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Abstract

For over 50 years, the study of Earth’s radiation belts has been a major focus of

the space physics community. Of great interest is the variability of energy in the

belts, which is poorly understood and subject to intense investigation. We seek

to explain how impulses from the Sun interact with Earth’s geomagnetic field to

generate ultra low frequency (ULF) waves that energize electrons in the outer

belt.

Using the ideal magnetohydrodynamic assumption ULF wave model of [Degeling

et al., 2011], we will examine how shear Alfvén waves are excited by ULF com-

pressional waves generated from a current driver on the magnetopause boundary.

By taking the model outputs, we trace electron motion in the equatorial magne-

tosphere and examine how they are transported radially in the radiation belts.

This procedure allows us to calculate the first and second L moments to assess

transport for electrons in the fields of ULF waves.
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Chapter 1

Introduction

1.1 Historical Background

On January 23, 1958, Explorer 1, the first satellite by the United States, was
launched. The scientific instrumentation was built by a team of scientists under
the direction of James Van Allen from the University of Iowa. Part of the scientific
instrumentation aboard Explorer 1 was a Geiger-Müller counter, which would be
used to measure the flux of particles in space in order to detect cosmic rays.
During the initial voyage of Explorer 1, it was noted that the Geiger counter
would record 30 counts per second, then suddenly drop to zero at higher altitudes.
The scientific team thought this to be peculiar as it was odd for there to suddenly
be no particles detected. The mystery would soon be resolved (Green & Kivelson
[2004]).

Explorer 3 was launched March 26, 1958 as a follow-up to the Explorer 1 mission.
The mystery of the zero count rate detected by the Geiger counter from Explorer
1 was solved. It turned out that at higher altitudes during the Explorer 1 mission,
the counter was being saturated with particles and, as a consequence, recorded the
count rate to be zero. Explorer 1 and Explorer 3 had provided the first evidence
for the existence of Earth’s radiation belts, which were eventually named the Van
Allen belts, in honour of James Van Allen’s contribution to their discovery.

1.2 Magnetospheric Physics

In order to study the physics of space in a near-Earth environment, we need
to examine some properties of Earth’s magnetosphere, the solar wind, and the
interaction between the two. This information will provide a firm basis into the
science behind radiation belt physics in order to develop a deeper understanding
of wave-particle interactions in the near-Earth region.

1



1.2.1 Solar Wind

The solar wind is a highly conducting plasma (ionized gas) flowing outward from
the Sun at a velocity of roughly 450 km/s on average. It is the extension of
the Sun’s atmosphere into space; the outer boundary is at the heliopause where
the pressure of the solar wind is balanced by interstellar winds. The solar wind
is primarily composed of electrons and protons with a roughly five percent ad-
mixture of Helium ions (Baumjohann & Treumann [1997]). It is driven outward
from the Sun due to a large pressure difference between the solar corona and
the atmosphere outside of the Sun. Due to this imbalance in pressure, the solar
wind is ejected radially outwards from the Sun (Kivelson & Russell [1995]). Some
properties of the solar wind are listed in Table 1.1.

Table 1.1: Properties of the solar wind (from [Kivelson & Russell, 1995]).

Proton density 6.6 cm−3

Electron density 7.1 cm−3

Helium ion density 0.25 cm−3

Velocity 450 km/s
Dynamic pressure 2.2 nPa
Proton temperature 1.2×105 K
Electron temperature 1.4×105 K
Interplanetary magnetic field (IMF) 5 nT

Embedded in the solar wind is the interplanetary magnetic field (IMF), which
has a strength of roughly 5 nT. The IMF is frozen into the plasma according to
the Alfvén frozen flux theorem, which states that the flux of the magnetic field
through any closed contour moving with a fluid (in this case, the solar wind)
remains constant and that the fluid (solar wind) elements that lie on a magnetic
field line at one time will remain on the same field line at other times (Griffiths
[1998]).

1.2.2 Magnetospheric Composition

In order to have a better understanding of the Sun-Earth environment, we need
to investigate its composition and structure, as shown in Figure 1.1.

1.2.2.1 Bow Shock

As the solar wind approaches Earth, it encounters its magnetic field. The solar
wind cannot simply penetrate Earth’s magnetic field and as a consequence of
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Figure 1.1: Solar wind interaction with Earth’s magnetosphere (from [Baumjo-
hann & Treumann, 1997]).

this, it is largely deflected around Earth. The point at which the solar wind
slows down to a substantial fraction of its original velocity due the presence of
Earth’s magnetic field and converts much of the particles’ kinetic energy into
thermal energy is known as the bow shock. The bow shock serves to separate the
interplanetary medium and the magnetosheath (Kivelson & Russell [1995]).

1.2.2.2 Magnetosheath

As the particles from the solar wind have their kinetic energy converted to thermal
energy at the bow shock, this heats up the plasma behind the bow shock (the
side closer to Earth) and it also gives rise to a subsonic plasma, as the solar wind
velocity is slowed at the bow shock. This region of plasma behind the bow shock
is known as the magnetosheath, which is the middle layer between the bow shock
and the magnetosphere (Baumjohann & Treumann [1997]).

1.2.2.3 Magnetopause

The magnetopause is the boundary layer that separates the magnetosheath and
the magnetosphere; it is a boundary between the solar wind and Earth’s magnetic
field, as well as the separation point between open and closed magnetic field lines.
The location of the magnetopause is located where the dynamic pressure of the
solar wind balances the pressure of Earth’s magnetic field. Earth’s magnetopause
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is located roughly 10 RE (Earth radius) from the center of Earth on the dayside
in the equatorial plane (Baumjohann & Treumann [1997]).

1.2.2.4 Magnetosphere

The magnetosphere is the cavity that is formed by the interaction of the solar
wind (and hence, the IMF) with Earth’s magnetic field. On the dayside, when
the solar wind interacts with the magnetic field, it becomes compressed due to the
action of the solar wind flow. On the nightside, the magnetic field lines become
stretched due to the IMF. When the southward IMF interacts with the northward
magnetic field of Earth on the dayside, they merge creating an open field line
with two footpoints fixed to Earth. These two open field lines stretch past Earth
into the nightside and reconnect roughly 100 to 200 RE away (Baumjohann &
Treumann [1997]). Plasma circulates within the magnetosphere (as shown in
Figure 1.2) in this configuration and energy is loaded into it. Eventually, this
energy is dissipated through a process known as a substorm, which has associated
with it a large deposition of energy into the ionosphere. A manifestation of this
is the northern lights (in Canada), which show evidence of energetic charged
particle interactions with the atmosphere. In a different configuration, when
the IMF is northward, the magnetosphere is closed off from the solar wind in a
teardrop shape. It is generally the case that the magnetospheric cavity is in a
lower energy state in this situation.

1.2.3 Ring Current

The ring current around Earth is carried by particles that are trapped within
Earth’s magnetic field. Under the presence of gradient and curvature drifts (which
will be introduced in Section 2.1 of this thesis), ions will traverse Earth in a
clockwise manner (from the perspective of looking down on the North Pole)
and electrons will travel in a counterclockwise direction. As the strength of the
magnetic field increases as one gets closer to Earth (as B varies like r−3), only
high energy particles will be able to penetrate close to Earth. For this reason, the
majority of particles that make up the ring current are high energy ions; hence,
there is a new flow of particles that travel in a clockwise direction, which is what
we define as the ring current (Kivelson & Russell [1995]).

1.2.4 Geomagnetic Storms

The first question that needs to be asked is, “What is a geomagnetic storm?” A
geomagnetic storm is initiated in near-Earth space by a temporary disturbance
of Earth’s magnetosphere, which is measured by the change of the disturbance
storm time (Dst) index. During times of heightened geomagnetic activity, there
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Figure 1.2: Illustration of the Dungey cycle, showing the process of field line
merging and reconnection (from [Baumjohann & Treumann, 1997]).

is an increase in the re-connection rate of magnetic field lines both at the mag-
netopause and at the tail. As the plasma entrapped by the closed field lines
moves towards Earth (explained further in Section 1.2.5), this increases the rate
of convection, which in turn, increases the strength of the dawn-dusk electric
field. As the particles contained in the plasma move closer to Earth, they form
the ring current (as explained in the previous section), which causes a depression
in Earth’s magnetic field strength. This depression in the magnetic field strength
is what is known as the Dst.

In the study of geomagnetic storms, we can examine two types: a coronal mass
ejection (CME) driven storm and a corotating interaction region (CIR) driven
storm. As the name implies, it is the storm driver that changes the characteristics
of the storm (and 21 important differences between CME- and CIR-driven storms
have been published by [Borovsky & Denton, 2006]). We want to briefly consider
some of the characteristics of each storm.

1.2.4.1 Coronal Mass Ejection (CME) and Corotation Interaction Re-
gion (CIR) Driven Storms

The first question we ask is, “What is a CME?” A CME is a burst of solar
wind plasma that emerges from the solar corona (Denton et al. [2006]). A CME
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plasma consists mainly of ions and electrons. As the CME passes through the
interplanetary medium, it will eventually interact with Earth’s magnetosphere.
As previously mentioned, when the solar wind reaches the dayside of the mag-
netosphere, the southward-directed IMF will open up Earth’s field lines, which
will then be reconnected on the nightside. As the field lines begin to relax after
reconnection, the plasma trapped by the closed field line will be brought back
towards Earth. Contained in this plasma is a large number of particles that con-
tribute to the ring current, which aids in the depression of Earth’s magnetic field
(Kivelson & Russell [1995]).

The second question we ask is, “What is a corotation interaction region?” The
answer is that it is a large-scale structure in the heliosphere, which we tend to
find having a higher occurence during the declining phase of the solar cycle of
the Sun. CIRs are a response to the interaction between fast and slow solar wind
speeds and given their relation to fast solar wind speeds arising from the coronal
holes, they tend to have a periodicity of roughly 27 days, which is the rotation
period of the Sun (Denton et al. [2006]).

Table 1.2: Differences between CME- and CIR- driven storms (from Borovsky &
Denton [2006] - this is not their complete table).

Phenomenon CME-driven CIR-driven

Solar energetic particles sometimes none
Sudden storm commencement common infrequent
Spacecraft surface charging less severe more severe
Ring current (Dst) stronger weaker
ULF pulsations shorter duration longer duration
Dipole distortion very strong strong
Fluxes of relativistic electrons less severe more severe
Formation of new radiation belts sometimes no

As seen in Table 1.2, which is taken from [Borovsky & Denton, 2006] (although
this is not their complete table - for the full table, see their paper), we can
compare phenomena between CME- and CIR-driven storms.

CME-driven storms tend to be associated with the sudden storm commencement
phase of a storm, a stronger ring current (Dst), very strong distortion of the
dipole magnetic field of Earth, and the potential to form a new (temporary)
radiation belt in the magnetosphere. CIR-driven storms tend to be associated
with severe charging of spacecraft around geosynchronous orbit, ULF pulsations
of longer duration compared to CME-driven storms, and more severe fluxes of
relativistic electrons in the outer radiation belts (Borovsky & Denton [2006]).

The analysis of geomagnetic storms provides an important insight into radiation
belt physics. During a storm event, the radiation belts (especially the outer belt)
become heavily populated with particles. This increase in particles contributes
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to the ring current that occurs within the belts. By Ampère’s law, the magnetic
field it produces is directed southwards (as the current runs clockwise) and hence,
opposite to Earth’s magnetic field. The magnetic field due to the ring current
serves to weaken the magnetic field of Earth, which is measured by the Dst index.
Over the course of several days after the depression in Earth’s magnetic field,
particles will begin to be transported from the outer radiation belt, reducing the
strength of the ring current and its magnetic field, returning the magnetic field
of Earth to roughly pre-storm levels (Baumjohann & Treumann [1997]). Due to
the variation of the magnetic field during the geomagnetic storm, after it has
passed, we can have the case where the number of particles after the storm is
much greater than pre-storm levels (enhancement) or much lower than pre-storm
levels (drop-out).

Using the Bastille Day event from July 2000, we seek to explore the three main
phases of a geomagnetic storm: sudden storm commencement, main phase, and
recovery phase. Figure 1.3 shows the Dst index from the period of July 14 - 20,
2000, which we will use to describe the main phases of a geomagnetic storm in
the next three subsections.

Figure 1.3: Dst index for the Bastille Day 2000 storm, July 14 - 20 (credit: J.H.
King and N. Papitashvilli at ADNET, NASA GSFC, and CDAWeb).

1.2.4.2 Sudden Storm Commencement

The sudden storm commencement (SSC) is the first phase of a geomagnetic storm.
During a period of increased solar wind dynamic pressure, the magnetosphere
becomes compressed, which moves the magnetopause closer to Earth, which in
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turn, causes an intensification of the magnetopause current. This increase in
intensity of the current increases the strength of Earth’s magnetic field on the
order of tens of nanotesla (Elkington et al. [2003]). From Figure 1.3, this can be
seen to occur between 1200 and 1800 on July 15.

1.2.4.3 Main Phase

The main phase of a geomagnetic storm begins when the Dst sees a rapid decrease
due to the magnetic field induced by the ring current depressing the strength
of Earth’s magnetic field. Particles are primarily injected from the tail of the
magnetosphere into the ring current by an increased dawn-dusk electric field. As
more particles are brought into the ring current, the strength of its magnetic field
increases, giving rise to and causing a negative Dst value, which signifies a larger
depression in Earth’s magnetic field (Kivelson & Russell [1995]). From Figure
1.3, the main phase begins roughly after 1800 on July 15 and ends after midnight
on July 16. During a typical storm, the main phase generally lasts less than one
day, usually between two to eight hours (Baumjohann & Treumann [1997]).

1.2.4.4 Recovery Phase

The recovery phase is characterized by the loss of particles in the radiation belt,
which decreases the intensity of the ring current and its magnetic field and allows
Earth’s magnetic field to return to its pre-storm state. The particles undergo a
loss process in the radiation belts, either by radial diffusion (the main topic of
this thesis) or pitch-angle scattering. This process runs over the course of several
days, as can be seen in Figure 1.3 - the recovery phase begins after midnight
on July 16 and reaches pre-storm Dst in the afternoon of July 19, a period of
just over three days. Typically, the recovery phases last between one to five days
(Baumjohann & Treumann [1997]).

1.2.5 Convection and Corotation Electric Fields

1.2.5.1 Convection Electric Field

The convection electric field,

E = −v ×B (1.1)

can be obtained from the ideal magnetohydrodynamic (MHD) assumption (de-
tails in Section 2.1.2). During magnetic reconnection on the nightside, when the
field lines relax and move towards Earth, the plasma enclosed by the field lines
also travels Earthward. As this plasma moves through the northward magnetic
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field of Earth, an electric field is generated that travels from the dawn side to the
dusk side of Earth. This is the convection electric field, also referred to as the
dawn-dusk electric field (Baumjohann & Treumann [1997]).

1.2.5.2 Corotation Electric Field

For completeness, we must also briefly examine the corotation electric field, which
arises from Earth’s rotation. The ionospheric plasma is only partially ionized and
hence, the majority of collisions that occur are neutral-ion collisions and neutral-
electron collisions. These collisions will force the plasma into corotation and by
consequence, the field lines that are embedded within the plasma. The electric
field generated by the rotation of the field lines is the corotation electric field and
it is directed towards Earth. The corotation electric field dominates particle drift
close to Earth, whereas further away, the convection electric field will dominate
(Baumjohann & Treumann [1997]).

Figure 1.4: Equipotential contours in the magnetosphere (from [Baumjohann &
Treumann, 1997]).
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In the region where the corotation field dominates in comparison to the convection
electric field, there are closed equipotential contours, which act as flow streamlines
for the plasma. The flow in this region is closed in a loop, with the trapped
plasma giving rise to the plasmapause (the shaded region of Figure 1.4). There is
a bulge in the plasmapause that occurs at the point where the velocity from the
corotation field and the velocity from the convection field balance; this is known
as the stagnation point (or separatrix). It occurs at the point where the last
closed equipotential contour crosses itself. The convection electric field helps to
open up the closed flow contours, such that particles trapped in the plasmasphere
become lost to the magnetopause, which produces a sharp decrease in particle
density, known as the plasmapause (Baumjohann & Treumann [1997]).

1.2.6 Radiation Belts

The radiation belts (also known as the Van Allen belts) are toroid-shaped regions
around Earth that consist of energetic ions and electrons that are trapped due to
the magnetic field of Earth. Figure 1.5 shows the integral electron flux measured
by the CRRES satellite from July 1990 to October 1991 (from [Hudson et al.,
2008]), which demonstrates that the radiation belts are highly variable in terms
of energy. Why that is the case is poorly understood and is currently a question
of great importance in the space physics community.

High energy electrons produce radiation that is both harmful to space equipment
(e.g. satellites, spacecraft) and astronauts. Having the ability to map electron
flux in the radiation belts provides an idea of where to avoid sending equipment
and/or personnel so as to avoid a loss of investment and life.

There are three regions to the Van Allen belts: inner belt, outer belt, and slot
region, as can be seen in Figure 1.6, which also shows the Van Allen Probes (for-
merly known as the Radiation Belt Storm Probes). The Van Allen Probes are
two satellites designed by the National Aeronautics and Space Administration
(NASA) that are providing measurements to researchers needed to characterize
and quantify the plasma processes that produce energetic ions and relativistic
electrons. The overall purpose of the mission is to help us understand the influ-
ence of the Sun on the Earth and near-Earth environment.

1.2.6.1 Inner Region

The inner region of the Van Allen belts tends to extend from just over one to
about three Earth radii. As the magnetic field of Earth is proportional to the
inverse cube of the distance from the center of Earth, the magnetic field in this
region is much stronger than further out in the region of the outer belt and thus,
only high energy particles will be able to access this region (through conservation
of the first adiabatic invariant, M - more on this in Section 2.2.1). In this region,
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Figure 1.5: Figure of the integral electron flux from July 1990 to October 1991
as measured by CRRES (from [Hudson et al., 2008]). This figure demonstrates
that the energy levels of the outer radiation belt are highly variable.
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Figure 1.6: The radiation (Van Allen) belts (courtesy of NASA), showing the
distinct regions (inner and outer belts, slot region). Also shown is a satellite in
geosynchronous orbit and two Van Allen Probes orbiting through the radiation
belts.

electrons with energies in the range of 100 keV and protons with energies in the
range of hundreds of MeV can be found. The inner radiation belt population is
primarily a result from decay of neutrons freed by cosmic rays impinging on the
upper atmosphere.

1.2.6.2 Outer Region

The outer region of the Van Allen belts extends from about three to appoximately
seven Earth radii. This region is home primarily to electrons with energies that
range from 0.1 to 10 MeV. As the magnetic field is much weaker in this re-
gion, particles with much lower energy than those in the inner radiation belt will
typically be found here (again, through conservation of M). The principle ac-
celeration mechanisms in this region are radial diffusion from an external source
and internal source acceleration.

1.2.6.3 Slot Region

The slot region is located between the inner and outer radiation belt regions.
It is kept nearly free of particles mainly due to the resonant interactions with
whistler mode waves excited by electrons in the tens to hundreds of keV energy
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range that diffuse electrons by pitch angle scattering into the loss cone (Lyons
et al. [1972]).

1.2.7 Ultra Low Frequency (ULF) Waves

One of the central focus points of this thesis is ULF waves in the magnetosphere.
More specifically, we are interested in ULF waves in the Pc5 range, which exhibit
a period between 150 to 600 seconds (in terms of frequency, on the order of a few
millihertz) (Jacobs et al. [1964]).

One of the first questions to ask is, “Where do ULF waves come from?” As the
solar wind comes to the magnetopause, one of two things may happen: 1. the
varying dynamic pressure of the solar wind will cause the boundary to oscillate
(buffeting); 2. the solar wind will travel along the flanks of the boundary. Both
of these situations will generate ULF waves in the magnetosphere, so we must
examine both situations.

The first method of generating waves is the motion of the magnetopause bound-
ary. As the dynamic pressure of the solar wind is proportional to the square
of the solar wind velocity, it is subject to change with time as the solar wind
speed changes. The response of the magnetopause to the change in pressure is to
oscillate (Baumjohann & Treumann [1997]). These oscillations of the boundary
cause compressions and rarefactions in the local magnetic field, which propagate
as compressional waves (MHD fast waves) across Earth’s magnetic field.

The second method of generating waves is known as the Kelvin-Helmholtz (K-H)
instability. The K-H instability arises from the velocity difference at the magne-
topause; on one side of the boundary, the solar wind is travelling at supersonic
speeds, whereas on the other side, there is a stationary plasma. This shear flow of
the solar wind along the interface generates waves along the flanks of the magne-
topause. A simple analogy of the K-H instability is the wind over water example.
As the wind, acting as a fast flow, blows over the water, acting as a slower flow,
waves begin to form along the interface; these waves continue to grow as time
elapses. This is the same scenario that happens along the flanks, with the solar
wind being analagous to the wind and the plasma being analgous to the water.

The study of ULF waves has been an interesting scientific pursuit for almost
a half-century. Ground-based magnetometer measurements from seven radar
stations in Western Canada in the summer of 1969 produced strong evidence that
the Kelvin-Helmholtz instability served as an energy source for micropulsations
(rapid variations in Earth’s magnetic field) (Samson et al. [1971]). A study done
by [Rostoker et al., 1998] visually indicated a strong correlation between energetic
electron flux and ULF wave activity. This is done by making a comparison
between the wave activity in the magnetosphere and comparing with electron
flux greater than 2 MeV from the GOES-7 spacecraft (Elkington [2006])
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The work of [Rostoker et al., 1998] was expanded upon by [O’Brien et al., 2001]
and [Mathie & Mann, 2000]. A more recent study done by [Mann et al., 2004]
examined the correlation between solar wind speed, ULF wave power, and MeV
electron fluxes during a complete solar cycle (from 1990 to 2001). They found
that the strongest correlation of the solar wind speed and ULF wave power with
the electron flux was during the declining phase of the solar cycle; during this
period, this was when electron fluxes were at their highest point.

Figure 1.7: Sketch of the drift path of an electron for a toroidal oscillation in an
mN = 2 mode (from [Elkington et al., 2003]). The field Er is due to the toroidal
wave whereas vr indicates the velocity of a particle in response to Er.

Figure 1.7 demonstrates a potential mechanism for how electrons in the radiation
belts can be energized by ULF waves; it is known as drift-resonance. An electron
in the equatorial plane interacts with a mN = 2 (i.e. two full wavelengths az-
imuthally around Earth in the equatorial plane) toroidal wave with frequency ω.
An electron that starts at dusk, moving with drift frequency ωd = ω, would first
see a positive radial electric field while undergoing negative radial motion and
half a drift period later, a negative electric field while moving radially outward.
Looking at the product of Erdr, it will have an overall negative sign as the elec-
tron completes a full drift path (Elkington et al. [1999]). This leads to an overall
net energization of the particle, through interaction with the radial electric field
(Elkington [2006]).
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1.3 Thesis Outline

The main goal of this thesis is to examine the transport and energization of
electrons from ULF waves in the outer radiation belt through wave-particle in-
teractions.

Chapter 2 seeks to examine the general methodology of the project. In this chap-
ter, we focus on the equation of motion for particles and using the guiding center
approximation from [Northrup, 1963] and [Roederer, 1970], we obtain the guiding
center equations for the particle trajectories. We will also discuss the three adia-
batic invariants of plasma physics and their relation to particle motion as well as
the various types of drift motion particles may encounter in the magnetosphere.
Finally, we will discuss radial transport of particles in the outer belt.

Chapter 3 seeks to give a brief overview of the theory behind a pulse traveling in
the solar wind that will come into contact with the magnetopause and generate
ULF waves that will travel throughout the magnetosphere. This is also our first
chance to talk about magnetohydrodynamic waves and to classify them according
to factors such as their direction of propagation and velocity.

Chapter 4 will examine the ULF wave model that is being used. We will be
investigating how the generation of ULF waves from a driver on the magnetopause
boundary excites the Alfvén continuum in the magnetosphere, considering the
cases of low, moderate, and high solar wind speeds.

Chapter 5 will serve to look at the particle aspect of the thesis by taking the
outputs (electric and magnetic fields) of the wave model from Chapter 4 and
using them to drive particles. From this, we can look at whether the particles
are undergoing diffusive transport or convective transport.

Finally, Chapter 6 will serve to give concluding marks and a discussion of future
work.

15



Chapter 2

Methodology

In order to study the effects of electron transport and energization in the outer
radiation belt, under the influence of ULF waves, it is important to have a firm
understanding of just how particles (specifically, electrons) respond to electric
and magnetic fields that are present in space. In this chapter, we will examine
the different types of drift motion under the influence of fields, as well as adia-
batic invariants, which themselves describe a particular type of particle motion.
Finally, we discuss radial transport in the outer radiation belt.

2.1 Particle Motion

2.1.1 Equation of Motion

When discussing motion of any sort, there needs to be an equation that governs
said motion. In elementary physics, assuming a constant mass, one of the first
equations we learn is,

dp

dt
= ma (2.1)

where p is the momentum of the body in question, m is its mass, and a is its
acceleration. For particles under the influence of electric and/or magnetic fields,
we seek to cast Equation 2.1 in a more useful form.

In electrostatics, we only focus on the case where there is no magnetic field
present, as in order to have a magnetic field, a current is required, which requires
non-stationary charges. In such a case, the particle motion can be described by,

dp

dt
= qE (2.2)
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where p is the momentum of the particle, q is the charge of the particle, and E
is the electric field that is guiding the motion of the particle (Griffiths [1998]).

Equation 2.2 can be used to derive the rate of energy gain of a charged particle.
Taking the dot product with the velocity of the particle drift, we obtain,

dW

dt
= qE · vd (2.3)

where vd is the drift velocity and W is the work. It is obvious that particles gain
or lose energy, provided E and vd are not perpendicular.

Now what about the case where we have a magnetic field present, but no electric
field? There is also an equation of motion that covers us in this situation, given
by,

dp

dt
= qv ×B (2.4)

where v is the velocity of the particle and B is the magnetic field strength that
is influencing the motion of the particle (Griffiths [1998]). By virtue of the cross
product in Equation 2.4, the motion of the particle will be perpendicular to both
its velocity and the magnetic field strength.

The next step of complexity would be to describe the equation of motion for
particles that are under the influence of both electric and magnetic fields. By
adding the right sides of Equations 2.2 and 2.4 together, we get,

dp

dt
= q (E+ v ×B) (2.5)

which is the equation that governs the motion for particles under the influence
of both electric and magnetic fields. Equation 2.5 serves as the starting point to
derive different types of particle motion.

2.1.2 Particle Drifts

2.1.2.1 E × B Drift

The first drift to look at is E × B drift. In order to derive this, we look at a
particle’s current density, given by,

J = σ (E+ v ×B) (2.6)

where J is the current density and σ is the conductivity (Griffiths [1998]). In
the study of plasma physics, the assumption is that a plasma is considered to
be a very good conductor, so the conductivity is set to infinity (Baumjohann &
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Treumann [1997]). If we divide both sides by σ, the left hand side of Equation
2.6 goes to zero, hence,

E+ v ×B = 0 (2.7)

If we move the cross product to the right hand side, cross both sides with B and
isolate for v, we get,

vE×B =
E×B

B2
(2.8)

which is the equation for the velocity of a particle undergoing E×B drift. From
Equation 2.8, it can be seen that the particle’s velocity is perpendicular to both
the electric and magnetic fields (as seen in Figure 2.1). As well, since Equation
2.8 is independent of the particle’s charge, ions and electrons will drift in the
same direction.

Figure 2.1: Schematic depiction of E×B drift (from [Baumjohann & Treumann,
1997]).

2.1.2.2 Polarization Drift

The next motion we wish to examine is polarization drift. Crossing Equation 2.5
with B/B2 gives us,

v − B (v ·B)

B2
=

E×B

B2
− m

q

dv

dt
× B

B2
(2.9)
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The left-hand side of Equation 2.9 is the perpendicular velocity vector and the
first term on the right-hand side is the term for E×B drift (cf. Equation 2.8). If
we average Equation 2.9 over the period of gyromotion, this allows us to take the
left-hand side of Equation 2.9 as the perpendicular drift velocity of the particle
(Baumjohann & Treumann [1997]), vd, which permits us to write,

vd = vE×B − m

qB2

d

dt
(v ×B) (2.10)

Using Equation 2.7 in Equation 2.10 allows us to write the drift velocity as,

vd = vE×B +
m

qB2

dE⊥

dt
(2.11)

The second term on the right-hand side of Equation 2.11 is known as polarization
drift,

vP =
m

qB2

dE⊥

dt
(2.12)

Equation 2.12 is a consequence of the system having a time-varying electric field.
Polarization drift is directed along the electric field. Unlike E × B drift, polar-
ization drift is charge-dependent.

2.1.2.3 Gradient Drift

We must now look at the case when we do not have a homogeneous magnetic
field. In space, there will be a gradient in the magnetic field. The magnetic
field becomes stronger in the region of the increasing gradient. As particles will
travel through regions of changing magnetic field, we must examine their motion
in response to the change of the field.

When examining the gradient drift, we want to observe the case where the pitch
angle, α, is 90 degrees (the pitch angle is the angle between the velocity vector
of the particle and the magnetic field line) and thus, when the magnetic field
gradient is perpendicular to the magnetic field line.

In order to determine the gradient drift, we need to investigate the net force
encountered by the particle as it travels in an inhomogeneous magnetic field.
This is given by (Roederer [1970]),

fz = qv⊥ (B + ρc cosφ∇B) cosφ (2.13)

where v⊥ is the perpendicular component of the particle’s velocity, ρc is the
gyroradius of the particle’s orbit, and ∇B is the gradient of the magnetic field.
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As the magnetic field is changing over the course of a single orbit, we are required
to take an average (cyclotron average) of Equation 2.13,

f̄ =
1

2π

∫ 2π

0

fzdφ =
1

2
qv⊥ρc∇B (2.14)

If we define the gyroradius as (Baumjohann & Treumann [1997]),

ρc =
mv2⊥
qB

(2.15)

and cross Equation 2.14 with B̂, the unit vector in the direction of the magnetic
field, and divide by qB, this gives us,

v∇ =
mv2⊥
2qB3

(B×∇B) (2.16)

This is the gradient drift of a particle. For Equation 2.16 to be valid, we re-
quire that the magnetic field strength change very little along a cyclotron orbit
(Roederer [1970]),

ρc
∇B

B
$ 1 (2.17)

Figure 2.2: Schematic depiction of gradient drift (from [Baumjohann &
Treumann, 1997]).

As can be seen from Equation 2.16 and Figure 2.2, the particles travel in a
direction that is perpendicular to both the direction of the magnetic field and
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its gradient. Since the motion is in the direction perpendicular to B and ∇⊥B,
the particle will drift along a contour of constant magnetic field in the plane
perpendicular to the magnetic field (Roederer [1970]). Furthermore, as Equation
2.16 is charge dependent, ions and electrons will drift in opposite directions, as
can be seen in Figure 2.2.

2.1.2.4 Curvature Drift

For completeness of examining drift motion, we want to examine the effect on
the motion of a particle due to the natural curvature of magnetic field lines. In
order to do this, we impose the condition that the radius of curvature of the field
line is much greater than the gyroradius of the particle (Rc % ρc) and that α >
0.

Figure 2.3: Schematic depiction of curvature drift (from [Baumjohann &
Treumann, 1997]).

Any mass on a curved trajectory will experience a centrifugal force, governed by,

Fc =
mv2‖
Rc

R̂c (2.18)

where v‖ is the parallel component of velocity (along the magnetic field line) and

R̂c is the unit vector in the direction of the radius of curvature (see Figure 2.3).
Like we did with the gradient drift, if we cross B̂ and divide by qB with Equation
2.18, we get,
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vc =
mv2‖

qR2
cB

2
(Rc ×B) (2.19)

which is the curvature drift for a particle (Roederer [1970]).

2.1.2.5 Gradient-Curvature Drift

Now that we have developed the formulae for the gradient and curvature drifts
separately, it is time to combine them, as both of the drifts work together for the
total magnetic drift, or gradient-curvature drift. The pitch angle of the particle
will determine which drift has a stronger influence. By using the relationship
(Baumjohann & Treumann [1997], Roederer [1970]),

∇B = − B

R2
c

R̂c (2.20)

we can rewrite Equation 2.19 as,

vc =
mv2‖
qB3

(B×∇B) (2.21)

Adding this with Equation 2.16 gives,

vcg =

(
v2‖ +

1

2
v2⊥

)
B×∇B

ωgB2
(2.22)

where,

ωg =
qB

m
(2.23)

Equation 2.22 is known as the gradient-curvature drift (Baumjohann & Treumann
[1997]).

2.1.3 Drift Equations

In order to get the guiding center drift equations, one would generally start
with Equation 2.5 and do mathematical manipulations in order to separate it
into two parts for equatorially mirroring electrons: the drift along the radial
trajectory and the drift along the azimuthal trajectory. This is what is done in
[Northrup, 1963], however, for the sake of reducing the cumbersome mathematics,
the guiding center drift equations will be derived in a slightly different (and less
mathematically intensive) manner than presented in [Northrup, 1963].
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In the equatorial plane, we are only concerned with the drifts along the radial and
azimuthal trajectories; motion along the field line does not concern us. Therefore,
when we construct a velocity equation for the total drift, we only need to consider
E×B and gradient drift. If we add the two drifts together to get the total drift,
vT, we get,

vT =
E×B

B2
+

mv2⊥
2qB3

B×∇B (2.24)

This is a vector equation, which we can split into components. It is useful and
convenient to use the cylindrical coordinate system - our three directions will be
the radial direction, r; the azimuthal direction, φ; and the longitudinal direction,
z. We will define the magnetic field to be in the longitudinal direction, B = Bẑ,
and the electric field will have a component in both the radial and azimuthal
directions, E = (Er,Eφ,0). We can also break the velocity into the radial and
azimuthal components (again, we are in the equatorial plane - we need not look
at vz).

At this point, we must consider relativistic factors since we are dealing with high
energy electrons that travel at an appreciable fraction of the speed of light. In
Equation 2.24, we can define a new factor, MNR,

MNR =
m0v2⊥
2B

(2.25)

where m0 is the rest mass of the particle, which is defined as the non-relativistic
magnetic moment (more on this in Section 2.2.1). In order to account for rel-
ativistic effects, we use the relationship between relativistic magnetic moment,
MR, and non-relativistic magnetic moment (Roederer [1970]),

MR = γMNR (2.26)

where γ is the Lorentz factor,

γ =
1√

1−
(
v
c

)2 (2.27)

and c is the speed of light in a vacuum. Thus, we may rewrite Equation 2.24 as,

vT =
E×B

B2
+

M

qγB2
B×∇B (2.28)

dropping the subscript onM . Equation 2.28 takes into account relativistic effects.

Before we do the mathematics, we need to define the gradient of the magnetic
field. We do not need to consider the gradient parallel to the magnetic field, as
this is not considered to be in the equatorial plane. Using the definition of the
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gradient in cylindrical coordinates, we can define the (perpendicular) gradient of
the magnetic field as,

∇B =

(
∂B

∂r
,
1

r

∂B

∂φ
, 0

)
(2.29)

If we further define vT in component form as,

vT =

(
dr

dt
, r

dφ

dt
, 0

)
(2.30)

and substituting Equations 2.29 and 2.30 into Equation 2.28, we obtain a system
of equations,

dr

dt
=

Eφ

B
− M

qrγB

∂B

∂φ
(2.31)

dφ

dt
= −Er

rB
+

M

qrγB

∂B

∂r
(2.32)

Equations 2.31 and 2.32 form the guiding center drift equations of motion for
particles drifting in the equatorial plane. They are valid under the condition
that the particle’s gyroradius is small compared to the spatial variations in the
magnetic field (Northrup [1963]).

2.2 Adiabatic Invariants

In the study of particle motion in space, it is absolutely necessary to look at the
three adiabatic invariants of plasma physics. An adiabatic invariant is a property
of a physical system that remains constant over time as long as the changes
that occur in the system are slow compared to the periodicities of the particle
motion (Baumjohann & Treumann [1997]). The three adiabatic invariants are:
magnetic moment, M (first); longitudinal invariant, J (second); and magnetic
flux, Φ (third).

2.2.1 First Adiabatic Invariant

The first adiabatic invariant, M , is the magnetic moment of the particle. In a
non-relativistic case, the magnetic moment is defined by Equation 2.25. In a
relativistic case, the magnetic moment becomes (Degeling et al. [2010]),

M =
mc2

2B

(
γ2 − 1

)
(2.33)
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It can be shown that the magnetic moment of a relativistic particle stays constant,
as long as the changes in the magnetic field are slow comparable to the cyclotron
period, τc (Roederer [1970]),

τc
B

dB

dt
$ 1 (2.34)

where,

τc = γ
2πm0

qB
(2.35)

for a relativistic particle.

As a particle drifts through one cyclotron orbit around a magnetic field line, it
will experience an induced electric field, goverened by Faraday’s law,

∇× Eind = −∂B

∂t
(2.36)

If we apply Stokes’ theorem to Equation 2.36, Faraday’s law can be rewritten as
an integral equation,

∮
Eind · dl = − ∂

∂t

∫∫

S

B · dS (2.37)

where dl is the line element tangential to the particle trajectory, and S represents
the surface the integral is taken over. The work done on the particle by the electric
field during a cyclotron orbit is then,

∆W = −q

∮
Eind · dl (2.38)

where the negative sign comes from the fact the work done on the particle is
acting opposite to the direction of motion of the particle (Roederer [1970]).

Observing the right hand side of Equation 2.38, we can use our assumption that
the magnetic field changes slowly compared to the cyclotron period (Equation
2.34) and can thus take it out of the integral. This just leaves us with a surface
integral over the area enclosed by the particle’s cyclotron orbit,

∂

∂t

∫∫

S

B · dS = πρ2c
dB

dt
(2.39)

If we bring our attention to the change of energy with respect to time for a
particle, we have,

dW

dt
= m0c

2dγ

dt
=

∆W

τc
(2.40)
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and by inserting the relativistic momentum,

p = γm0v (2.41)

into Equation 2.27, we have our expression for the rate of change of the Lorentz
factor,

dγ

dt
=

1

2m2
0c

2γ

d (p2)

dt
(2.42)

Combining Equations 2.15, 2.37, 2.38, 2.40, and 2.41, along with the fact that
since we are in the equatorial plane, p = p⊥, we have,

dp2⊥
dt

=
p2⊥
B

dB

dt
(2.43)

Since we have our assumption that the magnetic field is varying slowly, this
tells us that p2⊥/B from Equation 2.43 is constant. Hence, if we divide by the
(constant) factor 2m0, we have that,

p2⊥
2m0B

= κ (2.44)

where κ is a constant. Inserting the non-relativistic definition of momentum into
Equation 2.44, we have,

m0v2⊥
2B

= κ = M (2.45)

which is Equation 2.25. Therefore, as long as the magnetic field varies slowly
compared to τc, the magnetic moment, or first adiabatic invariant, of a particle
will be a constant of the system (Roederer [1970]).

2.2.2 Second Adiabatic Invariant

The second adiabatic invariant, J , is known as the longitudinal invariant. The
longitudinal invariant is associated with the bounce motion of a particle along a
particular field line, defined by,

J =

∮
p‖ds (2.46)

where p‖ is the parallel component of the particle’s momentum (along the field
line) and ds is the infinitesimal length element along the field line. Equation
2.46 is taken over a complete bounce of a particle (i.e. from one mirror point to
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the opposing mirror point, then back to the original mirror point, provided the
particle is not lost to the atmosphere).

During the bounce motion of a particle, through conservation of the first adiabatic
invariant, we can develop a relationship between the magnetic field and the pitch
angle of the particle,

sin2 α (s)

B (s)
=

sin2 αi

Bi
(2.47)

where αi and Bi are the pitch angle and magnetic field strength at the parti-
cle’s initial position, and s is the coordinate along the field line (Baumjohann &
Treumann [1997]).

We can, therefore, write an equation for the parallel component of the particle’s
velocity,

v‖ (s) = v cosα (s) = v

[
1− B (s)

Bi
sin2 αi

] 1
2

(2.48)

Now, if we have a particular magnetic field strength,

Bm = B (sm) =
Bi

sin2 αi
(2.49)

where sm is the location of the mirror point on the field line, and insert this into
Equation 2.48, the parallel component of the velocity becomes zero. This is how
the mirror point is defined: where the parallel component of the particle’s velocity
becomes zero and through conservation of momentum, the particle must reverse
its direction. The particle will travel to the opposing mirror point on the opposite
hemisphere, where the parallel velocity will become zero once again, and the
particle will travel towards the first mirror point - it will keep bouncing between
mirror points. If, however, the mirror point is actually located deep within Earth’s
atmosphere, the particle will be absorbed by the atmosphere through collisions
and will no longer execute bounce motion - it will precipitate towards the surface
of the Earth (Baumjohann & Treumann [1997]).

The time scale for bounce motion is given by the bounce period, τb, defined by
(Roederer [1970]),

τb = 2

∫ s′m

sm

ds

v‖ (s)
(2.50)

The longitudinal invariant, J , will be conserved as long as the magnetic field
changes slowly in comparison to the bounce period, τb. Mathematically, this is
given by (Roederer [1970]),
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Figure 2.4: A particle undergoing both gyro and bounce motion, reaching its
mirror point (from [Baumjohann & Treumann, 1997]).

τb
B

dB

dt
$ 1 (2.51)

However, for the purpose of our work, the second adiabatic invariant will always
be conserved. J deals with motion parallel to the magnetic field line and hence,
off of the equatorial plane. Our work deals strictly with electrons mirroring in
the equatorial plane, thus, J will always be zero.

2.2.3 Third Adiabatic Invariant

The third adiabatic invariant, Φ, is known as the magnetic flux. The magnetic
flux is a surface integral of the magnetic field over a closed drift shell, defined by
(Baumjohann & Treumann [1997], Griffiths [1998]),

Φ =

∮

Σ

B · dΣ (2.52)

where Σ defines the drift shell in which we integrate over. Equation 2.52 is taken
over what is known as the guiding drift shell (i.e. the drift shell the particle would
follow when the magnetic field is static).

The drift period, τd, is defined by (Roederer [1970]),

τd =

∮
dx

〈V0〉
(2.53)
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where V0 is the particle drift velocity on a particular drift shell and dx defines the
arc length of the intersection of the drift shell with the reference surface defined
by Ω. Out of all the periodicities, the drift period is the longest. In general
(Roederer [1970]),

τc $ τb $ τd (2.54)

In order for the third adibatic invariant to be conserved, like the first two in-
variants, we require that the magnetic field changes slowly compared to the drift
period. Mathematically (Roederer [1970]),

τd
B

dB

dt
$ 1 (2.55)

When particles move across different drift shells, this violates the third adiabatic
invariant - this plays an important role in radial transport, which is a major focus
of this thesis (Baumjohann & Treumann [1997]).

2.2.4 Particle Motion and the Adiabatic Invariants

As has been mentioned already, each adiabatic invariant is associated with a
particular type of particle motion. The first adiabatic invariant is associated with
a particle gyrating around a magnetic field line (gyromotion or cyclotron motion);
the second adiabatic invariant is associated with bounce motion between the
mirror points on a specific magnetic field line; and the third adiabatic invariant is
associated with drift motion around Earth on a closed drift shell. These different
motions can be see in Figure 2.6. In the real world, a particle is under the
influence of all three motions at a given time; we assume J = 0 in this thesis and
hence our calculations correspond to particle motion in the equatorial plane.

2.2.5 Violation of the Adiabatic Invariants

In this chapter, Equations 2.34, 2.51, and 2.55 are the conditions for respective
adiabatic invariants to remain constant - the magnetic field must vary slowly
compared to the periodicity of the specific motion associated with the adiabatic
invariant. However, what happens when Equations 2.34, 2.51, and 2.55 are not
satisfied? If that is the case, then we say there is a violation of the adiabatic
invariant.

If Equation 2.34 does not hold, we have a violation of the first adiabatic invari-
ant. In this case, the time variations are faster than the cyclotron period, which
deals with high frequency variations in either the magnetic field or the electric
field. If we do have a violation of the first adiabatic invariant, we must abandon
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Figure 2.5: Gyro, bounce, and drift motions for ions and electrons near Earth
(from [Baumjohann & Treumann, 1997]).

the guiding center approach and consider full particle motion (Baumjohann &
Treumann [1997]).

If Equation 2.51 does not hold, we have a violation of the second adiabatic in-
variant. In this case, the time variations are faster than the bounce period, but
smaller than the cyclotron period. Since J is no longer conserved, the bounce
motion between the two mirror points on a given field line can no longer be
considered as a simple oscillation (Baumjohann & Treumann [1997]).

If Equation 2.55 does not hold, we have a violation of the third adibatic invariant.
In this case, the time variations are faster than the drift period, but smaller than
the cyclotron and bounce periods. When Φ is violated, we have particles that
are moving across different drift shells due to the variation in the magnetic field
(i.e. it is no longer static) (Baumjohann & Treumann [1997]).

Since violation of the third adibatic invariant deals with particles moving across
different drift shells, it will be our primary focus. The first adiabatic invariant
will remain constant, as will the second adiabatic invariant, as it is zero at all
times (for our purposes).
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2.3 Radial Transport

As mentioned in the previous section, if a particle violates the third adiabatic
invariant, it moves across different drift shells. In order to discuss, in depth,
the major goals of this project, it is necessary to ascertain knowledge of radial
transport in the radiation belts. Transport is just one of the four mechanisms
that ensure the existence of the radiation belts; the other three mechanisms are
injection, loss, and acceleration (part of this process is coupled to the transport
process) (Roederer [1970]). Transport can be characterized as either diffusive
or convective. Diffusion itself can be broken down into two categories: radial
diffusion and pitch angle scattering.

2.3.1 Fokker-Planck Equation

The transport of particles in the radiation belts is governed by the Fokker-Planck
equation,

∂fk

∂t
=

3∑

n=1

∂

∂xk
n

[
3∑

m=1

DnmJ0k
∂

∂xk
m

(
fk

J0k

)]
+Q− S (2.56)

where fk is the distribution function in k-space, Dnm is the diffusion tensor, J0k
is the Jacobian, and Q and S represent the source and sink terms. The diffusion
tensor is given by,

Dnm =

〈(
∆xk

n∆xk
m

)〉

2τb
(2.57)

where τb is the particle bounce time, ∆xk
n and ∆xk

m represent the scattered vari-
ables, and the angled brackets represent bounce average (Roederer [1970]).

The Jacobian is defined by,

J0k =
∂ (Φ, J,M)

∂
(
xk
1, x

k
2, x

k
3

) (2.58)

If we do not allow for cross-coefficients in the diffusion tensor (i.e. no hybrid
violations of the adiabatic invariants), Equation 2.57 simplies to,

Dnn =

〈(
∆xk

n

)2〉

2τb
(2.59)
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If we now restrict our attention to motion that violates the third adibatic invari-
ant, Φ, the diffusion tensor will only have one non-zero element (i.e. D33 (= 0).
This allows us to simplify Equation 2.56 (Roederer [1970]),

∂f

∂t
=

∂

∂L

[
DLL

L2

∂

∂L

(
L2f

)]
+Q− S (2.60)

Re-defining variables in Equation 2.60 (i.e. D̃LL = DLL/L2 and f̃ = L2f) allows
us to rewrite it as,

∂f

∂t
= DLL

∂2f

∂L2
+

∂DLL

∂L

∂f

∂L
+Q− S (2.61)

Comparing Equation 2.61 with the Smoluchowski (convection-diffusion) equation
(assuming the diffusion coefficient, D, is constant),

∂f

∂t
= D∇2f − v ·∇f +Q− S (2.62)

where the first term on the right-hand side represents diffusive transport and
the second term on the right-hand side represents convective transport, we can
see that Equation 2.61 has both terms to represent the diffusive and convective
modes of transport (where in Equation 2.62, ∇ → ∂/∂L)

Equation 2.61 is a partial differential equation that describes the time evolution
for the distribution function of the particles, f . The distribution function gives
the number of particles per unit volume in space; it is a function of seven variables:
three that govern the position of the particle (Qi), three that govern the canonical
momentum of the particle (Pi), and the time coordinate (t). We can write this
as f = f(Qi,Pi,t), where i =1,2,3.

From Hamiltonian mechanics, we can write the temporal evolution of f , governed
by Liouville’s theorem as,

df

dt
=

∂f

∂t
+

3∑

i=1

[
dPi

dt

∂f

∂Pi
+

dQi

dt

∂f

∂Qi

]
= 0 (2.63)

which states that the distribution function remains constant along its trajectory
in phase space (that is, it moves through the phase space in an incompressible
manner). If we know the Hamiltonian of the system, H = H(qi,pi,t), from the
study of Hamiltonian mechanics, we can obtain the canonical coordinates from,

dPi

dt
= − ∂H

∂Qi
(2.64)
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dQi

dt
=

∂H

∂Pi
(2.65)

In radiation belt physics, however, it is not intuitive to use the canonical co-
ordinates derived from the Hamiltonian of the system, as the canonical coordi-
nates are not locally observable. Instead, we move to a non-canoncial position-
momentum distribution f = f(r,p,t), using the following transformation between
canonical and non-canonical momentum (the canonical coordinate for position is
the same as the non-canonical coordinate for position),

p = P− q

c
A (2.66)

where A is the electromagnetic vector potential (Schulz & Lanzerotti [1974]).

2.3.2 Convection and Diffusion

In looking at radial transport, it can be broken down into two modes of transport:
convection and diffusion. We seek to briefly examine the details of both modes
of transport, which will be discussed again in Chapter 5.

2.3.2.1 Convection

Convection (also known as advection) is the bulk transport of particles. From
examining both the Fokker-Planck (Equation 2.61) and Smoluchowski (Equation
2.62) equations, it can be noted that convection is linked to diffusion through the
diffusion coefficient, DLL. Thus, both convective and diffusive transport processes
are important in the examination of radial transport in the radiation belts.

2.3.2.2 Diffusion

The other radial transport mechanism we want to examine is diffusion. Diffusion
differs from convection in that particles undergoing a diffusive process spread out
in the medium, with bulk transport not being required.

Although we are only looking at motion in the equatorial plane (hence, radial
transport), we can briefly discuss pitch angle diffusion alongside radial diffusion
for completeness.

Radial Diffusion Radial diffusion comes about from violation of the third adi-
abatic invariant, Φ. As particles diffuse closer to Earth across drift shells, they
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encounter a stronger magnetic, that varies as r−3. In order to conserve M (Equa-
tion 2.25), the first adibatic invariant, this will require that the perpendicular
kinetic energy of particles must increase. Hence, there is a one-to-one relation-
ship between radial diffusion and acceleration (Schulz & Lanzerotti [1974]). If we
have a perturbation, τper, that follows,

τd ∼ τper % τb % τc (2.67)

with the perturbation being on the order of minutes, then we will have violation
of the third adibatic invariant and thus, we will be effectively dealing with radial
diffusion (and acceleration) in the radiation belts (Roederer [1970]).

Pitch Angle Diffusion If one moves off the equatorial plane, this requires
consideration of pitch angle diffusion. Pitch angle diffusion arises from a change
in the location of the mirror points along a magnetic field line. As mentioned,
particles that move along a field line will bounce between their mirror points;
if a mirror point is within the loss cone (that is, the region where the particles
undergo frequent collisions with neutral particles in the ionosphere) (Baumjo-
hann & Treumann [1997]), this particle will become lost to the atmosphere and
precipitate towards Earth. For this reason, pitch angle scattering is considered a
loss mechanism, since it removes particles from the radiation belts. This is also
the reason why pitch angle scattering controls the lifetime of a particle (Roederer
[1970]).

2.3.3 Diffusion Coefficient

The diffusion coefficient, DLL, describes the average rate of radial transport of
particles in a system (Elkington [2006]). For the case of diffusion being propor-
tional to L shell, the further the particles are from Earth, the greater the rate
of radial transport and vice-versa. Table 2.1 is a collection of calculated diffu-
sion coefficients over the years; this table is a reproduction of the one found in
[Elkington et al., 2003].

The equation used to calculate the diffusion coefficient is given by,

DLL =

〈
(∆L)2

〉

2τ
(2.68)

In the numerator, ∆L represents the change in position of the particle under-
going diffusion, in that it is the difference between the final position (after the
particle has undergone diffusion) and the initial position (before the particle un-
dergoes diffusion). The angular brackets represent an ensemble average over the
azimuthal angle. In the denominator, τ represents the timescale for running the
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Table 2.1: Examples of radial diffusion coefficients that were determined emper-
ically (from [Elkington et al., 2003]).

DLL (day−1) L Reference

2.0 × 10−7 L = 1.20 [Newkirk & Walt, 1968a]
10−8 L(10±1) 1.76 ≤ L ≤ 5.0 [Newkirk & Walt, 1968b]
4 - 8 × 10−10 L10 3.0 ≤ L ≤ 5.0 [Lanzerotti et al., 1970]
2.7 × 10−5 M−0.5 L7.9 1.7 ≤ L ≤ 2.6 [Tomassian et al., 1972]
10(0.75KFR−10.2) L = 4 [Lanzerotti & Morgan, 1973]
(2.23±0.67)ω−1.1±0.15

d L = 6.0 [Holzworth & Mozer, 1979]
∼0.2 - 5.0 L = 5.3, L = 6.1 [Chiu et al., 1988]
2.1 × 10−3

(
L
4

)
11.7±1.3 3.0 ≤ L ≤ 6.0 [Selesnick et al., 1997]

diffusion model. The condition for this timescale that we require is that τ % τd,
the drift period of the particle (Elkington et al. [2003]).

We now move on to the next major sections of the thesis: talking about the wave
drivers (and waves themselves), followed by a description of the ULF wave model
being used and how we will examine radial transport of particles in the outer
radiation belt.
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Chapter 3

Magnetohydrodynamic Wave
Mechanics

In the first two chapters of this thesis, we have painted the big picture of magneto-
spheric physics. In the first chapter, we discussed such things as the composition
of the magnetosphere, the solar wind, geomagnetic storms and associated prop-
erties, the radiation belts, and ULF waves. This set up the environment in which
we will examine the physics of interest in this thesis. In the second chapter, we
talked about the motion of particles and adiabatic invariants, which set up the
general idea for radial transport, the main focus the thesis.

Now, before we can get into the main analysis of diffusion, we have to ask ourselves
one simple question: what drives ULF waves in the magnetosphere? It is in this
chapter we seek to answer that very question.

3.1 Fourier Analysis

3.1.1 Fourier Transform

In Fourier analysis, any periodic function, f(t), can be constructed with a com-
bination of sine and cosine functions, with varying amplitudes and frequencies,
such that,

f (t) =
∑

n

Ane
−iωnt (3.1)

where An represents the various amplitudes and ωn represents the various frequen-
cies. It is of interest in many scientific and engineering applications to determine
the frequency components of an input signal, f(t). This can be done through
what is known as a Fourier transform.

36



Mathematically, the Fourier transform is defined by,

F (ω) =

∫ +∞

−∞
f (t) eiωtdt (3.2)

which takes a signal as a function of time, f(t), and transforms it into a function
of frequency, F (ω). By applying the Fourier transform on Equation 3.1, this
extracts the amplitudes as a function of frequency of the sine and cosine waves
that make up f(t).

3.1.2 Application to Magnetospheric Physics

Now, why is this important in the study of magnetospheric physics? When the
solar wind is launched towards Earth, it will eventually come in contact with
the magnetosphere. When the solar wind hits the magnetospheric boundary,
the variances in pressure will cause compression and relaxation of this boundary,
which launches waves into the magnetospheric cavity. We seek to examine the
process of energy transfer from the launched waves to the magnetic field lines
inside the cavity. In order for this energization process to occur, the frequency
of the wave must match the eigenfrequency of the field line; if this condition is
satisfied, it will drive oscillations of the field line (which is known as a field line
resonance).

If we think of the pressure pulse of the solar wind as a signal in the time domain,
f(t), then by applying the Fourier transform to the pulse, we can extract infor-
mation about the amplitudes and frequencies that make up the pulse, given by
F (ω).

As well, during the field line energization process, we are interested in looking at
the power spectrum, as it will peak at the resonant frequency, ω0, which gives us
the eigenfrequency of the field line. The power spectrum is given by,

P (ω) = |F (ω)|2 (3.3)

which is just the square of the modulus of the Fourier transform of the original
signal.

3.1.3 Aliasing

One area of caution that needs to be emphasized in the whole process of signal
analysis is the concept of aliasing. In signal processing, aliasing refers to the
phenomenon of one signal becoming indistinguishable from another signal during
the process of sampling the signal (i.e. a signal acts as the alias of another).
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For a signal composed of a finite number of frequencies with a maximum fre-
quency, νmax, we will have a condition to satisfy that prevents signals from be-
coming indistinguishable during sampling, that is,

νs > 2νmax (3.4)

We require the sampling frequency, νs, to be twice as great as the maximum
frequency of the signal. Another way this condition is written is,

νs
2

> νmax (3.5)

where νs
2 is known as the Nyquist frequency, νNyq. If we satisfy Equation 3.4 (or

3.5), then we will not have an issue with aliasing.

3.1.4 Examples

To conclude this section on Fourier analysis, a couple of examples on how the
Fourier transform works will be given, so as to explicitly demonstrate the purpose
of the tranform and for overall completeness.

The first function we shall choose is a very simple trigonometric function: the
sine wave. We will use a generic sine wave of the form,

f (t) = sin(2πνt) (3.6)

where ν is the frequency of the wave.

In Figure 3.1, we show the case of ν = 3 mHz. The top frame shows the plot of
the sine wave as a function of time. The center frame shows the Fourier transform
of the sine wave with a distinct peak at 3 mHz, which is the expected result, as
Equation 3.2 picks out the wave frequency. The bottom frame shows the power
spectrum of the same wave, which also, as expected, has a peak at 3 mHz.

For the second example, we shall take a superposition of sine waves with two
different frequencies and check to see that the Fourier transform picks out the
correct frequencies. We take a wave of the form,

f (t) = sin (2πν1t) + sin (2πν2t) (3.7)

with the condition ν1 (= ν2.

From the top frame in Figure 3.2, we can see we have a periodic signal that is
composed of more than a single frequency. The center and bottom panels of
Figure 3.2 show that the Fourier transform has identified the frequencies that
make up the signal: ν1 = 2 mHz and ν2 = 7 mHz. These were the input
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Figure 3.1: Top: A plot of the function f(t) = sin(2πνt) with frequency 3 mHz.
Center: Fourier transform of f(t) showing a peak at 3 mHz. Bottom: Power
spectrum of f(t) showing a peak at 3 mHz.
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Figure 3.2: Top: A plot of the function f(t) with frequencies 2 mHz and 7 mHz.
Center: Fourier transform of f(t) showing a peak at 2 mHz and 7 mHz. Bottom:
Power spectrum of f(t) showing a peak at 2 mHz and 7 mHz.
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frequencies in Equation 3.7, demonstrating that the Fourier transform picks out
the frequencies that are used to construct the sine (and cosine) waves that make
up the original signal.

3.2 Pressure Pulse

Magnetospheric pulsations can be driven by either an internal or external driver.
An internal driver, one in which the driving mechanism is inside the magneto-
spheric cavity, would be something like unstable plasma configurations. An ex-
ternal driver, one in which the driving mechanism is outside the magnetospheric
cavity, would be something such as a velocity shear at the magnetopause (the
Kelvin-Helmholtz stability, which was described in Chapter 1) or from fluctua-
tions in the dynamic pressure of the solar wind (Claudepierre et al. [2010]).

3.2.1 Pulse Composition

The theory behind a pressure pulse impacting the magnetosphere is that the pulse
is a representation of a linear superposition of compressional waves with different
frequencies (Degeling et al. [2011]). When this pulse hits the magnetopause, the
magnetosphere acts as a filter: it will allow some of the waves (and their respective
frequencies) in the pressure pulse to pass through and, in the process, excite field
lines in the magnetospheric cavity; the remaining waves will be deflected around
the magnetosphere.

An important aspect of the pressure pulse is its duration. Our goal is to examine
the response of the magnetosphere to a pulse with a very short duration. The
reason for this is that discontinuities in the solar wind are thought to excite a
broad spectrum of waves in the magnetospheric cavity. There can be a significant
transfer of energy in this process, which is important as far as explaining how
ULF waves transport and energize radiation belt electrons. This is a key aspect
of the thesis.

Our interest in decomposing a pressure pulse into a sum of frequencies is that
it allows us to straightforwardly analyze how energy is transferred to natural
oscillations of the geomagnetic field. The complete set of field lines in the mag-
netosphere in which we want to examine resonant interactions is known as the
Alfvén continuum.

Our hypothesis is that the Alfvén continuum is excited by a broadband spectrum
(impulse) of compressional waves impacting the magnetospheric boundary. The
continuum of field line oscillations is a useful diagnostic for the effect of impulses
on the magnetosphere, since it is an observable that can be monitored from the
ground and in-situ.

41



3.2.2 Pulse Travel

The solar wind travels outwards from the Sun at speeds ranging from 300 km/s
to over 1,000 km/s. In the frame of the solar wind, we consider a discontinuity as
a superposition of compressional waves that propagate at the Alfvén speed in the
medium, which is generally much less than the solar wind speed. Transforming
to the frame of the magnetosphere, the wave frequency is Doppler shifted to
ω ∼ kV , where 2π/k is the scale of the disturbance in the solar wind, and V is
the solar wind speed. The view we are taking is that spatial structure in the solar
wind (such as a discontinuity in pressure) is essentially wavelike at frequency ω
in the frame of the magnetosphere. Therefore, it would appear to the stationary
obsever, in their reference frame, that the Alfvén wave (pressure pulse) is having
its wavelength contracted via the Doppler effect.

3.2.3 Discontinuities

As mentioned in Section 1.2, as the solar wind approaches Earth, the magne-
topause acts to retard the motion of the solar wind. As the solar wind cannot
easily penetrate Earth’s magnetic field, much of it is deflected around Earth at a
reduced velocity. This creates two fluid layers: one layer is the solar wind flowing
towards Earth and the other layer is the plasma that is slowed down due to the
presence of Earth’s magnetosphere that ends up being deflected around Earth
(as can be seen in Figure 3.3). In between two fluid layers is a narrow boundary
known as a discontinuity; in the case of the boundary between the fast flowing
solar wind and the retarded solar wind, this is what we have defined to be the
bow shock (Baumjohann & Treumann [1997]).

The magnetopause also acts as a discontinuity (Baumjohann & Treumann [1997]),
as it separates two fluid layers. On one side of the magnetopause, there is the
plasma that was slowed down by the presence of the magnetosphere. On the
other side, there is the stationary plasma inside the magnetospheric cavity. It
is the generation of waves from the compression of the magnetopause that is of
interest to us.

We consider that spatial structure in the solar wind produces (through the
Doppler effect) wavelike compressional disturbances propagating on the magne-
topause. This is illustrated in Figure 3.3, which is taken from [Walker, 2002]. The
vertical arrows labeled 1.9 mHz and 3.3 mHz indicate corresponding wavelengths
in the solar wind. The Alfvén (VA), solar wind (V ), and sound (Vs) speeds are
also indicated. The important point to note is that VA and Vs are much less than
V , which we have assumed.
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Figure 3.3: Showing the flow speed of the solar wind as it approaches the mag-
netosphere, then as it passes around the flanks (from [Walker, 2002]).

3.3 Magnetohydrodynamic (MHD) Waves

We have, so far, discussed how waves are generated in the magnetosphere, either
by internal or external sources. The next logical question that comes up is, “Do
MHD waves have some sort of classification system?” The answer to that is yes.
MHD waves are separated by their direction of propagation and the speed at
which they travel. In order to look at the classification system, we must first
examine (briefly) how the dispersion relation is derived.

3.3.1 Dispersion Relations

To derive the dispersion relation (that is, the relation between frequency and
wave number) for MHD waves, we make use of the ideal MHD equations.

3.3.1.1 Continuity Equation

The continuity equation states that the rate at which mass enters a system is
balanced by the rate at which mass flows out the system (i.e. what goes in to
the system goes out of the system). Mathematically, this is given by,
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∂ρ

∂t
+∇ · (ρv) = 0 (3.8)

where ρ represents the density of the plasma and v is the plasma velocity.

3.3.1.2 Conservation of Momentum

The equation for conservation of momentum describes the non-relativistic mo-
mentum transport in a continuum. Mathematically, this is given by,

ρ

(
∂

∂t
+ v ·∇

)
v = J×B−∇P (3.9)

where J is the current density of the plasma, B is the magnetic field of the plasma,
and P is the plasma pressure.

3.3.1.3 Ampère’s Law

Ampère’s Law, neglecting displacement current (as we are looking at low fre-
quency waves), relates the magnetic field of a closed loop to the current that
passes through the closed loop. Mathematically, this is given by,

∇×B = µ0J (3.10)

where µ0 is the permeability of free space.

3.3.1.4 Faraday’s Law

Faraday’s law is the fundamental relation between the electric and magnetic fields.
Mathematically, this is given by,

∇× E = −∂B

∂t
(3.11)

where E is the electric field of the plasma.

3.3.1.5 MHD Formalism

In order to work with these equations, we have some assumptions that we need to
apply. The first two assumptions of ideal MHD theory are that the background
velocity of the plasma, v0, and the background electric field, E0, are zero (we
may consider that our analysis is done in the solar wind frame). For the magnetic
field and plasma density, we have the background quantity with a small linear
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perturbation added to it (i.e. x = x0 + δx), under the assumption that the
perturbation is much smaller than the background quantity (i.e. δx $ x0).

Under ideal MHD, for plasma velocity, plasma density, plasma electric and mag-
netic fields, we have,

v = δv (3.12)

ρ = ρ0 + δρ (3.13)

E = δE (3.14)

B = B0 + δB (3.15)

As well, under the assumption that the pressure is nearly isotropic (i.e. no shears)
and that the magnetic field is approximately homogeneous, we also have the
condition that (Baumjohann & Treumann [1997]),

∇
(
P0 +

B0

2µ0

)
= 0 (3.16)

which allows us to get rid of any reference to pressure in Equation 3.9.

By applying Equations 3.12, 3.13, 3.14, 3.15, and 3.16, to Equations 3.8, 3.9,
3.10, and 3.11, keeping the perturbations linear in order, and having an equation
only in terms of δv, we get the following second-order equation,

∂2δv

∂t2
= c2ms∇ (∇ · δv) + v2A

(
∇2

‖δv −∇∇‖δv‖ − ê‖∇‖∇ · δv
)

(3.17)

where c2ms is the magnetosonic speed, defined by,

c2ms = c2s + v2A (3.18)

where cs is the speed of sound and vA is the Alfvén speed, defined by,

vA =
B

√
µ0ρ

(3.19)

In Equation 3.17, the parallel direction is defined as the direction along the
magnetic field line.

Now, we introduce a travelling wave of the form,
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δv = δv0e
i(k·r−ωt) (3.20)

where δv0 represents an arbitrary wave amplitude, k is the wave vector, r is the
radial vector, and ω is the wave frequency. Applying Equation 3.20 to Equation
3.17, after some algebra, we get a tensor equation,

[(
ω2 − k2

‖v
2
A

)
I− c2mskk+

(
kê‖ + ê‖k

)
k‖v

2
A

]
· δv0 = 0 (3.21)

where I represents the identity matrix. The only useful solutions will come from
the condition that δv0 (= 0. This requires the determinant of the term in square
brackets to be zero. Equation 3.21 allows us to look at the dispersion relation for
different waves.

3.3.2 MHD Wave Classification

3.3.2.1 Shear Alfvén Wave

From Equation 3.21, there is one dispersion relation that results from decoupling
in the system. This is known as the shear Alfvén mode, which has the following
dispersion relation,

ω2
A = k2

‖v
2
A (3.22)

The shear Alfvén wave propagates parallel to the magnetic field line at the Alfvén
speed, defined by Equation 3.19. While the wave travels along the field line, there
will be a perturbation perpendicular to the magnetic field which serves to change
its direction (keeping the magnitude of the field constant).

3.3.2.2 Slow Mode Wave

In Equation 3.21, there is a coupling between the parallel and perpendicular com-
ponents of the velocity. When this is decoupled, we get the following dispersion
relation,

ω2
S = k2

‖c
2
s (3.23)

This is known as the slow mode or ion acoustic wave, which propagates parallel
to the magnetic field at the speed of sound. While the wave travels along the
field line, there will be a perturbation perpendicular to the magnetic field which
serves to change its direction (keeping the magnitude of the field constant). When
the solar wind comes into contact with the magnetosphere, this is a fast mode
(compressional) shock, hence, for the purpose of this thesis, slow modes will not
be considered (it is only here for completeness in the discussion of MHD waves).
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3.3.2.3 Fast Mode Wave

There are two wave modes present from the decoupling of the velocity component
in Equation 3.21. One is the slow mode and the other is known as the fast mode
or magnetosonic wave. The fast mode has the following dispersion relation,

ω2
F = k2c2ms (3.24)

The fast mode, unlike the Alfvén and slow modes, does not travel parallel to
the magnetic field line. The fast mode propagates isotropically (i.e. it has com-
ponents of the wavevector parallel and perpendicular to B), which allows for
compression of the field lines. This property of the fast mode is of great interest
to the research in this thesis.

3.4 Afterword

Now that we have a working knowledge of the physics involved and just how we
generate waves in the magnetosphere, it is time to move on to the core part of
this thesis: the specifics of the ULF wave model that we will be using (along with
some of the mathematics involved) as well as looking at radial transport in the
radiation belts.
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Chapter 4

ULF Wave Model

So far, we have cemented our knowledge in three key areas: we have an under-
standing of the environment we are examining (the magnetosphere); we have an
understanding of the physics we are investigating in the magnetosphere (radial
transport); and we have an understanding of MHD waves and how to categorize
them. We now add one more piece to the puzzle: we need to understand the
computational model that will be used to describe MHD wave propagation in
the magnetosphere, whose results will allow us to look at radial transport in the
outer radiation belt, which is our ultimate goal.

In this chapter, we consider the excitation of ULF waves that arise from a wave
driver on the magnetopause boundary. We will see that this driver can set up
global oscillations in the magnetospheric cavity and that the spectra of waves that
we excite at a specific location is in agreement with the theoretical predictions
of the Alfvén continuum. We consider the cases of low, moderate, and high solar
wind speed in order to demonstrate that the amplitude of the waves that are
excited vary in proportion to the solar wind speed.

We first examine how the wave equation, which governs the model, is actually
derived, along with specific aspects of the model (the magnetic field structure,
the magnetopause boundary, density profile, wave driver). Then we study the
electric field and examine resonance between waves and geomagnetic field lines.
Lastly, we bring our attention to the Alfvén continuum to see if the model agrees
with the predictions made by theory.

4.1 Wave Equation

In order to examine the physics of ULF waves, we must define the equation that
governs the model to be used. The derivation of the wave equation in field aligned
coordinates can be found in Appendix A, which also gives the most general form
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of the equation that governs the ULF wave model (Equation A.71). For our
results, we are using the model of [Degeling et al., 2011], which slightly modifies
the approach taken in Appendix A by considering an exteral current acting as
a driver and the use of the Cartesian coordinate system (to be elaborated on
further in Section 4.1.1).

4.1.1 Model of [Degeling et al., 2011]

In Appendix A, we obtain the wave equation for the model by using Faraday’s
law (Equation A.27) and Equation A.28. The equations that we solve differ
slightly from those defined in [Degeling et al., 2011]; we introduce a change to
Equation A.28 by adding an external current, Jext, which oscillates harmonically
at a frequency in the mHz range. This current acts to excite the waves we are
interested in. Jext is placed at the magnetopause boundary (to which it is also
tangential), perpendicular to the magnetic field (Degeling et al. [2011]). For our
purposes, Equation A.28 now reads,

1

v2A

∂E

∂t
= (∇× b)⊥ − (µ0J× b)×B

B2
+ µ0J

ext (4.1)

which is the same as Equation A.28, except with the addition of the source current
term. Equation 4.1 is what is used in lieu of Equation A.28 to derive the wave
equation.

4.1.2 Solving Equation 4.1

In order to solve a physical problem, we need to have an appropriate geometry.
As mentioned, we are using Cartesian coordinates for this problem, with x being
positive in the direction of the Sun along the Sun-Earth line, z is perpendicular
to the equator (in the direction of the magnetic field), and y is chosen such that
we have an orthogonal coordinate system. Defining Earth’s magnetic field in the
equatorial plane as,

B0 = B0 (x, y) ẑ (4.2)

allows us to write Equation 4.1 as,

(
∂2

∂z2
− 1

v2A

∂2

∂t2

)(
Ex

Ey

)
=

1

B0

(
−∂/∂y
∂/∂x

)[
B0

(
∂Ex

∂y
− ∂Ey

∂x

)]
+ µ0

∂

∂t

(
Jext
x

Jext
y

)

(4.3)

Equation 4.3 is a simplification of the more general form of the wave equation
given by Equation A.71. Equation 4.3 uses the Cartesian coordinate system,
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whereas Equation A.71 uses the field aligned coordinate system (discussed in
Appendix A, Section A.1.1). As the Cartesian coordinate system is an orthogonal
coordinate system, the gradient basis vectors defined by Equations A.9 and A.21
equal one when i = j and zero for i (= j. This simplifies the matrix G (Equation
A.67) in Equation A.71 to the identity matrix. Furthermore, the determinant of
Equation A.23 will be unity, which means that σ = B0 (cf. Equation A.26).

To get our Cartesian coordinates from the field aligned coordinates, we can simply
define α = x and β = y. As well, since γ is our field aligned coordinate and in
the box model assumption, the field lines are stretched in the z-direction, we may
set γ = z.

As can be seen on the right hand side of Equation 4.3, there are terms for the
electric field, but in Equation A.71, the right hand side only contains information
about the magnetic field of the perturbation. We can convert between the two by
use of Faraday’s law; the specific equation we require is Equation A.65. If we put
this definition in Equation A.71, then apply our change of coordinates described
in the previous paragraph, we will end up with Equation 4.3 (subject to adding
the driving current term, Jext, to Equation A.28).

In order to further simplify Equation 4.3, we will apply the box model assump-
tions of [Zhu & Kivelson, 1988]. The box model makes the assumption that
all magnetic field lines are straight and terminate on flat conducting surfaces
that represent the two ionospheres (north and south). This allows us to simplify
the treatment of the shear Alfvén wave eigenfunctions along magnetic field lines
(Degeling et al. [2011]).

The box model has the drawbacks that it differs from the actual magnetosphere
(since the real magnetosphere is not in the shape of a rectangular box). Fur-
thermore, the box model cannot explain some observational features. Barring
the drawbacks, the box model does offer insight into wave coupling (between the
MHD fast waves excited by the driver and the shear Alfvén waves on the field
line) and is the basis for working towards a full understanding of MHD waves in
the magnetosphere (Zhu & Kivelson [1988]).

All field aligned eigenfunctions are decoupled under the box model assumption,
thus, there is no way to distinguish toroidal and poloidal wave modes (Degeling
et al. [2011]). This permits us to write the electric field as,

E = En (x, y) cos (knz) e
−iωt (4.4)

where,

kn =
nπ

zfl
, n ∈ Z (4.5)

where n is an integer and zfl is the length of the field line. By inserting Equation
4.4 into Equation 4.3, this reduces the equation to a coupled pair of elliptic partial
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differential equations under the box model assumption,

−
(

1

v2A

∂2

∂t2
+ k2

n

)
cos (knz) e

−iωt

(
Enx

Eny

)
=

1

B0

(
−∂/∂y
∂/∂x

)[
B0

(
∂Ex

∂y
− ∂Ey

∂x

)]
+ µ0

∂

∂t

(
Jext
x

Jext
y

)
(4.6)

The pair of equations from Equation 4.6 are solved using the Partial Differential
Equation toolbox in MATLAB, by writing Equation 4.6 in the form

M · ∂
2u

∂t2
+K · u = f (4.7)

where u represents the electric field, f represents the wave driver, and K and M
are coefficient matrices.

The PDE toolbox creates an unstructured triangular mesh grid in the region of
interest for the model (i.e. the magnetospheric boundaries imposed by [Degeling
et al., 2011]). In order to solve the elliptic PDEs for the electric field, the toolbox
constructs a series of tent functions which are defined on the triangular mesh
in order to approximate the weak form (that is, a solution which is not every-
where differentiable (Myint-U & Debnath [2007])) of the PDE using the Galerkin
method. This mesh is also automatically refined by the solver, which, as a con-
sequence, results in a higher triangle density along field line resonance surfaces
(Degeling et al. [2011]).

A detailed mathematical formalism of the Galerkin method is given in Chapter
14 of [Myint-U & Debnath, 2007].

4.1.3 Previous Work

The derivation of Equation A.71, which is a more general form than those solved
in the thesis, has been explored by [Rankin et al., 2006], [Kabin et al., 2007],
and [Degeling et al., 2010]. In [Rankin et al., 2006] and [Kabin et al., 2007], the
fundamental assumption for the derivation of Equation A.71 was that there was
no coupling amongst the field lines (i.e. each field line oscillated independently).
Thus, with no fast mode coupling, the right hand side of Equation A.71 is set
to zero and the shear Alfvén wave modes are decoupled from the compressional
mode. In this approach, each field line oscillates independently at its natural
frequency. The solutions for the eigenmodes are obtained using Newton’s method,
which attempts to find the roots (zeroes) of a function. The initial guess for
Equation A.71 is the eigenvalue that is predicted via the WKB approximation.
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In [Degeling et al., 2010], the author does not assume that the field lines oscillate
independently, and thus, the term on the right hand side of Equation A.71 re-
mains. The wave equation is solved by using the spectral method. The spectral
method allows one to write the solutions of a differential equation in terms of ba-
sis functions, which are multiplied by amplitude coefficients. The goal is to find
the value of the coefficients that satisfies the differential equation, while keeping
the error to a minimum.

4.2 Model Profiles and Parameters

4.2.1 Magnetic Field Model

Although we are using the straight magnetic field model (the box model) from
[Zhu & Kivelson, 1988], we base it on the formalism presented in [Stern, 1985].
In particular, we use the equatorial projection of the field lines defined in [Stern,
1985]. [Stern, 1985] is based on Earth’s magnetic field being contained within
a conducting paraboloid shell, which represents the magnetopause. Inside this
shell, the condition is imposed that the magnetic field is current free, such that
from Ampère’s law, we have,

∇×B = 0 (4.8)

From vector calculus, when the curl of a vector is zero, that same vector may be
written as the negative gradient of a scalar potential. Thus, as in [Stern, 1985],
we can write the magnetic field as,

B = −∇γ (4.9)

We further impose the condition, from Maxwell’s equations, that the divergence
of the magnetic field is zero (i.e. magnetic field lines are closed). Applying the
divergence operator to Equation 4.9 leaves us with,

∇2γ = 0 (4.10)

This is just Laplace’s equation, which can be solved, given appropriate boundary
conditions.

Equation 4.10 is solved using a parabolic coordinate (λ, µ,ψ) system, which is
based off the solar magnetospheric Cartesian coordinates, given by,






λ2 = r + (x− x0)
µ2 = r − (x− x0)

tanψ = z/y
(4.11)
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where the origin of this coordinate system is given by the point (x0, 0, 0) (Stern
[1985]). One of the boundary conditions is that the normal component of the
total magnetic field, B, should be cancelled by the surface currents flowing along
the magnetospheric boundary, which ensures no magnetic flux crosses the mag-
netopause boundary (Stern [1985]). This is given by,

∂γMP

∂λ
= −∂γD

∂λ
at λ = λ0 (4.12)

where γMP and γD will be defined shortly.

The derivation process is long and thus, it will only be summarized here, but all
the details are available in [Stern, 1985].

The scalar potential, γ, in Equations 4.9 and 4.10, is a combination of the scalar
potential derived from the magnetic field of Earth and of the scalar potential
derived from the surface currents running along the magnetopause boundary,
such that,

γ = γD + γMP (4.13)

The dipole magnetic field of Earth is given by,

BD =
BE

L3
(4.14)

and thus, we can easily derive γD. However, the magnetic field needs to be derived
due to the surface currents from γMP .

From [Stern, 1985], the scalar potential due to the magnetopause currents is given
by,

γMP = sinφ
∑

n

anJ1 (knµ) I1 (knλ) (4.15)

where φ is the azimuthal angle around the x-axis, J1 is the first order Bessel
function, and I1 is the first order modified Bessel function. The variable kn
satisfies the following relationship,

J1 (knA) = 0 (4.16)

where A is a scaling parameter (Stern [1985]). The coefficients an are determined
by applying the boundary condition given by Equation 4.12. This allows us to
get the magnetic field given by the magnetopause currents,

BMP = −∇γMP = −
(
∂γMP

∂λ
∇λ+

∂γMP

∂µ
∇µ+

∂γMP

∂ψ
∇ψ

)
(4.17)
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where the right-most side is just an expansion of the scalar potential gradient
using the chain rule.

Equation 4.12 gives the boundary condition required inside the magnetopause.
Outside the magnetopause, Equation 4.12 reads,

∂γMP

∂λ
= −∂γIMF

∂λ
at λ = λ0 (4.18)

In order to get γIMF , we treat the interplanetary magnetic field as being constant
and in the z direction. This allows us to write,

γIMF = z (4.19)

or, using Equation 4.11,

γIMF = λµ sinφ (4.20)

This permits us to write the total magnetic field, B, as

B = σ∇γD + (1− σ)∇γIMF (4.21)

where σ is a function that varies smoothly over a width set at 0.25 RE (Degeling
et al. [2011]) from zero to one, in order to match the magnetic field inside and
outside the magnetopause. It should be noted that Equation 4.21 is the equatorial
projection of the field lines in [Stern, 1985].

4.2.2 Model Magnetosphere

One of the main improvements of the model described in [Degeling et al., 2011] is
the shape of the magnetopause boundary. In [Degeling et al., 2010], the magne-
topause boundary was given by a closed oval shape in the equatorial plane. The
drawback to this structure is that it only resembles the magnetopause close to lo-
cal noon. In the 2011 model, the magnetopause geometry is given such that wave
solutions are bounded only on the dayside and along the flanks, whereas on the
nightside, they are unbounded. An artificial boundary is inserted on the night-
side in order to contain the region of interest. In order to minimize reflections
from this boundary, the wave solutions are damped outside the boundary.

Figure 4.1 shows the shape of the magnetopause being used in the model (the
region of interest), as well as the unstructured triangular mesh grid used to cal-
culate the fields. The magnetopause boundary is defined from [Stern, 1985] on
the paraboloid λ = λ0, which is subject to the boundary conditions given by
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Figure 4.1: Structure of the model magnetopause with the unstructured triangu-
lar mesh grid used to calculate the solutions to the wave equation.
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Equation 4.12 and 4.18. Furthermore, other parameters that define Figure 4.1
can be found in Table 4.1.

Table 4.1: Parameters that define the magnetopause boundary in Figure 4.1 (all
parameters are measured from the center of Earth).

Parameter Value

sunward distance to magnetopause, xMP 10 RE

dawn/dusk distance of magnetopause, yMP 15 RE

distance to paraboloid focus, x0 = xMP − y2MP/(4xMP ) 4.375 RE

paraboloid defining the magnetopause boundary, λ2
0 = 2(xMP − x0) 11.25 RE

maximum value of |x| on the nightside 20 RE

The solution to Laplace’s equation (Equation 4.10) is given by,

γ = (Am sinmφ+Bm cosmφ) Jm (kµ) [am (k) Im (kλ) + bm (k)Km (kλ)] (4.22)

wherem takes only discrete positive values, k varies continuously, Jm is the Bessel
function of the first kind, Im and Km are the modified Bessel functions of the
first and second kind, Am, Bm, am, and bm are coefficients determined through
matching the solution of Equation 4.22 via the boundary conditions in Equation
4.12 and 4.18 inside and outside the magnetosphere, and µ and λ are defined in
Equation 4.11. For the magnetosphere boundary defined by [Stern, 1985], the
conditions required are that for interior solutions (i.e. 0 < λ<λ 0), all values of
bm (k) must be zero; for exterior solutions (i.e. λ > λ0), all values of am (k) must
be zero.

The computational domain for the model also has an artificial boundary on the
nightside, which confines our region of interest. Waves outside the nightside
boundary end up being artificially damped; this minimizes reflections from the
numerical outer boundary. The driving frequency, ω, is defined as,

ω = ωR + iωI (4.23)

where the inclusion of the imaginary part in Equation 4.23 allows for wave damp-
ing. For strong damping (outside the region of interest), we set ωI/ωR % 1. Inside
the magnetosphere, near the artificial boundary, we set ωI/ωR = 0.1 to mimic
finite ionospheric Pedersen conductivity (Degeling et al. [2011]).

4.2.3 Density Profile

In the models described by [Rankin et al., 2006] and [Kabin et al., 2007], a simple
density profile is given that scales as r−4, which is multiplied by the equatorial
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density (a constant). The density profile in [Degeling et al., 2011] takes the form
given in [Degeling et al., 2010],

ρ = ρeq (R)
( r

R

)−Λ

(4.24)

where r is defined as the standard radial distance to a field line, Λ is the plasma
mass index (Menk et al. [1999]), and ρeq is the equatorial density profile, given
by,

ρeq (R) = ρ0

(
R

R0

)−κ

(4.25)

where the constants ρ0 and R0, along with the scaling power, κ, are constrained
by data. The relevant data for the density profiles inside and outside the plasma-
pause are given in Table 4.2.

Table 4.2: Plasmapause density profiles from [Degeling et al., 2011].

Inside Outside
L 3 6
κ 2 1

ρ0 [amu/cm3] 2000 150

In order to join the outside and inside density profiles, the equatorial density
profile is written as,

ρeq = ρ1−Ω
1 ρΩ2 (4.26)

where ρ1 and ρ2 are the densities inside and outside the plasmapause (and have
the form of the profile in Equation 4.25) and Ω is a function that varies smoothly
from zero to unity in the region of the plasmapause width (Degeling et al. [2010]).
This allows for the smooth transition of the density profile outside the plasma-
pause to the density profile inside the plasmapause. Outside the plasmapause,
Ω = 1; inside the plasmapause, Ω = 0.

Figure 4.2 shows the density profile (log10 ρ) of the ULF wave model of [Degeling
et al., 2011].

4.2.4 Wave Driver

On the rightmost side of Equation 4.3, the term Jext represents the external
current placed on the magnetopause boundary that drives ULF waves in the
magnetosphere. This driving term is represented by,
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Figure 4.2: Density profile (log10 ρ) from the ULF wave model of [Degeling et al.,
2011].
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µ0
∂Jext

∂t
= Θ0

t

τ1
e−t/τ2e−iωt (4.27)

where τ1 = 21.2 ms, τ2 = 25 s, and Θ0 is a function set to unity to give the
dimensionally correct units of the driver.
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Figure 4.3: Top panel: wave driver input from the ULF wave equation. Bottom
panel: Fourier transform of the wave driver input, with a peak frequency at ν = 7
mHz.

Figure 4.3 shows the ULF wave driver and its Fourier transform, which peaks
at ν = 7 mHz. It should be noted that the shape of the ULF wave driver is
independent of solar wind speed.
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4.3 Results from the ULF Wave Model

The interactions that we are studying in the magnetosphere can be classified as
wave-particle interactions that consist of two parts: the wave component and the
particle component. In this chapter, we seek to develop a greater understanding
of the wave component of the wave-particle interactions. In order to complete
this, we will examine some results from the wave model by looking at the effects
in the magnetosphere due to the presence of MHD waves. In Chapter 5, we will
investigate the particle component of the wave-particle interactions by using the
outputs from the ULF wave model to trace particles in the outer radiation belt
in order to examine transport.

4.3.1 Electric Fields in the Equatorial Plane

The first set of results we present show how the radial and azimuthal electric fields
respond to the pressure pulse sending waves through the magnetosphere. We can
analyze this for three different solar wind speeds: vSW = 300 km/s, 700 km/s,
and 1,000 km/s, the rationale being that these correspond to slow, moderate, and
fast solar wind speeds respectively.

Figures 4.4 and 4.5 shows the evolution of the radial and electric fields over the
course of the model run when the solar wind speed is 300 km/s. Figures 4.6 and
4.7 shows the evolution of the radial and electric fields over the course of the
model run when the solar wind speed is 700 km/s. Figures 4.8 and 4.9 shows the
evolution of the radial and electric fields over the course of the model run when
the solar wind speed is 1,000 km/s.

For the time evolution of the radial electric field in Figures 4.4, 4.6, and 4.8, we can
see the same general trend occurring. At t = 0, we can see the beginning of wave
activity at the magnetopause boundary, as this is when the driver begins ULF
wave generation. As time evolves, we can see the presence of field line resonances
(and hence, the heightened amplitude of Er) where the natural frequency of the
field line matches the frequency of the traveling fast mode wave. Eventually, in
the vicinity of the magnetopause, the amplitude of Er begins to decrease, as the
waves have passed through and are no longer causing excitations; in fact, we can
see the waves moving down the flanks of the magnetopause. Near the end of the
time of the model run, we can see the field lines that were excited at the start
now have decreasing amplitude, as the wave has passed and is no longer exciting
the field line.

For the time evolution in the azimuthal electric fields in Figures 4.5, 4.7, and 4.9,
we also see common trends. At t = 0, Eφ is zero (no excitation in the azimuthal
direction), even though there is a perturbation at the magnetopause due to the
wave driver, Jext. Again, as time evolves, we see a strong peak in the azimuthal
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Figure 4.4: Time evolution of the radial component of the electric field for vSW =
300 km/s.
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Figure 4.5: Time evolution of the azimuthal component of the electric field for
vSW = 300 km/s.
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Figure 4.6: Time evolution of the radial component of the electric field for vSW =
700 km/s.
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Figure 4.7: Time evolution of the azimuthal component of the electric field for
vSW = 700 km/s.

64



Figure 4.8: Time evolution of the radial component of the electric field for vSW =
1,000 km/s.
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Figure 4.9: Time evolution of the azimuthal component of the electric field for
vSW = 1,000 km/s.
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electric field, which begins to dampen away as the waves move past; like with the
radial case, we can see the wave moving along the flanks, causing changes in the
amplitude of Eφ.

It is interesting to note that the waves travelling along the flanks of the magne-
topause boundary show a resemblance to the Kelvin-Helmholtz (K-H) instability.
However, the model of [Degeling et al., 2011] does not contain any physics re-
lated to shear flow (which we require for the K-H instability). Instead, these
waves are due to the focusing of wave power along the semi-reflective flanks of
the magnetopause (Degeling et al. [2011]).

In Figures 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9, the evolution of time runs from left to
right and the panels represent equal spacing in time from t = 0 (top left panel)
to tmax = 2, 137.4 seconds (bottom right panel).

4.3.2 Electric and Magnetic Field Time Series with vary-
ing MLT

From the model, we can also observe the perturbations of the radial and azimuthal
electric fields (Er and Eφ), as well as the perturbation in the magnetic field, bz,
as a function of time for varying solar wind speeds. The plots will examine these
perturbations at L = 4.4 and L = 6.6 at varying positions of magnetic local time
(MLT). For MLT, zero correponds to midnight and MLT 12 corresponds to noon
(moving in the counterclockwise direction).

In Figure 4.10, we examine the perturbations which occur at midnight and noon
(MLT 0 and 12, respectively). Comparing the perturbations of bz at midnight
with those at noon, we see those at noon are much stronger (as well, electric field
components peak at higher amplitudes at noon than at midnight). The reason
for this is that the driver is along the magnetopause boundary and hence, MLT
12 is closer to the wave source than MLT 0. This is also the same reason that
the perturbations are stronger for L = 6.6 than for L = 4.4, because at 6.6, this
location is closer to the driver.

In Figure 4.10, inspection of bz reveals that after the jump in amplitude and
some small perturbations, it levels off at a new state. This is a consequence of
the compression of the magnetosphere due to the solar wind pressure; when the
magnetosphere is compressed, it also compresses the plasma inside the cavity,
which alters the magnetic field. Hence, after the pulse passes through, the mag-
netic field reaches a new equilibrium state, which is different from that of the
pre-compression state.

In Figure 4.11, we can see the same trends as those in Figure 4.10. At points
closer to the magnetopause (and hence, the location of the wave driver), the
perturbation is much stronger than at those points further away from the driver.
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Figure 4.10: Left column: Electric and magnetic field perturbations at MLT
0 and 12. Right column: Fourier transfom of the electric field perturbations.
vSW = 300 km/s.
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Figure 4.11: Left column: Electric and magnetic field perturbations at MLT 3 and
9. Right column: Fourier transfom of the electric field perturbations. vSW = 300
km/s.
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Figure 4.12: Left column: Electric and magnetic field perturbations at MLT
0 and 12. Right column: Fourier transfom of the electric field perturbations.
vSW = 700 km/s.
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Figure 4.13: Left column: Electric and magnetic field perturbations at MLT 0
and 12. Right column: Fourier transfom of the electric field perturbations. vSW =
1,000 km/s.
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In Figures 4.12 and 4.13, we increase the solar wind speed to 700 km/s and
1,000 km/s respectively. As with Figure 4.10, we see the trend that closer to the
magnetopause, on the day side, the perturbations are much stronger than those
on the night side. Furthermore, as we increase the solar wind speed, we notice
that the amplitude of the perturbations also increases (since solar wind dynamic
pressure is proportional to the square of its velocity).

4.3.3 Alfvén Continuum

Lastly, we can inspect the plots of the Alfvén continuum, which plots the peak
in frequency from the Fourier transform of the radial component of the electric
field perturbations as a function of L-shell.
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Figure 4.14: Alfvén continuum at MLT 9 for a solar wind speed of 300 km/s.
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Our interest in choosing the location of MLT 9 is from observing the plots of the
radial electric field in the equatorial plane. As one examines the time evolution
of the electric field in the equatorial plane, a strong indication of a field line
resonance in the region of MLT 9 (and MLT 15) can be seen and since this is of
particular interest to us, this is where we would like to verify the agreement of
the model with theory.

The model calculates the peak in frequency for the radial component of the
electric field (the squares in Figures 4.14, 4.15, and 4.16), which is compared to a
theoretical value (the solid curve in Figures 4.14, 4.15, and 4.16), which is given
by,

νA =
1

2π
kzvA (4.28)

which comes from Equation 3.22 (with k‖ = kz, as we already specificied in the
box model, z is the direction of our magnetic field line).

By examining Figures 4.14, 4.15, and 4.16, which each correspond to solar wind
speeds of 300 km/s, 700 km/s, and 1,000 km/s respectively, we can see that there
is agreement between the model and theory. This gives us confidence in using
the model of [Degeling et al., 2011] to do further investigations of radiation belt
physics.

As a note, there are some points in Figures 4.14, 4.15, and 4.16 where two succes-
sive squares have the same value of frequency. This is not an error in the model,
but rather, it has to do with the resolution of the frequency (cf. Section 3.1.3).
If we increase the number of time points in the model, this will increase the res-
olution in frequency. However, this also increases the time the model runs, and
thus, we require a balance to be struck between acceptable frequency resolution
and the time the model takes to run.
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Figure 4.15: Alfvén continuum at MLT 9 for a solar wind speed of 700 km/s.
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Figure 4.16: Alfvén continuum at MLT 9 for a solar wind speed of 1,000 km/s.
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4.4 Afterword

We have managed to cover the fundamental aspects of the ULF wave model
being used in this project. We have a good understanding of how the equation
that governs the model was derived, as well as how many of the model profiles
and parameters were obtained. We were also able to investigate the effect of the
waves generated by an external current driver along the magnetopause boundary,
examining the resonant interaction between the magnetic field lines and the waves
themselves. Lastly, looking at the agreement (which is quite good) between the
theoretical prediction of the Alfvén continuum (Equation 4.28) and that given by
the model gives us confidence in our model, such that we can proceed with the
particle aspect of this project.

It is now time to take the outputs from the ULF wave model and look at radial
transport in the outer radiation belt in response to the MHD waves we have
generated.
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Chapter 5

Particle Transport

The remaining part of the project involves analyzing the effect of ULF waves on
electron transport in the outer radiation belt in the equatorial plane. In order
to do this, we will use a test particle model that solves the guiding center drift
equations (Equations 2.31 and 2.32) using the outputs (electric and magnetic
fields) from the ULF wave model described in the previous chapter. Once we
have the solutions to the guiding center drift equations, we can trace the motion
of all the particles to see how they behave in the presence of the MHD waves and
from here, we can examine radial transport.

5.1 Test Particle Model

5.1.1 Choice of Magnetic Moment, M

In order to run the test particle model, one of the first things that needs to be
done is the selection of a magnetic moment that is appropriate for the particle
at its starting location. For radial transport, we require violation of the third
adiabatic invariant, while holding the first and second invariants constant. For
example, at geosynchronous orbit, the magnetic field strength is rougly 100 nT
and a typical electron may have an energy of around 1 MeV. Therefore, as a
rough guess, one could use M = 0.01 MeV/nT as the choice of magnetic moment
for the test particle code.

To obtain a value of M in a more concrete manner, we will use the equation
that governs drift resonances. In order to do this, we want to examine when the
zeroth-order angular drift speed matches the phase speed of the wave (Degeling
et al. [2007]). The phase of the wave is given by,

ψ (t) = mNφ− ωt (5.1)

77



where mN is the wave mode number. If we take the derivative with respect to
time of Equation 5.1, this gives us,

dψ

dt
= mN

dφ

dt
− ω (5.2)

where we may set dψ/dt = 0 in Equation 5.2 in order to satisfy the resonance
condition.

If we use Equation 2.32 in Equation 5.2, and use a dipole magnetic field (Equation
4.14) to calculate ∂B/∂r, this gives us a condition for ω,

ω =
3mNM

qγr2
(5.3)

where r is the radius at which the electrons with magnetic momentM are resonant
with waves of frequency ω (Degeling et al. [2007]). If we use Equation 2.33 (and
rearrange for γ) in Equation 5.3, we get the following equation,

(
r

RE

)4

+
2rMBE

mec2RE
−
(
3mNM

qωR2
E

)2

= 0 (5.4)

If we write Equation 5.4 in the following form,

AM2 +BM + C = 0 (5.5)

where,






A = − [3mN/ (qωR2
E)]

2

B = [2rBE/ (mec2RE)]
C = (r/RE)

4
(5.6)

then we can solve Equation 5.5 as a quadratic equation, given that the coefficients
in Equation 5.6 are constant. This allows us to select an appropriate value for
M to run the test particle model. The parameters chosen for Equation 5.6 are
found in Table 5.1.

Table 5.1: Parameters chosen to determine the best value for the magnetic mo-
ment, M .

Parameter Value

mode number, mN 2
frequency, ν 7 mHz
Earth magnetic field at surface, BE 31.1 µT
radial coordinate to resonance, r 5 RE
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5.1.2 Solving the Drift Equations

Now that we have settled the question on how to define the magnetic moment
for the test particle run, we need to figure out how it is we will examine the
radial transport aspect of the particles drifting in the radiation belts. We need to
solve the guiding center drift equations, which are given by Equations 2.31 and
2.32. Solving these equations will allow us to look at the time evolution of the
particle’s motion in the presence of the electric and magnetic fields it encounters
in the magnetosphere.

When solving a differential equation, we require either initial conditions or bound-
ary conditions in order to restrict the number of solutions (e.g. Equation 4.10,
without any conditions, has a multitude of solutions - it is only through the ap-
plication of conditions to this equation that we get solutions of a specific form).
As solving Equations 2.31 and 2.32 give us rgc and φgc, we can use the initial
position of the particle in r and φ as the initial conditions.

For a collection of particles, we create an array of initial conditions of the form
[r0i,φ0i], where i runs from 1 to N , the number of particles in the simulation,
such that each individual particle has its own pair of initial conditions in r and
φ.

In order to actually solve Equations 2.31 and 2.32, we provide the array of ini-
tial conditions to an explicit, adaptive Runge-Kutta (4,5) integration scheme in
MATLAB, better known as the Dormand-Prince (DOPRI) method. The DOPRI
method uses six function evaluations in order to calculate the fourth and fifth
order solutions to a given differential equation. The main difference between
the DOPRI method and other explicit Runge-Kutta (4,5) solvers is that DO-
PRI chooses its coefficients so as to minimize the error of the fifth order solution
(Dormand & Prince [1980]).

5.1.3 Verification

One of the big questions when writing computational models is, “How is one sure
the model is doing what it is supposed to do?” In order to answer that question,
one must run the model in scenarios in which the outcome is already known. If
the expected result is produced from the model, we can be pretty sure the model
is doing what it is supposed to be doing. Conversely, if the result obtained from
the model is not what we expect, it requires us to give a second look at the model
and look for possible errors.

In the previous chapter, the plot of the Alfvén continuum was one of the ways
to check the ULF wave model to see if the model predictions agreed with theory,
which they did (cf. Section 4.3.3). For the test particle model, we shall examine
how the particles behave without any perturbation from the waves. From Section
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2.1.2.2, without any magnetic perturbation, a particle will travel perpendicular
to both the magnetic field and its gradient and thus, the particle will drift on
a contour of constant magnetic field (a constant drift shell, consistent with the
third adiabatic invariant). This gives us a method of verify whether our test
particle model is doing what we expect it to do. If we turn off the perturbations
in the magnetic and electric fields (i.e. no waves), we should expect to trace the
particles on a contour of constant magnetic field.

5.1.4 Statistical Analysis

5.1.4.1 Mean and Variance

During the model run, particles will orbit around Earth and move across drift
shells (violating the third adiabatic invariant). At the final time, we want to
check on which contour of constant magnetic field (L∗), defined by,

L∗ =

(
BE

B

) 1
3

(5.7)

the particles are located and look at how this varies from the initial position of
L∗. We are also interested to see how the particles spread out from the initial
value of L∗.

In order to gather useful information from statistics, the electrons can be binned
in a histogram according to L∗ value with distribution function f(L∗). The mean
of the distribution is given by,

〈L∗〉 =
∫∞
−∞ L∗f (L∗) dL
∫∞
−∞ f (L∗) dL

(5.8)

and its variance (spread) is given by,

〈
(∆L∗)2

〉
=

∫∞
−∞ (L∗ − 〈L∗〉)2 f (L∗) dL

∫∞
−∞ f (L∗) dL

(5.9)

Equations 5.8 are 5.9 are best estimates and have associated error. For the mean,
the error is given by,

δ 〈L∗〉 = σL∗√
N

(5.10)

where N is the number of measurements (electrons) and σL∗ is the standard
deviation in the distribution of L∗. For the variance, the error is given by (Taylor
[1997]),
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δ
〈
(∆L∗)2

〉
= σL∗

√
2

N − 1
(5.11)

Equations 5.10 and 5.11 allow us to place upper and lower bounds on our best
estimates from Equations 5.8 and 5.9.

5.1.4.2 Connection to Electron Transport

The question to ask is, “How are Equations 5.8 and 5.9 connected to the trans-
port of electrons?” The connection comes from examining the time evolution of
Equations 5.8 and 5.9 as the wave driver along the magnetopause launches waves
into the magnetosphere.

Equation 5.8 (also known as the first moment) characterizes the convective (bulk)
transport of electrons. If the time evolution of 〈L∗〉 is linear (or quasi-linear), a
trend line can be fit to the data. This would give rise to a convection coefficient.

Equation 5.9 (also known as the second moment) characterizes the diffusive trans-
port of electrons. If the time evolution of

〈
(∆L∗)2

〉
is linear (or quasi-linear), a

trend line can be fit to the data. This would given rise to a diffusion coefficient
(cf. Equation 2.68).

Using statistics and the time evolution of the first and second moments gives
us a way of being able to characterize electron transport as either convective
or diffusive. Furthermore, it also allows us to see which one dominates at a
particular value of L∗ in the radiation belts.

5.2 Particle Tracing Results

We will now consider results from the particle tracing model for the cases of low
(300 km/s - Figures 4.4 and 4.5), moderate (700 km/s - Figures 4.6 and 4.7), and
high (1,000 km/s - Figures 4.8 and 4.9) solar wind speeds.

As can be seen in Figures 4.10, 4.11, 4.12, and 4.13, as the solar wind speed is
increased, the amplitude of the perturbations in the electric and magnetic fields
also increases. When the magnetic field perturbations die out, the electric field
perturbations do likewise (i.e. consistent with Faraday’s law). This is important,
as we are examining the transport of the particles under the influence of perturbed
fields. If the perturbations are getting stronger with increased solar wind speed,
there is an expectation this will change the trajectory the electrons follow in the
outer radiation belt. This is something we will examine in our results.

The first set of results will start the ring of particles at the same value of L∗ (in
this case, L∗ = 6) and examine how varying the solar wind speed has an effect on
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the radial transport of the electrons. We can then examine the first and second
moments to characterize the type of transport and if possible, fit trend lines to
look at transport coefficients.

5.2.1 Starting at L∗ = 6

In the test particle simulation, 300 particles are spaced in the equatorial plane at
L∗ = 6 with M = 0.0550 MeV/nT.

Figures 5.1, 5.3, and 5.5 show the position of the electrons in the equatorial
plane as time evolves and the ULF waves pass through the magnetosphere with
Eφ in the background for the cases of low, moderate, and high solar wind speeds.
Figures 5.2, 5.4, and 5.6 show the distribution of particles by binning them in L∗

for the cases of low, moderate, and high solar wind speeds.

As can be observed in Figures 5.1, 5.3, and 5.5, the particles are initially on the
contour of L∗ = 6. As time passes, the particles are perturbed from the initial
contour as the ULF waves pass through the magnetosphere. In the final time
frame, it can be seen that particles have spread out over the equatorial plane. In
fact, as the solar wind speed is increased, the particles are transported further
away from Earth and running along the magnetopause boundary. This is evident
from the histograms in Figures 5.2, 5.4, and 5.6; for higher solar wind speeds,
electrons are able to be transported to further drift shells in L∗, requiring them
to lose energy as they move further away to keep the first adiabatic invariant, M ,
constant.

In Figures 5.3 and 5.5, it can be seen that some of the electrons, as they drift
away from Earth, end up traveling along the magnetopause boundary. These
electrons, instead of drifting further to higher L∗ values, end up staying on the
contour which skirts the magnetopause boundary. This is not entirely physical
and is a limitation of the ULF wave model being used.

From Figures 5.2, 5.4, and 5.6, it should be noted that the particles tend to be
transported to the right of the mean value of L∗ (i.e. particles are transported
radially outwards). This would indicate that the transport process is dependent
on L∗, in that, particles are more inclined to move to a higher value of L∗. Some of
the diffusion coefficients listed in Table 2.1 show transport (specifically, diffusion)
can be dependent on the scaling of L.

In Figures 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6, the evolution of time runs from top to
bottom and the panels are represented by equal spacings in time from t = 0 (top
panel) to tmax = 2, 137.4 seconds (bottom panel).
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Figure 5.1: Electrons undergoing radial transport with vSW = 300 km/s with Eφ

in the background.
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Figure 5.2: Distribution of electron position in L∗ for vSW = 300 km/s (vertical
red line is initial position).
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Figure 5.3: Electrons undergoing radial transport with vSW = 700 km/s with Eφ

in the background.

85



1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

L* (RE)

pa
rti

cle
 c

ou
nt

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

L* (RE)

pa
rti

cle
 c

ou
nt

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

L* (RE)

pa
rti

cle
 c

ou
nt

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

L* (RE)

pa
rti

cle
 c

ou
nt

Figure 5.4: Distribution of electron position in L∗ for vSW = 700 km/s (vertical
red line is initial position).
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Figure 5.5: Electrons undergoing radial transport with vSW = 1, 000 km/s with
Eφ in the background.
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Figure 5.6: Distribution of electron position in L∗ for vSW = 1, 000 km/s (vertical
red line is initial position).
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5.2.2 Convective of Diffusive Transport?

Figures 5.7, 5.8, and 5.9 show the time evolution of the first and second moments
for the low, moderate, and high solar wind speed cases.

In order to look at transport coefficients, the data is fit with a trend line using
linear least-squares fitting (cf. Chapter 8, [Taylor, 1997]). From this, the data
can be assessed to see if it is following a linear or near-linear trend by examining
how the trend line fits within the error bars of the data. If, for the duration of
the model run, the data follows a trend that can be described as linear (or near-
linear), the slope of the linear least-squares trend line can be taken to calculate
a transport coefficient for the electrons.

In the case of the first moment (the mean value of L∗), it follows a quasi-linear
trend until it begins to level off. Where it begins to level off changes with the
solar wind speed; increasing the solar wind speed delays the point where the mean
levels off. Furthermore, increasing the solar wind speed increases the overall value
of the mean, indicating a greater exchange of energy between the electrons and
waves to conserve M . Note that the energy flow is from particles to waves and
not vice-versa. This is because the particles (or test particles) in our model are
not self-consistently coupled back to the waves.

The second moment (variance in the distribution) follows a quasi-linear trend for
the duration of the model run. As the energy exchange between electrons and
waves increases for greater solar wind speeds (because the amplitude of the wave
increases with solar wind speed), there is also an increase in the variance, as the
particles are much more spread out in the equatorial plane.

Now, as the title of this subsection suggests, “Is this convective or diffusive trans-
port?” The short answer is that, from examination of Figures 5.7, 5.8, 5.9, the
electrons are undergoing both convective and diffusive transport. Neither mode
of transportation particularly dominates during the run of the simulation.

As mentioned, the first moment begins to level off during the simulation, while at
the same time, the second moment continues to follow a quasi-linear trend. In this
region, diffusion would begin to take precedence as the variance is still increasing
(i.e. the particles are still spreading out), while the mean of the distribution is
roughly constant. It should be noted, however, that in terms of absolute numbers
of the deviation from the mean and the variance, they are roughly equivalent and
hence, both modes of transport are equally important. Furthermore, it can be
seen in Equation 2.61 that the transport coefficients are linked through DLL.

In the region where the first moment is following a quasi-linear trend, one could
calculate a convection coefficient, however, this is beyond the scope of this thesis
as convection coefficients are not being considered.
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Figure 5.7: Time evolution of the first and second moments for electrons starting
at L∗ = 6 with vSW = 300 km/s.
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Figure 5.8: Time evolution of the first and second moments for electrons starting
at L∗ = 6 with vSW = 700 km/s.
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Figure 5.9: Time evolution of the first and second moments for electrons starting
at L∗ = 6 with vSW = 1, 000 km/s.
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5.2.3 Calculating DLL

Although we are not considering convection coefficients for electron transport in
the equatorial plane, we are considering the diffusion coefficient. If Equation 2.68
is rearranged in the form,

〈
(∆L∗)2

〉
= (2DLL)τ (5.12)

then we can calculate DLL from the slope of the graph showing the time evolution
of the variance of the distribution of particles in L∗.

In Figures 5.10, 5.11, 5.12, a linear trend line is fit to the data. Note that the
first five data points from the second moments plots in Figures 5.7, 5.8, and 5.9
are removed before the trend line is fitted to the data. The justification for this
is that as the wave driver begins to generate ULF waves, it takes time for the
waves to reach the electrons and begin to transport them. These points, when
the waves are coming to them, only serve to skew the trend line.

Table 5.2: Diffusion coefficient, DLL, calculated for electrons in the outer radia-
tion belt with initial position at L∗ = 6 for low, moderate, and high solar wind
speeds.

vSW (km/s) DLL (day−1)

300 3.673
700 7.750
1,000 9.329

Table 5.1 shows the values obtained for the diffusion coefficient from the data
gives in Figures 5.10, 5.11, 5.12, with the unit of DLL converted from s−1 to hr−1

to be consistent with Table 2.1.

Increasing the solar wind speed increases the rate of diffusion. As the solar wind
speed is increased, the exchange of energy between the electrons and waves also
increases such that the electrons lose energy to move to higher L∗, consistent
with conservation of the first adiabatic invariant.

Lastly, one could scan over several values of L∗ to observe just how DLL scales
with L∗,

DLL = αL∗β (5.13)

by calculating DLL at each L∗ value, then plotting DLL versus L∗ on a log-log
plot, which would give the scaling coefficient β from the slope (assuming the
trend is linear on the log-log plot). The scaling of the diffusion coefficient with
L∗, however, has not been analyzed in this thesis (i.e. determining β in Equation
5.13). This is left to future work.
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Figure 5.10: Application of a linear trend to the second moment from Figure 5.7
to determine DLL.
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Figure 5.11: Application of a linear trend to the second moment from Figure 5.8
to determine DLL.
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Figure 5.12: Application of a linear trend to the second moment from Figure 5.9
to determine DLL.
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Chapter 6

Conclusion

6.1 Summary

Over the last five chapters, we have presented the basis for how to understand
radial transport of electrons in the outer radiation belt. The journey first started
with laying the foundation for the environment in which we wished to examine
electron transport. We followed this with an examination of particle dynamics
and how they are influenced by the electric and magnetic fields.

Once we had an understanding of our environment and the particles, we moved
onto talking about how ULF waves are generated in the magnetosphere by an
external current driver located on the magnetopause boundary and how to classify
the waves based on the dispersion relations from MHD theory.

We then brought our attention to the specifics of the ULF wave model of [Degeling
et al., 2011] and examined the effects on the radial and azimuthal electric fields
due to the perturbations in the magnetic field brought on by the wave driver. Us-
ing the outputs from the model, this allowed us to trace electrons in the equatorial
plane and discuss whether they were undergoing convective or diffusive transport
and then calculate the diffusion coefficient, DLL, based on the time evolution
of the variance of the distribution of particles in L∗ (we had not considered the
convection coefficient for electron transport).

As the solar wind speed was increased, from the distribution of particles in Figures
5.2, 5.4, and 5.6, two things can be observed. First, particles have a tendency to
move towards higher L∗ values, indicating transport is proportional to L∗β (where
β is a scaling power). Second, as the solar wind speed is increased, particles are
able to be transported to higher L∗ values (in Figure 5.2, the highest L∗ value is
found between 7 and 8 RE, whereas in Figure 5.6, the highest L∗ value is found
around 11 RE). This would indicate that as the solar wind speed is increased,
there is a greater energy exchange between the electrons and waves such that
the electrons are losing more energy as solar wind speed is increased in order to
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conserve M .

Through examination of the plots of the first and second moments over the course
of the model run, it was found that both convective and diffusive transport played
an important role, although in the region the first moment began to level off
(hence, the mean was roughly constant) while the second moment continued to
grow in a quasi-linear fashion, diffusion started to take a more prominent role
(although in terms of numbers, the deviation of the mean and the variance were on
the same order of magnitude). This allowed us to calculate diffusion coefficients
for electron transport (see Table 5.2), which increased as the solar wind speed
increased.

The key point to take from this is the solar wind speed has a direct effect on
radial transport of electrons in the radiation belt. As the speed is increased,
the electrons are able to be transported further out in the radiation belts (to
higher L∗), which, through conservation of the first adiabatic invariant, requires
the electrons to lose more energy to waves as the solar wind speed is increased.

6.2 Future Work

Given that radiation belt physics is not the most well understood area in space
physics, there is great potential for future work, even for electrons in the equa-
torial plane.

As mentioned in Section 5.1.1, the choice of magnetic moment for the particles
is a key part of the test particle code. For this thesis, M was kept constant for
all the runs at L∗ = 6. It would be of interest to note how DLL scales with M in
order to examine the effect (and to what degree) the magnetic moment has on
electron dynamics in the outer radiation belt.

Also, in terms of scaling, it would be of interest to see how DLL scales as a
function of L for the various solar wind speeds. This is something that has been
done by other authors (cf. Table 2.1), however, this was not considered in the
scope of this thesis.

Another area of interest would be to study convective transport in depth. Al-
though it was mentioned briefly in Chapters 2 and 5, it was not explored in depth,
as it was not part of the scope of this thesis. Figures of the first moment versus
time for low, moderate, and high solar wind speeds show that for a significant
portion of the model run, the trend is quasi-linear and that a convection coeffi-
cient could be derived. This would be something to consider in future work when
dealing with electrons in the equatorial plane.

We have been confined to the equatorial plane and kept the second adiabatic
invariant constant at J = 0. It would be of interest to move off the equatorial
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plane and begin to consider effects such as the curvature of field lines and the
magnetic field becoming a function of latitude.

There is much potential for future work, both for equatorially mirroring electrons
and for those being transported in 3D models.
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Appendix A

Derivation of the ULF Wave
Model Equation

The derivation of the equation that governs the ULF wave model is of utmost
importance to us. We require an equation to govern our system and without it,
we can know virtually nothing about it. While the derivation is important, it is
also quite cumbersome and detracts from the main points being made in Chapter
4, so we will present it in this appendix.

The approach taken in the appendix is based on work done previously by [Rankin
et al., 2006], [Kabin et al., 2007], and [Degeling et al., 2010].

A.1 Mathematical Interlude

A.1.1 Field Aligned Coordinate System

Given a physical problem, an appropriate choice of coordinate system is needed
and in certain cases, a specific choice of coordinate system will make the task of
solving the problem much easier. This also serves true when looking at waves in
the near-Earth environment. In deriving the equations for the wave model, we
will use what is known as the field aligned coordinate system taken from [Rankin
et al., 2006].

In the field aligned coordinate system, the three coodinates are α, β, and γ.
The coordinate α is the distance from the center of Earth to the field line being
examined. The coordinate β is the azimuthal angle, φ, that is swept in the
equatorial plane. Finally, the coordinate γ is the distance along a particular field
line. The coordinate system (α,β,γ) is non-orthogonal with the lone exception
being if the magnetic field is a pure dipole field (Rankin et al. [2006]).
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We can define the magnetic field, B, using the field aligned coordinate system
(Rankin et al. [2006], Degeling et al. [2010]),

B = B0 (α, β)∇α×∇β (A.1)

where B0 (α, β) is the magnetic field in the equatorial plane as a function of the
coordinates α and β.

A.1.2 Flux Coordinates

In order to derive the wave equation, we need to establish a covariant-contravariant
formalism using our field aligned coordinate system. In order to do this, we need
to look at some of the specific mathematics involved. The formalism that follows
is taken from [D’haeseleer et al., 1991].

A.1.2.1 Reciprocal-Basis Vectors

If we have a transformation, R, we can write it in terms of the coordinate basis
(u1, u2, u3). This allows us to establish tangent-basis vectors,






e1 = ∂R/∂u1

e2 = ∂R/∂u2

e3 = ∂R/∂u3
(A.2)

If we have a function, λ, and its gradient, ∇λ, we know from vector calculus that
we can write the differential of λ as,

dλ = ∇λ · dR (A.3)

with R acting as a position vector. If we define λ as being our coordinate basis
vector, ui (where i is an index), such that λ ≡ ui, this allows us to rewrite the
relationship in Equation A.3 as,

dui = ∇ui · dR (A.4)

From Equation A.4, we can expand dR by using the chain rule, since we know
R is a function of the coordinate basis ui. This expansion, using the Einstein
summation convention, is,

dR =
∂R

∂uj
duj (A.5)
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If we look at the first term on the right hand side of Equation A.5, we see that
this is the same form as the tangent-basis vector in Equation A.2. This allows us
to rewrite Equation A.5 as,

dR = eju
i (A.6)

If we insert Equation A.6 into A.4, we get,

dui = ∇ui · ejduj (A.7)

This imposes the condition that Equation A.7 can only hold if and only if,

∇ui · ej = δji (A.8)

where δji is the Knoecker delta function. Equation A.8 defines the reciprocal-basis
vectors:

ei ≡ ∇ui (A.9)

From the definition in Equation A.9, we can construct reciprocal-basis vectors
for our field line coordinate system,






eα = ∇α
eβ = ∇β
eγ = ∇γ

(A.10)

These basis vectors can be seen in the definition of the magnetic field in Equation
A.1.

A.1.2.2 Vector Decomposition

If we have a vector, V, we can decompose it into its covariant and contravariant
components. We may write V in covariant form as,

V =

(
V · ∂R

∂ui

)
∇ui = (V · ei) ei (A.11)

Equation A.11 allows us to write the vector in component form,

V = Vie
i (A.12)

We can also write Equations A.11 and A.12 in contravariant form (for complete-
ness),
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V =
(
V ·∇ui

) ∂R
∂ui

=
(
V · ei

)
ei (A.13)

Equation A.13 allows us to write the vector in component form,

V = V iei (A.14)

Both the covariant and the contravariant decompositions of a vector have equal
standing (i.e. they are both equally valid).

A.1.2.3 Metric Coefficients and Tensor

If we impose a condition such that there are no field-aligned currents in the system
(i.e. B · J = 0), this allows Equation A.1 to be written as,

B = σ∇γ (A.15)

where σ is a scalar function of space (Ray [1963]). This allows us, from looking
at Equations A.1 and A.15, to write,

σ∇γ = B0 (α, β)∇α×∇β (A.16)

If we dot Equation A.16 with itself, we have,

σ2∇γ ·∇γ = [B0 (α, β)]
2 (∇α×∇β) · (∇α×∇β) (A.17)

From [D’haeseleer et al., 1991], we have a useful vector relationship to cast Equa-
tion A.17 in a more useful form. The vector relationship we seek is,

(A×B) · (C×D) = (A ·C) (B ·D)− (A ·D) (B ·C) (A.18)

Equation A.18 allows us to modify the right hand side of Equation A.17, such
that we have,

σ2∇γ ·∇γ = [B0 (α, β)]
2 (∇α ·∇α) (∇β ·∇β)− (∇α ·∇β) (∇α ·∇β) (A.19)

A logical question arises when working with covariant-contravariant formalism:
“Is there a way to go between the two different formalisms?” The answer to this
question is yes and it is accomplished through the usage of metric coefficients, gij
and gij.
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We define the metric coefficients as a dot product of the tangent-basis vectors.
For the covariant formalism,

gij = ei · ej (A.20)

and the contravariant formalism,

gij = ei · ej (A.21)

From the above, it is implied that the metric coefficients are symmetric (i.e.
gij = gji and gij = gji). Furthermore, this allows us to rewrite Equation A.19 in
terms of these coefficients,

σ2gγγ = gααgββ −
(
gαβ

)2
(A.22)

If we look at gij is matrix form, we have,

gij =




gαα gαβ 0
gαβ gββ 0
0 0 gγγ



 (A.23)

where the elements in gαγ and gβγ are zero, as α and β are both orthogonal to
γ. From [D’haeseleer et al., 1991], we have the relationship that,

g−1 = det
(
gij

)
(A.24)

Taking the determinant of Equation A.23, we have,

det
(
gij

)
= gγγ

[
gααgββ −

(
gαβ

)2]
(A.25)

Plugging Equation A.25 into Equation A.22 and rearranging for σ, we have,

σ =
B0 (α, β)

gγγ
√
g

(A.26)

We will come back to Equation A.26 in the next section.

A.2 Deriving the Wave Equation

For a cold (T = 0) plasma, the wave equations for linear, low frequency waves,
assuming ideal MHD conditions, are,
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∂b

∂t
= −∇× E (A.27)

1

v2A

∂E

∂t
= (∇× b)⊥ − (µ0J× b)×B

B2
(A.28)

A.2.1 Faraday’s Law

First, we seek to rewrite Faraday’s law, Equation A.27, in terms of the field
aligned coordinates. In order to do that, we must decompose E into basis vectors,

E = Eα∇α + Eβ∇β (A.29)

using Equations A.12, along with Eγ∇γ = 0 for MHD waves (Degeling et al.
[2010]). If we plug Equation A.29 into A.27 and use the vector identity from
[D’haeseleer et al., 1991],

∇× (fA) = f∇×A+∇f ×A (A.30)

then Equation A.27 becomes,

∂b

∂t
= − (∇Eα ×∇α +∇Eβ ×∇β) (A.31)

where the terms involving the curl of a gradient have been omitted, as the curl
of a gradient is always zero.

Using the chain rule, we can expand the components of the electric field basis
vectors,

∇Eα =
∂Eα

∂α
∇α +

∂Eα

∂β
∇β +

∂Eα

∂γ
∇γ (A.32)

∇Eβ =
∂Eβ

∂α
∇α +

∂Eβ

∂β
∇β +

∂Eβ

∂γ
∇γ (A.33)

Inserting Equations A.32 and A.33 into A.31, we get,

∂b

∂t
= −

[(
∂Eβ

∂α
− ∂Eα

∂β

)
(∇α×∇β) +

∂Eα

∂γ
(∇γ ×∇α) +

∂Eβ

∂γ
(∇γ ×∇β)

]

(A.34)

If we use the follow relationship from [D’haeseleer et al., 1991],
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(∇λ)i = ∇λ · ei (A.35)

we can decompose ∂b/∂t into individual components. Looking at the α compo-
nent of the time derivative of the wave perturbation of the magnetic field,

(
∂b

∂t

)α

= −∂Eβ

∂γ
(∇γ ×∇β) ·∇α (A.36)

Now, if we use the Equation A.16, we can rewrite ∇γ in terms of ∇α and ∇β,

(
∂b

∂t

)α

= −∂Eβ

∂γ

[
1

σ
(∇α×∇β)×∇β

]
·∇α (A.37)

Trudging through the mathematical manipulations, we get,

(
∂b

∂t

)α

=
1
√
g

∂Eβ

∂γ
(A.38)

Of course, there are still the β and γ components to look at, however, the method-
ology is exactly the same. Thus, for brevity, the final results of the mathematical
endeavor will be quoted:

(
∂b

∂t

)β

= − 1
√
g

∂Eα

∂γ
(A.39)

(
∂b

∂t

)γ

= − 1
√
g

(
∂Eβ

∂α
− ∂Eα

∂β

)
(A.40)

A.2.2 Equation A.28

Just like for Faraday’s law, when we broke down the wave electric field into its
components, we must do the same for the perturbation in the magnetic field,

b = bα∇α + bβ∇β + bγ∇γ (A.41)

If we take the curl of Equation A.41 and only consider the perpedicular compo-
nent, then apply Equation A.30, we have,

(∇× b)⊥ = (∇bα ×∇α +∇bβ ×∇β +∇bγ ×∇γ)⊥ (A.42)

Now, just as we did with Faraday’s law, we must find the components of the
perpendicular component of the curl of the wave magnetic field. Again, the
procedure for doing this is just like what was done for Faraday’s law, so for
brevity, we will just list the components without the full derivation:
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(∇× b)α⊥ = − 1
√
g

(
∂bβ
∂γ

− ∂bγ
∂β

)
(A.43)

(∇× b)β⊥ =
1
√
g

(
∂bα
∂γ

− ∂bγ
∂α

)
(A.44)

Now, if we define another variable, Z, such that,

Z = µ0
(J× b)×B

B2
= − µ0

B2
(B · b)J (A.45)

and using the following definitions,

B · b = σ∇γ · b (A.46)

B2 = σ2∇γ ·∇γ = σ2gγγ (A.47)

this allows us to rewrite Equation A.45 as,

Z = −µ0bγJ

σgγγ
(A.48)

Another relationship we can invoke from [D’haeseleer et al., 1991] is related to
the metric coefficients,

gijg
jk = δki (A.49)

which allows us to write (gγγ)−1 as gγγ . The metric coefficient gγγ acts as a
lowering operator on bγ, such that Equation A.48 can be written as,

Z = −µ0bγJ

σ
(A.50)

Now, we can use Ampère’s law to write,

µ0J = ∇×B = ∇× (σ∇γ) (A.51)

which can be written as,

µ0J = ∇σ ×∇γ (A.52)

Now, using the chain rule, we can write,

∇σ =
∂σ

∂α
∇α +

∂σ

∂β
∇β +

∂σ

∂γ
∇γ (A.53)
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If we follow the same methodology as the previous derivations, we can find the
perpendicular components of µ0J in the exact same fashion. For brevity, the
results are,

(µ0J)
α =

1
√
g

∂σ

∂β
(A.54)

(µ0J)
β = − 1

√
g

∂σ

∂α
(A.55)

Given Equations A.54 and A.55, we can rewrite Equation A.50 in terms of its
components,

Zα = − bγ
σ
√
g

∂σ

∂β
(A.56)

Zβ =
bγ

σ
√
g

∂σ

∂α
(A.57)

The fruits of our labour allow us to write Equation A.28 in component form,

1

v2A

(
∂E

∂t

)α

=
1
√
g

[
−∂bβ

∂γ
+

1

σ

∂

∂β
(σbγ)

]
(A.58)

1

v2A

(
∂E

∂t

)β

=
1
√
g

[
∂bα
∂γ

− 1

σ

∂

∂α
(σbγ)

]
(A.59)

From [D’haeseleer et al., 1991], we have the following relationship,

(∇λ)i =
∂λ

∂uj
∇uj ·∇ui (A.60)

This allows us to rewrite the components of the wave electric and magnetic field
derivatives:

(
∂E

∂t

)α

= gαα
∂Eα

∂t
+ gαβ

∂Eβ

∂t
=

v2A√
g

[
−∂bβ

∂γ
+

1

σ

∂

∂β
(σbγ)

]
(A.61)

(
∂E

∂t

)β

= gαβ
∂Eα

∂t
+ gββ

∂Eβ

∂t
=

v2A√
g

[
∂bα
∂γ

− 1

σ

∂

∂α
(σbγ)

]
(A.62)

(
∂b

∂t

)α

= gαα
∂bα
∂t

+ gαβ
∂bβ
∂t

=
1
√
g

∂Eβ

∂γ
(A.63)
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(
∂b

∂t

)β

= gαβ
∂bα
∂t

+ gββ
∂bβ
∂t

= − 1
√
g

∂Eα

∂γ
(A.64)

(
∂b

∂t

)γ

= gγγ
∂bγ
∂t

= − 1
√
g

(
∂Eβ

∂α
− ∂Eα

∂β

)
(A.65)

Now, we can write Equations A.61 and A.62 in matrix form,

1
√
g

∂

∂γ

(
Eα

Eβ

)
=

(
gββ −gαβ

−gαβ gαα

)(
−∂bβ/∂t
∂bα/∂t

)
(A.66)

If we define the matrix G, such that,

G =

(
gαα gαβ

gβα gββ

)
(A.67)

its inverse can be used in Equation A.66, such that it can be written as,

1
√
g

∂

∂γ

(
Eα

Eβ

)
=

1

ggγγ
G−1

(
−∂bβ/∂t
∂bα/∂t

)
(A.68)

After some rearranging and multiplying both sides of Equation A.68 by ∂/∂γ,
and using the definition of σ from Equation A.26, we get,

∂

∂γ

[
B0 (α, β)

σ
G

∂

∂γ

(
Eα

Eβ

)]
=

(
− ∂

∂γ
∂bβ
∂t

∂
∂γ

∂bα
∂t

)
(A.69)

Now, through clever manipulation of Equations A.66 and A.69, we can write,

(
− ∂

∂γ
∂bβ
∂t

∂
∂γ

∂bα
∂t

)
=

1

σ

(
− ∂

∂β
∂
∂α

)(
σ
∂bγ
∂t

)
+

√
g

v2A
G

(
∂2Eα
∂t2

∂2Eβ

∂t2

)
(A.70)

Combining Equations A.69 and A.70, we get,

∂

∂γ

[
B0 (α, β)

σ
G

∂

∂γ

(
Eα

Eβ

)]
−

√
g

v2A
G

∂2

∂t2

(
Eα

Eβ

)
=

1

σ

(
− ∂

∂β
∂
∂α

)(
σ
∂bγ
∂t

)
(A.71)

Equation A.71 is the general equation that governs the ULF wave model. The
left-hand side of Equation A.71 represents the shear Alfvén mode, while the
right-hand side represents the compressional mode. If one is only considering
field lines oscillating independently (i.e. no field line coupling), the right-hand
side of Equation A.71 becomes zero.
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