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. : ABSTRACT

Learning classifier systems are a relatively new area of Al research. Designed

P ’ . .
“with domain independence in mind, these systems can be applied to a variety of learn-

]

ing cnvironments. Their ability to adapt to their enNironment makes them useful for
: - ¢ - . .

. . . N . "y -
dealing with dynamic environments. ’ v

v
Essentially. these systems represent knowledge in the form of rules {classifiers).

Eovironmental feedback enables a system to
. \?‘ ) ‘

N
'

rules are” discarded and replaced by new rules {survival of the fitrest) which are

-

discovered through several rule discovery operators. Some of these operators mimic-

genetic operations in that they mate or mutate existing rglles in order to prodyice new

rules. The rexult of all this js a8ystem which "evolves" a knowledge base that enables
: B L]

it to perform well in the environment to which it is applied.

<

This thesis discusses the author's implementation of the learning classifier system

¢
4 ‘

) i : » N . .
LCS. In addition, experimental results and enhancements to this system are also

described. The result of this research is a systein which is capable oftearning from its

environment ‘ip order to adapt and perform well within that environment.

P

evaluate the usefulness of a ruler Useless.

N
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w ould bc al)le to (leal ‘with the perpetual novelty of sntuatlons arlsmv in ac lmgiug_‘_

4
A . ( -4 . o 9
* Chapter 1
Introduction

2

o v
+

Many real world problems deal with environments which change over timo./.\'.\'\-

tems whieh mto act with ' \ll(‘ll cnviropments experience new “stimuli” (input). fram
8 ' !

- .

time to time. with which they must deal. An example of such an cnvironment i«
speech recognition in which a system might receive the sounds of 4 new voice: or.

. g . . . . " " .o . : .
¢ Ject recognition in which a system might "see” an object from?a new angle. The sue- .

A 2 B .
gess of such systems in dealing with. their environments depends upon their ability to

adapt to the new input. The system should try to process the new input as best it can

.

and, if incorrectly processed should have some -sort of C(‘dbl(‘l\ and ('orr',,cfﬂon

mechanism which will allow the system to '1d'1pr lell'ltlol]b o the ability of a sys-

l . >

tem to adaptto new mput restricts the \'men of slluatlons tbat it can lu.ndle “This®

1 uol)lom Is che(l b\ many expert 9\ stoms

- Expert ﬂsrem\ ln\c demon<Lrated success in a VZlT‘lC‘(V ‘of arcas. The prol)lom

with these <wtems. ho“m er. is that they tend to brml\do“n when they are dppll(’(l to

areas which are \llf’llll‘y (lllferent from Lhose for w l]l(‘ll they were (lmwuo(l‘ art of tbe

‘reason for this is that many expert sxstemq (lo not p0\\ossv4m correction [H(’(‘ll.”]l\m

o

that allows the sxstem to adapr ’\lo% e\perL swtemx consxst of a rile hase con—'
structed by humans. If a s'ystem is ap-pliegl {o a §lif*htly’ di[l'ercntvvarea resultin'ﬂ in, poor *
performaunce, ‘then human mterventlon Is requlred te modll's the rule lm»e in order-to

give the clesn'ed pexl‘ormmce This modiﬁcati_on,mny involve Lhéﬁviii(‘lll_lt’ibn :i'nd"romovul

of’rules‘l"r'om the r‘ule_jb_aso.' In this case, the cofrcction mechaﬁism-of,'t he syst

provided by humans. What is needed 1s the ablllLV for the s}stem to assess its ow n”'

o
.

pml’oxm‘mce mcl to modlf\ its -own rule base accordmvlv In this \\"'iy uch a'system.

"y‘»l'

3

environment. Onc soluLlon to this problem is-to use mductlon

P
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.

In(lucli‘ﬂi. in this context, involves the gconstruction of categories that organize

covironmental input usefully. These categories allow jnput Yo be clussified according
. A : :

to response. Inputs which require similar responses will be crouped in the same

citegory. These categories should also be broad enough colloyiv-bly to encompass the

range Of inputs likely to be encountered. o this way. futegories provide s mechanism

with which to colnbat the perpetual novelty of situatio=~. A new input tha arises-enn oo

7

b elussified into a category and an appropriate response cai-be (l(‘l(‘l’llli{l(‘ll for i OF

cconse. the key to all pf-this s the development of useful categories.  This involiess

establishing some sort ofgenvironmental feedback wechanism which &l alos the e

fulness of a category to be determined. Also. some” mechanisim for disedvering

. . - T ' » R . ) o . N - :
categories is required <o that new categories can be developed., One such framework
. - ‘ v r) A ' coe \-ﬁ\ . 9
which incorporates th(‘;v ideas is the learning classtfier3ystem [Hold6).
. ! . Lo " ( .

A learning classifier system is'a rule-based system <omewhal akin'to an expert

system. Categories are represented implicitly through the rules of the system. Thus,

the task of developing categories now becomes the task of developing the rule base.

Development of the rule base is accomplished through the use -of the biccket-brigade

algorithn and genetic algarithms. The bucket-brigade algorithm facilities the feedbuck

.
5 . .

mechanism in identifying useful rules in the rule base: Genetic algorivhms provide the -

mechanism by Grhich new rules can be discovered. As the name implies, genetic algo-

rithms mimic genetic operations 1n biological organisms in order to develop new rules.

L3

In this respect: new rules might be produced from the "mating” of existing rules, or

" possibly by the "mutation” of existing rules. This. together with a policy that only the

“"ftest” rules survive. and less "fit” rules are repliced by newly discovered rujes.
p - - .,

sesults in a system whose knowledge base "evolves” to suit the environment. “The sys-

terr Hearns how to perform well in its environment. Thus."learning classifier systems’

are capable ofindapting 1o gradual changes in their environment.
s . e T .

>

.

4



Learning classifier systems provide a geueral framework which is applicable to a4
. . . - S , . o
variety of domains: all the mternal mechanisms involved in the system are indepen-

dent of the environment to which the system is connected. Thus, applying a learning

Lelassifier svstem to a new domumin mo.\lT_v mvolves establishing the interface between

the system and-the domuin environment.

Much work on the development.and application of learning classifier systems has
\ . . ' .
been accomplished over recent years. Oune system. developed by lick Riolo ar the

University of Michigan {Riox6:, RioR6b]. involves the task of learning to predict letrer

sequences: faven aoseries of Jetters: the svstem must predict which levter will cone
next. Some of the features present in this system were found to be neeful nud 1

tncorporated into the system that this author built.  Other svstems have been
developed for applications such as: gas pipeline control [Gol®5]. visual recognition

[Fugss] job shop seheduling [Davss HHLRT], symbolic layout compaction [Four3]. tic-
’ ’ v : . v

tac-toe [S1aR6]. atl siwple program generation [Cra’3]. While the gus pipeline control

cand visual recognition systems have been fairly successful, success with the other sys-
fems has been limited. Further work remains to be done with those systems.
v N

. This thesis discusses LCS, the author’s implementation of a léarning classifier Sys-

., -

tem. The goal of this research was to construct a test-bed within which to explore and

iyestigate fearning classifier systems. An initial system was implemented based on

ot

2

the system described in [Hol®6]. Because of the lack of detail in thy literature. this
involved various design and implementation decisions by the author. Lxperiments

~were performed on this initial system by applying it to the domain of tic-tac-toe.
tesults from these experiments indicated that enhancements 1o the system were neces-

N

sary in order to get the desired performance. With these enhancements in place. per-

. . : ) C e ,
formance of the system improved dramatic+!v givin@'much bétter results.
. i

e

oy -
fier systems from a high

3.
-

This thesis proceeds by first discus *+ - learning ¢l

(Y



level point of view inchapter 2. At the end of this chapter, the reader should have a
ceneral overall understanding of howja lc-.arning class?ﬁer svstem .worl;(s but will not
know all the finer level details x'(‘(lliire(l to actually construct such a system. These
detatls are provided in chapter 3 whieh describes the implementation of l,('\\' prior to
the enhancements. Chapter | deseribes the enbancements made to the system as well
as the Justificanions for those enhancements. Chapter 5 deseribes the procedures tha
one must. perform -in ’m.'(lvr to :q)p‘l‘_\' LCS to' 4 new domain. In additiofs a <mall
detaited teace of the system ‘I'lﬁ it is applied to a trivial problem) is provided in the
hopes of clearing up any questions the r'o:ulvr‘ might have about the workings of the
aotem. Chuapter 6 (l("\(‘l‘il)(‘,\ the ctp('rim(‘ntul results of applyinzghe enhanced system

ta tic-tac-toe. Finzily. the conelusion is given in chapter 7.

(

N



Chapter 2
Learning Classifier Systems

‘ [ -

N

2.1. Intr;oduction

v

Alearning classifier system is a system within which learning can be achieved.
Such wsystem usually displayvs=an adaptive style of learning. This means that when it

i~ connected to an environment (application). it learns by ‘adapting ipell to the

. Al . : . E b . T . rye
covironment i such o way as to perform better within that environment. The meis-

urement of performance within the environment is usually related to the achieverent
. v A

of ~ome goul. Thus, the closer a system gets to achieving the goal, the better jts per-.

formunce is. By allowing a system sufficient time to run. the system should eventually

-

leiirn how to achieve the goal.

Learning in I(’:u'nilig (‘I:i.ﬁiﬁor systems k‘:;[l be slud’iorl‘ by olemiliin'g three issues:
knowledge representation. evaluation, and d‘is'cow"ry. The representation of knowledge
refers 1o the scheme or format used to record the knqm'l(‘dg,(;. The ovul.u':uion of

"—ktroeledbee refers 1o the methods used ‘to evaluate the value (ux(‘fulnc%sv) of thé

o . . .
knowledge. 'I;ho discovery of knowledge refers to the methods il’_&'d to discover new
knowledge. The remainder of this chapter will examine each of these Issues in turn:

thus providing a deseription of the workings of-a learning clussifier system,

2.2. Classifier .Systiems ‘ .

'I‘i]f’ term classifier system refers to the lol'n'uileg classifier ss~tem withont the
|)ll(‘k(‘l-l)..l‘ig:l(l(‘ algorithm and ge‘not‘ic rxlgorithcq s as it is these algorithms which pro-
vide the ability to learn. A classifier system 'provi.(l(w' a format for representing
knowledge: Essentially. it 1\ a type of production system. As in a production system.

woclassifier system consist of clussifiers. which are analogous to production rules. and

J

mesviges. which are analogous to working memory elements.



Messages-are .used to record information related to a particular run (execution) of
“the classifier sy ~tem. Through messages, information is passed back and forth between
* the system and the environment. Messages passed from the environment to the system

Clinpiit messagey) usually convey information about the state of the envircnment, while

messages passed from. the system to the environment (output messages ually indi-
bt b * B - .M‘ R ' ! “," ) :

cate actions to be performed in the environment.” Thus. messages pre ide nel com-

~  munication link between the system and the em'i‘ronm(-lit-. [nput-messages ¢ome 1nto

the (\\iéiom. the svstem decides (wh'.dt actions should be performed. and then relayvs

these actions to the cnvironment through output messages. These steps are performed
repentedly alfowing the system to alter the environment. When the system performs
an action{through an ontpur message) it reccives feedback us.to how desirable the

cdetion wis in changing the environment. This feedback can guide the system in deter-

. B . ' o o

minimeg 1its pext-action. L ’ ‘/m" :

Vo ,

Messnges also play arole internal to the system After retrieving input messages.”
the sy~tem must decide what actions ‘must. be performed:  This decision process may
“involve the developmerit of intermediate concepts that are recorded in. the form of

messaces. These mmtermediate concepts may in turn lead 1o the development of other
B

intermediate concepts, and so on, before the systém arrives at the actions to be per-

formed:.

Messiages are represented as fixed length strings over 'l‘.ht‘ alphabet {01} The
fenath of o message varies from one -application to another, but remains donstan

within an application. A message can be interpreted by breaking np its string into

substrines and then interpreting each of the substringse This breakdown and interpre-
. ; . _ : ‘

P

tation will vary from one application to another. For example. the message 11110

might breakdown into the substrings 1.11,10 which might be interpreted as "there is o

block ahead (1), it is three units away (11). and it is red {10)" for ~some block's world

application.



ges
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All messages are contained in a global structure called a message list. Input mes-

sages are placed on the message list by the environment and are subsequently pro-

cessed by the system. Output messages are placed on the message list by the system

and are subsequently inter  crod by the environment. Messages developed between

:

the input and output phases of the system are also placed on the message list. The

message list corresponds to working memory in a production system.

In addition to messages, classifier systems also include classifiers. The set of
4 [

classifiers in 2 system ¢gmbodies all the knowledge that system has about a particular

application domain,

As was mentioned prev’ usly. -lassifiers correspond to rules in a
production system. Like a production system rule. - classifier cgnsists of a condition

\

part and an action part. When there are messages on the messdge list that satisfy the

conc v part of a classifier, that classifier is capable of "firing”. Firing results in the

osting of a message, derived from the action part of the classifier, on the messaco |ist.
I ! 5 g

AN

The condition part of a classifier specifies a set of messages to which the classifier

. . . ~

.. . . - . . . \J
can respond. This specification is denoted using fixed length strings over the alphabet .

? B
{0.1.#}. The length of these strings depends upoun the application. but the tength is
constant within an application and is the same as the length of a message. A message
ix said to satisfy a condition string when each symbol in the messuge string matches
. : I . .. [ .

the symbol in the condition string that is in the same position. A "0" in the condition
string will mateh only the ¢<ymbol "0" in the message string. A "I" in the condition
string will match only the symbol "1" in the message string. A "#" in the ¢ondition

string acts as a‘don’t care symbol and will-match either the symbol "0" or "1” in the

- message string. Allowing tLe "#" symbol in the condition string enables one condition

_string to specify a set of satisfying messages. For example. the condition string 110# #

will. muteh any of the following messages: 1‘10100. HHOOL. 11010, and 11011, \ condi-

tion string may also be prefived witha minus sign,("-") which indicates that the condi-
LS

tion string is satisfied if there is no message on the message list that matches the

.
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condition string. -So, lho_coudilif)n string -110## will'bie\ satisfied if the messages

s

11000, 11001, 11010, and 11011 do not appear on the message list.

The condition part of a classifier may contarn one or more condition strings. The

condition part of a classifier is said to be satisfied if each of the condition strings is

.

satisfied. When a condition part is satisfied, there is said to be a mateh between the

.

condition part and the satisfying messages. The ability to have multiple condition
+ o

-~

strings in i condition part along with the ability to negate a condition string enables a
.

aroup of classifiers to specify conditions over an arbitrary set of messages. An AND-

condition can be achieved using a classifier who

» e

se condition part has many condition
string<. An OR-condition can be achieved using a group of classifiers whose actions

are all the same. A NOT-condition can be achieved using negated condition strings.

Once the condition part of a classifier is satisfied. it is capable of firing. producing

a message from its action part. The action part of a classifier is denoted by a fixed
¢ v

leneth string over the alphabet {0.1.#}. As with a condition strine, the leneth of an

action string depends upon the application but is constant within an application and s~

the same as the length of o message. Unlike a condition paft, an action part consists

of only one §ction string. The messnge that is produced from an wction part <epends..

upon the symbols in the action string. A particular symbol in the resulting message is

determined from the symbol that-dppears in the same position in the action string. A

"

"0" in the action string produces the symbol "0" in the message string. A "1" in the

"

actian string produces the symbol "1 in the message string. A "#" in the action string
acts as a pass through symbol. producing in the message string the same symbol as

that in the same position in the message that satisfied the first condition string of the

clussificr. Thus, if a claséifier had the action part 10#1# and the messazge 00110

satisficd the fiest condition string of that classifier, then thie firing of that clussifier

x
would result in the message 10110,

<

N2
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Using a message list and a set of classifiers, the basic execution cycle of a classifier
7 . %

system proceeds as follows [HolR6):
1. Place all messages from the input interface on the current message list.

2. .Compare all messages to all conditions and record all matches.

t ) N - - i .
3. For each match. generate a message for the new message list.,

1. Replace the current message list by the new message list.

5. Process the new message list through the output interface to produce system

output.

6. Return to step 1.

This execution cycle is capable of supporting parallelism since classifiers may fire in
a . ~ . . )
paralle]l. The use of parallelism can sometimes offer significant improvement in spee'.

especially when dealing with a classifier system that has a large set of ﬂussiﬁcrs.

.

A useful feature of classifiers is the ability aof classifiers to couple. A classifier ('2 -
issuid to be coupled to a classifier Cl if some condition st-ringiof T2 s sati_sﬁ(:d by the
message(s) produced by C_;]. .C'éljy;ling of classifiers occurs across several iterations of
the basic exccution cycle: so. in this case, C'1 would fire in c')'ne it.eration thus sctting up
(2 to fire in t.h(: next iteration. The ability of classifiers to couple ennblesv control and

sequencing of classifier firing. Explicit coupling can be achieved through the use of

tags. For example, a classifier might have the condition 110## .. ##. In this condi-

tion. the substring 110 is called a tag. JAny message with the prefix 110 will satisfy
that condition. Thus, any classifiers that produce messages with the prefix 110 will be
coupled to that classifier. One of the obvious uses of tags'is for distinguishing input.
internal. and ontput messages. By using different tags for each of these kinds of mes-
. . o ‘
suges, one can create tlassifiers that rospondk)\nly to a certain kind of message. The
- . »

ase of tags for distinguishing these different kinds of messages enables the realization

of an arbitrary finite state machine [Hol86]. Keep in mind that tags are logical

N ' ‘
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| to the enviropment. The system is unaware of the_

-

concepts that are only meani

cxistence of tags and merely performs the matching and firing described previously.

2.3. Feedback and Bdcket-Brigade Algorith/ms

’

Classifiers provide the means for rep}esc‘nting knowledy . A classifier is a unit of
knowledge about a purticular application domn.:m. The set of classifiers in a classifier
system represents all the knowledge that the system has about a particular application
domain. Some cl:lssiﬁ@s In a system represent more valuable ér useful knowledge than
others. Thus. there needs to he some '»;'uy lo‘cvulunte and rank the ('lZ).S.‘\'Aiﬁ(:‘I‘S 10 i sys-
tem in order to identify the useful knowledge and weed out the useless knowledge.
'I‘ll.is‘knmgl("(lgc evaluation is achieved in classifier systems by assigning a strength to
(‘.Il(‘h classifier. The strength of a classifier is a number Whicﬁ indicates how valuable
' 111.:.1.1 classifier “is. lligho'r‘ strength {stronger) classifiers are more valuable than lower

: . .

strength (weaker) classifiers. .

When a classifier is first created, it is llSl.l"‘t”y given'somc prodgt(‘rmino(l i‘nit‘inl
str(‘nglh since the true value of that classifier is not yet known. As that classifier gets:
uscd (ﬁr'cs). 1ts strength is adjusted according to how useful or valuable it proves to be.
This adjustment is achieved using the bucket-brigade algorithm (to be discussed
) ‘ -

shortly) and environmental feedback..

During'tho course of execufion, many classifiers . may be il].\',olvofd vi,nﬂ‘ .‘nchiovi'ng
some g():ﬂ in the cnviroument‘. These classifiers may \V(ﬁk in combination, possibly
lzn-ough cbupling. in order to achieve that goal. The classifiers at the end of the com-
l)iu:xbtiou or chain will be rewarded directly fl;ou; the environment. Whenever the goal
is :x(‘hib\'(‘(L the- eﬁ\'it‘onment 1ssues a payojf to each of the active classifiers. ;]‘ho
active “lassifiers are just the classifiers that plac&l or posted messages on the message

5 -

list at the time the goal was achieved. This pavofl will result in an increase in the

. . “ v . J .
strengths of the active classifiers. However, this reward only affects the classifiers at
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the end of the chain; this payoff must somehow filter down the chain ‘so as to reward
those earlier "stage setting” classifiers that made it possible for the goul to be achieved.

The bucket-brigade algorithm addresses this problem.

The bucket-brigafe algorithm involves a modification to the basic execution
N . AR
cycle. Instead of allowing all satisfied classifiers to fire, classifiers must now compete

for the chance to fire. Competition is introduced by having all satisfied classifiers
place bids. The highest bidding classifiers are the ones most likely to fire.” The bid

[Hol&6] of a classifier is calculated by determining the product of: a constant (e.g. 1/8

or 1/16). the strength of the classifier, and the spectficity of the classifier. The

>
>

stron'glh of a classifier gives a measure of that (‘lnss_iﬁcr's‘pnst usefulness. The
s%ociﬁr_ity,of a classifier is r:vllc.ulatedvby dividing the number of non-#'s i-n ity coml’i-
lion‘p.fxrt, by th(; length of its condition part. This gives a measure of how relevant
thut classifier 1s to tln:_ current situation. Classifiers with high specificity are more
relevant to the current situation and " consequently should outbid those of equal

o

snouvlh but with lower specificity. When a classiﬁer is fired. its strength is decrensed
by the amount of its bid " — 1t pays for the pI‘lVllP"’(‘ to poﬂ its message (tq fire). ~\ltor-'
nately, the (‘la\\lﬁ(’l‘\ that posted the messages tbat enabled that C]d\\lﬁ(’l‘ to fire will

have their Strenvths increased. The amount of the i increase is uqualh just the amount

of the l)n(l divided by the number of chss:ﬁers inv ol\ ed.

As ohg can see, the strength of a classifier acts as a kind of capital. A classifier
"pays" those clnssiﬁer; th‘:u enabled vitv to fire and receives "pa‘y" from those classifiers
that it ena®les to fire. Classifiers that partli‘(‘jput‘e in chains that lead to goal attain-
ment will profit in this "economy"; \&;hile those that participate in "fruitless” ¢hains
will ulfimately lose in this "economy”. '-E;}hus the bucket-brigade algorithm is cupublc,
of rewarding those classifiers which prove to be valuv_able while punishing those which
do not/ Note that it is possible to have classifiers that. in order to fire, require mes-

sages that will never be generated.  As it stands. the strengths of these useless
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classifiers will remain unchanged from their initial values as these classifiers will never
fire. The solution to this problem is to introduce taxation. This is discussed in

chapter t. "

2.4. Genetic Aléorith ms

Classifier systemsfwith the bucket-brigade algorithm are capable of representing

and’ evaluating knowledge about a particular application domain. When a classifier

system  first starts out, ¥ is usually provided with a set of random - generated

('Ifl.\.\ih}(‘l'.\. that all have the same s/trong('th. As the basic execution cycle is performed.
these classifiers are “exercised” (used) and their strengths arc_updn‘t‘ed. Eventually. the
system should reach o state where the "good"_'\classiﬁors have higher strengths than the
"bad” Cl:lh\ih(‘l‘ﬁ. At this stage. the b:;d Ci:}ssiﬁcrs are removed from the systeﬁl_ and
repluced by :mr equal number of new classifiers whiclh are generated (discovered) using
genetic algorithms. Affer these new classifiers h:wf replaced th- bad on s‘, the system
resutres execution of the basic exectition cycle thus "exercising” the new classifiers and
. .. a

updating their strengths - and so repeats the_process. This repeated process of dis-

covering knowledge and then evalyating it, erables the system to learn.

»
Genetic algorithms are the tools used to (Qiscovor new knowledge in classifier sys-

tems. ‘(;(:*n(‘t‘ic algorithms are modeled :.1ftr.er the bi(.)logical'proléessos that are responsi-
ble i:or l)iologic;xl evolution. In biological evolution. descendants of an evolutionary
chain evolve by adapting to Lh(‘ir’environment. It 1s this adaptive behavior that is
desired in classifier systems, the idea being that insténd of the system trving to evolve
biological entities, it tries to evolve knowlodgg tclassiﬁers). This adaptive behavior isv

achieved by using genetic algorithms. - .
Crenetic alzorithms generate new classifiers by executing the f'ollowing/(‘yclo:

3 . . . . . Nl
1. Select {pairs of) classifiers n(‘cor(hug»\to strength — stronger classifiers being

more likely to be selected.



2. Apply genetic voporutors to the selected classifiers to create new oth'])ring
classifiers.
3. 'P\o'plare thg weu'kest classifiers in the system with the new offspring.
This evele is repeated until the desired number of new classifiers has b‘con generated.

The genetic operators used to produce the offspring work by performing opera-
tions on the condition and action strings of the - lected-classifiers. These operations

«

do not alter the selected (‘l:xsgiﬁ(‘rs in any wayv. but rather are used to construct the

new offspring I'rom‘tho selected cl‘nssiﬁers‘?_'l‘hree‘ of the more (‘ommonlylusml genetic

opomtorﬁ are: mutation. inversion. and crossover.. Mutation is performed using a

J..singfle .\‘tri'ng. and produces a string which is essentially identical but with some ran-
domly changed symbols at randomly selected positions. Inversion is performed using a

. ‘ ‘ ‘

single string. and duces a string which is essentially identical but with some ran-

domly *selected substring being reversed. Crossover is performed using two strings.

“and produces two strings' which are the same as the two originals but with some ran-
domly selected substrings being éxchanged between tAhe two. Substrings which are

oxch:mgovd are usually substrings which ‘occup)’ the sarﬁe positions. .So, if, some condi--

tion or -action string was 110#00#1, then mutation might produ'co. the string

110()()0##. and inv‘ersion might produce the string 1#0100#1. If two condition or

action strings were 1101#1## and #0#011_0#, then crossover might cro-ss over

bm.w‘oen_ the third and fourth positions. resulting in the strings' 1100110# and

#0#1#1##. The new strings that are produced from the genetic operators become

part. of the new offspring classifiers. Mutation and inversion both use one selected

K

——— classifier producing one new offspring classifier. Crossover uses two selected cla- sifiers

f:m(l produces two new offspring classifiers.

The success of genetic algorithms in discovering valuable classifiers lies in the

property of strong classifiers to contain some butlding blocks (substrings) which aid in
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the wehievement of the environmental goals. Genetie o'petr;xtors sufll as mutatipon and
inversion try to discover new useful building blocks, while op‘ornlors such as crossover
seek new ways of combining l)‘uiI(ling blocks in order to yield more valuable classifiers.
When crossover is performed on strong classifiers, it tends to be reasonably successful
in producing "good™ classifiers. Consequently, crossover tends to be the operator most
l'roqllmnl_\' used to produce new classifiers. Mutation seems to be less successful in this
respect and 1nversion even more-xo. Thus, these operators tend to be used less fre-

3v repPicing the weak classifiers, genetic algorithms promote the poliey of

qﬂlonll‘\’. ]
"survival of the fittest™ - only the strong flassiﬁers survive: the weak ono;i die. As the
set of classifiers evolve, the population of .classifiers should contain more strong
classifiers and hence more useful building blocks. This will result in an improvoinont.

4

in overall performuance of the system in the environment.

>
2.5. Comments

Learning classifier systems provide an adaptive style of learning which is applica-
ble to a large variety of domains. Such systems have been applied to areas such as:
functiow optimization, visual recognition, job shop scheduling, and simple program
. . ‘
generation: The success of learning classifier systems is largely because such systems
are capable of exploiting biases in a domain which lead to improved performance

o . . ) B
within that domain. This occurs because new classifiers that are generated are similar
to ones that have proved valuable in the past.. Through the policy of "survival of the

fittest”. these systems dynamically develop a body of knowledge about a particular

~application domain. This "evolution” of knowledge enables these svstems to learn.

-
s



Chapter 3
Implementat}iog Description
3.1. Introduction .

Thv sy&tem that is currently implemented isllslightly different from that described
in 1hé previous chapter. Development initially involved (‘r'eating' a system which was
as .('l()\'(‘ as possible to that described in the literature (-chgxptior 2). The paper \.\.‘l]i('ll
l'(y)rmod the basis for this implementzxti;)n was that written by John IHolland [(HolR6].
This paper along with some additional literature [HHNS6] provi‘dcd a general (l(‘:w‘(‘]‘i[);
tion of the im.plcm(*mution. some.of the finer details, however, Were not (liscnussm.l n
4

the literature and consequently involved someé design decisions on the part of this

author. These design decisions will be discussed as they arise.

Once this initial system had been developed. experiments were performed by
applying this system to the domain of tic-tac-toe. The results of these experiments
indicated that enhancements to the system were necessary in order to give the desired

performance. These enhancements and their implementation details are discussed in

This chapter describes the implementation of the initial system — the system,'

the next chapter.

2
e

described in chapter 2. This implementation was done in ¢ on a VAN minicompiiter -
and involved approximately 1000 lines of code. The description of this implement a-
tion proceeds by first describing the classifier system with bucket-brigade followed by

a description of the genetic operators. -



3.2. Classifier Systefn with Buckef-Brigade
. This section describes Vth.o implom(’ntal»io.n of A(,l.)c rl:xwiﬁq‘ri,s_\‘f\i‘(;n')‘4\s'i‘th‘ the
-~ bucket-brigade algorithi. . The two major data structupes of .t i](\ illlpi('lll('l)l::lti()'ll.
.11:111|<\|_§ the lni-“séug(‘ Av:m'.(bl (fl:ls~.ifi(?‘r‘ (‘l:l[i.). s‘jt.f_j)vl(-‘t'lvl‘l;'o';_'.:n'v'<'l'("\(;l"ih<‘(| ﬁr_v\.l, Froare 3.1 |‘>r<>-v
. \'i‘<lv'~ i ni('»l,r()vl‘vir‘;-l’i.'-‘(l.(isl(‘l"lp'l:l()l‘l of .t' l'i;*fg* (l:-lt"u strucd l‘l'l"‘(‘\."l‘\_ \\(’ll ay \1r[$[)“()|"l ibllf: (l.’l‘; .'.l \:I—]'II(‘-
1ur(\sh()\\ml_§ the ill(("Ifl"(‘lill-‘i._(),n\,' between them. D‘(‘.lll‘ll‘.\‘ of this figure are 'ivi\"vn.‘in the
sections Chat 'foll(;\‘\x F.()llowing the data structure di.\“cui.\"ibn’i\ " <l<;“('x'i[)!i(>11 ol the

implementition of steps two (compare all messages to all conditions and record all
mautches) three (for each match generate a message for the new messgee Hist), and four

(replace the current message list by the new message list) of the busic execution cvele

-

deseribed in chapter 2. Steps one (place all messages from the input interface onthe .

' P S S
current message list) and five (process the new message list-throwgh the output inter-
fice to produce system output)involve interacting with the environment and are.dis-

“cussed in chipter 5. Finally. this section describes the implementation of the environ:

-
a

mental feedback mechanism. Neep in mind that this section discusses only the imple-

montation details and does not address the means by which 4 user 1s to access this

~code. That is discussed in chapter 5.

3.2.1. Messages ‘

Messages are maintained in the msgType structure which has the following

declaration:

v ostruct mngype { . o o :
© ldng id; - ‘
int bid; _ : : ’
struct bitStr *msg, ‘
struct clfType *clf,
struct msgType *nxtMsg, .
Y ' ' :

The 'id member contains the identification number of the message. Message

.

identification numbers start at zero and progress up to MAX_.LONG - | at which point

-
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prefix

condl

cond?
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mselool -

matech\s

-~

NULL
< lastClf
S
NULL
sl %—lilht.\[\‘l;

NUlH

nxtCond g -
condType
N /) .
1 ] —-
strepoth ™
' ()P
nxtCond
action |
action?
nxtecif — -
clf Type
1d A
bid
msg
(” -
Nt Msg
: W
msgType ,J
| Ng ‘I—’
S uatMsg - “INULL

o
D

<
ateh P
matchPool |

bid

clf

msg

17

nxtNate

‘h_ _
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Figure 3.1 Data structures used by the classifier system.
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they restart at zero (MAX_LONG is a constant which is currently set to 2117000000,

. A
approximagtely 271 These numbers aid in keeping trick of messages.

The bid member contuins t%h(‘ value of the bid invglved in posting the message,
and the 212 member is 2 pointer to the classifier that produced the message. When o
clussifier i capable of firing, 1 places a bid which competes against bids from other

clissifiers whiceh are also capable of firing. Shouldsthar classifier fire, it is the value of

it~ bid that 1y stored in the bid member, and a poinjer to- that classifier that is stored

“in the " clf member of the resdlting message. When the message comes from the

environment and therefore has no corresponding classifier that produced 1t, the bid
and 1 f members are set to zero and NULL respectively.
P .

The msg member is 1 pointer to the contents of the message. A messaee i~ main-
; 3

tained in o bitStr structure which has the following declaration:
. : €
struct bitStr {

long str(MAX MSG SIZE/(8+sizeof (long))].
- ,

s

The MAX MSG SIZE constant determines how large the array is. This constant indi-
. S o o M
cutes, in bits, the fargest message atlowedefor any application. lly sizeof (long)

function i~ O function that returns the number (>~f~ bytes in a long‘inu-gvr. For the
VAN machines, on ‘which this system was (lv\'ol()“;,)vd.‘thi\' number is four bytes. Thus
lone integers are 32 (87sizeof (long) ) bits long resulfing i bit strings {strings of 1°s
and 0's) being stored in multiples of 32 bits, "left justified”, with any extra bits being
set 1o zero. The length of bit strings are determined by the fwo variables msgs.
T,
and msgBlkSize. msgS: ze indicates the ndmber of bits in a message. msgBlkSize
: . . - . .
indicates the number of long integers required to store a III(‘;S.\':lg(‘."'I‘ll’iS 15 just the
mit mum x.lumbor of long tntegers required to store a bit string that is msgSize bits
. A} N

lons. Thus if msgSize is 10 then msgBlkSize will be 2 ([10/32]). Memory is allo-

cuted for bit strings by issuing the call malloc(msgBlkSize*sizeof (long)). The



-~

| . - -/

length of this resuhiﬁg bit string is u§ua“y less than that of the largest message
allowed. This, however. dbcs not present a problem in using th; LitStr strﬁcturo:w
this SITUCYUFP‘iS used as a template,over the allocated [néxuory so as to be able (o
access that memory. A.M string which is shorter than the sqr}uTuyjuﬂ ﬁonnsthm
onh'thv(h\f msgBlkSize elements are allowed to be accessed: The bitsStr Mrucﬁnm
:J(ﬁ)g with the two corresponding variables are also used for condition wml action
Strines since th?>o strings are the same length ax messages. 'Fhi§ will be discussed in
more detail in the section on the (‘l:l\‘ﬁi“(‘rl(l.'l!‘:l structure.

l’hndly.lho hXLMsg nnwubvris:n]ﬂﬂntorlollu‘nvxtInos%ngoinllu!nHW<ugo;xxﬂ.

. P ‘ o

ihe message pool - a linked list of nﬂwsugoQ {msgType structures). The variable
msgPSol points to the first mowngointhepoqlund(hvvuﬂnbk'lastMsgpohn;lothv
last message. The nxtMsg member is NULL for the last message in the message pool.

. - : “
\ pictorial «- siption of the message pool is given in figure 3.1.

3.2.2. Classifiers

Classifiers are maintained in the clfType structure which has the following

»

decluranion:

struct clfType {
* long id; '
int strength;

char op:
- struct condType *nxtCond;
struct bitStr uctioni;
. struct bitStr raction?,
i struct clfType *nxtClf;
- S .

The 1d member serves a purpose similar to the cquivalent in msgType. The
strength member contains the strength value assoeiated with a classifier. The op
member s o character that indicates which genetic operation created the classifier

Classifiers can be created from the various genetic operations such as crossover, mut -

tion. and so on. Wnowing which operator created a-classifier can aid 1n tracking and
’ < L3



-+

debugging the genétic operators. The various values that this member can assume\\\vill

be discussed in the section on the genetic operations.

‘

. The condition part of a classifier i1s maintained in the nxtCond member. This

member is o pointer to a linked list of condition strings which make up the condition

part of the classifier. Fach condition string is maintained in a condType structure
. Kl

1

which has the declaration:

'3

r struct condType |
¥ int prefix:
struct bitStr *condl;
struct bitStr *cond?2;
struct condTypeé *nxtCond;
Yoo
The profix member is an integer which indicates whether or not the condition string

I~ negated. [t assumes one of the two constant values POSPFX (if the condition string

I un-nog::q(ﬁl) or NEGPFX {if the condition string is negated).

The actual condition string itself s maintainéd in the two members cond! and

. . . . . - ‘ . - .
cond?2 cach of which coutains a bit string. A condition string is encoded into these two
bit strings by encoding each symbol into the corresponding position in each bit string.

The cucoding seheme s as follows:

Symbol Y condl | cond?

"0 0 0
v

"y 0 1

g l i

Thus, the condition string 1101##0# would be encoded as 00001101 for condt auel
[1011101 for cond2. As with messages. the bit strings are stored in multiptes of 32
Dbits and any extra bits are set to zero. This encoding scheme allows for o simple test

A\

to determine if @ message satisfies a condition string:
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result = cond2 XOR (condt OR message)

If the result-is a bit string which is all zeros then the message satisfies the condition

string, orh'erwi‘sc it doés not. So. for example, if the message 11011000 was compared

against the condition string previously given, the result would be:

“result = 11011101 NOR (00001101 OR 11011000)
' - 11011101 NOR 11011101
00000000

»

which ifrdicates that the message satisfies the condition string.

Finally. the nxtCond member is a pointer to the next condition string in the list.

~ This member has the value NULL for the last condition string.

Turning back to the clfType structure. the actiont and action2 members

cach contain bit springs which specify the action string. This string is entoded in a
fashion <imnlar to the condition string

The encoding scheme tn this cuse is:

Symbol | actionl | action?
‘. 0" 0 0
‘ . | 0 1
i I 0

No. the actions string 00#1##11 would be encoded as 00101100 for actioni and

00010011 for action2. Aguin. these bit strings are stored in multiples of 32 bits with

any extric bits being set to zero. This encoding scheme facilitates a ~<imple method for

determining the message resulting from firing a elassifier:

resulting_nessage =

= action2 OR {actionl AND message)
B 4

where message is the message that satisfied the first condition string of the clussifier.

Fhus.if the satisfying message was 1 100001 and the action string wias that sivén pro-
- . v

)



viously. then the resulting message would be: ' .
’ 3 »

. resulting_message = 00010011, OR (00101100' AND 10100001)
00010011 OR 00100000
00110011

which is as expected.

Finully. the nxtClf member is a pointer to the next classifier in the classifier

pool: The classifier pool is a linked list of classifiers (c1fType structures). Tl.w vari-
able clfPool points to the first classifier in the pool and the variable 1astClf points?
(o the lust classifier. The nxtCLf member has the value NULL for the last clussifier in
the pool. A pictorial (l('srri[)ri(;xl of the classifier data structure and the classifier pool
i~ given irbl flonfe 3.1

o

3.2.3. Basic Execution Cycle

y

Thix séction deseribes the implementation of steps twé through four of the basic
execution cvele presented in chapter 2. These steps form’ the hot:;rt of this cyecle as
they wre the steps which prodiice the new message.list from the current one, All l‘hv_\'o
steps are performed by the function executeOneCycle. This function 6.\'50111'1:1!1.\" con-
sists of three functon calls 1o the functions getMatches. detMaLchesTo}-“,i_re. and’
cfeateNet;fflsgPool.

3.2.343. Constructing Matches

~

Step two of the basic execution cycle involves comparing all messages to all condi-
tions and recording ll matches. This is accomplished by the function getMatches.
The purpose of this funetion is to build up a mateh pool (matchPool) which is o linked

hist of matches (matvehType structures).
The matchType structure contains all. the information related to 4 mateh
. ?
between a particular classifier and o particular set of messages. Tts declaration is as

follows:



struct matchType {
int bid; :
- struct clfType *cif;
- struct motchMsg *msgs;
struct matchType ¥#nxtMatch; q
by

Thie vid member contains the bid for the match: the clf member indicates the

)

classifier involved in the match: the msgs member points to the list of nu‘ss:é_gx that
-

satis{y the condition part of the classifier; and the nxtMatch member points to the

next match in the mateh pool. A pictorial description of the match pool is given in

.

ficure 3.1. .

3.2.3.2. Finding Matches

y o

Counstruction of the match “pool first involves determining a possible match
between w message and the first condition string of a classifier. This means that each
. . ’ V . . ) . - »' . -' &
message s compared to the first condition string of each classifier to determine if the
message satisfies the condition string (note that the first condition string of a classifier

must be un-negated as it is the message that satisfies this string that is used in the
firing of that clussifier). For each comparison that resulte ibﬂn sutisfiabtlity, a p().\.sil)h‘
mateh exists and the rém:lining condition strings in the classifier are examined 1o
“determine if they toc; can be satisfied. This involves constructing. forreach remaining

condition string. a list -of messages which satisfy that particular condition string. This

message list should -be empty for negated éondition strings and non-empty for un-

k]

negated condition strings. If this is the case for all the rem:ining con(litio.n Strings
then the Con(lili(mﬁp:u't of the clﬂssiﬁcr s satisfiable and a m:u('h‘ can be ('()[15[1"11(10(1.
.\(’«vu:sll_\'. \(‘\'("I‘Zl]-H]J!“(‘I](‘.\' can be roﬁstrurtod and :1rcl;ionc so through the f.nnclion
buildMatches.

Since for each un-n'(‘.g:x(ml condition string fhere i‘.\' a list of messages which satisfy

that condirion string (in the case of the fifst condition string this list consists of only
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one message), a set of matches can be constructed by constructing different sets of

messages which satisfy the condition part of the classifier. Each set is constructed by

selecting one message from the hist of messages for each un-negated condition string.
1 .

By selecting different combinations of messages. different sets of satisfying messages

’

can be formed. buildMatches constructs all possible combinations resulting in the

/

addition of several matches to the match pool. S .

3.2.3.3. Bid Calculation

A bid must be raleniated for each match in the mateh pool. This is performed by
the function caleBid which is invoked for each match at the time the match is being

constructed. The value of the bid is calculated as follows:
bid = bid_cocflicient. * strength * specificuy

The bid_coeflieient is contained in the variable bidCoeff. the strength is the strengt

of the classifier involved in-the match, and the specificity is the specificity of the

' e . . N “ e
classifier involved in the.match.

Specificity is calculated by dividing the total number of non-#'s in all the nn-
nesated condition strings by the product of the number of bits 1 a message (msgSize)

-
. ! . . . « . .
and the maximum number) of condition strings allowed in a coundition part {max-

NuchnéS). This c:xlculaiibn permits the comparison of specificity amongst classifiery
whose c?)ndition piurts hu‘vo ditfering tjumbers of condition strings. With this calcula-
tion, classifiers with more un-negated condition strings “will likely ‘have higher
spoci}icilim. 'I'his.s't:xnds ;o reason as a classifier with morve un-neg:i od ('on(lition

<trings will only be applicable to more specialized situatyons and thus should have a

hicher specificity.

If the value of the bid turns out 16 be negative (because the ¢lassifier strencthis
. o al

11(‘5::11.'1\'('*) then a bid of 7erois used. ' o ’ A

T ey



3.2.3.4. Determining Which Matches Should Fire

Bocnﬁso of the bidding competition between the matches, it may be the case that
not all the mutches sl@uld fire. The function that defermines which matches should
fife 15 detMutchesToFire. This function reduces the size of‘the match pool by remov-
g those maiches which shouldn't ﬁr;*. The matches to be removed depend upon two
variables:~ cl1fPostLvl and fireProb. clfPostLvl indicates the maximum number
ol"nmlch(‘s—\t hiat are allowed to fire. A value of zero indicates fhat an inﬁuife nuber
of matches can fire. This function proceeds by first establishing a new match k)(iol con-
sisting of the first clfPostLvl matches in the old 'mznrh pool. If the old match pool

. ’ M 7 ; .

has fess than clfPostLvl matches then all the matches are used. Of the remaining
matches in the old qutfh‘ p\ool‘ up.[‘)roxima(ol_.v fii‘ePro‘b percent of them are examined
to <determine if their bids are htgterthan the lowest bid in the new match pool. If this
i~ the case for a p:n'ticﬁl:xr match, then thit mateh will be inserted in the new match
pool (Iis;;lit(‘ing the lowest bidding match. The actual method used to achieve a ,préb:x-
bilistic examination of the remaining matches is simply to gencrate a random number ”
for each of the remaining mAutrhes: if this number is less than or equal to fireProb
then the corresponding match is examined. When the old match pool lm.x been
exhausted. the new match pool replaces it, resulting in a reduced match pool contain-

ing only those matches that should fire.

3.2.3.5. Creating The New Message Pool

Creation  of the new message pool is  performed by the function
createNewMsgPool. This function fires all the matches in the match pool creating a
new message pool which replaces the old message pool. A match is fired by first creat-
ing a new message from the classifier and (he mesgage. which satisfies the first (‘6[1(,1i-
tion string of that classifier. stored in the rﬁ:xtch. This new message is placed in the

new messageé pool. Following this. the strength of the firing classifier is decreased by



~

“the amount of the bid. Then. the "supplyving” classifiers’ strengths (the clussi‘licrs who .

posted the messages ‘I}lilt satisfied tlhe condition. strings of the firing cluSsiﬁ(*r)' are

updated. This tuvolves inerementing the strength of cach supplying clnssiﬁor.b); the

amount of the bid divided by (h.e number of supplying classifiers. After all the
: v

matches have fired. the old message podl is destroyed and the new message pool

repliaces i,

N\ oy
3.2.4. Environmental Feedback

Eavironmental feedback 1nvelves issuing pavoll {numerical feedbuck) to classifiers

in the system. This is accomplished by calling the function payoff. The payoll issued

may either ‘be a positive or negative integer depending upon whether the system is

berng rewarded or pumished for 1ts actions.

When issuing puavoll. the group of classifiers to receive the pavoll ‘must be
N A
identificd. Classifier groups are identified using group numbers (0 and up). The group

number 0 is a special gronp - which consists of all the active classifiers {classifiers which
huve posted o message to the current message hist). Other group numbers refer 1o

groups which have been constructed by the application. Construction of groups is per-

formed through the function addToP0Grp. When called. this function adds all the

. ,

currently active classifiers t9a specified group number. I the group did not previously
. N o € N o

exist. it is created, and the active classifiers are placed 1n it. Otherwise. the active”

classifiers are just added to the existing group. The number of groups that can be

created 1s ltmited by the amount of available.memory. .

Group information ts maintained as a linked list of groups where each group is a

linked list of classifiers. Tle data structures involved in this are:



struct payoffClf {
struct clfType *clf ..

. struct-RayoffClf #nxtClf;
> }; i\&

1

struct payoffGrp { :
int «ium;
struct payoffClf =*clfs;
Struct payoffGrp *nxtGrp;
¥

The payoffGrp structure contains information about a group, namely ‘iu number
(num) and-the classifiers in the group (c1fs). The payoffC1f structure is used to iden-
tify }h(‘ classifiers (c1f) in a group. Group information can be nccessed throng'h the
variable payoffGrps which is a pointer to the linked list of gZroups.

In ;}(ldirion to constructing a group, an application can also '(lcs[roy A group
through the function rmvPOGrp. ‘Dostroying a group disassociates the classifiers in the
eroup from tll:it‘g_.;roup. and frees up the groixp number so that it r:;n bo"usmlA:ngnin in
the -consrrumion of another group. Only group numbers grca‘tor than 0 can be des-
troved.

\\'ilhl the ability to construct and destroy groups. an application has the ‘(‘Il[)ll[)”-
Ity to group together the sets of)nctive classifiers, that appear ovcr‘the iterationg of the
basic execution cycle, in any fashion desired. This way. various groups of classifiers’
can be idontiﬁ(‘d for different amounts of payotl. When payoff is issiyed toa group. the
amount of the payofl is divided equally amongst the classifiers ingthat group. This

resultsin the strengths of those classifiers being cither increased or decreased depend-

s

Tf)\

ing upon whether the payoff is positive or negative,
-
3
lod »



3.3. Producing A New Generation

As enpeeted. execution of this system proceeds intwo stages. The first involves

the evaluntion of the current knowledge as the basie exeention eyvele is performed nd

feedback is recerved from the environment (application). After performing the busice

execution cvele for some number of erations, it is halted and the second stage is per-

formed. This involves the discovery of new knowledge ax the mext generation of

clussifiers is produced. This two stage process, which 15 known as a generation. then

repents. Execution of the system usually proceeds for some specified nimber of gen-

erations. The number of iterations of the basic execution evele that s performed in o
zeneration is determined by the application. Usually, the application might perform a
fixed nnmber of iterations per generation or it might perform the iterations until a cer-

3 » ‘
tain nu}ub{r of Jweak” classifiers have been identified. At any rate, the criteria for
‘ . 4 N ) ‘

determining the number of iterations to be performed rests with the application code.

This seetion describes the details involved in producing a new. generation. The
: a g P
function which accomplishes this is produceNewGen. Briefly, this process involves first

identifving the weuk classifiers which are to be-replaced. Then. the new classifiers are

. 8] . . . .
coperated using genetic operators. Finally, the weak classifiers are replaced by the

new ones. This completes the production of a new generation. Note that if there are
no weak classifiers at the time produceNewGen is called then no new classifiers are

cenerated.

.
- y

3.3.1. Identifying W”eak Classifiers

The first step in producing a new generation is to wdentify lh(‘. wv:lk.cl:wsi[ivrs mn
the system. This raises the obvious question concerning the definition of 'a wenk
clasetfier. o rhis system. it was ('locidod that a weak classifier 1s any classifier whose
strength is below a certain value. This threshold value is stored in the variable

rplcThres which is set. by the application at the start of the execution.

o \
¥
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.

When it is time to produce a new generation, the classifier pool is first sorted

swccording 1o strength. This is done using a quick sort and involves fir loading the

array sortedClfPool with the clussifier pool and then sorting that wrrny. The ele-
ments of thisareay are of the type clfMarker which has the following decluration:

‘str‘uc't clfMarker.
struct clfType *clf;
int use;

Fn this structure. the c1£ member points to o classifier in the classifier pool. Thé use

member s used by the genetic operators and hence shall be discuesed iy that section.

After the classifier pool has been sorted, the weak classifiers can casily be
identified. If there are any weak classifiers in the classifier pool then they will be
replaced by new classifiers produced from the genetic operators. The workings of these

4 . . : . 4 -
operators are discussed in the next section.

6

\k\ . .
.3.3.2. Gegetic Operators

The genetic operators that are used in this system are mutation and crossover.
[irversion wis not uséd because it tends to be one of the weaker operators, having less
success at producing useful knowledge. Bolhgunﬁatiqn and crossover work by select-
mq classifiers from the classifier pogl and then pc‘ri‘orming some genetic operation on
(h.vn] to produce new (‘I:1ssiﬁ;‘r.\'.6'?l:[1(‘s(‘ new (‘lnssiﬁ(‘.rs are then placed. temporarily. in
a list of ne‘;;" classifiers. This avoids having new classifiers being produced from new
clussifiers, a pfoblom which could result if the new classifiers were placed directly into

'

the classifier pool. After all the new classifiers have' been ated, the list of new

o
classifiers is then put into the classifier pool replacing the weak classifiers.
This section describes the implementation of the mutation and crossover opera-
tors.. This description proceeds by first discussing some basic data structures that are

required by the operators. Following this, a deseription of the operators themselves is
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civen.

" 3.3.2.1. Data Structures 3, o “

)

Often 1t is the case that messages are the composition of several fields where euch
)

freld is more than one bit long~lt is also common for a fiecld not to use all the possible
states that can be represented. by its corresponding bits. For example, 0 messuge

micht consist of two fields. speed and directian. There might be three different possi-

bie speeds (speedl. speed?, and speed3) and three different possible directions (lelt.
, ;

rizht. and forward). Encoding each of these fields requires two bits. One possible

répresentation of these fields is:

Speed | Bits Dir. Brse - . i /‘
~'p<-o‘(ll "01" left 10" .
- speed2 | "10” hrighl 01"
| speed3 | "I | forward | LT v i

,

Thus. the message "1011 " would indicate iraveling at speed?2 in the forward.directi

Note that the bits "00" are not used by either field. Any message produced by the <ys-

/ .
temsin this application should not have the bits "00" present in any field. This restric-
tion has a direct effect upon the types of classifiers the svstem is allowed to produce.

' /

For instance, the system is allgwed to produce the classifier

##11 /0111 , ’

but not the classifier .

##11 /0011,

It s also possible that the field: for the condition strings of a clussifier migihy be

. . . . . . 'R
different than that for the action string. For example. the first bit'of a1 messdze might

indicate whether it is-an mput message {("1") or an output message {"0"). Thix means
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that all the condition strings should start with a "1" and all the action strings should

start with a "0". The system should not produce a classifier which has a condition

. . [ . . ! - ol
string that sturts with 1 "0 cor an action string that starts with a ",

r . L. e . . A
o Imorder 1o prevent these problems from arisine. the system maintains informa-

.

tion about the position and permissible values For the various fields in the condition

“and action strivgs. This information is provided to the system st run-time from the

application, lnl'\;n"m:nion about fields for the condition string is maintained in 1 he

variable cond8ndrylList. and for the action stripg. in the variable actBndryList..

. ! . . ‘ ' ‘ . ..
Both of these variables are pointers to the structure bndryType which has the follow-

iy declaration:

struct bndryType. { -
int start; ’
int length;
. int lglValCnt; . -
N .struct bndryValues *lgl'Values; ‘ oo .
. struct bndryType #*nxtBndry; o '
- . B ‘ '

~The start member indicates the position where the field starts. Positions are num-

bered from 0 to msgSize-l corresponding to each of the symbol positions in a condi-

“tion 6r action string. Thus a field starting at the beginning of a condition or action

. . . . ] ) v . N 3 » ’
string -would have a start valu¢ of 0. The length member indicates the feneth of

« .-

the field in symbols. The 1gilvaicnt member indicates the nur or of permissible or

legal values that the field can assume. The nxtBndry member points to the next ficld

2 <

spectfication. Fihally, the 1glvalues member points to a linked lis: of the lecal

L 5, :
vithies for the field.- Fach element in this list isvoiitidined in a bndryvValues structure

3

which has the following decluration: PR - -
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struct bndryValues. { . : .
long vall,
.- g long valZ2;
s struct bndryValuest'#*nxtVal;
’ o

. . . ]

The valtl and val2 members specify a legal value for the field. For condition string
ficlds. these members correspond to the condt and cond2 members of the condType
<trueture. For action string fields. these members correspond to the actiont and

action2 members of the clfType structure. A e i encoded into these two

oS inea fashion similar 1o that of conditjon strings fdr a condition strine field

Cand to that of action strings for an action string field. Thi

Cthe Iv:_:;:ll Ve CTTO##

would have @ vail of "00011" and @ ‘val2 of "11011"if i\ was for a condition string
Tield, and’ i vait-of "0001T " x

’

nd a val2 of "11000" if it was for amsetion string field.

From the <1'v(*|:|x":xlim]-. the ln;";'.\‘vim:nm length that « .[ivl(l can be i\A thefl l(‘lig‘lix of u
lonw intecer, which for VAN m:x('hiu.(‘\ s 320 Firelds sh(xi'lhr then thy
their tesal values stored ';h.'f'r-jnxl,iliml" in thie valt and val?2 medibers. The nxtval
‘member ix a pointer to the next legal \':{ill(‘ in the TineeT list. ‘_-\'pi'('iori:nl (l(‘.\rx'i;)’li(iln of

ovided 1n figure 3.2,

the tndryType.and bndryValues structures is |

3.31.‘2.2. Classifier Selection for Mutation

After the number of weak classifiers has bekn determined, crossover and mutation
S . .4 . ’ )
are ~applied. to the classifier pool in order to rate an equal’ number. of new

classifiers.  Crossovér is the first operator applied and. as will be discussed in the sec-

maximum e

Et]

tion on crossover, it generates new classifiers which will replace some of the weak -

clusstfiers. The remainder of the new clussifiers to be generated comes from the mutu-

tion gperator.

The sclection of classifiers to be mutated basically involves probabilistically

selecting classifiers, where higher strength classifiers are more likely to be selected.

¥
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1 wvall

val?

nxtVal | | - NULL

l)ndr;\“'\'n,[nos

¥

condBndrvList = (0

.
m-tl’)n(lryl_istr length o

lelValCn't

lg‘]i\':llll‘vs -

nxtBondry ' NULL

bondryType
)

Figure 3.2 Data structures used by genetic operations.

I'his effect is achieved with the function detCifToUse and the variable muta-

~

vionProb.

The variable mutationProb. which is set by the application. indicutes rongchly

v . e
the elimnees thar high strength_classifiers will be used. This variable can assme

B 7 . * ’ . . . -
integer vilues of 100 or Tess. A valud.of 100 indicates that only the highest strenothi

: . : . -R
classifiers will be used. while valuesfless than that inerease e chances that lower

< ) .
strength elassifiers will be used.

The funcfion detClfToUse is given mutationProb as a parameter. This fune-
tion .rnns through the sortvedClfPool array lIl:LI"l'\;iIlf_’,' the use member of each
clissifier as either TRUDL or FALSE: TRUE indicating that the classifier can be used
for mutation. The use member of a classifier is marked TRUE if u randomly Zen-

L . : 3 . .
erated number (between 0 and 100) is less than or equal to mutationProb. otherwise it

.

the number of

«

v marked FALSE., detClfToUse returns a nimber which indicates

classifiers which were marked as TRUE. Mutation. is then performed on these

. : o _ ¥
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classifiers, processing them in descending order of strength. until either the number of
new classifiers réquirod has been generated or until all the classifiers marked as TRUF,
have been used up, whi(‘h(’\"or comes first. Note that should the latter come first, ‘t‘hon
not all the weak classifers wil! ‘bo replaced by new ones. This just means-that the new
Cwenerition will contain some weak classifiers which will probably be replaced in the

LS
next seeration.

3.3.2.3. Mutation Operator

Mutation is performed by tl;‘o function mutate. This function proceeds by first
Cereating . new classifier which s a (l‘l‘l[)“C:H(‘ of the classifier to be mutated. Then. che
,s;rength‘ and op members of the new classifier are sct to initStrength and "M (for

mubl:n'v) respectively. Finally, the new classifier 1s mutated. This involves first identi-
fving which coln(lition'br action string s to be mutated. A string is randomly chosen,

I4 \ L
with equal probability. amongst all the condition strings and the :x(‘?io‘n string. Once
('ll()\l‘-l.l}"if.lzll‘ ficld to be ]]lll(i‘ll‘(‘(l and the legal value that it is to be mutated to are
chosen ar random. H'.tlw string s a condition f‘lrillg. this i'fy'\'('\ nsing condBr;drYL—
ST :1‘11_:1<'Ji(>u ~tring, this involves using actBnaryList. Aflter lh‘(‘ field and

lewul vahue are chosen, the mutation is performed by replacing the ¢ ent value inthe

ficld with the chosen lo;'_;ul value, _‘
0 3.3.2.4. Classifier Selection for Crossover

The first'step_in the selection of (‘lu;siﬁor\' for crossover is to (luf(*l‘ﬂ]ill(\lllt‘
num"l)or of new classifiers that crossover i~ produce. This is accomplished using the
variable crossoverRate. This variable ts set by the application and il.l(l'l(‘:l.((‘\A\Vhill
p(‘rvmll:.:{.';o of the new classifiers pr&lucod shou‘ld be produced by crossover. It cun
assume integer values in the range of 0 to IOO, where 0 tndicates that no new classifiers
are 1o be produced by crossover and 100 iugli(‘utcs l'h:x; all the new classifiers are tg be

produced by crossover. The number of new chassifiers 1o be produced by crossover is

- _ o R
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calculated by taking the percentage. indicated by crossoverRate, of the total
number of new classifiers required. If this figure lq odd. it is taken to be the next
lowest even number as crossover can only be performed on' an even number of -
classifiers. The  resilting figure is tho.n compared against the value returned by
detC}fTo.lUse (whi(‘h also. if necessary, is I‘(’(lll(‘("‘(l to the next lowest even num ber}) and
the lower of the two becomes, the actual number of classifiers that crossover is 1o pro-

duce.
As with mutation. crossover uses the fur-tion detClfToUse to probabilistically
seleet the clussifiers that its going to use. In the case of crossover. the variable cros-
soverProb iv used as the parameter 10 detClfToUse. This variable is set by the
application and has the same range of values and meaning as mutationProb. but with
recards to crossover.
Aftrer the actual number of classifiers to be produced {call it n) has been deters
mined. crossover is applied to randomly selected pairs of classifiers. Fach classifier in
. . | . N . . ." o
pair is randomly chosen from' amongst the n highest strength classifiers which have
their use member set to TRUE. Once a classifier has been chosen for u pair, 1t will
not be chosen again for any other pair., The result is the generation of n new classifiers
produced frow crossover. Mutation is then responsible for <upplving the rest of the

required new classifiers.

3.3.2.5. Crossover Operé.tor

(:‘l‘()\so\‘(‘l“ is performed, by the function crossover. This function proceeds by
.”ﬁrét vox::hlini;ng thv(‘? twdelassifiers biln\'ol\'od in the crossover. It may be the case that
the t"wi) clnssivﬁors hIl.\'(".//(l ('liﬂ'oring number of condition strings. E"or_ihiis case. the
‘cl:u«.\iﬁ(*‘r with the least numb.er'o.f‘condition strings is lompbr:xrily gi\'é[l additional
(‘-()u(“‘lionv *ll‘il]éﬁ so0 us to have both classifiers c_ontuini.ng an equaul numhﬂvr. Theddi-

tional condition strings given are the most general condition strings possible (i.e.

e . : . ' »
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“##A##. #"). In this way. the meaning of the classifier is not altered by the addi-
. '
tional condition strings since they are satisfied by any message. and at least one mes-

£

sige must exist on the message hst to satisfy the first condition string if the classifier is

capuble of firing.

In actuality. the way crossover proceeds is to first identily which of the 1wo
, .

classifiers has the most number of condition strings. Then, two new “empty " classifiers
“are created and their strength and cop members are set to initStrength and "N
ifor crossover) respectively. This 1s followed by performing crossover on each pair of
condition strings. Crossover is first performed on the first condition string from cach
of the two classifiers giving the first condition string for cach of the two new classifiors
(see figure 3300 Then 1t s performed on the second conditiou string from each of the
two classifiers ziving the second condition string for each of the two new classifiers.
5 A e . . N .
and so ou. I oue classifier hias more condition strines than the other. then the
- -

cliussifier owith the least number 15 treated as if it had additional condition strings

("###H# #") when it runs out of condition strings.

Condition String . o
Action Stringe
Crossover Points

vy

('l O1#0#, LOGH#O, 11#i¥%, ##0#1 / 001#1

Crossover Points

2 1#6##, #RO10, RA#RR, HH#H#R 7/ 11#HO#

Additional Condition

Crossover : _ Strings
i ('3 010##, 10010, 11###, #a##l / Ol#l
New /
- : _ .
tules Cib 1##0#,  HOWO, ###i#, wuo## /  1010%

Ficure 3.3 An example of crossover.
o
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The crossover of a pair of condition strings first jnvolves randomly determining
the starting and ending points of the crossover. These crossover points are always
‘between” fields so that entire fields are involved in the crossover. Once determined.

these points are nused for the crossover of all the conNition strings — condition strings

all” erossover at the same points. The crossover of a pair of condition strings just

involves exchanging corresponding fields between the two condition strings.  Only

. ' . . . i
ficlds between the two crossover points are involved in the exchange.

. <

crossover also performs crossover on the action strings. In this case. two new

starting and ending  crossover points- are randomly determined since the field

sspectfication for the action string may be different from that of the condition string.

. ” g \
Again, these points are “between” fields. Crossover of the palt of action strings

proceedsin a fashion similar to that of the condition strings.

Fizure 3.3 gives an example of the crossover of the two classifiers C'1-and €2 pro-

ducing the n(‘w\clu.\'\ificr\' 3 and 1. In this example, the crossover points of the con-
. G~

it ier strings ()(;(‘lll‘ bot‘woon syvmbol positions two and three, and sym bol‘po.sitions four
and live, 'l‘liu\ the crossover of the first condition :\trings O1#0# lor 1 and | #0##
for ¢ 2 result o the firs ('()Ix(lili(;rx strings OL0## for O3 and ##0# for (‘1. Simi-
barly. the crossover of the second condition strings 100#0 for C'1 und ##010 for (2
'ro\ult in the second condition Hll‘iligh‘ 10010 fo.r €3 and ##0#0 for (1. Crossover
proceeds in the same fashion for the rest of the condition strings. Notice that classifier
€2 ()!‘.l“%in:l”_\' had only Iw-o condition strings {C2 originally was [#0##. ##010 /
. = , | v
FT#0#) but. because ‘1 has four condition $trings. two :n(ldili()n_:ll condition strings
were added to (20 These condition stfingN are of the most general form possible (i.e.
#####). With these additional condition strings. the condition [):lr‘;h' of C1and (2
have the sume length and thus crossover can be performed on them. (‘rb\sé\'(‘l' of the
action strings involves the selection of two new crossover ‘points. In this <‘x:1.mplv.

these poipts ocenr between symbol positions one and two. and svibol positions three

%
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and four. Thus, the crossover of the action strings 001#1 for C1 and 11#0# for (2

result in the action strings Ol ##1 for (3 and 1010# for C-.

3.3.3. Replacing Weak Classifiers

After crossover and mitation have produced the list of new clussifiers, repia-

ceClfs i~ culled to plice them into the classifier pool replacing the weak classifiers.

'

Fach new classifier to be pluced in the poolis first examined to determine if a duplicate

already exists in the classifier pool. -\ duplicate clussifier is any classifier which has the

same condition and action parts. If a duplicate exists, then the new classifier is dis-

carded and the classifier pool remains unch:;ng(‘(l. Otherwise, the new classifier
. . . \
vepliuces the current weakest classifier in thie pool. Note that prior to replacing a
classifier. all the references to that classifier must be rémovod. This is accomplished -
by the funciion remcveClfRefs which will remove any references to a classifier that
are contained in the message bool' or the payolff groups(payoffGrps). The production
of wnew generation i~ completed when the list of new classifiers has been exhansted.
Note that sinee new (lupli(“:n‘o classifiers are disearded, it is possible to have weak
elassifiors present in the new generation as not all bk weak classifiers may be l'(-’pl:‘z(‘o(l.

This just means that the new generation well start out - with <ome weak classifiers

3 ] )
which will probably be replaced in fhe next generation.



Chapter 4 ’

System Enhancements

4.1. Intfod_uction c

Onee the initial system had been developed. experiments were performed by
applyving” it to the domain of tic-tuc-toe. The results of these experiments indicated

that enharcements to the system were necessary in order to achieve the desired level

of performunce. These enhancements and their implementaion details are diseussed
3

i tlis chapter.

4.2. Taxation
One of the problems faced by the initial system is that classifiers which are not
used are not removed from the clussifier pool because their strength never falls below

the chreshold value. If i elassifier is not used, then it does not receive any feedback

{positive or negative) and its strength remains unchanged. This problem can be <olved
L} .
by the mtroduction of taxation [Riog6b].

[n this system. taxation refers to the taxation of clussifiers. The iden here is that

clissifiers should have to pay tax {x small portion of their strength) for their existence

inthe chassifier pool. The amount of tax to be paid by a clussifier is caleulnted by just

s

taling ~ome fraction of its <trength. Tasation occurs at ench iteration of the basie
excention cvele. Through taxiation. classifiers which wre never used and clissifior
which no longer prove use ul ipo ibly because some better elassificrs were discovered )

will decrease in strength cnd event ally full below the threshold value. .
a5
A shight improvement on this idea is the introduction of different 1ax rites for
different elassifiers. Classifiers which have demonstrated more usefuluess <hould be

Kl . *,. . . f
taxed-at a lower-rate. In this way, useless classiliers ean be more quickly removed

from, the classifier pool die to higher taxation. One approximate measure of the nse-

~ ' ) ‘f
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fuluess of a classtfier is the number of times it has fired. The more it has fired, the

more useful it is likely-to be. Given the fire count for a classifier, thie tax rate can be

3

<simply caleulated by dividing :1\fixé(1_ tax rate (taxRate) by the'ﬁr(’ count. Actuully,
I.]u‘ fixed tax rate is divided by the fire count-plus one since the ﬁrg count .can have a
value of zero. [‘5) avold having roo small o tax rate for classifiers which ll‘rn'c fired o
lot. a ceiling figure ('maxFirevTax) can be established for the fire count value used in the
calculation. If the fire countis greater than the ceiling figure. then the ceiling figure is
used n the (‘Ill(‘llllllib()n. otherwise the fire (‘O;ln! s used, This establishes o minimum
value ('0'1' the tax rate of a clnss_if‘icr. The r(‘:l.‘\'mi‘ that one would want, to avoid a very

small tax rave for o classifier is that if a better classifier is later discovered. then.
becanse of the smull tan rate. it would take a very long time to remove the former

classifier from the pool. Fstablishing @ minimum tax rate avoids this problem.

The first step in implementing taxation is to implement the fire connt. This is
casily achieved by adding the member fireCnt to the cifType structure. Euach time

a new classifier 1s created, its fireCnt member 1s set to zero. “ach time a clissifier is

fired.its frreCnt member is incremented by one.

«

\

!

With the fire count in place. taxation can now be implemented. This just

.

mmvolves reducing the strength of each classifier in the classifier podl by some multipli-

cative factor. Thus,

new_strength ="old_strength * tax_factor

I3

where S -

/

tax_fuctor = 1.0 - taxRate / (fire_fuctor + 1) = |

and fire_fuactor is either the fireCnt for the classifier or maxFireTax. whichever is
smaller.  taxRate is a float which ix set by the applicationsand has oo range of values
from 0 o I where 0 indicates no tax. Usually, taxRate is set to somd vulue close 1o

revo. for examrple 0.002. maxFireTax is an integer which is set by the application and
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has a range of values from zero up. Higher vélues for maxFireTax results in lower tax-
ation for classifiers \\'hirh“h:n'(‘ higher fire counts. Note that since classifier strength is
aninteger and taxRate is a ﬂont.‘ the smallest decrease in strength that can occur for
any taxRate greater than zero is a decrease of one, This ensures that every classifier
will be ljo(lnc_v(l in'strength, duv‘to taxation. for any _taxRate greater than zero. Tuxa-
tion is performed by the function taxClfs. This function is il]\:()k(‘(l in the basic exe-

. . - ]
cution cycle {(executeOneCycle) just after the new message pool has been created

{createNewMsgPool).

4.3. Bid Modification

v Expertmenting with the initial system' revgaled an interesting problem that arose
hetween (\M:ll}]ishc‘d classifiers (classifiers which had proven themselves useful) and new
. , /.

Ere : . . . . ~ / .
classifiers which competed (for firing) against the established ones. Essentially the

problem was that~in order to try to retain the best classifiers. nesw classifiers must be

given the opportunity to prove themselves betier tihzm existing established classifiers.
: .
This means that ‘when a new alassifier and an established classifier compete for fil'ill};.
the new classifier sho‘uld ir‘litiully outbid the established classifier so that it can fire :mrl(
thus be given the chance to prove itself better. If the new classifier proves to be supe-
rior. then it should comihu.e (o outbid the cst:-xblish”edf’classiﬁ(‘r. This will eventually
result in the dearh of the established classifier as taxation will drive its strength below
the threshold value and if'\\'ill be replaced. If th(‘.r;':ow classifier proves to be inferior.
then at some point it should underbid the ost:xblish'od classificr. When this ocr‘;llr.\', the

establislied classifier should continue to outbid the new classifier and the new classifier

will eventually die due to taxation,
To factlitate this schieme. the system wag set up so that new classifiers were given

an inttial strength which was higher than that of any established classifiers in the sy«

tem. This dnitial strencth can be determined as the strength of established classifiers

A



usually sl:;l)iliio Into some range of' values. This s{:xbilization occurs for a classifier
when the amount that the classifier bids begihis to balance off with the amount of feed-
) v 7 -
buck (pavolf) it receives. At this stage, the classifier’s strength will stabilize. Having a
hieh initial strength for new classifiers ensures that they will initially outbid any of
their established competitors. As a new classifier is used (fired). its strength will begin
to ~tabilize. 11 it stabilizes into a r:méo of values which are high enoungh that it contin-
nes 1o outbid its competitors then ir§ competitors will eventually die, otherwise it will

eventually die.

Now while this scheme for 1rying to retain the best classifiers seems to work quite

clecantly, 1t makes the assumption that the strengths of the established classifiers
remains unchanged during the interim it takes the new classifiers to_stabilize. This.
however. is not the case as the stabilization period requires some time. and during that
period the established classifiers are experiencing taxation. This taxation can be larze
enongh to cause a sicuificant decrease in the strengths of the established elassifiers
resulting in the possible loss of those classifiers even if they are the better ones. This

B . . . fn 4 . .-y ! :
case occurs when the established classifiers would have ontbid the stabilized new

classifiers if there were no taxation but, because of taxation, fail to do so. ’

" -

To solve this problem. one could set the vaxRate and the maxFireTax so that

established classifiers would experience small taxation. However, to do so would mean
' v

that it would take a long time to remove an established classifier should a better

classifier be discovered. -

Another solution to this problem is to decrease the amount of time it takes for

P

new classifiers to stabilize. This is where the modification to the bid calculation comes

in. The idea here 15 to get new classifiers to bid larger amounts so that they can drop
quicker to their stabilizing values. A simple way to achieve this is to increase the

bid_coeflicient and divide the bid by the fireCnt or some maximum v 1c (maxFire-



B:d). whicheveris smallér. Thus..the new bid calculation js:

bid = bid_coeflicient * strength * specificity / (fire_fuctor +1)

i

where fire_factor is either the firecCnt for the classifier or maxFireBid. whichever is

smaller maxFireBid is an integer which is set by the application and,has a range of

e

~ values from zero up.- The effect that is achieved with ghis new bid calculation is that
new classifiers will bid larger amounts and thus experience more dramatic changes in

strength resulting in quicker stabilizing times.

4.4. Cover Operator

.

When the initial system was set up and applied to tic-tuac-toe, countered

difficulties in acquiring knowledge about legil moves and consequently was unable to

complete most of its games. This was due partly to the tnability of the genetic opera-

:

tors to-quickly produce classifiers that "covered” input messages to which the system
wis unible to respond. Such an input message fails to satisfy the condition part of
any ol the, classifiers in"the classifier pool resulting in a situation where none of the

clussitiers can respond (fire) to that message. Genetic operators should eventually pro-..

duce a classifier which can respond 1o that message, however, there is usually a long

interim between the time that the message first appears and the time that the respond-

. * i Ay
ing: classifier is produced. To combat this problem, a new discovery operator was

introduced.

This operator: called cover [Rio86b], produces classifiers which respond to inpnut

messages to which the system was previously unable to respond. ‘It "covers" those

input messages. Cover proceeds -in two stages: first, messages which need to be
“covered ure collecied, then, classifiers which cover those messages are generated.
- )

Message collection is performed once in every itefation of the basic execution
> : ’

cyele (executeOneCycle). This occurs after all the possiblg.matches between messages



anid classifiers have been determined (after getMatches has been executed). Viohis
7 . . . :

point. coverCheck is called to add any new messages 1o the List of messages 10 be

covered.

This function procecds by first identifying those messases on the current messige
list that are allowed to be covered. Normally, only input messages are covered. How-

ever the system does not know how to tell input messages apart from other messages.

To rectily this the system s ininally given a condition string (coverCond) from the

application which indicates the set of messages that are allowed to be covered. Auy
. kY ' N : :

v

“message which satisfies the condition string belongs to thix set. Using the condition
string. coverCheck'f'a{t/—t‘.\:unil‘“s the current message list and identifies those mes-
b - Ll \7 - - ™ . ’ .
sages which satisfy the condition string. Then. of those messages. coverCheck dis-
cards any messages which participate in a match. These are messages which appear in
any of the matches in the match pool. Finally. covercheck adds the remaining mes-

siges to the list of messages to be covered (coverMsgs). Noté that a message is added

“ro this hist only if it does not already appear in thig list.

New classifiers are generated each time w new generation is produced. The cover

.

operator takes precedence over the.two genetic operators as it gets first crack at pro-

ducing new classifiers. AS with crossover. cover uses a variable (coverRate) to defer-

i

. v .’ . . . - 2 . . . .>
mine how many classifiers it is allowed to produce. coverRate is a variable which is
M ) ’ '

Fig) .
3

&

K
! o
:

d by cover. This variable can assume integer values in tl&e;r:xngc of 0 to 100,

- ' ! ‘ /N

Aindicates that no classifiers are to be produced by cover. Once the number of

classifiers to produce has been determined. cover is repeatedly called until etther that
. ! : A

many classifiers have been produced or until coverMsgs has been exhausted. which-
ever comes first. The remaining number of classifiers ta be produced is then passed on

to crossover and mut; rich proceed as before.

the application and indicates what percentage of the new. classifiers are to be-
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. Each time cover is called. it first checks to see whether there e ANY H1OSSHTes

left that need 1o becovered (is coverMsgs empty). If there are. cover removes the

first messaze from coverMsgs and genernies a clussifier which covers thit messace, f

then returns " TRUE indicating that it wax successful in producing u new classifier. [f
J there nre no messages left to be covered. then cover just returns FALSE. \When

cover produces i new clas- “oro it does so by first ereating the new classifier and set-

~

G that classifier’s strengeh and op members to initStrength and T {for cover)
respectively. The condition part of the classifier isthen set.so, 1% to contain one condi-

tion string which matches, exactly. the message to be covered. This means that the
' ! "

"

condition string will contain only "1"s and "0"s. no "#"s. Then. the action-part of the

clussifier is constructed randomly. - This is done by mutating each field in the action

string to some value randomly chosen from amongst all the legal values for that field.

s,
XS
S

This completes the construction of the new classifier.

4.5. Generalization Operator

While the cover operator covers input messages to which the system cannot
N .

respond. the classifiers it produces are very specific, being applicable to only the input
messages they were designed to cover. Crossover and mutation can produce more gen-

eral clussifiers {classifiers which contain more "#"s in their condition part) from these

'
ol

L : i
specific ones, but they tend to beiquite slow in doing so. In an effort to speed up this

oo
- . O .

‘process, the generalization operator was introduced.
. ) S % - ) . L
This operator proceeds by organizing classifiers in the classifier pool into generili-
. . : 4 . ’ B

-

zation groups and then creating generalizations from these groups. This organization

) : ' ; , :
of classifiers is actually an ongoing process asgthese groups are incrementally updated

.

when classifiers are added or removed from the pool.” When it is time to produce a new

. generation. generalization will - Hed upon to croatmmenf the. new classifiers.
These new classifiers will i sted from the generalization .groups, each classifier

- I
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beéing th product of a single group. Groups will be selectively chosen to be” genecral-

) { o J o

ized since tll,‘;l'(‘ will likely be more groups than the number of new classifiers to be
o .

('I'(':l((‘(l.
Gieneralization groups are maintained 1 the dati structures:

struct genrlClf { _ : ;
struct clfType *cif;

struct genrlClf *nxtClf;

> '

struct genrlGrp {
int clfCnt;
int gen;
int condMtch;
struct genrlClf{ =*clfs;
struct genriGrp *nxtGrp;
> ‘

'
v

The genrlClf stfucture is used to maintain a linked list ‘of ¢ ssifiers which form a
ceneralization group. lts ¢lfi member points to a classifier in the group. and its
nxtClf member points-to the next element in the linked list. The genrlGrp structnre

is nsed to maintain a linked hist of all the generalization Zroups. For this structure,
. - , . . %7 . . .

the .cifCnt member indicates™he number of classifiers in a particular group. the gen

member indicates whether or not that group has been generalized, the condMtch

==

member indicates the similarity of the classifiers” in that group. the ¢lfs member
& " .

points to the classifiers in that group, and the nxtGrp member -points to the next

group in the list. The variable generalizations points to the first group in the hst.
\ ' ' ' '

The addition of classifiers.to the classifier pool also requires updating the general-
ization groups. This is performed by the function addToGen, which adds a classifier to
one ‘of the generalization” groups. If an appropriate group cannot be found for the

classifier, then a new: group is created and the classifier is placed there. ties
- s . 30

A ctassifier can only be added to a group if in doing so the resulting group has the,

same acticn part for all its classifiers, the same prefix for the

wt:condition string for.



all 1ts classifiers, and a similarity greater than or equal to genCondMtch. The similar-
ity of & group is determined from the first condition strings of all of its classifiers. and

i~ computed by determining the numi)or‘of positions where the ,.s‘_\'m.l)olS vlll'(‘.li](’ same
for all of these condition strings. So. for, example, if 4 group had two (‘I:xlsx‘ifi(-r.\' which
had the first condition \tring‘\- ';l#()##" and "##00#” then the group would have a
similarity of 3 since the symbgh in p()xilion; 2.0 3. and 5 are thv“\umv. It another
classifier h:u'in;: th[q first condition string "T#0L1" was added to the group. then the

symbols in the fifth position would oot all be the same anyvmore. und the similarity

would drop to 2. The Similarity of o group must always be greater than or caual 1o

-.genCondMtch. Thisis a variable which 15 set by the upplication and determines how

bold or weuk the generalizations created will be. [t assumes integer values in the ranoe
of 0 to msgSize where higher values indicate the creation of wenker-generalizations.

Fxactly how generalizations are created will be discussed shortly.

When addToGen is given a classifier 1o add to a group. it must decide whau

group. if any. it is to add it to. The only groups in which it is allowed 1o be added are

those, which satisfy the three criteria. given previously. If more than one of these

groups exist. then addToGen will add it to the group which has’the highest similarity

. K
o

after glee classifier has been added. If none of these groups exist.-then a new group is

5 ' o
created and the classifier is placed in there.

. - N <1 o . D . « ’ .
Removing a classifier from the classifier pool also réquires updating the generali-

’ B
- R

zation groups. This is performed by the function rmvFromGen which locates the group

P
[T <
e

-offrheﬁ genrlGrp members: clfCnt, gen, and condMtch.

-

When it, is time to produce a new generation,Some of the new classifiers to be
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created may be created by generalization. The number of new clussifiers to be pro-
. ’ - : . g ‘

duced by generalization is determined by generalizeRate. ;This variable is set by the

application and-serves the same purpose as coverRate. but with respect to generaliza-

[

tion. Cienernlization takes precedenge oveér cover as it gets first cr;n‘k at producing-its
" . R P

v
i3 oo

. u' e o) . . “I .". N Q -"'
pereentage ol new classifiers. The remaintler-of new classifiers to produce then falls”®

. . .
into the hands of cover. then crossover. and finally %‘u(:nion {just as before).. A< with

K

. .
. . ¥ N . . - N < e 1s . . ‘
“eover. wenerabization may be unable to fulfith s quota of new clussifiers. This s han-

i
-

dedin the some way that cover handles it.

Generalization is perfopmgd by the function generalize. JIhis functiou produces

. » ‘y.
L j ’

N . g e e St e ' . - v
a Sinele generalization telussifier) and returns TRUE A 10 was successfull FALSE otdger-

wise. It proceeds by first determining which group to generalize. Only groups which

% B

~ Iavesmore than one classifier and have not been g(*l‘lt‘x*:xlizw(l vet (gen i~ FALSEY are
H ¢
considered. Of those growps, o score as:computed for each. and the group wirh the
) . oL . B {' e .

hichest score setegeneralized. e
N . e
2

>

The score Tor a gronp’is computed by taking the sum of the streneths of the

classifiers in the.group and multiplying that by the similarity (condMuch).of the group.”

This means that groups containing more’ classifiers, higher strength elassifiers, and
] . o '
having higher simiilarities will be favored. -Notice that there i1s a tradeoff between the

number of classifiers in o group and its simifanity the more ¢lassifiers it has, the

lower its similarity will likely be: and visa versa. In effect. what this score calculation ;

savs ix that a large group of good ¢lassifiers which say roughly the same thing will

)

. ] V ’ N
fikely form a good (though weaker) gencru‘hzatlon.' The reason for the bias towards-

hicher similarities is that although it may produce a weaker generalization, it ts more
ikely to be a "safe” generalization.. Also, later on, the weaker generalizations can in

turn be generalized to produce more bold generalizations. This gives a more gradual.

but more successful development of bold generalizations.
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After examining all the groups to determine the one to gouér:ﬂiie, it may be pox-
sible that none of the groups are able to \':uisf_\'. the criteria of having more than one
clussifier and having not been gvnérulivm(l‘_\'et. In this case, generalization Just
returns FALSE. " Otherwise. it generalizes the highest scoring group. This involves
first creatine the confiition string of the generalizing clns.\‘i.ﬁor. To do this, the first
condition strings of all the classifiers in the group are examined and po.si{ions which
ll:l\:c the same s}'mhol_ throughout these strines reswlts in that symbol being placed in
the same position in the n(‘x'\'\ron(lviri()n string. AH other positions in the new condition
\l;'ill'l _h:l\'c the symbol # placed in them. "I‘hin gives the condition string for the
f{(‘llvl‘l'fllili;lg clussifier. The uction string for this classifier is simply the same action

string that is present in all the classifiers in the group. The strength that this elassifier

s assigned is determined from the variable genLife. This variable is st by the appli-

cation and results in the strength being set to a value which will allow this classifier 1o

Al

ontbid the classifiers from which it was formed. genLife times. assuming that it wers.

<
no feedback (zero payoll) each time pAres. This strength settine cives the application

more control over determining ‘tfe length of the "trial period” that the generalizing

classifier.has 1o prove itself thaW if the strength were set to initStrength. Finally.
the op memb v of the generalizing classifier is set to "G (for generalization).

Before returning. generalize updates the generalization group by setting gen to

) z

TRUE. Note that the addition or removal of classifiers from this groip can result in

gen being set back to FALSE. After updating the group. generalfze then ‘oxi(s
returning a value of TRUE.

At present, gcnerali.z:niod only works with classifiers whose condition part con-
tains only 'onev(‘oudilion string. Future development of this system might extend this

to work for multiple condition strings. -



IChapter 5 ' ' “

Writing Application Software

"5.1. Introduction ’

v

(f}bl his chapter describes the steps involved in writing an application for LCS.

2 o

(jg'?;;‘:i{é‘%li])’, writing application software involves the use of an interpro.ti\'o\v progr:zm-ﬁ
ming l:tnféu:ﬁ;("*‘ vritten by l\'(:ith Fenske, called face [Fong.él]. This language has spe-
cial Teatures which allow it t()l"rnn"' /I,C'S. In addition. it provides the u.svr with high
level programming constructs and the ability to symbolically manipulate strings (of
0SS and T#US) These and other features make face a useful language for writ-

ing applicition software.

.

A user who wishes to apply LCS to a particulur application would start by writ-

ing the application software in face. Having done so the user would then invoke

~face. entering the face programming environment. Joad his application code. and

.

exccute i, Lxecution of the code will in turn awtomatically cause execution of 1.0 5,

1

Communication between the application and LOS s done completely throush  face.
’ ﬂ ) . .
\ deseription: of the face programming language is given in the face Lancuage
N

Description manual [Fen&g].! : P

This chapter focuses ou the elements that must be present in the application
SNl o
5

soft w:‘:ﬁé”'}’s%(or(lor for it to correctly invoke and use LOS An example of wsimple appli
PSS

cation s provided at the end giving the face code involved as well us 4 detailed trace

of the execution.
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5.2. Code Essentials S e o,

Any application software must perform some essential tasks. It must initialize

LLCS. perform the basic execution eycle, and produce newjgenerations. This section
A wBel
‘ PR ,

' ’ ' s ! . L
describes what is required on behall of the application sof#tvare in order to perform

these tasks. The code for the” face system functions described in this section (the

functions which commiunicate with LCS) is written in face and can be found in the

file user f. Note that this file must be loaded into the face programming environ-
i -
ment prior to loading the application software.

~

5.2.1. Initialization

AJ : y
Jefore LOS can be used, 1€ must first be initialized .« Initialization usnally occurs

5

at the start of the applicatien program. This tailors the system to suit the applica-

tion. Initialization usually involves the following sequence of calls (in face):

clear();

seed (scedNum) ;

msgSize (w1te) ; \, ,
clfPostLvl{postLrD, '
maxNumConds (num Conds) ;

tidCoeff (roefl) ;

maxFireBid (fire('nt) ;

fireProb (prob); ©

taxRate (ratle) ;

maxFireTax{fire('nt) ; . ‘ )
condBndry (start, length, lglValCnt, *lglVall, lglVal2, ) ;

Py ‘

ac%,Bn‘dry(slart. length, lglValCnt. 0 lglValy, lglVal2, vy ;

o

initStrength (sfrength) ;
rplcThres (thresh); =
genCondMtch (mtch) ;
genLife (length) ; ' ,
coverCond(cond) ; ‘
crossoverProb(prob) ;

mutationProb (prob) ; o u

Explanation of these calls and their parameters can be found in appendix Al.

B . . s “*
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After performing these calls, LCS is almost ready to execute. The only Lhing

g c
missing is the initial rule base. Rules are specified to LCS by performing a series of the

cull:
\ 5 . ] . . ‘
rule ({{condstri, r}nd.ﬁ'tri’ Y. actionStr, strength, fire(nt}) ;
[n this call. the condition and action strings are strings in the face language consist-
& b \ s/ ;
v
ine of the characters "0, V' [", and #/. :Iho. strength and fireCnt are both integers
: / &

N .
3

which indicate the strength of the rule and the number of times that the rule has fired.

respectively.  strength is usually set to the vilue specified %&ini‘tsm‘ength and
JireCntis usuadly set to 0: except in the case wherfe the initial rule base is the same s

some rule buse produced in a previous run. So. for gxample. an initial rule might be:

? .

rule{{{"100#101"},"011#001",1000,0}) :

Please note that it is the responsibility of the application program to ensure that the

parameters of the rule cull are consis with the other initialization calls made pre-
4 B

“

viously. as no error checking is performed.

Sinee the parameters of the rule call are just sets of strings and integers in
8 . .
face. the construction of an initial rule involves constructing these strings and
. . ' - S

mtegers using face. So, for example. if an initial rule with a4 random condition and

action string is desired. then face code must be written which constructs a random

condition and action string that are, in turn. used in the rule call. Note that face

mukes this ecasy since it allows these strings to be symbolically coustructed.

tepeatedly constructing rules and relaying them to LOS through the rule cull

establishes the initial rule base. Once done. the system is ready 10 execute.
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5.2.2. The Basic Execution Cycle
After initialization has been performed. the applic‘ation['program typiecally

he basic execition

proceeds by iterating for some number of generations. In each generation it performs
the basic execution cycle fgr some number of iteratipns and then turns out the next
¢

pérformed for tl
hat LCS pro-

cd by t ﬁp.pli'qal,ion code. W,
ion cycle :m(%%j)mducc a

3 . . 5 v
Vﬁ%psxcﬁﬁemt
a2 }‘I?\’;‘
tioR cycle is performed or

perfol
L e e
O

-0
<

fiers. The number of iteragiops

g

generiation of ¢
. i3.

cvcle and for the gerdrations is

. M KR X,

.

. - 3
vides :1;;:,}\‘(]1(‘ functions requtred to
W :
. ) o . . L ! et T
new generatior. Thé¥ordzanization as ¥ when a basic, ex
. > . o v iy
. .. ) IS S
when oonew generation is produced is completely determined by the application code
as 1t s this code that determines when these functions are called. This section
K o .
. o . . [ n
describes the functions related té the basic execution cycle.” The next 'section dederibes
. ’ V
i - . . .
thoseelated to producing new generations. -
- ©
The first step in the basic execution cycle is to construct the imnput messages. The

application program is responsible for constructing each input messuge (which is a
Is

string of "0%x and "17s). Adain. face makes this task easier by allowjng strings ro be
manipulated symbolically. ;\fté‘r at input message string has been constructed., it
placed on the message list by (‘;xmﬂg:
/
- message (mcessage string) ;
' g
So. the call -
o -
. 4
) s message ("100101") ;
would pliace the message "100101" on the message list, '
~ ~ ’ ) [N
- After all the input messages have been placed on the message list, the heart of the
basic execution cycle is performed by calling:
nextcycle() ; .

This will result in the generation of the new message list.



The messages in the message list can then be accessed through the face variable

messlist. This' variable contains a set where each member is a set containing the

message string followed by the id number of the message. So, for example, messlist
-~ ] ‘ .

might look like: . ' ‘ /

{{"011010", 10}, {"001001", 11}, {"o11100", 123>

~

Py aceessing the elements in this set (as described in the face Language Description

manual). one can retrieve the output messages and then processes them appropriately.
Note that messlist will be an cmpty set when the message list is empty. This can

ocenr when no rules are capable of firing at the time nextcycle is called.

After processing the ouiput messages, the pext set of 1nput messages are con-

structed and the eyele repeats. Optionally. pavoll may be issued to the active rules

A(payoll group number 0) prior to the placement of the next set of Iput messages on

the message list. This is done by calling:

&

i payoff (0, amt) ;

Asan example. one mizht issiue the payolff:

payoff(0,100),

which would payoff 100 to the active rules. Also. at this stage. the active rules can be

added to one or more pavoff groups by calling

1

addToPOGrp (group_num) :

for cach gronp. So. if the active rules were to be added to group numbers 2 and 3. the

.

citlls

addToP0OGrp (2) ;
addToPOGrp(3);

would be . performed. After payofl and group addition of the active.rules has ¢

pleted. the cycle continues with the next sef ol input messages. Note that issuing



payoll to any group other than group number 0, or removing a payoff group can be

performed at any place in the cycle. Payofl is issued to a group by calling:

g ‘ o
: payoff (group_num, amt) ;

A
The removal of 4 group is ac-omplished by calling:

“mvPOGTp (yroup_num) ;

5.2.3, Producing New Generations '

)
Jefore a new generation can be produced, the degree 1o which ecach of the
discovery operations are involved in the production of new rules must be set. This is
done by performing the' calls: , v
generalizeRate (rate) ;

coverRate (rafe) ;
crossovo\rﬁate (rate) ;

Once set,a rate remains in effect until the appropriate callis reissucd at which point it

assumes a new rate. Thus, to change the cover rate, the call coverRate would he per-
formed with the new rate value as its parameter. As was discussed i chapter 3. muta-

tion |\ responsible for producing any new rules left to be produced after generalization:

cover, and (‘I‘OSNO\'(‘I: have completed. Thus, the ralo‘ of mugation does uot neexl to be
. ® .

set as it s :1[\\':1)'.: effectively 100 percent since it produces all the new rules left to be

produced when its turn {to produce new rules) (‘()111&5 up. Further explanation of gen-

eralizeRate. coverRate. and crossoverRate can be found in appendix AL .

After the rates have been established. the next generation of rules'is produced by

calling:

nextgeneration(};

s

This will result in the generation of new rules which replace all those rules whose

strength is below the threshold. If all the rules have their strength above the threshold

SN
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~y

.

then no new rules will be generated. s

. r ' . » .
At any time, the rule base can be accessed through the face variable rulelist.
°

“This works in a fashion similar to messlist. In this case. each member of the ruleil-

ist set looks hke: o

{{condStri, condStr2. .}, actionStr. strength, fireCnt, discorQOp. id}

Through this variable the rule base can be examined to see how njlx evolving as the

program proceeds, x

‘5.2.4. Additional Functions

"

LOS also provides two :ul(%itionul functions which can aid the application pro-
gram. The firct of these functions is clfcntbelowthres. It requires no parameters

and returns an integer which indicates the number of rules that currently have a

.

strength below the threshold. The second of these is trackmsg. It takes one parame-

ter which 1« the id number of a message that is currently on the message list. It

Pl .

returns a printable string which represeats the rule that placed that message on the

message list. This function is mainly used for debugging purposes when it is desired to
see which rales have fired. 4 ‘

4

5.2.5. Exiting

Whgnéthe application program has fimished with LCS, it may perform the call:

¥

close () ;
tion to LCS. This is also done implicitly upon exiting face.

T



5.3. A Simple Problem

The following is a simple example of applying LCS to the light switch problem
[l’ou(,\‘é‘]. This is the problcm» of g(‘tl,/ing the system to learn wh'gn a light is \oh/oﬂ.
There are 1wo switches to the light. When both switchAes are up'oir both are down, the
light is on: otherwise the light is off. Thg sysiem Is presented with the state of the two
switches (randomly generated) from which it tries to determine the stAat_‘C of the light.
If il}l(*tm‘luinm the licht “tate corrcctl‘;"tllou it is given positive foo(lbuck'(right,po).
otherwise it is given negative feedback (u’rongpd‘).

* . A .
Messages for this application are three bits long. The first bit of a message india
cates whether it is an input message ("1") or an output message ("0"). For input més-
. _ 5
sages. the next two bits indicate the state of the switches. A bit value of "0" indicates

‘that a switeh is down, "1” indicates that it is up. For output messages, the second bit

. ' “ 3
is always "0" and the third bit indicates the state of the light ("0" for oj};. "1" for on).
. —, ' . g KR

Thus. the system might be given the message "101" which says that switch one is down
. and switch two is up. The correct response that the system should return is the mes-

. o

sage, 000" which says that the light is off. . ;

«

he "system iterates through the basic execution cycle. 1t will identify the

classifiers which correctly determine the state of the light. Incorrect classifiers will be .
replaced by new classifiers produced by the discovery operators. At the end. the sys-

tem should contain the classifiers:

e o ; 100 / 001 LT
Win o 101 / 000 : »

‘. 110 /000

; ] ca 111 /001

Note that if "#"s are allowed in the action part then the last two rulés could be

replaced by the single tule 11# / 00#. However, in order to keep the system trace

{which f-olloﬁ's) simple. this w,

\

-not allowed..




Following is the Zace code for the light switch pragblem. Although use of the

generalization operation would be' counterproductive for this application. it hus
N ‘ \
nevertheless been set up to be used for the sake of completeness. Any classifiers pro-
' .

duced by generalization should eventually be replaced as they will produce an
incorrect response for at least one of the light switch combinations. {Generalizztion
will produce classifiers which contain a "#" as either the second or third symbol

A

their condition”string. Such classifiers attempt 1o determine the siate of the lieht
O o

“knowing bnly the value o.f' one of the switches. This will oli\'io.usly lead to a wrong
nhﬁwor:n.wnnolxﬁnlintimo.) ‘ v — . :

This program proceeds by first performing some initialization. Then. an initia
random rule base is-constructed. Fiﬂn”y.the‘gcneruﬁon cyc“s:melxwformodf In each
generation, the basice oxcrutién cfclﬁi; herntcd'unt” a specified number éfclawﬁﬁcrs

(rplcSize) fal below the strength threshold or until the maximum number of cycles

has been executed: whichever comes first. This maximum ensures that the program

will not run on forever. ‘ &
2
# * v
# Light Switch Program '
# ‘ ) -
.
S
#
# This function performs initializationos
# ' !
#
function initialize() : T
do : :
it ‘
# Set the right and wrong payoffs.
a4 . ,
rightpo:=999; » .
wrongpo:=-99999; ~ # large wvalue ensures quick removal of bad rules
# ' : ; :

#.Set the number of generations to be performed and the maximum
# cycles per generation.

# : _
genCnt:=40; N
maxCycCnt:=10;



. end

#

# This function generates
four rules.

#
#
#

'

.

o]

B
“

ar (), '&‘ '

Set the parameters.

#H ¥R O BB B

sged (125);
msgSize (3); -
clfPostlvl (1)
raxNumConds (1)
bidCceff(0.3);
maxFireBid (2):
fireProb{(100C);
taxRate (0.3) ;
maxFireTax(3):
repicThres(300)
condBndry(0,1,1,"1");

ccodBrdry(t,1,3,"0-1 #v);
condBndry{(2,1,3,"0 1 .#"),

actBndry(0,2,1,"00");

acLBner(Q,l,Z,“O 1"y,

initStrength (1C000) ;
genCondMtch (2) ;

genlLife(2),

coverCond ("1##") :
crossoverProb(100);
m}hationProb(lOO);

function getInitRules(i,

do

cond,
act,
symb)

for 1 from 1t to 4 do
#

#
“dond:="1%;

symb:="01#"[random(3)+1];

cond:=cond+symb;

'symb:="01#"[random(3)+1] :

cond:=cond+symb;
Lo#

#

Cact.="00"+"01" [random(2)+1]

N

Clear the learning classifier system.

the initial rule base whidm consists of

counter (local)
condition string (local)
action string (local)

a symbol (local)

# Construcp a random condition string.

# get a random symbol

# get a random symbol

e

# Construct a random action string.
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K¢

# B ! : 2.
rule ({{cond},act,10000,0}), T ) s
end; ; ] f‘ .
end; s '
#
# This 1s the main function, .
# o
# . . o
function light(rplcSize, # replace size (local)
g, # generation counter (locail)
cycCnu, # cycle count counter: (local)
right, # num. of correct answers (local)
wrong, # nﬁm.'of wrong answers (local)
nrc, # num:’ of no responses {(local)”
c mess. ) # a message (local)
fiyst, # first switch (local)
second) # second switch. (local)
do ’
initialize ()
getInitRules ()
rpicSize:=3; " # set the replace size
for g from 1 to genCnt do . oA
wTite("\n--- Generation #", g, * -=-\T\n") ;
displayset(rulelist);
- # B .
# Zero the stat counters.
# ‘
right:=0;
wrong . =0; v ' .
nrc:=0; . '
cycCnt:=0; '
# ° -
# Print header.
#

e

vq‘

# N ';,)* Iy

# Add the rule to the rule base, setti¥f the initial strength to

# 10000 and the initial fire count to Q. N .

write("\nInput Output Correctness Classifier\n");
# A

/ N
# Perform the basic execution cycle.

while7((clfcntbelowthres()<rplcSize) and (cycCnt<maxCycCnt)) do
“#7Get two Tandom switch settings. o .
#

first::"OI"[rando®(2)+lj;
second:="01"[random(2)+1};

# ) :

# Display the switch settings. . : -
g

write(" ", firsttsecond,* M)

. .

;50

Mgl
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# Construct an input message from the switch settings.
# ' '

mess:="1"+first+second;
message (mess) ;
t : .
# Call nextcycle.
# . "}.
nextcycle(); e .
o | .
# Process the output message (ife there is one) "
. :
if (size(messlist)>0) then ‘ -
# ' o ‘
# The system had a response - an butput message existus.
# )
.write(me;slist[l][1][3],“ "3, # Display the output message.
if (messlist[1][1]=="000%) then :
if (first==second) then - - , (}/
# . .
# Both switches are in the same positicn, but the system
- # says that the light is off - wrong. ‘
#
payoff (C,wrongpo) ;
¥TONg =urong+l;
“rite("wrong ")
else '
M ,
# The switches are 1n opposite positions and the sSystem
# says that the light is off - right.
# . . . a
payoff (0, rightpo);
right:=right+1.,
write("right Sy
end; '
else )
if (first==second) then
#

# Both switches are in the same position and the system
# says that the light is on - right.
# S g e o
payoff(0,rightpo);
right:=right+t;
write("right ")

elséf ;
# ‘ )
# The .switches are in opposite positions, but the system
# says that the light is on - wrong ~

¢

: #
. payoff (0, wrongpo).;
WIONg =Wrong+i; o _ S\
“rite("wrong "), : '
end; . .

end; )
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# .
# Display the rule which produced the output message.
2 : . i |
write(trackmsg(messiist(1]{2]),"\n");. -,
else - A E
# <. o B
# The‘%jé@gm had Mo response - nO OULpUlL message exXists.
. #.‘, : . c
SDECIERTCH L,
write("no response\n"),
“end;
cycCnt:=cycCnu+1,
end;. : ) -
. .
# Display the stats. -
#t , , ,
write("\nright ", right,“, wrong ", wrong.". no response “,nrc."\n"):;
rrlpﬁ("cycle count ",cycCnt-". #clfs below thres ",
clfcntbeiowthres(},"\n"); '

#

# Produce the next generation.
# .. ’ :
i1f (g==1) then

bed ‘ .

# This 1s the. first generation.

# S S o . .
generalizeRate(0) D '
'coverRate (170} ; . 2 .
crossoverRate (675 ; e e

elif (nrc>0) then '

. .
generalizeRate(0d, *° .o
coverRate(100); ‘. o
crossoverRate(67); . - o ¢

else. ' f L e e .

# The system:was able. to respond to all the light gwitch

_# configurdtions produced im this generatlon .

# o a0 o0 '
generalizeRate(50); e ) ) /
¢overRate (100).} LT : Kv
crossoverRate(67); ‘.- . - .

end; ' L

# ' . AR

# Call nextgeneration.. ' Lo

" .

nextgeneration();

[

.

end;
write ("\n***x Done #***\n'):
end; B

@
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_ /
For this program. the tax rate was calculated based on-how many cyclés an
. ' l ’ .
unfired rule should survive before falling below threshold. The idea is that an unfired

wule should survive at least long enough to "see” any jnput to which it can respond.-

That is. a rule should at least survive long enough to be given the chance to prove its
: A
L

worthiness. In this case. there are four different types of tnput to the system (four pos-
sible light switch combinations). Doubling that, and adding on a bit more for safe
measure. gives 10 eyveles as the survival length of an unfired rule. This is more than

adequute for an unfired rule 1o be given the chance to prove itself. Thus, with an ini-

Pinl s e rv:l;(\'.()ﬁ%?.l()()()(') and a 1hroshol(l'strongth of 300, the tax rate is calculuted as fol-

A
PR

300=10000{1—tarRate)'"

giving a tax.rate of approximately'0.3. :
i A B
« &
The generalization, cover, and crossover rates for the first generation and any
zeneration with inpuats which resulted in "no response” are set to 0. 100. and 67 Tespec-

tvely. For these generations. the rule base probably does not have enough good rules |

from which-to form generalizations. fhus that rate 1s sét to 0. However. there are most. g

likely sitnations which had "no response™and cons

ently the cover rate is set 1o 100
Ater che cover operation. if there are three or more rules left to be replaced. then
" .ﬁ":[ i N

. X % ' T g - . .
‘éjwmv of them witl’he replaced by crossover. For all the other generations. the generahi-

czation. coven and crossover rates are set 1o 50, 100, and 67, This vives generalization

! )
i1 chance to produce some rules and cover the opportunity to vover any situations left
on its queye to be covered. Again, if three or more rules remain to be replaced after
these two'operations. then some of them will be replaced by crossover.

Followiwg are the results of a run of the light switch prog¥um. At the beginning
of cach generation. the current rule base is displaved. Fach rule is displaved in the

format: -~ C ‘
. _ : J
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{{condition}. action, strength, fire count, discovery op., id}

This is followed by a trace of the basic execution cycle which displays the input light
t ! -
switches state, the output light state. the correctness of the output. and the rnle (after

firing) whigh produced the output.” At the end of each generation. statistics for that,

ceneration are displayved.

Trace (user input is in italies): i\ig

-

face da.classf,an interactive classifier programming language

ready for input
load({"lightrun f*}):

loading file "lightrun.f’
loading file 'pretty.f’

end-of-file on file 'pretty.f’
lcading file ‘'user.f’
end-of-file on file ‘'user.f’
loading file "light.f’

end-cf-file on file "light.{’

end-cf-file on file 'lightrun.{f’
/Q/hl(): v :

-~~~ Generation #1 ---

{ : }

{{"1;;4}, 000", 10000, O, *I", 0}
{{"t4#"¥, "001", 10000, O, -"I", 1}
{{"100"}, "0O01", 10000, O, "I", 2}
{{"111")}, @000", 10000, O, "I", 3}
¥

-

Input Cutput Correctness  Classifier

L1 0 “Tong {{"111"},"000" -94050,1,"I", 3} .
10 1 wrong - {{"tan"},"001",6-94645,1,"1" 1}
11 1 right {{"1##"} %0Q1r, -84181,2, "I" 1}
1t 1 right {{"1##"},*001", -76868,3,"I" 1}
10 1. . urpng S {{"1#x"},"001",-171101 .4 . "I" 1}
co 1 right {{"100"},"001",1998,1,"I" 2} ~
10 1 wrong {({"1##"} "001",-246396.,5 "1" 1} |
10 1 WTong {{"1##} "001",6-327915,6,"I" 1}
00 1 right ~ ~{{"100"},"001",2103,2,"I",2}
01 0.

right ’ ( {{*10#"}, "000",1272,1,"1",0}
N



right 5, wrcng 5, no.response 0O
cycle count 10, #clfs below thres 2

Generation #2 ---

{ 5,

{{"10#"}, *000", 1272, 1, “I*, 0O}

{{"1##"), 001", -280571, 6, "I". 1}

{{*100"}, "0OO1", 1892, 2, "I+, 2} v

{{*111"}, "o00O", -21781, 1., "I", 3} )

}

Input Outpﬁt' Correctness Classifier . Lo
10 1 wrong {{"1##4} ¥001* ,-359527,7,"I" 1} .
01 0 right {{*10#"},"000",1874;2,%I" 8} ..

00 1 right {{"100"},%001",2273;3,;%1" 2} -
10 1 wrong {{"1##"} 001", -384546,8, "1*)1r}
00 1 right {{"100*},*001",2749,4, 17,2} . &
01’ o~ right {{"10#*},*000",2177,3,1%,0} =
01 0 right {{"10#"},%000",2878,4,"1",0} ¢
01 0 right {{*10#"},"000*,3484,5,"1%,0}

0t 0 right {{"10#*},*000",4007.6,"1", 0}

11 1 right {{"1##"},"001%,-239877,9,"I¢ 1}

right 8, wrong 2, no response 0
cycle count 10, #clfs below thres 2

_Generaﬁion #3 ---

i
invi

2

cycle count 8, #clfs below thres 3

--- Generation #4

{

{{"110"}, "001", 10000, 0,%C", 8}

£ .
{{"i10#"}, "000", 3706, 6, "I", O}
{{*100"}, "00OC", 10000, O, "M", 7}
{{*100"}, 001", 1859, 4, “I", 2} .
{{"111v}, 000", -4285, 1, "I", 3} O
¥ WA
- ,/L/ h
Input Output Correctness Classifier

10 no response ‘ ‘ ‘

01 0 right {{"10#},"000",3958,7."1",0}

01 0 right {{"10#"},"000",4416.8,"I",0}

11 0 WTONgG {{*111"},"000";~-102365,2,"I",3}

01 0 right {{"10#"},"000",4525,9,"I", 0}

10 ho- response ' : ~
00 0 Wrong {{"100"},000",-99300,1,"M" , 7}

co 0 wrong {{"10#"},"000",~96657,10,“I" 0%
right 3, wrong 3, no response 2

N



{{"100"%}, “OdO",
{{"100"}, "001",
{{"111"}, "000",
}.

Input OCutput
00 1
11 0
01 no resp
10 1

Correctness

-84404, 1, *M*, 7}
993, 4, "I"; 2}
-67160, 2. "I". 3}

right {{"100"},
‘wrong {{ 111},
onse R
Wrong {{"110%},

right 1, wrong 2, no resposse |
cycle count 4, #clfs below thres 3

--- Generation #5

{
{{110%),, 001"
{{"1008¥, 000",
{{"100"}; "o01",
{{"101"}, "000",
b
Input Qutput Co
01 0
00 1
10 1 e
00~ 1
11 no resp
01 0
00 1
11 no resp
11 no Tesp

00 . 1

-97959, 1,
-44068, 1,

1443, 5,
10000, 0,

rrectness

"ct, 8%}
L , 7}
nyw , 2}

“C, 11}

&

Classifier

*C01",1825,5,*1" .}
"0d0",-155908,3,"1",3}

“001",-97959,1,"C" 8}

Classifier

right {{"101"},
right {{¥100"},
WTONg {{"110"},
right’ {{"100"},
onse
right {{"101*},
right {{"100"},
onse
onse
right {{v100"},

right 6, wrong 1, no response 3
cycle -courit 10, #clfs below thres 2

--- Gemeration #6

10000, 0,

-8670, 1,
3040, 9,

2474, 2,

=4
ncu’ 14}
"M", 7}
qu' 2}
IICIl‘ 11}

"000",6948,1,"C*, 11}
*001%,2109,6,"1",23
*001",-163696,2,"C" .8}
"001",2622,7,"1I",23 r
"000",3773,2,"C", 11}
"001",2866,8,"1",2}

"001",3040,9,"I",2}

Input Output Correctness Classifier

{{"111"}, "oo0o",
“{{"100"}, 000",
{{"100"}, "o001",
A{L*104"}, "000",
}. o
160 . .no resp
SR
11 0 s
00 1!
00 * 1

onse - ol v .
“TOng {{“11h"},
WTONg L{"111v},
right {{"100"},

{{"r00"},

'righ‘% ,

"000",-95835,1,"C", 14}
"000",-186250,2,"C", 14}
"001",3000,10,"I", 2}
“001",3496,11,"I",2}

656



1
11
Cc1!
11
11

O O O oo

Wrong
wrong
right

~grong
wrong.

{{*111°},"000",-239545,3,"C", 14}
{{"111"},."000%,-321578,4,"C"*, 14}
{{"101"},*000%,1981,3,"C" 11}

{{*111"},%000",-375148,5,"C", 14}
{{"111"},"000",~-447010,6,"C", 14}

right 3, wrong 6, no response 1

cycle count 10, #clfs below thres 2.°

{.
{{"110"},
{{"100"},
{{"100"},
{{"101"},
¥

, 7-~- Generation #7 ---

"001", 10000,
"000", -1704;

"oo0o"

001", iggsg 1
. {654, 3,
\

0, "C", 16}
1’ "M". 7}
1, "I, 2}
“"C", 11}

Input Output’ Correctness Classifier

’ {{"110"},*001*,-94050,1,°C", 16}

10 1 wrong

01 0 right {{"101"},*000%,2303,4,"C", 11}

00 1 ~ right {{"100"},*001% 2682,12,"I",2}

11 no response o : B )

10 1 “TOng {{"110*}},*001",~151980,2,"C", 16}

c1 o) right ~{{"101"},"000",2515,5,"C", 11}

11 no response o , .

00 1 right - {{"100"},"001%,2631,13,"I", 2}

01 0 right {{"101"},"000",2789,6,"C", 11}

10 1 “TONg {{"110™},"001",-192231,3,"C", 16}

1ffght 5, wrong 3, no response. 2 o " N

N

;cycle count 10, #clfs below thres 2

--- Generation #8 ---

{
{{"111y;
{{"100"},
{{"100"%,
{{"101"},
o

Input Output Correctness Classifier

11

10

00

10

10

00

01 .
00
10
10

"000", 10000,

*0oo", -332, 1t,

“o001*, 2250, 1

"ooo", 2579, 6,

o]

no

1
no

=

1

0

1

no.

no

wrong .
response
right
response
response
right
right
right
response
response

0, "C*, 18}
MY, 7Y

3, "I, 2}
"C", 11}

X}

{{"111%"},%000",-94050,1,"C", 18}

[

{{"100"},"001",2601,14 1", 2}

{{"100*},"001",2850,15,"1I" 2}
{{"101"},"000%",2342,7,"C", 11}
{{"100"},"001",3194,16,"I", 2}
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rigiy

4) wrong 1, no response 5
cycle Egunt 10, #clis below thres 2

{{" 1100t 000", 10CCO, O, "C', 20}
{{uiconix@l;“q‘oou’ ’63, 1' "M", 7}
{{"100" 2, @pb1", 2732, 16, "I*, 2}

1852, 7, "C", 11}

{{*110"},"000",6348,1,"C" 202

“001",2945,17,"I",2}
"001",3451,18,"1" 2}
“000",2127,8,"C", 11}

"000",3356,2,"C",207
“001%",3271,19,"I", 2}
"001",3722,20,"1I",2}

)s e

Input Oucpﬁﬁ “Correctness Classifier
12 0 right
11 no response
00 1 right {{"100"},
00 1 right {{"100"},
ot 0 right {{"101"},
il no response
10 0 right {{"110"},
00 - 1 right {{"100"},
53 1 right {{*100"},
0t c , right {{"101"},

right 8, wrong 0, no response. 2
cycle count 10, #clfs below thres !

--- Generaticn #t10 . ---

“000",2293,9,"C", 11}

{{*101"},"000",2908,10,"C", 11}

*000",2830,3,"C",20}
"000",-97084,1,"C", 22}
“001",3266,21,"1" 2}
"000",2913,11,°C", 11}
"000",3424,12,"C", 11}
"000",2722,4,"C", 20}
"000%,3265,5,"C",20}
“000",-138765,2,"C",22}
“001%,2838,22,"I*,2}

{ -

{{"110"}, "000%, 2445, 2, "C", 20}

{{v111"}, “oQO0O", 10000, O, “C", 22}

{{"100"}, "001", 3442, 20, "I", 2}

{{"101"}, "000", 2293, 9, "C", 11}

B

Input_'Output Correctness Classifier
01 0 right
10 0 right {{"110"},
11 0 WTOng {{"111v},

ele 1 right {{"100"},
01 0 right {{"to1*},
01 0 right {{"101"},
10 0 right {{"110"},
10 0 right {{"110"},
11 0 WTong {{"111"},
00 1 right {{"100"},

right 8, wrong 2, no response O

cycle ‘count.10, #clfs below thres 1

--~ Generation #11 ---

E!QL'



{
{{"110"}, =000", 2793, 5;."C", 20}
{{"101"}, "00.*, 10000, O, "M",6 23}

{{"100"}, voot*, 2838, 22, "I", 2}
{{"101"}, “000", 2505, 1z, "C", 11}
}

Input OCutput Correctness Cigssifier

10 o . right S {{"110"} . "o00"
10 0 right {{"1r10"}. 000"
1c C right {{"t110%}, "coo"
01 1 “rong {{"101"} ooy
10 0 right {{*110"} "oo00"
11 nO. response

10 0o~ right {{"110"}, 000"
11 no response

00 1 righe {{"100"}, "co1"
00 1

right {{*100"}, "001"

right 7, wrong-1, no response 2
ggycle count 10, #clfs below thres 1

-~- Generation #12 ---

{ .
{{"110"}, »oo00O"“, 3337, 10, "C", 20}
{{"111"}, "001", 10000, O, "C", 24}
{{"100"}, "o01", 2882, 24, “I", 2}

~A{{"101"}, voo0", 1146, 12, "C", 11}

)3

Input Output Correctness lassifier
00 1 right {{*100"}, 001"
11 1 right {{"111"},"001"
11 1 right {{"111"}¥, 001"
11 1 right {{*111"} »o001"
10 0 right C{{"110"}, 000"
00 1 right {{*100"} 001"
00 1 ‘Tight A{"*100"},v001"
01 0 right {{"101"},"000"
00 1 right — {{"100"},"001"
01 0 right {{"101™},"o00"

right 10,  wrong 0, no response 0 . .

cycle count 10, #clfs below thres O
--- Generation #13 ---

{ .
{{"110"}, "000", 2050, 11, *"C". 20}
{{"111"}, 001", 3205, 3, "C*. 24}
{{*100"}, "001", 3455, 28, "I", 2}
{{"101"}, 000", 2192, 14, *C", 11}

, 3324, ."C",20})
.3766, "C",20}
,4134, "C",20}
,=9795° 1,"M", 23}
,4181, T".20%
.4218, . ‘c",20%
.2262,23,"1", 2}
,2882,24,"1",2)

,3398,25,"1",2)
,6163,1,"C",24)
,4949,2,4C", 24}
,65119,3,"C", 24}
.3031,11,"C", 20}
,3069,26,"1", 2}
,3554,27,"1",2}
,1550,13,"C", 11}
.3736,28,"1" 2}
,2192,14,°C*, 11}
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{{m111v}),
{{*111"},
{{"101"},
{{"t11my,
A{{" 101y,
{{"100"},
{{"100"},
{{"111%),
{{"110"},

"001"
"001"
000"
"001"
"000"
"001"
"001"
"001"
000"

3
Inputv Output Correctness Classifier

11 ot right

i1 1 right

01 0 right

i1 L right

Gt 0 right

00 1 right

00 ! right

11 1 right

10 0 right

0C 1 ‘right

right 10, wrong 0, no response 0

{{."100"},

cycle count 10, #clfs below thres O

--- Generation #39 ---

«,

{

{{"110"}, "Q0O0", 2496, 80,
{{"111"}, "001", 3524, 65,
{{"10C"}, "001", 2487, 88,
{{"101"}, "pOO", 1710, 83,
}

Input Qutput Correctness
11 21 right
01 0 right
10 0 right
11 1 right
11 1 right
10 0 right
10 0 right
00 1 right
01 0 right
01 0 right

right 10, wrong 0, no response 0O

nee ,
||C|| ,
nIll ,
l|Cll R

20}
24}
2}

11}

"OQ1L"

Classifier

{{"111"}),
{{"101"},
{{"110"},
{{"111"},
{{"111"),
{{"110"},
{{"110"},
{{"100"},
{{"101"},
{{"101"},

cycle coun. 10, #clfs below thres O

--- Generation #40 ---

g e

{{"119"}, “OQO", 2749, 83, "C", 20}

{{"t11"}, "o01", 2816, 68,

llcll ,

24}

{{*100"}», "o01", 1878, 89, "I", 2}

001"
000"
"000"
"001"
"001*
"000"
"0C0"
"001"
000"
000"

,3667,4,"C*,24)
,4052,5,"C",24%
.2559,15,"C" 11}
.4119,6,"C",24%}
;2970,16,"C", 11}
,2946,29,"%1", 2}
,3452,30,"1",2}
L3712,7,C", 247
,1911,12,'C", 203
.3457,31,"1",2%}

,3933,66,
,2315,84,
,2775,81
,3809,67,
,4162,68,
,2974,82,
,3475,83,
,2196,89,
,2205, 85,
, 2835, 86,

IICII
ucu

, HC"

ucn
IICII
|Icll
HC'I
IIIII
IICII
IICII

,24}
L1}
,20%)
.24}
,24%
, 20}

,20)

.2}
,11)
L1}

4



ii}

“{{*101"}, "o00", 2835, ‘86, "C*,
o | -
~
JInput Output Correctness " Classifier
10 0 right {{"110"},"000",3288,84,"C", 20}
00 1 - right {{'100“},“001“,2445,90,TI",2}
00 1 right {{"100"},"001",3034,91,"I" 2)
01 0 right {{"101"},"000",2866,87,"C" 11} *
11 1 Tight {{"1i1"},"Cc0O1",2713,69,"C", 24}
01 0 right {{"101"},"000*,3206,88,"C", 11}
01 -0 right {{"101},"000%,3668,89,“C", 11} . ™
01 0 right {{"101"},"000",4053,90,"C", 11}
10 0 right {{"110"},"000",2582,85,"C", 20}
1o > 0 right {{"110"},"000",3148.86,"C", 20}
right 10, wrong O, no response O
cycle ‘count 10, #clfs beiow thres 0

¥k ok Done‘ ]

:

As can be seen by the trace. the system picked up the solution in generation #12.
, : o

Other rans of this program have resulted in the avstem being unable 1o obtain the
solution until generation #20. However, by generation #20

“he system usnadly has the

solution. This run ended with the resulting rule base:

{{"110"}, "000", 3148, 86, “C", 20}
~{{"111"}y, "o01", 1835, 69, "C", 24}
{{"100"}, *001*, 1755, 91, "I", 2}

"000", 3467, 90, "C*, 11}

{{"101"},

which i< as desired.



Chapter 8

The Tic-Tac-Toe Application ‘ ‘

§

8.1. Introduction -

The main application to which LCS was applied for experimentation was the
s

game of tic-tac-toe. In this application. LCS (which played X) alwuys played second

{ against a.random player (which played O). Payoff was set upso - to reward it posi-

tively for muking legal moves (placing its token in an unoccupied square)

and to
reward it negatively for making illegal moves (placing its token in an occupied square).

Also. LOS was rewarded positively for winning or drawing games and rewarded neeca-
. (=] D i) -~

- - Id e § . M = ~ - "
tively for losing games. Thus, the goal of the experiment was to Start the system off =

v

with a randomly constructed rule base, producing in the end u rule base which enabled
gority of games against the random player. Hopefully, this®

he system to play an optimal game it would always

“losing against a perfect opponent.

This chapter deseribes the ticstac-toe application giving o breakdown

of the «

implementation asx well as explanation for the varions design decisions made. "This is

followed with a discussion of the results from the experimentation with tic-tac-t1oe.
P'seudo code for the tic-tac-toe application can be found in appendix A2,
. Dt

~

8.2. Representation

In designing the tic-tac-toe application, one of the first problems 1o resolve ix 1o

B . J
. s X Fy
determine what a message and a classifier wure to represent. :



6.2.1. Meséages

For this application, it was decided that an-input message would represent a

«

board configuraiion and an output message would represent a move. Thus, when it is
o o A N

the system’s turn to move it will be given a message which indicates the current board

)

3

configuration and will return a message which indicates its move. : °

This dual representational property of messages means that input messages are of
a different form than output messages. The first symbol of a message 1s reserved to

facilitate vhe distinction betweéen the two kinds of messages. I this symbokds a "1™,

I

then” the megsage is an input message, otherwise the symbol must be 4 "0" and the

. . 4 s
Message 1s dn outphut message.

sy
r
=

%" b .
N oo o . .
For anihput message. the remainder of the symbols in the message must encode a

bourd: configuration. To accomplish this. it was decided that a board would be
. . ’ vy
encoded linearly (squire one. square two. ... . square nine) into the message. The

> enumgration of the squares of the board are as follows:

’ - . - Co
o S U S . ! .
2 5 '
b 41506 s
k"b‘y-r L : -
R
— kg >
o i | 819 *

Since a square can have three stites {blank, NX. or O). two symbols ate required to

represent a square. The'encoding scheme chosen for this representation is;

¥

By

“State '.éymbol 1 | Symbol 2
~ - o
blank | "0 0
b e
AN 1 0
0O 1 I
¢




4z ‘ “ T4

Notice that with this encoding scheme, the concept of an occupied square can be
represented within a condition string by the symbols "1#" (since that will match cither

an N or ‘O but not a blank square). If the encoding scheme had been such that X was

v

10 and O was 01, then there would be no way to represent the concebt of an occupied
square. Thus. one ca{;_»scc the importance of carefully chosing the cncoding schéme ;15
a Apoor choice can lead to the inability to represent certain concepts :md consequently
can affect the learning potential of the system. This is one of the representational

problems inherent in learning classifier systems. .

4 . .
Having nine squnre)\v\'ith each square bm‘%‘g represented by two svmbols gives a

i

total of 18 symbols required to encode a board configuration. Add to that one addi-
L ’

tional syvmbol to indicate that it 1s an input message a({ld the result is an input message
- s 1 ! ,’/\ B - B
that is 19 symbols long. Thus, the board configuration

.

010 |X

would result in the input message

, 1111110001000110000.

" -
N R

4

Since all messages miust be of the same leng((h. output messages are also 19 sy-
P ‘ 4 .

’ . 4 v

. *
symbol {indicating that it is an output message). the

]

bols long.. After theinitial "0

o v T X e <y . . .
remaining 18 symbols of an output message have to indicate a move. “Since therevare
only nine possiblé moves that can be miade (squares one to-niné), only four symbols are

PR . » 9 .

-

mo¥e to square 5 would be'encoded into 0101).” Thus, out of the 18 symbols available
e N . R "

o

required to represent 4 move if a tnove isjust encoded into its hinary equivalent {i.e. o

“to-indicate a move, only the last four are used - the other symbols ure set 1o "0"!

. ) L i
- Thus. & move to square 5 ‘would result in the output message 0000000000000000101.



and a move to square 8 would result iﬁ'th‘e'out'put message 0000000'0000000010(:0.

-

8.2:2. Classifiers

The structure of the input and output messages influenced the structure »f - he
classifiers.  Clussifiers were designed so that their condition part matches - board
configuration and their-action part produces a.move. In this design. the éoriditiq_n part

of a clussifier contains only one condition string. This condition string conforms to the

wstructure of an input message in that it is 19 symbols long with the first symbol always

"

. . P e ¢ . .
being” the symbol *1 The remaining symbols are grouped together in consecutive

pairs with each pair corresponding to& square on the board (Just as in input mes-

- sages). <\ pair is allowed to assume one of the “ollowing values: 00", "10", "11". "#0".

l# or "##". A pair i‘s not allowed to'assume "01" because that combination is not
used in the cucodmg of a2 board conﬁvuratxon into an mput message. Con:equentl\
the 1ppcnmnce of that combination in a condmon string wou]d result in a Cl'l‘i\lf'(‘r’
tha.t woudd not match any input messages — _hence it 1s disallowed. The combinntiop

»

T# 1T s disallowed bocalgit is redundant with the combination "11" '"#1 matches
“

the on(‘odin"s 01" ':m(l "1'1"', but OI" 15 not used so it effectiv ol\ matches onl\ "

Thux W henm erLthe pair "#1" occurs in a condition strmcr, lt could’ be repldccd by the

:

- pair "Ilf' without l'IJd.l\lI.l"' any dlﬂ'erence Hence '#1" is redundant and consequently

dlwllo“ od Tbeﬁmbmatlon "0#" is also disallowed for similar. reasons, Ty

Sorhe e\amples of condmon strmgs are: 110###########‘*##### which

. .
. . \ - . .
will utch any board conﬁrrur:mon that has™ ah N in  the first square.

B ” :

11111############## \\hl(‘h mll match any bo(u‘d conﬁvumtlon that h.u an a

() m the fll'\[ dlld secon(l \qu(lre . aud l######llllOO###### Whl(‘h vu]] mat(‘h

“any board conﬁ‘rumt;on th il hxs an O in the fourth "md ﬁfth Kqu‘n‘es 1mcl 4 blank | lg
: i

the sixth square. ‘ , - : , g -



Action strings were designed to conform to the structure pf output messages. As
such. the first 15 symbols of an action string are always all "0"s and the last four sym-
“bols of an action string contain the move to be made. These four symbols can assume
the same set of values that the last four symbols on output messages can. Some exam-
ples of action strings are 0000000000000060101 which produces an output meséagio

indicating a move to square 5, and 00000600000000000111 which produces an output

+

message indicating a moveé to square 7.

3

A classifier contains a single condition string in :ts condition part and. of course.
a single action string in its action. part. Thus, a classifier ndicates a move to be made

in response to the presence of any member of a set of board configurations. If a board

configuration appears that is a member of the set of configurations defined by the con-

dition string (the board configurations which match the condition string) then the
. _ w :
action string indicates the move to be made in response to that board configuration.

Wry T v . , N .

1Y

11#000000t000001100 / 000000000000000001 1

indicates 2 move to square 3 for either of the boards

,',\ . _ ‘ ] Q. o
0 P> -0 Y R - i -
o . . : - 5
- X
& .
"
; _
O 0 )
.
- @ i ~
or 2 .
B4 s ‘ ,
A
+ N ‘ O 3 ' )
. . > & ot g
- 4 ~ - N o
.o ) z , .
. . X 3
’ . . -
(S * A Al - -
. . ()
5 -

- : [ L . ‘ .
Note, however. that the first bourd woild not appear in a real game sinc€ the opponcnt

it



Y

always moves first.

8.2.3. Initialization

2

Initialization of tic-tac-toe basically jovolves setting the system parameters and

coustructing the initial rule base. The system parameters are set through the follow-

ing-sequence of calls:

seed (125) ;
ms3S:ze (19);
cl Posilvl (1) ;
maxNumConds (1) ;
bidCoeff(0.5);
maxFireBid (4);
fireProb(ss) ;
taxRate(0.002);

. maxFireTax(19);
condBndry(0,1,1,"1");
condBhdry(t,2,6,%00 10 11 #0

condBndry(3,2,6,"00 10 11 #0

~condBndry(5,2,6,"00 10 11 #0
condBndry(7,2,6,"00 10 11 #0
condBndry(9,2,6,"00 1011 #0

1# ##");
1# ##Y);
1# ##) .,
1# ##t")
1# ##")

condBndry(11,2,6,%00 10 11 #O 1# ##*);
condBndry(13,2,6,"00 10 11 #0 1# ##*);
condBndry(15,2,6,%00 10..11 #0 1# ##");
condBndry(17,2,6,°00 10 11 #0 1# ##");
-actBndry(O 15,1,"000000000000000") ;
actBndry(lS 4,9,%0001 0010 0011 0100 0101 0110 0111 1000 1001*)+

1n1tStrength(1000OO)
rplcThres(300) ;

», genCondMteh(13) ;-
genLife(s);

. 4

“ »

coverCond (" 1##################")'

crossoverProb(QS)
mutationProb(95). -

N

. B - : . | ‘ - ¥
The values for some of these garameters have already been discussed in the previous

sociions on’ messages and classifiers

\

Of the remaining parameters, some had values

that were OINH\ deterunned ngge others had v1lues LhaL were, deterumned b) experi:

‘

'Inonxdlfoodbtck Fhose roquuﬂnv Lhm feedback will be dl%(uqsed jn’ the 5ectu)n ‘on

-

1

Q - N

- ex;)oriu)ent}ﬂ’ro%ults.'77he oLhers‘ure discussed now. - v

. The seed parameter is just an initial random number for.the random number

;Ti,‘gf , >n

o
2
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cenerator. The random number 125 was chosen. Tlhe clfPostLvl is set to I so that
the svstem will only generate one move in response to a board. fireProb is set to 95
so that. for the most part. the'"best” classifier will be chosen to fire. rplcThres is

arbitrarily set to 300. coverCond is set to | ######HH#HBLHA#H#H#H### o that

only input messages will be covered. Finally, crossoverProb and mutationProb are

1

<et 1o 95 so that, for the most part. the highest strength classifiers will be used for

crossover and mutation.

In addition to setting system parameters, inifialization also involves setting s&we

s oplication parameters. For tic-tac-toé> these include-some payofl parameters. a rule

- ) ' ,',‘. ' - . . .
base size parameter, and sonte parameters that provide run information. The pavoif

P Clers are as ‘fol‘g,lws:
. s
: L

&

Legal Move ‘ 100

Hlegal ;’\.}(ove -1000000

N Win Game - 10800~
Lose Game -16-100
, e " |'Draw Game | .7 6000 | . o

= v

As ‘expected; the legal move payoff is the payofl issued when a legal move is made; the .

win game payofl is the payofl issued when the system wins a game; and so on. Admit-

“tedly. some of these parameter values look a bit odd, but .the explanation as to how

these values werg obtained can be found.in the.section on experimental results. The

2 R} .

-

manner-in which payoll is issuedifor each of these pay«.! items (what payoff group
. . . . 1
receives the payofl) is discussed in the next section.

. o . . - . . B 4

The rule base sizé” parameter indicates the'number of rules in the rule base. The

o



4]

-size of the rule base remains constant throughout the run.

-~

Pl
Tt

This parameter i set 10 a

value of 120. Explanation as to how this value was obtained is provided in the section
- . e

on experimental results,

The parameters that provide run information consist of the gener

paramerer. ‘the min C\cles/genomtlon parameter, the max cy (‘les/

4

alion count

generation parame-

ter. and the ropl.lce size parameter. The generation count papameter indicates the

nimber of generations to be produced in the run.

generation has been produced. -

-t

The min.and max: cycles

higher.

B

"(’H(’I"ltlo[] pa\:amete

The run terminates ulter the last

—_—

Usfally this pArameter is set to a value of 300 or

rs set boundaries on the

minimum number of cycles that must be performed, and the maximum number of

cycles that can be performéd. in a generation.

One cycle refers to one iteration of the

\

basic execution cycle. These parameters are set to 1150 for the min and 2700 for the

RY)

max. The replace size parameter indicates the minimum number of replaceable rules

N : \\< L"
value of 10.

.

F} v .
that must be present in order to produce the next generation.

0

-

A replaceable rule is a

rule whose strength is below the replacement threshold. This parameter is set to a

.So. in a generation, the basic execution cycle-is performed for at least 1150 itera-

tions. \When these iterations have completed, if the number of replaceable rules is

-

- o . ‘ . SO .
below 10 then further iterations are -performed until at least 10 replaceable rules are

present. At this point, the basic execution cycle is stopped and the next generation of

rules are produced.

should exceed 2700 Lhen the basic execution cycle will be stopped and the next ge .. ra-

tion will be produced. This ensures,thi’zti.-ihe run will complete, in a finite am unt of

time. S . .

c

8 \pl‘urmtlon as‘to hov. the values were obtamed for all these run parameters i~

“ v

“'l\(‘[l in Iho se(‘tlon ‘o (‘\(perlmontal re%ult

As well, further discussion about some of

If, in the procqss of iterating, Lhe number of cycles performed

v

>

¥ 4



-~ these pnrmnet‘erwo given: o . § 4

S e 80
‘.vvv. . v.‘v '; . ‘/ T

n

Construction of the-initial rule tbase is accomplished by randomly geperating a

- .

condition and.action string for each rule. The condition string is initially set to the
N N - . : .

symhol "1™ Then: 9 pairs of symbols are appended to it, where each pair is randomly

N

chosen from: amongst the pairs: "00", "10, "L1", "#0", "I#". and "##". The action

SIrng s '.iniliully set to "000000000000000" and one of the symbol combinations

~

"'()0(51":"0010". ~. . "1001" is randomly chosen to be appended toit. The rule is given

an‘initial strength of 100000 and an initial fire count of 0. 120 rules are generated con-

stitnting the rule base.

N

. Pl
3

8.2.4. The Basic Execdtion Cycle

After initialization has been performed, the tic-tac-roe application begins iterat-

ing for the number of generations indicated by the generation count parameter. In

" each iteration. the basic excécution cycle is first performed for some number of iteri-

tions (as discussed in the previous section) followed by the production of the next gen-

eration. ‘This section dis&@ss}e%he basic execution cycle. Production of a new genera-
: PLSSCH ( _

tion is discussed in the néxt section.

E®h iteration of -he basic execution cycle begins by first retrieving - the

“opponent’s move. ‘This involves ¢ither generating a random legal move or prompting a

‘humaniopponent for the move. After the move has been-retrieved and the board has

& «

been updated, ‘the board is checked to determine whether the opponent has won or

i Y s

whether 'a draw game has been reached. . If either. of these is the éase, then the

appropriate payoff is issued (cither lose or draw game pavofl) and a new game is

. - '. ) - ) . < - Te i : . . o » N
started thus completing ~he current iteration. Otderwise. it is the \'.\’S((‘m'/( urn to

. - ’ . . -
meve. '

o o

¢
i

Betricving the system’s move involves first constructing an wput message.

represents the carrent board. This involves first standardizing the boxrd and then



encoding this standardized board into an input message as was described in the section

&

. on messages. The reason the board is standardized is so that the syst,emﬂwil] not have
tolearn about board symmetry. Two boards in which one can be derived through flips

«and: rotations of the other mll appear as.the same board to the sxstom {i.e. they \\11]

f

boxh be encoded into Lhc same input message). 5ldllddldlldllon of a bmml Is accom-

1‘. H

phxh(‘(l by rot.mnv and flipping the board through the & various })O\lll()ll\ (rotate |

times. flip. (m(i r’omto another { times; where cach rotdtxou is by 90 degrees ¢ locl\“m ).

~computing a l\o\ for each position; rmd then encoding the position with vhe highest key
1 |/ :
computed for a bourd position by treating cach

into the iuput message. A key

square as u base 3 digit (blank=0, X=1. O=2) and thus the entire bourd as 1 base 3

, . ‘54_' «-

numlx‘r (ulth square 9 as the most swnlﬁcant (]l"l[ and square 1 as the least significant

digir).

Once the input message has been constraetédl. it is passed to the system through

the face system function message. Next, th ace system function nextcycle is
ressage is then retrieved frous the

face variable messlist and used to update th\e‘ andardized board. After updating,

- 4

the standardized I)oard is destandardized bringing it back to the conﬁguration with

which the opponcnt Is f’tm]ln[ The board is then checked to see if the system has

made a Iegdl move. lf it has not, then 1l|eval move pa?oﬁ' ts 1ssued and a new gqme is®
started thus completing the current iteration. Otvherwe, legal move payoﬁ" is issued

and the board is checked to determine if the system has won or if a draw game has
\, ' . ’ )
been reached: If either of these have occurred, then the appropriate payoll is issued

(either win or draw game payoff) and a new game is started thus completing the

‘
'

current jteration. Otherwise, the system has finished making its move and the cirrent

.
s

treration is completed. . ‘ ,

;\\r)tvﬁlh,‘{t after nextzycie has been called. it is possible that ho oulpul messiyge

st oof

v evast Phis ogenrs x\h« o)) rhv wput message daes por satisfy the condition o



any rule. In other words. the system has no response to the current board.” When this

occurs, a new game 15 started thus completing the current iteration.

e

When payofl is issued, 1t 1s issued to either the group of currently active rules/

(pavoll group number zero). or the group of rules which were active at sqxg;c point dur-

ing the current game. The litter group.is known in the application as payofl group

~ rw
3 <y

number one. This group is emptiéd (rmyPOGrp) at the sturt of each game and active

rales are added to this group (addToP0Grp) in each iteration of the basic execution
.) N - ‘}’f . A , . )

exele. Payvoll for legul®und illegal moves are issued to group number zero. .Pavoll for

won, lost. or drawn games are i1ssued to group number one.

&

Kl

8.2.5. Producing New Generations -~

After the iterations of the basic execution cycle have completed. the next genera-

tion of rules are produced. This fnvolves first setting the generalization. ¢over. and

crossover rates and then calling the face system function nextgeneration. \When

N

this function has completed. a new generation of rules will exist in the rule base aud

[N

the next wteration of the gerferation cycle can begin.

The values that the generalization. cover. and crossover rates are set to are

dependent upon the state .of the execution. At the start-of, the run. there does not

~

exist any good rules from which tozidrm generalizations. Thus, the gencralization rate

is set to 0. There are. however, many board configurations that the system has never 4

- seen before and niost likely is unable to respond to. ( ous\'aqucntly‘._thc cover rate is setg ;" il
. - oL

~ » . o ' Co ;
to 100. Of the remaining new rules to be produced after cover hias completed. 10 per- o

N - » *

AR N . . .
o - F . 3 ; ' ~ DRI . o X s
cent of them e produced by crossover [crossover rate is set to 40} and e rest b’

Bty
. . : , s A
w  muration. Note that thelimportant criteria’ in determining these values for the gpiitess LT
. . - . e . e
was not bised <o much on the fact that 1t was the start of the run, but rather on the i
B o o ' ' ; , Sk
. s o 3 ' - " .y S N
fart thar there was o high nnmber of "no responses™ Thus. these rates come 1

JUR- . .

cellect when ver the "ne response” count s high ors as 18 expressedsoin the edde]
~ o ' s L



o

&3

whenever the "no respouse" count for a generation is greater than 37. fh;a figure was
arrived at by ex: xmmmv the rosults of previous runs and obsenmv the "ng: ’reqponse
count when the system had bcrfun to d.CQUlTC‘ some good rule% Thls occurred around a.

"no response” count of 37.

When the "no response” count is 37 or less. the rule base will likely contain some
good ru.le.\' from which generalizations can be formed. Consequently, the gcnorélizu—
lon rate is set to 30 so that some generalizations will be created while still leaving the
opportunity for the other discovery operators to create new rules (70 percent of the

new rules will come from the other operators}). Again, the cover rate is set to 100 in
)

’1,:,,,
V'3

order to cover any board.configurations to which there was "no response”. Also, the -

crossover rate remains at 40.

6.3. Experimental Results
/

This section describes the results that were obtained fl'omv.!_ho experiments con-
ducted on tic-tag-toe. The setting of some of the parameters are fir (liscvu“e(l fol-
lowed by a discussion of the results that were obtained using those settings. Finally.
some of the problems encountered in the course of obtaining those 'r(;sulxs are dis-
cusfc(l;

6:.3.1. Setting Parameters

The setting of some of the parameters has already been discussed in previous scc-
tions. What remains to be discussed is the setting of those paramecters that required

experimental feedback to determine their values. Again these parameters can be

‘

categorized into system any application purume%rs. The system parameters are dis-

A .

cussed first followed by the application parameters. i

The first system purameter 1o discuss is initStrength. As §14.3 indicates, the

il strength of new rules must be high enoush to outbid established rules in order

N .

1
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to give the new rules the opportunity to prove themselves. I[n the initial runs of the
system, this problem was ndt realized and conmsequently the tnitial strength was. set too
low. This resulted in the system rblaining only mediocre rules. When this problem
was discovered. a new higher initial strength had to be determined. This new in.i(‘ial

strength wad based on the highest stren;@ood rule.

Roughly speaking. a good rule’s strength will stabilize when the averuge pavoll it

receives equals the average bid it makes; ot in other words:

L

; bid_coefl = specificity * strength / (max_fire_bid + 1) = avg_pavoff
““‘L “ A rule that wins a game every time it is uséd will have the highest avg_pavofl (average
Sy
7y ot . . -
¢ payolf). This will be a payoff of 100 for the legal move, plus approximately 2700 for

jat)

_ J%.\x'irlll.illg the gaume (this figure -will be discussed in the application parameters discus-*%

siBn). With a bid_coell of 0.5 and a max_fire_bid of 4 {these values will be digcussed

shortly), this gives: o

'

ificity * strength / 5 = 2800 ~ A

The highest strength good rufe*will have the lowest spocifi(‘i!_\'; according to the equa-
tion. The rule with the lowest specificity that always wins the gnm;‘ s used o owill
have a condition part that is only cc;ncorned. with three squares on the board. 'l“how
tv]n'(‘o squares will fqrnx a lite (either diagonally, lio;jizontzlll)’. or vertieally) and the

- ) ST - ' L .
condition purt will indicate that two of these squares have to contain N's and-the third

can contain either an X or be blank. N‘ét(’ that this third square has 1o be blunk

because if 4n X were there then there would he three X's in a line and the game would

ie

have been over. Since an X is encoded as "10". blank or X is encoded as "#0", and all

“condition strings start with a "17, the specificity of such a rul:is 6/19. Putting this
figure into the previous equuation gives a strength of 8667, Thus, the initStrength

/

isset to the rounded up value of 100000,
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The next system parameters to discuss are taxRate and .maxFireTax. The value
for the taxRate should be such that new rules placed into the sy stem;wﬂl survive long

onouvh to come atross an) board conﬁguratlons to which they are applicable. The

s

question is, how many basic execution cycles does this represent? To answer Lhis. the
total number of different board configurations that the system COlllld possibly "see” was
first determined. If new rules survived for that many cycles, [‘hen'th>e..r\g\"would be a
/
good chance that they would come across any boards to which thev are '/(,;p[)lintl)l(‘.
The figure calculatéd was 2781 but the calculations invelved did not ‘n(‘coun‘l for the
[act ‘lhut f.,lh(‘ boards presented to the system are stapdardized. Accounting for this
would r(“rluro this figure. However, it is also true that board configurations do not

“appear with equal frequency. Start game configurations appear more frequently than

ond game (onhfrumtrons This suggests an increase in the number of cycles that new

rules should survive for. Taking both of these facts into consideration, the uqun i

cveles that new rules should survive for was -ba”parked at 2700. ln'itvially his fi® o

was ballparked at lower values but e\perlmental results (whl(‘h shall be disc u»e(l

later) proved thcm to be inadequate. Note th(xL for this figure, it is better to err on

the side of being too large. as it is better that new rules come across’ too many l)().n%la-./\

Ilmn too few. This was also taken into Consi(lcrution. ‘Since new rules start out” with
an initiul strength of 100000 and can be replaced when their strength falls below 300)
the “taxRate can be calculated as follows:

300=100000(1 = tarRaie)*™""

Fhis gives 1 taxRate of approvimately 0.002 which is the current setting,

The value used for the maxFireT‘ax was also (l'otorminvd from experimental yoed-

3

biack. Estublished rules should mp(‘rlouce smaller taxation <o 111 ttwhen new rules ini-

tiallyv outhbid them, taxation does not (lvcro e thefr strength by mmh This wias (li\-

cussed iy §0.30 Exactly how small a taxation they should experience. thongh, w.aw

:
\
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determined experimentally. Initially the maxFireTax Wwas set to 9,"but vhat proved to

-

be too smyll as some established rules experienced toe much taxation during the period

that neav rules were outbidding them. Consequently. those rules were incorrectly lost.

After trying a few more values. the current value of 19 was arrived at. Note that, for

P
.

this parameter, it is better to err on the side of being too large, as a larger value just
b ¢ ’ ° '
mears that it takes longer to get rid of useless rules whilea smaller value might mean

’

wthe unjustificd loss of some established ;ul\es/.

ﬂ:’\ The system parameters bidCoeff and maxFireBid are set to 0.5 and 1 respec-
.p} - : %

Aively. maxFireBid was determined experimentally. Initially smaller values were

«

. used but this resulted kiktoo long of a stabilization pertod for new rules. and conse-

. «
.. quently the unjustified loss of some established rules. Eventually tle value of 4 was
3 ) ) o

e . A _ )
arrived at. The bidCoeff was always set such that

.

bidCoeff / (maxFireBid +.1) = 0.1 -

The 0.1 value was just arbitrarily chosen so that riles that fired more than maxFire-
’ . >

« 7 Bid times would ot]‘ocli\'(i\' use a Bid coeflicient of 0.1 in their bid calculations. This

<

. equation sets the bidCoeff at 0.5, 3
»

Finally, the last system parameters o discuss are genCondM-ch and genLife.

- L. ) . ’ Iy . .
“genCondMtch Was determined experimentally. If this parameter is too small then over
'R - N -

. . Lo ¢ . i - .
generalizations result. I it is too large then weak generalizations result (generaliza-
tions that are not that much moge general than the rules they were formed from). Ini-
tadly a value of 11 was used but the rules which resulted tended to be & bit over gén-

“eralized. Consequently this led to the current value of 13, genLife is currently set

to A Initialty, higher values were tried, but a poor generalization would just take too
: ' : . 4 .

long to stabilize resulting in the loss of some of the rules from which it was formed.

This led 1o the current setting.
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‘

N Turning to the application parameters, the first ones to be discussed are the

payoll parameters. ‘The legal move pardffieter was chosen to be a.small value so that a

rule receives some reward for making a legal move but will not be able to flourish by

making legal move$ alone. Consequently this parametér 'was arbitrarily set to 100.

The illegal move parameter was set to -1000000 so that any rule which makes an i'llegal
move will have its strength dropped below the replacement threshold. '

- . . . d . iy
The win game payofl was determined by first deciding the strength range within
which rules produced by cover should stabilize. To do so, only rules that always win

cames w;ro examined, as those rules will bave the highest stabilizing slréugth% [twas
wud ) "

- decided th.x( these rul’c‘i should stabilize “thln the 2.)000 to 30000 range as this was

. suﬂiciontlv hifrh‘enmlfrh 50 (.hnt it‘would take a fair number of cycles for taxation to

-~
"

(ho thmr \tr(‘n("ths bolo“ tho rc' l'lcoment thre<hold of ’300 \\'it.hin this range, a
P P A g _

.‘_\lr(‘ll"(h of )8000 Was .1rb|1mrll\ chown to by lhe qtablllzmg stn‘n"th Bemuse rules

: &
pxmluu 1 h\ ro\< r h e A ip(‘(‘lfl(lt\ of one, .md th(‘ bldCoeff/ maxF1reTax+1) ratio

is () tlu- lnd hl/uo(l [)\ i mnnnw cover rule mll b(f R ER K
! .

N 0.1 * 1 * 28000 = 2800. : ‘

'
.

“As was discussed previously, the payoff that this rule receives should equal this figure.
The rule receives a payoff of 100.for making a legal move. Thus. it should receive the
dilference sf 2700 for winning the/game. Since (he?system can make up to -4 moves to
win o game, the payoff for winning 4 game-is sc'tl.to 12700 ‘whl’ch-ls 10800. - : ‘

The payoff for drawing a game was choxm‘\ to- be}pprO\lm 1(0[\' lmlf that of win-

1

ning. This led to the roun(led up ﬁgure of 1500 for each swtom move in a dm“ game

which gives 4 %1500 or 6000 as the draw game payoﬂ'.
Thc _pn_vol‘T for losing a game' was determined experimentally.” This® payoll s
always et o« negative v 1lu(* indic .mn(r that a los\ is undesirable. If this purameteris”

set to a valiue that is too large (in-m:xgni(udc) then some good rules may be incorrect|y



' : R : . . . | - 18

lost. Pa\oﬂ' for losing @ game (as with winning or drawing) is dmtrlbuted equall) X

o~

'1m0ng>t all the rules that participated in the game. The loss of a game means that at

least one of the rules produced an incorrect move, but which rule is at fault is unk-

. _ . 7
nown. Therefore all the rules receive a small negat{ve feedback: As these rules parti-

'

cipate in other games, the rule whlch was at fault should receive thls nev'ltnmfecd-

back more frequently as it is more Ilkely to be inv_olved in lost games. ‘This negativo
. ' ! ‘ - . ) }' ' -

feedback should accumulate. eventually causing the rule's strength to fall below the

(<3

replacement thresho(ld. If the payoff for losing"u g'une is too large, t'heu the frcque.ncy
with which some gopd rules receive pgsitive fee‘dback (f,rom'winnin‘g or dmwing) may
not be enough to combat th<; accumulative effect of the negati;fe feedback they receive
when they ure'invo]vc;'d in games that the faulty rulé' is. involved in. Consequently
these rules will be wrongly lost. On the other hand, if the payoff for losing is too

small.Sthen an opposite@ect occurs. A faulty rule does not necessarily lose every

game it is |n\ol\e(l 1n as the opponent plays’ mndoml) Thus, a faulty rule can and

A

most lll\CI\ does receive some positive feedback. If the payoff for losing is too smali,
\qﬁ—’ B

then this positive fced‘back may be enough to cacel the effect of the negative feedback
::n(l subsequentlv enable the rlile»Ld survive. The \alue of this payoff parameter was
: dvtormmed by initially I’::llln" a pavoff of -3100 to any rule that was m\ol\ ed in a IO\l
g:nuo. ’I‘hl'i gave a lose game payoff of 4 * -3100 which i is -12.400. This \alue however. .

' plowd to l)e too \mall and after some more trials the current value of -16400 Was’

-y

-

:A-rri‘vleil‘ ;x_t,; '
3 R B 4 . .
o Of tbe remamlﬂ" uppllca.tlon p'u"xmeterﬁ to dlscuss the gener'mon (‘ount parame-

ter %h'lll be ﬁrqt Thls p'lmmeter 19 currentl\ set to 300. Inmall\ sm"xller \alues were

' hut they did not lg‘t the. s\%tem run long enough to give the d(‘\lr(’d reqults The
\

J AN ey cles/genemtlon pamrneters are seL to 1130 and 27 00 re\pcctn ely..

Th purpow of the mif (\clos/generatlon parameter is to force the'b.mc exec-

tion cycle to be- p/'rf()lmo(l for a mlmmum uumber of ltemtlom This lows the
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-

strengths of new rules to'stabilize so that when it is time to produce a new generatvion,
the strengths of the rules will more accurately reflect their usefulness. The calculation

‘ , * of this ‘parameter was done by considering a new rule which is not applicable to any
» \ . . \
‘ \

legal board c‘ohﬁéurations {a legal board configuration always has the number of X's
2o _ R P

" and O's differing by at most one).. Such a rule would start out with a strength of

N
. . 1

» 100000 and should have a low strength when it comes time to, produce a new genera-

tion. This low strength was chosen to be 10000. This, the number of cycles involved

¥ . [N

.

s ™ in coing from IIOOOOQ'to 10000 is calculated by: P ' 4 .

4

. _- . 1000():3100000(1_Q'OOQ)cyclca

- ‘
. . .
N , . .

This givés a cycle count of 1150 which is the  current setting for the min

-

cveles/generation parameter. . : -~
i 1

The purpose of the max cycles/generation parameter is to ensure that the basic

o execution cycle is performed for a finite numb#r of iterations in each generation. This

parameter was just set to the number of cycles that new rules should survive for. &

1

. . . ¢ s ' . . ”
: which is 2700 as was,described in the discussion on the tax parameters. Note that this

maximum was never reached’in any of the generations for any of the runs.
- .

¢ The next application: parameter to discuss is the rule base size parameter. This
Y -

parameter was determined experimentally. Iﬁitially.,a value of 200 was used but this = %

.-,

proved to be too large as too many useless rules would be identified and replaced in
S ’ . ! ' '

each generation resulting.in.the creation of too many .new rules. "\\'hcn a rule base has
; . Lol . ‘o c .

..~ ‘teo many new rules. an establislied rule.in the base has

to contend with ailot of new |

: o . - g s
% ., .. competitors who initially ‘take

. .~

away that rule’s ability to fire and consequently the

S wes
[N

. » <, N

pofitive feddhack that it would norm(av)l\l» receive. A lot of new competitors means that- &
e - L s TR , A L o

)

uring which it is alse’

" the established rule is "starved” for a longiperiod of time d

"o ¢ experiencing taxation. This leads to the problem diseussediin:§1.3 which could result ©

I

BT i'\hv(;,il'or:%{-_'of the A(‘.\:'_I('lbliShv?(l rule. This behavior was observed when the rule base size-

ONC T e s

Ay . [ - -
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. ~ . ; .
was set to 200. Consequently lower values were tried eventually giving the current

4va|ue of1‘20‘.\ ' ‘ (h B N

“

\

~

Finally. the ljast‘ application parameter Lo'hdiscuss is the replace size parameter..'
As was mcmio‘ned in §6.2.3, 'th‘is parameter indicates the mlinimum.nuu‘lber of replace. .
able rules that must be‘p}csentv in order to 4produ-c'e.the next gemeration. As was just
(iiﬁ(‘lxssc(l. it is undesirable to hajve too many new rules prese'nt‘in L‘he 'rule base. Thllg. i

™

this parameter is set to a low value of 10.

As Ithe reader has probably n"oticed, setting all the p:;ramet,ers can be a tedious\_
and time conSllming process. This is one‘ of the drawbacks to using this system. Also,
the adjusting of these parameters, as well as the choice for the domain representation,
introduces some demain dei)endent kno‘Wle‘dge into the system. This affects, to some
extent. the domain-independent property of this system. However, this [ntroduction.
of domain dependent knowledge is re‘stfrict‘ed to only the parameters and the represen-

tation choice and does not enter into the internal workings of this system. Thus, the

code for this system is completely domain-independentj ‘

"8.3.2. Results ‘

Setting the system ‘and application parameters to the values déscribec_l above-

‘ gives t;he..rgsults Sh:OWI.] in ﬁg‘;_r:é_s 6.1 and\ 6.2§.:."Figure 6.1 shows‘v, for each generat,ion.‘

* the percentage of the games won, .lostf‘an.d drawn of all the games that were completed.

.. in that gengrépiqn. “Figureé 6.‘2. shows, for each genefation, the percentage of the bc;éf(l

('onﬁ.'guratviétri; ':se.'(é‘lil"ﬁlya‘y' ,jt‘..h?i,system,'v'i"'n;.-éhat genex;é‘t‘i‘oﬂ,‘that resulted in an illegal
,move or 2 "no response';. | |

By examining the g‘r_aph in_"ﬁc;','uvre 6.1, one can s-e that in about thé ﬁrst 50 gen-

"

erations the system is in more or less. of a chaotic state as it is acquiring knowledge

o about legal moves and any-games that it completes is effectively due to random play-

v

Jing pnits part. This cun also be observediin the first 50 generations of figure 6.2 in

(Y

PRRLS
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which. the system is unable to respond to a large pdrtion of the boards‘present,ed to it.

. L. ‘
This. however. is a diminishing trend as by generation 80 the ‘percénpage of "no

responses” ims, dropped to a few percent where it remains. The illegal move p‘lo\t is

-

similar although the percentage .ol illegal moves in the initial generations is

- .

significantly smaller compared to the "no responses”. This is to be expected as initially
'f\p_"" . . C '
the system is dealing with mostly opening board configurations as opposed to end

game board configurations. In opening board configurations the majority of: the

. 5 :
.. . ) . 4 o - .
# squares on the board are unoccupied and thus a square randomly chosen to move to.is

likely to be unoccupied resulting in*a legdl move. Consequently, the biggest stumbling
block initidlly is coming across mid. game board- configurations that the system has
& ' TR ‘ -

never seen before and to which it is unable to respond.

After about generation 50, the system begins completing more of its games. The’ '

positive feedback it receives for ﬁvinning begins to take effect as the system quickly
. ) e \a\l' ’

learns to win the majority of the games it completes (see figure 6.1). Learning to draw
_ "y ' ‘
a game rather than éose it is, however, a bit more complicated as the system does not
firmly acquire this céapability unht‘il about generation 190. By examinin.g‘ figurée 6.1, one
can see that shortly after ‘gevnei-ation 50 the draws are relatively high but quickly
diminish from there. Héwever, at the same time, the w'ins are increasing as the draws
are decreasing. What is hr;bpenin-g here is the system Is learning tihatr ‘wvinning is better
> than drawing and some of mhe gamels which were i)reviously being drawn are now Being

“won._ As the system proceeds from there, figure 6.1 shows that the draws and losses

,_:‘ : remain low, but intertwine around each other before finally separating with the draws
' . . : . . ~

'

' ' . . Y
above the losses around generation 190. The reason it takes so long for the system tol.[

learn to draw over losing is because of the lack of feedback for rules which address

this. Of all the games played after the ih'i.__: al generations. only 15 to 20 percent of

them result in either draws or losses. This means that new rulgg which are applicable

£

to such gumes have a much smaller chance of beiug triéd-as 'the chances are slimmer =

o
o
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l
\

that the bpard configurations to which they are apphcable will appear Consequcntlv

. 2
quch rules receive feedback less often resultmg in slower. learmng and hence the long

)

pcriod before draws separate aboVe losses. Beyond gené‘ratnon 190, Lbe system has.

ﬁxml\ ("i(’lbll\hcd the wins over the draws and Lhe draws ov er the losses.’ Tbis rémains

in effect to the cnd of the run. ' - | R

\lthouvh the s‘ em performed quite well, there are still some momahm that

arose. The h(‘t that the plot\ of the lllegal moves and games lost dnln t vo do“n and

romdm at zero porcent can be explained by the system givirg preference to lr)mv new

)

1ule~ over extabhshe(l ones. - —\ new rule alv. ays has a chance of Inal\jing zm'illegal move,

or mukiug an incorrect move which rcsult,s in the loss of a g'une Thus these plom vnll

never go down 'md remain af zero percent as long as ne“ rules keep appearing.

- Another lnterectlpv phenomena is the inability of the s\stoﬁl to complete a gmm)
after hd\xnfr completed several games in the past. This only occurs in the Tmit,ial gén-
erations: Figure 6.1 displays this behavior at around’generation 30 at whicﬁ point the
total number of games won. lost, and drawn (i.e. the total completed) m zero. This
also (‘orr(;spond;- with high "no r’es'p"onse" which occu1;$ around g_enefation 30-in figure

6.2. The reason this occurs is because the system has lost all the rules which respond

to ‘the opening boards. Essentially, the system learns to play "by first acquiring

knowledge about winning end games. It learns to place the third X down that will give

it three X's in a line. This knawledge is more easily rétained as the corresponding -

rules receive high positive feedback (for winning). As the system acquires this end

game knowledge, it. begins to ret:

i mid game knopledge. as it ‘now knows how to win
{end game knowledge) given certain mid game  coftficurations.  Thus, these
configunitions also receive high positive feedback and consequently are retained.
! . -. ‘ . - v . v . N . v
Eventually, this trend will continue to the opening game configurations and the system
will retain knowledge abolit opening moves. Prior to this, though. it is possible to love

. . 3 .
knowledge :zbon}t opening moves, and does occur as can be witnessed by the graphs.

.
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explainable phenomena which d!‘lloc'CUP R " o L e

oL . , . 1 ) A

\1ore det'uled e\'xmln'ltlons of the runs re\euled Lhat occasronally a good rule _."

would; be lost “thll czhoul(‘i not ha\e beeu In most of the cases thls wms due to tam

, , v o
tion which dropped the rule s -:trength bclow the replacement thre&.hold The rulc B
however. should have been uqod frcqucntly cnouvh tQ recelve enough pomne f(*e(ll)ac}\.

~ . . . A

e J

to koop it alwe, PO\Sll)lV furlher ﬁne tuning of the pammeter% ,could Gol\c tln%

N Y

Another related anomaly is the fact that the "n_o responsé'f. p_l_ot (,l‘oé,s,j'"uot, go_dbwn
. ' Co . RS

:in(l remain at_zcro-p.ercent‘. ‘The system should cv.ent-uallv be..zs.,ble t'b."'res'pond to".:all e
l( ol board. conﬁgumtlons howm er there alw ays qeems to be a ﬂm'xll percemqve of the
l)(mrds to which it is un'xble to respond Thls is due partl» if fiot enllrcl\ lo (he pre-

- ‘.

vious proble’.f rules that are “rongly losL V\r hen a good rule 1S lost some of the
board conﬁguratlonq to which it would normall) res%ond become "no respouqes This :

would- account for some, if not all of the ‘no responseq T e

‘.‘ ! .

The run wlnclL ‘produced the graph; in ﬁgures 6 1 :md 6.2 ;C;{lllred' a fai-r.il‘;it of

Y Y
w 5

computation time. _Thls indicates’ LhaL t}c tac- toe ‘was noL an easy problem l’or L(\

: One of the rg#asons for thls 1s that 10 uc tac toe the feedback l'or wins, losses and

. v
~ P

(lr wws s d la)ed untll the end of the game. W hen the-system loses a game. at least-

10ves made durlng that gamewswes’pon“snble for the loss. Exactlv which

-

wf\bad moves lS not revedled to the s}st&m the system must dctermme'

that b\ 11<elf\‘lf the l‘eedbacl\ was more dlrect such that the- s\srem would receive

~some negatne payoff when it m(llxt’b\a\b'ld move, then the le’xrmnv time (and- l,( n(“e the

v ! .

COtIlpllld[lOIl tlme) would be swnlﬁcantly reduced _ ¥

FES
-

‘ _P.la’y.ing against a random opponent also increases the leh"ning time. The random

~ opporent may let the system win or draw games that should *have been lost. This

1

leads the system to believe:that some moves are good when in actuality they are not.

. C. o .
. . x.vF . .
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Thus the system must now "unlearn” these moves — a process that takes time.

'Inxjddit,ion to this, the search space of possible classifiers for tic-tac-toe is quite
inr"gc resulting in. a fair amount of time to search though that space and arrive at the

set of classifiers (classifier pool) which give the desired performance. Examining the

-

number of legal values for each of the fields in the ¢ondition and action strings gives a

total of aippro,\'imat,ely 90.7 million (6° * 9) possible classifiers.

H

Finally, the representation chosen for tic-tac-toe does not permit knowledge

learned about one board pgttern to+be carried across’'to a similar version of the same

pattern. For example, subpose the system had a classifier that stated if squares 1 and

~ 2 contain an N and square 3 is blank then the system should place an X in square 3.

[

There is no discovery operation which could produce a new classifier from that one

which states the equivalent in Lerms of squares 4, 5, and 8. The sy%em would have to.

relearn the same pattern in terms of squares 4,5, and 6 The facmhat it alread) haq

1

that l\nowledge n terms of cquares 1, 2, and 3 would in oo wa) speed up this proce<<

Thxc r‘édundam learmng increases the learnmv hme of the system t

!/

6.3.3. Scy Problems Encountered . DU
During the course of obtaining the results gi%éﬁjvpreviop:'sly-, Several"problems wére

encountered and solved, some of which led to the enhancements d_éSéribed in chapter 4.

Following is a description of some of these problems.

When the system was first constructed and tried, the-only discovery operators in
(" .a’ . ) .
the system weré crossover and mutation. Given an initial rule base that was randomly

constructed, it was hoped that the system would -be ablé to discover legal mo-es fol-

N

. lowed by the ability to win and draw _ga.m_es. Hov&evér‘. when the system-ﬁctﬁallY ran.

- had trouble acqumng legal moves and completlng games Unfort-unatelv. it was

never able to overcome.these problems and consequent]y never "got oﬂ" the groumd

This'led to the mcorporatlon of the cover operator.

3 SR L. R

* . 1
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When t.axatron was introducéd into the system, it brought along lthe‘ditﬁculty df
determining- the taxRate {and 'xlso the maxFireTax). As was mentloned in the dis-
cussion on the Jta\ paramcters. determining the number of cycles"that new rules_should
survive for was a ‘tﬁ;li and error pro':(jess. Before the value of 2708 was arrived at,

lower values were tried.. This resulted i ﬁighcr tax rates. The effect of too high a tax

N

mte can be eb:er\ ed in figures 6.3 and 6.4. Tbe run Lhat produced those graphs had

R '

its t,axRate increased to'0.01 and its maxFireTax reduced t0 9. Ascan be seen by the

graphs. the system never achieves any level of performance as the posmve fcedback e

~

that good rules recetve is net enouvh to comb’rL the hl h taxation. (onse uentl c'ood
9@ g quently

rules are evoutually lost and the system fails to retain most of what it has learned.

i T ¢

)

Another problem that was en@m”fé’d was the long stabilization period of new

rules as was de\(‘nbe‘d . 3 As was prenously dlscuwed this CO)‘LlId io;ueg'/k(;es lead
“to the un_pustlﬁed loss of some good rules. The bid modlﬁcatloti enhan?}erﬁg solved

.w

'

N,

this problem, but prlor to it, runs produced graphq qunlar to those nmw 6.5 'md B

6.6. The run that produced these grapls had an identical setup to the run that pro-
duced figures 6.1 and 6.2 except that the bid modification was "turned off” (bidCoeff

set t0.0.1, maxFireBid set to 0). Comparing these graphs to those in figures:6.1 and

6.2, one can observe the slower learning that occurs without the enhancement. Figure .

6.5 shows that the wins don’t firmly established themselves i.n a high position until
) tlbgenera_t,io‘n 130, and’ by generapion 300, the -draws have still not separated above
‘the loskes. Figure 6.6‘sh?ows that the "no respounses” do not drop down until abr)ut gen-
eration {130 and at generation 175 there is a significant peak in the "no rcsppnses".

Closer’examination of the runrevealed that this peak is due to the loss of some good

rules, . Thus, as one can see, the bid modification enhancement provides a definite -

improvement in system performance.
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-.8.4. 4Other Systvems - I

To the author’ s knowlodge the only oth(%/“earmnv classlﬁer \wtem to bo con-
(
structed and applled to tic-tac-toe is that deyﬂoped by D'nld Slate [$lage]. \|lhOll‘Tll

this w oxl\ is currently unpubllshod. -word B it was obtmued throu"h personal §omm un- -

'nmtJon with” Hlate In ln\ systeni, he uses internal mess.wes for tl( tdC toc, Ihl{é. after
v ""f\/

v

his system receives an input message " gnmg the current board confgumtlon several
. . ) .
Cl'lﬂ\lﬁ(‘l‘\ may ﬁre in succession, each producmg a0 internal message, bofore the final

classifi and produces- the ouyput, messaf;e; .The action string of this final

cclass T8 ‘ ®utains a list of moves as bpposed to a single mc)ve. Thus, an output mps-

(m(; for his system contains a list.of moves. and the(output mterf’xce is sm“;rL "cnough
to-run through that list and choose the first legal move it enco‘uuters. Result,s from his

LS oo : :

experiments indicates that his'system achieves f'aivll'ly good performance in-tic-tac-toe,
It seems that his system .develops ‘a strategy for choosing squares. -As executi;mv
proc“eeds. 4hi~s system beéins to brodujce output messages whic »bave their list of move,'s:
ordered So';ts to try sequenéés of squares which f‘(‘>r‘m rows, co as, and’d‘i;g'oﬁ:.tls.
Thus, an outpdt message might indicate to first try square 1 then 2, then 3, and so on.

The development of this square choosing strategy is an interesting result.

, <

L
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Chapter 7

Gl e Conclusion
The' purpose;of this thesis was to investigate learning classifier systems-throngh

the construction of, and experimentation - with, such a'system.  To this end; the system
LLCS was developed and applied to the Jomain. of. ticstac-toe. Results from initial' . -
experiments indicated a need for some enhancements to the system, which included
. .. . N\, L ' . .

the incorporation of taxation and the cover operator. Later experiments revealed the
: S A . : . . . N . Lo
“meed for other enhancements suchy as the bid modification and the generalization -
opetitor-in order to im prove system performance: \With these enhancements in place,
the system proved to be guite successful in acquiting good performance in the tic-tac-

Il . .

toe domain.

‘,"‘ . o o ~ 4 [
: Experimentation, with LOS did revéal some limitations in these type-of systems.

First. the length of a message in a real world application would most {ikely-be quite
fonger then that used for tieztac-toe. Loneer messages means longer condition and.
- . . . . : ’ . .9 ) O : PN : g N ‘
action strings in classifiers.” Thus, the space of possible classifiers for a veal world- -
. - N _ ) v ) : .

application would be considefably larger then ‘that for - tic-tac-roe resulting in
significantly longer. run times before the system "evolves™ a classifier pool thiat is.

acceptable in terms of performance. Second, having a fixed size classifier pool limits

the adaptive range of the system. Suppose the system performs well in an environ-
ment dsing a certain number of classifiers. If that environment should change such
that "adapting to ‘it involves the addition or removal of a significant number of

classifiers. then the system would fail to adapt properly e toits fixed size classifier

pool. Allowing the size of the classifier pool to grow or shrink dynamically would obvi-

(

ously solve this problem. This is one possible future enhancement that could be made

to this system. L
. & | |
Another drawbagk to using this system is the setting of all the parameters. For
) . :
5
" ‘)
3 103 S :
: )
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the most pnrt this is a relatively easy process — Lhere are, however, a few exceptlons

The tax parameters (taxRate and maxFireTax) requlred a fair bit of adjustment

,

although the agustm.ems were always in the divection so as to lessen the effect of tax-

ation. In addition the payoff parameters, in puarticular the lose game payoff, and the

rulf; basgisiie’ {p:irameter also required adjustments. Determining the currént settings
_of these ‘parameters required several runs and post-run a.n'zlyses — a time consuming
vproceas. Alsol it is still not certain chqt, the current settings give the best perform.ance
péssible. Furt,;hor ﬁné tuning could prodyse better results. As was mentioned before.
" the adjusting of Lhesé parameters introd c\es‘ domain-specific k+ wledge into Lhe SYS-

-

. O . . BV . . . . o
tem. This gives rise to the possible future énhancement of self-a-1jnsting parameters /n

Loa :
order to combat this.

i N
5

Parameters which revilated themqe\\es would be a step tov&ards producing a
more 1(10(11 learning system. The %@:m might start out with some default parameter
settings and., as it executes, it “ould ~adjust these settings according to ruun dlaonostlcs
and performance infprma(ion of previous generations. Removing this task from tl'm

user and placing it into the system results in a more automated learning mechanism.

s

“AMother possible enhancement is the automated détermination of the best possi-
ble assignment of string representations to application components. Currently it is the

~user’s job to determine the best string representations to use — this also means that

P, . . S
«

the -user is int\roduci.ngn domain-speciﬁc kn'owledge into the system. For tic-t‘ac-toe,.
that lmol\ed comparing the pros and cons of -various represeutatlom before finally
arriving at the choxce of "10" for X, "11" for O, 'md "00" for a blank square. \s was
previously discussed, choosing oth'er representations could lea(l to the inability to

represent certain concepts and consequently can affect the learning. potential of the
. e~

—_— ,/,

system. \While this problem is inherent in the fclassifier s\stem fmm.xlmn there ure
" nevertheless better and worse choices for (hf/ representation. Ol)\lOll"l\ the best

choice maximizes the learning potential of the system. Finding this choice, however.

1



could be a nontrivial task. Thus, the automation of this choosing process would ease

the task of application design.
The area of learning classifier systems is relatively new and is still in its infancy.

*

Other than LCS, only a handful of general purpose learning classifier systéms currently

exist. These include systems developed by Riolo [Rio88b], Goldberg [Gol&5], and Slate,
[S1486]. As is indicated by the problems mentioned above, much work remains to -be
done before learning classifier systems can be ggpplied to the difficult problems en'cou_n-

tered in the real world. Hopefully, future research will make this possible.

3
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‘ Appendix Al
LCS Command Summary
The following is a summary of the commands accepted by LCS: ; /

actBndry .stm.ft length lgll’al('nl'{lglVa[}

Defines a boundary (field) in the action .strring’ and establishes the set of legal
va'ies for that boundary. start indicat,esvthe bit position where the boundary.‘
starts (the first bit position in an nacLion string is ze'xjo): iengih indicates the length
of the boundary in bits; lglValCnt indicates ihe number of legal values for that

b;)undar"y; lglVal indicates a legal value 6there should be lglValCnt legal values).
\ legal value is a string from the alphabet {0.1,#} that is length symbols long.
¢ ' i

v

addToPOGfp grp
Adds the currently active classifiers to the group number grp. grp should be a

positive integer from 1 up.

‘bidCoeff coeff

Sets the bid coefficient, used for bid ca]culations, to coeff. This parameter should

Be a float between zero and one (e.g. 0.3).

clear : e

' T S
Performs system initialization.

cliCntBelowThres
Displays a number indicating the number of classifiers whose strength is currently

below the thresiold.

- ¢clfPosclvl postlel

Sets the classifier post level to postLvl. The postLuvlisa posit,ive 'intv'egerr that indi-

cates the. maximum number of classifiers that are allowed to fire in one execution

4
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T
cycle. A value of zero indicates that an infinite number of classifiers are allowed
to fire.
close

Exits the system.

o -
condBndry sfart length lglValCnt {IglVal}
Defines a boundar\ (feld) 1n the condmon string and ebtabllshos Lhe set. of legal

values for that boundary start indicates the blL position Where the boundary

3
-

starts (the ﬁrsL bit poqmon in a condition string is zero); length indicates the
length of the boundarv in bits; lglValCnt mdlcates the number of legal values for
that boundary: lgé‘al mdlcates a legal value (Lhere should be lglValCnt legal

values). A legal value is a. string from the alphabet {0,1,#} that is length symbols

long.

coverCond cond.
‘Defines the set of ‘messages that the cover operator will cover. All those messages
that satisfy cond are messages which can be covered.. cond is a string from the

alphabet {0,1,#} that is the same length as condition strings.

coverRate ratle
Sets the cover fate to rate. This rate conirols the amount of mew classiiers
creatréd through the cover operatidn: *This parameter should be"an integer
between 0 and 100 where a Falue of 100 indicates that all the Elass.iﬁers left to be

*~ replaced will be replaced using the cover operation.

crossoverProb prob
Sets the probability that the highest strength classifiers will be used in the cross-

over operation. probshould be an integer value betwgen 0 and 100 (e.g. 95) where
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a value of 100 indicates that only the highést strength classifiers will be used for
crossover.

-

crossoverRate rate
Sets the crossover rate to-rate. This rate controls the amount of new classifiers

created through the crossover operatign. This parameter should be an integer

between 0 and 100 where a value of 108(ndicates that all the classifiers left to be
. U :

replaced will be replaced using the crossover operation.

‘fireProb prob
4 .

- Sets the fire probability to prob. This parameter should be an integer between O
and 100 (e.g. 95). The fire probability indicates roughly what percentage of the
matches are examined in determining the highest biddin?matches to fire.

genCondMtch mich

-

Defines how much the condition strings of a group of classifiers must match in
order for that group to be generalized. A group of classiliers whose condition
strings have mtch corresponding bits or more that match is a potential group for

generalization. : . ’

generalizeRate rate
| Sets the generalization rate to rate. This rate controls the amount of new
vclass;lﬁers created through the generalization operation. This parameter should‘
be an iniegern between O and 10‘0 where a value of 100 indicates ‘that all the
classifiers to be replaced wi.ll be re_placed using the generalization gperation. 11
& .
geniife le-n‘glh ‘ |
Defines how man); times {length) a newly created g'en-eraliza.tion will outbid the

classifiers that it was formed from assuming that the generalization gets no feed-

-
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back each time it fires.. This para_meter affects the initial strength given to gen- .

eralizations. It should be set to a posjtive integer (e.g. 4).

initStrength strength
Sets the value of the initial strength to strength. Classifiers vhat are created from -
cover, crossover, and mutation operations will be given the initial streneth

strength. This parameter should be a positive integer (e.g. 100000

maxFireBid fireCnt
Sets the maxifoum fire-count used in.bid calculations to fireC'nt. This parameter

can be any positive integer (e.g. 2).

>
maxFireTax fireC'nt
Sets thhe maximum fire count used in the taxation of classifiers to. fireC'nt. This

parameter can be any positive integer (e.g. 19).

maxNumConds numConds
Sets the maximum number of condition strings allowed in the condition part of a

classifier to numConds. This parameter can be any positive integer.

‘ .
4

‘message. msg. ' , \ .
vAdds a message to the message pool. msg is a string drawn from the. alphabet

{0,1} which is magSize symbols long‘{. :
Pl : . S
messlisit { _ ‘ .
Displays the message pool. v L o/
msgSize sizg

Sets the size of messages to be size bits long. This parameter can be any vald

positive 1nteger.



G

111

. mutationProb prob

Sets the probability that the highest strength classifiers will be used in the muta-

tion operation. prob shonldsbe an integer value between 0 and 100 (e.g. 95) where

a value of 100 indicates that only the highest strength glassiﬁers will be used for

mutation.

nextcycle

Performs one basic execution cycle.

-~

nextgeneration

»

Produces the next generation of classifiers. This involves replacing only those

classifiers whose strength is below the threshold with classifiers produced from the

4

various discovery operations.
]

payoff grp amt .
Issues phvoll of the amount amt to the group number grp. grp should be a posi-
tive integer from 0 up (where 0 indicates the group of active classifiers) and am!

should be ah integer.

ravPOGTp grp
7/ Destroys the group number grp. This involves disassociating the classifiers in the

group from that group and thenvd‘estroying‘itv. grp should be the group number of

an existing group othep than group number 0.
~

. . v
rplcThres thresh ' - ’ !
Sets the replacement threshold to thresh. Classifiers whose streagth are below

thresh at the time a new generation is being produced, will be replaced. This

parameter shonld be any positive integer {e.g. 500);

d
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rule condition/acflz'bn;.strength:ﬁre('nt
Adds a classifier (rule) to the classifier pool. ‘condition is the condition part which.

i~ « list of condition strings separated by commas, where each condition string is
. - Ty

a ~tring from the alphabet {0.1,#} which is equal in length to messages and, may \
opitonaily be prefixed with a minus sign ("-"). action is the action part which is
an wotion string drawn*from the al=":bet {0,1.#} which is equal in length to mes-
sages. s.rength is an integer value indicating the initial strength of the classifier.

o

fireCutis an integer value indicating the initial fire count for the classifier.

rulelist : - ) e

Displays the classifier pool. ‘ S "

seed seedNum -
»

Sets the seed number used for generating random numbers to seedNum.. This

parameter can be any valid positive integer.

taxRate rale
Sets the tax rate to rafe. This parameter should be a float between zero and one.

Usually, it is near zero {e.g. 0.003).

trackmsg msgld -
. iy,

‘Displays the classifier that ed the messige, with id number msgld. on the mes-

sage list. msgld is the id fhmber of a message that is currdgtly on the message

list.

C)
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//-:\ Tic-tac-toe Pseudo Code

Iolla“mg is the pseudo code for the tic-tac-toe program (note that BEC stands for

basic| execution cyde): RPN B - A
, _ S IR

/set system parameters : B
“construet initial rule base; o N
for each generatlon cycle do
while ((the minimum.BECs have not been performed) or
((there are nqQt .enough replacable rules) and '

~ (the maximum BECs have not been reached))) do

get the opponent’'s-move, S T

if the opponent wins then —_— - )

"issue "lose game" payoff to payoff group #1i '
Temove payoff group #1;
_ start a new game;

‘else if the board is full then T
issue "draw game" payoff to payoff group #1 S
remove payoff group #1; o : '
start a new_ game; . -

~— else -~ ., - '
standardize the board; .
encode the board into an 1nput message;
call nextcycle(); : Y4
if there is an output message then '
add active rules to payoff group #1;
update board according to output message,
destandardize the board;
if*the system move is legal ‘then
" issue "legal move" payoff to payoff group #0
. . 1f the systém wins then
e issue "win game® payoff to payoff group. #1;
remove payoff group #1;
start a-new game; .
else if the board is full then -
issue “draw game" payoff to payoff group ®1,
remove payoff group #1.
start a new game;

. end;
“else. -
1ssue,“1llega1 move" payoff to payoff group #0;
... Temove payoff group #1; = _ -
' sbart_a new game; '
end; '
else

remove payoff group #1;
~ start a new game;
end;
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- end;
end; ‘
if ((this is the first generation) or
(the "no response® count is greater tha: 37)) then
set the generalization rate .to O; :
b set the cover rate to 100; - '
set the crossover rate to 40; .
else ' s . .
set the generalizatic: :zte to 30;
'set the cover rate to 177 .-
set ‘the crossover rave to 40;
end; : ’
call nextgeneration();
end;

“

-~



