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Abstract

Despite pressing need, current RDBMS support for spatio-temporal data is 

limited, and most existing spatio-temporal indexes cannot be readily inte

grated into existing RDBMSs. This thesis proposes SPIT+ , an indexing tech

nique for historical spatio-temporal data, fully integrable in existing RDBMSs, 

and presents algorithms for processing typical spatio-temporal window and 

k-nearest neighbors queries. SPIT+ separates the tem poral and spatial com

ponents of data. A formal cost model and a partitioning strategy provide 

optimal space partitioning for uniformly distributed data  and a heuristic par

titioning leading to a very good query performance for arbitrary data distri

butions. The tem poral layer’s performance is improved if an optimal maximal 

temporal range is enforced, and a procedure to determine such an optimal 

value is presented. Extensive experiments show th a t S P IT + outperformes 

other RDBMS-based options by orders of magnitude, and is competitive to 

the MV3R-tree, with the unarguable advantage th a t it can be used on top of 

virtually any RDBMS.
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Chapt er 1 

Introduction

Spatio-temporal da ta  models the evolution in time of spatial objects, where 

a spatial object can be described as an entity th a t has associated a position 

in space. A spatio-tem poral data  object is thus characterized by a spatial 

a ttribute and a tem poral attribute, describing spatial properties and the time 

period when the spatial properties were valid. Databases th a t store spatio- 

temporal objects are called spatio-temporal databases.

Consider the following scenario, where spatio-temporal da ta  exist and can 

be used to answer practical questions. Assume th a t every cab in a city is 

capable of transm itting information to  the headquarter every five minutes. The 

information transm itted  contains the unique identifier of the cab, its current 

position represented by its spatial coordinates and the time the information 

is transm itted. Furthermore, assume th a t the information transm itted by all 

cabs is stored in a central database. As a first example of how this database 

can be useful, assume th a t a customer calls in and requests a cab at a given 

address. Instead of sending the customer request to every cab, the dispatcher 

can interrogate the database to identify the available cab th a t is the closest 

to th a t address. As a second example, assume tha t another customer forgot 

a piece of luggage in a cab th a t took him home two days ago. Rather than  

checking within all cabs in the city, the database could be used to identify only

1
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those cabs th a t were in the neighborhood of the customer house two days ago.

Spatio-tem poral databases have received a great deal of research inter

est over the last years, mainly because the advances in mobile technology 

made possible the collection of large amounts of spatio-temporal data. Spatio- 

tem poral da ta  is generated in many real-life applications, the cab-tracking 

system mentioned above being just an example. Other applications include 

weather forecast prediction, traffic monitoring, spatio-temporal data mining, 

wildlife tracking, etc. For most of these applications, the data  volume is usu

ally huge, and da ta  retrieval should work in real time. Standard models and 

techniques (e.g., indexing) used in “classical” databases are not efficient for 

spatio-tem poral data. Hence developing models and indexing structures tha t 

work well for the la tter type of da ta  is very im portant. This is also the main 

focus of this thesis.

1.1 P rob lem  D efin ition

As pointed out, many real-life applications, need to be modeled using spatio- 

tem poral data. For some of these applications only the past locations of the 

moving objects are of interest, while for others it is more im portant to predict 

the objects future locations. This led to classifying the spatio-temporal data 

into historical and current/predictive [17]. This thesis addresses the issue of 

indexing and querying historical spatio-tem poral data.

A typical way of representing historical spatio-tem poral da ta  is to model 

the objects’ movement as discrete events in time. This kind of representation 

is also used here. Each mobile object has assigned an unique identifier and 

is associated with multiple database records. Each database record has the 

format (o id ,x ,y , t s , t e), where oid is the object’s identifier, (x , y ) represent the 

object’s position along the spatial dimensions, and [fs, te) denotes the non-null 

time interval during which the object was located at position (x, y). The time

2
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intervals of all records having the same object identifier are disjoint and their 

union covers the whole temporal domain. For a given object o two consec

utive observations have the form (ofc, x ' , y ' , t's, t'e), and (ok,x" ,y"  where

t" = t'e and (x ',y ') ^  (x",y"). Between successive recorded positions, a step

wise interpolation is used; as long as the object’s position is not updated in the 

database it is assumed to remain stationary at its last observed coordinates. 

This approach is preferred over the alternative of linear interpolating between 

two consecutive positions, as the later could result in erroneous assumptions. 

For instance, in the cabs example above, it would be wrong to assume that 

a cab followed a linear trajectory as obstacles/constraints (buildings, play

grounds, one-way streets, etc.) may be present.

There are two types of spatio-temporal queries th a t are considered in this 

thesis, namely window and k nearest neighbors queries. The following defini

tions are used for these types of queries:

• A spatio-tem poral window query Qw  has the format (a, r ) , where a is 

a two-dimensional spatial region and r  is a time interval. The query 

answer consists of the set of unique oid’s of all records having (x, y) 

inside o  and [f,, te) overlapping w ith r .

• A spatio-temporal kNN query Q n n  is defined as a tuple (p ,r ,k )  with 

p being a static point in a two-dimensional space, r  specifying a time 

period and k being the number of requested neighbors. Q n n  returns 

the oid’s of k objects th a t were the closest to p during r . The distance 

dist(oid,p), between an object identified by oid and p, is defined as

dist(oid, p) =  m in {Xty)eRmd T{d({x ,y),p )} ,

where R old}T =  {(x ,y ) \ (o id ,x ,y , t s , t e) G D  A [A, te) D r  ^  0}, D  is the 

set of all database records and d((x, y), p) is the euclidian distance in the

3
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two-dimensional space.

1.2 T hesis M otivation  and C ontributions

Even though several spatio-temporal indexing structures have been developed, 

most of them  suffer from the drawback th a t they cannot be easily integrated 

into existing RDBMSs. A spatio-temporal model is said to be fully integrable 

into an RDBMS if it can be implemented using only the standard function

ality (e.g., data  types, indexing structures) provided by th a t product. One 

im portant benefit of a fully integrable model is th a t it can take advantage of 

all features existing in an RDBMS, such as the capacity to manage large data 

volumes, concurrency control, query languages, and others. Furthermore, im

plementing a model on top of a standard  product makes it accessible to more 

users and more application domains.

A first a ttem pt to provide a spatio-temporal access m ethod inside of an 

existing RDBMS has been made in [16], where the author proposed SPIT, a 

two-level indexing method fully integrated within the RDBMS via a relational 

mapping. It partitions the spatial dimension of the data  space into a static 

grid and for each grid cell creates an index over the tem poral dimension. A 

more detailed description of SPIT is provided in Section 2, where existing 

spatio-temporal indexing structures are reviewed.

The spatio-temporal indexing approach proposed in this thesis uses the 

same framework as SPIT does. However, it introduces several new and impor

tan t features as detailed in the following:

•  A new partitioning strategy is developed, th a t takes into account arbi

trary data distribution. In contrast, SPIT was designed to  work effi

ciently only for uniform da ta  distributions.

•  It introduces an algorithm for splitting the tem poral ranges of da ta  points

4
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with the goal of faster query response. An optimal decomposition, ac

cording with a new cost formula, is obtained with a histogram based 

m ethod. No similar concern is present in SPIT.

• It shows how the presented indexing technique could be employed for 

solving new types of spatial-temporal queries such as kNN queries. Only 

spatio-tem poral window queries were considered in SPIT.

• It provides a thorough experimental evaluation of the proposed method, 

for both  real and synthetic datasets, by comparing it against other 

RDBMS-based alternatives for spatio-temporal data indexing, as well 

as a specialized spatio-temporal indexing structure.

1.3 T hesis O verview

The structure of the remaining chapters is the following: Chapter 2 reviews 

background concepts related to spatio-temporal databases domain and sur

veys spatio-tem poral access methods present in the literature. An overview of 

several existing approaches focusing on answering spatio-tem poral k nearest 

neighbors queries is also provided. Chapter 3 describes the proposed technique 

for indexing spatio-tem poral data. A partitioning-based approach, the index

ing method uses several decomposition algorithms designed to optimize the 

query processing cost. Besides in-depth description and discussion of query 

processing, this chapter includes the algorithms in pseudo-code and details 

about an actual implementation in an RDBMS system. An experimental eval

uation of the proposed approach is presented in Chapter 4. Two m ajor classes 

of experiments are performed: (1) model properties assessment and valida

tion and (2) comparison against other spatio-tem poral indexing approaches. 

The focus of the first class is to confirm the effectiveness of the decomposition 

strategies and to evaluate the model robustness with respect to its parameters.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The model efficiency is dem onstrated with the second class of experiments, 

where it is shown th a t the proposed technique outperforms all compared ap

proaches in answering both window and kNN spatio-temporal queries. Chap

ter 5 provides the conclusion of this thesis and offers directions for further 

research.

6
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Chapt er 2 

Background and Literature 
Review

Representing spatio-temporal data inside a database can be done in several 

ways. A first choice is to consider the time as an additional dimension and 

to model the moving objects as points in a multidimensional space [1, 16, 19, 

31]. In this way, the movement of an object in time could be represented 

by the object’s spatial coordinates at each moment of time. If the object 

changes in shape and /or size over time and this change is relevant for the 

application’s specifics, then the object is modeled as a multidimensional region 

and its spatial-extensions are stored in addition to its spatial coordinates. Even 

though object motion often is continuous in time, recording the position of an 

object for each time instance is impossible. Furthermore, for objects th a t do 

not move over a time period, this will result in storing redundant information. 

For this reason, only sampled positions, obtained by discretizing the whole 

time period, are stored. Figure 2.1 shows an example of time sampling for 

objects modeled as regions. For a query th a t falls between two neighboring 

sampled points, the location of the objects could be determined using, for 

instance, linear or step-wise interpolation.

A second possibility is to store the objects trajectories rather than their 

punctual locations. A trajectory is stored as a collection of linear segments,

7
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to th

Figure 2.1: Spatio-Temporal D ata Represented as Regions at Different Time 
Instances

where each line segment represents the motion of an object between two suc

cessive sampled positions. This type of data representation has been used 

in [5, 20, 22, 38]. While it offers a convenient way for retrieving all the ob

jects satisfying a given spatial predicate at any moment of time without need 

for interpolation, a trajectory model usually requires more complex data and 

indexing structures than  those employed by the previous model.

A third da ta  model th a t can be used to represent spatio-tem poral data is 

the parametric model [11, 26, 33]. Under this approach, an object’s move

ment is represented as a function of time, and its motion (typically speed and 

direction) vector is stored together with its current spatial coordinates. By 

modeling the path  followed by a moving object as a tim e variable informa

tion, a parametric model has the advantage th a t data  updates are necessary 

only if the components of the motion vectors change. In addition, it allows 

to compute the objects future location, which makes it suitable for predictive 

spatio-temporal applications.

8
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2.1 Spatio-Tem poral Queries

The most common types of spatio-temporal queries are those inherited from 

the area of spatial databases. These include window queries, nearest neighbor, 

k-nearest neighbor [39], reverse nearest neighbor [2] and join queries. Spatio- 

temporal window queries retrieve all the objects tha t are contained in a spec

ified query region during a given time interval or at a time moment. “Find all 

the cars that were parked at the university between 5 p.m. and 6 p.m. two days 

ago” could be an example of window query. Given the coordinates of a static 

or moving object (query point), a spatio-temporal nearest neighbor query re

trieves the object th a t is the closest to the query point during a time interval, 

with the distance between two objects during a specified time interval being 

defined as the minimum of their distances at all time instances tha t belong to 

the specified time interval. An example of such a query would be “which bus 

will be the closest to the bus station in the next five minutes”. A k-nearest 

neighbor query is an extension of a nearest neighbor query, where instead of 

returning only one object, the k closest objects are retrieved. In contrast, a 

reverse nearest neighbor query returns all the objects whose nearest neighbor 

is the query point. As opposed to the query types defined before, which are 

concerned with only one dataset, a spatio-temporal jo in  query involves two 

sets of data and focuses on finding all the pairs of objects from the cartesian 

product of the datasets, th a t are located within a given distance from each 

other during a time interval.

Since the location (past, current or future) of the moving objects during 

the query time interval is the only information needed to compute a query 

answer set, all the query types defined above are often called coordinate-based 

[22] spatio-temporal queries. Recently, a new category a spatio-temporal 

queries, namely the trajectory-based queries [22], has emerged. Trajectory-

9
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based queries require information about the complete or partial trajectories 

of the moving objects and concentrate on answering questions regarding the 

topological and navigational aspects of objects’ movements. Providing an

swers to questions such as whether a trajectory enters, leaves, stays within, 

crosses or bypasses a certain area during a given time interval is the focus 

of topological queries, while navigational queries involve derived information 

such as speed, heading, acceleration, traveled distance, etc. [22].

Using a complementary categorization, one can distinguish between histori

cal and current/predictive spatio-temporal queries. Historical spatio-temporal 

queries are used in conjunction with historical databases and answer questions 

about the past movement of the objects. Current/predictive queries work 

with current/predictive spatio-temporal databases and are focused on return

ing information about the current state  of the moving objects or about their 

projected movement. In order to answer questions about the objects location 

a t a specified time moment in the future, information about their current ve

locities and positions is used. However, the answer to  a predictive query is 

deemed accurate only at the time it is computed; it may be invalided with any 

update th a t happens between the current and the query times. To overcome 

this limitation, continuous spatial-tem poral queries [28] have been introduced. 

Such queries involve constant monitoring of the database status and updating 

of the query answer with every occurring change.

2.2 Indexing Spatio-T em poral D ata

Most of the indexing structures designed to  handle spatio-temporal data  are 

based on R-trees [7]. An R-tree is a balanced tree th a t indexes spatial objects 

based on their Minimum Bounding Rectangle (MBR). The leaf nodes contain 

the MBRs of all spatial objects and pointers to objects exact representations. 

At the directory level, each node consists of the smallest MBR th a t tightly

10
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encloses all the MBRs in the child nodes and of pointers to the child nodes. A 

sample two-dimensional R-tree is provided in Figure 2.2. The objects’ MBRs 

are depicted by the rectangles R8-R19. Multiple MBRs are grouped together 

in the parent nodes R1-R7, in such a way tha t node’s overlapping and the 

empty space introduced in the tree are minimized. W hen a window query has 

to be answered, the tree is traversed starting from the root to determine all 

the leaf entries whose MBRs overlap with the query window. For these entries, 

the objects exact representations are retrieved to test whether they satisfy the 

query. Since the MBRs of several entries of a node may overlap with the query, 

multiple paths from the root to leaves may be traversed.

Like spatio-temporal queries, spatio-temporal access methods could be clas

sified into historical and current/predictive.

First, historical spatio-temporal indexing structures are reviewed. For this 

class of indexing structures, spatio-temporal data  is usually represented using 

either the coordinate-based [1, 19, 31] or trajectory-based [5, 20, 22, 38] model.

RT-trees [40] are the first access structure intended to  support the storage 

and retrieval of spatio-temporal data. An RT-tree uses a two dimensional 

R-tree to index d a ta ’s spatial component and stores the tem poral component 

as auxiliary information in the R-tree’s nodes. While being able to answer 

spatial queries relatively well, an RT-tree provides no discrimination along the 

temporal dimension, which makes it extremely inefficient for queries based 

solely on a tem poral predicate.

Designed to support both time-related and space-related queries a t the 

same time, the 3D R-tree [38] considers the time as a third spatial dimension 

and indexes spatio-tem poral data  in a three-dimensional R-tree. The main 

problem with the 3D R-tree is the growth of the dead space introduced in the 

index, resulting in a larger degree of overlap among nodes, which in turn  causes 

lower query performance. Research on addressing the issue of dead space in

11
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Figure 2.2: Example R-tree (from [7])

3D R-trees is reported in [8] and [24]. The common idea of these contributions 

is to split long trajectory segments, such th a t the to ta l area of the indexed 

MBRs is reduced.

Historical R-trees [19] adapt the concept of overlapping B-trees [4] to 

spatio-temporal data. The main idea is to  create a separate R-tree for each 

time instance in the history of the moving objects. To avoid duplication of 

nodes whose content doesn’t change over consecutive tim estam ps and save 

disk space, common nodes are shared among multiple R-trees. If, instead, at 

least one node entry changes its location, then all the other entries have to

12
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be replicated. Very efficient for tim estam p queries, a historical R-tree suffers 

from the drawback of having to search over multiple copies of the same objects 

in answering interval queries.

yVF.-cw
33

Figure 2.3: MV3R-tree (from [31])

The MV3R-tree [31] improves upon historical R-trees by providing more ef

ficient support for interval queries. It consists of two correlated indexing struc

tures: a Multi-Version R-tree (MVR-tree) and an auxiliary 3D R-tree built on 

MVR’s leaf nodes, as shown in Figure 2.3. In answering a spatio-temporal 

query, either one or another structure is used: the MVR-tree offers good per

formance for time-slice queries, while the auxiliary 3D R-tree performs better 

for time-interval queries. As with any multi-version and overlapping structure, 

the replication of some information in an MVR-tree cannot be prevented. Ob

ject replication in an MVR-tree also induces extra space requirements for the 

3D R-tree structure, making the entire structure less storage effective.

The Trajectory-bundle tree (TB-tree) [22], also a 3D R-tree data  structure, 

aims at objects trajectory preservation, as explained below. It uses a modified 

R-tree insertion algorithm, such th a t each leaf node contains only line seg

ments belonging to the same trajectory. To allow fast trajectory retrieval, leaf 

nodes containing information about the same object’s trajectory are intercon

nected. The structure is very efficient for trajectory-based queries at the price 

of performance deterioration for coordinate-based queries.

13
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SETI [5] offers an alternative solution to trajectory indexing by separating 

the temporal dimension from the spatial dimension. For the spatial dimension 

a static partitioning of the entire space is used. W ithin each partition cell, a 

sparse temporal R*-tree is created. Rather than indexing the time intervals of 

all segment trajectories th a t fall inside a cell, only one entry for each data page 

is maintained. When a trajectory segment intersects several partition cells, it 

is split into several segments, one for each cell. In order to  facilitate updates, 

the last known locations of all objects are kept in an in-memory “front-line” 

structure. The performance of the SETI’s indexing strategy depends to a great 

extent on the number of cells used to partition the space. The authors do not 

provide, however, any insights on how this param eter should be chosen.

Another method based on spatial decomposition is proposed by Song and 

Roussopoulos [30]. The space is partitioned into zones and each object’s spatial 

location is represented only by the id of the zone th a t it belongs to, rather than 

the object’s (x, y) coordinates. Inside each zone, a structure called a SEB-tree 

is used to index the objects, according to their start and end timestamps. The 

main drawback of this approach is tha t, when only part of a zone intersects 

with the query spatial range, the answer can be inaccurate, containing records 

from outside the query range.

Two related approaches capable of indexing both historical and current 

data are 2-3TR-trees [1] and 2+3TR-trees [20]. The common idea is to im

plement two R-trees: a two-dimensional tree for indexing current data  and a 

three-dimensional one for historical data. Records whose tim e interval goes up 

to the current moment are stored in the two-dimensional tree. As soon as the 

time interval of such a record closes (i.e., the object changes its position), the 

record is transferred into the three-dimensional structure and a new record is 

inserted into the two-dimensional structure. The main difference between the 

two approaches lies in the nature of the data  indexed on the three-dimensional

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R-tree: multidimensional points in 2-3TR-tree and trajectories in 2+3TR-tree.

The previous indexing structures are suitable for retrieving information 

about the past or current location of moving objects. Next, structures capable 

of answering predictive spatio-temporal queries are reviewed.

A Time Parameterized R-tree (TPR-tree) [26] models future positions of 

moving objects as a linear function of time. It uses an R*-tree to store the 

current known location and velocity vector of objects. Each time when a 

change in an object motion pattern  occurs, the record of the involved object 

is updated accordingly. The velocity vector of an internal node is determined 

by the velocity vectors of the enclosed objects such th a t the node’s bounding 

rectangle will contain all this objects at any time in the future. Predictive 

queries are answered using the linear function and the currently known location 

of objects. TPR*-trees introduced in [33] are enhanced versions of TPR-trees. 

Operations such as insertion and deletion are performed differently than  in 

standard R*-trees. This results in a different partitioning of the data inside 

the tree, with benefits reflected on the query response time.

The current state-of-the-art for predictive STAMs are the EP-tree [11], 

which use a B+-tree as their underlying structure. To use a B+-tree efficiently, 

an ordering has to  be defined for the involved data. In this method, the spatio- 

temporal data is ordered as follows. The spatial component is linearized with 

a space-filling curve, obtaining a spatial label for each object position. First, 

the temporal component is partitioned into several time intervals with unique 

ids, and each moving object is m apped to a time interval based on its update 

time. Next, the index value of an object is obtained by concatenating the id 

of its temporal interval and the object spatial label a t t[ab, where tiab is the 

end timestamp of the object’s time interval. Since the Bx-tree indexes the 

position of objects only a t certain moments of time, called label timestamps, 

queries having tim estam ps different from these label tim estam ps are handled
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by query-window enlargements.

Recently, the BBx-index, an index structure based on Bx-trees, was pro

posed in [15]. By keeping not only one, but multiple trees with each tree having 

associated a lifespan, the BBx-index is capable of managing past, present and 

future spatio-tem poral queries at the same time.

Although most of the existing spatio-temporal indexing structures were 

designed to  accommodate window queries, work tha t focuses on handling k 

nearest neighbor queries in the context of spatio-temporal data is also present 

in the literature. As mentioned before, a kNN spatio-temporal query retrieves 

the k objects from a dataset O th a t are the closest to a query object q, during 

a given interval of time. Depending on the dataset and the query object 

characteristics, three scenarios can be differentiated: 1) the query point is a 

moving object while the dataset is a collection of static objects, 2) the query 

point is a stationary object while the objects in the dataset are dynamic, and 

3) both the query point and the dataset objects are moving objects.

One of the first works to  consider answering kNN queries in the context 

of moving objects (query and data) in an one-dimensional space was reported 

by Kollios et al. [12], Their algorithm is based on a dual transformation 

technique, which converts a line segment from the original space into a point 

in the transformed two-dimensional space. The method was extended to  ac

commodate the case of objects moving in a two-dimensional space but whose 

movements are constrained by the existence of an underlying network.

Subsequent research on kNN queries mostly focused on predictive (either 

instantaneous or continuous, or both) queries. Using a TPR-tree as their 

supporting indexing structure, Benetis et al. [2] proposed both a reverse near

est neighbor algorithm and a nearest neighbor algorithm for moving queries, 

moving data case. They use a depth-first traversal of the tree, enhanced with 

metrics for pruning and directing the search. An algorithm for answering
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continuous queries is also presented in this work.

Tao et al. [34] also use a TPR-tree as their index of choice and provide a 

solution to kNN queries based on the concept of time-parameterized queries. 

Both the query point and the data  points move in time (scenario 3), and a 

query is modeled as a line segment th a t shows the trajectory of the query point 

within a certain time interval. A query answer returns the closest neighbor 

of the query segment at any moment within the time interval. Initially, the 

closest neighbor c of the starting point s is retrieved, and the interval (s,p) 

where c remains the closest neighbor of the trajectory is computed (p is called 

a split point). Then, the procedure continues iteratively using p as the new 

start position.

The method proposed by Raptopoulou et al. in [23] addresses the same 

scenario and uses the same index structure to organize the moving objects as 

the work described above. The main improvement is a significant reduction 

of the number of queries issued for a time interval. In the previous work, the 

closest neighbor for each split point is retrieved with a separate query, whereas 

the new work performs only one query for the entire interval.

Li et al. [14] tackle the problem of continuous kNN queries in the context 

of scenario 3. A different approach is taken as compared to  [23]. Rather than 

indexing the objects in their original space, a transformed time-distance space 

is used. In the transformed space, the movement of each object is represented 

as a curve in a plan where the x-axis is the time, and the y-axis is the euclidian 

distance from the object to the query point. Each such curve is divided into 

multiple segments, which are indexed in an R-tree. Their algorithm  works as 

follows: first, the k objects th a t are the closest to the query point are retrieved 

by searching the whole dataset. As time passes, any changes in the query result 

set are detected by identifying all the curves th a t intersect w ith the curve of 

the k-th  neighbor.
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O ther approaches [29. 32, 41] have studied the problem of continuous kNN 

queries over static data  points (scenario number 1). In [29], the static objects 

are indexed in an R-tree. A sampling technique selects a set of points along the 

query object trajectory. For each split (sampled) point, the closest neighbor 

is retrieved using the R-tree index. For the rest of the points on the query 

segment, the result is obtained by applying linear splines to two consecutive 

sample points. The work of Tao et al. [32] differs in tha t the split points in 

a query trajectory  are computed accurately. Moreover, a branch-and-bound 

strategy is used to traverse the R-tree th a t indexes the data. Zheng [41] 

addresses the same problem by using Voronoi diagrams. A key difference 

between these three contributions is th a t Zheng’s method is hard to extend 

for more than  1 nearest neighbor.

All of the aforementioned research contributions offer solutions for answer

ing kNN queries over either static or current/predictive databases. Frentzos et 

al. [6] were the first to study historical kNN queries over datasets of historical 

moving objects represented as trajectories (scenarios number 2 and 3). Several 

algorithms based on a branch-and-bound traversal of a TB-tree were presented, 

depending on the type of the query point (either moving or stationary) and 

the desired result of the query (continuous or not). A classical historical NN 

query retrieves the object(s) th a t came the closest to the query point during 

the entire time interval associated with the query. In contrast, the result of 

a continuous historical NN query consists of a list of objects =  l , n ,  each 

of them associated with a time period fj when the object O; was the nearest 

neighbor of the query object.

The kNN  contributions summarized before leave the problem formulation 

unchanged and develop algorithms specialized on kNN queries. Alternatively, 

it is possible to  reformulate a kNN query as a window query in a spatio- 

temporal dataset. The basic idea is to determine a region th a t is assumed
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to contain all k nearest neighbors and to perform a window query for that 

region. A bigger query region increases the probability that all k neighbors 

are contained inside it but may imply a greater search effort (by accessing more 

data). A smaller region is processed faster, but the probability to contain all 

k neighbors decreases. Thus, an accurate region estimation is very important. 

For more details on research on this issue, see [3, 35].

W ith the notable exception of [11, 15], all methods presented before cannot 

be easily integrated into an RDBMS. The SPIT approach [16], on the other 

hand, can be fully integrated inside any RDBMS. Based on a two-layer ap

proach, SPIT  partitions the dataset according to the spatial location of the 

objects and creates temporal indexes over each spatial partition. The proce

dure is similar to the one described in the SETI approach [5] presented earlier: 

the space is divided into a fixed number of equal cells and a local index on 

the tem poral dimension is created over the da ta  within each cell. As opposed 

to SETI, SPIT uses B-trees for the tem poral indexes, which allows it to be 

used within any existing RDBMS. In addition, the space partitioning is done 

according to a cost model aiming a t minimizing query cost. However, the cost 

model assumes th a t data is uniformly distributed in space, which is often not 

true for real applications. The work of this thesis improves upon SPIT in sev

eral im portant aspects, as detailed in the introductory chapter, e.g., the use of 

a new partitioning algorithm, the splitting of tim e ranges and the development 

of nearest neighbors algorithm.
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Chapter 3 

SPIT+

This chapter presents SPIT+, a fully RDBMS integrable approach for historical 

spatio-temporal da ta  storage and retrieval. SPIT + enhances the SPIT model 

introduced in [16] along the directions outlined in Section 1. Like SPIT, the 

proposed approach separates the spatial component from the temporal compo

nent of the data  space and partitions the dataset into several disjunct subsets 

based on d a ta ’s spatial coordinates. For each such subset a local index over 

the temporal dimension of data  is created.

The dataset is partitioned using a grid th a t decomposes the spatial com

ponent of the data  space into a number of cells. Each grid cell is assigned a 

unique identifier and, based on this identifier, is mapped to  a different partition 

in the RDBMS. W ithin each grid cell, a B+-tree is used to  physically store the 

contained data. Figure 3.1 provides a conceptual representation of the SPIT"1" 

approach. Built on records time intervals (ts, t e), the B+-tree organizes data  

based upon their tem poral attribute. Besides the index keys, i.e., (ts, t e), the 

B+-tree leafs also store both the identifiers and the spatial coordinates of all 

records.

Combined with the spatial decomposition, the separation of the spatial 

and temporal dimensions results in a very good search performance. W hen a 

spatio-temporal query is issued, only the subsets associated with the grid cells
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Figure 3.1: The SPIT+ approach.

th a t intersect the query spatial component have to be searched. Typically, 

this is a small fraction of the entire dataset. The tem poral index of each 

searched subset is then used to retrieve only the records th a t intersect the 

temporal interval of the query (query processing is presented in detail in the 

next section). Being a one-dimensional index, the temporal index does not 

exhibit the search performance degeneration which is characteristic to three- 

dimensional indexes (used when both the spatial and temporal dimensions are 

considered together).

Unlike SPIT, where all grid cells have the same size, SP IT + allows an 

irregular partitioning as the one shown in Figure 3.1. The irregular partitioning 

is beneficial for arbitrary (non-uniform) da ta  distributions. It allows to use a
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coarser grid for areas with sparse data, and a finer grid for dense areas. How 

the spatial partitioning affects the query performance is discussed in Section 

3.2.

Focusing on indexing and querying historical observations, which are com

pletely available a t index creation time, SPIT+ constructs a static partitioning. 

A discussion on how the model can be extended to deal with new observations 

is provided later in this chapter.

3.1 Q uery P rocessing  using S P IT +

Like in [16], processing a spatio-tem poral window query using SPIT+ is a 

four-steps procedure. First, the grid cells th a t intersect the spatial component 

of the window query are identified. Second, the temporal index of each cell 

previously selected is used to retrieve only the records whose temporal intervals 

intersect the query temporal range. Next, the retrieved data is further filtered 

by removing the tuples whose spatial position falls outside the spatial range 

of the query. The final step is to eliminate any occurring duplicates (multiple 

instances of the same object).

A lg o r i t h m  1 window-query () function.
I n p u t :  (<t, r )
O u t p u t :  list of oid’s

1 piddist  :=  p -inter sect (a)
2 fo r  a ll  pid  in pidJ is t  d o
3 oiddist :=  oidJis t  U
4 SELECT oid
5 FROM pid
6 W HERE t s BETW EEN r . tmin -  T  AND r. tmax
7 AND te BETW EEN r . tmin AND T.tmax +  T
8 AND x  between o.xmin and a.xmax
9 AND y  between a.ymtn and a.ymax

10 e n d  for
11 sort oidJist  and remove duplicates
12 r e tu r n  oidJis t
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Algorithm 1 shows this procedure in pseudo-code. It assumes th a t the 

function pJntersectQ already exists. Its task is to simply return the identifiers 

pid of the grid cells tha t intersect the query’s spatial component. Only these 

cells have to be scanned (line 2). Lines 6-7 correspond to the second step of 

the query processing procedure. The tuples satisfying the temporal predicate 

of the query are retrieved by performing a range scan on the leaf nodes of each 

scanned partition B+-tree. As done in [18], the algorithm uses the fact th a t 

the largest time interval, denoted as T , is known. Knowledge of a da tase t’s 

T  serves to further restrict the tem poral range tha t needs to be inspected at 

query time, hence improving query processing time. In fact, given one value 

of T  one can easily split all records whose temporal range length exceeds T  

into two or more records th a t adhere to the assumption. As can be easily 

seen in Algorithm 1, the smaller the value of T , the smaller the range scan on 

the temporal index. There is, however, a trade-off in splitting the da tase t’s 

temporal ranges. It increases the number of indexed tem poral ranges and 

hence the number of records in the database. A m ethod for obtaining an 

optimal value of T  for a given distribution of temporal ranges is presented in 

Section 3.3.

As some of the partitions determined at line 1 of the algorithm could in

tersect the query spatial range only partially, the actual (x , y ) coordinates of 

the previously obtained records have to be checked against the query window 

(lines 8-9). Even though this test could be skipped for those partitions en

tirely contained in the query window, doing so would have no effect on the 

number of I/O s required to answer a query. When the B+-tree is scanned for 

the necessary temporal filtering, all the leaf nodes containing records within 

the temporal range of the query have to be accessed. Since each object loca

tion is stored together with its index key in the B+-tree leaf nodes, the above 

spatial test can be performed with no influence on the number of accessed leaf
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nodes, hence no additional I/Os.

3.2 P artition in g  the D ata  Space

The spatial decomposition of the data space has a great impact on SPIT+’s 

performance. The number of disk accesses required to answer a query depends 

both on the number of accessed data  points and on the number of partitions 

containing these points. Consider the example in Figure 3.2, where two differ

ent decompositions are shown. The area th a t has to be searched in each case 

to answer the window query (represented as the dotted square in the figure) is 

shown in grey. Obviously, this area is larger when a coarser grid is used (case 

(a) in the figure). Assuming a uniform distribution of the data, a larger area 

will result in a bigger number of points th a t have to be accessed.

(b )

Figure 3.2: Different spatial decompositions.

In the second case, which uses a finer grid decomposition, the query in

tersects more partitions. Since the depth of a B+ tree is logarithmic on the 

number of points, traversing several smaller trees (one for each intersecting 

partition) is more expensive than  traversing one relatively larger tree tha t in

dexes the same information. Therefore, finding a good partitioning is very
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im portant for the model efficiency. A partitioning strategy aiming at minimiz

ing the number of disk accesses is presented next.

A cost-based model, which refines the model introduced in [16], is used to 

compute the optimal number of cells in the grid. It assumes th a t the spa

tial domain is the unit square and th a t the temporal domain is formed by 

the (finite) set of recorded timestamps. Moreover, the average query sizes, on 

both the tem poral and spatial dimensions, are supposed to be known -  the 

robustness of SPIT+ with respect to such an assumption is discussed in Sec

tion 4.1.3. All notations used for the cost model presentation are enumerated 

in Table 3.1.

Notation Meaning
N number of tuples, i.e., observations, in the 

dataset
D A number of disk I/O s to answer a query
GA average number of accessed grid cells
L A C number of leaf level I/O s per accessed grid cell
I  A c number of directory level I/O s per accessed grid cell
B S block size (number of tuples per data page)
qs average size (%) of the query in each 

spatial dimension wrt the modeled space
Qt average size (%) of the tem poral range of the 

query wrt the number of observed timestam ps
1(1*) length (optimal length) of a grid cell per 

dimension
N c (N*c) total (optimal) number of cells in the grid
T  (T*) maximal (optimal maximal) length (%) of the 

indexed tem poral ranges wrt the number of 
observed tim estam ps

Table 3.1: Notations used.

As in [16], the to tal number of disk accesses required to answer a query can 

be computed based on the average number of partitions (cells) th a t intersect 

the query and on the number of disk accesses performed inside each intersecting 

grid cell. Since a B+-tree is used to store the data  residing in each cell, the
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number of I/O s inside each partition can be determined as the number of 

accesses performed at the leaf-level of the tree combined with the number of 

accesses a t the directory-level of the tree. As a result:

D A  = GA  x (LAC + I A C) (3.1)

The average number of cells intersected by a query can be estimated with 

the following formula [36]:

GA = N c x (I + qsf  (3.2)

When data is uniformly distributed, the average number of records inside 

each cell is N / N c, whose storage requires leaf pages. As the records are 

indexed on their tem poral a ttribute, only the pages containing records th a t 

intersect the time interval of the query extended by T  have to be accessed. 

Therefore, L A C could be computed by the equation:

L A C = x (qt +  T )  (3.3)

Finally, the cost of accessing the directory level of each cell is determined by 

the height of the B+-tree, which can be calculated as logbf { N /N c), where bf is 

the tree branching factor. For simplicity, I  Ac s value is set to 3, a characteristic 

value for B-trees indexing millions of records and having the bf ~  100 [13], 

obtaining:

D A = ( l  + q J ( rD A ± n + 3 )  (3.4)

The value of D A  in the above equation is minimized for a cell size I* given

by

3qs x B S (3.5)
N  x (qt +  T)  
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Consequently, the optimal number of grid cells N* can be written as a 

function of I* as:

N* -  1 =  ( N  X [ q ‘ (3 6)
' c (I*)2 [ 3qs x B S  j ' [ }

Therefore, in order to minimize the number of disk accesses per query, given 

an average query size, the data space has to be decomposed using a regular 

grid th a t contains [~y/iv<*] equally sized cells in each dimension. In addition 

note tha t T  in Eq. 3.6 is the only parameter one could fine-tune, the others 

are query or system dependent. In Section 3.3 a discussion is given on how

this can be explored to further performance improvement.

3.2 .1  P a rtitio n in g  D a ta  w ith  A rb itrary  D istr ib u tion s

Partitioning the data  space using the criteria just presented is optimal given 

the assumption of a uniform data  distribution. While in real life scenarios data 

is seldom truly uniformly distributed, it is often the case th a t for some regions 

of the data space such an assumption can be made. For instance, on a map, 

it is much more reasonable to assume th a t objects are uniformly distributed 

inside the boundaries of a city than  th a t they are uniformly distributed over the 

whole map. In what follows, this reasoning and the cost model above are used 

in order to provide a partitioning heuristic for an arbitrary  d a ta  distribution.

The idea is to recursively divide the space into four subspaces, as in a Quad

tree [27], until all obtained subspaces satisfy a uniform distribution criterion. 

The obtained subspaces are then partitioned using the cost model developed 

above. The uniformity of a data distribution can be tested using Pearson’s 

Chi-Square test [25]. The test partitions the da ta  into K  equally sized cells 

(categories) and computes the sum (S 2) of squared differences between the 

actual number of objects inside each cell and the expected number of objects
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under the uniformity assumption. If the value of S 2 is smaller than  XK - i (a ) 

(the 100(1 — a ) percentile of a chi-square distribution with K  — 1 degrees of 

freedom) then the uniformity assumption is accepted, otherwise it is rejected. 

Algorithm 2 shows this procedure in pseudo-code.

A lgorithm  2 PartitionQ recursive algorithm.
Input: An MBR containing data points
O utput: A set of MBRs (each corresponding to a grid cell) and respective 
partitionings

1: Assume a uniform distribution of the data points in the current MBR, and 
partition the MBR optimally using the cost model. Using the resulting 
grid cells as categories, perform Pearson’s Chi-Square test on the current 
MBR.

2: i f  the Chi-Square test is successful, i.e., the data  distribution within the 
MBR can be considered uniform, th en  

3: Store the (coordinates of the) grid cells of the current MBR as partitions
in the table P a r tit io n s  

4: else
5: Split each dimension of the current MBR in half, obtaining MBRj, i =

1, 2, 3,4 
6: fo r  i—1 to 4 d o
7: Parti tion(MBRi)
8: e n d  fo r
9: e n d  i f

If the data  is truly uniformly distributed, the heuristic presented above 

yields an optimal regular grid partitioning (under the cost model assumptions). 

In such a case the uniformity test would be immediately successful and the 

algorithm would not recurse.

It may appear at first th a t the partitioning strategy may result in many 

small cells with very few objects in each of them. This obviously would not 

be a good idea since there is an overhead cost to access a partition, and there 

is a point where accessing less da ta  in more partitions is more expensive than  

accessing more data  within less partitions. Fortunately, the heuristic above is 

able to identify such situation, stopping the partitioning accordingly. Recall 

that, during the partitioning, q2 is the query size with respect to the current
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MBR, and similarly N  is the number of objects inside the current modeled 

space, i.e., the current MBR. Initially the current MBR is the whole unit 

square, but as the partitioning progresses, the MBRs are subdivided and the 

current MBRs become smaller. As an obvious consequence, qs becomes larger 

with respect to the current MBR. On the other hand, the number N  of objects 

per MBR becomes likely smaller as the MBRs are subdivided. Consider the 

case when the query size becomes equal to the current MBR, i.e., qs =  1. It 

can be seen, from Eq. 3.6, tha t if qs = 1 and B S ,  qt and T  are constants, 

then N  <  yields N* =  1, i.e., no further partitioning is needed. This

agrees with the intuition th a t as the partitioning progresses, there is a point 

where accessing less data  in more partitions becomes more likely and more 

expensive than accessing more data  within a single partition. At tha t point 

the partitioning process stops automatically.

Although only optimal for the case of uniformly distributed data, the re

sulting overall performance by SPIT+ is typically very good. Indeed, as can 

be seen in the experimental section, it is never worse than  the best ad-hoc par

titioning, i.e., the best partitioning one could obtain by trial-and-error. More 

importantly, however, SPIT+ is able to  find very good partitions of the data 

space autonomously, not relying on any information but the dataset itself and 

an expected query size. Naturally, the better the user can estim ate the query 

size (which should happen with time) the better the partitioning and therefore 

the query performance.

3.3 O ptim izing T

As mentioned in Section 3.1, the size of the range scan on the B+-tree th a t 

indexes the tem poral intervals depends on the length of the largest indexed 

interval T.  There is nothing however, th a t prevents one to setting T  “artifi

cially” in order to optimize the index performance. As one decreases the value
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of T  from its so-called intrinsic value, i.e., th a t inherent to the dataset, the 

number of temporal ranges th a t have to be split increases. As a result, the 

range scan on the index will become shorter, but the number of indexed ob

jects will increase. The former consequence has potential positive impact on 

the performance of the temporal index while the latter has a negative effect. 

A m ethod on how those two effects could be balanced in order to obtain an 

optimal value for T , denoted as T * , is introduced next.

Let C(h)  be the count of the number of temporal ranges with length equal 

to  /j, and let (C'(L), C //2), •••, C(Im )) be a histogram of the distribution of the 

tem poral range lengths. Note th a t M  is finite as long as one assumes a discrete 

time space, otherwise it can be made so to the user’s discretion, with no loss 

of generality of the argum entation th a t follows.

Let lk 6  {h ,  h ,  t>e one given length th a t is going to  be set as

the maximal allowed length. (The case where h  = Im  induces no splits and 

therefore is not of interest.)

When splitting all ranges larger than  Ik the current number of indexed 

ranges, originally N ,  will now become

M

N k = N +  J 2  1C ( 1p )  x (R p /k l -  1)1 (3-7)
p=k+ 1

Returning to  Eq. 3.4 and substituting the expression of I* (Eq. 3.5) for 

I, the first derivative of (3.4) with respect to  N  x (qt +  T )  is positive when 

N ,  qt and T  are positive, which means th a t the number of disk accesses is 

monotonically increasing with N  x (qt +  T ) . Consequently, the value T  th a t 

minimizes N  x  (qt + T )  will also minimize the number of I/O s. Hence, the 

optimal value of the largest tem poral interval is set to:

T* = lk, where k = a rg m i n k{ N k x (qt +  lk)}.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The more skewed the distribution of the temporal range lengths is towards 

shorter ranges, the more potential for savings exists, i.e., splitting a few long 

ranges has the effect of substantially decreasing the value of T  without in

creasing the number of indexed ranges N  noticeably.

Note th a t in the case a user wishes to impose a storage budget tha t can be 

used for optimizing performance, e.g., the database can grow to up to N max 

tuples due to the splitting, the problem can be solved similarly. In this case 

the (potentially sub-optimal) solution is found by simply finding k such th a t 

Nk x (Qt +  4 )  is minimized subject to N k < N max.

Finally, finding the optimal T* has linear complexity on the number of 

distinct indexed lengths, which can be arbitrarily discretized.

3.4 P rocessin g  Spatio-T em poral kN N  Queries

The previous sections of this chapter provided a partitioning algorithm de

signed to optimize the cost (in terms of the required number of I/O s) of a 

spatio-temporal window-query and showed how the proposed access structure 

can be used to process such a query. However, window queries are not the only 

type of spatio-temporal queries th a t SPIT+ can handle. How SPIT+ could be 

employed in solving spatio-temporal kNN queries is presented next.

First, a kNN search algorithm th a t assumes the da ta  is already partitioned 

is introduced, and then a partitioning scheme th a t takes into account the query 

parameters (the value of k and the length of the time interval) is provided.

As already introduced, a spatio-temporal kNN query specifies a time in

terval and asks for the k objects th a t were the closest to the query point 

during tha t period. Provided th a t a list of grid cells containing all k neighbors 

could be determined, a kNN query can be processed similarly to a window 

query: only the partitions containing the closest neighbors are scanned and 

their temporal indexes are used to filter out those objects tha t do not satisfy
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the query temporal predicate. In addition, the list of retrieved objects has 

to be sorted according to the euclidian distance between the objects and the 

query point, and only the first k unique objects are returned as the query result 

set. However, as opposed to the case of window queries, here it is not possible 

to determine a priori the list of all partitions tha t need to be scanned, as they 

depend on the distance between the query object and its k-th  neighbor, which 

is unknown.

R ather than  trying to first determ ine all the partitions th a t need to be 

searched and then use them to compute the query answer, the k  nearest neigh

bor algorithm proposed in this work computes the answer set in an incremental 

manner. The main idea employed by the proposed algorithm, which adapts 

the method proposed in [9] to a single-level data  structure, is to keep an or

dered list of all partitions and to scan one partition a t a time, according with 

their order in the partitions list. W hen one partition is accessed, all its con

tained objects (points) having their tem poral interval overlapping with the 

query temporal interval are retrieved and added to a list of potential k-nearest 

neighbors, based on their distance to  the  query point. Having found at least 

k objects, only those partitions lying within a distance smaller than  kDist ,  

the distance between the query point and its current k-th neighbor, from the 

query point need to be further accessed. Algorithm 3 states this procedure in 

pseudo-code.

Given a partition pid, the distance dist (Q,pid ) between the query point 

and pid  is computed such th a t for each point P  contained in pid, d is t(Q,pid ) <  

dist(Q, P).

As mentioned above, once at least k  points have been found (line 12), 

dist(Q, Pk) is used to prune some of the partitions in pList .  Since VP G pid, 

dis t(Q,pid) <  dist(Q, P),  only those partitions having their distance to Q 

smaller than dist(Q, Pk) can contain points tha t are closer to Q than the
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A lg o rith m  3 determineJkNeighbors () function
In p u t:  A query point Q(x,y),  a number k of neighbors and a query time 
interval qt
O u tp u t:  The k closest neighbors of Q 

1: initialize oList to 0
2: c re a te  p L is t , th e  lis t of a ll ex is tin g  p a r ti t io n s  
3: s o r t  pLis t  a c co rd in g  w ith  th e ir  d is ta n c e  to  Q 
4: in itia liz e  kD is t  w ith  maxReal  
5: pCurrent  th e  f irs t p a r t i t io n  in  pLis t  
6: rem o v e  pCurrent  from  pLis t
7: w hile  dist(Q, pCurrent)  < =  kD is t  a n d  pList  ! =  0 do
8: fo r  each  p o in t  P  in  pCurrent  (a n d  sa tis fy in g  qt) d o
9: i f  dist(q, P ) < =  kDis t  t h e n

10: a d d  P  to  oList
11: so r t  oList acco rd in g  to  th e  d is ta n c e  to  Q
12: i f  Card(oList)>= k t h e n
13: P k  :=  th e  k - th  e lem en t in  oList
14: kD is t  := dist(Q, Pk)
15: e n d  i f
16: e n d  i f
17: e n d  fo r
18: pCurrent  := th e  firs t p a r t i t io n  in  pLis t
19: rem ove pCurrent  from  pList
20: e n d  w h i le
21: r e t u r n  the first k  objects in oList

current k-th. neighbor. As long as pLis t  contains partitions closer to Q than 

Pk, these partitions are scanned one at a time and both  oList and dist(Q, Pk) 

are updated accordingly. When the first partition having a distance greater 

than the current dist(Q,Pk) is found, the algorithm stops and the first k points 

in oList  are returned as the query answer set.

For a better understanding of the above algorithm, consider the example 

provided in Figure 3.3 and assume th a t the query asks for the 2 nearest neigh

bors of Q (the grey dot in the figure). Moreover, consider th a t the distances 

between Q and all partitions and objects are the ones provided in Table 3.2.

The steps executed by the algorithm are the following:

• pList  — {P5, P 6 , P2, P3, P 8 , P9, P4, P I , P7}; kD is t  =  maxReal;
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Figure 3.3: Example &NN query.

P artitions/
Objects

P I P2 P3 P4 P5 P 6 P7 P 8 P9 a b c d

Distances 8 3 4 7 0 1 9 4 5 7 2 4 6

Table 3.2: Distances of partitions and objects from the query point.

• pCurrent  =  P5; pLis t  =  {P6 , P2, P3, P 8 , P9, P4, P I , P7}; dist{Q,pCurrent) < 

kD is t  => Scan P5; oList =  {b, a}; k D is t  =  dist(Q, a) =  7;

• pCurrent  =  P 6 ; pLis t  =  {P2, P3, P 8 , P9, P4, P I , P7}; dis t(Q ,pCurrent)  < 

kD is t  =» Scan P 6 ; oList  =  {b, d, a}; kDis t  =  dist(Q , d) =  6 ;

•  pCurrent = P 2 ; pLis t  = {P3, P 8 , P9, P4, P I, P7}; dis t(Q ,pCurrent)  < 

kDis t  =>■ Scan P2; oList  = {b, c, d, a}; kDis t  = dist(Q, c) =  4;

• pCurrent = P3; pLis t  =  {P8 , P9, P4, P I, P7}; dis t(Q,pCurrent)  < 

kDis t  =>- Scan P3; oList  = {b, c, d, a}; kDis t  = dist(Q, c) =  4;

• pCurrent = P 8 ; pList  =  {P9, P4, P I , P7}; dis t(Q,pCurrent)  < kDis t  

=> Scan P 8 ; oList  =  {b, c, d, a}; kD is t  =  dist(Q, c) =  4;
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• pCurrent = P9; pList  = {P4, P I , P7}; dist(Q, pCurrent)  > kDis t  => 

STOP; answerSet =  (b, c}

The proposed /c-nearest neighbor algorithm is optimal in the sense tha t the 

number of accessed partitions is exactly the same as if the distance to the k-th  

neighbor was known a-priori. This can easily be proven using the following 

remarks. Let Pk be the true k-th neighbor of the query point Q and let kDis t  

be the distance between Q and Pk- To retrieve all the k-nearest neighbors, 

any optimal algorithm must scan all and only the partitions tha t intersect the 

circle centered at Q with radius kDist .  These are the partitions pid having 

dis t(Q,pid) <  kD is t  and are exactly the partitions th a t the algorithm ac

cesses. Since pLis t  is ordered based on the distance to Q, all the partitions 

accessed before finding Pk are closer to Q than the partition containing Pk 

and, consequently, their distance to Q is smaller than  kDist .  After finding Pk, 

the algorithm scans all partitions closer than  Pk th a t were not scanned yet. 

No other partitions (i.e., with distance larger than  k D is t ) are scanned by this 

algorithm (line 7 of Algorithm 3).

In order to answer kNN spatio-temporal queries using SPIT + , a partition

ing of the data space has to  exist. Recall th a t the partitioning algorithm 

introduced in Section 3.2 requires the average query sizes in both spatial and 

temporal dimensions. While a kNN query provides a tim e interval whose 

length can be used for the average query size in the tem poral dimension, an 

average size of the query in the spatial dimension has to be determined.

The first step in computing an average query size in the spatial dimension 

is to estimate Eak, the distance between the query point and its /r-th nearest 

neighbor. According to [35], Edk can be estim ated by the equation:
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where N y  is to tal number of distinct objects in the dataset.

Once the expected distance E dk is determined, the query region in the 

spatial dimension could be approximated by the square th a t tightly encloses 

the circle centered a t the query point and having radius the expected distance, 

C(Q, E dk), yielding qs = 2 x E dk.

3.5 S P IT +’s Im plem entation

This section provides details on how the proposed indexing method is imple

mented inside an ORACLE database. Each record is represented as a tuple 

(■o id ,x , y , t s , t e,pid}, where aid is the object identifier, (x,y)  are the spatial 

coordinates, (ts , t e) indicates the time period during which the object was 

recorded a t position (x, y ), and pid is the identifier of the partition containing 

the object. All records are stored in an index-organized table called SPIT_PLUS. 

An index-organized table is a table th a t is embedded within an index, i.e., the 

index contains the tuples themselves in the leaf nodes of the index, e.g., a 

B+-tree. Although index-organized tables are supported by most of the exist

ing RDBMSs1, their use is not a requirement for SP IT + to work. It could be 

implemented using a regular table and index, the only difference being some 

extra I/O s required for obtaining the actual tuples from a table after travers

ing the index. Built on the tem poral a ttribu tes (ts, t e), the index-organized 

table is able to efficiently retrieve all tuples intersecting the query temporal 

interval by simply performing a sequential range scan of the index leaves. 

Moreover, the SPIT_PLUS table is range partitioned on pid to allow the map

ping of SPIT+ ’s grid to  different table partitions. Each grid cell determined by 

the heuristic algorithm  Partition() is associated with a single table partition. 

An unique partition  id (pid) along with its MBR is stored in a table called

JA similar s tructure  is called c l u s t e r e d  in d e x  in Microsoft SQL Server, while the 
MySQL equivalent is an InnoDB t a b l e .
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PARTITIONS. W hen an object is inserted into table SPIT_PLUS its coordinates 

are first checked against the PARTITIONS table to determine in which partition 

it should be inserted. Figure 3.4) shows the DDL of the SPIT_PLUS table for 

the example grid in Figure 3.1. In order to create an index-organized table 

in ORACLE, a prim ary key has to be defined and the clause o rg a n iz a t io n  

in d ex  has to be included in the CREATE statem ent. The primary key specifies 

the attributes based on whose values the data is indexed. Besides the tem

poral attributes (ts, t e), it includes the partition identifier pid so th a t a local 

temporal index is created for each partition (as opposed to a global index for 

the entire table). For an RDBMS tha t does not provide partitioning function

ality, the spatial grid and the local indexes could be implemented by simply 

creating a physical table and an index for each grid cell.

create table SPIT_PLUS (
oid integer,
x number,
y number,
t_s number,
t_e number,
pid integer,
primary key(t_s, t_e, pid)

)
organization index 
partition by range (pid) ( 
partition pOl values less than (1),
partition p02 values less than (2),

partition p30 values less than (MAXVALUE)
)

Figure 3.4: A sample SPIT"1" table.

Two sample SQL queries issued against the SPIT_PLUS table defined above 

are shown in Figure 3.5. In particular, the SQL query in Figure 3.5 (a) cor

responds to the spatio-temporal window query “find all the objects tha t were 

inside the area enclosed by the MBR determined by vertices (0.40,0.05) and
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(0.55,0.20) during the time interval [0.6,0.8]” , while the one in Figure 3.5 (b) 

was generated for the spatio-temporal kNN  query “find the five closest ob

jects to Q(0.5,0.1) during the time interval [0.6, 0.8]” . In both examples T 

represents the optimal range length T*.

1: SELECT DISTINCT oid 
2: FROM SPIT_PLUS 
3: WHERE pid IN (7,10,14)
4: AND t_s BETWEEN (0.6 - T) AND 0.8
5: AND t_e BETWEEN 0.6 AND (0.8 + T)
6: AND x BETWEEN 0.40 AND 0.55
7: AND y BETWEEN 0.05 AND 0.20;

(a) Sam ple w indow query.

1 SELECT oid FROM (
2 SELECT oid, MIN(dist(oid, Q))
3 FROM SPIT_PLUS
4 WHERE pid IN (7,10,14)
5 AND t_s BETWEEN (0.6 - T) AND 0.8
6 AND t_e BETWEEN 0.6 AND (0 .8 + T)
7 GROUP BY oid
8 ORDER BY MIN(dist(oid, Q))
9 )
10 WHERE R0WNUM <= 5;

(b) Sam ple k-N N  query.

Figure 3.5: Querying SPIT+ ’s data.

In the case of the window query, first the list of grid cells intersecting 

the spatial component of the query is computed by performing a lookup in 

the PARTITIONS table. Only the table partitions associated with grid cells 

(7,10,14) are searched (line 3). For each scanned partition, the local B+-tree 

index on (ts, t e) is used to perform a index range scan of the da ta  in order 

to retrieve only those tuples intersecting the temporal interval of the query 

(lines 4-5). The tuples whose spatial location is outside the query’s spatial
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range are filtered out on lines 6-7. Any duplicates occurring in the answer 

set are eliminated by including the DISTINCT clause in the line 1, which forces 

ORACLE to return only distinct values of oid.

For the  kNN query, the inner SELECT retrieves the list of all unique objects 

residing inside the queried partitions (line 4) and satisfying the query tem poral 

predicate (lines 5-6). The clause GROUP BY, used in conjunction w ith the 

MIN(dist()) function, groups the  tuples into several categories based on their 

identifier and for each such category (unique oid) re tu rns only the tuple whose 

distance to  the query point has the smallest value. The list of unique objects 

is further ordered (line 8) according w ith the ob jec ts’ distance to  the query 

point. Finally, the  outer SELECT returns only the  first five objects (nearest 

neighbors) from the  above list.

The SQL statem ents used to query the SPIT_PLUS table are dynamically 

generated using PL/SQ L functions. The functions take as input the spatial 

query range (the query point and the number of nearest neighbors for the 

kNN queries) and the tem poral query interval and produce SQL queries of 

the type shown in Figure 3.5. These functions, as well as all the other func

tions/algorithm s required by SPIT+, are implemented using the ORACLE 

JDeveloper environment. Supporting the development of both PL/SQ L and 

Java procedures, JDeveloper offers the convenience of object-oriented and pro

cedural languages while enabling the access of database objects.

3.6 E xtend ing S P IT + to  H andle N ew  Obser
vations

Sp i t + was designed to  handle historical spatio-tem poral data, as such han

dling updates, i.e., new observations is not a concern. SPIT + is a feasible 

alternative for a scenario where data  is collected to be queried at a later point 

in time. Given an indexed (historical) dataset, a new dataset can be merged
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with the current one using the existing partitioning or a new index could be 

built altogether for the newly combined database. The former may yield sub- 

optimal performance, depending on the size and spatial distribution of the 

new dataset. From this perspective the latter is a better option, and, as the 

empirical tests will show, index building times are quite reasonable for most 

practical purposes. Another possibility could be to create several indexes for 

different time periods, e.g., one per week. In this case queries would have to 

be re-written for handling the case where they span over several such indexes. 

Further exploration of these ideas is left as future work.
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Chapter 4 

Experim ental Results

This section describes the empirical evaluation conducted to test the perfor

mance of SPIT+ . Two major classes of experiments have been performed. 

The experiments in the first class, described in Section 4.1, concentrate on 

evaluating the effectiveness of the decomposition strategies and the robustness 

of the model with respect to its parameters. The experiments on the second 

class, which are presented in Section 4.2, are used to show the performance of 

Sp i t + in answering spatio-tem poral queries, while also comparing it to other 

spatio-temporal indexing approaches.

For all experiments, both synthetic and real datasets have been used. One 

of the synthetic data  sets, denoted as UNIFORM, has the objects uniformly 

distributed in the space and moving freely throughout the whole space. The 

second synthetic dataset was generated using the GSTD tool1 [37] and shows 

a scenario where the objects have an initial gaussian distribution in the cen

ter of the data space and then m igrate towards the north-east corner of the 

same. A sample instance of this dataset, denoted as GSTD, is illustrated in 

Figure 4.1(a), where all observed positions for a sample of 100 objects are 

shown. This dataset could depict a scenario where animals are migrating from 

one area to another in a park. It will serve to show how well the proposed par

titioning scheme adapts for a truly non-uniform data distribution. The final

T t t p : / / d b . c s .u a l b e r t a . c a :8080/ g s t d /
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dataset, denoted as INFATI, contains real GPS positions of 20 cars roaming 

across the municipality of Aalborg, Denmark [10]. Each car’s positions have 

been sampled every second, except when they were parked, for about 6 contin

uous weeks over a period of 3 months. The dataset contains approximately 1.9 

million observations and is illustrated in Figure 4.1(b) where all observations 

are plotted.

For each of the synthetic datasets, three different cardinalities have been 

tried, namely 1, 2.5 and 5 million observation data points, corresponding to 

10, 25 and 50 thousand objects of interest with 100 sampled positions each.

Table 4.1 summarizes the parameters used for the experiments. Unless 

otherwise mentioned, whenever one param eter is being investigated, e.g., the 

robustness with respect to dataset size, all other param eters are kept constant 

a t their default values. In all tests, the spatial domain of the search space was 

assumed to be the unit two-dimensional square, while the tem poral domain is 

formed by the set of all recorded timestamps.

Param eter Values (default in bold)
Average qs [% of da ta  space] (window queries) 
k (/rNN queries)
Average qt [% of timestamps]
N  [millions of observations]

0.25%, 1% and 4% 
1, 10, and 20 

5%, 10% and 20% 
1, 2.5 and 5

Table 4.1: Param eters and respective values investigated.

To investigate the average index access cost, 100 random  queries following 

the same distribution as the dataset have been issued for each dataset. The 

average number of disk I/O s (physical reads) per query has been measured 

using the system ’s own internal tools and is used as performance indicator. 

All tests were carried out on a desktop using ORACLE lOg Enterprise for 

Windows Edition. The disk page size has been set to 8192 bytes. To avoid 

any influence on query performance, the DBMS’s buffers were cleared before
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(b) INFATI dataset

Figure 4.1: D ata distribution for the GSTD and INFATI datasets.
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executing each query (using ORACLE’S a l t e r  system  f lu s h  buffer_cache 

command [21]). The task of query evaluation (execution plan) was left to 

the DBMS’s query engine and the query optimizer mode was set to default, 

resulting in a cost-based mode as table statistics were collected before running 

the query workload. During the experiments, it has been observed th a t the 

execution plan created by the query engine when processing queries using the 

S P IT +  approach is exactly the expected one: a linear scan of the PARTITIONS 

table is used to determine the partitions th a t need to be accessed and for each 

such partition the local B+-tree index is used to retrieve only the tuples whose 

tem poral intervals overlap with the query temporal interval.

S p i t + ’s performance was compared against other two approaches th a t 

could also be implemented on top of ORACLE. The first approach is a simple 

Linear Scan which should provide the lower bound for expected performance. 

The second m ethod uses an R-tree for the spatial component along with a 

B+-tree for the tem poral component. The R-tree is constructed over two- 

dimensional point objects consisting of the records spatial coordinates (x,y)  

and the B+-tree is created on records tem poral attributes (ts, t e). In what 

follows this scheme is referred as “R -tree+B-tree” .

Just like within SPIT"1", in the R -tree+B-tree scheme, the temporal ranges 

are indexed using a B+-tree, meaning th a t it can potentially benefit from the 

knowledge of T  as well. However, finding an optimal value of T  for this 

case is not trivial, as the increase in the number of to ta l objects due to time 

intervals splitting will affect not only the B +-tree bu t also the R-tree. If the 

number of split objects is not very large, e.g., as in the presence of relatively 

few long tem poral ranges, the effects on the R-tree are, however, not very 

large. On the directory level a large number of splits would be needed to 

cause relevant changes in the structure. On the leaf level the number of I/O s 

will increase proportionally to  the increase in the number of indexed objects,
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which is assumed to be not very high. In addition, this effect is mitigated 

by the efficiency of the underlying range scan of the B+-tree. Considering all 

these factors, the value of T* derived for SPIT+ has also been used within the 

R-tree+B-tree. Nevertheless, as the following experimental results will show, 

the difference in performance between SPIT+ and R-tree+B-tree is so large 

th a t finding the true optimal value for T  for the latter would very unlikely 

improve its performance by a factor large enough to make it a competitive 

approach.

Finally, SPIT+ is compared to the MV3R-tree [31] using the (unmodified) 

source code kindly made available by its authors2. Even though the MV3R- 

tree is not an index th a t can be easily mapped onto an RDBMS, and therefore 

lacks the practical aspect th a t SPIT+ promotes, it is a well known index for 

historical spatio-tem poral da ta  and it has been shown to outperform a simple 

3D R-tree, which would have been another competitor for SPIT+.

4.1 M odel A ssessm ent and V alidation

This section offers details on the experiments performed to investigate the 

effectiveness of the spatial partitioning and tem poral intervals splitting strate

gies and presents the obtained results. The model robustness with respect to 

the query size is also examined here. As both the spatial partitioning and 

the temporal splitting used within SPIT+ are designed to improve the index 

access cost in answering spatial-temporal window queries, the performance 

figures reported throughout this section refer to window queries performance.

4.1 .1  P a rtitio n in g  E ffectiveness

In order to investigate the effectiveness of the space partitioning schemes 

described in Section 3.2 the number of disk accesses reported by ORACLE

2h t t p : //www. cs  . c i t y u . e d u . h k / ~ t a o y f / c o d e s / m v r  . z ip
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when using SPIT+ ’s partitioning algorithm (cost-based model for uniform dis

tributed data) is compared against the number of disk accesses when an ad-hoc 

partitioning is used. The term  ”ad-hoc partitioning” refers to the case where 

the user chooses a grid size manually.

Figure 4.2(a) shows the performance of SPIT+ and ad-hoc partitioning 

when the UNIFORM dataset is used. In this case, SPIT+ uses the cost-based 

model to compute the optimal number of partitions and decomposes the space 

using a regular grid. W hen using all experimental default values, the SP IT + 

determined a 13x13 grid, which indeed is the best option when compared to 

several other choices for a regular partitioning of the data space as shown in 

the above mentioned figure.

As for the ad-hoc partitioning, when the number of partitions is smaller 

than the optimal number suggested by SPIT+ ’s cost-based model, the number 

of disk accesses required to answer a query increases sharply with the decrease 

of the number of partitions. The reason is that, as the number of partitions 

is reduced, the area covered by each partition becomes larger, which, in turn, 

results in a larger am ount of da ta  th a t have to be accessed inside each partition. 

A search performance degeneration could also be observed when the number 

of partitions is greater than  the optimum. In this case, the increased number 

of disk accesses is attributable  to  the cost of accessing more tem poral indexes. 

For a number of partitions larger than  the last value shown on the figure, it is 

expected th a t the number of disc accesses will grow at about the same rate as 

the total number of partitions.

For non-uniform distributions, SPIT+ decomposes the space using a non

regular grid as detailed in Section 3.2.1. Again, its performance is compared to 

the ad-hoc alternative of having the user trying several different regular grids. 

As can be seen in Figures 4.2(b) and (c), for both non-uniform distributions the 

grid partitioning determined autom atically by SP IT + provides performance at
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Figure 4.2: Comparing I/O  performance yielded by SP IT +,s partitioning 
against the use of ad-hoc regular grids.
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least as good as the best ad-hoc partitioning. Since the resulting grid is non- 

uniform it does not make sense to plot performance as a function of the number 

of grid cells, hence the flat line for the SPIT+ performance. Like in the case of 

the UNIFORM dataset, the additional cost of underpartitioning is very clear, 

but overpartitioning seems to be not as prejudicial.

4.1 .2  O p tim iz in g  T

As discussed in Section 3.3, adjusting the value of T  yields a trade-off between 

improving query performance and enlarging the database. The argument used 

there was th a t the more skewed the distribution of tem poral ranges towards 

shorter ranges, the more performance improvement can be achieved and the 

more worthwhile to enforce the optimal value T* as the maximal length of the 

temporal ranges. In order to investigate this, four datasets have been used. 

Three datasets are synthetic datasets having a uniform spatial distribution 

(since the optimization is on the tem poral level, the spatial distribution is 

irrelevant), w ith varying degrees of skewedness on the tem poral ranges length. 

One is simply uniformly distributed and the other have the range lengths 

following an Exponential distribution E xp o n e n tia l  A), with rate parameters 

A equal 0.5 and 4 (the larger A the more skewed the distribution). Those are 

denoted by UNIF, UNIF+exp(0.5) and UNIF+exp(4) respectively. Finally, 

the INFATI dataset is used as a representative of a realistic distribution.

I/O s 
w / T

I/O s 
w / T*

Perf.
Gain

Storage
Overhead

UNIF 78.4 52.9 32% 80%
UNIF+exp(0.5) 73.5 39.5 46% 16%
UNIF+exp(4) 62.3 20.9 67% 4%
INFATI 2267.8 533.1 77% 0.5%

Table 4.2: Performance improvement and storage overhead due to T*.

Table 4.2 shows the obtained performance when using both the datase t’s

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



intrinsic T  and the optimal T* obtained as described in Section 3.3, as well 

as the yielded storage overhead. The dataset sizes as well as the query sizes 

used were the default values in Table 4.1.

Clearly, the more skewed the distribution of the lengths of the temporal 

ranges towards shorter ranges, the better the improvement in query processing 

time and the smaller the storage overhead. The skewedness of the temporal 

ranges is in fact a realist assumption, as evidenced by INFATI’s distribution, 

which not coincidentally yielded the largest improvement with the smallest 

overhead. The gains are even larger when the temporal query range is smaller, 

as shown in Figure 4.3 where the performance gain when using the INFATI 

dataset is plotted for different lengths of the temporal range. This is due to the 

fact th a t the range scan on the B+-tree leaves has a length of qt +  T  (Eq. 3.3), 

the smaller qt the more im portant T  becomes, and thus the more im portant 

it is to optimize it accordingly. Hence, this optimization is used as an integral 

part of the SPIT+ technique in the remainder of the experiments.

INFATI

100

<uoa
03

205 10

Query size [% o f indexed timestamps]

Figure 4.3: Performance gain as a function of the query temporal range length.
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4 .1 .3  R o b u stn ess

As pointed out, SP IT +’s spatial decomposition and, consequently, the query 

cost depend on an assumed query size, both for the temporal and the spatial 

component. In the next set of experiments it is shown how the performance is 

affected when the user estimates one query size but the actual posed queries 

have a different size. Ideally, one would want the performance to be robust, 

i.e., to not degrade much with reasonable variances between the assumed and 

actual query sizes. In all forthcoming tables the values in the first row represent 

the query sizes assumed at index construction time, with S  being the size 

percentage-wise w ith respect to the spatial extent of the data  space, and T  

being the size as a percent of the number of indexed timestamps. Following 

a similar notation, the values on the first column are the sizes of the issued 

queries. Hence, in the ideal case, the smallest values (shown in bold) should 

appear in the diagonal of the tables.

S  = 0.25% 
T  =  10%

5 = 1 %  
T  = 10%

5  =  4% 
T  =  10%

S  = 0.25%, T  = 10% 18.82 21.22 25.58
S  =  1%, T  =  10% 39.51 37.72 42.23
^  =  4%, T  = 10% 95.25 89.38 91.03

( a ) U NIFORM daf;aset

S  =  0.25%, T  =  10% 141.85 168.80 197.02
5  =  1%, T  =  10% 278.39 294.10 329.49
S  = 4%, T  =  10% 682.95 670.52 672.52

(b) GSTD dataset

5  =  0.25%, T  = 10% 390.53 388.75 399.94
5  =  1%, T  = 10% 545.22 533.11 552.37
S  = 4%, T  = 10% 704.64 679.09 682.77

(c) NFATI dataset

Table 4.3: I/O  robustness of SP IT + for all three datasets with respect to 
spatial query size (temporal query size is fixed).
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S =  1% 
T  = 5%

5 = 1 %  
T  =  10%

5 = 1 %  
T  = 20%

S  = 1%, T  = 5% 25.45 27.63 27.35
S  = 1%, T  =  10% 43.73 37.72 37.93
S  = 1%, T  = 20% 69.01 61.82 55.80

(a) U MIFORM dataset

S  = 1%, T  = 5% 204.82 209.87 227.94
S  = 1%, T  =  10% 322.17 294.10 281.11
S  = 1%, T  = 20% 485.95 438.41 416.83

(b) GSTD dataset

S  = 1%, T  =  5% 298.91 296.21 312.28
5  =  1%, T  = 10% 553.78 533.11 544.01
S  = 1%, T  =  20% 1043.51 991.90 995.35

(c) NFATI dataset

Table 4.4: I/O  robustness of SPIT"1" for all three datasets with respect to 
temporal query size (spatial query size is fixed).

Tables 4.3(a), (b) and (c) show the obtained performance when varying 

the size of the spatial component of the query, and fixing the temporal range 

length, for all three datasets. Tables 4.4(a), (b) and (c), on the other hand, 

show the performance when the temporal range varies and the spatial query 

remains fixed.

As can be observed, the smallest number does not always appear in the 

diagonal of the tables as in the ideal case. One reason for this is th a t the 

cost model often suggests a non-integer number of grid cells (Eq. 3.6), which 

is obviously not practical and has to be approximated to an integer. Another 

reason is the partitioning procedure is not guaranteed to  deliver optimal results 

in the case of non-uniform spatial distributions, which is the case of the GSTD 

and INFATI datasets. Nevertheless, even in such cases, the difference between 

the value occurring on the diagonal and the smallest value in the corresponding 

row is very small.
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Overall, the performance does not vary too much if one builds the dataset 

assuming a “wrong” (within reasonable limits) average query as can be seen 

throughout the tables. These results serve to show tha t SPIT+ is indeed a 

robust approach with respect to the assumed query size. That is to say, even 

if the query size estim ated at index building time is off by a factor of two or 

four in either the spatial or temporal dimension, SPIT+ is still able to deliver 

good performance.

4.2 Q uery Perform ance

4.2 .1  W in d ow  Q ueries

Next the performance of SPIT+ in answering spatio-temporal window queries 

is compared against the R -tree+B-tree approach and a linear scan of the data. 

All approaches make use of the assum ption th a t T* is known at query time.

Figure 4.4 shows query performance as a function of the size of the spatial 

component of the window query, while Figure 4.5 shows the performance when 

varying the length of the tem poral component. As expected, in both  cases the 

performance of the linear scan is constant, as it depends only on the cardinality 

of the dataset. In all figures it is easy to  see tha t the performance of the R- 

tree+B -tree approach degrades rather quickly, unlike for the other approaches. 

The case of the UNIFORM dataset is the only one where the R-tree+B-tree 

remains competitive with the linear scan for up to medium sized queries. For 

the GSTD and INFATI datasets the R -tree+B-tree is not competitive at all. 

This happens because for the GSTD dataset the density of the da ta  in the 

occupied portion of the space is higher, causing the underlying R-tree to have 

more node overlaps and, consequently require more tree traversals. The case 

for the INFATI dataset is even more extreme, as even a simple linear scan 

performs relatively much better.
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Figure 4.4: Comparing I/O  performance as a function of the size of the spatial 
component of the query.
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Figure 4.5: Comparing I/O  performance as a function of the length of the 
temporal component of the query.
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gp iT +  consistently provides the best performance, being at least 10 times 

better than the other approaches. More importantly however, it is very robust 

with the increase of the query size for all distributions. This confirms tha t 

the proposed grid partitioning is able to cope well with variations in this 

parameter.
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(b) GSTD
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Figure 4.6: Comparing I/O  performance as a function of the dataset cardinal
ity.

gpiT +  is aiSo very robust with respect to the increase in the dataset size as 

can be seen in Figure 4.6. (Note th a t the INFATI data set was not used here 

as the dataset cardinality is fixed and an intrinsic part of the dataset features.)
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The linear scan, as one would expect, does not scale well with the size of the 

dataset, and again the R-tree+B-tree approach is also a poor choice.

In summary, SPIT+ ’s performance is often two or more orders of magnitude 

better than the other approaches, while being quite robust with respect to 

all param eters investigated. This is due to very effective filtering of heavily 

populated partitions tha t do not contribute to the query’s answer, leading to 

highly efficient query processing.

4 .2 .2  k N N  Q ueries

In this section, the efficiency of SPIT+ in answering spatio-temporal kNN  

queries is evaluated by comparing it against the performance of the R-tree+B- 

tree approach. The Linear Scan m ethod has much weaker performance (two 

orders of magnitude worse than  SP IT + ’s performance) and has been omitted 

from the following plots.

Figure 4.7 shows the effect th a t the number k of required nearest neighbors 

has on the access cost of the index when the UNIFORM and GSTD datasets 

are used. The query size on the tem poral dimension is set to 10% of the total 

number of recorded timestamps. The INFATI dataset has been left out of this 

type of experiments since it contains only 20 distinct objects and searching 

for 20 or even 10 nearest neighbors in a given time interval provides almost 

no discrimination on the spatial dimension. The performance of both  SP IT + 

and R-tree+B-tree for one nearest neighbor search using the INFATI data is 

reported in the next section, when the effect of the tem poral ranges length is 

studied.

Again, SPIT+ delivers the best performance for both data  distributions 

investigated and copes very well w ith the increase in the number of required 

neighbors. The difference between the number of I/O s required in SP IT + and 

in the R-tree+B-tree approach is, however, not as large as it was for window
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Figure 4.7: Comparing I/O  performance as a function of the number of re
quested neighbors.

queries. To explain this observation, the way a /cNN query is processed using 

an R-tree needs to be outlined first.

The kNN search algorithm used on the R-tree traverses the tree in a branch- 

and-bound ‘manner. The algorithm keeps an ordered list of all the tree nodes 

tha t have to be visited and a list of the k closest neighbors found so far. 

The nodes list is ordered based on the euclidian distance, minDist(q, M BR), 

between the query point q and the nodes MBRs. Initially, the list of nodes 

contain the root node and the list of closest neighbors is void. The tree is
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traversed by always visiting the first node in the nodes list. If the visited node 

is a directory node, all its children are added to the nodes list based on their 

minDist(q, M BR)\ otherwise, the distance between the query point and all 

points contained in the leaf node and satisfying the query temporal predicate 

is computed and the k  closest points are added to the list of k closest neighbors. 

Once the k-th  point p from a leaf page is found, the distance kNNDist(q,p) 

between p  and q is used to prune some of the nodes in the nodes list. Only 

those nodes having m inD ist(q , M B R ) < k N N D is t(q ,p ) could contain points 

th a t are closer than the current k-th  neighbor p. If such points are retrieved, 

the list of current k  neighbors and the distance kNNDist(q,p) are updated 

accordingly. The algorithm stops when the nodes list is empty.

For the investigated query sets, the nearest distance kNNDist(q,p), between 

the query point and its fc-th closest neighbor, was usually much smaller than 

the sizes of the spatial component of the queries used in window queries eval

uation, resulting in a smaller number of R-tree nodes th a t had to be accessed 

for kNN queries as compared with window queries. Moreover, as explained 

in Section 3.4, the size of the spatial component of the query used for data 

partitioning in SPIT+ is based on some estimation, which may not be very 

accurate, especially for non-uniform da ta  distributions. Hence, the smaller 

difference between the performances of SP IT + and R -tree+B-tree when pro

cessing kNN  queries as compared with window queries.

The effect of the query tem poral interval size on the number of I/O s re

quired per query is shown in Figure 4.8. While for the UNIFORM and GSTD 

datasets the value used of k is set to the default value, for INFATI dataset k 

is set to 1 (recall th a t this dataset has only 20 distinct objects). As can be 

seen, the access cost for SPIT + increases slightly with the size of the tempo

ral interval. In contrast, the number of accessed nodes for the R-tree+B-tree 

decreases as the length of the tem poral ranges increases. The main reason is
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Figure 4.8: Comparing I/O  performance as a function of the length of the 
temporal component of the query.
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the following: the probability th a t the time intervals of data points found in 

the spatial neighborhood of the query point will intersect the query time range 

is greater when a larger query time range is considered. Hence, the nearest 

neighbor distance used by the R-tree search algorithm decreases with the in

crease of the query time range, resulting in accessing less nodes. However, 

the performance difference between the R-tree+B-tree approach and SPIT+ is 

big enough to make SPIT+ a very competitive approach, even for the largest 

considered query time interval, which is, indeed, a very large one.
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Figure 4.9: Comparing I/O  performance as a function of the dataset cardinal
ity.
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Finally, SPIT+’s performance in answering ZrNN queries is evaluated as a 

function of total number of objects in the dataset. As shown in Figure 4.9, the 

performance of both approaches scales very well with the size of the datasets. 

There is a very small improvement on the R-tree+B-tree performance, which 

is explained by the higher density of the data points in space when a larger 

dataset is used, resulting in smaller nearest neighbor distance. SPIT"1" outper

forms the R-tree+B-tree, being better by at least a factor of four when the 

number of objects varies within the range 1M-5M.

4 .2 .3  C om paring w ith  th e  M V 3R -tree

Even though the main goal of this thesis is to provide a practical technique 

rather than  a novel da ta  structure for indexing spatio-temporal data, we also 

compare SPIT+’s performance to the MV3R-tree [31]. Despite not being fea

sible to  be implemented on top of existing RDBMSs, the MV3R-tree is ar

guably a good representative of special purposed indices for spatio-temporal 

data. The purpose of the experiments discussed next is to  show th a t SPIT+ 

can indeed offer performance a t least comparable to a leading and specialized 

index structure. As the obtained MV3R-tree implementation does not sup

port spatio-temporal kNN  queries, only the performances in answering window 

queries have been compared.

Figures 4.10 and 4.11 shows the performance of SP IT + and the MV3R-tree 

when varying the size of the spatial and temporal component of the queries. 

While all other param eters remain at their default value as before, the GSTD 

dataset had to be downsized to 1 million observations as the obtained MV3R- 

tree source code was somehow unable to cope with larger datasets. The page 

size used to construct the MV3R-trees has been set to  the same value as in 

SPIT+; the other MV3R-tree param eters, like the strong/w eak version over

flow thresholds, have been kept to their default values.
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As one can see, for smaller queries both structures deliver nearly the same 

performance, while for non-uniform data and larger queries there is a slight 

advantage for SPIT + . Unfortunately, there seems to be an upper limit of 

indexing 30,000 distinct timestamps on the the MV3R-tree, which prevented 

the indexing of the INFATI data  set.
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Figure 4.10: Performance of SP IT + vs. MV3R-tree when varying the size of 
the query’s spatial component.

In terms of scalability, the inability of handling large datasets in the case of 

the MV3R-tree makes a fair comparison not possible. The reason being that 

for very small datasets, say in the order of up to  a few hundred thousands of
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Figure 4.11: Performance of SPIT+ vs. MV3R-tree when varying the length 
of the query’s tem poral component.

observations, there is an inherent overhead within SPIT+ due to the underlying 

DBMS which is not present within the MV3R-tree. One should note though, 

tha t it is well known th a t for very small datasets a trivial linear scan is often 

the most efficient solution.
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4.3 Index C reation

The final set of experiments deal with time required to create and index the 

database. In this regard, the Linear Scan approach is obviously the most 

efficient since there is no overhead associated to it. This comes at the expense 

of quite inefficient query performance as discussed above.

The times reported for index creation were obtained on a PC with an AMD 

Athlon X P 3200+ running at 2.19GHz and with 1.00GB of RAM, and using 

the GSTD dataset with 2.5 million objects. The partitioning was determined 

using the default query sizes on the spatial and temporal domains. When 

varying the size of the dataset, the time to build the index grows at a linear 

rate with the data  volume. The results using the other data  distributions 

follow the same trend.

There are two main tasks th a t need to be performed within SPIT+ . First, 

the partitioning must be obtained using the heuristic algorithm presented in 

Section 3.2.1. After tha t, the objects need to be inserted into the correct 

table partitions, i.e., the index-organized tables. The first parts took 76 sec. 

while the second required 843 sec. for a to tal of 919 sec. The R-tree+B-tree 

approach, on the other hand, needed only 200 sec. to  insert the data on the 

(single) table but needed 784 sec. to build the associated indexes, for a to tal of 

984 sec. It should be noted th a t both  approaches made use of the SQL*Loader 

facility available in typical ORACLE installations.

Even though SP IT + is overall about 7% faster than  the R-tree+B-tree 

approach, it was observed th a t in SP IT + the partitions lookup, i.e., finding in 

which partition an object should be inserted, caused most of the overhead at 

data insertion time. The idea of using an index, e.g., an R-tree, for the grid 

partitions themselves in order to speed up the partition lookup process, has 

also been considered. Howuver, the number of partitions was fairly low (in
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the order of hundreds) for all experim ents and it would m ost likely not benefit 

from an index, as com pared to  a simple linear scan of the partitions table.
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Chapter 5 

Conclusions and Future Work

This thesis addresses the issue of providing indexing support for historical 

spatio-temporal data, which is not only efficient from a query processing per

spective but also practical, in particular th a t it can easily be implemented on 

top of any RDBMS using only standard facilities.

Based on a two-level structure th a t separates the tem poral aspect from the 

spatial aspect of the data, the proposed indexing method, SPIT+ , enhances 

SPIT [16] with several optimization techniques to offer improved search per

formance. It uses a refined cost model th a t aims at optimizing the query cost 

in terms of number of disk accesses required to answer a query. For the case of 

a uniform data  distribution the cost model provides an optim al partitioning of 

the dataset. For arbitrary  data  distributions, the cost model is used to provide 

a new heuristic partitioning which leads to very good query performance in 

practice. In addition, SPIT + offers the possibility of pre-processing the data, 

splitting the tem poral ranges of some observations, in order to further improve 

performance.

An extensive empirical evaluation over both real and synthetic datasets 

have been performed, which dem onstrates th a t SPIT+ is both  effective and 

efficient, outperforming other spatio-temporal data  management alternatives 

for both window and &NN queries. It also shows th a t S P IT + is robust with
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respect to the query size assumed at index construction time.

5.1 Future R esearch

There are several directions tha t could be explored for future research. Some 

interesting ideas include:

• Expanding S P IT + to deal with new observations. As new data is ap

pended to a previously indexed dataset, the index search performance 

will s ta rt to deteriorate especially if the data distribution changes con

siderably. As mentioned in Section 3.6, this problem could be solved 

by either re-constructing the whole index or using a series of archival 

indexes, each for a given time frame and fine tuned for the dataset dis

tribution and size corresponding to th a t time frame. The latter approach 

has the advantage tha t only a small subset of the whole dataset has to 

be considered when each such index is created, and th a t previous in

dexes do not have to be rebuilt. A related idea would be developing a 

technique to  automatically determine the point in time when the index 

performance degrades to a certain degree as the database is appended 

with new observation or major changes in the query workload occur.

• Extending the proposed SPIT+ approach in order to  handle trajectories. 

The research question to be investigated in this case is how to obtain a 

cost model to guide an optimal partitioning given a set of trajectory seg

ments. Since a trajectory segment may cross several spatial partitions, 

some segments would have to be replicated and inserted into each inter

sected partition, increasing the total number of indexed segments. The 

cost model would have to be designed in such a way th a t this increase is 

taken into account.
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• Optimizing SPIT+ performance in answering ZrNN queries. Even though 

the experimental evaluation showed th a t SPIT+ is very efficient, outper

forming the R-tree based approach by factors of as much as 10, a better 

nearest neighbor distance estimation, which take into account the data 

distribution, would further improve query performance. Yet another 

nearest neighbor search related topic would be developing algorithms for 

processing &NN queries where the query object is also moving.

• Augmenting SPIT+ so th a t not only historical but current spatio-temporal 

data  could be efficiently indexed. W hen current observation are consid

ered, the time-interval end value, t e, of all database entries recording 

the current position of each mobile object is set to the so-called “now” 

value. W hen the current location of an object changes, the entry associ

ated w ith its last recorded location has to be retrieved, this entry time 

interval has to be updated, and a new entry recording the new location 

has to  be inserted into the database. The topic of having indexing struc

tures, the B+-tree included, able to sustain very high update ratios, e.g., 

several millions of updates per second, is still an open problem. Never

theless, perhaps an approach similar to  the one used within SETI, where 

a memory-resident, “front index” is used to alleviate the problem, could 

be adapted for use within SP IT + .

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] M. Abdelguerfi et al. The 2-3TR-tree, a Trajectory-Oriented Index Struc
ture for Fully Evolving Valid-Time Spatio-Temporal Datasets. In Proc. 
of AC M  GIS, pages 29-34, 2002.

[2] Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas, and Simonas 
Saltenis. Nearest Neighbor and Reverse Nearest Neighbor Queries for 
Moving Objects. In In  Proc. of the 2002 International Symposium on 
Database Engineering & Applications, pages 44-53, Washington, DC, 
USA, 2002. IEEE Computer Society.

[3] Stefan Berchtold, Christian Bohm, Daniel A. Keim, Florian Krebs, and 
Hans-Peter Kriegel. On Optimizing Nearest Neighbor Queries in High- 
Dimensional D ata Spaces. In ICDT, pages 435-449, 2001.

[4] F. W. Burton, J. G. Kollias, D. G. Matsakis, and V. G. Kollias. Implemen
tation of overlapping B-trees for time and space efficient representation 
of collections of similar files. Comput. J., 33(3):279-280, 1990.

[5] V.P. Chakka et al. Indexing Large Trajectory D ata Sets W ith 
SETI . In Online Proc. of CIDR , 2003. [h ttp://w w w - 
db.cs.w isc.edu/cidr/program /pl5.pdf].

[6] Elias Frentzos, Kostas Gratsias, Nikos Pelekis, and Yannis Theodoridis. 
Nearest Neighbor Search on Moving Object Trajectories. In SSTD, pages 
328-345, 2005.

[7] A. Guttm an. R-trees: a dynamic index structure for spatial searching. In 
Proc. o f the A C M  SIGM OD C onf, pages 47-57, 1984.

[8] Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras, and Dimitrios 
Gunopulos. Efficient Indexing of Spatiotemporal Objects. In In Proc. 
of the 8th International Conference on Extending Database Technology, 
pages 251-268, London, UK, 2002. Springer-Verlag.

[9] Gfsli R. Hjaltason and Hanan Samet. Distance Browsing in Spatial 
Databases. AC M  Trans. Database Syst., 24(2):265—318, 1999.

[10] C.S. Jensen et al. The INFATI data. Technical Report TR-79, TimeCen- 
ter, 2004. [h ttp ://arxiv .org/abs/cs.D B /0410001].

[11] C.S. Jensen, D. Lin, and B.-C. Ooi. Query and Update Efficient B+-Tree 
Based Indexing of Moving Objects. In Proc. o f VLDB, pages 768-779, 
2004.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-
http://arxiv.org/abs/cs.DB/0410001


[12] George Kollios, Dimitrios Gunopulos, and Vassilis J. Tsotras. Nearest 
Neighbor Queries in a Mobile Environment. In In Proc. of the Interna
tional Workshop on Spatio-Temporal Database Management, pages 119— 
134, London, UK, 1999. Springer-Verlag.

[13] P.M. Lewis, A.B., and M. Kifer. Database and Transaction Processing. 
Addison-Wesley, 2002.

[14] Li, Yang, and Han. Continuous k-Nearest Neighbor Search for Moving 
Objects. In Proceedings of SSDBM04 , 2004.

[15] Dan Lin, Christian S. Jensen, Beng Chin Ooi, and Simonas Saltenis. 
Efficient indexing of the historical, present, and future positions of moving 
objects. In In  Proc. o f the 6th international conference on Mobile data 
management, pages 59-66, New York, NY, USA, 2005. ACM Press.

[16] D. M allett. Relational Database Support for Spatio-Temporal Data. Tech
nical Report TR04-21 (M.Sc. Thesis), Dept, of Computing Science, Univ. 
of A lberta, 2004. [http://w w w .cs.ualberta.ca/TechR eports/2004/TR 04- 
21/TR04-21.pdf].

[17] M.F. Mokbel, T.M. Ghanem, and W.G. Aref. Spatio-Temporal Access 
Methods. IE E E  TCDE Bulletin, 26(2):40-49, 2003.

[18] M.A. Nascimento and M. Dunham. Indexing valid time databases via B +  
-trees -  the MAP21 approach. IE E E  TKDE, 11 (6): 1-19, 1999.

[19] M.A. Nascimento and J.R.O. Silva. Towards historical R-trees. In Proc. 
AC M  SAC, pages 235-240, 1998.

[20] Mario A. Nascimento, Jefferson R. O. Silva, and Yannis Theodoridis. 
Evaluation of Access Structures for Discretely Moving Points. In STD B M  
’99: Proceedings of the International Workshop on Spatio-Temporal 
Database Management, pages 171-188, London, UK, 1999. Springer- 
Verlag.

[21] Oracle Corporation. Oracle Database SQL Reference 10a Release 1 (10.1), 
December 2003.

[22] D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel Approaches in Query 
Processing for Moving Object Trajectories. In Proc. o f VLDB, pages 
395-406, 2000.

[23] Katerina Raptopoulou, Apostolos Papadopoulos, and Yannis Manolopou- 
los. Fast Nearest-Neighbor Query Processing in Moving-Object 
Databases. Geolnformatica, 7(2): 113—137, 2003.

[24] Slobodan Rasetic, Jorg Sander, James Elding, and Mario A. Nascimento. 
A Trajectory Splitting Model for Efficient Spatio-Temporal Indexing. In 
In Proc. o f the 31st international conference on Very large data bases, 
pages 934-945. VLDB Endowment, 2005.

[25] S.M. Ross. Introductory Statistics. McGraw-Hill, 1996.

[26] S. Saltenis et al. Indexing the Positions of Continuously Moving Objects. 
In Proc. o f the A C M  SIGMOD Conf., pages 331-342, 2000.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/TechReports/2004/TR04-


[27] H. Samet. The Quadtree and Related Hierarchical D ata Structures. ACM  
Comput. Surveys, 16(2): 187-260, 1984.

[28] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao. Mod
eling and Querying Moving Objects. In ICDE ’97: Proceedings of the 
Thirteenth International Conference on Data Engineering, pages 422-432, 
W ashington, DC, USA, 1997. IEEE Computer Society.

[29] Zhexuan Song and Nick Roussopoulos. K-Nearest Neighbor Search for 
Moving Query Point. In SSTD  ’01: Proceedings of the 7th International 
Symposium on Advances in Spatial and Temporal Databases, pages 79-96, 
London, UK, 2001. Springer-Verlag.

[30] Zhexuan Song and Nick Roussopoulos. SEB-tree: An Approach to In
dex Continuously Moving Objects. In MDM  ’03: Proceedings of the fth  
International Conference on Mobile Data Management, pages 340-344, 
London, UK, 2003. Springer-Verlag.

[31] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal Access Method 
for Timestamp and Interval Queries. In Proc. o f VLDB, pages 431-440, 
2001.

[32] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor Search. 
In In Proc. of VLDB, pages 287-298, 2002.

[33] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized Spatio- 
Temporal Access M ethod for Predictive Queries. In Proc. o f VLDB, pages 
790-801, 2003.

[34] Yufei Tao and Dimitris Papadias. Time-parameterized queries in spatio- 
temporal databases. In In  Proc. o f the 2002 AC M  SIGMOD international 
conference on Management o f data, pages 334-345, New York, NY, USA, 
2002. ACM Press.

[35] Yufei Tao, Jun Zhang, Dimitris Papadias, and Nikos Mamoulis. An Ef
ficient Cost Model for Optimization of Nearest Neighbor Search in Low 
and Medium Dimensional Spaces. IE E E  Transactions on Knowledge and 
Data Engineering, 16(10): 1169—1184, 2004.

[36] Y. Theodoridis and T. Sellis. A Model for the Prediction of R-tree Per
formance. In Proc. o f PODS, pages 161-171, 1996.

[37] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On the Generation 
of Spatiotemporal Datasets. In Proc. o f SSD, pages 147-164, 1999.

[38] Y. Theodoridis, M. Vazirgiannis, and T.K. Sellis. Spatio-Temporal Index
ing for Large M ultimedia Applications. In Proc. of IE EE  ICM CS , pages 
441-448, 1996.

[39] Yannis Theodoridis, Timos K. Sellis, Apostolos Papadopoulos, and Yan
nis Manolopoulos. Specifications for Efficient Indexing in Spatiotemporal 
Databases. In Maurizio Rafanelli and M atthias Jarke, editors, 10th Inter
national Conference on Scientific and Statistical Database Management, 
Proceedings, Capri, Italy, July 1-3, 1998, pages 123-132. IEEE Computer 
Society, 1998.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[40] X. Xu, J. Han, and W. Lu. RT-Tree: An Improved R-tree Index Structure 
for Spatiotemporal Databases. In Proc. of the 4th Intl. Symposium on 
Spatial Data Handling, pages 1040-1049, 1990.

[41] Baihua Zheng and Dik Lun Lee. Semantic Caching in Location-Dependent 
Query Processing. In SSTD  ’01: Proceedings of the 7th International 
Symposium on Advances m  Spatial and Temporal Databases, pages 97- 
116, London, UK, 2001. Springer-Verlag.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


