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Abstract

Studying 3D human actions is a fundamental task in computer graphics, computer vision, and

robotics, with a broad range of applications such as VR/AR, AAA gaming, filmmaking, and artistic

creation. Conventional approaches often necessitate labor-intensive manual intervention, consuming

substantial time and resources. While deep learning has fundamentally transformed the analysis of

many other visual modalities like images and videos, its potential in human action analysis remains

largely unexplored. In this thesis, we address this gap by developing solutions and resources for

modeling and understanding human motions using deep generative models.

Firstly, we collect and annotate two large-scale multimodal human action datasets: (i) Human-

Act12, which consists of 1,191 motion clips and 90,099 frames, annotated with 12 coarse-grained

and 34 fine-grained action classes; and (ii) HumanML3D, which contains 44,970 textual descrip-

tions and 14,616 motions, totaling 28.59 hours of data. Secondly, we investigate the use of neural

networks designed to accommodate various input modalities for motion generation, including action

categories (action2motion), textual descriptions (text2motion), and style cues (motion stylization).

Distinct from previous deterministic approaches to motion synthesis, our methods properly adopt

a series of Variational Autoencoder (VAE)-base frameworks, which fully recognize the inherently

stochastic nature of human movements, thereby achieving diverse and natural 3D human motion

generation from various conditions. Thirdly, we develop an automated character animation pipeline

that transfers the motions to the character in a single image (motion2video). This is accomplished

through reconstructing the 3D shape and texture of the character from input image, rigging, animat-

ing, and rendering the 3D sequence into 2D video. Fourthly, we explore the reciprocal relationship
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between human motion and human language (i.e, text), offering a unified framework for both mo-

tion understanding and generation. To bridge the gap between human motion and text modalities,

we introduce the concept of discrete motion tokens – a novel motion representation formed through

deep vector quantization techniques. These motion tokens allow for the seamless translation of

human motion into natural language, akin to neural machine translation processes. Furthermore,

we present a inverse alignment technique, and demonstrate that understanding motions facilitates

more accurate and robust motion generation.
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Chapter 1

Introduction

Human actions play an important role in our daily activities. We continuously translate our

thoughts and intentions into actions, such as a simple wave as a greeting or the act of pulling

up a chair to sit and rest. Meanwhile, our actions transcend mere functionality; they imply our

emotions, physical well-being, intentions, and even personalities. For example, by perceiving the

way an individual walks down the street, we can not only recognize the person but also tell their

emotional state, whether they are happy or sad. Studying human actions therefore becomes a sub-

ject of great interest in computer vision and computer graphics. The pursuit of understanding and

modeling human actions carries profound implications in various application domains, spanning

from animation [10, 13], healthcare [14], and sports science [15, 16, 17], to human-computer inter-

action [18, 19]. In particular, we have recently witnessed a surge of practices in the digital analysis

and simulation of human actions for lifelike 3D character animations in movies, video games, and

VR/AR, as well as public safety through anomaly detection. However, these efforts often demand

substantial investments in resources, labor, and time. Take 3D character animation as an example.

It involves intricate steps of 3D motion capture, avatar creation and modeling in 3D engine, as

well as rendering these animations to produce video frames. This highlights the need for more

streamlined and efficient approaches.

Expressive deep learning models have revolutionized the visual analysis in many domains, such

1



Action

Text

Style

Motion Generation
(Ch. 2, 3, 4, 5)

Other domains

Character Animation
(Ch. 2)

Motion domain Video domain

+
Motion Understanding

(Ch. 5)

Figure 1.1: Thesis overview. The central themes of this thesis are human motion generation, single
image-based character animation, and motion understanding.

as image/video generation [20, 21, 22, 23], understanding [24, 25, 26, 27], manipulation [28, 29],

and recognition [30, 31, 32]. Unlike most traditional approaches which rely on predefined rules or

manual intervention, deep learning methods gain insights and learn the patterns from vast data,

which enables remarkable scalability and efficiency during inference. Nevertheless, when it comes

to human actions, the problem is far away from being resolved. To fill this gap, as illustrated

in Fig. 1.1, we delve into the deep learning-based analysis of 3D human actions, providing solutions

and resources for automated human action modeling and understanding.

In what follows, we elaborate on the motivations and objectives of main components of this

thesis in Section 1.1, followed by a summary of contribution in Section 1.2 and an outline of the

thesis in Section 1.3.

1.1 Motivations and Objectives

As shown in Fig. 1.1, the central theme of this thesis is on 3D human motions, including interactions

with other domains such as natural language. Our research topics have close implications for several

practical applications including human motion acquisition, editing, interpretation, and character

animation.

2



1.1.1 Human Motion Generation

The acquisition of 3D human motions is a fundamental step of 3D animation and analysis. How-

ever, obtaining such assets is usually beyond the means of the average user. It typically requires

sophisticated motion sensors (e.g., optical marker, IMU) as well as advanced cameras (e.g., depth

camera) for capturing real-world motions performed by actors. Alternatively, motions can also be

manually crafted, but it also demands the expertise in keyframing animation and physical simu-

lation. In terms of these challenges, we seek to develop deep learning models that facilitate the

generation of natural 3D human motions from user-friendly inputs.

Expressing our thoughts and intentions through language or categorical attributes is an inher-

ent skill of human beings. This premise motivates our first two projects—learning deep mod-

els for motion synthesis based on categorical action and textual description. While prior ef-

forts [33, 34, 35, 36, 37, 38, 39] have made commendable progresses in this direction, several

common limitations persist, including the motions limited in 2D space, distorted poses, and a lack

of temporal consistency. Furthermore, the motion contents are not semantically well-aligned with

the conditional input.

Zooming in on these observations, we find the principal reasons are several-fold. Firstly, ex-

isting annotated human motion datasets are typically limited in either quantity or quality. For

instance, action-based motion analysis such as UTKinect-Action [40] and MSR-Action3D [41] only

contain 200-500 human action sequences. NTU-RGBD [42], although considered as large dataset

with 100,000 motions across 120 action classes, their joint positions are acquired from Kinect-I cam-

eras, which are notorious for their inaccuracies. In terms of the motion-language dataset, the only

available dataset KIT Motion-Language [43], comprising 3,911 motion sequences and 6,278 sen-

tences, mostly focuses on locomotion movements such as walking and running. Secondly, as shown

in Fig. 1.2 (a), previous approaches typically formulate the task of motion generation as determin-

istic one-to-one mapping, assuming one possible outcome given condition input. However, human

motion is inherently stochastic. Imagine a person running on a playground, there are a spectrum of

possible future trajectories to which this person can take. Failing to capture this stochasticity would
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quality and diversity of motion generation.

lead to mean motions that are lifeless and unnatural. With these challenges in mind, we collect

two high-quality and large-scale multimodal human motion datasets in our first two projects: Hu-

manAct12, consisting of 1,191 motions of 34 actions for action-based analysis; and HumanML3D, a

dataset with 14,616 motions described by 44,970 textual descriptions for language-based analysis.

To acknowledge the stochastic nature of human motion, we properly adapt generative models in

our tasks, modeling the motion generation process in a non-deterministic manner (Fig. 1.2 (b)).

While the two aforementioned solutions empower users to generate plausible motions from

scratch, they tend to produce neutral motions that lack expression of emotions, personalities, and

other human factors. These factors however are essential for engaging character animation in the

3D industry. To address this, our third project introduces a versatile neural motion stylization

framework. This framework enhances the stylistic characteristics of an existing motion by infusing

cues from a user-provided reference style motion or style label. Akin to our previous two projects,

our model adopts a non-deterministic approach, allowing for multiple ways in which a character

can express the same style.

1.1.2 Human Character Animation

Following the motion generation procedures described in Sec. 1.1.1, we further consider a down-

streaming application—creating real person animations using these generated motions. The con-

ventional practices for human character animations rely on a high degree of expertise and manual
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intervention. It would be advantageous if even an average user could effortlessly create animations

with their own customized 3D characters, with only the input of their own snapshots.

In pursuit of this objective, there are two prevalent approaches in the computer vision com-

munity. One approach is to directly generate pixel-level representations of 2D motions by learning

the mapping between joint heatmaps and video pixels, as demonstrated in previous works [34, 33,

11, 44, 45]. However, learning such multimodal mappings is of high complexity. It often results in

low-resolution and short videos where the human characters appear either blurry or surreal. The

alternative approach involves modeling motion in 3D space while adhering to rigid skeletal con-

straints. For example, De et al. [46] generates human action videos by composing human motions

and scenes using probabilistic graphical models in a 3D game engine, where 3D avatars are readily

designed. The related works of [10, 9] extract 3D characters from single images and animate them

using motions to produce 3D animations. Although these approaches enable the generation of

higher-resolution videos, the characters often have distorted structures, and the textures on unseen

views may appear unnatural. Additionally, these approaches still require human intervention in

the middle stage, such as manual motion re-targeting.

These observations motivate our automated character animation pipeline (motion2video) pre-

sented in Chapter 3, which improves the 3D shape and texture reconstruction upon previous state-

of-the-art methods and employs the parametric SMPL [47] model as a pivot for character rigging

and animation. Moreover, we introduce a comprehensive action2video framework, which seamlessly

integrates our motion2video pipeline with the action2motion module. This constitutes a fully in-

tegrated, user-friendly workflow, enabling users to generate a variety of realistic human videos by

simply providing an action class and a single image.

1.1.3 Reciprocal Generation of 3D Motions and Texts

Motion generation and understanding, despite appearing as opposite tasks, share a deep interde-

pendence. For instance, understanding the content of generated motions can inform improvements

to the motion generator, leading to more faithful results. Meanwhile, motion understanding itself
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carries many applications including abnormal action detection, multimodal motion and video re-

trieval, and disability assistance. Thus, in our last chapter, we explore the intimate relationship

between human motions and human language (i.e, text), encompassing both motion-to-text under-

standing and text-to-motion generation. While this connection is intuitive for humans, computers

face challenges in comprehending visual concepts and associating them with natural language. Prior

efforts [38, 39, 48] have employed advanced techniques, like GAN [49] and shared autoencoder, to

address this problem. However, these approaches often yield short, incomplete, and detail-lacking

language descriptions due to their direct mapping from pose sequences to language, two fundamen-

tally distinct modalities. In our work, we propose a novel representation of motion sequence, namely

motion token—a discrete and compact motion representation. This establishes a level playing field

for both motion and text signals, enabling us to model the mapping between motion and text tokens

akin to translating between two languages. Furthermore, we demonstrate that understanding the

motion content can enhance the performance of its inverse counterpart, text-to-motion generation.

We refer to the overall framework as the reciprocal generation of 3D human motions and texts.

1.2 Summary of Contributions

In summary, this thesis addresses several practical challenges in human action analysis. The primary

contributions are several-fold.

• New resources. We contribute two large scale motion resources, HumanAct12 and Hu-

manML3D, which have become important resources for multimodal human action analysis.

HumanAct12 contains 1,191 motion clips and 90,099 frames, annotated with 12 coarse-grained

and 34 fine-grained action classes. HumanML3D includes 44,970 textual descriptions and

14,616 motions, totaling 28.59 hours of data.

• New task formulations. We introduce the new formulations of existing motion genera-

tion tasks, including action2motion, action2video, text2motion, and motion stylization, and

achieve state-of-the-art performance on each of these tasks. Unlike existing works that often
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produce deterministic results, our approaches emphasize both diversity and naturalness.

• New techniques. To address these problems, we properly adapt generative models as well

as other task-specific technical designs. Specifically, we introduce novel techniques such as Lie

algebraic pose representation and temporal variational autoencoder in Chapter 3 for action-to-

motion generation, two-stage prediction of motion lengths and content in Chapter 4 for text-

to-motion synthesis, and probabilistic style space for versatile motion stylization (Chapter 5).

We further tackle the challenge of character animation by incorporating articulated motions,

3D character shapes and texture extraction from a single image (Chapter 3). The entire

animation process is automated through our SMPL-based avatar rigging and deformation

procedures. In Chapter 6, we present a framework that models the reciprocal relationship

between human motion and human language. This framework introduces a discrete and

compact motion representation, motion token, enabling seamless translation between motion

signals and text signals on a level playing field. Through inverse alignment, our pretrained

motion-to-text mapping improves the fidelity of text-to-motion synthesis.

• New evaluation metrics. We design a comprehensive set of evaluation metrics for various

motion generation tasks. The metrics commonly respect the stochasticity nature of mo-

tion generation, statistically evaluate motions from several aspects: naturalness (e.g., FID),

faithfulness (e.g., RPrecision, accuracy, multimodal distance) and diversity (e.g., diversity,

multimodality).

1.3 Outline of Thesis

The organization and contributions of this thesis are as follows:

In Chapter 2, we provide a comprehensive overview of the knowledge and essential concepts that

form the background for this thesis. This chapter begin with reviewing prior research in related

fields, several deep generative models and their relevance to this thesis, as well as the important

motion datasets. We also elaborate on the mathematical foundations of VAEs, which are important
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components in the majority of of our research.

In Chapter 3, we focus on the challenge of generating diverse and natural human motions and

videos based on given action categories. Our technical approach involves a Lie algebraic pose

representation to effectively encode the topology and articulation of these motions. Additionally,

we introduce a novel temporal VAE framework that is capable of generating human pose sequences

autoregressively. This is followed by our motion2video module, which automatically animates a 3D

character based on a single-view image of a clothed human character. This pipeline allows users

to generate realistic and customized animations by inputting a 2D person image and specifying an

action class.

In Chapter 4, we delve into the complex problem of generating 3D human motions based on

textual descriptions. This task poses significant challenges due to the inherent uncertainty in

motion lengths and contents associated with textual input. To tackle this challenge, we introduce a

two-stage framework: text2length sampling and text2motion generation. In the text2length stage,

we sample from a learned distribution function of motion lengths conditioned on the input text.

Subsequently, in the text2motion stage, we employ a temporal variational autoencoder (VAE) to

synthesize a diverse set of human motions with the texts and sampled lengths.

In Chapter 5, our focus shifts to the task of 3D human motion stylization. We aim to update

the style of an input motion while preserving its original content. Unlike previous approaches that

directly manipulate motions in the pose space, we take advantage of the latent space learned by

pretrained autoencoders, which offers a more expressive and robust representation for extracting

and infusing motion styles. Building upon this, we introduce a novel generative model capable of

producing diverse stylization results for a single motion (latent) code.

In Chapter 6, we reconsider the intricate relationship between 3D human motions and natural

language, focusing on both motion understanding (motion2text) and motion generation (text2motion).

We introduce a novel representation, motion token, which provides a discrete and compact repre-

sentation of motion sequences. Leveraging this representation, we adapt neural machine translation

(NMT) models to facilitate the mapping between the two modalities of motions and texts. Addi-
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tionally, we integrate our motion2text module into the inverse alignment process of our text2motion

training pipeline.

In Chapter 7, we summarize the works accomplished in this thesis and discuss future directions.
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Chapter 2

Background

The purpose of this chapter is to provide essential background for this thesis. It involves several key

elements, commencing with a review of prior efforts in related fields in Section 2.1. We subsequently

discuss the applicability of various deep generative models to our research problem in Section 2.2,

and introduce important motion datasets (Sec. 2.3) in these tasks. These foundational concepts

are essential for understanding the core principles of our research.

2.1 Related Research Topics

Our discussion of research topics is not limited to 3D motions alone. Instead, we incorporate a

broader perspective that encompasses motions, images, and videos. We delve into various aspects

of generation, understanding, and stylization within this visual modality.

2.1.1 Human Motion Generation

There are several prior efforts in synthesizing 2D or 3D human motions based on audio, action

categories, or texts. In terms of audio signal input, as audio is temporally aligned with its motion

output, a common strategy is to employ a temporal sliding-window in translating the acoustic

feature representation (e.g. MFCC) to individual human poses using recurrent neural networks
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(RNNs). In [50], a Bi-Directional LSTM network is adopted to generate upper body gestures from

the speech input. Similar LSTM-type models are also examined by [51] to predict upper body

dynamics from piano and violin recital audios, and in [52] to capture the music-to-dance mapping.

Recent works have started to address the stochastic nature of human dynamics grounded on audio

signals. [53] employs a hybrid model of VAE and GAN to produce non-deterministic human dancing

movements from music. The work of [54] further supports long-term music-to-dance generation with

curriculum training. To synthesize human motions from scratch, [55] and [56] make use of Bayesian

inference; the work of [57] instead considers a combined strategy of graph convolutional networks

and GANs. The recent work of [58] synthesizes novel motions by free combinations of style and

content codes extracted from the existing MoCap library.

At the time of our works, motion generation based on action categories or texts was still an

emerging topic. For action-based motion generation, the only work of [33] adopts a two-stage GAN

framework to generate 2D human motion progressively. Meanwhile, to translate text description

to human motions, prior efforts such as [38, 37, 39, 59] resort to classical encoder-decoder RNN

models, while it is proposed in [12] to learn a joint embedding space between natural language

and 3D human dynamics. [59] considers the hierarchical pose structure as well as utilizing a pose

discriminator. These methods however bear undesirable issues, as being deterministic one-to-one

processes with fixed motion length.

For a more comprehensive overview of related works, we would like to introduce the works that

have emerged concurrent with or after the publication of our research. TEMOS [60] takes advantage

of Transformer VAE to optimize a joint variational space between natural language and motions,

which is extended by TEACH [61] for long motion composition. MotionCLIP [62] and ohMG [63]

model text-to-motion in an unsupervised manner using the large pretrained CLIP [64] model.

The emerging autoregressive models and diffusion models have revolutionized the field of motion

generation. Regarding autoregressive models, motions are firstly discretized as tokens via vector

quantization [65]. Then, discrete motion tokens can be modeled by the expressive transformers

as in the language model. This has become a popular trend in topics of action2motion [66],

text2motion [5, 67, 68, 69], and dance generation [70, 71]. With diffusion models, a network is
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learned to gradually denoise the motion sequence, supervised by a scheduled diffusion process [72,

73, 74, 75, 76, 77, 78]. It shows promising ability in high-quality motion generation, whose inference

efficiency however, is bottlenecked as it usually requires hundreds of sampling steps. Though several

remedies are proposed, for example, latent diffusion [76, 79] and DDIM sampler [80], this shortfall

remains unresolved.

2.1.2 Human Video Analysis

Action Video Generation. The task of generating human action videos has drawn research

attention very recently. In the work of [33], 2D human motions are generated from known actions,

they are then synthesized into 2D videos frame-by-frame with U-Net [81] and a dedicated image

discriminator. In [34], based on an initial 2D pose extracted from a given image, a deterministic

sequence of future 2D poses is produced for a given action category; this pose sequence is subse-

quently used to guide video generation via adversarial training. A similar method is considered

in [11], where future 2D poses are instead generated stochastically with variational a auto-encoder.

These efforts focus on tiny pixel-wise video generation, and human poses are manipulated in 2D

image space. A recent work [46] proposes to generate 3D human videos directly from a 3D game

engine using scene composition rules and procedural animation techniques. Our work differs from

this work in two folds: 1)De et al. [46] generates 3D motions by extracting atomic motions from ex-

isting motion capture (MoCap) datasets, then stitches these atomic motions into action sequences

through predefined rules. For example, a walking animation involves repetitions of swinging a left

leg, then swinging a right leg, as well as corresponding pendular arm movements. However, this

process is fairly labor-intensive. In our work, diverse 3D actions are automatically produced from a

learned generative model end-to-end; 2) [46] animate artist-designed 3D avatars (rigid and clothed),

while our method generates videos by rigging and animating characters with their 3D shapes and

textures extracted from single 2D images.

Motion Transfer and Rigid Body Animation. Motion transfer is a traditional topic, aiming

to transfer human motions from a source object to a target. Recent deep learning-based efforts

12



typically consider 2D pixel-wise approaches, where mappings from source and target are based on

local pixels or 2D patches. [82] and [44], for example, directly learn to map between human poses

and appearances of one specific source subject. The aim of [83, 45, 84, 8] is to work toward a more

general problem of driving an arbitrary target image with a source 2D pose sequence or videos.

This is often realized by establishing connections between the source pose sequence and the target

textured shape extracted from a given image, followed by warping the reference image to form

the target video frame-by-frame. Although assembling promising results, the mainstream pixel-

wise approaches nonetheless possess several limitations, including their innate difficulties in dealing

with changing views or lifting to 3D motion spaces, as well as the level of complications in producing

high-resolution and sharp images. The works of [85, 86] also consider a similar task, where motions

from the source 3D character are re-targeted to 3D characters with different skeletons (e.g. joint

number, bone lengths). Meanwhile, the 3D shapes of these target characters have been artistically

designed and well-rigged ahead of time.

Meanwhile, there has also been a continuous line of research on rigid body animation of 2D/3D

human characters that is especially empowered by advances in computer graphics techniques. Early

work such as [87] uses a simple pose-retrieval framework, where a segmented garment database

indexed by 2D skeleton poses is built for online searching during human image animation. Rigged

human models are exploited in later endeavors for articulated object animation. In [88], characters

extracted from 2D pictures are driven as rigidly as possible by external 3D MoCap sequences. In

the intermediate steps, a 2D mesh with the 2D skeleton is constructed for the shape extracted from

the input image. [10] further lifts this animation process into 3D space. Specifically, a semi-naked

SMPL template is drawn out of 2D images and deformed to a rigged 3D mesh model with the

boundary that closely matches the human silhouette in the input image. The recent work of [9]

learns to directly predict a 3D animatable clothed human shape from a single image.
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2.1.3 Visual Content Stylization

Image Style Transfer. Image style in computer vision and graphics is typically formulated as

the global statistic features of images. Early work [89] finds it possible to transfer the visual

style from one image to another by aligning their Gram matrices in neural networks. On top

of this, [90, 91] enable faster transferring through additional feed-forward neural networks. The

work of [92] realizes that the instance normalization (IN) layer could lead to better performance.

However, these works can only be applied to single-style images. The following efforts [93, 94, 95]

work on one-model multi-style transfer which maintains a candidate pool of style parameters for

a pre-defined set of image styles. [96] facilitates arbitrary image style transfer by introducing

adaptive instance normalization (AdaIN). Specifically, AdaIN modifies the mean and variance of

the deep feature maps of content images using learned affine parameters from the style image.

The effectiveness of IN and AdaIN editing style information has also been validated in several

works such as CycleGAN [97] and styleGAN [20]. The aforementioned parametric image style

transfer methods usually fail in detailed structure synthesis. Alternatively, in PatchGAN [98] and

CycleGAN [97], textures and styles are translated between images by ensuring local similarity using

a patch discriminator. A similar idea was adopted in [99], which proposes a patch co-occurrence

discriminator that hypothesizes images with similar marginal and joint feature statistics appear

perceptually similar.

Motion Style Transfer. Motion style transfer has been a long-standing challenge in computer

animation. To manipulate styles, early machine learning approaches heavily depend on delicate-

designed features in the temporal domain [100] or the spectrum [101]. The rise of data-driven

methods that spontaneously learn from examples gets the elusive motion style free from precise

mathematical definitions. The linear time-invariant (LTI) model is proposed based on per-frame

pairwise between motions with similar content but heterogeneous styles [102]. To alleviate the

demand for densely paired content, For example, the mixtures of autoregressive (MAR) models

following a KNN search are designed to organize motion data more efficiently for online style

transferXia et al. [7]. The early work of Xia et al. [7] design an online style transfer system
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based on KNN search. [103, 104, 105] transfers the style from reference to source motion through

optimizing style statistic features, such as the Gram matrix, which are computationally intensive.

Feed-forward based approaches [106, 6, 107] properly address this problem, where Aberman et

al. [6] finalizes a two-branch pipeline based on deterministic autoencoders and AdaIN [96] for style-

content disentanglement and composition; while [107] manages to stylize existing motions using

one-hot style label, and models it as a class conditioned generation process. More recently, with the

explosion of deep learning techniques, some works adopt graph neural networks (GNN) [108, 109],

advanced time-series model [110, 111], or diffusion model [112] to the motion style transfer task.

Specifically, Jang et al. [109] realize a framework that extracts style features from motion body

parts. Meanwhile, the method from [112] uses diffusion model to learn the internal motifs from a

single motion sequence.

2.1.4 Vision to Language

Image/Video Captioning. Vision-grounded text generation has a long history with extended

literature. Here we only focus on the closely related topic of image and video captioning. Early

efforts such as [113, 114] often resort to predefined sentence templates containing hand-crafted

linguistic rules involving restricted categories of action and object. This has been fundamentally

changed in the deep learning era, where we witness significant performance boosts by adopting

a variety of powerful techniques including RNNs [115, 116], transformer [117], attentive context

modeling [118], memory network [119, 120], GANs [121], and reinforcement learning [122, 123].

Take [25] for example, it starts by extracting high-level image features from pre-trained GoogleNet,

which are then fed into a LSTM decoder to produce captions. In [115], an RNN-based video

captioning model is considered, that extracts individual frame features from pre-trained CNN, and

translates them to sentences through sequence-to-sequence learning. Further extensions are made

through e.g. incorporating attention mechanism for better vision-language alignment [24, 118].

The following works further explore this framework via various directions, such as hierarchical

encoder-decoder [124], replacing LSTMs with Transformer [117], feature fusion [125] and attentive

context modeling [118]. A number of approaches also make efforts on other possible solutions.
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For example, [119] deceives a memory module to model the textual contexts appearing in multiple

related videos. [121] adopts adversarial inference by designing a discriminator to generate multi-

sentence descriptions for long videos. [122, 123] utilize reinforcement learning techniques to directly

optimize language metrics, like CIDEr [126].

Motion captioning. Research efforts on captioning 3D human motions are considerably more

limited. [127] learns the mapping from human motions to language relying on two statistical models:

one associates motions with words; the other assembles words back to form sentences. Recurrent

networks are utilized by [38, 39] to address this task. In [38], motion and text features are extracted

by two autoencoders respectively; this is followed by generating texts and motions from each other

through shared latent vectors. Sequence-to-sequence RNNs are adopted in [39] to translate motions

to scripts. Recently, the work of [48] proposes SeqGAN that extends the NMT model with a

discriminator. Some common issues with existing motion2text results are typically short in length,

often incomplete in content, and sometimes lacking in details.

2.1.5 Skeleton-based Representation

Numerous human pose representations have been considered over the years. The most-often used

option is the joint-coordinate representation [128, 129] that directly characterizes the human pose

by an ordered sequence of 2D/3D joint coordinates. It has a few variants: [130] consider incorporat-

ing the pair-wise relative positions of neighboring joints; meanwhile, only those informative joints

are utilized in [131]. The part-based method is another line of pose representation. Specifically, a

human pose is modeled as an ordered list of body parts. For example, in [132], the human body

is divided into five main parts (i.e. torso and four limbs); pose sequences are then formulated by

the displacement and rotations of body parts over time. Alternatively, the work of [133] models

temporal information using dynamic time warping. Finally, Lie group or axis angle-based rep-

resentation [134, 135, 136, 137, 138, 139] characterizes the skeleton as a kinematic tree, with its

articulations realized by forward kinematics.

16



2.2 Related Methods

In this section, we introduce several deep generative models with a particular focus on their ap-

plications in sequence modeling, including generative adversarial networks (GANs), variational

autoencoders (VAEs), diffusion models, and generative pre-trained Transformers (GPTs).

2.2.1 Generative Adversarial Networks

Generative Adversarial Networks are designed to learn an explicit mapping from noise to real

data domain [49]. The fundamental idea behind a Generative adversarial network (GAN) [49]

is to have two neural networks, known as the generator and discriminator, that are trained in a

competitive manner. The generator network takes random noise as input and aims to generate

data, such as images, that can deceive the discriminator. In contrast, the discriminator is trained

to distinguish between generated data and real data. With the development of dedicated neural

network architecture such as DCGAN [140], StyleGAN [20], and PatchGAN [98], GANs have found

extensive use in high-quality static content generation, including images [99, 93, 22, 23] and 3D

models [141].

On the other hand, scaling GAN to dynamic content generation is not easy. This is evidenced

in several works of GAN-based audio generation [142, 143, 144], video generation [145, 21, 146]

and early work of motion generation [34, 33, 147, 36]. The generated results in these cases are

often short in length and exhibit blurriness. There are two-fold challenges to use GANs for se-

quence modeling. Firstly, GANs are known for their training instability, where one component,

either the discriminator or generator, can dominate the learning process, causing convergence is-

sues. Although various techniques (e.g. WGAN [148], non-staturate loss) have been proposed,

this problem remains unresolved, especially in settings with sequential data. Secondly, sequence

data have strong temporal dependencies. Capturing long-term dependencies and maintaining the

coherence of motion over time is beyond the capability of traditional GAN architectures.

When it comes to human action generation, GAN-based approaches become even more complex.
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GANs typically require large volumes of training data to generate high-quality content, while

human motion and video datasets are usually limited in scale. Furthermore, GANs optimize by

aligning data distributions through the discriminator, often failing to capture the intricate skeleton

articulations. Minor deviations in skeleton features, such as rotations, can significantly affect the

visual quality of motions. For example, motions generated by GANs often exhibit issues like sliding

feet on the floor or feet penetrating through the ground.

2.2.2 Variational Autoencoders

Since Variational auto-encoder(VAE) [149] has been used in many places of this thesis, we would

like to first elaborate on the theoretical foundation of VAEs, and then introduce their applications

in related topics.

Mathematical Foundations of VAEs. VAE framework consists of an encoder and a decoder,

which are normally two separate neural networks. Its goal is to learn a θ-parameterized generative

model, pθ(x, z), over data x and latent variables z. Technically, the learning objective is to maximize

the likelihood function of x, which could be further formulated as a marginal likelihood with

regard to the latent variable z, pθ(x) =
∫︁
z pθ(x|z)pθ(z). Following the variational principle, a

ϕ-parameterized neural network(i.e. encoder), qϕ(z|x), is engaged to approximate the unknown

posterior distribution pθ(z|x). We thus obtain the the following evidence lower bound (ELBO) to

our data likelihood function:

log pθ(x) = log

∫︂
z
pθ(x|z)p(z)

≥ Eqϕ(z|x) log pθ(x|z) −DKL(qϕ(z|x) ∥ p(z)).

(2.1)

The first ELBO term encourages the generated samples to be sufficiently close to the real sam-

ples; the second term penalizes KL-divergence between the prior and the approximated posterior

distribution. Subsequently, the original objective of maximizing the data likelihood over data x

becomes that of maximizing over the θ- and ϕ-parameterized ELBO function. In [150], a follow-up
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conditional variational auto-encoder (CVAE) framework is conceived by introducing a conditional

variable, y, as

log pθ(x|y) = log

∫︂
z
pθ(x|z,y)p(z|y)

≥ Eqϕ(z|x,y) log pθ(x|z,y) −DKL(qϕ(z|x,y) ∥ p(z)).

(2.2)

VAEs have been widely used as a powerful learning technique in addressing various learning

scenarios, including conditional generation [150], semi-supervised learning [151, 152], controllable

generation [153], few-shot learning [154], disentangle representation learning [155, 156, 157] and

VAE-GAN architecture [158].

To work with sequential data, VAEs are typically plugged into a recurrent network model, e.g.

GRU and LSTM. Variational RNN [159], a pioneer work, uses vanilla RNN to model temporal

dependencies in intermediate time-frames. The RNN output of the previous frame is used in

generating posterior and prior distributions, as well as the follow-up decoding process. Variational

RNN has been particularly favored in speech generation and handwriting character generation.

[160] and [161] investigate the LSTM-based VAE for NLP modeling based on a sequence-to-sequence

architecture, where the sequence encoder predicts a posterior distribution, from which the sequence

decoder samples a latent vector and reconstructs the sequence. More specifically, temporal VAE

models have been considered in motion and video generation. [162] consider generating videos

from the textual caption, which is incorporated as semantic attentive vectors and fed to their

temporal VAE. In VideoVAE [163], on the other hand, a structured latent unit is devised to model

conditional factors including motion category and an initial frame to complete the rest frames. To

predict future frames under uncertainty, [164] inspect the use of two separate RNNs to capture

temporal dependencies of conditional posterior and prior spaces. A similar network structure is

also scrutinized in [165], where it is extended to synthesize videos with pre-specified start and end

frames. In terms of 3D motion prediction, given a start human pose, [166] complete the rest of

3D human motion with an LSTM-based VAE model. In [35], a similar model is engaged to learn

the transition from observed sequence to future sequence for stochastic motion forecasting. A very
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recent work by [167] adopts VAE and a mix-and-perturbation strategy to statistically predict future

motions.

2.2.3 Diffusion Models

Diffusion generative models have gained significant popularity in recent years, because of their

capability to produce realistic and diverse samples while being relatively easy to train compared to

other generative models like GANs. The core idea of the diffusion model is a diffusion process [168],

which simulates the gradual transformation of the data distribution to a simple distribution (usually

noise). Meanwhile, another denoising model is optimized to approximate the inverse transformation

of the diffusion process. During generation, the denoising process starts with a simple noise sample

and iteratively refines it to become more like the target data distribution. DDPM [169] introduces

further insights into this framework, including a well-defined optimization objective, which has

fostered the development of diffusion models. An extensive set of subsequent works have successfully

applied diffusion models on image generation [170, 171, 79, 172, 173, 174], video generation [175,

176, 177, 178], and audio synthesis [179, 180]. One common concern of the diffusion model is

its efficiency during generation. Theoretically, both the training and inference require hundreds

of diffusion and denoising steps. The DDIM sampler [80] addresses this issue by introducing an

implicit formulation of diffusion operations.

More recently, diffusion models have been scaled to 3D object and motion generation [181, 72,

74, 76, 75, 182]. To reduce the computation burden, LION [181] and MLD [183] firstly train an

autoencoder to compress the 3D content into more compact latent features, and then learn diffusion

models on the latent representation. MoFusion [182] proposes a versatile diffusion framework to

integrate audio input and text inputs for human motion generation. It’s worth noting that these

diffusion-based models have emerged after the publication of our works.
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2.2.4 Generative Pre-trained Transformer

Generative Pre-trained Transformer (GPT) [184] was originally designed for natural language pro-

cessing. Unlike BERT [185], GPT uses unidirectional decoding order, learning to predict the next

word in the sentence. By pretraining on vast language corpora, GPT exhibits remarkable capability

in knowledge distillation, semantic understanding and generation. An example of this is ChatGPT,

which contains 175 billion parameters and was trained on approximately 570GB of text data.

The generative power of GPT relies on discrete sampling from the token vocabulary. Trans-

ferring the insights of GPT to computer vision tasks presents a challenge due to the continuous

nature of visual data, such as images, motion, or point clouds. Approaches like VQGAN [186]

tackle this challenge by discretizing image pixels into discrete visual tokens through vector quanti-

zation in the initial stage. Subsequently, a GPT model learns to model the context of these visual

tokens, enabling it to generate high-fidelity images. Cogview [187] and Cogvideo [188] employ sim-

ilar strategies but operate on much larger image and video datasets, aiming to generate text-based

visual content.

2.3 Related Datasets

An overview of human motion datasets is presented in Table 2.1.

Action Category and 3D Motion. Previous 3D Human Motion datasets are often constructed

with the main purpose of developing action recognition tasks. Typically, these datasets involve the

use of kinematic sensors or motion capture systems to capture the pose or 3D joint positions of

human subjects. Notable datasets like CMU MoCap [189] and HDM05 [133] have more than 100,000

3D poses and 2,000 3D motion sequences that are associated with succinct textual descriptions.

Unfortunately, the motions are mostly about locomotions. UTKinect-Action3D [40] and MSR-

Action3D [41], on the other hand, have a much smaller tally of motion sequences. NTU-RGBD [190]

is by far the largest human motion dataset, consisting of over 100,000 motions belonging to 120
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classes. Nevertheless, the joint positions acquired from Microsoft Kinect-I cameras are notably

inaccurate. These observations motivate us instead curate our in-house 3D human action dataset,

HumanAct12, as well as revamping the pose annotations of NTU-RGBD.

Language and 3D Motion. There are a number of existing datasets of 3D motion captured

human motions, such as CMU Mocap [189], Human3.6M [191], MoVi [192] and BABEL [193],

in the form of everyday actions and sports movements. BABEL contains brief descriptions for

single action motions, while the other datasets possess no text descriptions. KIT Motion-Language

Dataset [43] is to date the only available dataset comprising both 3D human motions and their

textual descriptions, which consists of 3,911 motion sequences & 6,278 sentences and is focused

on locomotion movements. However, this scale of the dataset is insufficient for learning a capable

motion generator. Therefore, in our Chap. 4, we collect a large-scale motion-language dataset with

a broad range of actions, including dance, sports, and daily activities.

Style and 3D Motion. Aberman et al. [6] and Xia et al. [7] provide two commonly used motion-

style datasets with high-quality motion data. Aberman et al. [6] collect 16 long-term motions

concerning 16 styles, including old, zombie, femalemodel, and happy. In comparison, Xia et al. [7]

is a relatively smaller motion dataset, where motions are normally around 3 seconds, and categorized

into 8 styles.

Name Venue Subjects Sequences Length Annotation Remark

Human3.6M [191] TPAMI 2014 11 - 5.0h - 15 long actions.
CMU Mocap [189] Online 2015 109 2605 9h - Brief descriptions.

HDM05 [133] Online 2007 5 2337 5h - Brief descriptions.
AMASS [194] ICCV 2019 344 11265 40h - -

UKinect-Action3D [40] CVPRW 2012 10 200 - 10 action classes -
MSR-Action3D [41] CVPRW 2010 10 567 - 20 action classes -
NTU-RGB-D [190] TPAMI 2019 106 114.4K 74h 120 action classes Noisy poses.

Movi [192] PLoS One 2021 90 - 9h 20 action classes -
HumanAct12 [1] MM 2020 12 1191 6h 12 action classes -

KIT-ML [43] Big data 2016 111 3911 10.3h 6.3k text descriptions Lack diversity.
BABEL [193] CVPR 2021 344 4083 43.5h 32k short descriptions Single-action sequences.

HumanML3D [3] CVPR 2022 344 14.6k 28.5h 45k text descriptions -

Aberman et al. [6] SIGGRAPH 2020 1 32 2.3h 16 style classes -
Xia et al. [7] SIGGRAPH 2015 1 - 11m 8 style classes -

Table 2.1: Datasets for human motion analysis.
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Chapter 3

Action Category based Human

Motion and Video Generation

As shown in Fig. 3.1, we aim to tackle the interesting yet challenging problem of generating videos

of diverse and natural human motions from prescribed action categories. The key issue lies in the

ability to synthesize multiple distinct motion sequences that are realistic in their visual appear-

ances. It is achieved in this chapter by a two-step process that maintains internal 3D pose and

shape representations, action2motion and motion2video. Action2motion stochastically generates

plausible 3D pose sequences of a prescribed action category, which are processed and rendered by

motion2video to form 2D videos. Specifically, the Lie algebraic theory is engaged in representing

natural human motions following the physical law of human kinematics; a temporal variational

auto-encoder (VAE) is developed that encourages diversity of output motions. Moreover, given

an additional input image of a clothed human character, an entire pipeline is proposed to extract

his/her 3D detailed shape, and to render in videos the plausible motions from different views. This

is realized by improving existing methods to extract 3D human shapes and textures from single 2D

images, rigging, animating, and rendering to form 2D videos of human motions. It also necessi-

tates the creation and reannotation of 3D human motion datasets for training purpose. Thorough

empirical experiments including ablation study, qualitative and quantitative evaluations manifest
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Figure 3.1: Our action2video pipeline generates human full-body motion videos of prescribed ac-
tions in two steps: action2motion first generates diverse and natural 3D motions of predefined
actions; motion2video proceeds to extract 3D surface shape and texture from an additional 2D
input image, and to render 2D videos of the generated motions.

the applicability of our approach, and demonstrate its competitiveness in addressing related tasks,

where components of our approach are compared favorably to the state-of-the-arts. Action2motion

work has been published as [1], and the full work has been published as [2]. The related code, data

and pre-trained model are readily available: https://ericguo5513.github.io/action-to-motion/.

3.1 Introduction

Human-centric activities always play a key role in our daily life. In recent years, noticeable pro-

gresses have been made in video forecasting [195, 196] and synthesis [156, 21, 197, 164]. Meanwhile,

it remains a substantial challenge in generating realistic videos of diverse and plausible human mo-

tions. This is evidenced in many recent video generation efforts [34, 33, 11], where the appearances

of synthesized human characters are unfortunately either blurring or surreal, and are still far from

being photo-realistic; their motions are often distorted and unnatural. These observations stress
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the importance of properly modeling human body postures & temporal articulations, as well as the

surface shapes and textures of the local body parts. It also motivates us to examine the problem

of generating videos of human motions based on action categories, the basic ingredient of human

behaviors.

Due to the complexity of human articulations and pose dynamics, generating human videos is

far from being trivial. Existing efforts usually represent human motions in 2D space, which are

then rendered pixel-wise to form 2D videos. Moreover, extra information such as an initial 2D

pose or a partial/entire motion sequence is usually required, which is practically undesirable. For

instance, [34] produces deterministic sequence of 2D motions, which is followed by synthesizing the

appearances frame-by-frame through adversarial training. Action-conditioned 2D human behavior

modeling is also studied in [33], where 2D pose generator and motion generator are trained pro-

gressively. Very recently, the efforts of [10, 9] consider the related task of extracting 3D characters

from single images, which is then animated to form 3D motions; [46] addresses another related task

of generating human action videos by composing the human motions and scenes with probabilistic

graphical models in 3D game engine. However, the motions used in both methods are real-life

motions that have been made available in prior, instead of being synthesized on the spot.

Overall, the existing methods fall short in the following aspects: 1) direct modeling of 2D mo-

tions is inherently insufficient to capture the underlying 3D human pose articulations and shape

deformations. The absence of 3D geometric information often leads to visual distortions and ambi-

guities; 2) coordinate locations of body joints are commonly used as the human pose representation,

which undesirably entangle the human skeletons and their motion trajectories. Moreover, this cre-

ates extra barriers in modeling human kinematics; 3) initial poses often impede the diversity of

generated human dynamics. For example, in actions such as warm up and boxing, initial poses

crucially influence the formation of the rest sequences; and 4) the popular choice of pixel-to-pixel

synthesis among existing efforts on action conditioned video generation has been evidenced inca-

pable of generating detailed and high-resolution views. The aforementioned observations inspire

us to consider a two-step pipeline: action2motion generates diverse & natural 3D human motions

from prescribed action categories, and motion2video proceeds to extract human character out of

25



an additional input image, to rig, animate, and render to form 2D videos, as illustrated in Fig. 1.1.

In action2motion, we aim at generating diverse motions to traverse the motion space, and to

cover various styles of individuals performing the same type of actions; meanwhile, each motion

is expected to be visually plausible. This leads to our temporal variational auto-encoder (VAE)

approach using Lie algebra pose representation. Inspired by the work of [164] in generic video gen-

eration, here we leverage the posterior distribution learned from previous poses as a learned prior

to gauge the generation of present pose; by tapping into the recurrent neural net (RNN) implemen-

tation, this learned prior also encapsulates temporal dependencies across consecutive poses. For

pose representation, human pose could be characterized as a kinematic tree based on human body

kinematics. There are multiple advantages of using Lie algebraic representation over the popular

joint-coordinate representation: (i) Lie representation disentangles the skeleton anatomy, temporal

dynamics, and scale information; (ii) it faithfully encodes the anatomical constraints of skeletons

by following the forward kinematics [198]; (iii) the dimension of Lie algebraic space corresponds

exactly to the degree of freedom (DoF), which is more compact compared to joint-coordinate rep-

resentation. In practice, the adoption of Lie representation notably mitigates the change-of-length

and trembling phenomenons prevailing in joint coordinates representations; it also facilitates the

generation of natural, lifelike motions, and simplifies the training process. Furthermore, a global

and local movement integration module is used to infer the global pose trajectory from temporal ar-

ticulations of body parts. This promotes consistence between local shape deformations and global

motion trajectory (i.e. direction and velocity), especially when synthesizing locomotion actions

such as walking and jumping.

It is followed in our pipeline by motion2video, where a 3D character is extracted, rigged, ani-

mated according with stochastically generated motions, and rendered to form 2D videos. In fact,

animating 3D characters remains an open problem. A common strategy is to extract their 3D

shapes and textures from a single input image. Prior efforts such as [10] align the silhouette

and texture of single image to a 3D human shape (e.g. SMPL [47]). Due to single input view,

nonetheless, they fail to synthesize body textures of unseen views. Recent deep learning meth-

ods [199, 200, 201, 9, 202] shed lights on reliable recovery of 3D surfaces and textures from single
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images. Meanwhile their results suffer from either low-fidelity, with input image resolution limited

to at most 512×512 [200, 9, 202], or ill-posed texturing on occluded areas and novel view [201]. A

simple strategy is developed in our work, leading to improved texture mapping in these cases.

In summary, our main contributions are three-fold: first, a novel two-step pipeline of ac-

tion2motion & motion2video is proposed to address the challenging problem of 3D human motion

& video generation from action type and single image; second, a dedicated Lie Algebra based VAE

framework is developed, capable of producing diverse life-like human motions from prescribed ac-

tion categories; third, as part of our pipeline, an improved strategy is used in extracting 3D shapes

and textures from single images, that is capable of synthesizing visually-appealing texture of unseen

views. Moreover, an in-house 3D human motion dataset, HumanAct12, has been curated.

3.2 Our Approach

The pipeline of our approach, action2video, consists of two steps: step one (action2motion)

synthesizes human pose sequences from a prescribed action category (Sec. 3.2.1); step two (mo-

tion2video) extracts a specific 3D human shape and texture from a reference image to render the

generated motions into 2D videos (Sec. 3.2.2).

3.2.1 Step One: Action2Motion

Our action2motion framework comprises a temporal VAE (Sec. 3.2.1) with a Lie algebra based

representation (Sec. 3.2.1). We also investigate four strategies to decode neural hidden unit to

obtain global 3D positions of motions (Sec. 3.2.1 and Sec. 3.4).

Disentangled Representation with Lie Algebra

As shown in Fig. 3.2, a human pose could be characterized in the form of a kinematic tree that

consists of five kinematic chains: main spine and four limbs. Meanwhile, this skeleton model is

formed by N oriented edges (i.e. bones) E = {e1, . . . , eN} that interconnect N + 1 joints. By
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incorporating Lie algebraic apparatus, motion of 3D joints could be decomposed into three parts:

skeleton anatomical information, motion trajectories, and bone lengths.

Figure 3.2: An example of human skele-
ton which consists of 21 joints and 20
body parts.

For each skeletal bone, en, a local coordinate is at-

tached, with the bone itself being aligned with the x-axis

and its starting joint being stuck to the coordinate ori-

gin. The relative 3D locations between two consecutive

bones could be modeled as a series of 3D rigid transfor-

mations. Specifically, given two connected bones en and

en+1 along a kinematic chain, a joint c = (x, y, z)⊤ in

the local coordinate of en amounts to a transformed lo-

cation c′ = (x′, y′, z′)⊤ in the local coordinate of en+1, by

exercising the following transformation

⎛⎜⎝ c′

1

⎞⎟⎠ =

⎛⎜⎝ Rn dn

0 1

⎞⎟⎠
⎛⎜⎝ c

1

⎞⎟⎠ . (3.1)

where Rn ∈ R3×3 is the rotation matrix, and dn ∈ R3 is

the translation vector along x-axis. Furthermore, dn could be written as (bn, 0, 0)⊤ with bn denoting

the bone length of en, a constant number over time.

Here, the rotation matrix Rn ∈ R3×3 between two local coordinates is an element of Special

Orthogonal Group SO(3), which is a matrix Lie group. Hence, excluding bone lengths, the relative

geometry between en and em is a point in SO(3) and the whole skeleton is represented as a point

in SO(3)× SO(3)× ...× SO(3), which is a matrix Lie group endowed with a differentiable manifold

structure [138, 136]. Similarly, the motion could be characterized as a curve in Manifold. To carry

out optimization in Manifold, we could engage the proper mathematical apparatus of Lie algebra or

tangent space that could be regarded as a flat space, thus our familiar linear algebra computations

could be utilized.
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Lie algebra so(3) The 3 by 3 identity matrix I3 is an element of a SO(3) and is referred to as

the identity element in this group [198]. The tangent space at the identity element I3 of SO(3) is

known as the Lie algebra space, so(3), a 3-dimensional vector space spanned by the elements of a

3 × 3 skew-symmetric matrix Ŵ , as

Ŵ =

⎛⎜⎜⎜⎜⎝
0 −w3 w2

w3 0 −w1

−w2 w1 0

⎞⎟⎟⎟⎟⎠ . (3.2)

The association between a R ∈ SO(3) and its Lie algebra vector w ∈ so(3) could be given by the

logarithm map logSO(3): SO(3) → so(3), as

w =

⎛⎜⎜⎜⎜⎝
w1

w2

w3

⎞⎟⎟⎟⎟⎠ =
θ

2 sin θ

⎛⎜⎜⎜⎜⎝
R(3, 2) −R(2, 3)

R(1, 3) −R(3, 1)

R(2, 1) −R(1, 2)

⎞⎟⎟⎟⎟⎠ , (3.3)

where θ = arccos trace(R)−1
2 [198]. Since w is not uniquely mapped, we use the value with norm

in range[−π, π]. Similarly, the inverse transformation is given by the exponential map expso(3):

so(3) → SO(3). Please refer to [198] for more details.

For a 3D rotation matrix R ∈ SO(3), the associated Lie algebraic vector w ∈ so(3) is an axis-

angle vector. For a human skeleton, the exact degree of freedom (DoF) of a axis-angle vector is

determined by the rotation orientations of two successive bones, and is up to 3. For example, if

two bones are oriented in the same or reverse direction, w is a zero vector with 0 DoF; if one bone

only rotates along one axis, then the DoF reduces to 1.

Mapping Lie algebra parameters to 3D positions. Now we focus on an articulate object

with K kinematic chains; assume the k-th chain have mk joints, with each joint parameterized

by a 3-dimensional so(3) vector, wk
i , i ∈ {1, 2, . . . ,mk}. A human pose is thus represented by

composition of Lie algebra vectors of joints/bones on kinematics chains, pLie = (w1
1
⊤
, . . . , w1

m1

⊤
,

. . . , wK1
⊤
, . . . , wKmK

⊤
). Now, the 3D position of a joint i in a chain k, Jki , is obtained following a
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exponential map of the Lie algebraic values, also known as forward kinematics, as

Jki =

⎡⎣i−1∏︂
j=0

exp(Ŵ
k
j )

⎤⎦dki + Jki−1. (3.4)

Here dki = (bki , 0, 0), with bki representing the bone length of eki . In addition, forward kinematics

typically starts from a root joint whose position J0 ∈ R3, and Lie algebraic values Ŵ 0 stand for the

global location and orientation of the entire human body. In our representation, the global location

J0 is independent from the pose. Therefore, given a motion with T successive poses, the sequence

(J0,1, . . . ,J0,T ) ∈ R3×T makes up the body motion trajectory, with J0,t denoting its global location

at frame t.

Accordingly, the 3D coordinates vector of a body pose, formally denoted as p = (J1
1⊤, . . . ,

Jm1
1⊤, . . . ,J1

K⊤
, . . . ,JmK

K⊤
) could be obtained by the joint-wise forward kinematics of a com-

position of bone lengths, root position, and Lie algebraic vector. For simplicity, we denote this

mapping as Γ(pLie) : pLie → p. Overall, a human motion is represented by three parts:

• Lie algebra parameters MLie =
(︁
p1
Lie, . . . ,p

T
Lie

)︁
.

• Root trajectory (J0,1, . . . ,J0,T ): root trajectory could be represented by either absolute root

locations or relative translations between consecutive root locations. The latter works better

in our setting.

• Bone lengths (b0, . . . , bN ): due to the invariant nature of bone lengths of human skeleton,

the skeleton bone lengths are acquired from typical real-life human bodies, and are fixed over

time. This also reciprocally enables us to generate motions with controllable body scales by

manipulating the bone lengths.

Conditioned Temporal VAE

Consider a real motion or pose sequence M = (p1, . . . ,pT ). Our temporal VAE aims to maximize

the likelihood of the pose sequence M. At time t, a posterior network qϕ(zt|p1:t) approximates
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Figure 3.3: Visual diagram of action2motion. Top row shows the training phase: at time t, the
posterior and prior networks take as input a concatenation of three parts - action category a, time
counter ct and immediate pose vector (pt or pt−1). The generator receives an addition latent vector
zt that is sampled from the learned posterior distribution. Afterwards, the 3D joints of current pose
is obtained from the decoder of generator through pose decoding module. Bottom row depicts the
testing phase: a latent vector is alternatively sampled from the prior distribution, which triggers
the aforementioned process in generating 3D pose sequences.

the true posterior distribution conditioned on p1:t−1. Then, with sampled latent variables z1:t and

previous states p1:t−1, our RNN generator pθ(pt|p1:t−1, z1:t) reconstructs the current pose pt. This

leads to the following variation lower bound:

log pθ(M) ≥
∑︂
t

[︃
Eqϕ(zt|p1:t) log pθ(pt|p1:t−1, z1:t)

−DKL (qϕ(zt|p1:t) ∥ p(zt))

]︃
.

(3.5)

Note at time t, our RNN module takes as input the immediate past frame pt−1 and zt. The

influence from previous time slices p1:t−2 and z1:t−1 lies in the ability of RNN module capturing

long-term temporal dependencies.
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Figure 3.4: Four variants of the pose decoding module conceived in our work: (a) direct generation
of 3D joint positions; (b) generation with Lie algebraic representation; and (c)-(d) global and local
movement integration (GLMI)-based generation with Lie algebraic representation, implemented
by multi-layer perceptron (GLMI-M) or GRU (GLMI-R).

In terms of the prior p(zt), one option is to consider an identity Normal distribution, N (0, I).

This is unsuitable though for the motion generation problem, as the pose variation varies over time.

Take running motions as example, the temporal pose variances are typically relatively small, which

however could become significantly larger when e.g. the runner makes a U-turn. Inspired by the

observation that the variation of present pose is highly correlated to its past time-steps [164], we

model its prior by a neural network that conditions on its previous steps p1:t−1, pψ(zt|p1:t−1). This

leads to a re-formulation of the ELBO objective function

log pθ(M) ≥
∑︂
t

[︃
Eqϕ(zt|p1:t) log pθ(pt|p1:t−1, z1:t)

−DKL (qϕ(zt|p1:t) ∥ pψ(zt|p1:t−1))

]︃
,

(3.6)

where the distance penalty between prior and posterior distributions further encourages temporal

consistency.

Architecture of Action2Motion

Our action2motion step consists of three main components: posterior network, prior network, and

generator, which are shown in Fig. 3.3. The input vector contains the following parts: the pose

vector pt or pt−1, an one-hot vector a to encode action category, and ct ∈ [0, 1], a time-counter

to keep record of where we are in the sequence generation progress. As depicted in Fig. 3.3,

during training, a noise vector is sampled from the posterior distribution qϕ(zt|·), and fed into the
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generator, which then produces the final 3D pose prediction by running through the pipeline of

encoder En, GRU unit GRUθ, decoder Dn, and pose decoding module. In testing, as the real data

pt is not available, zt is instead sampled from the learned prior distribution, pψ(zt|·).

Specifically, our encoder En and decoder Dn are composed of linear fully connected layers with

different weights, and updated with the whole network. Moreover, our posterior network (qϕ)

and prior network (pψ) utilize the same architecture, but with different parameters. They are

respectively described as:

ht = En(pt,a, ct), ct =
t

T

(µϕ(t), σϕ(t)) = GRUϕ(ht)

(3.7)

and

h′
t−1 = En(pt−1,a, ct), ct =

t

T

(µψ(t), σψ(t)) = GRUψ(h′
t−1).

(3.8)

Further investigation of the pose decoding module is provided in the following section.

Pose Decoding

Fig. 3.4 illustrates the four pose decoding variants investigated in our work. The most straight-

forward and commonly-used approach is Fig. 3.4(a), where the 3D joint locations are directly and

simultaneously regressed from the decoder. It however contains redundant parameters, and does

not follow the kinematics law that dictates the 3D articulations of the body skeleton. Alternatively,

the Fig. 3.4(b) variant incorporates Lie algebraic representation. The decoder here contains two

vectors, skeletal Lie algebraic values p̂tLie, and global root position Ĵ0,t. The final 3D joints are

produced by forward kinematics (see Sec. 3.2.1). Though working well for many motion scenarios,

it encounters issues when local body movements and global motions are highly correlated. Take

action walk for example, the instantaneous velocity of walking is significantly affected by the move-

ment of legs; independently generating global and local body motions is observed to lead to e.g.

sliding-feet phenomenon, as depicted in Fig. 3.11.

Global and local movement integration. Existing efforts in motion forecasting or genera-
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tion usually predict only relative body joint positions, this is, relative to the root joint, at the cost

of neglecting the global motion all together [147, 57, 138, 137]. In other words, the root joint of

human full-body is fixed to coordinate origin during the entire motion sequence. Recently, [203]

consider global motion by directly enforcing MSE loss between predicted and ground-truth root

joint locations, which is similar to the Fig. 3.4(a) variant.

Intuitively, the transition between two consecutive poses, measured by the displacement of the

root joint in the two frames, is highly correlated to the body gesture of these two poses. Consider

a person who is walking on a flat ground, his walking pace depends upon how wide his legs span.

This inspires us to propose a global and local movement integration unit (GLMI) which, rather

than predicting global transition and local joints concurrently, will first generate relative poses,

then infer global motion from consecutive local poses, as illustrated in Fig. 3.4(c). Here p̂tLie is the

Lie parameter vector produced by the generator, which is then transformed to 3D joint locations

p̂ot through forward kinematics; pot−1 is the offset value of 3D coordinates of previous pose; hot is

a hidden vector containing upstream information. The three vectors are fed into a fully connected

layer, MLP, which then produces the velocity (i.e. relative translation) V̂0,t at time t. Finally, the

3D global position p̂t could be obtained by summation of the three components: root position of

previous pose J0,t−1, estimated velocity V̂0,t, and the current local pose p̂ot . Mathematically, this

process is expressed as (︁
p̂tLie,h

o
t

)︁
= De(h

θ
t )

p̂ot = Γ(p̂tLie)

V̂0,t = MLP(p̂ot ,p
o
t−1,h

o
t )

p̂t = p̂ot + J0,t−1 + V̂0,t.

(3.9)

To further capture the temporal dependency of a global trajectory, another version of GLMI

is also proposed, with the backbone of MLP replaced by recurrent units, GRU, as presented in

Fig. 3.4(d). Besides, a trajectory alignment loss between the predicted velocities V̂0,t and real

velocities V0,t is also introduced, to encourage accurate velocity estimation. Among these variants,

the GLMI-M variant is found to produce the overall best results, and is utilized in our approach
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by default.

Final Objective

To summarize, our final objective function becomes

Lθ,ϕ,ψ = −
T∑︂
t=1

[︃
Eqϕ(zt|p1:t,a,ct) log pθ(pt|p1:t−1, z1:t,a, ct)

− λklDKL (qϕ (zt|p1:t,a, ct) ∥ pψ (zt|z1:t−1,a, ct))

− λalign∥V0,t − V̂0,t∥2
]︃
,

(3.10)

where λkl and λalign are two tuning parameters to trade-off among reconstruction error Lrec, KL-

divergence, and trajectory alignment loss. Empirically, a larger λkl is observed to enhance the

quality of generated motions but may decrease their diversity; and vice versa for a smaller λkl.

For the reconstruction error (the first term in Eq. (3.10)), the per-joint loss suggested in [204]

is considered, as

Lrec(pt, p̂t) =
N+1∑︂
k=1

∥Jk,t − Ĵk,t∥2. (3.11)

Here N + 1 denotes the number of skeletal joints.

In our work, the trajectory alignment loss is only used in the methods of Fig. 3.4(c) and (d),

where the models are trained with the re-parameterization trick of [149].

Training Strategy

One common issue in sequence modeling is the discrepancy of information exposure during training

vs. testing phases. For example, in a RNN model, a ground-truth pose is taken as input to generate

next pose in training; while in testing phase, a generated pose is used instead to produce next pose.

To mitigate the issue, a mixed training strategy is adopted here, that chooses whether to use (or not

to use) teacher forcing [205] by randomly draws from a Bernoulli distribution, V ∼ Bernoulli(ptf).

In particular, teacher forcing is chosen for the entire sequence p1:T if V is 1, and not if otherwise.
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Figure 3.5: Illustration of the motion2video process. Shapes and textures of 3D human characters
are extracted from single 2D images, that are rigged, animated with motions generated from the
action2motion step, and rendered to produce final videos.

As a boundary condition in generating the initial pose p̂1, its previous pose input p0 for the prior

network (qψ) is a zero vector. In addition, curriculum learning [206] is used in the training phase

that is to progressively increase the value of λkl.

3.2.2 Step Two: Motion2Video

Recall in step one of our approach, action2motion, diverse motions are generated from prescribed

action categories. At this point, a motion is shown as a sequence of 3D skeletal articulations.

To produce videos, it remains to settle the full-body shapes and textures of the involved human

characters. This is addressed in step two, motion2video, where a specific setup is conceived: a

reference person image is presented as input, from which 3D shape and texture of the person are

extracted; this is followed by rigging and animating the characters with synthesized motions from

the action2motion step, and rendering to generate final 2D videos. Unlike existing motion transfer

methods [44, 8, 45] that emphasize in 2D space, our work advocates a fully 3D approach, and we

claim our 3D-enabled modelling choice helps to preserve the geometric and appearance aspects in

the final video production. Fig. 3.5 illustrates the components in our motion2video process that is

to be detailed in the following subsections.
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(a) Input (b) PIFU result (c) PIFuHD result (d) Our result

Figure 3.6: A comparison of reconstructing 3D characters from single images by the original meth-
ods of PIFu, PIFuHD, and our improved variant. Each 3D reconstruction result is shown in front,
side, and back views. Salient errors are pointed by the red arrows. See text for details.

Human Shape Reconstruction from a Single 2D Image

From a single 2D image, a 3D human character is extracted to preserve sufficient geometric and

textural details consistent with the input. PIFu [200] and PIFuHD [201] are the two state-of-the-art

methods on single-image based human shape recovery that have their unique pros and cons. The

3D shapes and textures extracted by both methods are reasonably adhere to their 2D image inputs.

Meanwhile, the texture map extracted by PIFu [200] has relatively low resolution and accuracy,

see e.g. the protruded knee pointed by the red arrow in Fig. 3.6(b). Although PIFuHD produces

high-resolution 3D human geometry construction, notable errors are introduced at the unseen side

by the symmetric assumption. As e.g. shown by the red arrows in Fig. 3.6(c), the frontal human

face is also erroneously synthesized at the back side of the 3D character head.

Aiming at refining the reconstruction results, our improved variant takes advantage of PIFuHD

in better estimating 3D geometry and camera-view appearance, as well as PIFu in better inpainting

of texture for the unseen views. Moreover, we also adopt a heuristic in producing smooth transition

near the boundary of visible and occluded surface regions, as follows: to detect the stitching

boundary, we project the character (facing Z+ direction) onto XY plane and match the edge of

2D silhouette with the 3D character; for a point x in the transition region or inside the occluded

region O with color cx, its color cx is expected to be close to the color cpx of the corresponding point

on PIFu surface; at the same time, cx should also be close to those of its neighbors, Nx. This is
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formulated as the following convex objective function,

min
∑︂
x∈O

⎡⎣∥cx − cpx∥2 + λnn
1

|Nx|
∑︂
x′∈Nx

∥cx − cx′∥2

⎤⎦ . (3.12)

In practice, the vertex colors cx in O are iteratively updated until a consistent convergence. For

transition near the boundaries, only the second term of Eq. (3.12) is considered. As shown in

Fig. 3.6(d), our result is able to leverage the benefits of of both PIFu and PIFuHD methods, and

produces a more natural transition near the boundary regions.

Rigging, Animation, and Rendering

Fitting SMPL for extracted 3D shape. The SMPL human shape, a generative 3D human

representation controlled by pose and shape parameters, is used to facilitate the follow-up rigging

and animation process. This requires to fit SMPL as close as possible to the reconstructed 3D

human shape that amounts to estimating the pose (θ) and shape (β) parameters by minimizing

the following composite objective,

L(β,θ) = Lsurface(β,θ) + λjLjoints(β,θ) + λrLreg(θ). (3.13)

The joints fitting term Ljoints enforces the joints location of the SMPL shape to match with the

predicted 3D joints from 2D image. Here, the initial 3D joints prediction Ĵc is obtained by regressing

2D joints from input image with OpenPose [207], and by inverse projection into the reconstructed

3D human shape. Denote f(·) a transformation function of specific joint from initial position to

current position following skeleton kinematics chain. Denote ρ(·) a differentiable Geman-McClure

penalty function [208], and w the confidence of 2D joint prediction. We have,

Ljoints(β,θ) =
∑︂
i∈|J |

ωiρ
(︂
f (J(β)i,θ) − Ĵc,i

)︂
. (3.14)
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Then the surface fitting term Lsurface is applied to minimize distance between vertex Si of the

reconstructed human shape S and its nearest vertex v of the SMPL shape M(β,θ),

Lsurface(β,θ) =
∑︂
i∈|S|

min
v∈M(β,θ)

⃦⃦
Si − v

⃦⃦
2
. (3.15)

Finally, the pose regularization term Lreg(θ) penalizes unusual poses through the learned Gaussian

mixture model from CMU dataset [189]. Following [209], it is of the form

Lreg(θ) = − log
∑︂
i

(giN(θ;µθ,i,Σθ,i)), (3.16)

where N(θ;µθ,i,Σθ,i) is a Gaussian distribution with its mean µθ,i and variance Σθ,i, and gi are

weights of mixture Gaussian model.

In practice, to minimize the above objective function, during the first two iterations we only con-

sider the joints and the pose regularization constraints for quick convergence; the surface constraint

is then incorporated during the rest iterations.

3D model deformation and animation. After obtaining the above optimized SMPL model

that closely fits to the reconstructed 3D human mesh model, the SMPL model is used as an anchor

to deform the 3D models to new poses. To start with, the vertex-level correspondences between the

SMPL surface and the 3D human model are established by nearest neighbor search. In addition,

body part information is used to eliminate possible mismatched pairs, especially these around the

inter-joint of arms and torso. Specifically, the body parts information of reference image could be

obtained using DensePose [210], which then are back-projected to the surface of the 3D shape. As

SMPL shape has pre-defined body segmentation, this could be utilized to filter out vertex pairs

coming from different body parts. Next, we compute a displacement map from the optimized SMPL

mesh to their correspondences on the 3D human model,

Sj = Mi(β
∗,θ∗) + di→j . (3.17)
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where β∗ and θ∗ are the optimized shape and pose parameters of the SMPL model. Sj and

Mi(β
∗,θ∗) are the correspondences and di→j is the displacement from optimized SMPL model to

reconstructed 3D human model.

Intuitively, to repose the human shape, we could acquire the target positions S∗ of shape vertices

by applying the displacement map to the reposed SMPL as in Eq.(3.17). However, this will lead to

imperfections due to free-form deformation. Following [211], we instead utilize the vertices of S∗

as control points to deform the 3D human model as rigid as possible, by enforcing a local rigidity

constraint. The locally rigid deformation R and the deformed human model Ŝ are obtained by

minimizing the following objective,

Ldef (R, Ŝ) =
∑︂
i∈|S|

∑︂
j∈Ni

kij

⃦⃦⃦
(Ŝ

i − Ŝ
j
) −Ri(S

i − Sj)
⃦⃦⃦
2

+
∑︂
l∈|S|

⃦⃦⃦
Ŝ
l − S∗,l

⃦⃦⃦
2
.

(3.18)

Here Ni is the set of the neighboring vertices of Si; kij is the corresponding weights of neighboring

vertices. Ri is a rotation matrix. The above objective function is optimized by iteratively solving

the rotation matrix R and the deformed mesh Ŝ [212].

Rendering. The target 3D shape are deformed and driven by the generated pose sequences

frame-by-frame, which are subsequently fed into 3D game engine (Unity3D) to integrate physical

conditions such as illuminations and shadows and produce the final videos. Specifically, spot light

and directional light are used to illuminate the character from top. Four cameras, fixed at half

height of the 3D character, are aimed at the subject to record the front, back, left side and right

side views, respectively.

3.3 Empirical Evaluations

A comprehensive set of experiments are conducted to systematically evaluate the performance of our

action2video approach, which consists of the two-step pipeline of action2motion and motion2video.
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BUFF and People Snapshot Images

CG Images Internet Images

Own-photoed image
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Figure 3.7: Input images used in our experiments are from different sources, including (a) BUFF
dataset [213], (b) People Snapshot dataset [214], (c) internet images, (d) CG image, and (e) our
in-house captured images. See text for details.

We start by introducing the related datasets, and our implementation details. This is followed

by a detailed examination of our action2motion process at Sec. 3.3.1, and comparisons for our

motion2video with related efforts at Sec.3.3.2. Finally, Sec. 3.3.3 provides a holistic evaluation of

our full pipeline, action2video.

Datasets. Ideally, we expect to work with motion datasets that contain considerable amount of

distinct motion clips of various action categories, and with proper 3D pose annotations. In practice,

we achieve this by postprocessing existing popular datasets, including re-annotating 3D positions of
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NTU-RGBD [42] and action categories of CMU MoCap [189]. We also curate an in-house dataset,

HumanAct12. In these three datasets, all human poses are uniformly annotated into 3D joints

connected into 5 kinematics chains, with pelvis being the root joint.

• NTU-RGBD is a large-scale 3D human motion dataset containing nearly one million motion

sequences of 120 action types. Its pose annotation (i.e. 3D joint positions) is from MS Kinect

readout, which is known unreliable and temporally unstable. In our experiments, the state-

of-art video 3D shape estimation method [215] is employed to re-estimate the 3D poses from

video feeds. Note in our scenario, it’s sufficient for these poses to appear realistic, and they

are not necessarily matched perfectly with the true poses. A subset of 13 distinct actions are

further selected in our empirical evaluation, such as cheer up, pick up, salute, consisting of

3,900 motion clips. Each pose is represented by 18 joints (i.e. 17 bones).

• CMU MoCap is dataset accurately annotated by motion capture markers, with 2,605 pose

sequences. However, the dataset is not originally organized by action types. We identify 8 dis-

tinct actions based on their motion captions, including running, walking, climbing, jumping.

In the end, 1,088 motions are re-organized by action type, with each skeleton constituting 22

3D joints (i.e. 21 bones). In implementation, these pose sequences are down-sampled from

100 HZ to a frequency of 12 HZ.

• HumanAct12 is our in-house dataset that comes with proper annotations. It consists of

1,191 motion clips and 90,099 frames in total, which are categorized into 12 coarse-grained

action categories, including e.g. warm up, lift dumbbell, and 34 fine-grained action types

such as warm up (Leg pressing), lift dumbbell (with right hand). The fine-grained annotations

give more specific and dedicated information of the motions. We test our model on both

coarse- and fine-grained annotations. Our dataset, HumanAct12, contains more accurate and

stable 3D position annotations compared to NTU-RGBD; and has more well-organized action

annotations than CMU MoCap. Note each body pose contains 24 joints (i.e. 23 bones). The

detailed distribution over action categories can be find in table Sec. 3.3.

To showcase that our pipeline could work with wide range of applications, input images from
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Coarse-grained Label Fine-grained Label Number of Motions Total Number

Warm up

Warm up wristankle 25

215

Warm up pectoral 49
Warm up eblowback 43
Warm up bodylean right arm 26
Warm up bodylean left arm 24
Warm up bow right 24
Warm up bow left 24

Walk Walk 47 47

Run Run 50 50

Jump
Jump handsup 54

94
Jump vertical 40

Drink

Drink bottle righthand 27

88
Drink bottle lefthand 43
Drink cup righthand 11
Drink cup lefthand 3
Drink both hands 4

Lift dumbbell

Lift dumbbell righthand 45

218
Lift dumbbell lefthand 45
Lift dumbbell bothhands 47
Lift dumbbell overhead 43
Lift dumbbell bothhands bend legs 38

Sit Sit 54 54

Eat
Eat righthand 33

77Eat lefthand 25
Eat pie/burger 19

Turn steering wheel Turn steering wheel 56 56

Phone
Take out phone, call and put back 28

61
Call with left hand 33

Boxing

Boxing left right 26

140
Boxing left upwards 39
Boxing right upwards 41
Boxing right left 34

Throw
Throw right hand 53

91
Throw both hand 38

Entire Dataset - - 1191

Table 3.1: Statistics of dataset HumanAct12.

myriad sources are considered in our experiments, as displayed in Fig. 3.7. They include images

from the BUFF dataset [213], People Snapshot dataset [214], as well internet images, computer-

generated (CG) images 1, and our in-house captured images. BUFF dataset provides 26 4D human

sequences with different cloth styles and performing different actions. We then render 2D images

from these human shapes. People Snapshot dataset contains 12 subjects and 24 video sequences

with different backgrounds.

Implementation Details. Our action2motion pipeline is implemented by PyTorch. For all

1https://renderpeople.com/3D-people/
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encoder layers, the output size is set to 128. One-layer GRU is used for prior network, posterior

network and pose decoding module, while generator uses two-layer GRU. The hidden unit size of

GRU is 128. And the noise vector z and hot has the dimension of 30 and 20 respectively. The

Adam optimizer is applied for training throughout all experiments, with learning rate of 0.0002,

weight decaying of 0.00001, and default parameter values including β1 = 0.9, β2 = 0.999. Our

model is trained with mini-batch size of 128. To stabilize the training process, teacher forcing rate

ptf is set to 0.6. The values of aforementioned hyper-parameters are fixed throughout our empirical

experiments across all datasets.

Afterwards, we generate motions with length of 60, 100 and 60 on NTU-RGBD, CMU MoCap

and HumanAct12, respectively. The hyper-parameter λkl is a trade-off between reconstruction con-

straints and KL-divergence penalty. During training, the value of λkl for all datasets are initialized

with 0.001 and linearly increased to 0.1, 0.1 and 0.01 at the end for above datasets respectively.

During training, the value of λalign is set to 10 throughout these experiments. By default, the

action2motion GLMI-M variant is utilized in our approach.

To extract 3D shape from single image, λnn and 10 neighbors are used in Eq. (3.12) for occluded

region. The values of λj and λr in Eq. (3.13) are set to 2.0 and 0.2, respectively.

3.3.1 Step1: Action2Motion

Thorough evaluations of the action2motion step are carried out in this section. They include

both quantitative and qualitative reports of motion generation results, and fine-grained analysis

of the locomotion generation module; We also provide demonstrations of specific action2motion

applications such as motion interpolation in the latent space, motion transition, and 3D motion

outpainting. By default, the action2motion GLMI-M variant is utilized in our approach.

Evaluations

We start by introducing a tally of evaluation metrics and baseline methods used throughout this

section, which is followed by a series of qualitative and quantitative evaluations.
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Evaluation Metrics. We aim to evaluate the generated motions from the aspects of being natural

and diverse. To achieve this, the three metrics in [53] are adopted in our evaluations: Frechet

Inception Distance(FID) to characterize the visually realistic aspect, Diversity and Multimodality

to quantify the diverse levels. The action recognition accuracy is additionally used to gauge the

similarity between generated motions and real-life motions, as well as the degree of generated

motions belonging to the prescribed action.

FID is perhaps the most important indicator in our scenario. A lower FID suggests a better

result. For multimodality and diversity, a result is claimed better only if its diversity and multi-

modality scores are closer to their respective values obtained from real motions. To calculate these

metrics, we rely on a feature extractor to obtain the high-level features of motions. Since there is

no standard implementation of such motion feature extraction, a vanilla RNN action recognition

classifier is trained for each dataset; and the final layer of classifier is used as the motion feature

extractor.

We elaborate these four metrics as below:

• Frechet Inception Distance(FID): FID is an effective metric to evaluate the overall quality

in motion generation. A large amount (in our case, 3,000) of generated motions and real

motions are sampled and then are transformed to two sets of features. For real motion, we

sample from test set with replacement. Then, FID is measured by computing the distance

between the feature distribution of generated motions and that of the real motions.

• Recognition Accuracy: Recognition accuracy is calculated as the accuracy of applying a

pre-trained RNN action recognition classifier to the motion of interest.

• Diversity: Diversity indicates the variance of the motions across all action types. Specifi-

cally, a large set of motions are sampled from all varieties of action types, from which two

subsets are randomly sampled with the same size Sd. The corresponding sets of motion fea-

ture vectors {v1, . . . ,vSd
} and {v′

1, . . . ,v
′
Sd
} are extracted respectively. Then, the diversity

45



Real Motions

CondGRU 
(CVPR’18)

Two-s GAN 
 (ECCV’18)

Act-MCGAN 
  (CVPR’18)

A2Motion 
   (plain)

A2Motion 
  (w/ Lie)

A2Motion 
(GLMI-M)

A2Motion 
 (GLMI-R)

Frame

1 6 12 18 24 30 36 42 48 54 60

Frame

1 6 12 18 24 30 36 42 48 54 60

(a) Warm up motion 1 (b) Warm up motion 2

Figure 3.8: Visual comparison of motions generated by the baseline methods and our four ac-
tion2motion variants. Two warm up motion sequences are sampled for each of the comparison
methods. Every 6th frame is shown. See text for details.

of this set of motions is evaluated by

Diversity =
1

Sd

Sd∑︂
i=1

∥ vi − v′
i ∥2, (3.19)

where Sd = 200 is used throughout our experiments.

• Multimoldality: Different from diversity, multimodality indicates how much the sampled

motions vary within each action category. Suppose there are C action types in the set

of motion sequences. For the c-th action, two subsets with same size Sm are randomly

sampled, which are then transformed to two subset of feature vectors {vc,1, . . . ,vc,Sm} and

{v′
c,1, . . . ,v

′
c,Sm

}. The multimodality is defined as

Multimodality =
1

C × Sm

C∑︂
c=1

Sm∑︂
i=1

⃦⃦
vc,i − v′

c,i

⃦⃦
2
, (3.20)

where Sm = 20 is used in our experiments.

Baseline methods. Since the problem of action2motion, aka action-conditioned 3D human
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motion generation, is relatively new, there are few existing methods to compare with. We thus

adapt the state-of-art methods from related areas to our context, as follows:

• CondGRU. Condition GRU is used as a deterministic baseline in our setting, which is also

the principal model for audio-to-motion translation in [51] and text-to-motion generation

in [216, 217]. Here, a small modification of the model is made that the input is the concate-

nation of condition vector and pose vector at present step and the output is the pose vector

for next step.

• Two-stage GAN. [33] propose a two-stage GAN method for 2D human motion generation

based on action types. In particular, a Wasserstein GAN [218] is first trained as the pose

generator. After that, the motion generator is learned to produce input latent vector for pose

generator to synthesize pose at each time. By using adversarial training, the entire generated

pose sequences are judged by a motion discriminator. We adapt this method for 3D human

motion generation through necessary modifications.

• Act-MoCoGAN. MoCoGAN [21] is a widely used method for both conditional and uncon-

ditional video generation. While generating a video, the input noise vector are composed of

two parts: one is a shared vector over time, another is a instinct noise vector sampled at each

time. These two inputs are expected to map to the stationary content and dynamic motions

in videos. In our experiment, to generate 3D human dynamics, we keep the original archi-

tecture and replace the video and image discriminators to motion and pose discriminators,

respectively.

• Dancing2Music. Dancing2Music [53] generates 2D dancing motion sequences from audio

signals, which consists of two main stages, decomposition and composition. During decom-

position, a motion sequence is segmented into short motion snippets, with dance unit VAE

(DU-VAE) model being trained to generate these motion snippets given the latent vectors of

motion content and an initial frame; during composition, a music-to-movement GAN (MM-

GAN) is trained to generate latent vectors of motion snippet contents conditioned on the given

music signals. To make a meaningful comparison, the official implementation is adapted by
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replacing the music signals with action categories.

• LatentTransition. [147] consider a two-stage GAN [33], with a Bi-LSTM being employed

to produce input latent vectors for pose generation. An additional auxiliary action classifier

further ensures the action-awareness of the generative model.

• Action2Motion (plain). Oue action2motion variant by adopting the pose decoding module

of Fig. 3.4(a), where the 3D position of joints are directly produced from generator.

• Action2Motion (w/ Lie). Our action2motion variant with the pose decoding module of

Fig. 3.4(b), where the Lie algebra parameters and root joint locations are generated indepen-

dently.

• Action2Motion (GLMI-M). Our action2motion variant with the pose decoding module

of Fig. 3.4(c), where both the Lie algebra and GLMI are used, and GLMI is implemented by

MLP.

• Action2Motion (GLMI-R). Our action2motion variant with the pose decoding module of

Fig. 3.4(d), where both the Lie algebra and GLMI are used, and GLMI is implemented by

GRU network instead.

Visual comparisons. Fig. 3.8 provides qualitative comparisons of skeletal motions generated

from different methods: given an action category of warm up, two motions of length 60 are sampled,

with every 6th frame being displayed.

Conditional GRU [51] requires as input an initial ground-truth pose to kick-start its genera-

tion process. Unfortunately the generated poses often collapse into a cloud of 3D points near the

root joint. Two-stage GAN [33] produces better results, which however are still perceptually not

satisfactory. The skeletal sequence result of Act-MoCoGAN by [21] is visually the best among

these three methods. The generated poses nonetheless often froze to a fixed posture quickly. Danc-

ing2Music [53] shows capability of yielding natural poses and motions. Meanwhile, a single such

motion usually contains multiple actions, with the motion context deviating from the prescribed

action type. For instance, in the left column of Fig. 3.8, the stick man first performs lift dumbbell
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Frame
1 6 12 18 24 30 36 42 48 54 60

Frame
1 6 12 18 24 30 36 42 48 54 60

(a) Fine grained generation of Lift dumbbell (b) Fine grained generation of Warm up

Figure 3.9: Motion examples of fine-grained action categories generated by our action2motion
(GLMI-M). Every 6th frame is shown. (a) Lift dumbbell with (from top to bottom) right hand,
left hand, both hand, both hand over head, and both hand over head and squat. (b) Warm up with
(from top to bottom) alt chest expansion, chest expansion, wrist circles, left side reach and right
side reach.

(from t = 1 to t = 18), then a short-time warm up (from t = 24 to t = 36), and finally drifting

into drinking. On the other hand, LatentTransition [147] always starts with natural poses, then

struggles with proper modeling of long-term motion dependencies, which typically deteriorates to

unrecognizable movements. These results are in sharp contrast to that of our four action2motion

variants, whose results are in general visually more appealing. Here, the action2motion (plain)

variant sometimes generate visual defects noticeable to human eyes. For example, in the left col-

umn of Fig. 3.8, the arm bone lengths of the same individual abnormally vary from t = 1 to t = 24.

This is due to the intrinsic 3D-coordinate skeletal representation adopted by the plain variant that

does not obey the underlying skeletal kinematics. Skeletal motions generated by the other ac-

tion2motion variants are typically more faithfully resemble to real-life motions, which we attribute

to their adherence to kinematics by their use of Lie group/algebraic skeletal representations.

Diversity is another important evaluation criteria. In Fig. 3.8, motions generated from condi-

tional GRU tends to be visually least appealing; this is followed by those of two-stage GAN and

LatentTransition; the results of Act-MoCoGAN often suffers from the mode collapsing issue, with

similar results popping up after multiple separate runs; In comparison, Dancing2Music is capable

of producing diverse motions by transiting between different short motion snippets. However, the
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Methods
HumanAct12 (Coarse-grained) HumanAct12 (Fine-grained)

FID↓ Accuracy↑ Diversity→ MModality→ FID↓ Accuracy↑ Diversity→ MModality→

Real motions 0.092±.007 0.997±.001 6.853±.053 2.449±.038 0.133±.004 0.991±.001 7.001±.018 2.666±.012

CondGRU 40.61±.144 0.080±.002 2.381±.020 2.341±.036 33.91±.059 0.034±.001 3.779±.034 3.469±.026

Two-stage GAN 10.48±.089 0.421±.006 5.960±.049 2.805±.036 6.956±.038 0.397±.002 6.151±.017 2.694±.008

Act-MoCoGAN 5.610±.113 0.793±.004 6.752±.071 1.055±.017 2.468±.026 0.832±.002 6.891±.023 0.878±.003

Dancing2Music 3.832±.103 0.145±.003 6.523±.096 6.313±.035 3.484±.085 0.029±.001 6.567±.106 6.406±.026

LatentTransition 3.553±.093 0.471±.005 6.580±.110 4.387±.039 2.123±.044 0.397±.004 6.640±.082 4.590±.027

Action2Motion (plain) 3.299±.079 0.656±.005 6.742±.046 4.248±.037 1.329±.021 0.560±.002 6.756±.015 4.487±.015

Action2Motion (w/ Lie) 2.458±.079 0.923±.002 7.032±.038 2.870±.037 1.000±.016 0.776±.001 6.783±.015 3.508±.011

Action2Motion (GLMI-M) 2.157±.052 0.835±.005 6.986±.028 3.633±.031 0.739±.015 0.787±.002 6.783±.015 3.301±.009

Action2Motion (GLMI-R) 2.349±.057 0.831±.002 7.001±.023 3.607±.037 0.957±.017 0.767±.001 6.924±.019 3.303±.012

Table 3.2: Performance evaluation on HumanAct12 benchmark on coarse-grained and fine-grained
action categories, respectively. ± indicates 95% confidence interval. ↑ (or ↓) is higher (or lower)
the better; → means closer to real motion scores the better. For performance, bold face specifies
the best method, with underscore referring to the second best.

Methods
CMU MoCap NTU-RGBD

FID↓ Accuracy↑ Diversity→ MModality→ FID↓ Accuracy↑ Diversity→ MModality→

Real motions 0.064±.006 0.936±.002 6.130±.079 2.726±.066 0.031±.004 0.999±.001 7.108±.048 2.194±.025

CondGRU 51.72±.123 0.093±.001 0.792±.011 0.752±.016 28.31±.138 0.078±.001 3.663±.024 3.578±.027

Two-stage GAN 14.34±.107 0.179±.003 4.419±.064 1.623±.024 13.86±.091 0.202±.003 5.328±.039 3.490±.027

Act-MoCoGAN 11.15±.074 0.445±.005 5.280±.069 1.516±.022 2.723±.019 0.997±.001 6.920±.061 0.907±.009

Dancing2Music 6.882±.127 0.138±.003 4.772±.104 4.289±.012 3.461±.077 0.075±.002 6.562±.114 6.556±.045

LatentTransition 12.85±.181 0.389±.003 5.856±.143 4.639±.053 6.882±.127 0.138±.003 4.772±.105 4.289±.049

Action2Motion (plain) 2.994±.052 0.378±.004 5.791±.044 5.006±.045 0.540±.047 0.832±.004 6.926±.049 3.443±.052

Action2Motion (w/ Lie) 2.885±.116 0.686±.003 6.509±.061 4.126±.056 0.330±.008 0.949±.001 7.065±.043 2.052±.030

Action2Motion (GLMI-M) 2.448±.031 0.665±.001 6.374±.022 4.093±.019 - - - -
Action2Motion (GLMI-R) 2.519±.029 0.675±.001 6.484±.028 4.073±.029 - - - -

Table 3.3: Performance evaluation on CMU MoCap and NTU-RGBD Dataset. ± indicates 95%
confidence interval. As NTU-RGBD dataset does not have global motion trajectory annotations
available, our GLMI-M & GLMI-R variants that could not be fairly evaluated here.

generated motions could not be faithfully aligned to the prescribed action type; On the contrary, our

action2motion variants are shown to be capable of generating both diverse and consistent motions.

Moreover, our action2motion framework is also capable of producing motions from fine-grained

action categories, as showcased in Fig. 3.9. The motions generated by our action2motion (GLMI-M)

variant faithfully assemble the subtle characteristics of local motions (e.g. leg pressing and chest

expansion), and body parts (e.g. left hand and right hand) from a range of fine-grained action

types.

Quantitative comparisons. Quantitative evaluations are conducted on a range of datasets.

Specifically, Table 3.2 displays results on our in-house HumanAct12 dataset, where coarse-grained

and fine-grained action annotations are both considered; Table 3.3 presents comparison results on
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the popular benchmarks of CMU MoCap and NTU-RGBD. Considering the stochastic nature of

motion generation, each experiment is repeated 20 times, a statistical confidence interval of 95%

is reported in both tables. Note action2motion (GLMI) is however not applicable to the post-

processed NTU-RGBD dataset, since the re-estimated pose sequences from videos does not contain

global trajectory information.

Among the four evaluation metrics in both tables, FID is perhaps the most important indicator,

as it evaluates the overall quality of the generated motions. Recognition accuracy quantifies how well

a generated motion fits into an action category. Diversity and multimodality (i.e. MModality) are

metrics quantifying the diversity aspects of the generated motions. Note the values of FID (or accu-

racy) is lower (or higher) the better; for Diversity and MModality though the values are as close to

the real motion scores the better. From Table 3.2 and Table 3.3, we have the following observations.

As a deterministic method, conditional GRU fails to generate diverse motions that is essentially an

one-to-many mapping problem. GAN models such as two-stage GAN, Act-MoCoGAN and Latent-

Transition have improved upon conditional GRU in both metrics of FID and recognition accuracy.

The considerably high accuracy obtained by Act-MoCoGAN may be attributed to its use of action

classifier during training. A sharp drop of FID is observed in Dancing2Music, which however comes

at the price of much lower accuracy. Meanwhile, our action2motion clearly outperforms the rest

on FID, and the GLMI-M variant consistently excels among the four action2motion variants. The

success could be partly attributed to the incorporation of Lie algebraic pose representation.

Given substantial performance on FID and perhaps also accuracy scores, the scores of diver-

sity and multimodality are also important indicators for the model capacity of producing diverse

motions. Note for diversity and multimodality, the higher values do not necessarily reflect better

performance; instead the values are best to be close to those from the real motions, denoted as → in

Tables 3.2 and 3.3. Act-MoCoGAN generates motions with severely limited diversity. Overall, our

action2motion variants, while performing best on FID and accuracy, also maintain a considerable

extent of diversity and multimodality.
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Figure 3.10: Crowd-sourced subjective assessment results
of motions generated by comparison methods. For each
method, there is a bar of different colors (from red to blue)
indicating the percentage of corresponding preference levels
(least to most preferred). See text for details.

Crowd-sourced Subjective Eval-

uation. In addition to the afore-

mentioned objective experiments, two

user studies are conducted on Ama-

zon Mechanical Turk. The principal

criteria used in these two user sur-

veys are the visual perceptual quality

of the motion, and the magnitude it

is adhere to the intended action cat-

egories. 40 users who possess hit ap-

proval rate higher than 97% and 1000

completed hits are considered.

The first user study is illustrated

in Fig. 3.10, which compares the

first two action2motion variants, ours

(plain) and ours (w/ Lie), with baseline methods. Here, same amount (i.e. 36) of motions are

generated by different methods. The users are then asked to rank their preferences of these mo-

tions evenly sampled over all action categories. Our action2motion variants receive the highest user

ratings. Contrarily, conditional RNN, two-stage GAN and LatentTransition are the three least per-

formed methods. Dancing2Music and Act-MoCoGAN rank somewhere in-between. More positive

feedback is observed in our action2motion plain variant, with 10% motions being graded the first

by users. By adopting the Lie algebraic representation, our ours w/ Lie variant further narrows the

gap to real motions, with 54% generated motions being secured at the top-2 spots by user ratings.

The second user study compares bewteen our two action2motion variants: ours (GLMI) and

ours (w/ Lie). As GLMI-M outperforms GLMI-R in most cases, we focus on the evaluation of

GLMI-M in this survey. Here the motions are generated following the same protocol conceived in

the first study. As shown in table 3.4, ours with GLMI earns more appreciation from users when

compared with ours (w/ Lie), with over a half motion sequences (i.e. 54.4 %) being preferred by
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Preference Percentage

Ours (GLMI-M) Over Ours (w/ Lie) 0.544
Ours (w/ Lie) Over Real Motions 0.462

Ours (GLMI-M) Over Real Motions 0.501

Table 3.4: Crowd-sourced subjective as-
sessment to compare motions sampled from
Ours (GLMI-M), Ours (w/ Lie), and
real motions.

Walk Jump Gym Run
0.0

0.5

1.0

Ours (GLMI-M) Ours (w/ Lie)

0.978

0.711

0.289

0.578

0.422 0.477

0.533

Table 3.5: Crowd-sourced subjective assess-
ment to compare generated motions together
with their global displacements from Ours
(GLMI-M) and Ours (w/ Lie).

Figure 3.11: Examples of locomotion generated without GLMI (top) vs. with GLMI (bottom).
Note the ghosting manoeuvre patterns when without GLMI.

users. When comparing to real motions, samples generated by ours (w/ Lie) are slightly inferior

to real-life human motions, with 46.2% being preferred. Meanwhile ours (GLMI-M) is almost

indistinguishable to the real motions. The results suggest the potentials of applying our algorithm

to more interesting VR/AR applications.

We further investigate the global displacement aspect of the generated motions. As demon-

strated in Fig. 3.5, motions generated from ours (GLMI) are always more preferred by users than

those from ours (w/ Lie) over all these four action categories.

In summary, our GLMI-M variant, i.e. ours (GLMI), delivers overall best results among our

four action2motion variants, which are often indistinguishable from real-life human motions.

Locomotion Generation Analysis
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Methods
Walk Jump Forward

FID↓ Accuracy↑ Diversity→ FID↓ Accuracy↑ Diversity→

Real motions 0.148±.007 0.999±.001 2.618±.013 0.135±.006 0.999±.001 2.711±.015

Action2Motion (plain) 6.659±.119 0.755±.002 4.379±.026 13.14±.104 0.226±.004 5.412±.018

Action2Motion (w/ Lie) 5.392±.069 0.786±.003 4.200±.031 7.233±.124 0.523±.004 5.398±.018

Action2Motion (GLMI-R) 2.096±.057 0.930±.002 3.471±.020 3.796±.083 0.749±.018 4.662±.031

Action2Motion (GLMI-M) 1.183±.028 0.967±.001 3.059±.022 4.443±.146 0.715±.005 4.747±.031

Table 3.6: Performance evaluation over CMU MoCap dataset on two locomotion action types. ±
indicates 95% confidence interval. ↑ (or ↓) is higher (or lower) the better; → means closer to real
motion scores the better. For performance, Bold face specifies the best method, with underscore
referring to the second best.
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Figure 3.12: Examples of motion interpolation in
lift dumbbell. Every 6th frame is shown. See text
for details.

Locomotions (e.g. walking) are the most com-

mon activities in our daily life, which typically

involve full-body displacements. Fig. 3.11 visu-

ally compares walking motions produced with

vs. without our global local movement integra-

tion (GLMI) module. When without, the walk-

ing motions appear surreal like ghost haunting

on the ground, with arm and leg local move-

ments not tuned to its global motion trajectory.

By contrast, our proposed GLMI module signif-

icantly mitigates these issues. For example, the

waving patterns of left (or right) arm is now

synchronized with the right (or left) leg; the local-part moments are also well in agreement with

the full-body motion trajectories.

Table 3.6 quantitatively evaluates the effects of incorporating GLMI module for locomotion

generation on CMU MoCap dataset. The same evaluation metrics of Section 3.3.1 are considered

here. The number of motion sampling is set to 500. Overall, ours with GLMI variants perform best

over all the three metrics. In contrast, ours (plain) attains worst results, which we attribute to the

missing modules of Lie algebraic representation and GLMI. Moreover, GLMI-M , i.e. GLMI with

MLP implementation, works best in generating Walking motions, while GLMI-R takes the lead in
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Frame

Figure 3.13: Action transition examples. Every 5th frame is shown. The top three rows show
transition between two actions. from top to bottom, they are sit-drink, jump up-lift dumbbell, lift
dumbbell-jump up, respectively. The bottom two rows display transition of three actions, which are
(from top to bottom) sit-jump up-sit and sit-jump up-lift dumbbell, respectively.

Jump Forward.

Interpolation in Latent Space

Generative models could be regarded as a function mapping between points in a latent space and

those in the real data space. Meanwhile, similar to the concept of well-posed problems, a well-

learned generative model is expected to behave smoothly from a small perturbation in the latent

space. In other words, when we perform interpolations between two distinct latent codes, their

generated motions are supposed to transit smoothly. It is thus of interest to examine how interpo-

lations in the latent space would change the motion generation behaviors of our action2motion. It

also demonstrates the model capability in producing non-existent samples.

The task is a bit complicated in our situation, as our model generates motion sequences instead

of single images. Alternatively, we use the first poses as anchors to perform interpolation between

two motions. Specifically, the first poses of two pose sequences are selected. Then, a series of

points can be created on the linear path between the latent vectors (i.e. noise vectors) of these two

poses. After that, these points are input as initial latent vectors into our model to kick-start the
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Figure 3.14: Examples of motion outpainting of Walking. Provided several initial poses (in black),
our method completes the rest motion sequence with multiple plausible outcomes.

generation of rest poses.

Fig. 3.12 considers lift dumbbell action. Here two pose sequences are deliberately selected from

motions generated by action2motion (GLMI-M), where the first poses of the two sequences are a

person lifting with the left (and the right) hand, respectively. We have the following observations.

1) As demonstrated in the first column, transition from the left hand pose to the right hand pose

is realistic at the first poses, by gradually putting one hand down and lifting another hand up. 2)

From each of these initial interpolated poses, a visually natural motion sequence is generated. 3)

Interestingly the interpolation leads to the generation of a novel motion, lift dumbbell with both

hands.

Action Transition

To showcase the flexibility of our motion synthesis process, action transition is explored by switching

the action categories during sequence generation. Exemplar results are presented in Fig. 3.13. To

our surprise, our action2motion model is able to produce unseen motions through action transition.

In the first row of Fig. 3.13, after switching from sit down to drink, the character starts to open

the bottle and drink with a sitting pose. However, all drinking motions in our training set are

performed in standing poses. As shown in these examples, the resulting motion sequences are
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rather realistic and with natural transitions which is well maintained in transitions of not only two

actions, but also three actions. This experiment clearly demonstrates the capacity of our approach

in synthesizing unseen motions that goes beyond merely memorizing training examples.

Motion Outpainting

Our method could also serve as a motion outpainting tool: provided the initial few poses, apply

our method to complete the rest of the motion sequence. This is realized by simply fixing the

beginning poses, and generating the rest. Executing multiple independent runs usually creates

distinct yet plausible outcomes. Fig. 3.14 illustrates such an example. Here black poses denote the

fixed initial poses of Walk. This is completed by our model with visually plausible walking motions

of distinct velocities and directions. This also suggests the necessity of modeling motion forecasting

and generation in a non-deterministic manner.

3.3.2 Step2: Motion2Video

A comprehensive set of experiments are conducted to systematically evaluate the performance of

our motion2video approach. Side-by-side evaluations are performed in terms of reconstructing 3D

human shapes & textures from single images in Sec. 3.3.2, and animation in Sec. 3.3.2. Sec. 3.3.3

also provides a holistic evaluation of our full pipeline, action2video.

Datasets. To showcase that our pipeline could work with wide range of applications, input images

from myriad sources are considered in our experiments, as displayed in Fig. 3.7. They include images

from the BUFF dataset [213], People Snapshot dataset [214], as well internet images, computer-

generated (CG) images 2, and our in-house captured images. BUFF dataset provides 26 4D human

sequences with different cloth styles and performing different actions. We then render 2D images

from these human shapes. People Snapshot dataset contains 12 subjects and 24 video sequences

with different backgrounds.

2https://renderpeople.com/3D-people/

57



PIFuHD Ours

PaMIR PIFu
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PIFuHD Ours

Input

Figure 3.15: A qualitatively comparison of reconstructing 3D human shape & texture from single
image, where the top image is from People Snapshot dataset [214] and the bottom one from BUFF
dataset [213].

To extract 3D shape from single image, λnn and 10 neighbors are used in Eq. (3.12) for occluded

region. The values of λj and λr in Eq. (3.13) are set to 2.0 and 0.2, respectively.

3D Shape and Texture Reconstruction

Here we focus on the evaluation of reconstructing 3D human shape & texture from single im-

ages, where the respective part of our approach is compared side-by-side with the state-of-the-arts,

namely PaMIR [202], PIFu [200] and PIFuHD [201]. PaMIR [202] combines parametric SMPL

body model with deep implicit function for robust 3D shape reconstruction. In our comparison, 30
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Method Average Rank↓

PIFuHD [201] 3.60
PIFu [200] 2.36

PaMIR [202] 2.26
Ours 1.77

Table 3.7: Quantitative comparison of reconstructing 3D human shape & texture from single images.
The numbers are averaged user preference ranks, with ↓ meaning the numbers are lower the better.

(a) input (b) generated video sequences

Figure 3.16: Two animation results of our method. Given single images of frontal view of individuals
shown on the left, their 3D shapes are reconstructed, 2D videos are obtained, using prescribed off-
the shelf motion sequences. The videos produced by our method are visually plausible.

images are obtained from a wide variety of sources, including the BUFF dataset [213], the People

Snapshot dataset [214], internet images, CG image, and our in-house captured images. Following

the network architectures, the input resolution of PaMIR and PIFU is 512×512, whereas the input

image resolution is 1024 × 1024 for PIFuHD and our approach.

Exemplar results of reconstructed textured shapes from single input images are shown in

Fig. 3.15. The shapes and textures extracted by PaMIR and PIFu commonly lack details, and are

oftentimes inaccurate. For example, the 3D shape of lady produced by PaMIR is overly slim, to-

gether with an smooth face that lack geometric details which is noticeable especially from side-views.

59



Figure 3.17: User preference distributions of re-
constructing 3D human shape & texture from sin-
gle images.

PIFuHD is capable of recovering 3D shapes with

better facial geometry and in high-resolution,

yet the texture is often visually unpleasantly

wrong, especially when viewing from the back.

In contrast, our method maintains a delicate

balance of shape and texture, thus stands at

a better position in facilitating the follow-up

animation and realistic rendering processes in

our pipeline.

For quantitative evaluation, user study is

further conducted to measure the perceptual

quality of the comparison methods. For each input image, 20 Amazon mechanical turk Work-

ers are enrolled to rank their preferences over the shapes reconstructed by their corresponding

comparison methods. Table 3.7 displays the average rank of each method, with more detailed rank

distributions presented in Fig. 3.17. Our method clearly stands out with the most appreciations

from users, where almost half (i.e. 51%) results are ranked the first. By contract, PIFuHD is

the least preferred one, of which 78% results are placed as least favorable. In-between are PIFu

with the second lowest average rank, and PaMIR that receives considerable more positive feedback

compared to PIFuHD.

Motion2Video Animation

In Fig. 3.16, We present two single image animation showcases using our method. 3D shape and

texture are predicted from input images, which are driven by two challenging motions, cartwheel,

from Adobe Mixamo 3. As shown, our method could obtain accurate shape and texture predictions

from all views, as well as plausible animations with provided motions.

In what follows, we elaborate the comparisons between our method and other three state-of-

3www.mixamo.com
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Preference Percentage

Ours Over [8] 0.843
Ours Over [9] 0.593
Ours Over [10] 0.703

Table 3.8: Crowd-sourced subjective assessment to compare the videos animated with the same
image and motion, produced by Ours, Liquid Warping GAN [8], ARCH [9] and [10].

the-art image animation methods [8, 9, 10]. For quantitative evaluation, we conduct user study

on Mechanical Turk which pairs the videos animated with the same image and motion from our

and comparison method, and request the workers to determine which one that is ”more realistic”.

For each animation, 50 workers with Hit approval rate higher than 97% are enrolled for perceptual

assessment.

Comparison with Liquid Warping GAN [8]. Liquid Warping GAN [8] is a learning based

motion transfer method in pseudo-3D space, where 3D SMPL model estimated from reference video

frames are used to re-pose the person in source image. Fig. 3.18 presents the animated videos by

our method (bottom) and Liquid Warping GAN (top), when feeding with the same input image

and motion. While successfully modeling the motion dynamics, the individual images obtained by

Liquid Warping GAN are very blurring such that the characteristic personal landmarks of face or

T-shirt logo are nearly unrecognizable. In contrast, the animation results of our method are of

high-resolution and high quality.

A user study is performed for quantitative evaluation, based on 22 animations from Liquid

Warping GAN and our method covering a variety of input images and motion sequences, including

composed of 9 Mixamo motions and 13 motions generated by our action2motion step.

As shown in Table 3.8, 84.3% of our animations are preferred by users.

Comparison with ARCH [9]. ARCH [9] uses a semantic deformation field to produce 3D

rigged full-body human avatars from a single image, which is already animatable. However, the

implementation and pre-trained model of ARCH has not been released yet. We managed to obtain

3 animated 3D model sequences from the authors with our provided images and Mixamo motions.

We render video frames of these 3D model sequences in Unity3D with the same environment setting
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(a) input (b) generated video sequences

Figure 3.18: Comparing our method (bottom) with Liquid Warping GAN [8] (top) and ARCH [9]
(middle), animated using the same input image and motion sequence. Results are displayed by
pairing the corresponding video frames.

(b) [Weng et al.] (c) Our method (a) input

Figure 3.20: Comparing our method with [10] by animating
sitting motions.

(e.g. light, camera) as ours. Fig. 3.18

presents a visual comparison between

ARCH’s result (middle) and our re-

sult (bottom). Though ARCH shows

capability of generating reasonable

rendering, the person appearance is

yet to be realistic. For example, the

pants comes with several blue debris;

the two feet of the man are in wrong

color (black); and the texture of T-shirt is overly bright. A user study is again conducted re-

garding the 3 animations from ARCH and our method. As given in Table 3.8, our method earns

more preference (i.e. 59.3%) from users. Please refer to the supplementary video for more visual

comparisons.
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(b) [Weng et al.] (c) Our method

0∘ 90∘ 120∘ 0∘ 90∘ 120∘

(a) input

180∘

Figure 3.19: Comparing our action2video with [10] by animating walking motions. For each given
image on the left, we show the results of [10] (middle column) and ours (right column) from different
views. [10] fail to build an intact 3D texture model (e.g. incomplete feet), and the appearance of
unseen part is distorted. Our method could generate plausible animation from all angles.

Comparison with [10]. the work of [10] is also closely related to part of our motion2video

step, where a 3D character is extracted out of a single image and is further animated to form videos.

Their implementation is unfortunately not publicly available, instead we obtain from the authors

of [10] two animated action sequences (i.e. sit and walk) from the two input images provided by

us. Note that the motions involved in [10] are real MoCap motion sequences, while our motions

are generated by ourselves. For an easy side-by-side visual comparison, we hand pick two of our

generated motions that resemble the animations used [10]. The walk and sit visual results are

displayed and compared in Figs. 3.19 and 3.20, respectively. When viewing from frontal view, the

results of [10] possess incomplete and distorted errors including the incomplete feet (Fig. 3.19(b)),

over-slim arms, and torn pants (Fig. 3.20(b)), as highlighted by red arrows. These artifacts come

from the fact that the textures are directly copied and pasted from the 2D input image, which is

inadequate to maintain intact appearance in 3D geometry. In comparison, our results are noticeably

better at preserving detailed structure and appearance, e.g. around the feet.

When inspecting from the side and back views of the extracted 3D characters that are not

directly visible from the input image view, the textured results of [10] are simply mirrored from the
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frontal region, as shown in the back side of head and torso - the visual results are thus significantly

deteriorated to being funny. In contrast, our results preserve reasonable 3D shape and consistent

appearance across multiple views including the frontal view. Moreover, a similar user study is

conducted among the two set of generated videos. As in Table 3.8, our method is 70.3% more

preferred over [10].

3.3.3 The Full Action2Video Pipeline

Figure 3.21: Visual comparison of three methods:
(top) a state-of-the-art 2D-based method [11],
(middle) Liquid Warping GAN [8], and (bottom)
ours.

This section is devoted to the examination of

our full action2video pipeline. We start by

comparing with state-of-the-art 2D-based hu-

man video generation results. Further experi-

ments also demonstrate the capacity of our ac-

tion2video approach in accommodating input

images from different sources.

Comparison with existing methods.

The work of [11] is state-of-art in generat-

ing human motion videos, which is 2D-based

and relies on large-scale training set of videos.

Fig. 3.21 presents a comparison of their results

and ours that share in common similar poses

and views. Compared with our results, the

frames of [11] is of low resolution (128x128).

Moreover, there are visible lack of details of

face, hands & clothes, and unrealistic shape deformations, which we attribute to their innate 2D

based limitations. For example, lengths of legs and arms in [11] of the same lady character vary over

time. Moreover, as presented in the middle row of Fig. 3.21, the exemplar video result generated

by engaging Liquid Warping GAN based on the same motion generated by our action2motion step,
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(a) front view

(b) right side view

(c) back view

(d) left side view

Figure 3.22: An generated walking video from the following views: (a) front, (b) right-side, (c)
back, and (d) left-side.

where edges and facial details are very foggy and fuzzy, when comparing to our results shown at

the bottom row.

Diverse input image sources. This experiment is to evaluate the flexibility of our ac-

tion2video pipeline in accommodating input images from varied sources. Fig. 3.23 presents our

action2video results based on BUFF images (e.g. 1st row), People Snapshot images (e.g. 2nd row),

Internet images (e.g. 4th row), these captured by our mobile-phone (e.g. 3rd row) as the input

images. Overall our approach is able to adapt to these different applications, and to produce videos

of visually pleasing quality.

Multiple camera views. Fig. 3.22 displays an exemplar video sequence generated by our

approach, that is inspected from four different views. It demonstrates 1) our extracted 3D shape

and clothing texture are reasonably realistic when examined in different rendered views, and 2)
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compared to the popular 2D-based methods, our generated videos are consistent among distinct

views.

3.4 Conclusion and Discussion

Conclusion. We propose an action2video approach to tackle the exciting and challenging problem

of generating natural and diverse 3D motions & videos of human actions. This is accomplished in

this chapter by a 2-step pipeline: action2motion focuses on generating 3D human motions, which

are then turned into videos by motion2video. Empirical studies demonstrate the effectiveness of

our approach.
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walk

warm-up

throw

boxing

actions input images generated video sequences

Figure 3.23: Exemplar videos produced by our action2video pipeline.
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Chapter 4

Text based 3D Human Motion

Generation

As illustrated in Fig. 4.1, given an input script, our goal is to generate a diverse set of natural

3D human motion sequences following precisely the text. Automated generation of 3D human

motions from text is a challenging problem. The generated motions are expected to be sufficiently

diverse to explore the text-grounded motion space, and more importantly, accurately depicting the

content in prescribed text descriptions. Here we tackle this problem with a two-stage approach:

text2length sampling and text2motion generation. Text2length involves sampling from the learned

distribution function of motion lengths conditioned on the input text. This is followed by our

text2motion module using a temporal variational autoencoder to synthesize a diverse set of human

motions of the sampled lengths. Moreover, a large-scale dataset of scripted 3D Human motions,

HumanML3D, is constructed, consisting of 14,616 motion clips and 44,970 text descriptions. This

chapter has been published as [3]. The related data, pretrained model, and codes are publicly

available:https://ericguo5513.github.io/text-to-motion/.
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Start

End

Generated motion 1 Generated motion 2 Real motion
Start End

Figure 4.1: Taken as input the text description, “the figure rises from a lying position and walks
in a counterclockwise circle, and then lays back down the ground”, our approach generates multiple
distinct 3D human motions (e.g. the left and middle panels) that are faithful to the prescribed
textual content. The real motion is also presented at the right panel for reference.

4.1 Introduction

Given a short textual description of a character’s movement as for example, an excerpt from a novel

or a script, we are capable of visualizing the motions in our minds or even in drawings. The question

is, how to automate this process by a machine, or in paraphrase, to generate realistic 3D human

motions from text? This is the problem we tackle with in this chapter. As illustrated in Fig. 4.1,

given the input feed of “the figure rises from a lying position and walks in a counterclockwise

circle, and then lays back down the ground”, our goal is to generate a diverse set of plausible 3D

human motion dynamics following precisely the action types, directions, speeds, timing and styles

as prescribed by the text.This automation process could bring a broad range of application impacts

in AR/VR content creation, gaming, robotics, and human-machine interaction, to name a few.

Meanwhile, existing efforts in generating 3D human motions from descriptions [12, 37, 38, 39,

219] are sporadic and the results are far from being satisfactory. Several common shortfalls are

observed: the input text is usually one short sentence; the task is invariably formulated as deter-

ministic sequence-to-sequence generation, with the synthesized motions tending to be stationary

and lifeless; moreover, the generated motions are restricted to have the same length; finally, the sole

dataset relied on by existing methods, KIT Motion-Language (KIT-ML) [43], consists of only 3,010

motion sequences focusing on locomotion actions. In particular, there are three inherit challenges

yet to be addressed. First, motions generated from text by the same model are expected to possess
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variable lengths. Second, there are usually multiple ways for a character to behave following the

same textual description. Third, from natural language perspective, the input descriptions may

have a wide range of forms, from being short & simple to very long & complex.

To address the aforementioned shortfalls and challenges, we propose a two-stage pipeline con-

sisting of text2length sampling and text2motion generation. Text2length estimates the distribution

function of visual motion length grounded on the input text. The role of text2motion is to generate

distinct 3D motions from the input text and the sampled motion length; this is realized by engaging

the temporal variational autoencoder (VAE) framework in its triplet form of prior, posterior, and

generator networks; moreover, motion snippet code is introduced as the internal representation in

VAE code and throughout our pipeline to characterize the temporal motion semantics, with its role

empirically examined in later ablation studies. Finally, a dedicated dataset (HumanML3D) is con-

structed, consisting of 44,970 textual descriptions for 14,616 3D human motions. It covers a wide

range of action types including but not limited to locomotive actions. Empirical evaluations on

both HumanML3D and KIT-ML datasets demonstrate the superior performance of our approach

over existing methods.

Our key contributions are summarized as follows. First, this work is to our knowledge the first

in stochastically generating 3D motions from text, capable of generating diverse 3D human motions

of variable lengths that are realistic-looking and faithful to the text input. Second, our approach

is flexible to work with input text ranging from simple to complex forms. This is made possible

by the text2length & text2motion modules, and the proposed motion snippet codes that are to be

detailed in later sections. Finally, a large-scale human motion dataset is constructed. It contains a

wide range of actions, with each motion sequence paired with three textual descriptions.

4.2 Our Approach

From a text description of M words, X = (x1, ..., xM ), our goal is to generate a 3D pose sequence,

P = (p1, ...,pT ′), with its length T ′ determined at test time. As shown in Fig. 4.2, we start by a

preprocessing step to train a motion autoencoder. This is followed by settling a reasonable motion
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Figure 4.2: Approach overview. (a) As a preprocessing step, a dedicated motion autoencoder is
trained on our training motion data to encode a motion sequence into a stream of motion snippet
codes, which then could be decoded back into motions. (b) Our training pipeline. Through text
encoder, the attentive word features (watt) are used by VAE networks as illustrated in Fig. 4.3.
The triplet structure of temporal VAE involving the prior, posterior, and generator networks is
employed to process the motion snippet codes (cs) and the reconstructed ones (ĉs). This leads
to the loss terms evaluating the reconstructed pose sequence (Lmotrec ) and the reconstructed code
sequence (Lcoderec ), respectively. Due to lack of space, some key ingredients are deferred to be
presented in Fig. 4.3. (c) Our inference pipeline. From the input text, text2length module is
activated to sample an intended motion length. Text features extracted through the text encoder
are then fed to the prior network, yielding a prior distribution. Generator samples latent vectors
from the prior distribution and produces a series of motion snippet codes (ĉs). The pose sequence
is finally obtained by decoding the snippet codes from the motion decoder pre-trained in (a).

length from text (Sec. 4.2.2), and subsequently synthesizing motions conditioned on the input text

and the sampled motion length (Sec. 4.2.3), by introducing an internal motion representation –

motion snippet codes (Sec. 4.2.1).

4.2.1 Motion Autoencoder

As the preprocessing step described in Fig. 4.2(a), an encoder E transforms the pose sequence

P = (p1, ...,pT ′) to a motion snippet code sequence, Cs =
(︁
c1s, ..., c

T
s

)︁
, achieved by applying 1-

D convolutions over temporal line; P̂ is then reconstructed with a deconvolutional decoder, D.
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Mathematically, this process is formulated as

Cs = E(P ), P̂ = D(Cs). (4.1)

To avoid foot sliding, our decoder D additionally predict foot contacts at each frame which are

not given to the encoder E. The foot contact label is a 4D binary vector that indicates the contact

status of heels and toes, obtained by thresholding the velocity of foot joints. During training,

this foot contact vector is concatenated with other features, forming the pose vector p. It is also

necessary to constrain the snippet code values and the differences of consecutive codes to encourage

sparsity and temporal smoothness. The final objective function becomes

LE,D =
∑︂
t′

∥p̂t′ − pt′∥1 + λspr
∑︂
t

∥cts∥1 + λsmt
∑︂
t

∥cts − ct−1
s ∥1. (4.2)

The autoencoder consists of two-layer convolutions with filter size of 4 and stride 2. As a result,

a motion snippet code cts has a 8-frame receptive field, amounting to around 0.5 second for 20

frame-per-second (fps) pose streaming; it also leads to a more compact internal code sequence with

T = T ′

4 . Compared to individual poses, snippet code captures temporal semantic information that

is crucial in smooth and faithful motion generation.

4.2.2 Text2length Sampling

As shown in Fig. 4.2(c), the purpose of our text2length sampling module is to approximate the

probability distribution of discrete motion length T conditioned on text, such that at inference

stage, a discrete time length T can be obtained by sampling from this learned distribution function,

p(T |x1, ..., xM ) given an input text. This module thus enables our approach in generating motions

of distinct lengths.

This is a typical density estimation problem with many practical options, among them we adopt

the neural network scheme of pixelCNN [220]. Since a motion sequence is internally represented in

our work as a series of snippet codes, our aim specifically boils to deciding the length of snippet
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codes. In inference, a text encoder extracts sentence-level features from the input text, which are

then fed into an MLP layer with softmax activation, producing a multinomial distribution over

discrete length indices {1, 2, ..., Tmax}. Here an increment of 1 corresponds to 4 pose frames, and

setting Tmax = 50 corresponds to 200 frames, amounting to 10 seconds for a 20 fps video. Its

training objective is defined by the cross entropy loss.

4.2.3 Text2motion Generation

Figure 4.3: Structure of our temporal VAE for text2motion generation: (a) generator Ftθ, and (b)
posterior network Ftϕ. Prior network Ftϕ has the same architecture as Ftϕ except different inputs.

Our text2motion generator contains a text encoder, and a temporal VAE model consisting a

triplet networks of generator Fθ, posterior Fϕ and prior Fψ, as in Fig. 4.2(b). The text encoder

extracts both the word-level w1:M and sentence-level s features from input text; our VAE generates

motion snippet codes c1:Ts one by one with a recurrent architecture: at time t, our posterior network

Fϕ approximates the posterior distribution qϕ
(︁
zt|c1:ts , c

)︁
conditioned on partial code sequence c1:ts

as well as word and sentence features c = (w1:M , s, ...). Instead of relating the posterior distribution

to a prior normal distribution N (0, I) as used by the literature, here it is related to a learned prior

distribution pψ(zt|c1:t−1
s , c), which is obtained by our prior network Fψ, based on the previous state

c1:t−1
s and conditions c. Overall, our VAE is trained by maximizing the following variational lower
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bound,

log p(Cs) ≥
T∑︂
t=1

[︃
Eqϕ(zt|c1:ts ,c) log pθ(c

t
s|c1:t−1

s , z1:t, c) −λKLDKL

(︁
qϕ(zt|c1:ts , c) ∥ pψ(zt|c1:t−1

s , c)
)︁ ]︃

.

(4.3)

The first term is to reduce reconstruction error Lrec, while the second term penalizes the KL-

divergence LKL between the posterior and the prior distributions.

Text Encoder. In addition to the word embeddings, we propose to incorporate the part-of-speech

(POS) tags of words into text encoder. POS tag explicitly indicates the word categories, thus

facilitates the localization of important words in a sentence. Furthermore, as in Fig. 4.2(b), an

external dictionary is manually constructed to collect motion-related words and categorize them

into four types: direction, body part, object and action. These one-hot word tags are fed into an

embedding layer and added to word embedding vectors. Our text encoder is realized in the form

of bi-directional GRUs, which take these embedding vectors as inputs and produces both sentence

feature s and word features w1:M .The former provides global contextual information and is used to

initialize the hidden units of VAE; the latter serves as partial inputs at each time step in the form

of local word attention, to be discussed next.

Local Word Attention (Fatt). Attentions assigned to each word may vary in the process of

predicting motions from text. This is addressed by our local word attention unit Fatt that engages

and interacts word features w1:M with motion context memory hθ (i.e. generator hidden unit) as

depicted in Fig. 4.3. The process of local word attention can be described as

Q = ht−1
θ WQ,K = w1:MWK ,V = w1:MWV ,

wt
att = softmax

(︃
QKT

√
datt

)︃
V, (4.4)

where WK ,WV ∈ Rdw×datt and WQ ∈ Rdh×datt are trainable weights, with dh, dw and datt the num-

ber of channels in generator hidden unit ht−1
θ , word features w1:M and attentive layer respectively.

wt
att is the multi-modal attentive vector obtained as time t.
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Time-to-Arrival Positional Encoding. In generating motions of variable lengths, it is impor-

tant to aware where we are and how far to go. This motivates us to encode the time-to-arrival

information T − t with positional encoding at each time step, as in Fig. 4.3. It is formulated as

PET−t,2i = sin

(︃
T − t

10000
2i
d

)︃
,

PET−t,2i+1 = cos

(︃
T − t

10000
2i
d

)︃
,

(4.5)

where the second subscript of the vector PE denotes the dimension index; d is the dimensionality

of input embedding.

Architecture of Temporal VAE. Fig. 4.2(b) illustrates the overall architecture of our temporal

VAE for text2motion generation; this is followed by Fig. 4.3, which brings a zoom-in view of the

generator and posterior network structures.

At time t, word features first interacts with generator memory unit ht−1
θ to yield the attentive

vector wt
att. Now concatenating the present and previous snippet codes (cts & ct−1

s ), and the

attentive vector wt
att to form an input vector, which is fed into a multi-layer perceptron (MLP);

its output is summed with time-to-arrival positional encoding PET−t, which then passes through

a GRU layer to produce the posterior distribution N (µϕ(t), σϕ(t)). Yielding prior distribution

N (µψ(t), σψ(t)) follows the same process, except not taking cts as input. In training, the generator

learns to reconstruct current snippet code ĉts from the input of ct−1
s , wt

att, and a noise vector zt

sampled from the posterior distribution. In testing, as the cts from real data is unavailable, zt is

instead sampled from the estimated prior distribution pψ(zt|c1:t−1
s , c) (Fig. 4.2(c)). Finally, the

output pose sequence p̂1:T ′ is produced by decoding the internal snippet code sequence c1:Ts with

the pre-trained motion decoder D (Sec. 4.2.1). In text2motion, motion decoder D is fine-tuned with

the rest networks.
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Final Objective. Our final objective function for text2motion generation becomes

L = Lcoderec + λmotLmotrec + λKLLKL, with

Lcoderec =
∑︂
t

∥ĉts − cts∥1,

Lmotrec =
∑︂
t′

∥p̂t′ − pt′∥1, (4.6)

LKL =
∑︂
t

KL(N (µϕ(t), σϕ(t))∥N (µψ(t), σψ(t))).

Training Scheme. To address the variable length sequence-to-sequence generation task, our

training process utilizes both curriculum learning [206] and scheduled sampling [205] strategies, as

follows. Starting from aiming to generate first Tcur snippet codes in sequence, we optimize our

model on training data that owns snippet code lengths equal or longer than Tcur. As long as the

reconstruction loss on the validation starts raising, then we move on to the next stage by appending

one more snippet code in the target sequence ; the complexity of the task is progressively increased

at every stage till the maximum time step Tmax of prediction is reached (i.e, Tcur = Tmax). In

addition, to bridge the gap of training and inference for sequence prediction, teacher forcing is

applied for the entire target snippet code sequence c1:Ts with probability of ptf , which means the

ground-truth snippet code is taken as input for the generation at next step. Accordingly, the

generated snippet code will instead serve as the input with probability 1 − ptf . As a boundary

condition, c0s is a constant vector that encodes mean poses using motion encoder E.

4.3 Our HumanML3D Dataset

Our HumanML3D dataset originates from a amalgamation of motion sequences from the Human-

Act12 [1] and AMASS [194] datasets, two large-scale datasets of 3D human motion captures that

are publicly accessible. They contains motions from a variety of human actions, such as daily ac-

tivities (e.g., ’walking’, ’jumping’), sports (e.g, ’swimming’, ’karate’), acrobatics (e.g, ’cartwheel’)

and artistry (e.g, ’dancing’). Unfortunately, these datasets come without textual descriptions of

76



Figure 4.4: HumanML3D annotation interface on Amazon Mechanical Turk.

the motions.

Several processing steps take place for data normalization, as follows. Motions are scaled to

20 FPS, and those longer than 10 seconds are randomly cropped to 10-second ones; they are then

retargeted to a default human skeletal template and properly rotated to face Z+ direction initially.

This is followed by a textual annotation process via the Amazon Mechanical Turk (AMT), where

native English-speaking turkers with average work approval rating above 92% are hired and asked

to describe a motion with at least 5 words. We collect 3 text descriptions for each motion clip from

distinct workers. A manual postprocessing step ensues to filter away abnormal textual descriptions.

As a result, our HumanML3D dataset becomes to our knowledge the largest and most diverse

collection of scripted human motions, consisting of 14,616 motions and 44,970 descriptions com-

posed by 5,371 distinct words. The total length of motions amounts to 28.59 hours, in which

the average motion length is 7.1 seconds. The minimum and maximum duration are 2s and 10s

respectively. In terms of the textual descriptions, their average and median lengths are 12 and

10, respectively. A tabular comparison of our HumanML3D versus the only existing motion-text

dataset, KIT Motion-Language [43] is presented in Table 4.1.

Fig. 4.4 presents the interface of annotating our HumanML3D dataset on Amazon Mechanical
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Figure 4.5: Examples in HumanML3D dataset. Two annotation examples in our HumanML3D
dataset are shown. Each motion sequence comes with 3 distinct script descriptions.

Dataset #Motions #texts Duration Vocab.

HumanML3D 14,616 44,970 28.59h 5,371
KIT-ML[43] 3,911 6,278 10.33h 1,623

Table 4.1: Comparisons of 3D human motion-language datasets.

Turk. Given an animation, users are encouraged to convey the information of action type, direction,

body parts, velocity, trajectory, relative position and style in text descriptions. If a motion is too

complicated to be described, we also provide a channel for users to describe a sub-interval of

presented animation, and give the start- and end- time point. Some exemplar good and bad

descriptions help workers form a clearer picture. We ask users to avoid over-general descriptions

(e.g. a man walks) and over-specific descriptions (e.g. absolute distance, angles, positions).

Unqualified descriptions are manually rejected. Fig. 4.5 presents two scripted motions in our

HumanML3D dataset. Each motion is described by 3 distinct worker on Amazon Mechanical

Turker, thus resulting in diversified descriptions.
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4.4 Experiments

Empirical evaluations are carried on both the in-house HumanML3D and KIT-ML [43] datasets.

We augment both datasets by mirroring motions and properly replacing certain keywords in the

descriptions (e.g. ’left’→ ’right’). Both datasets are split to training, test and validation sets

with 0.8 : 0.15 : 0.05 ratio. In training, all motions are trimmed such that numbers of frames are

multiples of 4. We apply the same pose processing steps as in [221].

Pose Representation. A pose p in our work is defined by a tuple of (ṙa, ṙx, ṙz, ry, jp, jv, jr, cf ),

where ṙa ∈ R is root angular velocity along Y-axis; (ṙx, ṙz ∈ R) are root linear velocities on XZ-

plane; ry ∈ R is root height; jp ∈ R3j , jv ∈ R3j and jr ∈ R6j are the local joints positions, velocities

and rotations in root space, with j denoting the number of joints; cf ∈ R4 is binary features

obtained by thresholding the heel and toe joint velocities to emphasize the foot ground contacts. In

particular, the 6D continuous rotation representation of [222] is adopted. Motions in HumanML3D

dataset follows the skeleton structure of SMPL [47] with 22 joints. Poses have 21 joints in KIT-ML.

Implementation Details. Our framework is implemented by PyTorch. Dimensions of pose

vector for HumanML3D and KIT-ML dataset are 263 and 251 respectively. The motion snippet

codes cs are 512-dimensional vectors. Word features are 300-dimensional embedding obtained via

GloVe [223]. The bi-directional GRU of our text encoder is with hidden size of 512. The triplet of

generator, posterior and prior networks in our VAE are 1-layer GRUs with hidden size 1,024. The

size of the noise vector z and the attention vector watt are 128 and 512, respectively. Values of

λspr, λsmt, λmot are set to 0.001, 0.001, and 1, respectively. λKL is set to 0.01 for HumanML3D, and

to 0.05 for KIT-ML dataset. Teacher forcing rate ptf is 0.4 throughout all experiments. We use

Adam optimizer with learning rate of 2e−4. In text2motion training, the learning rate of motion

decoder D is particularly set to 2e−5, 10 times smaller than other networks. Tmax and Tcur are 50

and 8 respectively.

Z-score normalization is applied to both training and testing data. And we scale the magnitude

of features (ṙa, ṙx, ṙz, ry, cf ) by a value of 5 to amplify their importance. In addition, to enhance
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the robustness of our method, we introduce randomness to training data feed by cutting off the

last 4 frames of each input pose sequence with probability of coin flipping.

4.4.1 Evaluation Metrics and Baselines

Evaluation Metrics from [1] are adopted here, which include Frechet Inception Distance (FID),

diversity and multimodality. For quantitative evaluation, a motion feature extractor and text

feature extractor is trained under contrastive loss to produce geometrically close feature vectors for

matched text-motion pairs, and vice versa. In addition, the R-precision and MultiModal distance

are proposed in this chapter as complementary metrics, as follows. Consider R-precision: for

each generated motion, its ground-truth text description and 31 randomly selected mismatched

descriptions from the test set form a description pool. This is followed by calculating and ranking

the Euclidean distances between the motion feature and the text feature of each description in the

pool. We then count the average accuracy at top-1, top-2 and top-3 places. The ground truth entry

falling into the top-k candidates is treated as successful retrieval, otherwise it fails. Meanwhile,

MultiModal distance is computed as the average Euclidean distance between the motion feature of

each generated motion and the text feature of its corresponding description in test set.

Baseline Methods. We compare our work to three state-of-the-art methods: Seq2Seq [37], Lan-

guage2Pose [12] and Text2Gesture [219]. As with all existing methods, they are deterministic

methods. Considering the stochastic nature of our task, we adapt two non-deterministic methods

from related fields for more fair and thorough evaluations: MoCoGAN [21] and Dance2Music [53].

The former is widely used for conditioned video synthesis, and the latter produces 2D dancing

motion sequences from audio signals. Proper changes are made to allow these methods generating

3D motions from text.

4.4.2 Quantitative Evaluation

Table 4.2 and Table 4.3 present the quantitative results on HumanML3D and KIT-ML datasets,

respectively. For fair comparison, each experiment is repeated 20 times, and a statistical interval
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Methods
R Precision↑

FID↓ MultiModal Dist↓ Diversity→ MultiModality↑
Top 1 Top 2 Top 3

Real motions 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Seq2Seq[37] 0.180±.002 0.300±.002 0.396±.002 11.75±.035 5.529±.007 6.223±.061 -
Language2Pose[12] 0.246±.002 0.387±.002 0.486±.002 11.02±.046 5.296±.008 7.676±.058 -
Text2Gesture[219] 0.165±.001 0.267±.002 0.345±.002 7.664±.030 6.030±.008 6.409±.071 -
MoCoGAN[21] 0.037±.000 0.072±.001 0.106±.001 94.41±.021 9.643±.006 0.462±.008 0.019±.000

Dance2Music[53] 0.033±.000 0.065±.001 0.097±.001 66.98±.016 8.116±.006 0.725±.011 0.043±.001

Ours w/ real length 0.457±.002 0.639±.003 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

Ours 0.455±.003 0.636±.003 0.736±.002 1.087±.021 3.347±.008 9.175±.083 2.219±.074

Table 4.2: Quantitative evaluation on the HumanML3D test set. All baselines directly use real
motion lengths, while our approach (Ours) instead resorts to the sequence length sampled from the
text2length module. ± indicates 95% confidence interval, and → means the closer to Real motions
the better. Bold face indicates the best result, while underscore refers to the second best.

Methods
R Precision↑

FID↓ MultiModal Dist↓ Diversity→ MultiModality↑
Top 1 Top 2 Top 3

Real motions 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

Seq2Seq[37] 0.103±.003 0.178±.005 0.241±.006 24.86±.348 7.960±.031 6.744±.106 -
Language2Pose[12] 0.221±.005 0.373±.004 0.483±.005 6.545±.072 5.147±.030 9.073±.100 -
Text2Gesture[219] 0.156±.004 0.255±.004 0.338±.005 12.12±.183 6.964±.029 9.334±.079 -
MoCoGAN[21] 0.022±.002 0.042±.003 0.063±.003 82.69±.242 10.47±.012 3.091±.043 0.250±.009

Dance2Music[53] 0.031±.002 0.058±.002 0.086±.003 115.4±.240 10.40±.016 0.241±.004 0.062±.002

Ours w/ real length 0.370±.005 0.569±.007 0.693±.007 2.770±.109 3.401±.008 10.91±.119 1.482±.065

Ours 0.361±.006 0.559±.007 0.681±.007 3.022±.107 3.488±.028 10.72±.145 2.052±.107

Table 4.3: Quantitative evaluation on the KIT-ML test set. All baselines directly use real mo-
tion lengths, while our approach (Ours) instead resorts to the sequence length sampled from the
text2length module. ± indicates 95% confidence interval, and → means the closer to the real mo-
tion the better.

with 95% confidence is reported. Since all baseline methods directly use the ground-truth motion

length in generating a new motion, for fair comparison, we also consider a variant of our approach

by removing the text2length sampling module (i.e. ours w/ real length). The high R precision

of real motions evidences the reliability of the proposed R-precision metric, which sets a upper

performance limit for all methods. Overall, we have the following observations from Table 4.2 and

Table 4.3. First, our approach clearly outperform all comparison methods by a significant margin,

over all metrics and on both datasets. Seq2Seq [37] and Text2Gesture [219] directly map textual

data to human dynamics by their neural machine translation architecture of encoder-decoder and

transformer; they however find difficulty in retaining the sense of realistic motions during their

processes. This results in low motion-based text retrieval precision, and high FID values.
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Figure 4.6: Visual results of our approach vs. those of Language2Pose[12]. Given each input de-
scription, we show two generated motions from our approach, and one motion from Language2Pose
(since it is a deterministic method). As our generated motions are of variable length, only key
frames from each sequence are displayed.
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Figure 4.7: Quantitative evaluation of user pref-
erence among the generated motions. For each
comparison method, a color bar (from blue to red)
indicates the percentage of its preference levels
(from least to most preferred).

Language2Pose [12] performs better on

generation quality by incorporating a co-

embedding space, yet the results are very far

from real motions. The motions generated by

non-deterministic methods of MoCoGAN [21]

and Dance2Music [52] are unfortunately of

severely low quality, as manifested by their low

diversity and multimodality scores – a result of

being unfaithful to the input text. On the con-

trary, the variant of our approach directly us-

ing real motion length (Ours w/ real length)

achieves the optimal performance on almost

all metrics. Our default approach that uses

text2length sampling (Ours) possesses a com-

parable performance in R-precision and FID

scores, yet it is more capable of synthesizing diverse motions, as reflected especially in the diversity
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& multimodality scores.

User Study In addition to the aforementioned objective evaluations, a Crowd-sourced subjective

evaluation via Amazon Mechanical Turk is conducted concerning the visual perceptual quality of

the generated motions. For each comparison method, motions are generated using 50 descriptions

randomly selected from the test set. For each description, the results of different methods are

shown to 5 AMT users, who are asked to rank their preference over these motions based on the

motion realism and the magnitude they are aligned to the intended text descriptions. Only AMT

users with master recognition are considered.

Figure 4.8: Visual comparison of motion results generated
by ours, ours w/o SnC, and our w/o Att, all provided with
the same description.

The preference results are shown

in Fig. 4.7. Overall our approach is

most preferred by the users; mean-

while, two non-deterministic methods

are least preferred, as their motions

exhibit severely distortions; Seq2Seq

and Text2Gesture gain comparably

more positive scores from users; Lan-

guage2Pose becomes the second most

preferred. Moreover, a significant

portion (around 72%) of motions gen-

erated by our approach are considered

at top-2 by users, i.e. being on par

with or only next to the real human

motions. This user study brings strong evidence of our approach capable of synthesizing visually

realistic motions.
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Methods
R Precision↑

FID↓
Top 1 Top 2 Top 3

Ours 0.455±.003 0.636±.003 0.736±.002 1.087±.021

w/o SnC 0.370±.002 0.538±.003 0.642±.003 1.200±.027

w/o Att 0.396±.002 0.570±.002 0.674±.003 1.833±.032

w/o PoS 0.443±.003 0.622±.003 0.723±.003 1.157±.016

w/o PoE 0.444±.005 0.627±.003 0.729±.002 1.229±.020

Table 4.4: Ablation study on the HumanML3D dataset, with SnC denoting motion snippet code,
Att the local word attention, PoS the Part-of-Speech tag, and PoE the Positional Encoding.

4.4.3 Qualitative Evaluation

Fig. 4.6 displays qualitative comparisons of our approach vs. Language2Pose [12], the best-

performing baseline. Motions from other comparison methods are too distorted to be rendered

with the SMPL human shapes [47]. Language2Pose sometimes captures partial concepts (e.g., sit

down) in the input text. It however fails to understand the global textual information. Moreover,

the generated motions tend to be frozen after a short while. In contrast, our approach is capable of

generating visually appealing motions which accurately reflect the fine details in text descriptions,

in terms of the gesture, actions, body parts and timing. Furthermore, from the same input text, our

generated motions are sufficiently diverse.

4.4.4 Ablation Analysis

Table 4.4 quantifies the effects of different components in our approach on HumanML3D dataset.

A sharp drop of performance is observed when snippet code (i.e. SnC) or word attentions (i.e. Att)

is removed, with a decreasing R-Precision of over 6%. On the contrary, the influence of positional

encoding (i.e. PoE) and part-of-speech (i.e. POS) are relatively less significant, given a drop of

R-precision around 2%. In Fig. 4.8, a visual comparison of synthesized motions from ours, ours w/o

SnC, and ours w/o Att from the same input text is shown. While snippet codes are not applied, the

resulting motion appears to be visually plausible and context-aware at the beginning; it however

fails to faithfully follow the text description as time goes on. This may be attributed to the lack of

characterization in temporal dependencies. Similar phenomenon is observed in motions from ours

w/o word attentions. On the other hand, the result of our approach aligns sufficiently with the
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Figure 4.9: Exemplar results of text2length. For each subplot, given one text description
(bottom), the estimated probability density of snippet code length is visualized in histogram. The
corresponding real lengths are highlighted in blue. Length of motion is 4 times of the snippet code.

textual concepts throughout.

4.4.5 Text2length sampling

Figure 4.10: Examples of failure cases.

In Figure 4.9, we gives some exam-

ples of estimated snippet code length

distribution from our text2length pro-

vided with text descriptions. Note

the corresponding motion lengths are

4 times of the presented number.

During training, motions with less

than 40 frames (2s) are discarded.

Therefore, here we produce the dis-

tribution over discrete values from 10

to 50. As shown, our method yields

probability densities in which the val-

ues with high confidence are reasonably close to the corresponding ground truth value. In addition,

cyclic motions (e.g., a person waves with their left hand) have relatively flatter probability density

compared to non-cyclic motions (e.g., Person stumbles and bends to their right side). During infer-
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Figure 4.11: Out-of-the-dataset results. Key frames are displayed. Yellow bound box indicates
the parts of description that generated motions fail to present.

ence, the target sequence length will be randomly sampled from the estimated probability density,

which further increases variety of generated results.

4.4.6 Failures and Limitations

Figure 4.11 presents two results generated from out-of-the-dataset descriptions. In other words, the

descriptions are collected independently to our dataset. Our method are able to demonstrate the

overall content in the text descriptions. Nonetheless, the model may fail in descriptions involving

rare actions (e.g., ’stomp’ ). In the second pose sequence, ’step back ’ is unfaithfully missed after

’stomping foot’.

When further looking into multimodal alignment, our method sometime fail in finer grained

descriptions. We showcase some failure results from our method in Figure 4.10. Actions such as

”scratch” and ”pitching baseball” are too sophisticated and beyond the capability of our method.

We also find our method less sensitive to fine-grained descriptions regarding to body parts, for

example, left/right leg. There are still space for exploring broader scenarios such as, text descriptions

with overlength, environment interactions.
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4.5 Conclusion and Outlook

This chapter looks into an emerging research problem of generating 3D human motions grounded on

natural language descriptions, where we especially emphasize on diverse and natural motion genera-

tion. It leads to our two-stage pipeline, where the text2length module sampled from the estimated

motion length distribution given text description; the text2motion module generates motions of

sampled motion length from input text, accomplished by our temporal VAE. A large-scale human

motion-language dataset is constructed, with the expectation of facilitating the development and

evaluation of new methods in the community. Extensive quantitative and qualitative experiments

demonstrate the effectiveness of our approach.

Outlook. In the future, it will be interesting to explore the large-scale pre-trained language model,

such as BERT [185] and CLIP [64], to accommodate more diverse and challenging textual inputs.

On the other hand, text description may find difficult precisely describing motion dynamics, which

is insufficient for professional use. Combining precise control signals (e.g., trajectory) and textual

description for motion generation could find broader range of audience in practical use.
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Figure 4.12: Additional examples generated from our method. For each description (left),
we show two distinct synthetic motions (right). Key frames are displayed for each sequence.
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Chapter 5

Generative Human Motion Stylization

in Latent Space

Fig. 5.1 gives a brief view of our fourth project, human motion stylization, which aims to revise the

style of an input motion while keeping its content unaltered. Unlike existing works that operate

directly in pose space, we leverage the latent space of pretrained autoencoders as a more expressive

and robust representation for motion extraction and infusion. Building upon this, we present a

novel generative model that produces diverse stylization results of a single motion (latent) code.

During training, a motion code is decomposed into two coding components: a deterministic content

code, and a probabilistic style code adhering to a prior distribution; then a generator massages the

random combination of content and style codes to reconstruct the corresponding motion codes.

Our approach is versatile, allowing the learning of probabilistic style space from either style-labeled

or unlabeled motions, providing notable flexibility in stylization as well. In inference, users can

opt to stylize a motion using style cues from a reference motion or a label. Even in the absence of

explicit style input, our model facilitates novel re-stylization by sampling from the unconditional

style prior distribution. Experimental results show that our proposed stylization models, despite

their lightweight design, outperform the state-of-the-art in style reenactment, content preservation,

and generalization across various applications and settings. This chapter has been accepted to the
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International Conference on Learning Representations [4].

Content inputs Diverse results of label-based (top) and prior-based stylization (bottom)

"".
. .
. .

""
.. .. .

#(%, ')
+

Style label: old

#(%, ')

Style inputs

Figure 5.1: (Top) Given an input motion and target style label (i.e., old), our label-based styl-
ization generates diverse results following provided label. (Bottom) Without any style indicators,
our prior-based method randomly re-stylizes the input motion using sampled prior styles zs. Five
distinct stylized motions from the same content are presented, with poses synchronized and history
in gray. See Fig. 5.3 (b) and (d) for implementations.

5.1 Introduction

The motions of our humans are very expressive and contain a rich source of information. For

example, by watching a short duration of one individual’s walking movement, we could quickly

recognize the person, or discern the mood, age, or occupation of the person. These distinguishable

motion traits, usually thought of as styles, are therefore essential in film or game industry for

realistic character animation. It is unfortunately unrealistic to acquire real-world human motions

of various styles solely by motion capture. Stylizing existing motions using a reference style motion

(i.e., motion-based), or a preset style label (i.e., label-based) thus becomes a feasible solution.

Deep learning models have recently enabled numerous data-driven methods for human motion

stylization. These approaches, however, still find their shortfalls. A long line of existing works [6,

103, 109, 110] are limited to deterministic stylization outcomes. [108, 111] though allows diverse

stylization, their results are far from being satisfactory, and the trained models struggle to generalize

to other motion datasets. Furthermore, all of these approaches directly manipulate style within raw
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poses, a redundant and potentially noisy representation of motions. Meanwhile, they often possess

rigid designs, allowing for only supervised or unsupervised training, with style input typically

limited to either reference motions or labels, as shown in Tab. 5.1.

In this chapter, we introduce a novel generative stylization framework for 3D human motions.

Inspired by the recent success of content synthesis in latent space [3, 183, 79, 171], we propose to use

latent motion features (namely motion code) of pretrained convolutional autoencoders as the inter-

media for motion style extraction and infusion. Compared to raw poses, the benefits are three-folds:

(i) Motion codes are more compact and expressive, containing the most discriminative features of

raw motions; (ii) Autoencoders can be learned once on a large dataset and reused for downstream

datasets. Thanks to the inductive bias of CNN [224], the learned motion code features typically

contains less noise, resulting in improved generalization, as empirically demonstrated in Tables 5.2

and 5.3; (iii) Practically, motion code sequences are much shorter than motions, making them more

manageable in neural networks. Building on this, our latent stylization framework decomposes the

motion code into two components: a temporal and deterministic content code, and a global proba-

bilistic style code confined by a prior Gaussian distribution. The subsequent generator recombines

content and style to synthesize valid motion code. During training, besides auto-encoding and

decoding, we swap the contents and styles between random pairs, and the resulting motion codes

are enforced to recover the source contents and styles through cycle reconstruction. To further

improve content-style disentanglement, we propose a technique called homo-style alignment, which

encourages the alignment of style spaces formed by different motion sub-clips from the same se-

quence. Lastly, the global velocity of resulting motions are obtained through a pre-trained global

motion regressor.

Our approach offers versatile stylization capabilities (Tab. 5.1), accommodating various condi-

tioning options during both training and inference: 1) Deterministic stylization using style from

exemplar motions; 2) In the label conditioned setting, our model can perform diverse styliza-

tion based on provided style labels, as in Fig. 5.1 (top); 3) In the unconditional setting, our

model can randomly sample styles from the prior distribution to achieve stochastic stylization,

as in Fig. 5.1 (bottom). Benefiting from our latent stylization and lightweight model design, our
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Supervised (w style label) Unsupervised (w/o style label)
Generative

Motion-based Label-based Motion-based Prior-based

Xia et al. [7] ✓

Holden et al. [103, 106] ✓

Aberman et al. [6] ✓

Park et al. [108] ✓ ✓ ✓

Tao et al. [110] ✓

Jang et al. [109] ✓

Ours ✓ ✓ ✓ ✓ ✓

Table 5.1: Our generative framework owns flexible design for training and inference.

approach achieves state-of-the-art performance while being 14 times faster than the most advanced

prior workJang et al. [109], as shown in Table 5.5.

Our key contributions can be summarized as follows. Firstly, we propose a novel generative

framework, using motion latent features as an advanced alternative representation, accommodating

various training and inference schemes in a single framework. Secondly, through a comprehensive

suite of evaluations on three benchmarks, our framework demonstrates robust and superior perfor-

mance across all training and inference settings, with notable efficiency gains.

5.2 Generative Motion Stylization

An overview of our method is described in Figure 5.2. Motions are first projected into the latent

space of autoencoders (Sec. 5.2.1). With this, our latent stylization framework learns to disentangle

the content and style information from the input motion (latent) code (Sec. 5.2.2). During inference,

our learned models support multiple applications for motion stylization (Sec. 5.2.3).

5.2.1 Motion Latent Representation

As a pre-processing step, we learn a motion autoencoder that builds the mapping between motion

and latent space. More precisely, given a pose sequence P ∈ RT×D, where T denotes the number

of poses and D pose dimension, the encoder E encodes P into a motion code z = E(P) ∈ RTz×Dz ,

with Tz and Dz the temporal length and spatial dimension respectively, and then the decoder D

recovers the input motion from the latent features, formally P̂ = D(z) = D(E(P)).
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A well-learned latent space should exhibit smoothness and low variance, which allows for con-

tinuous and gradual changes in the input data to be reflected in the latent space. It encourages

higher generalization ability and facilitates efficient deep learning based on this latent space. In

this chapter, we experiment with two kinds of regularization methods in latent space: 1) as in

VAE [149], the latent space is formed under a light KL regularization towards standard normal

distribution Llkld = λlkldDKL(z||N (0, I)) ; and 2) similar to [3], we train the classical autoen-

coder and impose L1 penalty on the magnitude and smoothness of motion code sequences, giving

Llreg = λl1∥z∥1 + λsms∥z1:Tz − z0:Tz−1∥1. Our motion encoder E and decoder D are simply 1-D

convolution layers with downsampling and upsampling scale of 4 (i.e., T = 4Tz), resulting in a

more compact form of data that captures temporal semantic information.

5.2.2 Motion Latent Stylization Framework

As depicted in Figure 5.2, our latent stylization framework aims to yield a valid parametric style

space, and meanwhile, preserve semantic information in content codes as much as possible. This is

achieved by our specific model design and dedicated learning strategies.

Model Architecture.

There are three principal components in our framework: a content encoder Ec, a style encoder Es

and a generator G, as in Figure 5.2 (a). The content encoder converts the a motion code z ∈ RTz×Dz

into a content code zc ∈ RT c
z×Dc

z that keeps a temporal dimension T cz , where global statistic

features (style) are erased through instance normalization (IN). For style, existing works [108, 6, 109]

generate deterministic style code from motion input. In contrast, our style encoder Es, taking z and

style label sl as input, produces a vector Gaussian distribution Ns(µs, σs) to formulate the style

space, from which a style code zs ∈ RDs
z is sampled. The asymmetric shape of content code zc and

style code zs are designed of purpose. We expect the former to capture local semantics while the

latter encodes global features, as what style is commonly thought of. Content code is subsequently

fed into the convolution-based generator G, where the mean and variance of each layer output are
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Figure 5.2: Approach overview. (a) A pre-trained autoencoder E and D (Sec. 5.2.1) builds
the mappings between motion and latent spaces. Motion (latent) code z is further encoded into
two parts: content code zc from content encoder (Ec), and style space Ns from style encoder (Es)
that take style label sl as an additional input. The content code (zc) is decoded back to motion
code (ẑ) via generator G. Meanwhile, a style code zs is sampled from style space (Ns), together
with style label (sl), which are subsequently injected to generator layers through adaptive instance
normalization (AdaIN). (b) Learning scheme, where style label (sl) is omitted for simplicity. Our
model is trained by autoencoding for content and style coming from the same input. When
decoding with content from different input (i.e., swap), we enforce the resulting motion code (ẑt)
to follow the cycle reconstruction constraint. For motion codes (z1, z2) segmented from the same
sequence (homo-style), their style spaces are assumed to be close and learned with style alignment
loss Lhsa.
modified by an affine transformation of style information (i.e., style code and label), known as

adaptive instance normalization (AdaIN). The generator aims to transform valid combinations of

content and style into meaningful motion codes in the latent space.

Learning Scheme

With the model mentioned above, we propose a series of strategies for learning disentangled content

and style representations. Figure 5.2 (b) illustrates our learning scheme. Note the input of style

label sl is omitted for simplicity. During training, for each iteration, we design three groups of

inputs: z1, z2 and z3, where z1 and z2 are motion code segments coming from the same sequence

and z3 can be any other segments.
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Figure 5.3: During inference, our approach can stylize input content motions with the style cues
from (a, c) motion, (b) style label and (d) unconditional style prior space.

AutoEncoding Lrec. We train our latent stylization framework partly through autoencoding,

that given motion latent codes, like z1 and z2, the generator learns to reconstruct the input from

the corresponding encoded content and style features, formally ẑ = G(Ec(z),Es(z)). For accurate

reconstruction, we decode the resulting motion latent codes (ẑ1 and ẑ2) back to motion space (P̂
1

and P̂
2
) through D, and apply L1-distance reconstruction in both latent and motion space:

Lrec =
∑︂

i∈{1,2}

∥ẑi − zi∥1 + ∥P̂
i
−Pi∥1 (5.1)

Homo-style Alignment Lhsa. For the motion segments in one motion sequence, we could usually

assume their styles are similar in all aspects. This is a strong supervision signal especially when

style annotation is unavailable, dubbed homo-style alignment in our work. Since z1 and z2 belong

to the same sequence, their learned style spaces are enforced to be close:

Lhsa = DKL(N 1
s (µ1

s, σ
1
s)∥N 2

s (µ2
s, σ

2
s)) (5.2)

Swap and Cycle Reconstruction Lcyc. To further encourage content-style disentanglement,

we adopt a cycle consistency constraint [97, 109] when content and style are swapped between

different motion codes, such as z2 and z3 in Fig. 5.2. Specifically, the generator G takes as input

the content from z2 and the style from z3, and then produces a new transferred motion code zt,
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which are supposed to preserve the content information from z2 and the style from z3. Therefore,

if we re-combine zt’s content and z2’s style, the generator should be able to restore z2. The same

to z̃3 that are recovered from the mix of zt’s style and z3’s content :

Lcyc =
∑︂

i∈{2,3}

∥z̃i − zi∥1 + ∥P̃
i
−Pi∥1 (5.3)

To ensure smooth and samplable style spaces, we apply a KL loss regularization to all style

spaces:

Lkl =
∑︂

i∈{1,2,3,t}

DKL(N i
s(µi

s, σ
i
s))∥N (0, I)) (5.4)

Overall, our final objective is L = Lrec+λhsaLhsa+λcycLcyc+λklLkl. We also have experimented

adversarial loss for autoencoding and cycle reconstruction as in [108, 6, 110], which however appears

to be extremely unstable in training.

Unsupervised Scheme (w/o Style Label). Collecting style labeled motions is resource con-

suming. Our approach can simply fit in unsupervised setting with just one-line change of code

during training—to drop out style label sl input.

Difference of Ns Learned w and w/o Style Label. While learning with style label, since both

the style encoder Es and generator G are conditioned on style label, the style space is encouraged

to learn style variables other than style label as illustrated in Fig. 5.7 (d). Whereas in unsupervised

setting where the networks are agnostic to style label, in order to precisely reconstruct motions,

the style space is expected to cover the holistic style information, including style label (see Fig. 5.7

(c)).

Global Motion Prediction

Global motion (i.e., root velocity) is perceptually a more sensitive element than local joint motion

(e.g., foot skating). However, given one motion, transferring its global motion to another style

domain is challenging without supervision of paired data. Previous works commonly calculate the
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target global motion directly from the content motion, or enforce them to be close in training.

This may fail when the transferred motion differs a lot from the source content. In our work, we

propose a simple yet effective alternative, which is a small 1D convolutional network that predicts

the global motion from local joint motion, simply trained on unlabeled data using objective of mean

absolute error. During inference, the global motion of output can be accurately inferred from its

local motion.

5.2.3 Inference Phase

As displayed in Figure 5.3, our approach at run time can be used in multiple ways. In supervised

setting: a) motion-based stylization requires the user to provide a style motion and a style

label as the style references; and b) label-based stylization only asks for a target style label for

stylization. With sampled style codes from a standard normal distribution N (0, I), we are able to

stylize source content motion non-deterministically. In the case of unsupervised setting: c) motion-

based stylization, which similarly, yields a style code from a reference motion; and d) prior-based

stylization that samples random style codes from the prior distribution N (0, I). Since there is no

other pretext style indications, the output motion could carry any style trait in the style space.

5.3 Experiments

We adopt three datasets for comprehensive evaluation. Aberman et al. [6] is a widely used motion

style dataset, which contains 16 distinct style labels including angry, happy, Old, etc, with total

duration of 193 minute. Xia et al. [7] is much smaller motion style collection (25 mins) that is

captured in 8 styles, with accurate action type annotation (8 actions). The motions are typically

shorter than 3s. The other one is CMU Mocap [225], an unlabeled dataset with high diversity and

quantity of motion data. All motion data is retargeted to the same 21-joint skeleton structure,

with a 10% held-out subset for evaluation. Our autoencoders and global motion regressor are

trained on the union of all training sets, while the latent stylization models are trained excursively

onAberman et al. [6], using the other two for zero-shot evaluation. During evaluation, we use the
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styles fromAberman et al. [6] test sets to stylize the motions from one of the three test sets. Style

space is learned based on motions of 160 poses (5.3s). Note our models supports stylization of

arbitrary-length content motions.

Metrics in previous motion stylization works heavily rely on a sparse set of measurements, typ-

ically human evaluation and style accuracy. Here, we design a suite of metrics to comprehensively

evaluate our approach. We firstly pre-train a style classifier onAberman et al. [6] train set, and use

it as a style feature extractor to compute style recognition accuracy and style FID. For dataset with

available action annotation (Xia et al. [7]), an action classifier is learned to extract content fea-

tures and calculate content recognition accuracy and content FID. We further evaluate the content

preservation using geodesic distance of the local joint rotations between input content motion and

generated motion. Diversity in [53] is also employed to quantify the stochasticity in the stylization

results.

Baselines. We compare our method to three state-of-the-art methods [6, 109, 108] in their respec-

tive settings. Among these, [6] and [108] are supervised methods learned within GAN framework.

[108] learns per-label style space, and a mapping between Gaussian space and style space. At run

time, it supports both deterministic motion-based and diverse label-based motion stylization. Note

recent work [110] is not included as their approach requires action labels for supervision, which are

unavailable in our context.

Implementation Details. Our models are implemented by Pytorch. Motion encoder E and

decoder D consists of 2 1-D convolution layers; global motion regressor is a 3-layer 1D convolution

network. The content encoder Ec and style encoder Es are also downsampling convolutional net-

works, where style encoder contains a average pooling layer before the output dense layer. The

values of λlkld, λl1 and λsms are all set to 0.001, and dimension Dz of z is 512. During training

our latent stylization network, the value of λhsa, λcyc and λkl are (1, 0.1, 0.1) and (0.1, 1, 0.01) in

supervised setting and unsupervised setting, respectively.
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Setting Methods
Aberman et al. [6] CMU Mocap [225]

Style Accuracy↑ Style FID↓ Geo Dis↓ Div↑ Style Accuracy↑ Style FID↓ Geo Dis↓ Div↑

Real Motions 0.997±002 0.002±000 - - 0.997±002 0.002±000 - -

Motion-based (S)

Aberman et al. [6] 0.547±016 0.379±018 0.804±003 - 0.445±009 0.508±011 0.910±002 -
Park et al. [108] 0.891±007 0.038±003 0.531±001 - 0.674±014 0.136±011 0.663±003 -
Ours w/o latent 0.932±008 0.022±002 0.463±003 - 0.879±008 0.046±004 0.636±004 -

Ours (V) 0.935±007 0.020±002 0.426±003 - 0.918±010 0.028±003 0.629±002 -
Ours (A) 0.945±007 0.020±002 0.344±002 - 0.918±007 0.031±003 0.569±002 -

Label-based (S)

Park et al. [108] 0.971±006 0.013±001 0.571±002 0.146±009 0.813±010 0.065±007 0.693±004 0.229±019

Ours w/o latent 0.933±009 0.023±002 0.447±002 0.174±017 0.882±008 0.053±003 0.611±003 0.266±021

Ours (V) 0.946±007 0.020±002 0.427±003 0.134±016 0.923±007 0.027±003 0.614±002 0.193±013

Ours (A) 0.942±006 0.019±001 0.344±003 0.050±006 0.915±005 0.031±003 0.571±003 0.067±005

Motion-based (U)

Jang et al. [109] 0.833±010 0.047±004 0.559±003 - 0.793±009 0.058±004 0.725±004 -
Ours w/o latent 0.780±014 0.048±003 0.466±004 - 0.761±009 0.082±005 0.645±003 -

Ours (V) 0.840±010 0.036±003 0.478±004 - 0.828±010 0.052±004 0.672±003 -
Ours (A) 0.804±011 0.040±003 0.441±003 - 0.799±009 0.056±003 0.648±004 -

Prior-based (U)
Ours w/o latent - - 0.431±003 1.169±030 - - 0.626±001 1.252±029

Ours (V) - - 0.418±003 1.069±028 - - 0.611±003 0.857±024

Ours (A) - - 0.436±004 1.187±029 - - 0.641±002 0.949±022

Table 5.2: Quantitative results on the Aberman et al. [6] and CMU Mocap test sets. ± indicates
95% confidence interval. Bold face indicates the best result, while underscore refers to the second
best. (S) and (U) denote supervised and unsupervised setting. (V) VAE and (A) AE represent
different latent models in Sec. 5.2.1

.

Data Processing. We mostly adopt the pose processing procedure in [3]. In short, a single

pose is represented by a tuple of root angular velocity, root linear velocity, root height, local joint

positions, velocities, 6D rotations [222] and foot contact labels, resulting in 260-D pose represen-

tation. Meanwhile, all data is downsampled to 30 FPS, augmented by mirroring, and applied with

Z-nomalization.

5.3.1 Quantitative Results

Table 5.2 and Table 5.3 present the quantitative evaluation results on the test sets of Aberman et

al. [6], CMU Mocap [225] and Xia et al. [7]. Note the latter two datasets are completely unseen

to our latent stylization models. We generate results using motions in these three test sets as

content, and randomly sample style motions and labels from Aberman et al. [6] test set. For fair

comparison, we repeat this experiment 30 times, and report the mean value with a 95% confidence

interval. We also consider the variants of our approach: non-latent stylization (ours w/o latent),

using VAE (Ours (V)) or AE ( Ours (A)) as latent model (See Sec. 5.2.1).

Overall, our proposed approach consistently achieves appealing performance on a variety of
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Setting Methods
Xia et al. [7]

Style Acc↑ Content Acc↑ Content FID↓ Geo Dis↓ Div↑

M-based (S)

Aberman et al. [6] 0.364±011 0.318±008 0.705±014 0.931±003 -
Park et al. [108] 0.527±006 0.441±009 0.381±010 0.698±001 -
Ours w/o latent 0.851±012 0.654±012 0.258±007 0.707±004 -

Ours (V) 0.934±006 0.579±016 0.210±004 0.716±003 -
Ours (A) 0.926±008 0.674±011 0.189±005 0.680±003 -

L-based (S)

Park et al. [108] 0.796±007 0.311±009 0.507±011 0.770±003 0.175±014

Ours w/o latent 0.843±012 0.655±013 0.264±008 0.691±003 0.281±032

Ours (V) 0.944±008 0.606±013 0.208±005 0.705±003 0.228±023

Ours (A) 0.933±011 0.668±014 0.193±005 0.679±002 0.095±013

M-based (U)

Jang et al. [109] 0.658±009 0.337±017 0.380±011 0.857±004 -
Ours w/o latent 0.734±014 0.584±011 0.272±008 0.721±003 -

Ours (V) 0.860±010 0.499±015 0.221±006 0.747±004 -
Ours (A) 0.814±011 0.588±010 0.217±006 0.735±003 -

P-based (U)
Ours w/o latent - 0.627±014 0.246±007 0.708±003 1.193±029

Ours (V) - 0.579±013 0.239±006 0.704±002 0.874±029

Ours (A) - 0.586±015 0.227±006 0.736±003 0.978±026

Table 5.3: Quantitative results on the Xia et al. [7] test set.

Setting Method Ours wins

M-based (S)
Aberman et al. [6] 78.69%

Park et al. [108] 73.67%
Ours w/o latent 65.98%

L-based (S) Park et al. [108] 73.06%

M-based (U) Jang et al. [109] 58.92%

Table 5.4: Human evaluation results.

Methods Runtime (ms)↓

Aberman et al. [6] 16.763
Park et al. [108](M) 37.247
Park et al. [108](L) 16.329

Jang et al. [109] 67.563
Ours (A)(M) 4.760

Table 5.5: Runtime comparisons.

applications across three datasets. In supervised setting, GAN approaches, such as Aberman et

al. [6] and Park et al. [108], tend to overfit on one dataset and find difficult on scaling to other

motions. For example, Park et al. [108] earns the highest achievement on style recognition on [6],

as 97.1%, while underperforms on the other two unseen datasets, with style accuracy of 81.3% and

79.6%. Furthermore, these methods usually fall short in preserving content, as evidenced by the

low content accuracy (31.8% and 44.1%) in Tab. 5.3. Jang et al. [109] is shown to be a strong

unsupervised baseline; it gains comparable and robust performance on different datasets, which

though still suffers from content preservation. On the contrary, our supervised and unsupervised

models commonly maintain high style accuracy over 90% and 80% respectively, with minimal loss

on content semantics. Among all variants, latent stylization improves the performance on almost

all aspects, including generalization ability, with slight compromise on diversity. Ours (V) tends

to own higher success rate of style transfer, while ours (A) typically outperforms on maintaining

content (i.e., Geo Dis and Content Accuracy).

User Study. In addition, an user study on Amazon Mechanical Turk is conducted to perceptually

evaluate our motion stylization results. 50 comparison pairs (on CMU Mocap [225]) between each

baseline model and our approach, in the corresponding setting, are generated and shown to 4 users,

who are asked to choose their favored one regarding realism and stylization quality. Overall, we

collect 992 responses from 27 AMT users who have master recognition. As shown in Table 5.4, our

method earns more user appreciation over most of the baselines by a large margin.
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(a) Ours (supervised) (b) Ours (unsupervised)

(c) Park et al. [2021]

(d) Jang et al. [2022]

Style label: Old

Style label: Depressed

Style label: Heavy

Style label: Heavy

Figure 5.4: Qualitative comparisons of motion-based stylization. Given the style motion (green)
and content motion (blue), we apply stylization using our methods (orange), Park et al. [108]
(supervised), and Jang et al. [109] (unsupervised). The content motions in top two cases come
from Aberman et al. [6], while the bottom two from CMU Mocap [225] test sets. Example artifacts
are highlighted using red signs.

Efficiency. Table 5.5 presents the comparisons of average time cost for a single forward pass with

160-frame motion inputs, evaluated on a single Tesla P100 16G GPU. Previous methods apply style

injection at each generator layers until the motion output, and usually involves computationally

intensive operations such as multi-scale skeleton-based GCN and forward-loop kinematics. Bene-

fiting from our latent stylization and lightweight network design, our model appears to be much

faster and shows the potential for real time applications.
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Content motions Diverse stylizations from style labels:
Femalemodel (top), and old (bottom)

Diverse stylizations of sampled style priors 

Figure 5.5: Two examples of diverse label-based stylization (middle) and prior-based stylization
(right).

Promt: A person walks backward in a 
small zig zag. [Femalemodel style]  

Promt: A person steps to the left sideways.
[Drunk style]
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Stylized T2M Stylized T2M

Figure 5.6: Two stylized text2motion examples, by applying our method behind text2motion [3].

5.3.2 Qualitative Results

Figure 5.4 presents the visual comparison results on test sets of Aberman et al. [6] (top two) and

CMU Mocap [225] (bottom two), in supervised (ours vs.Park et al. [108]) and unsupervised (ours

vs. Jang et al. [109]) settings. For our model, we use ours(V) by default. In unsupervised setting,

Jang et al. [109] has comparable performance on transferring style from style motion to content

motion; but it sometimes changes the actions from content motion, as indicated in red circles.

Supervised baselinePark et al. [108] follows similar trend. Moreover, the results of Park et al. [108]

on CMU MocapAberman et al. [6] commonly fail to capture the style information from input

style motion. This also agrees with the observation of limited generalization ability of GAN-based

models in Tab. 5.2. Other artifacts such as unnatural poses ( [6, 108]) and foot sliding(Jang et

al. [109]) can be better viewed in the supplementary video. This can be partially attributed to the

baselines directly applying global velocities of content motion for stylization results. In contrast,

our approach show reliable performance on both maintaining content semantics and capturing style

characteristics for robust stylization.
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Diverse and Stochastic Stylization. Our approach allows for diverse label-based and stochas-

tic prior-based stylization. As presented in Figure 5.5, for label-based stylization, taken one content

motion and style label as input, our model is able to generate multiple stylized results with inner-

class variations, i.e., different manners of old man walking. On the other hand, our prior-based

stylization can produce results with very distinct styles that are learned unsupervisedly from motion

data. These styles are undefined, and possibly non-existing in training data.

Stylized Text2Motion. Text-to-motion synthesis has attracted significant interests in recent

years [3, 5, 60, 62]; however, the results often exhibit limited style expression. Here in Fig. 5.6, we

demonstrate the feasibility of generating stylistic human motions from the text prompt, by simply

plugging our model behind an text2motion generator [3]. It is worth noting that the motions

from [3] differs greatly from our learning data in terms of motion domain and frame rate (20 fps

vs. ours 30 fps).

(a) Ours w/o latent 
(Unsupervised)

(c) Ours (V)
(Unsupervised) 

(d) Ours (V)
(Supervised)

(b) Ours (A)
(Unsupervised)

Figure 5.7: Style code visualization.

Style Code Visualization. Fig-

ure 5.7 displays the t-SNE 2D projec-

tion of our extracted style codes using

four model variants, where each sam-

ple is color-coded according to its la-

bel. In the unsupervised setting, each

style code is associated with global

style features that are expected to be

distinctive with respect to the style

category. It can be observed that our

latent stylization method produces clearer style clusters aligned with style labels compared to our

non-latent method, with VAE-based latent model (ours(V)) performing the best. While in super-

vised setting, as discussed in Sec. 5.2.2, our approach learns label-invariant style features (Fig. 5.7

(d)); These style features may arise from individual and environmental factors.
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Interpolation. We present the results of interpolation in the respective style spaces learned un-

supervisedly Fig. 5.8(a) and supervisedly Fig. 5.8(b). We are able to interpolate between styles

from different labels in unsupervised setting. Specifically, two style codes are extracted from sneaky

motion and heavy motion respectively. Then we mix these two style codes through linear interpo-

lation, and apply them to stylize the given content motion. In supervised setting, the generator is

conditioned on a specific style label. Here, we interpolate styles between two random style codes

sampled from the prior distribution N (0, I). Stylization results are produced conditioned a common

style label, heavy. From Figure 5.8, we can observe the smooth transitions along the interpolation

trajectory of two different style codes.

(a) Cross-style Interpolation

(b) Homo-style Interpolation

Figure 5.8: Style Interpola-
tion. (a) Cross-style interpola-
tion in unsupervisedly learned style
space. Styles are interpolated be-
tween style codes of sneaky (left)
and heavy (right) motions. (b)
Homo-style interpolation in super-
visedly learned style space. With
style label heavy as condition input,
styles are interpolated between two
style codes that randomly sampled
from N (0, I). One key pose for each
motion is displayed.

5.3.3 Component Analysis

Tab. 5.6 presents more quantitative results of our models on Aberman et al. [6] and Xia et al. [7]

test sets. Specifically, we provide the ablation evaluations in both supervised (S) and unsupervised

setting (U). For supervised setting, we conduct experiments on label-based stylization which also

compares the diversity; and for unsupervised setting we adopt motion-based stylization. Note the

base models are not necessarily our final models, here they are set only for reference.
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S / U λcyc λkl λhsa
Aberman et al. [6] Xia et al. [7]

Style Acc↑ Geo Dis↓ Div↑ Style Acc↑ Content Acc↑ Content FID↓

S (base) 0.1 0.01 0.1 0.937±008 0.415±003 0.153±016 0.913±008 0.669±013 0.202±006

0 0.856±011 0.516±003 0.382±031 0.829±014 0.525±015 0.230±005

0.5 0.936±008 0.369±003 0.091±011 0.924±007 0.706±010 0.197±007

0.001 0.962±006 0.429±004 0.125±016 0.933±009 0.619±014 0.197±005

0.1 0.940±008 0.414±004 0.141±015 0.914±009 0.634±013 0.209±005

0 0.915±007 0.367±003 0.129±011 0.836±007 0.605±011 0.213±006

0.01 0.955±006 0.419±003 0.107±011 0.957±007 0.609±011 0.207±006

1 0.880±011 0.423±003 0.302±026 0.833±011 0.625±013 0.236±006

U (base) 1 0.01 0.1 0.804±011 0.441±003 - 0.814±014 0.588±010 0.217±006

0 0.742±017 0.511±003 - 0.725±009 0.522±013 0.239±006

0.01 0.790±015 0.489±004 - 0.761±012 0.567±016 0.224±007

0.1 0.659±018 0.430±004 - 0.701±014 0.619±013 0.190±005

0 0.778±013 0.434±003 - 0.753±015 0.477±012 0.230±006

0.01 0.669±013 0.388±003 - 0.671±015 0.641±012 0.206±006

0.1 0.739±015 0.420±004 - 0.762±016 0.619±014 0.214±007

Table 5.6: Effect of hyper-parameters of ours (A) on the Aberman et al. [6] and Xia et al. [7] test
sets. ± indicates 95% confidence interval. Bold face indicates the best result, while underscore
refers to the second best. (S) and (U) denote supervised and unsupervised setting. For (S), we
present results of label-based stylization; and for (U), we present motion-based stylization.

Effect of λhsa. Homo-style alignment ensures the style space of the sub-clips from one motion

sequence to be close to each other; it is an important self-supervised signal in our approach. Our

experiment also shows a sharp drop of performance, on almost all criteria, while homo-style align-

ment is disabled (λhsa = 0). Increasing the weight of homo-style commonly helps style modeling

(style accuracy) and content preservation (content accuracy, FID), which however also comes with

lower diversity. A common observation is that the performance on style and content always con-

tradicts with the diversity. It could be possibly attributed to the inherently limited diversity in our

training datasetAberman et al. [6], which is collected by one person performing several styles.

Effect of λkl. λkl weighs how much the overall style space aligns with the prior distribution

N (0, I). Smaller λkl usually increases the capacity of the model exploiting styles, which on the

other hand deteriorate the performance on content maintenance and diversity.

Effect of λcyc. Cycle reconstruction constraint plays an important role in unsupervised setting. In

supervised setting, strong cycle reconstruction constraint is detrimental to style modeling. In con-

trast, while learning unsupervisedly, strengthening the cycle constraint enhances the performance
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Model Style Acc↑ Style FID↓ Geo Dis↓ Foot Skating↓

Ours (S) 0.945±007 0.020±002 0.344±002 0.130±001

Ours w/o GMP (S) 0.942±006 0.021±002 0.341±003 0.141±001

Ours (U) 0.840±010 0.036±003 0.478±004 0.102±001

Ours w/o GMP (U) 0.817±013 0.038±003 0.478±003 0.116±001

Table 5.7: Effect of global motion prediction (GMP, Sec. 5.2.2) on the [6] test set. ± indicates
95% confidence interval. Bold face indicates the best result. (S) and (U) denote supervised and
unsupervised setting. Results of motion-based stylization is presented.

on style transferring, and at the same time compromises the preservation of content.

Effect of Global Motion Prediction. To quantify the impact of global motion prediction

(shorthanded GMP, Sec. 5.2.2), we compare our full model with the variant without the GMP

module (ours w/o GMP), where global motions are derived directly from source content input as in

previous works. Furthermore, we introduce a foot skating metric, measuring the average velocity of

foot joints on the XZ-plane during foot contact. Table 5.7 presents the motion-based results on [6]

test set. On both supervised and unsupervised settings, our proposed GMP effectively mitigates

foot skating issue. Notably, GMP exhibits a more pronounced effect in the unsupervised setting,

leading to an approximate 2% improvement in style accuracy.

5.3.4 Limitations and Failure Cases

Figure 5.9: Failure cases.
Top row shows content
motion; bottom row shows
our corresponding results.
Stylization results of
breaking dance motion
(left) and push-up motion
(right) using happy style
label are displayed.

Firstly, our model may encounter difficulties when the input motion substantially deviates from

our training data. Figure 5.9 presents two failed stylization results on rare content actions, i.e.,

breaking dance and push-up. Given that our model has only seen standing motions during training,
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it commonly fails to reserve the lower-body movements in these two cases. Interestingly, our model

can still retain the general motions of upper-body.

Secondly, the underlying reason for different performance of ours(V) and ours(A) on for example,

diversity, style and content accuracy, remains unclear.

Lastly, certain styles are inherently linked to specific content characteristics, particularly within

the datasets of [6, 7]. For instance, styles like old, depressed and lazy typically relate to slow

motions, while happy, hurried, angry motions tend to be fast. As our stylization process aims

to preserve content information, including speed, there could be contradictions with these style

attributes. For instance, stylizing an slow motion with a hurried style might not yield an outcome

resembling a hurried motion. We acknowledge this aspect for potential exploration in future studies.

5.4 Conclusion

This chapter looks into the problem of 3D human motion stylization, with particular emphasis on

generative stylization in the neural latent space. Our approach learns a probabilistic style space

from motion latent codes; this space allows style sampling for stylization conditioned on reference

style motion, target style label, or free-form novel re-stylization. Experiments on three mocap

datasets also demonstrate other merits of our model such as better generalization ability, flexibility

in style controls, stylization diversity and efficiency in forward pass.
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Chapter 6

Reciprocal Generation of Motions and

Texts

The aim of this chapter is to investigate the bi-directional ties between 3D human full-body motions

and their language descriptions, as illustrated in Fig. 6.1. To tackle the existing challenges, we

propose the use of motion tokens, a discrete and compact motion representation. This provides

one level playing ground when considering both motions and text signals, as the motion and text

tokens, respectively. Moreover, our motion2text module is integrated into the inverse alignment

process of our text2motion training pipeline, where a significant deviation of synthesized text from

the input text would be penalized by a large training loss. Finally, the mappings in-between the two

modalities of motions and texts are facilitated by adapting the neural model for machine translation

(NMT) to our context. This autoregressive modeling of the distribution over discrete motion tokens

further enables the non-deterministic production of pose sequences, of variable lengths, from an

input text. Our approach is flexible, and could be used for both text2motion and motion2text

tasks. This chapter has been published as [5]. The related data, pre-trained model, and code are

publicly available: https://ericguo5513.github.io/TM2T/.
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Figure 6.1: An illustration of our bidirectional TM2T approach that captures the interplay between
text (left) and 3D motion (right) through the text2motion and motion2text modules.

6.1 Introduction

The interplay of vision and language is important in our daily life and social functions. It has

motivated considerable research progresses in related topics such as image or video captioning [24,

25], and language grounded generation of images or videos [22, 23, 145]. On the other hand,

when coming to human motion analysis, the connections between visual and textural aspects of

human motions are much less studied. Existing efforts primarily focus on unidirectional map-

ping of either motion captioning (motion2text) [48, 127] or language grounded motion generation

(text2motion) [12, 59, 37], with only two [39, 38] exploring the integration of visual 3D motions

and their textural descriptions. However, both studies tend to produce static pose sequences when

motion lengths are longer than 3-4 seconds. Both requires as input the initial pose & target motion

length. They are also deterministic methods. That is, each of them always generates the same

motions from a given text script. The first phenomenon of lifeless motions could be largely at-

tributed to the direct use of raw 3D poses as their motion representation, which is unnecessarily

redundant and yet fails to capture the local contexts of the underlying motion dynamics. The

second issue is rooted in their deterministic motion generation processes, that are in contrary to

our daily experiences, where multiple distinct motion styles often exist for a character to perform

under a same textural script. The conditioning on initial state and target length further imposes

strict constraint toward being practically feasible.

109



The aim of this chapter is to investigate the bi-directional ties between 3D human full-body

motions and their language descriptions, as illustrated in Fig. 6.1. Given the asymmetric nature of

the two underlying tasks, where text2motion is typically a much harder problem than the reciprocal

task, motion2text, our primary focus is text2motion, with a secondary emphasis on motion2text. It

is worth noting that in our approach, the module (also called motion2text for simplicity) developed

for motion2text task, is also utilized as an integral part of our text2motion training process, referred

to as inverse alignment in Fig. 6.2(c). Empirical evidences suggest the benefit of this strategy in

improving our performance for the text2motion problem. To address the lifeless motion issue, we

introduce motion token, a compact and semantically rich representation for 3D motions. This is

achieved by adapting the deep vector quantization [65] in our context to learn a spatial-temporal

codebook from the 3D pose sequences in the training set, with each entry in the codebook de-

scribing a particular kind of motion segments. 3D motions are then reconstructed by decoding

the compositions of a list of codebook entries. This way, a 3D human motion is represented as

a list of motion tokens (i.e. discrete indices to the codebook entries), each encoding its local

spatial-temporal context. This discrete representation also facilitates the follow-up neural machine

translators (NMTs) [226, 227] to construct mappings between the stream of motion tokens from

the motion side, and the stream of text tokens from the language side. Furthermore, our pro-

posed approach is able to explicitly model the underlying distribution of 3D motions conditioned

on texts, instead of regressing the mean motions as in previous works [12, 59, 37, 38, 39], thus

allows non-deterministic text2motion generation.

Our main contributions can be summarized as follows: (i) a motion token representation that

compactly encodes 3D human motions. Together with the other key ingredients, including NMT

mappings in-between the motion-token and text-token sequences, the motion2text-based inverse

alignment, as well as the distribution sampling for non-deterministic predictions, our approach

is capable of generating 3D motions (i.e. pose sequences) that are distinct in their lengths and

styles, visually pleasing, and importantly, semantically faithful to the same input script. Our

approach is also flexible, in that it can be use for both text2motion and motion2text tasks. (ii)

Extensive empirical evaluations over two motion-language benchmark datasets demonstrate the
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superior performance of our approach over a variety of state-of-the-art methods when examined on

each of the two tasks.

6.2 Our Approach

In what follows, we first detail how discrete motion tokens are obtained from raw 3D motions via

vector quantization in Sec. 6.2.1. Based on this new motion representation, autoregressive NMT

networks are used for modeling the bi-modal mappings of motion2text (Sec. 6.2.2) and text2motion

(Sec. 6.2.3), with inverse alignment elaborated in Sec. 6.2.3.

6.2.1 Motion Tokens

We pre-train a latent quantization model on 3D human motions as presented in Fig. 6.2 (a). Given

the pose sequence m ∈ RT×Dp , where T denotes the number of poses and Dp pose dimension, a

series of 1D convolutions are applied along the time (i.e. 1st) dimension that yields latent vectors

b̂ ∈ Rt×d(t < T ) with d being number of convolution kernels. This process could be written as

b̂ = E(m).

Then, b̂ is transformed to a collection of codebook entries bq ∈ Rt×d through discrete quantiza-

tion. Specifically, the learnable codebook B = {b}Kk=1 ⊂ Rd consists of K latent embedding vectors

with each a d-dimensional vector. The process of quantization Q(·) is operated by replacing each

row vector b̂i ∈ Rd in b̂ with its nearest codebook entry bk in B, defined as

bq = Q(b̂) :=
(︂

argminbk∈B∥b̂i − bk∥
)︂
∈ Rt×d. (6.1)

A following de-convolutional decoder D projects bq back to the 3D motion space as a pose

sequence, m̂. Now, the entire process can be formulated as

m̂ = D(bq) = D(Q(E(m))). (6.2)

111



Figure 6.2: Approach overview. (a) A 1D CNN based latent quantization model is firstly learned
to reconstruct training motions. After training, a motion can be subsequently converted to a tuple
of discrete motion tokens (i.e., codebook-indices). [BOM] and [EOM] are indicators of start and end
added in a motion token sequence. (b-c) Mappings between motion and text tokens are modeled
by autoregressive NMT networks and optimized by maximizing the log-likelihood of the targets
(LNLL and LmNLL). (c) While training text2motion, motion tokens sampled from the resulting
discrete distributions are inversely mapped to the text space via the learned motion2text model.
Loss LtNLL penalizes the inverse alignment error. Finally, the 3D pose sequence is obtained by
decoding motion tokens via the decoder D in (a).

This is trained via a reconstruction loss combined with embedding commitment loss terms that

encourage latent alignment and stabilize training process:

Lvq = ∥m̂−m∥1 + ∥sg[E(m)] − bq∥22 + β∥E(m) − sg[bq]∥22, (6.3)

where sg[·] denotes the stop-gradient operation, and β a weighting factor. Straight-through gra-

dient estimator [65] is employed to allow gradient backpropagation through the non-differentiable

quantization operation in Eq.(6.1) that simply copies the gradients from the decoder D to the

encoder E.

During inference, a pose sequence m ∈ RT×Dp can be represented as a sequence of discrete

codebook-indices s ∈ {1, ..., |B|}t (namely motion tokens) of quantized embedding vectors bq,
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Figure 6.3: Exemplar results of motion tokens (middle) and their corresponding pose sequences
(top and bottom). Here two 24-frame pose sequence examples are presented; each is reconstructed
from a motion token sequences of size 6. Each motion token is associated with a specific local
spatial-temporal context, visualized in 4-frame motions.

where si = k such that (bq)i = bk. By mapping motion tokens back to their corresponding

codebook entries bq = (bsi), human poses are then readily recovered using decoder m̂ = D(bq).

[BOM] and [EOM] are respectively added to the start and end of a motion token sequence as

boundary indicators.

Motion Token Contexts.

With vector quantization, each motion token is associated with a particular type of motion contexts,

thus a 3D motion can be regarded as a meaningful composition of motion tokens. We decode each

entry in the learned codebook B using decoder D and get 4-frame motion segments (t = T
4 in

our setting) that reflect the contexts associated with individual motion tokens. Fig. 6.3 presents

two raw pose sequences and their motion token representations, as well as the associated motion

segments. We can observe that, with global dependencies maintained in motion token sequences,

each motion token successfully captures the spatial-temporal characteristics in local contexts.
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6.2.2 Learning Motion2text

Given tokenized motion representation, we are able to efficiently build mapping from human motions

to texts using NMT models such as Transformer [226]. Assume the target is a sequence of text

tokens x ∈ {1, ..., |V|}N , where V is the word vocabulary and N number of words in the description.

As described in Fig. 6.2 (b), source motion tokens are fed into Transformer encoder and then the

decoder predicts the probability distribution of possible discrete text tokens at each step pθ(x|s) =∏︁
i pθ(xi|x<i, s). Thus the training goal is to maximize the log-likelihood of the target sequence,

LNLL = −
N−1∑︂
i=0

log pθ(xi|x<i, s). (6.4)

6.2.3 Learning Text2motion

Similarly, generating motions from language description can be modeled as autoregressive next-

token predictions conditioned on textual inputs. Here we investigate two NMT models as our back-

bone: attentive GRU and Transformer, and examine our idea of inverse alignment on GRU-based

model. Since Transformer is typically trained with full teacher force, optimizing the Transformer-

based text2motion with inverse alignment is extremely complicated. In other words, every time

when generating the density function of next motion token, we need to input the whole history

to the Transformer decoder and feed forward. As a result, to sample a complete motion token

sequence, the computational (or optimization) graph will be extremely high. Therefore, we specif-

ically introduce the procedure of using GRU based model as an example.

As is shown in Fig. 6.2 (c), firstly, a bi-directional GRU (i.e., NMT Encoder) models the

temporal dependencies in language x ∈ {1, ..., |V|}N , and produces sentence feature vector s ∈ Rdl

as well as word feature vectors w ∈ RN×dl , with dl denoting the dimensionality of hidden vectors.

The NMT decoder, modeled as attention-based GRU, processes s and w and predicts the probability

distribution over discrete motion tokens {1, ..., |B|} autoregressively. In particular, GRU decoder

is initialized by sentence vector s, and then takes the attention vector watt together with motion
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token as input at each time step. The attention vector wt
att at time t is obtained via

Q = ht−1W
Q,K = wWK ,V = wWV , (6.5)

wt
att = softmax

(︃
QKT

√
datt

)︃
V, (6.6)

where ht−1 ∈ Rdh is previous hidden state in decoder, WK ,WV ∈ Rdl×datt and WQ ∈ Rdh×datt

are trainable weights with dh and datt denoting the dimension of hidden unit and attention vector

respectively. During generation, motion tokens are sampled from predicted distribution pϕ(si|s<i, x)

recursively until the end token (i.e., [EOM]) comes with maximum probability.

Inverse Alignment.

Here we re-utilize the motion2text model in Sec. 6.2.2 to further align the semantics between texts

and generated motions. In detail, motion token sequence ŝ is sampled from the approximated

distribution pϕ(s|x), which is taken as input to the learned motion2text model and mapped to

language tokens x with probability pθ(x|ŝ). Note motion2text model is no longer updated here.

However, sampling from discrete distribution is non-differentiable that does not allow the gradients

back-propagating to the text2motion encoder and decoder. We instead resort to Gumbel-Softmax

reparameterization trick [228] to approximate the discrete sampling process. As the temperature τ

of Gumbel-Softmax approaches 0, the resulting Gumbel-Softmax distribution becomes identical to

the discrete distribution pϕ(si|s<i, x) and the sampled vectors become one-hot.

In summary, the final training objective turns to be

L = −

(︄
K−1∑︂
i=0

log pϕ(si|s<i, x) +
N−1∑︂
i=0

log pθ(xi|x<i, ŝ)

)︄
. (6.7)

3D pose sequences can finally be obtained by decoding sampled motion tokens ŝ using quan-

tization decoder D as described in Sec. 6.2.1. With discrete motion tokens and autoregressive

modeling, variable motion lengths are implicitly modeled by text2motion, that the NMT model

particularly learns to predict the end token i.e. [EOM] with maximum probability as signal of
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termination. Moreover, our proposed approach is easy to train, and does not suffer from the known

shortcomings in GAN and VAE such as ”mode collapse”.

6.3 Experiments

Extensive experiments are conducted to evaluate our learned motion2text (Sec. 6.3.5) and text2motion

mapping models(Sec. 6.3.6).

6.3.1 Datasets

Two 3D human motion-language datasets are considered for evaluation:

• HumanML3D [3] is a large 3D human motion dataset that covers a broad range of human

actions such as locomotion, sports, and dancing. It consists of 14,616 motions and 44,970

text descriptions. Each motion clip comes with at least 3 descriptions. Motions are re-scaled

to 20 frames per second (FPS), resulting in duration ranges from 2 to 10 seconds.

• KIT Motion-Language [43] contains 3,911 3D human motion clips and 6,278 text descriptions.

For each motion, the corresponding number of text descriptions ranges from one to four.

Following [12, 59], these pose sequences are all sub-sampled to 12.5 FPS.

Both datasets are split into training, testing and validation sets with ratio of 0.8:0.15:0.05,

which are further augmented by mirroring motions and replacing corresponding words in their text

descriptions (e.g., ’left’→’right’).

6.3.2 Metrics

Besides traditional measurements, we also manage to evaluate the correspondences between motion

and language using deep multimodal features. In particular, we train a simple framework that

engages a motion feature extractor and a text feature extractor under contrastive assumption, that

learn to produce geometrically closed feature vectors for matched text-motion pairs, and vice versa.
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R-Precision and Multimodal Distance are proposed to gauge how well a text and a motion

are semantically aligned. Take the evaluation of motion2text mapping for an example. For each

generated description, we take its corresponding motion as well as 31 randomly selected mismatched

motions from the test set as a motion pool. With text and motion feature extractors available,

Euclidean distances between the description feature and each motion feature in the pool are calcu-

lated and ranked. The ground truth entry falling into the top-k (k=1,2,3) candidates is regarded

as a successful retrieval. Then we count the average accuracy at top-k places, known as top-k R-

precision. Meanwhile, multimodal distance is computed as the average Euclidean distance between

text feature of each generated description and motion feature of its corresponding motion in the

test set. Computing R-precision and multimodal distance for text2motion mapping is analogically

carried out except generated motions and ground truth description are accordingly used.

Overall, an extensive set of metrics including Bleu [229], Rouge [230], Cider [126], BertScore [231],

R Precision and multimodal distance are adopted to quantitatively measure the performance of our

motion2text mapping. For evaluation of non-deterministic text2motion mapping, we primarily

follow [2] which uses Frechet Inception Distance (FID), diversity and multimodality, and our com-

plementary metrics, R precision and multimodal distance.

6.3.3 Implementation Details

Our framework is implemented by PyTorch. Our codebook B contains 1024 1024-dimentional em-

bedding vectors. Encoder and decoder in motion quantization are two 1D convolutional/upsampling

layers with resblocks. Weighting factor β is set to 1. Transformers for motion2text and text2motion

have 4 and 3 attention layers respectively, both with 8 attention heads with 512 hidden size. The

GRU based text2motion model have encoder with hidden size of 512 while the decoder is modeled

as 1-layer GRU with hidden size of 1024. This GRU model is trained with teacher force ratio of 0.4.

Bi-directional GRUs with hidden size 1024 are used for motion & text feature extractors. Adam is

used for all experiments with learning rate of 0.0002. We use the codebase NLPEval 1 to calculate

linguistic metrics (e.g., Bleu, Rouge). In text2motion, we use pre-trained 300-dimensional word

1https://github.com/Maluuba/nlg-eval
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Figure 6.4: Exemplar motion tokens and their associated local spatial-temporal contexts, visualized
in 4-frame motion segments.

embedding vectors from GloVe [223].

Pose Representation. For pose representation, we extract root angular velocity, root linear

velocities, root height, local joint positions, velocities, 6D rotations [222] and foot contacts from

raw motions as in [221]. This results in 263 and 251 dimensional pose vectors for HumanML3D (22-

joint skeleton) and KIT-ML (21-joint skeleton) dataset respectively. After all, Z-score normalization

is applied to both datasets.

During training motion quantization model, to mitigate foot sliding phenomenon, the decoder

D is asked to additionally predict foot contact information which is not provided to the encoder

E. We also scale the magnitude of root angular velocity, root linear velocities, root height and foot

contacts by a value of 5 to amplify their importance. To improve the robustness of our approach,

during learning motion2text and text2motion models, we randomly cutting off 0 to 4 frames at the

head or tail of pose sequences, which increases the data variance while not scarifying the quality.
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6.3.4 Motion Token Contexts

To visualize the local context associated with each motion token, we decode individual tokens

using the quantization decoder D, that produces short 4-frame motion segments for each token.

In Fig. 6.4, we present a gallery of learned motion tokens, as well as the motion segments reflecting

their contexts. Note given a tuple of motion tokens, the quantization decoder D learns to naturally

mingle their local context with seamless transitions, rather than simply concatenating their motion

segments.

6.3.5 Evaluation of Motion-to-text Translation

We adopt RAEs [38] and SeqGAN [48] as our baseline methods; RAEs [38] learns a shared embed-

ding space for language and human motions via two recurrent autoencoders, while SeqGAN [48]

combines recurrent sequence-to-sequence model with a discriminator that judges whether a sen-

tence is real or not. We further equip the vanilla RNN model in Seq2Seq [39] with late attention

as another strong baseline (termed as Seq2Seq(Att)). A variant of our method not using motion

tokens (ours w/o MT) is also engaged to analyze the role of motion token. Note that grammat-

ical tense and plural of words are neglected in our setting in order to ease the learning process.

Descriptions are produced using beam search strategy with size of 2 throughout all experiments.

Quantitative Analysis.

Table 6.1 presents the quantitative evaluation results of motion to language mapping on Hu-

manMl3D and KIT-ML test sets. The R precision and multimodal distance of real descriptions

are provided for reference.

The high R precision of real descriptions also evidences the effectiveness of learned motion

& text feature extractors and R precision metric. Overall, our method clearly outperforms all

baseline methods over a large margin on all datasets and metrics. RAEs [147] suffers from limited

capability on modeling long-term dependencies between 3D motion and language, thus resulting in
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Datasets Methods
R Precision↑

MM Dist↓ Bleu@1↑ Bleu@4↑ Rouge↑ Cider↑ BertScore↑
Top 1 Top 2 Top 3

Human
ML3D

Real Desc 0.523 0.725 0.828 2.901 - - - - -
RAEs [38] 0.100 0.188 0.261 6.337 33.3 10.2 37.5 22.1 10.7
Seq2Seq(Att) 0.436 0.611 0.706 3.447 51.8 17.9 46.4 58.4 29.1
SeqGAN [48] 0.332 0.457 0.532 4.895 47.8 13.5 39.2 50.2 23.4
Ours w/o MT 0.483 0.678 0.783 3.124 59.5 21.2 47.8 68.3 34.9
Ours 0.516 0.720 0.823 2.935 61.7 22.3 49.2 72.5 37.8

KIT-
ML

Real Desc 0.399 0.618 0.793 2.772 - - - - -
RAEs [38] 0.034 0.063 0.106 9.364 30.6 0.10 25.7 8.00 0.40
Seq2Seq(Att) 0.293 0.450 0.555 4.455 34.3 9.30 36.3 37.3 5.30
SeqGAN [48] 0.109 0.345 0.425 6.283 3.12 5.20 32.4 29.5 2.20
Ours w/o MT 0.284 0.466 0.595 3.979 42.8 14.7 39.9 60.1 18.9
Ours 0.359 0.561 0.668 3.298 46.7 18.4 44.2 79.5 23.0

Table 6.1: Quantitative evaluation results for motion-to-text translation on HumanML3D and
KIT-ML test sets. For each metric, the best score is highlighted in bold, with the second best
highlighted using underscore.

low R precision and linguistic evaluation scores. This is mitigated by introducing attention
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Figure 6.5: Statistics of human preference
amongst the generated descriptions for given hu-
man motions. For each method, a color bar (from
blue to red) indicated the the percentage of its
preference level (from least to most preferred).

mechanism in Seq2Seq(Att) or adversarial

learning in SeqGAN, which effectively lifts the

top-1 R precision up by more than 20% on Hu-

manML3D and 10% on KIT-ML test sets. By

utilizing motion token in our framework (ours),

we can observe a obvious jump on both linguis-

tic quality (i.e., Bleu, BertScore) and motion-

retrieval precision (i.e., R precision) of gener-

ated language descriptions, which is surpris-

ingly approaching the scores of real descrip-

tions.

Qualitative Comparisons.

Fig. 6.6 qualitatively compares the generated

descriptions from different methods grounded
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Figure 6.6: Examples of motion-to-text translation results from different approaches. Grammatical
tense and plural of words are not considered for simplifying learning process.

on the same 3D human motions. RAEs [39] consistently produces descriptions with simple patterns

like ”is in a” , resulting in meaningless linguistic combinations; descriptions from Seq2Seq(Att) and

SeqGAN are relatively more complex which however are usually incomplete and lack of details. Our

approach without motion tokens starts to generate long and complex descriptions. Nonetheless,

these descriptions sometimes fail to capture the characteristics of the input 3D motions (e.g, ”play a

violin”). In contrast, our approach is able to provide fluent and descriptive sentences that accurately

depict various aspects of 3D motions, such as body part (”both hand”), action category (”swing”,

”stretch”), spatial relations (”over head”).

User Study.

Beside the aforementioned objective evaluations, a crowd-sourced subjective assessment is also

conducted on Amazon Mechanical Turk (AMT) involving hundreds of AMT users with master

recognition. Particularly, descriptions are generated from 100 randomly selected 3D human motions

using different methods. For each human motion, the corresponding generated and real descriptions

are randomly reordered and shown to 3 AMT users, who are asked to rank their preference over

these descriptions based on the accuracy and fluency.
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Datasets Methods
R Precision↑

FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Human
ML3D

Real motions 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
Seq2Seq[37] 0.180±.002 0.300±.002 0.396±.002 11.75±.035 5.529±.007 6.223±.061 -
Language2Pose[12] 0.246±.002 0.387±.002 0.486±.002 11.02±.046 5.296±.008 7.676±.058 -
Text2Gesture[219] 0.165±.001 0.267±.002 0.345±.002 5.012±.030 6.030±.008 6.409±.071 -
Hier[59] 0.301±.002 0.425±.002 0.552±.004 6.532±.024 5.012±.018 8.332±.042 -
MoCoGAN[21] 0.037±.000 0.072±.001 0.106±.001 94.41±.021 9.643±.006 0.462±.008 0.019±.000

Dance2Music[53] 0.033±.000 0.065±.001 0.097±.001 66.98±.016 8.116±.006 0.725±.011 0.043±.001

Ours baseline(T) 0.351±.003 0.521±.003 0.627±.003 1.669±.025 4.046±.018 9.632±.072 4.352±.149

Ours baseline 0.351±.002 0.526±.002 0.635±.002 1.739±.022 3.965±.010 8.651±.083 3.139±.083

Ours 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076 2.424±.093

KIT-
ML

Real motions 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -
Seq2Seq[37] 0.103±.003 0.178±.005 0.241±.006 24.86±.348 7.960±.031 6.744±.106 -
Language2Pose[12] 0.221±.005 0.373±.004 0.483±.005 6.545±.072 5.147±.030 9.073±.100 -
Text2Gesture[219] 0.156±.004 0.255±.004 0.338±.005 12.12±.183 6.964±.029 9.334±.079 -
Hier[59] 0.255±.006 0.432±.007 0.531±.007 5.203±.107 4.986±.027 9.563±.072 -
MoCoGAN[21] 0.022±.002 0.042±.003 0.063±.003 82.69±.242 10.47±.012 3.091±.043 0.250±.009

Dance2Music[53] 0.031±.002 0.058±.002 0.086±.003 115.4±.240 10.40±.016 0.241±.004 0.062±.002

Ours baseline(T) 0.260±.005 0.426±.007 0.538±.008 4.628±.126 4.835±.076 12.16±.120 4.436±.106

Ours baseline 0.251±.007 0.418±.008 0.535±.007 4.814±.145 4.682±.048 10.13±.117 4.486±.117

Ours 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 9.473±.117 3.292±.081

Table 6.2: Quantitative evaluation results for text-to-motion mapping on HumanML3D and KIT-
ML test sets. All baselines requires fixed motion lengths, and initial poses are further in demand
for deterministic methods (first 4 baselines), which are all unnecessary in our approach. ± indicates
95% confidence interval, and → means the closer to the real motion the better. For each metric,
the best score is highlighted in bold, while the second best is hightlighted using underscore.

As shown in Figure.3, our method earns the most appreciation from users over all baselines. In

detail, RAEs [38] is the least preferred method, from which 97% descriptions are ranked at the last

place; Seq2Seq(Att) and SeqGAN [48] gain comparably more positive feedback from users; while

our method without motion tokens comes to the second to the best. This objective study solidly

substantiates the capability of our approach toward generating natural as well as motion-aligned

language descriptions.

6.3.6 Evaluation of Text-to-motion Generation

Mapping language to 3D human motions in a non-deterministic fashion is relatively new. Here

we compare our method to four state-of-the-art methods: Seq2Seq [37], Language2Pose [12],

Text2Gesture [219] and Hier [59]. As with all existing methods, they are unfortunately determin-

istic methods. Therefore, two stochastic methods in other related fields are adopted here for more
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Figure 6.7: Visual comparisons of generated motions from the same language descriptions. For
each description, we show its corresponding real motion, one motion from Hier [59] (since it’s
deterministic) and ours method without inverse alignment, as well as two motions from our method.

fair and in-depth evaluations: MoCoGAN [21] and Dance2Music [53]. MoCoGAN is widely used

for conditioned video sequence synthesis, and Dance2Music learns to map sequential audio signals

to 2D human dance motions. Proper changes are made to these methods for language-grounded 3D

human motion generation. Ours baseline and ours baseline(T) ablates inverse alignment module

during training Text2motion and map texts to motions using GRU and Transformer respectively.

We repeat each experiment 20 times and report the mean value with 95% statistical confidence

interval.

123



Quantitative Analysis.

Table 6.2 shows the quantitative evaluation results of language grounded 3D human motion gen-

eration. We can observe that the motions from non-determinstic baselines, MoCoGAN [21] and

Dance2Music [53], suffers from severely low quality and diversity, as reflected by their low R preci-

sion and mutimodality score. Deterministic baselines such as Seq2Seq [37] and Text2Gesture [219]

autoregressively regress human poses from textual input via vanilla sequence-to-sequence RNN and

transformer respectively. However, such straightforward approaches find difficulty in maintaining

textual semantics during generating human dynamics, which results in low motion-based text re-

trieval precision and high multimodal distance. Language2Pose [12] and Hier [59] propose to learn

a co-embedding space between language and human motions, while Hier [59] go one step forward

by incorporating the hierarchical topology of human skeleton. These have effectively boosted the

performance on both datasets. Nevertheless, there still remain a significant gap between the syn-

thetic results and real motions. Our framework of incorporating motion token and NMT model

(ours, ours baseline/baseline(T)) in general achieve better performance, while the inverse align-

ment strategy greatly benefits this framework (ours) with the top-1 and top-3 precision increased

by nearly 7% and 10% on HumanML3D.

Visual Comparisons.

In Fig. 6.7, we visually compares the generated motions from our method (ours), our method

not using inverse alignment (ours baseline), and the best performing state of the art, Hier [59].

The corresponding real motions are also provided for reference. Hier [59] could somewhat capture

partial concept (e.g., ”kick”) in descriptions, while the produced motions are unfaithfully in low-

mobility. Our method without inverse alignment is capable of generating natural and plausible

human motions. It sometimes however still fail to present fine details (e.g., ”right leg”) from texts.

On the contrary, our approach consistently produce visually appealing motions which precisely

convey the language concepts in descriptions.
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Figure 6.8: Examples of text-to-motion mapping by modifying specific parts of text descriptions
(highlighted in red box). For each description, we show two resultant motions.

Text Modifications

We also generate 3D motions from language by modifying fixed components of the input text

descriptions (Fig. 6.8). Our text2motion is able to capture the subtle semantic differences (e.g.,

”both/left/right hand”, ”over head”) in text descriptions.

Inference Time Analysis

Time consumption of generating 300 motions from different methods on one Nvidia2080Ti: Seq2Seq

(14s), Language2Pose (10s), MoCoGAN (1s), Dance2Music (1s), Text2Gesture (250s), Hier(39s),

Ours (9s). Benefiting from reduced time length, our approach is able to provide the same amount

of motions with even less time cost than most baselines.
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6.3.7 Limitations and Discussions

Although our proposed TM2T achieves superior performance on both tasks, some limitations and

potential remedies can be taken into accounts in future studies. First, the approximation in motion

quantization is unfortunately not lossless, which sometimes lead to blurriness and artifacts in local

body (e.g., foot sliding). Second, dealing with long and complex descriptions for text2motion is

somewhat beyond our capability. This could be possibly solved by using more advanced NMT

models. Third, our motion2text model is trained independently with text2motion. Learning these

two mapping functions jointly and reciprocally could be another interesting topic.

6.4 Conclusion

This chapter presents TM2T, a general framework that works on the bi-modal mutual mappings

between 3D human motions and texts, where motion2text is further reciprocally integrated as a

part of text2motion learning through inverse alignment. A new motion representation, motion to-

ken, is proposed that compress 3D motions into short sequence of discrete variables. With motion

token, neural machine translation networks efficiently build mappings in-between two modalities,

that is able to produces accurate descriptions as well as sharp and diverse 3D human motions. Our

proposed framework is shown to produce state-of-the-art results on two motion-language dataset

in both tasks.
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Chapter 7

Conclusion and Discussion

Studying humans has profound impacts on both our daily lives and society, which is also a fun-

damental subject in computer vision. In this thesis, our research focuses on developing a series

of solutions and resources to model and understand human actions intellectually using the recent

expressive deep learning apparatus. This involves a set of topics including diverse and natural mo-

tion synthesis from action categories (action2motion) or textual descriptions (text2motion), image-

based character animation (motion2video), generative motion stylization, and reciprocal generation

of motions and texts (motion2text-2-motion). From a technical perspective, we investigate a range

of deep generative models, including variational autoencoders and neural machine translation mod-

els. Although these models so far have achieved the-state-of-the-art performance, there are several

limitations to our works and potential directions for future research.

Expressive Generative Models: We have explored the use of Variation Autoencoders, GANs,

and GPT for human action generation. However, the field continues to advance with new models

such as diffusion models [140] and masked generative Tranformers [232, 233]. These approaches

may further improve the quality of generated motions and videos.

Dataset Scale, Diversity and Contexts: Currently, the motion datasets [43, 3, 1] are still in

small scale compared to video and image datasets. Since motions are mostly captured indoor, these

datasets often possess a limited number of objects, diversity, and content. Expanding these aspects
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of motion datasets, such as capturing outdoor motions, human-object interactions, and multi-person

interactions is crucial for real-world applications. These are all important yet underexplored topics.

Leveraging user-generated content on social media platforms like YouTube and TikTok can be a

valuable resource for collecting such data.

Physics-Based Motion Generation: In the real world, human actions follow the physical law

of the world, which has not been achieved yet in our works. For example, when jumping up and

down, the speed should be constrained by gravity, or the foot would never slide or penetrate the

ground floor. This is not easily integrated into a kinematic-based approach. One remedy is to

operate the generation in a physics simulation engine, employing reinforcement learning to model

the instant feedback from the simulated world.

Real-world Input Data: In Chapter 6, we make efforts to understand 3D human motions using

natural language, where high-quality captured 3D motions are experimented. This however is

different in the real world, where videos are more common and the estimated human poses are of

much lower quality. To adapt to these wild applications, we plan to involve real-world 2D videos

and motions on internet platforms for learning our models.

Real-Time Applications: Developing real-time capable models for applications like virtual re-

ality, gaming, and live performance is an exciting direction. Efficient algorithms and hardware

acceleration can be explored to meet the real-time processing requirements.

Human-AI Collaboration: Designing user-friendly interfaces and interactive systems that facil-

itate collaboration between humans and AI in motion synthesis and understanding tasks can make

these technologies more accessible and useful.

Quality of Appearance: our pipeline of motion animation in Chap. 3, though being automatic,

still involves complicated steps. Alternatively, recent advances [9, 234] directly reconstruct animat-

able 3D human avatars from single images, saving the intermediate steps of rigging. Moreover, the

final appearance quality of our pipeline highly relies on the performance of human avatar recon-

struction. If the camera views or human postures in the images are rare, the shape and texture

reconstruction could easily fail.
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