
U n iversity o f A lb erta

A P r a c t i c a l I n d e x i n g T e c h n i q u e f o r S p a t i o - T e m p o r a l D a t a

by

V iorica B o tea (fQ)

A thesis subm itted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M aster o f Science.

D epartm ent of Computing Science

Edmonton, A lberta
Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-13797-5
Our file Notre reference
ISBN: 0-494-13797-5

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Despite pressing need, current RDBMS support for spatio-temporal data is

limited, and most existing spatio-temporal indexes cannot be readily inte

grated into existing RDBMSs. This thesis proposes SPIT+ , an indexing tech

nique for historical spatio-temporal data, fully integrable in existing RDBMSs,

and presents algorithms for processing typical spatio-temporal window and

k-nearest neighbors queries. SPIT+ separates the tem poral and spatial com

ponents of data. A formal cost model and a partitioning strategy provide

optimal space partitioning for uniformly distributed data and a heuristic par

titioning leading to a very good query performance for arbitrary data distri

butions. The tem poral layer’s performance is improved if an optimal maximal

temporal range is enforced, and a procedure to determine such an optimal

value is presented. Extensive experiments show th a t S P IT + outperformes

other RDBMS-based options by orders of magnitude, and is competitive to

the MV3R-tree, with the unarguable advantage th a t it can be used on top of

virtually any RDBMS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Mario
Nascimento, whose dedication in supporting me has well exceeded his profes
sional duties. He agreed to work with me before I enrolled into this M aster’s
program and has been a great help ever since. His assistance with program
admission and subsequent research guidance have been invaluable.

I am also thankful to Dr. Jdrg Sander, who played an im portant role in
the development of this research by contributing with insightful comments
and ideas. In addition, I would like to thank Dr. Arturo Sanchez-Azofeifa,
the other committee member, for finding time to read this work and provide
feedback.

My special thanks and appreciation go to my husband Adi, for being by
my side during the entire time of this program. I wouldn’t have been able to
finish this thesis w ithout his constant love and encouragement. Last by not
least, I am very grateful to my parents and sister, for their unconditional and
loving support. Thank you Flory, mom and dad.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 In trodu ction 1
1.1 Problem D e f in it io n ... 2
1.2 Thesis Motivation and C o n tr ib u tio n s ... 4
1.3 Thesis O verview ... 5

2 B ackground and L iterature R ev iew 7
2.1 Spatio-Temporal Q u e r ie s ... 9
2.2 Indexing Spatio-Temporal D a t a ... 10

3 SPIT+ 20
3.1 Query Processing using S P IT + ... 22
3.2 Partitioning the D ata S p a c e .. 24

3.2.1 Partitioning D ata with Arbitrary D istribu tions............. 27
3.3 Optimizing T ... 29
3.4 Processing Spatio-Temporal kNN Q ueries 31
3.5 SPIT+ ’s Im p lem e n ta tio n ... 36
3.6 Extending SPIT+ to Handle New O bservations............................. 39

4 E xperim en tal R esu lts 41
4.1 Model Assessment and V a lid a tio n .. 45

4.1.1 Partitioning Effectiveness .. 45
4.1.2 Optimizing T .. 48
4.1.3 Robustness ... 50

4.2 Query P e rfo rm a n ce ... 52
4.2.1 Window Queries ... 52
4.2.2 kNN Queries .. 56
4.2.3 Comparing w ith the M V 3R -tree .. 61

4.3 Index Creation .. 64

5 C onclusions and F uture W ork 66
5.1 Future R esea rch .. 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Spatio-Temporal D ata Represented as Regions a t Different Time
In stan ces .. 8

2.2 Example R-tree (from [7]) ... 12
2.3 MV3R-tree (from [3 1]) .. 13

3.1 The SPIT+ approach... 21
3.2 Different spatial decompositions... 24
3.3 Example £;NN query... 34
3.4 A sample SPIT+ table... 37
3.5 Querying SPIT + ’s d a ta ... 38

4.1 D ata distribution for the GSTD and INFATI datasets.............. 43
4.2 Comparing I/O performance yielded by SPIT+ ’s partitioning

against the use of ad-hoc regular grids.. 47
4.3 Performance gain as a function of the query temporal range

length.. 49
4.4 Comparing I/O performance as a function of the size of the

spatial component of the query.. 53
4.5 Comparing I/O performance as a function of the length of the

tem poral component of the query.. 54
4.6 Comparing I /O performance as a function of the dataset cardi

nality... 55
4.7 Comparing I/O performance as a function of the number of

requested neighbors... 57
4.8 Comparing I/O performance as a function of the length of the

temporal component of the query.. 59
4.9 Comparing I/O performance as a function of the dataset cardi

nality.. 60
4.10 Performance of SPIT+ vs. MV3R-tree when varying the size of

the query’s spatial component................ 62
4.11 Performance of SPIT+ vs. MV3R-tree when varying the length

of the query’s temporal component... 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Notations used... 25
3.2 Distances of partitions and objects from the query point. . . . 34

4.1 Param eters and respective values investigated............................... 42
4.2 Performance improvement and storage overhead due to T * . . . 48
4.3 I/O robustness of SPIT + for all three datasets with respect to

spatial query size (temporal query size is fixed)............................ 50
4.4 I/O robustness of SPIT+ for all three datasets with respect to

temporal query size (spatial query size is fixed)............................ 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapt er 1

Introduction

Spatio-temporal da ta models the evolution in time of spatial objects, where

a spatial object can be described as an entity th a t has associated a position

in space. A spatio-tem poral data object is thus characterized by a spatial

a ttribute and a tem poral attribute, describing spatial properties and the time

period when the spatial properties were valid. Databases th a t store spatio-

temporal objects are called spatio-temporal databases.

Consider the following scenario, where spatio-temporal da ta exist and can

be used to answer practical questions. Assume th a t every cab in a city is

capable of transm itting information to the headquarter every five minutes. The

information transm itted contains the unique identifier of the cab, its current

position represented by its spatial coordinates and the time the information

is transm itted. Furthermore, assume th a t the information transm itted by all

cabs is stored in a central database. As a first example of how this database

can be useful, assume th a t a customer calls in and requests a cab at a given

address. Instead of sending the customer request to every cab, the dispatcher

can interrogate the database to identify the available cab th a t is the closest

to th a t address. As a second example, assume tha t another customer forgot

a piece of luggage in a cab th a t took him home two days ago. Rather than

checking within all cabs in the city, the database could be used to identify only

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

those cabs th a t were in the neighborhood of the customer house two days ago.

Spatio-tem poral databases have received a great deal of research inter

est over the last years, mainly because the advances in mobile technology

made possible the collection of large amounts of spatio-temporal data. Spatio-

tem poral da ta is generated in many real-life applications, the cab-tracking

system mentioned above being just an example. Other applications include

weather forecast prediction, traffic monitoring, spatio-temporal data mining,

wildlife tracking, etc. For most of these applications, the data volume is usu

ally huge, and da ta retrieval should work in real time. Standard models and

techniques (e.g., indexing) used in “classical” databases are not efficient for

spatio-tem poral data. Hence developing models and indexing structures tha t

work well for the la tter type of da ta is very im portant. This is also the main

focus of this thesis.

1.1 P rob lem D efin ition

As pointed out, many real-life applications, need to be modeled using spatio-

tem poral data. For some of these applications only the past locations of the

moving objects are of interest, while for others it is more im portant to predict

the objects future locations. This led to classifying the spatio-temporal data

into historical and current/predictive [17]. This thesis addresses the issue of

indexing and querying historical spatio-tem poral data.

A typical way of representing historical spatio-tem poral da ta is to model

the objects’ movement as discrete events in time. This kind of representation

is also used here. Each mobile object has assigned an unique identifier and

is associated with multiple database records. Each database record has the

format (o id ,x ,y , t s , t e), where oid is the object’s identifier, (x , y) represent the

object’s position along the spatial dimensions, and [fs, te) denotes the non-null

time interval during which the object was located at position (x, y). The time

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intervals of all records having the same object identifier are disjoint and their

union covers the whole temporal domain. For a given object o two consec

utive observations have the form (ofc, x ' , y ' , t's, t'e), and (ok,x" ,y" where

t" = t'e and (x ',y ') ^ (x",y"). Between successive recorded positions, a step

wise interpolation is used; as long as the object’s position is not updated in the

database it is assumed to remain stationary at its last observed coordinates.

This approach is preferred over the alternative of linear interpolating between

two consecutive positions, as the later could result in erroneous assumptions.

For instance, in the cabs example above, it would be wrong to assume that

a cab followed a linear trajectory as obstacles/constraints (buildings, play

grounds, one-way streets, etc.) may be present.

There are two types of spatio-temporal queries th a t are considered in this

thesis, namely window and k nearest neighbors queries. The following defini

tions are used for these types of queries:

• A spatio-tem poral window query Qw has the format (a, r) , where a is

a two-dimensional spatial region and r is a time interval. The query

answer consists of the set of unique oid’s of all records having (x, y)

inside o and [f,, te) overlapping w ith r .

• A spatio-temporal kNN query Q n n is defined as a tuple (p ,r ,k) with

p being a static point in a two-dimensional space, r specifying a time

period and k being the number of requested neighbors. Q n n returns

the oid’s of k objects th a t were the closest to p during r . The distance

dist(oid,p), between an object identified by oid and p, is defined as

dist(oid, p) = m in {Xty)eRmd T{d({x ,y),p)} ,

where R old}T = {(x ,y) \ (o id ,x ,y , t s , t e) G D A [A, te) D r ^ 0}, D is the

set of all database records and d((x, y), p) is the euclidian distance in the

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two-dimensional space.

1.2 T hesis M otivation and C ontributions

Even though several spatio-temporal indexing structures have been developed,

most of them suffer from the drawback th a t they cannot be easily integrated

into existing RDBMSs. A spatio-temporal model is said to be fully integrable

into an RDBMS if it can be implemented using only the standard function

ality (e.g., data types, indexing structures) provided by th a t product. One

im portant benefit of a fully integrable model is th a t it can take advantage of

all features existing in an RDBMS, such as the capacity to manage large data

volumes, concurrency control, query languages, and others. Furthermore, im

plementing a model on top of a standard product makes it accessible to more

users and more application domains.

A first a ttem pt to provide a spatio-temporal access m ethod inside of an

existing RDBMS has been made in [16], where the author proposed SPIT, a

two-level indexing method fully integrated within the RDBMS via a relational

mapping. It partitions the spatial dimension of the data space into a static

grid and for each grid cell creates an index over the tem poral dimension. A

more detailed description of SPIT is provided in Section 2, where existing

spatio-temporal indexing structures are reviewed.

The spatio-temporal indexing approach proposed in this thesis uses the

same framework as SPIT does. However, it introduces several new and impor

tan t features as detailed in the following:

• A new partitioning strategy is developed, th a t takes into account arbi

trary data distribution. In contrast, SPIT was designed to work effi

ciently only for uniform da ta distributions.

• It introduces an algorithm for splitting the tem poral ranges of da ta points

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the goal of faster query response. An optimal decomposition, ac

cording with a new cost formula, is obtained with a histogram based

m ethod. No similar concern is present in SPIT.

• It shows how the presented indexing technique could be employed for

solving new types of spatial-temporal queries such as kNN queries. Only

spatio-tem poral window queries were considered in SPIT.

• It provides a thorough experimental evaluation of the proposed method,

for both real and synthetic datasets, by comparing it against other

RDBMS-based alternatives for spatio-temporal data indexing, as well

as a specialized spatio-temporal indexing structure.

1.3 T hesis O verview

The structure of the remaining chapters is the following: Chapter 2 reviews

background concepts related to spatio-temporal databases domain and sur

veys spatio-tem poral access methods present in the literature. An overview of

several existing approaches focusing on answering spatio-tem poral k nearest

neighbors queries is also provided. Chapter 3 describes the proposed technique

for indexing spatio-tem poral data. A partitioning-based approach, the index

ing method uses several decomposition algorithms designed to optimize the

query processing cost. Besides in-depth description and discussion of query

processing, this chapter includes the algorithms in pseudo-code and details

about an actual implementation in an RDBMS system. An experimental eval

uation of the proposed approach is presented in Chapter 4. Two m ajor classes

of experiments are performed: (1) model properties assessment and valida

tion and (2) comparison against other spatio-tem poral indexing approaches.

The focus of the first class is to confirm the effectiveness of the decomposition

strategies and to evaluate the model robustness with respect to its parameters.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The model efficiency is dem onstrated with the second class of experiments,

where it is shown th a t the proposed technique outperforms all compared ap

proaches in answering both window and kNN spatio-temporal queries. Chap

ter 5 provides the conclusion of this thesis and offers directions for further

research.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapt er 2

Background and Literature
Review

Representing spatio-temporal data inside a database can be done in several

ways. A first choice is to consider the time as an additional dimension and

to model the moving objects as points in a multidimensional space [1, 16, 19,

31]. In this way, the movement of an object in time could be represented

by the object’s spatial coordinates at each moment of time. If the object

changes in shape and /or size over time and this change is relevant for the

application’s specifics, then the object is modeled as a multidimensional region

and its spatial-extensions are stored in addition to its spatial coordinates. Even

though object motion often is continuous in time, recording the position of an

object for each time instance is impossible. Furthermore, for objects th a t do

not move over a time period, this will result in storing redundant information.

For this reason, only sampled positions, obtained by discretizing the whole

time period, are stored. Figure 2.1 shows an example of time sampling for

objects modeled as regions. For a query th a t falls between two neighboring

sampled points, the location of the objects could be determined using, for

instance, linear or step-wise interpolation.

A second possibility is to store the objects trajectories rather than their

punctual locations. A trajectory is stored as a collection of linear segments,

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y

to th

Figure 2.1: Spatio-Temporal D ata Represented as Regions at Different Time
Instances

where each line segment represents the motion of an object between two suc

cessive sampled positions. This type of data representation has been used

in [5, 20, 22, 38]. While it offers a convenient way for retrieving all the ob

jects satisfying a given spatial predicate at any moment of time without need

for interpolation, a trajectory model usually requires more complex data and

indexing structures than those employed by the previous model.

A third da ta model th a t can be used to represent spatio-tem poral data is

the parametric model [11, 26, 33]. Under this approach, an object’s move

ment is represented as a function of time, and its motion (typically speed and

direction) vector is stored together with its current spatial coordinates. By

modeling the path followed by a moving object as a tim e variable informa

tion, a parametric model has the advantage th a t data updates are necessary

only if the components of the motion vectors change. In addition, it allows

to compute the objects future location, which makes it suitable for predictive

spatio-temporal applications.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Spatio-Tem poral Queries

The most common types of spatio-temporal queries are those inherited from

the area of spatial databases. These include window queries, nearest neighbor,

k-nearest neighbor [39], reverse nearest neighbor [2] and join queries. Spatio-

temporal window queries retrieve all the objects tha t are contained in a spec

ified query region during a given time interval or at a time moment. “Find all

the cars that were parked at the university between 5 p.m. and 6 p.m. two days

ago” could be an example of window query. Given the coordinates of a static

or moving object (query point), a spatio-temporal nearest neighbor query re

trieves the object th a t is the closest to the query point during a time interval,

with the distance between two objects during a specified time interval being

defined as the minimum of their distances at all time instances tha t belong to

the specified time interval. An example of such a query would be “which bus

will be the closest to the bus station in the next five minutes”. A k-nearest

neighbor query is an extension of a nearest neighbor query, where instead of

returning only one object, the k closest objects are retrieved. In contrast, a

reverse nearest neighbor query returns all the objects whose nearest neighbor

is the query point. As opposed to the query types defined before, which are

concerned with only one dataset, a spatio-temporal jo in query involves two

sets of data and focuses on finding all the pairs of objects from the cartesian

product of the datasets, th a t are located within a given distance from each

other during a time interval.

Since the location (past, current or future) of the moving objects during

the query time interval is the only information needed to compute a query

answer set, all the query types defined above are often called coordinate-based

[22] spatio-temporal queries. Recently, a new category a spatio-temporal

queries, namely the trajectory-based queries [22], has emerged. Trajectory-

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

based queries require information about the complete or partial trajectories

of the moving objects and concentrate on answering questions regarding the

topological and navigational aspects of objects’ movements. Providing an

swers to questions such as whether a trajectory enters, leaves, stays within,

crosses or bypasses a certain area during a given time interval is the focus

of topological queries, while navigational queries involve derived information

such as speed, heading, acceleration, traveled distance, etc. [22].

Using a complementary categorization, one can distinguish between histori

cal and current/predictive spatio-temporal queries. Historical spatio-temporal

queries are used in conjunction with historical databases and answer questions

about the past movement of the objects. Current/predictive queries work

with current/predictive spatio-temporal databases and are focused on return

ing information about the current state of the moving objects or about their

projected movement. In order to answer questions about the objects location

a t a specified time moment in the future, information about their current ve

locities and positions is used. However, the answer to a predictive query is

deemed accurate only at the time it is computed; it may be invalided with any

update th a t happens between the current and the query times. To overcome

this limitation, continuous spatial-tem poral queries [28] have been introduced.

Such queries involve constant monitoring of the database status and updating

of the query answer with every occurring change.

2.2 Indexing Spatio-T em poral D ata

Most of the indexing structures designed to handle spatio-temporal data are

based on R-trees [7]. An R-tree is a balanced tree th a t indexes spatial objects

based on their Minimum Bounding Rectangle (MBR). The leaf nodes contain

the MBRs of all spatial objects and pointers to objects exact representations.

At the directory level, each node consists of the smallest MBR th a t tightly

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

encloses all the MBRs in the child nodes and of pointers to the child nodes. A

sample two-dimensional R-tree is provided in Figure 2.2. The objects’ MBRs

are depicted by the rectangles R8-R19. Multiple MBRs are grouped together

in the parent nodes R1-R7, in such a way tha t node’s overlapping and the

empty space introduced in the tree are minimized. W hen a window query has

to be answered, the tree is traversed starting from the root to determine all

the leaf entries whose MBRs overlap with the query window. For these entries,

the objects exact representations are retrieved to test whether they satisfy the

query. Since the MBRs of several entries of a node may overlap with the query,

multiple paths from the root to leaves may be traversed.

Like spatio-temporal queries, spatio-temporal access methods could be clas

sified into historical and current/predictive.

First, historical spatio-temporal indexing structures are reviewed. For this

class of indexing structures, spatio-temporal data is usually represented using

either the coordinate-based [1, 19, 31] or trajectory-based [5, 20, 22, 38] model.

RT-trees [40] are the first access structure intended to support the storage

and retrieval of spatio-temporal data. An RT-tree uses a two dimensional

R-tree to index d a ta ’s spatial component and stores the tem poral component

as auxiliary information in the R-tree’s nodes. While being able to answer

spatial queries relatively well, an RT-tree provides no discrimination along the

temporal dimension, which makes it extremely inefficient for queries based

solely on a tem poral predicate.

Designed to support both time-related and space-related queries a t the

same time, the 3D R-tree [38] considers the time as a third spatial dimension

and indexes spatio-tem poral data in a three-dimensional R-tree. The main

problem with the 3D R-tree is the growth of the dead space introduced in the

index, resulting in a larger degree of overlap among nodes, which in turn causes

lower query performance. Research on addressing the issue of dead space in

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R 4 R 5

R l l R IBIRS Jr 9 R IO I

t t T tt
T o D a ta T u p le s

[*}..] r? I . . ' "

■ “ ~ ~ ^ v

]R0 [FT?
...

~v__ s%v.....
IB 1 3 fo b * I j f o s f o s]

4; i ...

(a)

|R 1 7 |R 1 8 'R 1 9 j

^ T i

R1 R 4 Hi 1
K5it 9

>i Ri.2

R 1 8

• HR IS

(b)

Figure 2.2: Example R-tree (from [7])

3D R-trees is reported in [8] and [24]. The common idea of these contributions

is to split long trajectory segments, such th a t the to ta l area of the indexed

MBRs is reduced.

Historical R-trees [19] adapt the concept of overlapping B-trees [4] to

spatio-temporal data. The main idea is to create a separate R-tree for each

time instance in the history of the moving objects. To avoid duplication of

nodes whose content doesn’t change over consecutive tim estam ps and save

disk space, common nodes are shared among multiple R-trees. If, instead, at

least one node entry changes its location, then all the other entries have to

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be replicated. Very efficient for tim estam p queries, a historical R-tree suffers

from the drawback of having to search over multiple copies of the same objects

in answering interval queries.

yVF.-cw
33

Figure 2.3: MV3R-tree (from [31])

The MV3R-tree [31] improves upon historical R-trees by providing more ef

ficient support for interval queries. It consists of two correlated indexing struc

tures: a Multi-Version R-tree (MVR-tree) and an auxiliary 3D R-tree built on

MVR’s leaf nodes, as shown in Figure 2.3. In answering a spatio-temporal

query, either one or another structure is used: the MVR-tree offers good per

formance for time-slice queries, while the auxiliary 3D R-tree performs better

for time-interval queries. As with any multi-version and overlapping structure,

the replication of some information in an MVR-tree cannot be prevented. Ob

ject replication in an MVR-tree also induces extra space requirements for the

3D R-tree structure, making the entire structure less storage effective.

The Trajectory-bundle tree (TB-tree) [22], also a 3D R-tree data structure,

aims at objects trajectory preservation, as explained below. It uses a modified

R-tree insertion algorithm, such th a t each leaf node contains only line seg

ments belonging to the same trajectory. To allow fast trajectory retrieval, leaf

nodes containing information about the same object’s trajectory are intercon

nected. The structure is very efficient for trajectory-based queries at the price

of performance deterioration for coordinate-based queries.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SETI [5] offers an alternative solution to trajectory indexing by separating

the temporal dimension from the spatial dimension. For the spatial dimension

a static partitioning of the entire space is used. W ithin each partition cell, a

sparse temporal R*-tree is created. Rather than indexing the time intervals of

all segment trajectories th a t fall inside a cell, only one entry for each data page

is maintained. When a trajectory segment intersects several partition cells, it

is split into several segments, one for each cell. In order to facilitate updates,

the last known locations of all objects are kept in an in-memory “front-line”

structure. The performance of the SETI’s indexing strategy depends to a great

extent on the number of cells used to partition the space. The authors do not

provide, however, any insights on how this param eter should be chosen.

Another method based on spatial decomposition is proposed by Song and

Roussopoulos [30]. The space is partitioned into zones and each object’s spatial

location is represented only by the id of the zone th a t it belongs to, rather than

the object’s (x, y) coordinates. Inside each zone, a structure called a SEB-tree

is used to index the objects, according to their start and end timestamps. The

main drawback of this approach is tha t, when only part of a zone intersects

with the query spatial range, the answer can be inaccurate, containing records

from outside the query range.

Two related approaches capable of indexing both historical and current

data are 2-3TR-trees [1] and 2+3TR-trees [20]. The common idea is to im

plement two R-trees: a two-dimensional tree for indexing current data and a

three-dimensional one for historical data. Records whose tim e interval goes up

to the current moment are stored in the two-dimensional tree. As soon as the

time interval of such a record closes (i.e., the object changes its position), the

record is transferred into the three-dimensional structure and a new record is

inserted into the two-dimensional structure. The main difference between the

two approaches lies in the nature of the data indexed on the three-dimensional

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R-tree: multidimensional points in 2-3TR-tree and trajectories in 2+3TR-tree.

The previous indexing structures are suitable for retrieving information

about the past or current location of moving objects. Next, structures capable

of answering predictive spatio-temporal queries are reviewed.

A Time Parameterized R-tree (TPR-tree) [26] models future positions of

moving objects as a linear function of time. It uses an R*-tree to store the

current known location and velocity vector of objects. Each time when a

change in an object motion pattern occurs, the record of the involved object

is updated accordingly. The velocity vector of an internal node is determined

by the velocity vectors of the enclosed objects such th a t the node’s bounding

rectangle will contain all this objects at any time in the future. Predictive

queries are answered using the linear function and the currently known location

of objects. TPR*-trees introduced in [33] are enhanced versions of TPR-trees.

Operations such as insertion and deletion are performed differently than in

standard R*-trees. This results in a different partitioning of the data inside

the tree, with benefits reflected on the query response time.

The current state-of-the-art for predictive STAMs are the EP-tree [11],

which use a B+-tree as their underlying structure. To use a B+-tree efficiently,

an ordering has to be defined for the involved data. In this method, the spatio-

temporal data is ordered as follows. The spatial component is linearized with

a space-filling curve, obtaining a spatial label for each object position. First,

the temporal component is partitioned into several time intervals with unique

ids, and each moving object is m apped to a time interval based on its update

time. Next, the index value of an object is obtained by concatenating the id

of its temporal interval and the object spatial label a t t[ab, where tiab is the

end timestamp of the object’s time interval. Since the Bx-tree indexes the

position of objects only a t certain moments of time, called label timestamps,

queries having tim estam ps different from these label tim estam ps are handled

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by query-window enlargements.

Recently, the BBx-index, an index structure based on Bx-trees, was pro

posed in [15]. By keeping not only one, but multiple trees with each tree having

associated a lifespan, the BBx-index is capable of managing past, present and

future spatio-tem poral queries at the same time.

Although most of the existing spatio-temporal indexing structures were

designed to accommodate window queries, work tha t focuses on handling k

nearest neighbor queries in the context of spatio-temporal data is also present

in the literature. As mentioned before, a kNN spatio-temporal query retrieves

the k objects from a dataset O th a t are the closest to a query object q, during

a given interval of time. Depending on the dataset and the query object

characteristics, three scenarios can be differentiated: 1) the query point is a

moving object while the dataset is a collection of static objects, 2) the query

point is a stationary object while the objects in the dataset are dynamic, and

3) both the query point and the dataset objects are moving objects.

One of the first works to consider answering kNN queries in the context

of moving objects (query and data) in an one-dimensional space was reported

by Kollios et al. [12], Their algorithm is based on a dual transformation

technique, which converts a line segment from the original space into a point

in the transformed two-dimensional space. The method was extended to ac

commodate the case of objects moving in a two-dimensional space but whose

movements are constrained by the existence of an underlying network.

Subsequent research on kNN queries mostly focused on predictive (either

instantaneous or continuous, or both) queries. Using a TPR-tree as their

supporting indexing structure, Benetis et al. [2] proposed both a reverse near

est neighbor algorithm and a nearest neighbor algorithm for moving queries,

moving data case. They use a depth-first traversal of the tree, enhanced with

metrics for pruning and directing the search. An algorithm for answering

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

continuous queries is also presented in this work.

Tao et al. [34] also use a TPR-tree as their index of choice and provide a

solution to kNN queries based on the concept of time-parameterized queries.

Both the query point and the data points move in time (scenario 3), and a

query is modeled as a line segment th a t shows the trajectory of the query point

within a certain time interval. A query answer returns the closest neighbor

of the query segment at any moment within the time interval. Initially, the

closest neighbor c of the starting point s is retrieved, and the interval (s,p)

where c remains the closest neighbor of the trajectory is computed (p is called

a split point). Then, the procedure continues iteratively using p as the new

start position.

The method proposed by Raptopoulou et al. in [23] addresses the same

scenario and uses the same index structure to organize the moving objects as

the work described above. The main improvement is a significant reduction

of the number of queries issued for a time interval. In the previous work, the

closest neighbor for each split point is retrieved with a separate query, whereas

the new work performs only one query for the entire interval.

Li et al. [14] tackle the problem of continuous kNN queries in the context

of scenario 3. A different approach is taken as compared to [23]. Rather than

indexing the objects in their original space, a transformed time-distance space

is used. In the transformed space, the movement of each object is represented

as a curve in a plan where the x-axis is the time, and the y-axis is the euclidian

distance from the object to the query point. Each such curve is divided into

multiple segments, which are indexed in an R-tree. Their algorithm works as

follows: first, the k objects th a t are the closest to the query point are retrieved

by searching the whole dataset. As time passes, any changes in the query result

set are detected by identifying all the curves th a t intersect w ith the curve of

the k-th neighbor.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O ther approaches [29. 32, 41] have studied the problem of continuous kNN

queries over static data points (scenario number 1). In [29], the static objects

are indexed in an R-tree. A sampling technique selects a set of points along the

query object trajectory. For each split (sampled) point, the closest neighbor

is retrieved using the R-tree index. For the rest of the points on the query

segment, the result is obtained by applying linear splines to two consecutive

sample points. The work of Tao et al. [32] differs in tha t the split points in

a query trajectory are computed accurately. Moreover, a branch-and-bound

strategy is used to traverse the R-tree th a t indexes the data. Zheng [41]

addresses the same problem by using Voronoi diagrams. A key difference

between these three contributions is th a t Zheng’s method is hard to extend

for more than 1 nearest neighbor.

All of the aforementioned research contributions offer solutions for answer

ing kNN queries over either static or current/predictive databases. Frentzos et

al. [6] were the first to study historical kNN queries over datasets of historical

moving objects represented as trajectories (scenarios number 2 and 3). Several

algorithms based on a branch-and-bound traversal of a TB-tree were presented,

depending on the type of the query point (either moving or stationary) and

the desired result of the query (continuous or not). A classical historical NN

query retrieves the object(s) th a t came the closest to the query point during

the entire time interval associated with the query. In contrast, the result of

a continuous historical NN query consists of a list of objects = l , n , each

of them associated with a time period fj when the object O; was the nearest

neighbor of the query object.

The kNN contributions summarized before leave the problem formulation

unchanged and develop algorithms specialized on kNN queries. Alternatively,

it is possible to reformulate a kNN query as a window query in a spatio-

temporal dataset. The basic idea is to determine a region th a t is assumed

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to contain all k nearest neighbors and to perform a window query for that

region. A bigger query region increases the probability that all k neighbors

are contained inside it but may imply a greater search effort (by accessing more

data). A smaller region is processed faster, but the probability to contain all

k neighbors decreases. Thus, an accurate region estimation is very important.

For more details on research on this issue, see [3, 35].

W ith the notable exception of [11, 15], all methods presented before cannot

be easily integrated into an RDBMS. The SPIT approach [16], on the other

hand, can be fully integrated inside any RDBMS. Based on a two-layer ap

proach, SPIT partitions the dataset according to the spatial location of the

objects and creates temporal indexes over each spatial partition. The proce

dure is similar to the one described in the SETI approach [5] presented earlier:

the space is divided into a fixed number of equal cells and a local index on

the tem poral dimension is created over the da ta within each cell. As opposed

to SETI, SPIT uses B-trees for the tem poral indexes, which allows it to be

used within any existing RDBMS. In addition, the space partitioning is done

according to a cost model aiming a t minimizing query cost. However, the cost

model assumes th a t data is uniformly distributed in space, which is often not

true for real applications. The work of this thesis improves upon SPIT in sev

eral im portant aspects, as detailed in the introductory chapter, e.g., the use of

a new partitioning algorithm, the splitting of tim e ranges and the development

of nearest neighbors algorithm.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

SPIT+

This chapter presents SPIT+, a fully RDBMS integrable approach for historical

spatio-temporal da ta storage and retrieval. SPIT + enhances the SPIT model

introduced in [16] along the directions outlined in Section 1. Like SPIT, the

proposed approach separates the spatial component from the temporal compo

nent of the data space and partitions the dataset into several disjunct subsets

based on d a ta ’s spatial coordinates. For each such subset a local index over

the temporal dimension of data is created.

The dataset is partitioned using a grid th a t decomposes the spatial com

ponent of the data space into a number of cells. Each grid cell is assigned a

unique identifier and, based on this identifier, is mapped to a different partition

in the RDBMS. W ithin each grid cell, a B+-tree is used to physically store the

contained data. Figure 3.1 provides a conceptual representation of the SPIT"1"

approach. Built on records time intervals (ts, t e), the B+-tree organizes data

based upon their tem poral attribute. Besides the index keys, i.e., (ts, t e), the

B+-tree leafs also store both the identifiers and the spatial coordinates of all

records.

Combined with the spatial decomposition, the separation of the spatial

and temporal dimensions results in a very good search performance. W hen a

spatio-temporal query is issued, only the subsets associated with the grid cells

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

/ <W,> \

22 / \ 24

18 A 20,

44 - ,,

window query

Figure 3.1: The SPIT+ approach.

th a t intersect the query spatial component have to be searched. Typically,

this is a small fraction of the entire dataset. The tem poral index of each

searched subset is then used to retrieve only the records th a t intersect the

temporal interval of the query (query processing is presented in detail in the

next section). Being a one-dimensional index, the temporal index does not

exhibit the search performance degeneration which is characteristic to three-

dimensional indexes (used when both the spatial and temporal dimensions are

considered together).

Unlike SPIT, where all grid cells have the same size, SP IT + allows an

irregular partitioning as the one shown in Figure 3.1. The irregular partitioning

is beneficial for arbitrary (non-uniform) da ta distributions. It allows to use a

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coarser grid for areas with sparse data, and a finer grid for dense areas. How

the spatial partitioning affects the query performance is discussed in Section

3.2.

Focusing on indexing and querying historical observations, which are com

pletely available a t index creation time, SPIT+ constructs a static partitioning.

A discussion on how the model can be extended to deal with new observations

is provided later in this chapter.

3.1 Q uery P rocessing using S P IT +

Like in [16], processing a spatio-tem poral window query using SPIT+ is a

four-steps procedure. First, the grid cells th a t intersect the spatial component

of the window query are identified. Second, the temporal index of each cell

previously selected is used to retrieve only the records whose temporal intervals

intersect the query temporal range. Next, the retrieved data is further filtered

by removing the tuples whose spatial position falls outside the spatial range

of the query. The final step is to eliminate any occurring duplicates (multiple

instances of the same object).

A lg o r i t h m 1 window-query () function.
I n p u t : (<t, r)
O u t p u t : list of oid’s

1 piddist := p -inter sect (a)
2 fo r a ll pid in pidJ is t d o
3 oiddist := oidJis t U
4 SELECT oid
5 FROM pid
6 W HERE t s BETW EEN r . tmin - T AND r. tmax
7 AND te BETW EEN r . tmin AND T.tmax + T
8 AND x between o.xmin and a.xmax
9 AND y between a.ymtn and a.ymax

10 e n d for
11 sort oidJist and remove duplicates
12 r e tu r n oidJis t

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 1 shows this procedure in pseudo-code. It assumes th a t the

function pJntersectQ already exists. Its task is to simply return the identifiers

pid of the grid cells tha t intersect the query’s spatial component. Only these

cells have to be scanned (line 2). Lines 6-7 correspond to the second step of

the query processing procedure. The tuples satisfying the temporal predicate

of the query are retrieved by performing a range scan on the leaf nodes of each

scanned partition B+-tree. As done in [18], the algorithm uses the fact th a t

the largest time interval, denoted as T , is known. Knowledge of a da tase t’s

T serves to further restrict the tem poral range tha t needs to be inspected at

query time, hence improving query processing time. In fact, given one value

of T one can easily split all records whose temporal range length exceeds T

into two or more records th a t adhere to the assumption. As can be easily

seen in Algorithm 1, the smaller the value of T , the smaller the range scan on

the temporal index. There is, however, a trade-off in splitting the da tase t’s

temporal ranges. It increases the number of indexed tem poral ranges and

hence the number of records in the database. A m ethod for obtaining an

optimal value of T for a given distribution of temporal ranges is presented in

Section 3.3.

As some of the partitions determined at line 1 of the algorithm could in

tersect the query spatial range only partially, the actual (x , y) coordinates of

the previously obtained records have to be checked against the query window

(lines 8-9). Even though this test could be skipped for those partitions en

tirely contained in the query window, doing so would have no effect on the

number of I/O s required to answer a query. When the B+-tree is scanned for

the necessary temporal filtering, all the leaf nodes containing records within

the temporal range of the query have to be accessed. Since each object loca

tion is stored together with its index key in the B+-tree leaf nodes, the above

spatial test can be performed with no influence on the number of accessed leaf

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes, hence no additional I/Os.

3.2 P artition in g the D ata Space

The spatial decomposition of the data space has a great impact on SPIT+’s

performance. The number of disk accesses required to answer a query depends

both on the number of accessed data points and on the number of partitions

containing these points. Consider the example in Figure 3.2, where two differ

ent decompositions are shown. The area th a t has to be searched in each case

to answer the window query (represented as the dotted square in the figure) is

shown in grey. Obviously, this area is larger when a coarser grid is used (case

(a) in the figure). Assuming a uniform distribution of the data, a larger area

will result in a bigger number of points th a t have to be accessed.

(b)

Figure 3.2: Different spatial decompositions.

In the second case, which uses a finer grid decomposition, the query in

tersects more partitions. Since the depth of a B+ tree is logarithmic on the

number of points, traversing several smaller trees (one for each intersecting

partition) is more expensive than traversing one relatively larger tree tha t in

dexes the same information. Therefore, finding a good partitioning is very

24

1

......

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

im portant for the model efficiency. A partitioning strategy aiming at minimiz

ing the number of disk accesses is presented next.

A cost-based model, which refines the model introduced in [16], is used to

compute the optimal number of cells in the grid. It assumes th a t the spa

tial domain is the unit square and th a t the temporal domain is formed by

the (finite) set of recorded timestamps. Moreover, the average query sizes, on

both the tem poral and spatial dimensions, are supposed to be known - the

robustness of SPIT+ with respect to such an assumption is discussed in Sec

tion 4.1.3. All notations used for the cost model presentation are enumerated

in Table 3.1.

Notation Meaning
N number of tuples, i.e., observations, in the

dataset
D A number of disk I/O s to answer a query
GA average number of accessed grid cells
L A C number of leaf level I/O s per accessed grid cell
I A c number of directory level I/O s per accessed grid cell
B S block size (number of tuples per data page)
qs average size (%) of the query in each

spatial dimension wrt the modeled space
Qt average size (%) of the tem poral range of the

query wrt the number of observed timestam ps
1(1*) length (optimal length) of a grid cell per

dimension
N c (N*c) total (optimal) number of cells in the grid
T (T*) maximal (optimal maximal) length (%) of the

indexed tem poral ranges wrt the number of
observed tim estam ps

Table 3.1: Notations used.

As in [16], the to tal number of disk accesses required to answer a query can

be computed based on the average number of partitions (cells) th a t intersect

the query and on the number of disk accesses performed inside each intersecting

grid cell. Since a B+-tree is used to store the data residing in each cell, the

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of I/O s inside each partition can be determined as the number of

accesses performed at the leaf-level of the tree combined with the number of

accesses a t the directory-level of the tree. As a result:

D A = GA x (LAC + I A C) (3.1)

The average number of cells intersected by a query can be estimated with

the following formula [36]:

GA = N c x (I + qsf (3.2)

When data is uniformly distributed, the average number of records inside

each cell is N / N c, whose storage requires leaf pages. As the records are

indexed on their tem poral a ttribute, only the pages containing records th a t

intersect the time interval of the query extended by T have to be accessed.

Therefore, L A C could be computed by the equation:

L A C = x (qt + T) (3.3)

Finally, the cost of accessing the directory level of each cell is determined by

the height of the B+-tree, which can be calculated as logbf { N /N c), where bf is

the tree branching factor. For simplicity, I Ac s value is set to 3, a characteristic

value for B-trees indexing millions of records and having the bf ~ 100 [13],

obtaining:

D A = (l + q J (rD A ± n + 3) (3.4)

The value of D A in the above equation is minimized for a cell size I* given

by

3qs x B S (3.5)
N x (qt + T)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consequently, the optimal number of grid cells N* can be written as a

function of I* as:

N* - 1 = (N X [q ‘ (3 6)
' c (I*)2 [3qs x B S j ' [}

Therefore, in order to minimize the number of disk accesses per query, given

an average query size, the data space has to be decomposed using a regular

grid th a t contains [~y/iv<*] equally sized cells in each dimension. In addition

note tha t T in Eq. 3.6 is the only parameter one could fine-tune, the others

are query or system dependent. In Section 3.3 a discussion is given on how

this can be explored to further performance improvement.

3.2 .1 P a rtitio n in g D a ta w ith A rb itrary D istr ib u tion s

Partitioning the data space using the criteria just presented is optimal given

the assumption of a uniform data distribution. While in real life scenarios data

is seldom truly uniformly distributed, it is often the case th a t for some regions

of the data space such an assumption can be made. For instance, on a map,

it is much more reasonable to assume th a t objects are uniformly distributed

inside the boundaries of a city than th a t they are uniformly distributed over the

whole map. In what follows, this reasoning and the cost model above are used

in order to provide a partitioning heuristic for an arbitrary d a ta distribution.

The idea is to recursively divide the space into four subspaces, as in a Quad

tree [27], until all obtained subspaces satisfy a uniform distribution criterion.

The obtained subspaces are then partitioned using the cost model developed

above. The uniformity of a data distribution can be tested using Pearson’s

Chi-Square test [25]. The test partitions the da ta into K equally sized cells

(categories) and computes the sum (S 2) of squared differences between the

actual number of objects inside each cell and the expected number of objects

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

under the uniformity assumption. If the value of S 2 is smaller than XK - i (a)

(the 100(1 — a) percentile of a chi-square distribution with K — 1 degrees of

freedom) then the uniformity assumption is accepted, otherwise it is rejected.

Algorithm 2 shows this procedure in pseudo-code.

A lgorithm 2 PartitionQ recursive algorithm.
Input: An MBR containing data points
O utput: A set of MBRs (each corresponding to a grid cell) and respective
partitionings

1: Assume a uniform distribution of the data points in the current MBR, and
partition the MBR optimally using the cost model. Using the resulting
grid cells as categories, perform Pearson’s Chi-Square test on the current
MBR.

2: i f the Chi-Square test is successful, i.e., the data distribution within the
MBR can be considered uniform, th en

3: Store the (coordinates of the) grid cells of the current MBR as partitions
in the table P a r tit io n s

4: else
5: Split each dimension of the current MBR in half, obtaining MBRj, i =

1, 2, 3,4
6: fo r i—1 to 4 d o
7: Parti tion(MBRi)
8: e n d fo r
9: e n d i f

If the data is truly uniformly distributed, the heuristic presented above

yields an optimal regular grid partitioning (under the cost model assumptions).

In such a case the uniformity test would be immediately successful and the

algorithm would not recurse.

It may appear at first th a t the partitioning strategy may result in many

small cells with very few objects in each of them. This obviously would not

be a good idea since there is an overhead cost to access a partition, and there

is a point where accessing less da ta in more partitions is more expensive than

accessing more data within less partitions. Fortunately, the heuristic above is

able to identify such situation, stopping the partitioning accordingly. Recall

that, during the partitioning, q2 is the query size with respect to the current

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MBR, and similarly N is the number of objects inside the current modeled

space, i.e., the current MBR. Initially the current MBR is the whole unit

square, but as the partitioning progresses, the MBRs are subdivided and the

current MBRs become smaller. As an obvious consequence, qs becomes larger

with respect to the current MBR. On the other hand, the number N of objects

per MBR becomes likely smaller as the MBRs are subdivided. Consider the

case when the query size becomes equal to the current MBR, i.e., qs = 1. It

can be seen, from Eq. 3.6, tha t if qs = 1 and B S , qt and T are constants,

then N < yields N* = 1, i.e., no further partitioning is needed. This

agrees with the intuition th a t as the partitioning progresses, there is a point

where accessing less data in more partitions becomes more likely and more

expensive than accessing more data within a single partition. At tha t point

the partitioning process stops automatically.

Although only optimal for the case of uniformly distributed data, the re

sulting overall performance by SPIT+ is typically very good. Indeed, as can

be seen in the experimental section, it is never worse than the best ad-hoc par

titioning, i.e., the best partitioning one could obtain by trial-and-error. More

importantly, however, SPIT+ is able to find very good partitions of the data

space autonomously, not relying on any information but the dataset itself and

an expected query size. Naturally, the better the user can estim ate the query

size (which should happen with time) the better the partitioning and therefore

the query performance.

3.3 O ptim izing T

As mentioned in Section 3.1, the size of the range scan on the B+-tree th a t

indexes the tem poral intervals depends on the length of the largest indexed

interval T. There is nothing however, th a t prevents one to setting T “artifi

cially” in order to optimize the index performance. As one decreases the value

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of T from its so-called intrinsic value, i.e., th a t inherent to the dataset, the

number of temporal ranges th a t have to be split increases. As a result, the

range scan on the index will become shorter, but the number of indexed ob

jects will increase. The former consequence has potential positive impact on

the performance of the temporal index while the latter has a negative effect.

A m ethod on how those two effects could be balanced in order to obtain an

optimal value for T , denoted as T * , is introduced next.

Let C(h) be the count of the number of temporal ranges with length equal

to /j, and let (C'(L), C //2), •••, C(Im)) be a histogram of the distribution of the

tem poral range lengths. Note th a t M is finite as long as one assumes a discrete

time space, otherwise it can be made so to the user’s discretion, with no loss

of generality of the argum entation th a t follows.

Let lk 6 {h , h , t>e one given length th a t is going to be set as

the maximal allowed length. (The case where h = Im induces no splits and

therefore is not of interest.)

When splitting all ranges larger than Ik the current number of indexed

ranges, originally N , will now become

M

N k = N + J 2 1C (1p) x (R p /k l - 1)1 (3-7)
p=k+ 1

Returning to Eq. 3.4 and substituting the expression of I* (Eq. 3.5) for

I, the first derivative of (3.4) with respect to N x (qt + T) is positive when

N , qt and T are positive, which means th a t the number of disk accesses is

monotonically increasing with N x (qt + T) . Consequently, the value T th a t

minimizes N x (qt + T) will also minimize the number of I/O s. Hence, the

optimal value of the largest tem poral interval is set to:

T* = lk, where k = a rg m i n k{ N k x (qt + lk)}.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The more skewed the distribution of the temporal range lengths is towards

shorter ranges, the more potential for savings exists, i.e., splitting a few long

ranges has the effect of substantially decreasing the value of T without in

creasing the number of indexed ranges N noticeably.

Note th a t in the case a user wishes to impose a storage budget tha t can be

used for optimizing performance, e.g., the database can grow to up to N max

tuples due to the splitting, the problem can be solved similarly. In this case

the (potentially sub-optimal) solution is found by simply finding k such th a t

Nk x (Qt + 4) is minimized subject to N k < N max.

Finally, finding the optimal T* has linear complexity on the number of

distinct indexed lengths, which can be arbitrarily discretized.

3.4 P rocessin g Spatio-T em poral kN N Queries

The previous sections of this chapter provided a partitioning algorithm de

signed to optimize the cost (in terms of the required number of I/O s) of a

spatio-temporal window-query and showed how the proposed access structure

can be used to process such a query. However, window queries are not the only

type of spatio-temporal queries th a t SPIT+ can handle. How SPIT+ could be

employed in solving spatio-temporal kNN queries is presented next.

First, a kNN search algorithm th a t assumes the da ta is already partitioned

is introduced, and then a partitioning scheme th a t takes into account the query

parameters (the value of k and the length of the time interval) is provided.

As already introduced, a spatio-temporal kNN query specifies a time in

terval and asks for the k objects th a t were the closest to the query point

during tha t period. Provided th a t a list of grid cells containing all k neighbors

could be determined, a kNN query can be processed similarly to a window

query: only the partitions containing the closest neighbors are scanned and

their temporal indexes are used to filter out those objects tha t do not satisfy

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the query temporal predicate. In addition, the list of retrieved objects has

to be sorted according to the euclidian distance between the objects and the

query point, and only the first k unique objects are returned as the query result

set. However, as opposed to the case of window queries, here it is not possible

to determine a priori the list of all partitions tha t need to be scanned, as they

depend on the distance between the query object and its k-th neighbor, which

is unknown.

R ather than trying to first determ ine all the partitions th a t need to be

searched and then use them to compute the query answer, the k nearest neigh

bor algorithm proposed in this work computes the answer set in an incremental

manner. The main idea employed by the proposed algorithm, which adapts

the method proposed in [9] to a single-level data structure, is to keep an or

dered list of all partitions and to scan one partition a t a time, according with

their order in the partitions list. W hen one partition is accessed, all its con

tained objects (points) having their tem poral interval overlapping with the

query temporal interval are retrieved and added to a list of potential k-nearest

neighbors, based on their distance to the query point. Having found at least

k objects, only those partitions lying within a distance smaller than kDist ,

the distance between the query point and its current k-th neighbor, from the

query point need to be further accessed. Algorithm 3 states this procedure in

pseudo-code.

Given a partition pid, the distance dist (Q,pid) between the query point

and pid is computed such th a t for each point P contained in pid, d is t(Q,pid) <

dist(Q, P).

As mentioned above, once at least k points have been found (line 12),

dist(Q, Pk) is used to prune some of the partitions in pList . Since VP G pid,

dis t(Q,pid) < dist(Q, P), only those partitions having their distance to Q

smaller than dist(Q, Pk) can contain points tha t are closer to Q than the

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o rith m 3 determineJkNeighbors () function
In p u t: A query point Q(x,y), a number k of neighbors and a query time
interval qt
O u tp u t: The k closest neighbors of Q

1: initialize oList to 0
2: c re a te p L is t , th e lis t of a ll ex is tin g p a r ti t io n s
3: s o r t pLis t a c co rd in g w ith th e ir d is ta n c e to Q
4: in itia liz e kD is t w ith maxReal
5: pCurrent th e f irs t p a r t i t io n in pLis t
6: rem o v e pCurrent from pLis t
7: w hile dist(Q, pCurrent) < = kD is t a n d pList ! = 0 do
8: fo r each p o in t P in pCurrent (a n d sa tis fy in g qt) d o
9: i f dist(q, P) < = kDis t t h e n

10: a d d P to oList
11: so r t oList acco rd in g to th e d is ta n c e to Q
12: i f Card(oList)>= k t h e n
13: P k := th e k - th e lem en t in oList
14: kD is t := dist(Q, Pk)
15: e n d i f
16: e n d i f
17: e n d fo r
18: pCurrent := th e firs t p a r t i t io n in pLis t
19: rem ove pCurrent from pList
20: e n d w h i le
21: r e t u r n the first k objects in oList

current k-th. neighbor. As long as pLis t contains partitions closer to Q than

Pk, these partitions are scanned one at a time and both oList and dist(Q, Pk)

are updated accordingly. When the first partition having a distance greater

than the current dist(Q,Pk) is found, the algorithm stops and the first k points

in oList are returned as the query answer set.

For a better understanding of the above algorithm, consider the example

provided in Figure 3.3 and assume th a t the query asks for the 2 nearest neigh

bors of Q (the grey dot in the figure). Moreover, consider th a t the distances

between Q and all partitions and objects are the ones provided in Table 3.2.

The steps executed by the algorithm are the following:

• pList — {P5, P 6 , P2, P3, P 8 , P9, P4, P I , P7}; kD is t = maxReal;

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-1) 8 9

4 * a 5

b*

6

* d

1 c *2 3

Figure 3.3: Example &NN query.

P artitions/
Objects

P I P2 P3 P4 P5 P 6 P7 P 8 P9 a b c d

Distances 8 3 4 7 0 1 9 4 5 7 2 4 6

Table 3.2: Distances of partitions and objects from the query point.

• pCurrent = P5; pLis t = {P6 , P2, P3, P 8 , P9, P4, P I , P7}; dist{Q,pCurrent) <

kD is t => Scan P5; oList = {b, a}; k D is t = dist(Q, a) = 7;

• pCurrent = P 6 ; pLis t = {P2, P3, P 8 , P9, P4, P I , P7}; dis t(Q ,pCurrent) <

kD is t =» Scan P 6 ; oList = {b, d, a}; kDis t = dist(Q , d) = 6 ;

• pCurrent = P 2 ; pLis t = {P3, P 8 , P9, P4, P I, P7}; dis t(Q ,pCurrent) <

kDis t =>■ Scan P2; oList = {b, c, d, a}; kDis t = dist(Q, c) = 4;

• pCurrent = P3; pLis t = {P8 , P9, P4, P I, P7}; dis t(Q,pCurrent) <

kDis t =>- Scan P3; oList = {b, c, d, a}; kDis t = dist(Q, c) = 4;

• pCurrent = P 8 ; pList = {P9, P4, P I , P7}; dis t(Q,pCurrent) < kDis t

=> Scan P 8 ; oList = {b, c, d, a}; kD is t = dist(Q, c) = 4;

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• pCurrent = P9; pList = {P4, P I , P7}; dist(Q, pCurrent) > kDis t =>

STOP; answerSet = (b, c}

The proposed /c-nearest neighbor algorithm is optimal in the sense tha t the

number of accessed partitions is exactly the same as if the distance to the k-th

neighbor was known a-priori. This can easily be proven using the following

remarks. Let Pk be the true k-th neighbor of the query point Q and let kDis t

be the distance between Q and Pk- To retrieve all the k-nearest neighbors,

any optimal algorithm must scan all and only the partitions tha t intersect the

circle centered at Q with radius kDist . These are the partitions pid having

dis t(Q,pid) < kD is t and are exactly the partitions th a t the algorithm ac

cesses. Since pLis t is ordered based on the distance to Q, all the partitions

accessed before finding Pk are closer to Q than the partition containing Pk

and, consequently, their distance to Q is smaller than kDist . After finding Pk,

the algorithm scans all partitions closer than Pk th a t were not scanned yet.

No other partitions (i.e., with distance larger than k D is t) are scanned by this

algorithm (line 7 of Algorithm 3).

In order to answer kNN spatio-temporal queries using SPIT + , a partition

ing of the data space has to exist. Recall th a t the partitioning algorithm

introduced in Section 3.2 requires the average query sizes in both spatial and

temporal dimensions. While a kNN query provides a tim e interval whose

length can be used for the average query size in the tem poral dimension, an

average size of the query in the spatial dimension has to be determined.

The first step in computing an average query size in the spatial dimension

is to estimate Eak, the distance between the query point and its /r-th nearest

neighbor. According to [35], Edk can be estim ated by the equation:

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where N y is to tal number of distinct objects in the dataset.

Once the expected distance E dk is determined, the query region in the

spatial dimension could be approximated by the square th a t tightly encloses

the circle centered a t the query point and having radius the expected distance,

C(Q, E dk), yielding qs = 2 x E dk.

3.5 S P IT +’s Im plem entation

This section provides details on how the proposed indexing method is imple

mented inside an ORACLE database. Each record is represented as a tuple

(■o id ,x , y , t s , t e,pid}, where aid is the object identifier, (x,y) are the spatial

coordinates, (ts , t e) indicates the time period during which the object was

recorded a t position (x, y), and pid is the identifier of the partition containing

the object. All records are stored in an index-organized table called SPIT_PLUS.

An index-organized table is a table th a t is embedded within an index, i.e., the

index contains the tuples themselves in the leaf nodes of the index, e.g., a

B+-tree. Although index-organized tables are supported by most of the exist

ing RDBMSs1, their use is not a requirement for SP IT + to work. It could be

implemented using a regular table and index, the only difference being some

extra I/O s required for obtaining the actual tuples from a table after travers

ing the index. Built on the tem poral a ttribu tes (ts, t e), the index-organized

table is able to efficiently retrieve all tuples intersecting the query temporal

interval by simply performing a sequential range scan of the index leaves.

Moreover, the SPIT_PLUS table is range partitioned on pid to allow the map

ping of SPIT+ ’s grid to different table partitions. Each grid cell determined by

the heuristic algorithm Partition() is associated with a single table partition.

An unique partition id (pid) along with its MBR is stored in a table called

JA similar s tructure is called c l u s t e r e d in d e x in Microsoft SQL Server, while the
MySQL equivalent is an InnoDB t a b l e .

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PARTITIONS. W hen an object is inserted into table SPIT_PLUS its coordinates

are first checked against the PARTITIONS table to determine in which partition

it should be inserted. Figure 3.4) shows the DDL of the SPIT_PLUS table for

the example grid in Figure 3.1. In order to create an index-organized table

in ORACLE, a prim ary key has to be defined and the clause o rg a n iz a t io n

in d ex has to be included in the CREATE statem ent. The primary key specifies

the attributes based on whose values the data is indexed. Besides the tem

poral attributes (ts, t e), it includes the partition identifier pid so th a t a local

temporal index is created for each partition (as opposed to a global index for

the entire table). For an RDBMS tha t does not provide partitioning function

ality, the spatial grid and the local indexes could be implemented by simply

creating a physical table and an index for each grid cell.

create table SPIT_PLUS (
oid integer,
x number,
y number,
t_s number,
t_e number,
pid integer,
primary key(t_s, t_e, pid)

)
organization index
partition by range (pid) (
partition pOl values less than (1),
partition p02 values less than (2),

partition p30 values less than (MAXVALUE)
)

Figure 3.4: A sample SPIT"1" table.

Two sample SQL queries issued against the SPIT_PLUS table defined above

are shown in Figure 3.5. In particular, the SQL query in Figure 3.5 (a) cor

responds to the spatio-temporal window query “find all the objects tha t were

inside the area enclosed by the MBR determined by vertices (0.40,0.05) and

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(0.55,0.20) during the time interval [0.6,0.8]” , while the one in Figure 3.5 (b)

was generated for the spatio-temporal kNN query “find the five closest ob

jects to Q(0.5,0.1) during the time interval [0.6, 0.8]” . In both examples T

represents the optimal range length T*.

1: SELECT DISTINCT oid
2: FROM SPIT_PLUS
3: WHERE pid IN (7,10,14)
4: AND t_s BETWEEN (0.6 - T) AND 0.8
5: AND t_e BETWEEN 0.6 AND (0.8 + T)
6: AND x BETWEEN 0.40 AND 0.55
7: AND y BETWEEN 0.05 AND 0.20;

(a) Sam ple w indow query.

1 SELECT oid FROM (
2 SELECT oid, MIN(dist(oid, Q))
3 FROM SPIT_PLUS
4 WHERE pid IN (7,10,14)
5 AND t_s BETWEEN (0.6 - T) AND 0.8
6 AND t_e BETWEEN 0.6 AND (0 .8 + T)
7 GROUP BY oid
8 ORDER BY MIN(dist(oid, Q))
9)
10 WHERE R0WNUM <= 5;

(b) Sam ple k-N N query.

Figure 3.5: Querying SPIT+ ’s data.

In the case of the window query, first the list of grid cells intersecting

the spatial component of the query is computed by performing a lookup in

the PARTITIONS table. Only the table partitions associated with grid cells

(7,10,14) are searched (line 3). For each scanned partition, the local B+-tree

index on (ts, t e) is used to perform a index range scan of the da ta in order

to retrieve only those tuples intersecting the temporal interval of the query

(lines 4-5). The tuples whose spatial location is outside the query’s spatial

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

range are filtered out on lines 6-7. Any duplicates occurring in the answer

set are eliminated by including the DISTINCT clause in the line 1, which forces

ORACLE to return only distinct values of oid.

For the kNN query, the inner SELECT retrieves the list of all unique objects

residing inside the queried partitions (line 4) and satisfying the query tem poral

predicate (lines 5-6). The clause GROUP BY, used in conjunction w ith the

MIN(dist()) function, groups the tuples into several categories based on their

identifier and for each such category (unique oid) re tu rns only the tuple whose

distance to the query point has the smallest value. The list of unique objects

is further ordered (line 8) according w ith the ob jec ts’ distance to the query

point. Finally, the outer SELECT returns only the first five objects (nearest

neighbors) from the above list.

The SQL statem ents used to query the SPIT_PLUS table are dynamically

generated using PL/SQ L functions. The functions take as input the spatial

query range (the query point and the number of nearest neighbors for the

kNN queries) and the tem poral query interval and produce SQL queries of

the type shown in Figure 3.5. These functions, as well as all the other func

tions/algorithm s required by SPIT+, are implemented using the ORACLE

JDeveloper environment. Supporting the development of both PL/SQ L and

Java procedures, JDeveloper offers the convenience of object-oriented and pro

cedural languages while enabling the access of database objects.

3.6 E xtend ing S P IT + to H andle N ew Obser
vations

Sp i t + was designed to handle historical spatio-tem poral data, as such han

dling updates, i.e., new observations is not a concern. SPIT + is a feasible

alternative for a scenario where data is collected to be queried at a later point

in time. Given an indexed (historical) dataset, a new dataset can be merged

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the current one using the existing partitioning or a new index could be

built altogether for the newly combined database. The former may yield sub-

optimal performance, depending on the size and spatial distribution of the

new dataset. From this perspective the latter is a better option, and, as the

empirical tests will show, index building times are quite reasonable for most

practical purposes. Another possibility could be to create several indexes for

different time periods, e.g., one per week. In this case queries would have to

be re-written for handling the case where they span over several such indexes.

Further exploration of these ideas is left as future work.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Experim ental Results

This section describes the empirical evaluation conducted to test the perfor

mance of SPIT+ . Two major classes of experiments have been performed.

The experiments in the first class, described in Section 4.1, concentrate on

evaluating the effectiveness of the decomposition strategies and the robustness

of the model with respect to its parameters. The experiments on the second

class, which are presented in Section 4.2, are used to show the performance of

Sp i t + in answering spatio-tem poral queries, while also comparing it to other

spatio-temporal indexing approaches.

For all experiments, both synthetic and real datasets have been used. One

of the synthetic data sets, denoted as UNIFORM, has the objects uniformly

distributed in the space and moving freely throughout the whole space. The

second synthetic dataset was generated using the GSTD tool1 [37] and shows

a scenario where the objects have an initial gaussian distribution in the cen

ter of the data space and then m igrate towards the north-east corner of the

same. A sample instance of this dataset, denoted as GSTD, is illustrated in

Figure 4.1(a), where all observed positions for a sample of 100 objects are

shown. This dataset could depict a scenario where animals are migrating from

one area to another in a park. It will serve to show how well the proposed par

titioning scheme adapts for a truly non-uniform data distribution. The final

T t t p : / / d b . c s .u a l b e r t a . c a :8080/ g s t d /

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dataset, denoted as INFATI, contains real GPS positions of 20 cars roaming

across the municipality of Aalborg, Denmark [10]. Each car’s positions have

been sampled every second, except when they were parked, for about 6 contin

uous weeks over a period of 3 months. The dataset contains approximately 1.9

million observations and is illustrated in Figure 4.1(b) where all observations

are plotted.

For each of the synthetic datasets, three different cardinalities have been

tried, namely 1, 2.5 and 5 million observation data points, corresponding to

10, 25 and 50 thousand objects of interest with 100 sampled positions each.

Table 4.1 summarizes the parameters used for the experiments. Unless

otherwise mentioned, whenever one param eter is being investigated, e.g., the

robustness with respect to dataset size, all other param eters are kept constant

a t their default values. In all tests, the spatial domain of the search space was

assumed to be the unit two-dimensional square, while the tem poral domain is

formed by the set of all recorded timestamps.

Param eter Values (default in bold)
Average qs [% of da ta space] (window queries)
k (/rNN queries)
Average qt [% of timestamps]
N [millions of observations]

0.25%, 1% and 4%
1, 10, and 20

5%, 10% and 20%
1, 2.5 and 5

Table 4.1: Param eters and respective values investigated.

To investigate the average index access cost, 100 random queries following

the same distribution as the dataset have been issued for each dataset. The

average number of disk I/O s (physical reads) per query has been measured

using the system ’s own internal tools and is used as performance indicator.

All tests were carried out on a desktop using ORACLE lOg Enterprise for

Windows Edition. The disk page size has been set to 8192 bytes. To avoid

any influence on query performance, the DBMS’s buffers were cleared before

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) GSTD dataset

J/1 V I V I ’.* I VI VI V VI \T IV IV * V I vj,’ I V I VI V I ■■■ I V I V K I

(b) INFATI dataset

Figure 4.1: D ata distribution for the GSTD and INFATI datasets.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

executing each query (using ORACLE’S a l t e r system f lu s h buffer_cache

command [21]). The task of query evaluation (execution plan) was left to

the DBMS’s query engine and the query optimizer mode was set to default,

resulting in a cost-based mode as table statistics were collected before running

the query workload. During the experiments, it has been observed th a t the

execution plan created by the query engine when processing queries using the

S P IT + approach is exactly the expected one: a linear scan of the PARTITIONS

table is used to determine the partitions th a t need to be accessed and for each

such partition the local B+-tree index is used to retrieve only the tuples whose

tem poral intervals overlap with the query temporal interval.

S p i t + ’s performance was compared against other two approaches th a t

could also be implemented on top of ORACLE. The first approach is a simple

Linear Scan which should provide the lower bound for expected performance.

The second m ethod uses an R-tree for the spatial component along with a

B+-tree for the tem poral component. The R-tree is constructed over two-

dimensional point objects consisting of the records spatial coordinates (x,y)

and the B+-tree is created on records tem poral attributes (ts, t e). In what

follows this scheme is referred as “R -tree+B-tree” .

Just like within SPIT"1", in the R -tree+B-tree scheme, the temporal ranges

are indexed using a B+-tree, meaning th a t it can potentially benefit from the

knowledge of T as well. However, finding an optimal value of T for this

case is not trivial, as the increase in the number of to ta l objects due to time

intervals splitting will affect not only the B +-tree bu t also the R-tree. If the

number of split objects is not very large, e.g., as in the presence of relatively

few long tem poral ranges, the effects on the R-tree are, however, not very

large. On the directory level a large number of splits would be needed to

cause relevant changes in the structure. On the leaf level the number of I/O s

will increase proportionally to the increase in the number of indexed objects,

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is assumed to be not very high. In addition, this effect is mitigated

by the efficiency of the underlying range scan of the B+-tree. Considering all

these factors, the value of T* derived for SPIT+ has also been used within the

R-tree+B-tree. Nevertheless, as the following experimental results will show,

the difference in performance between SPIT+ and R-tree+B-tree is so large

th a t finding the true optimal value for T for the latter would very unlikely

improve its performance by a factor large enough to make it a competitive

approach.

Finally, SPIT+ is compared to the MV3R-tree [31] using the (unmodified)

source code kindly made available by its authors2. Even though the MV3R-

tree is not an index th a t can be easily mapped onto an RDBMS, and therefore

lacks the practical aspect th a t SPIT+ promotes, it is a well known index for

historical spatio-tem poral da ta and it has been shown to outperform a simple

3D R-tree, which would have been another competitor for SPIT+.

4.1 M odel A ssessm ent and V alidation

This section offers details on the experiments performed to investigate the

effectiveness of the spatial partitioning and tem poral intervals splitting strate

gies and presents the obtained results. The model robustness with respect to

the query size is also examined here. As both the spatial partitioning and

the temporal splitting used within SPIT+ are designed to improve the index

access cost in answering spatial-temporal window queries, the performance

figures reported throughout this section refer to window queries performance.

4.1 .1 P a rtitio n in g E ffectiveness

In order to investigate the effectiveness of the space partitioning schemes

described in Section 3.2 the number of disk accesses reported by ORACLE

2h t t p : //www. cs . c i t y u . e d u . h k / ~ t a o y f / c o d e s / m v r . z ip

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when using SPIT+ ’s partitioning algorithm (cost-based model for uniform dis

tributed data) is compared against the number of disk accesses when an ad-hoc

partitioning is used. The term ”ad-hoc partitioning” refers to the case where

the user chooses a grid size manually.

Figure 4.2(a) shows the performance of SPIT+ and ad-hoc partitioning

when the UNIFORM dataset is used. In this case, SPIT+ uses the cost-based

model to compute the optimal number of partitions and decomposes the space

using a regular grid. W hen using all experimental default values, the SP IT +

determined a 13x13 grid, which indeed is the best option when compared to

several other choices for a regular partitioning of the data space as shown in

the above mentioned figure.

As for the ad-hoc partitioning, when the number of partitions is smaller

than the optimal number suggested by SPIT+ ’s cost-based model, the number

of disk accesses required to answer a query increases sharply with the decrease

of the number of partitions. The reason is that, as the number of partitions

is reduced, the area covered by each partition becomes larger, which, in turn,

results in a larger am ount of da ta th a t have to be accessed inside each partition.

A search performance degeneration could also be observed when the number

of partitions is greater than the optimum. In this case, the increased number

of disk accesses is attributable to the cost of accessing more tem poral indexes.

For a number of partitions larger than the last value shown on the figure, it is

expected th a t the number of disc accesses will grow at about the same rate as

the total number of partitions.

For non-uniform distributions, SPIT+ decomposes the space using a non

regular grid as detailed in Section 3.2.1. Again, its performance is compared to

the ad-hoc alternative of having the user trying several different regular grids.

As can be seen in Figures 4.2(b) and (c), for both non-uniform distributions the

grid partitioning determined autom atically by SP IT + provides performance at

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) UNIFORM

C L)Oo<

<Dcnon0)oo
<

o<d

1000

800 Ad-hoc

600

SPIT+’ optimal
400

200

1 5 10 13 20 40

Number of grid cells per dimension

(b) GSTD

Ad-hoc
SPIT+

1 5 10 20

Number o f grid cells per dimension

(c) INFATI

Ad-hoc
SPIT+

1 5 10 20 40

Number of grid cells per dimension

Figure 4.2: Comparing I/O performance yielded by SP IT +,s partitioning
against the use of ad-hoc regular grids.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

least as good as the best ad-hoc partitioning. Since the resulting grid is non-

uniform it does not make sense to plot performance as a function of the number

of grid cells, hence the flat line for the SPIT+ performance. Like in the case of

the UNIFORM dataset, the additional cost of underpartitioning is very clear,

but overpartitioning seems to be not as prejudicial.

4.1 .2 O p tim iz in g T

As discussed in Section 3.3, adjusting the value of T yields a trade-off between

improving query performance and enlarging the database. The argument used

there was th a t the more skewed the distribution of tem poral ranges towards

shorter ranges, the more performance improvement can be achieved and the

more worthwhile to enforce the optimal value T* as the maximal length of the

temporal ranges. In order to investigate this, four datasets have been used.

Three datasets are synthetic datasets having a uniform spatial distribution

(since the optimization is on the tem poral level, the spatial distribution is

irrelevant), w ith varying degrees of skewedness on the tem poral ranges length.

One is simply uniformly distributed and the other have the range lengths

following an Exponential distribution E xp o n e n tia l A), with rate parameters

A equal 0.5 and 4 (the larger A the more skewed the distribution). Those are

denoted by UNIF, UNIF+exp(0.5) and UNIF+exp(4) respectively. Finally,

the INFATI dataset is used as a representative of a realistic distribution.

I/O s
w / T

I/O s
w / T*

Perf.
Gain

Storage
Overhead

UNIF 78.4 52.9 32% 80%
UNIF+exp(0.5) 73.5 39.5 46% 16%
UNIF+exp(4) 62.3 20.9 67% 4%
INFATI 2267.8 533.1 77% 0.5%

Table 4.2: Performance improvement and storage overhead due to T*.

Table 4.2 shows the obtained performance when using both the datase t’s

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intrinsic T and the optimal T* obtained as described in Section 3.3, as well

as the yielded storage overhead. The dataset sizes as well as the query sizes

used were the default values in Table 4.1.

Clearly, the more skewed the distribution of the lengths of the temporal

ranges towards shorter ranges, the better the improvement in query processing

time and the smaller the storage overhead. The skewedness of the temporal

ranges is in fact a realist assumption, as evidenced by INFATI’s distribution,

which not coincidentally yielded the largest improvement with the smallest

overhead. The gains are even larger when the temporal query range is smaller,

as shown in Figure 4.3 where the performance gain when using the INFATI

dataset is plotted for different lengths of the temporal range. This is due to the

fact th a t the range scan on the B+-tree leaves has a length of qt + T (Eq. 3.3),

the smaller qt the more im portant T becomes, and thus the more im portant

it is to optimize it accordingly. Hence, this optimization is used as an integral

part of the SPIT+ technique in the remainder of the experiments.

INFATI

100

<uoa
03

205 10

Query size [% o f indexed timestamps]

Figure 4.3: Performance gain as a function of the query temporal range length.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 .1 .3 R o b u stn ess

As pointed out, SP IT +’s spatial decomposition and, consequently, the query

cost depend on an assumed query size, both for the temporal and the spatial

component. In the next set of experiments it is shown how the performance is

affected when the user estimates one query size but the actual posed queries

have a different size. Ideally, one would want the performance to be robust,

i.e., to not degrade much with reasonable variances between the assumed and

actual query sizes. In all forthcoming tables the values in the first row represent

the query sizes assumed at index construction time, with S being the size

percentage-wise w ith respect to the spatial extent of the data space, and T

being the size as a percent of the number of indexed timestamps. Following

a similar notation, the values on the first column are the sizes of the issued

queries. Hence, in the ideal case, the smallest values (shown in bold) should

appear in the diagonal of the tables.

S = 0.25%
T = 10%

5 = 1 %
T = 10%

5 = 4%
T = 10%

S = 0.25%, T = 10% 18.82 21.22 25.58
S = 1%, T = 10% 39.51 37.72 42.23
^ = 4%, T = 10% 95.25 89.38 91.03

(a) U NIFORM daf;aset

S = 0.25%, T = 10% 141.85 168.80 197.02
5 = 1%, T = 10% 278.39 294.10 329.49
S = 4%, T = 10% 682.95 670.52 672.52

(b) GSTD dataset

5 = 0.25%, T = 10% 390.53 388.75 399.94
5 = 1%, T = 10% 545.22 533.11 552.37
S = 4%, T = 10% 704.64 679.09 682.77

(c) NFATI dataset

Table 4.3: I/O robustness of SP IT + for all three datasets with respect to
spatial query size (temporal query size is fixed).

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S = 1%
T = 5%

5 = 1 %
T = 10%

5 = 1 %
T = 20%

S = 1%, T = 5% 25.45 27.63 27.35
S = 1%, T = 10% 43.73 37.72 37.93
S = 1%, T = 20% 69.01 61.82 55.80

(a) U MIFORM dataset

S = 1%, T = 5% 204.82 209.87 227.94
S = 1%, T = 10% 322.17 294.10 281.11
S = 1%, T = 20% 485.95 438.41 416.83

(b) GSTD dataset

S = 1%, T = 5% 298.91 296.21 312.28
5 = 1%, T = 10% 553.78 533.11 544.01
S = 1%, T = 20% 1043.51 991.90 995.35

(c) NFATI dataset

Table 4.4: I/O robustness of SPIT"1" for all three datasets with respect to
temporal query size (spatial query size is fixed).

Tables 4.3(a), (b) and (c) show the obtained performance when varying

the size of the spatial component of the query, and fixing the temporal range

length, for all three datasets. Tables 4.4(a), (b) and (c), on the other hand,

show the performance when the temporal range varies and the spatial query

remains fixed.

As can be observed, the smallest number does not always appear in the

diagonal of the tables as in the ideal case. One reason for this is th a t the

cost model often suggests a non-integer number of grid cells (Eq. 3.6), which

is obviously not practical and has to be approximated to an integer. Another

reason is the partitioning procedure is not guaranteed to deliver optimal results

in the case of non-uniform spatial distributions, which is the case of the GSTD

and INFATI datasets. Nevertheless, even in such cases, the difference between

the value occurring on the diagonal and the smallest value in the corresponding

row is very small.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Overall, the performance does not vary too much if one builds the dataset

assuming a “wrong” (within reasonable limits) average query as can be seen

throughout the tables. These results serve to show tha t SPIT+ is indeed a

robust approach with respect to the assumed query size. That is to say, even

if the query size estim ated at index building time is off by a factor of two or

four in either the spatial or temporal dimension, SPIT+ is still able to deliver

good performance.

4.2 Q uery Perform ance

4.2 .1 W in d ow Q ueries

Next the performance of SPIT+ in answering spatio-temporal window queries

is compared against the R -tree+B-tree approach and a linear scan of the data.

All approaches make use of the assum ption th a t T* is known at query time.

Figure 4.4 shows query performance as a function of the size of the spatial

component of the window query, while Figure 4.5 shows the performance when

varying the length of the tem poral component. As expected, in both cases the

performance of the linear scan is constant, as it depends only on the cardinality

of the dataset. In all figures it is easy to see tha t the performance of the R-

tree+B -tree approach degrades rather quickly, unlike for the other approaches.

The case of the UNIFORM dataset is the only one where the R-tree+B-tree

remains competitive with the linear scan for up to medium sized queries. For

the GSTD and INFATI datasets the R -tree+B-tree is not competitive at all.

This happens because for the GSTD dataset the density of the da ta in the

occupied portion of the space is higher, causing the underlying R-tree to have

more node overlaps and, consequently require more tree traversals. The case

for the INFATI dataset is even more extreme, as even a simple linear scan

performs relatively much better.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10000
(a) UNIFORM

8000

6000

4000

2000

10000

8000

6000

4000

2000

0

20000

15000

10000

5000

0

SPIT+
R-tree+B-tree

Linear Scan

1— i-----
0.25

----------- *-----.--------------------
1

Query size [% of space]

(b) GSTD

4

SPIT+ -

-

R-tree+B-tree - - - - X - -------

-
Linear Scan

-

0.25 1 4

Query size [% of space]

(c) INFATI

-X

SPIT+ -
R-tree+B-tree -

X ' Linear Scan

-

0.25 1 4

Query size [% of space]

Figure 4.4: Comparing I/O performance as a function of the size of the spatial
component of the query.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) UNIFORM

10000

8000

6000
C/5

O
4000

2000

0
5 10 20

Query size [% o f indexed timestamps]

(b) GSTD

10000

8000

6000
COo

4000

2000

0
5 10 20

Query size [% o f indexed timestamps]

(c) INFATI

20000

15000
COO

10000

5000

0

Figure 4.5: Comparing I/O performance as a function of the length of the
temporal component of the query.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SPIT+ — -
R-tree+B-tree

Linear Scan ”

5 10 20

Query size [% o f indexed timestamps]

SPIT+
R-tree+B-tree

Linear Scan

0..........................

1

...................... G

- SPIT+ — ■—
R-tree+B-tree -----x

Linear Scan H
-

gp iT + consistently provides the best performance, being at least 10 times

better than the other approaches. More importantly however, it is very robust

with the increase of the query size for all distributions. This confirms tha t

the proposed grid partitioning is able to cope well with variations in this

parameter.

10000

8000

6000
(S3o

4000

2000

0
1 2.5 5

Number o f tuples [millions]

(b) GSTD

10000

8000

6000
c/ao

4000

2000

0
1 2.5 5

Number o f tuples [millions]

Figure 4.6: Comparing I/O performance as a function of the dataset cardinal
ity.

gpiT + is aiSo very robust with respect to the increase in the dataset size as

can be seen in Figure 4.6. (Note th a t the INFATI data set was not used here

as the dataset cardinality is fixed and an intrinsic part of the dataset features.)

55

SPIT+ — —
R-tree+B-tree -—*---

Linear Scan ®

(a) UNIFORM

SPIT+ — —
R-tree+B-tree — *—

Linear Scan 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The linear scan, as one would expect, does not scale well with the size of the

dataset, and again the R-tree+B-tree approach is also a poor choice.

In summary, SPIT+ ’s performance is often two or more orders of magnitude

better than the other approaches, while being quite robust with respect to

all param eters investigated. This is due to very effective filtering of heavily

populated partitions tha t do not contribute to the query’s answer, leading to

highly efficient query processing.

4 .2 .2 k N N Q ueries

In this section, the efficiency of SPIT+ in answering spatio-temporal kNN

queries is evaluated by comparing it against the performance of the R-tree+B-

tree approach. The Linear Scan m ethod has much weaker performance (two

orders of magnitude worse than SP IT + ’s performance) and has been omitted

from the following plots.

Figure 4.7 shows the effect th a t the number k of required nearest neighbors

has on the access cost of the index when the UNIFORM and GSTD datasets

are used. The query size on the tem poral dimension is set to 10% of the total

number of recorded timestamps. The INFATI dataset has been left out of this

type of experiments since it contains only 20 distinct objects and searching

for 20 or even 10 nearest neighbors in a given time interval provides almost

no discrimination on the spatial dimension. The performance of both SP IT +

and R-tree+B-tree for one nearest neighbor search using the INFATI data is

reported in the next section, when the effect of the tem poral ranges length is

studied.

Again, SPIT+ delivers the best performance for both data distributions

investigated and copes very well w ith the increase in the number of required

neighbors. The difference between the number of I/O s required in SP IT + and

in the R-tree+B-tree approach is, however, not as large as it was for window

•56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) UNIFORM

400 ■ '

350

300

SPIT+ — — '
R-tree+B-tree -----* :

250 -

200 -

150
x ' '

-

100 - -

50

0
1 10

Number o f neighbors

(b) GSTD

20

300 -*

250
SPIT+ — — -

R-tree+B-tree -

200 -

150 -

100 -

50 -

0
1 10

Number o f neighbors

20

Figure 4.7: Comparing I/O performance as a function of the number of re
quested neighbors.

queries. To explain this observation, the way a /cNN query is processed using

an R-tree needs to be outlined first.

The kNN search algorithm used on the R-tree traverses the tree in a branch-

and-bound ‘manner. The algorithm keeps an ordered list of all the tree nodes

tha t have to be visited and a list of the k closest neighbors found so far.

The nodes list is ordered based on the euclidian distance, minDist(q, M BR),

between the query point q and the nodes MBRs. Initially, the list of nodes

contain the root node and the list of closest neighbors is void. The tree is

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

traversed by always visiting the first node in the nodes list. If the visited node

is a directory node, all its children are added to the nodes list based on their

minDist(q, M BR)\ otherwise, the distance between the query point and all

points contained in the leaf node and satisfying the query temporal predicate

is computed and the k closest points are added to the list of k closest neighbors.

Once the k-th point p from a leaf page is found, the distance kNNDist(q,p)

between p and q is used to prune some of the nodes in the nodes list. Only

those nodes having m inD ist(q , M B R) < k N N D is t(q ,p) could contain points

th a t are closer than the current k-th neighbor p. If such points are retrieved,

the list of current k neighbors and the distance kNNDist(q,p) are updated

accordingly. The algorithm stops when the nodes list is empty.

For the investigated query sets, the nearest distance kNNDist(q,p), between

the query point and its fc-th closest neighbor, was usually much smaller than

the sizes of the spatial component of the queries used in window queries eval

uation, resulting in a smaller number of R-tree nodes th a t had to be accessed

for kNN queries as compared with window queries. Moreover, as explained

in Section 3.4, the size of the spatial component of the query used for data

partitioning in SPIT+ is based on some estimation, which may not be very

accurate, especially for non-uniform da ta distributions. Hence, the smaller

difference between the performances of SP IT + and R -tree+B-tree when pro

cessing kNN queries as compared with window queries.

The effect of the query tem poral interval size on the number of I/O s re

quired per query is shown in Figure 4.8. While for the UNIFORM and GSTD

datasets the value used of k is set to the default value, for INFATI dataset k

is set to 1 (recall th a t this dataset has only 20 distinct objects). As can be

seen, the access cost for SPIT + increases slightly with the size of the tempo

ral interval. In contrast, the number of accessed nodes for the R-tree+B-tree

decreases as the length of the tem poral ranges increases. The main reason is

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) UNIFORM

350

300

250

O 200

150

100

50

0
5 10 20

Query size [% o f indexed timestamps]

(b) GSTD

250

200

O 150

100

50

0
5 10 20

Query size [% o f indexed timestamps]

(c) INFATI

140

120

100

O 80

60

40

20

0

Figure 4.8: Comparing I/O performance as a function of the length of the
temporal component of the query.

59

SPIT+
R-tree+B-tree

5 10 20

Query size [% o f indexed timestamps] (k= l)

' " ' X

SPIT+
R-tree+B-tree

SPIT+
R-tree+B-tree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the following: the probability th a t the time intervals of data points found in

the spatial neighborhood of the query point will intersect the query time range

is greater when a larger query time range is considered. Hence, the nearest

neighbor distance used by the R-tree search algorithm decreases with the in

crease of the query time range, resulting in accessing less nodes. However,

the performance difference between the R-tree+B-tree approach and SPIT+ is

big enough to make SPIT+ a very competitive approach, even for the largest

considered query time interval, which is, indeed, a very large one.

(a) UNIFORM

Oft

500 rr

SPIT+
R-tree+B-tree

Number o f tuples [millions]

(b) GSTD

400

350 SPIT+ —
R-tree+B-tree — ■

300

250

§ 200

150

100

2.5 5

Number o f tuples [millions]

Figure 4.9: Comparing I/O performance as a function of the dataset cardinal
ity.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, SPIT+’s performance in answering ZrNN queries is evaluated as a

function of total number of objects in the dataset. As shown in Figure 4.9, the

performance of both approaches scales very well with the size of the datasets.

There is a very small improvement on the R-tree+B-tree performance, which

is explained by the higher density of the data points in space when a larger

dataset is used, resulting in smaller nearest neighbor distance. SPIT"1" outper

forms the R-tree+B-tree, being better by at least a factor of four when the

number of objects varies within the range 1M-5M.

4 .2 .3 C om paring w ith th e M V 3R -tree

Even though the main goal of this thesis is to provide a practical technique

rather than a novel da ta structure for indexing spatio-temporal data, we also

compare SPIT+’s performance to the MV3R-tree [31]. Despite not being fea

sible to be implemented on top of existing RDBMSs, the MV3R-tree is ar

guably a good representative of special purposed indices for spatio-temporal

data. The purpose of the experiments discussed next is to show th a t SPIT+

can indeed offer performance a t least comparable to a leading and specialized

index structure. As the obtained MV3R-tree implementation does not sup

port spatio-temporal kNN queries, only the performances in answering window

queries have been compared.

Figures 4.10 and 4.11 shows the performance of SP IT + and the MV3R-tree

when varying the size of the spatial and temporal component of the queries.

While all other param eters remain at their default value as before, the GSTD

dataset had to be downsized to 1 million observations as the obtained MV3R-

tree source code was somehow unable to cope with larger datasets. The page

size used to construct the MV3R-trees has been set to the same value as in

SPIT+; the other MV3R-tree param eters, like the strong/w eak version over

flow thresholds, have been kept to their default values.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As one can see, for smaller queries both structures deliver nearly the same

performance, while for non-uniform data and larger queries there is a slight

advantage for SPIT + . Unfortunately, there seems to be an upper limit of

indexing 30,000 distinct timestamps on the the MV3R-tree, which prevented

the indexing of the INFATI data set.

(a) UNIFORM

100

»—I

SPIT+
MV3 R-tree

40.25 1
Query size [% o f space]

(b) GSTD

300

250

200
U5
O 150

100 SPIT+
MV3R-tree

0.25 41
Query size [% o f space]

Figure 4.10: Performance of SP IT + vs. MV3R-tree when varying the size of
the query’s spatial component.

In terms of scalability, the inability of handling large datasets in the case of

the MV3R-tree makes a fair comparison not possible. The reason being that

for very small datasets, say in the order of up to a few hundred thousands of

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) UNIFORM

80

70

60

50

40

30 SPIT+
MV3R-tree

20

10

0
5 2010

Query size [% o f indexed timestamps]

(b) GSTD

250

200

150 SPIT+ -
MV3R-tree -

100

5 2010

Query size [% of indexed timestamps]

Figure 4.11: Performance of SPIT+ vs. MV3R-tree when varying the length
of the query’s tem poral component.

observations, there is an inherent overhead within SPIT+ due to the underlying

DBMS which is not present within the MV3R-tree. One should note though,

tha t it is well known th a t for very small datasets a trivial linear scan is often

the most efficient solution.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Index C reation

The final set of experiments deal with time required to create and index the

database. In this regard, the Linear Scan approach is obviously the most

efficient since there is no overhead associated to it. This comes at the expense

of quite inefficient query performance as discussed above.

The times reported for index creation were obtained on a PC with an AMD

Athlon X P 3200+ running at 2.19GHz and with 1.00GB of RAM, and using

the GSTD dataset with 2.5 million objects. The partitioning was determined

using the default query sizes on the spatial and temporal domains. When

varying the size of the dataset, the time to build the index grows at a linear

rate with the data volume. The results using the other data distributions

follow the same trend.

There are two main tasks th a t need to be performed within SPIT+ . First,

the partitioning must be obtained using the heuristic algorithm presented in

Section 3.2.1. After tha t, the objects need to be inserted into the correct

table partitions, i.e., the index-organized tables. The first parts took 76 sec.

while the second required 843 sec. for a to tal of 919 sec. The R-tree+B-tree

approach, on the other hand, needed only 200 sec. to insert the data on the

(single) table but needed 784 sec. to build the associated indexes, for a to tal of

984 sec. It should be noted th a t both approaches made use of the SQL*Loader

facility available in typical ORACLE installations.

Even though SP IT + is overall about 7% faster than the R-tree+B-tree

approach, it was observed th a t in SP IT + the partitions lookup, i.e., finding in

which partition an object should be inserted, caused most of the overhead at

data insertion time. The idea of using an index, e.g., an R-tree, for the grid

partitions themselves in order to speed up the partition lookup process, has

also been considered. Howuver, the number of partitions was fairly low (in

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the order of hundreds) for all experim ents and it would m ost likely not benefit

from an index, as com pared to a simple linear scan of the partitions table.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future Work

This thesis addresses the issue of providing indexing support for historical

spatio-temporal data, which is not only efficient from a query processing per

spective but also practical, in particular th a t it can easily be implemented on

top of any RDBMS using only standard facilities.

Based on a two-level structure th a t separates the tem poral aspect from the

spatial aspect of the data, the proposed indexing method, SPIT+ , enhances

SPIT [16] with several optimization techniques to offer improved search per

formance. It uses a refined cost model th a t aims at optimizing the query cost

in terms of number of disk accesses required to answer a query. For the case of

a uniform data distribution the cost model provides an optim al partitioning of

the dataset. For arbitrary data distributions, the cost model is used to provide

a new heuristic partitioning which leads to very good query performance in

practice. In addition, SPIT + offers the possibility of pre-processing the data,

splitting the tem poral ranges of some observations, in order to further improve

performance.

An extensive empirical evaluation over both real and synthetic datasets

have been performed, which dem onstrates th a t SPIT+ is both effective and

efficient, outperforming other spatio-temporal data management alternatives

for both window and &NN queries. It also shows th a t S P IT + is robust with

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

respect to the query size assumed at index construction time.

5.1 Future R esearch

There are several directions tha t could be explored for future research. Some

interesting ideas include:

• Expanding S P IT + to deal with new observations. As new data is ap

pended to a previously indexed dataset, the index search performance

will s ta rt to deteriorate especially if the data distribution changes con

siderably. As mentioned in Section 3.6, this problem could be solved

by either re-constructing the whole index or using a series of archival

indexes, each for a given time frame and fine tuned for the dataset dis

tribution and size corresponding to th a t time frame. The latter approach

has the advantage tha t only a small subset of the whole dataset has to

be considered when each such index is created, and th a t previous in

dexes do not have to be rebuilt. A related idea would be developing a

technique to automatically determine the point in time when the index

performance degrades to a certain degree as the database is appended

with new observation or major changes in the query workload occur.

• Extending the proposed SPIT+ approach in order to handle trajectories.

The research question to be investigated in this case is how to obtain a

cost model to guide an optimal partitioning given a set of trajectory seg

ments. Since a trajectory segment may cross several spatial partitions,

some segments would have to be replicated and inserted into each inter

sected partition, increasing the total number of indexed segments. The

cost model would have to be designed in such a way th a t this increase is

taken into account.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Optimizing SPIT+ performance in answering ZrNN queries. Even though

the experimental evaluation showed th a t SPIT+ is very efficient, outper

forming the R-tree based approach by factors of as much as 10, a better

nearest neighbor distance estimation, which take into account the data

distribution, would further improve query performance. Yet another

nearest neighbor search related topic would be developing algorithms for

processing &NN queries where the query object is also moving.

• Augmenting SPIT+ so th a t not only historical but current spatio-temporal

data could be efficiently indexed. W hen current observation are consid

ered, the time-interval end value, t e, of all database entries recording

the current position of each mobile object is set to the so-called “now”

value. W hen the current location of an object changes, the entry associ

ated w ith its last recorded location has to be retrieved, this entry time

interval has to be updated, and a new entry recording the new location

has to be inserted into the database. The topic of having indexing struc

tures, the B+-tree included, able to sustain very high update ratios, e.g.,

several millions of updates per second, is still an open problem. Never

theless, perhaps an approach similar to the one used within SETI, where

a memory-resident, “front index” is used to alleviate the problem, could

be adapted for use within SP IT + .

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] M. Abdelguerfi et al. The 2-3TR-tree, a Trajectory-Oriented Index Struc
ture for Fully Evolving Valid-Time Spatio-Temporal Datasets. In Proc.
of AC M GIS, pages 29-34, 2002.

[2] Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas, and Simonas
Saltenis. Nearest Neighbor and Reverse Nearest Neighbor Queries for
Moving Objects. In In Proc. of the 2002 International Symposium on
Database Engineering & Applications, pages 44-53, Washington, DC,
USA, 2002. IEEE Computer Society.

[3] Stefan Berchtold, Christian Bohm, Daniel A. Keim, Florian Krebs, and
Hans-Peter Kriegel. On Optimizing Nearest Neighbor Queries in High-
Dimensional D ata Spaces. In ICDT, pages 435-449, 2001.

[4] F. W. Burton, J. G. Kollias, D. G. Matsakis, and V. G. Kollias. Implemen
tation of overlapping B-trees for time and space efficient representation
of collections of similar files. Comput. J., 33(3):279-280, 1990.

[5] V.P. Chakka et al. Indexing Large Trajectory D ata Sets W ith
SETI . In Online Proc. of CIDR , 2003. [h ttp://w w w -
db.cs.w isc.edu/cidr/program /pl5.pdf].

[6] Elias Frentzos, Kostas Gratsias, Nikos Pelekis, and Yannis Theodoridis.
Nearest Neighbor Search on Moving Object Trajectories. In SSTD, pages
328-345, 2005.

[7] A. Guttm an. R-trees: a dynamic index structure for spatial searching. In
Proc. o f the A C M SIGM OD C onf, pages 47-57, 1984.

[8] Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras, and Dimitrios
Gunopulos. Efficient Indexing of Spatiotemporal Objects. In In Proc.
of the 8th International Conference on Extending Database Technology,
pages 251-268, London, UK, 2002. Springer-Verlag.

[9] Gfsli R. Hjaltason and Hanan Samet. Distance Browsing in Spatial
Databases. AC M Trans. Database Syst., 24(2):265—318, 1999.

[10] C.S. Jensen et al. The INFATI data. Technical Report TR-79, TimeCen-
ter, 2004. [h ttp ://arxiv .org/abs/cs.D B /0410001].

[11] C.S. Jensen, D. Lin, and B.-C. Ooi. Query and Update Efficient B+-Tree
Based Indexing of Moving Objects. In Proc. o f VLDB, pages 768-779,
2004.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-
http://arxiv.org/abs/cs.DB/0410001

[12] George Kollios, Dimitrios Gunopulos, and Vassilis J. Tsotras. Nearest
Neighbor Queries in a Mobile Environment. In In Proc. of the Interna
tional Workshop on Spatio-Temporal Database Management, pages 119—
134, London, UK, 1999. Springer-Verlag.

[13] P.M. Lewis, A.B., and M. Kifer. Database and Transaction Processing.
Addison-Wesley, 2002.

[14] Li, Yang, and Han. Continuous k-Nearest Neighbor Search for Moving
Objects. In Proceedings of SSDBM04 , 2004.

[15] Dan Lin, Christian S. Jensen, Beng Chin Ooi, and Simonas Saltenis.
Efficient indexing of the historical, present, and future positions of moving
objects. In In Proc. o f the 6th international conference on Mobile data
management, pages 59-66, New York, NY, USA, 2005. ACM Press.

[16] D. M allett. Relational Database Support for Spatio-Temporal Data. Tech
nical Report TR04-21 (M.Sc. Thesis), Dept, of Computing Science, Univ.
of A lberta, 2004. [http://w w w .cs.ualberta.ca/TechR eports/2004/TR 04-
21/TR04-21.pdf].

[17] M.F. Mokbel, T.M. Ghanem, and W.G. Aref. Spatio-Temporal Access
Methods. IE E E TCDE Bulletin, 26(2):40-49, 2003.

[18] M.A. Nascimento and M. Dunham. Indexing valid time databases via B +
-trees - the MAP21 approach. IE E E TKDE, 11 (6): 1-19, 1999.

[19] M.A. Nascimento and J.R.O. Silva. Towards historical R-trees. In Proc.
AC M SAC, pages 235-240, 1998.

[20] Mario A. Nascimento, Jefferson R. O. Silva, and Yannis Theodoridis.
Evaluation of Access Structures for Discretely Moving Points. In STD B M
’99: Proceedings of the International Workshop on Spatio-Temporal
Database Management, pages 171-188, London, UK, 1999. Springer-
Verlag.

[21] Oracle Corporation. Oracle Database SQL Reference 10a Release 1 (10.1),
December 2003.

[22] D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel Approaches in Query
Processing for Moving Object Trajectories. In Proc. o f VLDB, pages
395-406, 2000.

[23] Katerina Raptopoulou, Apostolos Papadopoulos, and Yannis Manolopou-
los. Fast Nearest-Neighbor Query Processing in Moving-Object
Databases. Geolnformatica, 7(2): 113—137, 2003.

[24] Slobodan Rasetic, Jorg Sander, James Elding, and Mario A. Nascimento.
A Trajectory Splitting Model for Efficient Spatio-Temporal Indexing. In
In Proc. o f the 31st international conference on Very large data bases,
pages 934-945. VLDB Endowment, 2005.

[25] S.M. Ross. Introductory Statistics. McGraw-Hill, 1996.

[26] S. Saltenis et al. Indexing the Positions of Continuously Moving Objects.
In Proc. o f the A C M SIGMOD Conf., pages 331-342, 2000.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/TechReports/2004/TR04-

[27] H. Samet. The Quadtree and Related Hierarchical D ata Structures. ACM
Comput. Surveys, 16(2): 187-260, 1984.

[28] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao. Mod
eling and Querying Moving Objects. In ICDE ’97: Proceedings of the
Thirteenth International Conference on Data Engineering, pages 422-432,
W ashington, DC, USA, 1997. IEEE Computer Society.

[29] Zhexuan Song and Nick Roussopoulos. K-Nearest Neighbor Search for
Moving Query Point. In SSTD ’01: Proceedings of the 7th International
Symposium on Advances in Spatial and Temporal Databases, pages 79-96,
London, UK, 2001. Springer-Verlag.

[30] Zhexuan Song and Nick Roussopoulos. SEB-tree: An Approach to In
dex Continuously Moving Objects. In MDM ’03: Proceedings of the fth
International Conference on Mobile Data Management, pages 340-344,
London, UK, 2003. Springer-Verlag.

[31] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal Access Method
for Timestamp and Interval Queries. In Proc. o f VLDB, pages 431-440,
2001.

[32] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor Search.
In In Proc. of VLDB, pages 287-298, 2002.

[33] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized Spatio-
Temporal Access M ethod for Predictive Queries. In Proc. o f VLDB, pages
790-801, 2003.

[34] Yufei Tao and Dimitris Papadias. Time-parameterized queries in spatio-
temporal databases. In In Proc. o f the 2002 AC M SIGMOD international
conference on Management o f data, pages 334-345, New York, NY, USA,
2002. ACM Press.

[35] Yufei Tao, Jun Zhang, Dimitris Papadias, and Nikos Mamoulis. An Ef
ficient Cost Model for Optimization of Nearest Neighbor Search in Low
and Medium Dimensional Spaces. IE E E Transactions on Knowledge and
Data Engineering, 16(10): 1169—1184, 2004.

[36] Y. Theodoridis and T. Sellis. A Model for the Prediction of R-tree Per
formance. In Proc. o f PODS, pages 161-171, 1996.

[37] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On the Generation
of Spatiotemporal Datasets. In Proc. o f SSD, pages 147-164, 1999.

[38] Y. Theodoridis, M. Vazirgiannis, and T.K. Sellis. Spatio-Temporal Index
ing for Large M ultimedia Applications. In Proc. of IE EE ICM CS , pages
441-448, 1996.

[39] Yannis Theodoridis, Timos K. Sellis, Apostolos Papadopoulos, and Yan
nis Manolopoulos. Specifications for Efficient Indexing in Spatiotemporal
Databases. In Maurizio Rafanelli and M atthias Jarke, editors, 10th Inter
national Conference on Scientific and Statistical Database Management,
Proceedings, Capri, Italy, July 1-3, 1998, pages 123-132. IEEE Computer
Society, 1998.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[40] X. Xu, J. Han, and W. Lu. RT-Tree: An Improved R-tree Index Structure
for Spatiotemporal Databases. In Proc. of the 4th Intl. Symposium on
Spatial Data Handling, pages 1040-1049, 1990.

[41] Baihua Zheng and Dik Lun Lee. Semantic Caching in Location-Dependent
Query Processing. In SSTD ’01: Proceedings of the 7th International
Symposium on Advances m Spatial and Temporal Databases, pages 97-
116, London, UK, 2001. Springer-Verlag.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

