlo

methods update their estimates only when the final / terminal state has been reached

(i.e., updates are only performed at the end of an episode). Monte Carlo methods

can have high variance in stochastic domains since they are sensitive to variations

in the return. The TD(λ) algorithm described in 1 uses the parameter 0 ≤ λ ≤ 1

to take an intermediate approach that lies between full bootstrapping (λ = 0) and

Monte Carlo (λ = 1) updates. This results in a trade-off between bias and variance.

The λ refers to the use of an eligibility trace. An eligibility trace is a temporary

record of the occurrence of an event, such as visiting of a state or taking an action.

The trace marks additional memory variables associated with each event as eligible
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for learning updates. When a TD error occurs, only the eligible states or actions are

assigned credit or blame for the error as shown in equation 2.2 (Sutton and Barto

(1998)).

et(s) =

{
λet−1(s) if s 6= st

λet−1(s) + 1 if s = st
(2.2)

Function approximation is critical in every RL problem, especially in contin-

uous state-action spaces. In large discrete spaces it is often impractical to visit or

even represent all states and actions. In these settings, function approximation can

be used as a means to generalize to neighboring states and actions. In this the-

sis, we only look at parametric function approximators 4 like linear basis functions

and neural networks. Linear approximators are computationally efficient and I will

solely using only linear approximators throughout the thesis.

V (s) = wTφ(s) (2.3)

The key idea of the TD(λ) algorithm (see Alg. 1) is to bootstrap the value of a

state from the subsequent values many steps into the future. The value function is

parameterized by a column vector with fixed number of real valued components w

as shown in equation 2.3. The value function for all states is updated in proportion

to both the TD-error and the eligibility of the state:

wt+1 = wt + αδtet(s) (2.4)

Gradient-descent methods are the most popular of all the function approxima-

tion methods and are particularly well suited to RL. Here, we try to minimize the

mean squared TD error on the observed examples. This yields the general gradient-

descent methods for state-value prediction:

wt+1 = wt + α[rt+1 + Vt(st+1)− Vt(st)]∇wtVt(st) (2.5)

4A parametric function approximator uses a finite set of parameters or arguments where the goal
is to find parameters that make this approximation fit the observed data as closely as possible.
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where α is the usual step size parameter used in gradient descent and hence is

subject to the same convergence constraints. That is, for a deterministic environ-

ment, a decaying α is required in order to converge on the solution with the smallest

error. In practice, a small fixed value for α is commonly used, which allows predic-

tions to adapt to changing conditions.

Algorithm 1 Temporal Difference Learning: TD(λ)

1: procedure TD(λ) . Learn to predict values
2: Initialize: s, φ(s) and weights w, e
3: for each step do
4: a← action given by π for s
5: Take action a in state s and observe the next state s′ and reward r
6: φ(s′)← tilecode(s′) . Tile Coding (Sutton and Barto (1998))
7: δ ← r + γwTφ(s′)− wTφ(s)
8: e← γλe+ φ(s)
9: w ← w + αδe

10: φ(s)← φ(s′)

Value function approximation methods may succeed in constructing a “good”

approximation of the value function yet lack reliable guarantees in terms of near-

optimality of the resulting policy (Konda and Tsitsiklis (2003)).

Let’s consider an example grid world (as shown in Fig. 2.4). In this grid world,

each state has four actions namely up, down, left and right. The world has two

terminal states, a goal (cheese) and a pit (shock), which return rewards of +1 and

−1 respectively. Actions that do not lead to the terminal state result in a reward =

0. A wall was added to the grid which blocks the movement of the agent into that

location. If the agent took an invalid action, such as moving into the boundary or

wall, the agent did not move and simply remained in the same position. We used

TD(0) for value estimation with γ = 1 and α = 0.1 over a random action policy

and the results can be seen in Fig. 2.4.

2.2.4 Policy Gradient Framework

In policy gradient reinforcement learning, we update the parameters of the agent’s

policy πθ(s, a)by gradient ascent and adjust the policy to maximize the expected

reward. Policy gradient methods are typically higher variance and therefore less
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Figure 2.4: This figure shows the learned values over multiple iterations using Tem-
poral Difference (TD) learning without eligibility traces in this grid world. The grid
world GUI was adapted from the Berkeley Pacman Project.

efficient compared to value-based approaches, but they have a few significant ad-

vantages.

Why Approximate Policies Instead of Values?

The value-function approximation approach has worked well in numerous appli-

cations, but has several limitations. The formulation of the problem in terms of

policy rather then value offers many features relevant to robotics. It allows for a

natural integration of expert knowledge, e.g., through both structure and initial-

ization of the policy. It allows the transfer of domain-specific knowledge by pre-

structuring/initialization of the policy in an approximate form without changing the

original problem. Optimal policies often have many fewer parameters than optimal

value functions. For example, in linear quadratic control, the value function has

quadratically many parameters in the dimensionality of the state-variables while

the policy requires only linearly many parameters (Kober and Peters (2012)).

Value function methods are indirect in the sense that they do not optimize di-

rectly over a policy space. They have an implicit policy (e.g., ε-greedy policy)

which finds deterministic policies, whereas the optimal policy is often stochas-

tic, selecting different actions with specific probabilities (e.g., Rock-Paper-Scissors,

bluffing, POMDPs, etc. ).

An arbitrarily small change in the estimated value of an action can cause it to

be, or not be, selected. Such discontinuous changes have been identified as a key

obstacle to establishing convergence assurances for algorithms following the value-
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function approach (Sutton et al. (1999)).

Policy based RL is an optimization problem where we aim to find the best pos-

sible policy parameters θ that maximizes the average reward obtained per timestep.

One approach is to use derivative-free optimization methods, such as the cross-

entropy method (CEM) and covariance matrix adaptation (CMA), which treat the

return as a black box function to be optimized in terms of the policy parameter (Szita

and Lörincz (2006)). However, greater efficiency is often possible using gradient-

based methods (e.g., gradient descent, conjugate gradient, quasi-newton, etc. ).

In the policy gradient approach, the policy parameters are updated approximately

proportional to the gradient:

∆θ ≈ α
∂ρ

∂θ

where α is a positive-definite step size. If the above can be achieved, then θ

can usually be assured to converge to a locally optimal policy in the performance

measure ρ. Unlike the value-function approach, here small changes in θ can cause

only small changes in the policy and in the state-visitation distribution (Sutton et al.

(1999)).

The REINFORCE algorithm (Williams (1992)) updates the parameters of the

policy by stochastic gradient ascent. Given a differentiable policy πθ(s, a) that

is parameterized by a vector of adjustable weights θ, the REINFORCE algorithm

adjusts the weights at each timestep as follows:

∆θ = α(Rt − b(st))logOθπθ(s, a) (2.6)

where α is the step-size parameter and b is the reinforcement baseline that does

not depend on the current action at.

Sutton et al. (1999) extended the this approach to use the action-value function

is place of the actual return.

∆θ = α(Qπ(st, at)− b(st))logOθπθ(s, a) (2.7)
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2.2.5 Value Function Methods vs Policy Search

Some methods attempt to find a value function or policy which eventually can be

used without significant further computation, whereas others (e.g., roll-out meth-

ods) perform the same amount of computation each time. If the optimal value

function is known/learned, a globally optimal solution follows simply by greedily

choosing actions to optimize it. However, the translation of value-function based

approaches to high dimensional robotics have thus far been difficult since they re-

quire function approximation for the value function. Most theoretical guarantees

no longer hold for this approximation (Kober and Peters (2012)). R.S. Sutton sug-

gests that the risk of divergence arises whenever we try to combine three things: (i)

Function Approximation (ii) Bootstrapping 5 and (iii) Off-policy learning 6. Given

that we have limited experience or high cost of exploration in the real world, we

might want to try combining the above three things in order to fully utilize the state

information we obtain for learning.

In principle, a value function requires a thorough sweep through the entire state

space and the largest local error determines the quality of the resulting policy. A

particularly significant problem is the error propagation in value functions. A small

change in the policy may cause a large change in the value function, which again

causes a large change in the policy. While this may lead more quickly to good,

possibly globally optimal solutions, such learning processes often prove unstable

under function approximation (Kakade and Langford (2002)) and are considerably

more dangerous when applied to real systems where large/extreme policy deviations

may lead to dangerous decisions (Kober and Peters (2012)).

In contrast, policy search methods usually only consider the current policy and

its neighborhood in order to gradually improve performance. The policy gradient

approach is only guaranteed to converge to a locally optimal policy (Sutton et al.

(1999)). However, these methods have worked well in conjunction with continuous

5Learning value estimates from other value estimates, as in Dynamic Programming or Temporal
Difference learning

6 An off-policy learner learns the value of the optimal policy independently of the agent’s actions
(For e.g., Q-learning is an off-policy learner). An on-policy learner learns the value of the policy
being carried out by the agent, including the exploration steps.
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features. The local coverage (i.e.,explored parts of explored state space) and local

errors results into improved scale-ability in robotics (Peters and Schaal (2006)).

2.2.6 Actor-Critic Methods

Actor-critic algorithms combine the advantages of policy gradient methods with the

efficiency of value-based reinforcement learning. They consist of two components:

an actor that updates the agent’s policy, and a critic that updates the action value

function. When value function approximation is used, care must be taken to ensure

that the critic’s parameters w are compatible with the actor’s parameters θ. The

compatibility requirement is that OwQw(s, a) = Oθlogπθ(s, a).

Policy search methods are sometimes called actor-only methods; value function

methods are sometimes called critic-only methods. The idea of a critic is to first

observe and estimate/measure the performance of taking an action on a given state

(i.e., the value function), then learn a policy based on the knowledge gained. In

contrast, the actor directly tries to deduce the policy.

Actor-only methods work with a parameterized family of policies.

• The gradient of the performance, with respect to the actor parameters, is esti-

mated and the parameters are updated in a direction of improvement .

• Gradient estimators may have a large variance.

• As the policy changes, a new gradient is estimated independently of past

estimates.

Critic-only methods rely exclusively on value function approximation.

• Aim at learning an approximate solution to the Bellman equation, which will

then hopefully prescribe a near-optimal policy.

• They are indirect in the sense that they do not try to optimize directly over a

policy space.

• They may succeed in constructing a “good” approximation of the value func-

tion yet lack reliable guarantees in terms of near-optimality of the resulting

policy.
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Figure 2.5: Actor-Critic Architecture.

Actor-critic methods aim at combining the strong points of Policy Gradient

and Value Function Approximation methods. Actor-critic methods have a sepa-

rate memory structure to explicitly represent the policy independent of the value

function. The policy structure is known as the actor, because it is used to select

actions, and the estimated value function is known as the critic, because it criticizes

the actions made by the actor. The critique takes the form of a Temporal Difference

(TD) error. This scalar signal is the sole output of the critic and drives all learning

in both actor and critic (Sutton and Barto (1998)). The resulting update step fea-

tures the local convergence properties of policy gradient algorithms while reducing

update variance (Konda and Tsitsiklis (2003)). There is a trade-off between the

benefit of reducing the variance of the updates and having to learn a value function

as the samples required to estimate the value function could also be employed to

obtain better gradient estimates for the update step. The algorithm is explained in

detail in Section 5.2.

Konda and Tsitsiklis (2003) proposed some actor-critic algorithms in which the

critic uses linearly parameterized approximations of the value function, and provide

a convergence proof for the same. The algorithms are based on the following im-

portant observation: Since the number of parameters that the actor has to update is

relatively small (compared to the number of states), the critic need not attempt to

compute or approximate the exact value function, which is a high-dimensional ob-

ject. In fact, it is shown that the critic should ideally compute a certain “projection”
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of the value function onto a low-dimensional subspace spanned by a set of “basis

functions,” which are completely determined by the parameterization of the actor.

This key insight was also derived in simultaneous and independent work (Sutton

et al. (1999)) that also included a discussion of certain actor-critic algorithms. 11

The analysis by Tsitsiklis and Van Roy (1997) shows that temporal difference

(TD) learning algorithms try to compute the projection of an exact value function

onto a subspace spanned by feature vectors. Actor-Critic methods developed by

Konda and Tsitsiklis (2003) use TD learning for the critic. 7

2.2.7 Actor Critic Reinforcement Learning (ACRL)

The policy gradient algorithms mentioned above are independent of the structure

of the policy distribution used. For discrete actions, the Gibbs distribution is often

used. In this thesis, for continuous actions, we define the policy such that actions

are taken according to a normal distribution, as suggested by Williams (1992), with

probability density function defined as

N (s, a) =
1√

2πσ2(s)
exp(−(a− µ(s))2

2σ2(s)
)

where µ(s) and σ(s) are the mean and standard deviation respectively of the

policy distribution π(.|s).

As suggested by Degris et al. (2012), our policy is parameterized by the scalars

µ(s) = uTµxµ(s) and σ(s) = exp(uTσxσ(s)). These scalars are parameterized us-

ing linear combinations where u = (uTµ , u
T
σ )T and the feature vector in state s is

xu(s) = (xµ(s)T , xTσ )T .

The compatible features ∇uπ(a|s)
π(a|s) depend on the structure of the probability den-

7Note: The actor takes decisions about what to do in the world. The critic evaluates the actions
that are taken by the policy (i.e., the actor in this case). In this sense, the actor can be considered
as Policy improvement step and the critic as a form of policy evaluation. Together the Actor-Critic
methods could be considered as a form of Generalized Policy Iteration as described by Sutton and
Barto (1998).
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sity of the policy. Given that we use a Normal Distribution 8,

∇uµπ(a|s)
π(a|s)

=
1

σ(s)2
(a− µ(s))xµ(s) (2.8)

∇uσπ(a|s)
π(a|s)

=
((a− µ(s))2)

σ(s)2
− 1
)
xσ(s) (2.9)

where ∇uπ(a|s)
π(a|s) =

(∇uµπ(a|s)
π(a|s)

T
, ∇uσπ(a|s)

π(a|s)
T )T .

The compatible feature in equation 2.8, used to update the parameters uµ of the

policy, has a 1
σ(s)2

factor: a smaller estimate of the standard deviation results in a

larger norm of ∇uµπ(a|s)
π(a|s) and vice versa. We observed that such an effect can cause

instability, particularly because limσ→0
(a−µ(s)
σ(s)2

=∞

As suggested by Degris et al. (2012) and Williams (1992) we use a step size of

the form αuσ
2 for the gaussian distribution, scaling the gradient with respect to the

variance of the distribution.

Algorithm 2 Actor Critic Reinforcement Learning
1: procedure ACRL . Learn a control policy for joint j
2: Initialize: s, x(s) and weights ev, v, eµ, wµ, eσ, wσ
3: for each step do
4: aj ← N (µ, σ2)
5: Take action a in state s and observe the next state s′ and reward rj
6: x(s′)← tilecode(s′) . Tile Coding (Sutton and Barto (1998))
7: δ ← rj + γvTx(s′)− vTx(s)
8: ev ← γλev + x(s)
9: v ← v + αvδev

10: eµ ← γλeµ + (a− µ)x(s)
11: wµ ← wµ + αµδeµ
12: eσ ← γλeσ + ((a− µ)2 − σ2)x(s)
13: wσ ← wσ + ασδeσ
14: x(s)← x(s′)
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Figure 2.6: Tile coding - In the left, a normalized continuous 2D sensor space is
tiled using 4 tiles per dimension. Each tile has a width of 0.33 in each dimension.
In the right, three offset tilings are placed over the same sensor space, producing 48
features with 3 active at any given instant.

2.2.8 Tilecoding

As the number of dimensions grows, exponentially more data and computation are

needed to cover the complete state-action space. Bellman (1957) termed this expo-

nential explosion of states and actions as “Curse of Dimensionality”. Decreasing

the dimensionality of the state-action space can significantly ease most RL prob-

lems, particularly in the context of robotics.

While continuous signals can be simply discretized and used as state inputs, a

lot of the structural and overlapping feature information is lost in such a crude dis-

cretization. Tile coding is an approach to address learning in continuous domains

which diminishes the aliasing effects that discretization can incur. It is used for cre-

ating sparse binary features from real-valued signals and is well suited to the online

learning paradigm. While tile coding helps us make our learning task tractable, it

still suffers from the curse of dimensionality, in terms of the number of features

8 The easiest way to derive the compatible features is to exploit its mathematical structure, i.e.,
∇uµπ(a|s)
π(a|s) = ∇uµ log(π(a|s)). Using the logarithmic form leads to an easier calculation of the

derivative.
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(rather than say in terms of the number of states).

In tile coding (Sutton and Barto (1998)), a piecewise-constant approximation

of the optimal value function is represented by a set of exhaustive partitions of the

state-space called tilings. Typically, the tilings are all partitioned in the same way

but are slightly offset from each other. Each element of a tiling, called a tile, is a

binary feature activated if and only if the given state falls in the region delineated

by that tile. Figure 2.6 illustrates a tile-coding scheme with three tilings.

Tilings need not be square in shape and need not have the same resolution across

all sensors as shown in Fig 2.6. They can be shaped and distributed to promote

particular kinds of generalization. Also, they can be used be used for any number

of dimensions. In a sense, tile coding is a form of hand-crafted discretization which

incorporates human-domain knowledge in its representation.

When multiple tilings are used, each is offset by a different amount, so that each

cuts the state-space in a different way. The width and shape of the tiles should be

chosen to match the width of generalization that one requires or deems necessary.

The number of tilings should be chosen to influence the density of tiles. The number

of tilings directly influence the resolution of the final function approximation. Using

a large number of tilings implies that the desired function can be approximated more

accurately, but with greater computational costs.

2.3 Prosthetic Control as a Robot Control Problem

A wide variety of control schemes that are currently being used for robotics appli-

cations can be extended to the control of prosthetic devices. This results from the

fact that both robotic and prosthetic systems contain several independent DOFs that

must be coordinated to perform a particular task.

The developments of control systems for robots have advanced relatively faster

than that for robotic prostheses. This is perhaps a result of the inherent difficul-

ties of interfacing with the human in prosthetic systems to generate reference com-

mand/control signals and to derive feedback from various sensory resources. Also,

constraints on the system due to stringent size, power and cosmetic specifications
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can cause additional design problems. Some of the characteristics that are common

to both robotics and prosthetic domains follow (Orin (1980)):

• Force, position and compliance must be controlled

• Feedback of multiple sensory information is essential in complex tasks

• The trajectory or desired movement can be specified as Cartesian coordinates

while actuation occurs in relative joint coordinates

• Good performance over wide range of motion and loads is difficult since it is

dependent upon complex, time-varying, non-linear dynamics.

We can think of prosthetic arms as assistive robots that directly and physically

interact with humans in order to help them achieve a particular goal. In this thesis, I

focus on the control of prosthetic arms using RL techniques. It is important to note

that in such a setting, the user becomes a part of the environment.

While this introduces a different set of problems, I believe that in the long run

these methods could give rise to robust, generalizable solutions.
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Chapter 3

Learning from Demonstration:
Teaching a Prosthetic Arm Using an
Intact Arm via Reinforcement
Learning

3.1 Overview

Prosthetic arms should restore and extend the capabilities of someone with an am-

putation. In other words, that will restore near-natural motor and sensory capability

to upper-extremity amputee patients. They should move naturally and be able to

perform elegant, coordinated movements that approximate those of a biological

arm. Despite these objectives, the control of modern-day prostheses is often non-

intuitive and taxing. Existing devices and control approaches do not yet give users

the ability to effect highly synergistic movements during their daily-life control of

a prosthetic device. As a step towards improving the control of prosthetic arms

and hands, we introduce an intuitive approach to training a prosthetic control sys-

tem that helps a user achieve hard-to-engineer control behaviours. Specifically, we

present an actor-critic reinforcement learning method that for the first time promises

to allow someone with an amputation to use their non-amputated arm to teach their

prosthetic arm how to move through a wide range of coordinated motions and grasp

patterns. We evaluate our method during the myoelectric control of a multi-joint

robot arm by non-amputee users, and demonstrate that by using our approach a user

can train their arm to perform simultaneous gestures and movements in all three de-
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grees of freedom in the robot’s hand and wrist based only on information sampled

from the robot and the user’s above-elbow myoelectric signals. Our results indicate

that this learning-from-demonstration paradigm may be well suited to use by both

patients and clinicians with minimal technical knowledge, as it allows a user to per-

sonalize the control of his or her prosthesis without having to know the underlying

mechanics of the prosthetic limb. These preliminary results also suggest that our

approach may extend in a straightforward way to next-generation prostheses with

precise finger and wrist control, such that these devices may someday allow users to

perform fluid and intuitive movements like playing the piano, catching a ball, and

comfortably shaking hands.

3.2 Introduction

In order to achieve simultaneous, coordinated movement, every DOF of the pros-

thetic arm needs to be supplied with appropriate motor commands at every time

step. The commands must be chosen such that they accomplish the desired task,

but also such that they do not violate any safety or physical constraints of the sys-

tem. Due to the numerous DOFs in complex movement systems and the almost

infinite number of possibilities to use the DOFs over time, there actually exist an

infinite number of possible trajectories for any given task. This redundancy is ad-

vantageous as it allows a system to avoid situations where, for instance, the range of

motion of DOFs is highly restricted, or where obstacles need to be circumvented to

reach a goal. But it also makes it quite complicated to learn good policies since the

state spaces spanned by all possible trajectories is extremely large. We need to make

learning tractable in such high dimensional systems using some constraints that can

reduce the state-space in a reasonable way without eliminating good solutions.

Bernstein (1967) suggested that humans do not control elementary degrees of

freedom but use synergies. Synergies are patterns of usage that are functionally

advantageous. For example, in extending the hand to a target, the actor might tie

the activities of certain muscles together to produce a particular synergy that would

move the hand reliably in a particular direction. This simplifies control because
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Figure 3.1: The collaborative control scheme used in this chapter. The user can con-
trol few selective joints simultaneously while the robot, in this case the RL agent,
controls all other joints. The joints are represented by the gears and controlled using
velocity commands.

the actor has to control only the set of synergies available and not the individual

muscles to produce reliable movement (Berthier et al. (2005)).

The learning from demonstration (LfD) paradigm offers a nice framework to

exploit the learned synergies of the human user. While RL provides a nice frame-

work to achieve hard-to-engineer behavior, it is frequently hard to provide a good

reward function manually. Consider, for example, the task of serving in tennis.

When serving the ball, we optimize many different desiderata, such as the force

with which hit the ball needs to be hit, angle of the joints depending on the ball’s

target location and hitting the ball without straining the arm. To define a reward

function for this task is rather difficult. Furthermore, building the policy requires

gathering information by visiting states to receive rewards, which is non-trivial for

a robot learner executing actual actions in the real world. While it is hard to define

the “tennis serve” as an RL task that learns only from trial and error, it is far easier

to demonstrate the task to a robot arm and have it learn from expert demonstrations.

Demonstration based learning techniques have also been called as imitation
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learning, apprenticeship learning, behavioral cloning and programming by demon-

stration. LfD formulations typically do not require expert knowledge of the domain

dynamics, which removes performance brittleness resulting from model simplifica-

tions. In a clinical setting, this means that patients and clinicians can communicate

their requirements to the robot without actually knowing the underlying mechanics

of the system. This is increasingly useful in a world where robots become more

commonplace. Furthermore, demonstration has the attractive feature of being an

intuitive medium for communication from humans, who already use demonstration

to teach other humans. Demonstration also has the practical feature of focusing the

dataset to areas of the state–space actually encountered during task execution.

In this chapter, we are essentially looking at a collaborative control approach

(see Fig. 3.1 ) where the robot learns a policy which is dependent on the control

commands provided by the user and its own sensorimotor information.

3.3 Methods

A myoelectric prosthesis can be thought of as a wearable robot that responds to

sEMG control signals. A myoelectric user is faced with the task of interacting with a

robot to accomplish everyday tasks. It is reasonable to expect that most people with

amputations may not be robotics experts, but they could have ideas of what their

prosthesis should do, and therefore what types of synergies their prosthetic control

algorithms should give rise to. A natural and practical extension of having this

knowledge is to use it to develop their own desired control algorithms. However,

unlike the usual practice of directly engineering a control approach, we suggest that

desired behaviours could be learned by the prosthesis from demonstrations provided

by the user.

In the present work, we specifically address the common case of a user with

a unilateral, transhumeral amputation—someone missing their hand, forearm, and

elbow. In this setting, the user has one biological limb, and one robotic limb that

they wish to train to appropriately respond to the commands being generated by

the muscle tissue in the user’s residual limb. We refer to the arm generating the
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control signals as the user’s control arm. For someone with an amputation, these

control signals would come from the residual limb that is attached to their robotic

prosthesis, where EMG signals from residual biceps and triceps may be already

used in the direct control of their robotic elbow. We term the arm providing the

training movements the training arm, or the contralateral, intact biological limb.

By asking the user to perform the same motion with both arms (or visualize

performing, in the case of an amputated control limb, and as in pattern recognition

training (Scheme and Englehart (2011)), we suggest that the motion of the training

limb can provide training information for creating a prosthetic policy that maps the

state of the control limb (e.g., gross robot limb position and control-limb EMG sig-

nals) to motor commands for the remaining joints of the prosthetic hands and wrist

not controllable by the user. The robotic prosthesis can then use its learned, state-

conditional policy to “fill in the gaps” for the user during ongoing, post-training

use.

For this study, we first explore prosthetic LfD with able-bodied participants. In

the case of these able-bodied subjects, the control arm is defined as the arm provid-

ing the control signals to a robot limb, where control channels are sampled in the

same locations as they would be for someone with an amputation. The training arm

is their contralateral limb, and represents what would be the user’s non-amputated

arm.

Robotic Arm: Our experiments were done via an open-source robot platform

known as the Bento Arm, as shown in Fig. 1. The Bento Arm is a myoelectric

training tool to assess and train upper-limb amputees in how to use their muscle

signals prior to being fit with a myoelectric prostheses (Dawson et al. (2014)). Al-

though designed to be donned via a socket, for repeatability in this experiment the

Bento Arm was rigidly fixed to a desk directly in front of the able-bodied subject

(Fig. 1b), such that its arm position was aligned with the control-delivering arm

of the subject. The myoelectric control system received the angular position and

velocity of the following joints from the Bento Arm: elbow 〈θe, θ̇e〉, wrist flex-

ion/extension 〈θwf , θ̇wf〉, wrist rotation 〈θwp, θ̇wp〉, and aperture angle of the gripper

hand 〈θh, θ̇h〉.
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(a) The Bento Arm (b) Experimental Setup

Figure 3.2: Experimental setup which includes the Bento Arm, Delsys Trigno Wire-
less Lab and CyberTouch II. The Bento Arm as used in our trials had 5 active DoFs
including shoulder rotation, elbow flexion/extension, wrist pronation/supination,
wrist flexion/extension and hand open/close.

EMG Data Acquisition: We used a 16-Channel Delsys Trigno Wireless Lab

(Delsys, Inc.) to record EMG signals from our subjects. As shown in Fig. 1b,

able-bodied subjects were fitted with four Delsys Trigno units that provided sEMG

signals and inertial measurements from accelerometers, magnetometers and gyro-

scopes. The Trigno units were placed on the control arm of each subject as follows:

two units on the biceps and two units on the triceps. We placed one additional in-

ertial measurement unit (IMU) on the training arm’s wrist to measure the desired

wrist rotation angle (θ∗wp).

Motion Capture Glove: The desired joint angle configurations for wrist flex-

ion/extension (θ∗wf ) and hand open/close (θ∗h) were defined by the subject using

a CyberTouch II system (CyberGlove Systems LLC) worn on the hand of their

training arm. The CyberTouch (shown in Fig. 1b) uses resistive bend-sensing

technology to accurately transform hand and finger motions into real-time digital

joint-angle data (18 high-accuracy joint-angle measurements). When this data was

coupled with that from the single IMU on the training wrist, the subject was able

to use the movement of their training arm to precisely specify their desired pose for

the robot arm’s hand and wrist.
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Figure 3.3: Schematic showing the flow of information through the experimental
setup during the training period.

Phase I: Recording Training Data

In this phase, subjects were instructed to execute a repetitive sequence of simple

reaching and grasping movements that were mirrored by both their control and

training arms (for someone with an amputation, this would correspond to trying

to perform identical movements using their non-amputated arm and the prosthetic

arm). The training arm demonstrated the desired movement and grasp pattern to

the prosthetic arm. During training, the elbow of the Bento Arm was actuated

via proportional myoelectric control from the subject’s control arm, while to wrist

and hand of the Bento Arm were actuated via direct teleoperation—i.e., the Bento

Arm copied the training arm’s movements as reflected to the contralateral side. As

shown in Fig. 2 and described above, we recorded desired angles from the subject’s

training arm (wrist and finger joints) using the motion capture glove and inertial

measurement system.

For our experiment, we chose a simple, repeatable movement as the desired

behavior—a bicep-curl motion involving the smooth alternation of 1) supinated

hand-closed wrist flexion during elbow flexion, and 2) hand-open pronation with

wrist extension during elbow extension. The position of the wrist and hand was

correlated to the angular position of the elbow joint, such that any given elbow po-
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sition could be uniquely mapped by a policy into a higher dimensional combination

of joint motions. Using the specific approach described previously by Pilarski et al.

(Pilarski et al. (2013b, 2011, 2013a)), mean-absolute-value signals recorded from

antagonistic muscle groups (biceps/triceps) were mapped to joint velocity com-

mands in order to control the elbow joint of the Bento Arm—i.e., the user controlled

the elbow joint of the Bento Arm using EMG signals from their control arm using

direct proportional control. The subject used their training arm to demonstrate the

desired behavior for three joints: wrist flexion/extension, wrist rotation and open-

ing/closing the hand using the motion capture glove (the CyberTouch system) and

IMU signals. The CyberTouch was worn on the intact limb and used only dur-

ing this phase. We recorded all the real-valued data signals we received from the

Bento Arm, Delsys Trigno system and the CyberTouch II while the user repeatedly

demonstrated the desired behavior to the prosthetic arm. In this phase, no machine

learning takes place. We effectively asked the subjects to teleoperate the Bento Arm

while demonstrating the desired behavior since seeing the motor outcomes on the

Bento Arm was found to help subjects visualize what the prosthetic arm would ac-

tually do. We recorded data for ≥ 5mins for each user. All subjects (n = 3) gave

informed consent in accordance with the study’s authorization by the University of

Alberta Health Research Ethics Board.

Figure 3.4: Anatomical terms of
hand motion.

Mapping Contralateral Training Hand Demon-

strations to Robot Hand Joint Angles: We

fixed our frame of reference (3-dimensional eu-

clidean space) relative to the wrist such that

every hand movement could be represented as

series of rotations along the x, y and z axis

(i.e, roll, pitch and yaw respectively). The

CyberTouch provided wrist pitch (i.e., flex-

ion/extension) and yaw (i.e., radial/ulnar devi-

ation) angles of the intact limb. We placed an additional Trigno unit on the wrist to

capture pronation/suppination (i.e., roll) of the wrist. While the right wrist rotates

in a clock-wise direction, the left wrist rotates in an anti-clockwise direction. How-
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Figure 3.5: Schematic showing the flow of information during deployment. The
controller generates new robot joint velocity commands using its learned policy,
EMG data from the user, and sensor readings from the robot limb.

ever, the pitch and yaw rotation axes are similar for both arms (relative to our frame

of reference). Hence, we used wrist pitch angle of the training arm as target for the

Bento Arm. In the case of wrist rotation, the difference between 2π and the joint

angle was used as the desired actuator angle. Yaw was not present on the robot and

thus not used in this study.

Phase II: Learning a Robot Control Policy

The user was not involved in this phase. A reinforcement learning agent, described

below, was tasked with learning and maintaining a control policy for the three tar-

get actuators on the robot arm: wrist flexion/extension, wrist rotation and open-

ing/closing the hand. The learned control policy should pick actions such that the

actuator’s instantaneous position matches the joint configuration demonstrated by

the subject using the motion capture glove. We used the pre-recorded data to build

a simulator that plays back the user’s EMG signals and motion capture signals.

The learning agent is given the pre-recorded EMG and CyberTouch signals along

with the Bento Arm’s real-time joint information (position and velocity) to learn the

desired behavior. In essence, the robotic arm trained itself to track the desired tra-

jectory via joint velocity modulation (further details about robot learning are given

in Sec. IV). In practice, learning could be conducted once a limb is doffed, e.g.,

overnight or periods of non-use.
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Phase III: Testing the Learned Control Policy

During testing and deployment, a subject used his or her EMG signals from the

control limb to move the prosthetic arm, again via conventional direct myoelectric

control (as shown in Fig. 3). The subjects were asked to freely actuate the elbow

joint of the Bento arm using conventional EMG-based linear-proportional control,

and the system would use the learned control policies to move the remaining target

joints (i.e., in response to user control choices the system would now effect the

synergies learned during the training phase). The non-amputated arm was free to

perform any movement. The controller selected appropriate velocity commands at

each timestep depending on the EMG signals from the user and sensor readings

from the Bento Arm (as shown in Fig. 3). For safety during initial user testing, all

joint velocities were bounded by −2 ≤ θ̇j ≤ 2 radians/sec.

3.4 Learning a Control Policy in Real-Time Using Actor-
Critic Reinforcement Learning

In order to learn from the demonstrations of the training (non-amputated) arm,

we applied actor-critic reinforcement learning (ACRL) as our primary mechanism

for LfD policy development. As shown in previous work by Pilarski et al. (2011,

2013b), ACRL is a flexible, online learning framework that can be easily adapted

to different application domains and the needs of individual amputees. In particu-

lar, reinforcement learning (RL) enables a robot to autonomously discover optimal

behavior through trial-and-error interactions with its environment. Instead of ex-

plicitly detailing the solution to a problem, in RL the user provides feedback about

the performance of the robot in terms of a scalar reward signal. The goal of any

RL agent is to maximize the expected cumulative reward (also known as the return)

(Sutton and Barto (1998)).

ACRL methods in particular are well-suited for the LfD task in the present work

since they are model-free, parameter-based incremental learning algorithms which

allow fast computation (millisecond updates even over large state spaces) (Pilarski

et al. (2011)). In the field of robotics, one of the earliest successes of ACRL was
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shown by Benbrahim et al. for biped locomotion (Benbrahim and Franklin (1997)).

Peters and Schaal have since applied Natural Actor Critic methods to teach a 7-

DoF anthropomorphic robot arm to hit a ball as far as possible (Peters and Schaal

(2008b)).

The RL agent chooses control actions denoted a based on the learned pol-

icy. The actions, in this case, were real-valued signals which indicate the de-

sired joint velocity. At each time step, the continuous actions awf , awp, ah were

taken according to each joint’s respective parameterized policy. The actions were

drawn from a normal distribution with a probability density function defined as

N (s, a) = 1√
2πσ2(s)

exp
(
− (a−µ(s))2

2σ2(s)

)
. The parameters of the normal distribution

were functions of the system’s learned weight vectors wµ and wσ as given by θ̇ ≈

a ← N{µ, σ}. The actions selected by the RL agent were allowed to persist for

∼ 75ms to give the robot enough time to execute the control commands and better

explore the world. Learning updates occurred every ∼ 40ms of the training period.

In our policy parameterization, the scalars µ = uµ
Tx(s) and σ = exp(uσ

Tx(s)+

log(σc)) were defined as a linear combination of the parameters of the policy and

the feature vector of the state x(s). Actor weights wµ and wσ were updated based

on the compatible features for normal distribution (Degris et al. (2012)). We used

accumulating eligibility traces for both the critic (ev) and the actor (eµ and eσ)

(Degris et al. (2012)).

The ACRL agent, implemented as described in Pilarski et al. (2013b), was given

control of three continuous angular velocities θ̇wf , θ̇wp and θ̇h, where they denote

the angular velocities of wrist flexion/extension, wrist pronation/suppination and

the gripper hand. Raw EMG signals s were rectified and averaged as s̄ = (1 −

τ)s̄+τs, with a time constant τ = 0.037. Differential EMG was later computed for

antagonistic muscle pairs (biceps/triceps), s̄1 = s̄BI − s̄TRI to control the robot’s

elbow joint. The following signals were used to construct the state approximation

vector for each joint j controlled by the learning system x(s): 〈s̄1, θe, θ̇e, θj〉; where

θe, θ̇e, θj denote elbow joint angle, elbow joint velocity and current angle of the joint

controlled by the robot.

We used tile coding (Sutton and Barto (1998)) to construct the state approxima-
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tion vector x(s) used in learning. Our state representation consisted of 25 incre-

mentally offset tilings (width = 1) for better generalization. Each tiling had two

resolution levels NR = [4, 8], along with a single baseline unit. This resulted in

a binary feature vector of length 108,801 hashed down to a memory size of 2048,

with m = 51 active features per step. The learning parameters were set as follows:

σc = 1, αv = 0.1/m, αµ = 0.02/m, ασ = 0.25αµ, γ = 0.96 and λ = 0.7. Weight

vectors ev, v, eµ, wµ, eσ, wσ were initialized to zero and σ bounded by σ ≥ 0.01.

The ACRL systems was trained incrementally using repeated cycles of the train-

ing data earlier recorded in Phase 1, as described in Sec. 2. Total training time was

held constant at 45 min after which the learned control policy was tested on a dif-

ferent data set for accuracy. The control learner received negative rewards r on

each step proportional to the difference between the target and current joint angles:

rj = −|θj∗ − θj|, in radians. Each controlled joint had its own ACRL learner with

its own reward function rj .

Performance of the learning system was measured based on its ability to achieve

desired joint angles. All learning algorithms were run on a Lenovo Flex-3 Laptop

with Intel Core i7-6500U @2.50GHz x 4 and 8GB RAM. We used the Robot Oper-

ating System (ROS) Kinetic on Ubuntu 16.04 to send and receive information and

commands from the Bento Arm, CyberTouch II and the Delsys Trigno Wireless

Lab.

3.5 Results

In our experiments, the actuator targets θj∗ were demonstrated by the user on a

moment to moment basis during training. To serve as a baseline performance mea-

sure for post-training ACRL policies, we used a reactive control approach (Pilarski

et al. (2013b)) as an offline equivalent to direct teleoperation. Since the set of joints

targets are not known until the user demonstrates them, a simple baseline teleoper-

ation policy would be to observe the desired joint angle θj∗ and take an action aj

that moves current actuator angle θj towards the target angle as quickly as possi-

ble. This control approach assumes perfect knowledge of desired joint angles, (i.e,
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the states and targets are fully observable), so is only applicable as a training-data

baseline.

Figure 4 shows the quartile analysis of mean absolute angular error accumulated

over two minutes of learning/testing for five independent runs for each subject. The

ACRL learner showed continuous improvement in performance over learning. Im-

portantly, performance at the end of the learning phase was consistent with perfor-

mance during actual user control in the testing phase for all three subjects. The

negative of the mean absolute angular error is the average reward received during

the evaluation period.

Figure 5 shows examples of the joint control trajectories achieved by the ACRL

learner during the early and late stages of learning, and during testing. As shown

in Fig. 5, the joint angles remained within the target regions for the majority of

the evaluation period during both testing and training scenarios. The trajectories

achieved by the ACRL learner are compared with direct teleoperation (reactive

control as described above). After 20 min of learning the ACRL learner started

to achieve the desired joint trajectories, though the controller did visibly over-

shoot/oscillate around the desired trajectory. The controller started to tightly track

the desired trajectory following 30 min of learning. However, as seen in Fig. 5, we

observe occasional spikes in the joint angles whenever there is a sudden transition

in the desired position. These spikes likely correspond to the fact that less time is

spent in training for transitional motion.

3.6 Discussion

3.6.1 Comparison of Performance Between Subjects

Among the 3 subjects, Subject 1 had the most familiarity with the experimental

setup. The rest of the subjects had minimal/no experience with the system. As can

be seen from Fig. 4, Subject 1 was able to obtain slightly better control performance

especially in terms of the variability of the ACRL system’s selected control actions.

Our observations suggest that improved performance could be achieved with more

practice and familiarity with the system.
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Figure 3.6: Comparison of mean absolute angular error accumulated over the course
of ∼ 45min of learning. Quartile analysis of median values shown over 2 min of
learning and testing as compared to direct reactive control for 5 independent runs
for each subject. These plots are reflective of the performance of the ACRL learner
on this particular task.

Figure 3.7: Comparison of target (grey line) and achieved (colored lines) actuator
trajectories over training and testing periods. This plot shows the joint trajectories
achieved by the ACRL learner for Subject 1 during training and testing as compared
to the offline teleoperation baseline (reactive control).
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(a) Testing on Day 1 (b) Testing after a week

Figure 3.8: Comparison of target (grey line, θ∗wf ) and learned (coloured lines, θwf )
angles for control on different days.

3.6.2 Transferability of Results

In order to test the effectiveness of the learned control policy over prolonged use,

the control policy learned from the initial training period was stored for future use.

Another testing session was conducted after a week to evaluate the performance of

the learned control policy on this new data. As can be seen in Fig. 6, the control

policy managed to pick actions that achieve the desired trajectory, but it does visibly

overshoot in a few regions. It can be seen from Fig. 6b that the actual trajectory

overshoots considerably around 70 to 80 seconds. Though the system does capture

the intent of the user, it doesn’t encapsulate the finer movements of the user. We

attribute this deterioration in performance in part to differences in EMG gains and

sensor positions between visits. We believe that training the system with a larger

dataset (training over multiple sessions, with and without muscle fatigue) could

possibly alleviate some of these issues.

3.6.3 Why Reinforcement Learning?

Bernstein assumed that a large part of the development of motor control involved

learning, and that such learning was accomplished through an active search in-

volving gradient extrapolation by probabilistic sampling so that each attempt is

informed by previously acquired information about how and where the next step

must be taken (Bernstein (1967))(p. 161). RL has been identified as a promising
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approach to learn from incremental experience and discover successful decision-

making policies through the pursuit of reward.

By shaping these rewards, we can engineer behavior. Though we use a position-

based similarity measure in our experiments, it is possible to use other non-trivial

measures such as patient satisfaction (e.g., face-valuing methods (Veeriah et al.

(2016)), torque or velocity matching, minimal power consumption, and others. We

could imagine using a combination of these measures as an ACRL reward function

to satisfy numerous goals. Mathewson et al. have further explored control learn-

ing methods using human-generated rewards and the robustness of these learning

methods with stochastic reward signals (Mathewson and Pilarski (2016)). Optimiz-

ing multiple objectives is often challenging using other approaches like supervised

learning.

3.6.4 Extending to Applications Beyond Upper-Limb Prostheses

While our approach was tested on the myoelectric control domain, it is widely ap-

plicable to other human-computer interaction tasks where the degrees of freedom

problem exists. Researchers are currently looking at developing a robotic limbs

attached to the human body (also known as supernumerary limbs) that can assist

the human user during laborious tasks which cause discomfort and fatigue or when

involved in tasks in dangerous environments. Bonilla and Asada (2014) developed

supernumerary limbs that assist a human user while installing ceiling panels in an

airplane. In our work we studied the scenario where an intact limb teaches a pros-

thetic limb different movement patterns. A user could also teach supernumerary

limbs a desired behavior in the same way. Our approach is equally applicable to

other domains like lower-limb gait training, lower-limb prostheses, powered or-

thotics, exoskeletons, and functional electrical stimulation systems.
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3.7 Extending to Bimanual Tasks such as Playing the
Guitar

When an amputee participant can demonstrate isolated control of all prosthetic

functions and synergistic myoelectric control of multiple joints, we can include

functionally relevant tasks such as loading a dishwasher, unloading a dryer, sorting

mail, or using form boards to test our one-handed prosthetic control. But a large

number of everyday activities require the use of both the hands—tying shoelaces

or a necktie, folding or hanging clothes, and removing money or credit cards from

a purse or wallet. Higher levels of motor control are required for accurate rendi-

tion using a guitar. Subtle manipulation of timing and dynamics and coordination

of finer finger movements is extremely important for playing the guitar. Using

the learning-from-demonstration paradigm, the prosthetic arm can be given expert

demonstrations of multiple renditions of a songs (for instance, fret and chord pat-

terns for the guitar) and the agent can be tasked with learning a state-conditional

policy that depends on the strumming and picking patterns exhibited by the intact

arm.

3.8 Conclusion

This work presented an ACRL LfD framework that will potentially allow an am-

putee to use their non-amputated arm to teach their prosthetic arm how to move in a

natural and coordinated fashion. To our knowledge, this study is the first demonstra-

tion of the training an upper-limb myoelectric prosthesis with a user’s contralateral

limb. We show that an ACRL learner can observe patterns of movement provided

by a user and use these demonstrations in learning so as to generate accurate hand

and wrist synergies during testing and free-form control by a user. Though our

experiments were limited to motions involving three DoFs, our approach could be

easily extended to incorporate more DoFs and finer motions. Ideally, we imag-

ine someone with an amputation could use a LfD approach to continue to train a

powered prostheses at home on an ongoing basis. While our approach is designed

for upper-limb prosthetic control, we expect that it can be easily extended to other
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human-computer interaction tasks where the degrees of freedom problem exists.

In the long run, we expect these methods to improve the quality of life for people

with amputations by providing them better ways of communicating their intentions

and goals to their myoelectric prosthesis. While we have shown results for coarse

movements involving three DoFs, there is no algorithmic barrier to adding addi-

tional DoFs or DoCs such that a dexterous manipulator could be capable of finer

movements and sophisticated multi-actuator grasp synergies. Using an intact limb

to train a prosthetic hand for context-specific manipulation with multiple digits is

the subject of ongoing work.
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Chapter 4

Case Study: Learning from
Demonstration with an Amputee
Participant

4.1 Introduction

An amputee subject’s capacity to generate control commands at will is often a ma-

jor constraint in developing robust control algorithms for prostheses. There are

significant differences in the EMG signals obtained from the residual limb of am-

putees and a healthy biological limb. Moreover, the learning-from-demonstration

paradigm described in the earlier chapter relies only on the ability of the subject

to control a single-joint using EMG signals (from biceps and triceps) and therefore

transferable to an amputee. It has straightforward extensions to multi-joint pattern

recognition and any user capable of using current clinical myoelectric control solu-

tions could potentially benefit from the ACRL LfD approach presented here. Prior

work by our group has also shown that temporal-difference-learning-based meth-

Figure 4.1: Learning from Demonstration - Study with an Amputee Participant
[Learning from Demonstration - study with an amputee participant]
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ods as used here operate in similar ways between subjects with and without ampu-

tations, especially when primary EMG control is performed via direct proportional

mappings (Edwards (2016); Edwards et al. (2016)). In our earlier experiments (with

able-bodied and amputee participants), the RL agent was able to learn an exact se-

quence of movements without knowing the underlying mechanics of the system or

the relationship between EMG signals and desired motion. In part because of this

generality, and the ability of RL approaches to optimize to case-by-base prosthetic

situations (Pilarski et al. (2011); Mathewson and Pilarski (2016)), we expect our

method to also transfer well to real-world use by amputees with transradial and

shoulder disarticulation amputations, assuming reliable physiological control sig-

nals can be recorded from the user (i.e., users that could be prescribed myoelectric

prostheses).

This chapter represents an addition to the work presented in the previous chap-

ter. In the experiment described below, we assess the performance of the learning-

from-demonstration paradigm with an amputee subject.

4.2 Methods

This experiment is similar to the experiment described in Chapter 3. Our subject

had undergone a unilateral, transhumeral amputation (someone missing their hand,

forearm, and elbow). In this setting, the subject has one biological hand (right

hand), and one robotic arm (bento arm with a left hand) that they wish to train to

appropriately respond to the commands being generated by the muscle tissue in the

user’s residual limb. We use the same experimental hardware setup described in

Chapter 3.

As shown in Fig. 4.2, the control signals were sampled from the amputated arm

that is attached to his robotic prosthesis. EMG signals from residual biceps and

triceps were used in the direct control of their robotic elbow. The training arm, or

the contralateral, intact biological arm was used to provide the training movements.

We used the training movements to obtain the reward signals.

The user visualized performing the same motion with both arms (similar to the
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Figure 4.2: We obtain control signals and state information from the control arm.
The training arm provides reward signals for the RL agent.

pattern recognition training in (Scheme and Englehart (2011)). We used the motion

of the training limb to provide training information for learning a prosthetic con-

trol policy that maps the state of the control limb (e.g., gross robot limb position

and control-limb EMG signals) to motor commands for the remaining joints of the

prosthetic hands and wrist not controllable by the user. During testing/deployment,

the robotic prosthesis used its learned, state-conditional policy to “fill in the gaps”

for the user.

In the data recording phase, our subject was instructed to execute a repetitive

sequence of simple reaching and grasping movements that were mirrored by both

their control and training arms. To make it easier for the subject to visualize the

desired movement, we had our subject teleoperate the prosthetic arm. During this

data recording phase, the elbow of the Bento Arm was actuated via proportional

myoelectric control from the subject’s control arm, while the wrist and hand of

the Bento Arm were actuated via direct teleoperation—i.e., the Bento Arm copied

the training arm’s movements as reflected to the contralateral side. The subject

used his training arm (i.e., intact arm) to demonstrate the desired behavior for three

joints: wrist flexion/extension, wrist rotation and opening/closing the hand using

the motion capture glove (the CyberTouch system) and IMU signals.

For our experiment, we chose a simple, repeatable movement as the desired

behavior—a bicep-curl motion involving the smooth alternation of 1) supinated

hand-closed wrist flexion during elbow flexion, and 2) hand-open pronation with

wrist extension during elbow extension. For more details, please refer the supple-
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mentary videos. 1

The angular position of the hand and wrist flexor and wrist rotator joints (de-

noted by θh, θf and θr respectively) are correlated with the angular position of the

elbow joint (denoted by θe) such that there exists a policy that could map any given

elbow position uniquely into a combination of higher dimensional joint movements.

We recorded data for ∼ 20mins for the user. The subject gave informed consent

in accordance with the study’s authorization by the University of Alberta Health

Research Ethics Board.

4.2.1 Learning a Control Policy Using ACRL

The learning agent’s action space consisted of 3 continuous angular velocity values—

wrist flexor(awf ), wrist rotator(awp) and the hand(ah) actuators. Each of these three

joints were assigned its own ACRL learner whose actions were drawn from a nor-

mal distribution N (s, a). The parameters of the normal distribution were functions

of the system’s learned weight vectors wµ and wσ as given by θ̇ ≈ a ← N{µ, σ}.

Learning updates and action choices occurred every ∼ 40ms and ∼ 75ms of the

training period respectively. If the actions selected by the learning agent were not

allowed to persist for ≥ 75ms, the actuators might not have enough time to exe-

cute the given velocity commands. Actions were computed on each timestep was

described in Algorithm 2.

A continuous state space consisting of s = 〈θe, θ̇e, s̄, θj〉was used, where θe, θ̇e, θj

denote elbow joint angle, elbow joint velocity and current angle of the joint con-

trolled by the robot. The difference between the mean-absolute-value of EMG was

later computed for antagonistic muscle pairs (biceps/triceps), s̄1 = s̄BI − s̄TRI to

control the robot’s elbow joint.

While there exists a direct correlation between the positions of the elbow joint

and wrist rotator, the relationship between elbow joint angle and wrist flexion or

hand angle isn’t so straightforward. As seen in Fig. 4.3 (left), the gripper hands’ tra-

jectory can be thought of as a delayed response to the EMG control signals. But the

1https://www.youtube.com/watch?v=UkZoY1JsnBA
https://www.youtube.com/watch?v=EtKQ7vSyYVk
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Figure 4.3: Comparison of differential EMG signal (red line) and target actuator
trajectories (blue line) over training. There exists a clear correlation between wrist
rotation joint angle and the processed EMG signals (left) whereas there is no distinct
correlation between wrist flexion joint angle and the processed EMG signals (right).

wrist flexion trajectory is noisy and doesn’t have consistently repeatable patterns as

shown in 4.3 (right). In order to provide a richer state information to the RL agents,

we included the last 5 observations as a part of the feature space. At each timestep

t, we formed 64 tilings over 〈θet, θ̇te, s̄t, θjt〉, 64 tilings over 〈θet−1, θ̇t−1e , s̄t−1, θj
t−1〉

and so on up to 〈θet−4, θ̇t−4e , s̄t−4, θj
t−4〉, for a total of 320 tilings overall. Each tiling

had a resolution of 10 x 4 x 8 x 12, for a total of 1, 228, 800 features. Adding a sin-

gle constant bias feature resulted in 1, 228, 801 features, exactly m = 321 of which

were active at any given timestep. The learning parameters were set as follows:

σc = 1, αv = 0.1/m, αµ = 0.01/m, ασ = 0.5αµ, γ = 0.99 and λ = 0.7. Weight

vectors ev, v, eµ, wµ, eσ, wσ were initialized to zero and σ bounded by σ ≥ 0.01.

The ACRL systems was trained incrementally using repeated cycles of the

demonstration data recorded earlier, as described in Sec. 3. We had recorded data

for∼ 20mins of which 15mins was used for the training set and 5mins for testing

set. Total training time was held constant at 45 min after which the learned control

policy was tested on a different data set (i.e., hold out set) for accuracy. The con-

trol learner received negative rewards r on each step proportional to the difference

between the target and current joint angles: rj = −|θj∗ − θj|, in radians. Each

controlled joint had its own ACRL learner with its own reward function rj .

Performance of the learning system was measured based on its ability to achieve

desired joint angles. All learning algorithms were run on a Lenovo Flex-3 Laptop

with Intel Core i7-6500U @2.50GHz x 4 and 8GB RAM. We used the Robot Oper-
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Figure 4.4: Comparison of target (grey line) and achieved (colored lines) actuator
trajectories over training and testing periods. This plot shows the joint trajectories
achieved by the ACRL learner for the amputee subject during training and testing
as compared to the offline teleoperation baseline (reactive control).

ating System (ROS) Kinetic on Ubuntu 16.04 to send and receive information and

commands from the Bento Arm, CyberTouch II and the Delsys Trigno Wireless

Lab.

4.3 Results

We use reactive control (an offline equivalent of direct teleoperation) as our base-

line performance measure for the learned ACRL policies. In this approach, the

controller observes the desired joint angle θj∗ and takes an action aj that moves

current actuator angle θj towards the target angle as quickly as possible.The reac-

tive control approach assumes that an oracle provides the desired joint angles (i.e.,

states and targets are fully observable) and hence is applicable only as a training-

data baseline.

Figure 4.4 shows examples of the joint control trajectories achieved by the

ACRL learner during the early and late stages of learning, and during testing for

2 joints — wrist rotation and hand open/close. The agent managed to learn a con-

trol policy that ensures that the joint angles remain within the target regions for
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Figure 4.5: Comparison of mean absolute angular error accumulated over the course
of ∼ 45min of learning. Quartile analysis of median values shown over 2 min of
learning and testing as compared to direct reactive control for 3 independent runs
for each subject. These plots are reflective of the performance of the ACRL learner
on this particular task.

the majority of the evaluation period during both testing and training scenarios.

The trajectories achieved by the reactive control approach and ACRl learner are

compared to each other. The ACRL learner started to achieve the desired joint

movement, though the controller did visibly overshoot/oscillate around the desired

trajectory after 20 min of learning. The controller started to tightly track the desired

trajectory following 30 min of learning. However, as seen in Fig. 4.4, we observe

occasional spikes or delays in the joint angles whenever there is a sudden transition

in the desired position. These spikes likely correspond to the fact that less time is

spent in training for transitional motion. The ACRL learner was unable to learn a

control policy for the wrist flexor joint. One major reason could be that there is no

rhythmic movement involved (as seen in figure 4.3 (right)).

4.4 Conclusion

To the best of our knowledge, this trial is the first demonstration of training a pros-

thetic arm with an amputee user’s non-amputated arm. The ACRL learner was
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able to observe patterns of movement provided by an amputee user and learn from

these demonstrations in order to generate reliable hand and wrist synergies during

the testing period. While we considered the case of a unilateral amputation, we

could also imagine an occupational therapist using our approach to demonstrate

single-arm or bimanual training movements during occupational therapy for bilat-

eral amputation and myoelectric control.
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Chapter 5

Context-aware control of multi-DOF
prosthesis

5.1 Introduction

Humans have an astounding ability to learn a variety of motor skills, ranging from

tying shoelaces, threading a needle to shooting a basketball. A wide number of

interacting elements are involved in learning such skills. In order to be proficient in

multiple motor skills, we should learn to gather task-relevant sensory information

efficiently and use them in decision making and selection of control strategies.

When any muscle or muscle group is activated, the resulting movement is de-

pendent on the context. The relationship between muscle excitation and movement

is variable and this variability is context conditioned (Turvey et al. (1982)). Ex-

teroception 1 and proprioception 2 information can be used by the motor system

as feedback to guide postural adjustments and control of semi-automatic or skilled

movements such as those involved in writing, jogging, etc. Consider picking up

a coffee mug — to accomplish this task, the hand is transported to an appropriate

location in the vicinity of the mug and then oriented and pre-shaped conveniently

to grasp the mug by coordinating the muscles of the hand and applying the right

1The perception of environmental stimuli acting on the body. The stimuli are perceived by spe-
cial, sometimes highly complex, structures called exteroceptors. An example of exteroception is the
perception of light, sound, or heat.

2The sense of position and movement of the limbs and the sense of muscular tension. The
awareness of the orientation of the body in space and the direction, extent, and rate of movement of
the limbs depend in part upon information derived from sensory receptors in the joints, tendons, and
muscles.

54



amount of force.

Vision provides critical sensory information for the planning and execution of

hand movement and prehension, since it allows the central nervous system to pre-

dict the extrinsic properties of the target object. The perception of the object’s

location, size and shape, and orientation with respect to the environment enables

the brain to execute fast-reaching movements by combining muscle synergies. Vi-

sion also provides closed-loop feedback during the execution of body movements

to allow for corrections, especially during the reaching phase.

Apart from EMG signals used for the myoelectric control, we can use many

other physiological and non-physiological signals to assist in the control of multiple

DOFs. We hypothesize that the prosthesis controller can emulate highly synergistic

movements traditionally considered the responsibility of the user if equipped with

such sensors. By combining sensory information from different sources, the con-

troller should be able to detect and analyze the current context, plan the movement

strategy, and simultaneously and proportionally control multiple DOFs available in

the prosthesis.

In this chapter, we explore an approach that could produce context-dependent

motion if presented with contextually relevant representations.

5.2 Related Work

Markovic et al. (2015) introduced a sensor fusion and computer vision based control

approach for the context-aware control of a multi-DOF prosthesis. This work uses a

combination of sensing units, comprising myoelectric recording, computer vision,

inertial measurements and embedded prosthesis sensors (position and force), to de-

velop a controller that could allow a multi-DOF prosthesis to perform simultaneous,

coordinated movements. The method relies on sensor fusion which allows for the

perception of the user (proprioception), the environment (exteroception) and their

interaction, leading to simultaneous, proportional control of multiple DOFs through

context-dependent behavior.
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Figure 5.1: Experimental setup which includes a high-definition camera, Bento
Arm, Thalmic Myo Armband and CyberTouch II. The Bento Arm as used in our
trials had 5 active DoFs including shoulder rotation, elbow flexion/extension, wrist
pronation/supination, wrist flexion/extension and hand open/close.

5.3 Methods

In order to achieve situation-dependent movement based on muscle excitation, the

control system should be given the relevant contextual information and meta-data

about the user, the robotic limb and its environment. In the present work, we explore

how additional sensory information can be exploited to improve synergistic control

of a multi-DOF prosthetic arm. More specifically, we equip the prosthetic arm with

artificial vision to perceive the state of the user, prosthesis and the environment. Us-

ing this additional information, the controller should learn to distinguish between

different grasp patterns according to the context and user’s intentions (communi-

cated using EMG signals).

Similar to the experiments described in Chapters 3 & 4, we assume that our sub-

ject had undergone a unilateral, transhumeral amputation (someone missing their

hand, forearm, and elbow). In this setting, the subject has one biological hand (right

hand), and one robotic arm (bento arm with a left hand) that they wish to train to

appropriately respond to the commands being generated by the muscle tissue in the

user’s residual limb. There are two significant changes in our hardware setup—first,

we mount a Logitech HD 1080p webcam on top of the arm (see Fig. 5.1 (left)) and

second, we use the Thalmic myo armband instead of the Delsys Trigno Wireless

system to obtain EMG signals.
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Figure 5.2: We used three different objects for our experiment - a large blue ball, a
red sponge and a small yellow smiley ball. The input images were processed and
provided to the learning system as input features.

5.3.1 Hardware

Bento Arm: The Bento Arm is a myoelectric training tool to assess and train

upper-limb amputees in how to use their muscle signals prior to being fit with a

myoelectric prostheses (Dawson et al. (2014)). We use a 5-DOF Bento Arm for

the purposes of our experiments. It is a 3D printed prototype with Dynamixel MX

Series servos.

EMG Data Acquisition: We used a 8-Channel Thalmic Myo armband to record

EMG signals from our subjects. The Myo armband is fashioned as a wearable ges-

ture control and motion control device that can be worn around the forearm/upper

arm. It also provides inertial measurements which can be used to calculate rotation

and translation with respect to a fixed frame of reference.

Motion Capture Glove: The desired joint angle configurations for wrist flex-

ion/extension (θ∗wf ) and hand open/close (θ∗h) were defined by the subject using a

CyberTouch II system (CyberGlove Systems LLC) worn on the hand of their train-

ing arm.

Computer Vision: We used a Logitech HD 1080p webcam mounted on top of the

Bento Arm. The camera captured images at 50 frames-per-seconds. Few examples

of the images obtained from the camera are shown in Fig. 5.2.

We’re following the same learning-from-demonstration protocol as outlined in

Chapter 3. In the earlier chapters, the ACRL learner observed a single movement

pattern provided by the user and used the demonstrations in order to learn and

generate accurate hand and wrist synergies during testing and free-form control

by an able-bodied user. Here, we are trying to learn 3 different muscle synergies
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for grasping the following objects – a large blue ball, a red sponge and a smaller

yellow smiley ball as shown in Fig. 5.2 (right).

This experiment was similar to the experiment described in Chapter 3, in which

we had our participants demonstrate the desired movement and grasp patterns for 3

DOF to the ACRL learner. In this experiment, our subject demonstrated the wrist

and grasp patterns for manipulating the desired objects.

The task can be divided into multiple segments as follows - grasp the object

on the table, bring it up by flexing the elbow (as if the object is being examined

closely), extend the arm and bring it down and finally drop it on the table. While

the EMG control commands remain the same for flexing and extending the elbow,

the corresponding wrist and hand trajectories manipulating each object is different.

The hand, wrist flexor and wrist rotator joints (denoted by θh, θf and θr respectively)

are correlated with the angular position of the elbow joint (denoted by θe) such

that there exists a policy that could map any given elbow position uniquely into

a combination of higher dimensional joint movements. The subject demonstrated

each desired reaching and grasping movement for ∼ 15mins.

5.3.2 Prediction in Adaptive Control

Highly skilled motor behavior relies on our brain learning both to control its body

as well as predict the consequences of this control. Flanagan et al. (2003) stud-

ied the relation between predictions as control during motor learning. They found

different time scales of learning for predictions and control, with predictions being

learned much faster than control. Pilarski et al. (2013b) integrated learned anticipa-

tory predictions into the control the actuators of a multi-joint prosthesis for use by

amputees, especially amputees with limited signal recording sites on their ampu-

tated limbs. They were able to make accurate, anticipatory predictions at different

timescales about various joint angles, EMG signals, etc. Their integration of real-

time prediction and control learning promises to speed up control policy acquisition,

allow unsupervised adaptation in myoelectric controllers, and facilitate coordinated,

synergistic movements in a mutli-DOF prosthetic limbs. In this chapter, we test the

ability of our system to learn accurate, temporally abstracted predictions about the
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actuator positions of the joints controlled by the learning agent. In the future, we

hope to implement a similar integration of real-time prediction learning and control

to learn a larger repertoire of motor behaviors.

5.3.3 Making Predictions Using TD(λ)

In this experimental setting, the EMG control signals from the user are extremely

similar across the three context-dependent control tasks. Artificial vision is the

only distinguishing input feature that could help differentiate between the tasks.

Learning accurate predictions about the desired target trajectories for each object

shows the ability to ascertain context. We believe that integrating these learned

predictions into a prosthetic control system can achieve context-aware control of a

multi-DOF prosthesis.

We use the standard temporal difference learning (Sutton and Barto (1998))

to allow the system to make predictions about the desired joint angles. We created

three General Value Functions (GVFs) (Sutton et al. (2011)) for predicting the three

signals of interest θ∗j in the robotic system. We make temporally extended predic-

tions at a short time scale (1.0s) about three target joint angles—wrist rotation, wrist

flexion and hand open/close. The learning agent was presented with a signal space

consisting of the following:

• Elbow joint angle and velocity 〈θe, θ̇e〉

• Object specific features — We converted the input rgb images into hsv format

and analyzed how often certain colors appear and in what proportions they are

to be found in different types of images. We found the range of ’r’, ’g’ and ’b’

values of the corresponding objects manually and used it to classify the target

object. Based on the number of blue pixels within a particular threshold, we

can classified the three target objects and assigned a distinct numerical value.

For example, blue ball in the frame resulted in a signal value of one, the red

sponge had a signal value of two and smiley ball had a signal value of three.

• EMG control signal — We used the difference between the mean-absolute-

value of the EMG signals obtained from sensors 3 and 8 (placed directly over
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the biceps and triceps respectively).

We used tile coding (Sutton and Barto (1998)) for linear function approxima-

tion. Our state representation consisted of 32 incrementally offset tilings (width=1)

for better generalization. Each tiling had a resolution level NR = [10]. The binary

feature vector of length 5,000,000 was hashed down to a memory size of 8192 and

we also added a bias unit which was always active. At every timestep, 4 continu-

ous signals were provided to the tile coder and m = 33 features were active. The

learning parameters were set as follows: α = 0.1/m, γ = 0.99, λ = 0.7. Weight

vectors w, e were initialized to zero. Each GVF received its target joint angle θ∗j as

the cumulant (i.e., reward signal).

Performance of the learning system was measured based on its ability to predict

desired joint angles. All learning algorithms were run on a Lenovo Y700 Laptop

with Intel Core i7-6700HQ @2.60GHz x 8 and 8GB RAM. We used the Robot

Operating System (ROS) Kinetic on Ubuntu 16.04 to send and receive information

and commands from the Bento Arm, CyberTouch II and the Thalmic Myo armband.

All sensorimotor information were communicated between different systems using

ROS topics. We recorded all the sensorimotor informations (from ROS topics)

using rosbags. Rosbags avoid deserialization and reserialization of the messages.

After recording, we can playback the data in a time synchronized fashion and simu-

late real-time sampling and learning conditions. While we used an offline approach

for obtaining the results, it can easily be extended to an online setting.

5.4 Results

The prediction Pq is dependent on the timescale (i.e., time constant) of return pre-

dictions determined by γ (i.e., the discount factor). For normalized return pre-

dictions (P̄q), predictions are scaled according to the time constant. For example,

Pq = P̄q/(1− γq).

As shown in the results, the system was able to successfully anticipate the

joint trajectories initiated by the subject. Accurate predictions were observed af-

ter 5− 6mins of real-time sampling (simulated by playing back recorded data and
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Figure 5.3: Comparison of target (grey line) and predictions (colored lines) of wrist
rotation trajectories over training and testing periods. This plot shows the joint
angle predicted by the TD learner for the able-bodied subject during training and
testing.

Figure 5.4: Comparison of target (grey line) and predictions (colored lines) of wrist
flexion trajectories over training and testing periods. This plot shows the joint angle
predicted by the TD learner for the able-bodied subject during training and testing.
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Figure 5.5: Comparison of target (grey line) and predictions (colored lines) of grip-
per hand trajectories over training and testing periods. This plot shows the joint
angle predicted by the TD learner for the able-bodied subject during training and
testing.

synchronized using timestamps) and learning. Here the normalized predictions P̄q

at a time scale of 1.0s (colored lines) are compared against corresponding target

joint angles (grey lines). Fig. 5.3 shows an example of wrist rotation angle predic-

tion after two offline learning passes through 10mins of recorded training data from

the subject demonstrations. The agent was tasked with learning three target joint

angles in parallel—wrist flexion, wrist rotation and hand open/close. The training

phase lasted for ∼ 90mins (two offline passes through 15mins of recorded data

for each demonstration) and the testing phase lasted for ∼ 15mins (one offline

pass through 5mins of recorded data for each demonstration). Fig. 5.4 and 5.5

show examples for normalized joint angle predictions for wrist flexion and gripper

hand respectively over training and testing periods.

5.5 Discussion

5.5.1 End-to-end RL for Context-Aware Control in a Real World
Setting

In this chapter, we showed that it is feasible to learn to distinguish between the

desired grip trajectories for 3 different objects. But we used heavily engineered

62



features in a simple setting. The predictions for the same task would start failing

even under slightly altered conditions — for example, altered lighting, displacement

of the object, etc. While the same features used for the prediction experiments

can be used to learn a good control policy using ACRL, it’d still face the same

limitations (i.e., it’d fail under slightly altered conditions). We need a robust control

policy that can generalize to new situations and resilient to lighting conditions. We

believe that RL can be used to learn predictive models which in turn can be used

for control.

5.5.2 Sensor Fusion for Context-Aware Control of a multi-DOF
Prosthesis

As discussed in Chapter 3, the learning-from-demonstration paradigm is not appli-

cable only to prosthetic arms, but could also be extended to wearable robots such as

exo-skeletons, powered orthotics, supernumerary limbs, functional electrical stim-

ulation systems, etc. While these devices face a lot of challenges in both hardware

and software design, a major challenge is that the robot usually lacks the capability

to adequately recognize the actions and intentions of the human user. Consequently,

it cannot assist the user appropriately, a drawback that has been emphasized in the

rehabilitation robotics domain.

In most wearable robots, many sensors are already built into the device, such as

joint angle sensors, electro-physiological measurements such as electromyography

(EMG) or electroencephalography (EEG), or alternatively mechanical sensors or

inertial measurement units (IMUs) placed on a part of the body that is not covered

by the wearable robot. We can combine this multi-modal information (combining

different sensor types) to better learn and adapt to the needs of the user.

In the rehabilitation robotics domain, the DOC can greatly outnumber the num-

ber of input channels the user has available. For example, in the case of an amputee

user, the disparity between the Degrees of Control and the number of available in-

put signals greatly increases as the level of amputation increases (e.g., those with

transhumeral amputations can provide even fewer control signals than those with

transradial amputations). Unfortunately, this gross mismatch makes the control of
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wearable robots difficult and tedious. Sensor fusion can potentially alleviate some

of the issues associated with controlling large DOFs with a small subset of input

signals.

In addition to the standard electro-physiological signals, IMUs and joint angle

measurement units, we could add artificial vision, gaze vectors (to know where the

user is looking) and tactile sensation systems (for example, a camera and capacitive

touch systems respectively) to the robotic devices. These systems could provide

highly useful sensory information to the learning agent that could be used to better

perceive the environment and needs of the user.

5.5.3 Representation Learning

Modern day prostheses could receive a huge density of data about the user, their

physiological and psychological needs and their environment. For example, camera

data or even additional sensors on the socket of a prosthesis can readily provide

enough contextual information to allow an ACRL system to produce varied motor

synergies in response to similar EMG signals from the user—e.g., a system can use

additional sensor and state information to help manage the user’s degree-of-freedom

problem, generating synergies that artfully align to different situations in the user’s

daily life. It is therefore important that efficient ways of structuring prosthetic data

are developed to better represent context to a machine learning prosthetic control

system without facing the curse of dimensionality. For example, representation

learning methods built on Kanerva Coding could potentially be used to better handle

this large number of real-world state signals (Travnik and Pilarski (2017)).

While the idea of using a single state representation to better leverage the multi-

modal sensory information is extremely appealing, it’s been shown that different

function approximators can be better at learning about different types of data. For

example, convolutional neural nets (CNNs) have been widely successful in image

classification and object detection datasets (Krizhevsky et al. (2012)). Similarly,

motor primitives (discussed in the upcoming section) have been successful in en-

coding rhythmic and discrete movements. Recurrent neural networks (RNNs) have

been extremely successful in speech recognition and text translation (Graves et al.
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(2013)). One simple way to combine all the sensory information is to extract the

features for each modality separately, then input all features into a single sensor

fusion algorithm.

5.5.4 Study Limitations and Future Developments

The experimental evaluation in this study was designed to test the learning sys-

tem’s ability to make accurate predictions about context-dependent joint trajecto-

ries. Therefore, the focus of the study was set primarily on performing a set of

functionally relevant ad-hoc experiments (e.g., grasping and lifting distinctly col-

ored, differently oriented objects) designed for everyday multi-DOF prosthesis us-

age, taking into account the constraints of the setup (e.g., desk mounted Bento

Arm, vision sensor mounted on top of the arm, etc.). The ad-hoc experiments were

hence only used to evaluate our hypothesis on context-aware control of a multi-

DOF prosthesis. We are fully-aware of the importance of standardized evaluations

of the functional effectiveness of a powered prosthesis. In the future, we should

develop methods that are generalizable across different tasks and objects. Once this

improved approach is in a more mature, developmental phase and approaches clin-

ical applicability (i.e., amputees can use it in a practical setup), the current ad-hoc

tasks would be replaced with functionally relevant tasks.

5.6 Conclusion

Our approach was able to learn contextually-accurate predictions from joint trajec-

tories demonstrated by an able-bodied user. These results provide a starting point

for research into long-term control adaptation. An interesting extension to this work

is to explore the use of contextual-prediction architectures along with ACRL or al-

ternative control approaches in complex real-world activities and evaluate predic-

tions for context-aware control adaptation with a population of amputees.
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Chapter 6

Discussion & Future Work

In this chapter, we propose possible future extensions for a collaborative control ap-

proach for myoelectric prosthesis. In our approach, the user controls a few selective

joints and the learning agent controls the rest of the joints. The user and the agent

control the arm together to achieve the user’s goals. In a sense, the agent is trying

to compensate for some of the limitations of the user.

In the first section, we talk about a scalable, efficient way of reducing task com-

plexity for visuo-motor learning. The second section looks at alternative policy

gradient and control learning approaches that could be used instead of actor-critic

reinforcement learning. While ACRL has several appealing properties, few alter-

native approached may be better suited to handle this particular application. In the

third extension, we try to draw inspiration from the neurobiology of an octopus.

The nervous system and neuromuscular system of an octopus has a unique organi-

zation. The huge amount of sensory information (suckers, skin and intrinsic arm

musculature) and infinite DOFs pose a great challenge to sensory representation

and motor control. We also argue that the prosthetic arm should have a “brain” of

its own and that such an intelligent arm could potentially give rise to synergistic

movements like catching a ball or playing the piano.

6.1 Information Extraction for Visuomotor Learning

The exploits of Cristiano Ronaldo and Lionel Messi represent the pinnacle of motor

learning. Even though an average person can’t play soccer in such an impressive
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fashion, the mere range of motor abilities exhibited by mere mortals is quite re-

markable. We exercise our motor learning capabilities to pick up new activites —

whether it’s mountain climbing or playing the guitar — but also engage in substan-

tial motor learning even on a daily basis to better adapt to changes in our body and

the environment.

Skilled performance in any motor skill requires efficient gathering and process-

ing of relevant sensory information and using it to build a motor control policy. We

do this actively since what we see, hear, smell, touch and taste is influenced by our

movements. During visual search for a target among distractors, people choose to

saccade 1 to the location that would best minimize the uncertainty over all possible

target locations (Wolpert et al. (2011)).

Land and McLeod (2000) examined the eye movements of cricket batsmen and

show that, in general, they do not watch the ball continuously. Rather, they have a

distinct focal attention/eye movement strategy to view the ball at crucial moments

during its flight. A typical fast bowler in cricket delivers the ball at a speed of

150 − 160km/h. A batsman watches the fast bowler’s ball propel toward him at

this high and unpredictable speed, bouncing off the ground(called a pitch in cricket)

of uncertain hardness. Although he can only view the trajectory of the ball for

∼ 0.5seconds, he can accurately predict when and where the ball will reach him.

Once the ball is released from the bowler’s hand, the batsman’s eyes make a pre-

dictive saccade to the place where they expect the ball to hit the ground, wait for

it to bounce, and follow its trajectory for 100–200ms after the bounce. Land and

McLeod (2000) showed that the information provided by these fixations could al-

low precise prediction of the ball’s timing and placement. A shorter latency for the

first saccade distinguishes experts from amateurs.

This suggests that the motor system is used to sample the sensory world to

selectively extract task-relevant information since the attentional and processing

resources are limited. Wolpert et al. (2011) also suggest that motor learning can

also push the limits of what our perceptual system can do. For instance, expert

gamers (video game players) can develop an amazing ability to extract information

1A rapid movement of the eyes that changes fixation from one point to another
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and spread their attention over a wide spatial frame without any apparent decrease

in attentional performance (Green and Bavelier (2003)).

We explored the context-aware control of a prosthesis equipped with artificial

vision and proprioception to perceive the state of the user and the environment.

Even though this gives us a lot of sensory information to analyze the scene, esti-

mate the shape, size and orientation of the target object, modern day prosthesis do

not have enough computational resources to leverage this additional data. Given

the size constraints of the hardware, a prosthetic arm could fit a small computa-

tional device like a raspberry pi or a beaglebone black. Hence, we need smarter

state representations and scalable, strictly incremental algorithms that could handle

the complexity. One possible future extension is to use ideas drawn from feature

integration theory (Treisman and Gelade (1980)).

6.1.1 Feature Integration Theory of Visual Attention

Feature Integration theory is a two-stage theory of visual attention (Treisman and

Gelade (1980)). In the first stage, basic features are processed automatically, inde-

pendently, and in parallel. In the second stage, other properties, including relations

between features of an object, are processed in series, one object (or group) at a

time, and “bound” together to create a single object that we perceive.

Based on findings from parallel search and conjunction search tasks, Treisman

and Gelade (1980) suggested that in the early stage of object perception, different

features of an object (e.g. colour, orientation, direction of motion) are thought to be

analyzed separately (and in parallel) by several pre-attentive cognitive mechanisms,

and the role of attention is to ‘glue together’(or integrate) the different features to

form a coherent representation.

Treisman and Schmidt (1982) predicted that when attention is diverted or over-

loaded, features may be wrongly recombined and this give rise to illusory conjunc-

tions2. When we are not paying attention, nor expecting any particular object, the

2Illusory conjunctions are perceptual phenomena which may occur when several different stimuli
are presented simultaneously to an observer whose attention has been diverted. For example, during
a conjunction search task, the user may perceive a red cross and a green circle when a red circle and
a green cross are presented. This type of error is called a “conjunction error”.

68



world doesn’t turn invisible. Instead some the features detected in parallel in the

first stage could be randomly conjoined, although others may remain unconnected

and therefore doomed to remain unconscious. For example, observers are tasked

with identifying two digits when presented on the display. When distracted, they

often report seeing dollar signs, even though the S and the straight line which make

up the sign are never in the same location. It is as though, pre-attentively, the S and

the straight lines are ‘free-floating’ and the observers are able to combine them to

form a $ symbol even though it is not physically present in the display. These illu-

sory conjunctions support feature integration theory (Treisman and Schmidt (1982);

Treisman (1986)).

Rensink (2000) suggested that humans focus attention (or fixate) selectively on

parts of the visual space to acquire information when and where it is needed, and

combine the processed information from different fixations over time to build up

an internal representation of the scene. This fits very well with feature integration

theory.

Mnih et al. (2014) formulated the attention-based processing of visual sensory

information as a control problem. They presented a recurrent neural network model

that is capable of extracting information from an image or video by adaptively se-

lecting a sequence of regions or locations and only processing the selected regions

at high resolution. Inspired by this work, Xu et al. (2015) created an attention-based

model that learns to automatically describe the contents of an image (or generate

captions for an image).

Similarly, an attention-based model can be used in the context of wearable

robots in order to focus on a particular object in a cluttered environment. Imag-

ine a situation where an amputee donning a prosthetic arm (with artificial vision) is

in a kitchen. Attention-based models for control could potentially identify desired

tools in a cluttered environment and help with cooking.
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6.2 Alternative Approaches to Learn a Robust Con-
trol Policy

In this section, we discuss several learning from demonstration approaches for

robotics applications. All of these approaches treat the robot as an autonomous

system which learns to do a particular task from expert demonstrations. However

none of these tasks are dependent on control signals provided by the human user.

Nevertheless, there are several appealing properties to these approaches and they

can extended to the prosthesis domain. This section is intended to serve as a con-

cise summary of autonomous robot control approaches that could potentially be

used in the assistive robotics domain.

6.2.1 Motor Primitives

Motor primitives can be thought of as neural control modules that can be flexibly

combined to generate a large repertoire of behaviours. For example, a primitive

might represent the temporal profile of a particular muscle activity. The overall

motor output is just the sum of all primitives, weighted by the level of the activation

of each module (d’Avella et al. (2006)).

Ijspeert et al. (2003) conceive of motor primitives as simple dynamical systems

that can generate either discrete or rhythmic movements about every DOF. To get

a movement started, we just need to initialize the speed and amplitude parameters.

Learning is required to fine-tune certain additional parameters in order to improve

the movement. This approach allows us to learn movements by just adjusting a rel-

atively small set of parameters. The resulting movement generation has a variety of

advantages—re-scalability with respect to both time and amplitude (i.e., amplitude

and durations/periods of learned patterns can be modified independently without

affecting the qualitative shape of the trajectory), basic stability properties and the

possibility to encode either single-stroke or rhythmic behaviors. If a good function

approximator is chosen in this context (ideally one that is linear in its parameters),

then learning can be online for real-time robotics applications.

But estimating the parameters of the dynamical system is slightly more daunt-
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ing (i.e., the duration of discrete movements is extracted using motion detection

and the time-constant is set accordingly). Similarly in Ijspeert et al. (2003), the

base period for the rhythmic dynamical motor primitives were extracted using the

first set of repetitions and, again, the time-constants τ are set accordingly. As the

start-up phase in rhythmic presentations may deviate significantly from the periodic

movement, the baseline of the oscillation often needs to be estimated based on the

later part of the recorded movement, the amplitude is determined as the mean of the

amplitudes of individual oscillations in this portion of recorded movements (Schaal

et al. (2007)).

Motor primitives have been used for a variety of basic motor skills such as tennis

swings (Ijspeert et al. (2003)), T-ball batting (Peters and Schaal (2006)), drumming

(Pongas et al. (2005)) and planar biped walking (Kober and Peters (2009)). All

these approaches focus on learning by imitation without subsequent self-improvement.

They were formulated as a supervised learning approach with the target trajectory

obtained from the recorded motions of a human player by kinesthetic teach-in.

Kinesthetic teach-in means “taking the robot by the hand”, performing the task

by moving the robot while it is in gravity-compensation mode and recording the

joint angles, velocities and accelerations (Kober and Peters (2009)).

In Kober and Peters (2009), a novel algorithm which combines motor primi-

tives and RL based on expectation-maximization called Policy learning by Weight-

ing Exploration with the Returns (PoWER) was introduced. It can be derived from

the same higher principle as previous policy gradient approaches. This method

was evaluated on two learning problems on a real, seven degree of freedom Bar-

rett WAM—the discrete task of Ball-in-a-Cup and the rhythmic task Ball-Paddling.

They first initialize the motor primitives by imitation and, subsequently, improve

them by reinforcement learning. Interestingly, the robot fails to reproduce the pre-

sented behavior even if they used all the recorded details for imitation learning using

the supervised learning approach for motor primitives described earlier.
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6.2.2 Natural Actor-Critic (NAC)

Policy gradients approaches have rather strong convergence guarantees, even when

used in conjunction with approximate value functions, and recent results created

a theoretically solid framework for policy gradient estimation from sampled data

(Sutton et al. (1999)), (Konda and Tsitsiklis (2003)). However, even when applied

to simple examples with rather few states, policy gradient methods often turn out

to be quite inefficient (Kakade (2001)), partially caused by the large plateaus in

the expected return landscape where the gradients are small and often do not point

directly towards the optimal solution (see Fig. 6.1).

Figure 6.1: When plotting the expected return landscape for simple problem as
1d linear quadratic regulation, the differences between ‘vanilla’ and natural policy
gradients becomes apparent. This image is from Peters et al. (2003).

Similar as in supervised learning, the steepest ascent with respect to the Fisher

information metric (Amari (1998)), called the ‘natural’ policy gradient, turns out to

be significantly more efficient than normal gradients. Such an approach was first

suggested for reinforcement learning as the “average natural policy gradient” by

Kakade (2001), and subsequently shown in preliminary work to be the true natural

policy gradient by Peters et al. (2003).

Standard gradient descent follows the direction of steepest descent. However,

this choice is not necessarily appropriate. It is better to define a metric based not

on the choice of coordinates, but rather on the manifold (i.e., the surface) that these

coordinates parameterize. Natural gradients solve this issue in supervised learning

problems.

Actor-Critic and many other policy iteration architectures consist of two steps,
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a policy evaluation step and a policy improvement step. The main requirements for

the policy evaluation step are that it makes efficient usage of experienced data. The

policy improvement step is required to improve the policy on every step until con-

vergence while being efficient. The requirements on the policy improvement step

rule out greedy methods as, at the current state of knowledge, a policy improvement

for approximated value functions cannot be guaranteed, even on average. ‘Vanilla’

policy gradient improvements often get stuck in plateaus as explained in the previ-

ous discussion.

Actor-Critic and other policy iteration architectures consist of two steps - policy

evaluation and policy improvement. A major requirement for the policy evaluation

step is that it should make efficient use of the sampled data/experience. The policy

improvement step is required to improve the policy efficiently on every step until

convergence (Peters and Schaal (2008b)).

The requirements on the policy improvement step rule out greedy methods as, at

the current state of knowledge, a policy improvement for approximated value func-

tions cannot be guaranteed, even on average. ‘Vanilla’ policy gradient improve-

ments which follow the gradient of the expected return function often get stuck in

plateaus as described earlier in section 2.2.6. Natural gradients avoid this pitfall

(Kakade (2001)). These methods do not follow the steepest direction in parameter

space but the steepest direction with respect to the Fisher metric (Peters and Schaal

(2008b)).

In Peters and Schaal (2008b), they evaluate the performance of the Episodic

Natural Actor-Critic (eNAC) algorithm on standard RL benchmarks like Mountain

Car and Cartpole as well as on a baseball swing robot example. Degris et al. (2012)

apply the Incremental Natural Actor-Critic algorithms on Mountain Car, Cartpole

and for the control of a myoelectric prosthesis. Peters and Schaal (2008a) use RL

to learn motor skills with policy gradients. Their example of motor primitive learn-

ing for baseball underlines the efficiency of natural gradient methods for complex

movement systems.

Peters and Schaal have shown that the original Actor-Critic and Bradtke’s Lin-

ear Quadratic Q-Learning are in fact special cases of the Natural Actor-Critic al-
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gorithms (Peters and Schaal (2006)). When we use a Gibbs policy π(at|st) =

exp(θsa)∑
b exp(θsb)

and TD(0) for the critic, the update rules of the original Actor-Critic

correspond to the ones of NAC and both algorithms are equivalent.

6.2.3 Apprenticeship Learning via Inverse Reinforcement Learn-
ing

As discussed earlier, learning from demonstration based techniques have also been

called as imitation learning, apprenticeship learning, behavioral cloning and pro-

gramming by demonstration. In traditional apprenticeship learning, the agent tries

to replicate the demonstrations of the teacher. This can be achieved by using only

supervised learning. While RL can be used here (as described in Chapters 3 and 4),

it can be successful only if a good reward function can be specified. In a ’vanilla’

learning from demonstration approach, the agent would try and mimic even irrele-

vant, sub-optimal actions or even mistakes.

Proponents of inverse reinforcement learning (IRL) argue that the reward func-

tion is often hard to specify (Abbeel (2008)). For example, how can we formulate

a reward function for “driving well”?

Apprenticeship learning via inverse reinforcement learning tries to infer the goal

of the teacher. In other words, it will learn a reward function by observing expert

demonstrations, which can then be used later in Reinforcement Learning. Taking

the previous scenario of hitting nails in a concrete wall as an example, if the agent

discovers that the goal is to hit a nail with a hammer, it will ignore blinking or

grunting noises from the human teacher, as they are irrelevant to the goal. In IRL,

the reward function is not explicitly given. Instead, the agent observes an expert

demonstrating the task it should learn to perform and recovers this unknown re-

ward function. This recovered reward function is later used in an RL algorithm for

control.

Abbeel (2008) was successful in applying apprenticeship learning via inverse

Reinforcement Learning to the problem of autonomous helicopter flight. Their re-

sults include the first autonomous in-place flips, in-place rolls, loops and highly-

challenging acrobatic maneuvers as a part of a complete airshow. Their controllers
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perform as well, and often surprisingly better than their expert pilot.

6.2.4 Guided Policy Search

Direct policy search methods are often employed in high-dimensional applications

such as robotics, since they scale gracefully with dimensionality and offer appealing

convergence guarantees (Peters and Schaal (2008a)). However, it is often necessary

to carefully choose a specialized policy class to learn the policy in a reasonable

number of iterations without falling into poor local optima (for e.g., motor prim-

itives (Ijspeert et al. (2003)). This specialization comes at a cost in generality,

and can restrict the types of behaviors that can be learned. For example, a policy

that tracks a single trajectory cannot choose different trajectories depending on the

state. Levine and Koltun (2013) introduced a guided policy search algorithm that

uses trajectory optimization to assist policy learning. The algorithm uses differen-

tial dynamic programming (DDP) to generate “guiding samples,” which assist the

policy search by exploring high-reward regions.

In Gupta et al. (2016), the robot autonomously learns to imitate object-centric

demonstrations (i.e., a human demonstrates the desired motion of manipulated ob-

jects with their own hands) reinforcement learning. These object-centric demon-

strations are provided by placing trackers on the objects being manipulated and

using a human demonstrator to physically move the objects along the desired tra-

jectories. Such demonstrations consist of just the trajectories of the object trackers,

without any other states or actions. The algorithm introduced in Gupta et al. (2016)

enables complex dexterous manipulators to learn from multiple human demonstra-

tions, selecting the most suitable demonstration to imitate for each initial state dur-

ing training. The algorithm alternates between softly assigning demonstrations to

individual controllers, and optimizing those controllers with an efficient trajectory-

centric RL algorithm (Guided policy search in Levine and Koltun (2013)).
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6.3 Intelligent Behavior Principles Drawn from the
Neurobiology of an Octopus

The rich behavioral repertoire of the Octopuses is an extraordinary biological exam-

ple of motor control in a soft-bodied, flexible invertebrate. They are rather unique

amongst invertebrates — they have an extremely large nervous system which has

roughly half a billion neurons (as much as a dog brain). This helps them compete

successfully with other vertebrates for the same ecological niche (Hochner (2012)).

The most obvious characteristic feature of an octopus is its eight long and flexi-

ble arms. These flexible, hyper-redundant arms endow it with high maneuverability

but also pose a great challenge for achieving for precise goal-directed movements

and coordinated locomotion. The task of processing the incoming sensory infor-

mation and selecting proper motor commands places a great burden on the nervous

system. First, coordinating movement is a formidable task since there are DOFs

that have to be controlled; and second, it is extremely hard to use body coordinates

(i.e., a frame of reference based on a rigid body structure) in this flexible animal to

represent sensory information in a central control system. Skeletal animals evolved

a solution for this problem by using central “representation maps” that represent the

sensory and motor information in a way that maintains the spatial relationships of

the body morphology (also known as somatotopic representation (Penfield and Bol-

drey (1937))) in the central nervous system. These representation maps likely serve

as a “look-up table” for the brain to compute motor commands for feed-forward

control. While somatotopic representations of this kind work for skeletal animals

(limited number of joints and fixed configuration of skeletons limit the DOFs), it is

computationally infeasible for an octopus (infinite DOFs and lack of fixed spatial

relationships between flexible body parts).

The nervous system of the octopus is divided into three main parts: a central

brain surrounded by a cartilaginous capsule; two large optic lobes connected to the

retinae of the highly-developed eyes and the peripheral nervous system. Numer-

ically, the peripheral nervous system is the most prominent part since it contains

roughly two-thirds of the 500 million nerve cells (Young (1971)). These researchers
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also deduced from the relatively few afferent and efferent nerve fibers interconnect-

ing the three main parts that a significant portion of the sensorimotor information

processing is performed in the peripheral nervous system and in the optic lobes,

with the central brain acting as a coordinating and decision-making unit (Young

(1971); Hochner (2012)).

The octopus nervous system has a unique organization — the peripheral nervous

system performs computations usually attributed to the central nervous system of

vertebrates. We’ve already established that an amputee does not have enough input

signals to control every single DOF of an advanced prosthesis (e.g., MPL) that is

capable of restoring full-functionality. We propose a high-level architecture similar

to this unique octopus nervous system organization. The goal is to build a pro-

cessing unit (similar to the octopus peripheral nervous system) which performs a

bulk of the sensory and motor information processing and learns a rich behavioral

repertoire (e.g., motor primitives). This would be a decentralized control approach

where the agent would execute a set of motor primitive and the human brain would

act only as a decision-making unit. For example, if an amputee subject looks at an

object and triggers the robotic arm with a control command, the robot arm executes

the most appropriate motor primitives and picks up the object. In such a scenario,

the user chooses what or which object to manipulate and the robot learns how to ex-

ecute the desired set of movements. In Chaper 5, we’ve shown that context-aware

control of this type is feasible on a set of reaching and grasping tasks. While we

used a small, limited representation to achieve those results, we could use all the

sensory information available to learn a richer behavioral repertoire.

Although this approach promises to make great functional improvements for

a prosthesis user, it is a big assumption to think that a prosthetic arm taking ac-

tions on its own will be acceptable to prosthesis users. If the users feel that they

lack agency, they would reject such a prosthesis. Ultimately, we’d require a bi-

directional neural interface where the high-level commands come directly from the

nervous system and the sensor signals return directly to the nervous system. The

users should feel that they are responsible for the actions of the prosthesis. In my

opinion, Proprioception and exteroception feedback from the prosthesis should be
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sent to the nervous system so that the human brain could re-learn to associate its

actions with corresponding prosthetic joint movements.
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Chapter 7

Conclusion

A major issue in the control of myoelectric prosthesis is the gap between the number

of available functions in the prosthetic arm and the user’s ability to control the

desired joints at any given instant. Currently, the neural interface between the user

and the prosthetic arm is functionally limited. The amputee user is unable to control

every single DOF in advanced prosthesis (like the MPL) and receives zero/minimal

proprioception information. This problem is not unique to the prosthesis domain

but can also be found in many human-machine interfaces.

The overarching goal of my research has been to improve the control of pros-

thetic arms. We proposed a collaborative approach to myoelectic control that could

exploit the amputee subject’s repertoire of motor behaviours. An amputee would

interact with his/her myoelectric prosthesis everyday and it’s reasonable to assume

that they would have some ideas and expectations about the device behaviour.

Demonstration have the attractive feature of being an intuitive medium for commu-

nication from humans. We already use demonstrations to teach other humans (e.g.,

sports, music, martial arts, etc). This work presented a learning-from-demonstration

framework based on ACRL that will potentially allow an amputee to use their non-

amputated arm to teach their prosthetic arm how to move in a natural and coordi-

nated fashion. To the best of our knowledge, this study is the first demonstration

of the training an upper-limb myoelectric prosthesis with a user’s contralateral limb

(in this case we taught a left handed prosthetic arm with an intact right arm).

We carried out studies with both able-bodied and amputee subjects and showed

that an ACRL agent can use these demonstrations to learn and generate accurate
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hand and wrist synergies during testing and free-form control by a user. Though our

experiments were limited to motions involving three DOFs, our approach could be

easily extended to incorporate more DOFs and finer motions. These results would

benefit from repeated experiments with more subjects. In addition, we can greatly

improve the implementation to achieve a better performance. For example, we

could use predictions as state information (Pilarski et al. (2013b)), alternative pol-

icy gradient methods which could potentially learn faster (as discussed in Section

6), select an appropriate timescale for learning, action persistence and predictions.

Nevertheless, these preliminary results are promising and warrant further investiga-

tion.

In Chapter 5, we provided the system with additional sensory information (arti-

ficial vision) to enable context-aware control of the prosthetic arm. We used TD(λ)

to make predictions about the target joint positions and were successful in learning

a single value function that was able to distinguish between the objects. While the

experiment by itself was heavily engineered to make it easier for the TD learner to

make accurate predictions, we want to stress on the fact that the main objective was

to show that an agent can learn to make context-aware predictions. Instead of us-

ing a simple red/green/blue pixel-counting scheme for visual features, we could use

traditional image processing features (for example SIFT, Histogram of Gradients,

watershed transform, etc.) or an end-to-end deep convolutional neural network.

Assuming that we are able to teach the control learner multiple context-dependent

muscle synergies, it would be interesting to see how well the controller could gen-

eralize to new tasks/situations.

We’ve applied RL techniques to myoelectric prosthesis with the goal of devel-

oping an agent that could learn and adapt to the needs of the user and changes

in the environment. RL provides a nice set of tools that allow us to incorporate

numerous sensory streams (vision, tactile sensation, myoelectric readings, inertial

measurements, servo position, etc.) in ways that are computationally tractable and

suitable for online learning. In the future, we need to continue enhancing these RL

algorithms to make it more efficient and scalable.

LfD approches can be formulated such that they do not require expert knowl-
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edge of the domain dynamics. This removes performance brittleness resulting from

model simplifications. Since this approach does not require expert domain knowl-

edge, non-robotics-experts can also help shape the control policy. For example,

clinicians and patients are not required to know the implementation details of the

system in order to specify a desired behavior. They can provide show various move-

ments and grasp patterns to the system and the controller can use these high-level

demonstrations to learn an appropriate control policy. Ideally, we imagine someone

with an amputation could use this approach to continue to train a powered prosthe-

ses at home on a regular basis.

As discussed earlier, there exists a gross mismatch between the number of in-

put channels available to the user and the number of controllable functions in a

prosthetic arm. This issue is also faced in the human-computer interaction tasks.

We expect that the LfD approach can be easily extended to human-computer inter-

action and any other domain which faces the degrees-of-freedom problem. In the

long run, we expect these methods to improve the quality of life for people with

amputations by providing them better ways of communicating their intentions and

goals to their myoelectric prosthesis. We believe that we could extend the LfD ap-

proach in a straightforward way such that these devices may someday allow users

to perform fluid and intuitive movements like playing the piano, catching a ball, and

comfortably shaking hands.
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Appendix A

ROS Infrastructure

This section is intended to serve as a reference for students/researchers interested

in using the Delsys Trigno, CyberTouch II, Thalmic Myo Armband and the Bento

Arm. Craig Sherstan had previously set up an elaborate control software for oper-

ating and interfacing with the Bento Arm using Robot Operating System (ROS), an

open source robotics platform. I’ve built similar control softwares for operating the

Delsys Trigno Wireless Lab, CyberTouch II and Thalmic Myo Armband on ROS.

They can be used as independent systems which can communicate with the Bento

Arm. The code repository can be accessed through the BLINC Lab Bitbucket repos-

itory. To researchers outside the BLINC Lab, please contact me for private access

to the code base.
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Figure A.1: Bento, Myo, Trigno and CyberTouch II Architecture.
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Appendix B

Thalmic Myo Armband

This ROS package creates a ROS node which publishes raw data from the Thalmic

Labs Myo Armband (tested with firmware version 1.1.4.2) in the form of both stan-

dard and custom ROS messages. These messages can be subscribed to and used in

standard ROS architectures.

There are four topics generated by the myo− rawNode.py node. These are:

• /myo imu - a standard IMU message with quaternion pose, accelerometer

and gyro axes

• /myo arm - Arm: a custom arm Arm message populated after calibration

that shows current arm and orientation on the arm

• /myo emg - EmgArray: a custom message that is comprised of the EMG

readings from the eight sensors

• /myo gest - Gesture data populated after calibration (UInt8 value of enumer-

ated poses)

The multiple myo.launch file can be used to pair with two or more Myo Arm-

bands simultaneously. The launch file requires appropriate arguments for device ID

and the topic names.
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Appendix C

Delsys Trigno Wireless Lab

The Delsys Trigno Wireless system is capable of streaming data digitally into EMGworks R©

or Trigno Control Utility. EMGworks R© is a software for acquiring and analyzing

EMG and other physiological signals. It is best suited when the only purpose of the

study is to record data and process/use it post-hoc. While EMGworks R© provides

a nice, intuitive GUI for viewing and recording data, it is unable to communicate

with other third party applications or drivers required for control.

Delsys also provides a software called the Trigno Wireless System SDK. It is a

software package designed to allow programmers to interact with the Delsys Hard-

ware. The SDK runs as a TCP/IP server with the Trigno Control Utility. It is

important to note that Delsys Trigno works only on Windows Operating Systems

(at least Windows 7).

The Trigno Control Utility can be used to pair sensors to desired slots (see the

Trigno Wireless EMG System User Guide for help with pairing). While the Trigno

Control Utility is running, any other software can connect to the command port and

instruct the base to begin streaming data. The command port is port 50040 on the

host (running the Trigno Control Utility) computer.

I’ve set it up such that the Windows laptop must be connected to ElsieVision

Network (Internal Lab WiFi). Once Open Trigno Control Utility software. The

Trigno units necessary for the trial can be chosen and turned on (Once the Trigno

units are removed from the charging station, the button should be pressed once to

switch it on.) To receive data, connect to the appropriate ports:
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EMG Data 50041
Accelerometer Data 50042

IMU Data 50043
Quaternions or PRY (Pitch, Roll, Yaw) Format Data 50044

All data values are IEEE floats containing 4 bytes each. If multiple channels are

being streamed over a port, the data are multiplexed. Data are streamed indepen-

dently for EMG channels and accelerometer channels. The sampling rate is differ-

ent for EMG and accelerometer channels—2000Hz and 148.15Hz respectively. To

compensate for this disparity, we read 27 EMG samples for every 2 IMU samples

obtained. This helps us synchronize the data obtained across different sensors.

Reading EMG signals To maintain synchronization, I always read or processed

bytes in multiples of 64 bytes. (16 channels * 4 bytes/channel = 64 bytes). 64 bytes

of data will contain 1 EMG sample from each sensor.

Reading Accelerometer signals Accelerometer data are returned as 48 multi-

plexed channels (16 sensors * 3 axes/sensor = 48 channels), where each sample is

an IEEE float occupying 4 bytes. Overall, it returns 192 bytes.

Reading IMU signals Inertial Measurement Sensor data are returned as 144

multiplexed channels (16 sensors * 3 axes/measurement unit * 3 measurements

units = 144 channels), where each sample is an IEEE float occupying 4 bytes. To

maintain synchronization, I always read or process bytes in multiples of 576 bytes

(144 channels * 4 bytes/channel = 576 bytes). 576 bytes of data will contain 1

sample from each of the 144 channels.

Reading Quaternion signals If the data format is set to Quaternions (I’ve set

that as default), the data will be a stream containing 80 multiplexed channels ([16

sensors]*[5 values/sensor] = 80 channels), where each sample is an IEEE float oc-

cupying 4 bytes. Overall, it returns 320 bytes per sample.
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Appendix D

CyberTouch II

The Cyberglove (a.k.a CyberTouch II) is a 18-sensor data glove features two bend

sensors on each finger, four abduction sensors, plus sensors measuring thumb crossover,

palm arch, wrist flexion, and wrist abduction. It uses proprietary resistive bend-

sensing technology to accurately transform hand and finger motions into real-time

digital joint-angle data.

The Cyberglove drivers are compatible with Windows 7. It can connected to

a PC using a serial to USB converter. I’ve written a script with the help of re-

searchers from Cleveland Clinic to use the Cyberglove system outside its propri-

etary software. The Cyberglove SDK on windows can be used to visualize the hand

movements and calibrate different finger and hand motions. This calibration file is

required by the system to provide accurate joint angles.

We do not get access to the raw values of each sensor on the Cyberglove. In-

stead, it has a processing unit (a small embedded processor like a raspberry pi)

which gets the raw inputs, processes it and sends this processed information to the

PC. The sampling rate for the pre-processed joint angle information is ∼ 25Hz.

The python script Cyberglove server python27 idle.py connects with the Cy-

berTouch II system and creates a server which is capable of transmitting the sensory

information to a client via TCP. This script would load a calibration file in case of

successful connection with the CyberTouch II. Once the client sends the “connect”

command and the experiment time, the server starts transmitting TCP packets to

the client. By default, the host ip of the Windows laptop on ElsieVision Network

(BLINC Lab WiFi) is 10.0.1.120 and the port through which Cyberglove is stream-
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ing data is 5050. The port number can be changed on this script if necessary.
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Appendix E

Integrating Bento Arm with Trigno
& CyberGlove

The central controller for the Bento arm is bento controller. This node is respon-

sible for facilitating all interactions with the arm. It is intended to allow the arm

to be used with various configurations of joints an motors, facilitated by the use of

configuration files. It provides methods for moving each joint individually, either

by position, velocity, or position and velocity based commands. State information

is published at regular intervals.

The bento trigno node subscribes to the topics published by delsys trigno.

The bento trigno node allows pairs of channels to be configured to send propor-

tional control messages to a multiple joints. The EMG channel messages are first

rectified. There are several online parameters that affect each channel: gain, thresh-

old, max. Gain adjusts the amplification on a particular channel. The threshold

allows an operator to adjust for noise; signals below this value are ignored. Output

of each channel is scaled from 0 to 1 across threshold and max, i.e., threshold pro-

duces a 0 value, while max produces 1, values higher or lower are capped. The max

setting is used for adjusting the sensitivity of the control signal to the magnitude of

contraction, i.e., if max is set higher then the user will need to produce a stronger

contraction in order to send a 1. One of the channels in a pair produces positive

group commands, while the other produces negative group commands.

The cyberglove node receives the pre-processed sensor readings obtained from

the CyberTouch II. The bento cyberglove node allows channels to be configured to
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send position control messages to multiple joints.
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