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A bstract

In this thesis new procedures for sequential testing of composite hypotheses 

are proposed. The procedures are based on large sample approximations of 

the efficient score vector.

In the first part of the thesis we consider the problem of change-point 

detection. Specifically, in Chapter 2, we will develop a new CUSUM-type 

procedure for sequential detection of a change-point in the distribution of a 

sequence of independent observations (not necessarily from the exponential 

family of distributions). In Chapter 3 the method is extended to the case 

of autocorrelated observations. In both cases we investigate the asymptotic 

distribution of the test statistics under the alternative hypothesis of change.

In Chapter 4 we compute the critical values for the tests of Gombay 

(2002) and show how these procedures can be used in clinical trials for com­

parison of three or more treatments. In the last part we adapt the CUSUM-test 

to solve the change-point ANOVA problem.

At the end of each chapter Monte Carlo experiments are conducted in 

order to evaluate the empirical power of the new procedures and for comparison 

to  other methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgem ents

I would like to express my deepest gratitude to my supervisor, Dr. Edit 
Gombay, for introducing me to the wonderful world of sequential analysis, and 
for her immense support and guidance during my graduate study and thesis 
preparation. Without her help, this thesis would not have come to the light. 
It has been a great pleasure to work under her supervision.

Special thanks go to Dr. D. Wiens, Dr. B. Schmuland, and Dr. R. 
Karunamuni for their valuable comments and support. I thank Profs R.J. 
Kulperger and Dr. M. Zuo for agreeing to be external members on my exam 
committee and for their careful reading of my thesis. Thank you very much to 
all my committee members for sacrificing some of their time to accommodate 
my exam date.

Thanks to the Department of Mathematical and Statistical Sciences for 
the financial support I received during my stay. Thanks are also due to the 
support staff members and especially to Dona Guelzow for her unforgettable 
support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction 1
1.1 Review and P roblem s........................................................................  1

1.1.1 Sequential testing of composite hypotheses...................... 1
1.1.2 Change-point problem s........................................................  3

1.2 Overview of the thesis .....................................................................  7

2 A  C U SU M -T ype Sequential Test 9
2.1 Preliminaries .....................................................................................  9
2.2 The CUSUM t e s t ............................................................................... 13
2.3 A pplications......................................................................................... 19

2.3.1 Normally distributed observations..................................... 19
2.3.2 The nested random effects m o d e l .....................................  21

2.4 Simulation S tu d ie s ............................................................................ 26
2.4.1 The case of normally distributed o b se rv a tio n s .............  26
2.4.2 The case of the nested random effects m o d e l.................. 29

2.5 Consistency of the t e s t .....................................................................  36

3 M onitoring Param eter Change in A R (p) M odels 42
3.1 Preliminaries .....................................................................................  42
3.2 Monitoring the mean of an AR(p) p r o c e s s .................................. 51
3.3 Monitoring the variance of an AR(p) p rocess ..............................  54
3.4 Monitoring the coefficients of an AR(p) p r o c e s s ......................... 58

3.4.1 AR(1) p rocess........................................................................  61
3.4.2 AR(2) p rocess........................................................................  62

3.5 Simulation S tu d ie s ............................................................................ 64
3.5.1 The case of AR(1) p ro c e ss .................................................  64
3.5.2 The case of AR(2) p ro c e ss .................................................  73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6 Consistency of the test s ta tis tic s .................................................... 75

4 Sequential ANO VA 82
4.1 Preliminaries ....................................................................................  82
4.2 Sequential F - t e s t .............................................................................. 83
4.3 Tests based on Rao’s s t a t i s t i c .......................................................  85

4.3.1 Critical values for Test 1 ...................................................... 87
4.3.2 Critical values for Test 2 ...................................................... 88

4.4 Simulation S tu d ie s ........................................................................... 89
4.4.1 Comparison of three tre a tm e n ts .......................................  90
4.4.2 Comparison of four trea tm ents........................................... 91

4.5 Sequential change-point ANOVA ................................................. 94
4.5.1 The case of three g ro u p s ...................................................... 95
4.5.2 The case of three g ro u p s ...................................................... 97

5 Concluding Rem arks 98

Bibliography 101

A ppendices 106

A Strong A pproxim ations for A R (p) M odels 107

B The D istribution  of the M axim um  o f the B essel Process 117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

2.1 Test for monitoring the mean p of a normally distributed pop­
ulation with po =  0 and <7 =  1, and various p.4. Simulated 
power (Power) and average stopping time (AVST) and its stan­
dard deviation(SD). The level of significance is a  =  0.05, and 
C(a) = 2.24..........................................................................................

2.2 Test for monitoring variance a2 of a normally distributed popu­
lation with p  =  0 and <To =  1, and various <7 .4 . Simulated power 
(Power) and average stopping time (AVST) and standard devi- 
ation(SD) of AVST. The level of significance is a- =  0.05, and 
C(a)  = 2 .2 4 ........................................................................................

2.3 Test for monitoring mean p. of a nested random effect model 
with p0 =  0, a  =  0.2, aw =  0.3, and =  0.6, and various pa. 
Simulated power (Power) and average stopping time (AVST). 
The level of significance is a = 0.05, <2=1, and C(a) = 2.24. .

2.4 Test for monitoring variance component a'2 of a nested random 
effects model with p. =  0, op =  0.2, aw =  0.3, and op =  0.6, 
and various crA. Simulated power (Power) and average stopping 
time (AVST). The level of significance is a- =  0.05, <2 =  1, and 
C(a)  =  2.24..........................................................................................

2.5 Test for monitoring variance component a2, of a nested random
effects model with p =  0, a — 0.2, aQw =  0.3, and ab =  0.6, and 
various a Aw- Simulated power (Power) and average stopping 
time (AVST). The level of significance is ft =  0.05, <2 =  1, and 
C(a) =  2.24..........................................................................................

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6 Test for monitoring variance component a\ of a nested random 
effects model with p = 0, a — 0.2, aw — 0.3, and aob =  0.6, and 
various aAb. Simulated power (Power) and average stopping
time (AVST). The level of significance is a  =  0.05, d — 1, and
C (a ) =  2.24.......................................................................................... 33

2.7 Test for simultaneously monitoring all variance components a2. 
a2,, and of °f a nested random effects model with p = 0, a0 =
0.2, (Tow =  0.3, and aob = 0.6. Only a is changing. Simulated 
power (Power) and average stopping time (AVST).The level of 
significance is a  =  0.05, d =  3 and C (a ) =  2.632................ 33

2.8 Test for simultaneously monitoring all variance components a2,
a2,, and a2 of a nested random effects model with p. =  0, ctq =
0.2, (Tou, =  0.3, and croft =  0.6. Only crw is changing. Simulated 
power (Power) and average stopping time (AVST). The level of 
significance is a  =  0.05, d =  3 and C(a) — 2.632...............  34

2.9 Test for simultaneously monitoring all variance components a 2,
(72,, and a 2 of a nested random effects model with p =  0, cr0 =
0.2, aow =  0.3, and crob = 0.6. Only crb is changing. Simulated 
power (Power) and average stopping time (AVST). The level of 
significance is a = 0.05, d = 3 and C(a) =  2.632........................ 34

2.10 Test for simultaneously monitoring all four parameters of a 
nested random effects model with p0 =  0, oo =  0.2, <r0u, =  0.3, 
and oob — 0.6. Only the mean is changing. Simulated power 
(Power) and average stopping time (AVST). The level of signif­
icance is a = 0.05, d =  4 and C(a) =  2.727..................................  35

3.1 Test for monitoring the mean of an AR(1) model P) — //.0 =
4>{Yi- 1  — po)+£V Simulated power (Power) and average stopping- 
time (AVST). a2 = 1 and the in-control mean is po =  0. The 
level of significance is a = 0.05........................................................  66

3.2 Test for monitoring o of an AR(1) model P) — p  =  < (̂Pi_i -  
p) +  Simulated power (Power) and average stopping time 
(AVST). p =  0 and the in-control value is (To =  1. The level of 
significance is a  =  0.05......................................................................  69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 Test for monitoring the coefficient 0o of the A R(l) model Yj —
/i =  0o(V-i — f ) +  Simulated power (Power) and average
stopping time (AVST). po =  0.1,/./.= 0, a2 =  1 and various <bA.
The level of significance is a  =  0.05 and C(cv) =  2.24................. 71

3.4 Test for monitoring the coefficient 0o of the AR(1) model V) —
/i =  — f.i.) +  Ej. Simulated power (Power) and average
stopping time (AVST). 0o =  -0 .5 , fi =  0, a'2 =  1 and various
0.4. The level of significance is a- =  0.05 and C(a) =  2.24. . . .  72

3.5 Test for monitoring the coefficient 0o of the AR(1) model V) —
fj. = 0o (T5- 1  — I!■) +  £i- Simulated power (Power) and average
stopping time (AVST). 0O =  0-5, /./. =  0, a2 = 1 and various <pA.
The level of significance is a  =  0.05 and C'(a) =  2.24................  73

3.6 Monitoring the coefficients 0i and <po of the AR(2) model Y, — 
fj. — 0 i(V _i — n) +  02(V-2 — r )  +  £»,. Simulated power (Power) 
and average stopping time (AVST). The in-control parameters
are 0 10 =  —0.1 and 020 =  0.1. Only 0 ]O is changing to 0 L4. . . 75

4.1 Critical value C\(a,d)  for different values of d and different
levels of significance o:........................................................................  89

4.2 Critical value C'2{a, d, n 0) obtained using Vostrikova’s formulae
(4.14), for a- =  0.05 and different values of d and »0 used in 
later simulations..................................................................................  89

4.3 Comparison of three treatments. Simulated power (Power) and 
average stopping time (AVST) for Test 1, Test 2, and Sequential 
F-test with normally distributed outcomes for various S. Level
of significance cv =  0.05......................................................................  91

4.4 Comparison of four treatments. Simulated power (Power) and 
average stopping time (AVST) for Test 1, Test 2 and Sequential 
F-test, with normally distributed outcomes for various 5 and
no- Level of significance a  = 0.05....................................................  93

4.5 Simulated power (Power) and average stopping time (AVST) for 
the CUSUM test with normally distributed outcomes, a2 = 1,
jj.2 =  /.i.r =  0 and for various /j\a\  Level of significance a  =  0.05. 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.6 Simulated power (Power) and average stopping time (AVST) for 
the CUSUM test with normally distributed outcomes. o~ = 1,
/'•2 =  P3 =  Mi — 0 and for various Level of significance 
a  =  0.05.................................................................................................  96

B .l Maximum of the Bessel process probability in left-hand tail,
-P(sup0<,<] R {d)(t) < z), for cl = 2..................................................... 118

B.2 Maximum of the Bessel process probability in left-hand tail,
P (sup0<(<j R ^ ( t )  < z), for d = 3..................................................... 119

B.3 Maximum of the Bessel process probability in left-hand tail,

^ ( su Po<;<i R {d)(f ) <  z ), for  d =  4 .............................................................  120
B .l Maximum of the Bessel process probability in left-hand tail,

P (sup0<(<] P (c/)(f) < z), for d =  5..................................................... 121
B.5 Maximum of the Bessel process probability in left-hand tail,

P (sup0<,<i P (d)(f) < z), for d = 6..................................................... 122
B.6 Maximum of the Bessel process probability in left-hand tail,

P (sup0<,<1 R (d)(t) < z), for cl =  7..................................................... 123
B.7 Maximum of the Bessel process probability in left-hand tail,

P (sup0<t<1 P (d)(f) < z), for d = 8..................................................... 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

3.1 Power vs Coefficient when testing change in the mean of an 
AR(1) model. The truncation point is n0 =  200 and the change 
point is t  =  100. The in-control value is //,0 and the drift after
the change is m  =  fJ-A — fJ-o................................................................  67

3.2 Power when testing for change in the coefficient for different, 
A R(l) models (b = <f>). The truncation point is n0 =  200 and 
the change point is r  = 100. The initial coefficient, value is -0.9,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Conventions and notations:
The following notations will be used

Symbol Meaning

x t =  o ' , ' a.s.

x t "= 0(</>(t)) or =  0{(t>{t)) a.s. 

xt = Op{4>(t))

v

LIL

Xn

limsup
t.—oo

lim sup
I—oo

■r<

4>(t)

=  0 almost surely 

is almost surelv Unite

is bounded in probability

Almost, sure convergence

Convergence in distribution

Equality of finite dimensional 
distributions

Law of Iterated Logarithm
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matrix X
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Chapter 1

Introduction

1.1 R eview  and Problem s

1.1.1 Sequential testing of com posite hypotheses

Sequential testing of hypotheses began in 1943 with the Sequential Probability 

Ratio Test (SPRT) proposed by Abraham Wald. Let V'], Y j , . . . ,  Y\:, . . . ,  be a 

sequence of independent and identically distributed random variables with a 

common one-parameter density function /(•;£>). Wald’s SPRT procedure for 

testing the simple null hypothesis H q : 9 = 9 q versus the simple alternative 

H A : 9 =  9a is to stop sampling and accept H q as soon as > A  or stop 

sampling and accept HA as soon as L/,. <  B.  where 0 < B  < 1 < A  are constant 

stopping boundaries dictated by error probabilities o - PQi)(Reject. H q) and 

ji =  Pda(Reject, H,\), and

L n i l  f j y ^ o )
k n h f i u i M '

is the likelihood ratio based on the k observations available thus far. The sam­

ple size, N,  at which the boundaries are crossed, is a random variable. The

1
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mean of N  is known as Average Sample Number (ASN) or average stopping 

time. Wald and Wolfowitz (1948) showed that the so delined SPRT proce­

dure is optimal in the sense of minimizing the stopping times among all tests 

possessing a finite ASN and with error probabilities cv and fi.

The original SPRT did not deal with composite hypotheses, which were 

composite either because the null and/or alternative parameter spaces are 

not single points or because of the presence of nuisance parameters. Wald 

attem pted without much success to adapt, the SPRT to the composite hy­

potheses case by introducing the weight functions approach. Another attempt 

to extend the SPRT to the case of nuisance parameters produced the so-called 

Invariant SPRT  (Ghosh 1970). This method consists of reducing the compos­

ite hypotheses to simple hypotheses by transforming the data as well as the 

hypotheses of interest and then applying Wald’s SPRT procedure. According 

to Lai (2001), this approach has a few dra.wlra.cks tha t makes it difficult to 

implement.

In a case where the hypotheses of interest are composite because of 

the presence of nuisance parameters, a third approach suggested by Bartlett 

(1949), Cox (1963) and Breslow (1969) is based on using the likelihood ratio, 

or an asymptotically equivalent form of it. under the assumption of conti­

guity. The method replaces nuisance parameters in the likelihood ratio by 

their restricted maximum likelihood estimators and uses Wald’s SPRT proce­

dure. Based on the assumption tha t the parameters are close, i.e. \0A -  (90| =  

0(jV _1/2), the Taylor expansion is truncated at the second order terms. Be­

cause the sample size N  is a random variable with range (0, oo) the error made 

by truncation at the second term is not negligible. Alternatively, Gombay 

(1996, 1997) provided some tests based on the generalized sequential likelihood

2
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ratio (GLR) along with their asymptotic critical values at significance level n.

Sequential testing of hypotheses was introduced into clinical trials during 

the 50’s (Armitage 1960). As an alternative to the SPRTs, Armitage suggested 

the so-called Repeated Significance Test (RST). This method has some limi­

tations which are removed in group sequential analysis introduced by Pocock 

(1977) and O’Brien and Fleming (1979). In this case, if no treatm ent differ­

ence is observed the trial will continue to its maximum sample size. This will 

be somewhat larger than the sample size required for a fixed-sample design of 

equivalent power.

The problem of comparing three or more treatments is frequently faced 

in clinical trials. Siegmund (1993) and Betenskv (1996) studied the case of 

three treatments in the simplest situation of independent, normally distributed 

random variables with a. common known variance. To make these procedures 

more useful in practice it is necessary to extend them to the case of unknown 

and perhaps unequal variances, and to the case of more than three treatments. 

It seems likely tha t the methods of Siegmund (1985). Section 5.4, could be 

applied although the analytic approximations will become more complicated.

1.1.2 Change-point problems

Sequential change-point detection problems have many important applications, 

including industrial quality control, reliability, fault detection, clinical trials, 

finance, signal detection, surveillance and security systems. Extensive research 

has been done in this field during the last few decades. For recent reviews, we 

refer readers to Csorgo and Horvath (1997), Basseville and Nikiforov (1993) 

and Lai (1995).

3
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In sequential change-point problems, one observes a sequence of inde­

pendent observations Y], Y2 , ■■ • from some process. Initially, the process is in 

control, i.e., the Y’s have some distribution / 0. At some unknown time r ,  the 

process may go out of control and the Y’s have another distribution f A. The 

problem is to detect the change with a. high power and as soon as possible 

while keeping false alarms as infrequent as possible.

When both the pre-change distribution /o and post-distribution f A are 

completely specified, the problem is well understood and has been solved under 

a. variety of criteria. Some popular procedures are Shewhart’s control charts, 

Moving Average control charts, Page’s CUSUM procedure, and the Sliiryayev- 

Roberts procedure.

Perhaps the most successful algorithm of sequential change detection is 

Page’s (1954) CUSUM test. If the interest is in the mean parameter, this test 

will monitor the partial sums

5a- -  min Sj , k = 1 , 2 , . . . ,  (1.1)

where 5*, =  X)!LiC^ ~ 'r ) an(l r 1S a reference value, and will indicate change 

from the Initial /i0 mean value to jj,A, /j.A > p,0, at time k, when statistic (1.1) 

is large enough.

This basic idea of change detection has several variations. The most 

famous is the case when the sums in (1.1) are not based on the initial obser­

vations Y'i, but on the ratios

,  . ./Oil #o) - 1  O  / ,  O N

7 °8/OY 0,0’ ?- - 1> ( M

and the purpose is to detect change from the initial parameter value 90 to 

the new value dA. Lorden (1971) and Moustakides (1986) have shown that
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algorithms based on (1.1) and (1.2) are optimal in the sense of minimizing the 

expected value of the stopping time after change, while keeping the expected 

stopping time under the null hypothesis of no change at a desired level.

In practice, the assumption of known pre-change distribution /o and 

post distribution f  .\ is too restrictive. Motivated by applications in statistical 

quality control, the standard formulation of a more flexible model assumes 

tha t the pre-change distribution / 0 is given and the post-change distribution 

J 'a  involves unknown parameters. However, as shown by many examples, there 

are many situations in practice in which both the pre-change and the post­

change distributions intrinsically involve unknown parameters.

So, for practical purposes this case has to be extended to the case of com­

posite hypotheses. The natural idea is to use the generalized likelihood ratio 

in place of the sum of variables in (1.1). It has been tried, but computational 

difficulties (see Baseville and Nikiforov (1993)) have prevented its widespread 

use. Also, there are theoretical problems with its extension to cases involving 

nuisance parameters (see Gonrbay (2002, 2003b) for detailed discussion). The 

essence of the reason for these problems is that the generalized likelihood ratio 

is not like a partial sums sequence, but a quadratic form. There is, however, a. 

statistic that is closely related to the generalized likelihood ratio and behaves 

approximately like a partial sums sequence. This is the efficient score vector, 

the main component of Rao’s statistic, which is a quadratic form made with 

the help of the efficient score vector, and behaves, asymptotically the same way 

as the generalized likelihood ratio (see Gombay (1997) for detailed discussion).

In this thesis we assume that the pre-change distribution / 0 =  f(y;  00, ?/) 

depends on two vectors of parameters 0o and i], where 0O, the vector of pa­

rameters of interest is known, and i] is the vector of nuisance parameters. The

5
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post-change distribution is of the form f A = f(y;0..\,v) w^h 0A unknown.

The methods discussed so far assume independent observations. As 

Wetherill (1977) has pointed out, observations from modern industrial pro­

cesses are often autocorrelated and the process itself can behave like an au­

toregressive process. Such behaviour must be taken into account when setting 

up testing procedures.

Most procedures in the literature are based 011 residuals (see Kulperger 

(1985), Bai (1993), and Horvath (1993)) or on the one-step-ahead prediction 

errors (see Montgomery and Friedman (1989)). There are several extensions 

of CUSUM and GLR schemes to handle non-independent observations. In 

principle, Page’s likelihood ratio CUSUM scheme (Page, 1955) can be eas­

ily extended to non-independent observations, simply by replacing /(h )) by 

f (Y j\Y i,. . . ,Y i-i) .  However, as Basseville and Nikiforov (1993) noted, practi­

cal implementation of the GLR algorithm is not always possible because the 

number of computations at time n grows very fast to infinity with n and maxi­

mization of the log-likelihood over 0 6 0  must be carried out for each possible 

change time k between 1 and n. So these algorithms cannot be computed in 

realtime to support on-line decisions. Our procedure which is based 011 the 

efficient score vector has no such limitations.

6
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1.2 Overview of th e thesis

As mentioned in the previous section, sequential testing of composite hypothe­

ses has not yet received a.n adequate fully-sequential treatment. In this thesis 

we use large sample approximations of the efficient score vector to develop 

new CUSUM-type procedures for sequential testing of hypotheses in presence, 

of nuisance parameters. The main attractive features of these procedures are:

• A generality allowing application of the methods to a wide class of dis­

tribution families including the exponential family.

• Simple accommodation of the nuisance parameters. In fact only the 

nuisance parameters have to be estimated giving a. simpler algorithm.

• The simple structure of the efficient score vector allows the definition of 

the CUSUM-type test which is not feasible for the generalized likelihood 

ratio and the m.l.e. based on Wald’s statistic sequence.

• Different test statistics are used for testing for a change in different 

parameters as the tests are based 011 the corresponding components of 

the efficient score vector.

•  Easv-to-compute approximate boundaries (critical values) which do not 

require any numerical integration.

This thesis has five objectives:

1. Development of a. class of CUSUM-type sequential procedures for testing 

for a change in the parameters of the distribution of a sequence of inde­

pendent observations. The distribution may be from the non-exponential 

family. This extends the results of Gombay (2003a).

7
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2. Extension of the procedures to the case of non-independent observations. 

More specifically, we consider the case of testing for a. change in the 

parameters of an autoregressive process of order p, AR(p).

3. To compute the critical values and show how the tests of Gombay (2003) 

based on Rao’s statistic can be used for sequential comparison of three 

or more treatments.

4. To adapt the CUSUM test to the ANOVA change-point problem.

5. Empirical comparison of our test procedures to some other methods, in 

term of power and average stopping time.

Specifically, in Chapter 2 we shall consider the case of independent ob­

servations. As the efficient score vector behaves approximately as partial sum 

sequences, the CUSUM idea of Page (1954) can be used to improve perfor­

mance for detection of later changes. Monte Carlo simulations are carried out 

in order to assess the power of the new CUSUM-type sequential test.

In Chapter 3, the same method is extended to the case of autocorrelated 

observations. When the observations come from an AR(p) process it turns 

out tha t the distribution and the rate of convergence of the test statistic is the 

same as in the case of independent observations.

In Chapter 4, we will present and compare some procedures based on 

Rao’s statistic for testing equality of three or more treatments. We compare 

these procedures with the sequential F-test proposed by Siegmund (1980). At 

the end we show how the CUSUM test can be used for an ANOVA change- 

point problem.

8
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Chapter 2 

A C U SU M -T ype Sequential 

Test

2.1 Prelim inaries

One of the major aims of Statistical Process Control (SPC) is to achieve the 

condition where the parameters related to a given manufacturing, business, 

ecological or similar process, conform to some prescribed on-target behaviour. 

In many practical applications it is not reasonable to assume that the same 

model remains adequate as time progresses. Over time, something will in­

evitably change and possibly cause deterioration in process quality. Some­

thing that affects process quality is assumed to be reflected by a change in 

the parameters so the basic goal of process monitoring is to detect changes in 

the parameters that can occur at unknown time. In practical situations the 

relevant model involves not only the parameters of interest but also some nui­

sance parameters which are not monitored but they influence the functionality 

of the process.

9
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In this chapter a truncated CUSUM-type sequential test is proposed 

to detect an abrupt change in the distribution of a sequence of independent 

observations. The test is based on large sample approximations of the efficient 

score vector under the null hypothesis of no change and under the alternative 

hypothesis of change at an unknown time.

The problem can be described in general terms as follows. Suppose 

Yj; Y>,. . . ,  are independent random variables/vectors observed sequentially,

i.e., one at a time, and let f ( y \0 },i]t) be the density function with respect to 

a cr-finite measure v. The distribution function is denoted by F(- ;#,?/). We 

assume that 0 E C R d, d > 1, and that 1] E ilo C Rp, p >  0, and the 

parameter space is il =  ih  x ih  C Wi+P. We use the notation £ =  (0,1]). In 

statistical terms 0 will be the parameter of interest and '// will be the nuisance 

parameter. We are interested in testing the composite null hypothesis

where r  is the unknown time of change, 0o is the known initial value of the 

parameter, and parameter values ?/, 0,\ are also unknown. For example, in 

quality control the initial value 0O is the required measurement or target value, 

and change from it has to be detected.

Before presenting the test statistic and its asymptotic null distribution 

we will give some notations and regularity conditions that are needed. We 

denote by

H q : 0i = 0o, Vi =  V E ih  , i = 1 ,2, . . . ,

against the alternative

0i =  0o , i]i =  v  6  i h  , i < t  , 

0j  =  0a  , Vi =  V €  ^2 , i  >  t  .
(2 .1)

( 2 .2 )

10
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the entries of the Fisher information matrix, J , where i , j  =  1 , 2 ,d + p. 

We shall partition this matrix as

s = ^ I n  I u

where

1  V / 2 1  I 2 2

and /„  = /', = (-BaSjIog/CK ja)^.

The inverse of I  will also Ire partitioned and denoted by

/  rl l  t12
I - i  =  (  1  I

f n  j  22

Suppose that £ =  (#,'/?) is a point in an open subset il C R d+P. The following 

regularity and existence conditions are needed

C l. The distribution function F(- \9,rj), is identifiable over il.

C2. There exists an open subset, il0 C il. containing (#0 ,??), fhe true value

of the parameter under H0, where the partial derivatives,

0 d2 03
loS } (.V, 0  , FFTF-  log /(?;; 0  , and log f(y;  0  ,

" 6  otidSjOZk

exist and are continuous for all y  6 R and £ £ S20.

C3. For each (Oq, tj) E Uq , k — 1 ,2 , . . . ,  and j  < k the score equations

k
log /(Y;; 0o,y) = 0 ,

i=i
k

Y 2  V,, log f(Yj-ff0, 1]) = 0 , 
i=i

have unique solutions, % and fjkj, respectively.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C4. Under the setup of C2, there are functions Mfiy), M fiy)  such that

M\{y)v{dy) < oo , and < oo ,

with

f ( y - 0d£,i

and

< Mfiy), 

c>3

S r , [ o s f ( y ’°
< M 2(y),

0£,i(Xj0^h 

for all £ G ; and 1 < i, j ,  k < d + p

iog/(.v; 0 < M2(y),

C5. E^[S- log f ( Y \  £)] =  0, for all 1 < i < d +  p , and f  G i20-

C6. IijX)  =  —E^ 'qI qs l°g f ( Y \  0  and I  (£) exist and are continuous for 

all £ G flo, and 1 <  i, j  < d + p.

C7. Var$

C8. E etun 

5 > 0.

log / ( F ; 0O, rj) < oo, for 1 < i , j  < d  + p

2 + 6 '

log / ( F ;  Oo, p) < oo, for all i =  1,2,.... d +  p, and some

R e m a rk  2.1 Conditions Cl - CO are the usual, classical regularity condi­

tions guaranteeing the existence and consistence of a sequence of MLE's (c.f. 

Lehmann 2001. Serfiing 1980). The last two conditions are. respectively, re­

quired by the La,w of the Iterated Logarithm (Serfiing (1980)), and by the 

strong invariance principles of Csorgo and Revesz (1981) that are used in this 

thesis.

12
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2.2 T he C U SU M  test

The truncated CUSUM-tvpe sequential test proposed here is based on the 

efficient score vector which is defined as

k

Vk(ti0,v) = Y  log 0q-' ^  ■
?:= l

Because the nuisance parameter rj is present we have to replace it by its re­

stricted maximum likelihood estimator qk . that is. by the solution of equation

k
^ v „ i Og / ( y i,0o,t/) =  o .
i= 1

When we replace rj by % Vk simplifies to

k k

14 =  J ]  V elog/C^flo.ffc) =  £  V , iog/(!'■; M * )  ■ (2.3)
»= L i— 1

The following theorem states that under K- defined in (2.3) can be written 

approximately as a sum of independent d-dimensional random vectors.

T h eo re m  2.1 Under H 0, if C1-C8 hold, then V/.. can be represented as

k

14 =  log f ( YH ''/*)
»=l

=  Y  { Ve l ° g f ( Y i ’i ° o , v )  -  V „ l o g / ( ^ ;  fi»o, »?)/«(6»0,7/)}

+ 0  (log log/;;)
k

= Y Zi + ° ( log iog k) ° -s-) (2.4)
i=i

as A; — >• oo, where Zj. are i.i.d.r.v’s with E Z j  =  0, Cov(Zj)  = T(0o,ri), 

r(6»0,77) =  / 11- / l 2 / 2"21/21.

13
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Proof. We can write

A:

Vk = log'/(ly; 0O, dA-)
j=i

fc A-

=  log f(Yh 0O, q) + “I Vo log f(Yi- Oo, 1%) -  Ve log /( I ) ;  00, q)
i = l  i = l

(2.5)

The last term  in the above sum represents the error committed in estimating 

■/] by its restricted MLE The error can be linearized by using a three-term 

Taylor expansion of Vg log /( I ) ;  Oo, i%) around the true parameter value 7/, so 

tha t (2.5) can be rewritten as

I: k
Vk = V° lo§ f ( Yi' + iVk ~ V) Y 2  V on lo§ f ( Yi> ^ ??) +  R k(v*) (2 .6 ) 

1 = 1  2 = 1

where q* is a, point between i% and q and V |(? denotes a p x d -  matrix of second 

order partial derivatives, first with respect to components of 0 and secondly 

with respect to components of q. The term Rk.(q*) is a row vector whose r th 

component has the form

\  Y  -  <*) x  [ g  5 ^ i» ? / ( « ;  * , V )}  •

By the Strong La.w of Large Numbers and bv C4, the terms in the curly 

brackets are almost surely 0(k) .  On the other hand, by Lemma 2 .1  of Gombay 

and Horvath (1994),

I(%•<? -  vq)(m  - v i ) \  = o (~0S[0&A )  a-s -

Hence we obtain

R k(if)  =  0 (loglog/b) a.s. (2.7)

In order to obtain an expression for (i%. — q), we shall analyze the following

14
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three-term Taylor expansion

1=1

5 3  -I V , log f(Yi, &o, m) -  v , ; log f(Yi, 0O,J]) =  (■/)/,. -  I]) 5 3  V '^2 log / ( I  00, ?/)
«=i

(2 .8 )

where V f2 is the p x p- matrix of partial derivatives with respect: to the com­

ponents of?/. By the same arguments leading to (2.7), the error term above is 

almost surely of order O (log log A:). On the other hand, by C4 and the Law of 

Iterated Logarithm we have

k
5 3  V ^2 log f{Yi, 00,7]) +  k l22{0o, n) - O ( yjkloglogk) a.s.
i= 1

From (2.8) and by the definition of ffr. we obtain

k r k
-  5 3  V 'l loS f ( Yk &o, hO =  (% -  77) Vja log f(Yp  00, rj) + k l 22 -  k I -22

+  0 (loglogfc)
k

(m -  v) 5 3  v ^2 los / 0 'b  ^0 , 77) + fc/ 2
. 1 = 1

-  k(i% -  rj)I-n +  0 (loglogk)

=  0 (log log k) -  k(fjk -  ? / ) / 22 +  0 (log log k) ,

and because / 22 exists we can write 

1 fe
-  ?i) =  I  E  V '1 lQg 0 0 , 77) / 2-21 +  ^  log log k) . (2.9)

?'=1

15
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Now, collecting (2.6), (2.7) and (2.9) we obtain

k
Vk = XV" Ios  ^  v)

i= 1

+ -  X :  V , log JO): B0} V) l £  (Oo-, V) + O
i=i

log log fc 
/„•

<9(log log /.:)x £ v | , i o g / ( y ^ o . j ; )
.7=1

k
=  X  v 0 log / (y ; :: 0O, //)

i
'  A-

X I v?; los  / 0 1*; ^o, f? ) ^ 1 (^o,7/) +  ° ( log lQg k)

i=l

+

X

7=1

: X v | , ; log/(K i;0o,??)
7=1

+ 0 (log log A:) . (2 .10)

By using again C6  and LIL we have

T X  Vo<7 IoS f ( Y» ''?) +  72i {0q, V)
7=  1

=  0
'log log/.;

a..s.

Then it follows from (2.10) that

7=1
Vk =  X  loS /W ^ o ,  ?/)

i
' fc
X log /(y); 0 0 , 'Z? ) ^ 1 (0 o, ■'/) +  0 (log log k)+
7=1

—̂ 2 l($ 0 , v )  +  O
/log log/;

k +  0 (log log A;) ,

and neglecting errors of amplitude less then O (log log/e) this is equivalent to

Vk = X 1 V " lo S /  6,01^  “  V )> lo S / ( ^ e? 0o, ? / ) 4 21(^o, J7)/21 (0 o, ??)
7=1

+  0  (log log/:)
k

=  X ^ i  +  0 (  log log A;) ,
7=1

16
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that is, relation (2.4) with Z-t =  V0log f  (Yf, 0U, i]) -  V v \og/(Yg 0o,ij)I.y2lI2]. 

By C-5 it follows tha t E(hu n(Zi) =  0  for ali i. If we denote A] ,■ =  Vo log/O'*; 00, //) 

and A 2i =  V,, log f(Yi, Oo, rj) we can write Z t = A'i,- — X -nI& h\.  Denote by 

the superscript t the transpose of a vector or matrix. Now we have

Based 011 Theorem 2.1 we can define a truncated CUSUM-type sequential 

test. For each k > 2, and each 1 < j  < A;, the efficient score vector based on 

Y j , . . . ,  Yfc, is denoted by

where is defined in C3. Under H0, bv Theorem 2 .1 , Vkj  can be represented

and the proof of the theorem is completed.

□

k

Vki  = lo§ f ( Yi’6 7̂ b )

as
k

(2 .11 )

17
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with Z-i independent random vectors with mean zero and covariance matrix 

T(0o,p) defined in Theorem 2.1. Then, when d =  1

k

WhJ =  r - ] / 2 ( 0 o , r})Vkd(60, V k j )  =  r - 1 / 2 ( 6>0 , V)  E  v * l° s  f p t ’ ° o ,  V k j )  ,

i=j
(2 . 12)

is approximately the sum of independent mean 0  and variance 1 r.v’s.

R e m a rk  2.2 When d > 1 the vector IT).j has uncorrelated components and 

we can choose the approximating process with independent components. In this 

way we can 'monitor each component with a level cv* t es t  which gives an overall 

level of significance a- =  1 — (1  — a*)'(. Hence it is enough to define a test for­

th e case d = l .

It is easy to see tha t under Ho, if d =  1. as no —> oo 

ma* - ^ T ~ 1/2(9o,V)Vkj(Vo,Vkj) ^  sup { \V (v ) -W (u )}  = sup \W( t ) \
2<J<A:<?)[) yfno 0< u < v < l  0 < /< l

(2.13)

where W (t)  is a standard Wiener process and no a fixed truncation point. Ail 

elementary proof of the last identity can Ire found in Gombay (1994).

In order for this result to be useful in testing hypotheses we need to 

replace the covariance matrix T(0o-,v) with an estimated version. By Lenuna 

2 of Gombay et al. (2001) the asymptotic distribution in (2.13) remains the 

same if p is replaced by its restricted m.l.e. fy. in r(6,0, //).

R e m a rk  2.3 and fy-j need not to he the unique solution of the restricted 

log-likelihood equation. All we need is that the est.ima.tor converges weakly to 

the parameter p with a rate of at least. k~l/2. This can be attained by. say, 

a one-step estimator based on the Newton-Raphson iterative procedure (see 

Lehmann 2001, p.475). Therefore condition C3 requiring that ///,. and fjk.j be 

the unique M LE ’s can be relaxed accordingly.

18
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The test is defined as follows.

C U S U M  T E S T . For k = 2 ,3 , . . . ,  n0 compute

Tk =  max - ^ r_1/2(0 o,% )1 4 j ( 0 o j  ) . (2 .u )
i<i<A’ y/no

Stop and, conclude that I i0 is not supported by the data at the first, k when 

Tk > C(a). Do not, reject Hq i f  it is not rejected by k =  Hq.

The critical value C(a) can be obtained from the well known formula (Borodin 

and Salminen (1996))

4 ^  (—l ) k f  n2(2k + l )2
7r 2/r +  1 \  8C'(n:)'2

For example C(0.10)=1.96, C(0.05)=2.24, C(0.025)=2.50, and C(0.01)=2.80.

R e m a rk  2.4 As the partial sums have components Z, =  Vo log/(I*; #0 , 77)- 

V , log f ( Y h &o, r))If£lz\ wit.hr] the time value of the parameter, alternatively, 

we may use Vkj($o, fjk) in the test statistic Tk. It is the empirical properties 

that guide, our choice in each case. Using ?% in Tk of (2.1 f )  is coniputatioiially 

more efficient.

2.3 A pplications

2.3.1 Normally distributed observations

First we consider the simplest case of independent normally distributed obser­

vations. We present the tests for monitoring the mean and the variance. In the 

same way we can define a test for monitoring both parameters simultaneously.

a) M o n ito rin g  th e  m ean  of a  n o rm al d is tr ib u tio n . Consider Yi, Y2, . . . ,

a sequence of independent normal random variables with mean p. and variance 

a 2, and suppose we are interested in testing

Ho ■ Pi = Po, &j — o 1 unknown, i. — 1 ,2 ,. . . ,
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against the alternative

{Hi = fj,o . a 2 =  a2 unknown, i < r,

Hi =  ha > I1 o , <7/ 2 — v 2 unknown, i > r  .

Without, loss of generality we can assume Ho = 0. For simplicity we con­

sider the re-parametrization 0 = ■£ and // =  — Wj < 0. Under this re- 

parametrization, the hypothesis to be tested becomes

Hq : 0i = 0 , r/j =  r/ unknown, / =  1 , 2 , . . . ,

against the alternative

9j =  0 . »; =  ri unknown, i < 7
h a ;

Bj = B,\ >  0 , //,: =  ?/ unknown, i > r  .

In this case cl = p — 1, and computations give -,2- , fjk.j
f c + l—.7—-E l 1 ,̂.2 , and I4 .j(0 , ?)qj) =  E l j  E  The information m atrix is

0 27]

which implies r ( 0 , 77) =  p. Then

E I j V i

Ek y2  
i=1 i

and
1 n • 1 E l ,  TTit = —=  max Wk.j =  ——  max

b) M onitoring th e variance o f a normal distribution. Consider again 

Yi, Y2. . . . ,  a sequence of independent normal random variables with mean /./, 

a.nd variance er2, but now we are interested in testing

Ho : a2 =  ctq , Hi — M unknown, i — 1 , 2 , . . . ,
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against the alternative

H
of —  cJq , f i t  = /j. unknown, i = <  r ,

Tf — a \  > of , m = h unknown, i > r  .

For simplicity we use the re-parametrization 0 =  and 77 =  Again
yk  y'. yk  y.

d =  p = 1 and computations give /)/,. =  -26>0— ' , /g-.j =  

and Vkj(Qo, fji-j) =  . (Y-2 -  of -  The information matrix is

>r | i n
•>o3 ~  20‘2 29 -

J L
2 6 -

Then

l i i j  =  -  £ ( V
fci <'ov,2

y  A- yy

where fi2kj  =  The test is based on

r p  1 T P -  1 ~  a0 ~  ft'l.j)Tk =  max VVa.j =  max > ----------— =-------- .
\ fdo i<j<A- ctov2

2.3.2 The nested random effects model

In this subsection we consider the case of monitoring the parameters of a nested 

random effects model. We assume that observations come in as a sequence 

indexed by time i, and they have the following structure

A irn H' A Lj -j- lf',.(j) +  Eirn, i =  1 ,2 , . . . .

r — 1,2, . . . , R  , and n = 1 ,2 , . . . ,  N  ,

where we assume that L,: ~  N  (0, o*),W m ~ N ( 0 , a l ) ,  and E irn ~  JV(0, a 2) 

are independent normal random variables with corresponding variances as the 

second parameter. Li is called factor .4 random effect, TTbp) nested random 

effect of factor B  within the i lh level of factor A, while Eirn is the random
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error term of observation n  within the i ih level of factor .4 and the r(i)thlevel 

of factor B.

Yashchin (199-5) used this model to monitor electronic chip quality. In 

his example L t corresponds to lot effect, Hyp) to wafer effect in wafer r  of lot 

i, and Eirn is the random noise of the measurement of the nih chip in wafer r 

of the lot i. W ithout loss of generality we can assume that R  is the number 

of wafers randomly selected from each lot for the purpose of monitoring and 

let N  Ire the size of a random sample chips taken from each wafer. In the 

above model <r6, crw. and a represent the lot-to-lot, wafer-to-wafer within-lot, 

arid within-wafer components of variability. For each such a model, one will 

usually need to monitor not only the mean and the measure of total variance, 

but also its individual components. This is important for the following reasons. 

First, knowing which component of variance is out of control is important for 

diagnosing the problem, because different components are usually affected by 

different special causes . Second, the ability of screening procedures to improve 

the outgoing quality depends strongly on the individual variance components: 

for a fixed total variance, the higher the proportion of variance due to nested 

factors, the more difficult it is to screen out defective products (c.f., Yashchin 

1995).

On the other hand, in cases where we deal with several sources of vari­

ability, the conventional control charts tend to produce an unacceptably high 

rate of false alarms and in general represent a rather weak diagnostic tool.

To solve the problem, Yashchin (1995) used the likelihood ratio in var­

ious forms to monitor change in the variance components, treating all other 

parameters of the model as nuisance. His approach has several drawbacks: the 

design, analysis, and implementation are relatively complex, and more impor­

tant, the sensitivity is highly dependent on the levels of nuisance parameters. 

Atenafu and Gombay (2004) used the generalized likelihood ratio for the se-
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quential procedures. Their procedure accommodates nuisance parameters but 

there is a decrease in power when the change is not at the beginning of the 

sequence.

Here we use the truncated CUSUM-type sequential test (2.14). From 

our simulations will be seen that the CUSUM-type sequential test is more 

powerful in detecting a change in the distribution.

Now we shall give the exact formulae of the test statistic T/; for moni­

toring the parameters indicated. Note that the extension of the monitoring 

process to the case of non-exponential family of distributions is needed when 

monitoring a 2, and of.

a) M o n ito rin g  th e  m ean  p.. The test statistic is based on the distri­

bution of the estimator for the mean within ith level of factor A
R  N

Yi =  ^  =  R N  ^  Xirn ’)' = 1 77 — 1

which, under H0 is normal with mean p. and variance 77 =  a 2 +  ̂  ^ . The 

variance rj is the nuisance parameter. When p0 =  0, the maximum likelihood 

estimator is

1 f y "
'

and
1 ^

I-m  =  r _v2(0, f,t )Vt j(0, fitj) =  v  Y : . 
CzcUt?

The test is based on

1 - 1  1 J' ^
Tk =  ——  max W k j = ——  max —  - V  Y] .

\ / n o  l <J<k y /no  1<J<k Y - i ^ j

b) M o n ito rin g  a1. The estimator of a2 at the i ih level of factor A 

is Zi =  <7? =  ^ Y , r = \Sl  wliere S i  = jr=iT,n=l(X irn ~  *ir)* alld X 2. =
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■fa Y2n=i Xim- has a x i i - i  distribution and Sfr and Sfq are independent

if r  ^  q, so the density of Zj  can be calculated by simple transformation meth­

ods from the chi-square distribution with zq =  R (N  — 1) degree of freedom. 

In this case there is no nuisance parameter, i.e. p = 0, and

Wt ., = r ' ' H 4 ) v t J ( 4 )  =  -  4 ) .
0 i=j

The test is defined by

1 I-----1 k
Tk = —  max Wk,j =  ■y/fi.o i<j<k v 2n0 ctq r —?v r u

c) M o n ito rin g  <r2 . Denote

?’=1

which estimates af„ +  in the i th lot, and /q, of as above. Now we use 

the joint density of vector (Z i , U ,;) and the nuisance parameter is W ith 

i>2 =  R  — 1, the computations give

TV 2 . n ,yl ;/2

^T,j(o"ow' Vk, j )  Of,,'-, rr- W ^  '2(%,j +  o b J  tUt=j
Ui (Vk,j +  Cqih)

Here and i%-j are the solution of two third-degree equations. The test is 

based on Tk = ^j= maxi<J<fc Wk,j ■

d) M o n ito rin g  of. Now we use the likelihood function of the bivariate 

statistics (Tj, Ui) . The nuisance parameters are /./. and £ =  of, -f Under l i 0 

the maximum likelihood estimators are p,kj  = 1_. J2i=j Yiy and £kj  which
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is the solution of a third-degree equation. In this case

R 2{ R -  1)

Vk,j(&ob, d’kji £k.j) —
r :2 ■> f iao I, +  fjkj

RO f f t r r -  A -F  fJ'k,j )
“ 'V 06  s A ' . j j  i - j  -

ITfcJ = r-1/2(â , ft,4)Vfcj(̂ b,ftj,&j) ,

and we obtain: T/,. =  -d= maxj<j<fc IT Ay .

e) Sim ultaneous m onitoring o f the three variance com ponents

a2, cr2, a 2. In this case d = 3. The joint density of (Yj.Zj,Uj) can be used. 

The nuisance parameter is /./, and the maximum likelihood estimator is /),/,.j  =  

fr+T-j E != j ^ ' ^ ow ' '  has three independent components

W4,i = r_1/2(p.fc, alb, <r$w, crl)VhJ(fik<i, o&, a l v, a l )  =

I  (Vr-,o-AL)
/

The three independent components of the test are T/. =  -̂ == niax]<j</,, 1T;J': for 

i =  1,2,3.

f) Sim ultaneous m onitoring o f all param eters. In this case d =  4 

and there is no nuisance parameter. The four independent components of the 

efficient score vector are

/

^ ' k , j  — r  crgb , <Tqw , C o ) V f c j ( p . o ,  crfib , o~qu,, crfi)

2 A

The four components of the test are Tf. =  -d= m a x q I V ^ ' j  , for / =  1,2,3,4.
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2.4 Sim ulation Studies

To assess the performance of the new truncated CUSUM-type sequential test 

we have carried out Monte Carlo experiments using the models described in 

the previous section. In all tables no represents the truncation point, r  is 

the change point and the level of significance is cv =  0.05. Each scenario in 

these Monte Carlo simulations is based on 3000 replicates.

2.4.1 The case of normally distributed observations

In the case of monitoring the mean of a normal distribution, /i0 =  0 and 

/i.i was varied over the set {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} . 

The variance (the nuisance parameter) was a2 — 1. Table 2.1 presents the 

simulated power and average stopping time(AVST) with its standard devia- 

tion(SD).

In the case of monitoring the variance of a normal distribution, oo =  1 

and a a was varied over the set {1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0} . 

The mean (the nuisance parameter in this case) was //. == 0. Table 2.2 presents 

the simulated power and average stopping time(AVST) with its standard de- 

viation(SD).

Tables 2.1 and 2.2 present three different situations no = 100 and r  =  51, 

no = 150 and r  =  76, no =  200 and r  =  101. These simulations suggest that 

the test procedure is consistent against fixed alternatives, a fact justified by 

Theorem 2.2. That is, as the truncation point ??,0 grows to infinity, the power 

of the test goes to unity for any fixed alternative.
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Table 2.1: Test for monitoring the mean //. of a normally distributed popula­
tion with Ho = 0 and o — 1, and various jt.A. Simulated power (Power) and 
average stopping time (AVST) and its standard deviat.ion(SD). The level of 
significance is ct =  0.05, and C(a-) =  2.24.

«o T HA POW ER, AVST SD
100 51 0.00 0.039 99.24 0.53

0.10 0.095 98.44 0.85
0.20 0.219 96.81 1.26
0.30 0.421 93.96 1.61
0.40 0.641 90.13 1.84
0.50 0.822 85.84 1.92
0.60 0.944 81.61 1.82
0.70 0.989 77.95 1.61
0.80 0.998 75.00 1.37
0.90 1.000 72.71 1.25
1.00 1.000 70.87 1.09

150 76 0.00 0.044 148.85 1.25
0.10 0.136 146.74 2.22
0.20 0.312 142.73 2.88
0.30 0.588 136.27 3.44
0.40 0.833 127.99 3.63
0.50 0.957 119.93 3.31
0.60 0.994 113.37 2.80
0.70 1.000 108.45 2.36
0.80 1.000 104.79 1.98
0.90 1.000 101.95 1.73
1.00 1.000 99.68 1.52

200 101 0.00 0.041 198.30 1.31
0.10 0.156 194.96 2.76
0.20 0.396 187.68 4.68
0.30 0.718 175.83 5.59
0.40 0.928 162.48 5.35
0.50 0.990 151.44 4.14
0.60 0.999 143.56 3.26
0.70 1.000 137.90 2.66
0.80 1.000 133.66 2.26
0.90 1.000 130.38 1.99
1.00 1.000 127.80 1.82
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Table 2.2: Test for monitoring variance a2 of a normally distributed population 
with /j  =  0 and a0 =  1. and various aA. Simulated power (Power) and average 
stopping time (AVST) and standard deviation(SD) of AVST. The level of 
significance is a =  0.05, and C (a j =  2.24

n 0 r <?A P O W E R AVST SD
100 51 1.00 0.043 98.86 1.20

1.10 0.180 96.65 1.82
1.20 0.437 91.63 2.27
1.30 0.720 84.98 2.62
1.40 0.885 78.36 2.52
1.50 0.969 73.20 2.06
1.60 0.991 69.22 1.65
1.70 0.998 66.26 1.32
1.80 1.000 64.00 1.12
1.90 1.000 62.25 1.04
2.00 1.000 60.85 0.97

150 76 1.00 0.048 148.11 3,36
1.10 0.237 143.51 3.76
1.20 0.577 133.21 4.57
1.30 0.852 120.79 4.62
1.40 0.965 110.43 4.12
1.50 0.993 103.03 3.34
1.60 0.999 98.00 2.73
1.70 1.000 94.34 2.41
1.80 1.000 91.51 2.17
1.90 1.000 89.44 1.95
2.00 1.000 87.74 1.77

200 101 1.00 0.044 197.89 2,33
1-.10 0.275 190.14 4.34
1.20 0.694 172.98 6.29
1.30 0.929 153.87 6.26
1.40 0.985 140.73 5.05
1.50 0.999 131.80 4.05
1.60 1.000 125.79 3,32
1.70 1.000 121.55 2.84
1.80 1.000 118.46 2,56
1.90 1.000 116.06 2.18
2.00 1.000 114.16 1.98
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2.4.2 The case of the nested random effects m odel

In the case of the nested random effects model we first analyzed the Yashchin’s 

(1995) published data (not presented in this thesis) on 7i0 = 30 lots of chips 

manufactured at IBM. Each lot has two wafers, so R  =  2, and from each wafer 

N  = 4 chips were chosen randomly for measuring. The target value for mean is 

Ho =  1 0 0 0 A; the historically acceptable variance components give a \  =  400A, 

alw — 900A, alb = 3, 600.4, respectively. We tested all four parameters for 

change individually and the tests for /j and lor a'l, were significant at a = 0.05. 

When we monitor all parameters simultaneously the test is not significant a t 

a  =  0.05. The reason for different conclusion from Yashchin (1995) is th a t his 

procedure was designed for a tolerance of SOA from the target whereas we can 

detect any size of change.

In the Tables 2.3-2.10 we present the simulated power (Power) and the 

average stopping time (AVST) of the CUSUM-type sequential test (2.14). The 

simulations were performed with level of significance a  =  0.05 on a model with 

R  = 2 and N  = 4. The first part of each of the tables 2.3 - 2.10 demonstrates 

the power of the test when change was at r  =  1 and no =  30, th a t is all 

observations come from the alternative distribution. The second part of each 

table demonstrates the power of the test when change was at r  =  31 and 

no =  60, tha t is, the first 30 observations come from the null distribution 

and the next 30 observations come from the alternative distribution. The in­

control parameters were chosen to be p. =  0, a  =  0.2, aw =  0.3, and ab = 0.6 

as these give the same proportion as in the analyzed data of Yashchin(1995).

In Tables 2.3 to 2.6 we monitor only one parameter (d =  1) and the 

critical value is C(0.05) =  2.24. In tables 2.7, 2.8, and 2.9 we monitor three 

parameters simultaneously (d = 3) and the test statistic has three independent 

components. In this case, in order to obtain an overall level of significance of 

a  =  0.05 we monitor each component of the test statistic with a level of
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significance of

a* =  1 -  (1 -  a )1/d =  1 -  (1 -  0.05)1/3 =  0.01G9 ,

(see Remark 2.2) and the critical value is C(a* =  0.0169) =  2.632. Similarly, in 

table 2.10 we monitor four parameters simultaneously (d =  4) and we monitor 

each component of the test statistic with a level of significance of

cv* =  1 -  (1 -  a')1/rf =  1 -  (1 -  0.05)1/1 =  0.0127 .

The critical value is now C(cv* =  0.0127) =  2.727.

For comparison, in table 2.3 the entries in the brackets are the results 

of Atenafu and Gombay (2004) obtained by using the generalized likelihood 

ratio. We can see that the CUSUM-type sequential test has a higher power 

in the more realistic case where the first 30 observations come from the null 

hypothesis. This can be explained by the fact that the first 30 observation 

which come from the null hypothesis decrease the power of the test based on 

the generalized likelihood ratio but they do not affect in the same measure the 

power of the CUSUM-type test.
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Table 2.3: Test for monitoring mean /./, of a nested random effect model with 
Ho = 0, a = 0.2, aw = 0.3, and at, = 0.G, and various h a - Simulated power 
(Power) and average stopping time (AVST). The level of significance is o: =  
0.05, d =  1, and C(a) =  2.24.

n0 r  ha POWER AVST
30 1 0.0 0.034 .049) 29.88 (29.7)

0.1 0.130 29.38
0.2 0.351 .362) 28.07 (27.4)
0.3 0.660 25.66
0.4 0.885 .887) 22.82 (21.0)
0.5 0.980 20.26
0.6 0.999 .999) 18.37 (15.6)
0.7 1.000 17.05
0.8 1.000 1.00) 16.15 (12.7)
1.0 1.000 1.00) 15.01 (11.1)

60 31 0.0 0.040 .05) 59.57 (59.3)
0.1 0.114 58.94
0.2 0.273 .18) 57.71 (58.4)
0.3 0.524 55.66
0.4 0.777 .55) 52.81 (55.2)
0.5 0.936 50.01
0.6 0.989 .87) 47.58 (51.1)
0.7 0.999 45.75
0.8 1.000 .98) 44.35 (47.0)
1.0 1.000 1.0) 42.44 (44.6)
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Table 2.4: Test for monitoring variance component cr of a nested random 
effects model with //. =  0, cr0 =  0.2, a w — 0..3, and ay = 0.6, and various 
ff.A. Simulated power (Power) and average stopping time (AVST). The level 
of significance is a  =  0.05, d = 1, and C(a) — 2.24.

n 0 T cr.a POW ER AVST
30 l 0.20 0.037 29.78

0.22 0.500 25.76
0.25 0..986 14.68
0.27 0.999 10.69
0.30 1.000 7.61

60 31 0.20 0.034 59.55
0.22 0.378 56.45
0.25 0.962 46.11
0.27 0.998 41.72
0.30 1.000 38.26

Table 2.5: Test for monitoring variance component cr̂ , of a nested random 
effects model with p, =  0, a = 0.2, a 0w =  0.3, and ay = 0.6, and various 
a,\w- Simulated power (Power) and average stopping time (AVST). The level 
of significance is a  =  0.05, d = 1, and C(a)  =  2.24.

n 0 T <7.4w POW ER AVST
30 1 0.3 0.053 29.54

0.4 0.674 21.77
0.5 0.974 12.90
0.6 0.999 8.54
0.7 1.000 6.27

60 31 0.3 0.049 59.20
0.4 0.569 53.05
0.5 0.945 44.19
0.6 0.997 39.30
0.7 1.000 36.75
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Table 2.6: Test for monitoring variance component of of a. nested random 
effects model with p. = 0, a — 0.2, aw — 0.3, and gqo = 0.6, and various 
ctm- Simulated power (Power) and average stopping time (AVST). The level 
of significance is a  =  0.05, cl — 1, and C'(a’) =  2-24.

no T V-H) POWER AVST
30 1 0.6 0.041 29.67

0.7 0.263 27.67
0.8 0.008 23.34
1.0 0.948 15.11
1.2 0.997 10.97

60 31 0.6 0.046 59.24
0.7 0.195 57.66
0.8 0.496 54.36
1.0 0.919 45.59
1.2 0.994 40.27

Table 2.7: Test for simultaneously monitoring all variance components o'2, of,, 
and of of a nested random effects model with //. =  0, a0 = 0.2, cr0u> =  0.3, and 
oob = 0.6. Only a  is changing. Simulated power (Power) and average stopping- 
time (AVST).The level of significance is a =  0.05, d — 3 and C(n) =  2.632.

H0 r a a POWER AVST
30 1 0.20 0.055 29.66

0.22 0.420 26.80
0.25 0.975 15.76
0.27 0.999 11.17
0.30 1.000 7.60

60 31 0.20 0.054 59.30
0.22 0.290 57.47
0.25 0.933 47.76
0.27 0.996 42.68
0.30 1.000 38.59

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.8: Test for simultaneously monitoring all variance components cr'1, a1,, 
and af  of a nested random effects model with // = 0, <jq =  0.2, ctqu' =  0.3. 
and cr06 =  0.6. Only aw is changing. Simulated power (Power) and average 
stopping time (AVST). The level of significance is a  =  0.05, d =  3 and C(a) =  
2.632.

no / ^ Aw P O W E R A V ST
30 1 0.3 0.055 29.66

0.4 0.598 23.61
0.5 0.958 14.52
0.6 0.997 9.59
0.7 1.000 7.00

60 31 0.3 0.054 59.30
0.4 0.467 53.03
0.5 0.909 46.28
0.6 0.995 40.70
0.7 1.000 37.73

Table 2.9: Test for simultaneously monitoring all variance components cr2, cr2 , 
and cr2 of a nested random effects model with /i =  0, a0 =  0.2, a0w =  0.3, and 
a0b = 0.6. Only 07, is changing. Simulated power (Power) and average stopping 
time (AVST). The level of significance is a  =  0.05, d =  3 and C(cv) =  2.632.

n-o r &AI> POWER. AVST
30 1 0.6 0.055 29.66

0.7 0.205 28.43
0.8 0.525 24.87
0.9 0.793 20.25
1.0 0.929 16.24

60 31 0.6 0.054 59.30
0.7 0.150 58.36
0.8 0.405 55.85
0.9 0.700 51.75
1.0 0.884 47.51
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Table 2.10: Test for simultaneously monitoring all four parameters of a nested 
random effects model with //0 =  0, a0 — 0.2, a0u, = 0.3, and aai, = 0.6. Only 
the mean is changing. Simulated power (Power) and average stopping time 
(AVST). The level of significance is rv =  0.05, cl = 4 and C (a) = 2.727.

n0 r l‘A POWER AVST
30 1 0.0 0.056 29.64

0.1 0.104 29.43
0.2 0.257 28.45
0.3 0.540 26.29
0.4 0.816 22.92
0.5 0.962 19.33
0.6 0.995 16.29
0.7 1.000 13.88
0.8 1.000 11.96

60 31 0.0 0.057 59.27
0.1 0.091 59.05
0.2 0.185 58.38
0.3 0.380 56.86
0.4 0.648 54.41
0.5 0.871 51.23
0.6 0.971 48.11
0.7 0.996 45.45
0.8 1.000 43.22
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2.5 C onsistency of the test

In this section we will derive the asymptotic; distribution of the test statistic

(2.14) under the alternative hypothesis, H,\. To simplify discussion we as­

sume that the observations conic from the exponential family of distributions 

(Serfiing (1980)), that is, the canonical form of the log-likelihood is

log f{y; o, rj) =  Ti {y)9l +  T2(y)if +  S(y) -  A{9, rj) , (2.15)

where T}(-) and T^-) are vector valued functions of the data, S(-) is a real 

valued function of the data and A(9,rj) is a function of the parameters only. 

The superscript t denotes a vector or matrix transpose.

The following regularity conditions will be needed for the results of this 

section

C9. Vectors V oA(9q, rj) and V vA(6q, rj) exist, are continuous and have unique 

inverses tha t are Lipschitz continuous of order one in each argument.

CIO. Matrix S7g>A(9Q,-rj) exists, is positive definite and Lipschitz continuous 

of order one in each argument.

C ll .  1 <  i , j ,  k < d + p, exist and are bounded in a neighbor­

hood of £.

C12. £^ ||T )(y)||2+cS < oo, for i  =  1,2, and some 5 > 0.

The following Theorem states that, under H,\, after the change, the

score vector will drift away from a process with mean zero. In all our examples 

the drift is proportional to the number of observations after change. Here 0A

and i f  are the true values of 0 and 1) respectively, after change.
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T h eo rem  2.2 Under H.\, if C9-C12 are satisfied in an open neighborhood of 

the interval connecting (0O, rf) and (fhi, rf),  then for r  fixed, and any k > r, as 

k  — ► oo.

i= 1
^  =  E 1 -  E T ' W ]  -  ~  ^ ( Y A ] i £ ( 0 o , n T*)i2i(eo,VTk)

+  kdTk + 0(log log k) , (2.16)

where rjT/. is the solution of equation

V ,.4(6/0,17) =  ^ ET2(Yt ) ,

and the drift component dT/. is

drk =  ^ V g A ( 9 o ,  v) +  E l L + 1 1  v flA(y.4, ■//*) -  V^(6»o, iu-)k k

(2.17)

(2.18)

P roof. Let rjrk be the solution of the non-random equation (2.17). First we 

will prove that

limsup || fjk ~ Vrk || =  0 { \ f k - Y log log k) a.s.
k— >oo

(2.19)

We can write

1 T - l

V vA(&o,m) -  V„A(6/0, /mO =  j' E  fc O h ) ~  m i y , ) }
?:=]

k -  t  +  1 1

k

+
A:

k k  — r  +

and by the LIL we have

1 —  £  [ n m - E U Y r ) }lirn sup
k—-oo k  — T +  1 “

/ I 0 g l 0 g ( f c - T + 1 ) \

0 '- ~ 'a

Then, from the last two relations we obtain

lim sup
A:------- CO

V?r4 {0Q,fjk) ~  V,;.4(6/o,?7rA:)
0 (  / l o g t o g k  ^
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By C9, V,;-4(#o; •) has a unique inverse which is Lipschitz continuous of order 

one so from the above relation (2.19) follows immediately. We can write

k
v k(0o,vk) = J ] v 0 i0g /(y )^ o ,% )

i = 1

t — 1 k
=  [ T i (Yi)  -  V e A ( 9 0,Vk)]  +  E  -  V 04 (fl0, ?)/,•)]

i=  1 i—T

T—1 fc

= E tTi(yi) - V̂oC?)] + E Ny) - )]
2=1 j~ T

+ (r  — l ) V 0A{B0.,r}) +  (A; — r  +  l)VgA(0A,V*) ~ k V  oA(0a,iik) , 

which can be written as

t - 1  k
Vk =  E  I W )  -  V ^(6»0,r?)] +  E  ~  V < ^ ( W ) ]

j= l j= r

+  ( t  — l)Vov4(6^o, v) + {k — t  + l)V<j.4(6bi, i f )  — kVgA{6 o, ?]t a-)

+  A"[V^.4(0o,i]Tk) — VflA(0O)%)] • (2.20)

By CIO, C ll  and (2.19) the last term  can be written as

V 0A (8 0,r]Tk) -  Vfl-A(0O, fjh) =  (Vrk ~  ?7A:)V|r4(^o,??rA0 +  0 ( ||t)*  -  ?/r A-||2 )

=  (Vk ~  Vrk)121 (00, Vrk) + O (AT1 log'log A’) ft.S.

(2.21)

In order to obtain an expression for fjk -  i]rk we use the following three-term 

Taylor expansion

V,,.4(00,7)*) -  V nA(0o,r)Tk)  = (?) * -  riTk)V^>A{0Q,t]H.) +  O (A:-1 log log A:) , 

and by the definition of i)k we have

1 k
V ^ ( 0 O,% ) =  ^ E r 2 ^ ) -  

1=1
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Now by using C ll  we obtain

m  -  V r k  =  - 1 1 E T -2( y )  -  v v A (90, i u )  j  +  •

(2 .22 )

From (2.21) and (2.22) we have

k ' i

/
T - h

V OA(0O, Vrk) -  VoA(0o, 77*) =  -  { I  E  W )  -  V nA(00, i fr)
i=1

X ^22' (^Oi hr/oKai (6*0) dr/,-) +  O (fc 1 log log ft) ,

and combine this result with (2.20) we get

r - i  k

7 =  1

+

V), =  J ]  [Ti l } ' ) )  -  V<?.4(#o, 77)] + £  [ 7 ^ )  -  V 0A{Oa.. if)]
1 i~r

(r  — l ) V 0A{eo,r}) -F (A; — t +  1)Vo-4(0.,i, rf)  — k V  oA(0o,r)rk)

-  |  E  ) -  k V vA(0o, Vrk) |  I-x (00, 'Ihk)l2 i (00, '0rk) +  0(log log A:) . 

By using (2.17) and (2.18) we obtain

^  =  E  { -  ET̂Y’)} - lT -  ^ ( ^ ) ] ^ 21(0O , ^ ) / 2j (0O,»7r,
i=l ^

+  kdTk +  0(log log A;) .

If we denote

Zi =  [ 7 \ ( y )  -  E T ^ Y f , ]  -  [ T - f Y f  -  E T 2( Y f } l ^ ( e 0, VTh) I 2 l (60 ^ lTk) , 

then we can write

k

Vfc =  Z,- +  kdTk +  0(log log A;) ,
»:=i

Zj are independent random vectors with mean zero and finite covariance struc­

ture.
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R e m a rk  2.5 The test (2.14) is based on W j^o , i?A-,j)- By Theorem 2.5.1 V lj  

can be represented as

k

Vk,j =  ^  Zj + (k — j  + 1 )dTk(j) + 0(loglog k) ,
'=j

where the. drift. dTk{j) is defined a.s follows

(i) if t  < j  < k. and rpk is the solution of the non-random equation

V rtA(e0,i]) = ET2(YT), then

dr ki j )  =  Vo-4(6/..t,7]*) — V flA (#0, >)l/,-) •

(ii) if j < r < k .  andi]Tk(j) is the solution of the non-random, equation

v.,4(«„,„) = my,) + em,),
then

( . , { T - j ) V o A { 0 o , ' l l )  +  { k - T + l ) V g A { O A, l f )  
dTk\J) — ^  ^  V oA(9q, riTifjj) .

Exam ple 2.1 We will compute now the drift in the test (2.14) in the case 

of monitoring the mean of a normal distribution (section 2.3.1). The test is 

based on
1   E L nTu =  ——  max

It can be easily seen that under the alternative HA, a^k. =  a 2 +  p2A and 

the drift in Vk,j is

dTk(j) =  (k -  j  + 1 )/./.,i , if r  < j  < k, 

d'Tk (.?') =  ( k - T  +  l ) f j . A , if 2 <  j  < T  <  k.
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Then the maximum drift is obtained for any j  < r  and for j  = r  the drift in 

the test statistic is
( k - r  + l)//,4

i->Tk =
yjna{a2 +  (k £+1)/4 )

E xam ple  2.2 In the case of monitoring the variance of a normal distribution 

the test is based on (section 2.3.1)

i A- o -■) \
T  -  m T - V '   ̂ * 0J-k — .— max > --------- — =.--------- .

In this case //rfc =  fj,lk =  /* and under the alternative, i / 4, the drift in Vkj  

is

rfrA:(i)  =  { k  -  j  +  1 ) (cr“! -  < jg ) ,  i f  t  < j  <  k  

d r k t i )  =  ( k  — T  +  l ) ( c d \  -  erg ) ,  if 2 < j  <  t  <  k  .

Then the maximum drift is obtained for any j  < r , and for j  =  r  the drift in 

the test statistic is
( k  -  t  +  l ) ( a ' \  -  a 20 )

r k  =  -------------------- 7 = = * ---------------- •
V 2n0ao

In the same way one can compute the drift when monitoring the parameters 

of a nested random effects.
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Chapter 3

M onitoring Param eter Change 

in A R (p) M odels

3.1 Prelim inaries

Traditional Statistical Process Control (SPC) techniques are based on the as­

sumption tha t process data are independent. As Wetherill (1977) has pointed 

out, observations from modern industrial processes are often autocorrelated 

and the process itself can behave like an autoregressive process. Such behav­

ior must be taken into account when setting up monitoring procedures. So, for 

practical purposes the methods available for independent observations needed 

to be extended to the case of non-independent observations.

Johnson and Bagsliaw (1975) obtained the limit processes for partial 

sums of observations from ARMA processes and explored the effect of ARMA 

noise on CUSUM statistics. Bagsliaw and Johnson (1975) examined the effect 

of ARMA noise on the run length distribution for CUSUMs. Their method 

is based on the first passage distribution of a, Wiener process moving between
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reflecting and absorbing barriers, adjusting the variance parameter to allow for 

serial correlation, but their approximations can be inadequate in many cases 

(c.f., Yashchin 1993). Tang and MacNeill (1993) contains theoretical results 

and simulations on the effect of correlation.

Starting with Brown et al. (1975), residuals became one of the most im­

portant tools in change-point analysis for testing the constancy of parameters 

of a process over time. Kulperger (1985), Bai (1993). and Horvath (1993) inves­

tigated various asymptotic properties of sums of residuals. Boldin (1982) and 

Bai (1994b) obtained the weak convergence of empirical processes of residuals 

in stationary ARMA processes. Alwan and Roberts (1988) and Montgomery 

and Friedman (1989) discuss an alternative approach which consists of fitting 

a time series model to the {Yj} series when it is autocorrelatcd and then ap­

plying a control chart to the series of one-step-aliead prediction errors. In 

the above papers various tests for detecting a change in the parameters of a. 

process have been suggested. Our simulations have been showed tha t a test 

based on residuals can be powerful in detecting a change in the mean of the 

process but is not too sensitive when we test for change in the coefficients of 

the process.

Several extensions of CUSUM and GLR schemes to handle autocorre­

lated observations have appeared. In principle Page’s likelihood ratio CUSUM 

scheme (Page 1955) can be easily extended to non-independent observations, 

simply by replacing /(Yj) by /(Y j|Y j,..., Y)-i). However, according to Bas- 

seville and Nikiforov (1993), practical implementation of the GLR algorithm 

is not always possible because of computational difficulties.

Likelihood ratio methodology for testing for changes in the parameters of
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an autoregressive process was developed by Picard (1985), and later by Davis 

et al. (1995), and Csorgo and Horvath (1997).

As an alternative to  likelihood ratio tests, a Bayes-type method was 

introduced by Chernoff and Zacks (1964) who applied it to the problem of 

one-sided changes at unknown times in the mean of a sequence of independent 

normal random variables. Lurie and Neerchal (1999) extended this method to 

the problem of testing for a change in autoregressive parameters for a. general 

stationary AR process. In the presence of nuisance parameters the Bayes-type 

test statistics can Ire expressed in terms of certain Brownian integrals. Their 

simulation studies have shown th a t neither method is powerful.

In this chapter we focus on the change-point problems occurring in au­

tocorrelated data. Truncated CUSUM-type sequential tests are proposed to 

detect an abrupt change in the parameters of a sequence of autocorrelated 

observations. The tests are based on large sample approximations of the com­

ponents of efficient score vector. At the end of this chapter the empirical power 

of the proposed tests is analyzed in a simulation study.

To set up the problem let Y_p+1, Y_p+2, . . . ,  Y0, Y1; Y2, . . . , be consecutive 

observations from the model

Y  — (.!, =  (f>i ( Y j - i  — /i)  +  . . .  +  (j)p (Yi_p — //)  +  £j, i  >  — p +  1 , (3.1)

where j  =  l , . . . , p ,  are constants and {s,-} is a sequence of random

variables.

The assumptions on innovations e, vary in the literature. In the most 

simple case they are assumed to satisfy

{Si} is an i.i.d. N (0, cr2) sequence . (3.2)
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For simplicity of exposition we shall work under this condition on the { e j 

sequence, but note tha t this is not a crucial assumption and our results will 

be valid if {e,} were a. martingale difference sequence, or some other sequence 

as long as the results of Eberlein (1986) are valid for the strong approximation 

of the corresponding sequence of partial sums by a Brownian motions. In the 

more general case the likelihood function will Ire replaced by a quasi-likelihood, 

and some moment conditions are specified.

We shall assume that the process is stationary, that is, the characteristic 

polynomial 0 (s) =  1 — <j>\z — . . .  — (pil~p satisfies

(c.f. Brockwell and Davis 1991).

The stochastic behavior of the the sequence is determined by the vector 

of parameters (/./., a 2, <pi, .... 0P). All the components of this vector may be of 

interest or we can deal with nuisance parameters. Here we consider the prob­

lem of detecting change in parameter 0 from the initially given 0O value, where 

6 can Ire 0  =  (c/>|, . . . ,  0p), or a2, or /i, or (/./., a 2), with the other parameters 

unknown, that is, nuisance parameters.

We denote 0  =  (0 i , . . . ,  (f>p)1 the p x  1 vector of the coefficients and 

assume tha t the covariance matrix

4>(z) 7  ̂0  for all |~| <  1 , (3.3)

/ Co Cl . . .  c;,_| \

r = Cl Co
(3.4)

\  C p - l  Cp_ 2 . . .  Co J

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is invertible, where ck =  Cov(Yi, Yi+k). Let 

/

X k =

l ' o  -  fj. Y _ 1  -  / i

yi -  i.i y 0 -  n

 ̂-/>+! I1'

I -p+2 — fj-

\

\  V f e _ i  -  / J  F a - 2  -  / *  ■ • • Y fr_ p  -  !->■

be the design matrix a t stage k. It is well known that ( l / k ) X lkXk  I \  

hence it is invertible for k large enough.

We assume that the observations Y_p+1, Y~p+2, ■ ■ . , Y(), Yi, . . . ,  come from 

the model (3.1). Under the assumption (3.2), for each k > 2, the joint distri­

bution function of (Y i,. . . ,  Yk) conditionally on Y_p+J, Y_p+2, . . . ,  Y0 is

k
/ ( y1, . . . ,Y a.) =  i j / ( u i u _1, . . . , u - p)

i-1

= (2ttct2) Wxp<j -  —  (Yi -  I') ~  J ]  <l>j{Yi-j ~  lJ)
j = lj = l

(3.5)

and the log-likelihood function is given by

lk(/I, cr2, (f>i, . . . ,  <j)p) = log(27r) -  |  log(cr2)

1
(3.6)

i = l  L j = l

Using the relationship e,: =  (Yt — /j )  -  ]P?=, </>?-(Yi-j -  /j ) ,  the components of
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the efficient score vector are

Ok = (1 -  Qj -  . . .  -  (f>p) 
Op. o-

(1 — — . . .  — 0P)

Y  (Yi ~  I1)  ~  Y  fa M -J  ~
i - i  *- j = l

k

d k  k  i
i=l

i=l
6>CT2 2<j2 +  2c7'1S  ^  ^  Y ^ i ^ - i

j = i

E O 2 - 2) -
(=i2cH

i=i L j=i

1 yk -
=  —  Y  O'*-* “  L ') £ i ■' f o r  a11 S =  l , . . . , p .

i—1

The (p 4- 2) x (p +  2) information matrix is given by

(  (1—01 — ■■■ — Q Q \
<7"

\
0

0

1
2a4
o 4,r

o

where T is the covariance matrix given in (3.4).

The following estimators will be used

?;= i

k
- 2a

i=l
! =  j E  ( u - f 0 - £ « r ‘- j - ' 0

j = i

a r i d

=  (X(.Xk)_1X(.Z/,. , 

where Zfc =  (Yi -  /i)(.

3.7)

(3.8)

(3.10)

(3.11)

(3.12)
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We are testing whether parameter 0 = 0Q changes along the sequence, so 

only the nuisance parameters have to be estimated by their restricted m.l.e’s, 

where value 0q is used in the formulas. The following lemmas on the maximum 

likelihood estimators give rates that allow the strong approximation of the 

statistics process by a Brownian motion. Invariance principles, strong approx­

imations found in the literature (Phillips and Solo (1992), Konev and Perga- 

menshchikov (1997), and references therein) are not sufficient for our purposes, 

so although the limits are not new, the improved rates are. As our methods are 

based on large sample approximations, for large k, Y lp+i., U-P+2 , • ■ •, ho, can 

be replaced by any random variable or constant without changing the limit.

L em m a 3.1 Under the hypothesis cj) = 4>o or d 2 — aq and conditions (3.2) 

and (3.3)

I/),a, -  p| =  0 { y /k ~ l log log A;) u.s. (3.13)

Proof. The rn.l.e. of /./. is

1 J 1'

k'k =  ^  _  T X u  E  ( Yi ~  ^01^-1 -  • • • -  < k pY i-p )

k r ,
M  ~  ^  ~  0 o i ( V / - i  -  //■) -  . . .  -  <l>op(Yi-p -  n )

i—1 L

(1 — 001 — ■ - - — 00/))

By the strong invariance principles for the innovation sequence, under our

conditions, we get k~ l £i = 0 ( y j k r l log log/,;), and this implies

k{l — 0 or — • 

1

■ • -  0Op)

&(1 — 001 — • 
kfj,

• • -  4>op)

k( 1 — d)(n — .

a I

■ ■ ~  00p) 

1

 ̂ (1 -^ 0 1  •- . . .  -  4>

\k 'k  -  n \  =  0 (y /k ~ 1 log log k )  U. S.
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Note that

Hk
k ( l  — 4> 01 — ••• — 4>o p)

f k k k 'i

\  Y ^Yi~ 0̂1 Y I v'-1 _ ” f o p Y 2 Y i ~ p \
k i= 1 (=1 /= 1 '

= /"/,/, +  O ( \ fk ~ x log log k) a.s.

Now putting together the last two relationships we obtain (3.13).

□

L em m a 3.2 Under the hypothesis p. =  fj.0 or a2 =  a'l and conditions (3.2) 

and (3.3)

114 ~  011 =  0 { y /k - '  log log A;) a.s. (3.14)

P roo f. From <f>k = (XpCk) X^Z/,. using the description of the model in 

the form ZA. =  X /,0 +  £ we get 0 A- -  0  =  (X [ .X  i,)~lX[.£. By Lemma A.2

each component of the vector (^X^e) is of order 0 { \J k - x log log/.’) a.s. As 

(l/fe)X ‘fcX* ^  r ,  we have

114 -  H T-xl.xk
log log k

k

Using Lemma 3.1 we obtain that replacing //. by fik (given by (3.10)) in X[.e 

the error committed is {fik -  g) = ’ 0(log log A), which is negligible

after the standardization. Similarly, it is easy to check by calculations, that

(iA)xpU_ r.

□

L em m a 3.3 Under the hypothesis fj, = /j0 or 0  =  0 O and conditions (.3.2) 

and (3.3)

\crk -  <r2| =  0 { \ f k ~ x log log k) a.s. (3.15)
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Proof. The m.l.e. of a2 is

„ 2 1 v~^
a k = k ^

{Yi -  fi)  -  (f)y ( ! ' / _ )  —  M Y i - p  -  m )

where either / j  or <j> has to be replaced by its m.l.e. Consider the first case.

y  a- r  p p

& k  =  l Y  -  ~  Y  M y M  ~  v )  +  ( / ' -  ~  M i 1 -  Y
i = i  L 

k
j = 1

V

= jY^ + ̂ '- - Y +2& ~ ~Y^j.YSi-
i =  1 j = l  j =  1 ’ ) = J

(3.16)

Under condition (3.2) the invariance principle holds for the first term and we 

have | a 2 — Ar1 X n=i£?l =  0 [ \ / k ~ 1 log log k ) . The second term is of order 

0(fc-1 log log k) by Lemma 3.1, while the invariance principle for the £■■, se­

quence and Lemma 3.1 make the last term of order 0 [ k ~ l log log k). Putting 

these together the lemma, is proved in this case.

Consider now the second case. If <f> is replaced by 4>k the variance a 2 is 

estimated by

^■ = I Y \  “  Y ^ k j - f a
7=1

k

3 =  1
k  r  P

■ j = 1

=  \  Y £* _  2\  Y £i Y ^  -  h W i - j  -  m)
7 =  1 7 =  1 f  j=l

+  \ Y  Y ^ V  ~  h ) ( X i - J  -  p) (3.17)
7=1 Lj = l

The first term is as in (3.16) and we have \a2- k ~ l Y i = i  £ 1\  = ' 0 ( y / k ~ l log log A:). 

For the second term

1 . - 1 C1' ^
(<fikl -  ( f > i ) - Y , £ i ( Y i - l  ~  /J )  +  • • • +  (4>kp -  (P p ) r  Y l £ i ^ i - P  ~  t 1'} '

i—1 " z—1

we use Lemma 3.2 and the invariance principle for each sum of the form

Y - i  £i(Yi-s ~  l<), (see Lemma. A.2), and we obtain a rate of 0 ( /r_1 log log k).
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For the last term in (3.17) we apply the Cauchv-Schwarz inequality and

obtain

1 = 1  L j = 1

p
i- 1 L j = 1 J

= p Yj,<i>kj -  <t>jy- j, J 2 (Y i- j  -  p )2 
j = 1 L '  ! = 1

Now, as k ~ l J2i=] (Yi-j — p)2 converges almost surely to the diagonal element 

of the matrix I \  by using Lemma 3.2 we obtain again a rate of 0 (k ~ l log log A:) 

a.s.

□

3.2 M onitoring the mean o f an A R (p) process

In this section we consider the problem of detecting a change in the mean /i 

of an AR(p) model, a 2 and (j> are nuisance parameters. The hypothesis of 

interest is

H0 : p. =  p0 i 0-2, 4> unknown, for all i > — p +  1,

against the alternative

(p. = po , a'2, 4> unknown, for — p + 1 <  i < r,

p. =  pa > p,o , a2, 4> unknown, for i > r  ,

where r  is the unknown change-point.

The test will be based on the first component of the efficient score vector 

given by (3.7). Under Ho defined above, the efficient score vector is

. . .  -  (buv) '*'§ > ,  H , k )  -  E  (U -  vo) -  E  -  k )
i=i
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For each k > 2 define

:i — {Yi Mo) ^  ] <j>kj Q i - j  ko) ■ 

j=l
-ki (3.18)

Then the standardized efficient score vector is given by

k
i  k

Wk(ko,of., k )  =  — y Z h i  ,rr, i— J (3.19)
?:= l

where 0,. is given by (3.12). In the following lemma we assume, without 

a loss of generality, the existence of a Brownian motion IF(-) used in the 

approximations.

L em m a 3.4 Under the hypothesis H0 : //, =  ko-. <t> unknown, and condi­

tions (3.2) and (3.3), there exists a Brownian motion H7(-), such that

Wk(fj.0,al4>k) - W { k )  |=  o ( k ^ ) (3.20)

for some v > 2.

P roof. The standardized efficient score vector can be written as

]_ i  k r v
Wk(iM), k, k) =  t- Y eki = —  Y] {Yi -  fj0) ~ Y kj(Yi-j ~ Mo)a i. *—' ak z ‘ c 'h i= i  '■ »:=i L j=  i

■y k  r  p  p

Y  ^  _  to) - Y kiYi-j - Mo) +  Ykj - kj)(Yi-j - Mo)
J=1 i=i

Ok

1

7 =  1

k
r=.

=  r Y £i +  y Y  ( h  ~  k j )  Y ^ - j  -  mo)
7=1

- ’ 7=r i=i ■ ’
(3.21)

7=1 7 =  1 " ” .3 =  1 L 7=1

By the invariance principle there exists a. Brownian motion W(-), such that

=' o{k1/v) ,
7=1

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for some u > 2. Replacing -fi by ^ causes an error given by the second 

term of (3.21). By Lemma 3.3 and the invariance principle for the sequence

5 3 /= ib ’ the sec01id term is of order log log/,:) • 0 {\Jk  log log k) =

O (log h g k )  a.s. Multiplier _2_ 14 1 , and the sum of the error term is negligible

by using Lemma 3.2 and recalling (see Lemma A .l) that the assumptions on 

the sequence {£,} entails the invariance principle for 53/=i (V/ -  /bh  Hence the 

error term is O (log log k) a.s.

□

R em ark  3.1 Based on the above lemma it is easy to see that, as n  —► oo.

1 - i f
“ ax -— 7= £ 4 /  =  max - = {  Wk(px,,a l,^k) -  Wt( /b ,o i  fa.)}<l<k<n <Jk\/n \<l<k<n sj‘11 {

V

which implies

sup { I L »  -  IV(u.)} ,
0<w<i;< 1

/,

£ 4 / sup |TE(*)| .max —
l < l < k < n  <Jk s / n  *r~f 0 < ( < 1

1=1 —

Now we are able to define a truncated CUSUM-tvpe sequential test for detect­

ing a change in the mean /b  as follows.

T E S T  1 . Stop and conclude that H$ is not supported by the data at the first 

k when

T" {k)  =  2  C {a > ' < 3 2 2 )

Do not reject H q if it is not rejected by k = uq.

Here n 0 is the truncation point, a  is the level of significance and a2. is the least 

square estimator of a2 given in (3.9)(with p. replaced by p0). The critical value 

C(a) is taken from the well known distribution of sup0<Q<1 |IT'(£)I .
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3.3 M onitoring th e variance of an A R (p) pro­

cess

In this section we consider the problem of detecting a change in the variance 

a 2, while the mean /i and 4> are nuisance parameters. We test

Hq : a 2 = a l , fi 4> unknown, for all i > — p + 1, 

against the alternative

{a2 = cr'o , 1 1 (j) unknown, for — p +  1 <  i < r, 

a2 =  <y\ > <Tq , (j) unknown, for i > r ,

where r  is the unknown change-point.

The test will lie based on the second component of the efficient, score 

vector given by (3.8), that is

01 h‘ 1 ~ ^
■—  (<xq>£*■■>k )  =  ~ 2^ f +  2 ^ 2 1  (y‘ -  Afc) -  J 2 k i W - j  -  Afc)=i

By standardization we obtain

/**, 0fc) =  J ]  ( 4  -  ^o) , (3-23)
V  2 c r 0  , ; = i

where now iki are defined by

4,: =  -  M  -  j r  ^ ( y i - j  -  £*) . (3.24)
j =i

Here /4, and <4, are given by (3.10) and (3.12) respectively. In the following 

lemma we show tha t the standardized component of the efficient score vector 

can be approximated by a Brownian process lU^)-

L em m a 3.5 Under the hypothesis H0 : a2 =  erg, /u 4> unknown, and condi­

tions (3.2), (3.3), there exists a Brownian motion TT'(-), such that

|m - ( 4  / 4 ,  k)  -  W (k)\ o(k1' ’') (3.25)

for some v > 2.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P roof. Relationship (3.23) can be rewritten as

Wk =  7 h i Y - a°) = 7 Y (£f - ffo) +  -i-r2 Y ■v 2cro #=1 v 2cj0 ,=1 v 2 <To "Tf

Under our conditions the invariance principle in the claim of the lemma holds 

for the first sum. Neglecting the coefficient 1/\/2o-q, in the error term, we add 

±  E t i  [(Yi ~  lA ~  i 4>kj{Yi-j -  p)]2 and obtain

i—i
E (4 - 4  = E « - rf - E - /■) - E 4+

j=i

2 k

i =  1

/.■ r  p  1  -2 A- r  p

+  S  -  M  -  Y  M Y - j -  M  -  Y  (Y  -  (A -  Y  - 1A
j= 1 -1 1=1 L j=li=i

The difference between the first two terms can be written as

k  r  P  -1 2  k

Y  +  ~Y£i =
i = l  L j = l

A; r  P

?:=i

A

S  Y i f o - f a j W - j - f A  + 2 Y £f
i=i f- j=i -* i=i *- j=i

r  P  -i 2  P  r  kY Y^-MiYi-j-n) + 2 $ 3 ( 0 j - f e )
i=l Lj-1 j j =i L 7 = 1

and now, as in the last part of the proof of Lemma 3.3, one can see that the 

difference is of order (9 (log log fc).

The remaining terms

i=1

2 kY ( Y i - f j . k ) ~ Y M Y i - j - p - h )  -  Y  ( Y i - f A  - Y & k j i Y t - j - p )
j  =  1 J  7 = 1  L J = 1
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can be expanded as

A r  p  p

E  (Yi ~ fa) ~ E  faW-i ~ fa) ~ Yl̂ kj ~ hM-j - // + fi - ih)
i= 1 L j = i  i = 1

-  5 5  £ i~  E ^  _  -  fa
i = 1 L J = J

- E  f(x - /'“■) - E-f-.o'w -/*)]' - E £i(=i L j - i  -I i=i
A- J- P p

+55 55 ( f a j  -  < ifa fa fa j -  fa  +  fa  -  f a )  J5(^aj -  fa
i=l L j=1 j=l

A r  p

-  55 E ( ^  ~ f a ) ( Y> -j -  fa
i= L L j  =  l

- 2 E  {[w - Aa) - E  f a O f a j  - Aa)] • E^-j - f a f a f a i  -  f a
i=l  ̂ j=l j=l

- 2 E  { [(y‘ ~ A a) - E  f a f a f a  -  Aa)] { f a  ~  f a  E(4- - f ai- 1  ̂ j=I J = 1
A p

+2E 4 E (fe -« O w -/d  ■
7 —  1 j =  j

In Lemma. 3.3 was proved that the difference between the first two terms is 

of order O(loglogfc) a.s. As in Lemma 3.3 one can prove that the third and 

the fourth terms are of order O(loglogfe) a.s. By Lemma A.2 the invariance 

principle holds for Y)!i=\£ifa)-j — fa- .? =  1, -. -, p, from which one can see

that the mixed terms with coefficient 2 are 0(log log/c) a.s. by Lemmas 3.1

and 3.2. and the Lemma is proved.

□

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Based on the above lemma and reasoning as in Remark 3.1 we can define the 

following test.

T E S T  2. Stop and conclude that IJq is not supported, by the data at the first 

k when

1 .
Ta(k) = max ,  ^  (i% -  erg) > C(a) . (3.26)

i</<fc<75v'2?i0 v

Do not reject, Ho if it, is not. rejected by k  =  n0.

Again, n 0 is the truncation point and a  is the level of significance. Note that, 

here in  are given by (3.24).

R e m a rk  3.2 I f  we want, to monitor both /j and a2 simultaneously we can 

monitor both statistics Tlt(k)(with a2 replaced by erg. as this is assumed to be 

known) and Ta(k). Note that in this case /./, is also known, and (3.18) and 

(3.24) are the same. Now we test.

Ho : //■ =  /to, <r2 =  erg , 4> unknown, for all i > —p + 1,

against the alternative

{g, =  /to, a2 — cr'o , <f> unknown, for —p + 1 < i < r,

/i =  /i.4 , a2 = a'\ , <j) unknown, for i > r ,

where r  is the unknown change-point. The test is defined as follows.

T E S T  3. Stop and, conclude that Hq is not supported, by the data at the first, 

k, when

max | t p(A;) , Ta(k) j > C(a*) . (3.27)

Do not. reject H0 if  it, is not rejected, by k =  ?t0.

Here wfe monitor two parameters, so each test statistic is monitored 

with a level of significance of a* such tha t the overall level of significance 

is a  =  1 — (1 — a-*)2 (see Remark 2.2). For example, if we want the overall 

level of significance to be a  =  0.05, we have to choose a* =  0.0253, and in this

case the critical value is C(a*) = 2.48.
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3.4 M onitoring th e coefficients of an A R (p )

process

In this section we shall consider the problem of testing for a change in the 

coefficients 's of an AR(p) process defined by (3.1). Now the mean /j and 

the variance a2 are nuisance parameters. The hypothesis of interest

H q : <p =  <j)0, a 2 unknown, for all i > —p +  1,

is tested against the alternative

{4> = 4>q, 11, a2 unknown, for — p +  1 < i <  r,
.

<fi = 4> 4, fi, a2 unknown, for i >  r  , 

where r  is the unknown cliange-point, and the new value <pA is also unknown.

In this case the initial value cf>0 is assumed to be known and at each step 

k > 2, we shall estimate the nuisance parameters // and a2 by

= ancli=\ ’ i=1
respectively, where the residuals at step k, are now given by

v£ki — (l  j — fl’k) ~ 'y '  <Poj fii-j ~ h'A■) • (3.28)
3=1

For each s — 1 ,2, . . .  ,p, the component corresponding to <j>s is given by
k 
i=1

When we replace the unknown parameters by their estimators this becomes

V-(*> =  k  _  M i u  ,
err z—'k i-1

and standardizing this we have

(  1 ~1/2 W k(<fa, fj,k, &l) = ^ r ( 0 o, fi,k, a l)J  v ^ ( 0 o, fik, of.) .

The test is based on the following lemma.
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L em m a 3.6 Under the hypothesis H0 : <fi = cj){), //., a 2 unknown, and con­

ditions (3.2) and (3.3), there exists a process VF(-) =  (V 0 '\  . . . ,  W ^ ) , with 

independent Brownian motion components, such that

\\Wk( < k ,h ,S l ) - W ( k ) \ \ ad - o ( k ^ )  (3.29)

for some // > 2.

P roo f. Let 11),. =  W ^ o ,  cr'2) be the standardized efficient score vector 

evaluated at the true values of the parameters, and for each r = 1 ,2 , . . . ,  p, let 

Wf.1'* be the r ih component of W^. Then can be written as

TI/W =  7rlp 0 ) +  7r2V(2) +  . . .  +  lrpv M  , (3.30)

where j rj are the components of the matrix (c~2r )  1,/2. By using the defini­

tion of fobd we can write

'A* = X > {  X > A ^ p ^ }  = ,

(=1 t S=1 > ;=]

where X j1'* = Y?l=i 7)-.scr_2(^+i-.s — lA- As in the proof of Lemma A .l, for 

each f e  Z, can be written as X ,t?) =  where the con­

stants satisfy the inequality |djr)| < M ^ a ’, for some a e  (0,1) and some 

e  (0, oo). Arguing as in the proof of Lemma A.2 one can prove that 

Eberlein’s theorem applies for each component lU,^, r =  1,2, . . . , p .  As the 

components are uncorrelated there exists a process IF(-) =  (I'F^ \ . . . .  W ^ ) ,  

with independent Brownian motion components, such that

=  0(fc‘A ) ,

for some v > 2.

Now it is enough to prove that \\Wk(<f)0, -  HtH = ' O(loglogfc), 

and this follows from (3.30) if we prove that |yF) _  y(<0| a= O(foglogfc), for
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each s = 1.2, . . .  ,p.  The difference V'('s) -  is written as

V&  -  V ^  = ( 1  -  1 )  -  p)e, +  ^ A ( h - A - , ) E £'or o~ z—' cr. <7- ̂ *=i  ̂ i=]

+  T2 T2 E ^ - 5 ~  M (£ k i -  £i) ■Oh® ~̂TK i=l

The rate is obtained by application of the invariance principle for J2i= 1 (%:-*— 

(see Lemma A.2), and E = i  in the first and the second term of the 

above relationship.

For the sum in the last term we write
k

J 2 ( Y i - s  -  ft.k) ( i k i  -  E i )  =  

i = i

=  -  fik)\(Yi -  h )  -  {Yi -  h) -  E  -  M  +  E  ° U {Y‘ -J -  I-1)
i= 1 L j = i  j = l

=  E  { _  ij*) [fr*-  a *)!1 -  E  ^°j)] j
i = i  ^ j = i

=  E  { ~  /j ) +  _  a*)]  [(/*_  A*)(i -  E
» = i  ^ j=1

=  &(/* -  A/.-)2 (1 -  E  ^°j) +  _  A t ) (1 -  E  ^<y) E w -  _  ■
3= 1  j = i  i = i

Now, by Lemma A.l, from the invariance principle for Y^L iiY i-s ~  h) And 

Lemmas 3.1 and 3.2 we get rate O(loglogfc) a.s. again and the proof is com-

□

Based 011 the above lemma we can define a procedure useful in testing 

for a change in the coefficients fa 's . Denote V  =  ( V ^ , . . . ,  V ^ ) 1. Then the 

vector T  =  (cr_2T) 1̂ 2V  has p independent components and we can monitor 

each component with a level of significance a* =  1 -  (1 -  « )1/p and the overall 

level of significance will be a.
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Remark 3.3 Note that the matrix cx_2r  does not depend on p or a2, but 

only on the vector of the coefficients <fi which is assumed to be known in this 

case. This method can be applied for any p >  1 but for p > 3 the matrix 

(er_2r) is complicated to compute symbolically. In any particular problem, 

(f'iS a,re known and a~'2T is a numerical matrix so (a-2r) l/L can be easily 

computed. For simplicity we shall consider in the next sections only the cases 

of p = 1 and p — 2 respectively.

3.4.1 AR(1) process

Consider the model (3.1) with p =  1 and </>] =  </x that is 

Yi - p  = ( fiY -i -  p) + EU i>  0 . (3.31)

In this case the stationarity condition (3.3) is equivalent to \<j)\ < 1. From (3.9) 

the component of the efficient score vector corresponding to 4> is given by

i 1
V ’ ( , )  =  ^ E 0  u - n f r .

i=1

and the information matrix is given bv

(
\-4>2 0 0

\

and r  = a
1-< P

0 U 2FT /

Based on Lemma. 3.6, reasoning as in Remark 3.1, one can prove that, as

max ^  -P h )ik i  sup \W(t)\ ,
i<;<fc<n cr^pn o</.<i

where {IT(£)}o</i<i is a standard Wiener process. The test for monitoring the 

coefficient <f> is defined as follows.
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T E S T  4. Stop and conclude that Hq is not supported, by the data at the first, 

k when
k

(3.32)T*(fc) =  max Y .  O'*-* -  >  C(ci</<* a2ky/nZ j - f

Do not reject H0 if it is not rejected by k =  n0, where no is the truncation 

point and a is the level of significance of the test.

3.4.2 A R (2) process

Now consider the model (3.1) with p = 2, that is

Yi -  p. =  d>i(y;_i -  /./,) +  fifiYi- 2 -  //.) +  eh i > - 1 . (3.33)

When the observations come from an AR.(2) process the stationarity condition 

implies that the parameters <f>\ and d>2 must lie in the triangular region

(j) 1 +  (f>2 <  1 

4>-2 — 4>\ < i 

- l  < (j)2 < l

The components of the efficient score vector corresponding to (f\ and 02 are 

given by

V'(11 =
01,
w ,  f  E O . ««» V® = § - t = f  S o w  -

i=l ' “ ?=]

respectively. The information matrix is given by

1

/

I( l̂, 2̂,/.dCr2) =

In this case

1 — <f>2
(i+^2)[(i-02)2-0f] (n-y,2)[(i—0a)-—y>j]
______<jfi\______  _____1—<fc>_____
(1+02)1(1—0a)~—0x3 (l+<Pa)[(l—<̂ a)~—<̂>tl

0 0

0

1  1/2

0

71 72

72 7i

0

0

a-
0

0 \
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y j \  — 0] — (j>2 +  \ / l  +  01 ~  02 J-

where

\ / l  +  0 0  
7 ] = _ —

7 2  =  —  — {  x / 1  - < P l  - 4 * 2  -  \ / l  +  0 1

We shall denote
t

i 1
- T » £ ( r M - A . x « ,

^  ,:= (

for any / < /c, where are given in (3.28). Then for each k > 2 we deline

T l,1(k) =  m g  j l i y y 1 +  7zVh 1J  ,

T(!Hfc) =  m g { 72l><;> +  7 i y f } .

The two statistics are independent, and by Lemma 3.6, as n  —> oo,

max ~^= T^(k)  sup IlhTf)! for i = 1 , 2 .
2<k<n \Jn 0</<l

Now we can test

H q : (f)] =  0io, 0 2  =  0 2 0 1 fJ- , o'2 unknown, for all i > —p + 1 ,

against the alternative

{0 i =  0 io5 0 2  =  0 2 0 1 P’ , <72 unknown, for — p +  1 < * < r,

0i =  0ia> 02 =  02a 5 P , 0  unknown, for ?’ >  r  , 

by using the following procedure.

T E S T  5. 5fop and conclude that H q is not supported by the data at the first 

k when

T (k ) -  - j =  max j V ’0-), T (2)(fc)| > C V )  . (3.34)

Fail to reject Hq if it is not rejected byk = n0. where n 0 is the truncation point 

and cv* =  1 — (1 — a )1/'2, where a is the level of significance of the test.
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R em ark  3.4 In the case of independent observations Gombay (2003) devel­

oped two other tests based on k~l/'2Wk and n~l ’̂2Wi, statistics, respectively. 

Lemmas 3.1-3.6 allow us to extend these two tests to the case of an AR(p) 

process. Our simulations (unreported, here) showed that these tests outperform 

the CUSUM-type test only if  the change is at the beginning, i.e. r  — 1. As we 

are interested in the more realistic case r  > 1. we have chosen to present only 

the CUSUM-type test.

3.5 Sim ulation Studies

To evaluate the power of the truncated sequential tests proposed in the previ­

ous sections we have carried out some Monte Carlo experiments for each case 

discussed before.

3.5.1 The case of AR(1) process

First we consider the autoregressive model AR(1), that is

Yi -  p. = f t Y ;-1 -  p.) + eh i > 0 ,

where |0| < 1 , and the errors £,• are independent identically distributed normal 

random variables with mean zero and variance one. In all tables n q represents 

the truncation point, r  is the change-point, and the level of significance is 

a  =  0.05. Each table presents two different situations, n,0 =  100 with a change 

at r  =  50, and ?i0 =  200 with a change at t  =  100, respectively. Each scenario 

in these simulations is based on 5,000 replicates.

a) M o n ito rin g  th e  m ean  p. . When testing for a. change in the mean of 

the process we test the hypothesis

H q : p. = p.Q, a2 and (f unknown for all i > 1 ,
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against the alternative

{//, =  /i0, cr2 and (p unknown for all 1 < / < r  , 

fi =  pi,a > /Jo 5 &2 and d> unknown for all i > t  .

The in-control value of the mean is po =  0, and jiA was varied over the 

set {O.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. Here a2 and <f> are nuisance 

parameters. In each case the variance was a2 = 1. We present the empirical 

power of Test 1 for three different values of the coefficient. <f) = 0.1, <j> =  0.5, 

and <(> = -0 .5 . The test statistic is T/t(fc) defined in (3.22).

These simulations support that Test 1 is consistent against the change 

point alternative, that is, as the truncation point ?i0 grows to infinity, the 

power of the test goes to unity for any change point alternative. From Table 

3.1 we also note that, for fixed truncation point and fixed change point, the 

power of the test decreases as the coefficient 6 increases from -1 to 1. This is 

easier seen in Figure 3.1 and it happens because the drift D  is proportional 

with (1  —(f)).

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.1: Test for monitoring the mean of an AR(1) model Y\ — po =  1 —
//0) + £i. Simulated power (Power) and average stopping time (AVST). a 2 = 1 
and the in-control mean is po =  0. The level of significance is a = 0.05.

4> = 0.1 cj> = 0.5 <f> = --0.5

n0 T Ha POW ER AVST POWER AVST POWER AVST
100 50 0.0 0.031 99.54 0.025 99.72 0.033 99.46

0.1 0.070 99.06 0.038 99.56 0.134 98.23
0.2 0.156 98.18 0.063 99.34 0.393 95.12
0.3 0.290 96.70 0.095 99.00 0.725 89.83
0.4 0.463 94.63 0.136 98.66 0.935 83.87
0.5 0.652 92.15 0.186 98.24 0.992 78.95
0.6 0.809 89.38 0.248 97.72 0.999 75.48
0.7 0.916 86.83 0.313 97.18 1.000 73.07
0.8 0.969 84.63 0.388 96.61 1.000 71.35
0.9 0.988 82.90 0.455 96.06 1.000 70.11
1.0 0.996 81.63 0.518 95.56 1.000 69.20

200 100 0.0 0.037 198.59 0.033 198.86 0.036 198.45
0.1 0.118 196.40 0.061 198.03 0.243 192.67
0.2 0.305 191.52 0.120 196.74 0.700 177.87
0.3 0.578 183.42 0.204 194.71 0.968 159.41
0.4 0.828 173.12 0.325 191.83 0.999 146.67
0.5 0.957 163.28 0.455 188.44 1.000 138.80
0.6 0.994 155.51 0.600 184.30 1.000 133.63
0.7 1.000 149.91 0.739 179.93 1.000 130.04
0.8 1.000 145.73 0.847 175.57 1.000 127.42
0.9 1.000 142.65 0.917 171.61 1.000 125.44
1.0 1.000 140.40 0.962 168.16 1.000 123.92
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Figure 3.1: Power vs Coefficient when testing change in the mean of an AR(1) 
model. The truncation point is n0 = 200 and the change point is r  =  100. 
The in-control value is //,0 and the drift after the change is m  = ha — ho-

0.8 -

0 .6  -

b=-0.5
b=0
b=0.5

5£
0 4  -

0.2  -

o . o  -

-0.9 -0.7 •0.5 •0.3 - 0 .1 0.3 0.70.1 0.5 0.9

Figure 3.2: Power when testing for change in the coefficient for different AR(1) 
models (6 — <b). The truncation point is no --- 200 and the change point, is 
r  =  100. The initial coefficient value is -0.9, -0.-5, 0, 0.5, 0.9.
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b) M o n ito rin g  th e  variance a2. We consider the same AR.(l) model but 

now we shall test for a change in the variance cr2, while the mean /v, and the 

coefficient. <j) are nuisance parameters. The hypothesis of interest is

H0 : cr'2 --- Oq , /i and 4> unknown for all i>  1 , 

against the alternative

H ,  :
a2 =  <7g , /i and 0 unknown for all 1 <  i < r  , 

a 2 = a \  > eg , /./• and 4> unknown for all i, > t  .

The in control value of the variance is cr0 =  1, and a a was varied over the 

set {1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0}. In Table 3.2 we present the 

power of Test 2 for two coefficient values, 4> =  0.1, and </> =  0.5. In each case 

the mean of the process was p, =  0. The test statistic is Ta{k) defined in (3.26).

These simulations support that Test 2 is consistent against the change 

point alternative. From Table 3.2 (and other simulations studies unreported 

here) we noted that, for fixed truncation point and fixed change point, the 

power of the test remains almost the same for any </> between -1 and 1.
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Table 3.2: Test for monitoring a of an AR(1) model V' — // =  c6(T_i — /') + 
Simulated power (Power) and average stopping time (AVST). /j =  0 and the 
in-control value is Co =  1. The level of significance is a  =  0.05.

4> = 0.1 (j> = 0.5

no r cr.A POWER AVST POWER AVST
100 50 1.0 0.046 98.77 0.046 98.85

1.1 0.171 96.75 0.170 96.74
1.2 0.433 91.91 0.433 91.11
1.3 0.712 85.25 0.715 85.26
1.4 0.897 78.45 0.899 78.47
1.5 0.970 72.86 0.969 72.81
1.6 0.990 68.77 0.990 68.77
1.7 0.998 65.71 0.998 65.67
1.8 1.000 63.36 1.000 63.35

200 100 1.0 0.043 198.03 0.043 198.00
1.1 0.260 190.94 0.260 190.84
1.2 0.674 173.95 0.673 154.30
1.3 0.935 154.41 0.9.35 154.30
1.4 0.993 140.42 0.994 140.26
1.5 1.000 131.37 1.000 131.27
1.6 1.000 125.34 1.000 125.25
1.7 1.000 121.14 1.000 121.03
1.8 1.000 117.95 1.000 117.83

c) M onitoring the coefficient q!>. When monitoring the coefficient q!> of the 

AR(1) model the hypotheses of interest are

Ho : 4> = 0o , [!■ arid a 2 unknown for all i > 1 , 

against the alternative

{<■/> =  4>o ■ /J and a'2 unknown for all 1 < i < r  ,

4> =  4>a >  4>o , /i and a2 unknown for all i > r  .

Here //, and cr are nuisance parameters. The test statistics is T ^ k )  de­

fined in (3.32). In each case the mean was fx = 0 and the variance was
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a 2 = 1. We present three different, situations. In Table 3.3, the in con­

trol value of the coefficient is <f>o =  0 .1 , and <j)A was varied over the set

{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. In Table 3.4, the in control value 

of the coefficient is 0o =  —0.5, and <j>A was varied over the set {-0.5, -0.4, 

-0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, and in Table 3.5, the in con­

trol value of the coefficient is (j>o =  0.5, and <j>A was varied over the set

{0.5,0.6,0.7,0.8,0.9,1.0}.

Again, these simulations support that Test 4 is consistent against the 

change-point alternative. From these tables we also note that, for fixed trun­

cation point and fixed change point, the power of the test increases as the 

coefficient <fr increases from - 1  to 1 . this can easily Ire seen in Figure 3.2 which 

presents the power of the test when the in-control value of the coefficient is 

-0 .9 , -0 .5 ,0 ,0 .5 ,0 .9 .

Based on our simulation results (some unreported here) we can observe 

that the power of the tests depends on the coefficients </;' s of the autoregressive 

process. For an AR(1 ) process we recommend to choose a, truncation point 

no >  100 when \(f>\ < 0.5, and a truncation point n 0 > 200 when 0.5 < |(j6| <

0.7. For a coefficient 0.7 < \(f)\ < 0.9 the truncation point around 1000 will 

provide a good power. This is in accordance with the recommendation of 

Tang and MacNeill(l993) in a study of effect of serial correlation on tests for 

parameter change in an AR(l) model.
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Table 3.3: Test for monitoring the coefficient 4>0 of the AR(1 ) model Y) — /./, =  
—  / i ) + £ " j .  Simulated power (Power) and average stopping time (AVST). 

4>o =  0.1, /i =  0, a 2 =  1 and various <j>A. The level of significance is a  =  0.05 
and C'(cv) =  2.24.

n0 T <t>A POWER, AVST
1 0 0 50 0 .1 0.025 99.54

0 .2 0.076 98.81
0.3 0.207 97.19
0.4 0.436 93.63
0.5 0.692 88.08
0 .6 0.876 81.39
0.7 0.967 75.05
0 .8 0.993 69.57
0.9 0.999 65.12
1 .0 1.000 59.25

2 0 0 1 0 0 0 .1 0.033 198.59
0 .2 0.135 195.87
0.3 0.407 187.73
0.4 0.754 173.04
0.5 0.949 156.20
0 .6 0.995 142.07
0.7 1.000 131.34
0 .8 1.000 123.35
0.9 1.000 117.25
1 .0 1.000 112.71
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Table 3.4: Teat for monitoring the coefficient 0o of the AR(1 ) model Y, — fj, =  
4>o(Yj-i  — j i ) + £ i .  Simulated power (Power) and average stopping time (AVST). 
0o — —0.5, /i =  0, a 2 =  1 and various 0.4. The level of significance is cv =  0.05 
and C(a) = 2.24.

n 0 r 0 /1 POWER AVST
1 0 0 50 -0.5 0 .0 1 0 99.89

-0.4 0.039 99.60
-0.3 0.111 99.03
-0 .2 0.232 97.88
-0 .1 0.418 95.86
0 . 0 0.623 93.03
0 .1 0.798 89.51
0 . 2 0.906 85.70
0.3 0.966 82.05
0.4 0.989 78.67
0.5 0.998 75.47

2 0 0 1 0 0 -0.5 0 .0 2 1 199.56
-0.4 0.090 197.89
-0.3 0.285 193.60
-0 . 2 0.588 185.57
-0 .1 0.853 174.71
0 .0 0.959 164.2.3
0 .1 0.994 155.41
0 .2 0.999 148.17
0.3 1.000 142.02
0.4 1.000 136.63
0.5 1.000 131.64
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Table 3.5: Test for monitoring the coefficient fa  of the AR(1 ) model V) -  p. = 
—/./)+£/. Simulated power (Power) and average stopping time (AVST). 

<fio — 0.5, fj. = 0, a 2 = 1 and various <j>4 . The level of significance is a  =  0.05 
and C (cr) =  2.24.

710 T <Pa POW ER AVST
100 50 0.5 0.032 99.31

0.6 0.121 97.92
0.7 0.366 93.65
0.8 0.711 85.24
0.9 0.927 75.13
1.0 0.993 66.70

200 100 0.5 0.037 198.30
0.6 0.210 192.79
0.7 0.638 175.37
0.8 0.943 150.20
0.9 0.997 130.36
1.0 1.000 118.44

3.5.2 The case of A R (2) process

Lai (1995) extended some classical sequential cliange-detection schemes to the 

AR(p) model. In this part of the simulation study we shall consider the prob­

lem of monitoring the coefficients of an AR(2 ) model and our test will be 

compared to Lai’s algorithm. As in Lai’s paper we consider an AR(2) model

Y i - l i  = M Y i - i  -  IJ■) 4- M Y i - 2  -  lA +  ,

with Ej i.i.cl. standard normal and bivariate normal (YoW-i), such tha t EY 0 = 

E Y -i  =  0, Var{Y0) =  V o r ( } U ) =  1.0227 and Cov(Y0, Y_}) = -0.1136.

We shall monitor a change in the coefficients fa and fai. The in-control 

values are fa 0 — - 0 .1  ancl d>2o =  0 .1  and a change will occur only in fa0. 

Note tha t this is known in Lai’s algorithm while our test is monitoring both 

coefficients. Also note that a 2 =  1 is a nuisance parameter in both methods,
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while the mean p. =  0 is assumed to be known with Lai’s method but it is a 

nuisance parameter in our test.

In Table 3.6 the CusumT columns give the empirical power and average 

stopping time of our test. The truncation point is no =  1000 almost equal to 

the theoretical average stopping time of Lai’s algorithm (i.e. 1006). The level 

of significance is a- =  0.05, the dimension is d = 2, so a* =  0.0253 and the 

critical value is C  =  2.48.

The procedure in Lai (1995) is set up so that the average stopping time 

under the no-change hypothesis is around 1006. We analyzed this algorithm 

as follows. The columns Total and Before r  below the POWER, column rep­

resent the proportion of stops (power) and the proportion of stops before the 

change-point, respectively. The columns Total and Before t  below the A V ST  

column represent the average stopping time and the average stopping time 

when the algorithm stops before the change-point, respectively. The algorithm 

was stopped after 6,500 observations.

In Table 3.6 we present two different situations. In the first part of 

the table the change point is at r  =  70 as in Lai’s paper. In this case Lai’s 

algorithm has a lower AVST and it only stops 4% of the time before the 

change-point which is an acceptable percent of false alarms if we consider a 

level of significance of 0.05. However, in real life we do not know the change 

point. In the second part, of the table the change-point is at r  =  500. Now the 

CUSUM test still has good power, while Lai’s algorithm stops more then 35% 

of the time before the change point, i.e. too many false alarms. This behavior 

is common to all open ended monitoring schemes, where the expected stopping- 

time under the null hypothesis controls the process parameters. We have a 

truncated-type algorithm, where the overall probability of type I error is under 

control. We pay for this advantage with increased delay in detection.
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Table 3.6: Monitoring the coefficients 0] and 0o of the AR.(2) model Yj — //. =  
4>\(I'i-i — /i) + <£2 0 ^ - 2  — /0 + ei- Simulated power (Power) and average stopping 
time (AVST). The in-control parameters are dio =  —0.1 and 020 =  0.1. Only 
0io is changing to

POW ER AVST

T 4>\a Total Before r CusumT Total Before r CusumT
70 - 0.10 0.998 0.043 0.048 1134.69 42.48 990.40

0.00 1.000 0.041 0.835 558.40 43.62 737.30
0.10 1.000 0.040 1.000 261.21 43.70 422.60
0.20 1.000 0.039 1.000 162.08 44.11 297.23
0.30 1.000 0.041 1.000 122.91 40.03 230.31
0.40 1.000 0.039 1.000 103.72 40.51 186.25

500 - 0.10 1.000 0.358 0.042 1137.54 240.57 992.10
0.00 1.000 0.365 0.477 744.43 238.36 934.23
0.10 1.000 0.371 0.962 543.95 238.66 798.69
0.20 1.000 0.370 1.000 470.93 239.93 700.20
0.30 1.000 0.364 1.000 444.42 242.27 638.39
0.40 1.000 0.360 1.000 432.17 244.31 601.25

3.6 C onsistency of the test statistics

To understand the process under the alternative hypothesis of change we shall 

describe in detail the asymptotic behavior of the standardized efficient score 

vector in the case of an AR(1) model. In the case of a higher order process 

the conclusions are similar but will not Ire written out in detail because of 

unavoidable notational complexities.

We will consider only the cases of monitoring the mean and the coeffi­

cients of the process. In the case of monitoring the variance the conclusion is 

similar and much simpler to obtain so it will be omitted.

From Lemmas 3.7 and 3.8 we can see the consistency of Tests 1 and 4, 

respectively, provided —> 0 0 , as n0 —» 0 0 , where r  is the unknown fixed

time of change, and n 0 is the truncation point of the test. Consider first the 

case of monitoring the mean of the process.
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L em m a 3.7 Assume conditions (3.1), (3.2), and (3.3) hold with // =  m.4 for 

the sequence {Yk)kez- Then there exists a Brownian motion IT’(-), such that

\Wk( ^ o l k )  -  kD -  7 W(k)\ = o(kV" (3.35)

for some u > 2, where 7  and D  are constants specified in the proof. The sign 

of drift D is the same as that of the difference m.4 — /i0.

P roo f. First, we describe the behavior of the restricted m.l.e.’s if fi =  fj.A. I11 

the AR(1) model
? _  12i= 1 (T; ~  M o )(L )- l  -  (J.q)

E m W - i - M o) 1
I11 the denominator we have 

j . J > - 1 ~  Mo)2 =  j' ^  ( T - t  -  M.4 +  M.4 ~  Mo)
/=i

1
7—J
k

? ;= i
•>u~

(T :-i — Ha )~ +  (/i-t — Mo)2 +  2 ( l)_ i  — /i.4)(/r..\ — Mo) 

1 _ (b2 + fa*  -  Mo)2 + O ( \ A _1 log log k) a.s.

using the invariance principle for X)i=i(Ti-i -  Ma) (Lemma A .l). Similarly, 

the numerator can be approximated as

k1

*=i

i=i
(L i- i — M-4)(Lf — M.4 ) +  (Yi ~  M'.4)(M'.*i — Mo) +  (L ;-i — Mvi)(M.4 ~  Mo)

+  0 l-4 -  Mo)2

=  + ~  k'o) 2 +  0 [ \ /k ~ x log log/;:) a.s.

Then, with

+  (M.4 ~  Mo)2
G>n 4 —-  o---------------------

1X 3 +  (m.4 ~  Mo)2
we have | ~  <Poa | =  O ( \ f k ~ 1 log log k) a.s.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the variance estimator, as £,• =  (Y) — p..4) — 0(YJ_i — Pa), using the same 

principles, we have

A-

fc i=l
(Y) -  //-0) -  0 a-(Y)_i -  p 0)

4 ei= 1

4 e
/=]

- i ± 4 + i ± z j ~  T , o u  -  r , ) 2 + ( / . ,  -  r f u  -  k f

{Yi -  n A) -  <j)(Yi_i -  fj,A) +  (0 -  4>k)(Yi - 1  -  /in) +  (1 -  0a0(Pa -  A*o)

i i  +  ( 0  — 0 / , . ) ( E _ i  —  h a ) +  (1  — 0 a ) ( P a  — Ho)

? : = i

+  2 W z j W j : e j ( y i _ i _ „ i) +  .

/=!

,(1 -  0A-X/-L1 -  /to) 
fc E<

i=l

=  CTq.4 +  O ( \/fc-1 log log fc) a.s.

+ 2(,m -  -  r.-i )
?:=i

2

- cr2 +  y z~ ^ j  ( 0  -  0 o a ) 2 +  ( P a  -  Po)2(l -  0 o a ) 2 + 0 ( v / fc“ 1 log log fc) a . .s.

where a^A — cr2 +  ( 0  — 0 o a ) 2 +  ( P a  — P o ) 2 ( l  — 0 0 a )2-

The standardized efficient score vector is approximated as

1 k ] k
"  '/■•(//a. &h, 0a-) = —  Y]  4 , :  =  —  Y ]

o-a- t r  ^  t r  l
(Ej -  p0) -  0 a- ( ^ : - i ~ Po)

1
=  v E

i - 1  

A

O 'i ~  P a )  — <j>{Yj-\ — Ha) + (4> ~ < 4 ) 0 ; - :  — P a )  +  (1 — 0a-) ( p a  _  Po)

— v -  ^  [e « +  ( 0  ~  0 o a ) ( Y ,- i  -  P a ) ]  +  (4>oa — < 4 - ) ~  ^ 0 ] ( Y 4 i  — Ha)
ak i=l °k i=l

+  [^ (1  — 0 0 a ) ( P ’A ~  P o) +  &(0OA — 0A-)(pA — Po)] •

As in Lemma. A .l the first sum can Ire approximated by 7 lL’(fc) with an a.s. 

error of order o(fc1/"), where j 2 =  % 2[o-2 +  (0 -  0OA)2p=^r], and IL'(-) is a

A A
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standard Brownian motion. The dominant term in the error is k(<j>0..i — frfi) "= 

OtVfcloglogA"), so we get for the drift of the process

D  =  —— -  //o) +  0 { \J k ~ l log log A'), a.s. 
oo,i

per observation. Note that

1 - 6  = (x ~  <P)a2
^  +  ( l - ^ ) ( / i , - / i 0 ) 2  ’

so the drift is proportional to (1  — <$) and this explains the results obtained in 

the first part of our simulation study.

□

R e m a rk  3.5 In Lemma 3.7 we assumed, that the change point is r  — 1. When 

the change point is r  > 2, in the same way one can prove that the drift is

D  =  (1— hA(i_,,A -  /iQ) +  0 ( \ / ( k  — r ) - 1 log log (A: -  r)) a.s.
00.4

per observation after the change. So the drift, in the standardized efficient, score 

vector will, be

(A: -  t )D  =  (k -  t ) — — <̂ - ( p A -  po) +  0 ( \/(A: — t ) log log (A; — r))  a.s.
00.4

In the case of monitoring the coefficient <j> the consistency of the test 

statistic follows from the next lemma.

L em m a 3.8 Assume conditions (3.1), (3.2), and (3.3) hold with <f> =  <\>A for 

the sequence (Yk)k&- Then there exists a Brownian motion such that

\Wk(cb0 ,p k,aD -  k D - j W ( k ) \  =■ o(fc1/") (3.36)

for some v > 2, where 7  and D are constants specified in the proof. The sign 

of drift D  is the same as that of the difference (f>A — cj)0.
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P roof. As in Lemma 3.1 we can prove that | /),/. — //, |=  0 { \J k ~ l log log/,;). 

Note that under the alternative the errors are given by =  (V*—/j ) — — 

/j), and we estimate them by iki — (Yi — Afc) — ^o0'/-i — Afc)- For the variance 

estimator we can write

k k
^2  _  f a 2 _  1
<Jfc ~  2 - /̂ £~ki ~~ /  -

1=] 1=1
{Yi -  Afe) -  M Y - i  -  Afc)

k

- j E
? '= ]

(Fj- — /*) +  (/'■ — //'fc) — 0.4 (Fi_] — //) +  0/i(L,-_ j — //.)

0o(Fi-i — //) +  4>o{Yi-\ — //) -  0o(ly-i — Afc)

which gives

- * E
?:=i

£* + (0a -  00)01-1 -  /./•) +  (1 -  0o) (// -  Afc)

1 , (0a ~ 0o)2 V N w  \2 , o (0.4 00)
A E' + — r— + 2— — -  /■)

i=i

+  2(1 — </>0) (M ~  Afc)
fc

i=i
fc

i=i

£  +  (0.4 -  0 o ) ^ - r ^  E ̂
i=l fc ?:=1

+  (1 — 00)2(// -  Afc)2 1

and using the same principles, we obtain

=  0-2 +  (0-4 -  0o)2 1 +  O ^y/hr 1 log log fc) a.s.

= aoa +  O ( \A '_1 log log A;) a.s.

where a£4 =  a 2 +  (0.4 -  0o)2i f j r .
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The standardized efficient score vector is approximated as

W k{(f>0 ,jlk,o l)  = (y;_j _  frk)§ki
i = ,

0 o £i + (0.4 ~ <fio)(Yi-\ — //) +  (1 — 0o)(/j — /)/,-)

X (K--1  -  /i) + (// -  //.fc)

\ / W o
°fc

o “ — /'■) +  (0.4 ~  00 )
i= 1 07. i=]

\ / l  _  0o t  - \ , i f  ~ \2ri j   ̂\ / l  -  0q
 ------ (/'■ -  l~‘k) 2 _ . e i +  K t l  ~  Hk)  (1 -  00) -~ -n r  / ■—-»  r r r

> =  1

+  (1  — 2 0 0  +  0 ..l) ^  - 2 ~ ( ^  ~  Afc) ~  /J)-afc tr
The first sum can be approximated by ^W (k)  with an a.s. error of order 

o{k1/'') for some v  > 2 , where y2 =  0 ^ ( 1  -  0 q) _1 [cr2 0 ..i(l -  0 o)2], and VF(-)

is a. standard Brownian motion. The second term can be approximated by
0.2

^(0.-i — 0o)a-i (1-^°) an error of order 0 { \ /k lo g \o g k ) .  The last three 

terms produce an error of order O ( log log A:). So, we get for the drift of the 

process

£> =  ( 0 . 4 - 0 0)—r y ----- j A  +  0 ( \ A -1 loglogfc) a.s.
Oq a V- ~  0 a )

per observation. Replacing (jga by its formulae the drift becomes

per observation and the result of the lemma follows. Note that the drift is 

proportional with (0 .4  -  0 O) and this explains the results obtained in our 

simulation study.

□
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R e m a rk  3.6 In the above lemma we assumed that the change point is r  =  1. 

When the change point is t > 2, in the same way one can prove that the drift 

is

D = (i-V.)+̂ ,1 - t f + ° W[ k  - r)" logl°s(t: ~r | )

for  each observation after the change point. So the drift in the standardized 

efficient score vector will be

(<t>A ~  0 o ) \/ l  -  <f>o(k  -  T )D = ( k -  T)  (1 +  ^  + 0 (< j(k  -  r )  log log (fc -  t ) )  a.s.
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Chapter 4 

Sequential ANOVA

4.1 Prelim inaries

This chapter is concerned with the problem of sequential comparison of three or 

more groups. The problem is frequently faced in clinical trials. Some work has 

already been done in the case of comparison of three groups. For more details 

we refer to Siegmund (1993) and Betenskv (1996). The methods proposed 

are dealing with the simplest situation where the responses are independent, 

normally distributed random variables with a common known variance. The 

sequential F-test proposed by Siegmund (1980) deals with the case of more 

then three groups but the analytic approximations will be more complicated.

Here we compute the critical values for the tests of Gombay (2003a) and 

show how these tests can be used for this propose. These tests are compared 

to  the sequential F-test in a simulation study. In the last section we shall 

show how the CUSUM test defined in the second chapter can be used for a 

sequential change-point ANOVA problem.
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We shall assume that observations are made sequentially 011 vectors Y k = 

(Yu, Y<ik, ■ ■ ■, Ydk)1', k > 1, where d denotes the number of groups (treatments), 

and Ya-. is the k th observation from group (treatment) i. The observations are 

assumed to be independently and normally distributed with common variance,

i.e., for each i = 1 ,2 , . . . ,  d,

Yik iid N(ni,cr2), for all k > 1 . (4.1)

Considering a 2 as a nuisance parameter, we are interested in testing

Hq : pi =  /.to =  .. • =  Pd, against H A : not Hq . (4.2)

4.2 Sequential F -test

The sequential F-test is proposed bv Siegmund (1980) and it is based on the 

log likelihood ratio statistics. With the above notation let Y). =  k~ l E j= i Y j  

and Y, — (fed)-1 1 E j = 1 Y i  be the group sample means and the overall

sample mean, respectively, based 011 k observations. The log likelihood ratio 

statistics for testing (4.2) is

, f c E t i ( W - t ) 2

E t i E  kj M - n ) 2
u = - h g \ i + - t i o \ • (4-3)

It will be convenient to use the following parametrization. Define p. =  d r 1 E iL i f  i 

and o =  p —p;. Then E(Yik) = p +  cvj, with E t u  =  0- Now ^ ie hypothesis 

of interest becomes

d 11
Hq : a 2 = 0 , versus H A : 0 “ > 0 . (4.4)

i =  1 i = i

The test is defined as follows.
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S eq u en tia l F - te s t. Given integers A0 < n 0 and constants 0 < c < a. stop 

sampling at min(T. no), where

T  =  inf {A: : A > k0, L/. > a} , (4.5)

and, reject Hq if either T  < n 0 or T  > n 0 and L„n > c.

According to Siegmund (1980) the power of the test depends on the pa­

rameters ft'i,. . . ,  a f/, p,, and cr2 only through the value of S = cr_1(]T^=1 of )1//2. 

The power function of the test is defined by

Ps(T < no) +  PS(T > no, L 1)[t > c).

An exact value of the power function is very hard to obtain for d > 3. 

To obtain a. level of significance a, the constants c and a are chosen based on 

the following approximation given in Siegmund (1980)

a  ~  Pq(L i;{) > a) +  P0(c < Lnu <  a.) +  Po{k-o < T  < no) . (4.6)

The first two terms on the right-hand side of (4.6) may be obtained directly 

from tables of F distribution and the last term  is approximated as follows

< i ~ Y  _ j

P o ( f t b < T < n o ) « 2 e x p { - f l } ^  ’ | r ( ^ ) }

x ^  x d~2vd{x) ̂ 1  +  ^ 1  log (l +  ? j )  |  dx ,

where T(-) is the well known gamma function, l\ =  y 'd { e x p (^ )  — 1}, and 

1-2 =  \Jdjexp (^ i)  — 1}. Because of computational difficulties the function 

u,i{x) will be approximated by exp{—0.583.x(l +  .T2 / d ) - 1 } .
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4.3 Tests based on R ao’s statistic

In Gombay (2002) two sequential tests are proposed to test the hypotheses

Hq : 6 = 0o, V u n k n o w n ,  against J / 4 : 0 ^  Bo, 1] u n k n o w n  (4.7)

where 0 e IRf/, d > 1, is the parameter of interest, and r/ £  R ;', p  > 0, is the nui­

sance parameter. It is assumed tha t the independent observations Yy, Y2, ... ,  

come sequentially from a distribution with density function f ( y , 6 , y ) .  The 

efficient score vector is defined as

where for brevity we denote £ =  {0 , 7]), and denotes the vector of partial

derivatives. Rao’s statistic can be defined as

m )  =  m ) i - \ o m o ,

where I (£ )  =  - E ^ [ 0 2 /d ^ d ^ j  log  f { Y \ ^ ) )  is the {d +  p )  x ( d  +  p )  information 

matrix. As before we shall partition this matrix based on the partition of 

parameter vector £ =  {0 , i]) as

To test the hypotheses defined in (4.7), the nuisance parameter will be 

replaced with its maximum likelihood estimator under H 0, that is, by the 

solution of the equation

k

1 k
(4.8)

The inverse of I  will also be partitioned and denoted by

Y  los  f ( Yi> > d) = ° •
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Then the efficient score vector becomes

W , / ) fe) =  4 = E v 0log/(K-;«o,%),
VA: .

and Rao’s statistics can Ire written as

Rk{Oo, rjk) = Vk(0o, fjk) I n (0o, Vk)Vfe (0o, 1%) . (4.9)

The following theorem and its corollary gives the asymptotics under H q for 

Rao’s statistics process. For simplicity we shall assume that the observations 

come from a. normal distribution.

T h eo re m  4.1 (G om bay (2002)). Under H0, there exist independent Wiener 

processes Wi(t), i =  1 , . . . .  d, such that for £ <  1 / 2  — 1 / ( 2  +  7 )

where R ^X t)  = t 1 ^'?X)  and 7 > 0 .

Note that, when 77 is replaced by i% in l n (0o, v) the asymptotic limit remains 

the same.

C o ro lla ry  4.1 (G om bay (2002)). Under conditions of Theorem 4.1

1 </•< CO
S U p  | V’fn,] (6^0, i7[n/]) 1 (<^0, ' / ' / ) ]  (6^0, '/)[„(]) — (77.J1) | =  0 ( l l  C V ^ g  log 77.) O . . S .

( [vfc(6/o>^)^u (^o,%)Vfe(0o,%)]I ]<k<n J
1 / 2  t +  bri( l o g  n)

® ( l o g  n)
=  exp(—e l) a.s. ,

m a x
I </»•<??.
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Based oil Corollary 4.1 the following truncated sequential tests are defined. 

T E S T  1. Stop and conclude that H$ is not supporied by the data at, the first 

k when ___________

Tfik) =  J - R k(0 o,i%) > C 'i(a,d) .
V no

Fail to reject Ho i f  it is not rejected by k =  n0.

Here no is the truncation point. In the next subsection we will show how to 

compute the critical values C\ (a, d) from the distribution of the maximum of 

the Bessel process.

T E S T  2. Stop and conclude that Ho is not supported by the data at the first 

k 'when

Tofik) =  fiBfifiofiik) > C f ia ,d ,n 0) .

Fail t.o reject H 0 i f  it is not rejected by k = u0- 

Here the critical value is given by

C2 (a ,d ,n 0) = (o.(log??,0)) - l -  log ( -  i  log (1 -  a)) + 6rf(logn0) , (4-10)

where a(-) and b fi )  are defined in Corollary 4.1. A discussion a,bout the critical 

values is given in the next subsection.

4.3.1 Critical values for Test 1

The critical values for Test 1 can be obtained from the distribution of the 

maximum of the Bessel process. Denote v =  d/ 2  — 1. According to Borodin 

arid Sahninen (1996) for 0 < x < y we have the following formulae

Px { sup A((/)(.s) > y ) =  1 - f ]  — y ,/^ f i ; / y \ exp{ -  } . (4.11)
o< s< t J> f ^ y - ,JJ,,kJu+fi.h,k) iX 2,y { }

where J,fix) is the Bessel function defined by

k.=0
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and 0 < j„.i < j y o < . . .  are positive zeros of As our process starts

at x = 0, the critical value C\(n,d)  can be obtained by solving the following 

equation
2.T "Jv{ju,k%/C\) ( fuk ", , ,

1 - “  =  L  c - ' i  V  a  i exp{ ~ o c ^ '  (4-12)f.=] ] u , k J v + \ \3u,k) -C-'l

as x  —> +0.

When x  is very small, x  —*• +0, J„(x) is well approximated by .r"/(2"/d). 

Using this property we can approximate (x/C\)~''J„(j„x-x/Ci) by j\'jk / ( 2 uiA). 

Replacing this in (4.12) we can obtain the critical value C\(a, d) by solving

°o ■;/-1 -2

( 4 ' 1 3 )

In Table 4.1 we give the critical values for various o and d. To obtain these

critical values in our computations we have used the first 100 terms in the sum

on the right-hand side of equation (4.13). Note that the convergence of the 

series in (4.13) is not uniform in v{d) and it is slower for larger values of v(d). 

In this case more terms should be used in the sum. More extensive tables 

with the left-tail probability of the maximum of the Bessel process are given 

in Appendix B.

4.3.2 Critical values for Test 2

Using the critical values C2(a, d, no) defined in (4.10) the test is too conserva­

tive. A better finite approximation to the critical values can be obtained by 

using a result of Vostrikova (1981). According to that result the critical value, 

C2 (a ,d ,n 0) can Ire obtained by solving

d 4„ ( C ^ e x p l—
2 d/2Y (d /2 )  ̂ los ( n o) 1 - -

(c*)2 ( c ;)2j

The following table gives the critical values C'2 (a, d, n0) needed later in our 

simulations studies.
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Table 4.1: Critical value C\(a,d)  for different values of d and different levels 
of significance a.

d 0.10 0.05 0.01
2 2.419 2.695 3.242
3 2.751 3.023 3.562
4 3.023 3.294 3.827
5 3.260 3.530 4.059
6 3.474 3.743 4.269
7 3.669 3.938 4.461
8 3.851 4.119 4.640
10 4.183 4.450 4.968
12 4.482 4.748 5.264

Table 4.2: Critical value (^(ci.d, n0) obtained using Vostrikova’s formulae 
(4.14), for a = 0.05 and different values of d. and no used in later simula­
tions.

n0
d 50 100 200 500
2 3.490 3.540 3.585 3.633
3 3.830 3.880 3.920 3.970
4 4.105 4.155 4.200 4.249

4.4 Sim ulation Studies

In this section we shall study the test statistics in the cases when we compare 

three or four means. In each case we have carried out some Monte Carlo 

experiments to evaluate the empirical power and the average stopping time of 

the tests proposed. Each scenario in these Monte Carlo simulations is based 

on 5,000 replicates.
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4.4.1 Comparison of three treatm ents

In this case we observe vectors Y k =  (YI/,-, I k ,  Vk)4, k > 1, with independent 

normal components, i.e., for each i =  1,2,3, Yn- iid a'2), for all k > 1.

The log likelihood function based on the first k observations is given by

3  a-

2 2 ^ “ 2ct2
i = l  j = J

Using the parametrization

V V 2a'-\/6 2a2v /2y  V2ff2' 2^ 2

the hypothesis of interest becomes (4.7) with 0q =  (0,0), d = 2, and p = 2. 

Under H q the efficient score vector is

j h 3 _  ^ 1

2a 2’ 2a2

u < o , «  =

and the information matrix is given by

1

m , v )  =

The maximum likelihood estimator of a2 is 

A-

( _ J_ 0 _L m.
m m ni

0 _L
m 0 0

_i_
0 3 3m

>n 2/?>

n 3-i» 3-?2-3/)'f
\ -‘t U 2;/5 ■h$

- 1
C i .  =

2fj2k 3 k i=i

Then, in terms of the initial parameters, Rao’s statistic (4.9) becomes

R k =
[E f - i tU j  + Yy -  2Yy)- 2

4 -
Hj=lOlj   ̂2 j )

a k \AHk- 1

<bi

(4.15)

In our simulations the truncation point is n 0 = 50. For the sequential 

F-test we have used c — 3.38, a — 6.68, and k0 = 7 as in Siegmund (1980).
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Table 4.3: Comparison of three treatments. Simulated power (Power) and 
average stopping time (AVST) for Test 1, Test 2, and Sequential F-test with 
normally distributed outcomes for various S. Level of significance cv =  0.05.

8 Test 1 Test 2 Seq F Test 1 Test 2 Seq F

0.0 0.039 0.011 0.042 49.67 49.74 48.54
0.1 0.076 0.020 0.077 49.35 49.57 48.29
0.2 0.191 0.063 0.193 48.22 48.81 47.44
0.3 0.411 0.174 0.405 45.60 46.91 45.46
0.4 0.660 0.371 0.658 41.87 43.36 41.84
0.5 0.860 0.636 0.857 36.95 37.78 36.31
0.6 0.959 0.833 0.960 32.48 31.89 30.47
0.7 0.992 0.946 0.992 28.80 26.06 24.44
0.8 1.000 0.994 1.000 25.85 21.25 19.61

From Table 4.3 we see that Test 1 based on Rao’s statistic and the 

sequential F-test are comparable in terms of power but the sequential F-test 

stops earlier for large values of <5. Test 2 which is also based on Rao’s statistic 

is comparable with the F-test in terms of average stopping time but it is less 

powerful. Note that the asymptotic distribution of these two tests is the same 

and the only difference is due to the different stopping rules.

4.4.2 Comparison of four treatm ents

In the case of four treatments the log likelihood function is given by

POW ER AVST

Using the parametrization

0 =  (01, 02, 03) =  (■IM — I12 P'3 — fH (fl'i +  I'-l) -  0*3 +  fk )  
2<t2\ / 2 ! 2a 2 s/2'' 4<r2
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the hypothesis of interest, becomes (4.7) with £/0 =  (0,0,0), d =  3, and p =  2. 

Under H q the efficient score vector is

Vfe Y'2j)" s / h : ^ {Y:iJ h j )

and the information matrix is given by

I

m , v )

i

j = l

2
n-2 0 0 0 0

0
2

>12
0 0 0

0 0
___J_ __2 \/2 2»)1 \4>

’)2 1)2 1)2

0 0
_ 2 \ / 2 _  A_ •l1)l

1)2 1)2 1)2

0 0
2 i/I v/5 ■li)i 21)2-nfr■iVn 1)2 1)o

The maximum likelihood estimator of cr is

-1 k
a 1?
ak =

-1
= v E E U - ( i E E y2r/2fc 4A' f

1

1=1 j= ii = i  j=l

Then, in terms of the initial parameters, Rao’s statistic (4.9) becomes

R l =
E L  (>y -  Y2j)

Ok,V2k'
+

T ! } M - Y h 

kV 2 kOk

+
E ,‘ ,1  ( n ,  +  Y „ -  Yv  -  i:,j)

2 dk\/k.

The results of our simulations are presented in Table 4.4. The truncation 

point is n 0 -- 50 in the first part of the table and n0 =  100 in the second part. 

The values of c and a for the sequential F-test are obtained by using (4.6). 

In order to obtain a level of significance of cv =  0.05 we have used k0 = 7. 

c =  3.65 and a =  6.95 when no — 50, and k0 = 15, c =  3.60 and a = 6.75 when 

n0 =  100.

Siegmund (1980) reported a difference of 10 — 15% between the approx­

imated significance level and the empirical value in the case of d. = 3 and 

n 0 — 49. From Table 4.4 we can see that the empirical value is larger then the
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approximated value obtained by using (4.6). It seems that the difference be­

comes larger as d and no increase. In each part of Table 4.4 we have computed 

the values of c and a so that the empirical power of the F test is 0.05. We 

obtained c =  4.65 and a =  7.15 when n0 =  50, and c =  4.3 and a" = 7.25 

when ?7,o =  100. These values were obtained based on 10.000 replicates. The 

empirical power obtained by using these values is given in the brackets. As 

before Test 1 and the sequential F-test are comparable in terms of power. The 

sequential F-test stops earlier but the tests based on Rao’s statistic have the 

advantage that the critical values can be easily computed.

Table 4.4: Comparison of four treatments. Simulated power (Power) and 
average stopping time (AVST) for Test 1, Test 2 and Sequential F-test, with 
normally distributed outcomes for various S and «n. Level of significance 
a  = 0.05.

POW ER AVST
770 S Testl Test 2 Seq F T estl Test2 Seq F

.50 0.0 0.044 0.019 0.079 (0.050) 49.68 49.50 48.88 (49.01)
0.1 0.065 0.032 0.131 (0.071) 49.47 49.18 48.59 (48.69)
0.2 0.153 0.071 0.253 (0.152) 48.79 48.59 47.73 (48.04)
0.3 0.341 0.176 0.453 (0.328) 46.85 46.66 45.70 (45.91)
0.4 0.591 0.370 0.700 (0.581) 43.73 43.11 41.53 (41.99)
0.5 0.810 0.613 0.884 (0.798) 39.40 37.85 35.75 (36.93)
0.6 0.940 0.818 0.969 (0.927) 35.07 31.96 29.56 (30.25)
0.7 0.985 0.946 0.994 (0.983) 31.08 25.96 23.54 (24.34)
0.8 0.997 0.985 0.999 (0.977) 28.00 21.50 19.05 (19.87)

100 0.0 0.047 0.022 0.087 (0.050) 99.25 98.76 97.87 (98.31)
0.1 0.097 0.044 0.161 (0.092) 98.51 97.71 96.39 (97.43)
0.2 0.311 0.138 0.416 (0.296) 94.04 94.15 91.42 (93.47)
0.3 0.667 0.395 0.748 (0.646) 84.30 84.54 78.65 (82.55)
0.4 0.915 0.749 0.952 (0.910) 71.25 67.27 61.24 (82.55)
0.5 0.990 0.942 0.996 (0.987) 59.52 49.58 44.58 (65.45)
0.6 1 . 0 0 0 0.994 1 .0 0 0 (0.999) 50.98 36.86 32.79 (35.25)
0.7 1 . 0 0 0 1 .0 0 0 1 . 0 0 0 (1.000) 44.60 28.35 25.62 (27.44)
0.8 1 .0 0 0 1 .0 0 0 1 . 0 0 0 (1.000) 39.92 22.87 21.52 (22.34)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.5 Sequential change-point ANOVA

We have seen in the previous section that we can find a re-parametrization so 

that the components of the efficient score vector are independent. This means 

that we can use the CUSUM test defined in the second chapter to compare 

two or more groups. The CUSUM test is more appropriate for an ANOVA

change-point problem, that is, if we want to test if at an unknown time point

t  > 1 one or more of the means have changed.

As before we shall assume that observations are made sequentially 011 

vectors =  (Y1Jk, You, ■ ■ ■ ■. YdkY, k > 1, where d denotes the number of groups 

(treatments), and Yik is the kih observation from group (treatment) The 

observations are assumed to be independently and normally distributed with 

common variance, i.e., for each / =  1 , 2 , . . . ,  d,

Yjk iid N(fiik,a 2), for all k >  1 .  (4.16)

Considering a 2 as a nuisance parameter, we are interested in testing

Hq : p.I*. =  /io/,; =  . . .  =  fj.dk =  p., unknown, for all k > 1  ,

against the alternative

{k’lk =  P2A- =  . . .  =  fidk =  Ah unknown, for all k < r  ,

there is an i e  {1,2, . . . ,  d} such that p,/. ^  I1-, for k >  r  ,

where r  is the unknown change point.

W ith the same rc-parametrization and the same notations as in the pre­

vious section, for each I < k, we can define

H 4 # o ,% ) =  r - 1/2(d0,p,)14t(^oUA) ,

where r(d0,%.) =  I n -  I v2 I ^ h  1 and Vkj ( 0 o,fik) is the score vector based on 

the last k  — I observations. The test is defined as in (2.14).
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4.5.1 The case of three groups

When d, — 3, by using the results of Section 4.4.1. the components of the vector 

WkA&odQk) are given by

A-

n f i ’ - T T i D r u + i ' b - a w .

k
i f (2) =  1' 1 k.l

and the test is defined as follows.

T est 3 (C U SU M , d — 3). Stop and reject H0 at the first k > 2  for which

-  c ( " ' ) ■ ( 4 171

I f  no such k < n 0 exists then do not. reject Hq.

Here the level of significance is cv =  1 — (1 — cv*)2. For a  =  0.05 we 

have a* — 0.0253 and C(0.0253) =  2.48. The empirical power and the average 

stopping time are presented in Table 4.5. The truncation point is n0 = 200 and 

the change point is r  =  100. Before the change-point the observations come 

from the same distribution, i.e. /./.] =  /i2 =  //,3 =  0, and after the change point 

IH is changing to taking on values {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9, 1.0}. The standard deviation was unchanged, <7=1.  Each scenario 

is based on 5,000 replications.
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Table 4.5: Simulated power (Power) and average stopping time (AVST) for
the CUSUM test with normally distributed outcomes, a '2 = 1 . ih =  li-i =  0 

( \)  ̂ ” and for various fi \  . Level of significance a  =  0.05.

n 0 r  /4-4) Power AVST

200 100 0.0 0.041 198.59
0.1 0.099 196.90
0.2 0.216 194.02
0.3 0.410 188.31
0.4 0.645 180.76
0..5 0.846 171.43
0.6 0.952 162.08
0.7 0.993 154.48
o.s 0.999 148.19
0.9 1.000 143.65
1.0 1.000 139.33

Table 4.6: Simulated power (Power) and average stopping time (AVST) for the 
CUSUM test with normally distributed outcomes, a 2 =  1 , fj,2 =  p. 3 =  ^ 4  =  0 
and for various / j [ a \  Level of significance a  =  0.05.

no / //,[ Power AVST

200 100 0.0 0.037 198.75
0.1 0.087 197.39
0.2 0.180 195.24
0.3 0.364 190.25
0.4 0.602 183.14
0.5 0.820 174.14
0.6 0.946 164.86
0.7 0.990 157.00
0.8 0.998 150.55
0.9 1.000 145.27
1.0 1.000 141.14
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4.5.2 The case of three groups

When d =  4, by using the results of Section 4.4.2, the components of the vector 

W k,i{6 o, -7a) are given by

k

" 4 ?  =  £ ( y „  -  y v ) ,

w u  =  E  ( r . ,  +  U i -  y*  -  k u) ,
j=l

and the test is defined as follows.

T est 4 (C U SU M , <2 = 4). Stop and reject Ho at the first k > 2 for which

-  C (“ ‘ > • ( 4 - 1 8 )

I f  no such k < ?i0 exists then do not reject H0.

Here the level of significance is or =  1 — (1 — rv*)3, and for cv =  0.05 we 

have cv* =  0.0169 and C(0.0169) =  2.632. The empirical power and the average 

stopping time are presented in Table 4.6. The truncation point is no = 200 

and the change point is r  =  100. Before the change-point the observations 

come from the same distribution, i.e., p.x — /j.-2 =  /r.3 =  =  0, and after the

change point p\ is changing to taking on values {0.0, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The standard deviation was unchanged, a  =  1 and 

each scenario is based on 5 ,000 replications.
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Chapter 5 

Concluding Remarks

In this thesis the following results wore obtained

•  A truncated CUSUM-type sequential test was derived. The test is based 

on large sample approximations of the efficient score vector. It is ap­

plicable to a large class of distributions including distributions from the 

non-exponential family. The main attractive features of the new test are 

simple accommodation of nuisance parameters and easy computations of 

the asymptotic critical values. The test statistic was examined under the 

alternative hypothesis and its consistency was demonstrated. An appli­

cation where the observations come from a non-exponential distribution 

was provided.

• The procedure described above was extended to the case of autocorre­

lated observations. The test statistics are provided in the case of mon­

itoring the parameters of an AR(p) process. In the case of AR(1 ) and 

AR(2) models the consistency of the test was proved and the empirical 

power was evaluated in a simulation study. As the results of Lai (1995) 

are the only ones we found that perform test of change in the same 

generality as we do, we have compared our test to his algorithm. The
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approximations developed in this part are strong enough to allow us to 

extend other testing procedures available for independent observations 

to the case of AR(p) models.

• Some testing procedures were proposed for comparison of three or more 

treatments. Tests based on Rao’s statistics proposed by Gombay (2003) 

and to the sequential F-test proposed by Siegnmnd (1980) are compared 

in an extensive simulation study. The critical values for Test 2 of Gombay 

(2003) are computed.

• The CUSUM test is adapted to the ANOVA change-point problem. The 

empirical power and the average stopping time are computed.

• Strong approximations for sums of observations from an AR (p) model 

are proved in the last part of the thesis (Appendix A).

The results of this thesis can be extended in the following directions

• As the efficient score vector behaves approximately as a partial sums 

sequence, the idea of Siegmund (1985) can Ire used to develop new stop­

ping rules that can improve the average stopping time of the test. An 

open ended procedure might be useful in some problems.

•  Procedures to estimate the change-point and the new values of the pa­

rameters following the change-point detection are of interest,.

•  The components of the efficient score vector might Ire used to develop 

new CUSUM and EWMA control charts. They might be implemented 

in the case of multiple change-point problems.

o The procedure can be extended to other time series models like MA or 

ARM A. An extension to the case of random coefficient autoregressive 

models (RCA) seems to work under certain moment conditions.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• In the case of comparison of three treatments when the objective is to 

find the best treatment, methods similar to those of Betensky (1996) 

and Siegmund (1993) can be based 011 the components of the efficient 

score vector. By using the simple structure of the efficient score vector 

the approximations of the critical values might be easier to obtain.
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A ppendix A

Strong Approxim ations for 

A R (p) M odels

In this appendix we verify a strong invariance principle for the partial sums of 

an AR(p) time series model. Let { X k}kez  he a sequence of random variables. 

We denote

Sk(m )  — X m+] +  . . .  +  X m+k for in > 0  and />; > 1 .

Let || • ||i denote the Lj-norm. Our results will follow from a theorem of 

Eberlein (1986). As we are interested in real-valued random variables we shall 

state the theorem in a simpler version.

Theorem  A . l  (Eberlein). Let {Xk}k<zz be a sequence of real-valued ran­

dom variables such that

1 . E X k  =  0 for all k € Z.

2 . ||E(5fc(m.) 1 ^ ) 1 1 1  =  0 (/c2 -<) uniformly in m. > 1 for some (  € (0 , £), 

where T m =  a(X ) : I <  m).
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•3. There exists a constant such that uniformly in m > 1 ,

\ e s U w)  -  4  .  o ( t - ‘ ) ,

as k — *■ oo for some A > 0.

4. There exists 7  > 0 such that uniformly in m  > 1,

||E (5 fc2 (m )|^ m) -  -£'5f (???,)||! =  0 (k J-») , a.s.,

as k — i- 00.

5. There exists a constant M  < 0 0  and r  > 2, such that T’lATI’’ < M  for 

all k > 1 .

Then, there exists a Wiener process {W(f) : t > 0}, such that

M
J 2 x , . . - a wW (t) = 0 {tl/l') a.s.,
k=1

as f — s- 0 0  for some v > 2 .

By verifying the assumptions made in the above theorem we get the 

following strong approximations for AB(p) time series.

L em m a A .l  Let {WK-ez an AR(p) process defined in (3.1) and assume 

tha t (3.2) and (3.3) hold. Then, there exists a Wiener process {TT(£) : t > 0}, 

such that
1*1

Y ,{ Y k - i J . ) - a yW (t) =  0 { tl,u) a.s.,
fc= 1

as t — > 0 0  for some ay > 0  and some v > 2 .

P ro o f. Let =  Yk — p, for all k € Z. It is enough to prove tha t the 

sequence {Xfc} satisfies the assumptions 1-5 of Eberlein’s theorem. Since {Xk} 

is stationary we can find a, sequence of constants (a,;),->o such tha t

X t = CVi£(_i ,

/>o
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and there are constants M  and 0 < a  < 1 such that

|ct/| < M a l for any i > 0  , 

conform Brockwell and Davis (1991, page 85).

(A-2)

1. It is easy to see that E X ^ — E(Yk — y) = 0, for all k, and the first 

condition holds.

2. As E (ei) =  0, for all i, by using relationship (A.l) we obtain
k

E (S k{m)\Tm) = Y J E {X m+t\Em)
t=i 

k

~  ^  ' y   ̂O ' / E ' l - ^ m )
1= 1  i > 0

k ,  I- 1  ^

=  S  1 S  Q'iE {£ m + t - i )  +  n '-*m \
1=1  ̂ ?=0 i>t }

( .= 1  i > t

Now we can write

t - l  i > t  

k

E E  E E ki^ m-H—i|
t = 1 /> /.

f=i ;>/. i=i
< aM E \e0\n  -A.

(1  _  q ,)2  ^  ~ a' ) =  ^ ( i) )  as k  ' O0;

which implies the second assumption of the theorem.

3. We can write
k

Sk(m ) — x-?n+t. + ^ x m+, x m+,.
t = 1 1 < K I < k

For each t > 1 we have

EXj n y  ( E^m+i-j') + 2  y  '  ci'jCi'j^^E,
i >  o j > i >  0

i > 0
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In the same way, for t < /, we get

i.j>0

= V2 Y j  °'ia i+(l-l) '
i> 0

Now, putting together the las three relationships we obtain

E S I (m) -  ka 2 f  Y  a l )  + 2 ( j2  S  «V«y+(i-o
'  i> 0 '  ]</</</,■ /> 0

This can be rewritten as 

] -£ S 2 (?n) =  a 2 ( j ] a 2) + ^ -  £  £ tt .a
i> 0 l<t<l<k i>o

*>o
M E M ¥ l E h E M - E L E « - -

i>0

1 = 1  v i>0 
A'— 1

A--1

1 = 1 N i>()

/=! v i>0

2 a 2
, O7O7+/

( = 1  v ? > 0

=  0-2 ( z l l  a H  +  +  Bk-
^ j>0  '

By using (A.2), for any n  > 1 we have

a h - ? i — i  /

-4a-| =  2 a 2 Y  (  Z n ' n '--/
l.=k '  i>o 

A'-Hi— 1

am-?/—i

< a r W  £  ( « ‘ E “ “ ) = M X ' E
f=A:  V ? > 0

^ 2 ( j2  Y ,  ( Z  in '°
t=k '  i> 0

?A _  2 C 2 E y v

u-h

/ .= o

2cr2A / 2
0 .4 '( 1  — a") — *■ 0  as A; — > oo ,

( 1  —  « 2 ) ( 1  —  O ' )

and by the Cauchy criterion the sequence {A^} is convergent. Let

A =  Bm .4t  =  2  a ! E ( E 0 -7-0 :? u ? '+ /

/>! v ]>0

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Then, as before we obtain 

\A -  A k\ = 2 a 2

( 1  -  a-‘2)(l -  a) 

By using the same techniques we get 
fc-i

E (E ^2(rHl'2 E a' (E °’2'
(>/,- '  i> 0 '  I]

2 f f2 " 2 a ‘' =  0 (t - ')  a., fc

(>k v i>0

oc .

\ B k \ =

2 a 2

A:

< 2a2 M 2

1=1 v i>0 

fc-i

t=l x ?;>o
•2 s  rQ

( = 1 x ?>0 

0  T\ r ‘> A'—1

i: E - ‘ ( E - ' h ^ E ' « '
/ = ]

2aa M 2
= 0 (k *) as k — *• oo .

k ( l  -cv 2)(l -  a : )2 

Now using the last two relationships we obtain

j ; E S 2(m)  - a 2 (  E  <*A =  (A fc -  A )  +  B k =  0 (fc- 1 ) , 
^ !> 0  '

and the third assumption of Eberlein’s theorem follows.

4. Observe that

S k { ^ ’) 'y  ̂ ^  ^  >1 )  =  ^  '  ')j£-m+k-j
/ - I  i = l  '  < > 0  '  j > 0

where 7 ,- =  7 j(&) are defined by

7 j — Q'o T  ci'i +  . . .  +  ctj, for j  =  0 , 1 , . . . ,  k — 1 ,

[ 7 ? =  aj +  a'j- i +  ■ • • +  Qj-_(fe_i), for j  > k .

Note tha t for each j  > k we have

(1  -  a )Itj-i = 1 E a*i - M E a?: = E
i= j—k+l  i ,=j -k+ 1 i=0

(A.4)

/ ;+ ]

Now we can write 

‘S’fe(m) = E
j >0

Ij^m+k-j T 2 y   ̂y   ̂7;7j£m+/._;£nl+/|._j- 
3> 0 i>j

(A.5)

(A.6 )
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By using (A.6) we obtain

E S l { m )  = a 2 ( j 2  ’ ( A -7 )
V  j > o  '

and

E { S l ( m ) \ E m)  = V 2 ( ^ > 2  I f j ' )  +  ^ j £ m + k ~ j  +  2 ^  l i l j t m + k - £ m + k - j  , 

j = 0  '  j > k  j > k i > j

(A.8 )

Now collecting (A.7) and (A.8 )

E { S i ( m ) \ r m) -  E S l(m ) =  £ -  r )  +  2
j > k  j > k  i > j

= Dk{m) .

We can write

E \D k(m)\ < E \4 ~  o 2\ 7? + 2 E \ ^ \ I  J ]  ^  |7 0 j| =  Aa. +  Bk .
j > k  j > k  i > j

Now we shall prove that each term on the right-hand side of the above in­

equality is of order 0(1) as k — > oo. Consider the first term. By (A.5) we 

have

4. = E \4  -  <y £  tj < UV: i - l 7 ' ' ]{ 1 -  °‘>2 E  “S0' H
j > k   ̂ > j > k

M 2a 2E \4  -  a 21
— ( 1  — a  )" =  0 (1 ) a.s k -* oo

(1  — a )2(l — a 2)

In the same way

Bk = 2 £ |S„£, | £ £ | 7i7j| £  -  a y ; E E “ , w t + 2
j>k i>j ' j>k i>j

^ :̂ e''(1- a<,)2E n2ti- ‘2( S > ‘‘ j>k m > 0

M 1a i E \e0 £ i\n  _  n,k\2 \ ' ni2U-k) 
(1 -  a)3

- ( 1  - a A' ) 2 J V
3> k

M 2a 3E leo^il i.\o s
~~ (1  -  a f ( l  -  a 2) ( ~  “  = ^  aS
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and the fourth assumption is satisfied. As the last assumption is trivial to

check the lemma is proved.

L em m a A .2 Let {Yk) kex be an AR(p) process defined in (3.1) and assume 

that (3.2) and (3.3) hold. Then, for any s € {1,2 , . . . there exists a Wiener 

process {IT(t) : t > 0 }, such that

as t — > oo for some us > 0  and some u > 2 .

P roo f. Let s 6  {1 , 2  fixed and denote X k =  ek(Yk- s —fj.). Now we shall

prove tha t the sequence {A'/.} satisfies assumptions 1-5 of Eberlein’s theorem.

1 . It is easy to see that EXk = E (ek(Yk- s —(>)) = E{ek)E(Yk- s - //) =  0. 

for all k, and the first condition holds.

2. As E{ei) — 0, for all i, by using relationship (A.l) for (Yk^s — a) we 

obtain

□

^  ek(Yk..s -  fi) -  asW {t) = a.s.,

k k
E (S k(m )\Xm) = J 2 E {Xm+t\^n )  = J 2 E i£m+t(Y„ A) l^m)

I— 1 
k

^  1 z L  a iE {£m+l£m+l-s-i) +  ^

1— 1 i> 0 

k ( t - s -1

and the second assumption is verified.
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3. For each t > 1 we have

E X 'i+, =  £ ( 4 , +,(!-,,+1„s -  ,,)2) =  -  , , . f

= c r J 2 a i E (4,+ i-s-i) + 2 °* E
i > 0

- j(e 4i>0

In the same way, for 0 < t < I, we get

E ( \ m+l\ m+l) = E  [Vm+(w>i+(0 m+1—8 /OO in+l-s /0]

=: E  (e-id+i'JE | ^ ( 1 / O O  m+l-s /0]

=  0 .

Now using the last two relationships we obtain

k
ESU'm ) =  £  E X l +t +  2  £  £ (X m+tXm+/)

( = 1  1 <i<l<k

= ka* (  £  a f ) , (A.9)
v />o 7

and the third assumption follows.

4. For each t > 1 we can write

E ( K +1|/-„.) =  E ( e?„h (Ym - ,  -  ,«)2|^,„.)
1 - s - l

^  ^  "F ^  ' Ct}E(sm+iE'jnj_i_s_j\J~w'S)
i= 0 ?>t—s

> i> 0

£  «?) + 0-2 £  ai £l~  a  I u i  c m+t—s—i
i = 0  7 i>t—s

+  2 a 2 E Cl' i d j S m + t —s —i ^ m + t —s —j  ■
j>i>t,—s

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ill a similar way, for t < I, we get,

— E  [Sm+t.Em+l 0  m+t—s /^)0m+/—s I-1)\<F>ji]

'y ' Cl’iCl'j \_E (Em+iSm + i£m+ i—s_

i , j > 0  

=  0.

Now, putting together the last two relationships we obtain

E ( S l ( m ) \ E m )  = v ' ' Y . {  a l ) + a '2 l L , (  J 2  a f r m + t s - i

1=1 '  i = o  '  (= 1  '  i > l - s

k /

+  2 cr E E (  L j Ci’j  S i n + ( —s - j E m +t .—s - j

/ =  1 j > i > t —s

From the above relation and (A.9) we get
k

E (S l (m )|^ ,„) -  E SU vi) =  o'- J 2  { E  -  « * )}
1=1 1 i > t - s  J

2 a ‘ !E  E  CViG'j£m-W—s—i£‘
t = 1 ^ j > i > l —s

Consider the first term

E \ A k ( m )  \ =  a 2 E

f = l  ^ i > t —$

+ 2a
t—* I

=  Afc(rn) +  £*(m) .

-  S  { S  a f £ |4 .+ i - s_i -  o' 2
1 =  1  ̂ i > t - s

a 2M 2 E \£ l-o - '2 \<y2[l s) , (,._n

(1 -  a 2)

1=1 v i > 0

k

a ‘

1=1

< <t2 A/ 2£ | £ 5  -  ct2| ( J ]  cv"':
1 =  1 '

<  o 2 M 2 E \ 4  - a 1 \ J 2  ( a 2{ t~ a) ] T  o :2 '

k

E 1
1=1

( l - a 2fc) =  0 (l), as fc— >oo
(1 -  a 2)2
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Consider now the second term

k

E \ B k ( m )  | = 2  a 2E E E
/ — I ^

J > i

<2ff2M2(i?|Eo!)2E{ E “'(E “J)}
/ .=  ] ^ i > t —s  '  '  *

_  2(r2a M 2(E\£a\ ) 1 sr-' (  sr^  2 ;

~  ( 1  -  O ')  ^  \ Q

2a 2a M 2( E \ s 0\ r - ^  M

(1 -  a )

/ =  1 ^ i > l —x

k

a"
1 =  1 N i > 0

2 k2(72 aA /2 (£|£o[) ^  2(t_ ^

(1  — c i ) ( l  — a 2 ) ^  '

2 Cr2 0 :A/2 ( ^ |£o|)2 Q'2(1- s) . *
— (V-i 2 ^ Q(1  - « ) ( 1  -  o'2)

( = 0

2a 2a M 2{ E \ £ 0 \)2a (1 — a 2 k )  =  0 ( 1 ) .  a s  k  — > 00 .(1 — cv) (1 — a 2 )

From the last two relationships we obtain ||Afc(m) +  £ ^ . ( 777, )  ||j =  0(1) and the 

fourth assumption is verified. As e,- are normally distributed and the process 

is stationary the last assumption follows and the lemma is proved.

□
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A ppendix B 

The D istribution o f the  

M aximum of the Bessel Process

In this appendix we give more extensive tables of the distribution of the max­

imum of the Bessel process of different orders d. Each table presents the 

probability

P{ sup < z) ,
Q<t<l

where R ^ ( t )  is defined as

R W ( t )  =  v/tU (*) +  --. +  H 1(0  ,

and Wi(t), i = 1, . . . ,  d, are independent standard Brownian processes.
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Table B .l: Maximum of the Bessel process probability in left-hand tail,
^ (sup0<(<i R (d){t) < z),  for d =  2.

z
Second decimal place of z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
1.5 .44190 .44937 .45680 .46421 .47158 .47891 .48620 .49346 .50067 .50784
1.6 .51496 .52205 .52908 .53607 .54300 .54989 .55673 .56351 .57024 .57692
1.7 .58354 .59011 .59662 .60307 .60947 .61580 .62208 .62830 .63446 .64055
1.8 .64659 .65256 .65847 .66432 .67010 .67582 .68148 .68708 .69261 .69808
1.9 .70348 .70S82 .71409 .71930 .72445 .72953 .73455 .73950 .74439 .74921
2.0 .75397 .75867 .76330 .76787 .77238 .77682 .78120 .78552 .78977 .79396
2.1 .79809 .80216 .80617 .81012 .81401 .81783 .82160 .82531 .S2S96 .83255
2.2 .83608 .83956 .84298 .84634 .84965 .85290 .85610 .85924 .86233 .86536
2.3 .86834 .87127 .87415 .87698 .87975 .88248 .88515 .88778 .89036 .89289
2.4 .89537 .89780 .90019 .90254 .90484 .90709 .90930 .91147 .91359 .91568
2.5 .91772 .91972 .92168 .92359 .92548 .92732 .92912 .93089 .93261 .93431
2.6 .93596 .93759 .93917 .94072 .94224 .91373 .94518 .94660 .94799 .94935
2.7 .95068 .95198 .95325 .95449 .95570 .95689 .95804 .95917 .96028 .96135
2.8 .96241 .96343 .96444 .96542 .96637 .96730 .96821 .96910 .96997 .97081
2.9 .97164 .97244 .97323 .97399 .97473 .97546 .97617 .97686 .97753 .97818
3.0 .97882 .97944 .98005 .98064 .98121 .98177 .98231 .98284 .98336 .98386
3.1 .98435 .98482 .98528 .98573 .98617 .98659 .98701 .98741 .98780 .98818
3.2 .98855 .98891 .98926 .98959 .98992 .99024 .99055 .99085 .99115 .99143
3.3 .99171 .99198 .99224 .99249 .99273 .99297 .99320 .99342 .99364 .99385
3.4 .99406 .99425 .99445 .99463 .99481 .99499 .99516 .99532 .99548 .99563

3.5 .99578 .99593 .99607 .99620 .99633 .99646 .99658 .99670 .99682 .99693
3.6 .99704 .99714 .99724 .99734 .99744 .99753 .99762 .99770 .99778 .99786
3.7 .99794 .99802 .99809 .99816 .99822 .99829 .99835 .99841 .99847 .99853
3.8 .99858 .99864 .99869 .99874 .99878 .99883 .99887 .99892 .99896 .99900
3.9 .99903 .99907 .99911 .99914 .99917 .99921 .99924 .99927 .99930 .99932

4.0 .99935 .99937 .99940 .99942 .99945 .99947 .99949 .99951 .99953 .99955
4.1 .99957 .99958 .99960 .99962 .99963 .99965 .99966 .99968 .99969 .99970
4.2 .99971 .99973 .99974 .99975 .99976 .99977 .99978 .99979 .99980 .99980
4.3 .99981 .99982 .99983 .99984 .99984 .99985 .99986 .99986 .99987 .99987
4.4 .99988 .99988 .99989 .99989 .99990 .99990 .99991 .99991 .99992 .99992

4.5 .99992 .99993 .99993 .99993 .99994 .99994 .99994 .99994 .99995 .99995
4.6 .99995 .99995 .99996 .99996 .99996 .99996 .99996 .99997 .99997 .99997
4.7 .99997 .99997 .99997 .99997 .99998 .99998 .99998 .99998 .99998 .99998
4.8 .99998 .99998 .99998 .99998 .99999 .99999 .99999 .99999 .99999 .99999
5.0 .99999 .99999 .99999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table B.2: Maximum of the Bessel process probability in left-hand tail,
P(sa.Vo<i<i R[d)(f ) <  s )> for d =  3-

z
Second decimal place of z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
1.9 .50133 .50816 .51497 .52173 .52847 .53517 .54183 .54845 .55504 .56158
2.0 .56808 .57454 .58095 .58732 .59364 .59991 .60614 .61232 .61844 .62452
2.1 .63055 .63652 .64244 .64831 .65412 .65988 .66558 .67123 .67682 .68236
2.2 .68783 .69325 .69862 .70392 .70917 .71435 .71948 .72455 .72956 .73451
2.3 .73940 .74423 .74900 .75372 .75837 .76296 .76749 .77196 .77638 .78073
2.4 .78502 .78926 .79343 .79755 .80161 .80561 .80955 .81343 .81725 .82102

2.5 .82473 .82838 .83198 .83552 .83900 .84243 .84580 .84912 .85238 .85559
2.6 .85875 .86185 .86490 .86790 .87085 .87374 .87659 .87938 .88213 .88482
2.7 .88747 .89007 .89262 .89512 .89757 .89998 .90235 .90467 .90694 .90917
2.8 .91136 .91350 .91561 .91767 .91969 .92166 .92360 .92550 .92736 .92918
2.9 .93096 .93271 .93442 .93609 .93773 .93933 .94090 .94243 .94393 .94540
3.0 .94683 .94823 .94961 .95095 .95226 .95354 .95479 .95601 .95720 .95837
3.1 .95951 .96062 .96170 .96276 .96380 .96481 .96579 .96675 .96769 .96861
3.2 .96950 .97037 .97122 .97204 .97285 .97364 .97440 .97515 .97588 .97659
3.3 .97728 .97795 .97860 .97924 .97986 .98047 .98106 .98163 .98219 .98273
3.4 .98326 .98377 .98427 .98476 .98523 .98569 .98613 .98657 .98699 .98740
3.5 .98780 .98818 .98856 .98893 .98928 .98963 .98996 .99028 .99060 .99091
3.6 .99120 .99149 .99177 .99204 .99231 .99256 .99281 .99305 .99328 .99351
3.7 .99373 .99394 .99415 .99435 .99454 .99473 .99491 .99508 .99525 .99542
3.8 .99558 .99573 .99588 .99603 .99617 .99630 .99643 .99656 .99668 .99680
3.9 .99692 .99703 .99713 .99724 .99734 .99744 .99753 .99762 .99771 .99779
4.0 .99787 .99795 .99803 .99810 .99817 .99824 .99831 .99837 .99843 .99849
4.1 .99855 .99861 .99866 .99871 .99876 .99881 .99886 .99890 .99894 .99898
4.2 .99902 .99906 .99910 .99914 .99917 .99920 .99924 .99927 .99930 .99932
4.3 .99935 .99938 .99940 .99943 .99945 .99948 .99950 .99952 .99954 .99956
4.4 .99958 .99959 .99961 .99963 .99964 .99966 .99967 .99969 .99970 .99971

4.5 .99973 .99974 .99975 .99976 .99977 .99978 .99979 .99980 .99981 .99982
4.6 .99983 .99984 .99984 .99985 .99986 .99987 .99987 .99988 .99988 .99989
4.7 .99990 .99990 .99991 .99991 .99992 .99992 .99992 .99993 .99993 .99994
4.8 .99994 .99994 .99995 .99995 .99995 .99995 .99996 .99996 .99996 .99997
4.9 .99997 .99997 .99997 .99997 .99998 .99998 .99998 .99998 .9999S .99998
5.0 .99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 1.0000 1.0000
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Table B.3: Maximum of the Bessel process probability in left-hand tail,
^ (sup(l<f<i B {d){t) <  z),  for d =  4.

z
Second decimal place of z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
2.0 .38912 .39596 .40280 .40964 ,11648 .42331 ,13014 .43697 .44378 .45059
2.1 .45738 .46416 .47092 .47767 .48439 .49110 .49778 ,50144 .51108 ,51769
2.2 .52427 .53082 .53735 .54384 .55029 .55672 .56310 ,56945 .57576 .58204
2.3 .58827 .59446 .60061 .60672 .61278 .61880 .62477 .63070 .63657 .64240
2.4 .64818 .65391 .65959 .66522 .67080 .67632 .68179 .68721 .69258 .69789
2.5 .70314 .70835 .71349 .71S58 .72361 .72859 .73351 .73838 .7431S .74793
2.6 .75263 .75726 .76184 .76636 .77082 .77523 .77957 .78386 .78809 .79227
2.7 .79639 .80045 .80445 .80840 .81229 .81612 .81989 .82361 .82728 .83089
2.8 .83444 .83794 .84138 .84477 .84811 .85139 .85462 .85779 .86091 .86398
2.9 .86700 .86997 .87288 .87575 .87856 .88133 .88404 .88671 .88933 .89190
3.0 .89443 .89691 .89934 .90172 .90406 .90636 .90861 .91082 .91299 .91511
3.1 .91719 .91923 .92123 .92318 .92510 .92698 .92882 .93062 .93239 .93411
3.2 .93580 .93746 .93908 .94066 .94221 .94372 .94521 .91666 .94807 .94946
3.3 .95081 .95213 .95343 .95469 .95592 .95713 .95831 .95946 .96058 .96168
3.4 .96275 .96379 .96481 .96580 .96677 .96772 .96864 .96954 .97042 .97127
3.5 .97211 .97292 .97371 .97448 .97524 .97597 .97668 .97738 .97805 .97871
3.6 .97935 .97998 .98059 .98118 .98175 .98231 .98286 .98339 .98390 .98440
3.7 .98489 .98536 .98583 .98627 .98671 .98713 .98754 .98794 .98833 .98870
3.8 .98907 .98942 .98977 .99010 .99043 .99074 .99105 .99134 .99163 .99191
3.9 .99218 .99244 .99270 .99294 .99318 .99341 .99364 .99385 .99406 .99427
4.0 .99447 .99466 .99484 .99502 .99520 .99537 .99553 .99569 .99584 .99599
4.1 .99613 .99627 .99640 .99653 .99665 .99678 .99689 .99701 .99711 .99722
4.2 .99732 .99742 .99752 .99761 .99770 .99778 .99786 .99794 .99802 .99810
4.3 .99817 .99824 .99830 .99837 .99843 .99849 .99855 .99860 .99866 .99871
4.4 .99876 .99881 .99886 .99890 .99894 .99898 .99902 .99906 .99910 .99911
4,5 .99917 .99920 .99924 .99927 .99930 .99932 .99935 .99938 .99940 .99943
4.6 .99945 .99947 .99950 .99952 .99954 .99956 .99957 .99959 .99961 .99963
4.7 .99964 .99966 .99967 .99969 .99970 .99971 .99972 .99974 .99975 .99976
4.8 .99977 .99978 .99979 .99980 .99981 .99982 .99982 .99983 .99984 .99985
4.9 .99985 .99986 .99987 .99987 .99988 .99988 .99989 .99989 .99990 .99990
5.0 .99991 .99991 .99992 .99992 .99992 .99993 .99993 .99993 .99994 .99994
5.1 .99994 .99995 .99995 .99995 .99995 .99996 .99996 .99996 .99996 .99996
5.2 .99997 .99997 .99997 .99997 .99997 .99997 .99997 .99998 .99998 .99998
5.3 .99998 .99998 .99998 .99998 .99998 .99998 .99999 .99999 .99999 .99999
5.5 .99999 .99999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1,0000 1.0000
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Table B.4: Maximum of the Bessel process probability in left-hand tail,
-P(sup0<t<! R {d](t) <  z),  for d =  5.

z
Second decimal place of z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
2.4 .50291 .50943 .51592 .52239 .52884 .53526 .54165 .54801 .55435 .56065
2.5 .56691 .57315 .57935 .58551 .59164 .59772 .60377 .60978 .61574 .62167
2.6 .62755 .63338 .63918 .64492 .65062 .65627 .66188 .66743 .67294 .67839
2.7 .68380 .68915 .69446 .69971 .70491 .71005 .71514 .72018 .72517 .73009
2.8 .73497 .73979 .74455 .74926 .75392 .75851 .76306 .76754 .77197 .77635
2.9 .78066 .78492 .78913 .79328 .79737 .80141 .80539 .80931 .81318 .81699

3.0 .82075 .82445 .82810 .83169 .83523 .83872 .84215 .84552 .84884 .85211
3.1 .85533 .85849 .86161 .86467 .86768 .87064 .87354 .87640 .87921 .88197
3.2 .88468 .88734 .88995 .89252 .89504 .89751 .89994 .90232 .90465 .90695
3.3 .90919 .91140 .91356 .91568 .91775 .91979 .92178 .92374 .92565 .92753
3.4 .92937 .93116 .93292 .93465 .93633 .93799 .93960 .94118 .94273 .94424

3.5 .94572 .94716 .94858 .94996 .95131 .95263 .95392 .95518 .95641 .95761
3.6 .95878 .95993 .96105 .96214 .96320 .96424 .96526 .96625 .96721 .96816
3.7 .96907 .96997 .97084 .97169 .97252 .97333 .97412 .97489 .97563 .97636
3.8 .97707 .97776 .97843 .97909 .97972 .98034 .98095 .98153 .98210 .98266
3.9 .98320 .98372 .98423 .98473 .98521 .98568 .98614 .98658 .98701 .98743
4.0 .98783 .98823 .98861 .98898 .98934 .98969 .99003 .99036 .99068 .99099
4.1 .99129 .99158 .99187 .99214 .99241 .99267 .99292 .99316 .99339 .99362
4.2 .99384 .99405 .99426 .99446 .99465 .99484 .99502 .99520 .99537 .99553
4.3 .99569 .99585 .99600 .99614 .99628 .99642 .99655 .99667 .99679 .99691
4.4 .99703 .99714 .99724 .99734 .99744 .99754 .99763 .99772 .99781 .99789
4.5 .99797 .99805 .99812 .99819 .99826 .99833 .99839 .99846 .99852 .99857
4.6 .99863 .99868 .99874 .99879 .99883 .99888 .99893 .99897 .99901 .99905
4.7 .99909 .99913 .99916 .99920 .99923 .99926 .99929 .99932 .99935 .99938
4.8 .99940 .99943 .99945 .99947 .99950 .99952 .99954 .99956 .99958 .99959
4.9 .99961 .99963 .99965 .99966 .99968 .99969 .99970 .99972 .99973 .99974

5.0 .99975 .99976 .99978 .99979 .99980 .99980 .99981 .99982 .99983 .99984
5.1 .99985 .99985 .99986 .99987 .99987 .99988 .99989 .99989 .99990 .99990
5.2 .99991 .99991 .99992 .99992 .99992 .99993 .99993 .99994 .99994 .99994
5.3 .99995 .99995 .99995 .99995 .99996 .99996 .99996 .99996 .99997 .99997
5.4 .99997 .99997 .99997 .99998 .99998 .99998 .99998 .99998 .99998 .99999
5.5 .99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 1.0000
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Table B.5: Maximum of the Bessel process probability in left-hand tail,
jP(sup0<t<i R {d)(t) < z ), for d =  6.

z
Second decimal place of z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
2.5 .43174 .43829 .44483 .45136 .45789 .46441 .47092 .47742 ,48391 .49039
2.6 .49685 .50329 .50971 .51612 .52250 .52886 .53520 .54151 .54780 .55406
2.7 .56029 .56648 .57265 .57879 .58489 .59095 .59698 .60298 .60893 .61485
2.8 .62072 .62656 .63235 .63810 .64381 .64947 .65509 .66066 .66619 .67167
2.9 .67710 .68248 .68781 .69309 .69833 .70351 .70864 .71372 .71875 .72372
3.0 .72864 .73351 .73833 .74309 .74779 .75245 .75705 .76159 .76608 .77051
3.1 .77489 .77921 .78348 .78769 .79185 .79595 .SOOOO .80399 .80793 .81181
3.2 .81564 .81941 .82313 .82679 .83040 .83396 .83746 .84090 .84430 .81761
3.3 .85093 .854.16 .85735 .86018 .86356 .86659 .86957 .87249 .87537 .87820
3.3 .88098 .88371 .88639 .88903 .89161 .89415 .89665 .89909 .90149 .90385
3.5 .90616 .90843 .91065 .91283 .91497 .91707 .91912 .92114 .92311 .92504
3.6 .92693 .92879 .93060 .93238 .93412 .93583 .93749 .93913 .94072 .94228
3.7 .94381 .94530 .94676 .94819 .94959 .95095 .95228 .95359 .95486 .95610
3.8 .95732 .95850 .95966 .96079 .96189 .96297 .96402 .96505 .96604 .96702
3.9 .96797 .96890 .96980 .97068 .97154 .97238 .97320 .97399 .97477 .97552
4.0 .97626 .97697 .97767 .97835 .97901 .97965 .98027 .98088 .98147 .98205
4.1 .98261 .98315 .98368 .98420 .98470 .98518 .98566 .98612 .98656 .98699
4.2 .98741 .98782 .98822 .98860 .98898 .98934 .98969 .99004 .99037 .99069
4.3 .99100 .99130 .99160 .99188 .99216 .99242 .99268 .99293 .99318 .99341
4.4 .99364 .99386 .99408 .99428 .99448 .99468 .99487 .99505 .99522 .99539
4.5 .99556 .99572 .99587 .99602 .99617 .99630 .99644 .99657 .99670 .99682
4.6 .99693 .99705 .99716 .99726 .99737 .99746 .99756 .99765 .99774 .99783
4,7 .99791 .99799 .99807 .99814 .99821 .99828 .99835 .99841 .99847 .99853
4.8 .99859 .99865 .99870 .99875 .99880 .99885 .99889 .99894 .99898 .99902
4.9 .99906 .99910 .99914 .99917 .99920 .99924 .99927 .99930 .99933 .99936
5.0 .99938 .99941 .99943 .99946 .99948 .99950 .99952 .99954 .99956 .99958
5.1 .99960 .99962 .99963 .99965 .99966 .99968 .99969 .99971 .99972 .99973
5.2 .99974 .99975 .99976 .99978 .99979 .99979 .99980 .99981 .99982 .99983
5.3 .99984 .99984 .99985 .99986 .99986 .99987 .99988 .99988 .99989 .99989
5.4 .99990 .99990 .99991 .99991 .99992 .99992 .99992 .99993 .99993 .99991
5,5 .99994 .99994 .99994 .99995 .99995 .99995 .99995 .99996 .99996 .99996
5.6 .99996 .99997 .99997 .99997 .99997 .99997 .99997 .99998 .99998 .99998
5.7 .99998 .99998 .99998 .99998 .99998 .99999 .99999 .99999 .99999 .99999
5.8 .99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 1.0000 1.0000
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Table B.6: Maximum of the Bessel process probability in left-hand tail,
P { suPtK/x! B [d\ t )  <  z), for d =  7.

z
Second decimal place of z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
2.8 .50184 .50820 .51454 .52086 .52716 .53344 .53970 .54593 .55213 .55832
2.9 .564 47 .57059 .57668 .58274 .58877 .59177 .00073 .60665 .61254 .61839
3.0 .62420 .62997 .63570 .64139 .61703 .65263 .65819 .60371 .66918 .67460
3.1 .67997 .68530 .69058 .69581 .70100 .70613 .71121 .71624 .72122 .72615
3.2 .73103 .73585 .74063 .74535 .75001 .75462 .75918 .76369 .76814 .77254
3.3 .77688 .78117 .78540 .78958 .79371 .79778 .80179 .80575 .80966 .81351
3.4 .81731 .82106 .82475 .82838 .83197 .83549 .83897 .84239 .84576 .84908
3.5 .85235 .85556 .85872 .86183 .86489 .86790 .87085 .87376 .87662 .87943
3.6 .88219 .88490 .88756 .89018 .89275 .89527 .89775 .90018 .90256 .90490
3.7 .90720 .90945 .91166 .91382 .91595 .91803 .92007 .92207 .92402 .92594
3.8 .92782 .92966 .93147 .93323 .93496 .93665 .93830 .93992 .94151 .94306
3.9 .94457 .94005 .94750 .94892 .95030 .95165 .95298 .95427 .95553 .95676

4.0 .95796 .95914 .96029 .96141 .96250 .96356 .96460 .96562 .96661 .96758
4.1 .96852 .96943 .97033 .97120 .97205 .97288 .97369 .97447 .97524 .97599
4.2 .97671 .97742 .97811 .97878 .97943 .98006 .98068 .98128 .98187 .9S243
4.3 .98299 .98352 .98404 .98455 .9S505 .98552 .98599 .98644 .98688 .98731
4.4 .98772 .98812 .98851 .98889 .98926 .98962 .98996 .99030 .99063 .99094

4.5 .99125 .99154 .99183 .99211 .99238 .99264 .99290 .99314 .99338 .99361
4.6 .99384 .99405 .99426 .99447 .99466 .99485 .99504 .99521 .99539 .99555
4.7 .99571 .99587 .99602 .99616 .99631 .99644 .99657 .99670 .99682 .99694
4.8 .99705 .99717 .99727 .99738 .99747 .99757 .99766 .99775 .99784 .99792
4.9 .99800 .99808 .99815 .99823 .99830 .99836 .99843 .99819 .99855 .99861
5.0 .99866 .99872 .99877 .99882 .99886 .99891 .99895 .99900 .99904 .99908
•5.1 .99912 .99915 .99919 .99922 .99925 .99928 .99931 .99931 .99937 .99910
5.2 .99942 .99945 .99947 .99949 .99952 .99954 .99956 .99958 .99959 .99961
5.3 .99963 .99965 .99966 .99968 .99969 .99971 .99972 .99973 .99974 .99976
5.4 .99977 .99978 .99979 .99980 .99981 .99982 .99982 .99983 .99984 .99985
5.5 .99986 .99986 .99987 .99988 .999S8 .999S9 .99989 .99990 .99990 .99991
5.6 .99991 .99992 .99992 .99993 .99993 .99993 .99994 .99994 .99994 .99995
5.7 .99995 .99995 .99996 .99996 .99996 .99996 .99996 .99997 .99997 .99997
5.8 .99997 .99997 .99998 .99998 .99998 .99998 .99998 .99998 .99998 .99999
6.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table B.7: Maximum of the Bessel process probability in left-hand tail,
p (s u Po<t<i p W {t)  < for d  =  8.

z

Second decimal place of z
.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

3.0 .51514 .52140 .52765 .53387 .54008 .54626 .55242 .55855 .56465 .57073
3.1 .57678 .58280 .58879 .59474 .60066 .60655 .61240 .61822 .62399 .62973
3.2 .63543 .64109 .64671 .65229 .65782 .66331 .66876 .67416 .67951 .68482
3.3 .69009 .69530 .70047 .70559 .71065 .71567 .72064 .72556 .73043 .73525
3.4 .74001 .74472 .74938 .75399 .75855 .76305 .76750 .77189 .77623 .78052
3.5 .78476 .78894 .79306 .79714 .80115 .80512 .80903 .81289 .81669 .82044
3.6 .82413 .82778 .83136 .83490 .83838 .84181 .84519 .84852 .85179 .85501
3.7 .85818 .86130 .86437 .86738 .87035 .87327 .87614 .87895 .88172 .88445
3.8 .88712 .88974 .89232 .89486 .89734 .89978 .90218 .90453 .90683 .90909
3.9 .91131 .91349 .91562 .91771 .91976 .92177 .92374 .92566 .92755 .92940
4.0 .93121 .93299 .93472 .93642 .93808 .93971 .94130 .94286 .94438 .94587
4.1 .94733 .94875 .95014 .95150 .95283 .95413 .95540 .95664 .95785 .95903
4.2 .96018 .96131 .96240 .96348 .96452 .96554 .96654 .96751. .96845 .96938
4.3 .97028 .97115 .97201 .97284 .97365 .97444 .97521 .97596 .97669 .97740
4.4 .97809 .97876 .97942 .98005 .98067 .98128 .98186 .98243 .98299 .98353
4.5 .98405 .98456 .98505 .98553 .98600 .98645 .98690 .98732 .98774 .98814
4.6 .98853 .98891 .98928 .98964 .98999 .99032 .99065 .99096 .99127 .99157
4.7 .99186 .99214 .99241 .99267 .99292 .99317 .99341 .99364 .99386 .99408
4.8 .99429 .99449 .99469 .99488 .99506 .99524 .99541 .9955S .99574 .99589
4.9 .99604 .99619 .99633 .99646 .99660 .99672 .99684 .99696 .99708 .99719
5.0 .99729 .99740 .99749 .99759 .99768 .99777 .99786 .99794 .99802 .99810
5.1 .99817 .99824 .99831 .99838 .99844 .99850 .99856 .99862 .99867 .99873
5.2 .99878 .99883 .99888 .99892 .99896 .99901 .99905 .99909 .99912 .99916
5.3 .99920 .99923 .99926 .99929 .99932 .99935 .99938 .99940 .99943 .99945
5.4 .99948 .99950 .99952 .99954 .99956 .99958 .99960 .99962 .99963 .99965
5.5 .99966 .99968 .99969 .99971 .99972 .99973 .99974 .99976 .99977 .99978
5.6 .99979 .99980 .99981 .99982 .99982 .99983 .99984 .99985 .99985 .999S6
5.7 .99987 .99987 .99988 .99989 .99989 .99990 .99990 .99991 .99991 .99992
5.8 .99992 .99992 .99993 .99993 .99993 .99994 .99994 .99994 .99995 .99995
5.9 .99995 .99996 .99996 .99996 .99996 .99996 .99997 .99997 .99997 .99997
6.0 .99997 .99997 .99998 .99998 .99998 .99998 .99998 .99998 .99998 .99998
6.1 .99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999 .99999
6.2 .99999 .99999 .99999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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