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Abstract

In this thesis new procedures for sequential testing of composite hypotheses
are proposed. The procedures are based on large sample approximations of
the efficient score vector.

In the first part of the thesis we consider the problem of change-point
detection. Specifically, in Chapter 2, we will develop a new CUSUM-type
procedure for sequential detection of a change-point in the distribution of a
sequence of independent observations (not necessarily from the exponential
family of distributions). In Chapter 3 the method is extended to the case
of autocorrelated observations. In hoth cases we investigate the asymptotic
distribution of the test statistics under the alternative hypothesis of change.

In Chapter 4 we compute the critical values for the tests of Gombay
(2002) and show how these procedures can be used in clinical trials for com-
parison of three or more treatments. In the last part we adapt the CUSUM-test
to solve the change-point ANOVA problem.

At the end of each chapter Monte Carlo experiments are conducted in
order to evaluate the empirical power of the new procedures and for comparison

to other methods.
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Conventions and notations:
The following notations will he used

Symbol Meaning

2, = o(p(t)) a.s. lilinsozxp 207 = 0 almost surely

2, = O(o(t)) or 2, = O(4(t)) a.s5. lim sup 757| is almost surely finite

1z = Op(p(1)) 5“% T; bounded in probability

Rt Almost sure convergence

2. Convergence in distribution

z Equality of finite dimensional
distributions

LIL Law of Iterated Logarithm

Xt The transpose of vector or

matrix X
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Chapter 1

Introduction

1.1 Review and Problems

1.1.1 Sequential testing of composite hypotheses

Sequential testing of hypotheses began in 1943 with the Sequential Probability
Ratio Test (SPRT) proposed by Abraham Wald. Let ¥7,Y,,.... ¥, ..., be a
sequence of independent and identically distributed random variables with a
common one-parameter density function f(-;4). Wald’s SPRT procedure for
testing the simple null hypothesis Hy : § = #y versus the simple alternative
H,y: 0 =0, is to stop sampling and accept Hy as soon as L > A or stop
sampling and accept H,y assoonas L, < B, where 0 < B < 1 < A are constant
stopping boundaries dictated by error probabilities a = P, (Reject Hy) and
3= Py, (Reject Hy,), and
1, = i Fib)
[T flyiba)
is the likelihood ratio based on the & observations available thus far. The sam-

ple size, N, at which the boundaries are crossed, is a random variable. The
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mean of N is known as Average Sample Number (ASN) or average stopping
time. Wald and Wolfowitz (1948) showed that the so defined SPRT proce-
dure is optimal in the sense of minimizing the stopping times among all tests
possessing a finite ASN and with error probabilities a and /3.

The original SPRT did not deal with composite hypotheses, which were
composite either because the null and/or alternative parameter spaces are
not single points or because of the presence of nuisance parameters. Wald
attempted without much success to adapt the SPRT to the composite hy-
potheses case by introducing the weight functions approach. Another attempt
to extend the SPRT to the case of nuisance parameters produced the so-called
Invariant SPRT (Ghosh 1970). This method consists of reducing the compos-
ite hypotheses to simple hypotheses by transforming the data as well as the
hypotheses of interest and then applying Wald’s SPRT procedure. According
to Lai (2001), this approach has a few drawbacks that makes it diflicult to
implement.

In a case where the hypotheses of interest are composite because of
the presence of nuisance parameters, a third approach suggested by Bartlett.
(1949), Cox (1963) and Breslow (1969) is based on using the likelihood ratio,
or an asymptotically equivalent form of it, under the assumption of conti-
guity. The method replaces nuisance parameters in the likelihood ratio hy
their restricted maximum likelihood estimators and uses Wald’s SPRT proce-
dure. Based on the assumption that the parameters are close, i.e. |04 — 6| =
O(N=1/2), the Taylor expansion is truncated at the second order terms. Be-
cause the sample size N is a random variable with range (0, 00) the error made
by truncation at the second term is not negligible. Alternatively, Gombay

(1996, 1997) provided some tests based on the generalized sequential likelihood

2
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ratio (GLR) along with their asymptotic critical values at significance level a.

Sequential testing of hypotheses was introduced into clinical trials during
the 50’s (Armitage 1960). As an alternative to the SPRTs, Armitage suggested
the so-called Repeated Significance Test (RST). This method has some limi-
tations which are removed in group sequential analysis introduced hy Pocock
(1977) and O’Brien and Fleming (1979). In this case, if no treatment differ-
ence is observed the trial will continue to its maximum sample size. This will
be somewhat larger than the sample size required for a fixed-sample design of
equivalent power.

The problem of comparing three or more treatments is frequently faced
in clinical trials. Siegmund (1993) and Betensky (1996) studied the case of
three treatments in the simplest situation of independent, normally distributed
random variables with a common known variance. To make these procedures
more useful in practice it is necessary to extend them to the case of unknown
and perhaps unequal variances, and to the case of more than three treatments.
It seems likely that the methods of Siegmund (1985), Section 5.4, could be

’

applied although the analytic approximations will hecome more complicated.

1.1.2 Change-point problems

Sequential change-point detection problems have many important applications,
including industrial quality control, reliahility, fault detection, clinical trials,
finance, signal detection, surveillance and security systems. Extensive research
has been done in this field during the last few decades. For recent reviews, we
refer readers to Csorgé and Horvath (1997), Basseville and Nikiforov (1993)

and Lai (1995).
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In sequential change-point problems, one observes a sequence of inde-
pendent observations Y7, Y5,... from some process. Initially, the process is in
control, i.e., the Y’s have some distribution f;. At some unknown time 7, the
process may go out of control and the Y’s have another distribution f4. The
problem is to detect the change with a high power and as soon as possible
while keeping false alarms as infrequent as possible.

When both the pre-change distribution fy and post-distribution f4 are
completely specified, the problem is well understood and has been solved under
a variety of criteria. Some popular procedures are Shewhart’s control charts,
Moving Average control charts, Page’s CUSUM procedure, and the Shiryayev-
Roberts procedure.

Perhaps the most successful algorithm of sequential change detection is
Page’s (1954) CUSUM test. If the interest is in the mean parameter, this test

will monitor the partial sums

Sk — min S; . =1,2,..., (1.1)

1<j<k

where S, = Zf:l (Y; =) and r is a reference value, and will indicate change
from the initial zp mean value to pu, 14 > o, at time k, when statistic (1.1)
is large enough.

This basic idea of change detection has several variations. The most

famous is the case when the sums in (1.1) are not based on the initial obser-

vations Y;, but on the ratios

eary) .
v e S\ 00) =19 9
" 1O°f(Y1:;9.,x)’ e=h2h (12)

and the purpose is to detect change from the initial parameter value 6, to

the new value #4. Lorden (1971) and Moustakides (1986) have shown that

4
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algorithms based on (1.1) and (1.2) are optimal in the sense of minimizing the
expected value of the stopping time after change, while keeping the expected
stopping time under the null hvpothesis of no change at a desired level.

In practice, the assumption of known pre-change distribution f; and
post distribution f, is too restrictive. Motivated by applications in statistical
quality control, the standard formulation of a more flexible model assumes
that the pre-change distribution fj is given and the post-change distribution
[ involves unknown parameters. However, as shown by many examples, there
are many situations in practice in which both the pre-change and themp”c;;t-ﬁ
change distributions intrinsically involve unknown parameters.

So, for practical purposes this case has to he extended to the case of com-
posite hypotheses. The natural idea is to use the generalized likelihood ratio
in place of the sum of variables in (1.1). It has heen tried, but computational
difficulties (see Baseville and Nikiforov (1993)) have prevented its widespread
use. Also, there are theoretical problems with its extension to cases involving
nuisance parameters (see Gombay (2002, 2003b) for detailed discussion). The
essence of the reason for these problems is that the generalized likelihood ratio
is not like a partial sums sequence, but a quadratic form. There is, however, a
statistic that is closely related to the generalized likelihood ratio and hehaves
approximately like a partial sums sequence. This is the efficient score vector,
the main component of Rao’s statistic, which is a quadratic form made with
the help of the efficient score vector, and behaves, asymptotically the same way
as the generalized likelihood ratio (see Gombay (1997) for detailed discussion).

In this thesis we assume that the pre-change distribution fo = f(y;8.7)
depends on two vectors of parameters ¢y and 7, where 8y, the vector of pa-

rameters of interest is known, and 7 is the vector of nuisance parameters. The
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post-change distribution is of the form f4 = f(y;6.4,7) with ¢4 unknown.

The methods discussed so far assume independent observations. As
Wetherill (1977) has pointed out, observations from modern industrial pro-
cesses are often autocorrelated and the process itself can behave like an au-
toregressive process. Such behaviour must he taken into account when setting
up testing procedures.

Most procedures in the literature are based on residuals (see Kulperger
(1985), Bai (1993), and Horvath (1993)) or on the one-step-ahead prediction
errors (see Montgomery and Friedman (1989)). There are several extensions
of CUSUM and GLR schemes to handle non-independent observations. In
principle, Page’s likelihood ratio CUSUM scheme-(Page, 1955) can be cas-
ily extended to non-independent observations, simply by replacing f(Y;) by
e

cal implementation of the GLR algorithm is not always possible because the

Yy, ....Yi—y). However, as Basseville and Nikiforov (1993) noted, practi-

number of computations at time n grows very fast to infinity with n and maxi-
mization of the log-likelihood over # € © must be carried out for each possible
change time & between 1 and n. So these algorithms cannot be computed in
realtime to support on-line decisions. Our procedure which is based on the

efficient score vector has no such limitations.
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1.2 Overview of the thesis

As mentioned in the previous section, sequential testing of composite hypothe-
ses has not vet received an adequate fully-sequential trcatment. In this thesis
we use large sample approximations of the efficient score vector to develop
new CUSUM-type procedures for sequential testing of hypotheses in presence

of nuisance parameters. The main attractive features of these procedures are:

e A generality allowing application of the methods to a wide class of dis-

tribution families including the exponential family.

e Simple accominodation of the nuisance parameters. In fact only the

nuisance parameters have to be estimated giving a simpler algorithm.

e The simple structure of the efficient score vector allows the definition of
the CUSUM-type test which is not feasible for the generalized likelihood

ratio and the m.Le. based on Wald’s statistic sequence.

e Different test statistics are used for testing for a change in different
parameters as the tests are based on the corresponding components of

the efficient score vector.

o Fasy-to-compute approximate boundaries (critical values) which do not
require any numerical integration.
This thesis has five objectives:

1. Development of a class of CUSUM-type sequential procedures for testing
for a change in the parameters of the distribution of a sequence of inde-
pendent observations. The distribution may be from the non-exponential

family. This extends the results of Gombay (2003a).

7
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2. Extension of the procedures to the case of non-independent observations.
More specifically, we consider the case of testing for a change in the

parameters of an autoregressive process of order p, AR(p).

3. To compute the critical values and show how the tests of Gombay (2003)
hased on Rao’s statistic can he used for sequential comparison of three

or more treatments.

4. To adapt the CUSUM test to the ANOVA change-point. problem.

[

. Empirical comparison of our test procedures to some other methods, in

term of power and average stopping time.

Specifically, in Chapter 2 we shall consider the case of independent oh-
servations. As the efficient score vector behaves approximately as partial sum
sequences, the CUSUM idea of Page (1954) can be used to improve perfor-
mance for detection of later changes. Monte Carlo simulations are carried out,
in order to assess the power of the new CUSUM-type sequential test.

In Chapter 3, the same method is extended to the case of autocorrelated
observations. When the observations come from an AR(p) process it turns
out that the distribution and the rate of convergence of the test statistic is the
same as in the case of independent observations.

In Chapter 4, we will present and compare some procedures based on
Rao’s statistic for testing equality of three or more treatments. We compare
these procedures with the sequential F-test proposed by Siegmund (1980). At
the end we show how the CUSUM test can be used for an ANOVA change-

point problem.
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Chapter 2

A CUSUM-Type Sequential
Test

2.1 Preliminaries

One of the major aims of Statistical Process Control (SPC) is to achieve the
condition where the parameters related to a given manufacturing, business,
ecological or similar process, conform to some prescribed on-target behaviour.
In many practical applications it is not reasonable to assume that the same
model remains adequate as time progresses. Over time, something will in-
evitably change and possibly cause deterioration in process quality. Some-
thing that affects process quality is assumed to be reflected by a change in
the parameters so the basic goal of process monitoring is to detect changes in
the parameters that can occur at unknown time. In practical situations the
relevant model involves not only the parameters of interest but also some nui-
sance parameters which are not monitored but they influence the functionality

of the process.
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In this chapter a truncated CUSUM-type sequential test is proposed
to detect an abrupt change in the distribution of a sequence of independent
observations. The test is based on large sample approximations of the efficient
score vector under the null hypothesis of no change and under the alternative
hypothesis of change at an unknown time.

The problem can be described in general terms as follows. Suppose
Y1, Ys, ..., are independent random variables/vectors observed sequentially,
i.e., one at a time, and let f(y;#6;,1;) be the density tfunction with respect to
a o-finite measure . The distribution function is denoted by F(- ;:6.7). We
assume that 6§ € ; C RY d > 1, and that 7 € s C R?, p > 0, and the
parameter space is 2 = 2, x 2y C R™?. We use the notation £ = (4,7). In
statistical terms ¢ will be the parameter of interest and 5 will be the nuisance

parameter. We are interested in testing the composite null hypothesis
Hy:0; =6y, ni=n€Q, 1=1,2,...,
against the alternative

H,\ . (2.1)

;=0 , ni=nedy, i<T,
0; =04, mi=n€ld, i>7T.

where 7 is the unknown time of change, 6y is the known initial value of the
parameter, and parameter values 1, 6, are also unknown. For example, in
quality control the initial value 6 is the required measurement or target value,
and change from it has to be detected.

Before presenting the test statistic and its asymptotic null distribution
we will give some notations and regularity conditions that are needed. We

denote by

[i'(f) = —F i

<\ 5edE, log f(Y;€)] ,

—
)
o

2

10
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the entries of the Fisher information matrix, I, where 7,7 = 1,2,...,d + p.

We shall partition this matrix as

o 1u I
I—<121 122> ’

where

P
-}A

0‘)
Iy = | —E—<—log f(Y: Im={—E log f(Y:
11 < E()elae‘] lob f (S 7£)> dx(lﬂ 22 ( (‘)]710711 0(‘3 f () ’6)) . )

and [ = Iﬁ[ = (_Eé)()?;nj log ‘f(Y; E))dxp.

The inverse of I will also be partitioned and denoted by

_ I” Il‘l
Il=([21 pz)-

Suppose that £ = (#,7) is a point in an open subset 2 C R, The following

regularity and existence conditions are needed
C1. The distribution function F(- ;8,7), is identifiable over §2.

C2. There exists an open subset, §}y C €2, containing (6o, 7), the true value

of the parameter under Hy, where the partial derivatives,

N2 03

log f(y:€), and _9 log f(y:€),

0
—logo f(y: &) .
0og f (U E) : 06206] 0&05)0&

i

exist and are continuous for all y € R and & € {2q.
C3. For each (fg,m) € Qo , k=1,2,..., and j < k the score equations

i
Z Vylog f(Yi;00,m) =0,

=1

k
Y Vylog f(Yi;bo,0) =0,
i=j

have unique solutions, 7, and 7, respectively.

11
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C4. Under the setup of C2, there are functions Af;(y), A (y) such that
/]\[1 v(dy) < oo, and E¢[M(Y)] < oo,

with

02

17
0608

Ia%log f(y;é)l < Mi(y), l Ing(y;f)l < My(y),

93
006,08,
forall € Qp,and 1 <4, ),k < d+p.

and

log f(y; 5)’ < Mo(y),

C5. Eg[a%logf()"; )] =0, forall 1<i<d+p, and &£ € Q.

C6. I;;(&) = —E¢ [ag 56 log (Y E)} and I™'(€) exist and are continuous for

all £ €, and 1 <4, <d+p.
C7. Vare [(}5‘7—% log f(Y; ()0,77)} <oo, for1<i,j<d+p.

52 _ 2+
C8. Ey,n [ a(—g;.-’IOg f(Y;600,m)

5
} < oo, foralli =1,2,...,d + p, and some

5> 0.

Remark 2.1 Conditions C1 - CG are the usual classical regularity condi-
tions guaranteeing the existence and consistence of a sequence of MLE’s (c.f.
Lehmann 2001, Serfling 1980). The last two conditions are, respectively. re-
quired by the Law of the Iterated Logarithm (Serfling (1980)). and by the

strong invariance principles of Csorgd and Révész (1981) that are used in this

thesis.
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2.2 The CUSUM test

The truncated CUSUM-type sequential test proposed here is based on the
efficient score vector which is defined as
Vii(6,7) ng og f(Yi;b0,7) .
i=1
Because the nuisance parameter 1 is present we have to replace it by its re-

stricted maximum likelihood estimator 7, , that is, by the solution of equation

k
Z f(¥i,60,m) = 0.

When we replace by 7 V. simplifies to

k k
Vi= D" Velog f(Vibo, i) = 3 Volog f(Viboii) . (23)

i=1 i=1
The following theorem states that under Hy Vj. defined in (2.3) can be written

approximately as a sum of independent d-dimensional random vectors.

Theorem 2.1 Under Hy, if C1-C8 hold, then V}. can be represented as

k

Vi =Y Vylog f(V;; b, )
i=1
k

—Z{Veloo f(Yi;60,m) = Vylog f(Yi: 60, )35 (B0, m) Iax (6o, lz)}

+ O(log log k)
k
= Z Zi+ O(loglogk) «a.s., (2.4)
i=1
as k — oo, where Z; are iidr.v's with EZ; = 0, Cov(Z;) = T(6. 1),

C(6o.m) = Iy — L1213 1.

13
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Proof. We can write

k
Vie= " Vylog f(Y;6o, )

i=1
k k

= ng log f(Y;;60,m) + Z {Vo log f (Y% 60,M) — Velog f(Yi; 6.1 }
i=1 i=1

l\D

The last term in the above s represents the error committed in estimating
7 by its restricted MLE 7. The error can be linearized by using a three-term
Taylor expansion of Vylog f(Y; 6o, 1) around the true parameter value 1, so
that (2.5) can be rewritten as
k
V, = Z Volog f(Yi,b60.1) + (e —n) Y _ Vi, log f(Y:,60.m) + Ri(n*) (2.6)
i=1
where n* is a point hetween 7);, and 7 and ng denotes a pxd - matrix of second
order partial derivatives, first with respect to components of § and secondly
with respect to compounents of . The term Ry (17*) is a row vector whose r"

component has the form

23

) G, s s
(Fhkg = 100) (M — 1) X {Zan 00, IOg.f(h;Ho,n')} -
q

By the Strong Law of Large Numbers and by C4, the terms in the curly
brackets are almost surely O(k). On the other hand, by Lemma 2.1 of Gombay

and Horvath (1994),

. . log log k&
’("qu = 1q) (k. — 771), =0 <—g—k°~) a.s.

Hence we obtain
Ri(n*) = O(loglogk) a.s. (2.7)

In order to obtain an expression for (i) — 1), we shall analyze the following

14
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three-term Taylor expansion

k L
> {Vn log f (Y3, 60, k) — Vi log f (Y5, b, 71)} = (i —n) Y Vielog f(¥ 0.7
i i=1
+ R.("") (2.8)

where V?Q is the p x p- matrix of partial derivatives with respect to the com-
ponents of 1. By the same arguments leading to (2.7), the error term above is
almost surely of order O(loglog k). On the other hand, by C4 and the Law of

Iterated Logarithm we have

HZV,,_]OO (Y3, 60, 1) + kIs(6o, )H O(V/kloglogk) a.s.

From (2.8) and by the definition of 7, we obtain

k
- Z v'n 108 f()’; 603 ) (771» - 77)

i=]

k
Z V% 1 f(}/H (7)0; ) + ]CIQQ —_ ]“;[.ZQ:I
t=1

+ O(lo

)

log k)
k
= (. — 1) {ZV 2 log f(Yi; 6o, m) + AI»}
i=1
— k(e — n) L2 + O(log log k)
= O(loglog k) — k(M. — n) s + O(log log k) ,

and because I3, exists we can write

(M — 1) ZV,, log f(Yi; 0o, ) 153 +O (k™' loglog k) . (2.9)

i=1

15
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Now, collecting (2.6), (2.7) and (2.9) we obtain

k
Vi = Volog f(Y;; 6o, 1)
=1
k

1 log
ZV,,log F(Y5 60, 1) I35 (80, 1) +O(log ogk )}

* k

i
Z Vi, log f(Yi; 6, 7))j| + O(loglog i)
i=1

X

k
= Vylog f(¥; bo,7)
=1

k
+ |3V, log (¥i; 60, 1) 15 (60,1) + Ollog log "")]
=1
1g
x {Z Z Vi, log f(Yi; bo, 77)} + O(loglog k) . (2.10)
i=1

By using again C6 and LIL we have

1S
1 ! o »
” T Z Vi, 10g £(Yi; 60,m) + I (60,7)

‘ e O ( logiogl‘> a.s.

Then it follows from (2.10) that

k
V=) Volog f(¥;;60.m)

i=1

+

k
>V, log £(¥i; 0o, m) 15 (B0, 1) + O(log log A-)}
i=1

loglog k

X {—121(00,71) +0 ( )} + O(loglog k) ,

and neglecting errors of amplitude less then O(loglog k) this is equivalent to

K
Vi = Z {Vf? log f(Y7; 60,m) — Vylog f(Yi: 60, 1) 1% (6o, 1) I21 (b0, 77)}
i=1

+ O(loglog %)

k
= Z Z; + O(loglogk) ,
i=1

16
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that is, relation (2.4) with Z; = Vylog f(Yi; 65, 17) — V,, log f(Yi; 60.0) 155 Iy
By C5 it follows that Ej,, ,,(Zi) = () for all i. If we denote X|; = Vylog f(Y7; 60, 1))
and Xy =V, log f(Yi, 60, n) we can write Z; = X, — Xg,-];;[zl. Denote by

the superscript f the transpose of a vector or matrix. Now we have

Cov(Z;) = E|Z; Z)]

= B[(X}; — Dol X5) (X0 = Xoal35' )]
= E[X};Xu] — B[X}; X015 I

— BllaI3 X4X01] + Bl Xb Xoi 5y L]
= Cov(Xy;) — EIX|Xuil 15 Iy

— InI5 B[N X ) + DI Cov(Xo) I3, I,
= I — Ilg.[ééllgl - .712]2'.'21 Iy + 11312721]22]272‘]21
=1 — flgfg—.zl[g] ,

and the proof of the theorem is completed.

O

Based on Theorem 2.1 we can define a truncated CUSUM-type sequential
test. For each k > 2, and each 1 < j < k, the efficient score vector hased on
Y, ..., Y}, is denoted by

k

Vij =Y Volog f(¥, 60, ,

i=j
where 7y ; is defined in C3. Under Hy, by Theorem 2.1, V}.; can be represented
as

k
Vk,jZZZi—f—O(loglog(k—j)) , (2.11)
i=j
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with Z; independent random vectors with mean zero and covariance matrix
T'(6y,n) defined in Theorem 2.1. Then, when d =1
L.
; -1/2 . AN — =120, LV He
Wi =T7"2(60, n)Vi; (B0, e.5) = T7*(60,m) Y _ Volog f(¥i, 6o, ihes) |
i=j
(2.12)
is approximately the sum of independent mean 0 and variance 1 r.v's.
Remark 2.2 When d > 1 the vector 1. ; has uncorrelated components and
we can choose the approximating process with independent components. In this
way we can monitor each component with a level o test which gives an overall
level of significance o = 1 — (1 — a*)4. Hence it is enough to define a test for

the case d = 1.
It is easy to see that under Hy, if d = 1, as ng — oo

,uas ﬁr-lﬂwo, Vi (bo, fieg) — S {I7)=W @]} = sup 11(1)
(2.13)

where W (t) is a standard Wiener process and ng a fixed truncation point. An

elementary proof of the last identity can he found in Gombay (1994).

In order for this result to be useful in testing hypotheses we need to
replace the covariance matrix I'(6y, 1) with an estimated version. By Lemma
2 of Gombay et al. (2001) the asvmptotic distribution in (2.13) remains the
same if 7 is replaced by its restricted m.le. 7, in T'(6,7).

Remark 2.3 7, and 7 ; need not to be the unique solution of the restricted
log-likelthood equation. All we need is that the estimator converges weakly to
the parameter 1 with a rate of at least k=2, This can be attained by. say,
a one-step estimator based on the Newton-Raphson iterative procedure (see
Lehmann 2001, p.475). Therefore condition C3 requiring that 7). and 7 ; be

the unique MLE’s can be relazed accordingly.

18
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The test is defined as follows.

CUSUM TEST. For k=2,3,...,n9 compute

L omi20g 2y X -
.= max —— L) Vi s 2.1
T fé‘f’l} \/%P (HU,OI..)‘A,‘}(HOJIL.J) ( 14)

Stop and conclude that Hy is not supported by the data at the first k when
Ty > C(a). Do not reject Hy if it is not rejected by k = ny.
The critical value C'(«r) can he obtained from the well known formula (Borodin

and Salminen (1996))

A (- m3(2k 4 1)?
bma=20 g™ ( 8C(a)R )’
k=0
For example C(0.10)=1.96, C(0.05)=2.24, C(0.025)=2.50, and C(0.01)=2.80.

Remark 2.4 As the partial sums have components Z; = Vglog f(Y;;60,7m)-
V,log f(Yi, 60,m) 55 sy with 0 the true value of the parameter, alternatively.
we may use Vi (0o, M) in the test statistic Ty. It is the empirical properties
that guide our choice in each case. Using iy in Ty, of (2.14) is computationally

more efficient.

2.3 Applications

2.3.1 Normally distributed observations

First we consider the simplest case of independent normally distributed obser-
vations. We present the tests for monitoring the mean and the variance. In the

same way we can define a test for monitoring both parameters simultancously.

a) Monitoring the mean of a normal distribution. Consider Y7, Y3,...,

:

a sequence of independent normal random variables with mean g and variance

o?, and suppose we are interested in testing

2 92 -
Hy : p; = po, 0; = o~ unknown, i=1,2,...,

19
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against the alternative

2 2 .
[ = ph , 05 =o0° unknown, <,
I{,\ .

> ) .
i = fia > flo, 07 =o0>unknown, i>7.

Without loss of generality we can assume o = 0. For simplicity we con-
s , 0 3
23 1

sider the re-parametrization ¢ = % and 1) = —5= < 0. Under this re-

parametrization, the hypothesis to be tested becomes
Hy:0; =0, 9 =nunknown, i=1,2,...,
against the alternative

6; =0 , n =nunknown, i<,

H,\ N
0; =064>0, n =mnunknown, i>7.
In this case d = p = 1, and computations give 7j, = —2—Z~L"—1)—3, Miej =
i=1 "4
S — A 15 - . . .
—;%Il—i—— , and Vi (0, 7k;) = Zi:j Y;. The information matrix is
= i=j T
n 0
I =
0 27

which implies T'(0,7) = n. Then
ko

Wi = T7Y2(0, %) Vieg (0,7k) = > ;
F e Y7

and

k .
716 Zi:] Yzz

1 s 1
Tk = ——— max W, b = max
Vg 1<i<k T g 1<5<k

b) Monitoring the variance of a normal distribution. Consider again
Y1, Vs, ..., asequence of independent normal random variables with mean g

and variance o2, but now we are interested in testing
2_ 2 -
Hy:o0y =0y, pi=punknown, i=1,2,...,

20
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against the alternative

2 _ K P
=05, p; = punknown, =<7,
0’ =0% >0, p;=punknown, i>T.

For simplicity we use the re-parametrization 6 = 3”0_—‘ and 7 = =£. Again
. . R Ty, . IR
d =p =1 and computations give 0, = —20p==1— . ; = -2, T +I’~j”

; : 5 ) = SOk 72 2 _ 52 Afrin e
and Vi ;(00, 7ij) = Y_—; (Y7 — 05 — f17,;). The information matrix is

— oy L
208 T % 32
I= ’
i L
26° 20

Then

.. . R . (Y2 —0d -3
Wi =T (00, ) Vg (B0, M) = > ( "(i/‘s ), ,

i=]

where [} ;=

k -2 2 ~2
- 1 (37' — _:u’lv.j)
T = — max Wy ; = — max 3 .
VMo 1<i<k Vo 1Si<k Py o2

2.3.2 The nested random effects model

In this subsection we consider the case of monitoring the parameters of a nested
random effects model. We assume that observations come in as a sequence

indexed by time 7, and they have the following structure
Xirn = H+ L; + H'7(t) + Eipns t=1,2,..,

r=1,2,...,R, and n=12,...,N,

k)
where we assume that L; ~ N(0,07), Wy ~ N(0,02), and Ej,, ~ N(0,0?)
are independent normal random variables with corresponding variances as the
second parameter. L; is called factor A random effect, V,(; nested random

effect of factor B within the i** level of factor A, while Ej., is the random

21
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error term of observation n within the

level of factor A and the r(i)"level
of factor B.

Yashchin (1995) used this model to monitor electronic chip quality. In
his example L; corresponds to lot effect, IV, (; to wafer effect in wafer r of lot
i, and Ej,., is the random noise of the measurement of the n'* chip in water r
of the lot 7. Without loss of generality we can assume that R is the number
of wafers randomly selected from each lot for the purpose of monitoring and
let N be the size of a random sample chips taken from each wafer. In the
ahove model gy, 0,, and o represent the lot-to-lot, wafer-to-wafer within-lot,
and within-wafer components of variability. For each such a model, one will
usually need to monitor not only the mean and the measure of total variance,
but also its individual components. This is important for the following reasons.
First, knowing which component of variance is out of control is important for
diagnosing the problem, because different components are usually affected by
different special causes . Second, the ability of screening procedures to improve
the outgoing quality depends strongly on the individual variance components:
for a fixed total variance, the higher the proportion of variance due to nested
factors, the more difficult it is to screen out defective products (c.f., Yashchin
1995).

On the other hand, in cases where we deal with several sources of vari-
ability, the conventional control charts tend to produce an unacceptably high
rate of false alarms and in general represent a rather weak diagnostic tool.

To solve the problem, Yashchin (1995) used the likelihood ratio in var-
ious forms to monitor change in the variance components, treating all other
parameters of the model as nuisance. His approach has several drawbacks: the
design, analysis, and implementation are relatively complex, and more impor-
tant, the sensitivity is highly dependent on the levels of nuisance parameters.

Atenafu and Gombay (2004) used the generalized likelihood ratio for the se-

N
o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



quential procedures. Their procedure accommodates nuisance parameters but
there is a decrease in power when the change is not at the beginning of the
sequence.

Here we use the truncated CUSUM-type sequential test (2.14). From
our simulations will be seen that the CUSUM-type sequential test is more
powerful in detecting a change in the distribution.

Now we shall give the exact formulae of the test statistic T}, for moni-
toring the parameters indicated. Note that the extension of the monitoring
process to the case of non-exponential family of distributions is needed when

monitoring o2, and of.

a) Monitoring the mean p. The test statistic is based on the distri-

bution of the estimator for the mean within i*? level of factor A

Y;Z/_AI — RNZZXHH,

r=1 n=1

. . . . 5 g2 2
which, under Hy is normal with mean y, and variance n = a,f-%—% <~ The
variance 7 is the nuisance parameter. When pg = 0, the maximum likelihood

estimator is
k

1 2
e D
i =y 1 =4 -

and

Wk,j = F_I/Z(O, ) Vi (0,195) =
The test is hased on

max W, ke = max

\/n_ 1<j<k \/n— 1<j<k

b) Monitoring o2. The estimator of o2 at the " level of factor A

52 2 2 - - T2, 2
is Z; = 63 27_] Si. where S7 = - 1211 1 (X — Xip)? and X, =
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2
iq

N . 1 . . . v
>y Xirn 25252 has a x3_,; distribution and S% and S

- are independent
if r 5 ¢, so the density of Z; can be calculated by simple transformation meth-
ods from the chi-square distribution with v; = R(N — 1) degree of freedom.

In this case there is no nuisance parameter, i.e. p = 0, and

k
2. 1/, 9 v 1 , .
Wiy = T7%(08)Viy(03) = \/:,135 > (Yi—a3).

The test is defined hy

1 ol
3 1 2
Tpy=—=max Wy, = ,/—= E (Y; —o0p) .
V1o 1<5<k 2ng oy =
=j

2

- Denote

¢) Monitoring o

R
. 1 - .
(Ji = t’:T;z - - E (;\rh- - /]i)z s

r=1

2
w

2
i

2 . ~ N -
which estimates o2 + & in the ith lot, and fl;, 6% as above. Now we use

the joint density of vector (Z;,U;) and the nuisance parameter is 5. With

vy = R — 1, the computations give

F( 0 . ) 1240 %)
0--’ 7 A —_ 5 B AL
Ows Mk 2[1/1 (i + 08,)° + ’/277/%] ’
[\-
i 9 . Va A 2
‘/A’,j(o'()w'fnk,j) = m Z |:L7i - (ﬂksj + U[)w):I s
I =]

ﬁ/‘k-j =17 12 (o%w ) ﬁk‘)"/;xhj (O-gw'r ﬁk,j ) .

Here 7, and 7x—; are the solution of two third-degree equations. The test is

based on T}, = \/%T maxi<jck Wi j -

d) Monitoring o7. Now we use the likelihood function of the bivariate
statistics (Y;, U;) . The nuisance parameters are f and € = 02, + . Under Hy
2

the maximum likelihood estimators are fi,; = ;=5 2ie; ¥ and & which

24
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is the solution of a third-degree equation. In this case

T(03,, fir, &) = -
Ot Hs Sk 2(&. + (R — 1)(Rao3, ‘*‘é")Q] |
) k 2+ &
9 _ ~ R- » — 2 RO’H) I é‘"~
Vi (08, g Exj) = W E [(}f — [irg)” — 20 T ok
2 0b kg1 i=j

ﬁ'/Ic.j = P_1/2 (agba /—l'kv ék)vk,j (081)7 /—_l'k.jv éle,j) s

; ain — _1 A~ 1
and we obtain: T}, = T WA gk Wej .

e) Simultaneous monitoring of the three variance components
o? aw, of. TIn this case d = 3. The joint density of (Y, Z;,U;) can he used.
The nuisance parameter is ¢ and the maximnm likelihood estimator is i, ; =

1 Rooxr N\ 1 1. oo . ,
Yoy >i=j Yi- Now IV ; has three independent components

k ¥
% =1/2(p 42 2 2\ys (a2 2 2
Wi = T2, 05y, 05, 08) Ve (e 0 060 05) = %gl(_, Z?:j(cfi ~ &)

ZE‘ ("’12‘77‘)‘17.},2.,,')
i=J mv?2

‘

The three independent components of the test are T} = [_ max<jck IT for

i =1,2,3.

f) Simultaneous monitoring of all parameters. In this case d = 4
and there is no nuisance parameter. The four independent components of the

efficient, score vector are
g
V I/] a’” Z _]( 0
l/) En Z ‘ ( 0)
/
,]”\/— Z _.J 1 770)

\/ﬁﬁ Zi:j i

1 =172 2 2 2\y/ 2 2 AN
W ki =~ r (/J'Oa T0ps T Uo)‘/l.‘.,j(y’O: T463 Twes 00) -

The four components of the test are T} = \/——il=" max<j<k Ti,flj) , for i=1,2,3,4.

)
Ut
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2.4 Simulation Studies

To assess the performance of the new truncated CUSUM-type sequential test
we have carried out Monte Carlo experiments using the models described in
the previous section. In all tables 1y represents the truncation point, 7 is
the change point and the level of significance is a = 0.05. Each scenario in

these Monte Carlo simulations is based on 3000 replicates.

2.4.1 The case of normally distributed observations

In the case of monitoring the mean of a normal distribution, pg = 0 and
i4 was varied over the set {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} .
The variance (the nuisance parameter) was ¢ = 1. Table 2.1 presents the
simulated power and average stopping time(AVST) with its standard devia-
tion(SD).

In the case of monitoring the variance of a normal distribution, oy = 1
and 04 was varied over the set {1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7, 1.8, 1.9, 2.0} .
The mean (the nuisance parameter in this case) was y1 = 0. Table 2.2 presents
the simulated power and average stopping time(AVST) with its standard de-
viation(SD).

Tables 2.1 and 2.2 present three different situations ng = 100 and 7 = 51,
ng = 150 and 7 = 76, ng = 200 and 7 = 101. These simulations suggest that
the test procedure is consistent against fixed alternatives, a fact justified by
Theorem 2.2. That is, as the truncation point ny grows to infinity, the power

of the test goes to unity for any fixed alternative.
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Table 2.1: Test for monitoring the mean g of a normally distributed popula-
tion with gy = 0 and ¢ = 1, and various ji4. Simulated power (Power) and
average stopping time (AVST) and its standard deviation(SD). The level of
significance is a = 0.05, and C(«) = 2.24.

no T ia POWER AVST SD
100 51 0.00 0.039 99.24 0.53
0.10 0.095 98.44 0.85
0.20 0.219 96.81 1.26
0.30 0.421 93.06 1.61
0.40 0.641 90.13 1.84
0.50 0.822 85.84  1.92
0.60 0.944 81.61 1.82
0.70 0.989 77.95  1.61
0.80 0.998 75.00 1.37
0.90 1.000 72.71  1.25
1.00 1.000 70.87 1.09

150 76 0.00 0.044 148.85 1.25
0.10 0.136 146.74 2.22
0.20 0.312 142,73 2.88
0.30 0.588 136.27 3.44
0.40 0.833 127.99  3.63
0.50 0.957 11993 3.31
0.60 0.994 113.37 2.80
0.70 1.000 10845 2.36
0.30 1.000 104.79 1.98
0.90 1.000 101.95 1.73
1.00 1.000 99.68 1.52

200 101 0.00 0.041 198.30 1.31
0.10 0.156 194.96 2.76
0.20 0.396 187.68 4.68
0.30 0.718 175.83  5.59
0.40 0.928 162.48  5.35
0.50 0.990 15144 4.14
0.60 0.999 143.56  3.26
0.70 1.000 137.90 2.66
0.80 1.000 133.66 2.26
0.90 1.000 130.38 1.99
1.00 1.000 127.80 1.82

o
~J
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Table 2.2: Test for monitoring variance o of a normally distributed population
with 1 = 0 and 0y = 1, and various 0,4. Simulated power (Power) and average
stopping time (AVST) and standard deviation(SD) of AVST. The level of
significance is a = 0.05, and C(a) = 2.24

ng T c4s POWER AVST SD
100 51 1.00 0.043 98.86 1.20
1.10 0.180 96.65 1.82
1.20 0.437 91.63 2.27
1.30 0.720 84.98 2.62
1.40 0.885 7836 2.52
1.50 0.969 73.20 2.06
1.60 0.991 69.22 1.65
1.70 0.998 66.26 1.32
1.80 1.000 64.00 1.12
1.90 1.000 62.25 1.04
2.00 1.000 60.85 0.97

150 76 1.00 0.048 148.11 3.36
1.10 0.237 143.51 3.76
1.20 0.577 133.21 457
1.30 0.852 120.79  4.62
1.40 0.965 110.43 4.12
1.50 0.993 103.03 3.34
1.60 0.999 98.00 2.73
1.70 1.000 04.34 241
1.80 1.000 91.51 217
1.90 1.000 89.44 1.95
2.00 1.000 87.74 177

200 101 1.00 0.044 197.89 2.33
1.10 0.275 190.14 4.34
1.20 0.694 172.98 6.29
1.30 0.929 153.87 6.26
1.40 0.985 140.73  5.05
1.50 0.999 131.80 4.05
1.60 1.000 125.79  3.32
1.70 1.000 12155 2.84
1.80 1.000 118.46 2.56
1.90 1.000 116.06 2.18
2.00 1.000 11416 1.98
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2.4.2 The case of the nested random effects model

In the case of the nested random effects model we first analyzed the Yashchin’s
(1995) published data (not presented in this thesis) on ng = 30 lots of chips
manufactured at IBM. Each lot has two wafers, so R = 2, and from each wafer
N = 4 chips were chosen randomly for measuring. The target value for mean is
1o = 10004; the historically acceptable variance components give o3 = 4004,
o8, = 9004, o3 = 3, 6004, respectively. We tested all four parameters for
change individually and the tests for u and for o were significant at o = 0.05.
When we monitor all parameters simultaneously the test is not significant at
« = 0.05. The reason for different conclusion from Yashchin (1995) is that his
procedure was designed for a tolerance of 80A from the target whereas we can
detect any size of change.

In the Tables 2.3-2.10 we present the simulated power (Power) and the
average stopping time (AVST) of the CUSUM-type sequential test (2.14). The
simulations were performed with level of significance o = 0.05 on a model with
R =2 and N = 4. The first part of each of the tables 2.3 - 2.10 demonstrates
the power of the test when change was at 7 = 1 and ng = 30, that is all
observations come from the alternative distribution. The second part of each
table demonstrates the power of the test when change was at 7 = 31 and
ng = 60, that is, the first 30 observations come from the null distribution
and the next 30 observations come from the alternative distribution. The in-
control parameters were chosen to be u =0, 0 = 0.2, g, = 0.3, and o, = 0.6
as these give the same proportion as in the analyzed data of Yashchin(1995).

In Tables 2.3 to 2.6 we monitor only one parameter (d = 1) and the
critical value is C(0.05) = 2.24. In tables 2.7, 2.8, and 2.9 we monitor three
parameters simultaneously (d = 3) and the test statistic has three independent
components. In this case, in order to obtain an overall level of significance of

a = 0.05 we monitor each component of the test statistic with a level of

29
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significance of
o =1-(1-a)=1-(1-0.05"%=0.0169,

(see Remark 2.2) and the critical value is C(a* = 0.0169) = 2.632. Similarly, in
table 2.10 we monitor four parameters simultaneously (d = 4) and we monitor

each component of the test statistic with a level of significance of
o =1—(1-a)"=1-(1-0.05)"/"=00127.

The critical value is now C(a* = 0.0127) = 2.727.

For comparison, in table 2.3 the entries in the brackets are the results
of Atenafu and Gombay (2004) obtained by using the generalized likelihood
ratio. We can see that the CUSUM-type sequential test has a higher power
in the more realistic case where the first 30 observations come from the null
hypothesis. This can be explained by the fact that the first 30 observation
which come from the null hypothesis decrease the power of the test based on
the generalized likelihood ratio but they do not affect in the same measure the

power of the CUSUM-type test.

30
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Table 2.3: Test for monitoring mean p of a nested random effect model with
to =0, 0 = 0.2, o, = 0.3, and o = 0.6, and various p.. Simulated power
(Power) and average stopping time (AVST). The level of significance is a =

0.05,d =1, and C(a) = 2.24.

ng T ps POWER  AVST
30 1 00 0.034(.049) 29.88 (29.7)
0.1 0.130 29.38
0.2 0.351 (.362) 28.07 (27.4)
0.3 0.660 25.66
0.4 0.885 (.887) 22.82 (21.0)
0.5 0.980 20.26
0.6 0.999 (.999) 18.37 (15.6)
0.7 1.000 17.05
0.8 1.000 (1.00) 16.15 (12.7)
1.0 1.000 (1.00) 15.01 (11.1)
60 31 0.0 0.040 (.05) 59.57 (59.3)
0.1 0.114 58.94
0.2 0273 (.18) 57.71 (58.4)
0.3 0.524 55.66
0.4 0.777 (.55)  52.81 (55.2)
0.5 0.936 50.01
0.6 0.989 (.87) 47.58 (51.1)
0.7 0.999 15.75
0.8 1.000 (.98)  44.35 (47.0)
1.0 1.000 (1.0)  42.44 (44.6)
31
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Table 2.4: Test for monitoring variance component ¢> of a nested random
effects model with 4 = 0, g9 = 0.2, 0, = 0.3, and o, = 0.6, and various
oa. Simulated power (Power) and average stopping time (AVST). The level
of significance is @ = 0.05, d = 1, and C(a) = 2.24.

ng 7T o4 POWER AVST
30 1 0.20 0.037 20.78
0.22 0.500 25.76
0.25  0.986 14.68
0.27  0.999 10.69
0.30 1.000 7.61

60 31 0.20 0.034 59.55
022  0.378 96.45
025 0962 46.11
0.27  0.998 41.72
0.30 1.000 38.26

Table 2.5: Test for monitoring variance component o2 of a nested random

effects model with ¢ = 0, ¢ = 0.2, gg, = 0.3, and o0, = 0.6, and various
O 4w- Simulated power (Power) and average stopping time (AVST). The level
of significance is a = 0.05, d = 1, and C(a) = 2.24.

ng T 0O4 POWER AVST
30 1 03 0.053 29.54
0.4 0.674 21.77
0.5 0.974 12.90
0.6 0.999 3.54
0.7 1.000 6.27

60 31 0.3 0.049 99.20
0.4 0.569 53.05
0.5 0.945 44.19
0.6 0.997 39.30
0.7 1.000 36.75

32
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Table 2.6: Test for monitoring variance component o of a nested random
effects model with ¢ = 0, ¢ = 0.2, o, = 0.3, and og, = 0.6, and various
o 4. Simulated power (Power) and average stopping time (AVST). The level
of significance is o = 0.05, d = 1, and C(a) = 2.24.

ng 7 o4 POWER AVST
30 1 06 0.041 29.67
0.7 0.263 27.67
0.8 0.608 23.34
1.0 0.948 15.11
1.2 0.997 10.97

60 31 0.6 0.046 59.24
0.7 0.195 57.66
0.8 0.496 54.36
1.0 0.919 45.59
1.2 0.994 40.27

Table 2.7: Test for simultaneously monitoring all variance components o2, o2,
and o7 of a nested random effects model with ;= 0, og = 0.2, 0g,, = 0.3, and
oo = 0.6. Only o is changing. Simulated power (Power) and average stopping
time (AVST').The level of significance is a = 0.05, d = 3 and C(a) = 2.632.

ng 7 o4 POWER AVST
30 1 020 0.055 29.66
0.22  0.420 26.80
0.25 0.975 15.76
0.27  0.999 11.17
0.30 1.000 7.60

60 31 020  0.054 59.30
0.22  0.290 57.47
0.25  0.933 47.76
0.27  0.996 42.68
0.30 1.000 38.59
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Table 2.8: Test for simultaneously monitoring all variance components o2, o2,
and o of a nested random effects model with p = 0, gp = 0.2, 0y, = 0.3,
and og, = 0.6. Only o, is changing. Simulated power (Power) and average
stopping time (AVST). The level of significance is a = 0.05, d = 3 and C(a) =
2.632.

ng T Oaw POWER AVST
30 1 03 0.055 29.66
0.4 0.598 23.61
0.5 0.958 14.52
0.6 0.997 9.59
0.7 1.000 7.00

60 31 0.3 0.054 59.30
0.4 0.467 53.03
0.5 0.909 46.28
0.6 0.995 40.70
0.7 1.000 37.73

Table 2.9: Test for simultaneously monitoring all variance components o2, o2,
and o} of a nested random effects model with = 0, oy = 0.2, 0¢,, = 0.3, and
oo = 0.6. Only oy is changing. Simulated power (Power) and average stopping
time (AVST). The level of significance is a = 0.05, d = 3 and C{a) = 2.632.

no T 0.y POWER AVST
30 1 0.6  0.05 29.66
0.7 0.205 28.43
0.8 0.525 24.87
0.9 0.793 20.25
1.0 0.929 16.24

60 31 06 0.054 59.30
0.7 0.150 58.36
0.8  0.405 55.85
0.9 0.700 51.75
1.0 0.884 47.51
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Table 2.10: Test for simultaneously monitoring all four parameters of a nested
random effects model with py = 0, og = 0.2, ¢, = 0.3, and gy, = 0.6. Only
the mean is changing. Simulated power (Power) and average stopping time
(AVST). The level of significance is oo = 0.05, d = 4 and C{a) = 2.727.

ng 1 pta POWER AVST
30 1 0.0 0.056 29.64
0.1 0.104 29.43
0.2 0.257 28.45
0.3 0.540 26.29
0.4 0.816 22.92
0.5 0.962 19.33
0.6 0.995 16.29
0.7 1.000 13.88
0.8 1.000 11.96

60 31 0.0 0.057 59.27
0.1 0.091 59.05
0.2 0.185 58.38
0.3 0.380 56.86
0.4 0.648 54.41
0.5 0.871 51.23
0.6 0.971 48.11
0.7 0.996 45.45
0.8 1.000 43.22
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2.5 Consistency of the test

In this section we will derive the asymptotic distribution of the test statistic
(2.14) under the alternative hypothesis, H4. To simplity discussion we as-
sume that the observations come from the exponential family of distributions

(Serfling (1980)), that is, the canonical form of the log-likelihood is

log f(y;8,m) = Ti(y)8' + To(y)n' + S(y) — A(¢,7) , (2.1

8]
—
<t
S’

where T3(-) and T5(-) are vector valued functions of the data, S(-) is a real
valued function of the data and A(f,7n) is a function of the parameters only.
The superscript ¢ denotes a vector or matrix transpose.

The following regularity conditions will be needed for the results of this

section

C9. Vectors VyA(by,n) and V, A(b, n) exist, are continuous and have unique

inverses that are Lipschitz continuous of order one in each argument.

C10. Matrix VEQA(HO,T)) exists, is positive definite and Lipschitz continuous

of order one in each argument.

C11. @%}9_&4(5)’ 1<4,j,k <d+p, exist and are bounded in a neighbor-

hood of &.
C12. E||Ty(Y)]|**® < oo, fori= 1,2, and some d§ > 0.

The following Theorem states that, under H,, after the change, the
score vector will drift away from a process with mean zero. In all our examples
the drift is proportional to the number of observations after change. Here

and 7" are the true values of § and 7 respectively, after change.

36
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Theorem 2.2 Under H,, if C9-C12 are satisfied in an open neighborhood of

the interval connecting (6q,7) and (6.4, 7%), then for 7 fixed, and any k > 7, as

k — o0,
K
Vi= Z {[TL(Yz‘) - ET\(Y})] — [T2(Y3) — ET(Y7)] I35 (6, 777/.‘)-[21(90»77#:)}
i=1
+ kds. + O(loglog k) , (2.16)

where 7,4 is the solution of equation

N
t—
~I
—

T—1 . k—717+1 i
V-,)A(f)o, 7]) = —L_ETJ()I) 4 g—‘l‘-——)ETg(YT) , ( .

and the drift component d,; is

T-—
k

1 c—T74+1
VoA(bo,n) + (A—A—t‘—)“

Ao, =

VQA(HA, ’I]*) el V{;A(HQ, 7]7-1\-) . (218)

Proof. Let 1, be the solution of the non-random equation (2.17). First we

will prove that

1i£njup H ik — i || = O(Vh~loglog k) as. (2.19)
We can write
VA6, M) — Vi A(Bo, nrr) = % S [T‘Z(Yi) — ET)(Y’I)]
i=1
k
T X (00~ BB

and by the LIL we have

k

> () -ETy(Y7)]

=7

limsup 4-—1
A

k—o0

_ loglog(k — 7+ 1) .
l—()<\/ Ty ) a.s.

Then, from the last two relations we obtain
loglog k
=0 ( = - & a.s.

lim sup
b—oc0

VUA(HO: 77#?) - vv}-’l(()Ov 777‘1.7)

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By C9, V,A(f;) has a unique inverse which is Lipschitz continuous of order

one so from the above relation (2.19) follows immediately. We can write

k
Vilbo, f) = Y Vglog f(Yi, b, )
i=1
-1

A
= > [T(YD) = VoA(bo, )] + D [Ti(¥) = VoA(bo, )]
i=1 i=T

71

k
=Y (DY) = VoA, m)] + > [Ti(V)) = VoA(8a, )]

i=1 i=T

+ (1= 1)V A(by,n) + (k — 7+ 1)VeA(ba,0*) — kVp A0y, D)

which can be written as

71 k
Ve=Y_ [Ti(Y:) = VoA(bo,m)] + Y [T1(¥7) ~ VoA (B4, 9")]
i=1 =T

+ (7 =1)VoA(bo,m) + (k — 7+ 1)V A(b.4,1") — kVsA(00, nr1c)
+ k[VoA(bo, 1rk) — Vo4 A(bo, k)] - (2.20)

By C10, C11 and (2.19) the last term can be written as

VoA(bo, i) — VoABo, k) = (M — M)V, ABo, 15 + O — n2k]®)

= (k= M) o1 (B0, 1) + O (k™' loglog k) a.s.
(2.21)

In order to obtain an expression for 7, — -+ we use the following three-term

Taylor expansion
VA6, M) — Yy A(B0, 1r1) = (B = 0re) Ve A8, 1) + O (k~"log log k),

l]“

and by the definition of 7, we have

k
1
VaAlbo, i) = ZZ T (Y5).
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Now by using C11 we obtain

k
. 1 _ loglog k
e — Nk = — {E Z TZO/;) - V‘I]A(()(Jv 77Tk)} ]‘.22J (007 777‘/.') + O ( Dk = > .
2

From (2.21) and (2.22) we have

k
. 1
VoA(bo, ) = Vo A(bo, k) = — {E Y Ta(Y;) = VA6, 77TA-)}
X L33! (8o, ek ) 1oy (G0, 171) + O (K~ log log k)

and combine this result with (2.20) we get
T—1 k

C V=) T = Vad(bo, )] + Y [Th(Y:) = VoA (8., 7))

i=1 =T

+ [(r ~ 1)V0A (b, 1) + (k= 74+ VA0, ") - kvkoo,m,..)]

k
- {Z Ta(Y:) — EV, A6, "7,—1:)} I35 (B0, 1171 ) 121 (B, 7ic) + O(log log k) .

i=1
By using (2.17) and (2.18) we obtain

k
Vi = Z { [Tl(Yi) - BT, (Y,-)] - [T-,_)(')",-) - ETZ(”)"})] IS 00, 000) 1) (Bo, ",?,—A-)}

i=1
+ kd-, + O(loglog k) .
It we denote
Zy = [TW(Y;) = ET\(Y})] = [Ta(Y3) — ET>(Y)] L53 (60, 1) L1 (80, o)

then we can write

ke
Vi = § Zi + kd-, + O(loglog k) ,
i=1
Z; are independent random vectors with mean zero and finite covariance struc-

ture.
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Remark 2.5 The test (2.14) is based on V;. ;(6o,7k;). By Theorem 2.5.1 V. ;

can be represented as
| k
Vi = Zi+ (k= j+ 1)dn(j) + O(loglog k) ,
=

where the drift d..(j) is defined as follows

(i) if 7 < j <k, and my is the solution of the non-random equation

VaA(by,m) = ETy(Y:), then

drl\‘(j) = V()A(HAJ?*) - V(i-4(60177].1.~.) .

(i) if j <7<k, andn.(j) is the solution of the non-random equation

VyA(by,n) = i ETy(Y7) + " ETy(Y7),
then
) T — )VeA(Bo,n) + (K — 7+ 1)VeA(B4,n* .
duplj) = L= VoAl ) Wotl0a) g, 450, ma(5))

(k—j+1)

Example 2.1 We will compute now the drift in the test (2.14) in the case
of monitoring the mean of a normal distribution (section 2.3.1). The test is

hased on

k 7
1 E :1.— Y
Ty = max =1

Vo 1<5<k

It can be easily seen that under the alternative H4, o2, = o> +5=#1,2 and

the drift in Vi ; is

dep(J) =k =+ Dpa, if 7<j<k

¥

dry(i)=(k—7+ Dy, f 2<j<7<k.
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Then the maximum drift is obtained for any j < 7 and for j = 7 the drift in

the test statistic is »
(b—7+1)p4

\/’Il(] (02 + -————-U'T*;“) 1) .

Example 2.2 In the case of monitoring the variance of a normal distribution

D‘rk -

the test is based on (section 2.3.1)

k= —— max >
Vg 1S5<k Py o5V2

1 z‘: (V2 -2 — (7))

In this case gy = pp = p and under the alternative, H,, the drift in Vj,;
is

den(§) =(k—j+1)(0% —0a3), it T<j<k,

dep(f) =k =74+ 1)(0c%—02), if 2<j<7<k.
Then the maximum drift is obtained for any 7 < 7, and for j = 7 the drift in

the test statistic is

In the same way one can compute the drift when monitoring the parameters

of a nested random effects.
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Chapter 3

Monitoring Parameter Change

in AR(p) Models

3.1 Preliminaries

Traditional Statistical Process Control (SPC) techniques are hased on the as-
sumption that process data are independent. As Wetherill (1977) has pointed
out, observations from modern industrial processes are often autocorrelated
and the process itself can behave like an autoregressive process. Such behav-
ior must be taken into account when setting up monitoring procedures. So, for
practical purposes the methods available for independent observations needed
to he extended to the case of non-independent observations.

Johnson and Bagshaw (1975) obtained the limit processes for partial
sums of observations from ARMA processes and explored the effect of ARMA
noise on CUSUM statistics. Bagshaw and Johnson (1975) examined the effect
of ARMA noise on the run length distribution for CUSUMs. Their method

is based on the first passage distribution of a Wiener process moving between
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reflecting and absorbing barriers, adjusting the variance parameter to allow for
serial correlation, but their approximations can be inadequate in many cases
(c.f., Yashchin 1993). Tang and MacNeill (1993) contains theoretical results
and simulations on the effect of correlation.

Starting with Brown et al. (1975), residuals became one of the most im-
portant tools in change-point analysis for testing the constancy of parameters
of a process over time. Kulperger (1985), Bai (1993), and Horvath (1993) inves-
tigated various asymptotic properties of sums of residuals. Boldin (1982) and
Bai (1994b) obtained the weak convergence of empirical processes of residuals
in stationary ARMA processes. Alwan and Roberts (1988) and Montgomery
and Friedman (1989) discuss an alternative approach which consists of fitting
a time series model to the {Y;} series when it is autocorrelated and then ap-
plying a control chart to the series of one-step-ahead prediction errors. In
the above papers various tests for detecting a change in the parameters of a
process have been suggested. Our simulations have been showed that a test
based on residuals can be powerful in detecting a change in the mean of the
process but is not too sensitive when we test for change in the coefficients of
the process.

Several extensions of CUSUM and GLR schemes to handle autocorre-
lated observations have appeared. In principle Page’s likelihood ratio CUSUM
scheme (Page 1955) can be easily extended to non-independent observations,
simply by replacing f(Yi) by f(Yi|Y1,...,Yi1). However, according to Bas-
seville and Nikiforov (1993), practical implementation of the GLR algorithm
is not always possible because of computational difficulties.

Likelihood ratio methodology for testing for changes in the parameters of
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an autoregressive process was developed by Picard (1985), and later by Davis
et al. (1995), and Csorgé and Horvath (1997).

As an alternative to likelihood ratio tests, a Bayes-type method was
introduced by Chernoff and Zacks (1964) who applied it to the problem of
one-sided changes at unknown times in the mean of a sequence of independent
normal random variables. Lurie and Neerchal (1999) extended this method to
the problem of testing for a change in autoregressive parameters for a general
stationary AR process. In the presence of nuisance parameters the Bayes-type
test statistics can he expressed in terms of certain Brownian integrals. Their
simulation studies have shown that neither method is powerful.

In this chapter we focus on the change-point problems occurring in au-
tocorrelated data. Truncated CUSUM-type sequential tests are proposed to
detect an abrupt change in the parameters of a sequence of autocorrelated
observations. The tests are based on large sample approximations of the com-
ponents of efficient score vector. At the end of this chapter the empirical power
of the proposed tests is analyzed in a simulation study.

To set up the problem let Y_,41,Y_p10,..., Y0, Y1, Y5, ..., be consecutive

observations from the model
Yi—p=1(Yiei —p)+ ...+ (Yiep — 1) +e4, > —p+1, (3.1)

where y,¢;, 7 = 1,...,p, are constants and {¢;} is a sequence of random
variables.
The assumptions on innovations €; vary in the literature. In the most

simple case they are assumed to satisfy

{&;} isaniid. N(0,0%) sequence. (3.2)
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For simplicity of exposition we shall work under this condition on the {g;}
sequence, but note that this is not a crucial assumption and our results will
be valid if {e;} were a martingale difference sequence, or some other sequence
as long as the results of Eberlein (1986) are valid for the strong approximation
of the corresponding sequence of partial sums by a Brownian motions. In the
more general case the likelihood function will be replaced by a quasi-likelihood,
and some moment conditions are specified.

We shall assume that the process is stationary, that is, the characteristic

polynomial ¢(z) =1 — ¢1z — ... — ¢,2” satisties

(c.f. Brockwell and Davis 1991).

The stochastic behavior of the the sequence is determined by the vector
of parameters (4, 0%, ¢1,...,¢,). All the components of this vector may be of
interest or we can deal with nuisance parameters. Here we consider the prob-
lem of detecting change in parameter @ from the initially given 6y value, where
8 can be ¢ = (¢y,...,¢,), or o%, or p, or (p1,0?), with the other parameters
unknown, that is, nuisance parameters.

We denote ¢ = (¢1,...,¢,)" the p x 1 vector of the coefficients and

assume that the covariance matrix

Co Cy R
1 Co ... Cp2
r=| = =, (3.4)
Cp—1 Cp-2 ... Co
45
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is invertible, where ¢, = Cov(Y;, Yiyy). Let

Yo—p Yoa-—p o0 Y ,-p
X, = Y, —p o=k . Yoo —p
Yio—p Yeea—p oo Yi—p

be the design matrix at stage k. It is well known that (1/k)X(X, =% T,
hence it is invertible for k large enough.

We assume that the observations Y_ 11, Y. p10,..., Y5, Y1, ..., come from
the model (3.1). Under the assumption (3.2), for each k& > 2, the joint distri-
bution function of (Y7,...,Y}) conditionally on Y_p,. ),V ,10,..., Y5 is
k

[Troiyic,... Yy

i=1

oy _k 1 & . P . N
= (QWU')—§GX1){ = Z [(3, — ) = Zti)_;(_}’;_j - /.1,)} } ;

fYi,.. Y
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the efficient score vector are

"
l 1—¢) —.. )
(),ﬁ (1-¢s ; (f)/)z[l _/’)_Z‘bJ(Y—J
' i=1 =1
(L= —...— &) &
= 02 i ;S,ﬁ.
oly, E1l &
50 = 5% ¥ 1 2 [(Y Z% Y~f—#]
i=1

=1 Jj=1
1
= Z (Yies —p)e;, forall s=1,...,p
i=1

The (p + 2) x (p+ 2) information matrix is given by

(J-m;:_;.—«m,)g 0 0
I(ILIV"0-27¢17"‘)¢I)): 0 E-JF 0
0 =3y

where T is the covariance matrix given in (3.4).

The following estimators will be used

S

>~|p—a

N

k D
o 1 . 2
U = ZZ [ Yi =) ‘Z¢j(}i—j—/t)] )
and
Q}SI\‘, = (Xitxk)‘lxitzk )

where Z, = (Y1 — ..., Y — p)t.

|

(3.8)

(3.9)

(3.10)

(3.11)
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We are testing whether parameter ¢ = 6, changes along the sequence, so
only the nuisance parameters have to be estimated by their restricted m.l.e’s,
where value g is used in the formulas. The following lemmas on the maximum
likelihood estimators give rates that allow the strong approximation of the
statistics process by a Brownian motion. Invariance principles, strong approx-
imations found in the literature (Phillips and Solo (1992), Konev and Perga-
menshchikov (1997), and references therein) are not sufficient for our purposes,
so although the limits are not new, the improved rates are. As our methods are
based on large sample approximations, for large k, Y_,41, Y pt2,...,Ys, can

be replaced by any random variable or constant without changing the limit.

Lemma 3.1 Under the hypothesis ¢ = ¢, or 0® = ¢ and conditions (3.2)

and (3.3)

i — p| = O(VVk~'loglogk) a.s. (3.13)

Proof. The m.le. of p is

k
. 1 i .
Hi = k(1 —¢q — ... — ¢op) ; (Yl ~du¥iot = = i)
1 £
= k(L= gor — - — dop) Z [(Yi —p) = da(Yicr — ) — ... — dop(Yiey — 1)
—
ku
1 — ot — .. — o,
+ E(1—=¢or~...— ¢0;:)( oo bon)
1 1 ,\?
= p+ - g .
2 (1-—-¢01‘—'...—¢0),)]{7;

By the strong invariance principles for the innovation sequence, under our

a.8.

conditions, we get k! ZL; g = O(y/k~'loglog k), and this implies

ik — pl = O(Vk-loglogk)  a.s.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note that

1 & '
e = (1—¢)01 .. _¢)0]) {Z} ¢OIZ)’ [ _'¢()])iz=;)/[_p}

i=1

= i, + O(Vk 'loglogk) a.s.

Now putting together the last two relationships we obtain (3.13).

Lemma 3.2 Under the hypothesis i = po or 0® = ¢ and conditions (3.2)

and (3.3)

I ~ ¢l = O(v/kTloglogh)  as. (3.14)

Proof. From ¢, = (Xt X)) ' XLZ,. using the description of the model in
the form Z; = X0 + & we get ¢, — ¢ = (X, X,)"' X'e. By Lemma A.2
each component of the vector (%X’ka)pxl is of order O(\/k~!loglogh) a.s. As
(1/k)X,X, <2 T, we have
w0 < log log k)
k '

160l = | (i) ()

Using Lemma 3.1 we obtain that replacing ¢ by i, (given by (3.10)) in Xie

. . ~ k a.s. - . . .
the error committed is (fi, — 1) > ;& = O(loglogk), which is negligible
after the standardization. Similarly, it is easy to check by calculations, that

(1/B) XXl ,_, LT

fig

Lemma 3.3 Under the hypothesis ;¢ = iy or ¢ = ¢, and conditions (3.2)

and (3.3)

|67 — 0% = O(\/k“l log log k) a.s. (3.15)
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Proof. The m.le. of 5% is

k 2
Z[Yﬂu — o (Yiey — ) — ... = 0, (Vi — ,)} :

where either ¢ or ¢ has to be replaced by its m.l.e. Consider the first case.

L P 2
AZ:%Z{ Z% ) ,_,,~;a,,.~.><1~;¢j>]
k
-p2e

:N]p__\

14 P

k
b (= D0 2= )1 ) Y e

j=1 Jj=1 i=]

Under condition (3.2) the invariance principle holds for the first term and we
have |02 — k' S8 &2 2 O(/k~Tloglog k). The second term is of order
O(la:“1 log log k'.) by Lemma 3.1, while the invariance principle for the ¢; se-
quence and Lemma 3.1 make the last term of order O(l{:“1 log log L) Putting
these together the lemina is proved in this case.

Consider now the second case. If ¢ is replaced by d;k the variance o2 is

estimated by

63:%%{[(16—#)—?:@(3_]_,,] [Zd’“ j_ﬂ)”?

=< Zsi - ?“Ez {z;w)kj — )Yy — “)}
i=1 i=l1 Jj=
LA L 2
-I—EZ{Z(@] 6 (Yie, u)] (3.17)

The first term is as in (3.16) and we have [0 —k~! S0 2| = O(/k=Tloglog k).

For the second term

A»
1 .
Z -1 — /’ .+ (¢Ap QSp)E Z‘Ei(yi—]) — ),
i=1

>

(br1 — 1)

DN[}-A

we use Lemma 3.2 and the invariance principle for each sum of the form

SoF L ei(Yimg — 1), (see Lemma A.2), and we obtain a rate of O(k~'loglogk).
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For the last term in (3.17) we apply the Cauchy-Schwarz inequality and

obtain
1 k P 2 1 k L
ZZ I:Z ¢A] L—J ,U)} S ZZ [ Z((Z)A'j _¢J) ( —J /L) ]
i=1 j=1 i=l j=1
14 ’ 1 ke
=p Y _(fi; ¢j)2[z > (Yiey /1)”]
j=1 i=1

1k . .
Now, as k' S°._, (Yi—; — 11)* converges almost surely to the diagonal element
of the matrix I, by using Lemma 3.2 we obtain again a rate of O(k™" loglog k)

a.s.

3.2 Monitoring the mean of an AR(p) process

In this section we consider the problem of detecting a change in the mean p
of an AR(p) model. o2 and ¢ are nuisance parameters. The hypothesis of

interest is
Hy:p=po, 02, ¢ unknown, for all i> —p+1,
against the alternative

[=po, 0, ¢ unknown, for —p+1<i<rT,
]‘IA :

po= (s > g, 02, ¢ unknown, for i> T,
where 7 is the unknown change-point.
The test will be based on the first component of the efficient score vector
given by (3.7). Under Hy defined above, the efficient score vector is

ke

Do, oo (L= by
Wi(#o;amqﬁk) ( - ]:) u Z[ i — Ho) Zé}.] i = /IO)J

i=1

o1
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For each & > 2 define
Epi — 410) Z% ;i — Iio) (3.18)

Then the standardized efficient score vector is given by

k

./ ~9 7 1 ~ ¢
Wilpo, 6%, o) = P kai ; (3.19)

i=1

where ¢, is given by (3.12). In the following lemma we assume, without
a loss of generality, the existence of a Brownian motion ¥(-) used in the

approximations.

Lemma 3.4 Under the hypothesis Hy : it = o, 02, ¢ unknown, and condi-

tions (3.2) and (3.3), there exists a Brownian motion W (), such that
| Wi(po, 6%, éx) = W (k) [ o(k'") (3.20)
for some v > 2.

Proof. The standardized efficient score vector can be written as

P
Wi (o, O'A (bk ZE“ = — Z [ Yi — o) Z(ﬁz.:j(Yi_j - /io)}
k
—(—;;Z [(Yi — Jio) — Zd)j(} i = jo) + Z — o) (Y7 ll'o>]
" =1 j=1

1 k 1 P k
= ;A_ 51 Gy JZI [((75] d)AJ g j /10 :l
1 < A, . D L1 N
== Zsi + pape Z — i) T Z —o)| (3.21)
i=1 " i=1 k = i=1

By the invariance principle there exists a. Brownian motion W (-), such that

k
Zc. _
&

i=1

£ % ok')

Q|+

[y
o
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for some » > 2. Replacing BL[ by I causes an error given by the second
term of (3.21). By Lemma 3.3 and the invariance principle for the sequence
k . .
Y izq &y the second term is of order O(y/k~!loglogk) - O(Vklogloghk) =
O(loglog k) a.s. Multiplier < =% 1, and the sum of the error term is negligible
[
by using Lenuma 3.2 and recalling (see Lemma A.1) that the assumptions on
the sequence {¢;} entails the invariance principle for 3 _;_, (Vi — jo). Hence the

error term is O(log log k) a.s.

Remark 3.1 Based on the above lemma it is easy to see that, as n — oo.

k

1 1 . 9 % . > 5

max - Eri = max —=< Wiluo, 63, dn) — Wilpeo, 07, s

1<15k%n B/ 5 lum Sl Tn k{10, G, di) (110,67, 1)
1=

2, sup  {W(v) - W},

0<Lu<v<l

which implies

k

1 D

max €k — sup [W ()] .
1€l<ksn G\ /n ; ki 051151! )

Now we are able to define a truncated CUSUM-type sequential test for detect-

ing a change in the mean pg as follows.

TEST 1. Stop and conclude that Hy is not supported by the data at the first

Lk when

1
Tulh) = mmax ==

Do not reject Hy if it is not rejected by k = ng.

k
Y é 2 Cla). (3.22)
1=l

Here ny is the truncation point, « is the level of significance and 67 is the least
square estimator of o2 given in (3.9)(with p replaced by rp). The critical value

C(a) is taken from the well known distribution of supyc,<; [W(t)] .

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 Monitoring the variance of an AR(p) pro-
cess

In this section we consider the problem of detecting a change in the variance

o2, while the mean ;1 and ¢ are nuisance parameters. We test
Hy:0*=0}, p ¢ unknown, forall > —p+1,
against the alternative

. o0?>=03, §1, ¢ unknown, for —p+1<i<rT,
A

o =0%>0%, i, ¢ unknown, for i>r7,
where 7 is the unknown change-point.
The test will be based on the second component of the efficient score
vector given by (3.8), that is

01/.:

3
do? —

1 14 ) 2
%o Z [(3'3 — f) — ;@5/\3‘(3’}-; - ﬂk)} :

(05, i, 1) = _f +

(=31

i=1
By standardization we obtain

1S
v 2 A n 1
I"I/k(aéa Hks ¢k) = \/30_‘2 Z

0 i=1

where now £; are defined by
P
Ei=(Yi— i) = > dui(Yiej — ) - (3.24)
J=1

Here /i and ¢, are given by (3.10) and (3.12) respectively. In the following
lemma we show that the standardized component of the efficient score vector

can be approximated by a Brownian process ().

Lemma 3.5 Under the hypothesis Hy : 0* = o2, p, ¢ unknown, and condi-

tions (3.2), (3.3), there exists a Brownian motion W (-), such that
TV (02, fi 1) — W (R)] £ o(k7) (3.25)

for some v > 2.
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Proof. Relationship (3.23) can be rewritten as

k k k

Wi = \/?_.O'(%Z(E Zl 0 \/508.2(61” "1)'

2
i=l 0 =1

Under our conditions the invariance principle in the claim of the lemma holds

for the first sum. Neglecting the coefficient 1/v/202, in the error term, we add
: 5 2 .

=5, [(Y;—p) - b1 0k(Yiej — p)]” and obtain

2

k k P k
S (@-) =Y [m =Y i - m} Sy
i=1 =1

i=1

2

I P P] k P

#3|0 ) = Sty = )] -2 0= = Y iy - 2
i=1 j=1 i=1 j=1

The difference between the first two terms can be written as

K P 2 k
Z [Ei + Z (65 — bry) (Yiej — /«L)J - ZEZZ =
=1

i=1 Jj=1

= ,Z: [E:_; (65 = bay) (Yiey = N)r + '2;5:' [ZZ: (65 = &uy) (Vi = “)]
=i {g (6~ du) 01— )] +°Zl ~ du) [Z Wiy =]

and now, as in the last part of the proof of Lemma 3.3, one can see that the
difference is of order O(loglog k).

The remaining terms

: p 2 ke P 2
505 = 3 sy = )| =3[ = st - W]
Jj=1 j=1

i=1 i=]

(1}
Gt
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can be expanded as

P p
Z[ i = fir) Z Yiej — fu) Z(¢I;“¢)( imj = B = )

J:

2

[ (S5 = 63)(Yimg = 1) + (11— fue) Z(d)u = qu)} .)
K p 2
Z [] (1 — - /i)}
{ fob ~ fus)] ‘g Bij — 6;) (Vizy —/l)}
~ 22{[(3’ i) zi: Yioj — fu)] (fue — o z; (5 — }

In Lemma 3.3 was proved that the difference between the first two terms is
of order O(loglog k) a.s. As in Lemma 3.3 one can prove that the third and
the fourth terms are of order O(loglog k) a.s. By Lemma A.2 the invariance
principle holds for ZLI ei(Yi.; — ), 7 = 1,...,p, from which one can see
that the mixed terms with coefficient 2 are O(loglog k) a.s. by Lemmas 3.1

and 3.2. and the Lemma is proved.
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Based on the above lemma and reasoning as in Remark 3.1 we can define the
following test.
TEST 2. Stop and conclude that Hy s not supported by the data at the first

L when

1 KL, .
T, (k) = max T S (Ei—a3) 2 Cla). (3.26)
A ]

1<l<k 0p
Do not reject Hy if it is not rejected by k = ny.
Again, ng is the truncation point and a is the level of significance. Note that,

here é;; are given by (3.24).

Remark 3.2 If we want to monitor both p and o* simultancously we can
monitor both statistics T,(k)(with 53 replaced by o3, as this is assumed to be
known) and T,(k). Note that in this case p is also knoun, and (3.18) and

(3.24) are the same. Now we test
Hy : o= po, g = JS . @ unknown, forall > -—p+1,
against the alternative

w=po, 0> =0}, ¢ unknown, for —~p+1<i<r,
HA :
=4, 02 =0%, ¢ unknown, for i>r7,

where T is the unknown change-point. The test is defined as follows.

TEST 3. Stop and conclude that Hy is not supported by the data at the first
k when

max {T‘,,(l;:) , To(k)} > C(a*) . (3.27)
Do not reject Hy if it is not rejected by k = ny.

Here we monitor two parameters, so each test statistic is monitored
with a level of significance of a* such that the overall level of significance
is @« =1 — (1 —-a*)? (see Remark 2.2). For example, if we want the overall
level of significance to be o = 0.05, we have to choose a* = 0.0253, and in this

case the critical value is C(a*) = 2.48.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 Monitoring the coefficients of an AR(p)
process

In this section we shall consider the problem of testing for a change in the
coefficients ¢; ‘s of an AR(p) process defined by (3.1). Now the mean p and
the variance o2 are nuisance parameters. The hypothesis of interest

Hy: ¢ =y i, o> unknown, forall i > —p+1,
is tested against the alternative

o ¢ = by, i1, 02 unknown, for —p+1<i<r
A

¢ = ., 1, 0 unknown, for i>r7

where 7 is the unknown change-point, and the new value ¢, is also unknown.
In this case the initial value ¢, is assumed to be known and at each step

E > 2, we shall estimate the nuisance parameters p and o by

L k
1 1 N
[y = P E Y; and 67 = T 5 €7
"=l i=1

respectively, where the residuals at step k, ;;, are now given by

) _/JI\ Z(PO] zj_,ul‘) (328)

For each s =1,2,...,p, the component corresponding to ¢, is given by
k

1
‘,/'(3) = - Z(Sf;-—s - IJV)ET )

ge
i=1

When we replace the unknown parameters by their estimators this hecomes

k
1
(q):_)§ 74_/”\ I.‘i,a
Tk oI

and standardizing this we have

. 1 o -1/2 L
Vk(%’ ks Uf) = <?F(¢Ov Hks U}?)) v¢'l<¢07 s O'f) :
I3

The test is based on the following lemma.
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Lemma 3.6 Under the hypothesis Hy : ¢ = ¢y, 1, o> unknown, and con-
ditions (3.2) and (3.3), there exists a process W () = (W, . W®), with

independent Brownian motion components, such that

1Vl bo, e, 67) = W(R)|| = o(k'7Y) (3.29)

for some v > 2.

Proof. Let W, = Wi(do,u,0?) be the standardized efficient score vector
evaluated at the true values of the parameters, and for each r = 1,2,.. ., p, let

W be the 7* component of W, Then W™ can be written as
W = VO V@ 4, V) (3.30)

where v,; are the components of the matrix (0"2I‘)_‘/ %, By using the defini-
tion of V) we can write
! (Yies — 1t
I’T/,gr) Z { Z’Y—,b t— ‘3:‘ } 281 /t('l )1 ,
=1

where \’(’) E i Ws0 2 (Yig1-s — ). As in the proof of Lemma A.1, for

each t € Z, X" can be written as X" = ¥,.,a"e, s, where the con-

A" satisty the inequality |a{"] < M ®ad, for some a € (0,1) and some

stants ¢;
M) € (0,00). Arguing as in the proof of Lemma A.2 one can prove that
Eberlein’s theorem applies for each component I'T/’,ET ,r=12 .. . As the
components are uncorrelated there exists a process W(-) = (1°¢ ,...,W )y,

with independent Brownian motion components, such that
W, — W ()| 2 o(k')

for some v > 2.
Now it is enough to prove that ||[Wi(dg, fix, 67) — Wi|| Z O(log log k),
and this follows from (3.30) if we prove that V() — V)| % O(loglog k), for
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each s =1,2,....p. The difference V) ~ V&) is written as

k 2
N 1 1 o*
‘/’(b)_‘/(s) :("_2__5) Z() -5 —-i_1) —) p})zhz
Ok 07 %0
21 &
+ -é'—f; ;()fz—s - ,”L)(Elw - ‘-1)

The rate is obtained by application of the invariance principle for Zf (Yis
i), (see Lemma A.2), and Zi’:l g; in the first and the second term of the
above relationship.

For the sum in the last term we write
k

S (Vi = i) (s — 1) =

i=1

= Z(S/z_q — ;LA {(Y }L/) —(Y; — ll z (b()](} i—j /-’l) + Z d)OJ
—Z{ = i) [ (1 = ) 1_Z¢OJ }

j=l1
k [
= o (0= = ] G- )1 = Y- )]
i=1 j=1
k
= k(p — i) 1 - Zgbo] (1= ) (1 — Zd)OJ Z — 1) .

. . . . . . k -
Now, by Lemma A.1, from the invariance principle for > (Y;—s; — ) and
Lemmas 3.1 and 3.2 we get rate O(loglog k) a.s. again and the proof is com-

pleted.

O

Based on the above lemma we can define a procedure useful in testing
for a change in the coefficients ¢; ‘s. Denote V = (V... V®)!. Then the
vector T' = (U_QF)_I/ *V has p independent components and we can monitor
each component with a level of significance a* = 1~ (1 —a)!/? and the overall

level of significance will be a.
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Remark 3.3 Note that the matriz o=°T does not depend on pu or o*. but
only on the vector of the coefficients ¢ which is assumed to be known in this
case. This method can be applied for any p > 1 but for p > 3 the matr
(0"‘[‘)_]/2 s complicated to compute symbolically. In any particular problem
@.s are known and 0~°T is a numerical matriz so (U‘BI‘)—I/ * can be easily
computed. For simplicity we shall consider in the next sections only the cases

of p=1 and p = 2 respectively.

3.4.1 AR(1) process
Consider the model (3.1) with p = 1 and ¢, = ¢, that is
—u=0¢Yisi —u)+e, i20. (3.31)

In this case the stationarity condition (3.3) is equivalent to |[¢| < 1. From (3.9)

the component of the efficient score vector corresponding to ¢ is given by

1)_;1_2 iy = pi)e

2 00
; 2 0'2
Ioama)=| o 020 o |, wd =i

0 0 55

Based on Lemma 3.6, reasoning as in Remark 3.1, one can prove that, as

n — o0

\/1—¢’ !
B g & O A g VO

where {TW(t)}o<i<) is a standard Wiener process. The test for monitoring the

coefficient ¢ is defined as follows.
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TEST 4. Stop and conclude that Hy is not supported by the data at the first

k when

Tp(k) = max ~—5— 1 - ¢0 Z (Yiei = juc)éri = Cla) . (3.32)

1<I<k G}
Do not reject Hy if it is not '/cjected by k = ng, where ngy is the truncation

point and « is the level of significance of the test.

3.4.2 AR(2) process
Now consider the model (3.1) with p = 2, that is
Yi—p=0 i1 =)+ &(Yica—p) +e;, i1>-—1. (3.33)
When the observations come from an AR(2) process the stationarity condition
implies that the parameters ¢; and ¢, must lie in the triangular region
h+ <1
G2~ <1
-1 < ¢y <1

The components of the efficient score vector corresponding to ¢, and ¢, are

given by
k

: M 1 S,
v = 0(;1 = Z 1 —pei, and VO = 0(;) == Z(L‘-z = pEi
i=I

i=1

respectively. The information matrix is given by

1‘4’2 - ¢I 0 0
(1+62)[(1-¢2)>—¢7]  (1+d2)[(1-¢2)>=¢3]
i3 1—=¢o 0 0
Ly, o, p,02) = | (Foal1=62=]  (L+é2)[(1-62=4]
0 0 (1- ¢r17~ $2)> 0
0 0 0 T}T*
In this case
(%I‘)ﬁl/) T
2
T2 M
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where

’)‘1=-1—;@{\/1*¢1—¢>2+ \/1+¢>1—<f)2}7
’72=—1_;L—@{\/1—¢1—¢’2—\/1+¢1—¢2}-

We shall denote

k
V(l) (fus, 57) Z -1 = [k )Eri,

l.
I /1;,(7,\ ——; E Yico — fug)éki s
Ok =

for any | < k, where &;; are given in (3.28). Then for each k& > 2 we define

TO (k) = max {’y] TA,‘.(;) + vgfﬁ)} ;

1<i<h

T (k) = max {7)\ + 3 Ve >}.

1<i<

The two statistics are independent, and by Lemma 3.6, as n — oo,

- D ) .
max —=TO(k) — sup [IV(¢ for i=1,2.
2<k<n /1 (k) 021%1 ) rot ,

Now we can test
Hy: ¢ = dio, ¢a = oo, p, o° unknown, forall i> —p+1,

against the alternative

¢ = 1o, P2 = Gy, i, 0> unknown, for —p+1<i<T,
&L = Pra, G2 = bay, p, 0° unknown, for > 7,
by using the following procedure.
TEST 5. Stop and conclude that Hy is not supported by the data at the first

k when

T(k) =

\/%_max {T Y(k), TO(k )} > C(a"). (3.34)

no
Fail to reject Hy if it is not rejected by k = ng, where ng is the truncation point

and o* =1 — (1 — )2, where a is the level of significance of the test.
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Remark 3.4 In the case of independent observations Gombay (2003) devel-
oped two other tests based on k™'71V, and n~'21V), statistics. respectively.
Lemmas 3.1-3.6 allow us to extend these two tests to the case of an AR(p)
process. Our simulations (unreported here) showed that these tests outperform
the CUSUM-type test only if the change is at the beginning, i.e. T =1. As we
are interested in the more realistic case T > 1. we have chosen to present only

the CUSUM-type test.

3.5 Simulation Studies

To evaluate the power of the truncated sequential tests proposed in the previ-
ous sections we have carried out some Monte Carlo experiments for each case

discussed before.

3.5.1 The case of AR(1) process

First we consider the autoregressive model AR(1), that is
Y;_,u:(:b(}ll—] _N')+€iv { 20 s

where |¢] < 1, and the errors g; are independent identically distributed normal
random variables with mean zero and variance one. In all tables ng represents
the truncation point, 7 is the change-point, and the level of significance is
a = 0.05. Each table presents two different situations, ng = 100 with a change
at 7 = 50, and ngy = 200 with a change at 7 = 100, respectively. Each scenario

in these simulations is based on 5,000 replicates.

a) Monitoring the mean g . When testing for a change in the mean of

the process we test the hypothesis

Hy o= g, o® and ¢ unknown for all ¢ >1,
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against the alternative

it =g, o>and ¢ unknownfor all 1 <i< T,
]‘I‘,\ :

W= iy > plg, o> and ¢ unknown for all i > 7.
The in-control value of the mean is o = 0, and pu,y was varied over the
set {0.0, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1.0}. Here ¢? and ¢ are nuisance
parameters. In each case the variance was ¢ = 1. We present the empirical
power of Test 1 for three different values of the coefficient, ¢ = 0.1, ¢ = 0.5,
and ¢ = —0.5. The test statistic is T},(k) defined in (3.22).

These simulations support that Test 1 is consistent against the change
point alternative, that is, as the truncation point ng grows to infinity, the
power of the test goes to unity for any change point alternative. From Table
3.1 we also note that, for fixed truncation point and fixed change point, the
power of the test decreases as the coefficient ¢ increases from -1 to 1. This is
easier seen in Figure 3.1 and it happens because the drift D is proportional

with (1 — ¢).
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Table 3.1: Test for monitoring the mean of an AR(1) model Y; — g = ¢(Y;-; —
o) +€;. Simulated power (Power) and average stopping time (AVST). 02 = 1
and the in-control mean is pg = 0. The level of significance is o = 0.05.

no T pa POWER AVST POWER AVST POWER AVST
100 50 0.0 0.031 99.54 0.025 99.72 0.033 99.46
0.1 0.070 99.00 0.038 99.56 0.134 98.23
0.2  0.156 98.18 0.063 99.34 0.393 95.12
0.3  0.290 96.70 0.095 99.00 0.725 89.83
0.4  0.463 94.63 0.136 98.66 0.935 83.87
0.5  0.652 92.15 0.186 98.24 0.992 78.95
0.6 0.809 89.38 0.248 97.72 0.999 75.48
0.7 0916 86.83 0.313 97.18 1.000 73.07
0.8  0.969 84.63 0.388 96.61 1.000 71.35
09 0.988 82.90 0.455 96.06 1.000 70.11
1.0 0.996 81.63 0.518 95.56 1.000 69.20

200 100 0.0 0.037 19859  0.033 198.86  0.036  198.45
0.1 0.118  196.40  0.061 198.03  0.243  192.67
02 0305 19152  0.120 196.74  0.700  177.87
03 0578 18342  0.204 19471 0968  159.41
04 0828 173.12 0325 191.83  0.999 146.67
0.5 0957 163.28  0.455  188.44  1.000  138.80
06 0994 155.51 0.600  184.30 1.000  133.63
0.7 1.000 14991  0.739  179.93  1.000  130.04
0.8 1.000 14573  0.847 17557  1.000  127.42
0.9 1.000 14265 0917 171.61  1.000 125.44
1.0 1.000 14040 0962 168.16  1.000  123.92
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Figure 3.1: Power vs Coefficient when testing change in the mean of an AR(1)

model. The truncation point is ng =

200 and the change point is 7 =

100.

The in-control value is 1o and the drift after the change is m = 14 — j1o.
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Figure 3.2: Power when testing for change in the coefficient for different AR(1)
models (b = ¢). The truncation point is ng
7 = 100. The initial coefficient value is -0.9, -0.5, 0, 0.5, 0.9.
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b) Monitoring the variance o?. We consider the same AR(1) model but
now we shall test for a change in the variance o2, while the mean ;. and the

coefficient ¢ are mmisance parameters. The hypothesis of interest is
o 9 , .
Hy:0° =05, pand ¢ unknown for all i > 1,
against the alternative

5 0?2 =05, pand ¢ unknown for all 1<i< 1,
-

02 =0% >0}, pand ¢ unknown for all i > 7.

The in control value of the variance is gy = 1, and o,4 was varied over the
set {1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0}. In Table 3.2 we present the
power of Test 2 for two coefficient values, ¢ = 0.1, and ¢ = 0.5. In each case
the mean of the process was p = 0. The test statistic is T, (k) defined in (3.26).

These simulations support that Test 2 is consistent against the change
point alternative. From Table 3.2 (and other simulations studies nnreported
here) we noted that, for fixed truncation point and fixed change point, the

power of the test remains almost the same for any ¢ between -1 and 1.
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Table 3.2: Test for monitoring o of an AR(1) model Y; —p = ¢(Yi_| — 1) + ;.
Simulated power (Power) and average stopping time (AVST). p = 0 and the
in-control value is gy = 1. The level of significance is a = 0.05.

$=0.1 ¢ =05

ng 7 o4 POWER AVST POWER AVST
100 50 1.0 0.046 98.77 0.046 98.85
1.1 0.171 96.75 0.170 96.74
1.2 0433 91.91 0.433 91.11
1.3 0712 85.25 0.715 85.20
1.4 0.897 78.45 0.899 78.47
L5  0.970 72.86 0.969 72.81
1.6 0.990 68.77 0.990 68.77
1.7 0.998 65.71 (0.998 65.67
1.8 1.000 63.36 1.000 63.35

200 100 1.0  0.043  198.03  0.043 198.00
1.1 0260 19094  0.260 190.84
1.2 0.674 173.95  0.673  154.30
1.3 0.935 154.41 0935  154.30
1.4 0993 140.42 0994  140.26
1.5 1.000  131.37  1.000  131.27
1.6 1.000 12534 1.000  125.25
1.7 1.000 121.14  1.000  121.03
1.8  1.000 11795 1.000  117.83

c) Monitoring the coefficient . When monitoring the coefficient ¢ of the
AR(1) model the hypotheses of interest are
Hy:¢=¢o, pando® unknown for all i >1,
against the alternative
¢ =¢o, pando® unknownfor all 1 <i< 7,

H A
¢=¢a>¢o, pando® unknown for all i > 7.

Here ;1 and 0 are nuisance parameters. The test statistics is Ty(k) de-

fined in (3.32). In each case the mean was p = 0 and the variance was
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o> = 1. We present three different situations. In Table 3.3, the in con-
trol value of the coefficient is ¢y = 0.1, and ¢, was varied over the set
{0.1,0.2,0.3,0.4, 0.5,0.6,0.7,0.8,0.9, 1.0}. In Table 3.4, the in control value
of the coefficient is ¢9 = —0.5, and ¢, was varied over the set {—0.:3, -0.4,
-0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5}., and in Table 3.5, the in con-
trol value of the coefficient is ¢y = 0.5, and ¢4 was varied over the set
{0.5,0.6,0.7,0.8,0.9,1.0}.

Again, these simulations support that Test 4 is consistent against the
change-point alternative. From these tables we also note that, for fixed trun-
cation point and fixed change point, the power of the test increases as the
coefficient ¢ increases from -1 to 1. this can easily be scen in Figure 3.2 which
presents the power of the test when the in-control value of the coefficient is
—0.9,-0.5,0,0.5,0.9.

Based on our simulation results (some unreported here) we can observe
that the power of the tests depends on the coefficients ¢;s of the autoregressive
process. For an AR(1) process we recommend to choose a truncation point
ng > 100 when |¢] < 0.5, and a truncation point ng > 200 when 0.5 < |4 <
0.7. For a coefficient 0.7 < |¢| < 0.9 the truncation point around 1000 will
provide a good power. This is in accordance with the recommendation of
Tang and MacNeill(1993) in a study of effect of serial correlation on tests for

parameter change in an AR(1) model.
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Table 3.3: Test for monitoring the coefficient ¢g of the AR(1) model Y; — i1 =
@o(Yi—1 —p)+€;. Simulated power (Power) and average stopping time (AVST).
o= 0.1, p =0, 0% =1 and various ¢,. The level of significance is a = 0.05
and C'(a) = 2.24.

ng T ¢4 POWER AVST
100 50 0.1  0.025 99.54
0.2  0.076 98.81
0.3 0.207 97.19
0.4  0.436 93.63
0.5 0.692 88.08
0.6  0.876 81.39
0.7 0.967 75.05
0.8  0.993 (9.57
0.9 0999 65.12
1.0 1.000 59.25

200 100 0.1  0.033 198.59
0.2 0135 195.87
03 0407  187.73
04 0754  173.04
0.5 0949  156.20
0.6 0995  142.07
0.7 1.000 131.34
0.8 1.000  123.35
0.9 1.000 117.25
1.0 1.000 112.71
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Table 3.4: Test for monitoring the coefficient ¢ of the AR(1) model Y; — p =
bo(Yio1 —t)+¢;. Simulated power (Power) and average stopping time (AVST).
¢o = —0.3, 1 =0, 0® = 1 and various ¢,4. The level of significance is a = 0.05
and C(a) = 2.24.

no 7 ¢4 POWER AVST
100 50 -0.5  0.010 99.89
-0.4  0.039 99.60
-0.3  0.111 99.03
-0.2  0.232 97.88
-0.1  0.418 95.86
0.0 0.623 93.03
0.1 0.798 89.51
0.2 0.906 85.70
0.3 0.966 82.05
0.4 0.989 78.67
0.5 0.998 T5.47

200 100 -0.5  0.021 199.56
-0.4  0.090 197.89
-0.3  0.285 193.60
-0.2  0.588  185.57
-0.1  0.853 174.71
0.0 0.959 164.23
0.1 0.994 155.41
0.2 0.999 148.17
0.3 1.000 142.02
0.4 1.000  136.63
0.5 1.000  131.64
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Table 3.5: Test for monitoring the coetficient ¢, of the AR(1) model Y; — =
¢o(Yio; —pt)+&;. Simulated power (Power) and average stopping time (AVST).
¢o = 0.5, 4 =0, 02 = 1 and various ¢4. The level of significance is a = 0.05
and C(a) = 2.24.

ng T ¢4 POWER AVST
100 50 0.5 0.032 99.31
0.6 0.121 97.92
0.7 0.366 93.65
0.8 0.711 85.24
0.9 0.927 75.13
1.0 0.993 66.70

200 100 0.5 0.037 198.30
0.6 0.210 192.79
0.7 0.638 175.37
0.8 0.943 150.20
0.9 0.997 130.36
1.0 1.000 118.44

3.5.2 The case of AR(2) process

Lai (1995) extended some classical sequential change-detection schemes to the
AR(p) model. In this part of the simulation study we shall consider the prob-
lem of monitoring the coefficients of an AR(2) model and our test will be

compared to Lai’s algorithm. As in Lai's paper we consider an AR{2) model
Yi—p=¢1(Yiei —p) + (Vi — p) + &5,

with g; i.i.d. standard normal and bivariate normal (Yy, Y_,), such that EY, =
EY_ 1 =0, Var(Yy) = Var(Y_;) = 1.0227 and Couv(Y,, Y_;) = —0.1136.

We shall monitor a change in the coefficients ¢; and ¢,. The in-control
values are ¢ = —0.1 and ¢y = 0.1 and a change will occur only in ¢o.
Note that this is known in Lai’s algorithm while our test is monitoring both

coefficients. Also note that ¢ = 1 is a nuisance parameter in both methods,
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while the mean g = 0 is assumed to be known with Lai’s method but it is a
nuisance parameter in our test.

In Table 3.6 the CusumT columns give the empirical power and average
stopping time of our test. The truncation point is ng = 1000 almost equal to
the theoretical average stopping time of Lai's algorithm (i.e. 1006). The level
of significance is a = 0.05, the dimension is d = 2, so a* = 0.0253 and the
critical value is C' = 2.48.

The procedure in Lai (1995) is set up so that the average stopping time
under the no-change hypothesis is around 1006. We analyzed this algorithm
as follows. The columns Total and Before 7 below the POWER colunn rep-
resent the proportion of stops (power) and the proportion of stops hefore the
change-point, respectively. The columns Total and Before 7 helow the AVST
column represent the average stopping time and the average stopping time
when the algorithin stops before the change-point, respectively. The algorithm
was stopped after 6,500 observations.

In Table 3.6 we present two different situations. In the first part of
the table the change point is at 7 = 70 as in Lai’s paper. In this case Lai’s
algorithm has a lower AVST and it only stops 4% of the time hefore the
change-point which is an acceptable percent of false alarms if we consider a
level of significance of 0.05. However, in real life we do not know the change
point. In the second part of the table the change-point is at 7 = 500. Now the
CUSUM test still has good power, while Lai’s algorithm stops more then 35%
of the time before the change point, i.e. too many false alarms. This hehavior
is common to all open ended monitoring schemes, where the expected stopping
time under the null hypothesis controls the process parameters. We have a
truncated-type algorithm, where the overall probability of type I error is under

control. We pay for this advantage with increased delay in detection.
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Table 3.6: Monitoring the coefficients ¢, and ¢, of the AR(2) model ¥; — i =
Oy (Yiiy — )+ o (Vi — pt) +€;. Simulated power (Power) and average stopping
time (AVST). The in-control parameters are ¢ = —0.1 and @99 = 0.1. Only
@10 is changing to ¢;.4.

POWER AVST
T d1a  Total Before 7 CusumT Total Before v CusumT
70 -0.10 0.998  0.043 0.048 1134.69 42.48 990.40
0.00 1.000 0.041 0.835 558.40 43.62 737.30
0.10 1.000 0.040 1.000 261.21 43.70 422.60
0.20 1.000 0.039 1.000 162.08 44.11 297.23
0.30 1.000 0.041 1.000 122.91 40.03 230.31
0.40 1.000 0.039 1.000 103.72 40.51 186.25
500 -0.10 1.000  0.358 0.042 1137.54 240.57 992.10
0.00 1.000  0.365 0.477 744.43 238.36 09:34.23
0.10 1.000 0.371 0.962 543.95 238.66 798.69
0.20 1.000 0.370 1.000 470.93 239.93 700.20
0.30 1.000 0.364 1.000 444 .42 242.27 (38.39
0.40 1.000  0.360 1.000 432.17 244.31 601.25

3.6 Consistency of the test statistics

To understand the process under the alternative hypothesis of change we shall
describe in detail the asymptotic behavior of the standardized efficient. score
vector in the case of an AR(1) model. In the case of a higher order process
the conclusions are similar but will not be written out in detail because of
unavoidable notational complexities.

We will consider only the cases of monitoring the mean and the coeffi-
cients of the process. In the case of monitoring the variance the conclusion is
similar and much simpler to obtain so it will be omitted.

From Lemmas 3.7 and 3.8 we can see the consistency of Tests 1 and 4,
respectively, provided ”\;T“ﬁ’- — 00, as Ny — 00, where 7 is the unknown fixed
time of change, and ng is the truncation point of the test. Consider first the

case of monitoring the mean of the process.

-1
it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lemma 3.7 Assume conditions (3.1), (3.2), and (3.3) hold with p = p4 for

the sequence (Y )rez. Then there exists a Brownian motion W (+), such that
[Wiluo, 67, ¢x) — kD — 1V (k)| = o(k"/") (3.35)

for some v > 2, where v and D are constants specified in the proof. The sign

of drift D is the same as that of the difference i3 — pg.

Proof. First, we describe the behavior of the restricted m.le.’s if p = p 4. In

the AR(1) model
§£~ = Zf:l (}’l — /1’0)(}/‘1‘—1 - /10)
ZL] (Yi—l - ,l,l,o)2

In the denominator we have

1 .
A_Z it = 1) 2,7

(Yier = pra + pra — No)2

bl R
M,,

i=]

i
2]

[(Y,;_l — pa)? 4 (1 = 10)® +2(Yier = j2a)(p2a — o)

5 + (tta — o)’ + O(Vk~"loglog k) a.s.

i=1

1l

Q.
[

1__

S

using the invariance principle for Zf:l(Yi_l — p14) (Lemma A.1). Similarly,

the numerator can be approximated as

(Y = po)(Yie1 — o) =

[

7= =
-

1

?NI»—l

k
Z[ Vit = )Y = ) + (Y = )t — i) + (Yot = 1) 11 ~ o)

+ (114 — po)’
= ¢)1—i~3)3 + (pea — po)? + O(Vk=Vloglogk)  a.s.

Then, with

O15m + (14 = po)®
25 + (1 = pio)?

$os = we have Ié’k — ¢oa| = O(Vk'loglogh) a.s.
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For the variance estimator, as g; = (¥; — p.4) — ¢(Yi—1 — p4), using the same

principles, we have

9

G = %g [(3 ~ ft0) = Gi(Yic —/10)}

k 9
1 N ) 2
== z [ i =) = B(Yier — pa) + (6 — &) (Yier — pa) + (1 = di) (14 — pho)
i=1
1 * ) 2
=7 Z {51 + (b= @) (Yiet = pra) + (1 = i) (s —/10)]
=]
I k
1 , bi)? ;
ZEZEH‘W 2 2371—//1) + (14 — o) (1 — )’
i=1 i=1
sk k
1-— by — i
Lol <l5 Z Yl]_/“Jr()( d’A)/x /oz
b 1 - ¢
+2(M\—[,Lo)( (b k)z L—l_,ul
2 o? 2 2 2
=0°+ T <f)2(¢ = $oa)” + (pa — 110)°(1 = dg1)* + O(/k~1log logk) a.s.
=054+ O(Vk='loglog k) a.s.
where 03, = 0% + 1555(6 — $0.4)* + (4 — 20)2(1 = foa)>.
The standardized efficient score vector is approximated as
R 1<
Wipto, 61y 1) = 5 ;f i) Z [ (Y; = po) — $p(Yiet — /10)}
1< .
=z [(Y} = ) = 0(Vier = pra) + (& — b)) (Yier — pra) + (1 = i) (s — /Lo)J
=1
1 k 1 k
=% 2 e + (6 — Goa) (Yie1 — pa)] + (o4 — ¢I.) ;( 1= fha)

+ 51;[16(1 — o) (fta — po) + k{doa — di)(jea — )] -

As in Lemma A.1 the first sum can be approximated by yI¥ (k) with an a.s.

error of order o(k'/"), where 42 = oyi]0? + (¢ — d)o_,\)z]—(_]zﬁ], and 17(-) is a

~J
|
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a.s.

standard Brownian motion. The dominant term in the error is k(¢g4 — d) =

O(Vkloglogk), so we get for the drift of the process

D= (—1-:—0—50;‘)(/1.,1 — Jig) + ()(\//’,7‘1 log log laf), a.5.

004
per observation. Note that

(L-g)?
1= {(pa — po)?’

1 — gou =
P04 o

so the drift is proportional to (1 — ¢) and this explains the results obtained in

the first part of our simulation study.

Remark 3.5 In Lemma 3.7 we assumed that the change pointis T = 1. When

the change point is T > 2, in the same way one can prove that the drift is

p= ot ;%“‘) (14 = o) + O(V(k = 1) loglog (k= 7)) a.s.
04

per observation after the change. So the drift in the standardized efficient score

vector will be

(k—7)D = (k — T)(—1~_-_(]5—°A—)(p_4 — o) + O(\/(k — 7)loglog (k — 7)) a.s.

004

In the case of monitoring the coefficient ¢ the consistency of the test

statistic follows from the next lemma.

Lemma 3.8 Assume conditions (3.1), (3.2), and (3.3) hold with ¢ = ¢, for

the sequence (Yi)rez. Then there exists a Brownian motion W(-), such that
|Wido, fu, 63) = kD = 7TV (k)| 2 oK) (3.36)

for some v > 2, where y and D are constants specified in the proof. The sign

of drift D is the same as that of the difference ¢, — ¢.
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Proof. As in Lemma 3.1 we can prove that | fi, — pu |= O(y/k~1loglog k).
Note that under the alternative the errors are given by &; = (Y;—pu)—d4 (Vi —
1), and we estimate them by £5; = (Y; — /i) — ¢o(Yi—1 — ji). For the variance

estimator we can write

k L
) 1 22 1
05212%2}"2{ i — i) — do(Yi 1—1“)]

k
= 1300+ = ) = 6l = )+ 0¥ =

— oYt — 1) + do(Yims — ) — ¢0<Y,-_1—/1k>] ,

which gives

2

A
o; = %Z [Ei +(ha — o) (Yier — 1) + (1 — o) (e — /h-)]

k

; 5 k 3
Zsf%—M (Yier — p)* + d)‘ d)o Z (Yo — 1)

Ik
1 1

=
i (64— f) ”‘Z ey ]

M-

i
i

M>

i=1

+ (1= o) (1 — fu)?

and using the same principles, we obtain

Gi = 0"+ (¢a — ¢o)“T%5 +O0(Vk 'loglogk)  a.s.
A
=044+ O(Vk~'loglog k) @.s.
where 034 = 0% + (¢4 — o)’ 57 - d>~
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The standardized efficient score vector is approximated as

T3k
¢OZ z 1"}’/. Eki

i=1

=1

“ k (d)Oa Mk)gh

{[ + (@4 — do)(Yier — 1) + (1 — o) (p ~ fu-)}

X [(Yi_l — )+ (= m)] }

1— @2 k 1— &2 k
= "—A-T;-‘g Zfi(y;‘—l —p)+ (¢ — ¢0)—~2_0 Z(K’—J - )’
R - S
V11— 3 1— ¢
TR T }:e L U e R
o} P Tk

%)

- & -
+ (1 - 2¢ + ¢>_4)T%(ﬂ =) Y (Yiet = ).

k i=1
The first sum can be approximated by 1V (k) with an a.s. error of order
o(k*") for some v > 2, where 72 = 051(1 — ¢3) " [o®Pa(l — ¢¢)?], and W (-)
is a standard Brownian motion. The second term can be approximated by
k(py — (,/)O)U_ \(/lld)_d’” with an error of order O(y/kloglogk). The last three
terms produce an error of order O(log log k). So, we get for the drift of the
process

= (¢a— )——(——— 1;50) +O0(Vk loglogk) a.s.
A

per observation. Replacing o3, by its formulae the drift hecomes

_ (9a—00)V1-& e
= (1=¢2%) + (6.4 — do)? +0(Vk Toglogh) a.s.

per ohservation and the result of the lemma follows. Note that the drift is

proportional with (¢4 — ¢o) and this explains the results obtained in our

simulation study.
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Remark 3.6 In the above lemma we assumed that the change point is 7 = 1.

When the change point is T > 2, in the same way one can prove that the drift

8

D— (d4 — o)/ 1 — &5

. — 7)-Lloglog (k — 1.5
=)+ 6a—gofp T Ok —7)oglog (k= 7)) «

for each observation after the change point. So the drift in the standardized

efficient score vector will be

- o (P4 — do) V1~ ¢4 - T
(k—=7)D = (k —7) 00+ (6a ¢2)2 +0(V/(k =) loglog (k — 7)) a.s.
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Chapter 4

Sequential ANOVA

4.1 Preliminaries

This chapter is concerned with the problem of sequential comparison of three or
more groups. The problem is frequently faced in clinical trials. Some work has
already been done in the case of comparison of three groups. For more details
we refer to Siegmund (1993) and Betensky (1996). The methods proposed
are dealing with the simplest situation where the responses are independent,
normally distributed random variables with a common known variance. The
sequential F-test proposed by Siegmund (1980) deals with the case of more
then three groups but the analytic approximations will be more complicated.

Here we compute the critical values for the tests of Gombay (2003a) and
show how these tests can be used for this propose. These tests are compared
to the sequential F-test in a simulation study. In the last section we shall
show how the CUSUM test defined in the second chapter can be used for a

sequential change-point ANOVA problem.
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We shall assume that observations are made sequentially on vectors Yy =
(Yig, Yo, ., Yar)', k > 1, where d denotes the number of groups (treatments),

th ghservation from group (treatment) i. The observations are

and Y, is the &
assumed to be independently and normally distributed with common variance,

ie, foreachi=1,2,...,d,
. D) .
Yi iid N(p,07), forall k>1. (4.1)
Considering ¢* as a nuisance parameter, we are interested in testing

Hy:pn=pay=...=pq, against H,y: not Hy. (4.2)

4.2 Sequential F-test

The sequential F-test is proposed by Siegmund (1980) and it is based on the
log likelihood ratio statistics. With the above notation let ¥; = k™! Zj:x Y
and Y. = (kd)™ ZL . Z;’zl Yi; be the group sample means and the overall
sample mean, respectively, based on &k observations. The log likelihood ratio
statistics for testing (4.2) is

od ESSE (V, —Y)? \
Ly= %(-]log{l + = Z"‘,ﬁ(}“, ))_ .)} : (4.3)
- Dint Zj:](yij - Y;)?

It will be convenient to use the following parametrization. Define pp = d=! Z;l:] L

and «; = pt—p;. Then E(Yy) = p+ay, with Z;]:] a; = 0. Now the hypothesis
of interest becomes

d d
Hy: Zaf =0, versus Hy: Zcﬁ >0. (4.4)

i=1 i=1

The test is defined as follows.
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Sequential F-test. Given integers ky < ng and constants 0 < ¢ < a. stop

sampling at min(T, ny), where
T=inf{k:k>ko,Lir>al}, (4.5)

and reject Hy if either T <ngy orT > ng and L, > ¢.
According to Siegmund (1980) the power of the test depends on the pa-
rameters av, . .., g, 44, and o2 only through the value of § = o= (30 a2)!/2

The power function of the test is defined by
Ps(T < ng) + P5(T > ng, Ly, > ¢).

An exact value of the power function is very hard to obtain for d > 3.
To obtain a level of significance «, the constants ¢ and a are chosen based on

the following approximation given in Siegmund (1980)

a = Po(L;m > (I.) + P()(C < L,m < (l) + Po(k() <T < ‘RQ) . (46)

The first two terms on the right-hand side of (4.6) may be obtained directly

from tables of F distribution and the last term is approximated as follows
d-l -1

ay ? -1

Po(ko < T < ngy) = 2 exp{—a} (3) {F(—-—-)}

1-d

rlo 2 22 -
X / e 2ug(2) /1 + —{ log (1 + 7)} da |

l] a

where I'(+) is the well known gamma function, l; = \/ d{exp(f“id) — 1}, and

Iy = ,/d{exp(/%%) —1}. Because of computational difficulties the function
vg(z) will be approximated by exp{~0.583=(1 + 22 /d)~1}.
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4.3 Tests based on Rao’s statistic

In Gombay (2002) two sequential tests are proposed to test the hypotheses
Hp: 60 =6y, n unknown, against H,y:60#0,, n unknown (4.7)

where § € RY, d > 1, is the parameter of interest, and 1 € R?, p > 0, is the nui-
sance parameter. It is assumed that the independent observations Y7, Y5, ...,
come sequentially from a distribution with density function f(y;8,7). The

cfficient score vector is defined as
1 &
I/', = —= v 100 i 5’1’,7 3 "1:.8
#(€) \/Z; ¢log f(Y7,6) (4.8)

where for brevity we denote £ = (¢,7), and V¢ denotes the vector of partial

derivatives. Rao’s statistic can he defined as

Ri(&) = Vi) IH(E)V(E)

where I(§) = —E¢(0%/060¢;log f(Y;€)) is the (d + p) x (d + p) information
matrix. As before we shall partition this matrix based on the partition of

parameter vector £ = (6,7) as
Iy Iy
Iy Iy
The inverse of I will also be partitioned and denoted by

Ill 11‘2
121 [22

=

To test the hypotheses defined in (4.7), the nuisance parameter will be
replaced with its maximum likelihood estimator under Hp, that is, by the

solution of the equation
k
Y Vylog f(¥i;60,1) =0.
i=1
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Then the efficient score vector becomes

S

and Rao’s statistics can be written as

I
Z Volog f(Yi: 0o, ) .

i=1

Vie(0, 1) =

Rk(e(), 771\:) = ‘/I.‘.(H()a ﬁk)In (007 7716) Vv}.[<90 If”\") . (49)

The following theorem and its corollary gives the asymptotics under Hy for
Rao’s statistics process. For simplicity we shall assume that the observations

come from a normal distribution.

Theorem 4.1 (Gombay (2002)). Under Hy, there exist independent Wiener
processes Wi(t), i =1,...,d, such that for ( <1/2~1/(2+7)

sup | Vingg (60, Ane)) T (B0, m) Vi (60, ney) — B9 (n2)] = O(n~¢/loglog 1) a.s.

1<t<oo

where RO(t) =t} S5 WA (t) and v > 0.

Note that, when 7 is replaced by 7, in I'}(6y, 1) the asymptotic limit remains

the same.
Corollary 4.1 (Gombay (2002)). Under conditions of Theorem 4.1

(i) lim P{ mas [Vi(bo, )" (6o, 1) Vi (6, 7)] 2 < if_b’_(l"ﬁl)}

n—oo 1<hk<n - (L(lOg ‘77,)

=exp(—e”") a.s.,

where a(t) = (2log )12, by(t) = 2logt+(d/2) loglogt —log T'(d/2), and T'(t) =
Syt ey, 1<t < oo,

(ii) As n — oo,

d 1/2
ax [(k ; N S e s N11/2 D 12
max [(k/n)Vii(Bo. ) T (Bo, i) Vit (G0, )] L ( Z”z(f)) :

i=1
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Based on Corollary 4.1 the following truncated sequential tests are defined.
TEST 1. Stop and conclude that Hy is not supported by the data at the first

k when

’—‘RA(HO ) > Cilad) .

Fail to reject Hy if it is not rejected by k = no.

Here ny is the truncation point. In the next subsection we will show how to
compute the critical values C)(a, d) from the distribution of the maximum of
the Bessel process.

TEST 2. Stop and conclude that Hy is not supported by the data at the first

k when

Tg(l\) = \/ R;,t(ﬁo,’i'\}l‘f) > C’g((\’, d, ’I'I.o) .
Fail to reject Hy if it is not rejected by k = ng.
Here the critical value is given by

Cy(a,d,ng) = (a(logne)) ™| —log (~ %log(l — @) + ba(logng)| , (4.10)

where a(-) and by(-) are defined in Corollary 4.1. A discussion about the critical

values is given in the next subsection.

4.3.1 Critical values for Test 1

The critical values for Test 1 can be obtained from the distribution of the
maximum of the Bessel process. Denote v = d/2 — 1. According to Borodin

and Salminen (1996) for 0 < 2 < y we have the following formmlae

> 207, (e /y) Jit
P sup R(d) > — 1 _ - . - exps — ’r‘ \ 4'11
' ( 0<91<( ( ) J) ; .?/_l/.]l/.kt]l/—i—l (]u.k) ! { Q,y_). } P ( )

where J,(z) is the Bessel function defined by
o (/2)v+2k

Ju() =Z k 1/+k

h=
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and 0 < j,1 < Jua < ... are positive zeros of J,(-). As our process starts

at v = 0, the critical value Cj(a, d) can be obtained by solving the following

equation
2T G /C) . B
l-a= exp ; (4.12
Z Cr¥jvwdv+1 () { ‘)CZ} )
as v — +0.
When 2 is very small, @ — +0, J,(x) is well approximated by a"/(2"v!).

Using this property we can approximate (2/C1)™"J,(jux2/Cy) by jb./(2°V1).

Replacing this in (4.12) we can obtain the critical value Ci(a, d) by solving

oo /1 5]

]I/] J;A-.
l—a= expl — — . 4.13
25, o™ 5 (413)

In Table 4.1 we give the critical values for various « and d. To obtain these
critical values in our computations we have used the first 100 terms in the sum
on the right-hand side of equation (4.13). Note that the convergence of the
series in (4.13) is not uniform in »(d) and it is slower for larger values of v/(d).
In this case more terms should be used in the sum. More extensive tables
with the left-tail probability of the maximum of the Bessel process are given

in Appendix B.

4.3.2 Critical values for Test 2

Using the critical values Cy(ev, d, ng) defined in (4.10) the test is too conserva-
tive. A better finite approximation to the critical values can be obtained by
using a result of Vostrikova (1981). According to that result the critical value,
Cy(ar, d,ng) can be obtained by solving

(G;)dszgézd(%w 2}{108; (?7/0)[1—%—+ : 04,) }+0<(C—1)1>} (4.14)

. . . . / .
The following table gives the critical values Cy(a, d,ng) needed later in our

simulations studies.
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Table 4.1: Critical value C;(a, d) for different values of d and ditferent levels
of significance .

«
d 010 005 0.01
2 2419 2.695 3.242
3 2751 3.023 3.562
4 3.023 3.294 3.827
5 3.260 3.530 4.059
6 3474 3.743 4.269
7 3.669 3.938 4.461
8 3.851 4.119 4.640
10 4.183 4.450 4.968
12 4.482 4.748 5.264

Table 4.2: Critical value Ci(a,d, ng) obtained using Vostrikova’s formulae
(4.14), for o = 0.05 and different values of d and ng used in later simula-
tions.

ng
{50 100 200 500

3490 3.540 3.585 3.633
3.830 3.880 3.920 3.970
4,105 4.155 4.200 4.249

-~

s N

4.4 Simulation Studies

In this section we shall study the test statistics in the cases when we compare
three or four means. In each case we have carried out some Monte Carlo
experiments to evaluate the empirical power and the average stopping time of
the tests proposed. Each scenario in these Monte Carlo simulations is based

on 5,000 replicates.
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4.4.1 Comparison of three treatments

In this case we observe vectors Yy = (Y, Yor, Yai)!, & > 1, with independent
normal components, i.e., for each i = 1,2,3, ¥y, iid N(u;,0?), for all k > 1.

The log likelihood function based on the first & observations is given by

Using the parametrization

po 2 = 20 py— o py —1
v = (01)02) = ( 902\/6 3 9;_2\/5>7 n= (7717/’7'2) = (”—3 5 |

the hypothesis of interest becomes (4.7) with ¢y = (0,0), d = 2, and p = 2.

Under Hy the efficient score vector is

k
Vi (0,9) = ( Z(YIJH)J 2Y%5), 231]—)>]>,

and the information matrix is given by

1 _1 0
na 0 72 3
0 -+ 0 0
I(6o,n) = 1 " 3 3m
w0 —a &
oo By 3w
N5 215 3
The maximum likelihood estimator of o2 is
1 1 & 1< 2
~2 _ 4 2 2 s2) | & s s o
0kw21§2k_3k:;<mj+%j+)3j> [31»;( “+32J+33])} '

Then, in terms of the initial parameters, Rao’s statistic (4.9) becomes

[Z?‘ . U:}, _zsgj)rJr [Zg‘zgkj/{z—,,—,}éj)r’

In our simulations the truncation point is ng = 50. For the sequential

R, = (4.15)

F-test we have used ¢ = 3.38, a = 6.68, and ky = 7 as in Siegmund (1980).
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Table 4.3: Comparison of three treatments. Simulated power (Power) and
average stopping time (AVST) for Test 1, Test 2, and Sequential F-test with
normally distributed outcomes for various 6. Level of significance a = 0.05.

POWER AVST
60 Testl Test2 SeqF Test 1 Test2 SeqF

0.0 0.039 0.011 0.042 49.67 49.74 48.54
0.1 0.076 0.020 0.077 49.35  49.57  48.29
0.2 0191 0.063 0.193 4522 4881 47.44
0.3 0411 0.174 0.405 45.60 46.91 4540
0.4 0.660 0371 0.658 41.87  43.36  41.84
0.5 0.860 0.636 0.857 36.95 3778 36.31
0.6 0959 0833 0.960 3248 31.89  30.47
0.7 0992 0946 0.992 28.80  26.06 24.44
0.8 1.000 0.994 1.000 25.85  21.25 19.61

From Table 4.3 we see that Test 1 based on Rao’s statistic and the
sequential F-test are comparable in terms of power but the sequential F-test
stops earlier for large values of . Test 2 which is also based on Rao’s statistic
is comparable with the F-test in terms of average stopping time but it is less
powerful. Note that the asymptotic distribution of these two tests is the same

and the only difference is due to the different stopping rules.

4.4.2 Comparison of four treatments

In the case of four treatinents the log likelihood function is given hy

1k
. 1 .
Iy = —2log (21) — 2log (0%) — =—; Z Z()’;ﬁj —1i)? .

Using the parametrization

_ (2 pa— g () = (s )
0 - (91792763) - (202\/§ s 202\/—2' s 402 )

3 -+ [t 1
n=(m,m) = (“ s ——) ,

2022 202
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the hypothesis of interest hecomes (4.7) with 8y = (0,0,0), d = 3, and p = 2.
Under H, the efficient score vector is
N 1 & o
< Z §|J )J —Z(Y’U_MJ Z 1J+))J (}”;ngr}qj)])
\/Z/: Jj=1 A J=lI

and the information matrix is given hy

-2 0 0 0 0
0 —7—;2; 0 0 0
Iom)=| 0 0 —i 22 20
2 4 dm
0 0 n2 72 72
0 0 2 V3 4y 202 f!l]‘f
75 02 3

The maximum likelihood estimator of o2 is

Then, in terms of the initial parameters, Rao’s statistic (4.9) becomes

R, = [Z?’:AYU - Ylj):r N [Zﬁ;l(y&i _ Y»u)r

61V 2k 61V 2k
+ {Zﬁzl (Vi + Y, — V3, — V) } ’
2%6.Vk

The results of our simulations are presented in Table 4.4. The truncation
point is 19 = 50 in the first part of the table and ny = 100 in the second part.
The values of ¢ and a for the sequential F-test are obtained by using (4.6).
In order to obtain a level of significance of o = 0.05 we have used ky =
¢ = 3.65 and a = 6.95 when ny = 50, and ky = 15, ¢ = 3.60 and ¢ = 6.75 when
ng = 100.

Siegmund (1980) reported a difference of 10 — 15% between the approx-
imated significance level and the empirical value in the case of d = 3 and

ng = 49. From Table 4.4 we can see that the empirical value is larger then the
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approximated value obtained by using (4.6). It seems that the difference be-
comes larger as d and ng increase. In each part of Table 4.4 we have computed
the values of ¢ and @ so that the empirical power of the F test is 0.05. We
obtained ¢ = 4.65 and @' = 7.15 when ng = 50, and ¢ = 4.3 and " = 7.25
when ng = 100. These values were obtained based on 10,000 replicates. The
empirical power obtained by using these values is given in the brackets. As
before Test 1 and the sequential F-test are comparable in terms of power. The
sequential F-test stops earlier but the tests based on Rao’s statistic have the

advantage that the critical values can be easily computed.

Table 4.4: Comparison of four treatments. Sinulated power (Power) and
average stopping time (AVST) for Test 1, Test 2 and Sequential F-test, with
normally distributed outcomes for various § and ny. Level of significance

a = 0.05.
POWER AVST

ng 0 Testl Test 2 Seq F Testl Test2 Seq F

50 0.0 0.044 0.019 0.079 (0.050) 49.68 49.50 48.88 (49.01)
0.1 0.065 0.032 0.131 (0.071) 49.47 49.18  48.59 (48.69)
0.2 0153 0.071 O 953 (0.152) 48.79 4859 47.73 (48. 04)
0.3 0341 0.176 53 (0.328) 46.85 46.66 45.70 (45.91)
04 0591 0.370 0 /OO (0.581) 43.73  43.11 41 53 (41. ()‘))
0.5 0.810 0.613 0.884 (0.798) 39.40 37.85 75 (36.93)
0.6 0.940 0.818 0.969 (0.927) 35.07 31.96 56 (30.25)
0.7 0985 0.946 0.994 (0.983) 31.08 25.96 23.54 (24.34)
0.8 0997 0.985 0.999 (0.977) 28.00 21.50 05 (19.87)

100 0.0 0.047 0.022 0.087
0.1 0.097 0.044 0.161

99.25 98.76 97.87
98.51 97.71 96.39

8.31)
97.43)

(0.050) (9
(0.092) (
0.2 0311 0138 0416 (0.296)  94.04 94.15 91.42 (934,)
0.3 0.667 0.395 0.748 (0.646)  84.30 84.54 78.65 (82
04 0915 0.749 0052 (0.910)  71.25 G67.27 61.24 (82. 55)
05 0.990 0942 0.996 (0.987)  59.52 49.58 44.58 (65.45)
0.6 1.000 0.994 1.000(0.999)  50.98 36.86 32.79 (3595)
0.7 1.000 1.000 1.000(1.000)  44.60 28.35 95.62 (27.44
0.8 1.000 1.000 1.000(1.000)  39.92 22.87 21.52 (22.3 )
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4.5 Sequential change-point ANOVA

We have seen in the previous section that we can find a re-parametrization so
that the components of the efficient score vector arc independent. This means
that we can use the CUSUM test defined in the second chapter to compare
two or more groups. The CUSUM test is more appropriate for an ANOVA
change-point problem, that is, if we want to test if at an unknown time point
7 > 1 one or more of the means have changed.

As before we shall assume that observations are made sequentially on
vectors Y = (Yig, Yor, - -, Yar)', k > 1, where d denotes the number of groups
(treatments), and Yj; is the k™ observation from group (treatment) i. The
observations are assumed to be independently and normally distributed with

common variance, i.e., for each i = 1,2,....d,

Yip iid N(py,0?), forall k>1. (4.16)
Considering 0 as a nuisance parameter, we are interested in testing
Hy: pag = plog = ... = fbgr = p, unknown, forall k>1,
against the alternative

i ik = fok = ... = [bgr = ft, unknown, forall k<7
A
there is an i € {1,2,...,d} such that p, # p, for k>71,

where 7 is the unknown change point.
With the same re-parametrization and the same notations as in the pre-

vious section, for each I < k, we can define
Wit(Bo, M) = D720, 1) Vi (B0, 1)

where T'(6, 7) = Iy — IIQI;Z] Iy and Vi (6, 71) is the score vector based on

the last & — [ observations. The test is defined as in (2.14).
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4.5.1 The case of three groups

When d = 3, by using the results of Section 4.4.1, the components of the vector

Wia(0o, M) are given by

Vi, + Y
W) = U“[Z( j+ Yo =2V,

5 1 <
W = > (V- Yy,
kel a'k\/§ j=,( 1j -J)

and the test is defined as follows.

Test 3 (CUSUM, d = 3). Stop and reject Hy at the first k > 2 for which

1 1 .
ma:\{ - jax U“ —— max W3 ¥ } > Cla"). (4.17)

\/% 2<I<h

If no such k < ny exists then do not reject Hy.

Here the level of significance is & = 1 — (1 — a*)®. For o = 0.05 we
have a* = 0.0253 and C(0.0253) = 2.48. The empirical power and the average
stopping time are presented in Table 4.5. The truncation point is ng = 200 and
the change point is 7 = 100. Before the change-point the observations come
from the same distribution, i.e. p; = p» = ji3 = 0, and after the change point
J41 Is changing to ;LEA) taking on values {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0}. The standard deviation was unchanged, ¢ = 1. Each scenario

is based on 5,000 replications.
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Table 4.5: Simulated power (Power) and average stopping time (AVST) for
the CUSUM test with normally distributed outcomes. o® =1, 19 = pg = 0

and for various u({l). Level of significance oo = 0.05.

ng T [1,3"‘) Power AVST

200 100 0.0 0.041 198.59
0.1  0.099 196.90
02 0216 194.02
0.3 0410 188.31
04 0.645 180.76
05 0.846 171.43
0.6 0952 162.08
0.7 0993 154.48
0.8 0.999 148.19
0.9 1.000 143.65
1.0 1.000 139.33

Table 4.6: Simulated power (Power) and average stopping time (AVST) for the
CUSUM test with normally distributed outcomes. o2 =1, py = p3 = pg =0

and for various /J,(IA). Level of significance o = 0.05.

ng 7 w8V Power AVST

200 100 0.0 0.037 198.75
0.1 0.087 197.39
02 0.180 195.24
0.3 0364 190.25
0.4 0.602 183.14
0.5 0820 174.14
0.6 0.946 164.86
0.7 0990 157.00
0.8 0.998 150.55
0.9 1.000 145.27
1.0 1.000 141.14
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4.5.2 The case of three groups

When d = 4, by using the results of Section 4.4.2, the components of the vector

I'T';Ixt,l(em "7/-‘) are given by

k
i) = (Yy; — Vs
kl P 2 Z 1 ’J E
k
W = ~Yy;)

and the test is defined as follows.
Test 4 (CUSUM, d = 4). Stop and reject Hy at the first k > 2 for which

1 i 1
max {ﬁ max ;,.1,/,5’11)’ T ax Wt i , , \/_ max W } > Ca*). (4.18)

If no such k < ng exists then do not reject Hy.

Here the level of significance is « = 1 — (1 — a*)3, and for a = 0.05 we
have o* = 0.0169 and C(0.0169) = 2.632. The empirical power and the average
stopping time are presented in Table 4.6. The truncation point is ny = 200
and the change point is 7 = 100. Before the change-point the observations
come from the same distribution, i.e., gy = py = p3 = py = 0, and after the
change point g, is changing to ;1,(1“1) taking on values {0.0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The standard deviation was unchanged, ¢ = 1 and

each scenario is based on 5,000 replications.
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Chapter 5

Concluding Remarks

In this thesis the following results were obtained

o A truncated CUSUM-type sequential test was derived. The test is based
on large sample approximations of the efficient score vector. It is ap-
plicable to a large class of distributions including distributions from the
non-exponential family. The main attractive features of the new test are
simple accommodation of nuisance parameters and easy computations of
the asymptotic critical values. The test statistic was examined under the
alternative hypothesis and its consistency was demonstrated. An appli-
cation where the observations come from a non-exponential distribution

was provided.

e The procedure described above was extended to the case of autocorre-
lated observations. The test statistics are provided in the case of mon-
itoring the parameters of an AR(p) process. In the case of AR(1) and
AR(2) models the consistency of the test was proved and the empirical
power was evaluated in a simulation study. As the results of Lai (1995)
are the only ones we found that perform test of change in the same

generality as we do, we have compared our test to his algorithm. The
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approximations developed in this part are strong enough to allow us to
extend other testing procedures available for independent observations

to the case of AR(p) models.

e Some testing procedures were proposed for comparison of three or more
treatments. Tests based on Rao’s statistics proposed by Gombay (2003)
and to the sequential F-test proposed by Siegnund (1980) are compared
in an extensive simulation study. The critical values for Test 2 of Gombay

(2003) are computed.

e The CUSUM test is adapted to the ANOVA change-point problem. The

empirical power and the average stopping time are computed.

e Strong approximations for sums of observations from an AR (p) model

are proved in the last part of the thesis (Appendix A).

The results of this thesis can be extended in the following directions

e As the efficient score vector behaves approximately as a partial sums
sequence, the idea of Siegmund (1985) can be used to develop new stop-
ping rules that can improve the average stopping time of the test. An

open ended procedure might be useful in some problems.

e Procedures to estimate the change-point and the new values of the pa-

rameters following the change-point detection are of interest.

e The components of the efficient score vector might be used to develop
new CUSUM and EWMA control charts. They might be implemented

in the case of multiple change-point problems.

o The procedure can be extended to other time series models like MA or
ARMA. An extension to the case of random coefficient autoregressive

models (RCA) seems to work under certain moment conditions.
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e In the case of comparison of three treatments when the objective is to
find the best treatment, methods similar to those of Betensky (1996)
and Siegmund (1993) can be based on the components of the efficient
score vector. By using the simple structure of the efficient score vector

the approximations of the critical values might be easier to obtain.
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Appendix A

Strong Approximations for

AR(p) Models

In this appendix we verify a strong invariance principle for the partial sums of
an AR(p) time series model. Let {X}rez be a sequence of random variables.

We denote
Sem) =X+ ...+ Xopqr form>0andk>1.

Let || - |1 denote the Ly-norm. Our results will follow from a theorem of
Eberlein (1986). As we are interested in real-valued random variables we shall

state the theorem in a simpler version.

Theorem A.1 (Eberlein). Let {X}iez be a sequence of real-valued ran-

dom variables such that
1. EXy=0forallkeZ.

2. ]|E(Sk(m)|fm)|]1 = 0(1{.-13“() uniformly in m > 1 for some ( € (O,A .
where F,, = o (X, : 1 < m).

oy
~
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3. There exists a constant o2, such that uniformly in m > 1,
1E5v.2 2_0],,—)\
7 i) —on = 0(k™),
as k — oo for some A > 0.
4. There exists v > 0 such that uniformly in m > 1,
1E(Si(m)|Fu) — ESi(m)|s = O(K'™) , a.s.,

as k — oo.

5. There exists a constant M < oo and r > 2, such that E|Xy|" < M for

all k > 1.

Then, there exists a Wiener process {IV(¢) : t > 0}, such that

(1]

Z‘er - U’ln"";(t)l = O(fl/") a.s.,
k=1

as t — oo for some v > 2.

By verifying the assumptions made in the above theorem we get the

following strong approximations for AR(p) time series.

Lemma A.1 Let {Yi}rez be an AR(p) process defined in (3.1) and assume
that (3.2) and (3.3) hold. Then, there exists a Wiener process {W(f) : t > 0},

such that
]

Y (Ve —p) =0, W ()| = Ot'")  as,

k=1

as t — oo for some o, > 0 and some v > 2.

Proof. Let Xy = Y, — p, for all k € Z. It is enough to prove that the
sequence { X} satisfies the assumptions 1-5 of Eberlein’s theorem. Since {X;}

is stationary we can find a sequence of constants (a;);»o such that

X, = Z QGE—; (A1)

i>0
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and there are constants A and 0 < a < 1 such that
la;| < Ma® forany i>0, (A.2)
conform Brockwell and Davis (1991, page 85).
1. It is easy to see that EXy = E(Y}, — u) = 0, for all &, and the first
condition holds.

2. As E(g;) = 0, for all i, by using relationship (A.1) we obtain

I‘-
E(Sk(Tn) l};n) = Z E(Xvn—i-t]ﬁu)
t=1

k
= Z Z (1’,7E(E,,l+1.—i|~7:;1),>

=1 i>0

k -1

= E { E G'iE(5171+L—i) + E O’i€m.+z—i}
t=1 \ =0 i>t
k

= 5 § Qi€ mti—i-

t=1 i>t

Now we can write

“E(Sk.("n)lj:m) “1 =FK

k k
Z Z a’ism—i-t.—i) S Z Z |ai1E|€m+t—i|

t=1 it t=1 >t
k k
] : a]\[E'EO‘ i—1
S ./‘IElEo! ZZO‘L < T:Q—Z(l
t=1 >t =1
ME .
< S—IE—O—,(I ~-af) =0(1), as k — oo,

T (1-a)?
which implies the second assumption of the theorem.

3. We can write
k

Si(m) = Z -Xg;.w +2 Z NinrtXonar.

t=1 1<I<I<h

For each t > 1 we have

2 2 (2
E/\m—}—l, = Z o E(em-H,—i) +2 Z aia"}E(5771'*'7"‘557“"”/-.7')

i>0 7>i>0
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In the same way, for t < I, we get

E(X7n+tXm+l) = Z O’ia'jE(5777,+t—15m+l—j)

i,j2>0

D)
=0 § Qi (1) -

i>0
Now, putting together the las three relationships we obtain
2 2 2 o2 A 2
ESi(m) =ko (Z ,-) Z Zn Q1) - (A.3)
i>0 1<I<I<h i20

This can be rewritten as

1 ‘
EESi(m) = 02< a?) + — Z Za,a,+ I=1)
’ i>0 <t<I<k i>0
. . 20_2 k=1 k-1
=a“<Zaz;> +T{ (l.Za,n,+,> —Z (fZa,n,+,>}
i>0 t=1 i>0 t=1 i>0
k=1 952 k—1
:JZ(Z&{)) +202 (Zcx,a,+,> - :Z— <1Za,n,+,>
i>0 t=1 \i>0 "=l i>0
- 2(Za§) + A + By
i>0

By using (A.2), for any n > 1 we have

k4+n—1 A+n 1
I‘4A:+n - Ak| = |20° Z <Z Of10’1+r> < 20° Z (Z |O'i0f'i+t|>
=k N i>0 =k N i>0
k+n—1 D a9 n—1
o o 20°M
2912 2 i
<22 Y (@'Y )=y
=k i>0 - (=0
202 M> !
= f(l—a") — 0 as k —
(l—af?)(l—af)a (1—-a") as 0,

and by the Cauchy criterion the sequence {Ax} is convergent. Let

A= ]\121010 Ay =202 Z ( Z aiarm,) .

t>1 \i>0
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Then, as before we obtain

|A = Ay =207 Z (z a«,~cr,;+1> ‘ < 25%0 P Z o ( Z of"">
>k N0 1>k >0
20’2]"[2 I8
= F =0k as k— .
(1-a®)(1- a)a O(k™) as o

By using the same techniques we get

902 k-1 {)O'l k=1
IBI-‘.I = 2 (tZaricyH,) < T <f Z |O’7'O','+(|>

=1 i>0 =1 i>0
L2 o) _ 20007
2 a™ | = C
St Z l»(l—az)z '

t=1 i>0 =1

2002 M3

Now using the last two relationships we obtain
9
1 2
EES,?,(m) - o‘-’<za,-> = (A —4) + B, =0(k™"),
' i>0
and the third assumption of Eberlein’s theorem follows.
4. Observe that
k k
Sk('m') = Z Xm-H = Z (Z ai£m+t-—i> = Z Yi€mth—j
(=1 t=1 N >0 7>0

where vy; = v;(k) are defined by

Y=ao+ta+...+q; for j=0,1,... k-1,

(A.4)
VY=o o+ Q- for j > k.
Note that for each j > k we have
7 J k-1 ,
; L . M(1—ab) .,
15l = | Z | <M Z ol = Mol k! Zo” =) (1 “ )0:1"‘“ :

i=j— k1 =ikt 1 =0 (1-a)

(A.5)

Now we can write

S}f (Tn) = Z 7?€%1+k—j + 2 Z Z ’7'i7j€7n,+k—i5m+k-—j . (A())

320 J20 i>j
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By using (A.G) we obtain
ES2(m) =a‘2(}:ﬁ> : (A7)
Jj20
and

k-1
E(Sf(l?l)lf;,,) = 0’2(2');)> + Z j m4-k—j +2 ZZ%’MCHH—L iEm+k—j
j=0

j=k Jj=2k i>j7

(A8)
Now collecting (A.7) and (A.8)
E(Sf(n_l)l}—m) ESI. 171 Z f)_; m+l\-_7 U ) +2 Z Z YiYi€Emak—i€m+k—j

>k j=k i>j

= Dy(m) .

We can write
E|Dy(m)| < Eleg — 0| 27,2 + 2E|ege | ZZ 7751 = Ak + By .
izk izk i>j
Now we shall prove that each term on the right-hand side of the above in-
equality is of order O(1) as k — oo. Consider the first term. By (A.5) we

have

5 5 _ M?0PE|e} — o? N o
Ap = E’E(-; — Uzl 2712 < l€g _ g I(l _ O,L.)z Zaz(]_;.)

ik (1-a) ik
_ MPa?Ele} — 0| a
- (1—-a)?(1-a?)

[n the same way

B = 28leeeil Y gl < LTl - iy 35 e

o =0(1) as k — .

j=k i>) =k i>j
‘; £
< M Zn)(J k)(z )
(1 - a) >k i>0
_____ a Jj—k)
(1 - a) ;
M2 E|eqe |

N C(1-a) (1——a~)(1“ak)2=0(1) as k — 00,
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and the fourth assumption is satisfied. As the last assumption is trivial to

check the lemma is proved.
O

Lemma A.2 Let {Yi}rez be an AR(p) process defined in (3.1) and assume
that (3.2) and (3.3) hold. Then, for any s € {1,2,....p} there exists a Wiener

process {H(t) : ¢ > 0}, such that

‘ZE’” (Yies — 1) — oW (1)} = O(t)  a.s.,

as t — oo for some g, > 0 and some v > 2

Proof. Let s € {1,2,...,p} fixed and denote X}, = £;(Y}—s— ). Now we shall
prove that the sequence {X)} satisfies assumptions 1-5 of Eberlein’s theorem.
1. It is easy to sce that EX), = E(sk(Y;,,_S ——p.)) =E(e)E(Y_y—p) =0,
for all &, and the first condition holds.
2. As E(g;) = 0, for all 4, by using relationship (A.1) for (Yi_s — p) w

obtain

k

(SA Tn)lf.m Z E m+1 If.m = Z E(Em-H (Y;)H—L—s - /1‘)|'7:m)
=1

= Z Z Q'iE(5717,+15111,+t—s—ilfm,)

t=1 i>0
k t—s-1
= § { § Q; E v1n+15m+t—s z E QiEmti—s—i (tm-H)}
i2l—s
=0 ,

and the second assumption is verified.
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3. For each t > 1 we have

E‘X’%H-!. = E(€%1+t()/;ll+t—s - /1')2) = E(E%J,H)E(Ymﬁ—t—s - /l')g

2 2pm( 2 2
=a E CY,jE(57n+f,_S_i) + 20 E O'ia'jE(Em.+l-—s—z',5m+t—s—-j)

i>0 7>i>0

:(;4(2@;%).

i>0

In the same way, for 0 < t <[, we get

E(X1)1.+1Xm+l) = E[5m+15m+l( mt—s /1)( mal—s — /’)]
= E(E'NH-!)E<517)+I)E[(Mn+1—s - /1')(};11—%-1—3 - /l)]
= 0.

Now using the last two relationships we obtain

k
ESA 171 = ZEXIN+I + Z Z E(-Xm-l»("\"m+l)

1<i<i<k
= ko ( Z af) , (A.9)
>0
and the third assumption follows.

4. For each t > 1 we can write

E(Xgl.}-tl]:m) = E(e;-);l—{-t (Ym+t-s - /1’)2|f-m)
{—s—1

= Z “?E(531,+L531,+L—s—i!j:111) + Z O’?E(51211,+15.72n,+1.-.s—i‘j:m)

i=0 i>t—s

2 : 2
+ 2 a"iaij(Em.p.(5771,+I.—s~i5m+{,-—s——jI]:m)

j>i>0

1—s—1
4 2 2 2 2
=a ( E 071) +o E Q€ pt—s—-i

=0 i>t—s

2
+ 20 E QiQEmst—s~iEmtt—s—7 -
Jj>i>t-s
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In a similar way, for t <1, we get
E(X7n+t—X1n+ll\7:'.m,) - E[5'm+l.5m+l(}/m+t.—s - /1) (Y;n+l—s - /J')lf.m]
= Z Qiaj [E (Em+l,sm-s-lsm,—}-l—-s—'iem,—H—s—jl]:'m)]

4320

= 0.

Now, putting together the last two relationships we obtain

E(Spm)|Fu) = aZ (Z ) 3 ( D OEhimsn )

=1 i>l—s

&
'—’§ § o,
20 < aiGj5m,+(—.s‘—i5m+f.—s—j>
=1

Jj>izt—s

From the above relation and (A.9) we get,

k
E(Sﬁ(m)U—",,J ES}(m) = o? { Z o? (Efnv“_s_i - 02)}
k
+ 20 22{ Z Qi iEmtt —s—iCm4t—s— 7}

Jj>izt—-s

= Ag(m) + By(m) .

Consider the first term
k
Z { Z ;2 Emtt—s—i 02)}’

t=1 i>t-8
k
< JZZ{ Z o5 E!Cm—{»-i s—i —02’}

t=1 i>t—s
K
< o’ M*Elel - o?| Z ( Z af“’i>
=1 \i>i—s
k
< *MPE|E - 07| Z (alg(t”s) Z a:2i>
i>0

_ )AIZEIEO_U io)(l S)ZO)(’ D

(1-a?)
ZAJZE 52 _ ,2(1-—5 R
=Z (Ilo_ag)?l (1-a*)=0(1), as k — 0.
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Counsider now the second term

k
Z { Qi€mti— s——'( E VGEmpt—s— )}I
i2t—s

i=I j>i

k
207y { ol Bleme-s-i ( 2 la’flEFE'"ﬂ-s-f') }

(=1 -3 i>i
k

2 sz{; (=)}

1=]

202 M?(Eeq))? & 2
o) Z<Z” >

t=1 i>l—s

S ()

=1 i>0

E|Bi(m)| = 20°F

IN

l/\

202CY]\:[2(E|€0D2 u 2(l—s)
= ) Za

(1-a)1~a? —

B 202 aM?(Eleg))?a(1=9) 0
T-a)1-a?) Za
20%aM?(Eleg|)?a®( )

= T—a(—c) (1-a®*)=0(1), as k — oo .

From the last two relationships we obtain ||Ax(m) + Bi(m)|l; = O(1) and the
fourth assumption is verified. As g; are normally distributed and the process

is stationary the last assumption follows and the lemma is proved.
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Appendix B

The Distribution of the

Maximum of the Bessel Process

In this appendix we give more extensive tables of the distribution of the max-
imum of the Bessel process of different orders d. Each table presents the
probability

P(sup R(1) < z) ,

0<i<1

where R (t) is defined as

ROt = \/ W) + ...+ W2(t),

and Wi(t), i =1,...,d, are independent standard Brownian processes.
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Table B.1: Maximum of the Bessel process probability in left-hand tail,
P(supy<i<; R(t) < z), for d = 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Second decimal place of z

7 .00 .01 .02 .03 .04 .05 .06 07 .08 .09

1.5 | 44190 44937 45680 46421 47158 47891 48620 49346 .50067 .50784
1.6 | 51496 .52205 .52908 .53G07 .54300 .54989 53673 56351 57024 57692
1.7 | 58354 .59011 .59662 .60307 .60947 .61580 .62208 .62830 .63446 .64055
1.8 | .64659 .65256 .65847 .66432 67010 .67582 68148 .68708 .69261 .69808
1.9 | 70348 .70882 .71409 .71930 .72445 72953 73455 .73950 .74439 74921
2.0 | 75397 75867 .76330 .76787 .77238 77682 78120 .78552 78977 .79396
2.1 | .79809 .80216 .80617 .81012 .81401 .81783 .82160 .82531 .82896 .83255
2.2 1 83608 .83956 .84208 .84634 84965 85290 85610 .85924 86233 .86536
2.3 | 86834 .87127 .87415 .87698 .87975 .88248 .88515 88778 .89036 .89289
2.4 | .89537 .89780 .90019 .90254 .90484 .90709 90930 .91147 91359 .91568
2.5 | 91772 91972 92168 92359 .92548 92732 .92912 .93089 93261 .93431
2.6 | 93596 .93759 .93917 94072 94224 94373 94518 94660 .94799 .94935
2.7 1 95068 .95198 .95325 .95449 .95570 95689 95804 95917 96028 96135
2.8 | .96241 .96343 .96444 96542 96637 .96730 .96821 96910 .96997 .97081
2.9 | 97164 97244 .97323 .97399 97473 97546 .97617 97686 .97753 .97818
3.0 ] 97882 97944 .98005 .98064 .98121 98177 98231 .98284 98336 .98386
3.1 | 98435 98482 .98528 98573 .98617 .98659 .98701 98741 .98780 .98818
3.2 ] 98855 98891 .98926 .98959 .98992 .99024 .99035 .99085 .99115 .99143
3.31.99171 99198 .99224 .99249 .99273 .99297 .99320 .99342 .99364 .99385
3.4 1.99406 .99425 .99445 .99463 .99481 .99499 99516 .99532 99548 .99563
3.5 | 99578 .99593 .99607 .99620 .99633 .99646 .99658 .99670 .99682 .99693
3.6 | 99704 99714 99724 99734 .99744 99753 .09762 99770 99778 .99786
3.7 ] .99794 99802 .99809 .99816 .99822 99829 99835 09841 .99847 .99853
3.8 | .99858 99864 .99869 99374 .99878 .99883 .00887 .99892 .99896 .99900
3.9 1.99903 .99907 .99911 99914 .99917 .99921 .99924 99927 .99930 .99932
4.0 1 .99935 .99937 .99940 .99942 .99945 .99947 .99949 99951 .99953 .99955
4.1 1 .99957 .99958 .99960 .99962 .99963 .99965 .99966 .99968 .99969 .99970
4.2 1 .99971  .99973 .99974 .99975 .99976 .99977 .99978 .99979 99980 .99980
4.3 | 99981 .99982 .99983 .99984 .99984 99985 .99986 .9998G 99987 .99987
4.4 ] .99988 .99988 .99989 .99989 .99990 .99990 .99991 .99991 .99992 .99992
4.5 1.99992  .99993 99993 .99993 .99994 .99994 99994 .99994 99995 .99995
4.6 | 199995 .99995 .99996 .99996 .99996 .9999G .99996 .99997 .99997 .99997
4.7 | .99997 .99997 .99997 .99997 .99998 .99998 .99998 .99998 .99998 .99998
4.8 1 .99998 99998 .99998 .99998 .99999 .99999 .99999 .99999 .99999 .99999
5.0 | .99999 .99999 .99999 1.0000 1.0000 [.0000 1.0000 1.0000 1.0000 1.0000
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Table B.2:
P(supgg<) R(t) < z), for d = 3.

Maximum of the Bessel process probabhility

in left-hand tail,

Second decimal place of z

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Z .00 .01 .02 .03 04 .05 .06 07 .08 .09

1.9 ] .50133 .50816 .51497 .52173 52847 .53517 54183 .54845 .55504 .56158
2.0 | .56808 .57454 .58095 .58732 .59364 .59991 60614 61232 61844 62452
2.1 ] .63055 63652 .64244 64831 .65412 .65988 .66358 67123 .67682 .G8236
2.2 | .68783 69325 .69862 .70392 70917 71435 71948 72455 .72956 73451
2.3 .73940 74423 74900 .75372 75837 .76296 .76749 .77196 77638 .78073
2.4 ] .78502 .78926 .79343 .79755 80161 .80561 .80955 81343 81725 .82102
2.5 | .82473 .82838 .83198 .83552 .83900 .84243 84580 .84912 .85238 .85539
2.6 | .85875 .86185 .86490 .86790 .87085 .87374 87659 .87938 .88213 88482
2.7 | 88747 89007 .89262 89512 89757 .89998 .90235 90467 .90694 90917
2.8 | 91136 .91350 91561 91767 91969 92166 .92360 .92550 .92736 .92918
2.9 1.93096 .93271 .93442 .93609 .93773 .93933 .94090 94243 94393 94540
3.0 § 94683 .94823 .94961 .95095 .95226 .95354 95479 .95601 .95720 .95837
3.1 .95951 .96062 .96170 .96276 .96380 .96481 .96579 .96675 .967G9 .96861
3.2 96950 .97037 97122 .97204 97285 .97364 .97440 97515 97588 .97G59
3.3 .97728 97795 .97860 97924 97986 .98047 .98106 .98163 .98219 .98273
3.4 98326  .98377 98427 98476 .98523 .98569 .98G13 98657 .98699 98740
3.5 | 98780 .98818 .98856 .98893 .98928 .98963 .98996 .99028 .99060 .99091
3.6 | .99120 .99149 .99177 .99204 99231 .99256 .99281 .99305 .99328 .99351
3.7].99373  .99394 .99415 99435 .99454 .99473 99491 99508 .99525 .99542
3.8 1.99558 .99573 99588 .99603 .99617 .99630 .99643 .99656 99668 .99680
3.9 99692 99703 99713 99724 99734 99744 99753 99762 99771 99779
4.0 | 99787 .99795 .99803 99810 .99817 .99824 99831 99837 .99843 .99849
4.1 ] .99855 .99861 .99866 99871 99876 .99881 .99886 99890 99894 .99898
4.2 .99902 .99906 .99910 .99914 .99917 .99920 .99924 .99927 .99930 .99932
4.3] 99935 .99938 .99940 .99943 99945 .99948 .99950 .99952 .99954 .99956
4.4 ] .99958 .99959 99961 .999G63 .99964 .999G6 .99967 .99969 .99970 .99971
4.5 1.99973  .99974 99975 .99976 .99977 99978 .99979 .99980 .99981 .99982
4.6 ] .99983 .99984 .99984 99985 .99986 .99987 99987 .99988 .99988 .99989
47799990 99990 .99991 .99991 .99992 99992 99992 .99993 .99993 .99994
4.8 1 .99994 .99994 .99995 99995 .99995 .99995 .99996 99996 .99996 .99997
4.9 1 99997 99997 99997 99997 99998 .99998 .99998 .99998 .99998 .99998
5.0 1.99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 1.0000 1.0000
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Table B.3: Maximum of the Bessel process probability in left-hand tail,
P(supggc) RO(t) < z), for d = 4.
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Second decimal place of z

7 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

2.0 | 38912 .3959G 40280 .40964 41648 42331 43014 43697 44378 .45059
2.1 | 45738 46416 47092 47767 48439 49110 49778 50444 51108 51769
2.2 | 52427 53082 .53735 54384  .55020 .55672 56310 56945  .5THTO6 58204
2.3 | .58827 .5944G6 .60061 .60672 .61278 .61880 .62477 .63070 .63637 .64240
2.4 1 .64818 65391 .63959 .66522 67080 67632 68179 .68721 .69258 .G9789
2.5 | 70314 70835 .71349 .71858 .72361 .72859 73351 .73838 .74318 .74793
2.6 | .75263 75726 76184 76636 .77082 77523 77957 .T838G .78809 .79227
2.7 | 79639 .80045 .80445 .80840 .81229 81612 .81989 .82361 .82728 .83089
2.8 | 83444 83794 84138 .84477 84811 .85139 85462 .85779 .86G091 .8G398
2.9 | 86700 86997 87288 87575 .87RHG  .88133 88404 88671 88933  .89190
3.0 | .89443 89691 .89934 .90172 90406 .90636 .90861 .91082 .91299 91511
3.1 .91719 91923 .92123 .92318 .92510 .92698 .92882 .93062 .93239 93411
3.2 1 93580 93746 93908 94006 94221 94372 94521 94666 94807 94946
3.3 1.95081 95213 95343 .95469 .95592 95713 .93831 .95946 .96058 .9G168
3.4 1.96275 96379 96481 .96580 96677 .96772 .968G4 .96954 .97042 97127
3.5 71 .97211 97292 97371 97448 97524 97597 97668 .97738 .97805 97871
3.6 | .97935 .97998 98059 98118 98175 .98231 .9828G .98339 .98390 .98440
3.7 1 98489 98536 .98583 .98G27 98671 98713 .98754 98794 98833 .98870
3.8 [ .98907 .98942 98977 .99010 .99043 .99074 99105 .99134 99163 .99191
3.9 1 .99218 99244 99270 .99294 99318 .99341 .99364 .99385 .99406 .99427
4.0 | .99447 99466 99484 99502 99520 99537 99553 .99569 .99584 .99599
4.1 1 99613 .99627 99640 .99653 .99665 99678 .99689 99701 99711 .99722
4.2 1 .99732 99742 99752 .99761 99770 99778 99786 .99794 .99802 .99810
4.3 1 .99817 .99824 99830 .99837 99843 .99849 .99855 .998G0 .998G66 99871
4.4 | 99876 .99881 .99886G .99890 .99894 .99898 .99902 .99906 .99910 .99914
4.5 1.99917 .99920 .99924 .99927 .99930 .99932 .99935 .99938 .99940 .99943
4.6 | .99945 .99947 .99950 .99952 .99954 .99956 .99957 .99959 .99961 .999G63
4.7 1 .99964 99966 99967 .99969 .99970 .99971 99972 .99974 .99975 .99976
4.8 1.99977  .99978 .99979 .99980 .99981 .99982 .99982 .99983 .99984 .99985
4.9 | 99985 .99986 .99987 .99987 .09988 .99988 .99989 .99989 .99990 .99990
5.0 | .99991 99991 .99992 .99992 .99992 .99993 .99993 .99993 .99994 .99994
5.11.99994 99995 .99995 .99995 .99995 .99996 .9999G .99996 .99996 .99996
5.2 1.99997 .99997 .99997 .99997 99997 .99997 .99997 .99998 .99998 .99998
5.3 | .99998 99998 .99998 .99998 .99998 .99998 .99999 .99993 .99999  .99999
5.5 ] .99999 .99999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table B.4: Maximum of the Bessel process probability in left-hand tail,
P(supgg <) R9(t) < z), for d = 5.
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Second decimal place of z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

2.4 1 .50291 .50943 .51592 .52239 52884 .53526 .54165 .54801 55435 .36065
2.5 | .56691 .57315 .57935 .58551 .59164 .59772 .60377 .60978 .G1574 .62167
2.6 | .62755 .63338 .63918 .64492 65062 .65627 .66188 66743 67294 .67839
2.7 | .68380 .68915 .69446 .69971 70491 .71005 71514 .72018 72517 .73009
2.8 | .73497 .73979 74455 74926 .75392 .75851 76306 .76734 77197 77635
2.9 | .78066 .78492 78013 .79328 79737 80141 80539 80931 L1318 .81G99
3.0 | 82075 .82445 .82810 .83169 .83523 83872 84215 84552 84884 .85211
3.1 .85533 .85849 .86161 .86467 .86768 .87064 .87354 .87640 87921 88197
3.2 | .88468 .88734 .88995 .89252 .89504 .89751 .89994 .90232 90465 .90695
3.3 (.90919 91140 .91356 91568 91775 91979 92178 92374 92565 .92753
3.4 1.92937 93116 .93292 93465 93633 93799 .93960 94118 .94273 94424
3.5 | 94572 94716 .94858 .94996 95131 .95263 .95392 95518 .95641 95701
3.6 | 95878 .95993 .96105 96214 96320 .96424 96526 96625 96721 .96816
3.7 1 96907 .96997 .97084 .97169 97252 97333 97412 97489 97563 .97G36
3.8 1 .97707 97776 97843 97909 97972 .9803:1 98095 .98153 .98210 .982066
3.9 ) 98320 98372 98423 98473 98521 98568 98614 98658 98701 .98743
4.0 98783 .98823 .98861 .98898 .38934 .98969 .99003 .9903G .99068 .99099
4.1 1.99129 99158 99187 .99214 99241 .99267 .99292 99316 .99339 .993062
4.2 1.99384 99405 99426 .9944G6 .99465 .99484 99502 .99520 .99537 .99553
4.3 1 .99569 .99585 .99600 .99614 .99628 .99G642 .99655 .99667 99679 .99G91
4.4 1 .99703 .99714 .99724 99734 99744 99754 99763 .99772 99781 .99789
4.5 1 .99797 99805 .99812 99819 .99826 .99833 .99839 99846 .99852 .99857
4.6 | 99863 .99868 .99874 .99879 99883 .99888 .99893 .99897 .99901 .99905
4.7 1 .99909 99913 .99916 .99920 .99923 .99926 .99929 .99932 .99935 .99938
4.8 1 .99940 .99943 .99945 .99947 99950 .99952 .99954 .99956 .99958 .99959
4.9 ] 99961 .99963 99965 .99966 .99968 .99969 .99970 .99972 99973 99974
5.0 { 99975 .99976 .99978 .99979 .99980 .99980 .99981 .99982 99983 .9998.
5.1 [ .99985 .99985 .9998G .99987 .99987 .99988 .99989 .99989 .99990 .99990
521 .99991 99991 .99992 .99992 99992 99993 .99993 .99994 99994  .9999.
5.31.99995 .99995 .99995 .99995 .99996 .9999G .99996 .9999G .99997 .99997
5.4 | .99997 99997 .99997 .99998 99998 .99998 .99998 .99998 .99998 .99999
5.5 1 .99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 1.0000
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Table B.5:

Maximum of the Bessel process probability in left-hand tail,
P(supge g RO(t) < z), for d =6.
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Second decimal place of z

4 .00 .01 .02 03 .04 05 06 07 .08 09

2.5 | 43174 43829 44483 45136 45789 46441 47092 47742 48391 .49039
2.6 | 49685 .50329 50971 .51612 .52250 52886 .53520 .54151 .54780 .55400
2.7 | 56029 56648 .57265 .5H7879 .58489 39095 .59698 .60298 .60893 .G1485
2.8 [ .62072 .62656 .63235 .63810 .64381 .64947 .65509 .66066 .66G19 .6TIGT
2.9 | 67710 .68248 .68781 .69309 .69833 .70351 .70864 71372 71875 .72372
3.0 | .72864 .73351 .73833 .74309 .74779 75245 .75705 76159 76608 .77051
3.1 77489 77921 78348 78769 79185 79595 .80000 80399 80793 .81181
3.2 | 81564 .81941  .82313 82679 .83040 83396 .83746 84090 .84430 .84764
3.3 .85093 .85416 .85735 .86048 .86356 .8GG59 .86957 87249 87537 87820
3.4 1 .88098 .88371 .88639 .88903 .89161 89415 .89665 .89909 .90149 .90385
3.5 | 90616 .90843 .91065 91283 .91497 91707 .91912 92114 92311 .92504
3.6 |.92693 .92879 .93060 .93238 .93412 93583 .93749 .93913 .94072 .94228
3.7 1 .94381 94530 .94676 .94819 .94959 .95095 .95228 95359 95486 .95610
3.8 ) 95732 95850 95966 96079 96189 96297 .96402 96505 96604 96702
3.9 96797 .96890 .96980 .97068 97154 97238 97320 97399 97477 97552
4.0 | 97626 .97697 .97767 97835 .97901 .979G5 .98027 98088 .98147 .98205
4.1 1 98261 .98315 .98368 98420 .98470 .98518 .98566 98612 .98G56 .98699
4.2 98741 98782 .08822 .988G0 .98898 .98934 .98969 .99004 .99037 .99069
4.3 1 .99100 .99130 .99160 .99188 .99216 .99242 .99268 .99293 .99318 .99341
4.4 1.99364 .99386 .99408 .99428 .99448 99468 .99487 99505 99522 .99539
4.5 1 99556 .99572 .99587 .99602 99617 .99630 .99644 .99657 .99670 .99(G82
4.6 | 99693 .99705 .99716 .99726 .99737 .99746 .99756 .997G5 99774 .99783
4.7 1.99791 99799 .99807 .99814 99821 99828 99835 99841 .99847 .99853
4.8 | 99859 .99865 .99870 .99875 .99880 .99885 99839 .99894 .99898 .99902
4.9 1.99906 .99910 .99914 99917 .99920 .99924 99927 .99930 .99933 .99936
5.0 {.99938 .99941 .99943 .99946 .99948 .99950 .99952 99954 .99956 .99958
5.1 1.99960 .99962 .99963 .99965 .99966 .999G68 .99969 .99971 .99972 .99973
5.21.99974 .99975 .99976 .99978 .99979 .99979 .99980 .99981 .99982 .99983
5.3 1.99984 .99984 .99985 .99986 .99986 .99987 .99988 99988 .99989 .99989
5.41.99990 .99990 .99991 .99991 .99992 99992 .99992 99993 .99993 .9999:1
5.51.99994  .99994 99994 .99995 .99995 99995 .99995 .9999G .9999G .99996
5.6 .99996 .99997 .99997 .99997 .99997 .99997 .99997 99998 .99998 .99998
5.7 .99998 .99998 .99998 .99998 .99998 .99999 .99999 .99999 .99999 .99999
5.8 1.99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 1.0000 1.0000

122




Table B.G:

Maximum of the Bessel process probability in left-hand tail,
P(supyg<; RO(t) < z), ford = 7.
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Second decimal place of z

7 .00 01 02 03 04 05 06 07 08 09

2.8 | 50184 50820 51454 52086 .52716 .53344 53970 54593 55213 55832
2.9 | 56447 57059 .5T668 58274 58877 .594TT 60073 .606G5 61254 .61839
3.0 .62420  .62997 .63570 64139 .GA703 63263 65819 .6G371 .66918 .67460
3.1 | .67997 .68530 .69058 .69581 .70100 .70613 71121 71624 .72122 72615
321 .73103 .7358%5 74063 74535 .75001 .75462 .75918 .76369 .76814 .77254
3.3 | 77688 78117 .78540 .78958 .79371 79778 80179 .80575 .80966 .81351
3.4 | 81731 82106 .82475 .82838 83197 .83549 83897 84239 84576 .84908
3.5 | .85235 85556 .85872 .86G183 .86489 .8G6790 .87085 .8737G .87662 .87943
3.6 | .88219 88490 .88756 89018 .89275 .89527 89775 90018 .90256 .90490
3.7 1.90720 90945 91166 .91382 .91595 .91803 .92007 .92207 92402 .92594
3.8 | 92782 92966 .93147 93323 .93496 .93665 .93830 .93992 94151 .94306
3.9 94457 94605 .94750 94892 95030 .95165 .95298 95427 .95553 .95676
4.0 ] .95796 95914 96029 96141 .96250 .96356 .96460 96562 .9G666L .96G7H8
4.1 1 .96852 96943 97033 97120 97205 97288 97369 97447 97524 .97399
4.2 1 .97671 97742 97811 .97878 .97943 98006 .98068 .98128 .98187 .98243
4.3 | 98299 98352 .98404 .98455 .98505 .98552 .98599 98644 .98G88 .98731
4.4 | 98772 98812 .98851 .98889 .98926 .98962 .98996 .99030 .99063 .99094
4.5 1 .99125 99154 99183 .99211 .99238 .99264 .99290 .99314 .99338 .99361
4.6 [ .99384 .99405 99426 .99447 .99466 .99485 .99504 99521 99539 .99555
4.7 1.99571 99587 .99602 .99G16 .99631 .99644 .99657 99670 .99682 .99694
4.8 1 .99705 99717 99727 99738 .9974T .9975T7 99766 99775 99784 .99792
1.9 | .99800 .99808 .99815 .99823 .99830 .99836 .99843 .99849 .99855 .99861
5.0 | 99866 99872 99877 99882 .0988G .99891 .99895 99900 .99904 .99908
5.1 1.99912 99915 99919 .99922 .99925 .99928 .99931 .99934 .99937 .999:10
5.21.99942 99945 99947 99949 .99952 .99954 .99956 .99958 .99959 .99961
5.3 1.99963 .99965 99966 99968 .99969 .99971 .99972 99973 .99974 .99976
5.4 1 .99977 .99978 .99979 99980 .99981 .99982 .99982 .99983 .99984 .99985
5.5 | 99986 .99986 .99987 .99988 .99988 .99989 .99989 .99990 .99990 .99991
5.6 | .99991 .99992 .99992 99993 .99993 .99993 .99994 .99994 .99994 .99995
5.71.99995 .99995 99996 .99996 .99996 .99996 .99996 .99997 .99997 .99997
5.8 1.99997 .99997 99998 .99998 99998 .99998 .99998 .99998 .99998 .99999
6.0 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table B.T:

Maxinnun of the Bessel process probability in left-hand tail,
P(supggc, RO(t) < z), for d = 8.

Second decimal place of z

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% .00 01 .02 .03 .04 .05 .06 .07 08 .09

3.0 | .51514 52140 52765 .53387 .54008 .54626 .55242 .55855 .56465 .57073
3.1 | 57678 .58280 .58879 .59474 .60066 .60635 .G1240 .G1822 62399 .62973
3.2 | 63543 64109 .64671 .65229 65782 .66331 66876 67410 67951 .G8482
3.3 1 .69009 .69530 .70047 .70559 .T1065 .71567 .72064 72556 .73043 .73525
3.4 | 74001 .74472 74938 .75399 .75855 76305 .76750 77189 .77623 .78052
3.5 | 78476 .78894 .79306 .79714 80115 .80512 .80903 81289 81669 .82044
3.6 | 82413 82778 83136 .83490 83838 84181 84519 84852 85179 .85501
3.7 | 85818 86130 .86437 .8G738 87035 .87327 87614 .87895 .88172 88445
3.8 | 88712 88974 .89232 .8948G .89734 .89978 .90218 .90453 .90683 .90909
3.9 91131 91349 91562 91771 91976 92177 92374 92566 .92755 .92940
4.0 | 93121 93299 93472 93642 93808 93971 .94130 .94286 .94438 94587
4.1 ] 94733 94875 .95014 .95150 .95283 93413 .95340 .95664 .95785 .95903
4.2 1 .96018 96131 .96240 .96348 96452 .96554 96654 96751 96845 .9G938
4.3 | .97028 971156 97201 .97284 .97365 97444 97521 97596 .97669 .97740
4.4 | 97809 97876 .97942 .98005 98067 98128 98186 .98243 .98299 .98353
4.5 | 98405 .98456 98505 .98553 98600 .98G45 .98690 98732 98774 .98814
4.6 | 98853 .98891 98928 .98964 98999 .99032 .99065 .99096 .99127 99157
4.7 | 99186 .99214 .99241 .99267 .99292 99317 99341 .9936{4 99386 99408
4.8 1.99429 99449 99469 .99488 .99506 .99524 .99541 99558 99574 .99589
1.9 ] 99604 99619 .99633 .99G46 .99660 .99672 .99684 .99696 .99708 .99719
5.0 1 .99729 99740 99749 .99759 99768 99777 99786 .99794 .99802 .99810
5.1 | 99817 99824 .99831 .99838 .99844 99850 .9985G .99862 .99867 .99873
5.2 | 99878 .99883 .99888 .99892 .99896 .99901 .99905 .99909 .99912 .99916
5.3 1.99920 .99923 .99926 .99929 .09932 .99935 99938 .99940 .99943 .99945
5.4 | .99948 .99950 .99952 .99954 .99956 .99958 .99960 .99962 .99963 .99965
5.5 ] .99966 .99968 .99969 .99971 .99972 99973 .99974 .99976 .99977 .99978
5.6 ) 99979 99930 .99981 99982 .99982 .99983 .99984 .09985 .99985 .99980
5.7 | .99987 99987 .99988 .99989 .99989 .99990 .99990 .99991 .99991 .99992
5.8 1.99992 99992 .99993 .99993 .99993 .99994 .99994 .99994 .99995 .99995
5.9 1 .99995 99996 .99996 .99996 99996 99996 .99997 99997 99997 99997
6.0 | .99997 99997 .99998 .99998 .99998 .99998 .99998 .99998 .99998 .99998
6.1 [.99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 99999  .99999
6.2 1 .99999 .99999 .99999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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