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Abstract

As cancer is the leading global cause of death, an ongoing challenge is predicting an

individual’s cancer progression accurately, to facilitate personalized treatment plan-

ning. Individuals diagnosed with cancer may succumb to the illness or face cancer

recurrence post-treatment. The first part of this thesis focuses on predicting prostate

cancer recurrence using tissue images. Roughly 30% of men with prostate cancer who

undergo radical prostatectomy (RP) will suffer biochemical cancer recurrence (BCR).

Unfortunately, no current method can effectively predict which patients will expe-

rience BCR after RP. We develop and evaluate PathCLR, a novel semi-supervised

method that learns a model that can use tissue images along with clinicopathological

features to predict prostate cancer recurrence within five years after RP. We built and

evaluated models using two prostate cancer datasets: CPCTR and JHU. PathCLR’s

(10-fold cross-validation) F1 score was 0.61 for CPCTR and 0.85 for JHU, which were

statistically superior to the best-learned model that relied solely on clinicopatholog-

ical features. This finding suggests that there is essential predictive information in

tissue images at the time of surgery that goes beyond the knowledge obtained from

reported clinicopathological features, helping predict the patient’s five-year outcome.

The second part of this dissertation focuses on effective survival prediction and

evaluation for cancer patients. In the context of deploying individual survival predic-

tion models, a pivotal question emerges: Are we striving to compare survival durations

between patients (i.e., ‘Who survives longer between patients A and B?’) or are we

endeavoring to estimate a specific patient’s survival time (i.e., ‘How long will patient

A survive?’), among other scenarios. We address this fundamental inquiry and con-
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duct a comprehensive evaluation of such predictive models. We consider 9 common

solid tumors (breast, lung, prostate, etc.) using data from the Surveillance, Epidemi-

ology, and End Results (SEER) Program. We consider several different possible goals

of a survival prediction model and connect each goal to a specific evaluation metric.

We propose modified versions of the Mean Absolute Error (MAE) measure tailored

to address a query about a patient’s expected survival duration. Here, we trained

multiple models (including both conventional and advanced machine learning mod-

els) on various cancer types and rigorously evaluated those models using the proposed

metrics. We demonstrate that a model might be effective for one goal but ineffective

for another, and show that we can determine this based on the measure used. Our

findings underscore the importance of selecting the evaluation measure that is aligned

with the primary objective of a study. This research sets a path for future research

that seeks to further refine predictive models for oncological prognostication.
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Preface

This thesis is an original work by ‘Mahtab Farrokh’. Chapter 2 reproduces a paper

titled “Learning to Predict Prostate Cancer Recurrence from Tissue Images” [1] ac-

cepted in the Journal of Pathology Informatics written jointly with Neeraj Kumar,

Peter Gann, and Russell Greiner. My contributions were to design, develop, and

evaluate the proposed method, and write the paper under the supervision of Russell

Greiner and Peter Gann. This research was an international research collaboration

with Professor Peter Gann from the Department of Pathology, College of Medicine,

University of Illinois at Chicago, United States. Professor Gann provided access to

the clinical dataset and shared his expertise in the clinical field.

Chapter 3 reproduces a paper submission titled “Effective Survival Prediction for

Cancer Patient” written jointly with Shi-ang Qi, Neeraj Kumar, and Russell Greiner.

I contributed by developing and evaluating models to validate the paper’s objective

and was responsible for drafting the manuscript under the supervision of Russell

Greiner.
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“Happiness can be found even in the darkest of times. If one only remembers to

turn on the light.”

-Dumbledore, J.K. Rowling
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To my father and all the people fighting cancer.

vi



Acknowledgements

First of all, I express my deepest appreciation to my supervisor, dear Russ Greiner,

the best supervisor that I could have ever asked for. Working with him was truly a

dream come true. Thank you for the great human being that you are, and for all

that I have learned from you. Thank you for all those times that you reminded me

of “Let’s not lose hope” when everything seemed to not be working.

Next, I want to thank the members of the Greiner’s lab, a group of kind and

intelligent individuals with whom I had the privilege of working and learning. A

special acknowledgment goes to Shi-ang Qi and Neeraj Kumar for generously sharing

their knowledge, answering many of my questions, and providing support throughout

these past years. I’d like to thank Roberto Vega Romero, for his help during the initial

phases of my work and for guiding me in utilizing Google Cloud GPUs. Furthermore,

I want to thank Dr. Peter Gann for his valuable clinical insights and for addressing

many of my inquiries.

I am also grateful to the Alberta Machine Intelligence Institute (AMII) for pro-

viding funding and organizing many social events that brought me closer to many

people and gave me a sense of having a community. A special thanks goes to Warren

Johnston and Erika Hudon for their sincere and kind support over the past two years.

I extend immense gratitude to my dear friends, as it is through their presence

that Edmonton feels like home to me: Faezeh Haghverd, Jordan Coblin, Nikoo

Aghaei, Bedir Tapkan, Ehsan Kashfi, Blanca Miller, Vida Goudarzi, Ardavan Mofidi,

Hamza Emra, Kiarash Aghakasiri, Amirmohsen Sattarifard, Tahmineh Mohati, Par-

nian Mehinrad, Milad Zamani, and Aidan Bush.

vii



Also, I consider myself fortunate to have dear friends located beyond Edmonton

who regularly check in on me from different parts of the world: Zahra Kalanaki,

Monireh Safari, Sina Malakouti, Monireh Seifollahi, Mohsen Sadeghi, Sepideh Mol-

lanorouzi, Melika Mohsenirad, and Mahta Kiaei.

Lastly, I want to express my gratitude and love to my parents, Maryam Ebrahimi

and Nader Farrokh, for supporting me and always being there for me, even though it

is hard to show their support from a distance. I love you.

viii



Table of Contents

1 Introduction 1

2 Learning to Predict Prostate Cancer Recurrence from Tissue Im-

ages 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Tissue microarrays and image pre-processing . . . . . . . . . . 8

2.2.2 The PathCLR model . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Effective Survival Prediction for Cancer Patient 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Methods and Evaluation Metrics . . . . . . . . . . . . . . . . . . . . 30

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Conclusions 39

Bibliography 41

Appendix A: Survival Dataset 48

Appendix B: Individualized Survival Distribution (ISD) 49

Appendix C: SEER Features 51

Appendix D: Motivation for the Truncated Variation of MAE 53

ix



Appendix E: Evaluation Metrics in Details 55

Appendix F: Model Implementation Details 61

Appendix G: Detailed evaluation of selected cancer types 63

x



List of Tables

2.1 Characteristics of CPCTR dataset after data cleaning. Abbreviations:

Gleason Sum (GS), Prostate Specific Antigen (PSA), Lymph Node

Invasion (LN), Seminal Vesicle Invasion (SVI), Surgical Margin (SM),

Extra Capsular Extension (ECE) . . . . . . . . . . . . . . . . . . . . 10

2.2 Characteristics of JHU dataset after data cleaning. Abbreviations:

Gleason Sum (GS), Prostate Specific Antigen (PSA), Lymph Node

Invasion (LN), Seminal Vesicle Invasion (SVI), Surgical Margin (SM),

Established Capsular Penetration (ECP), Focal Capsular Penetration

(FCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Configuration and overview of components of PathCLR. . . . . . . . 15

2.4 10-fold cross-validation result with 95% CI. Setting #1 uses only clini-

copathological features, setting #2 uses only H&E stained TMA cores,

and setting #3 uses both clinicopathological features and H&E stained

TMA cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 10-fold cross-validation accuracy with 95% CI in different combination

modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Comparing PathCLR, a semi-supervised approach, with supervised

and Histotyping approaches, using 10-fold cross-validation accuracy

and a 95% CI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Statistics of patients included in each cancer type, including the num-

ber of cases (#Patinets), number of reported deaths (#Death), average

patient (Mean age), number of female patients (#Female), number of

male patients (#Male), and the number of features (#Feat.). . . . . . 29

3.2 Model comparison using the TL-MAE-PO metric for all types of can-

cer, based on monthly survival data. The numbers represent a 10-fold

cross-validation result with 95% CI. Bold numbers indicate superior

performance compared to other models. . . . . . . . . . . . . . . . . 35

xi



3.3 Model comparison using the C-index for all types of cancer, based

on monthly survival data. The numbers represent a 10-fold cross-

validation result with 95% CI. Bold numbers indicate superior perfor-

mance compared to other models. . . . . . . . . . . . . . . . . . . . . 36

C.1 List of features included in each type of cancer dataset. In this table,

prostate refers to prostate # 2. . . . . . . . . . . . . . . . . . . . . . 52

G.1 Model comparison using all the discussed metrics based on monthly

survival data for brain cancer. The numbers represent a 10-fold cross-

validation result with 95% CI. Bold numbers indicate the best perfor-

mance over the included set of models. . . . . . . . . . . . . . . . . . 63

G.2 Model comparison using all the discussed metrics based on monthly

survival data for breast cancer. The numbers represent a 10-fold

cross-validation result with 95% CI. Bold numbers indicate the best

performance over the included set of models. . . . . . . . . . . . . . . 64

G.3 Model comparison using all the discussed metrics based on monthly

survival data for kidney and renal pelvis cancer. The numbers

represent a 10-fold cross-validation result with 95% CI. Bold numbers

indicate the best performance over the included set of models. . . . . 64

G.4 Model comparison using all the discussed metrics based on monthly

survival data for liver cancer. The numbers represent a 10-fold cross-

validation result with 95% CI. Bold numbers indicate the best perfor-

mance over the included set of models. . . . . . . . . . . . . . . . . . 64

G.5 Model comparison using all the discussed metrics based on monthly

survival data for lung and bronchus cancer. The numbers represent

a 10-fold cross-validation result with 95% CI. Bold numbers indicate

the best performance over the included set of models. . . . . . . . . . 64

G.6 Model comparison using all the discussed metrics based on monthly

survival data for prostate #1 cancer. The numbers represent a 10-

fold cross-validation result with 95% CI. Bold numbers indicate the

best performance over the included set of models. . . . . . . . . . . . 65

G.7 Model comparison using all the discussed metrics based on monthly

survival data for prostate #2 cancer. The numbers represent a 10-

fold cross-validation result with 95% CI. Bold numbers indicate the

best performance over the included set of models. . . . . . . . . . . . 65

xii



G.8 Model comparison using all the discussed metrics based on monthly

survival data for stomach cancer. The numbers represent a 10-fold

cross-validation result with 95% CI. Bold numbers indicate the best

performance over the included set of models. . . . . . . . . . . . . . . 65

G.9 Model comparison using all the discussed metrics based on monthly

survival data for thyroid cancer. The numbers represent a 10-fold

cross-validation result with 95% CI. Bold numbers indicate the best

performance over the included set of models. . . . . . . . . . . . . . . 65

G.10 Model comparison using all the discussed metrics based on monthly

survival data for urinary bladder cancer. The numbers represent a

10-fold cross-validation result with 95% CI. Bold numbers indicate the

best performance over the included set of models. . . . . . . . . . . . 66

xiii



List of Figures

2.1 Example of a hematoxylin and eosin (H&E) stained tissue microarray

(TMA) image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Pre-processing flow chart for JHU (left) and CPCTR (right) datasets. 12

2.3 The first part of the PathCLR process extracts 200 patches in size

128 by 128 pixels in RGB format around segmented epithelial cells.

The output of HoVer-Net is a segmented tissue core that shows each

epithelial cell with a red circle. . . . . . . . . . . . . . . . . . . . . . 14

2.4 The second part of the PathCLR pipeline, which predicts prostate

cancer recurrence using 200 extracted patches per TMA core. First,

SimCLR learns the latent representation of each tissue patch. Next,

a learned binary classifier predicts BCR using the learned latent rep-

resentations along with 7 clinicopathological features, following a dis-

junction function to decide patient-level recurrence. . . . . . . . . . . 14

2.5 Accuracy on JHU and CPCTR datasets 10-fold cross-validation. Error

bar shows the 95% CI. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 ISD curves for three patients. The horizontal orange dotted line shows

the probability of 0.5, allowing us to read that the median time (where

the survival curve crosses the orange line) for patients 1 to 3 is 54, 21,

and 9 months, respectively. . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Kaplan-Meier survival curve for different types of cancer. The red

line indicates the median time for the whole population, and the blue

shadow (visible under high magnification) indicates the 95% confidence

interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Model comparison based on C-index in predicting 10-year prostate

cancer-specific mortality (for Prostate # 1 dataset), using a 10-fold

cross-validation with 95% CI. SQ is Survival Quilt, and D-MTLR is

Deep MTLR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xiv



B.1 ISD curve for two patients. The end of the study time (τ) for both

curves is 200 months. The truncated time to event prediction using

the median time of the left side ISD curve is 22 months and for the

right one is 200 months. . . . . . . . . . . . . . . . . . . . . . . . . . 50

D.1 KM curve linear extrapolation for prostate #1 dataset. . . . . . . . . 54

E.1 Time to event/censorship for three patients. . . . . . . . . . . . . . . 56

xv



Abbreviations

BCR: Biochemical Cancer Recurrence.

BS: Brier Score.

CI: Confidence Interval.

C-index: Concordance index.

CPCTR: Cooperative Prostate Cancer Tissue Resource.

ECE: Extra Capsular Extension.

ECP: Established Capsular Penetration.

FCP: Focal Capsular Penetration.

GS: Gleason Sum.

IoU: Intersection over Union.

ISD: Individualized Survival Distribution.

JHU: Johns Hopkins University.

KM: Kaplan Meier.

LN: Lymph Node Invasion.

MAE-PO: Mean Absolute Error Pseudo-Observation.

MAE: Mean Absolute Error.

ML: Machine Learning.

xvi



MTLR: Multi-Task Logistic Regression.

PathCLR: Pathology Contrastive LeaRning.

PQ: Panoptic Quality.

PSA: Prostate-Specific Antigen.

RP: Radical Prostatectomy.

SEER: Surveillance, Epidemiology, and End Results.

SM: Surgical Margin.

SVI: Seminal Vesicle Invasion.

TL-MAE-PO: Truncated Log Mean Absolute Error Pseudo-Observation.

T-MAE-PO: Truncated Mean Absolute Error Pseudo-Observation.

TMA: Tissue MicroArray.

xvii



Chapter 1

Introduction

Cancer is the leading cause of death in the world, with approximately 10 million

deaths and 19.3 million new cancer cases in 2020 [2]. Among these newly-detected

cancer patients, those of the breast, lung, colorectal, prostate, and stomach are the

most frequent cancer types. Numerous cancer-related challenges and applications

exist where machine learning (ML) can be effectively applied to develop and train

models. These models can aid oncologists in making decisions about personalized

treatments and end-of-life care, predicting patient responses to different therapies,

assessing risks of cancer recurrence, and optimizing dosages of chemotherapy, among

other aspects. Additionally, ML can streamline various time-intensive tasks like cell

and tumor annotation in pathology slides, analysis of genomic data, and more.

Among all of these possible applications, this dissertation discusses two of them:

First, the focus is on predicting cancer recurrence in patients with prostate cancer who

undergo radical prostatectomy (RP) surgery. RP involves the complete removal of the

prostate gland and adjacent lymph nodes, serving as a treatment for localized prostate

cancer in men. However, there exists a likelihood of experiencing biochemical cancer

recurrence (BCR) typically within 5 years post-RP surgery. BCR is identified by an

elevation in prostate-specific antigen (PSA) levels detected in blood tests conducted

after RP surgery, indicating the occurrence of either local recurrence or the spread of

cancer to distant sites. The objective of this task is framed as a binary classification
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specific to the 5-year time point, with the goal of predicting whether a patient will or

will not experience BCR within five years after undergoing RP surgery.

Presently, physicians employ the CAPRA-S scoring method to estimate the like-

lihood of biochemical cancer recurrence (BCR), relying solely on clinicopathological

features. Clinicopathological features encompass both clinical factors (e.g., age, race)

and pathology-related characteristics determined by a pathologist during the analysis

of tissue images. An example of a pathology-related feature is the Gleason Score,

which characterizes the abnormality and aggressiveness of cancer cells based on their

appearance under a microscope. In this work, we explore if using information from

tumor tissue slides obtained after surgery would help to produce a more accurate

prediction than a prediction that is based on only clinicopathological features.

We specifically focus on more challenging cases for BCR prediction, with match-

ing clinicopathological characteristics, where the majority of patients fall into an

intermediate-risk category, which is more complex to manage compared to the lower

(less aggressive cancer) or higher scores (more aggressive). Therefore, Chapter 2 of

this thesis explores how to accurately predict BCR within five years after RP surgery.

Our contribution in this work is that we show there is critical information in tissue

slides obtained after surgery by introducing a new method, called PathCLR (Pathol-

ogy Contrastive LeaRning) – an automated pipeline capable of efficiently processing a

patient’s tissue cores and providing BCR probability predictions in less than two sec-

onds. Additionally, we compare our method with a supervised CNNmodel, CAPRA-S

score, and a previous benchmark for BCR prediction, and we demonstrate that our

pipeline predicts recurrence more accurately than these alternative approaches.

Secondly, we engage with another challenging task: rather than considering only

predicting a binary result at 5 years, here we instead predict survival probability over

all future time points based on a patient’s clinical features. It is important to em-

phasize that this investigation is centered on forecasting survival probability, distinct

from the earlier study which concentrated on cancer recurrence prediction. Further-
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more, this study expands beyond the exclusive focus on prostate cancer survival

prediction. It encompasses nine common solid tumors, specifically those affecting the

brain, breast, kidney, liver, lung, stomach, prostate, thyroid, and urinary bladder.

To predict survival probability over all future time points, we learn various indi-

vidualized survival distribution (ISD) predictor models, that each predict a patient’s

expected time from detection to death. We elaborate on the significance of ISD mod-

els and how they offer more comprehensive information about individual patients.

Moreover, this study has a specific focus on rigorously and effectively evaluating

ISD models. We discuss the need for evaluation metrics that are relevant to the

research objectives and as a result, we identify which objective leads to which evalua-

tion metric. Additionally, this research places a particular emphasis on the thorough

and effective evaluation of ISD models. We discuss the general importance of utilizing

evaluation metrics that align with the research objectives, thereby establishing a clear

connection between each objective and its corresponding evaluation metric.

Chapter 3 describes this work, and our distinctive contribution lies in proposing a

more effective way of evaluating survival prediction models by extending the recent

MAE Pseudo-Observation (MAE-PO) measure for evaluating survival models and

introducing the truncated and truncated-log variations of MAE-PO (T-MAE-PO and

TL-MAE-PO). We train and evaluate multiple common ISD predictor models for each

cancer type, and identify the top-performing model for each specific cancer type.

Lastly, Chapter 4 concludes this thesis and discusses potential future applications

and research directions.

3



Chapter 2

Learning to Predict Prostate
Cancer Recurrence from Tissue
Images

2.1 Introduction

World-wide each year, around 1.6 million men are diagnosed with prostate cancer,

and 366,000 will die of the disease [3]. A majority of these patients undergo radical

prostatectomy, either as an initial treatment choice or following a period of active

surveillance [4]. Within five years of the surgery, about 20% to 40% of these men

who undergo radical prostatectomy experience biochemical cancer recurrence (BCR),

which is detected by elevated prostate-specific antigen (PSA) levels [5]. The accurate

prediction of patients prone to experiencing BCR after surgery is crucial for deter-

mining the most appropriate post-surgery course of action. This includes identifying

patients who might benefit from additional treatment, advanced imaging to detect

metastases, genomic testing, or more frequent monitoring.

More specifically, while it is true that most patients with BCR do not die from

the disease, it is still a strong risk factor for subsequent metastasis and mortality.

Patients with a “Yes” prediction could benefit from more frequent PSA monitoring.

In addition, this “Yes” prediction suggests that the patient could benefit from new

imaging techniques (e.g., PSMA-targeted PET) (PSMA = prostate-specific mem-
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Figure 2.1: Example of a hematoxylin and eosin (H&E) stained tissue microarray
(TMA) image.

brane antigen; PET = positron emission tomography) to detect occult metastases

or local/regional spread soon after surgery. If this produces visualized lesions, the

patient could opt for local or systemic therapy or both.

Due to the frequency of BCR occurrence, several projects have been developed to

create multivariable prediction tools aimed at predicting BCR at the time of diagnosis.

These tools include models utilizing clinicopathological features and gene profiling [6].

One such model, the CAPRA-S score, employs clinicopathological features such as

PSA level, Gleason sum score, and other pathology-reported variables to calculate a

risk score associated with progression-free probability at three and five years; it has

shown favorable results for BCR risk assessment [7, 8]. Additionally, some approaches

use gene profiling biomarkers, such as the Decipher test, on bulk samples of surgical

tissue, to forecast recurrence after prostatectomy [6, 9, 10]. Despite the advancements

facilitated by these models, widespread clinical adoption has not occurred due to cost

barriers or failure to achieve the required level of accuracy.
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Therefore, in this study, we introduce a novel deep learning-based method to con-

struct BCR prediction models that leverage both clinicopathological features and in-

formation from inexpensive, routinely available images of tumor tissue slides stained

with hematoxylin and eosin (H&E), obtained after surgery. Figure 2.1 shows an ex-

ample of H&E stained tissue image. Recent research has already demonstrated that

deep neural networks can identify recurring tumors [11]. These earlier systems rely

on common approach supervised learning, as each involves directly learning a model

that labels each instance with its outcome. By contrast, our method, called PathCLR

(Pathology Contrastive LeaRning), takes a semi-supervised approach, which involves

a self-supervised learning step before the supervised step. Note that emerging evi-

dence suggests that semi-supervised learning often outperforms traditional supervised

learning methods, especially when labeled data is limited, as is often the case in med-

ical research [12–14].

This motivates our PathCLR approach, which first trains a self-supervised Sim-

CLR model [15] based on tissue microarray images (TMAs) (see Figure 2.1 as a TMA

example) to generate a set of latent representations for a given tissue core of a new pa-

tient. Note this self-supervised step is unsupervised, as it does not require a BCR label

for each instance. Subsequently, PathCLR utilizes this set of latent representations,

along with relevant clinical features and reported pathology variables of the patient,

to train a neural network (NN) classifier. The goal is to predict whether a specific pa-

tient will experience BCR within five years after surgery. This personalized approach

sets PathCLR apart from previous methods, as PathCRL (1) provides a prediction

about an individual patient (and not about groups of patients) and (2) provides a

specific individual Yes, No prediction for the patient, (and not a hazard ratios relative

to a baseline).

Our research findings demonstrate that incorporating a novel semi-supervised ma-

chine learning method shows promise for rapid and inexpensive prediction of BCR

directly from routinely stained tumor images, especially when combined with clinico-
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pathological variables. Our proposed method is cost-effective because many centers

now routinely capture high-resolution H&E scans for all cancer types, with each im-

age costing approximately $4 and a scan duration of around 1 minute per slide (or

about 3 minutes at 40x magnification). Consequently, PathCLR, leveraging these

readily available images without the need for additional expert annotations, presents

a highly cost effective approach.

We suggest that, indeed, the pathology slides contain valuable information beyond

the conventional variables such as Gleason grade, PSA level, surgical margin, etc.

Furthermore, we demonstrate that the label-free learning approach on TMA cores,

which produces latent representations of their histological patterns, plays a critical

role in achieving improved BCR prediction accuracy. Our main contributions are:

1. Our work focuses on challenging datasets where the majority of Gleason grade

sum scores are 7 (3 + 4 or 4 + 3). This differs from many previous stud-

ies that focus on BCR prediction without matching patients with respect to

their clinicopathological characteristics, specifically the Gleason sum score. As

we conduct a study on BCR on a carefully selected cohort of patients with

matched clinicopathological variables, we focus on more challenging cases for

BCR prediction.

2. We introduce PathCLR, an automated pipeline capable of efficiently processing

a patient’s TMA cores and providing BCR probability predictions in less than

two seconds.

3. To demonstrate the effectiveness of our pipeline in recurrence prediction, we

compare our semi-supervised PathCLR method with a supervised CNN model,

CAPRA-S score, and a previous benchmark [16] for BCR prediction. This

comparison shows that our pipeline predicts recurrence more accurately than

these alternative approaches.
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This chapter is organized as follows: Section 2.2 describes the two datasets that we

used and then proposes the PathCLR pipeline. Section 2.3 provides the evaluation

metrics that we used in Section 2.4 to present our results. We compare our proposed

approach to previous work on BCR prediction in Section 2.5, before concluding in

Section 2.6.

2.2 Material and Methods

2.2.1 Tissue microarrays and image pre-processing

We utilized images and data from two prostate cancer cohorts: TMAs and clinico-

pathological data from the Cooperative Prostate Cancer Tissue Resource (CPCTR) [17],

funded by the National Cancer Institute, USA and the PSA Progression dataset from

the Prostate Cancer Biorepository Network (PCBN), funded by the Prostate Cancer

Research Program of the US Department of Defense. We refer to the later cohort as

JHU as all patients in this dataset were treated at Johns Hopkins University.

Both TMAs in our study employed a matched case-control design to define re-

currence based on BCR or clinical progression after surgery. Guidelines describe

post-RP BCR defined as a serum PSA of more than 0.2 ng/ml for both CPCTR and

JHU datasets. The BCR label in both of the datasets is based on a single evaluation

unless the reported PSA level was very close to the threshold. However, they differed

in their approach to selecting control tumors. In the CPCTR dataset, controls were

chosen from patients who survived at least five years without experiencing BCR. The

matching was done on a 1:1 basis, considering factors such as age, race, Gleason grade

(primary and secondary), and the treating hospital.

On the other hand, the JHU cohort used an incidence density sampling approach.

For each case with BCR, one control was selected from the pool of patients who

had not experienced BCR up to that specific time point. Case-control matching was

done based on age, race, pathologic stage, and Gleason sum. This sampling approach
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allowed for the possibility that initial controls could later become cases and also that

controls could be selected more than once.

Since our primary goal was to compare the risk of developing BCR within five years,

we limited the selection of control patients to those who survived the entire five-year

period without experiencing BCR. TMA images were pre-processed to remove spots

with insufficient tissue, ensuring that those with more than 80% white background

were eliminated. The flow chart in Figure 2.2 shows how images from recurrent or non-

recurrent patients were selected for final analyses. The CPCTR dataset comprised

189 cases and 185 controls, with a total of 1,281 TMA cores. In the JHU dataset,

there were 451 cases and 195 controls comprising 2,983 cores. Both datasets included

up to four cores per patient.

The main characteristics of the patients and tumors included in our analysis are

summarized in Table 2.1 and Table 2.2, for CPCTR and JHU datasets, respectively.

Note that the PSA feature in Tables 2.1 and 2.2 represents the PSA laboratory

readings immediately post-prostatectomy. This is distinct from the later rise in PSA

levels, which indicates BCR. The TMA image resolution in the CPCTR dataset is

40x, while in the JHU dataset is 20x. We utilized the Python programming language

along with OpenCV1 and the Python Image Library (PIL)2 for image visualization.

To fine-tune the patch extractor component of PathCLR, we employed the MoNuSAC

dataset [18] for learning a model to segment epithelial cells. This dataset is signif-

icant as it is extensive, diverse, and hand-annotated, specifically designed for the

MoNuSAC2020 challenge, which aimed to identify cancerous epithelial cells and three

types of immune cells from H&E stained tissue images. Notably, the top methods

submitted to this challenge achieved inter-human agreement levels in their perfor-

mance.

1https://opencv.org/
2https://pillow.readthedocs.io/
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Table 2.1: Characteristics of CPCTR dataset after data cleaning. Abbreviations:
Gleason Sum (GS), Prostate Specific Antigen (PSA), Lymph Node Invasion (LN),
Seminal Vesicle Invasion (SVI), Surgical Margin (SM), Extra Capsular Extension
(ECE)

CPCTR Total, n(%) No-BCR, n(%) BCR, n(%)

#Patients 374 185 189

GS = 3 + 2 2 (0.5) 1 (0.5) 1 (0.5)

GS = 3 + 3 85 (22.7) 41 (22.1) 44 (23.2)

GS = 3 + 4 196 (52.4) 98 (52.9) 98 (51.8)

GS = 3 + 5 7 (1.8) 2 (1.1) 5 (2.6)

GS = 4 + 3 56 (14.9) 27 (14.5) 29 (15.3)

GS = 4 + 4 18 (4.8) 11 (5.9) 7 (3.7)

GS = 4 + 5 9 (2.4) 5 (2.7) 4 (2.1)

GS = 5 + 3 1 (0.2) 0 (0.0) 1 (0.5)

PSA 10.5 ± 11.5 8.8 ±6.18 12.2 ± 14.8

LN 17 (4.5) 6 (3.2) 11 (5.8)

SVI 17 (4.5) 8 (4.3) 9 (4.7)

SM = tumor free 226 (60.4) 124 (67) 102 (53.9)

SM = tumor focal at margin 114 (30.4) 49 (26.4) 65 (34.3)

SM = tumor widespread at margin 30 (8.6) 9 (4.8) 21 (11.1)

SM = unknown 4 (1) 3 (1.6) 1 (0.5)

ECE = none 235 (62.8) 111 (60) 124 (65.6)

ECE = multifocal 28 (7.4) 13 (7) 15 (7.9)

ECE = focal 98 (26.2) 56 (30.2) 42 (22.2)

ECE = established 12 (3.2) 4 (2.16) 8 (4.2)

ECE = unknown 1 (0.2) 1 (0.5) 0 (0)

2.2.2 The PathCLR model

Taking inspiration from the success of recent studies in applying machine learning

techniques to the medical field, we propose a semi-supervised method for BCR pre-

diction. Semi-supervised learning has proven to achieve notable performance using
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Table 2.2: Characteristics of JHU dataset after data cleaning. Abbreviations: Glea-
son Sum (GS), Prostate Specific Antigen (PSA), Lymph Node Invasion (LN), Semi-
nal Vesicle Invasion (SVI), Surgical Margin (SM), Established Capsular Penetration
(ECP), Focal Capsular Penetration (FCP)

JHU Total, n(%) No-BCR, n(%) BCR, n(%)

#Patients 646 195 451

GS = 2 + 3 2 (0.3) 2 (1.0) 0 (0)

GS = 3 + 2 5 (0.7) 3 (1.5) 2 (0.4)

GS = 3 + 3 99 (15.3) 49 (25.1) 50 (11.0)

GS = 3 + 4 263 (40.7) 94 (48.2) 169 (37.4)

GS = 3 + 5 13 (2.0) 3 (1.5) 10 (2.2)

GS = 4 + 3 136 (21.0) 29 (14.8) 107 (23.7)

GS = 4 + 4 60 (9.2) 8 (4.1) 52 (11.5)

GS = 4 + 5 56 (8.66) 6 (3.0) 50 (11.0)

GS = 5 + 3 3 (0.4) 0 (0) 3 (0.6)

GS = 5 + 4 9 (1.3) 1 (0.5) 8 (1.7)

PSA 11.72 ± 9.66 10.21 ± 7.75 12.38 ± 10.32

LN 99 (15.3) 11 (5.6) 88 (19.5)

SVI 149 (23.0) 29 (14.8) 120 (26.6)

SM = postive 196 (30.3) 35 (17.9) 161 (35.6)

ECP = positive 413 (63.9) 111 (56.9) 321 (71.1)

FCP = positive 235 (36.3) 102 (52.3) 133 (29.4)

fewer labeled samples for training when compared to previous fully supervised ap-

proaches [12]. In our proposed PathCLR algorithm, the initial step involves learning

the latent representations in a self-supervised manner, which means no diagnostic

label is required during this training phase. Subsequently, PathCLR utilizes these la-

tent representations to describe each training patient and then employs their outcome

labels to train a model capable of predicting BCR in a supervised manner.

To learn the feature representation of tissue images, we adopted the state-of-the-

art self-supervised SimCLR algorithm, which is a simple framework for contrastive
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Figure 2.2: Pre-processing flow chart for JHU (left) and CPCTR (right) datasets.

learning of visual representations. In essence, SimCLR learns the latent representa-

tion of an image by maximizing agreement between differently augmented views of

the same image through a contrastive loss [15]. To use the training examples effec-

tively, we implemented various data augmentations, such as random cropping, color

distortion, and blurring. We employed contrastive learning [19] to acquire highly con-

trasting features from TMA cores. An advantage of the proposed PathCLR model is

its adaptability with varying numbers of TMA cores per patient.

To begin our analysis, we recognize the importance of preprocessing tissue images,

considering that these images may vary in size and degree of centering. Extracting

informative image patches is a crucial initial step. Additionally, we believe that the

most relevant regions for BCR prediction are likely to be around epithelial cells and

the surrounding stroma, as demonstrated in a prior study [20].

To segment epithelial cells, we employed the HoVer-Net model [21], known for its

capabilities in automatic nuclear instance segmentation and classification in histology

images. This model simultaneously detects epithelial cells, lymphocytes, macrophages,
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and neutrophils. The HoVer-Net model is currently a state-of-the-art model for seg-

menting these nuclei with high accuracy. We fine-tuned the HoVer-Net model on

the MoNuSAC2020 dataset, utilizing image augmentation and pretrained weights to

achieve even higher segmentation accuracy [18].

To accommodate SimCLR’s requirement of fixed-size inputs, we randomly sampled

200 patches, each measuring 128× 128 pixels in spatial dimensions, from every TMA

image. These patches were centered at the positions of each nucleus detected by the

HoVer-Net model. However, the number of detected epithelial cells in each TMA core

varied, which could differ from the requirement that each patch include exactly 200

nuclear centers.

To address this, if we identified more than 200 epithelial cells in a TMA core, we

employed K-Means clustering to group the (x, y) epithelial cell center positions into

200 clusters. From these clusters, we selected the center of each cluster as one of the

200 regions of epithelial cells of interest. This clustering approach aimed to maximize

the coverage of tumor-rich areas and minimize the overlapping of extracted patches.

For TMA cores with fewer than 200 epithelial cells, we took the (x, y) spatial

position of the k detected epithelial cell centers and randomly added 200−k additional

spatial positions in the vicinity of the detected cells. This process allowed us to

generate 200 patches for each TMA core. Figure 2.3 visually illustrates the described

patch extraction process from each TMA core image.

As depicted in Figure 2.4, the PathCLR pipeline consists of two main components.

First, the self-supervised SimCLR model learns the latent representation of all ex-

tracted tissue patches. In this step, we used ResNet34 [22] as the base architecture

in SimCLR to produce latent representations of input image patches.

Secondly, the final supervised binary classification neural network incorporates all

relevant information specific to each patient. This includes both the imaging features

expressed through the SimCLR encoding and seven observed clinicopathological fea-

tures, such as PSA level, surgical margin, Gleason grade, and others. The objective
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Figure 2.3: The first part of the PathCLR process extracts 200 patches in size 128 by
128 pixels in RGB format around segmented epithelial cells. The output of HoVer-
Net is a segmented tissue core that shows each epithelial cell with a red circle.

Figure 2.4: The second part of the PathCLR pipeline, which predicts prostate cancer
recurrence using 200 extracted patches per TMA core. First, SimCLR learns the
latent representation of each tissue patch. Next, a learned binary classifier predicts
BCR using the learned latent representations along with 7 clinicopathological features,
following a disjunction function to decide patient-level recurrence.

of this step is to train a neural network model that can accurately predict whether a

patient will experience BCR within five years after surgery or not.

Note that the final supervised binary classification neural network can capture

nonlinear interactions among various input features, encompassing both latent repre-

sentations of TMA image patches and clinicopathological variables. This capability

is important for accurate BCR prediction.

The described binary classifier predicts the recurrence probability within five years

for each extracted patch. We then compute the average recurrence probabilities of

all patches from a single TMA core. If the average probability from a TMA core
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is higher than a specified threshold (in this case, 0.6), we predict that the patient

will experience BCR. The threshold was empirically determined by internal cross-

validation. If a patient has multiple tissue cores available, we calculate the average

recurrence prediction probability for each TMA core and return the “disjunction” –

indicating a positive prediction if any of the tissue cores is predicted as a recurrence

case. We considered various combination rules (e.g., conjunction, majority) but found

that the disjunction method performed better (see Section 2.4).

We also compared the results from the binary classification neural network us-

ing (1) only clinicopathological features, (2) only the SimCLR output, and (3) both

input sources combined. The PathCLR pipeline is implemented using the Python

programming language and the Keras library3. The HoVer-Net and SimCLR parts

of the pipeline are implemented using the PyTorch library4. Image pre-processing

and transformations were done using the transformers in the torchvision5 library. Ta-

ble 2.3 provides more information regarding the main components of the PathCLR

pipeline. Note, that the provided configurations for SimCLR in this table are given

for the fine-tuning phase because we used pre-trained weights of SimCLR.

Table 2.3: Configuration and overview of components of PathCLR.

Model #Parameters #Layers Activation Optimization # Epochs Batch size

SimCLR 21M 34 ReLU SGD/Adam 100 256

Binary Classifier 32K 4 ReLU Adam 200 32

2.3 Evaluation Metric

In the context of the BCR binary classification task, selecting an appropriate eval-

uation metric is crucial. In our study, we reported two main metrics: accuracy and

F1-score:

3https://keras.io/
4https://pytorch.org/
5https://pytorch.org/vision/
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Accuracy =
TP + TN

TP + FP + TN + TP
(2.1)

F1 =
2

1

recall
+ 1

precision
=

TP

TP + 1
2
(FP + FN)

(2.2)

where TP (resp., TN , FP , FN) is the number of true positive (resp., true negative,

false positive, false negative) instances. These metrics are commonly used for binary

classification tasks and provide valuable insights into the performance of our predictive

model.

To assess the performance of PathCLR, we employed 10-fold cross-validation and

reported a 95% confidence interval. This involved training-&-testing 10 times, with

each iteration training on nine parts (representing 90% of the dataset) and testing

on one left-out part (representing 10% of the dataset). For evaluating our epithelial

segmentation, we used the panoptic quality (PQ) metric,

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |+ 1
2
|FP |+ 1

2
|FN |

(2.3)

which was also used in the MoNuSAC2020 data challenge to evaluate the effectiveness

of nuclear segmentation and classification algorithms. Here, p represents the predicted

set of pixels in the nucleus, g represents the set of pixels in the ground truth, and

IoU(p, g) calculates the Intersection over Union (IoU) by dividing the number of

elements in the intersection of the sets by the size of their union.

To determine the significance of our results, we utilized a paired two-sided t-test

with a significance level of p < 0.05 – i.e., a result is considered significant if the

p-value obtained from the t-test is less than 0.05.

2.4 Results

As described in Section 2.2, the initial step of the PathCLR pipeline involves segment-

ing epithelial cells and utilizing the segmented epithelial cell centers to extract 200
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patches from a TMA core. Our fine-tuned HoVer-Net model demonstrated superior

performance compared to the winning results from the MoNuSAC2020 challenge, in-

dicating its promising capabilities for epithelial cell detection. While the best reported

PQ for the validation dataset in the MoNuSAC2020 challenge website is 0.611, our

model achieved a higher PQ of 0.675, showing its improved performance in epithelial

cell segmentation.

To investigate the impact of using H&E-stained tissue slides on recurrence predic-

tion, we trained models in three distinct settings:

1. Using only clinicopathological features

2. Using only H&E-stained TMA cores

3. Using both clinicopathological features and H&E-stained TMA cores

In order to conduct a fair evaluation of setting #1, we systematically explored

various combinations of clinicopathological features and different learning models.

After thorough experimentation, we found that the best outcome was achieved by

employing a two-layer feed-forward neural network with cross-entropy loss. Impor-

tantly, the optimal result was obtained by using only the precise set of CAPRA-S

score’s features [7]. The selected clinicopathological features for the first setting are

as follows:

clinicopathological features = { PSA Level, Surgical Margin, Primary Gleason Grade,

Secondary Gleason Grade, Extracapsular Extention, Lymph Node, Seminal Vesicle }

In setting #3, we maintained the same listed set of clinicopathological features for

a fair comparison with the other settings. In both settings #2 and #3, we employed

the SimCLR network using ResNet34 with Xavier weight initialization [23]. Note,

the other setting #1 does not use ResNet34.
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Table 2.4:
10-fold cross-validation result with 95% CI. Setting #1 uses only clinicopathological
features, setting #2 uses only H&E stained TMA cores, and setting #3 uses both
clinicopathological features and H&E stained TMA cores.

Accuracy F1-Score

CPCTR JHU CPCTR JHU

Setting #1 53.7 ± 2.77 69.81 ± 0.54 0.544 0.82

Setting #2 56.1 ± 3.47 69.82 ± 0.39 0.6 0.82

Setting #3 59.5 ± 3.29 75.25 ± 3.48 0.614 0.85

To handle binary classification in all three settings, we experimented with differ-

ent numbers of layers and regularization techniques (both L1 and L2 regularization

penalties along with early stopping) to prevent overfitting and optimize the model’s

performance.

Table 2.4 and Figure 2.5 present the results obtained from 10-fold cross-validation

on both the CPCTR and JHU datasets. Notably, using solely clinicopathological

features yields results that are almost on par with a trivial “just say BC” prediction,

where BCR is predicted for all cases regardless of their features. This “just say BCR”

prediction would achieve an accuracy of 69.81% (451/646) on the JHU dataset and

50.5% (189/374) accuracy on the CPCTR dataset.

We assume the reason clinicopathological variables alone are insufficient for BCR

prediction lies in the fact that the case-control pairs are carefully matched for clinico-

pathological features in both the CPCTR and JHU datasets. Consequently, there are

patients with similar clinicopathological features but different outcomes. As a result,

classifiers relying solely on clinicopathological features struggle to distinguish between

recurrence and non-recurrence cases, which hampers their predictive performance.

In setting #1, we compared the results of our pipeline with a conventional model

that relies solely on the CAPRA-S score [7]. However, upon experimentation, we

observed that applying a learned neural network to the clinicopathological features

yielded slightly better results. We attribute this improvement to the neural network’s
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ability to discover non-linear patterns within the features, enhancing the predictive

accuracy.

When using the CAPRA-S score with 10-fold cross-validation, we obtained an ac-

curacy of 53.22 ± 5.93 on the CPCTR dataset, and 69.81 ± 0.0 on the JHU dataset.

These results indicate that even the CAPRA-S score fails to accurately predict BCR

in cases where patients have matched clinicopathological features, highlighting the

challenges in making accurate predictions solely based on clinicopathological vari-

ables.

In setting #3, where we combined the clinicopathological features with latent rep-

resentations of tissue cores, we observed that the accuracy of this model is at least 5%

better than using only clinicopathological features. This improvement demonstrates

that there is valuable additional information related to cancer recurrence embedded

in the tissue slides. To confirm the significance of this improvement, we conducted

paired two-sided t-tests on both the JHU and CPCTR datasets, resulting in p-values

of 0.005 and 0.04, respectively. Both p-values are below the significance threshold of

0.05, indicating that the accuracy improvement is statistically significant.

Comparing setting #2 to setting #1, we found that the accuracy and F1-score

of setting #2 were higher. However, the paired t-tests revealed that the difference

between the two settings was not statistically significant, with p-values of 0.19 in

the JHU dataset and 0.48 in the CPCTR dataset. Despite not being statistically

significant, the improved accuracy in setting #2 suggests the potential benefits of

incorporating the learned latent representations of tissue cores along with clinico-

pathological features in BCR prediction. We also compared setting #2 versus setting

#3: for the JHU dataset, setting #3 is significantly better (p = 0.007). However, for

the CPCTR dataset, there is no (p < 0.05) significant difference (p = 0.17). Note, we

did not apply any false discovery rate (FDR) correction since the number of involved

comparisons is small.

As mentioned in the previous section, we have up to 4 TMA cores per patient,
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Figure 2.5: Accuracy on JHU and CPCTR datasets 10-fold cross-validation. Error
bar shows the 95% CI.

and we predicted recurrence for each TMA core. To achieve this, we used various

functions to combine the individual core scores, including disjunction, conjunction,

and majority voting. The results of 10-fold cross-validation accuracy for these variants

are presented in Table 2.5 for both the CPCTR and JHU datasets, corresponding to

settings #2 and #3.

The results indicate that the accuracy of the disjunction method is higher than that

of conjunction and majority voting. We hypothesize that some TMA cores may not

provide informative data for cancer recurrence prediction. Therefore, if at least one

TMA core shows a high probability of BCR, we consider the corresponding patient to

have a high probability of experiencing BCR within five years. This approach allows

us to leverage the most informative TMA cores for each patient, resulting in improved

accuracy in predicting recurrence at the patient level.

In addition to our PathCLR approach, we explored a fully supervised convolutional

neural network (CNN) approach using the ResNet34 model. Instead of training on

extracted patches of TMA cores, we trained the CNN directly on the whole tissue

cores as images. For patients with multiple TMA cores, we still used the disjunction
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method for both the PathCLR and supervised models.

The results, as shown in Table 2.6, indicate that the accuracy of the supervised ap-

proach was approximately 2% lower than the PathCLR approach on both the CPCTR

and JHU datasets. This suggests that our semi-supervised PathCLR approach, which

leverages both clinicopathological features and learned latent representations from tis-

sue images, outperforms the fully supervised CNN approach in predicting prostate

cancer recurrence.

Drawing inspiration from a previous benchmark by Leo et al. [16], which predicted

BCR using H&E slides and meticulously crafted features of gland morphology, we

performed a further comparison of PathCLR. However, rather than focusing on the

lumen, we segmented the epithelial cells and derived an identical set of Histotyping

features via the HistomicsTK library6. Our focus shifted to epithelial cells primarily

because the TMA cores we examined contained limited lumen regions. Moreover, as

previously stated, we hypothesize that epithelial cells provide more valuable infor-

mation for predicting BCR. The results outlined in Table 2.6 show that PathCLR

performs better than these Histotyping features. Hence, the superior performance

of PathCLR can be attributed to the learning of each image patch representation

through contrastive loss. This embedded information proves to be more effective

than the morphology features obtained through Histotyping.

In terms of the run-time computational efficiency of the learned system, the pro-

cessing time for each TMA core input of a new patient is under two seconds. Con-

sidering the number of TMA cores (up to four in this study), the prediction of BCR

for an individual, on average, is completed in less than 7.3 seconds.

2.5 Discussion

Recently, the combination of computational pathology with machine learning (ML)

techniques has shown the potential to enhance diagnostic accuracy and optimize

6https://digitalslidearchive.github.io/HistomicsTK/index.html
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Table 2.5: 10-fold cross-validation accuracy with 95% CI in different combination
modes.

Setting #2 Setting #3

CPCTR JHU CPCTR JHU

Majority 55.08 ± 0.26 69.82 ± 0.39 55.08 ± 0.55 74.44 ± 2.1

Conjunction 55.62 ± 0.26 69.82 ± 0.24 55.88 ± 0.55 74.93 ± 1.7

Disjunction 56.06 ± 3.47 69.82 ± 0.39 59.49 ± 3.29 75.25 ± 3.48

Table 2.6: Comparing PathCLR, a semi-supervised approach, with supervised and
Histotyping approaches, using 10-fold cross-validation accuracy and a 95% CI.

Setting #2 Setting #3

CPCTR JHU CPCTR JHU

PathCLR 56.06 ± 3.47 69.82 ± 0.39 59.49 ± 3.29 75.25 ± 3.48

Supervised 54.32 ± 2.2 69.4 ± 0.32 57.4 ± 4.14 70.59 ± 0.81

Histotyping 53 ± 0.01 68.3 ± 0.02 54 ± 0.02 70.00 ± 1.00

patient care [24]. Nonetheless, there are many challenges in applying ML to pathology

tasks, including the limited availability of labeled and annotated tissue samples.

Eksi et al. [25] conducted a study exploring projects that applied ML techniques

to only clinicopathological parameters, to develop models for predicting BCR. Their

findings revealed that all ML models outperformed the traditional statistical regres-

sion method. The use of ML methods demonstrated the potential for more accurate

risk classification, improved prognosis estimation, earlier intervention, reduced un-

necessary treatments, and lower morbidity and mortality. However, it is important

to note that their study focused exclusively on clinicopathological features and did

not integrate tissue microarray histopathology images into their analysis.

In previous studies, ML techniques have been employed to automate Gleason grad-

ing of H&E-stained tissue images [26–28]. Another study by Yan et al. [29] utilized

contrastive learning on tissue images for cancer diagnosis. However, the application

of ML to predict BCR has been relatively scarce.
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Kumar et al. [20] attempted BCR prediction using two separate convolutional neu-

ral networks (CNNs) on a small number of cases from the CPCTR dataset, evaluating

their model on only 30 cases. In contrast, our study utilizes 10-fold cross-validation on

the entire CPCTR dataset, providing a more comprehensive evaluation. Additionally,

Kumar et al.’s approach required manual annotation of tumors to predict BCR for a

test patient, and their prediction was based solely on tissue images. In contrast, our

approach does not require additional annotations and benefits from the integration

of both clinicopathological features and learned latent representations from tissue

images.

Manual annotation of histopathology images is a labor-intensive process, often

requiring expert pathologists or even a group of pathologists to vote and annotate a

tissue image. To overcome these challenges, we proposed a semi-supervised method

that first learns latent representations of unlabeled tissue images and subsequently

utilizes each patient’s outcome as the label to predict BCR.

Yamamoto et al. [30] employed H&E-stained tissue images to predict BCR and gen-

erated low dimensional features using an autoencoder [31] in two different resolutions.

Then, they used a support vector machine (SVM) [32] and classical regression [33, 34]

to predict BCR; without incorporating clinicopathological features. In contrast, the

PathCLR pipeline first generates latent representations then a neural network learns

the non-linear relations between a combination of the latent representation of a TMA

image and clinicopathological features. This allows the PathCLR model to leverage

all available information, both from tissue images and clinicopathological data, to

predict BCR for a specific patient. Moreover, we explored using lower resolutions, or

the combination of different resolutions but observed no enhancement in accuracy.

A recent study by Leo et al. [16] employs deep learning for the segmentation of lu-

men glands and subsequently extracts handcrafted features. They implement feature

selection and pinpoint 6 features for BCR risk stratification. While our approach is

distinct in its focus on predicting BCR for individual patients, we took inspiration
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from their methodology to establish a baseline model. This served as a benchmark

against which we contrasted the performance of PathCLR, with the results detailed

in Section 2.4.

The most recent work by Pinckaers et al. [11] utilized deep learning to develop a

biomarker for BCR prediction using H&E-stained tissue images. They reported the

odds ratio and hazard ratio for the identified group of patients using the developed

biomarker. Conversely, our methodology in this investigation steers towards generat-

ing individualized BCR predictions, supplying a precise prediction for each individual

patient, as opposed to the common task of identifying group biomarkers. A funda-

mental issue with hazard ratio predictions lies in its nature as a ratio - meaning it

can be used to compare one patient to another – e.g., predict that patient A will live

longer than patient B – but it does not provide a direct prediction about an individual

patient. In contrast, PathCLR predicts a Yes/No prediction for the patient. This

enables clinicians to devise more targeted treatment and follow-up strategies that are

aligned with each patient’s unique circumstances.

Lastly, it is worth mentioning that even though we had access to two datasets with

prostate cancer slides, we decided to not train on one dataset and test on the other,

as there are significant differences between these two datasets: large variations in the

range of clinical feature values and slide resolutions, as well as covariate shift issues,

including differences in BCR rates, stage distribution, etc. These differences mean

that we do not anticipate that a model trained on one would apply to the other.

2.6 Conclusion

We introduced PathCLR, a semi-supervised machine learning approach designed to

predict prostate cancer biochemical recurrence (BCR) within five years following rad-

ical prostatectomy surgery. PathCLR utilizes H&E-stained TMA cores and clini-

copathological variables for BCR prediction. Notably, PathCLR stands out as the

first approach that predicts BCR without the need for time-consuming manual nu-
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clear or tumor annotations. Instead, it learns contrastive latent representations of

H&E-stained TMA cores, contributing to its predictive capabilities.

Our results underscore that the integration of latent representations derived from

TMA core images and clinicopathological attributes in PathCLR yields statistically

significant improvements of at least 5% compared to using clinicopathological features

alone for BCR prediction. This highlights the critical information present in diag-

nostic TMA images, which complements the data from clinicopathological variables

and aids in predicting a patient’s BCR within five years after surgery. This work

represents the initial step towards developing an accurate personalized BCR predic-

tor and sets the stage for future research leading to a deployed system for clinical

applications.
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Chapter 3

Effective Survival Prediction for
Cancer Patient

3.1 Introduction

Cancer is the leading cause of death in the world, with approximately 10 million

deaths in 2020 [2]. The most commonly diagnosed cancers in humans include the

cancers of breast, lung, colorectal, prostate, and stomach. Accurately predicting the

prognosis of cancer can help inform personalized treatment strategies, lead to better

patient outcomes, reduced side effects, and more efficient allocation of healthcare

resources [35].

This research primarily concentrates on prostate cancer survival analysis and com-

pares it with a recent study by Lee et al. [36]. We then extend our analysis to other

common solid tumor types [37]: brain, breast, kidney and renal pelvis, liver, lung and

bronchus, stomach, thyroid, and urinary bladder.

Our research focuses on predicting individualized survival distribution (ISD) [38]

for a given cancer patient. An ISD is a survival curve that provides personalized sur-

vival probabilities at all future time points t > 0, based on attributes of patient xi (see

Appendix A for survival dataset definition), defined as S( t | xi ) = P (T > t | X = xi),

to represent the probability that xi will survive until (at least) time t. When consid-

ering all t > 0, this S( t | xi ) produces a survival curve that starts with a probability

of 1.0 at time zero and gradually decreases over time. Figure 3.1 presents ISD curves
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for three patients, and Appendix B offers further details about ISD. We will use the

median time – the time point when the survival curve crosses the probability of 0.5

(see the orange dotted line in Figure 3.1) – to estimate when the event will occur for

the patient.

Figure 3.1: ISD curves for three patients. The horizontal orange dotted line shows
the probability of 0.5, allowing us to read that the median time (where the survival
curve crosses the orange line) for patients 1 to 3 is 54, 21, and 9 months, respectively.

An ISD provides a thorough description of a patient’s cancer trajectory for three

primary reasons. First, it is tailored to an individual, as opposed to generalized group

predictions, such as the Kaplan Meier (KM) curve [39]. Second, it provides personal-

ized probabilities of survival over all future times, which provides more information

and insights to form clinical decisions, compared to models that deal with only a

single time point, such as the 5-year and 10-year focus [40], or those that cover only

specific time intervals [41]. Lastly, the ISD curve provides the survival probabilities

rather than risk scores, that alone offer little insight. For example, a model that

assigns patient A a risk score of 6, and patient B a risk of 5 is only predicting that

A will die before B. This does not specify when A or B will die, or the probability

of A surviving beyond one year, etc. While most previous works focused on such

risk stratification [42–46], we believe that the ISD curve offers a detailed, meaningful
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profile, from which one could derive (1) a risk score (by using the negative of the

median time), (2) a single-time probability for any time t (by using S( t | xi )), and

(3) a regression score that predicts survival timing (by using the median time).

Many studies, including those focusing on ISD models [36, 47, 48], use the C-

index [49] as the primary evaluation measure, which only evaluates how well the

model is predicting the relative ordering of the time to death. We argue that the

selected evaluation metrics should align with the specific questions the study aims to

answer, a criterion frequently not met by the C-index metric. In this study, we seek

to learn ISD models with the goal of accurately predicting the expected survival time

for cancer patients. Section 3.2 describes the datasets that we use. Section 3.3 further

explains our objective, and proposes evaluation metrics that match our objective, and

explains why other commonly used metrics are not relevant for this task. Section 3.4

employs a variety of ML models to compute a patient’s ISD curve, and conducts

an extensive analysis using various metrics. Section 3.5 further discusses different

scenarios, identifies which objective corresponds to which evaluation metric.

3.2 Datasets

Our study utilizes the public Surveillance, Epidemiology, and End Results (SEER)

Program dataset1 [50, 51], which consists of information about cancer patients, and

their diagnoses and survival time, reported from registries that cover about 49% of

the United States population.

For prostate cancer, we consider two SEER datasets. Our “prostate #1” dataset

matches the data (with the same data selection and pre-processing) that was used

in a recent work that predicts the ISD curve using the Survival Quilts model [36].

We also used an updated version of the SEER dataset and expanded our scope to

encompass different cancer types, including common solid tumors – prostate (denoted

as prostate #2), brain, breast, kidney and renal pelvis, liver, lung and bronchus,

1https://seer.cancer.gov
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Table 3.1: Statistics of patients included in each cancer type, including the number
of cases (#Patinets), number of reported deaths (#Death), average patient (Mean
age), number of female patients (#Female), number of male patients (#Male), and
the number of features (#Feat.).

Cancer #Patient #Death (%) Mean age #Female (%) #Male (%) #Feat.

Prostate #1 171,942 4,157 ( 2.4%) 65.60 0 ( 0%) 171,942 (100%) 11

Brain 78,006 47,220 (60.5%) 49.24 34,370 (44.1%) 43,636 (55.9%) 10

Breast 899,341 150,956 (16.7%) 60.80 899,341(100%) 0 ( 0%) 14

Kidney and renal pelvis 218,373 56,126 (25.7%) 62.77 82,577 (37.8%) 135,796 (62.2%) 15

Liver 93,190 59,568 (63.9%) 63.42 26,204 (28.1%) 66,986 (71.9%) 14

Lung and bronchus 607,701 382,099 (62.8%) 67.87 295,870 (48.7%) 311,831 (51.3%) 15

Prostate #2 745,342 81,619 (10.9%) 66.78 0 ( 0%) 745,342 (100%) 20

Stomach 108,440 62,418 (57.5%) 66.55 43,076 (39.7%) 65,364 (60.3%) 14

Thyroid 156,023 7,340 ( 4.7%) 50.30 111,795 (71.6%) 44,228 (28.4%) 13

Urinary bladder 247,505 65,089 (26.2%) 70.00 67,219 (27.2%) 180,286 (72.8%) 14

stomach, thyroid, and urinary bladder. For pre-processing each dataset, we discarded

any feature with over 70% missing or unknown values. Additionally, we excluded

patients lacking the final time (death or censoring). Finally, we removed patients

with matching clinical features and outcomes to avoid duplication (leaving only one

instance for each patient). Table 3.1 shows the statistics for each cancer type after

this pre-processing. Appendix C presents the features included for each cancer type.

Figure 3.2 shows the KM curves [39] of these SEER datasets.

In the realm of survival analysis, individuals who have not experienced the event

of interest are considered “censored”, perhaps because the study ended before the

patient underwent the event, or the patient left the study (perhaps by relocating to

a different city), meaning we do not know what happened after the time when they

left the study. Consequently, we only have a lower bound of the exact time-to-event

duration. For example, if a patient is censored at 10 years, it is clear that they survived

at least 10 years, but beyond 10 years, we do not know if they lived for 10 years and

a day or 30 years. It is important not to simply remove these censored instances for
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Figure 3.2: Kaplan-Meier survival curve for different types of cancer. The red line
indicates the median time for the whole population, and the blue shadow (visible
under high magnification) indicates the 95% confidence interval.

two primary reasons: (1) there is valuable information in this observed lower bound

of survival, and (2) often a high proportion of the patients are censored. For instance,

in the prostate #1 dataset, there is a 97.6% censoring rate, with only 4,157 deaths

observed among 171,942 patients. Therefore, a method that effectively incorporates

the lower-bound information is essential. The following section will explore ways to

address the challenges raised by censorship.

3.3 Methods and Evaluation Metrics

The objective of a supervised learning task is to train a model that can perform

a specific task effectively. To achieve this objective, it is critical to define what it

means for this learned model to be effective, which requires identifying the precise
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question (or application) the learned model is designed to answer. Once we have a

clear understanding of the objective, then we can identify the appropriate metric to

evaluate such a model.

It has been reported that cancer patients often seek information regarding their

expected lifespan [52], which also proves useful for oncologists in planning personalized

treatments, conducting risk-benefit analyses, making end-of-life care decisions, among

other aspects [53, 54]. For instance, an oncologist wants to decide on treatment

regarding a patient’s expected lifespan, in this case, it is useful to precisely predict

the time until death for each patient. Here, predicting whether a patient has only a

month, four months, or two years to live significantly influences the choice of treatment

and end-of-life care strategies, this is only achievable by precise expected lifespan

prediction. Hence, we set our objective to use a patient’s features to address this

question: “How long should patient A expect to live?”.

To predict the expected lifespan of a given cancer patient, we trained various ISD-

based survival prediction models, from traditional statistical tools to cutting-edge

deep learning-based methods including: Cox Proportional Hazard (Cox-PH) [55],

Accelerate Failure time (AFT) [56], Random Survival Forest (RSF) [57], Multi-Task

Logistic Regression (MTLR) [58, 59], Deep MTLR [60], and DeepHit [61]. For all

these models we use the median of the learned ISD models as the predicted time to

death for the i-th patinet (t̂i = S−1(0.5|xi)). Appendix F includes a short description

of each model and the details of implementation and hyperparameters. Note that

we also included the KM curve [39] as a baseline for comparison, even though it is a

population-wide curve and not an ISD predictor.

To evaluate the mentioned survival prediction models, it is vital to choose an

appropriate metric that matches our “How long?” objective. Here, an intuitive metric

is the mean absolute error (MAE) – the average absolute difference between the actual

time (ti) and the predicted time (t̂i) – since it exactly measures the error that we aim

to minimize [62]. This is challenging to compute since the actual time of the event
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for censored subjects is unknown. Thus, it becomes essential to utilize alternative

forms of MAE suitable for such datasets. Qi et al. [62] explored various MAE forms

to measure the difference between the predicted time, and the actual true time, which

is unknown for censored patients. They proposed and recommended MAE Pseudo-

Observation (MAE-PO), which deals with censored instances by estimating its best

guess time, since the actual event time remains unknown due to censorship. They

showed that MAE-PO can accurately rank learned models, and often closely match

the true MAE. Inspired by their findings, and given our study’s goal of precisely

predicting survival durations for various cancer types, we employed the MAE-PO

metric in our analysis.

We choose to cap the model’s prediction and actual time values, at the study’s

duration, denoted as τ , since predictions beyond this time point lack reliability. Ap-

pendix D further motivates this truncated adaptation. The truncated prediction time

given by the ISD curve is defined as the minimum of the predicted time and τ (see

Equation B.2 in Appendix B for details and the formula) – i.e., truncated median

time (Equation B.2). For instance, in Prostate #1, we set τ to 10 years, meaning the

truncated prediction time to event is the minimum of 10 years and the median time

of the ISD.

In addition, when we cap the prediction time to be less than τ , then we need to

ensure that the event time we use is similarly restricted. For all uncensored patients,

this value is less than τ as the event occurs within the study period. For censored

patients, we first compute MAE-PO estimated best guess, but this might surpass the

study’s duration τ . To prevent excessively high and inaccurate error values, we also

constrain this estimate. Hence, the truncated variation of MAE-PO, called T-MAE-

PO, bounds the best guess and predicted survival time to be less than τ . Appendix E

includes the definitions and mathematical details for T-MAE-PO.

Additionally, we propose that the survival time should be understood logarithmi-

cally. As time progresses, the precision of the prediction becomes less critical. Take,
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for instance, a situation where the actual event time for a patient is 100 months, and

the model predicts 110 months – MAE computes a difference of 10 months. Now

consider another patient where the true event time is 4 months and the model’s pre-

diction is 14 months. Although the deviation is 10 months in both examples, the

second one should attract a stiffer penalty because the gap between 4 months, and

14 months is more critical.

Given this pattern, we advocate for the truncated-log variation as the most fitting

metric for our goal. Continuing the previous example, the difference of log(110)

and log(100) is equal to log(110/100) = 0.09, while the difference of log(14) and

log(4) is log(14/4) = 1.25. Hence, by applying the logarithm to both predicted and

actual times, we give more penalty to a specified difference in short-term predictions

compared to long-term prediction errors. We denote this truncated log variation of

MAE-PO as TL-MAE-PO (see Appendix E for the formula and details).

While TL-MAE-PO is our chosen evaluation metric that matches our objective, we

also aim to compare our results with Lee et al. [36] who evaluated its models on the

prostate #1 dataset using C-index and Brier Score. C-index, detailed in Appendix E,

is a popular metric to evaluate the performance of survival prediction models in

terms of accurately ranking patients in applications where relative order matters (see

Scenario 2 in Section 3.5). However, the C-index is not relevant to our objective,

when the exact timing of the event, rather than ranking, is of primary importance.

Lee et al. [36] also used the Brier score, which is the mean squared difference between

predicted probabilities and the actual outcomes at a specific time point (here, they

use 10 years) [63] (see Appendix E). While the Brier score estimates the mean squared

error at a specific time point, but it is not clear why they use 10 years as a target

time for evaluation. Moreover, it again fails to assess our objective concerning the

expected survival time.
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3.4 Results

As we mentioned, the previous work on the prostate #1 cancer dataset learned Sur-

vival Quilts models [36], evaluated using C-index and Brier Score. Accordingly, we

first evaluated our models on the prostate #1 dataset using the same metrics.

We conducted 10-fold cross-validation and provided the results within a 95% con-

fidence interval (CI) [64]. Figure 3.3 shows that the RSF, Deep-MTLR, Cox-PH, and

AFT models outperform Survival Quilts in terms of C-index. Additionally, among

all evaluated methods, Deep-MTLR is the top performer with a C-index of 86.05 ±

0.71. In terms of the Brier Score, all of the models had an equally low value of 0.03

± 0.00 at 10 years. Note that the Brier Score of the degenerate “no one dies in 10

years” model is a low value of 0.05 since only 2.4% of the population died before 10

years.

Note that the Survival Quilts approach combines the Cox-PH, RSF, conditional in-

ference survival forest, and DeepHit models, making it computationally demanding.

Yet, each of the individual RSF, Deep-MTLR, Cox-PH, and AFT models demon-

strates superior performance and is more time-efficient in training. We suspect that

incorporating the DeepHit model in Survival Quilts could be a reason for the lower

performance, especially as Figure 3.3 shows that DeepHit significantly underperforms

(two-sided t-test, p-value < 0.05) compared to all other ISD models.

Given the issues raised in the prior section, we extend our models’ evaluations to

include T-MAE-PO and TL-MAE-PO. Table 3.2 shows that AFT performs the best

with a TL-MAE-PO of 0.62 ± 0.0015, closely followed by MTLR with a TL-MAE-

PO of 0.62 ± 0.0266 (statistically, these results are considered tied). Due to the high

computational demands of the Survival Quilts model, it was not feasible to retrain it.

Consequently, we are unable to present the outcomes with respect to TL-MAE-PO

and include only the originally reported results from the study.

Additionally, we trained our set of ISD predictor models on the other types of
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Figure 3.3: Model comparison based on C-index in predicting 10-year prostate cancer-
specific mortality (for Prostate # 1 dataset), using a 10-fold cross-validation with 95%
CI. SQ is Survival Quilt, and D-MTLR is Deep MTLR.

Table 3.2: Model comparison using the TL-MAE-PO metric for all types of cancer,
based on monthly survival data. The numbers represent a 10-fold cross-validation
result with 95% CI. Bold numbers indicate superior performance compared to other
models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

Prostate #1 0.64 ± 0.00 0.62 ± 0.02 0.63 ± 0.02 0.65 ± 0.01 0.63 ± 0.00 0.62 ± 0.00 0.67 ± 0.00

Brain 1.42 ± 0.01 1.52 ± 0.02 1.44 ± 0.01 1.70 ± 0.00 1.48 ± 0.01 1.49 ± 0.01 2.75 ± 0.00

Breast 0.93 ± 0.01 0.97 ± 0.03 0.94 ± 0.02 1.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.22 ± 0.00

Kidney 1.20 ± 0.02 1.43 ± 0.04 1.21 ± 0.03 1.71 ± 0.03 1.45 ± 0.02 1.46 ± 0.02 2.00 ± 0.02

Liver 1.93 ± 0.05 2.07 ± 0.03 1.95 ± 0.04 2.24 ± 0.01 2.07 ± 0.05 2.11 ± 0.05 3.62 ± 0.11

Lung 1.44 ± 0.00 1.57 ± 0.02 1.47 ± 0.01 1.66 ± 0.01 1.55 ± 0.01 1.55 ± 0.01 2.81 ± 0.01

Prostate #2 0.81 ± 0.01 1.11 ± 0.17 0.89 ± 0.04 1.06 ± 0.02 0.88 ± 0.01 0.89 ± 0.00 1.14 ± 0.01

Stomach 1.53 ± 0.00 1.72 ± 0.02 1.61 ± 0.01 1.85 ± 0.02 1.74 ± 0.01 1.78 ± 0.01 3.03 ± 0.02

Thyroid 1.29 ± 0.01 1.43 ± 0.06 1.33 ± 0.06 1.66 ± 0.03 1.52 ± 0.01 1.55 ± 0.01 1.81 ± 0.00

Urinary bladder 1.23 ± 0.01 1.44 ± 0.11 1.22 ± 0.04 1.68 ± 0.02 1.46 ± 0.01 1.46 ± 0.01 1.82 ± 0.02

cancer. Table 3.2 shows that RSF has the best (10-fold cross validation) TL-MAE-

PO loss across many cancer types, followed by Deep-MTLR which is a close second in

performance (except for urinary bladder cancer, where it has the best TL-MAE-PO

score). Recognizing the common usage of the C-index as a metric in academic studies,
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Table 3.3: Model comparison using the C-index for all types of cancer, based on
monthly survival data. The numbers represent a 10-fold cross-validation result with
95% CI. Bold numbers indicate superior performance compared to other models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

Prostate #1 85.59 ± 0.71 83.11 ± 1.27 86.05 ± 0.71 75.57 ± 2.86 85.14 ± 0.74 85.31 ±0.75 50.00 ± 0.00

Brain 74.87 ± 0.36 72.46 ± 0.39 74.68 ± 0.39 73.45 ± 0.28 72.63 ± 0.41 72.64 ± 0.43 50.00 ± 0.00

Breast 82.66 ± 0.08 77.23 ± 0.53 80.71 ± 0.15 80.76 ± 0.22 76.86 ± 0.09 77.03 ± 0.09 50.00 ± 0.00

Kidney 86.26 ± 0.06 79.65 ± 0.24 86.22 ± 0.11 84.59 ± 0.07 79.94 ± 0.14 80.03 ± 0.14 50.00 ± 0.00

Liver 74.50 ± 0.21 70.30 ± 0.26 74.56 ± 0.18 73.41 ± 0.22 70.35 ± 0.25 70.30 ± 0.25 50.00 ± 0.00

Lung 73.02 ± 0.07 68.88 ± 0.23 72.20 ± 0.11 71.72 ± 0.12 68.96 ± 0.09 69.06 ± 0.09 50.00 ± 0.00

Prostate #2 88.31 ± 0.10 75.39 ± 5.93 84.50 ± 0.40 85.94 ± 1.10 83.60 ± 0.08 84.15 ± 0.09 50.00 ± 0.00

Stomach 77.00 ± 0.14 72.76 ± 0.33 76.68 ± 0.13 75.25 ± 0.15 71.80 ± 0.21 71.87 ± 0.20 50.00 ± 0.00

Thyroid 93.22 ± 0.22 89.38 ± 0.34 93.30 ± 0.34 92.22 ± 0.31 90.27 ± 0.20 90.20 ± 0.20 50.00 ± 0.00

Urinary bladder 81.73 ± 0.18 74.41 ± 0.68 81.34 ± 0.27 80.94 ± 0.20 74.64 ± 0.19 74.73 ± 0.18 50.00 ± 0.00

we also compared the models using the C-index in Table 3.3, which shows that both

RSF and D-MTLR appear as top performers in terms of C-index, and following that,

DeepHit achieves strong results. Appendix G presents the results on these datasets,

using several other metrics.

Additionally, in certain cancer types, there is a noticeable variation in model rank-

ings when comparing the T-MAE-PO with the TL-MAE-PO metric. For instance,

with kidney and renal pelvis, Deep-MTLR is the best based on T-MAE-PO, whereas

RSF is the best with TL-MAE-PO. Hence, if our specific application is more con-

cerned about short-term accuracy over long-term precision, it would be advisable to

utilize the log variations of the MAE for evaluation.

Consequently, the ranking of top models changes based on the chosen metric, high-

lighting the importance of appropriate metric selection. This insight emphasizes the

need to first determine the primary objective of a study involving survival prediction

models and subsequently select a proper metric for performance evaluation. This

becomes particularly important when we are considering multiple ISD models and

want to select the optimal one based on a specific evaluation criterion.
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3.5 Discussion and Conclusion

This research conducted a comprehensive study on various SEER datasets, to deter-

mine which learned model can best predict time to mortality subsequent to cancer

diagnosis. While many past studies have focused on survival prediction for a single

type of cancer at a particular time point as a classification task [65, 66], our research

stands out by addressing a more challenging and general survival prediction task,

specifically focusing on ISD models (which also allows us to address other tasks) and

effective evaluation.

Additionally, our emphasis on rigorous evaluation sets us apart from earlier studies.

There are different scenarios in which we can use survival prediction, and the selection

of evaluation metrics must resonate with our primary objectives.

Scenario 1: In a foundational study, one might be interested in binary classifica-

tion and predicting the probability of survival at a specific time point. For instance,

a hospital aims to decide about providing end-of-life care for those in need, and there-

fore, needs to predict 1-year survival outcome and categorize each patient as either

surviving beyond one year versus those who experience the event within the first

year. Hence, we need a model that can predict “What is the probability that patient

A will live more than 1 year?”. In this case of binary classification, metrics such as

accuracy, F1 score, Area Under the Curve (AUC), 1-Calibration, etc., have been used

in previous studies [67–70].

Scenario 2: In a given scenario such as liver transplant prioritization, we need

to decide which patient should receive the liver transplant. Here, the objective is to

discern which patient will die soonest after diagnosis, as this identifies which patient

should receive the transplant. This situation emphasizes the comparison between all

pairs of patients, focusing on accurately determining the order in which each patient

will experience the event, and answering “Among the current set of patients, who will

experience the event first?”. In such a context, the exact prediction of the time to the
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event is not the priority; instead, a correct ordering of the patients in terms of survival

risk or mortality time suffices. The proper evaluation metric in this scenario is the

C-index metric, specifically designed for measuring the correctness of ranking [71–73].

Scenario 3: In a different context, one might aim to decide about allocating

hospital beds. Here, it is useful to predict the duration of a patient’s hospital stay

or time until death. In this context, we want to answer a question concerning “How

long?”. This situation (including our research objective) primarily concerns the time

until the event, making the MAE-PO a proper evaluation metric [74, 75]. In some

cases of this scenario, predictions are targeted up to a specific time, such as 10 years,

without considering or trusting further forecasts. Here, T-MAE-PO is advisable for

evaluation. Finally, for predicting “ How long?” up to a set time with a focus on the

accurate prediction of earlier events, we recommend TL-MAE-PO.

Of course, if our model attains a perfect MAE score (essentially zero), we could then

address the queries posed in scenarios 1 and 2 using precise time-to-event predictions.

Nonetheless, achieving an MAE of close to zero in such predictions is notably a more

challenging task than, for example, addressing a 1-year classification task, where the

focus is on correct prediction at a specific time rather than all future time points.

Hence, if the objective aligns with scenarios 1 and 2, the basic evaluation measures

highlighted for each such case could be adequate, eliminating unnecessary complexity.

In conclusion, it is important to first determine the study objective prior to se-

lecting an appropriate evaluation metric for survival prediction problems. In specific

circumstances of the third scenario, we recommend utilizing the proposed T-MAE-

PO or TL-MAE-PO instead of other metrics, for analyzing survival data. Lastly, our

research shows that RSF, followed by Deep MTLR, ranks as the top learning model

across various types of cancer based on both TL-MAE-PO and C-index.
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Chapter 4

Conclusions

This thesis encompasses two pivotal studies in the realm of cancer-related research

and machine learning. The first study proposes PathCLR, a novel semi-supervised

contrastive learning approach designed for predicting BCR within five years following

RP surgery. PathCLR effectively leverages H&E-stained TMA cores and clinico-

pathological variables, without a need for labor-intensive manual annotations. We

showed that PathCLR performs better than previous works – suggesting that there

is critical information in diagnostic TMA images, which complements the data from

clinicopathological variables and aids in predicting a patient’s BCR within five years

after surgery. Future research can build upon this foundation to develop a more pre-

cise and efficient model, perhaps by improving the representation learner part of this

pipeline and using other more recent models such as transformers [76–78]. Further,

our current approach is not robust to the source-site variation. This should be further

investigated to train a robust model that is transferable to other datasets from differ-

ent hospitals. Additionally, this work can be extended to predict the probability of

recurrence over all future time points, rather than limiting the prediction to a single

time point (5 years).

The second study addresses several of these limitations and conducts a compre-

hensive analysis using the SEER dataset across various cancer types and focuses on

a more general task where the aim is to predict the expected lifespan of a specific
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patient using ISD models. It emphasizes the crucial role of selecting the right eval-

uation metrics that align with the study’s objectives and suggests T-MAE-PO and

TL-MAE-PO metrics to determine whether a model achieves the objective, which

here is to predict the expected lifespan. Future directions for this study could in-

volve broadening the dataset variety, incorporating data from sources other than the

SEER database, or considering other cancer types. Additionally, there is potential

in merging genetic and molecular information, pathology slides (utilizing the latent

representations learned from PathCLR), or various other data forms beyond clini-

cal information, to determine whether these enhancements could improve expected

survival time prediction.

In summary, it is our hope that this thesis makes a valuable contribution to the

fields of oncology and machine learning by introducing novel methods and perspectives

for predicting cancer recurrence and expected survival time, thereby laying a robust

groundwork for future research and clinical applications.
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Appendix A: Survival Dataset

In a survival analysis dataset consisting of N patients, the data for each individual

is represented as (xi, ti, δi), where xi ∈ Rd is the feature set for the i-th patient

and ti ∈ R+ is the survival time which is either the censored time or event time.

δi ∈ {0, 1} indicates if the patient was censored or not, where δi = 0 indicates that

the i-th patient was censored and ti is the censoring time, and δi = 1 means that the

patient experienced the event (death), and ti is the time to event. Hence, a survival

dataset is represented as D = {(xi, ti, δi)}Ni=1.
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Appendix B: Individualized
Survival Distribution (ISD)

A patient’s ISD curve shows their likelihood of survival as time progresses. This is

the probability of survival until time t given the patient’s features of xi and time t,

and it is represented as S( t | xi ) = P (T > t | X = xi). The ISD curve begins with

a survival probability of 1 at time zero and gradually declines thereafter. Each ISD

is specific to an instance using specific clinical data from that individual patient (xi),

distinguishing them from curves like the KM curve [39], which are derived from an

entire population’s data.

If one needs a single value, many use time-to-event prediction given by the model’s

output (ISD curve), either mean (denoted by Et[S( t | xi ) ]) or median survival time

(denoted by median(S( t | xi )). The truncated adaptations of the mean (expected)

and median survival time with respect to time τ are defined as follows:

t̂i,T-mean,τ = min{ Et[S( t | xi ) ] , τ} (B.1)

= min{
∫ ∞

0

S( t | xi ) dt, τ}

and

t̂i,T-median,τ = min{ median(S( t | xi )), τ} (B.2)

= min{ S−1(P = 0.5 | xi ), τ},

where τ represents the time point that we truncate, xi denotes the attributes of

patient i, S( t | xi ) is the predicted ISD curve for this patient, and S−1 is the inverse
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function of the survival function S. τ can be set to any time point depending on

the application, here in this study, we set it to be the final time point (length of

the study). In this study, we use the truncated median time (Equation B.2) as the

prediction time.

Note that the ISD curve often does not cross the probability of 0.5. In such

cases, the common approach for calculating the standard median time is to linearly

extrapolate the curve until it reaches the 0.5 probability – we draw a line from the

initial time point with a probability of 1 to the final time point, then continue this

line until it intersects with the probability of either 0 or 0.5. However, in the case of

truncated median time (Equation B.2), extrapolation is not required, as we bound

the prediction by τ . For example, in Figure B.1 left, the median of the ISD curve is 22

months, which is less than τ = 200 months, which is the end of the study – here, we

set the time to event prediction to the median time (22 months). For Figure B.1 right,

the ISD curve ends before reaching the probability of 0.5, and as a result, we know

that the median time is after the end of the study. Since we take the minimum of

the median time and the end of the study time (200), we set the truncated prediction

time to 200 months. Note this means that we do not need to extrapolate the ISD

curve.

(𝜏) (𝜏)

(𝜏)(𝜏)

Figure B.1: ISD curve for two patients. The end of the study time (τ) for both curves
is 200 months. The truncated time to event prediction using the median time of the
left side ISD curve is 22 months and for the right one is 200 months.
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Appendix C: SEER Features

Table C.1 lists the features we used for each type of cancer. Note that we chose not

to do the feature selection step as: (1) the number of included features was less than

20, and (2) we viewed this as a distraction from the primary objective of our research.
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Table C.1: List of features included in each type of cancer dataset. In this table,
prostate refers to prostate # 2.

Feature Brain Breast Kidney Liver Lung Prostate Stomach Thyroid Urinary

Age ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sex ✓ - ✓ ✓ ✓ - ✓ ✓ ✓

Behavior recode for analysis ✓ - - - ✓ - - - -

Combined Summary Stage ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Grade ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓

RX Summ–Scope Reg LN Sur ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RX Summ–Surg Oth Reg/Dis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RX Summ–Surg Prim Site ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Summary stage 2000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SEER historic stage A ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Derived AJCC T, 6th ed (2004-2015) - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Derived AJCC N, 6th ed (2004-2015) - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Derived AJCC M, 6th ed (2004-2015) - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Breast - Adjusted AJCC 6th Stage - ✓ - - - - - - -

Derived AJCC Stage Group, 6th ed - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Derived AJCC Stage Group, 7th ed - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Invasion Beyond Capsule Recode - - ✓ - - - - - -

Gleason Patterns Clinical Recode - - - - - ✓ - - -

Gleason Patterns Pathological Recode - - - - - ✓ - - -

Gleason Score Clinical Recode - - - - - ✓ - - -

Gleason Score Pathological Recode - - - - - ✓ - - -

PSA Lab Value Recode - - - - - ✓ - - -

Number of Cores Positive Recode - - - - - ✓ - - -

Number of Cores Examined Recode - - - - - ✓ - - -
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Appendix D: Motivation for the
Truncated Variation of MAE

In this study, we proposed the truncated variation of MAE-PO; this section motivates

this variation one step further. In Section 3.3, we discussed truncating the predicted

time-to-event, which is the median time of the ISD curve, and the same issue is raised

in the context of KM curves. When dealing with the KM curve of datasets with high

censorship, this curve often fails to descend to zero and might not even cross the 0.5

survival probability threshold. Consequently, the median time, typically employed as

a time-to-event prediction, is unknown. Among our included datasets, as illustrated

in Figure 3.2, for cancers of breast, kidney and renal pelvis, prostate, thyroid, and

urinary bladder, the blue KM curve does not intersect the green line (representing

0.5 probability) by the study’s conclusion.

Some prior studies have attempted to address this matter, proposing: (1) dropping

the curve vertically to zero post-study conclusion, (2) employing linear extrapolation

(which we illustrated in Figure D.1), and (3) applying a specific function or distribu-

tion to extend the curve [79, 80]. However, Rich et al. [81] noted that any form of

KM curve extrapolation lacks justification, and any prediction after the study conclu-

sion is unreliable. Take the prostate # 1 dataset as an instance, where the survival

curve does not reach the probability of 0.5. If we use linear extrapolation – from

the starting point of the curve (0,1) to the final time point, then continue the line to

reach the probability of 0.5 or 0 – to continue the curve and find the median time, as

demonstrated in Figure D.1, then we can see that linear extrapolation exceeds 2100
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months (175 years) of survival, and the median time is 1121 months (93 years). Given

that the age average for the prostate #1 cancer dataset is 65 years, then a prediction

of 65 + 93 = 158 years is a wrong and unrealistic prediction.

Therefore, we follow the same suggestion as Rich et al [81], meaning that we

drop the ISD cure vertically to zero post-study conclusion, bound the predictions of

trained models and the best guess estimate for actual time to event by the length of

the study (τ), as any prediction beyond the conclusion of the study is unreliable and

lacks justification.

Figure D.1: KM curve linear extrapolation for prostate #1 dataset.
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Appendix E: Evaluation Metrics in
Details

In this section, we explain the formula of evaluation metrics and describe them in

detail.

1. C-index:

The C-index of a model, on a labeled survival dataset, is given by

C-index(S(.|.),D) =
Number of concordant pairs

Number of comparable pairs
, (E.1)

where a pair of instances is considered concordant if the predicted and the actual

outcome follow the same ranking. Among all possible combinations of two

subjects from a sample size of N, a comparable pair means we know which one

of the subjects experienced the event first. For example, as shown in Figure E.1,

patients A and B can be considered a comparable pair because it is clear that the

event occurred first with patient A. In contrast, patients B and C do not form

a comparable pair since patient B is censored prior to patient C’s event, leaving

ambiguity about whether patient B experienced the event before or after patient

C. Hence, for patients B and C we do not know who experienced the event first,

and remains uncertain and incomparable. Additionally, any two patients who

are not censored are comparable, making patients A and C a comparable pair.

Therefore in Figure E.1, we have 2 comparable pairs: {A, B}, and {A, C}.
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After computing the number of comparable pairs, given the model’s prediction

versus the ground truth, we compute the number of concordant pairs. So fol-

lowing our example, if we predict the following time to events: A = 5, B = 13,

C = 8, then we have correctly ranked both of our comparable pairs, since time

to event prediction for B is greater than A, and C is also greater than A. Thus,

C-index is equal to 1.

Patient A

Time

Patient B

Patient C

Censored

Event

Event

Figure E.1: Time to event/censorship for three patients.

2. Brier Score:

Brier Score (BS) is the squared difference between the predicted probability of

survival at a specific time t and the true event value (0 or 1) [63]. It ranges

between zero to one, and a value of zero means perfect prediction. For censored

patients with unknown event values, BS uses the inverse probability censoring

weight (IPCW) [82], which uniformly transfers each censored patient’s weight

to uncensored patients after that time.

BS is defined as:

BS(t,D) =
1

N

N∑
i=1

(0− Sm( t | xi ))
2 · 1ti≤t,δi=1

Gi(ti)
+

(1− Sm( t | xi ))
2 · 1ti>t

Gi(t)
,

where Gi(t) is the probability of not being censored until time t, which is com-

monly estimated by running the KM algorithm, but with the censor-bit (event

flag) flipped.
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3. MAE:

Mean absolute error (MAE) measures the average absolute difference between

the predicted time (t̂i) and the actual (truth) time (ti):

MAE({t̂i}, {ti}) =
1

N

N∑
i=1

|t̂i − ti| . (E.2)

For the prediction time (t̂i), we use the median time of the ISD model (t̂i =

S−1(P = 0.5 | xi )). However, to compute this MAE, the actual time (ti) is

unknown for censored patients. Hence, we need to use another variation of

MAE that can estimate the truth time for censored patients. In this study, we

use the MAE-PO that employs pseudo-observation to estimate the actual time

of survival for censored patients [62].

4. MAE-PO:

Qi et al. [62] proposed the MAE-PO that employs pseudo-observation to esti-

mate the actual time of survival for censored patients and uses θ̂ as a predictor,

which can be based on the mean value of the KM estimator, θ̂ = Et[SKM(D)( t )],

where SKM(D)( t ) is the group-level survival probability, estimated using KM

model on the dataset D. The idea here is that we measure the contribution

of patient i to the unbiased predictor θ̂. The best guess for MAE-PO can be

defined as:

eT-pseudo-obs(ti,D) = N × θ̂ − (N − 1)× θ̂−i , (E.3)

where θ̂−i is Et[SKM(D−i)( t )], the predictor applied to the N − 1 data instances,

after removing the patient i. This best guess can be unreliable for patients who
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get censored earlier in the study since we do not have much information about

them. Therefore, as suggested by Haider et al. [38], we assign less confidence

weight to the best guess of early censored patients. This confidence weight is

calculated as:

ωi = 1− SKM(D)(ti) . (E.4)

Note ωi is zero in the beginning (at time zero), and increases after that. Lastly,

MAE-PO is defined as:

Ei∼D[RMAE-PO(t̂i, ti, δi)] = (E.5)

1∑N
i=1 ωi

N∑
i=1

ωi

∣∣[(1− δi) · eT-pseudo-obs(ti,D) + δi · ti]− t̂i
∣∣ ,

where symbol R means a scoring rule, which is used to compute the MAE-PO

error. Note that here the prediction time (t̂i) is the median of the ISD model.

5. Truncated MAE-PO:

As discussed in Section 3.3, we choose to bound the prediction time and best

guess by the end of the study and use the truncated variation of MAE-PO.

Hence, the best guess for truncated MAE-PO can be defined as:

eT-pseudo-obs,τ (ti,D) = min{epseudo-obs(ti,D) , τ }, (E.6)

where epseudo-obs(ti,D) is defined using Euqation E.3. Further, we use the same

weighting as described in Equation E.4. Therefore, the truncated MAE-PO is

defined as follows:
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Ei∼D[RT-MAE-PO,τ (t̂i, ti, δi)] = (E.7)

1∑N
i=1 ωi

N∑
i=1

ωi

∣∣[(1− δi) · eT-pseudo-obs,τ (ti,D) + δi · ti]− t̂i
∣∣ ,

where the prediction time (t̂i) is the truncated median time (t̂i = t̂i,T-median,τ )

of the ISD defined in Equation B.2, and we use the truncated best guess

(eT-pseudo-obs,τ (ti,D)) defined in Equation E.6.

6. Truncated-Log MAE-PO:

The truncated-log (TL) adaptation of MAE-PO is:

Ei∼D[RTL-MAE-PO,τ (t̂i, ti, δi)] = (E.8)

1∑N
i=1 ωi

N∑
i=1

ωi

∣∣[(1− δi) · log(eT-pseudo-obs,τ (ti,D)) + δi · log(ti)]− log(t̂i)
∣∣ ,

where again the prediction time (t̂i) is the truncated median time (t̂i =

t̂i,T-median,τ ) of the ISD defined in Equation B.2, and we use the truncated

best guess (eT-pseudo-obs,τ (ti,D)) defined in Equation E.6. For Equation E.8,

if the predicted time to event, the ground truth, or the best guess is zero, we

initially add a small value (ϵ) to prevent the logarithm function from yielding

minus infinity. Moreover, we choose to use log base e.

To further understand how we can interoperate error measured by TL-MAE-PO,

recall that the TL-MAE-PO for AFT on the Prostate #1 dataset is 0.62 ± 0.001.

Here, given that exp (0.62) = 1.86, this is claiming that we expect each predic-

tion to be within a multiplicative factor of 1.86 of the correct value. So, for in-

stance, if we predict patient A will live 9.02 months, we are saying that we antic-

ipate that patient A will live between (9.02/1.86, 9.02× 1.86) = (4.82, 31.19)
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months. If another patient was predicted to live 9.02 days, then we would an-

ticipate that person would live between (4.82, 31.19) days. This is the nature

of multiplicative bounds.
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Appendix F: Model
Implementation Details

In this section, we included details of the model implementation that was used in this

paper.

• Kaplan Meier (KM) is a popular estimator that uses the information of a

group of patients. The KM curve provides a stepwise estimate of the probability

of event occurrence. We used KaplanMeierFitter class from lifelines library,

and we used the median time of the training population as the time to event

prediction for the test set.

• Random Survival Forest (RSF): is an extension of the Random Forest

algorithm for time-to-event data, offering a non-parametric approach to model

survival outcomes. RSF is an ensemble of survival trees, each learned on a

bootstrapped version of the training dataset. We used RandomSurvivalForest

class from sksurv.ensemble library for implementation, with 150 trees, min

samples split of 25, and min samples leaf of 20.

• Multi-Task Logistic Regression (MTLR) is a machine learning approach

designed for survival analysis and gives individualized curve prediction. The

model is implemented using MTLR class from torchmtlr package, with a learning

rate of 0.001, batch size of 512, and 500 epochs.

• Deep MTLR is another method that predicts individualized survival distri-

bution and uses the MTLR models as its base and a deep learning model as its
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core. We implemented D-MTLR using DeepMTLR class from torchmtlr pack-

age, with the same configuration as MTLR. The architecture of the model is

provided in the code base, and it includes layers of NN nodes, dropout of 0.4,

and Exponential Linear Units (ELUs).

• DeepHit learns the individualized survival distribution using deep learning.

The model is implemented using DeepHitSingle class from pycox.models

package. We used Adam optimizer with early stopping.

• Cox Proportional Hazard (Cox-PH) is a semi-parametric method used in

survival analysis to assess the impact of several risk factors on survival time. It

provides hazard ratios, indicating the relative risk of event occurrence given

a change in predictor variables. It is composed of a baseline hazard func-

tion at the population level (non-parametric) and a parametric partial hazard

function. We implemented Cox-PH using CoxPHSurvivalAnalysis class from

sksurv.linear model library.

• Accelerate Failure time (AFT) is a parametric survival analysis technique

that directly models the time to event and provides individualized prediction.

We employed AFT with Weibull parametric assumption. For implementation,

we employed the WeibullAFTFitter class from lifelines library. We used

median time for the time-to-event prediction, and based on our experiments, it

works better than using the average time.
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Appendix G: Detailed evaluation
of selected cancer types

Tables G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8, G.9, and G.10 show the evaluation

of various models by each of the discussed metrics for the selected cancer types. For

all the tables, the reported C-index and BS are computed at the median time, except

for table G.6, in which we computed the C-index and BS at the 10-year time point

since we wanted to compare our results with the reported results of Survival Quilts

model [36]. In terms of TL-MAE-PO and T-MAE-PO, our results show that RSF

followed by Deep-MTLR are the top-performing methods in all the datasets except

for the prostate # 1 dataset where AFT is the best.

Table G.1: Model comparison using all the discussed metrics based on monthly sur-
vival data for brain cancer. The numbers represent a 10-fold cross-validation result
with 95% CI. Bold numbers indicate the best performance over the included set of
models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

C-index 74.91 ± 0.35 72.46 ± 0.39 74.68 ± 0.39 73.45 ± 0.28 72.63 ± 0.41 72.64 ± 0.43 50.00 ± 0.00

BS(median) 0.16 ± 0.00 0.18 ± 0.00 0.16 ± 0.00 0.20 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.22 ± 0.00

T-MAE-PO 46.12 ± 0.53 51.97 ± 0.82 47.99 ± 0.80 58.49 ± 0.26 48.99 ± 0.51 49.30 ± 0.57 156.56 ± 0.77

TL-MAE-PO 1.42 ± 0.01 1.52 ± 0.02 1.44 ± 0.01 1.70 ± 0.00 1.48 ± 0.01 1.49 ± 0.01 2.75 ± 0.00
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Table G.2: Model comparison using all the discussed metrics based on monthly sur-
vival data for breast cancer. The numbers represent a 10-fold cross-validation result
with 95% CI. Bold numbers indicate the best performance over the included set of
models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

C-index 82.66 ± 0.08 77.23 ± 0.53 80.71 ± 0.15 80.76 ± 0.22 76.86 ± 0.09 77.03 ± 0.09 50.00 ± 0.00

BS(median) 0.06 ± 0.00 0.07 ± 0.00 0.06 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.08 ± 0.00

T-MAE-PO 65.66 ± 0.13 69.76 ± 3.17 65.74 ± 1.87 85.09 ± 0.63 72.46 ± 0.16 72.71 ± 0.15 99.15 ± 0.01

TL-MAE-PO 0.93 ± 0.01 0.97 ± 0.03 0.94 ± 0.02 1.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.22 ± 0.00

Table G.3: Model comparison using all the discussed metrics based on monthly sur-
vival data for kidney and renal pelvis cancer. The numbers represent a 10-fold
cross-validation result with 95% CI. Bold numbers indicate the best performance over
the included set of models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

C-index 86.26 ± 0.06 79.65 ± 0.24 86.22 ± 0.11 84.59 ± 0.07 79.94 ± 0.14 80.03 ± 0.14 50.00 ± 0.00

BS(median) 0.07 ± 0.00 0.09 ± 0.00 0.07 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 0.09 ± 0.00 0.12 ± 0.00

T-MAE-PO 51.94 ± 1.26 66.59 ± 2.13 51.59 ± 1.53 78.70 ± 2.36 68.56 ± 1.18 69.55 ± 1.2 117.74 ± 1.47

TL-MAE-PO 1.20 ± 0.02 1.43 ± 0.04 1.21 ± 0.03 1.71 ± 0.03 1.45 ± 0.02 1.46 ± 0.02 2.00 ± 0.02

Table G.4: Model comparison using all the discussed metrics based on monthly sur-
vival data for liver cancer. The numbers represent a 10-fold cross-validation result
with 95% CI. Bold numbers indicate the best performance over the included set of
models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

C-index 74.50 ± 0.21 70.30 ± 0.26 74.56 ± 0.18 73.41 ± 0.22 70.35 ± 0.25 70.30 ± 0.25 50.00 ± 0.00

BS(median) 0.17 ± 0.00 0.19 ± 0.00 0.17 ± 0.00 0.22 ± 0.00 0.19 ± 0.00 0.19 ± 0.00 0.23 ± 0.00

T-MAE-PO 39.98 ± 0.95 42.99 ± 3.36 40.86 ± 3.14 45.99 ± 4.50 44.10 ± 1.49 46.37 ± 1.34 174.60 ± 5.54

TL-MAE-PO 1.93 ± 0.05 2.07 ± 0.03 1.95 ± 0.04 2.24 ± 0.01 2.07 ± 0.05 2.11 ± 0.05 3.62 ± 0.11

Table G.5: Model comparison using all the discussed metrics based on monthly sur-
vival data for lung and bronchus cancer. The numbers represent a 10-fold cross-
validation result with 95% CI. Bold numbers indicate the best performance over the
included set of models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

C-index 73.02 ± 0.07 68.88 ± 0.23 72.20 ± 0.11 71.72 ± 0.12 68.96 ± 0.09 69.06 ± 0.09 50.00 ± 0.00

BS(median) 0.18 ± 0.00 0.20 ± 0.00 0.18 ± 0.00 0.21 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.23 ± 0.00

T-MAE-PO 42.81 ± 0.50 47.93 ± 1.55 43.62 ± 1.44 51.08 ± 1.71 47.59 ± 0.78 47.43 ± 0.99 164.66 ± 1.49

TL-MAE-PO 1.44 ± 0.00 1.57 ± 0.02 1.47 ± 0.01 1.66 ± 0.01 1.55 ± 0.01 1.55 ± 0.01 2.81 ± 0.01
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Table G.6: Model comparison using all the discussed metrics based on monthly sur-
vival data for prostate #1 cancer. The numbers represent a 10-fold cross-validation
result with 95% CI. Bold numbers indicate the best performance over the included
set of models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT Survival Quilts KM (baseline)

C-index 85.59 ± 0.71 83.11 ± 1.27 86.05 ± 0.71 75.57 ± 2.86 85.14 ± 0.74 85.31 ± 0.75 82.90 ± 0.09 50.00 ± 0.00

BS (10-years) 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.04 ± 0.00

T-MAE-PO 46.52 ± 0.30 44.65 ± 2.54 45.74 ± 2.20 47.39 ± 0.89 45.05 ± 0.25 44.69 ± 0.32 - 49.37 ± 0.22

TL-MAE-PO 0.64 ± 0.00 0.62 ± 0.02 0.63 ± 0.02 0.65 ± 0.01 0.63 ± 0.00 0.62 ± 0.00 - 0.67 ± 0.00

Table G.7: Model comparison using all the discussed metrics based on monthly sur-
vival data for prostate #2 cancer. The numbers represent a 10-fold cross-validation
result with 95% CI. Bold numbers indicate the best performance over the included
set of models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

C-index 88.31 ± 0.10 75.39 ± 5.93 84.5 ± 0.40 85.94 ± 1.10 83.60 ± 0.08 84.15 ± 0.09 50.00 ± 0.00

BS(median) 0.04 ± 0.00 0.10 ± 0.06 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.06 ± 0.00

T-MAE-PO 56.01 ± 1.17 81.89 ± 6.31 65.08 ± 3.52 80.36 ± 3.52 62.76 ± 1.26 64.15 ± 1.30 94.68 ± 1.49

TL-MAE-PO 0.81 ± 0.01 1.11 ± 0.17 0.89 ± 0.04 1.06 ± 0.02 0.88 ± 0.01 0.89 ± 0.00 1.14 ± 0.01

Table G.8: Model comparison using all the discussed metrics based on monthly sur-
vival data for stomach cancer. The numbers represent a 10-fold cross-validation
result with 95% CI. Bold numbers indicate the best performance over the included
set of models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

C-index 77.00 ± 0.14 72.76 ± 0.33 76.68 ± 0.13 75.25 ± 0.15 71.80 ± 0.21 71.87 ± 0.20 50.00 ± 0.00

BS(median) 0.16 ± 0.00 0.18 ± 0.00 0.16 ± 0.00 0.20 ± 0.00 0.18 ± 0.00 0.18 ± 0.00 0.22 ± 0.00

T-MAE-PO 40.21 ± 0.52 50.41 ± 0.93 49.26 ± 2.22 54.76 ± 2.40 51.07 ± 0.69 52.13 ± 1.31 159.69 ± 2.36

TL-MAE-PO 1.53 ± 0.00 1.72 ± 0.02 1.61 ± 0.01 1.85 ± 0.02 1.74 ± 0.01 1.78 ± 0.01 3.03 ± 0.02

Table G.9: Model comparison using all the discussed metrics based on monthly sur-
vival data for thyroid cancer. The numbers represent a 10-fold cross-validation result
with 95% CI. Bold numbers indicate the best performance over the included set of
models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

C-index 93.22 ± 0.22 89.38 ± 0.34 93.30 ± 0.34 92.22 ± 0.31 90.27 ± 0.20 90.20 ± 0.20 50.00 ± 0.00

BS(median) 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

T-MAE-PO 56.42 ± 0.34 65.71 ± 3.70 57.35 ± 3.31 78.16 ± 3.16 72.01 ± 0.72 74.94 ± 0.60 98.00 ± 0.13

TL-MAE-PO 1.29 ± 0.01 1.43 ± 0.06 1.33 ± 0.06 1.66 ± 0.03 1.52 ± 0.01 1.55 ± 0.01 1.81 ± 0.00
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Table G.10: Model comparison using all the discussed metrics based on monthly
survival data for urinary bladder cancer. The numbers represent a 10-fold cross-
validation result with 95% CI. Bold numbers indicate the best performance over the
included set of models.

Metric RSF MTLR Deep-MTLR DeepHit Cox-PH AFT KM (baseline)

C-index 81.73 ± 0.18 74.41 ± 0.68 81.34 ± 0.27 80.94 ± 0.20 74.64 ± 0.19 74.73 ± 0.18 50.00 ± 0.00

BS(median) 0.08 ± 0.00 0.12 ± 0.01 0.08 ± 0.00 0.10 ± 0.00 0.10 ± 0.00 0.10 ± 0.00 0.12 ± 0.00

T-MAE-PO 64.55 ± 1.69 80.42 ± 10.29 62.40 ± 2.95 97.11 ± 2.92 79.88 ± 1.03 80.21 ± 1.05 117.51 ± 2.83

TL-MAE-PO 1.23 ± 0.01 1.44 ± 0.11 1.22 ± 0.04 1.68 ± 0.02 1.46 ± 0.01 1.46 ± 0.01 1.82 ± 0.02
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