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Abstract

As a generalization of orthonormal wavelets, tight framelets (also called

tight wavelet frames) are of importance in both wavelet analysis and applied

sciences due to their many desirable properties in applications. However, tight

framelets are often derived from particular refinable functions satisfying certain

stringent conditions. Hence, we generalize the notion of tight framelets to

quasi-tight framelets, which is essentially a dual framelet system, but behaves

quite similar to tight framelets. This thesis makes a comprehensive study

of the construction of Oblique Extension Principle (OEP) based compactly

supported quasi-tight framelets.

For univariate cases, we show that the construction of quasi-tight framelets

is much more flexible than that of tight framelets. As a matter of fact, we can

always derive a quasi-tight framelet system with high order of vanishing mo-

ments from refinable functions associated with any arbitrary compactly sup-

ported refinement masks. Also, it is much easier to design moment correcting

filters for the quasi-tight framelet filter banks. We provide detailed algorithms

to construct quasi-tight framelets in Chapter 2 and Chapter 3, where the high-

est order of vanishing moments and the smallest number of framelet generators

can easily be achieved.

Symmetry is also a desirable property in the construction of framelet sys-

tems. So we construct univariate (anti-)symmetric quasi-tight framelets in

Chapter 4. We completely characterize the OEP-based (anti-)symmetric com-

pactly supported quasi-tight framelet systems with two generators.
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For the multivariate framelets, it is known in the literature that the prob-

lems of constructing tight framelets / dual framelets with vanishing moments

from general (nonseparable) refinable functions are quite hard. We propose

solutions to the problems using quasi-tight framelets. We constructively prove

that it is very easy to derive multivariate quasi-tight framelets with directional-

ity/high order of vanishing moments, from any arbitrary M-refinable function,

with any dilation matrix M.

The constructions of quasi-tight framelets are directly linked to the math-

ematical problem of (indefinite) spectral factorizations of matrices of Laurent

polynomials. We study/solve the spectral factorization problem in different

settings in each Chapter 2 to 5.
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for ξ ∈ [−π, π], where the dashed line is y = 0. (j) |â(ξ)| (in
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Chapter 1

Introduction to Quasi-tight

Framelets

1.1 Introduction to Wavelets and Framelets

Wavelets and framelets have been widely studied in the mathematical and

engineering communities, due to their applications in many areas such as image

processing and numerical algorithms. To introduce the work of this thesis, we

provide some necessary background of wavelets/framelets, and some notations

used here.

Let L2(Rd) denote the set of all square integrable functions on Rd. A set of

functions F ⊂ L2(Rd) is called a frame in L2(Rd) if there exist some positive

constants C1, C2 > 0, such that

C1‖f‖2
L2(Rd) 6

∑
h∈F
|〈f, h〉|2 6 C2‖f‖2

L2(Rd), ∀ f ∈ L2(Rd).

C1 and C2 are called the lower and upper frame bound respectively. In the

case that C1 = C2 = 1, we call it a (normalized) tight frame in L2(Rd).

The idea of frames is a generalization of an orthonormal basis in a Hilbert

space, while a frame system will generally be overcomplete (has redundancy).

To give a trivial example, if E is an orthonormal basis in L2(Rd) and G is a

finite subset of L2(Rd), then F = E ∪ G must be a frame in L2(Rd). See [8]

1



for a comprehensive review of the theory of frames in Hilbert spaces.

Framelet (wavelet frame) is a special type of frames in L2(Rd), where F

consists of an affine system. Suppose U is a d × d real valued matrix, we use

the following notation for the dilations and shifts of a function f :

fU ;k(x) := | det(U)|1/2f(Ux− k), x, k ∈ Rd.

In one-dimensional case, given a set of functions Ψ ⊂ L2(R), we call

AS(Ψ) :={ψ`2j ;k : ψ` ∈ Ψ, k ∈ Z, j ∈ Z}
:={2j/2ψ`(2j · −k) : ψ` ∈ Ψ, k ∈ Z, j ∈ Z}

the (dyadic) affine system generated by Ψ. If AS(Ψ) is a (tight) frame in

L2(R), then Ψ is called a homogeneous (tight) framelet in L2(R).

For the multidimensional case, we call a d×d matrix M a dilation matrix

if it is an integer matrix such that all its eigenvalues are greater than one in

modulus. Given a dilation matrix M, an M-affine system generated by

Ψ ⊂ L2(Rd) is defined as

ASM(Ψ) :={ψ`Mj ;k : ψ` ∈ Ψ, k ∈ Zd, j ∈ Z}
:={| det(M)|j/2ψ`(Mj · −k) : ψ` ∈ Ψ, k ∈ Zd, j ∈ Z}.

Ψ is called a homogeneous (tight) M-framelet in L2(Rd) if ASM(Ψ) is

a (tight) frame in L2(Rd). For generality, we use the notation in the mul-

tidimensional case L2(Rd) throughout this chapter. For the one-dimensional

problem (d = 1), although the case for general integer dilation M > 2 (also

called M-band wavelets/framelets) is also considered in the literature (e.g. see

[82, 12, 3, 84, 83, 38]), for simplicity, our study focuses on the case that M = 2

in this thesis.

Framelets are usually constructed by multiresolution analysis (MRA). We

only consider MRA with one generator here. A sequence {Vj}j∈Z of closed

subspaces in L2(Rd) forms a multiresolution analysis (MRA) of L2(Rd)

if for some φ ∈ L2(Rd)

2



(1) Vj = span{φ(Mj · −k) : k ∈ Zd} and Vj ⊂ Vj+1 for all integers j ∈ Z;

(2) ∪j∈ZVj = L2(Rd).

Note that V0 ⊂ V1 implies that there exists some sequence a = {a(k)}k∈Zd ,
such that

φ = | det(M)|
∑
k∈Zd

a(k)φ(M · −k). (1.1.1)

Hence, φ is called an M-refinable function (or scaling function in wavelet

analysis), and a is called a refinement mask (filter). The first condition

in MRA shows that Vj is shift invariant in its scale level, i.e., f ∈ Vj implies

f(· − M−jk) ∈ Vj for all k ∈ Zd. MRA is used to approximate functions

in L2(Rd) with different scale/resolution levels. For a function f ∈ L2(Rd),

let Pjf be the orthogonal projection of f into the space Vj, then Pjf → f

in L2(Rd) as j → ∞. For a framelet Ψ in L2(Rd), if there exists an MRA

generated by some φ ∈ L2(Rd), such that Ψ ⊂ V1, then Ψ is called an MRA-

based framelet. That is, for each ψ` ∈ Ψ, there exists some sequence b` =

{b`(k)}k∈Z, such that

ψ` = | det(M)|
∑
k∈Zd

b`(k)φ(M · −k), ∀ψ` ∈ Ψ. (1.1.2)

For detailed studies about shift invariant spaces/MRA-based framelets, see

[15, 9, 45, 17] and many references therein.

For an integrable function f ∈ L1(Rd), its Fourier transform f̂ is defined to

be f̂(ξ) :=
∫
Rd f(x)e−ix·ξdx for ξ ∈ Rd. The Fourier transform can be naturally

extended to square integrable functions in L2(Rd) and tempered distributions.

By l0(Zd) we denote the set of all finitely supported sequences/filters a =

{a(k)}k∈Zd : Zd → C on Zd. For a filter a ∈ l0(Zd), its support is defined as

supp(a) := {k ∈ Zd : a(k) 6= 0} and its Fourier series (or symbol) is defined to

be â(ξ) :=
∑

k∈Zd a(k)e−ik·ξ for ξ ∈ Rd, which is a 2πZd-periodic trigonometric

polynomial in d variables. In particular, by δ we denote the Dirac sequence

such that δ(0) = 1 and δ(k) = 0 for all Zd\{0}. For γ ∈ Zd, we also use the

notation δγ to stand for the sequence δ(· − γ), i.e., δγ(γ) = 1 and δγ(k) = 0

for all k ∈ Zd\{γ}. Note that δ̂γ(ξ) = e−iγ·ξ. In frequency domain, equations

3



(1.1.1) and (1.1.2) can be written as

φ̂(MTξ) = â(ξ)φ̂(ξ), ψ̂`(MTξ) = b̂`(ξ)φ̂(ξ).

Let ψ1, . . . , ψs, ψ̃1, . . . , ψ̃s ∈ L2(Rd). We say that ({ψ̃1, . . . , ψ̃s}, {ψ1, . . . , ψs})
is a homogeneous dual M-framelet in L2(Rd) if both {ψ̃1, . . . , ψ̃s} and

{ψ1, . . . , ψs} are homogeneous M-framelets in L2(Rd) such that

〈f, g〉 =
∑
j∈Z

s∑
`=1

∑
k∈Zd
〈f, ψ̃`Mj ;k〉〈ψ`Mj ;k, g〉, ∀ f, g ∈ L2(Rd) (1.1.3)

with the above series converging absolutely. It follows directly from (1.1.3) that

every function f ∈ L2(Rd) has the following multiscale framelet representation:

f =
∑
j∈Z

s∑
`=1

∑
k∈Zd
〈f, ψ̃`Mj ;k〉ψ`Mj ;k (1.1.4)

with the series converging unconditionally in L2(Rd). Also, if {ψ1, . . . , ψs} is a

homogeneous tight M-framelet in L2(Rd), then it is self-dual, i.e., ({ψ1, . . . , ψs},
{ψ1, . . . , ψs}) is a homogeneous dual M-framelet in L2(Rd).

Compactly supported MRA-based dual M-framelets can be obtained by a

general procedure called Oblique Extension Principle (OEP) introduced

in [11, 17]. Given Θ, a, b1, . . . , bs, ã, b̃1, . . . , b̃s ∈ l0(Zd), where â(0) = ̂̃a(0) = 1,

we can define

φ̂(ξ) :=
∞∏
j=1

â((MT)−jξ), ̂̃φ(ξ) :=
∞∏
j=1

̂̃a((MT)−jξ), ξ ∈ Rd. (1.1.5)

Then it is trivial to observe that φ and φ̃ are both M-refinable functions/distributions

satisfying

φ̂(MTξ) = â(ξ)φ̂(ξ), ̂̃φ(MTξ) = ̂̃a(ξ)̂̃φ(ξ).
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Define

ψ̂`(MTξ) = b̂`(ξ)φ̂(ξ), ̂̃ψ`(MTξ) = ̂̃b`(ξ)̂̃φ(ξ), a.e. ξ ∈ Rd, ` = 1, . . . , s.

(1.1.6)

Then ({ψ̃1, . . . , ψ̃s}, {ψ1, . . . , ψs}) is a homogeneous dual M-framelet in L2(Rd)

if and only if φ, φ̃ ∈ L2(Rd), Θ̂(0) = 1,

b̂1(0) = · · · = b̂s(0) = ̂̃b1(0) = · · · = ̂̃bs(0) = 0, (1.1.7)

and ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs})Θ is a dual M-framelet filter bank, i.e.,

Θ̂(MTξ)̂̃a(ξ)â(ξ + 2πω)+ ̂̃b1(ξ)̂b1(ξ + 2πω)+· · ·+ ̂̃bs(ξ)̂bs(ξ + 2πω) = δ(ω)Θ̂(ξ),

∀ω ∈ ΩM, ξ ∈ Rd, (1.1.8)

where ΩM := [(MT)−1Zd] ∩ [0, 1)d. A filter bank {a; b1, . . . , bs}Θ is called a

tight M-framelet filter bank if ({a; b1, . . . , bs}, {a; b1, . . . , bs})Θ is a dual

M-framelet filter bank.

It is known in [45, Theorem 7.1.8] that {ψ1, . . . , ψs} is a tight M-framelet

in L2(Rd) if and only if {a; b1, . . . , bs}Θ is a tight M-framelet filter bank and

Θ̂(0) = 1. Hence one does not need to check the necessary conditions φ ∈
L2(Rd) and b̂1(0) = · · · = b̂s(0) = 0 in advance for tight framelets. Conse-

quently, the construction of dual/tight framelets boils down to the construc-

tion of dual/tight framelet filter banks. One-dimensional tight framelets have

been well investigated and constructed in the literature, to only mention a few,

see [11, 16, 17, 35, 39, 43, 44, 45, 48, 58, 73, 78] and many references therein.

In particular, one-dimensional tight 2-framelets with symmetry property have

been extensively studied in [40, 43, 48] and references therein.

Define N0 := N ∪ {0}. For µ = (µ1, . . . , µd)
T ∈ Nd

0 and x = (x1, . . . , xd)
T ∈

Rd, we define |µ| := µ1 + · · ·+ µd, x
µ := xµ1

1 · · · xµdd and ∂µ := ∂µ1

1 · · · ∂µdd . For

m ∈ N0 and smooth functions f and g on Rd, we shall simply use the big O
notation f(ξ) = g(ξ) + O(‖ξ‖m) as ξ → 0 to stand for ∂µf(0) = ∂µg(0) for

all µ ∈ Nd
0 with |µ| < m. We say that the sequence a satisfies order m sum
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rules with respect to M, if

â(ξ + 2πω) = O(‖ξ‖m), ξ → 0, ∀ω ∈ ΩM\{0}. (1.1.9)

We define sr(a,M) to be the largest nonnegative integer m satisfying (1.1.9).

Since â(0) = ̂̃a(0) = 1, we now trivially see that (1.1.7) and (1.1.8) imply

sr(a,M) > 1. In our study of one-dimensional (d = 1) dyadic (M = 2)

framelets, we simply use the notation sr(a) := sr(a, 2). Given a sequence

a ∈ l0(Zd) and â(0) = 1, suppose φ ∈ L2(Rd) is generated from a through

(1.1.5), then sr(a,M) is related to the approximation property of the shift in-

variant space generated by φ (e.g., see [57]). The sequence a satisfying â(0) = 1

and (1.1.9) with m > 1 is also called a low-pass filter in the engineering

community.

In order to check the technical condition φ ∈ L2(Rd), we can calculate the

smoothness exponent. Let a ∈ l0(Zd) with â(0) = 1 and m := sr(a,M). For

1 6 p 6∞, we now introduce a technical quantity (see [37]):

smp(a,M) :=
d

p
− logρ(M) ρm(a,M)p and sm(a,M) := sm2(a,M), (1.1.10)

where ρ(M) is the spectral radius of M and

ρm(a,M)p := | det(M)| sup{ lim
n→∞

‖an ∗ (∇µδ)‖1/n

lp(Zd)
: µ ∈ Nd

0, |µ| = m}

with ân(ξ) := â(ξ)â(MTξ) · · · â((MT)n−1ξ). Let φ be defined in (1.1.5). If

sm(a,M) > 0, then φ ∈ L2(Rd) and moreover,
∫
Rd |φ̂(ξ)|2(1 + ‖ξ‖2)τdξ < ∞

for all 0 6 τ < sm(a,M).

For a compactly supported function ψ ∈ L2(Rd), we say that ψ has order

m vanishing moments if∫
Rd
ψ(x)xµdx = 0, ∀µ ∈ Nd

0, |µ| < m,

or equivalently, ψ̂(ξ) = O(‖ξ‖m), ξ → 0. (1.1.11)

In particular, we define vm(ψ) := m for the largest possible integer m in
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(1.1.11). For a sequence b ∈ l0(Zd), we similarly define vm(b) to be the largest

possible integer m ∈ N0 such that b̂(ξ) = O(‖ξ‖m) as ξ → 0. That is, the

sequence b has the order vm(b) vanishing moments. The sequence b with

vm(b) > 1 is called a high-pass filter in the engineering community. If ψ

is derived from a function φ with φ̂(0) 6= 0 through ψ̂(MTξ) = b̂(ξ)φ̂(ξ) for

some b ∈ l0(Zd), then it is trivial to see that vm(ψ) = vm(b). Note that the

condition in (1.1.7) is equivalent to saying that all the filters b1, . . . , bs, b̃1, . . . , b̃s

have order one vanishing moment (i.e., the basic vanishing moment). The

notion of vanishing moments plays the key role for the sparsity of a framelet

representation in (1.1.4). Therefore, vanishing moments are one of the most

desirable properties of wavelets and framelets.

1.2 From Tight Framelets to Quasi-tight Framelets

By definition, homogeneous tight M-framelet {ψ1, . . . , ψs} satisfies

C1‖f‖2
L2(Rd) 6

∑
j∈Z

s∑
`=1

∑
k∈Zd
|〈f, ψ`Mj ;k〉|2 6 C2‖f‖2

L2(Rd), ∀ f ∈ L2(Rd).

(1.2.1)

with the two frame bounds C1 = C2 = 1. So the inequalities in (1.2.1) become

equalities. Besides this energy preservation property, another desirable prop-

erty is that tight framelets are self-dual, i.e., (1.1.4) holds with {ψ̃1, . . . , ψ̃s} the

same as {ψ1, . . . , ψs}. For a given dual M-framelet ({ψ̃1, . . . , ψ̃s}, {ψ1, . . . , ψs})
in L2(Rd), every function f ∈ L2(Rd) has the representation in (1.1.4). In many

application problems of framelets, each ψ̃` models some desired feature cap-

turing certain key singularities. For example, in images, ψ̃` may behave like an

edge or texture. If f contains such (scaled and shifted) feature ψ̃`Mj ;k for some

1 6 ` 6 s, j ∈ N0 and k ∈ Zd, then the coefficient 〈f, ψ̃`Mj ;k〉 has a large signif-

icant magnitude. Therefore, we can capture such desired feature in f by ob-

serving a significant coefficient 〈f, ψ̃`Mj ;k〉. However, we reconstruct f through

(1.1.4) by using 〈f, ψ̃`Mj ;k〉ψ`Mj ;k. If ψ` is very similar/close to ψ̃`, then we indeed

are able to capture the desired feature ψ̃`Mj ;k in f . However, if this is not the

case, then the representation in (1.1.4), which can exactly reconstruct f , do not
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make sense to extract and represent features in f . This is probably the main

reason that only homogeneous dual framelets ({ψ̃1, . . . , ψ̃s}, {ψ1, . . . , ψs}) in

L2(Rd), with ψ̃` being similar to ψ` for all ` = 1, . . . , s, are useful in applica-

tions. The ideal case that ψ̃` = ψ` for all ` = 1, . . . , s leads to tight framelets.

However, constructing tight framelets is not always an easy task. Let us

introduce the difficulties and challenges here.

For a matrix or matrix function A(ξ), we define A?(ξ) := A(ξ)
T
, the trans-

pose of the complex conjugate of A(ξ). In the construction of univariate

(d = 1) dyadic (M = 2) framelets, we can rewrite (1.1.8) as ̂̃b1(ξ) · · · ̂̃bs(ξ)̂̃b1(ξ + π) · · · ̂̃bs(ξ + π)

[ b̂1(ξ) · · · b̂s(ξ)

b̂1(ξ + π) · · · b̂s(ξ + π)

]?
=Ma,ã,Θ(ξ),

(1.2.2)

where Ma,ã,Θ(ξ) is defined as:

Ma,ã,Θ(ξ) :=

[
Θ̂(ξ)− Θ̂(2ξ)̂̃a(ξ)â(ξ) −Θ̂(2ξ)̂̃a(ξ)â(ξ + π)

−Θ̂(2ξ)̂̃a(ξ + π)â(ξ) Θ̂(ξ + π)− Θ̂(2ξ)̂̃a(ξ + π)â(ξ + π)

]
.

(1.2.3)

For the case that the primal functions ψ` and dual functions ψ̃` are derived

from the same refinable function φ, i.e., a = ã, we simply write Ma,Θ(ξ) :=

Ma,ã,Θ(ξ). It is easy to conclude from (1.2.2) that for tight framelet filter

banks, Ma,Θ(ξ) has to be a positive semi-definite matrix for all ξ ∈ R. In the

special case that Θ̂(ξ) = 1, that is, Θ = δ, the positive semi-definiteness of

Ma,δ(ξ) reduces to the restriction on a:

det(Ma,δ(ξ)) = 1− |â(ξ)|2 − |â(ξ + π)|2 > 0. (1.2.4)

Such framelet filter banks with Θ = δ are called Unitary Extension Prin-

ciple (UEP)-based framelet filter banks (e.g., see [72]). Otherwise, we

call them Oblique Extension Principle (OEP)-based framelet filter

banks. The restriction in (1.2.4) can be avoided by considering the OEP-

based tight framelets. OEP-based tight framelets have been studied in [17, 11],

where the authors constructed tight framelets with highest possible order of
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vanishing moments. Hence, Θ is also called a moment correcting filter (or

vanishing moment recovery function in [11]). It has been proved in [11] that

for any given finitely supported refinable mask a ∈ l0(Z) such that â(ξ) = 1,

there always exists a compactly supported Θ ∈ l0(Z), such that Ma,Θ(ξ) is

positive semi-definite for all ξ ∈ R, as long as the integer shifts of φ (refinable

function generated by a through (1.1.5)) are stable. It is known that without

the stability condition of the shifts of φ, it might not be possible to construct

compactly supported tight framelets from such a mask a by OEP in general

(see [49, Example 4.5]). So we have to consider other types of dual framelets

in the general cases.

In the multivariate case, we have much more challenges in constructing

tight framelets and dual framelets with high order of vanishing moments. For

simplicity, we only consider the case that Θ = δ be the Dirac sequence,

and omit the subscript Θ here. That is, we denote the dual M-framelet

filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) := ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs})δ,

and the tight M-framelet filter bank {a; b1, . . . , bs} := {a; b1, . . . , bs}δ. Let

us first rewrite the equations in (1.1.8) for a dual M-framelet filter bank

({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}). Define

dM := | det(M)| and {ω1, . . . , ωdM
} := ΩM := [(MT)−1Zd] ∩ [0, 1)d. (1.2.5)

Denote b0 := a and b̃0 := ã. Then it is not difficult to observe that (1.1.8) is

equivalent to

s∑
`=0

[̂̃b`(ξ+ 2πω1), . . . , ̂̃b`(ξ+ 2πωdM
)
]?[

b̂`(ξ+ 2πω1), . . . , b̂`(ξ+ 2πωdM
)
]

= IdM
,

(1.2.6)

where IdM
is the dM × dM identity matrix. For u ∈ l0(Zd) and γ ∈ Zd, its

γ-coset sequence u[γ] is defined to be u[γ] := {u(γ + Mk)}k∈Zd . Define

{γ1, . . . , γdM
} := ΓM := [M[0, 1)d] ∩ Zd. (1.2.7)

9



Then û(ξ) =
∑

γ∈ΓM
e−iγ·ξû[γ](MTξ) and we have

[û(ξ+2πω1), . . . , û(ξ+2πωdM
)] =

[
û[γ1](MTξ), . . . , û[γdM

](MTξ)
]
E(ξ)U, (1.2.8)

where

E(ξ) := diag(e−iγ1·ξ, . . . , e−iγdM
·ξ) and U := (e−iγj ·2πωk)16j,k6dM

. (1.2.9)

Because E(ξ)E?(ξ) = IdM
and UU? = dMIdM

for all ξ ∈ Rd, it is now straight-

forward to deduce that (1.2.6) is equivalent to

s∑
`=1

[̂̃
b

[γ1]
` (ξ), . . . ,

̂̃
b

[γdM
]

` (ξ)
]?[

b̂
[γ1]
` (ξ), . . . ,

̂
b

[γdM
]

` (ξ)
]

= d−1
M Nã,a(ξ) (1.2.10)

with

Nã,a(ξ) := IdM
− dM

[̂̃a[γ1](ξ), . . . , ̂̃a[γdM
](ξ)
]?[

â[γ1](ξ), . . . , â[γdM
](ξ)
]
. (1.2.11)

In particular, a filter bank {a; b1, . . . , bs} is a tight M-framelet filter bank if

and only if

s∑
`=1

[
b̂

[γ1]
` (ξ), . . . ,

̂
b

[γdM
]

` (ξ)
]?[

b̂
[γ1]
` (ξ), . . . ,

̂
b

[γdM
]

` (ξ)
]

= d−1
M Na(ξ)

with Na(ξ) := Na,a(ξ). (1.2.12)

Since Na has the eigenvalue 1−dM

∑dM

j=1 |â[γj ](ξ)|2 and all its other eigenvalues

are 1, we have det(Na(ξ)) = 1 − dM

∑dM

j=1 |â[γj ](ξ)|2. Take the determinants

on both sides of (1.2.12) and apply the Cauchy-Binet formula to the left-hand

side of (1.2.12). It is observed in [6] that

A(ξ) := det(Na(ξ)) = 1− dM

dM∑
j=1

|â[γj ](ξ)|2 =
sa∑
`=1

|û`(ξ)|2, ∀ ξ ∈ Rd,

(1.2.13)

for some finitely supported sequences u1, . . . , usa ∈ l0(Zd) with sa =
(
s

dM

)
. That
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is, the nonnegative 2πZd-periodic trigonometric polynomial A in (1.2.13) can

be written as a sum of Hermitian squares of 2πZd-periodic trigonometric poly-

nomials. By (1.2.8), one can easily observe that A(MTξ) = 1−∑ω∈ΩM
|â(ξ +

2πω)|2. Conversely, suppose that there exist u1, . . . , usa ∈ l0(Zd) for some

integer sa such that A can be written as a sum of Hermitian squares as in

(1.2.13). Then it is known in [63] that one can always construct a tight M-

framelet filter bank {a; b1, . . . , bs}. In dimension one, due to the Fejér-Riesz

lemma, for a nonnegative 2π-periodic trigonometric polynomial A in (1.2.13),

there always exists u1 ∈ l0(Z) such that (1.2.13) is satisfied with sa = 1. How-

ever, as discussed in [6], the problem on sums of Hermitian squares in (1.2.13)

is much more complicated in dimension higher than one and is known to be

a challenging problem in real algebraic geometry. See [6, 7, 63] for a detailed

discussion on (1.2.13) and its applications to the construction of multivariate

tight framelet filter banks. However, even if the sum of Hermitian squares in

(1.2.13) exists, this general method in [6, 63] has several drawbacks. First,

all the constructed high-pass filters in [63] have (much) longer supports than

that of the low-pass filter a, while short support of filters is a highly desired

property in their applications. Secondly, the relation between sa in (1.2.13)

and a low-pass filter a is unknown and the numbers sa and s could be very

large even for low-pass filters with short support. Thirdly, to the best of our

knowledge, there is currently no known method/algorithm to efficiently com-

pute u1, . . . , usa ∈ l0(Zd) in (1.2.13). So far, all currently known constructions

of multivariate nonseparable tight framelets are developed for special low-

pass filters (in particular, from low-pass filters for 2Id-refinable box splines),

for example, see [6, 7, 10, 27, 36, 42, 46, 62, 63, 74, 76, 77, 80] and refer-

ences therein. Despite recent progresses and enormous effort, construction of

multivariate tight framelets still remains as a challenging problem and most

constructed multivariate tight framelets in the literature lack some desirable

properties such as directionality, vanishing moments or symmetry.

Though dual framelet filter banks offer flexibility over tight framelet filter

banks, it is not easy to construct them either. To construct a dual M-framelet

filter bank, one has to factorize the matrix Nã,a in (1.2.10) so that all the high-

pass filters satisfy the basic vanishing moment in (1.1.7). For a one-dimensional
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2π-periodic trigonometric polynomial A(ξ), due to the fundamental theorem

of algebra, if A(ξ) has a zero with multiplicity m ∈ N at ξ = 0, then one

can always write A(ξ) = (1 − e−iξ)mB(ξ) for some 2π-periodic trigonometric

polynomial B with B(0) 6= 0. This factorization technique for separating out

the special factor (1− e−iξ)m is the key for constructing one-dimensional dual

framelet filter banks with high vanishing moments (e.g., see [14, 44] for details).

However, such a factorization technique is not available for dimensions higher

than one; there are also no special multivariate trigonometric polynomials

playing the role of (1 − e−iξ)m for us to generalize the construction of one-

dimensional dual framelet filter banks to multiple dimensions. In fact, most

(or generic) multivariate trigonometric polynomials cannot be factorized into

products of two nontrivial trigonometric polynomials for dimensions higher

than one. Consequently, it is often difficult to construct a dual M-framelet

filter bank satisfying the basic vanishing moment condition in (1.1.7). Indeed,

to the best of our knowledge, so far [22, 23] are the only known papers to have

a general construction of dual M-framelet filter banks with the basic vanishing

moment in (1.1.7). However, the construction in [22, 23] is linked to syzygy

modules of multivariate Laurent polynomials in algebra and the constructed

high-pass filters also have much larger supports than that of their associated

low-pass filter.

Now let us introduce the notion of quasi-tight framelets and explain

our motivations. As we explained before, in many real applications, we would

like the primal functions ψ` and dual functions ψ̃` to be similar to each other.

Instead of requiring ψ̃` = ψ` as in a tight framelet, we can easily achieve our

objective by naturally considering ψ̃` = ε`ψ
` with ε` ∈ {−1, 1}. This motivates

us to introduce the notion of quasi-tight framelets. For φ, ψ1, . . . , ψs ∈ L2(Rd)

and ε1, . . . , εs ∈ {−1, 1}, where ψ` ∈ span{φ(M · −k) : k ∈ Zd} ⊂ L2(Rd),

` = 1, . . . , s, we say that {ψ1, . . . , ψs}(ε1,...,εs) is a homogeneous quasi-

tight M-framelet in L2(Rd) if ({ε1ψ1, . . . εsψ
s}, {ψ1, . . . , ψs}) is a homoge-

neous dual M-framelet in L2(Rd). Consequently, every function f ∈ L2(Rd)
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has the following representation:

f =
∑
j∈Z

s∑
`=1

∑
k∈Zd

ε`〈f, ψ`Mj ;k〉ψ`Mj ;k. (1.2.14)

When ε1 = · · · = εs = 1, a quasi-tight M-framelet becomes a tight M-

framelet. A quasi-tight framelet is often obtained from a quasi-tight framelet

filter bank. For Θ, a, b1, . . . , bs ∈ l0(Zd) and ε1, . . . , εs ∈ {−1, 1}, we say that

{a; b1, . . . , bs}Θ,(ε1,...,εs) is a quasi-tight M-framelet filter bank if ({a; ε1b1, . . . ,

εsbs}, {a; b1, . . . , bs})Θ is a dual M-framelet filter bank, i.e.,

Θ̂(MTξ)â(ξ)â(ξ+2πω)+ε1b̂1(ξ)̂b1(ξ+2πω)+· · ·+εsb̂s(ξ)̂bs(ξ+2πω) = δ(ω)Θ̂(ξ),

∀ω ∈ ΩM, ξ ∈ Rd. (1.2.15)

In the case that Θ = δ, we simply omit the subscript Θ, {a; b1, . . . , bs}(ε1,...,εs) :=

{a; b1, . . . , bs}δ,(ε1,...,εs).
[45, Example 3.2.2] probably is the first to provide an example of quasi-tight

2-framelets {ψ1, ψ2}(−1,1) and quasi-tight 2-framelet filter bank {a; b1, b2}(−1,1)

in one dimension, where a = {− 1
16
, 1

4
, 5

8
, 1

4
,− 1

16
}[−2,2] and

b1 = {− 1
16
, 1

4
,−3

8
, 1

4
,− 1

16
}[−2,2], b2 = {−

√
2

4
,
√

2
2
,−
√

2
4
}[0,2].

Define φ̂(ξ) :=
∏∞

j=1 â(2−jξ), ψ̂1(ξ) := b̂1(ξ/2)φ̂(ξ/2), and ψ̂2(ξ) := b̂2(ξ/2)φ̂(ξ/2)

with φ, ψ1, ψ2 ∈ L2(R). The above example in [45, Example 3.2.2] was ob-

tained by applying the general algorithm developed in [44] for constructing

dual framelet filter banks to the above low-pass filter a.

Let {a; b1, . . . , bs}Θ,(ε1,...,εs) be a quasi-tight M-framelet filter bank with

â(0) = 1. Let m denote the smallest order of the vanishing moments among

the high-pass filters, i.e., m := min(vm(b1), . . . , vm(bs)). For ω ∈ ΩM\{0},
we easily deduce from (1.2.15) that Θ̂(MTξ)â(ξ)â(ξ + 2πω) +O(‖ξ‖m) = 0 as

ξ → 0. Consequently, by â(0) = 1 and Θ̂(0) = 1, we get â(ξ+2πω) = O(‖ξ‖m)

as ξ → 0, ∀ω ∈ ΩM\{0}. That is, the filter a must satisfy order m sum rules

with respect to M:

sr(a) > m. (1.2.16)
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We can also trivially deduce from (1.2.15) with ω = 0 that

Θ̂(ξ)− Θ̂(MTξ)|â(ξ)|2 = O(‖ξ‖2m), ξ → 0. (1.2.17)

Consequently, for a quasi-tight M-framelet filter bank {a; b1, . . . , bs}Θ,(ε1,...,εs),

we always have

min(vm(b1), . . . , vm(bs)) 6 min(sr(a,M), 1
2

vm(uΘ,a)),

with ûΘ,a(ξ) := Θ̂(ξ)− Θ̂(MTξ)|â(ξ)|2. (1.2.18)

Given a low-pass filter a ∈ l0(Zd) and moment correcting filter Θ ∈ l0(Zd)
(hence we get the underlying MRA), the above inequality gives the maximum

order of vanishing moments that OEP-based quasi-tight framelets can achieve.

For the simple case that Θ = δ, we just denote ua := uδ,a. For a ∈ l0(Zd) and

c ∈ Rd, we say that a has order m linear-phase moments with phase c

if â(ξ) = e−ic·ξ + O(‖ξ‖m) as ξ → 0. We define lpm(a) := m for the largest

possible integer m. Then we can easily verify that vm(ua) > lpm(a). If in

addition a has symmetry satisfying a(ca − k) = a(k) for all k ∈ Zd for some

ca ∈ Zd, then it is known in [41, Proposition 5.3] that lpm(a) = vm(ua) and

(1.2.18) becomes

min(vm(b1), . . . , vm(bs)) 6 min(sr(a,M), 1
2

lpm(a)).

1.3 Introduction to Spectral Factorizations of

Matrices of Laurent Polynomials

The construction of quasi-tight framelet filter banks relies on the problem of

generalized spectral factorizations of matrices of Laurent polynomi-

als (or trigonometric polynomials in frequency domain). Let us introduce the

problem here.

For z = (z1, . . . , zd)
T ∈ Cd \ {0} and k = (k1, . . . , kd)

T ∈ Zd, denote

zk := zk1
1 · · · zkdd . Suppose A(z) =

∑
k∈Zd A(k)zk is an n× n matrix of Laurent
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polynomials, which is Hermitian on Td, that is,

A(z)
T

= A(z), ∀z ∈ Td := {z ∈ Cd : |z1| = . . . = |zd| = 1}.

We want to find another matrix U(z) =
∑

k∈Zd U(k)zk of Laurent polynomials,

such that

A(z) = U(z)

[
Im1

−Im2

]
U(z)

T
, ∀z ∈ Td, (1.3.1)

where Im1 , Im2 are identity matrices of size m1 and m2 respectively. We call

(1.3.1) the spectral factorization of the matrix A(z).

In one-dimensional case (d = 1), related problems have been studied in

different settings. The most famous result is the matrix-valued Fejér-Riesz

lemma (see Theorem 2.3.2), which considers the special case that A(z) is posi-

tive semi-definite on z ∈ T. In this case, the theorem says that the factorization

in (1.3.1) always exists for m1 = n and m2 = 0. This positive semi-definite

situation has been studied in many different settings and different literatures

(e.g. harmonic analysis, operator theory, control theory, algebra, engineer-

ing, etc.). For example, see [86, 87, 75, 54, 28, 25, 32, 21] and many references

therein. Similar results also hold if we require all the matrices to be of rational

functions [88, 70] or polynomials [28, 24, 85] rather than Laurent polynomials.

The general indefinite setting in (1.3.1) brings much more difficulties than

the positive semi-definite case. The problem has been studied in terms of

polynomial matrices, that is, A(z) and U(z) are matrices of polynomials and

the result holds for z ∈ R or z ∈ iR. In late 20th century, I. Gohberg, P.

Lancaster, L. Rodman and a lot of researchers made comprehensive studies

on polynomial matrices and indefinite systems. The tools they built such

as standard pairs/triples and sign characteristic inspired enormous results in

control theory, numerical computation and other different areas of applied

math today. See their books [31, 30, 1] for a detailed introduction/review.

The indefinite spectral factorization (1.3.1) in the polynomial setting (also

called J-spectral factorization) has been solved in [29, 69, 71], using the tool of

“sign characteristic” introduced in the phenomenal paper [28], which describes

the sign change of the eigenvalues of the matrix A(z).
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In the multivariate (d > 1) setting, the problem is known to be much harder

even for the positive semi-definite case. If we require A(z) to be positive semi-

definite and m2 = 0, it is related to the polynomial SOS problem (Hilbert’s

17th problem), and it is known to be hard, and a lower bound for m1 is usually

huge.

1.4 Contributions and Outline of This Thesis

In this thesis, we study the matrix spectral factorization problem in (1.3.1) in

both univariate and multivariate case, and use it to make a systematic study

of the construction of quasi-tight framelets.

Chapters 2 to 4 deal with the one dimensional case (d = 1). In chapters

2 and 3, we firstly solved the matrix spectral factorization problem in the

indefinite setting as (1.3.1). Since the problem has some essential difficulties

compared to the positive semi-definite case, we used the idea of sign charac-

teristic and generalized the methods of [29] and [71] (spectral factorization for

polynomial matrices) into analytic settings, and completely solved (1.3.1) for

Laurent polynomials. More precisely, the necessary and sufficient conditions

for the factorization and the lower bounds for m1 and m2 have been found in

Theorem 2.2.2, Theorem 2.3.1 and Theorem 3.1.2. Also, detailed algorithms

to solve the spectral factorization in (1.3.1) are provided. Using the spectral

factorization result, we completely characterized the quasi-tight framelet filter

banks with two high-pass filters {a; b1, b2}Θ,(ε1,ε2) in chapter 2. In chapter 3,

we proved that from any arbitrary compactly supported refinable function in

L2(R), we can always construct a compactly supported quasi-tight framelet

having the minimum number of generators and the highest possible order of

vanishing moments as in (1.2.18). As we can see, compared to the OEP-based

tight framelets, the construction of quasi-tight framelets is much more flexible

that we can choose a much wider class of low-pass filters, and we don’t need

the requirement that the shifts of the refinable function φ need to be stable

for the choice of Θ.

Chapter 4 studies the construction of quasi-tight framelets with symmetry.

Tight framelets with symmetry have been studied by a lot of papers in the
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literature, such as [44, 40, 48, 68, 49, 43, 79]. A complete characterization

of OEP-based compactly supported tight framelets with two generators and

symmetry has been derived in [48, 40]. In chapter 4, we give the necessary and

sufficient condition for the construction of the quasi-tight framelet filter bank

{a; b1, b2}Θ,(1,−1) with symmetry. The result is based on the indefinite spectral

factorization of Laurent polynomial matrices with symmetry. To the best of

our knowledge, similar factorization problems have never been investigated in

the literature.

Chapter 5 studies the construction of multivariate quasi-tight framelets. As

we reviewed in the previous two sections, constructions of tight framelets and

dual framelets with vanishing moments from a general (nonseparable) refinable

function with a general dilation matrix M are very hard problems. Actually,

there are not many examples available in the current literature. In chapter 5,

we firstly prove that for an arbitrary compactly supported M-refinable function

φ ∈ L2(Rd), we can easily derive a quasi-tight framelet, where all the high-

pass filters are only supported on two points (so the framelet naturally has

directionality). If in addition all the coefficients of the associated low-pass

filter are nonnegative, such a quasi-tight M-framelet becomes a directional

tight M-framelet in L2(Rd). Secondly, we show in two constructive methods

that we can always derive from an arbitrary compactly supported M-refinable

function φ a compactly supported quasi-tight M-framelet in L2(Rd) with the

highest possible order of vanishing moments. Our constructions are based

on a special indefinite spectral factorization result, where each of the column

vectors of U(z) in (1.3.1) contains at most 2 nonzero terms.

Several examples are also provided in each chapter to illustrate the theo-

retical results and constructive algorithms.
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Chapter 2

Quasi-tight Framelets with Two

Generators in One Dimension

In this chapter, we study the construction of quasi-tight framelets in one-

dimensional case. As discussed in Chapter 1, given a refinable function φ ∈
L2(R) generated by a low-pass filter a ∈ l0(Z) and a moment correcting fil-

ter Θ ∈ l0(Z), the construction of OEP-based compactly supported quasi-

tight framelets reduces to finding high-pass filters b1, . . . , bs ∈ l0(Z), such that

{a; b1, . . . , bs}Θ,(ε1,...,εs) is a quasi-tight framelet filter bank. It turns out that the

problem is linked to the spectral factorization of matrices of Laurent polynomi-

als. We start this chapter by reviewing some properties of Laurent polynomials

in Section 2.1. In Section 2.2, we find a lower bound s of the minimum number

of framelet generators in a quasi-tight framelet filter bank. In Section 2.3, we

prove a general theorem on the spectral factorization of matrices of Laurent

polynomials with constant signature. Based on this theorem, an algorithm is

provided in Section 2.4 for the construction of quasi-tight framelet filter banks

with two high-pass filters and maximum order of vanishing moments. Some

illustrative examples are provided in Section 2.5. The results of this chapter

and the next chapter are summarized in [18].
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2.1 Quasi-tight Framelet Filter Banks with Lau-

rent Polynomials

Let l(Z) be the linear space of all sequences u = {u(k)}k∈Z : Z → C of

complex numbers on Z. By l0(Z) we denote the space of all finitely supported

sequences, u = {u(k)}k∈Z : Z→ C such that {k ∈ Z : u(k) 6= 0} is a finite set.

For a sequence u = {u(k)}k∈Z ∈ l0(Z), we can define its associated Laurent

polynomial (or z-transform in engineering literature) as u(z) :=
∑

k∈Z u(k)zk

for z ∈ C \ {0}. Similarly, for a finitely supported sequence of r by s matrices

u = {u(k)}k∈Z ∈ (l0(Z))r×s, where u(k) is an r by s matrix for all k ∈ Z, its

associated matrix of Laurent polynomials is defined to be u(z) =
∑

k∈Z u(k)zk.

We also define the associated adjoint sequence of u for u ∈ (l0(Z))r×s (or

l0(Z)) to be u?(k) := u(−k)
T

, k ∈ Z. In terms of Laurent polynomials,

u?(z) :=
∑

k∈Z u(k)
T
z−k.

For a finitely supported Laurent polynomial u(z), if u(z) is not identically

zero, we define its length as len(u(z)) := l2−l1, where l1, l2 are integers uniquely

defined by: u(k) = 0 for all k > l2 and k < l1, u(l1) 6= 0, u(l2) 6= 0. If

u(z) = 0, then we define len(u(z)) = −∞. Under this notation, it is easy

to check len(u(z)v(z)) = len(u(z)) + len(v(z)) holds for all finitely supported

Laurent polynomials u(z) and v(z).

For reader’s convenience, we state some simple properties that will be useful

later and can be verified by direct calculations.

Proposition 2.1.1. Let A(z) =
∑n1

k=m1
A(k)zk and B(z) =

∑n2

k=m2
B(k)zk to

be two matrices of Laurent polynomials. Then the followings hold.

(1) (AB)?(z) = B?(z)A?(z).

(2) Suppose A(z) is an n×n square matrix, then det(A?(z)) = (det(A(z)))?.

(3) Suppose A(z) is an n × n square matrix. Then (A(z))−1 is also an n ×
n matrix of Laurent polynomials if and only if det(A(z)) is a nonzero

monomial (Laurent polynomial with only one term). In this case, we say

that A(z) is invertible or unimodular and write its inverse as A−1(z).
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(4) Suppose A(z) is invertible, then A?(z) is also invertible, and (A?)−1(z) =

(A−1)?(z). So we can write it as A−?(z).

(5) A?(z) = A(z) if and only if A(z) is a Hermitian matrix for all z ∈ T :=

{z ∈ C : |z| = 1}. We say that A(z) is (para-)Hermitian (or

selfadjoint) in this case.

For z ∈ T, we can take z = e−iξ, where i is the imaginary unit and ξ ∈ R.

Then a Laurent polynomial can be written as a 2π-periodic function of ξ ∈ R:

û(ξ) := u(e−iξ) =
∑
k∈Z

u(k)e−ikξ,

which is the Fourier series (symbol) of the filter u. Note that u?(e−iξ) = û(ξ).

Also, if the sequence u ∈ (l0(Z))s×t is finitely supported, then û(ξ) is an

analytic function matrix of ξ for all ξ ∈ R. (By saying that a function matrix is

analytic, we mean that the function in each element of the matrix is analytic.)

For a Laurent polynomial p(z) and z0 ∈ C \ {0}, we use Z(p(z), z0) to

denote the multiplicity of zeros of p(z) at z0. Similar notation is also adopted

for analytic functions. If f(ξ) is a function (or function matrix) analytic at

ξ0, we define Z(f(ξ), ξ0) =∞ if f(ξ) is identically zero. Otherwise, Z(f(ξ), ξ0)

is defined to be the integer such that f(ξ) = (ξ − ξ0)Z(f(ξ),ξ0)g(ξ), where g(ξ)

is also analytic at ξ0 and g(ξ0) 6= 0. Since analytic functions can always be

locally expressed as power series, Z(f(ξ), ξ0) is well defined. Notice that for

u ∈ l0(Z), z0 = e−iξ0 ∈ C \ {0}, our notations for multiplicity of zeros of Lau-

rent polynomials in z-domain and that of analytic functions in the frequency

domain coincide:

Z(u(z), z0) = Z(u(e−iξ), ξ0).

Hence, the order of sum rules of a low-pass filter a can be calculated as

sr(a(z)) := sr(â(ξ)) := sr(a) = Z(a(z),−1) = Z(â(ξ), π). (2.1.1)

The order of vanishing moments of a high-pass filter b can be calculated as

vm(b(z)) := vm(̂b(ξ)) := vm(b) = Z(b(z), 1) = Z(̂b(ξ), 0). (2.1.2)
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The conditions 1.2.15 for quasi-tight framelet filter bank {a; b1, . . . , bs}Θ,(ε1,...,εs)

can be written with Laurent polynomials as

Θ(z2)a(z)a?(z) + ε1b1(z)b?1(z) + . . .+ εsbs(z)b?s(z) =Θ(z),

Θ(z2)a(z)a?(−z) + ε1b1(z)b?1(−z) + . . .+ εsbs(z)b?s(−z) =0.

Or in the matrix form

[
b1(z) · · · bs(z)

b1(−z) · · · bs(−z)

]
ε1

. . .

εs


[

b1(z) · · · bs(z)

b1(−z) · · · bs(−z)

]?
=Ma,Θ(z),

(2.1.3)

where

Ma,Θ(z) :=

[
Θ(z)−Θ(z2)a(z)a?(z) −Θ(z2)a(z)a?(−z)

−Θ(z2)a(−z)a?(z) Θ(−z)−Θ(z2)a(−z)a?(−z)

]
, (2.1.4)

and εj = ±1 for j = 1, . . . , s. If εj = 1 for all j = 1, . . . , s, we get a tight

framelet filter bank.

For a quasi-tight framelet filter bank, without loss of generality, we can

arrange the order of b1(z), . . . , bs(z), such that the first n+ of εj are +1 and

the last n− of εj are −1. Call the following matrix the signature matrix of

the quasi-tight framelet filter bank {a; b1, . . . , bs}Θ,(ε1,...,εs):

J :=


ε1

. . .

εs

 =

[
In+

−In−

]
,

where In+ and In− denote identity matrices of size n+ and n− respectively.

For tight framelet filter banks, i.e., ε1 = . . . = εs = 1, (2.1.3) implies that

the Hermitian matrixMa,Θ(z) is necessarily positive semidefinite for all z ∈ T.

As we mentioned in Chapter 1, given a low-pass filter a ∈ l0(Z), in order to

show that there exists a moment correcting filter Θ ∈ l0(Z) such thatMa,Θ(z)

is positive semidefinite for all z ∈ T, we have to assume that the associated
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refinable function φ has stable shifts. (See [11] and [49, Example 4.5]) The

generalized construction of quasi-tight framelet filter bank in (2.1.3) allows us

to use a much wider class of filters a and Θ. As a matter of fact, we will prove

in the next chapter that as long asMa,Θ(z) is Hermitian on z ∈ T (which only

requires Θ? = Θ by Theorem 2.2.4), we can construct a quasi-tight framelet

filter bank with maximum possible order of vanishing moments as in (1.2.18).

Given a moment correcting filter Θ ∈ l0(Z) and a low-pass filter a ∈ l0(Z)

such that a(1) = 1 and Θ(1) = 1, we want to solve the high-pass filters

b1, . . . , bs with some minimum nb order of vanishing moments. That is, we

need to find Laurent polynomials b̊1(z), . . . , b̊s(z), such that

bl(z) = (1− z−1)nb b̊l(z), l = 1, . . . , s. (2.1.5)

The condition (2.1.3) becomes

[
b̊1(z) · · · b̊s(z)

b̊1(−z) · · · b̊s(−z)

]
ε1

. . .

εs


[

b̊1(z) · · · b̊s(z)

b̊1(−z) · · · b̊s(−z)

]∗
=Ma,Θ|nb(z),

where

Ma,Θ|nb(z) :=

[
(1− z−1)−nb

(1 + z−1)−nb

]
Ma,Θ(z)

[
(1− z)−nb

(1 + z)−nb

]
(2.1.6)

=

[
A(z) B(z)

B(−z) A(−z)

]

with

A(z) :=
Θ(z)−Θ(z2)a(z)a?(z)

(1− z)nb(1− z−1)nb
, B(z) :=

−Θ(z2)a(z)a?(−z)

(1 + z)nb(1− z−1)nb
. (2.1.7)

From the definition of vanishing moments and sum rules in (2.1.2) and

(2.1.1), we can see that A(z) and B(z) are well-defined Laurent polynomials
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as long as the nonnegative integer nb satisfies:

0 6 nb 6 min

{
sr(a),

1

2
vm
(
Θ(z)−Θ(z2)a(z)a∗(z)

)}
.

Notice that this is also the upper bound for the maximum possible order of

vanishing moments calculated in (1.2.18).

The relationship between b̊l(z) and b̊l(−z) in the two rows makes the ma-

trix equation hard to solve. Given a sequence u ∈ l(Z), we define its coset

sequence u[γ] := {u(γ + 2k)}k∈Z. Then the z-transform of u can be written

as: u(z) = u[0](z2) + zu[1](z2). Also, u(−z) = u[0](z2) − zu[1](z2). Using the

coset sequences, the filter bank can be decoupled as:[
b̊1(z) · · · b̊s(z)

b̊1(−z) · · · b̊s(−z)

]
=

[
1 z

1 −z

] [̊
b

[0]
1 (z2) · · · b̊

[0]
s (z2)

b̊
[1]
1 (z2) · · · b̊

[1]
s (z2)

]
.

The matrix

[̊
b

[0]
1 (z) · · · b̊

[0]
s (z)

b̊
[1]
1 (z) · · · b̊

[1]
s (z)

]
is called the polyphase matrix of the filter

bank {̊b1, . . . , b̊s}. Let us equivalently write the condition (2.1.3) in terms of

polyphase matrices:

[̊
b

[0]
1 (z) · · · b̊

[0]
s (z)

b̊
[1]
1 (z) · · · b̊

[1]
s (z)

]
ε1

. . .

εs


[̊

b
[0]
1 (z) · · · b̊

[0]
s (z)

b̊
[1]
1 (z) · · · b̊

[1]
s (z)

]?
= Na,Θ|nb(z),

(2.1.8)

where Na,Θ|nb(z) is calculated from:

Ma,Θ|nb(z) =

[
1 z

1 −z

]
Na,Θ|nb(z

2)

[
1 z

1 −z

]?
, (2.1.9)

that is,

Na,Θ|nb(z) :=
1

2

[
A[0](z) + B[0](z) z(A[1](z)− B[1](z))

A[1](z) + B[1](z) A[0](z)− B[0](z)

]
, (2.1.10)

for A(z) and B(z) defined in (2.1.7).
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The main problem in constructing quasi-tight framelet filter banks with

some required order of vanishing moments becomes how to factorize the matrix

Na,Θ|nb(z) into the form of (2.1.8).

Theorem 2.1.2. Suppose {a; b1, . . . , bs}Θ,(ε1,...,εs) is a quasi-tight framelet filter

bank, and all the high-pass filters have at least nb order of vanishing moments,

then (2.1.8) holds, where Na,Θ|nb(z) is defined in (2.1.10) (2.1.7), and b̊1, . . . , b̊s

are defined in (2.1.5).

On the other hand, suppose Na,Θ|nb(z) can be factorized as

Na,Θ|nb(z) = U(z)


ε1

. . .

εs

U?(z), (2.1.11)

for some 2 × s matrix U(z) of Laurent polynomials, and some εj = ±1, j =

1, . . . , s. Define high-pass filters bl(z), l = 1, . . . , s, as:[
b1(z) · · · bs(z)

b1(−z) · · · bs(−z)

]
=

[
(1− z−1)nb

(1 + z−1)nb

][
1 z

1 −z

]
U(z2).

(2.1.12)

Then {a; b1, . . . , bs}Θ,(ε1,...,εs) is a quasi-tight framelet filter bank, with at least

nb order of vanishing moments.

Proof. The first part of the theorem can be verified directly by the condition

(2.1.3). For the proof of the second part, direct calculations using (2.1.12)

shows the equations in (2.1.3) hold. So {a; b1, . . . , bs}Θ,(ε1,...,εs) is a quasi-tight

framelet filter bank, with all high-pass filters having vanishing moments of

order vm(b`) > nb, ` = 1, . . . , s. �

Based on Theorem 2.1.2, the construction of quasi-tight framelet filter

banks is equivalent to solving the generalized spectral factorization problem

of Na,Θ|nb(z) in (2.1.11) .
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2.2 Minimum Number of High-pass Filters

In this section, we study the minimum number s of high-pass filters needed

in the construction of a quasi-tight framelet filter bank. We will prove in

Section 2.4 that there always exists a quasi-tight framelet filter bank with

highest possible order of vanishing moments and this minimum number of

high-pass filters.

In order to construct a quasi-tight framelet filter bank {a; b1, . . . , bs}Θ,(ε1,...,εs)

from given Θ, a ∈ l0(Z), we just need to solve the following decomposition of

Ma,Θ(z):

[
b1(z) · · · bs(z)

b1(−z) · · · bs(−z)

]
ε1

. . .

εs


[

b1(z) · · · bs(z)

b1(−z) · · · bs(−z)

]?
=Ma,Θ(z).

(2.2.1)

The freedom of using different εj here allows us to remove the requirement

that the matrixMa,Θ(z) on the right-hand-side has to be positive semi-definite

for all z ∈ T. As a matter of fact, the number of positive/negative eigenvalues

ofMa,Θ(z) for all z ∈ T has a direct link to the number of +1 and −1 appears

in the signature matrix diag(ε1, . . . , εs). This gives us a necessary condition

on the minimum number s of high-pass filters needed. Let us introduce some

notations first.

If a constant matrix A is Hermitian, basic results from linear algebra tell

us that A can be diagonalized by a unitary matrix, i.e., there exists a unitary

matrix U , such that A = UΛU?, where Λ = diag(λ1, λ2, . . . , λn) is a diagonal

matrix of all the eigenvalues of A. Also, all the eigenvalues of a Hermitian

matrix are real. We use ν+(A) to denote the number of its positive eigenvalues,

and ν−(A) to denote the number of its negative eigenvalues. The signature

sig(A) of A is defined as their difference:

sig(A) := ν+(A)− ν−(A).

We also call J = diag(Iν+ ,−Iν− ,0n0) the signature matrix of A, where Iν+

and Iν− are identity matrices of sizes ν+(A) and ν−(A) respectively, and 0n0
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is the square zero matrix of size equal to the dimension of the null space of A.

Theorem 2.2.1. Suppose an n×n Hermitian matrix A can be decomposed in

the following way

A = U

[
Im+

−Im−

]
U?, (2.2.2)

where U is an n ×m matrix, and Im+, Im− are identity matrices of size m+

and m− respectively, such that m+ +m− = m. Then

m+ > ν+(A), m− > ν−(A).

Proof. Firstly, we consider the case that A is nonsingular. In this case, the

decomposition (2.2.2) forces that all the three matrices on the right hand side

of (2.2.2) have rank at least n. So m > n, and U must have full row rank.

If m = n, then U is a nonsingular square matrix. By Sylvester’s law of

inertia,

m+ = ν+(A), m− = ν−(A).

If m > n, since U has full row rank, we can add m− n more rows to U to

get Ũ , such that Ũ :=

[
U

V

]
is an m×m nonsingular square matrix. Then the

m×m matrix Ã := Ũ

[
Im+

−Im−

]
Ũ? has A on the top left corner:

Ã := Ũ

[
Im+

−Im−

]
Ũ? =

[
U

V

][
Im+

−Im−

] [
U? V ?

]
=

[
A B?

B C

]
(2.2.3)

for some (m− n)× n matrix B, and some (m− n)× (m− n) matrix C.

Define the nonsingular m × m matrix W :=

[
In 0

−BA−1 Im−n

]
, and let

Å := WÃW ?. Plugging in (2.2.3), we can directly calculate that

Å := WÃW ? =

[
In 0

−BA−1 Im−n

][
A B?

B C

][
In −A−?B?

0 Im−n

]
=

[
A 0

0 D

]
,

(2.2.4)
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where the (m− n)× (m− n) matrix D := C − BA−1B?.

From (2.2.4), we can see that the eigenvalues of Å are just the eigenvalues

of A combined with the eigenvalues of D. So

ν+(Å) > ν+(A), ν−(Å) > ν−(A). (2.2.5)

Also, from the definition of Ã and Å in (2.2.3) and (2.2.4), we can see that

Å = WÃW ? = WŨ

[
Im+

−Im−

]
Ũ?W ? = WŨ

[
Im+

−Im−

]
(WŨ)?.

(2.2.6)

Since WŨ is an m×m nonsingular matrix, by Sylvester’s law of inertia again,

(2.2.6) implies that

ν+(Å) = m+, ν−(Å) = m−. (2.2.7)

Combining (2.2.5) and (2.2.7), we get

m+ > ν+(A), m− > ν−(A).

This proves the theorem for the case that A is nonsingular.

For the case that A is singular, we can find its eigenvalue decomposition

first:

PAP ? =

[
Λ

0

]
,

where Λ is a k × k nonsingular diagonal matrix containing all the nonzero

eigenvalues of A, while P is an n × n unitary matrix. Rewrite the above

decomposition using (2.2.2):[
Λ

0

]
= PAP ? = PU

[
Im+

−Im−

]
U?P ? = Q

[
Im+

−Im−

]
Q?,

where Q := PU . We define Q̃ by deleting the last n − k rows of Q, then the
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above equation implies:

Λ = Q̃

[
Im+

−Im−

]
Q̃?.

Since Λ is nonsingular, we know from the previously proved case that

m+ > ν+(Λ) = ν+(A), m− > ν−(Λ) = ν−(A).

This proves the theorem for the case that A is a singular matrix. �

In terms of Hermitian matrices of Laurent polynomials, we have the fol-

lowing theorem.

Theorem 2.2.2. Suppose A(z) is an n × n matrix of Laurent polynomials

satisfying A?(z) = A(z). If A(z) has decomposition

A(z) = U(z)

[
Is+

−Is−

]
U?(z) (2.2.8)

for some n×s matrix of Laurent polynomials U(z), where Is+, Is− are identity

matrices of size s+ and s− respectively, such that s+ + s− = s, then

s+ > max
z∈T

ν+(A(z)), s− > max
z∈T

ν−(A(z)),

which implies

s > max
z∈T

ν+(A(z)) + max
z∈T

ν−(A(z)). (2.2.9)

Proof. Since A?(z) = A(z) implies that for all z0 ∈ T, A(z0) is a Hermitian

matrix, (A(z0))? = A(z0). And U?(z0) = (U(z0))? holds. We know from

Theorem 2.2.1 that s+ > ν+(A(z0)) and s− > ν−(A(z0)). Considering all

z0 ∈ T, we get

s+ > max
z∈T

ν+(A(z)), s− > max
z∈T

ν−(A(z)).
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Since s = s+ + s−, the above two inequalities add up to

s > max
z∈T

ν+(A(z)) + max
z∈T

ν−(A(z)).

This completes the proof. �

Theorem 2.2.2 shows that (2.2.9) is a necessary condition for the decom-

position (2.2.8) to be possible. In Chapter 3, we will prove that it is also

a sufficient condition. That is, for all s ∈ N satisfying (2.2.9), we can find

an n × s matrix of Laurent polynomials U(z), such that (2.2.8) holds. See

Theorem 3.1.2 for details.

Given a,Θ ∈ l0(Z), we can define

s+
a,Θ := max

z∈T
ν+(Ma,Θ(z)), s−a,Θ := max

z∈T
ν−(Ma,Θ(z)). (2.2.10)

Building on Theorem 2.2.2, we can calculate the minimum number of high-pass

filters needed in the construction of a quasi-tight framelet filter bank.

Corollary 2.2.3. Given a quasi-tight framelet filter bank {a; b1, . . . , bs}Θ,(ε1,...,εs),

such that neither a nor Θ is identically zero. Suppose Ma,Θ(z) defined in

(2.1.4) is a Hermitian matrix. Then the number s of high-pass filters must

satisfy

s > s+
a,Θ + s−a,Θ = max

z∈T
ν+(Ma,Θ(z)) + max

z∈T
ν−(Ma,Θ(z)). (2.2.11)

Proof. The condition for a quasi-tight framelet filter bank is

[
b1(z) · · · bs(z)

b1(−z) · · · bs(−z)

]
ε1

. . .

εs


[

b1(z) · · · bs(z)

b1(−z) · · · bs(−z)

]?
=Ma,Θ(z).

Without loss of generality, we can rearrange the order of high-pass filters so
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that we can assume that
ε1

. . .

εs

 =

[
Is+

−Is−

]
,

for some nonnegative integers s+ and s−, where s+ + s− = s. Since Ma,Θ(z)

is Hermitian, by Theorem 2.2.2 we know that (2.2.11) holds. �

Theorem 2.2.2 and Corollary 2.2.3 only provide a theoretical lower bound

for s as in (2.2.9) and (2.2.11). The sufficiency for the lower bound to be

achieved will be established later in this chapter (for the case s+
a,Θ + s−a,Θ = 2)

and in the next chapter (general case).

The following Lemma would be useful in our later discussions.

Lemma 2.2.1. Let A(z) be an n×n Hermitian matrix of Laurent polynomials,

and B be a finite subset of T. Then

max
z∈T

ν+(A(z)) = max
z∈T\B

ν+(A(z)), max
z∈T

ν−(A(z)) = max
z∈T\B

ν−(A(z)).

Proof. Since A(z) is an n× n Hermitian matrix of Laurent polynomials, its n

eigenvalues, λ1(z), . . . , λn(z), which are the n roots of the polynomial det(λIn−
A(z)), can be chosen as real continuous functions of z ∈ T. (They are actually

algebraic functions which are global analytic.) Hence, for all j = 1, . . . , n,

{z ∈ T : λj(z) > 0} must be an open set. Denote n+ := maxz∈T ν+(A(z)),

we can see that

{z ∈ T : ν+(A(z)) = n+} =
⋃

J⊆{1,··· ,n}
|J |=n+

⋂
j∈J
{z ∈ T : λj(z) > 0}.

Since the unions and intersections are taken over a finite number of open sets,

the above set is still open. By the definition of n+, we know that ν+(A(z)) = n+

is achieved for some z ∈ T, so the above set is also nonempty. Therefore, the

nonempty open set {z ∈ T : ν+(A(z)) = n+} contains infinite number of
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points. So {z ∈ T : ν+(A(z)) = n+}\B must be nonempty. This implies that

max
z∈T\B

ν+(A(z)) > n+ = max
z∈T

ν+(A(z)).

Since T\B is a subset of T, the inequality of the other directon is obvious.

Therefore, we proved

max
z∈T

ν+(A(z)) = max
z∈T\B

ν+(A(z)).

The identity maxz∈T ν−(A(z)) = maxz∈T\B ν−(A(z)) can be proved similarly.

�

For an n × n square matrix A(z) of Laurent polynomials, we define its

spectrum σ(A(z)) as

σ(A(z)) := {z ∈ C \ {0} : det(A(z)) = 0}.

If det(A(z)) is not identically zero, we know that σ(A(z)) is a finite set. In this

chapter, we only solve the spectral factorization of a Hermitian matrix A(z)

of Laurent polynomials with constant signature for z ∈ T \ σ(A(z)). That is,

ν+(A(z)) and ν−(A(z)) are constant for z ∈ T\σ(A(z)). In this case, according

to Lemma 2.2.1, we know that

max
z∈T

ν+(A(z)) + max
z∈T

ν−(A(z)) = max
z∈T\σ(A(z))

ν+(A(z)) + max
z∈T\σ(A(z))

ν−(A(z)) = n.

The following theorem allows us to compute the signature of Ma,Θ(z) on

z ∈ T \ σ(Ma,Θ(z)) directly from a(z) and Θ(z). The proof of the positive

semi-definite case (case (1)) is given in [45, Lemma 1.4.5.].

Theorem 2.2.4. Given filters a,Θ ∈ l0(Z), neither of them is identically zero.

Then the matrix Ma,Θ(z) defined in (2.1.4) is Hermitian on z ∈ T if and only

if Θ?(z) = Θ(z). Moreover, if Θ?(z) = Θ(z) and

det(Ma,Θ(z)) = Θ(z)Θ(−z)−Θ(z2) (Θ(−z)a(z)a?(z)−Θ(z)a(−z)a?(−z))
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is not identically zero, then:

(1) Ma,Θ(z) is positive semi-definite on z ∈ T (which implies sig(Ma,Θ(z)) =

2 for all z ∈ T \ σ(Ma,Θ(z))) if and only if

Θ(z) > 0, det(Ma,Θ(z)) > 0, ∀z ∈ T.

(2) Ma,Θ(z) is negative semi-definite on z ∈ T (which implies sig(Ma,Θ(z)) =

−2 for all z ∈ T \ σ(Ma,Θ(z))) if and only if

Θ(z) 6 0, det(Ma,Θ(z)) > 0, ∀z ∈ T.

(3) Ma,Θ(z) has one positive and one negative eigenvalue for all z ∈ T \
σ(Ma,Θ(z)) (i.e. sig(Ma,Θ(z)) = 0 for all z ∈ T \ σ(Ma,Θ(z))) if and

only if

det(Ma,Θ(z)) 6 0, ∀z ∈ T.

(4) Otherwise (beyond the three cases above), sig(Ma,Θ(z)) varies on z ∈
T \ σ(Ma,Θ(z)), and s+

a,Θ + s−a,Θ > 2.

Proof. If Ma,Θ(z) is Hermitian for all z ∈ T, then from

[Ma,Θ]?1,2 (z) =
(
−Θ(z2)a(z)a?(−z)

)?
= −Θ?(z2)a?(z)a(−z),

[Ma,Θ]2,1 (z) = −Θ(z2)a?(z)a(−z),

we can see that [Ma,Θ]?1,2 (z) = [Ma,Θ]2,1 (z) implies Θ? = Θ. Conversely,

if Θ? = Θ, by direct calculation, we can check M?
a,Θ(z) = Ma,Θ(z). So

M?
a,Θ(z) =Ma,Θ(z) if and only if Θ? = Θ holds.

To prove item (3), we know that the determinant ofMa,Θ(z) is equal to the

product of its two eigenvalues. So sig(Ma,Θ(z)) = 0 for all z ∈ T\σ(Ma,Θ(z))

if and only if det(Ma,Θ(z)) < 0 for all z ∈ T \ σ(Ma,Θ(z)), or equivalently,

det(Ma,Θ(z)) 6 0 for all z ∈ T.

To prove item (2), let us write the matrixMa,Θ(z) in the frequency domain.
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Take z = e−iξ, for ξ ∈ R, then

Ma,Θ(e−iξ) =

[
Θ̂(ξ)− Θ̂(2ξ)|â(ξ)|2 −Θ̂(2ξ)â(ξ)â(ξ + π)

−Θ̂(2ξ)â(ξ + π)â(ξ) Θ̂(ξ + π)− Θ̂(2ξ)|â(ξ + π)|2

]
.

For necessity: Since det(Ma,Θ(e−iξ)) > 0 is a necessary condition forMa,Θ(e−iξ)

to be negative semi-definite on ξ ∈ R, we only need to prove Θ̂(ξ) 6 0 for all

ξ ∈ R. Suppose there exists some ξ0 ∈ R, such that Θ̂(ξ0) > 0. Since Θ̂(ξ) is a

continuous function on R, we can find some nonempty open interval (c, d) such

that Θ̂(ξ) > 0 for any ξ ∈ (c, d). The negative semi-definite matrixMa,Θ(e−iξ)

must follow:

[
Ma,Θ(e−iξ)

]
1,1

= Θ̂(ξ)− Θ̂(2ξ)|â(ξ)|2 6 0, ∀ξ ∈ R. (2.2.12)

Hence, 0 < Θ̂(ξ) 6 Θ̂(2ξ)|â(ξ)|2 for ξ ∈ (c, d). This implies Θ̂(2ξ) > 0 for

ξ ∈ (c, d), i.e., Θ̂(ξ) > 0 for any ξ ∈ (2c, 2d). Inductively, we can prove

Θ̂(ξ) > 0 for any ξ ∈ (2nc, 2nd), n ∈ N. Since Θ̂(ξ) is 2π-periodic, and the

length of the interval (2nc, 2nd) becomes arbitrarily large as n increases, we

know that Θ̂(ξ) > 0 for all ξ ∈ R. Thus, Θ̂(ξ)Θ̂(2ξ) > 0 for any ξ ∈ R. The

determinant

det(Ma,Θ(e−iξ)) = Θ̂(ξ+π)
[
Θ̂(ξ)− Θ̂(2ξ)|â(ξ)|2

]
− Θ̂(ξ)Θ̂(2ξ)|â(ξ+π)|2 > 0

implies that

Θ̂(ξ + π)
[
Θ̂(ξ)− Θ̂(2ξ)|â(ξ)|2

]
> Θ̂(ξ)Θ̂(2ξ)|â(ξ + π)|2 > 0. (2.2.13)

By Θ̂(ξ + π) > 0, we know
[
Ma,Θ(e−iξ)

]
1,1

= Θ̂(ξ) − Θ̂(2ξ)|â(ξ)|2 > 0 for

any ξ ∈ R. Compare with the reverse inequality in (2.2.12), we get Θ̂(ξ) −
Θ̂(2ξ)|â(ξ)|2 = 0 for all ξ ∈ R. So det(Ma,Θ(e−iξ)) = −Θ̂(ξ)Θ̂(2ξ)|â(ξ +

π)|2 6 0, ∀ ξ ∈ R. Since the reverse inequality also holds, we must have

det(Ma,Θ(eiξ)) = 0 for all ξ ∈ R, which is a contradiction to the setting of the

problem. So the necessity part of (2) is proved.

For sufficiency: From det(Ma,Θ(e−iξ)) > 0, we know that (2.2.13) holds.
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Since Θ̂(ξ + π) 6 0, and it is not identically zero, we can conclude that[
Ma,Θ(e−iξ)

]
1,1

= Θ̂(ξ) − Θ̂(2ξ)|â(ξ)|2 6 0. Also,
[
Ma,Θ(e−iξ)

]
2,2

= Θ̂(ξ +

π) − Θ̂(2ξ)|â(ξ + π)|2 6 0 holds as well. This shows Ma,Θ(e−iξ) is negative

semi-definite for all ξ ∈ R. We proved the sufficiency part of (2).

Item (1) can be proved similarly as item (2).

Since items (1)(2) and (3) give necessary and sufficient conditions to all

cases that sig(Ma,Θ(z)) is constant on z ∈ T \ σ(Ma,Θ(z)), we know that the

signature varies if and only if none of the conditions in items (1), (2) or (3) is

satisfied. Thus item (4) is proved. �

The special simple case that Θ = δ is widely discussed in the literature.

In terms of Laurent polynomials, Θ = δ if and only if Θ(z) = 1. We present

the following proposition for this special case.

Proposition 2.2.5. Let Θ = δ, and a be a finitely supported filter such that

a(z) is not identically zero. Then the matrix

Ma(z) :=Ma,1(z) =

[
1− a(z)a?(z) −a(z)a?(−z)

−a(−z)a?(z) 1− a(−z)a?(−z)

]

is Hermitian for all z ∈ T. Moreover,

(1) s+
a,Θ = 1 and s−a,Θ = 0 if and only if

a(z)a?(z) + a(−z)a?(−z) = 1, ∀ z ∈ T.

(2) s+
a,Θ = 2 and s−a,Θ = 0 if and only if

a(z)a?(z) + a(−z)a?(−z) 6 1, ∀z ∈ T,

and the above inequality is not identity.

(3) s+
a,Θ = 1 and s−a,Θ = 1 if and only if

a(z)a?(z) + a(−z)a?(−z) > 1, ∀z ∈ T,

and the above inequality is not identity.
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(4) Otherwise (beyond the three cases above), s+
a,Θ = 2 and s−a,Θ = 1.

Proof. Notice that “1” is always an eigenvalue of Ma(z). Hence, the other

eigenvalue of Ma(z) is equal to det(A(z)). Also, we can easily calculate

det(Ma(z)) = 1− a(z)a?(z)− a(−z)a?(−z).

The calculation of s+
a,Θ and s−a,Θ in the four cases above follows directly from

the sign of det(Ma(z)). �

2.3 The Spectral Decomposition of a Matrix

of Laurent Polynomials with Constant Sig-

nature

As discussed in Theorem 2.1.2, the problem of constructing quasi-tight framelet

filter banks is the same as to find a spectral decomposition of a matrixNa,Θ|nb(z)

of Laurent polynomials. The main theorem we want to establish in this section

is the following:

Theorem 2.3.1. Let A(z) =
∑L

k=−LA(k)zk be an n × n matrix of Laurent

polynomials, such that A(z) is Hermitian, and det(A(z)) is not identically zero.

If sig(A(z)) is constant for all z ∈ T \ σ(A(z)), that is, ν+(A(z)) and ν−(A(z))

are both constants for all z ∈ T \ σ(A(z)) (we denote them by ν+ and ν−

respectively), then there exists an n × n matrix U(z) of Laurent polynomials,

such that

A(z) = U(z)DU?(z), (2.3.1)

where D := diag(Iν+ ,−Iν−) is an n × n constant diagonal matrix. We call D

the signature matrix of A(z).

For the special case that A(z) is positive semi-definite for all z ∈ T (which

means sig(A(z)) = n, ∀z ∈ T \ σ(A(z))), the above result is known as the

following famous matrix-valued Fejér-Riesz lemma:
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Theorem 2.3.2 (Matrix-Valued Fejér-Riesz Lemma). Let A(z) =
∑L

k=−LA(k)zk

be an n×n Hermitian matrix of Laurent polynomials. If A(z) is positive semi-

definite for all z ∈ T, then there exists an n × n matrix U(z) =
∑L

k=0 U(k)zk

of Laurent polynomials, such that A(z) = U(z)U?(z).

This matrix-valued Fejér-Riesz lemma is well known in both mathematics

and engineering literature. For example, see [75, 54, 25] and many references

therein. Similar results also hold if we require all the matrices to be of rational

functions rather than Laurent polynomials [88, 70].

Another interesting relevant problem is to consider the spectral factoriza-

tion of a polynomial matrix A(z), which is Hermitian for all z belonging to

either the real axis or the imaginary axis. This problem has important ap-

plications in both engineering and control theory. Spectral factorizations in

this setting have been solved beautifully using the tool of sign characteristic,

see [69, 71, 29, 28]. The concept of sign characteristic for matrix polynomials

was introduced and analyzed in [28] from an algebraic approach, which re-

quires a lot of knowledge in matrix polynomials to be illustrated thoroughly.

To avoid the complicated algebraic discussions, our proof below for the Lau-

rent polynomials problem develops the concepts of the partial multiplicity and

the sign characteristic for matrices of Laurent polynomials in a much simpler

way. (However, our definitions are consistent with the original definitions for

polynomials problem in [28], according to Theorem 3.7 in [28].)

The structure of the proof of Theorem 2.3.1 is similar to that of the

polynomial problem in [29], which is inductive on the length of determi-

nant of A(z). Firstly, we prove in Section 2.3.1 that Theorem 2.3.1 holds

if det(A(z)) is a nonzero monomial, i.e., len(det(A(z))) = 0. Then we show

that if len(det(A(z))) > 0, it can be reduced inductively to the special case

that len(det(A(z))) = 0. A complete proof of Theorem 2.3.1 is provided in

Section 2.3.2.

2.3.1 Empty Spectrum Case

If the Hermitian matrix A(z) has empty spectrum (determinant is a nonzero

monomial), the factorization in Theorem 2.3.1 is studied in the general ring
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with involution. For example, see [29, 65, 66, 21]. Our constructive proof

below follows similar procedure in [13, 29], which are originally designed for

polynomial problems.

Theorem 2.3.3. Let A(z) =
∑L

k=−LA(k)zk be an n × n matrix of Laurent

polynomials, such that A(z) is Hermitian. If det(A(z)) is a nonzero monomial,

then there exists an n× n matrix U(z) of Laurent polynomials, and an n× n
constant diagonal matrix D = diag(Iν+ ,−Iν−), for some nonnegative integers

ν+ and ν− satisfying ν+ + ν− = n, such that (2.3.1) holds.

We use Algorithm 2.1 to realize the decomposition in (2.3.1). The The-

orem 2.3.3 is proved by showing that the Algorithm 2.1 is feasible and will

terminate in finite steps.

In order to make the Algorithm 2.1 easier to read, we provide some lemmas

first, which serve as useful sub-steps in Algorithm 2.1. We prove these lemmas

in an algorithmic way, so that they could be used directly in Algorithm 2.1.

For a Laurent polynomial u(z), we use deg(u(z)) to denote its highest

degree, and use ldeg(u(z)) to denote its lowest degree. Its fsupp is defined as

the interval: fsupp(u(z)) := [ldeg(u(z)), deg(u(z))].

For a k × k matrix Q(z) of Laurent polynomials, we call it diagonally

dominant at diagonal s if

(1) for all i 6= s:

fsupp(Qi,s(z)) ( fsupp(Qs,s(z)), and fsupp(Qs,i(z)) ( fsupp(Qs,s(z));

(2.3.2)

(2) for all i > s:

deg(Qs,i(z)) < deg(Qs,s(z)). (2.3.3)

Q(z) is called diagonally dominant if it is diagonally dominant at all its

diagonals s = 1, . . . , k.

Lemma 2.3.1. Suppose Q(z) is a k × k Hermitian matrix of Laurent poly-

nomials, which is also diagonally dominant, and the lengths of the diagonal
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Laurent polynomials are nondecreasing:

len(Q1,1(z)) 6 len(Q2,2(z)) 6 . . . 6 len(Qk,k(z)). (2.3.4)

Let b(z) be a column vector of Laurent polynomials with size k, satisfying

ldeg(bl(z)) > ldeg(Ql,l(z)), l = 1, . . . , k. (2.3.5)

Then there exists a column vector X(z) of Laurent polynomials with size k,

such that Y (z) := b(z)− Q(z)X(z) satisfies

fsupp(Yl(z)) ( fsupp(Ql,l(z)), deg(Yl(z)) < deg(Ql,l(z)), l = 1, . . . , k.

(2.3.6)

Proof. If b(z) already satisfies deg(bl(z)) < deg(Ql,l(z)) for all l = 1, . . . , k,

then we can just take X(z) = 0, and the result is true. So we just need to

consider the case that there exists some s ∈ {1, . . . , k}, such that

deg(bs(z)) > deg(Qs,s(z)). (2.3.7)

Since Q(z) is Hermitian, we can denote the fsupp of its diagonal elements

as

[−nl, nl] := fsupp(Ql,l), l = 1, . . . , k.

From (2.3.4), we know that n1 6 . . . 6 nk. Define

D(z) :=


[
(z + 1)(z−1 + 1)

]nk−n1 [
(z + 1)(z−1 + 1)

]nk−n2

. . .

1

 ,

Q̃(z) := D(z)Q(z), and b̃(z) := D(z)b(z). We can see from (2.3.5) that for all

l = 1, . . . , k:

fsupp(Q̃l,l(z)) = [−nk, nk], ldeg(b̃l(z)) > ldeg(Q̃l,l(z)) = −nk. (2.3.8)
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Since Q(z) is diagonally dominant, from (2.3.2) we can see that fsupp(Q̃l,i(z)) (
fsupp(Q̃l,l(z)) = [−nk, nk] for all l = 1, . . . , k, i 6= l. Thus we can write Q̃(z)

as

Q̃(z) =

nk∑
l=−nk

Q̃lz
l. (2.3.9)

Also, from (2.3.3) we know that deg(Q̃l,i(z)) < deg(Q̃l,l(z)) = nk for all

l = 1, . . . , k, i > l. So the coefficient matrix Q̃nk in (2.3.9) is lower trian-

gular, which by (2.3.8) also has nonzero diagonal elements. Therefore Q̃nk is

nonsingular.

From (2.3.7), we also know that there exists some s ∈ {1, . . . , k}, such that

deg(b̃s(z)) > deg(Q̃s,s(z)) = nk. So by (2.3.8), we can write b̃(z) as

b̃(z) =
M∑

l=−nk
b̃lz

l,

with M > nk.

Let us parameterize the unknown X(z) =
∑M−nk

l=0 Xlz
l, and take Ỹ (z) :=

b̃(z) − Q̃(z)X(z). By this definition, we know that fsupp(Ỹ (z)) ⊂ [−nk,M ].

Write Ỹ (z) =
∑M

l=−nk Ỹlz
l, we want to solve for X(z), such that the coefficients

Ỹl = 0 for all l = nk, nk + 1, . . . ,M . Notice that we have M − nk + 1 matrix

equations to solve for M−nk+1 unknowns. The equations could be formulated

as the following Toeplitz form
Q̃nk Q̃nk−1 · · · Q̃2nk−M

. . . . . .
...

Q̃nk Q̃nk−1

Q̃nk




X0

...

XM−nk−1

XM−nk

 =


b̃nk
...

b̃M−1

b̃M

 ,

where we use Q̃j = 0 if j < −nk. Since Q̃nk is nonsingular, we can solve the

above system from the last equation, and use backward substitution to find

all X0, . . . , XM−nk .
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Now, we found a vector X(z) of Laurent polynomials such that

Ỹ (z) = b̃(z)− Q̃(z)X(z) = D(z)
(

b(z)− Q(z)X(z)
)

satisfies fsupp(Ỹl(z)) ⊂ [−nk, nk−1], for all l = 1, . . . , k. Take Y (z) := b(z)−
Q(z)X(z) = D−1(z)Ỹ (z), we will prove that it satisfies (2.3.6). Notice that

D(z) is a diagonal matrix with diagonals Dl(z) =
[
(z+1)(z−1 +1)

]nk−nl , for all

l = 1, . . . , k. So the fsupp of Yl(z) = Ỹl(z)/Dl(z) is contained in fsupp(Yl(z)) ⊂
[−nl, nl − 1], for all l = 1, . . . , k. So (2.3.6) holds. This completes the proof of

the lemma. �

Lemma 2.3.2. Let Q(z) be a k×k Hermite matrix of Laurent polynomials, and

(2.3.4) is satisfied. Suppose Q(z) is diagonally dominant at first s diagonals,

for some s < k. (If Q(z) is not diagonally dominant at the first diagonal,

just take s = 0.) Then there exists a k × k invertible matrix U(z) of Laurent

polynomials, such that Q̃(z) := U(z)Q(z)U?(z) is diagonally dominant at first

(s+ 1) diagonals.

Proof. Write Q(z) =

[
A(z) B(z)

B?(z) C(z)

]
, where A(z) is an (s + 1) × (s + 1)

Hermitian matrix of Laurent polynomials. Since Q(z) is diagonally dom-

inant at diagonals 1, . . . , s, from (2.3.2) and (2.3.4) we know that for all

i < (s + 1), fsupp(Qi,(s+1)(z)) ( fsupp(Qi,i(z)) ⊂ fsupp(Q(s+1),(s+1)) and

fsupp(Q(s+1),i(z)) ( fsupp(Qi,i(z)) ⊂ fsupp(Q(s+1),(s+1)(z)). So A(z) is a di-

agonally dominant matrix. Hence, for s = k − 1, the lemma is true with

U(z) = Ik.

For s < k − 1, we can find integers λs+2, . . . , λk, such that

B̃(z) := B(z)


z−λs+2

. . .

z−λk


satisfies ldeg(B̃l,i(z)) > ldeg(Al,l(z)), for all l = 1, . . . , (s+1), and i = 1, . . . , k−
(s+ 1). Write B̃(z) as column vectors B̃(z) =

[
b(s+2)(z) . . . b(k)(z)

]
, we can
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see that

ldeg(b
(i)
l (z)) > ldeg(Al,l(z)), for all i = (s+ 2), . . . , k, l = 1, . . . , (s+ 1).

Using Lemma 2.3.1, for each i = (s + 2), . . . , k, we can solve vectors x(i)(z),

such that y(i)(z) := b(i)(z)− A(z)x(i)(z) satisfies

fsupp(y
(i)
l (z)) ( fsupp(Al,l(z)), deg(y

(i)
l (z)) < deg(Al,l(z)), l = 1, . . . , k.

(2.3.10)

Denote X̃(z) :=
[
x(s+2)(z) . . . x(k)(z)

]
, Y (z) :=

[
y(s+2)(z) . . . y(k)(z)

]
=

B̃(z)− A(z)X̃(z), and Λ(z) := diag(zλs+2 , . . . , zλk), we know that[
Is+1

−X̃?(z) Ik−(s+1)

][
Is+1

Λ(z)

]
Q(z)

[
Is+1

Λ?(z)

][
Is+1 −X̃(z)

Ik−(s+1)

]

=

[
Is+1

−X̃?(z) Ik−(s+1)

][
A(z) B̃(z)

B̃?(z) Λ(z)C(z)Λ?(z)

][
Is+1 −X̃(z)

Ik−(s+1)

]

=

[
A(z) B̃(z)− A(z)X̃(z)

B̃?(z)− X̃?(z)A?(z) E(z)

]
=

[
A(z) Y (z)

Y ?(z) E(z)

]
, (2.3.11)

where E(z) := Λ(z)C(z)Λ?(z) − B̃?(z)X̃(z) − X̃?(z)B̃(z). From (2.3.10), we

can see that the above matrix Q̃(z) :=

[
A(z) Y (z)

Y ?(z) E(z)

]
is diagonally dominant

at the first (s + 1) diagonals. Taking

U(z) :=

[
Is+1

−X̃?(z) Ik−(s+1)

][
Is+1

Λ(z)

]
=

[
Is+1

−X̃?(z) Λ(z)

]
,

the equality (2.3.11) implies that Q̃(z) = U(z)Q(z)U?(z). This completes the

proof of the lemma. �

Lemma 2.3.3. Let Q(z) be a k × k matrix of Laurent polynomials, such that

Q(z) is Hermitian and det(Q(z)) is a nonzero monomial. If its first diagonal

element Q1,1(z) = 0, then there exists a k×k invertible matrix U(z) of Laurent

polynomials, and a (k− 1)× (k− 1) matrix Q̃(z) of Laurent polynomials, such
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that

Q(z) = U(z)

[
1

Q̃(z)

]
U?(z).

Proof. Since Q(z) is invertible, we can calculate Q−1(z) = adj(Q(z))/ det(Q(z)).

Write Q(z) and Q−1(z) as

Q(z) =

[
0 a?(z)

a(z) E(z)

]
, Q−1(z) =

[
b(z) c?(z)

c(z) F(z)

]
,

where a(z) and c(z) are both vectors of Laurent polynomials of size (k−1), E(z)

and F(z) are matrices of Laurent polynomials of size (k−1)× (k−1), and b(z)

is a scalar Laurent polynomial satisfying b?(z) = b(z). From Q(z)Q−1(z) =[
a?c a?F

ab + Ec ac? + EF

]
= Ik, the first column gives us

a?c = 1, ab + Ec = 0.

The first equation above also implies that c?a = 1? = 1. Multiply c? on the

left of the second equation, we get c?ab + c?Ec = 0, that is, c?Ec = −b.

Set

y(z) :=
1

2
(b(z) + 1) , x(z) :=

1

2
(b(z)− 1) a(z), V(z) :=

[
y c?

x Ik−1

]
.

We can calculate

V(z)Q(z)V?(z) =

[
y c?

x Ik−1

][
0 a?(z)

a(z) E(z)

][
y x?

c Ik−1

]

=

[
c?ay + ya?c + c?Ec c?ax? + ya? + c?E

xa?c + ya + Ec ax? + xa? + E

]

If we check each term, we get

c?ay + ya?c + c?Ec =2y + c?Ec = b + 1− b = 1.

c?ax? + ya? + c?E =x? + ya? + c?E =
1

2
(b− 1)a? +

1

2
(b + 1)a? + c?E
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=ba? + c?E = (ab + Ec)? = 0.

ax? + xa? + E =
1

2
(b− 1) aa? +

1

2
(b− 1) aa? + E = (b− 1)aa? + E.

Thus, V(z)Q(z)V?(z) =

[
1 0

0 (b(z)− 1)a(z)a(z)? + E(z)

]
. Also, notice that

det(V(z)) = y(z) − c?(z)x(z) = 1
2

(b(z) + 1) − 1
2

(b(z)− 1) = 1, so V(z) is

invertible. We can define U(z) := V−1(z), and Q̃(z) := (b(z) − 1)a(z)a(z)? +

E(z). It is straightforward to check that Q(z) = U(z)

[
1

Q̃(z)

]
U?(z) satisfies

all the requirements in the lemma. �

Now, we are ready to present the algorithm for the decomposition of ma-

trices of Laurent polynomials with empty spectrum.

Algorithm 2.1. Let A(z) be an n × n matrix of Laurent polynomials, such

that A?(z) = A(z), and det(A(z)) is a nonzero monomial.

(S0) Initialization. Set U(z) := In to be the n × n identity matrix. Let

Q(z) := A(z) and k := n.

(S1) Find a permutation matrix Ũ, such that Q̃(z) := ŨQ(z)Ũ? satisfies

len(Q̃1,1(z)) 6 len(Q̃2,2(z)) 6 . . . 6 len(Q̃k,k(z)).

Update U(z) := U(z)

[
In−k

Ũ−1

]
, and set Q(z) := Q̃(z).

(S2) If the first diagonal element Q1,1(z) 6= 0, go to step (S3). Otherwise,

use Lemma 2.3.3 to find a k × k matrix Ũ(z) of Laurent polynomials,

such that Ũ(z)Q(z)Ũ?(z) =

[
1 0

0 Q̃(z)

]
, for some (k−1)× (k−1) matrix

Q̃(z) of Laurent polynomials.

Update U(z) := U(z)

[
In−k

Ũ−1(z)

]
, and Q(z) := Q̃(z). Set k := k− 1.

Restart from (S1).
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(S3) For Q1,1(z) 6= 0, if Q(z) is a diagonally dominant matrix, go to step

(S6). Otherwise, find the number s, such that Q(z) is diagonally domi-

nant at first s diagonals, but not at diagonal s+ 1. If it is not diagonally

dominant at the first diagonal, just take s = 0. Go to step (S4).

(S4) Use Lemma 2.3.2 to find a k × k matrix Ũ(z) of Laurent polynomials,

such that Q̃(z) := Ũ(z)Q(z)Ũ?(z) is diagonally dominant at first (s+ 1)

diagonals.

Update U(z) := U(z)

[
In−k

Ũ−1(z)

]
, and Q(z) := Q̃(z).

(S5) After (S4), if the length of diagonal elements in Q(z) is not non-decreasing

any more, that is,

len(Q1,1(z)) 6 len(Q2,2(z)) 6 . . . 6 len(Qk,k(z))

is not satisfied, restart from (S1) to sort them again. Otherwise, repeat

from (S3).

(S6) If Q(z) is diagonally dominant, then Q(z) must be a constant matrix.

Compute its eigenvalue decomposition Q = ŨΛŨ?, where Λ = diag(λ1, . . . , λk).

Without loss of generality, we assume the first (k − ν−) of the eigenval-

ues are positive, and the last ν− of them are negative. Redefine Ũ :=

Ũ(z) diag(
√
|λ1|, . . . ,

√
|λk|), we have Q = Ũ diag(Ik−ν− ,−Iν−)Ũ?.

Update U(z) := U(z)

[
In−k

Ũ

]
, and define D :=

In−k

Ik−ν−
−Iν−

.

Such output U(z) and D satisfy (2.3.1), and all the requirements in The-

orem 2.3.3.

Proof. Every time we update U(z) and Q(z) in steps (S1)(S2)(S4)(S6), we

are actually factoring out some matrices from the original Q(z). The update

of U(z) is just absorbing the factored out matrices into the left factor U(z).

The update of Q(z) is just setting the new Q(z) to be the matrix left after

44



the factorization. So we can see if the algorithm can finalize in (S6), the

decomposition A(z) = U(z)DU?(z) must hold.

Let us prove that all the steps in the algorithm is feasible and it will

terminate in finite steps.

Step (S2) is proved by Lemma 2.3.3. Notice that Lemma 2.3.3 guarantees

that Ũ(z) is invertible. Therefore, the update of U(z) is feasible.

Step (S4) is proved by Lemma 2.3.2, notice that the matrix Ũ(z) in (S4)

is also invertible. Hence, the update of U(z) here is also feasible.

In (S6), we will show that if Q(z) is diagonally dominant, then Q(z) has

to be a constant matrix. In this case, len(det(Q(z))) =
∑k

l=1 len(Ql,l(z)). By

construction, we can see A(z) = U(z)

[
In−k

Q(z)

]
U?(z). Thus det(A(z)) =

det(U(z)) det(Q(z)) det(U?(z)), which implies det(Q(z))| det(A(z)). Since det(A(z))

is a nonzero monomial, we know len(det(Q(z))) = 0. Hence
∑k

l=1 len(Ql,l(z)) =

0, which implies that all the diagonal elements of Q(z) has to be monomials.

By our construction, we know Q(z) has to be a Hermitian matrix, so all the

diagonal elements must be nonzero constants. We also know that Q(z) is

diagonally dominant, so Q(z) must be a diagonal constant matrix.

Finally, we prove that the algorithm will stop after finite iterations. The

algorithm might restart from (S1) in (S2)(S5) and also restart from (S3) in

(S5).

When the restart from (S1) in (S2) occurs, the size of Q(z), k, will decrease

by 1. So it could happen only finite times.

In order to show that the algorithm could only restarts from (S1) in (S5)

for finite times, let us use the lexicographic order of sequences of length k.

For any 2 sequences of nonnegative integers with length k: {αj}kj=1, {βj}kj=1 ∈
Nk

0, we say {αj}kj=1 is smaller than {βj}kj=1 if there exists some index j0 ∈
{1, 2, · · · , k}, such that αj = βj for all j < j0, and αj0 < βj0 . {αj}kj=1 is equal

to {βj}kj=1 if αj = βj, ∀ j = 1, 2, · · · , k. It’s easy to see that Nk
0 is a well-ordered

set under this lexicographic order. The sequence {len(Qi,i(z))}ki=1 ∈ Nk
0. Every

time the algorithm restarts from (S1) in (S5), the lexicographic order of

{len(Qi,i(z))}ki=1 ∈ Nk
0 will decrease. Since the sequence is lower bounded by

the sequence {0, . . . , 0}, the restarts can occur only finite times.
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Every time the algorithm restarts from (S3) in (S5), s will increase by at

least 1, until the matrix Q(z) becomes diagonally dominant. So these iterations

can only happen for finite number of times.

This completes the proof of the algorithm and Theorem 2.3.3. �

2.3.2 General Case

Now we study the general case of the spectral decomposition problem as The-

orem 2.3.1. That is, the case that det(A(z)) is not a monomial.

Recall that the theory of the Smith normal form says that any n×n matrix

A(z) of Laurent polynomials can be factorized into

A(z) = E(z)D(z)F(z),

where E(z) and F(z) are invertible matrices of Laurent polynomials (determi-

nants are nonzero monomials), and D(z) = diag(d1(z), d2(z), . . . , dn(z)) is a

diagonal matrix with di(z)|di+1(z) for all i = 1, 2, . . . , n− 1. D(z) is called the

Smith Normal Form of A(z). If we require all di(z), i = 1, . . . , n, to be

monic polynomials (polynomials with leading coefficient equal to 1), and to

have nonzero constant term:

di(z) = zki + ci,ki−1z
ki−1 + · · ·+ ci,0, with ci,0 6= 0, ∀ i = 1, 2, . . . , n,

then D(z) is unique. (For simplicity, we will always require this condition in

our later discussions.) The polynomials di(z) are called the invariant poly-

nomials of A(z). The product d1(z)d2(z) · · · dk(z) is essentially the greatest

common divisor of the determinants of all k × k submatrices in A(z). Let us

factorize the invariant polynomials in C:

di(z) =

ni∏
k=1

(z − zi,k)αi,k , i = 1, 2, . . . , n.

The collection of all the factors (z − zi,k)αi,k , k = 1, 2, . . . , ni, i = 1, 2, . . . , n,

where each factor could repeat as many times as it occurs, is called the ele-

mentary divisors of A(z). For each i = 1, 2, . . . , n, since we require di(z)
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to have nonzero constant terms, di(z) has no root at 0. Thus there won’t be

any (z − 0)αi,k terms in the elementary divisors. Also, by di(z)|di+1(z) for

all i = 1, . . . , n − 1, we can see that the Smith Normal Form D(z) of A(z) is

uniquely determined by its elementary divisors.

As to the determinant, observe that det(A(z)) = det(E(z)) det(D(z)) det(F(z)).

Since det(E(z)) and det(F(z)) are both nonzero monomials, we can see that the

determinant of A(z) is essentially the product of all its invariant polynomials,

or the product of all its elementary divisors, up to a multiplication by some

nonzero monomials:

det(A(z)) = cAz
kA

n∏
i=1

di(z) = cAz
kA

n∏
i=1

ni∏
k=1

(z − zi,k)αi,k , (2.3.12)

for some nonzero constant cA ∈ C, and some integer kA ∈ Z. Hence, all

the roots information of det(A(z)) is contained in the roots of the elementary

divisors.

Suppose A(z) is an n×n Hermitian matrix of Laurent polynomials. Denote

its invariant polynomials as d1(z), d2(z), . . . , dn(z), then there exist invertible

matrices of Laurent polynomials E(z) and F(z), such that

A(z) = E(z) diag(d1(z), d2(z), · · · , dn(z))F(z).

Multiply E−1(z) and E−?(z) on the left and the right side of A(z) respectively,

we get:

Å(z) := E−1(z)A(z)E−?(z) =


d1(z)

d2(z)
. . .

dn(z)

 F(z)E−?(z).

(2.3.13)

Since A(z) is Hermitian, the matrix Å(z) is also a Hermitian matrix of Laurent

polynomials. From the above equation we can see that for each invariant

polynomial di(z) of A(z), di(z) divides the i-th row of Å(z), i = 1, 2, . . . , n.
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Now we are ready to prove the following theorem.

Theorem 2.3.4. Let A(z) =
∑L

k=−LA(k)zk be an n × n matrix of Laurent

polynomials, such that A(z) is Hermitian, and len(det(A(z))) > 0. If A(z) has

some elementary divisor (z − z0)α satisfying either one of the two situations:

(1) z0 ∈ C \ T \ {0}, and α > 1;

(2) z0 ∈ T, and α > 2;

then there exist two n×n matrices U(z) and Ã(z) of Laurent polynomials, such

that

A(z) = U(z)Ã(z)U?(z),

where Ã?(z) = Ã(z), and len(det(Ã(z))) 6 len(det(A(z)))− 2.

Proof. Denote the invariant polynomials of A(z) as d1(z), d2(z), . . . , dn(z), then

there exist invertible matrices E(z) and F(z) of Laurent polynomials, such that

A(z) = E(z) diag(d1(z), d2(z), · · · , dn(z))F(z).

Since (z−z0)α is an elementary divisor of A(z), we know that there exists some

dk(z), such that (z− z0)α|dk(z). Define Å(z) as (2.3.13), we can see that dk(z)

divides the k-th row of Å(z). So (z − z0)α also divides the k-th row of Å(z).

Moreover, by the definition (2.3.13), we can see that Å(z) is also Hermitian,

which implies that ((z − z0)α)? = (z−1 − z0)α = (−z0)αz−α(z − z0
−1)α divides

the k-th column of Å(z). Since we only care about the monic divisors, it is

equivalent to say (z − z0
−1)α divides the k-th column of Å(z).

For the first situation in the theorem, we have z0 ∈ C \ T \ {0}. z0 /∈ T
gives us |z0|2 6= 1, which implies that z0

−1 6= z0. So (z − z0)α and (z − z0
−1)α

are different polynomials. Since they divide the k-th row and the k-th column

of Å(z) respectively, we can see that (z − z0)α(z − z0
−1)α (or equivalently

((z − z0)α)? (z−z0)α) divides the (k, k) element of the matrix Å(z). So we can

factor out (z − z0)α from the k-th row and ((z − z0)α)? from the k-th column
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of Å(z) simultaneously. It yields the following factorization:

Å(z) =



1
. . .

(z − z0)α

. . .

1


Ã(z)



1
. . .

(z − z0)α

. . .

1



?

,

where Ã(z) is an n×n Hermitian matrix of Laurent polynomials. Use Dk,α(z)

to denote the diagonal matrix with the k-th diagonal element equal to (z−z0)α,

and all other diagonal elements equal to 1, i.e.,

Dk,α(z) := diag(1, . . . , 1, (z − z0)α, 1, . . . , 1). (2.3.14)

The above factorization implies Å(z) = E−1(z)A(z)E−?(z) = Dk,α(z)Ã(z)D?
k,α(z).

So A(z) can be written as

A(z) = E(z)Å(z)E?(z) = E(z)Dk,α(z)Ã(z)D?
k,α(z)E?(z).

Let U(z) := E(z)Dk,α(z), we get A(z) = U(z)Ã(z)U?(z).

Since det(E(z)) is a nonzero monomial, det(U(z)) = det(E(z)) det(Dk,α(z)) =

cUz
kU (z − z0)α for some cU 6= 0 and kU ∈ Z. Thus len(det(U(z))) = α. Also,

len(det(U?(z))) = len((det(U(z)))?) = len(det(U(z))) = α. So

len(det(Ã(z))) = len(det(A(z)))− len(det(U(z)))− len(det(U?(z)))

= len(det(A(z)))− α− α 6 len(det(A(z)))− 2.

For the second situation in the theorem, let β := bα/2c, which implies

β > 1 and 2β 6 α. As we discussed before, (z − z0)α divides the k-th row

of Å(z), and (z − z0
−1)α divides the k-th column of Å(z). Notice that for

z0 ∈ T, |z0|2 = 1 implies z0
−1 = z0. So (z − z0

−1)α and (z − z0)α are the

same polynomial. We have (z − z0)α divides both the k-th row and the k-th

column of Å(z). From β 6 α, we can see that (z − z0)β divides the k-th row

and ((z − z0)β)? = (−z0)βz−β(z − z0
−1)β = (−z0)βz−β(z − z0)β divides the
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k-th column of Å(z). Moreover, since 2β 6 α, we get (z − z0)2β divides the

(k, k) element of Å(z). So we can factor out (z − z0)β from the k-th row and

((z − z0)β)? from the k-th column at the same time, to get

Å(z) = Dk,β(z)Ã(z)D?
k,β(z),

where Ã(z) is an n×n Hermitian matrix of Laurent polynomials, and Dk,β(z) is

defined as (2.3.14). Similar to the previous situation, we get the factorization

of A(z): A(z) = E(z)Å(z)E?(z) = E(z)Dk,β(z)Ã(z)D?
k,β(z)E?(z).

Define U(z) := E(z)Dk,β(z), we have A(z) = U(z)Ã(z)U?(z). By similar dis-

cussions as the previous case, we can see len(det(U(z))) = len(det(Dk,β(z))) +

len(det(F(z))) = β. Also, len(det(U?(z))) = len((det(U(z)))?) = len(det(U(z))) =

β. So

len(det(Ã(z))) = len(det(A(z)))− len(det(U(z)))− len(det(U?(z)))

= len(det(A(z)))− β − β 6 len(det(A(z)))− 2.

This completes the proof of the theorem. �

The idea of extraction of elementary divisors is also used to factorize the

positive semi-definite matrices of rational functions (for example, see [88]).

Notice that the above theorem cannot extract the elementary divisor (z−z0)α

if z0 ∈ T and α = 1. Fortunately, if A(z) is positive semi-definite for all z ∈ T,

this will never happen, since all its elementary divisors (z − z0)α with z0 ∈ T
will have even degree α (see Corollary 2.3.7). However, α = 1 could happen if

the matrix A(z) is not positive semi-definite. See the following example.

Example 2.1. Consider the matrix

A(z) =

 z−1 (z − 1)2 (z − 1) (z + 1)

(z−1 − 1) (z−1 + 1) −z−1 (z − 1)2

 .
By direct calculations we can see A?(z) = A(z), and det(A(z)) = 4(z−1)2

z
=

−d(z)d?(z), where d(z) = 2(z − 1). So det(A(z)) 6 0 for all z ∈ T. Since the

determinant is equal to the product of all the eigenvalues of A(z), we know that
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A(z) always has 1 positive and 1 negative eigenvalue for all z ∈ T \ σ(A(z)).

Hence, sig(A(z)) = 0 is constant for all z ∈ T \ σ(A(z)).

As to the Smith Normal Form of A(z), let

E(z) :=

 −2 z3−4 z2−z+1
z

−2 z (z − 2)

2 z3−z−1
z2 2 z

 , F(z) :=

 1 2 z2 − z

−1 −2 z2 + z + 1

 ,

D(z) :=

 z − 1 0

0 z − 1

 .
We can directly check that A(z) = E(z)D(z)F(z). E(z) and F(z) are both

invertible matrices since det(E(z)) = 4z−1, and det(F(z)) = 1. So D(z) is

the Smith Normal Form of A(z). We can see that A(z) contains 2 elementary

divisors with degree equal to 1: (z − 1).

The following theorem handles the z0 ∈ T and α = 1 case. It shows that if

the signature of A(z) is constant for z ∈ T \ σ(A(z)), the elementary divisors

with degree equal to 1 can still be extracted out.

Theorem 2.3.5. Let A(z) =
∑L

k=−LA(k)zk be an n × n matrix of Laurent

polynomials, such that A(z) is Hermitian, and len(det(A(z))) > 0. If A(z)

also satisfies:

(1) sig(A(z)) is constant for all z ∈ T \ σ(A(z));

(2) there exists some z0 ∈ σ(A(z))
⋂
T, and all the elementary divisors of

A(z) with root z0 have degree equal to 1;

then there exist two n×n matrices U(z) and Ã(z) of Laurent polynomials, such

that

A(z) = U(z)Ã(z)U?(z),

where Ã?(z) = Ã(z), and len(det(Ã(z))) 6 len(det(A(z)))− 2.

We need the following two lemmas to prove the Theorem 2.3.5.
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Lemma 2.3.4. Let A(ξ) be an n × n matrix of analytic functions depending

on ξ ∈ R (or C). For some ξ0 ∈ R (or C), suppose A(ξ) can be factorized as

following in some neighborhood of ξ0:

A(ξ) = Eξ0(ξ)


(ξ − ξ0)α1

(ξ − ξ0)α2

. . .

(ξ − ξ0)αn

Fξ0(ξ),

where Eξ0(ξ) and Fξ0(ξ) satisfy:

(1) Eξ0(ξ) and Fξ0(ξ) are both n×n analytic matrices in some neighborhood

of ξ0;

(2) Eξ0(ξ0) and Fξ0(ξ0) are both nonsingular;

(3) the integer sequence {αj}nj=1 is nondecreasing, i.e., 0 6 α1 6 . . . 6 αn.

Then the sequence {αj}nj=1 is unique (independent of the factorization we use).

We call it the partial multiplicities of A(ξ) at ξ0.

Before the proof, we provide a simple fact about analytic matrices: If

C(ξ) is an n × n matrix, which is analytic in some neighborhood of ξ0, and

det(C(ξ0)) 6= 0, then C−1(ξ) = 1
det(C(ξ))

adj(C(ξ)) is also an analytic matrix in

some neighborhood of ξ0.

Proof. Suppose we have the following two different factorizations of A(ξ), both

satisfy the 3 conditions in the lemma:

A(ξ) = Eξ0(ξ)


(ξ − ξ0)α1

. . .

(ξ − ξ0)αn

Fξ0(ξ)

= Ẽξ0(ξ)


(ξ − ξ0)α̃1

. . .

(ξ − ξ0)α̃n

 F̃ξ0(ξ).
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Then we have
(ξ − ξ0)α̃1

. . .

(ξ − ξ0)α̃n



=Ẽ−1
ξ0

(ξ)Eξ0(ξ)


(ξ − ξ0)α1

. . .

(ξ − ξ0)αn

Fξ0(ξ)F̃−1
ξ0

(ξ)

=P (ξ)


(ξ − ξ0)α1

. . .

(ξ − ξ0)αn

Q(ξ), (2.3.15)

where P (ξ) := Ẽ−1
ξ0

(ξ)Eξ0(ξ) and Q(ξ) := Fξ0(ξ)F̃−1
ξ0

(ξ). By the fact we men-

tioned before the proof, P (ξ) and Q(ξ) are both analytic matrices in some

neighborhood of ξ0.

For all k 6 n, check the top left k × k submatrix of (2.3.15):
(ξ − ξ0)α̃1

. . .

(ξ − ξ0)α̃k



=Pr,1:k(ξ)


(ξ − ξ0)α1

. . .

(ξ − ξ0)αn

Qc,1:k(ξ) = Rk(ξ)Qc,1:k(ξ), (2.3.16)

where Pr,1:k(ξ) is the k×n submatrix of P (ξ), constructed by taking the first k

rows of P (ξ), and Qc,1:k(ξ) is the n×k submatrix of Q(ξ), constructed by taking

the first k columns of Q(ξ). Rk(ξ) := Pr,1:k(ξ) diag((ξ−ξ0)α1 , . . . , (ξ−ξ0)αn) is

a k×n matrix. From the definition, we can see that the s-th column of Rk(ξ)

is in O((ξ − ξ0)αs) as ξ → ξ0, for all s = 1, . . . , n.
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Taking the determinant of (2.3.16), by the Cauchy-Binet Formula,

(ξ − ξ0)α̃1+α̃2...+α̃k = det


(ξ − ξ0)α̃1

. . .

(ξ − ξ0)α̃k


=

|J |=k∑
J⊆{1,2,...,n},

det([Rk]c,J (ξ)) det([Qc,1:k]r,J (ξ)), (2.3.17)

where [Rk]c,J (ξ) is the k × k submatrix of Rk(ξ), constructed by taking the

columns with indices belonging to J ; [Qc,1:k]r,J (ξ) is the k × k submatrix of

Qc,1:k(ξ), constructed by taking the rows with indices belonging to J . The

summation is taken over all indices sets J , whose size is equal to k. Since all

the elements in the s-th column of [Rk]c,J (ξ) are in O((ξ − ξ0)αs) as ξ → ξ0,

for all s = 1, . . . , n, and the sequence {αj}nj=1 is nondecreasing, we can see

Z(det([Rk]c,J (ξ)), ξ0) > α1 + . . .+ αk, for all J ⊆ {1, . . . , n}, |J | = k.

Hence, each term in the summation on the right-hand-side of (2.3.17) is in

O((ξ− ξ0)α1+...+αk), as ξ → ξ0. So Z((ξ− ξ0)α̃1+...+α̃k , ξ0) > α1 + . . .+αk. This

implies

α1 + . . .+ αk 6 α̃1 + . . .+ α̃k, for all k = 1, 2, . . . , n.

Similarly, we can prove α̃1 + . . . + α̃k 6 α1 + . . . + αk also holds for all

k = 1, . . . , n. The two inequalities give that

α̃1 + . . .+ α̃k = α1 + . . .+ αk, for all k = 1, 2, . . . , n.

So {αj}nj=1 and {α̃j}nj=1 are the same sequence. �

Lemma 2.3.5. Let A(ξ) be an n × n matrix of analytic functions depending

on ξ ∈ R. If A(ξ) is Hermitian, i.e., (A(ξ))? = A(ξ), for all ξ ∈ R, then

there exists an n× n matrix U(ξ) and scalar functions λ1(ξ), λ2(ξ), . . . , λn(ξ),

satisfying
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(1) U(ξ) and λ1(ξ), λ2(ξ), . . . , λn(ξ) are all analytic for ξ ∈ R;

(2) U(ξ) is unitary, i.e., U(ξ)(U(ξ))? = In for all ξ ∈ R;

and the factorization

A(ξ) = U(ξ)


λ1(ξ)

λ2(ξ)
. . .

λn(ξ)

U?(ξ)

holds for all ξ ∈ R.

Lemma 2.3.5 is due to Rellich in his study of perturbation theory. The

proof of it can be found in [30, 59]. This lemma tells us that the eigenvalues

and eigenvectors of an analytic Hermitian matrix can also be expressed as

analytic functions. Also, since all the eigenvalues of a Hermitian matrix are

real, we know that λ1(ξ), . . . , λn(ξ) in the above lemma are all real functions.

Furthermore, since all the eigenvalues λ1(ξ), . . . , λn(ξ) of A(ξ) in Lemma

2.3.5 are continuous functions of ξ ∈ R, we know that if det(A(ξ)) 6= 0 for ξ

belongs to some interval (c1, c2), then all the eigenvalues λj(ξ) will not change

signs, i.e., sig(A(ξ)) will be a constant for ξ ∈ (c1, c2).

By Lemma 2.3.4 and Lemma 2.3.5, we can build the following theorem.

Theorem 2.3.6. Suppose A(z) is an n × n matrix of Laurent polynomials,

such that A(z) is Hermitian, i.e., A?(z) = A(z). Take z0 = e−iξ0 ∈ T, where

ξ0 ∈ R. Let d1(z), . . . , dn(z) be the invariant polynomials of A(z), and define

the sequence {αj}nj=1 by

αj = Z(dj(z), z0), j = 1, . . . , n.

Also, let λ1(ξ), . . . , λn(ξ) be the eigenvalues of the matrix A(e−iξ), chosen ac-

cording to Lemma 2.3.5. That is, λ1(ξ), . . . , λn(ξ) are analytic functions for

all ξ ∈ R. Define the sequence {βj}nj=1 by

βj = Z(λj(ξ), ξ0), j = 1, . . . , n.
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Without loss of generality, we can assume β1 6 . . . 6 βn.

Then the sequence {αj}nj=1 and the sequence {βj}nj=1 are the same.

Proof. The invariant polynomials dj(z)|dj+1(z) hold for all j = 1, 2, . . . , n− 1.

Hence, we know that α1 6 . . . 6 αn.

Also, we can write A(z) into its Smith Normal Form. We know that there

exist n×n invertible matrices of Laurent polynomials E(z) and F(z), such that

A(z) = E(z) diag(d1(z), d2(z), . . . , dn(z))F(z). (2.3.18)

Take z = e−iξ, ξ ∈ R, we can see that all the invariant polynomials dj(e
−iξ)

are analytic functions of ξ, and Z(dj(e
−iξ), ξ0) = Z(dj(z), z0) = αj, for all

j = 1, 2, . . . , n.

Denote dj(e
−iξ) = (ξ−ξ0)αj d̃j(ξ), then d̃j(ξ0) 6= 0. We can rewrite equation

(2.3.18) as

A(e−iξ) =E(e−iξ) diag(d1(e−iξ), d2(e−iξ), . . . , dn(e−iξ))F(e−iξ)

=E(e−iξ)


(ξ − ξ0)α1

. . .

(ξ − ξ0)αn



d̃1(ξ)

. . .

d̃n(ξ)

 F(e−iξ)

=Eξ0(ξ)


(ξ − ξ0)α1

. . .

(ξ − ξ0)αn

Fξ0(ξ),

where Eξ0(ξ) := E(e−iξ), and Fξ0(ξ) := diag(d̃1(ξ), · · · , d̃n(ξ))F(e−iξ). From

the definition, Eξ0(ξ) and Fξ0(ξ) are both analytic matrices, and det(Eξ0(ξ0)) 6=
0, det(Fξ0(ξ0)) 6= 0. Hence, the matrices Eξ0(ξ), Fξ0(ξ) and the sequence

{αj}nj=1 satisfy all the conditions in Lemma 2.3.4. So the partial multiplic-

ities of A(e−iξ) at ξ0 are {αj}nj=1.

By Lemma 2.3.5, the analytic Hermitian matrix A(e−iξ) can also be factor-
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ized as

A(e−iξ) = W (ξ)


λ1(ξ)

. . .

λn(ξ)

 (W (ξ))?, (2.3.19)

where W (ξ) is a unitary analytic matrix and the eigenvalues λ1(ξ), . . . , λn(ξ)

are analytic functions of ξ ∈ R. Since λk(ξ) can be reordered by permutations

of the columns of W (ξ), we can just assume that β1 6 β2 6 . . . 6 βn.

Since βj = Z(λj(ξ), ξ0), we can denote λj(ξ) = (ξ − ξ0)βjfj(ξ), where

fj(ξ0) 6= 0, for all j = 1, . . . , n. The factorization (2.3.19) becomes

A(e−iξ) =W (ξ)


(ξ − ξ0)β1

. . .

(ξ − ξ0)βn



f1(ξ)

. . .

fn(ξ)

 (W (ξ))?

=Ẽξ0(ξ)


(ξ − ξ0)β1

. . .

(ξ − ξ0)βn

 F̃ξ0(ξ)

where Ẽξ0(ξ) := W (ξ), and F̃ξ0(ξ) := diag(f1(ξ), · · · , fn(ξ))(W (ξ))?. From the

definition, Ẽξ0(ξ) and F̃ξ0(ξ) are both analytic matrices, and det(Ẽξ0(ξ0)) 6= 0,

det(F̃ξ0(ξ0)) 6= 0. Hence, the matrices Ẽξ0(ξ), F̃ξ0(ξ) and the sequence {βj}nj=1

satisfy all the conditions in Lemma 2.3.4. So {βj}nj=1 are also the partial

multiplicities of A(e−iξ) at ξ0. By Lemma 2.3.4, we know that {βj}nj=1 =

{αj}nj=1. This completes the proof of the lemma. �

For a Hermitian matrix A(z) of Laurent polynomials, although we know

that the eigenvalues λ1(ξ), . . . , λn(ξ) of A(e−iξ) are analytic functions of ξ ∈ R,

we cannot expect them to be Laurent polynomials in z-domain. Actually, the

following example shows that the analytic functions λ1(ξ), . . . , λn(ξ) might not

be 2π-periodic functions of ξ ∈ R.

Example 2.2. Consider the same matrix A(z) as in Example 2.1. Solving

det(A(e−iξ)−λI2) = 0, we can find two analytic functions that are eigenvalues

of A(e−iξ): λ1,2(ξ) = ±4 sin(ξ/2). They are both 4π-periodic functions of

ξ ∈ R, and we cannot find 2 eigenvalues of A(e−iξ) that are both analytic and
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2π-periodic functions of ξ ∈ R. Also, as calculated in Example 2.1, the 2

invariant polynomials of A(z) are d1(z) = d2(z) = z − 1. Take ξ0 = 0 and

z0 = 1, we can calculate αj := Z(dj(z), 1) = 1 and βj := Z(λj(ξ), 0) = 1,

j = 1, 2.

Figure 2.1: Plot of the eigenvalue functions in Example 2.2. The solid line is
λ1(ξ) = 4 sin(ξ/2), the dashed line is λ2(ξ) = −4 sin(ξ/2).

Now, we are ready to prove the Theorem 2.3.5.

Proof of Theorem 2.3.5. Denote the invariant polynomials of the matrix A(z)

by d1(z), . . . , dn(z). For z0 ∈ σ(A(z))
⋂
T, from (2.3.12) we can see that there

exists some k ∈ {1, 2, . . . , n}, such that (z − z0)|dk(z). Define the sequence

{αj}nj=1 by

αj := Z(dj(z), z0), j = 1, 2, . . . , n.

From the condition (2), we know all αj 6 1. Also, by dj(z)|dj+1(z) for all

j = 1, 2, . . . , n− 1, we know that α1 6 . . . 6 αn. Thus the sequence must be

{αj}nj=1 = {0, . . . , 0, 1, . . . , 1}.

Taking z = e−iξ, we get a matrix A(e−iξ) that is analytic of ξ ∈ R. By

Lemma 2.3.5, the analytic Hermitian matrix A(e−iξ) can also be factorized as

A(e−iξ) = W (ξ)


λ1(ξ)

. . .

λn(ξ)

 (W (ξ))?, (2.3.20)
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where W (ξ) is a unitary analytic matrix and λ1(ξ), . . . , λn(ξ) are analytic

functions of ξ ∈ R.

Since z0 ∈ T, we can find some ξ0 ∈ [−π, π), such that z0 = e−iξ0 , where i

is the imaginary unit. Define the sequence {βj}nj=1 by

βj := Z(λj(ξ), ξ0), for all j = 1, . . . , n.

Without loss of generality, we can choose the factorization such that β1 6

. . . 6 βn. According to Theorem 2.3.6, we can see that

{βj}nj=1 = {αj}nj=1 = {0, . . . , 0, 1, . . . , 1}.

Let K be the number of times “1” appears in {βj}nj=1 or {αj}nj=1. Recall

from the definition of {αj}nj=1 that each “1” corresponds to an elementary

divisor (z − z0). So K > 0 is the number of times the elementary divisor

(z−z0) appears. Let us see how the signs of the eigenvalues λj(ξ) change from

the left to the right side of ξ0.

For j = 1, . . . , n−K, we have βj = 0. So λj(ξ0) 6= 0. Since the eigenvalue

λj(ξ) is a continuous function of ξ ∈ R, it will not change its sign between two

sides of ξ0, i.e., sign(λj(ξ
−
0 )) = sign(λj(ξ

+
0 )).

For j = n − K + 1, . . . , n, we have βj = 1. In this case, λj(ξ0) = 0 and

λ′j(ξ0) 6= 0. We know that the eigenvalues of a Hermitian matrix are all real,

so λj(ξ) is a real function of ξ ∈ R. This implies that λ′j(ξ) is also a real

function. Hence, λ′j(ξ0) is a nonzero real number. We have the following two

possible situations.

(1) If λ′j(ξ0) > 0, we know that λj(ξ) is increasing near ξ0. So

λj(ξ
−
0 ) < 0, and λj(ξ

+
0 ) > 0.

(2) If λ′j(ξ0) < 0, we know that λj(ξ) is decreasing near ξ0. So

λj(ξ
−
0 ) > 0, and λj(ξ

+
0 ) < 0.
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Since the signature of A(z) is constant for all z ∈ T\σ(A(z)), we know that

the number of positive eigenvalues and the number of negative eigenvalues of

A(e−iξ) will remain unchanged between the two sides of ξ0. So the above two

cases must happen exactly the same number of times. That is, K has to be an

even integer. And there are exactly K/2 number of λj(ξ), such that λj(ξ0) = 0

and λ′j(ξ0) > 0; meanwhile, there are exactly K/2 number of λj(ξ), such that

λj(ξ0) = 0 and λ′j(ξ0) < 0. (The sign of λ′j(ξ0) here are called the sign

characteristic. In [28], the authors introduced this concept in an algebraic

way to study the self-adjoint matrix polynomials. In the light of Theorem 3.7

of [28], our definition here is a natural generalization of the concept into the

Laurent polynomial matrices problem.)

Since K > 0, there exist some j1, j2 > n−K + 1, such that

λj1(ξ0) = 0, λ′j1(ξ0) = γ2
1 > 0, λj2(ξ0) = 0, λ′j2(ξ0) = −γ2

2 < 0,

for some real γ1, γ2 6= 0. Thus, we can write λj1(ξ) and λj2(ξ) as

λj1(ξ) = γ2
1(ξ − ξ0) +O((ξ − ξ0)2), λj2(ξ) = −γ2

2(ξ − ξ0) +O((ξ − ξ0)2),

as ξ → ξ0.

In the eigenvalue decomposition (2.3.20), since W (ξ) is unitary on ξ ∈ R,

it would be invertible at ξ0. W (ξ) is also an analytic matrix implies that

W−1(ξ0)W (ξ) = In +O((ξ− ξ0)), as ξ → ξ0. So, there exists an n×n analytic

matrix G(ξ), such that

W−1(ξ0)W (ξ) = In+(ξ−ξ0)G(ξ),
(
W−1(ξ0)W (ξ)

)?
= In+(ξ−ξ0)(G(ξ))?.

Multiply constant matrices (W (ξ0))−1 and (W (ξ0))−? on the left and the right

side of (2.3.20) respectively, we define Å(e−iξ) as

Å(e−iξ) :=W−1(ξ0)A(e−iξ)(W (ξ0))−?

=W−1(ξ0)W (ξ)


λ1(ξ)

. . .

λn(ξ)

 (W−1(ξ0)W (ξ))?
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=(In + (ξ − ξ0)G(ξ))


λ1(ξ)

. . .

λn(ξ)

 (In + (ξ − ξ0)(G(ξ))?)

=Λ(ξ) + (ξ − ξ0)G(ξ)Λ(ξ) + (ξ − ξ0)Λ(ξ)(G(ξ))?

+ (ξ − ξ0)2G(ξ)Λ(ξ)(G(ξ))?, (2.3.21)

where Λ(ξ) := diag(λ1(ξ), . . . , λn(ξ)). Plugging in ξ = ξ0, we can directly get

Å(e−iξ0) = Λ(ξ0) =



λ1(ξ0)
. . .

λn−K(ξ0)

0
. . .

0


, (2.3.22)

As we picked j1, j2 > n −K + 1, the j1-th and the j2-th rows, as well as the

j1-th and the j2-th columns of Å(e−iξ) are all in O((ξ − ξ0)), as ξ → ξ0.

Now, we will check the lower rightK×K submatrix of Å(e−iξ) from (2.3.21).

Since λn−K+1(ξ), . . . , λn(ξ) are in O((ξ − ξ0)), as ξ → ξ0, we can see that the

lower right K ×K submatrix of the second and the third term on the right-

hand-side of (2.3.21) are both inO((ξ−ξ0)2), as ξ → ξ0. Hence, the summation

of the 4 terms on the right-hand-side of (2.3.21) yields:

Å(n−K+1):n,(n−K+1):n(e−iξ)

=


λn−K+1(ξ)

. . .

λn(ξ)

+O((ξ − ξ0)2) +O((ξ − ξ0)2) +O((ξ − ξ0)2)
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=



λn−K+1(ξ)
. . .

γ2
1(ξ − ξ0)

. . .

−γ2
2(ξ − ξ0)

. . .

λn(ξ)


+O((ξ − ξ0)2),

(2.3.23)

as ξ → ξ0. The γ2
1(ξ − ξ0) and −γ2

2(ξ − ξ0) terms appear at the j1 and the j2

diagonal positions respectively.

Now, we can use the following matrix V to cancel the first order term at

the (j1, j1) position of Å(e−iξ). Define the n× n matrix V as

V :=



1
. . .

γ−1
1 γ−1

2

. . .

1
. . .

1


, (2.3.24)

which corresponds to dividing the j1-th row by γ1, then adding γ−1
2 times the

j2-th row to the j1-th row. Taking symmetric operations on both rows and

columns of Å(e−iξ), we define Ă(e−iξ) := V Å(e−iξ)V ?.

From the definition, we can see that similar to Å(e−iξ), the j1-th and the

j2-th rows, as well as the j1-th and the j2-th columns of Ă(e−iξ) are still in

O((ξ−ξ0)), as ξ → ξ0. Also, the lower-right K×K submatrix of Ă(e−iξ) gives:

Ă(n−K+1):n,(n−K+1):n(e−iξ)
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=



1
. . .

γ−1
1 γ−1

2

. . .

1
. . .

1


Å(n−K+1):n,(n−K+1):n(e−iξ)



1
. . .

γ−1
1

. . .

γ−1
2 1

. . .

1



=



λn−K+1(ξ)
. . .

0 −γ2(ξ − ξ0)
. . .

−γ2(ξ − ξ0) −γ2
2(ξ − ξ0)

. . .

λn(ξ)


+O((ξ − ξ0)2).

Thus, the (j1, j1) diagonal element of Ă(e−iξ) is in O((ξ − ξ0)2), as ξ → ξ0.

Finally, we can change back to z-domain. The matrix Ă(z) of Laurent

polynomials is written as

Ă(z) = V Å(z)V ? = VW−1(ξ0)A(z)W−?(ξ0)V ?.

Since the j1-th row and the j1-th column of Ă(e−iξ) are in O((ξ − ξ0)), we

know that (z − z0) divides both the j1-th row and the j1-th column of Ă(z).

Also, the fact that the (j1, j1) element of Ă(e−iξ) is in O((ξ−ξ0)2) implies that

(z − z0)2 divides the (j1, j1) element of Ă(z). So we can factor out (z − z0)

from the j1-th row and (z − z0)? from the j1-th column simultaneously, to get

Ă(z) = Dj1,1(z)Ã(z)D?
j1,1

(z),

for some n× n Hermitian matrix Ã(z) of Laurent polynomials, and Dj1,1(z) is

defined as (2.3.14). Thus, we have

A(z) =W (ξ0)V −1Ă(z)V −?W ?(ξ0)
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=W (ξ0)V −1Dj1,1(z)Ã(z)D?
j1,1

(z)V −?W ?(ξ0) = U(z)Ã(z)U?(z),

where U(z) := W (ξ0)V −1Dj1,1(z).

len(det(Ã(z))) = len(det(A(z)))− len(det(U(z)))− len(det(U∗(z)))

= len(det(A(z)))− 2.

So U(z) and Ã(z) satisfy all the requirements of the theorem. This completes

the proof of the Theorem 2.3.5. �

From the above proof, we can see that under the assumptions of the The-

orem 2.3.5, there will always be a pair of eigenvalues λj1(ξ) and λj2(ξ), that

will both change signs across ξ0. So the situation in the Theorem 2.3.5 can

never happen if A(z) is positive semi-definite. We summarize this observation

as the following corollary.

Corollary 2.3.7. Suppose A(z) is a Hermitian matrix of Laurent polynomials,

that is also positive semi-definite for all z ∈ T. Then all its elementary divisors

(z − z0)α with z0 ∈ T will have even degree, i.e., α ∈ 2Z.

Proof. Since z0 ∈ T, we can find some ξ0 ∈ R, such that z0 = e−iξ0 . Suppose

λ1(ξ), . . . , λn(ξ) are the eigenvalues of A(e−iξ), that are also analytic functions

of ξ ∈ R. Define the sequences {αj}nj=1 and {βj}nj=1 as in Theorem 2.3.6. By

Theorem 2.3.6, we can see that {βj}nj=1 = {αj}nj=1.

Since A(e−iξ) is positive semi-definite for all ξ ∈ R, that is, λj(ξ) will not

change sign across ξ0, for all j = 1, . . . , n, we know that

βj = Z(λj(ξ), ξ0) ∈ 2Z, ∀ j = 1, . . . , n.

So αj ∈ 2Z for all j = 1, . . . , n. From the definition of αj, we know that

{αj}nj=1 are just the degrees of elementary divisors (z − z0)α in each invariant

polynomial. So all such α satisfy α ∈ 2Z. �

Now we are ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. If len(det(A(z))) > 0, from equation (2.3.12), we can

see that A(z) has some elementary divisor (z−z0)α, z0 6= 0. Let A0(z) := A(z).
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For j > 0, if Aj(z) has some elementary divisor (z − z0)α, with z0 ∈ C \ T \
{0}, or α > 1, apply the Theorem 2.3.4 to get a factorization of Aj(z) as

Aj(z) = Uj+1(z)Aj+1(z)U?
j+1(z), for some n× n matrices Uj+1(z) and Aj+1(z)

of Laurent polynomials, satisfying A?
j+1(z) = Aj+1(z), and len(Aj+1(z)) <

len(Aj(z)). If all the elementary divisors (z − z0)α of Aj(z) has degree α = 1

and z0 ∈ T, we can apply Theorem 2.3.5 to still get the factorization Aj(z) =

Uj+1(z)Aj+1(z)U?
j+1(z), with A?

j+1(z) = Aj+1(z) and len(Aj+1(z)) < len(Aj(z)).

Reset j := j + 1 and repeat the steps, until len(det(Aj(z))) = 0.

This iteration will stop after finite number of steps, since len(det(A(z))) is

finite and len(det(Aj(z))) is strictly decreasing after each step. Hence, we can

get a factorization as

A(z) = U1(z) · · ·Uk(z)Ak(z)U?
k(z) · · ·U?

1(z),

where Ak(z) has no elementary divisors, i.e., len(det(Ak(z))) = 0.

In this case, it is proved by Theorem 2.3.3 that Ak(z) can be factorized as

Ak(z) = Uk+1(z)DU?
k+1(z), for some n × n matrix Uk+1(z) of Laurent poly-

nomials, and D = diag(Iν+ ,−Iν−) is an n × n constant diagonal matrix,

for some nonnegative integers ν+ and ν−, such that ν+ + ν− = n. Define

U(z) := U1(z) · · ·Uk+1(z), then

A(z) = U(z)DU?(z)

holds. In order to complete the proof, we notice that for all z0 ∈ T \ σ(A(z)),

Theorem 2.2.1 shows that

ν+ > ν+(A(z0)), ν− > ν−(A(z0)).

Since ν+ + ν− = n = ν+(A(z0)) + ν−(A(z0)), the above two inequalities have

to be equalities. That is, ν+ = ν+(A(z0)) and ν− = ν−(A(z0)) hold for all

z0 ∈ T \ σ(A(z)).

This completes the proof of the theorem. �
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2.3.3 The Algorithm for Spectral Decomposition of a

Matrix of Laurent Polynomials with Constant Sig-

nature

Since the proof of Theorem 2.3.1 follows a constructive approach by applying

Theorem 2.3.4, 2.3.5, 2.3.3 repeatedly, we can use the following algorithm to

solve it.

Most of the steps in the algorithm will be simply following the proofs of the

above theorems. The only non-constructive step in the proof is to find W (ξ)

in (2.3.20), which cannot be solved explicitly. However, it is still possible to

find a matrix with similar properties as Å(z) in (2.3.21), by diagonalizing the

coefficient matrix of the first order expansion term: d
dξ

A(e−iξ)|ξ0 = −iz0A′(z0),

where z0 = e−iξ0 .

Algorithm 2.2. Input an n × n Hermitian matrix A(z) of Laurent polyno-

mials with constant signature on z ∈ T \ σ(A(z)), such that det(A(z)) is not

identically 0.

(S0) Initialization. Set Ã(z) := A(z), U(z) := In.

(S1) Compute the Smith Normal Form D(z) of Ã(z), to get a decomposition

Ã(z) = E(z)D(z)F(z), where E(z) and F(z) are invertible matrices of

Laurent polynomials, and D(z) = diag(d1(z), . . . , dn(z)).

(S2) If D(z) is a constant matrix, go to (S5). Otherwise, redefine

Ã(z) := E−1(z)Ã(z)E−?(z) = diag(d1(z), . . . , dn(z))F(z)E−?(z),

and U(z) := U(z)E(z).

(S3) For j from 1 to n:

Factorize dj(z) =
∏nj

k=1(z − zj,k)αj,k .
If there exists some factor (z − zj,k)αj,k , zj,k ∈ C \ T \ {0}:

(1) redefine U(z) by multiplying its j-th column by (z − zj,k)αj,k ;
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(2) redefine Ã(z) by dividing its j-th row by (z − zj,k)αj,k , and di-

viding its j-th column by (z−1 − zj,k)αj,k ;

(3) break the for loop, and go back to (S1);

else if there exists some factor (z − zj,k)αj,k , zj,k ∈ T, αj,k > 2:

(1) redefine U(z) by multiplying its j-th column by (z−zj,k)bαj,k/2c;
(2) redefine Ã(z) by dividing its j-th row by (z − zj,k)bαj,k/2c, and

dividing its j-th column by (z−1 − zj,k)bαj,k/2c;
(3) break the for loop, and go back to (S1);

end if;

end for;

(S4) If the for loop doesn’t break from any conditions in (S3), then all the

elementary divisors will have roots on T with degree equal to 1. Pick one

of the elementary divisors (z− z0). Suppose it is contained in the last K

invariant polynomials dn−K+1(z), . . . , dn(z):

(1) From the construction of Ã(z), we can see the last K columns

and the last K rows of Ã(z0) have to be 0. Consider the con-

stant matrix −iz0Ã′(z0), which is also Hermitian. Take its lower

right K × K submatrix, denoted as AK, and find its eigenvalue

decomposition as AK := U1ΓU?
1, for some unitary matrix U1 and

Γ = diag(γ2
1 ,−γ2

2 , · · · , γK). Then the eigenvalues in Γ must be all

nonzero, while K/2 of them are positive and K/2 of them are neg-

ative. Arrange them such that the first one is positive and the second

one is negative. Redefine Ã(z) := diag(In−K,U
−1
1 )Ã(z) diag(In−K,U

−?
1 ),

and U(z) := U(z) diag(In−K,U1).

(2) Take U2 := diag(In−K,

[
γ−1

1 γ−1
2

0 1

]
, IK−2). Redefine Ã(z) := U2Ã(z)U?

2,

and U(z) := U(z)U−1
2 .

(3) Redefine Ã(z) by dividing its (n − K + 1)-th row by (z − z0), and

dividing its (n −K + 1)-th column by (z−1 − z0); redefine U(z) by

multiplying its (n−K + 1)-th column by (z − z0).
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Go back to (S1).

(S5) Finalize: Since Ã(z) has empty spectrum, apply Algorithm 2.1 to get the

factorization Ã(z) = Ũ(z)DŨ?(z). Redefine U(z) := U(z)Ũ(z).

Output U(z) and D, the equation A(z) = U(z)DU?(z) will hold.

Proof. Steps (S1)(S2)(S3) simply follow the proof of the Theorem 2.3.4, while

step (S5) follows Algorithm 2.1. We only need to prove that the step (S4) is

feasible.

Suppose z0 = e−iξ0 for some ξ0 ∈ R. By (2.3.21), (2.3.22) and (2.3.23) from

the proof of Theorem 2.3.5, we can see that there exists some constant unitary

matrix W0 := W−1(ξ0), such that Å(z) := W0Ã(z)W ?
0 satisfies:

W0Ã(z0)W ?
0 = Å(z0) =


λ1

. . .

λn−K

0K×K

 , (2.3.25)

where λ1, · · · , λn−K 6= 0 are the nonzero eigenvalues of Ã(z0). And

W0

(
−iz0Ã′(z0)

)
W ?

0 =W0
d

dξ
Ã(e−iξ)

∣∣∣
ξ0
W ?

0 =
d

dξ
Å(e−iξ)

∣∣∣
ξ0

=



∗ ∗

*

γ2
1

−γ2
2

. . .

γK−1

γK


, (2.3.26)

where the lower right K × K submatrix is diagonal, with K/2 positive and

K/2 negative diagonal elements.

From (2.3.25) we can see that the eigenspace of Ã(z0) corresponding to

eigenvalue 0 is of dimension K. It must also be the span of the last K column

vectors of W ?
0 :

E0 = span{wn−K+1, . . . , wn}.
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Also, by the construction of Ã(z) in (S2), we can see that the last K

columns and last K rows of Ã(z0) must be zero:

Ã(z0) =

[
∗ 0(n−K)×K

0K×(n−K) 0K×K

]
.

So E0 is also the span of K natural basis vectors E0 = span{en−K+1, . . . , en}.
This implies that span{wn−K+1, . . . , wn} = span{en−K+1, . . . , en}, so the ma-

trix W ?
0 of the eigenvectors of Ã(z0) has the form W ?

0 =

[
W01 0(n−K)×K

W02 W̃0

]
, for

some matrix W01,W02 and W̃0, while W̃0 is a K ×K unitary matrix.

From (2.3.26):

W0

(
−iz0Ã′(z0)

)
W ?

0 =

[
W ∗

01 W ∗
02

0(n−K)×K W̃ ∗
0

][
∗ ∗
∗ AK

][
W01 0(n−K)×K

W02 W̃0

]

=



∗ ∗

*

γ2
1

−γ2
2

. . .

γK−1

γK


,

we get W̃0

?
AKW̃0 = diag(γ2

1 ,−γ2
2 , . . . , γK−1, γK). Hence, the lower right K×K

submatrix of
(
−iz0Ã′(z0)

)
, AK , has K/2 positive and K/2 negative eigenval-

ues. This proves that item (1) in step (S4) is feasible.

From the construction, we can see that the redefined Ã(z) after item (1) in
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step (S4) satisfies:

Ã(z0) =

[
∗ 0(n−K)×K

0K×(n−K) 0K×K

]
, −iz0Ã′(z0) =



∗ ∗

*

γ2
1

−γ2
2

. . .

γK−1

γK


.

The design of U2 in item (2) of step (S4) is similar to the matrix V in (2.3.24).

We can verify that the redefined Ã(z) after item (2) satisfies:

Ã(z0) =

[
∗ 0(n−K)×K

0K×(n−K) 0K×K

]
, −iz0Ã′(z0) =



∗ ∗

*

0 −γ2

−γ2 −γ2
2

. . .

γK−1

γK


.

The above equality shows that (z−z0) divides both the (n−K+1)-th row and

the (n−K+1)-th column of Ã(z), meanwhile, (z−z0)2 divides the (n−K+1)-th

diagonal element of Ã(z). Thus the item (3) in (S4) is feasible. �

Example 2.3 (Revisit Example 2.1). Let us compute the spectral factorization

of the following matrix

A(z) =

 z−1 (z − 1)2 (z − 1) (z + 1)

(z−1 − 1) (z−1 + 1) −z−1 (z − 1)2

 .
As we showed before, the matrix yields a Smith Normal Form D(z) with de-

composition A(z) = E(z)D(z)F(z), where

E(z) :=

 −2 z3−4 z2−z+1
z

−2 z (z − 2)

2 z3−z−1
z2 2 z

 , F(z) :=

 1 2 z2 − z

−1 −2 z2 + z + 1

 ,
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D(z) :=

 z − 1 0

0 z − 1

 .
So A(z) has two elementary divisors (z − 1). Moreover, we can check that

−iz0A′(z0)
∣∣∣
z0=1

=

 0 −2i

2i 0

 .
We can see the above matrix has two eigenvalues with different signs, λ1, λ2 =

±2. Applying the Algorithm 2.2, we can get

U(z) =

 0 z − 1

2 − z+1
z

 , D =

 1 0

0 −1

 ,
and A(z) = U(z)DU?(z) holds.

2.4 Algorithm for Constructing Quasi-tight Framelet

Filter Banks with Two High-pass Filters

In this section, we provide an algorithm to construct quasi-tight framelet filter

banks with two high-pass filters and high order of vanishing moments.

Theorem 2.4.1. Given a nonzero moment correcting filter Θ and a low-pass

filter a, such that Θ? = Θ, and

det(Ma,Θ)(z) = Θ(z)Θ(−z)−Θ(z2) (Θ(−z)a(z)a∗(z)−Θ(z)a(−z)a∗(−z))

is not identically zero. For any integer nb satisfying

1 6 nb 6 min

{
sr(a),

1

2
vm
(
Θ(z)−Θ(z2)a(z)a?(z)

)}
, (2.4.1)

(1) if

Θ(z) > 0, det(Ma,Θ(z)) > 0, ∀z ∈ T,
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then there exist two high-pass filters b1, b2, both with at least nb order of

vanishing moments, such that {a; b1, b2}Θ is a tight framelet filter bank;

(2) if

Θ(z) 6 0, det(Ma,Θ(z)) > 0, ∀z ∈ T,

then there exist two high-pass filters b1, b2, both with at least nb order of

vanishing moments, such that {a; b1, b2}Θ,(−1,−1) is a quasi-tight framelet

filter bank;

(3) if

det(Ma,Θ(z)) 6 0, ∀z ∈ T,

then there exist two high-pass filters b1, b2, both with at least nb order of

vanishing moments, such that {a; b1, b2}Θ,(1,−1) is a quasi-tight framelet

filter bank;

(4) otherwise, it is not possible to construct a quasi-tight framelet filter bank

from such Θ and a with two high-pass filters.

Also, for the case (1)(2)(3), it is not possible to find a quasi-tight framelet

filter bank from such Θ and a with only one high-pass filter.

Proof. To prove item (4), according to item (4) of Theorem 2.2.4, we know

that sig(Ma,Θ(z)) varies on z ∈ T \ σ(Ma,Θ(z)) and s+
a,Θ + s−a,Θ > 2. By

Corollary 2.2.3, we need s > 2 high-pass filters to construct a quasi-tight

framelet filter bank.

In the cases of (1)(2)(3), according to (1)(2)(3) of Theorem 2.2.4, we know

that sig(Ma,Θ(z)) is constant on z ∈ T\σ(Ma,Θ(z)). Thus, by Corollary 2.2.3,

we need at least s > 2 high-pass filters to construct a quasi-tight framelet filter

bank.

To prove (1)(2)(3), since sig(Ma,Θ(z)) is constant on z ∈ T \ σ(Ma,Θ(z)),

from (2.1.6) and (2.1.9), we can see that sig(Na,Θ|nb(z)) is also constant on

T \σ(Na,Θ|nb(z)). Then Theorem 2.3.1 tells us that there exists a 2× 2 matrix
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U(z) of Laurent polynomials, such that

Na,Θ|nb(z) = U(z)

[
ε1

ε2

]
U?(z), ε1, ε2 = ±1.

By Theorem 2.1.2, we can use such U(z) to construct a quasi-tight framelet

filter bank {a; b1, b2}Θ,(ε1,ε2), while both b1 and b2 have at least nb order of

vanishing moments.

The signs of ε1, ε2 here depend on the signs of the eigenvalues of Ma,Θ(z).

According to Theorem 2.2.2,

ν+

([
ε1

ε2

])
> max

z∈T
ν+(Ma,Θ(z)), ν−

([
ε1

ε2

])
> max

z∈T
ν−(Ma,Θ(z)).

From Theorem 2.2.4, we know that for item (1), ε1 = ε2 = 1; for item (2),

ε1 = ε2 = −1; for item (3), ε1 = 1 and ε2 = −1. This completes the proof of

the theorem. �

We can use the following algorithm to construct quasi-tight framelet filter

banks in the case (1)(2)(3) of the above theorem.

Algorithm 2.3. Input a nonzero moment correcting filter Θ and a low-pass

filter a, such that Θ? = Θ, and

det(Ma,Θ)(z) = Θ(z)Θ(−z)−Θ(z2) (Θ(−z)a(z)a∗(z)−Θ(z)a(−z)a∗(−z))

is not identically zero. Input an integer nb, satisfying

0 6 nb 6 min

{
sr(a),

1

2
vm
(
Θ(z)−Θ(z2)a(z)a∗(z)

)}
.

Also, suppose either one of items (1)(2)(3) in Theorem 2.4.1 holds.

(S1) Calculate Na,Θ|nb(z) as defined in (2.1.10) (2.1.7).

(S2) Use Algorithm 2.2 to find a 2 × 2 matrix U(z) of Laurent polynomials,
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such that the spectral decomposition of Na,Θ|nb(z) holds as

Na,Θ|nb(z) = U(z)

[
ε1

ε2

]
U?(z),

where ε1, ε2 = ±1.

(S3) Define high-pass filters b1 and b2 as:[
b1(z) b2(z)

]
= (1− z−1)nb

[
1 z

]
U(z2).

Then, {a; b1, b2}Θ,(ε1,ε2) is a quasi-tight framelet filter bank.

2.5 Illustrative Examples

Since the problem on construction of tight-framelet filter banks has been widely

discussed in the literature, we only provide examples of quasi-tight framelets

with ε1 = 1 and ε2 = −1.

Example 2.4. Consider Θ(z) = 1
2
(z+ 1

z
) and the interpolatory low-pass filter

a(z) = 1
2

+ 3
8
(z + z−1)− 1

8
(z3 + z−3).

We see from Figure 2.2 that det(Ma,Θ(z)) 6 0 for all z ∈ T. Therefore,

s+
a,Θ = s−a,Θ = 1. Note that sr(a) = 2 and vm(Θ(z) − Θ(z2)a(z)a?(z)) = 4.

Hence, the maximum order of vanishing moments is two. Taking nb = 2, we

obtain a quasi-tight framelet filter bank {a; b1, b2}Θ,(1,−1) as follows:

b1(z) = 1
32
z−3(z − 1)2(z6 + 2z5 − 4z4 − 14z3 − 23z2 − 16z − 8),

b2(z) = − 1
32
z−3(z − 1)2(z4 + 2z3 + 4z2 + 2z + 9),

with vm(b1) = vm(b2) = 2. Since sm(a) = 1, the refinable function φ belongs

to L2(R). Define η̃ := (φ(· + 1) + φ(· − 1))/2. Therefore, {φ, η̃;ψ1, ψ2}(1,−1) a

quasi-tight framelet in L2(R) and {ψ1, ψ2}(1,−1) is a homogeneous quasi-tight

framelet in L2(R), where ψ1, ψ2 have at least two vanishing moments.
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(a) φ (b) η̃ (c) ψ1 (d) ψ2 (e) det(Ma,Θ)

Figure 2.2: The quasi-tight framelet {φ, η̃;ψ1, ψ2}(1,−1) and the homogeneous
quasi-tight framelet {ψ1, ψ2}(1,−1) in L2(R) obtained in Example 2.4. (A) is the
refinable function φ ∈ L2(R). (B) is the function η̃ := (φ(· + 1) + φ(· − 1))/2. (C)
and (D) are the framelet functions ψ1 and ψ2. (E) is det(Ma(e−iξ)) for ξ ∈ [−π, π].

Example 2.5. Choose Θ = δ and the low-pass filter

a(z) =
1

64
(z4 − 8z3 + 30z2 − 8z + 1)(1 + z)2z−3.

We have sm(a) = 0.5573. Notice that sr(a) = 2 and vm(1 − aa?) = 6. Take

nb = 2, then the constructed quasi-tight framelet filter bank {a; b1, b2}Θ,{1,−1}

is given by:

b1(z) = (6
√

17+17
√

2)
544z3 (z − 1)2(z2 − 4z + 1)(z2 + 35− 6

√
34),

b2(z) =
√

17
1088

(z − 1)2(5z4 − 20z3 + 78z2 − 20z + 5).

We have vm(b1) = vm(b2) = 2.

Example 2.6. Choose Θ = δ and the low-pass filter

â(ξ) =
1 + e−iξ

2
cos2(ξ/2)

(
1 + 2 sin2(ξ/2)

)
.

We have sm(a) = 1.4408. Notice that sr(a) = 3 and vm(1 − aa?) = 2. Take

nb = 1, then the constructed quasi-tight framelet filter bank {a; b1, b2}Θ,{1,−1}

is given by:

b1(z) = −
√

2
512z2 (z − 1)(16z5 − 271z4 + 16z3 + 16z2 − 1),

b2(z) =
√

2
512z2 (z − 1)(16z5 + 241z4 + 16z3 + 16z2 − 1).

We have vm(b1) = vm(b2) = 1.
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(a) a (b) b1 (c) b2 (d) det(Ma(e−iξ))

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 2.3: In Example 2.5: (a),(b) and (c) are the graphs of the filters a, b1, b2.
(d) det(Ma(e−iξ)) for ξ ∈ [−π, π]. (e) scaling function φ. (f) wavelet function ψ1.
(g) wavelet function ψ2. (h) magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted
line) and |̂b2(ξ)| (in dashed line) in for ξ ∈ [−π, π].

(a) a (b) b1 (c) b2 (d) det(Ma(e−iξ))

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 2.4: In Example 2.6: (a),(b) and (c) are the graphs of the filters a, b1, b2.
(d) det(Ma(e−iξ)) for ξ ∈ [−π, π]. (e) scaling function φ. (f) wavelet function ψ1.
(g) wavelet function ψ2. (h) magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted
line) and |̂b2(ξ)| (in dashed line) in for ξ ∈ [−π, π].

Example 2.7. Choose Θ = δ and the low-pass filter

â(ξ) =
1 + e−iξ

2
cos2(ξ/2)

(
1 +

3

2
sin2(ξ/2) + 2 sin4(ξ/2)

)
.
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We have sm(a) = 1.1268. Notice that sr(a) = 3 and vm(1 − aa?) = 4. Take

nb = 2, then the constructed quasi-tight framelet filter bank {a; b1, b2}Θ,{1,−1}

is given by:

b1(z) =
√

119327
7636928z3 (z − 1)2(289z5 − 578z4 − 5667z3 + 17981z2 + 9342z − 28223),

b2(z) =−
√

119327
1909232z3 (z − 1)2(23z3 − 46z2 − 418z + 1365)

(
(
√

17 + 1)z2 −
√

17 + 1
)
.

We have vm(b1) = vm(b2) = 2.

(a) a (b) b1 (c) b2 (d) det(Ma(e−iξ))

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 2.5: In Example 2.7: (a),(b) and (c) are the graphs of the filters a, b1, b2.
(d) det(Ma(e−iξ)) for ξ ∈ [−π, π]. (e) scaling function φ. (f) wavelet function ψ1.
(g) wavelet function ψ2. (h) magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted
line) and |̂b2(ξ)| (in dashed line) in for ξ ∈ [−π, π].

Example 2.8. Choose Θ = δ and the low-pass filter

â(ξ) =
1 + e−iξ

2
cos2(ξ/2)

(
1 +

3

2
sin2(ξ/2) +

15

8
sin4(ξ/2) +

35

16
sin6(ξ/2)

)
.

We have sm(a) = 0.8297. Notice that sr(a) = 3 and vm(1 − aa?) = 8. Take

nb = 3, then the constructed quasi-tight framelet filter bank {a; b1, b2}Θ,{1,−1}

is given by:

b1(z) =−(z−1)3

94208z4 (1015z6 − 3480z5 + 14361z4 − 30512z3 + 14361z2 − 3480z + 1015),
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b2(z) =15
√

7(z−1)3

188416z4 (21z4 − 72z3 + 134z2 − 72z + 21)
(

(2
√

7 +
√

23)z2 + 2
√

7−
√

23
)
.

We have vm(b1) = vm(b2) = 3.

(a) a (b) b1 (c) b2 (d) det(Ma(e−iξ))

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 2.6: In Example 2.8: (a),(b) and (c) are the graphs of the filters a, b1, b2.
(d) det(Ma(e−iξ)) for ξ ∈ [−π, π]. (e) scaling function φ. (f) wavelet function ψ1.
(g) wavelet function ψ2. (h) magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted
line) and |̂b2(ξ)| (in dashed line) in for ξ ∈ [−π, π].

Example 2.9. Choose Θ = δ and the low-pass filter

â(ξ) = cos4(ξ/2)
(
1 + 2 sin2(ξ/2) + 4 sin4(ξ/2)

)
.

We have sm(a) = 1.6297. Notice that sr(a) = 4 and vm(1 − aa?) = 4. Take

nb = 2, then the constructed quasi-tight framelet filter bank {a; b1, b2}Θ,{1,−1}

is given by:

b1(z) =
√

2
16z2 (z − 1)2

(
(2 +

√
3)z4 + 2−

√
3
)
,

b2(z) = 1
64z4 (z − 1)2(z6 + 11z4 + 8z3 + 11z2 + 1).

We have vm(b1) = vm(b2) = 2.
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(a) a (b) b1 (c) b2 (d) det(Ma(e−iξ))

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 2.7: In Example 2.9: (a),(b) and (c) are the graphs of the filters a, b1, b2.
(d) det(Ma(e−iξ)) for ξ ∈ [−π, π]. (e) scaling function φ. (f) wavelet function ψ1.
(g) wavelet function ψ2. (h) magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted
line) and |̂b2(ξ)| (in dashed line) in for ξ ∈ [−π, π].

Example 2.10. Choose Θ = δ and the low-pass filter

â(ξ) = cos4(ξ/2)
(
1 + 2 sin2(ξ/2) + 3 sin4(ξ/2) + 4 sin6(ξ/2)

)
.

We have sm(a) = 1.3516. Notice that sr(a) = 4 and vm(1 − aa?) = 8. Take

nb = 4, then the constructed quasi-tight framelet filter bank {a; b1, b2}Θ,{1,−1}

is given by:

b1(z) =
√

82(z−1)4

2624z5 (z4 − z3 + 6z2 − z + 1)
(

(3
√

5 +
√

41)z2 + 3
√

5−
√

41
)
,

b2(z) =−
√

41(z−1)4

10496z5 (13z6 − 13z5 + 255z4 − 190z3 + 255z2 − 13z + 13).

We have vm(b1) = vm(b2) = 4.

Since the construction of quasi-tight framelet filter banks only depends on

the spectral decomposition result of Hermitian matrices of Laurent polyno-

mials, we can easily generalize our results to the construction of quasi-tight

framelets with a general integer dilation M > 2. See [18] for the theoretical

details. We only provide an example here to illustrate it.
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(a) a (b) b1 (c) b2 (d) det(Ma(e−iξ))

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 2.8: In Example 2.10: (a),(b) and (c) are the graphs of the filters a, b1, b2.
(d) det(Ma(e−iξ)) for ξ ∈ [−π, π]. (e) scaling function φ. (f) wavelet function ψ1.
(g) wavelet function ψ2. (h) magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted
line) and |̂b2(ξ)| (in dashed line) in for ξ ∈ [−π, π].

Example 2.11. Let M = 3 be a dilation factor. Consider Θ(z) = 1 and the

low-pass filter

a(z) = − 1
27
z−3(1 + z + z2)2(2z2 − 7z + 2).

The three eigenvalues of Ma(z) are 1, 1 and det(Ma(z)). We see from Fig-

ure 2.9 that det(Ma(z)) 6 0 on T. Hence s+
a,Θ = 2 and s−a,Θ = 1. Note that

sr(a, 3) = 2 and vm(1− aa?) = 4. Therefore, the maximum order of vanishing

moments is two. Taking nb = 2, we obtain a quasi-tight 3-framelet filter bank

{a; b1, b2, b3}Θ,(1,1,−1) as follows:

b1(z) =
√

6
6

(z − 1)2(z + 1), b2(z) =
√

6
18

(z − 1)3,

b3(z) = 1
27
z−3(z − 1)4(2z2 + 5z + 2),

with vm(b1) = 2, vm(b2) = 3 and vm(b3) = 4. Since sm(a, 3) ≈ 0.6599, the

refinable function φ belongs to L2(R). Therefore, {φ, φ;ψ1, ψ2, ψ3}(1,1,−1) is a

quasi-tight 3-framelet in L2(R) and {ψ1, ψ2, ψ3}(1,1,−1) is a homogeneous quasi-

tight 3-framelet in L2(R), where ψ1, ψ2 have at least two vanishing moments.
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(a) φ (b) ψ1 (c) ψ2 (d) ψ3 (e) det(Ma)

Figure 2.9: The quasi-tight 3-framelet {φ, φ;ψ1, ψ2, ψ3}(1,1,−1) in L2(R) and the
homogeneous quasi-tight 3-framelet {ψ1, ψ2, ψ3}(1,1,−1) in L2(R) obtained in Exam-
ple 2.11. (A) is the refinable function φ ∈ L2(R). (B), (C) and (D) are the framelet
functions ψ1, ψ2 and ψ3. (E) is det(Ma(e−iξ)) for ξ ∈ [−π, π].
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Chapter 3

Quasi-tight Framelets with

Minimum Number of

Generators in One Dimension

3.1 Spectral Decomposition of a Matrix of Lau-

rent Polynomials with Non-constant Sig-

nature

In Section 2.3.2, we proved that an n×n Hermitian matrix of Laurent polyno-

mials A(z) can have a spectral decomposition A(z) = U(z)DU?(z), where U(z)

is an n×n matrix of Laurent polynomials, and D is an n×n constant matrix,

as long as sig(A(z)) is constant for all z ∈ T \ σ(A(z)). It is easy to see that

this condition is also necessary: For z ∈ T\σ(A(z)), since U(z) is nonsingular,

by the Sylvester’s law of inertia, sig(A(z)) = sig(D) must be constant.

For the case that sig(A(z)) is not constant, we can still obtain a similar

spectral decomposition of A(z), A(z) = U(z)DU?(z). However, according to

Theorem 2.2.2, we will need the matrix D to have a bigger size. We provide

Theorem 3.1.1 and 3.1.2 to illustrate that the necessary lower bound of size

D in Theorem 2.2.2 can always be achieved. Theorem 3.1.1 gives the result

with the additional assumption that det(A(z)) is not identically zero. The
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general situation without this assumption is proved in Theorem 3.1.2. The

structure of the proof is inspired by [71], which gives similar results for spectral

decompositions of a Hermitian matrix of polynomials defined on R or iR.

Theorem 3.1.1. Let A(z) be an n×n Hermitian matrix of Laurent polynomi-

als, i.e., A?(z) = A(z), and det(A(z)) is not identically zero. Then there exists

some n × m matrix U(z) of Laurent polynomials and some m × m constant

diagonal matrix D = diag(Im1 ,−Im2) with m1 +m2 = m and m1,m2 ∈ N∪{0}
such that A(z) = U(z)DU?(z) holds if and only if

m1 > max
z∈T

ν+(A(z)), m2 > max
z∈T

ν−(A(z)). (3.1.1)

Proof. The necessity part is proved in Theorem 2.2.2, we only need to prove

the sufficiency part.

Suppose that the claim holds for

m1 = max
z∈T

ν+(A(z)), m2 = max
z∈T

ν−(A(z)),

then A(z) = Ũ(z)D̃Ũ?(z) is obviously still true with Ũ(z) := [0n×s1 ,U(z), 0n×s2 ]

and D̃ :=

[
Is1+m1

−Is2+m2

]
, for any integer s1, s2 > 0. Therefore, we only

need to prove the theorem in the case that m1,m2 equal to the lower bound

in (3.1.1).

Denote

n+ := max
z∈T

ν+(A(z)), n− := max
z∈T

ν−(A(z)). (3.1.2)

If sig(A(z)) is constant on T \ σ(A(z)), since σ(A(z)) is a finite set, according

to Lemma 2.2.1,

n+ = max
z∈T\σ(A(z))

ν+(A(z)) = ν+(A(z0)), n− = max
z∈T\σ(A(z))

ν−(A(z)) = ν−(A(z0)),

for all z0 ∈ T\σ(A(z)). Thus, n+ + n− = n. Therefore, the result is proved

by Theorem 2.3.1. If sig(A(z)) is not constant on T \ σ(A(z)), we can see that

m0 := n+ + n− > n. In the following, we will construct (m0 − n) functions
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µ1(z), . . . , µm0−n(z), such that the Hermitian matrix

Ã(z) :=


A(z)

µ1(z)
. . .

µm0−n(z)

 (3.1.3)

has constant signature on T \ σ(Ã(z)).

Since det(A(z)) is a Laurent polynomial that is not identically zero, {z1, . . . , zK} :=

σ(A(z))
⋂

T contains only finite number of points on T. So {z1, . . . , zK} cuts

T, which is the unit circle in complex plane, into K connected open segments:

Γ1,Γ2 · · · ,ΓK , such that they satisfy

(1)
⋃K
j=1 Γj

⋃{zl}Kl=1 = T;

(2) Pairwise disjoint: Γj
⋂{zl}Kl=1 is empty, Γj

⋂
Γk is empty, for all j, k =

1, . . . , K, j 6= k;

(3) Both endpoints of Γj are contained inside {zl}Kl=1, denote them by zj,1

and zj,2, for all j = 1, 2, . . . , K.

By Lemma 2.3.5, we can choose all the eigenvalues λ1(ξ), . . . , λn(ξ) of

A(e−iξ) to be continuous functions of ξ ∈ R. In each Γj, since det(A(e−iξ)) =∏n
k=1 λk(ξ) 6= 0, none of the λk(ξ) will attain zero. As nonzero continuous

functions on an open interval, all λk(ξ) will not change signs within each Γj.

Thus ν+(A(z)) and ν−(A(z)) remain constant on each Γj.

For each Γj, define a function

ηj(z) := (zj,1zj,2)−
1
2 z−1(z − zj,1)(z − zj,2), j = 1, . . . , K.

The square root of zj,1zj,2 is chosen in the complex plane, where the two

possible solutions only differ by a ” − ” sign. For both solutions, we can

directly verify that η?j (z) = ηj(z). So ηj(z) is a real function for all z ∈ T.

Since the signature of A(z) is not constant for all z ∈ T\σ(A(z)), we know

that T contains more than one open segments Γj. So zj,1 6= zj,2, and both

zj,1 and zj,2 are single roots of ηj(z). Hence ηj(z) will have different signs
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−1 0 1

−1

1
zj,1

zj,2

Γj

ηj(z) =
(z−zj,1)(z−zj,2)√

zj,1zj,2z

Figure 3.1: ηj(z) > 0 for all z ∈ Γj , and ηj(z) < 0 for all z ∈ Γl, l 6= j.

between two sides of zj,1 and zj,2. Therefore, in calculation of the square root

of zj,1zj,2, we can just choose the solution such that ηj(z) > 0 for all z ∈ Γj,

and ηj(z) < 0 for all z ∈ T \ Γj \ {zj,1, zj,2}. In summary, ηj(z) satisfies

(1) ηj(z) is real for all z ∈ T;

(2) ηj(z) > 0 for all z ∈ Γj, and ηj(z) < 0 for all z ∈ Γk, k 6= j.

Let us construct functions µk(z) recursively for k = 1, . . . ,m0−n, such that

(3.1.3) has constant signature on z ∈ T \ σ(Ã(z)). Start with A0(z) := A(z),

k = 1. In order to have the algorithm work, we only need to verify the following

two conditions before the start of each new recursion:

(1) Ak−1(z) is a Hermitian matrix of Laurent polynomials, satisfying

maxz∈T ν+(Ak−1(z)) = n+ and maxz∈T ν−(Ak−1(z)) = n−, where n+ and

n− are defined in (3.1.2).

(2) k 6 m0 − n.

They are obviously true for k = 1.

Define an index set J := {j : ν−(Ak−1(z)) = n− for all z ∈ Γj}. Now,

take

µk(z) := (−1)|J |+1
∏
j∈J

ηj(z), Ak(z) :=

[
Ak−1(z)

µk(z)

]
.
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We can see that since ηj(z) are real functions on z ∈ T, µ?k(z) = µk(z) is also

real on T. From A?
k−1(z) = Ak−1(z) in condition (1), we know that the matrix

Ak(z) is also a Hermitian matrix of Laurent polynomials. By the construction

of µk(z), we can directly verify from the sign of ηj(z) that µk(z) > 0 for all

z ∈ ⋃j∈J Γj, and µk(z) < 0 for all z ∈ ⋃j /∈J Γj. For z ∈ T, the eigenvalues of

Ak(z) are just all the eigenvalues of Ak−1(z), combined with µk(z). Now, let

us calculate ν+(Ak(z)) and ν−(Ak(z)) on each Γj.

• For z ∈ ⋃j∈J Γj, since µk(z) > 0, we have

ν−(Ak(z)) = ν−(Ak−1(z)) = n−.

By condition (2), we know that k 6 m0 − n = n+ + n− − n, so

ν+(Ak(z)) = (n+ k)− ν−(Ak(z)) = (n+ k)− n−
6 n+ (n+ + n− − n)− n− = n+.

• For z ∈ ⋃j /∈J Γj, since µk(z) < 0, and ν−(Ak−1(z)) < n−, we have

ν−(Ak(z)) = ν−(Ak−1(z)) + 1 6 n−.

Meanwhile, ν+(Ak(z)) = ν+(Ak−1(z)) 6 n+.

Combining the two cases, we showed that maxz∈T\σ(A(z)) ν+(Ak(z)) 6 n+,

and maxz∈T\σ(A(z)) ν−(Ak(z)) 6 n−. The inequalities of the other direction

is obvious, since maxz∈T\σ(A(z)) ν+(Ak(z)) > maxz∈T\σ(A(z)) ν+(Ak−1(z)) = n+,

and maxz∈T\σ(A(z)) ν−(Ak(z)) > maxz∈T\σ(A(z)) ν−(Ak−1(z)) = n−. So,

max
z∈T\σ(A(z))

ν+(Ak(z)) = n+, max
z∈T\σ(A(z))

ν−(Ak(z)) = n−.

By Lemma 2.2.1, we get

max
z∈T

ν+(Ak(z)) = n+, max
z∈T

ν−(Ak(z)) = n−. (3.1.4)

Now we can take k := k + 1, and repeat the above procedure recursively to
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Example:

Ak−1(z) is a 2× 2 matrix.

n+ := max
z∈T

ν+(Ak−1(z)) = 2.

n− := max
z∈T

ν−(Ak−1(z)) = 2.

J :={j : ν−(Ak−1(z)) = 2,

for all z ∈ Γj}
={2, 4}.

Define

µk(z) := −η2(z)η4(z).

We get

µk(z) > 0, ∀z ∈ Γ2 ∪ Γ4,

µk(z) < 0, ∀z ∈ Γ1 ∪ Γ3.

−1 0 1

−1

1

z1

z2

z3

z4

Γ1 : ν+(Ak−1(z)) = 2

ν−(Ak−1(z)) = 0

Γ2 : ν+(Ak−1(z)) = 0

ν−(Ak−1(z)) = 2

Γ3 : ν+(Ak−1(z)) = 1

ν−(Ak−1(z)) = 1

Γ4 : ν+(Ak−1(z)) = 0

ν−(Ak−1(z)) = 2

Figure 3.2: A simple example of the construction of µk(z) from Ak−1(z).

construct all the Laurent polynomials µ1(z), . . . , µm0−n(z). Equalities (3.1.4)

guarantee that the condition (1) will always hold in the new iteration.

Therefore, we can repeat our constructions until the condition (2) is vio-

lated. Take Ã(z) := Am0−n(z) to be the last matrix constructed. According

to (3.1.4), it is an m0 × m0 Hermitian matrix of Laurent polynomials still

satisfying

max
z∈T\σ(Ã(z))

ν+(Ã(z)) = n+, max
z∈T\σ(Ã(z))

ν−(Ã(z)) = n−.

Since n+ + n− = m0, both ν+(Ã(z)) and ν−(Ã(z)) must be constant for all

z ∈ T \ σ(Ã(z)). Hence, sig(Ã(z)) is constant on T \ σ(Ã(z)). By Theorem

2.3.1, there exists an m0 ×m0 matrix Ũ(z) of Laurent polynomials such that

Ã(z) = Ũ(z)DŨ?(z) (3.1.5)

holds with D = diag(In+ ,−In−) being the m0 ×m0 constant diagonal matrix.
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From the structure of Ã(z) in (3.1.3), we conclude that A(z) can be recon-

structed by deleting the last m0−n rows and columns of Ã(z). This corresponds

to deleting the last m0− n rows of Ũ(z) and the last m0− n columns of Ũ?(z)

in the above factorization (3.1.5). So, define U(z) to be the n×m0 matrix of

Laurent polynomials constructed by deleting the last m0− n rows of Ũ(z), we

get the desired factorization

A(z) = U(z)DU?(z).

This completes the proof for the sufficiency part of the theorem. �

Theorem 3.1.1 shows that the necessary lower bound s > maxz∈T ν+(A(z))+

maxz∈T ν−(A(z)) of the spectral factorization in Theorem 2.2.2 is always achiev-

able, as long as det(A(z)) is not identically zero. To complete the theory,

we provide the following theorem to show that this lower bound can still be

reached even for the degenerate case that det(A(z)) = 0.

For a matrix A(z) of Laurent polynomials, if its invariant polynomials are

d1(z), · · · , dn(z), then we call the number of dj(z) that are not identically zero

the general rank of A(z).

Theorem 3.1.2. Let A(z) be an n × n Hermitian matrix of Laurent polyno-

mials. Then there exists some n×m matrix U(z) of Laurent polynomials and

some m×m constant diagonal matrix D = diag(Im1 ,−Im2) with m1 +m2 = m

and m1,m2 ∈ N ∪ {0} such that A(z) = U(z)DU?(z) holds if and only if

m1 > max
z∈T

ν+(A(z)), m2 > max
z∈T

ν−(A(z)).

Proof. The necessity part and the sufficiency part in the case that det(A(z)) 6≡
0 is proved by Theorem 3.1.1. We only need to prove the sufficiency part for
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the degenerate case. Let us write A(z) into its Smith Normal Form:

A(z) = E(z)



d1(z)
. . .

dr(z)

0
. . .

0


F(z),

where r is the general rank of A(z), d1(z), . . . , dr(z) are the first r invariant

polynomials of A(z) that are not zero, and E(z) and F(z) are invertible matrices

of Laurent polynomials. Define

Å(z) := E−1(z)A(z)E−?(z) =



d1(z)
. . .

dr(z)

0
. . .

0


F(z)E−?(z).

Then Å(z) is Hermitian and its last (n − r) rows are zero. This implies that

its last (n− r) columns must also be zero. Hence,

Å(z) =

[
Ã(z)

0

]
,

where Ã(z) is an r × r Hermitian matrix of Laurent polynomials. Since

the invariant polynomials of Å(z) are the same as that of A(z), which are

d1(z), . . . , dr(z), 0, . . . , 0, we know that the invariant polynomials of Ã(z) must

be d1(z), . . . , dr(z). So det(Ã(z)) is not identically zero. Also, for all z ∈ T,

since E−1(z) is nonsingular, we get

ν+(Ã(z)) = ν+(Å(z)) = ν+(A(z)), ν−(Ã(z)) = ν−(Å(z)) = ν−(A(z)).
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Applying Theorem 3.1.1, we know that for every

m > max
z∈T

ν+(Ã(z)) + max
z∈T

ν−(Ã(z)) = max
z∈T

ν+(A(z)) + max
z∈T

ν−(A(z)),

there exists an r × m matrix of Laurent polynomials Ũ(z), and an m × m

constant diagonal matrix D = diag(Im1 ,−Im2), for some integers m1 and m2

satisfying m1 +m2 = m, such that

Ã(z) = Ũ(z)DŨ?(z).

Adding (n − r) more rows of zeros to Ũ(z) yields an n × m matrix V(z) :=[
Ũ(z)

0(n−r)×m

]
. We can directly verify that Å(z) = V(z)DV?(z). Define U(z) :=

E(z)V(z), we know A(z) = U(z)DU?(z) holds. This completes the proof of the

theorem. �

3.2 Algorithm for Constructing Quasi-tight Framelet

Filter Banks with Minimum Number of

High-pass Filters and High Order of Van-

ishing Moments

Since the proof of Theorem 3.1.2 is constructive, adopting the procedures in

Theorem 2.1.2, we can use it to construct quasi-tight framelet filter banks

directly. Hence, combining Theorem 2.1.2 and Theorem 3.1.2, we get the

following theorem.

Theorem 3.2.1. Let a,Θ ∈ l0(Z)\{0} be two finitely supported not-identically-

zero filters such that Θ? = Θ. Suppose nb is a positive integer satisfying

1 6 nb 6 min(sr(a), 1
2

vm(Θ(z)−Θ(z2)a(z)a?(z))). (3.2.1)
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Let the quantities s+
a,Θ, s

−
a,Θ, sa,Θ be defined as

s+
a,Θ := max

z∈T
ν+(Ma,Θ(z)), s−a,Θ := max

z∈T
ν−(Ma,Θ(z)), sa,Θ := s+

a,Θ + s−a,Θ,

(3.2.2)

and Ma,Θ(z) be defined in (2.1.4). Then for s = sa,Θ there exist b1, . . . , bs ∈
l0(Z), and ε1 = . . . = εs+a,Θ

= 1, εs+a,Θ+1 = . . . = εs = −1 such that {a; b1, . . . , bs}Θ,(ε1,...,εs)

is a quasi-tight framelet filter bank with min{vm(b1), . . . , vm(bs)} > nb. More-

over, for 1 6 s < sa,Θ, there does not exist a quasi-tight framelet filter bank

{a; b1, . . . , bs}Θ,(ε1,...,εs) with b1, . . . , bs ∈ l0(Z) and ε1, . . . , εs ∈ {−1, 1}.
Furthermore, if a(1) = Θ(1) = 1, b1(1) = · · · = bs(1) = 0, and φ ∈

L2(R) with φ being defined as φ̂(ξ) :=
∏∞

j=1 â(2−jξ), then {ψ1, . . . , ψs}(ε1,...,εs)

is a homogeneous quasi-tight framelet in L2(R), where ψ1, . . . , ψs ∈ L2(R) are

defined in ψ̂`(2ξ) = b̂`(ξ)φ̂(ξ).

The following algorithm helps us to find a quasi-tight framelet filter bank

with high order of vanishing moments and minimum number of high-pass

filters.

Algorithm 3.1. Input nonzero filters Θ, a, such that a(1) = Θ(1) = 1, Θ? =

Θ. Choose integers nb satisfying (3.2.1) and s > sa,Θ, where sa,Θ is defined in

(3.2.2).

(S1) Calculate Na,Θ|nb(z) as defined in (2.1.10) and (2.1.7).

(S2) Use Theorem 3.1.2 to find a spectral decomposition of Na,Θ|nb(z):

Na,Θ|nb(z) = U(z)


ε1

. . .

εs

U?(z)

where U(z) is a 2×s matrix of Laurent polynomials, and ε1, . . . , εs = ±1.

(S3) Define high-pass filters b1, · · · , bs as:[
b1(z) · · · bs(z)

]
= (1− z−1)nb

[
1 z

]
U(z2).
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Then {a; b1, . . . , bs}Θ,(ε1,...,εs) is a quasi-tight framelet filter bank with at least

nb order of vanishing moments.

3.3 Illustrative Examples

Example 3.1. Choose the low-pass filter

â(ξ) = 1
26

(e−iξ + 1)(2 cos(ξ)− 1)(18 cos(ξ)− 5).

Notice that the refinable function φ associated with the low-pass filter a does

not have stable shifts. Also, we can calculate that |â(2π/3)| = 14
13
> 1, and

|â(2π/3)| 6∈ {2j : j ∈ N}. Hence, by [49, Proposition 4.4], there does

not exist a Laurent polynomial Θ with real coefficients, such that Ma,Θ(z) is

positive semidefinite. Hence, it is not possible use OEP to construct a real-

valued tight framelet from such low-pass filter a. Notice that sr(a) = 1 and

vm(1− aa?) = 2, and we have sm(a) = 0.7693. Take Θ(z) = 1 and nb = 1, we

can get quasi-tight framelet filter bank {a; b1, b2, b3}Θ,(−1,1,1) as

b1(z) =
√

2
97344

z−2(z − 1)(9z2 + 4z + 9)(3645z4 + 9782z2 + 3645),

b2(z) =
√

2
97344

z−2(z − 1)(9z2 + 4z + 9)(3645z4 − 1034z2 + 3645),

b3(z) = 1
52
z−2(z − 1)(63z4 + 28z3 + 100z2 + 28z + 63).

We have vm(b1) = vm(b2) = vm(b3) = 1.

Example 3.2. Choose Θ̂(ξ) = 1 and the low-pass filter

â(ξ) = cos2(ξ/2)
(

1 +
(

2
√

6− 4
)

sin2(ξ/2)
)
.

Notice that sr(a) = 2, vm(1 − aa?) = 2, and we have sm(a) = 0.9382. From

the frequency plot of det(Ma(ξ)) = 1 − |â(ξ)|2 − |â(ξ + π)|2 in Figure 3.4(i),

we can see that its sign is not fixed. Hence we need at least three high-pass

filters to construct a quasi-tight framelet filter bank. Take nb = 1, then the
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(a) a (b) b1 (c) b2 (d) b3

(e) φ (f) ψ1 (g) ψ2 (h) ψ3

(i) det(Ma(ξ)) (j) |â|, |b̂1|, |b̂2|, |b̂3|

Figure 3.3: In Example 3.1: (a),(b),(c) and (d) are the graphs of the filters a, b1, b2
and b3. (e) Scaling function φ. (f) - (h) Wavelet functions ψ1, ψ2 and ψ3. (i)
det(Ma(ξ)) = 1 − |â(ξ)|2 − |â(ξ + π)|2, for ξ ∈ [−π, π], where the dashed line is
y = 0. (j) |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted line), |̂b2(ξ)| (in dashed line) and
|̂b3(ξ)| (in dash-dotted line) for ξ ∈ [−π, π].

constructed quasi-tight framelet filter bank {a; b1, b2, b3}Θ,{1,1,−1} is given by:

b1 =
√

10
40
{
√

6 + 1, − 3
√

6, 2,
√

6,
√

6− 3}[−2,2],

b2 =
√

10
40
{4−

√
6, − 2, 2, − 2,

√
6− 2}[−2,2],

b3 =
√

10
40
{4−

√
6, − 2, 2

√
6− 6, 2, 2−

√
6}[−2,2].

We have vm(b1) = vm(b2) = 1, while vm(b3) = 2.

Example 3.3. Choose Θ̂(ξ) = 1 and the low-pass filter

â(ξ) =
1 + e−iξ

2
cos2(ξ/2)

(
1 +

(
2
√

15− 6
)

sin2(ξ/2)
)
.
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(a) a (b) b1 (c) b2 (d) b3

(e) φ (f) ψ1 (g) ψ2 (h) ψ3

(i) det(Ma(ξ)) (j) |â|, |b̂1|, |b̂2|, |b̂3|

Figure 3.4: In Example 3.2: (a),(b),(c) and (d) are the graphs of the filters a, b1, b2
and b3. (e) Scaling function φ. (f) - (h) Wavelet functions ψ1, ψ2 and ψ3. (i)
det(Ma(ξ)) = 1 − |â(ξ)|2 − |â(ξ + π)|2, for ξ ∈ [−π, π], where the dashed line is
y = 0. (j) |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted line), |̂b2(ξ)| (in dashed line) and
|̂b3(ξ)| (in dash-dotted line) for ξ ∈ [−π, π].

Notice that sr(a) = 3, vm(1 − aa?) = 2, and we have sm(a) = 1.5420. From

the frequency plot of det(Ma(ξ)) = 1 − |â(ξ)|2 − |â(ξ + π)|2 in Figure 3.5(i),

we can see that its sign is not fixed. Hence we need at least three high-pass

filters to construct a quasi-tight framelet filter bank. Take nb = 1, then the

constructed quasi-tight framelet filter bank {a; b1, b2, b3}Θ,{1,1,−1} is given by:

b1 = 1
16
{
√

15 + 3, −
√

15− 5, 2
√

15, − 2
√

15,
√

15 + 5, − 3−
√

15}[−2,3],

b2 =
4√15
√

2
8
{
√

3, −
√

5,
√

5, −
√

3}[0,3],

b3 =
4√15
8
{
√

3, −
√

5,
√

5 +
√

3, −
√

5−
√

3,
√

5, −
√

3}[−2,3].

We have vm(b1) = vm(b2) = vm(b3) = 1.
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(a) a (b) b1 (c) b2 (d) b3

(e) φ (f) ψ1 (g) ψ2 (h) ψ3

(i) det(Ma(ξ)) (j) |â|, |b̂1|, |b̂2|, |b̂3|

Figure 3.5: In Example 3.3: (a),(b),(c) and (d) are the graphs of the filters a, b1, b2
and b3. (e) Scaling function φ. (f) - (h) Wavelet functions ψ1, ψ2 and ψ3. (i)
det(Ma(ξ)) = 1 − |â(ξ)|2 − |â(ξ + π)|2, for ξ ∈ [−π, π], where the dashed line is
y = 0. (j) |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted line), |̂b2(ξ)| (in dashed line) and
|̂b3(ξ)| (in dash-dotted line) for ξ ∈ [−π, π].

Example 3.4. Choose Θ̂(ξ) = 1 and the low-pass filter

â(ξ) =
1 + e−iξ

2
cos2(ξ/2)

(
1 + 3

2
sin2(ξ/2) + 6

5
sin4(ξ/2)

)
.

Notice that sr(a) = 3, vm(1 − aa?) = 4, and we have sm(a) = 1.3125. From

the frequency plot of det(Ma(ξ)) = 1 − |â(ξ)|2 − |â(ξ + π)|2 in Figure 3.6(i),

we can see that its sign is not fixed. Hence we need at least three high-pass

filters to construct a quasi-tight framelet filter bank. Take nb = 2, then the

constructed quasi-tight framelet filter bank {a; b1, b2, b3}Θ,{1,1,−1} is given by:

b1 =
√

2741311
877219520

{55379,−224754, 191376, 85039,−118449, 6864, 5454,−909}[−3,4],
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b2 =3
√

8223933
109652440

{2122,−4652, 3943,−2608, 1357,−127,−42, 7}[−3,4],

b3 =3
√

8223933
54826220

{1061,−2326, 1441,−141,−42, 7}[−3,2].

We have vm(b1) = vm(b2) = vm(b3) = 2.

(a) a (b) b1 (c) b2 (d) b3

(e) φ (f) ψ1 (g) ψ2 (h) ψ3

(i) det(Ma(ξ)) (j) |â|, |b̂1|, |b̂2|, |b̂3|

Figure 3.6: In Example 3.4: (a),(b),(c) and (d) are the graphs of the filters a, b1, b2
and b3. (e) Scaling function φ. (f) - (h) Wavelet functions ψ1, ψ2 and ψ3. (i)
det(Ma(ξ)) = 1 − |â(ξ)|2 − |â(ξ + π)|2, for ξ ∈ [−π, π], where the dashed line is
y = 0. (j) |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted line), |̂b2(ξ)| (in dashed line) and
|̂b3(ξ)| (in dash-dotted line) for ξ ∈ [−π, π].

Example 3.5. Choose Θ̂(ξ) = 1 and the low-pass filter

â(ξ) =
1 + e−iξ

2
cos2(ξ/2)

(
1 + 3

2
sin2(ξ/2) + 15

8
sin4(ξ/2)− 55

32
sin6(ξ/2)

)
.

Notice that sr(a) = 3, vm(1 − aa?) = 6, and we have sm(a) = 1.4862. From

the frequency plot of det(Ma(ξ)) = 1 − |â(ξ)|2 − |â(ξ + π)|2 in Figure 3.7(i),

we can see that its sign is not fixed. Hence we need at least three high-pass
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filters to construct a quasi-tight framelet filter bank. Take nb = 3, then the

constructed quasi-tight framelet filter bank {a; b1, b2, b3}Θ,{1,1,−1} is given by:

b1(z) = 5
√

4517491323641(z−1)3

37007288923267072z4 (698885z6 + 3049680z5− 9360861z4− 28741088z3

+ 201849675z2 + 839872848z + 209192269),

b2(z) = −
√

745386068400765(z2+1)(z−1)3

74014577846534144z4 (163295z4 + 712560z3 + 7290978z2

+ 34643824z − 35434017),

b3(z) =
√

185217144269281(z−1)3

37007288923267072z4 (163295z4 + 712560z3 + 7290978z2

+ 34643824z − 35434017).

We have vm(b1) = vm(b2) = vm(b3) = 3.
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(a) a (b) b1 (c) b2 (d) b3

(e) φ (f) ψ1 (g) ψ2 (h) ψ3

(i) det(Ma(ξ)) (j) |â|, |b̂1|, |b̂2|, |b̂3|

Figure 3.7: In Example 3.5: (a),(b),(c) and (d) are the graphs of the filters a, b1, b2
and b3. (e) Scaling function φ. (f) - (h) Wavelet functions ψ1, ψ2 and ψ3. (i)
det(Ma(ξ)) = 1 − |â(ξ)|2 − |â(ξ + π)|2, for ξ ∈ [−π, π], where the dashed line is
y = 0. (j) |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted line), |̂b2(ξ)| (in dashed line) and
|̂b3(ξ)| (in dash-dotted line) for ξ ∈ [−π, π].
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Chapter 4

Quasi-tight Framelets with

Symmetry

In many applications of wavelets/framelets, since the signals we want to an-

alyze have certain structures, we hope that the wavelets/framelets we con-

structed have symmetry. This motivates the study of quasi-tight framelet

filter banks with symmetry. This chapter characterizes the existence of (anti-

)symmetric quasi-tight framelet filter banks with two generators {a; b1, b2}Θ,(ε1,ε2).

Since the tight framelet case (ε1 = ε2 = 1) has been studied in [40, 48], we only

investigate the case with signature (ε1, ε2) = (1,−1). We start from introduc-

ing some properties of (anti-)symmetric Laurent polynomials in Section 4.1.

In Section 4.2 and Section 4.3, we study the problem of matrix spectral fac-

torization with symmetry. Necessary and sufficient conditions on spectral

factorizations of 2 × 2 matrices of Laurent polynomials with symmetry are

derived. The (constructive) proof starts with the simple case that the matrix

has empty spectrum in Section 4.2, and the result for the general case is given

in Section 4.3. In Section 4.4, we apply the spectral factorization theorem to

characterize the existence of quasi-tight framelet filter banks with symmetry.

Since the proofs in this chapter are all constructive, we can use them directly

as algorithms to calculate some illustrative examples, which are given in the

last section of this chapter. The results in this chapter are summarized in [19].
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4.1 Introduction to Laurent Polynomials with

Symmetry

We say a filter (or sequence) u = {u(k)}k∈Z : Z→ C has symmetry if

u(c− k) = εu(k), ∀ k ∈ Z, (4.1.1)

holds with some c ∈ Z and ε ∈ {−1, 1}. c
2

is called the symmetry center. For

compactly supported filters, it is also the center of the filter support fsupp(u).

If ε = 1, we call u to be symmetric; if ε = −1, we call it antisymmetric.

For filter u 6= 0 having symmetry as (4.1.1), we define the symmetry operator

S in both frequency domain and z-domain to address the symmetry type:

Sû(ξ) :=
û(ξ)

û(−ξ) = εe−icξ, ξ ∈ R, (4.1.2)

Su(z) :=
u(z)

u(z−1)
= εzc, z ∈ C \ {0}. (4.1.3)

For filter u ∈ l0(Z) and u 6= 0, it is straightforward to verify that (4.1.1)(4.1.2)

and (4.1.3) are equivalent representations of symmetry in time/frequency/z-

domain respectively. So, in this case, we would generalize the definition and

say the Laurent polynomial u(z) has symmetry with type εzc.

Sometimes we will need to deal with the sequence which is identically 0.

We just say 0 has symmetry of any type. We still use S0 = εzc to denote

it, although it cannot be calculated from (4.1.2) or (4.1.3). This would be

compatible with all the calculations we perform later.

For an integer c, define odd(c) :=

0, if c is even,

1, if c is odd
. Then we have the

following proposition.

Proposition 4.1.1. Suppose u, v ∈ l0(Z), and they both have symmetry with

types εuz
cu and εvz

cv , respectively. Then u(z)v(z), u?(z) and u(z)/v(z) (if

v(z)|u(z)) all have symmetry, with types

(1) S (u(z)v(z)) = εuεvz
cu+cv ;
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(2) S (u(z)/v(z)) = εuεvz
cu−cv ;

(3) Su?(z) = [Su(z)]? = 1
Su(z)

= εuz
−cu;

(4) if u(z) 6= 0, we have cu = ldeg(u(z)) + deg(u(z));

(5) if u(z) 6= 0, we have odd(len(u(z))) = odd(cu).

Proof. If either u = 0 or v = 0, the results can be verified directly. Otherwise,

items (1)(2)(3) can be proved by straightforward calculations using (4.1.3).

To prove item (4), we can see from the definition of symmetry in time domain

(4.1.1) that cu/2 is the symmetry center of u(z). That is, cu
2

= ldeg u(z)+deg(u(z))
2

,

which implies item (4). For item (5), we can see from item (4) that

len(u(z)) = deg(u(z))− ldeg(u(z)) = deg(u(z)) + ldeg(u(z))− 2 ldeg(u(z))

=cu − 2 ldeg(u(z)).

The above equation shows that the item (5) is true. �

The symmetry property of a Laurent polynomial is also related to its root

information. We have the following lemma which would be useful later. The

proof can be found in Proposition 2.2 and Lemma 2.4 of [40].

Lemma 4.1.1. Let p1(z), . . . , pn(z) be n Laurent polynomials.

(1) p1(z) has symmetry if and only if Z(p1, z) = Z(p1, z
−1), ∀z ∈ C \ {0}.

(2) If p1(z), . . . , pn(z) all have symmetry, then gcd(p1(z), . . . , pn(z)) also has

symmetry.

(3) There exists some c ∈ Z and ε ∈ T, such that p(z) = εzcp?(z) if and only

if Z(p, z) = Z(p, z−1), ∀z ∈ C \ {0}.

Also, the symmetry type of a Laurent polynomial is determined by the

multiplicities of its roots at ±1. See the following lemma.

Lemma 4.1.2. Given a Laurent polynomial p(z) 6= 0 with symmetry: Sp(z) =

εzc, ε ∈ {1,−1}, c ∈ Z. Then the following results hold.
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(1) ε = (−1)Z(p(z),1).

(2) odd(c) = odd(Z(p(z), 1) + Z(p(z),−1)).

Proof. Since p(z) 6= 0, we can write p(z) = (z−1)Z(p(z),1)q(z) for some Laurent

polynomial q(z) satisfying q(1) 6= 0. So

εzc = Sp(z) =
p(z)

p(z−1)
= (−z)Z(p(z),1) q(z)

q(z−1)
, z ∈ C \ {0}.

Plugging in z = 1, we get ε = (−1)Z(p(z),1). This proves the item (1).

Since p(z) has symmetry, by the item (1) of Lemma 4.1.1, we know that

Z(p(z), z0) = Z(p(z), z−1
0 ), ∀ z0 ∈ C \ {0}. (4.1.4)

Denote σ(p) := {z0 ∈ C \ {0} : p(z0) = 0}. Partition σ(p) into a disjoint

union as: σ(p) = σin ∪ σout ∪ σup ∪ σdown ∪ σ±1, where

σin :={z0 ∈ σ(p) : |z0| < 1}, σout :={z0 ∈ σ(p) : |z0| > 1},
σup :={z0 ∈ σ(p) ∩ T : Im(z0) > 0}, σdown :={z0 ∈ σ(p) ∩ T : Im(z0) < 0},

σ±1 := σ(p) ∩ {1,−1}.

The map η : z → z−1 is a bijection between {z0 ∈ C \ {0} : |z0| < 1} and

{z0 ∈ C \ {0} : |z0| > 1}. So (4.1.4) implies that η is also a bijection be-

tween σin and σout. Moreover, we have
∑

z0∈σout Z(p, z0) =
∑

z−1
0 ∈σin Z(p, z0) =∑

z−1
0 ∈σin Z(p, z−1

0 ) =
∑

z0∈σin Z(p, z0).

Similarly, the map η : z → z−1 is also a bijection between {z0 ∈ T :

Im(z0) > 0} and {z0 ∈ T : Im(z0) < 0}. So (4.1.4) implies that η is also

a bijection between σup and σdown. Moreover, we have
∑

z0∈σdown Z(p, z0) =∑
z−1
0 ∈σup Z(p, z0) =

∑
z−1
0 ∈σup Z(p, z−1

0 ) =
∑

z0∈σup Z(p, z0).

Now, from∑
z0∈σ(p)

Z(p, z0) =
∑
z0∈σin

Z(p, z0) +
∑

z0∈σout
Z(p, z0) +

∑
z0∈σup

Z(p, z0)

+
∑

z0∈σdown
Z(p, z0) + Z(p, 1) + Z(p,−1)
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=2
∑
z0∈σin

Z(p, z0) + 2
∑
z0∈σup

Z(p, z0) + Z(p, 1) + Z(p,−1),

we can see that odd(len(p)) = odd
(∑

z0∈σ(p) Z(p, z0)
)

= odd (Z(p, 1) + Z(p,−1)).

According to item (5) of Proposition 4.1.1, we know that odd(c) = odd(len(p)) =

odd (Z(p, 1) + Z(p,−1)). This proves the item (2). �

To deal with matrices generated by filters with symmetry, we generalize

the operator S for an r × s matrix A(z) of Laurent polynomials: If all the

elements of A(z) have symmetry, then SA(z) is defined to be an r × s matrix

of monomials where [SA]i,j(z) := S[A]i,j(z), i = 1, . . . , r, j = 1, . . . , s.

In order to make the matrix operations such as A(z)±B(z) and A(z)B(z) be

closed under symmetry, we need to define the compatibility. If r × s matrices

A(z) and B(z) both have symmetry, and the symmetry types are the same,

then A(z) + B(z) and A(z) − B(z) also have symmetry, and the symmetry

types are unchanged. In this case, we say the operations A(z) + B(z) and

A(z)− B(z) are compatible.

It is a little bit more complicated to define the compatibility for matrix

multiplications. For an r×s matrix P(z) with symmetry, we say the symmetry

type of P(z) is compatible or P(z) has compatible symmetry if

SP(z) = (Sθ1)?(z)Sθ2(z) (4.1.5)

holds for some 1 × r and 1 × s row vectors of Laurent polynomials θ1(z) and

θ2(z) with symmetry. It is easy to see from the definition (4.1.5) that Sθ1(z)

gives the symmetry relationship between the rows of P(z), while Sθ2(z) gives

the symmetry relationship between the columns of P(z):

SPj,i(z)

SPk,i(z)
=

Sθ?1,j(z)

Sθ?1,k(z)
, ∀ i ∈ {1, . . . , s}, ∀ j, k ∈ {1, . . . , r}, (4.1.6)

SPi,j(z)

SPi,k(z)
=

Sθ2,j(z)

Sθ2,k(z)
, ∀ i ∈ {1, . . . , r}, ∀ j, k ∈ {1, . . . , s}, (4.1.7)

where θi,j(z) is the j-th component of the vector θi(z), i = 1, 2.

If an n × n square matrix P(z) of Laurent polynomials has compatible
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symmetry as (4.1.5), it can be verified with straightforward calculations that

det(P(z)) also has symmetry, with type

S(det(P(z))) =
n∏
j=1

Sθ?1,j(z)Sθ2,j(z). (4.1.8)

For an r× s matrix P(z) and an s× t matrix Q(z) of Laurent polynomials,

we say the multiplication P(z)Q(z) is compatible if

SP(z) = Sθ?1(z)Sθ2(z), SQ(z) = Sθ?2(z)Sθ3(z),

for some 1 × r, 1 × s and 1 × t row vectors θ1(z), θ2(z) and θ3(z) of Lau-

rent polynomials with symmetry. In this case, P(z)Q(z) also has compatible

symmetry:

S(PQ)(z) = (SP)(z)(SQ)(z) = Sθ?1(z)Sθ3(z).

If an n× n matrix P(z) of Laurent polynomials is invertible (determinant

equal to a nonzero monomial), and it has compatible symmetry as (4.1.5), we

can compute its inverse as P−1(z) = 1
det(P(z))

adj(P(z)). From (4.1.8), we know

that the (i, j) cofactor of P(z) has symmetry with type:

S [adj(P(z))]j,i =
∏
k 6=i

Sθ?1,k(z)
∏
l 6=j

Sθ2,l(z)

=
S (det(P(z)))

Sθ?1,i(z)Sθ2,j(z)
= S (det(P(z))) Sθ1,i(z)Sθ?2,j(z).

So P−1(z) also has compatible symmetry and

SP−1(z) = Sθ?2(z)Sθ1(z). (4.1.9)

Hence, if P(z),Q(z) and R(z) are matrices of Laurent polynomials of sizes n×n,

n×m and m×n, respectively, where P(z) is invertible, then the multiplication

P(z)Q(z) = A(z) is compatible implies that the multiplication P−1(z)A(z) is

also compatible; and the multiplication R(z)P(z) = A(z) is compatible implies

that the multiplication A(z)P−1(z) is also compatible.
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Special cases that would be useful later are similar to elementary matrices.

We summarize them as the following proposition.

Proposition 4.1.2. Suppose A(z) is an r × s matrix of Laurent polynomials

with compatible symmetry: SA(z) = Sθ?1(z)Sθ2(z).

(1) For an s× t permutation matrix Pi,j and a t×r permutation matrix P̃i,j,

where P̃i,jA(z) and A(z)Pi,j correspond to switching the i-th and the j-th

row and column of A(z) respectively, we know that P̃i,jA(z) and A(z)Pi,j

both have compatible symmetry, with types

S(P̃i,jA)(z) = (S(θ1P̃T
i,j))

?(z)Sθ2(z), S(APi,j)(z) = (Sθ1)?(z)S(θ2Pi,j)(z).

(2) If all dj(z) have symmetry, j = 1, . . . , n, then Dn(z) := diag(d1(z), · · · , dn(z))

is compatible with any symmetry type on either side. That is,

S(DrA)(z) = (S(θ1D?
r))

?(z)Sθ2(z), S(ADs)(z) = (Sθ1)?(z)S(θ2Ds)(z).

(3) Suppose U(z) is a t× r matrix of Laurent polynomials, where each of the

entries of U(z) has symmetry. If for some k ∈ {1, . . . , s}, it satisfies

SUi,1(z)SA1,k(z) = SUi,2(z)SA2,k(z) = . . . = SUi,r(z)SAr,k(z),

for all i = 1, . . . , t, (4.1.10)

then we can find some 1 × t row vector θ3(z) of Laurent polynomials

with symmetry, such that Sθ?3,i(z) =
SUi,1(z)

Sθ1,1(z)
, and SU(z) = Sθ?3(z)Sθ1(z).

That is, U(z) has compatible symmetry and the multiplication U(z)A(z)

is compatible. On the other hand, if the multiplication U(z)A(z) is com-

patible, then (4.1.10) holds for all k ∈ {1, . . . , s}.

(4) Suppose U(z) is an s × t matrix of Laurent polynomials, where each of

the entries of U(z) has symmetry. If for some k ∈ {1, . . . , r}, it satisfies

SAk,1(z)SU1,i(z) = SAk,2(z)SU2,i(z) = . . . = SAk,s(z)SUs,i(z),

for all i = 1, . . . , t, (4.1.11)
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then we can find some 1 × t row vector θ3(z) of Laurent polynomials

with symmetry, such that Sθ3,i(z) =
SU1,i(z)

Sθ?2,1(z)
, and SU(z) = Sθ?2(z)Sθ3(z).

That is, U(z) has compatible symmetry and the multiplication A(z)U(z)

is compatible. On the other hand, if the multiplication A(z)U(z) is com-

patible, then (4.1.11) holds for all k ∈ {1, . . . , r}.

Proof. Items (1) and (2) can be seen by straightforward calculations using the

definition (4.1.5). The proof of the item (4) is quite similar to that of the item

(3). We only prove the item (3) here.

From (4.1.10), we know that

SUi,l(z)SAl,k(z) = SUi,1(z)SA1,k(z), ∀ l ∈ {1, . . . , r}, ∀ i ∈ {1, . . . , t}.

Since A(z) has compatible symmetry, by the symmetry type of A(z), we can

see that the above equality implies

SUi,l(z)

SUi,1(z)
=

SA1,k(z)

SAl,k(z)
=

Sθ?1,1(z)

Sθ?1,l(z)
=

Sθ1,l(z)

Sθ1,1(z)
,

∀ l ∈ {1, . . . , r}, ∀ i ∈ {1, . . . , t}. (4.1.12)

We can find some 1×t row vector θ3(z) of Laurent polynomials with symmetry,

such that Sθ?3,i(z) =
SUi,1(z)

Sθ1,1(z)
, for all i = 1, . . . , t. From (4.1.12), we can see that

SUi,l(z) =
Sθ1,l(z)

Sθ1,1(z)
SUi,1(z) =

Sθ1,l(z)

Sθ1,1(z)
Sθ?3,i(z)Sθ1,1(z) = Sθ?3,i(z)Sθ1,l(z),

∀ l ∈ {1, . . . , r}, ∀ i ∈ {1, . . . , t}.

So SU(z) = Sθ?3(z)Sθ1(z). That is, U(z) has compatible symmetry and the

multiplication U(z)A(z) is compatible.

On the other hand, if SU(z) = Sθ?3(z)Sθ1(z) for some 1× t row vector θ3(z)

of Laurent polynomials with symmetry, then

Sθ?3,i(z)Sθ2,k(z) = SUi,1(z)SA1,k(z) = SUi,2(z)SA2,k(z) = . . . = SUi,r(z)SAr,k(z)

holds for all k ∈ {1, . . . , s}, i ∈ {1, . . . , t}. This proves the equation (4.1.10)
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for all k ∈ {1, . . . , s}. �

The construction of (anti-)symmetric tight framelet filter banks with two

high-pass filters has been discussed in [40][48]. We would like to discuss the

construction of the quasi-tight case with signature matrix diag(1,−1).

4.2 Spectral Decomposition of Matrices of Lau-

rent Polynomials with Symmetry and Empty

Spectrum

The main theorem we want to prove in this section is the following:

Theorem 4.2.1. Suppose A(z) is a 2× 2 matrix of Laurent polynomials with

compatible symmetry, satisfying A?(z) = A(z). Also det(A(z)) = C is a

constant satisfying C < 0. Denote the symmetry type of A(z) by SA(z) =[
1 α(z)

α?(z) 1

]
. Then we can find a matrix U(z) =

[
U1,1(z) U1,2(z)

U2,1(z) U2,2(z)

]
of Lau-

rent polynomials with compatible symmetry, where the symmetry type satisfies

SU1,1(z)

SU2,1(z)
=

SU1,2(z)

SU2,2(z)
= α(z), (4.2.1)

and A(z) = U(z)

[
1

−1

]
U?(z) holds.

Denote the symmetry type α(z) = εzc, where ε ∈ {1,−1} and c ∈ Z. Then

we have four possible cases:

(1) ε = 1, c ∈ 2Z + 1;

(2) ε = −1, c ∈ 2Z + 1;

(3) ε = 1, c ∈ 2Z;

(4) ε = −1, c ∈ 2Z.
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For cases (1)(2)(3), the result in Theorem 4.2.1 is proved by Theorem 4.2.2.

For the case (4), we prove it in Theorem 4.2.3.

We introduce the following lemmas as sub-steps to prove the Theorem 4.2.2.

The proofs of the lemmas are all constructive, which can be used as algorithms

directly.

Lemma 4.2.1. Suppose a(z) and b(z) are both Laurent polynomials with sym-

metry: Sa(z) = εaz
ca, Sb(z) = εbz

cb, for some ca, cb ∈ Z, and εa, εb ∈ {1,−1}.
Also, assume b(z) 6= 0, and len(a(z)) > len(b(z)). Then there exists a Laurent

polynomial q1(z) with symmetry, such that

a1(z) := a(z)− b(z)q1(z) (4.2.2)

satisfies len(a1(z)) < len(a(z)), and Sa1(z) = Sa(z) = Sb(z)Sq1(z).

Proof. Let us write the Laurent polynomials as

a(z) =

deg(a)∑
k=ldeg(a)

a(k)zk, b(z) =

deg(b)∑
k=ldeg(b)

b(k)zk.

Define

q1(z) :=
a(deg(a))

b(deg(b))
zdeg(a)−deg(b) +

a(ldeg(a))

b(ldeg(b))
zldeg(a)−ldeg(b). (4.2.3)

From the symmetry types of a(z) and b(z), we know that

a(ldeg(a)) = εaa(deg(a)), b(ldeg(b)) = εbb(deg(b)),

deg(a) + ldeg(a) = ca, deg(b) + ldeg(b) = cb.

Using (4.2.3), we can calculate

Sq1(z) =q1(z)/q1(z−1) =

a(deg(a))
b(deg(b))

zdeg(a)−deg(b) + a(ldeg(a))
b(ldeg(b))

zldeg(a)−ldeg(b)

a(deg(a))
b(deg(b))

z− deg(a)+deg(b) + a(ldeg(a))
b(ldeg(b))

z− ldeg(a)+ldeg(b)

=

a(deg(a))
b(deg(b))

zdeg(a)−deg(b) + εaεb
a(deg(a))
b(deg(b))

z(ca−cb)−(deg(a)−deg(b))

a(deg(a))
b(deg(b))

z−(deg(a)−deg(b)) + εaεb
a(deg(a))
b(deg(b))

z(deg(a)−deg(b))−(ca−cb)
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=εaεbz
ca−cb = Sa(z)/Sb(z).

So Sb(z)Sq1(z) = Sa(z) = Sa1(z).

Since len(a(z)) = deg(a(z))−ldeg(a(z)) > len(b(z)) = deg(b(z))−ldeg(b(z)),

we can see deg(a) − deg(b) > ldeg(a) − ldeg(b). Therefore, from the def-

inition of q1(z) in (4.2.3), we can get ldeg(q1) = ldeg(a) − ldeg(b), and

deg(q1) = deg(a)− deg(b). So

ldeg(bq1) = ldeg(b) + ldeg(q1) = ldeg(a),

deg(bq1) = deg(b) + deg(q1) = deg(a).

As to the coefficients corresponding to the lowest and the highest degree terms

of bq1, we can calculate directly from (4.2.3):

coefficient of b(z)q1(z) at lowest degree: b(ldeg(b))q1(ldeg(q1)) = a(ldeg(a)),

coefficient of b(z)q1(z) at highest degree: b(deg(b))q1(deg(q1)) = a(deg(a)).

So both the lowest and highest degree terms cancel in the subtraction a1(z) =

a(z)−b(z)q1(z). Hence, ldeg(a1(z)) > ldeg(a(z)), and deg(a1(z)) < deg(a(z)).

That is, len(a1(z)) < len(a(z)). This finished the proof of the lemma. �

Lemma 4.2.2 (Long Division of Laurent Polynomials with Symmetry). Sup-

pose a(z) and b(z) are both Laurent polynomials with symmetry: Sa(z) = εaz
ca,

Sb(z) = εbz
cb, for some ca, cb ∈ Z, and εa, εb ∈ {1,−1}. Also, assume b(z) 6= 0.

We have the following 4 possible cases for the symmetry type of a(z) and b(z):

(i) εaεb = −1, and ca − cb ∈ 2Z;

(ii) εaεb = −1, and ca − cb ∈ 2Z + 1;

(iii) εaεb = 1, and ca − cb ∈ 2Z;

(iv) εaεb = 1, and ca − cb ∈ 2Z + 1.

We can prove the following two results.
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(1) For case (i), we can find a Laurent polynomial q(z) with symmetry, such

that

r(z) := a(z)− b(z)q(z) (4.2.4)

satisfies len(r(z)) 6 len(b(z)), and Sr(z) = Sa(z) = Sb(z)Sq(z).

(2) For cases (ii)(iii)(iv), we can find a Laurent polynomial q(z) with sym-

metry, such that the r(z) defined in (4.2.4) satisfies len(r(z)) < len(b(z)),

and Sr(z) = Sa(z) = Sb(z)Sq(z).

Proof. In all the 4 possible cases of symmetry types, if len(a(z)) < len(b(z)),

we can take q(z) := 0, and r(z) := a(z). Then q(z) and r(z) satisfy all the

requirements in the items (1) and (2). The proof is completed. So we only

need to consider that len(a(z)) > len(b(z)).

If len(a(z)) > len(b(z)), we can define a0(z) := a(z), and repeatedly apply

the Lemma 4.2.1. That is, if len(aj(z)) > len(b(z)), j = 0, 1, . . ., we can find a

Laurent polynomial qj(z) with symmetry, such that

aj+1(z) := aj(z)− b(z)qj(z)

satisfies len(aj+1(z)) < len(aj(z)), and Saj+1(z) = Saj(z) = Sb(z)Sqj(z). This

process cannot iterate forever since len(aj(z)) is strictly decreasing and we

require len(aj(z)) > len(b(z)). Suppose it finalizes at some j = K − 1, then

aK(z) =aK−1(z)− b(z)qK−1(z)

=aK−2(z)− b(z)qK−2(z)− b(z)qK−1(z)

= . . .

=a0(z)− b(z) (qK−1(z) + . . .+ q0(z))

satisfies len(aK(z)) 6 len(b(z)). Also, the symmetry types satisfy

SaK(z) = SaK−1(z) = . . . = Sa0(z) = Sa(z),

Sqj(z) = Saj+1(z)/Sb(z) = Sa(z)/Sb(z), ∀ j = 0, . . . , K − 1.
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Define

q̃(z) := qK−1(z) + . . .+ q0(z), (4.2.5)

we can see

Sq̃(z) = Sa(z)/Sb(z), (4.2.6)

aK(z) = a(z)− b(z)q̃(z). (4.2.7)

For the symmetry type in the case (i), if len(a(z)) = len(b(z)), we can

take q(z) := 0, and r(z) := a(z). They satisfy all the requirements in the

item (1). Otherwise if len(a(z)) > len(b(z)), just apply the above algorithm

and define q(z) := q̃(z) as in (4.2.5). Then, from (4.2.7) we can see r(z) :=

a(z) − b(z)q(z) = aK(z) satisfies len(r(z)) 6 len(b(z)). And the equation

(4.2.6) implies that Sr(z) = Sa(z) = Sb(z)Sq(z). This finishes the proof of the

item (1).

For the symmetry types in cases (ii) and (iv), we have ca − cb ∈ 2Z + 1.

That is, odd(ca) 6= odd(cb). By the item (5) of Proposition 4.1.1, we know that

odd(len(a(z))) 6= odd(len(b(z))), which implies that len(a(z)) 6= len(b(z)). So,

we only need to consider the situation that len(a(z)) > len(b(z)). Let us apply

the above algorithm, and define q(z) := q̃(z) as in (4.2.5). Then, from (4.2.7)

and (4.2.6), we can see r(z) := a(z)− b(z)q(z) = aK(z) satisfies the symmetry

type result Sr(z) = SaK(z) = Sa(z) = Sb(z)Sq(z). Furthermore, from εrz
cr :=

Sr(z) = Sa(z) = εaz
ca , we know that cr = ca. So odd(cr) = odd(ca) 6= odd(cb).

By the item (5) of Proposition 4.1.1, we get odd(len(r(z))) 6= odd(len(b(z))),

so len(r) 6= len(b). Since len(r) = len(aK) 6 len(b), we know len(r) < len(b).

This finishes the proof of the cases (ii) and (iv) in the item (2).

For the symmetry type in the case (iii), if len(a(z)) > len(b(z)), we can

apply the algorithm above to find the Laurent polynomial q̃(z) as in (4.2.5).

If len(a(z)) = len(b(z)), we just use q̃(z) = 0 here. For both situations, we

define aK(z) as

aK(z) = a(z)− b(z)q̃(z),

then len(aK(z)) 6 len(b(z)), and SaK(z) = Sa(z) = Sb(z)Sq̃(z). (In the sit-

uation of len(a(z)) = len(b(z)), just take K = 1.) If len(aK(z)) < len(b(z)),

we can just take q(z) := q̃(z), and r(z) := aK(z). They satisfy all the re-
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quirements in the item (2). And the proof of the theorem is completed. If

len(aK(z)) = len(b(z)), define

q̊(z) :=
aK(deg(aK))

b(deg(b))
zdeg(aK)−deg(b).

We will prove that

r(z) := aK(z)− b(z)̊q(z) (4.2.8)

satisfies

len(r) < len(aK) = len(b), SbS̊q = SaK = Sr. (4.2.9)

From len(aK(z)) = len(b(z)), we know that

deg(aK)− ldeg(aK) = len(aK(z)) = len(b(z)) = deg(b)− ldeg(b).

Hence, deg(aK)− deg(b) = ldeg(aK)− ldeg(b). So

deg(b̊q) = deg(b) + deg(̊q) = deg(aK),

ldeg(b̊q) = ldeg(b) + ldeg(̊q) = ldeg(b) + (deg(aK)− deg(b))

= ldeg(b) + (ldeg(aK)− ldeg(b)) = ldeg(aK).

This tells us that fsupp(b̊q) = fsupp(aK). The coefficient of the highest degree

term of b(z)̊q(z) is b(deg(b))q̊(deg(̊q)) = aK(deg(aK)). Therefore, the terms

corresponding to the highest degree cancel in the subtraction r(z) = aK(z) −
b(z)̊q(z). So len(r) < len(aK).

As to the symmetry type, we can calculate that S̊q(z) = z2 deg(aK)−2 deg(b).

Also, from εaKεb = εaεb = 1, we know that εaK = εb. So

SbS̊q(z) =εbz
cb+2 deg(aK)−2 deg(b) = εbz

deg(b)+ldeg(b)+2 deg(aK)−2 deg(b)

=εbz
2 deg(aK)−(deg(b)−ldeg(b)) = εbz

2 deg(aK)−(deg(aK)−ldeg(aK))

=εaKz
deg(aK)+ldeg(aK) = εaKz

caK = SaK(z).

This finishes the proof of (4.2.9). Define q(z) := q̃(z)+ q̊(z), (4.2.7) and (4.2.8)

imply that (4.2.4) holds. From (4.2.6) and (4.2.9), the symmetry types satisfy
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Sr(z) = Sa(z) = Sb(z)Sq(z). This completes the proof of the item (2) in the

case of symmetry type (iii). �

Using Lemma 4.2.2, we can prove the following theorem.

Theorem 4.2.2. Suppose A(z) is a 2×2 Hermitian matrix of Laurent polyno-

mials with compatible symmetry, where det(A(z)) = C is a constant satisfying

C < 0. Assume the symmetry type of A(z) is SA(z) =

[
1 α(z)

α?(z) 1

]
, where

α(z) is one of the followings:

(1) α(z) = εz2c+1, ε ∈ {1,−1}, c ∈ Z;

(2) α(z) = z2c, c ∈ Z.

Then we can find a matrix U(z) =

[
U1,1(z) U1,2(z)

U2,1(z) U2,2(z)

]
of Laurent polynomials

with compatible symmetry, where the symmetry type satisfies

SU1,1(z)

SU2,1(z)
=

SU1,2(z)

SU2,2(z)
= α(z), (4.2.10)

and A(z) = U(z)

[
1

−1

]
U?(z) holds.

Proof. Firstly, we iteratively construct a sequence of invertible matrices V(0)(z), . . . ,

V(K−1)(z) with compatible symmetry, such that

A(K)(z) := V(K−1)(z) · · ·V(0)(z)A(z)V(0)?(z) · · ·V(K−1)?(z)

satisfies

(1) all the multiplications are compatible;

(2) there exists some element in A(K)(z) that is zero.

If there already exists some element in A(z) that is zero, just take K = 1,

V(0)(z) = I2, and A(1)(z) := A(z). The construction is completed. Otherwise,
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we define A(0)(z) := A(z). For j = 0, . . . , K − 1, we will iteratively solve for

V(j)(z), and define A(j+1)(z) := V(j)(z)A(j)(z)V(j)?(z).

Our construction of V(j)(z) below requires the following two conditions for

A(j)(z), which are obviously true for A(0)(z) := A(z).

(i) A(j)?(z) = A(j)(z), and det(A(j)(z)) = det(A(z)) = C is a constant;

(ii) SA(j)(z) = SA(z).

Assume the above two items are true for some j = 0, . . . , K − 1. If none of

the four elements in A(j)(z) is zero, we will prove

len(A
(j)
1,1) + len(A

(j)
2,2) = len(A

(j)
1,2) + len(A

(j)
2,1) = 2 len(A

(j)
2,1). (4.2.11)

Since A(j)(z) is Hermitian, we know that
(

A
(j)
1,1A

(j)
2,2

)?
= A

(j)
1,1A

(j)
2,2, and

(
A

(j)
1,2A

(j)
2,1

)?
=

A
(j)
1,2A

(j)
2,1. So fsupp

(
A

(j)
1,1A

(j)
2,2

)
and fsupp

(
A

(j)
1,2A

(j)
2,1

)
are both symmetric intervals

about the center 0. Define

[−m,m] := fsupp(A
(j)
1,1A

(j)
2,2), [−n, n] := fsupp(A

(j)
1,2A

(j)
2,1).

Since det(A(j)(z)) = A
(j)
1,1(z)A

(j)
2,2(z) − A

(j)
1,2(z)A

(j)
2,1(z) = C is a constant, and

none of the 4 elements in A(z) is 0, we know that all the terms in A
(j)
1,1A

(j)
2,2 and

A
(j)
1,2A

(j)
2,1 with degree not equal to 0 must cancel in the subtraction. Therefore,

we have m = n. From

len(A
(j)
1,1) + len(A

(j)
2,2) = len(A

(j)
1,1A

(j)
2,2) = 2m = 2n

= len(A
(j)
1,2A

(j)
2,1) = len(A

(j)
1,2) + len(A

(j)
2,1) = 2 len(A

(j)
2,1),

we proved (4.2.11). From (4.2.11), we get

min
{

len(A
(j)
1,1(z)), len(A

(j)
2,2(z))

}
6 len(A

(j)
2,1(z)). (4.2.12)

Based on (4.2.12) and Lemma 4.2.2, we can use the following 2 steps to find an

invertible matrix V(j)(z) to reduce the length of the (2, 1) element of A(j)(z).

That is, we can find an invertible matrix V(j)(z) with compatible symme-

try, such that A(j+1)(z) := V(j)(z)A(j)(z)V(j)?(z) satisfies len(A
(j+1)
2,1 (z)) <
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len(A
(j)
2,1(z)). Notice that we have SA(j)(z) = SA(z), that is, SA

(j)
1,1 = 1 and

SA
(j)
2,1 = α?(z).

Step 1 If len(A
(j)
1,1(z)) 6 len(A

(j)
2,1(z)), we can use Lemma 4.2.2 (item (2)) to

find a Laurent polynomial q(z) with symmetry, such that

r(z) := A
(j)
2,1(z)− A

(j)
1,1(z)q(z)

satisfies len(r(z)) < len(A
(j)
1,1(z)), and Sr(z) = Sq(z)SA

(j)
1,1(z) = SA

(j)
2,1(z).

Define V(j)(z) :=

[
1

−q(z) 1

]
, then

A(j+1)(z) := V(j)(z)A(j)(z)V(j)?(z) =

[
A

(j)
1,1(z) r?(z)

r(z) A
(j+1)
2,2 (z)

]

satisfies SA(j+1)(z) = SA(j)(z), det(A(j+1)(z)) = det(A(j)(z)), and

len(A
(j+1)
2,1 (z)) = len(r(z)) < len(A

(j)
1,1(z)) 6 len(A

(j)
2,1(z)). (4.2.13)

Also, we have SV(j)(z) = SA(j)(z) = Sθ?1(z)Sθ1(z), where Sθ1(z) :=

[1, α(z)]. So the multiplications are compatible.

Step 2 If len(A
(j)
2,2(z)) 6 len(A

(j)
2,1(z)), we can use Lemma 4.2.2(item (2)) to

find a Laurent polynomial q(z) with symmetry, such that

r(z) := A
(j)
1,2(z)− A

(j)
2,2(z)q(z)

satisfies len(r(z)) < len(A
(j)
2,2(z)), and Sr(z) = Sq(z)SA

(j)
2,2(z) = SA

(j)
1,2(z).

Define V(j)(z) :=

[
1 −q(z)

1

]
, then

A(j+1)(z) := V(j)(z)A(z)V(j)?(z) =

[
A

(j+1)
1,1 (z) r(z)

r?(z) A
(j)
2,2(z)

]
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satisfies SA(j+1)(z) = SA(j)(z), det(A(j+1)(z)) = det(A(j)(z)), and

len(A
(j+1)
2,1 (z)) = len(r(z)) < len(A

(j)
2,2(z)) 6 len(A

(j)
2,1(z)). (4.2.14)

Also, we have SV(j)(z) = SA(j)(z) = Sθ?1(z)Sθ1(z), where Sθ1(z) :=

[1, α(z)]. So the multiplications are compatible.

When we use Lemma 4.2.2 in the above two steps, notice that the symme-

try type α(z) in item (1) corresponds to the case (ii) or (iv) in Lemma 4.2.2,

and the symmetry type α(z) in item (2) corresponds to the case (iii) in

Lemma 4.2.2. So we can always use the item (2) of Lemma 4.2.2 in the two

steps above.

After we apply either step 1 or step 2 above, we can see that A(j+1)(z) is still

Hermitian, and both the determinant and the symmetry type are unchanged:

det(A(j+1)(z)) = det(V(z)) det(A(j)(z)) det(V?(z))

= det(A(j)(z)) = det(A(z)) = C,

SA(j+1)(z) =SA(j)(z).

Therefore, A(j+1)(z) also satisfies the conditions (i) and (ii) we assumed for

A(j)(z). So we can redefine j := j + 1, and repeat the above procedure to

construct the next V(j)(z).

By (4.2.13) and (4.2.14), we know that the length of A
(j)
2,1(z) is strictly

decreasing:

len(A
(0)
2,1(z)) > len(A

(1)
2,1(z)) > len(A

(2)
2,1(z)) > . . . .

So the procedure cannot last forever. That is, there exists some integer K, such

that at least one of the four elements in A(K)(z) is zero. By our construction,

we have A(K)(z) = V(K−1)(z) · · ·V(0)(z)A(z)V(0)?(z) · · ·V(K−1)?(z). Define

Sθ1(z) := [1, α(z)], (4.2.15)
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we can see that

SA(K)(z) = SA(z) = SV(j)(z) = Sθ?1(z)Sθ1(z), j = 1, . . . , K − 1.

Define the invertible matrix W(z) :=
(
V(K−1)(z) · · ·V(0)(z)

)−1
, we get

A(z) = W(z)A(K)(z)W?(z), SW(z) = SA(z) = SA(K)(z) = Sθ?1(z)Sθ1(z).

(4.2.16)

We now discuss the three possible cases:

(1) If A
(K)
1,2 (z) = A

(K)
2,1 (z) = 0, from A

(K)
1,1 (z)A

(K)
2,2 (z) = det(A(K)(z)) = C,

we know that A
(K)
1,1 (z) and A

(K)
2,2 (z) must both be nonzero monomials.

From their symmetry types SA
(K)
1,1 (z) = SA

(K)
2,2 (z) = 1, we know that

A
(K)
1,1 (z) = c1 and A

(K)
2,2 (z) = c2 must be both constant, and c1c2 = C < 0.

For the case that c1 > 0 and c2 < 0, we define Ũ(z) :=

[√
c1 √−c2

]
,

then A(K)(z) = Ũ(z)

[
1

−1

]
Ũ?(z) holds. Since 0 can be defined to be

any symmetry type, we can see that SŨ(z) = Sθ?1(z)Sθ1(z) holds, where

Sθ1(z) is defined in (4.2.15).

For the case that c1 < 0 and c2 > 0, we define Ũ(z) :=

[ √−c1√
c2

]
,

then A(K)(z) = Ũ(z)

[
1

−1

]
Ũ?(z) still holds. Since 0 can be defined

to be any symmetry type, we can see that SŨ(z) = Sθ?1(z)Sθ2(z) holds,

where Sθ1(z) is defined in (4.2.15), and Sθ2(z) := [α(z), 1].

(2) If A
(K)
1,1 (z) = 0, take Ũ(z) := 1√

2

[
A

(K)
1,2 (z) A

(K)
1,2 (z)

1 + 1
2
A

(K)
2,2 (z) −1 + 1

2
A

(K)
2,2 (z)

]
, then

A(K)(z) = Ũ(z)

[
1

−1

]
Ũ?(z) holds. Also, we have SŨ(z) = Sθ?1(z)Sθ3(z),

where Sθ1(z) is defined in (4.2.15) and Sθ3(z) := [α(z), α(z)].

(3) If A
(K)
2,2 (z) = 0, take Ũ(z) := 1√

2

[
1 + 1

2
A

(K)
1,1 (z) −1 + 1

2
A

(K)
1,1 (z)

A
(K)
2,1 (z) A

(K)
2,1 (z)

]
. We
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can directly verify that A(K)(z) = Ũ(z)

[
1

−1

]
Ũ?(z). Also, we have

SŨ(z) = Sθ?1(z)Sθ4(z), where Sθ1(z) is defined in (4.2.15) and Sθ4(z) :=

[1, 1].

For all the three cases, from (4.2.16), we get

A(z) = W(z)A(K)(z)W?(z) = W(z)Ũ(z)

[
1

−1

]
Ũ?(z)W?(z).

That is, A(z) = U(z)

[
1

−1

]
U?(z), where U(z) := W(z)Ũ(z). Also, from

the symmetry type of W(z) and Ũ(z), we can see that the symmetry type of

U(z) is compatible: SU1,1(z)

SU2,1(z)
= SU1,2(z)

SU2,2(z)
= α(z). This completes the proof of the

theorem. �

The case that α(z) = −z2c is considered in the following theorem.

Theorem 4.2.3. Suppose A(z) is a 2×2 Hermitian matrix of Laurent polyno-

mials with compatible symmetry. Also det(A(z)) = −d2 < 0, where d 6= 0 is a

real constant. Assume the symmetry type of A(z) is SA(z) =

[
1 −z2c

−z−2c 1

]
,

for some c ∈ Z. Then we can find a matrix U(z) =

[
U1,1(z) U1,2(z)

U2,1(z) U2,2(z)

]
of Lau-

rent polynomials with compatible symmetry, where the symmetry type satisfies

SU1,1(z)

SU2,1(z)
=

SU1,2(z)

SU2,2(z)
= −z2c, (4.2.17)

and A(z) = U(z)

[
1

−1

]
U?(z).

To prove the Theorem 4.2.3, we introduce the following algorithm to find

U(z). Theorem 4.2.3 is proved by showing the Algorithm 4.1 is feasible.

Algorithm 4.1. Given a matrix A(z) of Laurent polynomials satisfying the

assumptions in Theorem 4.2.3.

118



(S1) Define [−n, n] := fsupp(A1,1(z)). Write U1,1(z) =
∑n

j=0 tjz
j and U1,2(z) =∑n

j=0 t̃jz
j, where {t0, . . . , tn, t̃0, . . . , t̃n} is a nontrivial solution to the ho-

mogeneous system X of 2n equations induced by R(z) ≡ 0, where R(z)

and U2,1(z) are uniquely determined through long division using A1,1(z)

by

A2,1(z)U1,1(z) + zn−cdU?
1,2(z) = A1,1(z)U2,1(z) +R(z),

with fsupp(R(z)) ⊆ [−n, n− 1]. (4.2.18)

The space of all solutions to X has dimension at least two. So we can

always find nontrivial solutions.

(S2) If SU1,1(z) = zn and SU1,2(z) = −zn, go to (S3). Otherwise, redefine

U1,1(z) :=
[

U1,1(z)−znU?
1,1(z)

]
/2, U1,2(z) :=

[
U1,2(z)+znU?

1,2(z)
]
/2.

(4.2.19)

We have U1,1(z) and U1,2(z) not simultaneously identical to zero. Also,

the symmetry types satisfy SU1,1(z) = −zn and SU1,2(z) = zn.

(S3) There must exist a nonzero real number λ, such that

A1,1(z) = λ
[

U1,1(z)U?
1,1 − U1,2(z)?U1,2(z)

]
. (4.2.20)

If λ > 0, redefine

U1,1(z) :=
√
λU1,1(z), U1,2(z) :=

√
λU1,2(z). (4.2.21)

Otherwise, redefine

U1,1(z) :=
√
−λU1,2(z), U1,2(z) :=

√
−λU1,1(z). (4.2.22)

U1,1(z) and U1,2(z) now have symmetry

SU1,1(z) = εzn, SU1,2(z) = −εzn, (4.2.23)
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for some ε ∈ {1,−1}.

(S4) Define

U2,1(z) :=
A2,1(z)U1,1(z) + zn−cdU?

1,2(z)

A1,1(z)
, (4.2.24)

U2,2(z) :=
A2,1(z)U1,2(z) + zn−cdU?

1,1(z)

A1,1(z)
. (4.2.25)

Then U2,1(z) and U2,2(z) here are well-defined Laurent polynomials with

symmetry:

SU2,1(z) = −εzn−2c, SU2,2(z) = εzn−2c, (4.2.26)

where the ε here is the same as that in (4.2.23).

(S5) Define

U(z) :=

[
U1,1(z) U1,2(z)

U2,1(z) U2,2(z)

]
.

Then A(z) = U(z)

[
1

−1

]
U?(z), and (4.2.17) holds.

Proof of Algorithm 4.1. Firstly, we will prove that A1,1(z) is not identically

zero. Suppose A1,1(z) = 0, then det(A(z)) = −A1,2(z)A2,1(z) = −d2. So

A1,2(z) must be a nonzero monomial, which cannot have symmetry type −z2c.

Hence, we proved that A1,1(z) is not identically zero.

In (S1), it can be verified directly that X is a homogeneous linear system.

Since fsupp(R(z)) ⊆ [−n, n − 1], X has 2n equations with 2n + 2 unknowns

{t0, . . . , tn, t̃0, . . . , t̃n}. So the space of all solutions to X has dimension at least

two. Hence, we can find some nontrivial solution pair {U1,1(z),U1,2(z)} to X.

Since R ≡ 0, after (S1), we have

A2,1(z)U1,1(z) + zn−cdU?
1,2(z) = A1,1(z)U2,1(z), (4.2.27)

for some Laurent polynomial U2,1(z).

Take Hermitian conjugate on both sides of (4.2.27), notice that A?
1,1(z) =
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A1,1(z) and A?
2,1(z) = −z2cA2,1(z), we get

−z2cA2,1(z)U?
1,1(z) + zc−ndU1,2(z) = A1,1(z)U?

2,1(z).

Multiplying zn−2c to the above equation yields

− znA2,1(z)U?
1,1(z) + z−cdU1,2(z) = zn−2cA1,1(z)U?

2,1(z). (4.2.28)

Averaging (4.2.27) and (4.2.28), we get

A2,1(z)
1

2

[
U1,1(z)− znU?

1,1(z)
]

+ zn−cd
1

2

[
U?

1,2(z) + z−nU1,2

]
= A1,1(z)

1

2

[
U2,1(z) + zn−2cU?

2,1(z)
]
. (4.2.29)

After step (S1), if SU1,1(z) 6= zn or SU1,2(z) 6= −zn, the redefined U1,1(z)

and U1,2(z) in (4.2.19) are not simultaneously equal to zero. Moreover, since

the old U1,1(z) and U1,2(z) satisfy fsupp(U1,1(z)) ⊆ [0, n] and fsupp(U1,2(z)) ⊆
[0, n], by the definition in (4.2.19), the redefined U1,1(z) and U1,2(z) also sat-

isfy fsupp(U1,1(z)) ⊆ [0, n] and fsupp(U1,2(z)) ⊆ [0, n]. Also, we can verify

with direct calculation that the redefined U1,1(z) and U1,2(z) have symmetry:

SU1,1(z) = −zn, and SU1,2(z) = zn. Furthermore, by (4.2.29), we can see that

the new pair {U1,1(z),U1,2(z)} satisfy

A1,1(z) | A2,1(z)U1,1(z) + zn−cdU?
1,2(z).

Redefine U2,1(z) :=
A2,1(z)U1,1(z)+zn−cdU?1,2(z)

A1,1(z)
. (4.2.29) implies that (4.2.27) still

holds after step (S2).

To prove step (S3), we can see from (4.2.27) that

A1,2(z)
(

A2,1(z)U1,2(z) + zn−cdU?
1,1(z)

)
=A1,2(z)A2,1(z)U1,2(z) + zn−cdU?

1,1(z)A1,2(z)

=
(

A1,1(z)A2,2(z)− det(A(z))
)

U1,2(z) + zn−cdU?
1,1(z)A1,2(z)

=
(

A1,1(z)A2,2(z) + d2
)

U1,2(z) + zn−cdU?
1,1(z)A1,2(z)
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=A1,1(z)A2,2(z)U1,2(z) + zn−cd
(
zc−ndU1,2(z) + U?

1,1(z)A1,2(z)
)

=A1,1(z)A2,2(z)U1,2(z) + zn−cd
(
zn−cdU?

1,2(z) + U1,1(z)A?
1,2(z)

)?
=A1,1(z)A2,2(z)U1,2(z) + zn−cdA1,1(z)U?

2,1(z)

=A1,1(z)
(

A2,2(z)U1,2(z) + zn−cdU?
2,1(z)

)
.

Since det(A(z)) is a constant, we know that gcd(A1,1(z),A1,2(z)) = 1. So,

the above equation implies that A1,1(z) | A2,1(z)U1,2(z) + zn−cdU?
1,1(z). Define

U2,2(z) :=
A2,1(z)U1,2(z)+zn−cdU?1,1(z)

A1,1(z)
, we can see that

A2,1(z)U1,2(z) + zn−cdU?
1,1(z) = A1,1(z)U2,2(z). (4.2.30)

Combine (4.2.27) and (4.2.30), we proved[
U2,2(z) −U1,2(z)

−U2,1(z) U1,1(z)

][
A1,1(z)

A2,1(z)

]
= zn−cd

[
U?

1,1(z)

−U?
1,2(z)

]
. (4.2.31)

Multiply
[

U?
1,2(z) U?

1,1(z)
]

to the left on both sides of (4.2.31), we get

(
U2,2(z)U?

1,2(z)−U2,1(z)U?
1,1(z)

)
A1,1(z)+

(
U1,1(z)U?

1,1(z)−U1,2(z)U?
1,2(z)

)
A2,1(z) = 0.

That is,(
U1,1(z)U?

1,1(z)−U1,2(z)U?
1,2(z)

)
A2,1(z) =

(
U2,1(z)U?

1,1(z)−U2,2(z)U?
1,2(z)

)
A1,1(z).

(4.2.32)

Since gcd(A1,1(z),A2,1(z)) = 1, the above equation implies

A1,1(z) | U1,1(z)U?
1,1(z)− U1,2(z)U?

1,2(z). (4.2.33)

Furthermore, from fsupp(U1,1(z)) ⊆ [0, n] and fsupp(U1,2(z)) ⊆ [0, n], we

can see fsupp(U1,1U?
1,1) ⊆ [−n, n], and fsupp(U1,2U?

1,2) ⊆ [−n, n]. This implies

that

fsupp(U1,1U?
1,1 − U1,2U?

1,2) ⊆ fsupp(A1,1). (4.2.34)
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To prove (4.2.20), we can see that after step (S2), the symmetry types of

U1,1(z) and U1,2(z) have two possible cases:

(1) SU1,1(z) = zn, SU1,2(z) = −zn;

(2) SU1,1(z) = −zn, SU1,2(z) = zn.

For the case (1), by item (1) of Lemma 4.1.2, we know Z(U?
1,1(z), 1) = Z(U1,1(z), 1) ∈

2Z, and Z(U?
1,2(z), 1) = Z(U1,2(z), 1) ∈ 2Z + 1. So Z(U?

1,1(z)U1,1(z), 1) ∈ 4Z,

while Z(U?
1,2(z)U1,2(z), 1) ∈ 4Z + 2. Hence, U1,1(z)U?

1,1(z) 6= U1,2(z)U?
1,2(z).

Similarly, for the case (2), we have Z(U?
1,1(z)U1,1(z), 1) ∈ 4Z+2, while Z(U?

1,2(z)U1,2(z), 1) ∈
4Z. We also get U1,1(z)U?

1,1(z) 6= U1,2(z)U?
1,2(z). So for both cases, we get

U1,1(z)U?
1,1(z)−U1,2(z)U?

1,2(z) 6= 0. Therefore, by (4.2.33) and (4.2.34), we can

conclude that there exists a nonzero constant number λ, such that (4.2.20)

holds. Since A1,1(z) and U1,1(z)U?
1,1(z)−U1,2(z)U?

1,2(z) are both real functions

on T, we can see that λ must be a real number.

If λ > 0, normalizing the solution pair {U1,1(z),U1,2(z)} with (4.2.21) will

give

A1,1(z) = U1,1(z)U?
1,1(z)− U1,2(z)U?

1,2(z). (4.2.35)

Notice that by (4.2.27) and (4.2.30),

A1,1(z) | A2,1(z)U1,1(z) + zn−cdU?
1,2(z), A1,1(z) | A2,1(z)U1,2(z) + zn−cdU?

1,1(z)

(4.2.36)

still hold after the normalization.

If λ < 0, redefining the solution pair {U1,1(z),U1,2(z)} with (4.2.22) will

also give (4.2.35). Furthermore, notice that switching U1,1(z) and U1,2(z) cor-

responds to switching the two relations in (4.2.36). So (4.2.36) still holds for

the new solution pair {U1,1(z),U1,2(z)} in this case.

Since the normalizations in step (S3) do not change the symmetry types

of U1,1(z) and U1,2(z), they still have symmetry inherited from step (S2). This

proved (4.2.23).

By (4.2.36), U2,1(z) and U2,2(z) we set in (4.2.24) and (4.2.25) are well-

defined Laurent polynomials. The symmetry types of U2,1(z) and U2,2(z) in

(4.2.26) can be proved by direct calculations using their definitions in (4.2.24)

and (4.2.25), and the symmetry types of U1,1(z),U1,2(z) from (4.2.23).
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Furthermore, the definitions of U2,1(z) and U2,2(z) in (4.2.24) and (4.2.25)

imply that (4.2.31) holds. Notice that (4.2.31) implies (4.2.32). By (4.2.35),

we know that (4.2.32) yields

U2,1(z)U?
1,1(z)− U2,2(z)U?

1,2(z) = A2,1(z). (4.2.37)

Multiplying
[

U1,1(z) U1,2(z)
]

to the left on both sides of (4.2.31), we have

(
U1,1(z)U2,2(z)−U1,2(z)U2,1(z)

)
A1,1(z) = zn−cd

(
U1,1(z)U?

1,1(z)−U1,2(z)U?
1,2(z)

)
.

Combining the above equation with (4.2.35), we can conclude

det(U(z)) = U1,1(z)U2,2(z)− U1,2(z)U2,1(z) = zn−cd. (4.2.38)

Multiplying
[

U?
2,2(z) U?

2,1(z)
]

to the left on both sides of (4.2.31), we get

(
U2,2(z)U?

2,2(z)−U2,1(z)U?
2,1(z)

)
A1,1(z)+

(
U1,1(z)U?

2,1(z)−U1,2(z)U?
2,2(z)

)
A2,1(z)

= zn−cd
(

U?
1,1(z)U?

2,2(z)− U?
1,2(z)U?

2,1(z)
)

= zn−cd(det(U(z)))?.

Using (4.2.37) and (4.2.38), we can simplify the above equation as(
U2,2(z)U?

2,2(z)− U2,1(z)U?
2,1(z)

)
A1,1(z) + A?

2,1(z)A2,1(z) =zn−cdzc−nd,

=d2 = − det(A(z))

=A1,2(z)A2,1(z)− A1,1(z)A2,2(z).

Since A?(z) = A(z), we have A?
2,1(z) = A1,2(z). So we can cancel the term

A1,2(z)A2,1(z) on both sides of the above equation, and divide by A1,1(z) to get

U2,2(z)U?
2,2(z)− U2,1(z)U?

2,1(z) = −A2,2(z).

That is,

U2,1(z)U?
2,1(z)− U2,2(z)U?

2,2(z) = A2,2(z). (4.2.39)
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Combining (4.2.35) (4.2.37) and (4.2.39), we proved A(z) = U(z)

[
1

−1

]
U?(z).

The symmetry type of U(z) in (4.2.17) follows from (4.2.23) and (4.2.26). This

finished the proof of the algorithm. �

Theorem 4.2.2 and Theorem 4.2.3 together proved the result of Theo-

rem 4.2.1 in all the four possible symmetry cases of α(z). So we proved

Theorem 4.2.1.

4.3 General Case

In this section, we study the factorization in Theorem 4.2.1 without requiring

det(A(z)) to be a constant. As a matter of fact, necessary and sufficient condi-

tions for spectral factorizations of general 2×2 matrices of Laurent polynomials

with symmetry are related to the gcd of all the 4 elements in the matrix A(z).

In Section 4.3.1, we prove that the spectral factors can be extracted out for the

case that gcd = 1. In Section 4.3.2, we study the DOS(Difference of Squares)

property of Laurent polynomials with symmetry. The necessary and suffi-

cient conditions of spectral factorizations of general 2× 2 matrices of Laurent

polynomials with symmetry are proved as Theorem 4.3.6 in Section 4.3.3.

4.3.1 GCD = 1 Case

It is well-known that the Smith Normal Form of matrices of Laurent poly-

nomials can be calculated by performing long divisions repeatedly. However,

directly using long divisions iteratively might destroy the symmetry structures.

Fortunately, we can still build the following Theorem 4.3.1 for Extended Eu-

clidean Algorithm with symmetry.

Theorem 4.3.1 (Extended Euclidean Algorithm for Laurent polynomials with

symmetry). Given two Laurent polynomials a(z) and b(z) with symmetry, de-

fine r(z) := gcd(a(z), b(z)). Then there exist Laurent polynomials u(z) and

v(z) with symmetry, such that

a(z)u(z) + b(z)v(z) = r(z), (4.3.1)
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and Sa(z)Su(z) = Sb(z)Sv(z) = Sr(z). Also we have gcd(u(z), v(z)) = 1.

Proof. The theorem can be proved constructively, so that we can follow the

steps and use it as an algorithm.

If a(z) = 0, we can define u(z) = 0 and v(z) = 1; otherwise if b(z) = 0,

we can define v(z) = 0 and u(z) = 1, then the result of the theorem can be

verified directly. We only consider the case that a(z) 6= 0 and b(z) 6= 0.

Let r(z) := gcd(a(z), b(z)), we can use the original Extended Euclidean

Algorithm (without symmetry) to find Laurent polynomials u1(z) and v1(z),

such that

a(z)u1(z) + b(z)v1(z) = r(z). (4.3.2)

u1(z), v1(z) may not have symmetry here. We can see that (4.3.2) also implies

a(z−1)u1(z−1) + b(z−1)v1(z−1) = r(z−1).

Plugging in a(z−1) = a(z)/Sa(z), b(z−1) = b(z)/Sb(z), and r(z−1) = r(z)/Sr(z)

to the above equation, we get

a(z)u1(z−1)/Sa(z) + b(z)v1(z−1)/Sb(z) = r(z)/Sr(z). (4.3.3)

Multiplying Sr(z) on (4.3.3), and averaging it with (4.3.2) gives us

a(z)
u1(z−1)Sr(z)/Sa(z) + u1(z)

2
+ b(z)

v1(z−1)Sr(z)/Sb(z) + v1(z)

2
= r(z).

(4.3.4)

Define

u(z) :=
u1(z−1)Sr(z)/Sa(z) + u1(z)

2
,

v(z) :=
v1(z−1)Sr(z)/Sb(z) + v1(z)

2
.

Equation (4.3.4) implies that (4.3.1) holds. Direct calculations give us Su(z) =

u(z)/u(z−1) = Sr(z)/Sa(z) and Sv(z) = v(z)/v(z−1) = Sr(z)/Sb(z). Hence we

have Sa(z)Su(z) = Sb(z)Sv(z) = Sr(z).

Let d(z) := gcd(u(z), v(z)). Since r(z) = gcd(a(z), b(z)), we know that

d(z)r(z)|a(z)u(z) and d(z)r(z)|b(z)v(z). Hence d(z)r(z) divides the left hand
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side of (4.3.1), which implies that d(z)r(z)|r(z). Therefore, gcd(u(z), v(z)) =

d(z) = 1. This completes the proof of the theorem. �

Using the Theorem 4.3.1, we can build the following lemma.

Lemma 4.3.1. Suppose N1(z),N2(z) 6= 0 are two Laurent polynomials with

symmetry. Then we can find an invertible 2× 2 matrix P(z) of Laurent poly-

nomials with compatible symmetry, such that

P(z)

[
N1(z)

N2(z)

]
=

[
r(z)

0

]
, (4.3.5)

where r(z) = gcd(N1(z),N2(z)). Also the above matrix multiplication is com-

patible.

Proof. From Theorem 4.3.1, we can find Laurent polynomials u(z) and v(z)

with symmetry, such that

u(z)N1(z) + v(z)N2(z) = r(z), (4.3.6)

with symmetry type

Su(z)SN1(z) = Sv(z)SN2(z) = Sr(z). (4.3.7)

Moreover, by gcd(u(z), v(z)) = 1, we can use Theorem 4.3.1 again, to find

Laurent polynomials s(z) and t(z) with symmetry, such that

u(z)t(z) + v(z) (−s(z)) = 1, (4.3.8)

with symmetry type

Su(z)St(z) = Sv(z)Ss(z) = 1. (4.3.9)

Define P1(z) :=

[
u(z) v(z)

s(z) t(z)

]
. We can see from (4.3.7) and (4.3.9) that

Ss(z)
St(z)

= Su(z)
Sv(z)

= SN2(z)
SN1(z)

, that is, Ss(z)SN1(z) = St(z)SN2(z). By the item (3)

of Proposition 4.1.2, this equality and (4.3.7) imply that P1(z) has compatible
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symmetry, and the multiplication in (4.3.10) is compatible. From (4.3.8), we

get det(P1(z)) = u(z)t(z)−v(z)s(z) = 1, which implies that P1(z) is invertible.

Also, according to (4.3.6)

P1(z)

[
N1(z)

N2(z)

]
=

[
u(z) v(z)

s(z) t(z)

][
N1(z)

N2(z)

]
=

[
r(z)

s(z)N1(z) + t(z)N2(z)

]
. (4.3.10)

Since r(z) = gcd(N1(z),N2(z)), we get r(z) | s(z)N1(z) + t(z)N2(z). Define

p(z) := s(z)N1(z)+t(z)N2(z)
r(z)

, and P2(z) :=

[
1 0

−p(z) 1

]
. We can see det(P2(z)) = 1,

and

P2(z)

[
r(z)

s(z)N1(z) + t(z)N2(z)

]
=

[
1 0

−p(z) 1

][
r(z)

s(z)N1(z) + t(z)N2(z)

]
=

[
r(z)

0

]
.

(4.3.11)

According to item (3) of Proposition 4.1.2, we know that P2(z) has compatible

symmetry, and the above matrix multiplication is also compatible. By defining

P(z) := P2(z)P1(z), (4.3.10) and (4.3.11) imply that (4.3.5) holds, and the ma-

trix multiplication in (4.3.5) is compatible. det(P(z)) = det(P1(z)) det(P2(z)) =

1 shows that P(z) is invertible. �

Although it is not easy to reduce A(z) to its Smith Normal Form with

invertible matrices E(z) and F(z) having compatible symmetry, we can still

diagonalize it using the following theorem.

Theorem 4.3.2. Suppose A(z) =

[
A1,1(z) A1,2(z)

A2,1(z) A2,2(z)

]
is a matrix of Laurent

polynomials with compatible symmetry. Then there exist invertible 2 × 2 ma-

trices P(z) and Q(z) of Laurent polynomials with compatible symmetry, such

that P(z)A(z)Q(z) is a diagonal matrix:

D(z) =

[
e1(z)

e2(z)

]
:= P(z)A(z)Q(z), (4.3.12)

where the multiplications are both compatible, and e1(z), e2(z) both have sym-

metry. Furthermore, suppose d1(z) and d2(z) are the invariant polynomi-
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als of A(z), then for all z0 ∈ C \ {0}, the sequences {Z(ei(z), z0)}2
i=1 and

{Z(di(z), z0)}2
i=1, up to a possible permutation, are the same.

The proof of Theorem 4.3.2 will be constructive, so we can use it directly

as an algorithm to find D(z), E(z) and F(z). We build the following lemma as

a useful sub-step in our construction.

Lemma 4.3.2. Suppose A(z) is a 2 × 2 matrix of Laurent polynomials with

compatible symmetry.

(1) If A2,1(z) 6= 0, then we can find an invertible matrix P̃(z) of Laurent

polynomials with compatible symmetry, such that

Ã(z) := P̃(z)A(z) =

[
r(z) Ã1,2(z)

0 Ã2,2(z)

]
, (4.3.13)

where r(z) := gcd(A1,1(z),A2,1(z)) 6= 0, and the above multiplication is

compatible.

(2) If A1,2(z) 6= 0, then we can find an invertible matrix Q̃(z) of Laurent

polynomials with compatible symmetry, such that

Ã(z) := A(z)Q̃(z) =

[
r(z) 0

Ã2,1(z) Ã2,2(z)

]
, (4.3.14)

where r(z) := gcd(A1,1(z),A1,2(z)) 6= 0, and the above multiplication is

compatible.

Proof. To prove item (1), for the case that A1,1(z) = 0, we just take P̃ =[
0 1

1 0

]
to be the permutation matrix. Then (4.3.13) will be satisfied. Notice

that according to the item (1) of Proposition 4.1.2, the permutation matrix is

compatible with any symmetry type.

For the case that A1,1(z) 6= 0, we can use Lemma 4.3.1 to find an invertible

matrix P̃(z) with compatible symmetry, such that

P̃(z)

[
A1,1(z)

A2,1(z)

]
=

[
r(z)

0

]
.
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So (4.3.13) will hold with such P̃(z). According to the item (3) of Proposi-

tion 4.1.2, we know that the multiplication in (4.3.13) is compatible.

Similarly, to prove item (2), for the case that A1,1(z) = 0, we just take

Q̃ =

[
0 1

1 0

]
to be the permutation matrix. Then (4.3.14) will be satisfied.

Notice that according to the item (1) of Proposition 4.1.2, the permutation

matrix is compatible with any symmetry type.

For the case that A1,1(z) 6= 0, we can use Lemma 4.3.1 to find an invertible

matrix Q̃(z) with compatible symmetry, such that

Q̃?(z)

[
A?

1,1(z)

A?
1,2(z)

]
=

[
r?(z)

0

]
.

So (4.3.14) will hold with this Q̃(z). According to the item (4) of Proposi-

tion 4.1.2, we know that the multiplication in (4.3.14) is compatible. �

Proof of Theorem 4.3.2. For the trivial case that A(z) = 0, we can just take

E = F = I2, and D = 0. So we only consider the nontrivial case.

If A(z) is already diagonal, just take P(z) = Q(z) = I2, and D(z) = A(z).

Otherwise, since some of the off-diagonal elements in A(z) is non-zero, we can

apply the two items in Lemma 4.3.2 repeatedly, to get a sequence of matrices

Ã(1)(z), Ã(2)(z), . . ., where

Ã(k1+k2)(z) := P̃k1 . . . P̃1(z)A(z)Q̃1(z) . . . Q̃k2(z).

The process will terminate if Ã(k1+k2)(z) becomes diagonal, i.e., Ã
(k1+k2)
1,2 (z) =

Ã
(k1+k2)
2,1 (z) = 0. Now we prove that the process will terminate after a finite

number of steps.

After applying item (1) of Lemma 4.3.2, for some integer k, we will get a

matrix Ã(k)(z) with Ã
(k)
1,1(z) 6= 0 and Ã

(k)
2,1(z) = 0. If Ã

(k)
1,1(z) | Ã

(k)
1,2(z), we can

use Q̃(z) :=

[
1 −Ã

(k)
1,2(z)/Ã

(k)
1,1(z)

0 1

]
in item (2) of Lemma 4.3.2, to generate

Ã(k+1)(z) := Ã(k)(z)Q̃(z). Then we can verify Ã
(k+1)
1,2 (z) = Ã

(k+1)
2,1 (z) = 0.

That is, Ã(k+1)(z) is diagonal and the algorithm will terminate. Otherwise, if
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Ã
(k)
1,1(z) - Ã

(k)
1,2(z), then len(gcd(Ã

(k)
1,1(z), Ã

(k)
1,2(z))) < len(Ã

(k)
1,1(z)). Hence, after

applying the item (2) of Lemma 4.3.2 to get Ã(k+1)(z) := Ã(k)(z)Q̃(z), we have

len(Ã
(k+1)
1,1 (z)) = len(gcd(Ã

(k)
1,1(z), Ã

(k)
1,2(z))) < len(Ã

(k)
1,1(z)). That is, the length

of the (1, 1) element will strictly decrease.

Similarly, after applying item (2) of Lemma 4.3.2, for some integer k, we will

get a matrix Ã(k)(z) with Ã
(k)
1,1(z) 6= 0 and Ã

(k)
1,2(z) = 0. If Ã

(k)
1,1(z) | Ã

(k)
2,1(z), we

can use P̃(z) :=

[
1 0

−Ã
(k)
2,1(z)/Ã

(k)
1,1(z) 1

]
in item (1) of Lemma 4.3.2, to generate

Ã(k+1)(z) := P̃(z)Ã(k)(z). Then we can verify Ã
(k+1)
1,2 (z) = Ã

(k+1)
2,1 (z) = 0.

That is, Ã(k+1)(z) is diagonal and the algorithm will terminate. Otherwise, if

Ã
(k)
1,1(z) - Ã

(k)
2,1(z), then len(gcd(Ã

(k)
1,1(z), Ã

(k)
2,1(z))) < len(Ã

(k)
1,1(z)). Hence, after

applying the item (1) of Lemma 4.3.2 to get Ã(k+1)(z) = P̃(z)Ã(k)(z), we have

len(Ã
(k+1)
1,1 (z)) = len(gcd(Ã

(k)
1,1(z), Ã

(k)
2,1(z))) < len(Ã

(k)
1,1(z)). That is, the length

of the (1, 1) element will also strictly decrease.

Therefore, by repeatedly applying the 2 items in Lemma 4.3.2, before it

stops at some diagonal matrix Ã(k1+k2)(z) := P̃k1 . . . P̃1(z)A(z)Q̃1(z) . . . Q̃k2(z),

the length of the (1, 1) element will strictly decrease. So the process cannot

last forever and must stop after a finite number of iterations. Hence, we

proved that there exist invertible matrices P(z) := P̃k1 . . . P̃1(z), and Q(z) :=

Q̃1(z) . . . Q̃k2(z) with compatible symmetry, such that D(z) defined in (4.3.12)

is a diagonal matrix, and the multiplications in (4.3.12) are compatible.

Now, let d1(z) and d2(z) be the two invariant polynomials of A(z). That

is, there exist 2× 2 invertible matrices E(z) and F(z) of Laurent polynomials,

such that

A(z) = E(z)

[
d1(z)

d2(z)

]
F(z). (4.3.15)

For some arbitrary z0 ∈ C \ {0}, write di(z) = (z − z0)Z(di(z),z0)pi(z), and

ei(z) = (z − z0)Z(ei(z),z0)qi(z), for i = 1, 2. From (4.3.15),

A(z) =E(z)

[
(z − z0)Z(d1(z),z0)

(z − z0)Z(d2(z),z0)

][
p1(z)

p2(z)

]
F(z)

=U1(z)

[
(z − z0)Z(d1(z),z0)

(z − z0)Z(d2(z),z0)

]
V1(z) (4.3.16)
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holds, where U1(z) := E(z) and V1(z) :=

[
p1(z)

p2(z)

]
F(z) are both analytic

matrices in variable z in a neighborhood of z0, and are both nonsingular at

z0. Since d1(z) and d2(z) are the invariant polynomials of A(z), we know that

Z(d1(z), z0) 6 Z(d2(z), z0).

Similarly, if Z(e1(z), z0) 6 Z(e2(z), z0), we denote U2(z) := P−1(z), and

V2(z) :=

[
q1(z)

q2(z)

]
Q−1(z). Otherwise, we denote U2(z) := P−1(z)

[
0 1

1 0

]
,

and V2(z) :=

[
0 1

1 0

][
q1(z)

q2(z)

]
Q−1(z). From (4.3.12), we know that

A(z) = U2(z)

[
(z − z0)min{Z(e1(z),z0),Z(e2(z),z0)}

(z − z0)max{Z(e1(z),z0),Z(e2(z),z0)}

]
V2(z)

(4.3.17)

holds, where U2(z) and V2(z) are both analytic matrices in variable z in a

neighborhood of z0, and are both nonsingular at z0. We can see both of

the factorizations in (4.3.16) and (4.3.17) satisfy all the requirements in the

Lemma 2.3.4, so the sequences {Z(ei(z), z0)}2
i=1 and {Z(di(z), z0)}2

i=1, up to a

possible permutation, are the same.

This completes the proof of the theorem. �

Theorem 4.3.3. Suppose A(z) is a 2 × 2 Hermitian matrix of Laurent poly-

nomials with compatible symmetry. If

(1) gcd(A1,1(z),A1,2(z),A2,1(z),A2,2(z)) = 1;

(2) det(A(z)) = −d(z)d?(z) for some Laurent polynomial d(z) 6= 0 with

symmetry;

then we can find 2×2 matrices U(z) and B(z) of Laurent polynomials with com-

patible symmetry, such that det(B(z)) = −C is a negative constant, B?(z) =

B(z), and A(z) = U(z)B(z)U?(z) holds, where the multiplications are compati-

ble.

Proof. If det(A(z)) = −C is a negative constant, we can just define U := I2

and B(z) := A(z). Then the proof is completed. So we only need to consider

the case that σ(A(z)) is not empty.
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Define A(0)(z) := A(z). We will provide a procedure to iteratively construct

a sequence of matrices {A(j)(z)}Kj=0, whose lengths of the determinants are de-

creasing. For some 2×2 matrix A(j)(z) of Laurent polynomials with σ(A(j)(z))

nonempty, suppose A(j)(z) satisfies the following 3 conditions, which are obvi-

ously true for A(0)(z) := A(z):

(i) A(j)?(z) = A(j)(z), and A(j)(z) has compatible symmetry;

(ii) gcd(A
(j)
1,1(z),A

(j)
1,2(z),A

(j)
2,1(z),A

(j)
2,2(z)) = 1;

(iii) det(A(j)(z)) = −d(j)(z)d(j)?(z) for some Laurent polynomial d(j)(z) 6= 0

with symmetry.

From such A(j)(z), the following procedure will help us to find 2 × 2 matrices

U(j)(z) and A(j+1)(z) of Laurent polynomials with compatible symmetry, such

that

(I) A(j)(z) = U(j)(z)A(j+1)(z)U(j)?(z), and the multiplications are compati-

ble;

(II) the conditions (i)(ii) and (iii) above are also satisfied for A(j+1)(z);

(III) σ(A(j+1)(z)) ( σ(A(j)(z)).

For A(j)(z) satisfying (i)(ii) and (iii), by Theorem 4.3.2, we can find invert-

ible matrices E(z) and F(z) of Laurent polynomials with compatible symmetry,

such that A(j)(z) = E(z)D(z)F(z), where D(z) =

[
e1(z)

e2(z)

]
is a diago-

nal matrix of Laurent polynomials with symmetry. Also, by the fact that

E(z) and F(z) are both invertible, without loss of generality, we can assume

det(E(z)) = det(F(z)) = 1, hence

e1(z)e2(z) = det(D(z)) = det(A(j)(z)) = −d(j)(z)d(j)?(z). (4.3.18)

Moreover, since the Smith Normal Form of A(j)(z) is

[
1

det(A(j)(z))

]
, from

Theorem 4.3.2, we know that
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Z(ei(z), z0) = 0 or Z(ei(z), z0) = Z(det(A(j)(z)), z0),

for all z0 ∈ C \ {0}, i = 1, 2. (4.3.19)

Now, we can define the Hermitian matrix Å(z) of Laurent polynomials as

Å(z) := E−1(z)A(j)(z)E−?(z) = D(z)F(z)E−?(z) =

[
e1(z)

e2(z)

]
F(z)E−?(z).

(4.3.20)

Notice that all the matrix multiplications in (4.3.20) are compatible.

Since σ(A(j)(z)) is nonempty, we can pick some z0 ∈ σ(A(j)(z)). By (4.3.18),

there exists some k ∈ {1, 2}, such that (z − z0) | ek(z). Define

α := Z(ek(z), z0) > 0,

by (4.3.19), we know that α = Z(det(A(j)(z)), z0). According to (4.3.18), we

can see that Z(el(z), z0) = Z(det(A(j)(z)), z0) − Z(ek(z), z0) = α − α = 0, for

l 6= k. We have the following 3 possible cases for the locations of z0.

(1) If z0 ∈ C \ {0} \ T \ R, we know that z0, z−1
0 , z0 and z0

−1 are four

different points on the complex plane. Define p(z) := (z−z0)α(z−z−1
0 )α,

then according to Lemma 4.1.1, p(z) has symmetry. Since ek(z) also

has symmetry, by Lemma 4.1.1 again, we can see that Z(ek(z), z−1
0 ) =

Z(ek(z), z0) = α. So p(z) | ek(z). From (4.3.20), we get p(z) divides the

k-th row of Å(z). Moreover, as Å(z) is a Hermitian matrix, we can see

that p?(z) divides the k-th column of Å(z). According to the definition of

p(z), we know that p?(z) = z−2α(z−z0)α(z−z0
−1)α. Since z0, z

−1
0 , z0 and

z0
−1 are different points, we can see that gcd(p(z), p?(z)) = 1. Hence,

p(z) | Åk,k(z) and p?(z) | Åk,k(z) imply that p(z)p?(z) | Åk,k(z). Define

V1,p(z) := diag(p(z), 1), V2,p(z) := diag(1, p(z)). (4.3.21)

We can factor out p(z) from the k-th row of Å(z), and factor out p?(z)

from the k-th column of Å(z), to get

Å(z) = Vk,p(z)A(j+1)(z)V?
k,p(z) (4.3.22)
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for some 2×2 matrix A(j+1)(z) of Laurent polynomials. Define U(j)(z) :=

E(z)Vk,p(z), then (4.3.20) and (4.3.22) imply that

A(j)(z) =E(z)Å(z)E?(z) = E(z)Vk,p(z)A(j+1)(z)V?
k,p(z)E?(z)

=U(j)(z)A(j+1)(z)U(j)?(z). (4.3.23)

Since p(z) has symmetry and Å(z) has compatible symmetry, we know

from (4.3.22) that A(j+1)(z) has compatible symmetry as well. Also,

the multiplications are compatible. This proves that the condition (i) is

satisfied for A(j+1)(z). Also, because E(z) is invertible, by (4.3.20), we

can see that the Smith Normal Form of Å(z) is the same as that of A(j)(z),

which is

[
1

det(A(j)(z))

]
. So gcd(Å1,1(z), Å1,2(z), Å2,1(z), Å2,2(z)) = 1.

This implies that

gcd
(

A
(j+1)
1,1 (z),A

(j+1)
1,2 (z),A

(j+1)
2,1 (z),A

(j+1)
2,2 (z)

)
= gcd

(
Åk,k(z)

p(z)p?(z)
,

Åk,l(z)

p(z)
,

Ål,k(z)

p?(z)
, Ål,l(z)

)
= 1.

Hence, the condition (ii) is satisfied for A(j+1)(z). From

det(A(j)(z)) = det(Å(z)) = det(Vk,p(z)) det(A(j+1)(z)) det(V?
k,p(z))

=p(z)p?(z) det(A(j+1)(z)),

we get det(A(j+1)(z)) = det(A(j)(z))
p(z)p?(z)

= −d(j)(z)d(j)?(z)
p(z)p?(z)

. Since d(j)(z) has sym-

metry, by Lemma 4.1.1, we can define

β1 :=Z(d(j)(z), z0) = Z(d(j)(z), z−1
0 ),

β2 :=Z(d(j)(z), z0) = Z(d(j)(z), z0
−1),

q(z) :=(z − z0)β1(z − z−1
0 )β1(z−1 − z0)β2(z−1 − z0

−1)β2 .

Then, q(z) | d(j)(z), and by Lemma 4.1.1, we know that q(z) has sym-

metry. Define d(j+1)(z) := d(j)(z)
q(z)

. Because d(j)(z) and q(z) both have
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symmetry, we know that d(j+1)(z) has symmetry as well. Also, we have

Z(d(j)?, z0) = Z(d(j), z0
−1) = β2, which implies that

α = Z(det(A(j)(z), z0)) = Z(−d(j)d(j)?, z0)

= Z(d(j), z0) + Z(d(j)?, z0) = β1 + β2.

Hence,

q(z)q?(z) =(z − z0)β1+β2(z − z−1
0 )β1+β2(z−1 − z0)β1+β2(z−1 − z0

−1)β1+β2

=(z − z0)α(z − z−1
0 )α(z−1 − z0)α(z−1 − z0

−1)α = p(z)p?(z).

Now, we can see that

det(A(j+1)(z)) =
−d(j)(z)d(j)?(z)

p(z)p?(z)
=
−d(j)(z)d(j)?(z)

q(z)q?(z)
= −d(j+1)(z)d(j+1)?(z).

Therefore, we showed that the condition (iii) is also satisfied for A(j+1)(z).

Notice that (4.3.23) implies that σ(A(j+1)(z)) ⊆ σ(A(j)(z)). Also, z0 ∈
σ(A(j)(z)), but

Z(det(A(j+1)), z0) =Z

(
det(A(j))

p(z)p?(z)
, z0

)
=Z(det(A(j)), z0)− Z(p(z), z0)− Z(p?(z), z0)

=α− α− 0 = 0.

Hence, z0 /∈ σ(A(j+1)(z)). That is, σ(A(j+1)(z)) ( σ(A(j)(z)). This fin-

ishes the proof of the case z0 ∈ C \ {0} \ T \ R.

(2) If z0 ∈ T
⋃

R \ {0,±1}, we know that z−1
0 6= z0.

For the situation that z0 ∈ T \ {±1}, we can see z0
−1 = z0. So

Z(d(j)?(z), z0) = Z(d(j)?, z0
−1) = Z(d(j)(z), z0). For the situation that

z0 ∈ R \ {0,±1}, we can see z0 = z0. So Z(d(j)?(z), z0) = Z(d(j), z0
−1) =

Z(d(j)(z), z−1
0 ) = Z(d(j)(z), z0), where the last equality comes from the
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fact that d(j)(z) has symmetry. Thus, in both situations, we get

Z(d(j)?(z), z0) = Z(d(j)(z), z0),

which implies that

α =Z(det(A(j)(z)), z0) = Z(−d(j)(z)d(j)?(z), z0)

=Z(d(j)(z), z0) + Z(d(j)?(z), z0) = 2Z(d(j)(z), z0) ∈ 2Z. (4.3.24)

Define

p(z) :=(z − z0)α/2(z − z−1
0 )α/2z−α/2

=

(z + z−1 − 2 Re(z0))α/2, if z0 ∈ T \ {±1},
(z + z−1 − (z0 + z−1

0 ))α/2, if z0 ∈ R \ {0,±1}.

For both situations, we can see that Sp(z) = 1, and p?(z) = p(z). Since

α = Z(ek(z), z0), we know that (z − z0)α | ek(z). Also, by the fact that

ek(z) has symmetry, we get Z(ek(z), z−1
0 ) = Z(ek(z), z0) = α. So (z −

z−1
0 )α | ek(z). Given that z0 6= ±1, that is, z−1

0 6= z0, we can conclude that

(z− z0)α(z− z−1
0 )α | ek(z). That is, p(z)p?(z) = p2(z) | ek(z). According

to (4.3.20), we know that p(z) divides the k-th row of Å(z), p?(z) divides

the k-th column of the Hermitian matrix Å(z), and p(z)p?(z) divides

Åk,k(z). So we can factor out p(z) from the k-th row of Å(z), and factor

out p?(z) from the k-th column of Å(z) simultaneously. Define Vk,p(z) as

in (4.3.21), we can see that (4.3.22) holds for some 2×2 matrix A(j+1)(z)

of Laurent polynomials with compatible symmetry. Define U(j)(z) :=

E(z)Vk,p(z), then (4.3.20) and (4.3.22) imply that (4.3.23) holds, and

the multiplications in (4.3.23) are compatible. By the same argument as

in case (1), we can see the conditions (i) and (ii) are true for the matrix

A(j+1)(z).

To prove condition (iii), we can see from (4.3.24) that Z(d(j)(z), z0) =

α/2. As d(j)(z) has symmetry, by Lemma 4.1.1, we also know that

Z(d(j)(z), z−1
0 ) = Z(d(j)(z), z0) = α/2. So p(z) | d(j)(z). Define d(j+1)(z) :=
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d(j)(z)
p(z)

. Because d(j)(z) and p(z) both have symmetry, we know that

d(j+1)(z) also has symmetry. Moreover, we get from (4.3.23) that

det(A(j+1)(z)) =
det(A(j)(z))

det(U(j)(z)) det(U(j)?(z))
=

det(A(j)(z))

det(Vk,p(z)) det(V?
k,p(z))

=
det(A(j)(z))

p(z)p?(z)
=
−d(j)(z)d(j)?(z)

p(z)p?(z)
= −d(j+1)(z)d(j+1)?(z).

(4.3.25)

Hence, we proved that the condition (iii) also holds for A(j+1)(z).

Furthermore, the above equation gives det(A(j+1)(z)) = det(A(j)(z))
p(z)p?(z)

, which

implies that

Z(det(A(j+1)(z)), z0) =Z(det(A(j)(z)), z0)− Z(p(z), z0)− Z(p?(z), z0)

=α− α/2− α/2 = 0,

where we used p?(z) = p(z) and the definition of p(z) in the above calcu-

lation. So z0 ∈ σ(A(j)(z)), but z0 /∈ σ(A(j+1)(z)). That is, σ(A(j+1)(z)) (
σ(A(j)(z)). This finished the proof of the case that z0 ∈ T

⋃
R \ {0,±1}.

(3) If z0 ∈ {±1}, we know that

z0 = z−1
0 = z0

−1 = z0. (4.3.26)

In this case, Z(d(j)?(z), z0) = Z(d(j)(z), z0
−1) = Z(d(j)(z), z0), which im-

plies that (4.3.24) holds. That is, α ∈ 2Z. Define p(z) := (z − z0)α/2.

Using (4.3.26), we can directly calculate that Sp(z) = (−z0)α/2zα/2, and

p?(z) = (−z0z)−α/2(z − z0)α/2. So p(z) has symmetry. Since α =

Z(ek(z), z0), we know that (z − z0)α | ek(z). That is, p(z)p?(z) =

(−z0z)−α/2(z − z0)α | ek(z). According to (4.3.20), p(z) | ek(z) implies

that p(z) divides the k-th row of Å(z), and p?(z) divides the k-th col-

umn of the Hermitian matrix Å(z). Also, p(z)p?(z) | ek(z) implies that

p(z)p?(z) divides Åk,k(z). So we can factor out p(z) from the k-th row of

Å(z), and factor out p?(z) from the k-th column of Å(z) simultaneously.
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Define Vk,p(z) as in (4.3.21), we can see that (4.3.22) holds for some 2×2

matrix A(j+1)(z) of Laurent polynomials with compatible symmetry. De-

fine U(j)(z) := E(z)Vk,p(z), then (4.3.20) and (4.3.22) imply that (4.3.23)

holds, and the multiplications in (4.3.23) are compatible. By the same

argument as in case (1), we can see the conditions (i) and (ii) are true

for the matrix A(j+1)(z).

To prove the condition (iii), we can see from (4.3.24) that Z(d(j)(z), z0) =

α/2. So p(z) | d(j)(z). Define d(j+1)(z) := d(j)(z)
p(z)

. Because d(j)(z) and

p(z) both have symmetry, we know that d(j+1)(z) also has symmetry.

Similar to the case (2), we get from (4.3.23) that (4.3.25) holds. Hence,

we proved that the condition (iii) also holds for A(j+1)(z).

Furthermore, as (4.3.25) gives det(A(j+1)(z)) = det(A(j)(z))
p(z)p?(z)

, we can calcu-

late that

Z(det(A(j+1)(z)), z0) =Z(det(A(j)(z)), z0)− Z(p(z), z0)− Z(p?(z), z0)

=α− α/2− α/2 = 0.

So z0 ∈ σ(A(j)(z)), but z0 /∈ σ(A(j+1)(z)). That is, σ(A(j+1)(z)) (
σ(A(j)(z)). This finished the proof of the case that z0 ∈ {±1}.

Hence, we showed that for all possible locations of z0 ∈ C \ {0}, we can

find matrices A(j+1)(z) and U(j)(z), such that (I)(II) and (III) are satisfied.

Since the conditions (i)(ii) and (iii) are still satisfied for A(j+1)(z), as long as

σ(A(j+1)(z)) is not empty, we can iteratively apply this procedure to generate

a sequence of matrices of Laurent polynomials {A(j)(z)}Kj=0, until σ(A(K)(z))

becomes empty. We get

A(z) = A(0)(z) = U(0)(z) · · ·U(K−1)(z)A(K)(z)U(K−1)(z) · · ·U(0)(z).

Define B(z) := A(K)(z), and U(z) := U(0)(z) · · ·U(K−1)(z). We can see U(z)

and B(z) both have compatible symmetry, and the multiplications in A(z) =

U(z)B(z)U?(z) are compatible. Moreover, B(z) = A(K)(z) is a Hermitian ma-
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trix of Laurent polynomials, and

det(B(z)) = det(A(K)(z)) = −d(K)(z)d(K)?(z), (4.3.27)

is also Hermitian. Since σ(B(z)) is empty, we know that det(B(z)) is a

nonzero monomial. So (4.3.27) implies that the Hermitian Laurent polyno-

mial det(B(z)) must be a negative constant. This completes the proof of the

theorem. �

4.3.2 Difference of Squares of Laurent Polynomials with

Symmetry

In this section we study the DOS property of a Laurent polynomial. Given a

Laurent polynomial p(z), we say p(z) has the DOS (difference of squares)

property with respect to symmetry type εzc, where ε ∈ {−1, 1}, and

c ∈ Z, if there exist two Laurent polynomials p1(z) and p2(z) having symmetry,

such that

p1(z)p?1(z)− p2(z)p?2(z) = p(z), and
Sp1(z)

Sp2(z)
= εzc. (4.3.28)

Theorem 4.3.4. Suppose p1(z), p2(z), p3(z) and p4(z) are Laurent polynomials

with symmetry, denote the symmetry types by

Spj(z) = εjz
cj , εj ∈ {1,−1}, cj ∈ Z, j = 1, 2, 3, 4.

It satisfies Sp1(z)/Sp2(z) = Sp3(z)/Sp4(z). Define

p5(z) :=p1(z)p3(z) + zc1p?2(z)p4(z),

p6(z) :=p2(z)p3(z) + zc1p?1(z)p4(z).

Then Sp5(z) and Sp6(z) satisfy

Sp5(z) = ε1ε3z
c1+c3 , Sp6(z) = ε2ε3z

c2+c3 ,
Sp5(z)

Sp6(z)
=

Sp1(z)

Sp2(z)
, (4.3.29)
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and

p5p?5 − p6p?6 = (p1p?1 − p2p?2) (p3p?3 − p4p?4) . (4.3.30)

Proof. From Sp1(z)/Sp2(z) = Sp3(z)/Sp4(z), we can see that ε1ε2 = ε3ε4, and

c1 − c2 = c3 − c4. Then we can calculate the symmetry types:

S(p1p3)(z) =Sp1(z)Sp3(z) = ε1ε3z
c1+c3 ,

S (zc1p?2p4) (z) =z2c1ε2z
−c2ε4z

c4 = ε2ε4z
c1+c3 = ε1ε3z

c1+c3 ,

S (p2p3) (z) =Sp2(z)Sp3(z) = ε2ε3z
c2+c3 ,

S (zc1p?1p4) (z) =z2c1ε1z
−c1ε4z

c4 = ε1ε4z
c2+c3 = ε2ε3z

c2+c3 .

So we can see that Sp5(z) = ε1ε3z
c1+c3 , Sp6(z) = ε2ε3z

c2+c3 , and Sp5(z)/Sp6(z) =

ε1ε2z
c1−c2 = Sp1(z)/Sp2(z). Hence, we proved (4.3.29).

In order to prove (4.3.30), we can rewrite the definition of p5(z) and p6(z)

as [
p5

p6

]
=

[
p1 p?2
p2 p?1

][
p3

zc1p4

]
.

Therefore, we can directly calculate that

p5p?5 − p6p?6 =
[

p?5 p?6

] [1

−1

][
p5

p6

]

=
[

p?3 z−c1p?4

] [p?1 p?2
p2 p1

][
1

−1

][
p1 p?2
p2 p?1

][
p3

zc1p4

]

=
[

p?3 z−c1p?4

]
(p1p?1 − p2p?2)

[
1

−1

][
p3

zc1p4

]

= (p1p?1 − p2p?2)
[

p?3 z−c1p?4

] [1

−1

][
p3

zc1p4

]
= (p1p?1 − p2p?2) (p3p?3 − p4p?4) .

This completes the proof of the theorem. �

Lemma 4.3.3. Suppose p(z) is a Laurent polynomial satisfying p?(z) = p(z).

Define σ(p) := {z0 ∈ C \ {0} : p(z) = 0}. Then
∑

z0∈T∩σ(p) Z(p, z0) ∈ 2Z.
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Proof. Since p?(z) = p(z), we know that in time domain p(−k) = p(k) for all

k ∈ Z. So fsupp(p(z)) is a symmetric interval with center 0, and len(p) ∈ 2Z.

By the fundamental theorem of algebra, we can see that
∑

z0∈σ(p) Z(p, z0) ∈ 2Z.

Partition σ(p) into a disjoint union as: σ(p) = σin ∪ σout ∪ σT, where

σin :={z0 ∈ σ(p) : |z0| < 1},
σout :={z0 ∈ σ(p) : |z0| > 1},
σT :={z0 ∈ σ(p) : |z0| = 1}.

According to p?(z) = p(z), we know that

Z(p, z0) = Z(p?, z0
−1) = Z(p, z0

−1), ∀ z0 ∈ C \ {0}. (4.3.31)

The map η : z → z−1 is a bijection between {z0 ∈ C \ {0} : |z0| < 1} and

{z0 ∈ C \ {0} : |z0| > 1}. So (4.3.31) implies that η is also a bijection be-

tween σin and σout. Moreover, we have
∑

z0∈σout Z(p, z0) =
∑

z0−1∈σin Z(p, z0) =∑
z0∈σin Z(p, z0

−1) =
∑

z0∈σin Z(p, z0). Now, from∑
z0∈σ(p)

Z(p, z0) =
∑
z0∈σin

Z(p, z0) +
∑

z0∈σout
Z(p, z0) +

∑
z0∈σT

Z(p, z0)

=2
∑

z0∈σout
Z(p, z0) +

∑
z0∈σT

Z(p, z0) ∈ 2Z,

we can see that
∑

z0∈T∩σ(p) Z(p, z0) =
∑

z0∈σT Z(p, z0) ∈ 2Z.

This finishes the proof of the lemma. �

The following theorem characterizes the DOS property of a Laurent poly-

nomial.

Theorem 4.3.5. Suppose ε ∈ {1,−1} and c ∈ Z. A Laurent polynomial p(z)

has the DOS property with respect to the symmetry type εzc if and only if

(1) p(z) has real coefficients and p?(z) = p(z);

(2) p(z) satisfies the following technical conditions of the DOS property:

[i] if ε = 1 and c ∈ 2Z, then there is no condition;
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[ii] if ε = 1 and c ∈ 2Z + 1, then Z (p, x) ∈ 2Z for all x ∈ (−1, 0);

[iii] if ε = −1 and c ∈ 2Z, then Z (p, x) ∈ 2Z for all x ∈ (−1, 0)
⋃

(0, 1);

[iv] if ε = −1 and c ∈ 2Z + 1, then Z (p, x) ∈ 2Z for all x ∈ (0, 1).

Proof. Firstly, we prove the necessity. Suppose we can find Laurent polyno-

mials p1(z) and p2(z) with symmetry, such that (4.3.28) holds. Then taking

the Hermitian conjugate on both sides of the first equation in (4.3.28), we can

see that p?(z) = p(z).

As S (p1p?1) (z) = Sp1(z)Sp?1(z) = 1 , similarly, S (p2p?2) (z) = 1. So the first

equation in (4.3.28) implies that Sp(z) = 1. In time domain, it can be written

as

p(k) = p(−k), ∀ k ∈ Z. (4.3.32)

Also, p?(z) = p(z) implies that in time domain, we have

p(k) = p(−k), ∀ k ∈ Z. (4.3.33)

Equations (4.3.32) and (4.3.33) imply p(k) = p(k) for all k ∈ Z. Hence we

know that all the coefficients of p(z) are real. This proves the item (1).

To prove the item (2), we can see from the symmetry types of p1(z) and

p2(z) that

p?1(z) = p1(z̄−1) =
p1(z̄)

Sp1(z̄)
=

p1(z̄)

Sp1(z)
, p?2(z) =

p2(z̄)

Sp2(z)
= p2(z̄)

εzc

Sp1(z)
.

For z = x ∈ R \ {0}, we can see

p(x) =p1(x)p?1(x)− p2(x)p?2(x) = |p1(x)|2 /Sp1(x)− |p2(x)|2 εxc/Sp1(x)

=
(
|p1(x)|2 − εxc |p2(x)|2

)
/Sp1(x).

When ε = 1 and c ∈ 2Z + 1, since εxc < 0 for all x ∈ (−1, 0), we can see that

Z(p, x) = 2 min (Z(p1, x),Z(p2, x)) ∈ 2Z for all x ∈ (−1, 0). Thus, we proved

the item [ii]. The items [iii] and [iv] can be proved similarly. This proves the

necessity part of the theorem.

Now, we prove the sufficiency. Notice that if (4.3.28) holds, then for any
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integer k, we have

(
zkp1(z)

) (
zkp1(z)

)? − p2(z)p?2(z) = p(z), and
S
(
zkp1(z)

)
Sp2(z)

= εzc+2k.

Hence, we only need to prove the DOS property for the symmetry type εzc,

where ε ∈ {1,−1} and c ∈ {0, 1}.
Since p?(z) = p(z), we know that in time domain, p(−k) = p(k), ∀k ∈ Z.

Also, as p(z) has real coefficients, we can conclude that p(−k) = p(k) for all

k ∈ Z. That is, Sp(z) = 1. By Lemma 4.1.1, we know that Z(p(z), z−1
0 ) =

Z(p(z), z0), for all z0 ∈ C \ {0}. Also, from p?(z) = p(z), we can see that

Z(p(z), z0
−1) = Z(p?(z), z0) = Z(p(z), z0) for all z0 ∈ C \ {0}. Hence, we get

Z(p(z), z0) = Z(p(z), z−1
0 ) = Z(p(z), z0

−1) = Z(p(z), z0), ∀ z0 ∈ C \ {0}.
(4.3.34)

Furthermore, according to Lemma 4.1.2, we can conclude from Sp(z) = 1 that

Z(p, 1) ∈ 2Z and Z(p,−1) ∈ 2Z. (4.3.35)

By (4.3.34) and (4.3.35), we know that there exists a real number A, such

that Ap(z) can be written into the product of the following 4 types of factors:

(a) q(z) = z−1(z − z0)2 = z − 2z0 + z−1, where z0 ∈ σ±1;

(b) q(z) = z−2(z − z0)(z − z−1
0 )(z − z0)(z − z0

−1), where z0 ∈ σin,up;

(c) q(z) = z−1(z − z0)(z − z0), where z0 ∈ σT,up;

(d) q(z) = z−1(z − z0)(z − z−1
0 ), where z0 ∈ σR,in;

where we denote σ(p) := {z0 ∈ C \ {0} : p(z0) = 0}, and

σ±1 :=σ(p) ∩ {−1, 1},
σin,up :=σ(p) ∩ {z0 ∈ C \ {0} : |z0| < 1, Im(z0) > 0},
σT,up :=σ(p) ∩ {z0 ∈ C \ {0} : |z0| = 1, Im(z0) > 0},
σR,in :=σ(p) ∩ {z0 ∈ R : 0 < |z0| < 1}.
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By Theorem 4.3.4, in order to prove the DOS property of p(z), we only

need to prove that all of the factors above have the DOS property with respect

to the specific symmetry type εzc. We will discuss them one by one.

Type (a) For z0 ∈ σ±1, we can see that

z−1(z − 1)2 = 02 − (z − 1)(z − 1)?, z−1(z + 1)2 = (z + 1)(z + 1)? − 02.

Since 0 has symmetry of any type, we can see this factor has DOS prop-

erty with respect to all the symmetry types ε ∈ {−1, 1} and c ∈ {0, 1}.

Type (b) For z0 ∈ σin,up, we can see that

q(z) =z−2(z − z0)(z − z−1
0 )(z − z0)(z − z0

−1)

=
[
|z0|−1z−1(z − z0)(z − z0)

] [
|z0|−1z−1(z − z0)(z − z0)

]? − 02.

Since 0 has symmetry of any type, we can see this factor has DOS prop-

erty with respect to all the symmetry types ε ∈ {−1, 1} and c ∈ {0, 1}.

Type (c) For z0 ∈ σT,up, we know that

q(z) = z−1(z − z0)(z − z0) = z − 2 Re(z0) + z−1,

where |Re(z0)| < 1.

For the symmetry type c = 1 and ε = 1, we can take q1(z) := z + 1, and

q2(z) :=
√

2 + 2 Re(z0). Then q = q1q?1 − q2q?2, and Sq1(z)/Sq2(z) = z.

For the symmetry type c = 1 and ε = −1, we can take q1(z) :=√
2− 2 Re(z0), and q2(z) := 1 − z−1. Then q = q1q?1 − q2q?2, and

Sq1(z)/Sq2(z) = −z.

For the symmetry type c = 0 and ε = −1, we can take q1(z) :=√
1−Re(z0)

2
(z + 1), and q2(z) :=

√
1+Re(z0)

2
(z − 1). Then q = q1q?1 − q2q?2,

and Sq1(z)/Sq2(z) = −1.

For the symmetry type c = 0 and ε = 1, we can take q1(z) := z−4 Re(z0)+2+z−1

2
√

2−2 Re(z0)
,

and q2(z) := z−2+z−1

2
√

2−2 Re(z0)
. Then q = q1q?1− q2q?2, and Sq1(z)/Sq2(z) = 1.
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Type (d) For z0 ∈ σR,in, that is, z0 ∈ (−1, 0) ∪ (0, 1), we know that

q(z) = z−1(z − z0)(z − z−1
0 ) = z − (z0 + z−1

0 ) + z−1.

If Z(p, z0) ∈ 2Z, we only need to consider the factor q2(z):

q2(z) = q(z)q?(z)− 02.

Hence, we get q2 = q1q?1 − q2q?2, where q1(z) := q(z) and q2(z) := 0.

Since Sq(z) = 1 and 0 can be taken as any symmetry type, we have

Sp1(z)/Sp2(z) = εzc for all ε ∈ {1,−1} and c ∈ {0, 1}.

Now we consider the case that Z(p, z0) ∈ 2Z + 1.

For the case ε = 1 and c = 0, define q1(z) := z + z−1 − (z0 + z−1
0 ) + 1

4
,

and q2(z) := z + z−1 − (z0 + z−1
0 ) − 1

4
. Then q = q1q?1 − q2q?2, and

Sq1(z)/Sq2(z) = 1.

For the case ε = 1 and c = 1, by the item [ii], we only need to consider

z0 ∈ (0, 1). So we can define q1(z) := z+ 1, and q2(z) :=
√

2 + z0 + z−1
0 .

Then q = q1q?1 − q2q?2, and Sq1(z)/Sq2(z) = z.

For the case ε = −1 and c = 0, by the item [iii], we have Z(p, z0) ∈ 2Z.

So this situation will not happen.

For the case ε = −1 and c = 1, by the item [iv], we only need to

consider z0 ∈ (−1, 0). So we can define q1(z) :=
√

2− z0 − z−1
0 , and

q2(z) := z−1 − 1. Then q = q1q?1 − q2q?2, and Sq1(z)/Sq2(z) = −z.

This completes the proof of the sufficiency part of the theorem. �

4.3.3 Spectral Factorization of Matrices of Laurent Poly-

nomials with Symmetry

In this section, we prove the necessary and sufficient conditions of the spectral

factorizations of 2 × 2 matrices of Laurent polynomials with symmetry. We

need the following lemma first.
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Lemma 4.3.4. If p(z) and q(z) are two Laurent polynomials with symmetry,

satisfying q(z)q?(z)|p(z)p?(z), then there exists a Laurent polynomial d(z) with

symmetry, such that

d(z)d?(z) =
p(z)p?(z)

q(z)q?(z)
. (4.3.36)

Furthermore, for each Laurent polynomial d(z) with symmetry satisfying (4.3.36),

there exists an integer k, such that Sd(z) = z2k Sp(z)
Sq(z)

.

Proof. Denote the Laurent polynomial a(z) := p(z)p?(z)
q(z)q?(z)

. According to [45,

Theorem 3.1.8], there exists a Laurent polynomial d(z) with symmetry, such

that a(z) = d(z)d?(z) if and only if the following conditions hold:

(1) Sa(z) = 1 and all the coefficients of a(z) are real numbers;

(2) a(z) > 0 for all z ∈ T;

(3) for all real numbers x ∈ (−1, 0) ∪ (0, 1), Z(a, x) ∈ 2Z.

From the definition of a(z), we can directly calculate that Sa(z) = 1. That is,

a(−k) = a(k), ∀ k ∈ Z. (4.3.37)

Also, a?(z) = a(z) implies that

a(−k) = a(k), ∀ k ∈ Z. (4.3.38)

Equations (4.3.37) and (4.3.38) imply all the coefficients of a(z) are real num-

bers. Hence, we proved the item (1).

As p(z)p?(z) > 0 and q(z)q?(z) > 0 for all z ∈ T, we can see that a(z) =

p(z)p?(z)/q(z)q?(z) > 0 for all z ∈ T. This proves the item (2).

For an arbitrary real number x ∈ (−1, 0) ∪ (0, 1), since p and q both have

symmetry, we know

Z(p?, x) = Z(p, x−1) = Z(p, x), Z(q?, x) = Z(q, x−1) = Z(q, x).
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Therefore,

Z(a, x) =Z

(
pp?

qq?
, x

)
= Z (p, x) + Z (p?, x)− Z (q, x)− Z (q?, x)

=2Z (p, x)− 2Z (q, x) ∈ 2Z.

This proves the item (3). Hence, there exists a Laurent polynomial d(z) with

symmetry, such that a(z) = d(z)d?(z).

To calculate the symmetry type of d, denote Sd(z) = εdz
cd , Sp(z) = εpz

cp

and Sq(z) = εqz
cq , for εd, εp, εq ∈ {1,−1} and cd, cp, cq ∈ Z. According to

Lemma 4.1.2 (1), we know that εd = (−1)Z(d,1) = (−1)Z(p,1)−Z(q,1) = εp/εq.

From Proposition 4.1.1 (5), we get

odd(cd) = odd(len(d)) = odd(len(p)− len(q)) = odd(odd(len(p))− odd(len(q)))

= odd(odd(cp)− odd(cq)) = odd(cp − cq).

Therefore, we can find an integer k, such that Sd(z) = z2k Sp(z)
Sq(z)

. This completes

the proof of the lemma. �

Theorem 4.3.6. Suppose A(z) is a 2 × 2 Hermitian matrix of Laurent poly-

nomials with compatible symmetry, denote its symmetry type by SA(z) =[
1 α(z)

α?(z) 1

]
. Then we can find a matrix U(z) =

[
U1,1(z) U1,2(z)

U2,1(z) U2,2(z)

]
of Lau-

rent polynomials with compatible symmetry, such that A(z) = U(z)

[
1

−1

]
U?(z)

holds, and the symmetry type satisfies

SU1,1(z)

SU2,1(z)
=

SU1,2(z)

SU2,2(z)
= α(z), (4.3.39)

if and only if the following two conditions hold:

(1) det(A(z)) = −d(z)d?(z) for some Laurent polynomial d(z) 6= 0 with

symmetry.
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(2) Define p0(z) := gcd(A1,1(z),A1,2(z),A2,1(z),A2,2(z)), and

p(z) :=
p0(z)

(z − 1)Z(p0,1)(z + 1)Z(p0,−1)
.

Then p(z) satisfies the DOS (Difference of Squares) condition with re-

spect to type Sd(z)α(z).

Proof. Firstly, we prove the sufficiency part by constructing U(z) in the fol-

lowing 4 steps.

Step 1 Since A(z) is Hermitian, we know that A?
1,1(z) = A1,1(z). Together

with SA1,1(z) = 1, we can conclude from Lemma 4.3.3 that Z(A1,1(z), 1) ∈
2Z and Z(A1,1(z),−1) ∈ 2Z. Let

β1 := min

{
1

2
Z(A1,1(z), 1), Z(A1,2(z), 1)

}
,

β2 := min

{
1

2
Z(A1,1(z),−1), Z(A1,2(z),−1)

}
,

and define f(z) := (z − 1)β1(z + 1)β2 . Then we know that f divides the

first row of A(z). Since A(z) is Hermitian, f ?(z) also divides the first

column of A(z). Moreover, f(z)f ?(z) = (−1)β1(z−1)2β1(z+1)2β2z−β1−β2

divides A1,1(z). Define

Ã(z) :=

[
A1,1(z)

f(z)f?(z)

A1,2(z)

f(z)
A2,2(z)

f?(z)
A2,2(z)

]
, F(z) :=

[
f(z) 0

0 1

]
. (4.3.40)

We can see that A(z) = F(z)Ã(z)F?(z), and Ã(z) is a Hermitian matrix

of Laurent polynomials with compatible symmetry.

Step 2 Define

p̃(z) := gcd
(

Ã1,1, Ã1,2, Ã2,1, Ã2,2

)
. (4.3.41)

By the definition of β1, we can see

min
{

Z(Ã1,1, 1), Z(Ã1,2, 1)
}

= min

{
Z

(
A1,1

ff ?
, 1

)
, Z

(
A1,2

f
, 1

)}
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= min {Z (A1,1, 1)− Z(ff ?, 1), Z (A1,2, 1)− Z(f, 1)}
= min {Z (A1,1, 1)− 2β1, Z (A1,2, 1)− β1} = 0.

Hence,

Z(p̃(z), 1) = 0. (4.3.42)

Similarly, from the definition of β2, we can get

Z(p̃(z),−1) = 0. (4.3.43)

Moreover, for all z0 ∈ C \ {0, 1,−1},

Z(p̃(z), z0) = min
{

Z
(

Ã1,1, z0

)
,Z
(

Ã1,2, z0

)
,Z
(

Ã2,1, z0

)
,Z
(

Ã2,2, z0

)}
= min {Z (A1,1, z0)− 0,Z (A1,2, z0)− 0,Z (A2,1, z0)− 0,Z (A2,2, z0)− 0}
= min {Z (A1,1, z0) ,Z (A1,2, z0) ,Z (A2,1, z0) ,Z (A2,2, z0)}
=Z(p0(z), z0). (4.3.44)

From (4.3.42)(4.3.43)(4.3.44), we can see that p̃(z) = p0(z)

(z−1)Z(p0,1)(z+1)Z(p0,−1) =

p(z). According to the item (2), p̃(z) satisfies the DOS condition with

respect to type Sd(z)α(z). By the item (1) of Theorem 4.3.5, we can see

that p̃?(z) = p̃(z), and Sp̃(z) = 1. Define Å(z) := 1
p̃(z)

Ã(z), then Å(z) is

a Hermitian matrix of Laurent polynomials and SÅ(z) = SÃ(z). Also,

det(Å(z)) =
Ã(z)

p̃(z)p̃(z)
=

A(z)

det(F(z)) det(F?(z))p̃(z)p̃?(z)
=

−d(z)d?(z)

(f(z)p̃(z)) (f(z)p̃(z))?
.

(4.3.45)

From Lemma 4.3.4, we know that there exists a Laurent polynomial d̊(z)

with symmetry, such that det(Å(z)) = −d̊(z)̊d?(z).

Step 3 Since gcd(Å1,1(z), Å1,2(z), Å2,1(z), Å2,2(z)) = 1, we can see that Å(z)

satisfies all the conditions in Theorem 4.3.3. Thus, we can use Theo-

rem 4.3.3 to find matrices Ă(z) and Ŭ(z) of Laurent polynomials with

compatible symmetry, such that Å(z) = Ŭ(z)Ă(z)Ŭ?(z), where the mul-

tiplications are both compatible and det(Ă(z)) = −C is a negative con-

stant.
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Step 4 Now, we can verify that Ă(z) satisfies all the requirements in The-

orem 4.2.1. Applying the Theorem4.2.1, we can find a matrix V(z)

of Laurent polynomials with compatible symmetry, such that Ă(z) =

V(z)

[
1

−1

]
V?(z). Combining all the above constructions, we get

A(z) =F(z)Ã(z)F?(z) = p̃(z)F(z)Å(z)F?(z)

=p̃(z)F(z)Ŭ(z)Ă(z)Ŭ?(z)F?(z)

=p̃(z)F(z)Ŭ(z)V(z)

[
1

−1

]
V?(z)Ŭ?(z)F?(z). (4.3.46)

Define Ũ(z) := F(z)Ŭ(z)V(z). Then from the construction of F(z), Ŭ(z)

and V(z), we can see that the multiplications are compatible, hence Ũ(z)

has compatible symmetry. Furthermore, (4.3.46) implies that

A(z) = p̃(z)Ũ(z)

[
1

−1

]
Ũ?(z), (4.3.47)

thus SŨ1,1(z)

SŨ2,1(z)
= SA1,1(z)

SA2,1(z)
= α(z), and det(A(z)) = −p̃(z)p̃?(z) det(Ũ(z)) det(Ũ(z))?.

By the item (1), we know that

det(Ũ(z)) det(Ũ(z))? =
− det(A(z))

p̃(z)p̃?(z)
=

d(z)d?(z)

p̃(z)p̃?(z)
.

Since det(Ũ(z)) also has symmetry, according to Lemma 4.3.4, we can

see that there exists some integer k, such that S det(Ũ(z)) = z2k Sd(z)
Sp̃(z)

=

z2kSd(z). Denote SŨ1,1(z) = ε1z
k1 , where ε1 ∈ {1,−1} and k1 ∈ Z, we

can calculate that

SŨ1,2(z)

SŨ1,1(z)
=

SŨ1,2(z)SŨ2,1(z)

SŨ1,1(z)SŨ2,1(z)
=

S det(Ũ(z))

SŨ1,1(z)SŨ2,1(z)

=
z2kSd(z)(
SŨ1,1(z)

)2

SŨ1,1(z)

SŨ2,1(z)
= z2k−2k1Sd(z)α(z). (4.3.48)
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Since p̃(z) has the DOS property with respect to type Sd(z)α(z), by The-

orem 4.3.5, we know that p̃(z) also has the DOS property with respect

to type z2k−2k1Sd(z)α(z). Hence, there exist Laurent polynomials p1(z)

and p2(z) with symmetry, such that

p̃(z) = p1(z)p?1(z)− p2(z)p?2(z),
Sp1(z)

Sp2(z)
= z2k−2k1Sd(z)α(z).

(4.3.49)

Equations in (4.3.49) implies that[
p̃(z)

−p̃(z)

]
=

[
p1(z) p?2(z)

p2(z) p?1(z)

][
1

−1

][
p1(z) p?2(z)

p2(z) p?1(z)

]?
, (4.3.50)

and

[
p1(z) p?2(z)

p2(z) p?1(z)

]
has compatible symmetry. Define

U(z) := Ũ(z)

[
p1(z) p?2(z)

p2(z) p?1(z)

]
, (4.3.51)

we can see from (4.3.47) and (4.3.50) that

A(z) = Ũ(z)

[
p̃(z)

−p̃(z)

]
Ũ?(z) = U(z)

[
1

−1

]
U?(z).

From the symmetry types relationship in (4.3.48) and (4.3.49), we know

that SŨ1,1(z)Sp1(z) = SŨ1,2(z)Sp2(z). By the item (4) of Proposition 4.1.2,

we can directly verify that the multiplication in (4.3.51) is compatible.

Hence, U(z) has compatible symmetry and (4.3.39) holds. This finishes

the proof of the sufficiency part.

Now, we will prove the necessity part of the theorem. Suppose A(z) =

U(z)

[
1

−1

]
U?(z), where U(z) has compatible symmetry and (4.3.39) holds.

Take d(z) := det(U(z)), then d(z) has symmetry and det(A(z)) = −d(z)d?(z).

This proves the item (1).

To prove the item (2), we can repeat the Step 1 above in the sufficiency
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proof. (Notice that the construction in Step 1 does not use any assumptions

in the item (2).) Using the Step 1, we can define Ã(z) and F(z) as in (4.3.40),

where Ã(z) is a matrix of Laurent polynomials with compatible symmetry,

and A(z) = F(z)Ã(z)F?(z) holds. Then, we can define p̃(z) as in (4.3.41). By

the same argument as in Step 2 above, we can see that (4.3.42), (4.3.43) and

(4.3.44) hold. That is, p̃(z) = p0(z)

(z−1)Z(p0,1)(z+1)Z(p0,−1) = p(z). Thus, to prove item

(2), we only need to show that p̃(z) has the DOS property with respect to type

Sd(z)α(z).

Since all the four elements in the matrix Ã(z) have symmetry, according

to the definition of p̃(z) in (4.3.41) and item (2) in Lemma 4.1.1, we know

that p̃(z) also has symmetry. Denote Sp̃(z) = ε0z
c0 , where ε0 ∈ {1,−1} and

c0 ∈ Z. From (4.3.42) and (4.3.43), we know that Z(p̃, 1) = 0 ∈ 2Z and

Z(p̃,−1) = 0 ∈ 2Z. By Lemma 4.1.2, we get ε0 = 1 and c0 ∈ 2Z. Without loss

of generality, we can redefine p̃(z) by p̃(z) := z−c0/2p̃(z), and get Sp̃(z) = 1.

For all z0 ∈ C\ {0}, we can calculate from the definition of p̃(z) in (4.3.41)

that

Z(p̃(z), z0
−1) = min

{
Z
(

Ã1,1, z0
−1
)
,Z
(

Ã1,2, z0
−1
)
,Z
(

Ã2,1, z0
−1
)
,Z
(

Ã2,2, z0
−1
)}

= min
{

Z
(

Ã?
1,1, z0

)
,Z
(

Ã?
1,2, z0

)
,Z
(

Ã?
2,1, z0

)
,Z
(

Ã?
2,2, z0

)}
= min

{
Z
(

Ã1,1, z0

)
,Z
(

Ã2,1, z0

)
,Z
(

Ã1,2, z0

)
,Z
(

Ã2,2, z0

)}
=Z(p̃(z), z0).

In the third equality, we used the fact that Ã(z) is Hermitian, that is, Ã?
1,1 =

Ã1,1, Ã?
1,2 = Ã2,1, Ã?

2,1 = Ã1,2, and Ã?
2,2 = Ã2,2. According to item (3) of

Lemma 4.1.1, we can see that the above equality implies that there exist some

c̃ ∈ Z and ε̃ ∈ T, such that p̃(z) = ε̃zc̃p̃?(z). Since Sp̃(z) = 1, we know

that fsupp(p̃(z)) is a symmetric interval with center 0. Hence, fsupp(p̃?(z)) =

fsupp(p̃(z)). This implies that c̃ = 0. If ε̃ 6= 1, without loss of generality, we

can redefine p̃(z) := ε̃−1/2p̃(z). Then p̃?(z) = p̃(z). Notice that multiplying

the constant ε̃−1/2 does not change the symmetry type of p̃(z), that is, we still

have Sp̃(z) = 1. Therefore, we proved that p̃(z) satisfies the item (1) of the

Theorem 4.3.5. To prove that p̃(z) has the DOS property, we only need to
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prove that it also satisfies the item (2) of the Theorem 4.3.5.

Now, we can define Å(z) := 1
p̃(z)

Ã(z). Since p̃?(z) = p̃(z), we know that

Å(z) is a Hermitian matrix of Laurent polynomials. Also, by Sp̃(z) = 1, we can

see that Å(z) has compatible symmetry with SÅ(z) = SÃ(z). Also, (4.3.45)

holds. From Lemma 4.3.4, we know that there exists a Laurent polynomial

d̊(z) with symmetry, such that det(Å(z)) = −d̊(z)̊d?(z). Together with the

fact that gcd
(

Å1,1(z), Å1,2(z), Å2,1(z), Å2,2(z)
)

= 1, which satisfies the DOS

condition with respect to any type, we know that the matrix Å(z) satisfies

both the conditions in items (1) and (2). So, by to the sufficiency part of the

theorem, which has already been established above, we know that there exists

a 2 × 2 matrix Ů(z) of Laurent polynomials with compatible symmetry, such

that Å(z) = Ů

[
1

−1

]
Ů?(z).

Using the factorization A(z) = U(z)

[
1

−1

]
U?(z), we have

U(z)

[
1

−1

]
U?(z) =A(z) = F(z)Ã(z)F?(z) = p̃(z)F(z)Å(z)F?(z)

=p̃(z)F(z)Ů(z)

[
1

−1

]
Ů?(z)

=p̃(z)Ũ(z)

[
1

−1

]
Ũ?(z),

where Ũ(z) := F(z)Ů(z) has compatible symmetry. Define Q(z) := adj(Ũ(z))U(z),

and d̃(z) := det(Ũ(z)). Then Q(z) has compatible symmetry and d̃(z) has

symmetry. We can see from the above equation that

Q(z)

[
1

−1

]
Q?(z) = adj(Ũ(z))U(z)

[
1

−1

]
U?(z) adj(Ũ(z))?

=p̃(z) adj(Ũ(z))Ũ(z)

[
1

−1

]
Ũ?(z) adj(Ũ(z))?
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=p̃(z)d̃(z)d̃?(z)

[
1

−1

]
.

Checking the top-left entry of the above matrix equation, we get p̃(z)d̃(z)d̃?(z) =

Q1,1(z)Q?
1,1(z)−Q1,2(z)Q?

1,2(z). Denote SU1,2(z) = ε1,2z
c1,2 , where ε1,2 ∈ {1,−1}

and c1,2 ∈ Z. The symmetry type

SQ1,1(z)

SQ1,2(z)
=

SU1,1(z)

SU1,2(z)
=

SU1,1(z)SU2,2(z)

SU1,2(z)SU2,2(z)
=

Sd(z)

SU1,2(z)SU2,2(z)

=
Sd(z)

(SU1,2(z))2

SU1,2(z)

SU2,2(z)
= z−2c1,2Sd(z)α(z),

where we used Sd(z) = SU1,1(z)SU2,2(z), and SU1,2(z)

SU2,2(z)
= α(z). Therefore,

p̃(z)d̃(z)d̃?(z) has the DOS property with respect to type z−2c1,2Sd(z)α(z).

By Theorem 4.3.5, we know that p̃(z)d̃(z)d̃?(z) also has the DOS property

with respect to type Sd(z)α(z). More precisely, it satisfies the condition

in item (2) of Theorem 4.3.5. For all z0 ∈ R \ {0}, we can check that

Z(d̃?, z0) = Z(d̃, z0
−1) = Z(d̃, z−1

0 ) = Z(d̃, z0). So, Z(d̃(z)d̃?(z), z0) ∈ 2Z, and

odd (Z (p̃(z), z0)) = odd
(

Z
(

p̃(z)d̃(z)d̃?(z), z0

))
, ∀ z0 ∈ R \ {0}.

Hence, we proved that p̃(z) also satisfies the item (2) of Theorem 4.3.5. There-

fore, p̃(z) has the DOS property with respect to type Sd(z)α(z). This com-

pletes the proof of the necessity part of the theorem. �

4.4 Construction of Quasi-tight Framelet Fil-

ter Banks with Two High-pass Filters and

Symmetry

In this section, we will try to characterize quasi-tight framelet filter banks

{a; b1, b2}Θ,(ε1,ε2) with symmetry property. As the case of tight framelets (ε1 =

ε2 = 1) has already been studied in [48, 40], we only investigate the case that

(ε1, ε2) = (1,−1) here.
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Given a low-pass filter a and a moment correcting filter Θ with symmetry,

firstly we discuss the possible symmetry types of the high-pass filters.

Theorem 4.4.1. Let {a; b1, b2}Θ,(ε1,ε2) be a quasi-tight framelet filter bank, such

that all the filters Θ, a, b1, b2 are not identically zero and have symmetry:

SΘ(z) = 1, Sa(z) = εzc, Sb1(z) = ε1z
c1 , Sb2(z) = ε2z

c2 (4.4.1)

for some ε, ε1, ε2 ∈ {1,−1}, and c, c1, c2 ∈ Z. Then the symmetry centers

satisfy

c1 + c ∈ 2Z, c2 + c ∈ 2Z. (4.4.2)

Proof. Recall the condition of the quasi-tight framelet filter bank {a; b1, b2}Θ,(ε1,ε2)

requires:

Θ(z2)a(z)a?(−z) + b1(z)b?1(−z)− b2(z)b?2(−z) = 0. (4.4.3)

For the symmetry types of the three terms in (4.4.3), we have

S
(
Θ(z2)a(z)a?(−z)

)
=SΘ(z2)Sa(z)Sa?(−z) = εzcε(−z)−c = (−1)c,

S
(
b1(z)b?1(−z)

)
=Sb1(z)Sb?1(−z) = ε1z

c1ε1(−z)−c1 = (−1)c1 ,

S
(
b2(z)b?2(−z)

)
=Sb2(z)Sb?2(−z) = ε2z

c2ε2(−z)−c2 = (−1)c2 .

Because c, c1 and c2 are all integers, at least two of the three numbers (−1)c,

(−1)c1 , (−1)c2 must be the same. We now prove that all the three numbers

must be equal. Suppose (−1)c = (−1)c1 6= (−1)c2 . Moving the b2(z)b?2(−z)

term from the left to the right-hand-side of the equation (4.4.3), we can see

that the left-hand-side of the equation has symmetry type (−1)c, and the

right-hand-side has symmetry type (−1)c2 . Since b2(z)b?2(−z) 6= 0, it cannot

have different symmetry types. So (−1)c2 = (−1)c = (−1)c1 . The other cases

can be proved similarly. �

Since our construction of quasi-tight framelet filter banks is based on

the factorization of the matrix Na,Θ|nb(z) of Laurent polynomials into the

polyphase matrix of high-pass filters, we need the following lemma for the

symmetry type of coset sequences.

156



Lemma 4.4.1. Suppose u ∈ l0(Z) has symmetry: Su(z) = εzc, where ε ∈
{−1, 1} and c ∈ Z. Then the following results are true.

(1) If c is an even integer, then u[0](z) and u[1](z) both have symmetry:

Su[0](z) = εzc/2, Su[1](z) = εzc/2−1,
Su[0](z)

Su[1](z)
= z.

(2) If c is an odd integer, for all k ∈ Z, we can define

Pk(z) :=
1√
2

[
1 zk

1 −zk

]
, k ∈ Z, (4.4.4)

and [
v1(z)

v2(z)

]
:= Pk(z)

[
u[0](z)

u[1](z)

]
=

1√
2

[
u[0](z) + zku[1](z)

u[0](z)− zku[1](z)

]
.

Then v1, v2 have symmetry:

Sv1(z) = εz
c−1

2
+k, Sv2(z) = −εz c−1

2
+k,

Sv1(z)

Sv2(z)
= −1.

On the other hand, suppose v1, v2 ∈ l0(Z) both have symmetry. The following

results are true.

(3) If for some c ∈ Z,

Sv1(z) = εzc+1, Sv2(z) = εzc,
Sv1(z)

Sv2(z)
= z

hold, then u(z) := v1(z2) + zv2(z2) also has symmetry: Su(z) = εz2c+2.

(4) If for some c ∈ Z,

Sv1(z) = εzc, Sv2(z) = −εzc, Sv1(z)

Sv2(z)
= −1
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hold, using Pk(z) as (4.4.4), we can define[
w1(z)

w2(z)

]
:= P−1

k (z)

[
v1(z)

v2(z)

]
=

1√
2

[
1 1

z−k −z−k

][
v1(z)

v2(z)

]
=

1√
2

[
v1(z) + v2(z)

z−kv1(z)− z−kv2(z)

]
.

Then u(z) := w1(z2) + zw2(z2) also has symmetry: Su(z) = εz2(c−k)+1.

Proof. Notice that for any Laurent polynomial u(z), we have

u[0](z2) =
1

2
[u(z) + u(−z)] , u[1](z2) =

1

2
z−1 [u(z)− u(−z)] .

Using these two identities, the 4 items in the lemma can be proved by direct

calculations. �

Based on Theorem 4.3.6, we can give the necessary and sufficient condition

for the existence of quasi-tight framelet filter banks with symmetry.

Theorem 4.4.2. Let a,Θ ∈ l0(Z) be given filters having symmetry: Sa(z) =

εzc and SΘ(z) = 1. Θ? = Θ. Let nb be an integer number satisfying (2.4.1).

Define Na,Θ|nb(z) as in (2.1.10). Then there exists a quasi-tight framelet filter

bank {a; b1, b2}Θ,(1,−1) with symmetry and nb order of vanishing moments if

and only if the following two items hold:

(1) det(Na,Θ|nb(z)) = −dnb(z)d?nb(z) for a Laurent polynomial dnb(z) having

symmetry.

(2) p(z) has the DOS (Difference Of Squares) property with respect to sym-

metry type (−1)c+nbzodd(c+nb)−1Sdnb(z), where p(z) is defined as

p0(z) := gcd
([
Na,Θ|nb(z)

]
1,1
,
[
Na,Θ|nb(z)

]
1,2
,
[
Na,Θ|nb(z)

]
2,1
,
[
Na,Θ|nb(z)

]
2,2

)
,

p(z) :=
p0(z)

(z − 1)Z(p0,1)(z + 1)Z(p0,−1)
.

In case of Θ = δ, we have p0(z) = p(z) = 1. So this condition is

automatically satisfied.
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Proof. Recall the definition of Na,Θ|nb(z)

Na,Θ|nb(z) :=
1

2

[
A[0](z) + B[0](z) z(A[1](z)− B[1](z))

A[1](z) + B[1](z) A[0](z)− B[0](z)

]
, (4.4.5)

where

A(z) :=
Θ(z)−Θ(z2)a(z)a?(z)

(1− z)nb(1− z−1)nb
, B(z) :=

−Θ(z2)a(z)a?(−z)

(1 + z)nb(1− z−1)nb
. (4.4.6)

From the symmetry types of a(z) and Θ(z), it is easy to calculate SA(z) = 1

and SB(z) = (−1)c+nb . By Lemma 4.4.1(1), we know that

SA[0](z) = 1, SA[1](z) = z−1, SB[0](z) = (−1)c+nb , SB[1](z) = (−1)c+nbz−1.

(4.4.7)

Firstly, we prove the necessity part of the theorem. Suppose there ex-

ists a quasi-tight framelet filter bank {a; b1, b2}Θ,(1,−1) with symmetry, where

Sb1(z) = ε1z
c1 and Sb2(z) = ε2z

c2 . Since both high-pass filters have at least

nb order of vanishing moments, we can write

b`(z) = (1− z−1)nb b̊`(z), ` = 1, 2, (4.4.8)

for some Laurent polynomials b̊1(z) and b̊2(z). From the symmetry types of

b1 and b2, we can see S̊b1(z) = ε1z
c1+nb and S̊b2(z) = ε2z

c2+nb .

If c + nb ∈ 2Z, we know from (4.4.7) that SNa,Θ|nb(z) =

[
1 z

z−1 1

]
. By

Theorem 4.4.1, we can see that c+nb ∈ 2Z implies c1+nb ∈ 2Z and c2+nb ∈ 2Z.

Hence, according to the symmetry types of b̊1, b̊2 and Lemma 4.4.1(1), we know

that

U(z) :=

[̊
b

[0]
1 (z) b̊

[0]
2 (z)

b̊
[1]
1 (z) b̊

[1]
2 (z)

]
(4.4.9)

has compatible symmetry SU(z) =

[
ε1z

(c1+nb)/2 ε2z
(c2+nb)/2

ε1z
(c1+nb)/2−1 ε2z

(c2+nb)/2−1

]
. According

to Theorem 2.1.2, {a; b1, b2}Θ,(1,−1) is a quasi-tight framelet filter bank with nb
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order of vanishing moments implies that

Na,Θ|nb(z) = U(z)

[
1

−1

]
U?(z) (4.4.10)

holds. That is, Na,Θ|nb(z) has a spectral factorization with symmetry as in

Theorem 4.3.6. From the necessity part of Theorem 4.3.6, we know that the

items (1) and (2) hold.

If c+nb ∈ 2Z+1, for any integer k, we can take Pk(z) as (4.4.4), and define

N(z) := Pk(z)Na,Θ|nbP
?
k(z). From (4.4.5) and (4.4.7), it is straightforward to

calculate that N(z) has compatible symmetry: SN(z) =

[
1 −1

−1 1

]
. Denote

U(z) as in (4.4.9). By Theorem 4.4.1, we can see that c+ nb ∈ 2Z + 1 implies

c1 +nb ∈ 2Z+1 and c2 +nb ∈ 2Z+1. Hence, according to the symmetry types

of b̊1, b̊2 and Lemma 4.4.1(2), we know that Ũ(z) := Pk(z)U(z) has compati-

ble symmetry: SŨ(z) =

[
ε1z

c1+nb−1

2
+k ε2z

c2+nb−1

2
+k

−ε1z
c1+nb−1

2
+k −ε2z

c2+nb−1

2
+k

]
. For the quasi-tight

framelet filter bank {a; b1, b2}Θ,(1,−1), (4.4.10) must hold. (4.4.10) implies that

N(z) =Pk(z)Na,Θ|nbP
?
k(z) = Pk(z)U(z)

[
1

−1

]
U?(z)P?k(z)

=Ũ(z)

[
1

−1

]
Ũ?(z).

That is, N(z) has a spectral factorization with symmetry as in Theorem 4.3.6.

Notice that Pk(z) is a unimodular matrix, i.e., the Smith Normal Form of

N(z) and Na,Θ|nb(z) are the same. So the gcd of the 4 elements in N(z) and

det(N(z)), up to multiplications by some monomial, must be the same as those

of Na,Θ|nb(z). Therefore, from the necessity part of Theorem 4.3.6, we know

that the items (1) and (2) in the theorem hold. This proves the necessity part

of the theorem.

Now we will prove the sufficiency part.

For the case that c + nb ∈ 2Z, from (4.4.5) and (4.4.7), we know that
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SNa,Θ|nb(z) =

[
1 z

z−1 1

]
. From the sufficiency part of Theorem 4.3.6, the two

items in the theorem imply that there exists a 2 × 2 matrix U(z) of Lau-

rent polynomials with compatible symmetry, such that (4.4.10) holds, and

SU1,1(z)

SU2,1(z)
= SU1,2(z)

SU2,2(z)
= z. Define b̊1(z) and b̊2(z) as

[̊
b

[0]
1 (z) b̊

[0]
2 (z)

b̊
[1]
1 (z) b̊

[1]
2 (z)

]
:= U(z) =[

U1,1(z) U1,2(z)

U2,1(z) U2,2(z)

]
. According to Lemma 4.4.1(3), b̊1 and b̊2 both have sym-

metry. Define filers b1 and b2 as (4.4.8), we know that b1 and b2 are high-pass

filters with symmetry as well. According to Theorem 2.1.2, {a; b1, b2}Θ,(1,−1)

is a quasi-tight framelet filter bank with symmetry and nb order of vanishing

moments.

For the case that c + nb ∈ 2Z + 1, for any integer k, we can take Pk(z)

as (4.4.4), and define N(z) := Pk(z)Na,Θ|nbP
?
k(z). From (4.4.5) and (4.4.7), it

is straightforward to calculate that N(z) has compatible symmetry: SN(z) =[
1 −1

−1 1

]
. Since N(z) and Na,Θ|nb(z) has the same Smith Normal Form, we

know that N(z) satisfies the 2 conditions in Theorem 4.3.6 with α(z) = −1. By

the sufficiency part of Theorem 4.3.6, we can find a 2×2 matrix Ũ(z) of Laurent

polynomials with compatible symmetry, such that N(z) = Ũ(z)

[
1

−1

]
Ũ?(z)

holds, and SU1,1(z)

SU2,1(z)
= SU1,2(z)

SU2,2(z)
= −1. Define b̊1 and b̊2 as

[̊
b

[0]
1 (z) b̊

[0]
2 (z)

b̊
[1]
1 (z) b̊

[1]
2 (z)

]
:=

P−1
k (z)Ũ(z). According to Lemma 4.4.1(4), b̊1 and b̊2 both have symmetry.

Define filers b1 and b2 as (4.4.8), we know that b1 and b2 are high-pass filters

with symmetry as well. Since Pk(z) is invertible and

Pk(z)Na,Θ|nbP
?
k(z) =N(z) = Ũ(z)

[
1

−1

]
Ũ?(z)

=Pk(z)

[̊
b

[0]
1 (z) b̊

[0]
2 (z)

b̊
[1]
1 (z) b̊

[1]
2 (z)

][
1

−1

] [̊
b

[0]
1 (z) b̊

[0]
2 (z)

b̊
[1]
1 (z) b̊

[1]
2 (z)

]?
P?k(z),
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we know that Na,Θ|nb(z) =

[̊
b

[0]
1 (z) b̊

[0]
2 (z)

b̊
[1]
1 (z) b̊

[1]
2 (z)

][
1

−1

] [̊
b

[0]
1 (z) b̊

[0]
2 (z)

b̊
[1]
1 (z) b̊

[1]
2 (z)

]?
holds.

According to Theorem 2.1.2, {a; b1, b2}Θ,(1,−1) is a quasi-tight framelet filter

bank with symmetry and nb order of vanishing moments. This completes the

proof of the sufficient part of the theorem. �

4.5 Illustrative Examples

Example 4.1. Choose Θ = δ and low-pass filter

a(z) = − 1
16

(
z2 − 6 z + 1

)
(1 + z)2 z−2 + λz−3 (1 + z)2 (1− z)4 ,

where λ = − 3
32

+
√

2
16

. We have sm2 = 1.0193, and Sa(z) = 1. Notice that

sr(a) = 2 and vm(1− aa?) = 4. Take nb = 2, then the constructed quasi-tight

framelet filter bank {a; b1, b2}Θ,{1,−1} is given by:

b1(z) = (z−1)2

2048

[
(4− 3

√
2)(z3 + z−3)− 2

√
2(z2 + z−2)

−(2068− 1559
√

2)(z + z−1) + 1084
√

2
]
,

b2(z) = (z−1)2

2048

[
(3
√

2− 4)(z3 + z−3) + 2
√

2(z2 + z−2)

−(2028− 1513
√

2)(z + z−1) + 964
√

2
]
.

We have vm(b1) = vm(b2) = 2. The symmetry types are Sb1(z) = Sb2(z) = z2.

Example 4.2. Choose Θ = δ and λ = 0 in the above example. We get

the low-pass filter a =
{
− 1

16
, 1

4
, 5

8
, 1

4
,− 1

16

}
[−2,2]

. We have sm2 = 0.8853, and

Sa(z) = 1. Notice that sr(a) = 2 and vm(1− aa?) = 4. Take nb = 2, then the

constructed quasi-tight framelet filter bank {a; b1, b2}Θ,{1,−1} is given by:

b1 =
√

2
4
{−1, 2,−1}[0,2], b2 = 1

16
{1,−4, 6,−4, 1}[−2,2].

We have vm(b1) = 2 and vm(b2) = 4. The symmetry types are Sb1(z) = z2

and Sb2(z) = 1.
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(a) a (b) b1 (c) b2 (d) δ

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 4.1: In Example 4.1: (a),(b),(c) and (d) are the graphs of the filters a, b1, b2
and Θ. (e) scaling function φ. (f) wavelet function ψ1. (g) wavelet function ψ2. (h)
magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted line) and |̂b2(ξ)| (in dashed line)
in for ξ ∈ [−π, π].

(a) a (b) b1 (c) b2 (d) δ

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 4.2: In Example 4.2: (a),(b),(c) and (d) are the graphs of the filters a, b1, b2
and Θ. (e) scaling function φ. (f) wavelet function ψ1. (g) wavelet function ψ2. (h)
magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted line) and |̂b2(ξ)| (in dashed line)
in for ξ ∈ [−π, π].

Example 4.3. Choose Θ = δ and the low-pass filter

a = 1
1024
{−1, 0, 18,−32,−63, 288, 604, 288,−63,−32, 18, 0,−1}[−6,6] .
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We have sm2 = 1.6821, and Sa(z) = 1. Notice that sr(a) = 4 and vm(1 −
aa?) = 8. Take nb = 4, then the constructed quasi-tight framelet filter bank

{a; b1, b2}Θ,{1,−1} is given by:

b1 =
√

2
32
{−1, 0, 9,−16, 9, 0,−1}[−2,4],

b2 = 1
1024
{1, 0,−18, 32, 63,−288, 420,−288, 63, 32,−18, 0, 1}[−6,6].

We have vm(b1) = 4 and vm(b2) = 8. The symmetry types are Sb1(z) = z2

and Sb2(z) = 1.

(a) a (b) b1 (c) b2 (d) δ

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 4.3: In Example 4.3: (a),(b),(c) and (d) are the graphs of the filters a, b1, b2
and Θ. (e) scaling function φ. (f) wavelet function ψ1. (g) wavelet function ψ2. (h)
magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted line) and |̂b2(ξ)| (in dashed line)
in for ξ ∈ [−π, π].

Example 4.4. Choose Θ = δ and the low-pass filter

a = 1
1024
{15,−63, 35, 525, 525, 35,−63, 15}[−3,4] .

We have sm2 = 1.1543, and Sa(z) = z. Notice that sr(a) = 3 and vm(1 −
aa?) = 6. Take nb = 3, then the constructed quasi-tight framelet filter bank

{a; b1, b2}Θ,{1,−1} is given by:

b1 = 1
1024
{−15, 63,−385, 945,−945, 385,−63, 15}[−3,4],
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b2 =
√

105
512
{5,−21, 38,−38, 21,−5}[−1,4].

We have vm(b1) = vm(b2) = 3. The symmetry types are Sb1(z) = −z and

Sb2(z) = −z3.

(a) a (b) b1 (c) b2 (d) δ

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 4.4: In Example 4.4: (a),(b),(c) and (d) are the graphs of the filters a, b1, b2
and Θ. (e) scaling function φ. (f) wavelet function ψ1. (g) wavelet function ψ2. (h)
magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted line) and |̂b2(ξ)| (in dashed line)
in for ξ ∈ [−π, π].

Example 4.5. Choose Θ = δ and the low-pass filter

a = 1
32
{−1, 1, 16, 16, 1,−1}[−2,3] .

We have sm2 = 0.7184, and Sa(z) = z. Notice that sr(a) = 1 and vm(1 −
aa?) = 4. Take nb = 1, then the constructed quasi-tight framelet filter bank

{a; b1, b2}Θ,{1,−1} is given by:

b1 =
√

2
4096
{−1, 1, 32, 32,−2302, 2302,−32,−32,−1, 1}[−4,5],

b2 =
√

2
4096
{1,−1,−32,−32,−1794, 1794, 32, 32, 1,−1}[−4,5].

We have vm(b1) = vm(b2) = 1. The symmetry types are Sb1(z) = Sb2(z) =

−z.
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(a) a (b) b1 (c) b2 (d) δ

(e) φ (f) ψ1 (g) ψ2 (h) |â|, |b̂1|, |b̂2|

Figure 4.5: In Example 4.5: (a),(b),(c) and (d) are the graphs of the filters a, b1, b2
and Θ. (e) scaling function φ. (f) wavelet function ψ1. (g) wavelet function ψ2. (h)
magnitude of |â(ξ)| (in solid line), |̂b1(ξ)| (in dotted line) and |̂b2(ξ)| (in dashed line)
in for ξ ∈ [−π, π].
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Chapter 5

Quasi-tight Framelets in High

Dimension

In this chapter, we study multivariate quasi-tight M-framelets derived from

an arbitrary refinable function φ ∈ L2(Rd). Separable multivariate wavelets

and framelets with a diagonal dilation matrix M can be trivially constructed

through tensor product from one-dimensional wavelets and framelets. How-

ever, such separable wavelets and framelets are known to give preferences

to the axis coordinate directions and they are only a very special family of

multivariate wavelets and framelets. It is important but often challenging to

study nonseparable/general multivariate wavelets and framelets in both the-

ory and applications. Currently, there is a growing interest in wavelet anal-

ysis on studying and constructing (nonseparable) multivariate wavelets and

framelets. As we reviewed in Chapter 1, construction of multivariate wavelets

and framelets are widely known as a challenging problem in the literature. In

this chapter, we show that given an arbitrary M-refinable function φ ∈ L2(Rd)

derived from some real-valued low-pass filter a ∈ l0(Zd), we can easily con-

struct quasi-tight M-framelets with either of the two properties:

(1) directionality;

(2) highest possible order of vanishing moments.

Although the constructions are still valid with arbitrary real-valued moment

correcting filter Θ ∈ l0(Zd) such that Θ̂(0) = 1 and Θ? = Θ, for simplicity, we
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state the results in this chapter with Θ = δ, i.e., Θ̂(ξ) = 1. Such framelets are

called Unitary Extension Principle based framelets (See [72, 73]).

This chapter is organized as follows. In Section 5.1, we shall prove The-

orem 5.1.1, which shows that given an arbitrary real-valued low-pass filter

a ∈ l0(Zd) such that â(0) = 1, we can always construct a quasi-tight M-framelet

filter bank with directionality, where all the high-pass filters are supported on

only two points. We will also obtain a general result on factorizing a Hermite

matrix of 2πZd-periodic trigonometric polynomials. In Section 5.2, we study

the quasi-tight framelets with high order of vanishing moments. By proving

some auxiliary results first, we shall prove Theorem 5.2.1, which shows that

given an arbitrary real-valued low-pass filter a ∈ l0(Zd) such that â(0) = 1, we

can always construct a quasi-tight M-framelet filter bank with highest possible

order of vanishing moments

min(vm(b1), . . . , vm(bs)) 6 min(sr(a,M), 1
2

vm(ua)),

with ûa(ξ) := 1− |â(ξ)|2. (5.0.1)

We prove Theorem 5.2.1 with two constructive methods (algorithms). In Sec-

tion 5.3, we provide several examples of quasi-tight framelets and quasi-tight

framelet filter banks with directionality/high order of vanishing moments.

The results in this chapter are summarized in [20].

5.1 Multivariate Quasi-tight Framelets with Di-

rectionality

Multivariate framelets with directionality have been studied extensively in the

literature, due to their wide applications in signal (such as image) processing.

For example, natural images (2D signals) can have quite complicated struc-

tures such as edges and textures. In order to make the framelets capture the

directional structure in the signal, a lot of framelets have been designed in the

literature, such as Curvelets, Shearlets, Contourlets, DT-CWF, TP-CTF, etc.

To only mention a few, see [4, 5, 34, 53, 33, 67, 81, 55, 60, 50, 61, 52, 2, 51]
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and many references therein.

With quasi-tight framelets, we can easily achieve directionality by the fol-

lowing theorem.

Theorem 5.1.1. Let M be a d × d dilation matrix and let a ∈ l0(Zd) be

a finitely supported real-valued sequence on Zd satisfying the basic sum rule

condition (sr(a,M) > 1). Then there always exist finitely supported real-

valued high-pass filters b1, . . . , bs ∈ l0(Zd) and ε1, . . . , εs ∈ {−1, 1} such that

{a; b1, . . . , bs}(ε1,...,εs) is a quasi-tight M-framelet filter bank and every high-pass

filter b` takes the form c`(δα` − δβ`) for some c` ∈ R and α`, β` ∈ supp(a)

(hence b` naturally has directionality, basic vanishing moments and symmetry

property) for all ` = 1, . . . , s. Moreover,

(1) if in addition φ ∈ L2(Rd), then {φ;ψ1, . . . , ψs}(ε1,...,εs) is a (directional)

quasi-tight M-framelet in L2(Rd), where

φ̂(ξ) :=
∞∏
j=1

â((MT)−jξ) and ψ̂`(MTξ) := b̂`(ξ)φ̂(ξ),

ξ ∈ Rd, ` = 1, . . . , s; (5.1.1)

(2) if in addition the following condition holds:

all the coefficients in â[γj ](ξ)â[γk](ξ) are nonnegative for all j, k = 1, . . . , dM,

(5.1.2)

(for example, the above condition in (5.1.2) is satisfied if the filter a

has nonnegative coefficients.) then we can take ε1 = · · · = εs = 1 and

therefore, {a; b1, . . . , bs} is a (directional) tight M-framelet filter bank and

{φ;ψ1, . . . , ψs} is a (directional) tight M-framelet in L2(Rd).

Before the proof of the theorem, recall that for a real number c, the sign

function is defined to be

sgn(c) :=


1 if c > 0,

0 if c = 0,

−1 if c < 0.

(5.1.3)
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Proof of Theorem 5.1.1. By definition, we notice that {a; b1, . . . , bs}(ε1,...,εs) is

a quasi-tight M-framelet filter bank if and only if

s∑
`=1

ε`dM

[
b̂

[γ1]
` (ξ), . . . ,

̂
b

[γdM
]

` (ξ)
]?[

b̂
[γ1]
` (ξ), . . . ,

̂
b

[γdM
]

` (ξ)
]

= Na(ξ) (5.1.4)

with

Na(ξ) := IdM
− dM

[
â[γ1](ξ), . . . , â[γdM

](ξ)
]?[

â[γ1](ξ), . . . , â[γdM
](ξ)
]
. (5.1.5)

We now construct the desired high-pass filters b1, . . . , bs by a recursive algo-

rithm. Let N = Na. The main idea of the following proof has three steps: (1)

Eliminate the nonzero terms in the off-diagonal entries of N one by one so that

all the off-diagonal entries in the updated N are identically zero. (2) Eliminate

the nonzero nonconstant terms in the diagonal entries of the updated N one

by one so that the final updated N is a constant diagonal matrix. (3) Prove

that the constant diagonal matrix N is the zero matrix.

Let ` := 1. Suppose that some of the off-diagonal entries [N ]j,k are not

identically zero for some 1 6 j < k 6 dM. Then [N ]j,k has a nonzero term

ce−iγ·ξ with c 6= 0 and γ ∈ Zd. By the definition of N , we observe that the term

ce−iγ·ξ must appear as one of the terms in −â[γj ](ξ)â[γk](ξ). Therefore, there

must exist α, β ∈ Zd such that a[γj ](α)a[γk](β) 6= 0 (i.e., {γj + Mα, γk + Mβ} ⊂
supp(a)) and β − α = γ. Define

b` :=
√
|c|/dM(δγj+Mα − δγk+Mβ), ε` := −sgn(c). (5.1.6)

If the additional condition in (5.1.2) holds, then c must be a negative number

and hence, ε` = 1. It follows directly from the definition of b` in (5.1.6) that

b̂
[γj ]
` (ξ) =

√
|c|/dMe

−iα·ξ, b̂
[γk]
` (ξ) = −

√
|c|/dMe

−iβ·ξ and b̂
[γp]
` (ξ) = 0,

∀ p ∈ {1, . . . , dM}\{j, k}.
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Consequently, the dM × dM matrix

B`(ξ) := ε`dM

[
b̂

[γ1]
` (ξ), . . . ,

̂
b

[γdM
]

` (ξ)
]?[

b̂
[γ1]
` (ξ), . . . ,

̂
b

[γdM
]

` (ξ)
]

(5.1.7)

has only four nonzero entries with

[B`(ξ)]j,j = ε`dM|b̂[γj ]
` (ξ)|2 = ε`|c| = −c,

[B`(ξ)]k,k = ε`dM|b̂[γk]
` (ξ)|2 = ε`|c| = −c,

[B`(ξ)]j,k = ε`dMb̂
[γj ]
` (ξ)b̂

[γk]
` (ξ) = −ε`|c|e−i(β−α)·ξ = ce−iγ·ξ,

[B`(ξ)]k,j = ε`dMb̂
[γk]
` (ξ)b̂

[γj ]
` (ξ) = −ε`|c|e−i(α−β)·ξ = ceiγ·ξ.

(5.1.8)

Now replace/update N by N − B` and replace ` by ` + 1 (i.e., increase ` by

one). Because N ?(ξ) = N (ξ), by the above four identities, we conclude that

the term ce−iγ·ξ does not appear in the (j, k)-entry of the updated N and only

the constant terms in the diagonal entries of the previous N are modified.

Hence, we can repeat this procedure until all the off-diagonal entries in N are

identically zero.

Now we deal with the diagonal matrix N . Suppose that some of the diag-

onal entries [N ]j,j are not constant for some 1 6 j 6 dM. Then [N ]j,j has a

nonzero nonconstant term ce−iγ·ξ with c 6= 0 and γ ∈ Zd\{0}. By the definition

and construction of N , we observe that the term ce−iγ·ξ must appear as one of

the terms in −â[γj ](ξ)â[γj ](ξ). Therefore, there must exist α, β ∈ Zd such that

a[γj ](α)a[γj ](β) 6= 0 (i.e., {γj + Mα, γj + Mβ} ⊂ supp(a)) and β − α = γ 6= 0.

Define

b` :=
√
|c|/dM(δγj+Mα − δγj+Mβ), ε` := −sgn(c). (5.1.9)

If the additional condition in (5.1.2) holds, then c must be a negative number

and hence, ε` = 1. It follows directly from the definition of b` in (5.1.9) that

b̂
[γj ]
` (ξ) =

√
|c|/dM(e−iα·ξ−e−iβ·ξ) and b̂

[γp]
` (ξ) = 0 ∀ p ∈ {1, . . . , dM}\{j}.
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Consequently, the dM×dM matrix B`(ξ) defined in (5.1.7) has only one nonzero

entry at

[B`(ξ)]j,j = ε`dM|b̂[γj ]
` (ξ)|2 = ε`|c|(2−e−i(α−β)·ξ−ei(α−β)·ξ) = c(e−iγ·ξ+eiγ·ξ−2).

(5.1.10)

Now replace/update N by N − B` and replace ` by ` + 1 (i.e., increase ` by

one). Because N ?(ξ) = N (ξ), by the above identity, we conclude that both

the term ce−iγ·ξ and ceiγ·ξ do not appear in the (j, j)-entry of the updated N
and only the constant term in the (j, j)-entry of the previous N is modified.

We can repeat this procedure until all the nonzero nonconstant terms in the

updated N are identically zero. We set s := `− 1.

Therefore, we end up with

Na(ξ) = N +
s∑
`=1

B`(ξ) (5.1.11)

such that N is a diagonal matrix of constants. We now prove that N = 0.

Note that both (5.1.8) and (5.1.10) trivially imply that the sum of every row

of B`(0) must be zero. Since the filter a satisfies the basic sum rule condition

sr(a,M) > 1, we can see that∑
k∈Zd

a(γ + Mk) = | det(M)|−1, ∀ γ ∈ ΓM := [M[0, 1)d] ∩ Zd. (5.1.12)

From (5.1.12), we have â[γ1](0) = · · · = â[γdM
](0) = d−1

M . Now we trivially

deduce from the definition ofNa in (5.1.5) that all the diagonal entries of Na(0)

are 1 − d−1
M and all the off-diagonal entries of Na(0) are −d−1

M . Consequently

the sum of every row of Na(0) is (1−d−1
M )+(dM−1)(−d−1

M ) = 0. Therefore, we

conclude from (5.1.11) that the sum of every row of N must be zero. However,

N is a diagonal matrix of constants and thus, we must have N = 0. Since

N = 0, by our definition of B` in (5.1.7) and using (5.1.11), we conclude that

(5.1.4) is satisfied and {a; b1, . . . , bs}(ε1,...,εs) is a quasi-tight M-framelet filter

bank.

If the additional condition in (5.1.2) is satisfied, by our above construction
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we have ε1 = · · · = εs = 1 and hence {a; b1, . . . , bs} is a tight M-framelet filter

bank. �

For u ∈ l0(Zd), by N(û) we denote the total number of nonzero terms in

the 2πZd-periodic trigonometric polynomial û. That is, N(û) = #supp(u),

the cardinality of the support of the filter u. From the above proof of Theo-

rem 5.1.1, it is not difficult to conclude that the number s of high-pass filters

in Theorem 5.1.1 is given by

s =
∑

16j<k6dM

N

(
â[γj ](ξ)â[γk](ξ)

)
+

1

2

dM∑
j=1

(
N
(
|â[γj ](ξ)|2

)
− 1
)
.

Moreover, by the special structure of the high-pass filters in Theorem 5.1.1,

we also have s 6
(

# supp(a)
2

)
.

Suppose that {a; b1, . . . , bs}(ε1,...,εs) is a quasi-tight M-framelet filter bank.

Then it is trivial to observe that {a; b1(· + Mk1), . . . , bs(· + Mks)}(ε1,...,εs) are

quasi-tight M-framelet filter banks for all k1, . . . , ks ∈ Zd. If b1 = cb2 for some

c ∈ R, then {a;
√
|ε1c2 + ε2|b2, . . . , bs}(sgn(ε1c2+ε2),ε3,...,εs) is also a quasi-tight

M-framelet filter bank with at most s − 1 number of high-pass filters. Up to

the above trivial variants, from our proof of Theorem 5.1.1, one can conclude

that the constructed quasi-tight M-framelet filter bank in Theorem 5.1.1 is

essentially unique.

To get a tight M-framelet filter bank, the above proof of Theorem 5.1.1

shows that the additional condition in (5.1.2) can be weakened by requiring

that all the coefficients in â[γj ](ξ)â[γk](ξ) are nonnegative for all 1 6 j < k 6

dM and all the nonconstant coefficients in |â[γj ](ξ)|2 are nonnegative for all

1 6 j 6 dM. If all the coefficients of a low-pass filter a are nonnegative, then

it is trivial that the additional condition in (5.1.2) is satisfied. Consequently,

Theorem 5.1.1 recovers or improves the special construction of directional tight

2Id-framelets and tight 2Id-framelet filter banks in [47, 64] for box spline refin-

able functions, because all the low-pass filters for box spline refinable functions

have nonnegative coefficients.

For 1 6 j 6 r, by ej we denote the jth unit coordinate column vector in

Rr, i.e., ej is the r × 1 vector with its only nonzero element being 1 at the
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jth entry. Using the idea in the proof of Theorem 5.1.1, we now establish a

general result similar to the matrix spectral factorization.

Theorem 5.1.2. Let A be an r × r matrix of 2πZd-periodic trigonometric

polynomials in d variables with real coefficients such that A?(ξ) = A(ξ) for

all ξ ∈ Rd. For 1 6 j 6 r, let κr be the sum of the jth column of A(0),

i.e., (κ1, . . . , κr) := (1, . . . , 1)A(0). Then there exist ε0, . . . , εs ∈ {−1, 1} and

r × 1 vectors u1, . . . ,us of 2πZd-periodic trigonometric polynomials with real

coefficients such that

A(ξ) = sgn(κ1)|κ1|e1e
?
1+· · ·+sgn(κr)|κr|ere?r+ε1u1(ξ)u?1(ξ)+· · ·+εsus(ξ)u?s(ξ),

(5.1.13)

and each vector function of u1, . . . ,us has only two nonzero entries with one

being c`e
−iα`·ξ and the other being −c`e−iβ`·ξ for some c` ∈ R and α`, β` ∈ Zd.

In terms of the matrix form, (5.1.13) can be rewritten as

A(ξ) = B(ξ)



sgn(κ1)
. . .

sgn(κr)

ε1

. . .

εs


B?(ξ), (5.1.14)

where B(ξ) := [
√
|κ1|e1, . . . ,

√
|κr|er, u1, . . . , us] is an r×(r+s) matrix obtained

by putting all the column vectors e1, . . . , er, u1, . . . , us together.

Proof. To prove the claim, we construct the desired vectors u1, . . . ,us of 2πZd-
periodic trigonometric polynomials by following a similar recursive algorithm

as in the proof of Theorem 5.1.1.

Let ` := 1 and N := A. Suppose that some of the off-diagonal entries

[N ]j,k are not identically zero for some 1 6 j < k 6 r. Then [N ]j,k has a

nonzero term ce−iγ·ξ with c 6= 0 and γ ∈ Zd. Define

u`(ξ) :=
√
|c|ej −

√
|c|eiγ·ξek and ε` := −sgn(c).
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Consequently, the r × r matrix ε`u`(ξ)u
?
`(ξ) has only four nonzero entries

−c,−c, ce−iγ·ξ and ceiγ·ξ at the positions (j, j), (k, k), (j, k) and (k, j), respec-

tively. Now replace/update N by N −ε`u`(ξ)u?`(ξ) and replace ` by `+1 (i.e.,

increase ` by one). Because N ?(ξ) = N (ξ), we conclude that the term ce−iγ·ξ

does not appear in the (j, k)-entry of the updated N and only the constant

terms in the diagonal entries of the previous N are modified. Hence, we can

repeat this procedure until all the off-diagonal entries in N are identically zero.

Now we deal with the diagonal matrix N . Suppose that some of the diag-

onal entries [N ]j,j are not constant for some 1 6 j 6 dM. Then [N ]j,j has a

nonzero nonconstant term ce−iγ·ξ with c 6= 0 and γ ∈ Zd\{0}. Define

u`(ξ) :=
√
|c|(1− e−iγ·ξ)ej and ε` := −sgn(c).

Then ε`u`(ξ)u
?
`(ξ) has only one nonzero entry c(e−iγ·ξ + eiγ·ξ − 2) at the (j, j)-

entry. Now replace/update N by N − ε`u`(ξ)u
?
`(ξ) and replace ` by ` + 1.

Because N ?(ξ) = N (ξ), we conclude that both the term ce−iγ·ξ and ceiγ·ξ do

not appear in the (j, j)-entry of the updated N and only the constant term in

the (j, j)-entry of the previous N is modified. We can repeat this procedure

until all the nonzero nonconstant terms in the updated N are identically zero.

We set s := `− 1.

Therefore, we end up with A(ξ) = N +
∑s

`=1 ε`u`(ξ)u
?
`(ξ) such that N

is a diagonal matrix of constants. Note that the sum of every column in

ε`u`(0)u?`(0) is zero. Consequently, we must have N = diag(κ1, . . . , κr). This

completes the proof. �

Though the sum of Hermitian squares of 2πZd-periodic trigonometric poly-

nomials is a challenging problem in real algebraic geometric, as a direct con-

sequence of Theorem 5.1.2, we have the following result on quasi-sum of Her-

mitian squares of 2πZd-periodic trigonometric polynomials.

Corollary 5.1.3. Let A be a 2πZd-periodic trigonometric polynomial in d vari-

ables with real coefficients such that A(ξ) = A(ξ). Then there exist ε1, . . . , εs ∈
{−1, 1} and 2πZd-periodic trigonometric polynomials u1, . . . ,us with real co-
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efficients such that

A(ξ) = sgn(A(0))(
√
|A(0)|)2 + ε1|u1(ξ)|2 + · · ·+ εs|us(ξ)|2, ∀ ξ ∈ Rd

(5.1.15)

and each function u1, . . . ,us has only two nonzero entries with one being

c`e
−iα`·ξ and the other being −c`e−iβ`·ξ for some c` ∈ R and α`, β` ∈ Zd.

We will provide a few examples to illustrate Theorem 5.1.1 in Section 5.3.

Before finishing this section, we show an example demonstrating that the con-

dition in (5.1.2) can be also satisfied by some low-pass filters having negative

coefficients as well.

Example 5.1. For d = 1 and M = 2, we consider the following low-pass filter

a = { 5
29
, 5

29
,− 1

58
,− 1

58
, 5

29
, 5

29
, 5

29
, 5

29
}[−3,4].

Then clearly a satisfies the basic sum rules and the additional condition in

(5.1.2) is satisfied: By the definition of the filter a, we have

â[0](ξ)â[1](ξ) = 1
3364

(100e−2iξ + 90e−iξ + 80 + 301eiξ + 80e2iξ + 90e3iξ + 100e4iξ),

|â[0](ξ)|2 = |â[1](ξ)|2 = 25
841
e−3iξ + 45

1682
e−2iξ + 20

841
e−iξ + 301

3364
+ 20

841
eiξ + 45

1682
e2iξ + 25

841
e3iξ.

Note that not all coefficients of the filter a are nonnegative but (5.1.2) is satis-

fied. By Theorem 5.1.1, we obtain a tight 2-framelet filter bank {a, b1, . . . , b13}
given by

b1 = {2
√
5

29
,−2

√
5

29
}[0,1], b2 = {2

√
5

29
, 0,−2

√
5

29
}[0,2], b3 = {2

√
5

29
,0,−2

√
5

29
}[−1,1],

b4 = {
√

301
58

,−
√
301
58
}[−1,0], b5 = {2

√
5

29
,0, 0,−2

√
5

29
}[−1,2],

b6 = {3
√

10
58

, 0,0,−3
√

10
58
}[−2,1], b7 = {3

√
10

58
, 0,0, 0,−3

√
10

58
}[−2,2],

b8 = {3
√

10
58

,0, 0, 0,−3
√

10
58
}[−1,3], b9 = {3

√
10

58
,0, 0, 0, 0,−3

√
10

58
}[−1,4],

b10 = { 5
29
, 0,0, 0, 0,− 5

29
}[−2,3], b11 = { 5

29
, 0,0, 0, 0, 0,− 5

29
}[−2,4],

b12 = { 5
29
, 0, 0,0, 0, 0,− 5

29
}[−3,3], b13 = { 5

29
, 0, 0,0, 0, 0, 0,− 5

29
}[−3,4].

By calculation, we have sm(a, 2) ≈ 0.992335. Then {φ;ψ1, . . . , ψ13} is a tight
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2-framelet in L2(R), where φ, ψ1, . . . , ψ13 are defined in (5.1.1) with M = 2

and s = 13.

5.2 Multivariate Quasi-tight Framelets with High

Order of Vanishing Moments

Due to the special structure/construction, all the directional high-pass filters in

Theorem 5.1.1 have only order one vanishing moment. Due to the importance

of vanishing moments, it is natural and important to ask whether one can

construct a quasi-tight M-framelet filter bank achieving the highest possible

order min(sr(a,M), 1
2

vm(ua)) vanishing moments in (5.0.1) with ûa(ξ) := 1−
|â(ξ)|2. This question is satisfactorily answered by the following result, for

which we shall provide two constructive different proofs.

Theorem 5.2.1. Let M be a d × d dilation matrix and let a ∈ l0(Zd) be

a finitely supported real-valued sequence on Zd satisfying the basic sum rule

condition (sr(a,M) > 1). Then there always exist finitely supported real-

valued high-pass filters b1, . . . , bs ∈ l0(Zd) and ε1, . . . , εs ∈ {−1, 1} such that

{a; b1, . . . , bs}(ε1,...,εs) is a quasi-tight M-framelet filter bank and all the high-

pass filters b1, . . . , bs have order m vanishing moments with m := min(sr(a,M),
1
2

vm(ua)) > 1 and ûa(ξ) = 1 − |â(ξ)|2. Define φ, ψ1, . . . , ψs as in (5.1.1). If

φ ∈ L2(Rd), then {φ;ψ1, . . . , ψs}(ε1,...,εs) is a quasi-tight M-framelet in L2(Rd)

such that all the generators ψ1, . . . , ψs have at least order m vanishing mo-

ments.

To prove Theorem 5.2.1, we need a few auxiliary results and recall some

necessary notations. For k ∈ Zd and u ∈ l0(Zd), the difference operator ∇ku

is defined to be ∇ku := u − u(· − k). For ν = (ν1, . . . , νd)
T ∈ Nd

0, we define

∇ν := ∇ν1
e1
· · · ∇νd

ed
. Recall that δ is the Dirac sequence such that δ(0) = 1 and

δ(k) = 0 for all k ∈ Zd\{0}. Therefore, for u ∈ l0(Zd),

∇̂νu(ξ) = ∇̂νδ(ξ)û(ξ) = (1− e−iξ1)ν1 · · · (1− e−iξd)νd û(ξ),

ξ = (ξ1, . . . , ξd)
T ∈ Rd. (5.2.1)

177



The following result is known in [37, Theorem 3.6] and [45, Lemma 7.2.2].

For the convenience of the reader, we provide a slightly modified proof from

[45, Lemma 7.2.2] here.

Lemma 5.2.1. Let m ∈ N and u = {u(k)}k∈Zd ∈ l0(Zd). Then u has order m

vanishing moments (i.e., û(ξ) = O(‖ξ‖m) as ξ → 0) if and only if there exist

a uν ∈ l0(Zd) for each ν ∈ Nd
0 with |ν| = m such that u =

∑
ν∈Nd0,|ν|=m∇

νuν,

that is, û(ξ) =
∑

ν∈Nd0,|ν|=m ∇̂
νδ(ξ)ûν(ξ). Moreover, if the filter u has real

coefficients, then all filters uν have real coefficients.

Proof. The sufficiency part is trivial, since ∇̂νδ(ξ) = O(‖ξ‖|ν|) as ξ → 0 (in

fact vm(∇νδ) = |ν|) for all ν ∈ Nd
0. Consequently, it is trivial that û(ξ) =∑

ν∈Nd0,|ν|=m ∇̂
νδ(ξ)ûν(ξ) = O(‖ξ‖m) as ξ → 0.

For r ∈ N0, we define Λr := {µ ∈ Nd
0 : |µ| 6 r}. Let v := u. To prove

the necessity part, without loss of generality, by shifting the filter v, we can

assume that supp(v) ⊆ Λr but supp(v) is not contained inside Λr−1 for some

r ∈ N0. Suppose that r > m and v(k) 6= 0 for some k ∈ Nd
0 with |k| = r. Then

we can easily write k = ν + j with ν, j ∈ Nd
0 and |ν| = m. We replace/update

v by v − v(k)(−1)m[∇νδ](· − j). Since supp([∇νδ](· − j)) ⊆ Λr−1 ∪ {k},
we conclude that the updated filter v is still supported inside Λr, v(k) = 0,

and the updated filter v preserves the values as the previous filter at the set

{n ∈ Nd
0 : |n| = r, n 6= k}. Therefore, we can continue this procedure for

other n ∈ Nd
0 with |n| = r so that finally the updated filter v has support

inside Λr−1. We can continue this procedure until r < m. Note that the

Fourier series of v(k)[∇νδ](· − j) is simply v(k)e−ij·ξ∇̂νδ(ξ).

Consequently, we can write û = v̂ +
∑

ν∈Nd0,|v|=m ∇̂
νδ(ξ)ûν(ξ) for some

sequences uν ∈ l0(Zd), ν ∈ Nd
0 with |ν| = m and supp(v) ⊆ Λm−1. Since

û(ξ) = O(‖ξ‖m) as ξ → 0, we trivially have v̂(ξ) = O(‖ξ‖m) as ξ → 0, that is,

the filter v has order m vanishing moments. Hence,∑
k∈Λm−1

v(k)kµ = 0, ∀µ ∈ Λm−1.

It is well known that the above system of linear equations can only have the

trivial solution: v(k) = 0 for all k ∈ Λm−1. Therefore, v = 0 and we proved
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the claim. �

Using Lemma 5.2.1, we have the following result, which improves Corol-

lary 5.1.3.

Lemma 5.2.2. Let m ∈ N0 and u ∈ l0(Zd) with real coefficients. Then

û(ξ) = û(ξ) and û(ξ) = O(‖ξ‖2m), ξ → 0 (5.2.2)

if and only if there exist ε1, . . . , εs ∈ {−1, 1} and u1, . . . , us ∈ l0(Zd) with real

coefficients satisfying

û(ξ) =
s∑
`=1

ε`|û`(ξ)|2 with û`(ξ) = O(‖ξ‖m), ξ → 0, ∀ ` = 1, . . . , s.

(5.2.3)

Proof. The sufficiency part is trivial and we only need to prove the neces-

sity part. Suppose that (5.2.2) holds. By Lemma 5.2.1, there exist uν ∈
l0(Zd), |ν| = 2m with real coefficients such that û(ξ) =

∑
ν∈Nd0,|ν|=2m 2∇̂νδ(ξ)ûν(ξ).

Since û(ξ) = û(ξ), we conclude that

û(ξ) =
∑

ν∈Nd0,|ν|=2m

θν(ξ) with θν(ξ) := ∇̂νδ(ξ)ûν(ξ) + ∇̂νδ(ξ) ûν(ξ). (5.2.4)

For ν ∈ Nd
0 with |ν| = 2m, we consider two cases.

Case 1. ν ∈ Nd
0 with |ν| = 2m but ν 6∈ 2Nd

0. Then there exist α, β ∈ Nd
0

such that α + β = ν and |α| = |β| = m. Define

ûν,α,β(ξ) := ∇̂αδ(ξ) + ∇̂βδ(ξ)ûν(ξ).

By |α| = |β| = m, we see that ∇̂αδ(ξ) = O(‖ξ‖m) and ∇̂βδ(ξ)ûν(ξ) =

O(‖ξ‖m) as ξ → 0. Consequently, we have ûν,α,β(ξ) = O(‖ξ‖m) as ξ → 0.

By calculation, we have

|ûν,α,β(ξ)|2 = |∇̂αδ(ξ)|2 + |∇̂βδ(ξ)ûν(ξ)|2

+
(
∇̂αδ(ξ)∇̂βδ(ξ)ûν(ξ) + ∇̂αδ(ξ)∇̂βδ(ξ)ûν(ξ)

)
.
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Since α + β = ν, the last term in the above identity is simply θν(ξ). Conse-

quently, we have

θν(ξ) = |ûν,α,β(ξ)|2 − |∇̂αδ(ξ)|2 − |∇̂βδ(ξ)ûν(ξ)|2.

To reduce the total number of filters, instead we can also combine the last two

terms in the above identity with the terms in Case 2 discussed below.

Case 2: ν ∈ 2Nd
0, that is, ν = 2µ for some µ ∈ Nd

0 with |µ| = m. By

∇̂2µδ(ξ) = |∇̂µδ(ξ)|2(−1)|µ|e−iµ·ξ, we deduce that

θν(ξ) = θ2µ(ξ) = |∇̂µδ(ξ)|2ηµ(ξ)

with ηµ(ξ) := (−1)|µ|
(
e−iµ·ξû2µ(ξ) + eiµ·ξû2µ(ξ)

)
.

Note that ηµ(ξ) = ηµ(ξ) and ηµ has real coefficients. By Corollary 5.1.3,

there exist ε0, . . . , εs ∈ {−1, 1} and 2πZd-periodic trigonometric polynomials

u0, . . . ,us with real coefficients such that ηµ(ξ) = ε0|u0(ξ)|2 + · · ·+ εs|us(ξ)|2.

That is, we proved

θν(ξ) = ε0|ûµ,0(ξ)|2 + · · ·+ εs|ûµ,s(ξ)|2

with ûµ,`(ξ) := ∇̂µδ(ξ)u`(ξ), ` = 0, . . . , s.

Note that ûµ,`(ξ) = O(‖ξ‖m) as ξ → 0 for all ` = 0, . . . , s by |µ| = m. Now

the conclusion follows trivially from (5.2.4). �

We now prove Theorem 5.2.1 by the first constructive method as follows.

Proof of Theorem 5.2.1. Define A(ξ) := 1 − dM

∑dM

j=1 |â[γj ](ξ)|2. Obviously,

A(ξ) = A(ξ). By the definition of the coset sequences, we observe that

A(MTξ) = 1−∑ω∈ΩM
|â(ξ+2πω)|2. By the definitionm = min(sr(a,M), 1

2
vm(ua))

with ûa(ξ) := 1 − |â(ξ)|2, we have sr(a,M) > m and vm(ua) > 2m. Conse-

quently, we have |â(ξ + 2πω)|2 = O(‖ξ‖2m) as ξ → 0 for all ω ∈ ΩM\{0}, and

1− |â(ξ)|2 = ûa(ξ) = O(‖ξ‖2m) as ξ → 0. That is, we must have

Â(MTξ) = 1− |â(ξ)|2 −
∑

ω∈ΩM\{0}
|â(ξ + 2πω)|2 = O(‖ξ‖2m), ξ → 0.
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Since M is an invertible matrix, consequently we must have A(ξ) = O(‖ξ‖2m)

as ξ → 0. By Lemma 5.2.2, since A has real coefficients, there exist ε1, . . . , εt ∈
{−1, 1} and u1, . . . , ut ∈ l0(Zd) with real coefficients such that

A(ξ) =
t∑

`=1

ε`|û`(ξ)|2 with û`(ξ) = O(‖ξ‖m), ξ → 0, ∀ ` = 1, . . . , t.

(5.2.5)

Employing a similar idea as in [63], we now define the high-pass filters b1, . . . , bs ∈
l0(Zd) with s := t+ dM as follows:

b̂`(ξ) := â(ξ)û`(MTξ), ` = 1, . . . , t (5.2.6)

and

b̂t+j(ξ) := d
−1/2
M e−iγj ·ξ − d

1/2
M â(ξ)â[γj ](MTξ), j = 1, . . . , dM. (5.2.7)

Define εt+1 = · · · = εt+dM
:= 1. We now prove that {a; b1, . . . , bs}(ε1,...,εs) is a

quasi-tight M-framelet filter bank and vm(b`) > m for all ` = 1, . . . , s.

Let B` be defined as in (5.1.7). We now calculate B` for the high-pass

filters b` defined in (5.2.6) and (5.2.7). Let b` be defined in (5.2.6). Then

b̂
[γ]
` (ξ) = â[γ](ξ)û`(ξ) for γ ∈ ΓM. Therefore, by (5.2.5), we have

t∑
`=1

B`(ξ) =
t∑

`=1

ε`|û`(ξ)|2dM

[
â[γ1](ξ), . . . , â[γdM

](ξ)
]?[

â[γ1](ξ), . . . , â[γdM
](ξ)
]

= dMA(ξ)
[
â[γ1](ξ), . . . , â[γdM

](ξ)
]?[

â[γ1](ξ), . . . , â[γdM
](ξ)
]
.

(5.2.8)

Let b` be defined in (5.2.7) with ` = t + j. Then b̂
[γ]
` (ξ) = d

−1/2
M δ(γ − γj) −

d
1/2
M â[γ](ξ)â[γj ](ξ) for γ ∈ ΓM. Hence,

[
b̂

[γ1]
` (ξ), . . . ,

̂
b

[γdM
]

` (ξ)
]

= d
−1/2
M eT

j − d
1/2
M â[γj ](ξ)

[
â[γ1](ξ), . . . , â[γdM

](ξ)
]
.
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Therefore, by εt+1 = · · · = εt+dM
= 1,

t+dM∑
`=t+1

B`(ξ) =

dM∑
j=1

(
eje

T
j − dMej â[γj ](ξ)

[
â[γ1](ξ), . . . , â[γdM

](ξ)
]

−dM

[
â[γ1](ξ), . . . , â[γdM

](ξ)
]?
â[γj ](ξ)eT

j

+d2
M|â[γj ](ξ)|2

[
â[γ1](ξ), . . . , â[γdM

](ξ)
]?[

â[γ1](ξ), . . . , â[γdM
](ξ)
])

= IdM
+

(
−2dM + d2

M

dM∑
j=1

|â[γj ](ξ)|2
)
×

[
â[γ1](ξ), . . . , â[γdM

](ξ)
]?[

â[γ1](ξ), . . . , â[γdM
](ξ)
]
,

where IdM
stands for the dM×dM identity matrix. SinceA(ξ) = 1−dM

∑dM−1
j=0 |â[γj ](ξ)|2,

we have

−2dM + d2
M

dM∑
j=1

|â[γj ](ξ)|2 = −2dM + dM(1−A(ξ)) = −dM(1 +A(ξ)).

In other words, we obtain

t+dM∑
`=t+1

B`(ξ) = IdM
−dM(1+A(ξ))

[
â[γ1](ξ), . . . , â[γdM

](ξ)
]?[

â[γ1](ξ), . . . , â[γdM
](ξ)
]
.

Combining the above identity with (5.2.8) and noting that s = t+dM, we have

s∑
`=1

B`(ξ) = IdM
− dM

[
â[γ1](ξ), . . . , â[γdM

](ξ)
]?[

â[γ1](ξ), . . . , â[γdM
](ξ)
]

= Na(ξ).

That is, we verified the identity in (5.1.4). This proves that {a; b1, . . . , bs}(ε1,...,εs)

is a quasi-tight M-framelet filter bank.

We now prove that b̂`(ξ) = O(‖ξ‖m) as ξ → 0 for all ` = 1, . . . , s. By the

second identity in (5.2.5) and the definition of b` in (5.2.6), we trivially have

b̂`(ξ) = O(‖ξ‖m) as ξ → 0 for all ` = 1, . . . , t.

Let {ω1, . . . , ωdM
} = ΩM with ω1 := 0. By the identity in (1.2.8) with E(ξ)
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and U being defined in (1.2.9), we have[
â(ξ+2πω1), . . . , â(ξ+2πωdM

)
]

=
[
e−iγ1·ξâ[γ1](MTξ), . . . , e−iγdM

·ξâ[γdM
](MTξ)

]
U

(5.2.9)

and UU? = dMIdM
. Note that â(0) = 1 and ω1 = 0. Since sr(a,M) > m, by the

definition of sum rules in (1.1.9), we deduce from the above identity in (5.2.9)

that

[
e−iγ1·ξâ[γ1](MTξ), . . . , e−iγdM

·ξâ[γdM
](MTξ)

]
=[

â(ξ),O(‖ξ‖m), . . . ,O(‖ξ‖m)
]
U−1, ξ → 0.

Since U−1 = d−1
M U? = (d−1

M e−i2πγj ·ωk)16k,j6dM
and ω1 = 0, all the entries in the

first row of U−1 are d−1
M . Therefore, we conclude from the above identity that[

e−iγ1·ξâ[γ1](MTξ), . . . , e−iγdM
·ξâ[γdM

](MTξ)
]

= d−1
M â(ξ)[1, . . . , 1]+O(‖ξ‖m), ξ → 0.

That is, we proved

e−iγj ·ξâ[γj ](MTξ) = d−1
M â(ξ) +O(‖ξ‖m), ξ → 0, j = 1, . . . , dM. (5.2.10)

For b` defined in (5.2.7) with ` = t+ j, we deduce from the above identity that

b̂`(ξ) = d
−1/2
M e−iγj ·ξ(1− dMâ(ξ)e−iγj ·ξâ[γj ](MTξ))

= d
−1/2
M e−iγj ·ξ(1− |â(ξ)|2) +O(‖ξ‖m)

= d
−1/2
M e−iγj ·ξO(‖ξ‖2m) +O(‖ξ‖m) = O(‖ξ‖m)

as ξ → 0, where we used our assumption 1 − |â(ξ)|2 = ûa(ξ) = O(‖ξ‖2m) as

ξ → 0. This proves that all the high-pass filters b1, . . . , bs have at least order

m vanishing moments. �

One shortcoming of the quasi-tight M-framelet filter bank {a; b1, . . . , bs}(ε1,...,εs)

with high vanishing moments in Theorem 5.2.1 is that the supports of all the

high-pass filters b1, . . . , bs, constructed through (5.2.6) and (5.2.7), are much

larger than that of the low-pass filter a. This problem and the above proof
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of Theorem 5.2.1 motivate us to propose an algorithm solving only linear

equations for constructing quasi-tight framelet filter banks with vanishing mo-

ments. To do so, let us introduce some notations. For µ = (µ1, . . . , µd)
T, ν =

(ν1, . . . , νd)
T ∈ Nd

0, we say that µ < ν if either |µ| < |ν| or |µ| = |ν| and µj = νj

for j = 1, . . . , s−1 but µs < νs for some 1 6 s 6 d. Note that ΩM is a complete

set of representatives of distinct cosets of the quotient group [(MT)−1Zd]/Zd.
Therefore, ΩM can be regarded as an additive group under modulo Zd.

Lemma 5.2.3. Let b ∈ l0(Zd) and β ∈ ΩM. Define F (ξ) := (e−iγj ·(ξ+2πω))16j6dM,ω∈ΩM

and the dM × dM matrix Db,β by

[Db,β(ξ)]ω,η =

b̂(ξ + 2πω), if ω + β − η ∈ Zd,

0, if ω + β − η 6∈ Zd,
ω, η ∈ ΩM. (5.2.11)

Then

F (ξ)Db,β(ξ)F ?(ξ) = dMEb,β(MTξ) with Eb,β(ξ) :=
(
b̂[γk−γj ](ξ)eiγk·2πβ

)
16j,k6dM

.

(5.2.12)

Proof. Let j, k = 1, . . . , dM. We now compute the (j, k)-entry of the matrix on

the left-hand side of (5.2.12). Note that b̂(ξ) =
∑dM

p=1 b̂
[γp](MTξ)e−iγp·ξ.

[F (ξ)Db,β(ξ)F ?(ξ)]j,k =
∑
ω∈ΩM

[F (ξ)]j,ω[Db,β(ξ)]ω,ω+β[F ?(ξ)]ω+β,k

=
∑
ω∈ΩM

e−iγj ·(ξ+2πω)b̂(ξ + 2πω)eiγk·(ξ+2πω+2πβ)

=
∑
ω∈ΩM

dM∑
p=1

e−iγj ·(ξ+2πω)b̂[γp](MTξ)e−iγp·(ξ+2πω)eiγk·(ξ+2πω+2πβ)

=

dM∑
p=1

b̂[γp](MTξ)e−i(γp+γj−γk)·ξeiγk·2πβ
∑
ω∈ΩM

e−i(γp+γj−γk)·2πω.

Note that the last sum in the above identity is equal to dM if γp+γj−γk ∈ MZd

and 0 otherwise. Hence, we deduce from the above identity that

[F (ξ)Db,β(ξ)F ?(ξ)]j,k = dMb̂[γp](MTξ)e−iMαj,k·ξeiγk·2πβ = dMb̂[γk−γj ](MTξ)eiγk·2πβ,
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where we used the identity û[γ+Mα](ξ) = û[γ](ξ)eiα·ξ and αj,k ∈ Zd is the unique

integer such that γp = γk − γj + Mαj,k for the unique γp ∈ ΓM satisfying

γp + γj − γk ∈ MZd. This proves (5.2.12). �

Now we are ready to state another method for constructing quasi-tight

framelet filter banks with vanishing moments by solving only linear equations.

For the convenience of the reader, we state the following result in an algorith-

mic way. We now prove Theorem 5.2.1 by the second constructive method as

follows.

Theorem 5.2.2. Let M be a d × d dilation matrix and let a ∈ l0(Zd) be a

finitely supported real-valued sequence on Zd. Let m ∈ N0 such that m 6

min(sr(a,M), 1
2

vm(ua)), where ûa(ξ) := 1− |â(ξ)|2. Define

F (ξ) := (e−iγj ·(ξ+2πω))16j6dM,ω∈ΩM
. (5.2.13)

Define Na as in (5.1.5) and Eµ(ξ) := E∇µδ,0(ξ) as in (5.2.12).

(S1) Solve the system X of linear equations induced by

d−1
M Na(ξ) =

∑
|µ|=m

E?
µ(ξ)Aµ,µ(ξ)Eµ(ξ)

+
∑

µ<ν,|µ|=|ν|=m

(
E?
µ(ξ)Aµ,ν(ξ)Eν(ξ) + E?

ν(ξ)A
?
µ,ν(ξ)Eµ(ξ)

)
(5.2.14)

and

A?µ,µ(ξ) = Aµ,µ(ξ), ∀µ ∈ Nd
0, |µ| = m, (5.2.15)

for the coefficients in all the entries of the matrices Aµ,ν of 2πZd-periodic

trigonometric polynomials with |µ| = |ν| = m and µ 6 ν. The linear

system X always has a solution of Aµ,ν with real coefficients for |µ| =

|ν| = m and µ 6 ν, as long as the supports of their coefficients are large

enough.

(S2) For every (µ, ν) with |µ| = |ν| = m and µ < ν, factorize Aµ,ν(ξ) =

A?µ,ν,1(ξ)Aµ,ν,2(ξ) (e.g., Aµ,ν,1(ξ) = IdM
and Aµ,ν,2 = Aµ,ν(ξ)) for some
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dM × dM matrices Aµ,ν,1 and Aµ,ν,2 of 2πZd-periodic trigonometric poly-

nomials with real coefficients. Define

[b̂µ,ν,1(ξ), . . . , b̂µ,ν,dM
(ξ)]T := Aµ,ν,1(MTξ)F (ξ)e1∇̂µδ(ξ)

+ Aµ,ν,2(MTξ)F (ξ)e1∇̂νδ(ξ) (5.2.16)

and sµ,ν := dM and εµ,ν,` := 1 for all ` = 1, . . . , dM. Replace/update Aµ,µ

and Aν,ν by Aµ,µ − A?µ,ν,1Aµ,ν,1 and Aν,ν − A?µ,ν,2Aµ,ν,2, respectively.

(S3) For every µ ∈ Nd
0 with |µ| = m, apply Theorem 5.1.2 to the updated Aµ,µ

so that Aµ,µ(ξ) =
∑sµ,µ

`=1 εµ,µ,`u
?
`(ξ)u`(ξ), where εµ,µ,` ∈ {−1, 1} and u` is

a 1×dM row vector of 2πZd-periodic trigonometric polynomials with real

coefficients for ` = 1, . . . , sµ,µ. Define

b̂µ,µ,`(ξ) := ∇̂µδ(ξ)u`(MTξ)F (ξ)e1, ` = 1, . . . , sµ,µ. (5.2.17)

Define

{(b1, ε1), . . . , (bs, εs)} := {(bµ,ν,`, εµ,ν,`) : µ, ν ∈ Nd
0, |µ| = |ν| = m,µ 6 ν,

` = 1, . . . , sµ,ν}.

Then {a; b1, . . . , bs}(ε1,...,εs) is a quasi-tight M-framelet filter bank such that all

the high-pass filters have at least order m vanishing moments, i.e., vm(b`) > m

for all ` = 1, . . . , s.

Proof. Let {ω1, . . . , ωdM
} := ΩM with ω1 := 0. For b ∈ (l0(Zd))r, for simplicity

of presentation, we define r × dM matrices

Gb(ξ) := [b̂[γ1](ξ), . . . , b̂[γdM
](ξ)] and Hb(ξ) := [̂b(ξ+2πω1), . . . , b̂(ξ+2πωdM

)].

By (1.2.8), we have Hb(ξ) = Gb(MTξ)F (ξ).

Define Dµ(ξ) := D∇µδ,0(ξ) as in (5.2.11). For µ < ν in (S2), by the

definition of bµ,ν,` in (5.2.16) and the identity in (1.2.8), we have

H[bµ,ν,1,...,bµ,ν,dM
]T(ξ) = Aµ,ν,1(MTξ)F (ξ)Dµ(ξ) + Aµ,ν,2(MTξ)F (ξ)Dν(ξ).
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Since F (ξ)F ?(ξ) = dMIdM
, we deduce from the identity Hb(ξ) = Gb(MTξ)F (ξ)

and (5.2.12) that

G[bµ,ν,1,...,bµ,ν,dM
]T(MTξ) =d−1

M H[bµ,ν,1,...,bµ,ν,dM
]T(ξ)F ?(ξ)

=Aµ,ν,1(MTξ)Eµ(MTξ) + Aµ,ν,2(MTξ)Eν(MTξ).

That is, we proved

G[bµ,ν,1,...,bµ,ν,dM
]T(ξ) = Aµ,ν,1(ξ)Eµ(ξ) + Aµ,ν,2(ξ)Eν(ξ).

Therefore, by εµ,ν,` = 1 for all ` = 1, . . . , dM, we deduce from the above identity

that

dM∑
`=1

εµ,ν,`G
?
bµ,ν,`

(ξ)Gbµ,ν,`(ξ) = G?
[bµ,ν,1,...,bµ,ν,dM

]T(ξ)G[bµ,ν,1,...,bµ,ν,dM
]T(ξ)

=
(
E?
µA

?
µ,ν,1(ξ) + E?

ν(ξ)A
?
µ,ν,2(ξ)

)(
Aµ,ν,1(ξ)Eµ(ξ) + Aµ,ν,2(ξ)Eν(ξ)

)
= E?

µ(ξ)A?µ,ν,1(ξ)Aµ,ν,1(ξ)Eµ(ξ) + E?
ν(ξ)A

?
µ,ν,2(ξ)Aµ,ν,2(ξ)Eν(ξ)

+
(
E?
µ(ξ)A?µ,ν,1(ξ)Aµ,ν,2(ξ)Eν(ξ) + E?

ν(ξ)A
?
µ,ν,2(ξ)Aµ,ν,1(ξ)Eµ(ξ)

)
.

As we shall see below, the first two terms in the last expression of the last

identity have been handled by the updated Aµ,µ and Aν,ν in (S2) (see proof

below).

For µ ∈ Nd
0 with |µ| = m, we have Hbµ,µ,`(ξ) = u`(MTξ)F (ξ)Dµ(ξ). There-

fore, Gbµ,µ,`(ξ) = u`(ξ)Eµ(ξ) for all ` = 1, . . . , sµ,µ. Hence,

sµ,µ∑
`=1

εµ,µ,`G
?
bµ,µ,`

(ξ)Gbµ,µ,`(ξ) = E?
µ(ξ)

sµ,µ∑
`=1

εµ,µ,`u
?
`(ξ)u`(ξ)Eµ(ξ) = E?

µ(ξ)Aµ,µ(ξ)Eµ(ξ),

where Aµ,µ is the updated version in (S2). Therefore, we proved

s∑
`=1

εsG
?
b`

(ξ)Gb`(ξ) =
∑
|µ|=m

E?
µ(ξ)Aµ,µ(ξ)Eµ(ξ)

+
∑

µ<ν,|µ|=|ν|=m
(E?

µ(ξ)Aµ,ν(ξ)Eν(ξ) + E?
ν(ξ)A

?
µ,ν(ξ)Eµ(ξ))
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= d−1
M Na(ξ).

Hence, we verified the condition in (5.1.4) and consequently, {a; b1, . . . , bs}(ε1,...,εs)

is a quasi-tight M-framelet filter bank.

Since ∇̂µδ(ξ) = O(‖ξ‖|µ|) as ξ → 0 for all µ ∈ Nd
0, it follows directly from

(5.2.16) and (5.2.17) that b̂`(ξ) = O(‖ξ‖m) as ξ → 0 for all ` = 1, . . . , s. Hence,

all the high-pass filters have at least order m vanishing moments.

To complete the proof, we now prove the existence of a desired solution to

the linear system X induced by (5.2.14) and (5.2.15). We first prove that X

must have a solution (probably with complex coefficients) and then we prove

that X must have a solution with real coefficients. Define

â1(ξ) := 1− |â(ξ)|2 and âj(ξ) := −â(ξ)â(ξ + 2πωj), j = 2, . . . , dM.

(5.2.18)

By ω1 = 0 and the definition of the matrices Db,β in (5.2.11), it is straightfor-

ward to observe that

N (ξ) :=IdM
−
[
â(ξ + 2πω1), . . . , â(ξ + 2πωdM

)
]?[

â(ξ + 2πω1), . . . , â(ξ + 2πωdM
)
]

=

dM∑
j=1

Daj ,ωj(ξ).

Since F (ξ)F ?(ξ) = dMIdM
, we deduce from (1.2.8), (5.2.12) and the above

identity that

Na(MTξ) = d−1
M F (ξ)N (ξ)F ?(ξ) = d−1

M

dM∑
j=1

F (ξ)Daj ,ωj(ξ)F
?(ξ). (5.2.19)

Suppose that we can prove

âj(ξ) =
∑

µ,ν∈Nd0,|µ|=|ν|=m
∇̂µδ(ξ)∇̂νδ(ξ + 2πωj)ûj,µ,ν(ξ), j = 1, . . . , dM,

(5.2.20)
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for some uj,µ,ν ∈ l0(Zd). Then by the definition in (5.2.11), we must have

Daj ,ωj(ξ) =
∑

µ,ν∈Nd0,|µ|=|ν|=m
D?
∇µδ,0(ξ)Duj,µ,ν ,ωj(ξ)D∇νδ,0(ξ).

Consequently, by (5.2.12) and Eµ := E∇µδ,0, we deduce that

F (ξ)Daj ,ωj(ξ)F
?(ξ)

=d−2
M

∑
µ,ν∈Nd0,|µ|=|ν|=m

F (ξ)D?
∇µδ,0(ξ)F ?(ξ)F (ξ)Duj,µ,ν ,ωj(ξ)F

?(ξ)F (ξ)D∇νδ,0(ξ)F ?(ξ)

=dM

∑
µ,ν∈Nd0,|µ|=|ν|=m

E?
µ(MTξ)Euj,µ,ν ,ωj(MTξ)Eν(MTξ).

Now we deduce from (5.2.19) that

d−1
M Na(MTξ) = d−1

M

dM∑
j=1

∑
µ,ν∈Nd0,|µ|=|ν|=m

E?
µ(MTξ)Euj,µ,ν ,ωj(MTξ)Eν(MTξ).

Therefore, we proved

d−1
M Na(ξ) = d−1

M

dM∑
j=1

∑
µ,ν∈Nd0,|µ|=|ν|=m

E?
µ(ξ)Euj,µ,ν ,ωj(ξ)Eν(ξ). (5.2.21)

Note that N ?
a (ξ) = Na(ξ). Define

Aµ,ν(ξ) :=
1

2dM

dM∑
j=1

(
Euj,µ,ν (ξ)+E

?
uj,ν,µ

(ξ)
)
, µ, ν ∈ Nd

0, |µ| = |ν| = m,µ 6 ν.

From (5.2.21), it is trivial to verify that these Aµ,ν satisfy both (5.2.14) and

(5.2.15). That is, we proved that the linear system X induced by (5.2.14) and

(5.2.15) must have a solution (but probably with complex coefficients).

For a 2πZd-periodic trigonometric polynomial û, it is straightforward to

see that û has real coefficients if and only if û(−ξ) = û(ξ). Since the low-pass

filter a and all the filters ∇µδ have real coefficients, we observe that Na and

Eµ have real coefficients. Changing ξ into −ξ and applying complex conjugate
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to (5.2.14) , it is trivial to see that (5.2.14) still holds if we replace all Aµ,ν(ξ)

by Aµ,ν(−ξ), respectively. Consequently, if we replace Aµ,ν(ξ) by 1
2
(Aµ,ν(ξ) +

Aµ,ν(−ξ)), then (5.2.14) and (5.2.15) still hold. Since all 1
2
(Aµ,ν(ξ)+Aµ,ν(−ξ))

have real coefficients, we proved that the linear system X induced by (5.2.14)

and (5.2.15) must have a solution with real coefficients.

To complete the proof, we now prove (5.2.20). From the definition in

(5.2.18), we have â1(ξ) = O(‖ξ‖2m) as ξ → 0. Note that ∇̂µδ(ξ)∇̂νδ(ξ) =

∇̂µ+νδ(ξ)(−1)|µ|eiµ·ξ. Hence, we conclude from Lemma 5.2.1 that (5.2.20)

holds for j = 1. For j = 2, . . . , dM, the sum rule condition of a implies

that â(ξ ± 2πωj) = O(‖ξ‖m). According to Lemma 5.2.1, there exists some

uj,µ, vj,µ ∈ l0(Zd) for each µ ∈ Nd
0, |µ| = m, such that

â(ξ+2πωj) =
∑

µ∈Nd0,|µ|=m
∇̂µδ(ξ)ûj,µ(ξ), â(ξ−2πωj) =

∑
ν∈Nd0,|ν|=m

∇̂νδ(ξ)v̂j,ν(ξ)

hold. The above second identity implies that â(ξ) =
∑

ν∈Nd0,|ν|=m ∇̂
νδ(ξ +

2πωj)v̂j,ν(ξ + 2πωj). Therefore,

â(ξ)â(ξ + 2πωj)

=
∑

µ,ν∈Nd0, |µ|=|ν|=m
∇̂νδ(ξ + 2πωj)v̂j,ν(ξ + 2πωj)∇̂µδ(ξ)ûj,µ(ξ)

=
∑

µ,ν∈Nd0, |µ|=|ν|=m
∇̂µδ(ξ)∇̂νδ(ξ + 2πωj)e

−iµ·ξeiν·(ξ+2πωj)ûj,µ(ξ)v̂j,ν(ξ + 2πωj).

Define ûj,µ,ν(ξ) := −e−iµ·ξeiν·(ξ+2πωj)ûj,µ(ξ)v̂j,ν(ξ + 2πωj), we proved (5.2.20)

for j = 2, . . . , dM. �

As a special case of Theorem 5.2.2, we have the following result.

Corollary 5.2.3. Let M be a d × d dilation matrix and let a ∈ l0(Zd) be a

finitely supported real-valued sequence on Zd. Let m ∈ N0 such that m 6

min(sr(a,M), 1
2

vm(ua)), where ûa(ξ) := 1 − |â(ξ)|2. Define Na as in (5.1.5),

F (ξ) as in (5.2.13) and Eµ(ξ) := E∇µδ,0(ξ) as in (5.2.12). If there exist Aµ,µ

with real coefficients for |µ| = m satisfying
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d−1
M Na(ξ) =

∑
|µ|=m

E?
µ(ξ)Aµ,µ(ξ)Eµ(ξ) and A?µ,µ(ξ) = Aµ,µ(ξ),

|µ| = m,µ ∈ Nd
0, (5.2.22)

(Such a solution to (5.2.22) always exists in dimension one, i.e., d = 1), then

there exist b1, . . . , bs ∈ l0(Zd) with real coefficients and ε1, . . . , εs ∈ {−1, 1}
such that {a; b1, . . . , bs}(ε1,...,εs) is a quasi-tight M-framelet filter bank such that

all high-pass filters b`, ` = 1, . . . , s have at least order m vanishing moments

and all the high-pass filters take the form either b̂`(ξ) = c`e
−iα`·ξ∇̂µδ(ξ) (i.e.,

b` = c`(∇µδ(·−α`)) or b̂`(ξ) = c`e
−iα`·ξ∇̂µδ(ξ)∇̂β`δ(ξ) (i.e., b` = c`[(∇µδ)(·−

α`)− (∇µδ)(· − α` − β`)]) for some c` ∈ R, α`, β` ∈ Zd and some µ ∈ Nd
0 with

|µ| = m.

Proof. For the one dimensional case d = 1, there are no terms satisfying

µ < ν and |µ| = |ν|. Consequently, (5.2.14) becomes (5.2.22). Therefore, the

existence of a solution to (5.2.22) with d = 1 is guaranteed by Theorem 5.2.2.

The claim follows directly by applying Theorem 5.1.2 to each Aµ,µ. �

We call the high-pass filters constructed in Corollary 5.2.3 as differencing

filters since all of them takes the form ∇µδ or their differences.

5.3 Illustrative Examples

5.3.1 Examples of Multivariate Quasi-tight Framelets

with Directionality

In this section, we provide several examples of directional quasi-tight or tight

framelets. Using the algorithm appeared in the proof of Theorem 5.1.1, we

can recover all the examples of directional tight 2Id-framelets obtained in [47]

derived from box-spline refinable functions. We now provide some other ex-

amples using different dilation matrix M.

Example 5.2. Let d = 1 and M = 2. We consider the following interpolatory

filter

a = {− 1
32
, 0, 9

32
, 1
2
, 9

32
, 0,− 1

32
}[−3,3]. (5.3.1)
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Using Theorem 5.1.1, we have a quasi-tight 2-framelet filter bank {a; b1, . . . , b7}(ε1,...,ε7),

where

b1 = {−3
8
, 3

8
}[0,1], b2 = {−3

8
, 3
8
}[−1,0], b3 = {− 1

32
, 0, 0,0, 0, 0, 1

32
}[−3,3],

b4 = {−3
√

7
32
,0, 3

√
7

32
}[−1,1], b5 = {−1

8
,0, 0, 1

8
}[−1,2], b6 = {−1

8
, 0,0, 1

8
}[−2,1],

b7 = {−3
√

2
32
,0, 0, 0, 3

√
2

32
}[−1,3]

with ε1 = · · · = ε4 = 1 and ε5 = · · · = ε7 = −1. Since sm(a, 2) ≈ 2.440765,

{φ;ψ1, . . . , ψ7} is a quasi-tight 2-framelet in L2(R), where φ, ψ1, . . . , ψ7 are

defined in (5.1.1) with M = 2 and s = 7.

(a) φ (b) ψ1 (c) ψ2 (d) ψ3

(e) ψ4 (f) ψ5 (g) ψ6 (h) ψ7

Figure 5.1: In Example 5.2: (a) Refinable function φ. (b) - (h) Framelet functions
ψ1, . . . , ψ7 corresponding to the high-pass filters.

Example 5.3. For d = 2, we consider the quincunx dilation matrix M√2 and

a low-pass filter a:

M√2 =

[
1 1

1 −1

]
, a =


0 1

8
0

1
8

1
2

1
8

0 1
8

0


[−1,1]×[−1,1]

. (5.3.2)

Using Theorem 5.1.1, we have a directional tight M√2-framelet filter bank
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{a; b1, . . . , b8}, where

b1 =
[
−1

4
1
4

]
[0,1]×[0,0]

, b2 =
[
−1

4
1
4

]
[0,1]×[−1,−1]

, b3 =

[
−1

4
1
4

]
[1,1]×[−1,0]

,

b4 =

[
−1

4
1
4

]
[1,1]×[0,1]

, b5 =
[
−1

8
0 1

8

]
[−1,1]×[0,0]

, b6 =

−
1
8

0
1
8


[0,0]×[−1,1]

,

b7 =

[
0 −

√
2

8√
2

8
0

]
[0,1]×[−1,0]

, b8 =

[
−
√

2
8

0

0
√

2
8

]
[0,1]×[0,1]

.

Note that sr(a,M√2) = 2. Since sm(a,M√2) ≈ 1.577645, {φ;ψ1, . . . , ψ8} is a

(directional) tight M√2-framelet in L2(R2), where φ, ψ1, . . . , ψ8 are defined in

(5.1.1) with M = M√2 and s = 7.

Example 5.4. For d = 2, we consider the dilation matrix M√3 and a low-pass

filter a as follows:

M√3 =

[
1 −2

2 −1

]
, a =


0 1

9
1
9

1
9

1
3

1
9

1
9

1
9

0


[−1,1]×[−1,1]

.

Using Theorem 5.1.1, we have a directional tight M√3-framelet filter bank

{a; b1, . . . , b18}, where

b1 =
[
−
√
3
9

√
3

9

]
[0,1]×[0,0]

, b2 =
[
−
√

3
9

√
3

9

]
[1,2]×[1,1]

, b3 =

[
−
√

3
9√
3

9

]
[1,1]×[−1,0]

,

b4 =

[
−
√

3
9√
3

9

]
[1,1]×[1,2]

, b5 =

[
−
√

2
9√
2

9

]
[1,1]×[0,1]

, b6 =
[
−
√

2
9

√
2

9

]
[0,1]×[1,1]

,

b7 =

[
0 −

√
3

9√
3

9
0

]
[1,2]×[0,1]

, b8 =

[
0 −

√
3

9√
3
9

0

]
[0,1]×[0,1]

, b9 =

[
0 −

√
2

9√
2

9
0

]
[1,2]×[1,2]

,
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(b) ψ1
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1

-0.2
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0
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(c) ψ2

-0.3
2
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0.1

2

0.2

0.3

1-2
0

-4 -1

(d) ψ3

-0.3
4
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0.3

10
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(e) ψ4

-0.15
2

-0.1
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1 4
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20
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0
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(f) ψ5

-0.15
4
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0.05
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0.15

0
-2 -1

-4 -2

(g) ψ6

-0.2
2

-0.1

3

0

0 2

0.1

1

0.2

-2 0
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-4 -2

(h) ψ7

-0.2
4

-0.1

3

0

2 2

0.1

1

0.2

0 0
-1
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(i) ψ8

Figure 5.2: In Example 5.3: (a) Refinable function φ (b) - (i) Framelet functions
ψ1, . . . , ψ8 corresponding to the high-pass filters.

b10 =
[
−1

9
0 1

9

]
[1,3]×[1,1]

, b11 =

−
1
9

0
1
9


[1,1]×[1,3]

, b12 =

[
−1

9
0

0 1
9

]
[1,2]×[−1,0]

,

b13 =

[
−1

9
0

0 1
9

]
[1,2]×[0,1]

, b14 =

0 −1
9

0 0
1
9

0


[0,1]×[−2,0]

, b15 =

0 −1
9

0 0
1
9

0


[0,1]×[−1,1]

,

b16 =

[
0 0 −1

9
1
9

0 0

]
[1,3]×[0,1]

, b17 =

[
0 0 −1

9
1
9

0 0

]
[1,3]×[1,2]

, b18 =

0 0 −1
9

0 0 0
1
9

0 0


[−1,1]×[−1,1]

.
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Since sm(a,M√3) ≈ 1.657138, {φ;ψ1, . . . , ψ18} is a (directional) tight M√3-

framelet in L2(R2), where φ, ψ1, . . . , ψ18 are defined in (5.1.1) with M = M√3

and s = 18.

5.3.2 Examples of Multivariate Quasi-tight Framelets

with High Order of Vanishing Moments

In this section we shall illustrate Theorem 5.2.2 and Corollary 5.2.3 for con-

structing quasi-tight framelets with high vanishing moments from arbitrary

refinable functions. Let us first present a one-dimensional example to illus-

trate Corollary 5.2.3 for constructing quasi-tight framelets with all high-pass

filters being special differencing filters. Recall that ûa(ξ) := 1− |â(ξ)|2.

Example 5.5. Consider the interpolatory low-pass filter a in (5.3.1) of Ex-

ample 5.2. Since sr(a, 2) = 4 and vm(ua) = 4, according to the inequality

in (5.0.1), the highest order of vanishing moments that we can achieve is 2.

Using Corollary 5.2.3 with m = 2, we have a quasi-tight 2-framelet filter bank

{a; b1, . . . , b9}(ε1,...,ε9), where all the high-pass filters are differencing filters given

by

b̂1(ξ) =
√

2
32

(1− e−iξ)2(1− e3iξ), b̂2(ξ) =
√

2
32

(1− e−iξ)2(e−iξ − e2iξ),

b̂3(ξ) = 1
16

(1− e−iξ)2(1− e2iξ), b̂4(ξ) = 1
32

(1− e−iξ)2(e3iξ − e−iξ),
b̂5(ξ) =

√
3

4
(1− e−iξ)2, b̂6(ξ) =

√
3

4
(1− e−iξ)2e−iξ, b̂7(ξ) =

√
42

32
(1− e−iξ)3,

b̂8(ξ) =
√

42
32

(1− e−iξ)3eiξ, b̂9(ξ) =
√

3
16

(1− e−iξ)2(e−iξ − eiξ),

and ε1 = · · · ε6 = 1 and ε7 = · · · = ε9 = −1. Note that the high-pass filters

b5 and b6 have 2 vanishing moments, while all other high-pass filters have

3 vanishing moments. Since sm(a, 2) ≈ 2.440765, {φ;ψ1, . . . , ψ9}(ε1,...,ε9) is a

quasi-tight 2-framelet in L2(R), where φ, ψ1, . . . , ψ9 are defined in (5.1.1) with

M = 2 and s = 9. Note that all the functions ψ1, . . . , ψ9 have at least 2

vanishing moments.
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(a) ψ1 (b) ψ2 (c) ψ3

(d) ψ4 (e) ψ5 (f) ψ6

(g) ψ7 (h) ψ8 (i) ψ9

Figure 5.3: In Example 5.5: (a) - (i) Framelet functions ψ1, . . . , ψ9 corresponding
to the high-pass filters.

Example 5.6. Consider the bivariate low-pass filter

a =


− 1

16
1
8
− 1

16

1
8

3
4

1
8

− 1
16

1
8
− 1

16


[−1,1]×[−1,1]

.

Since sr(a,M√2) = 2 and vm(ua) = lpm(a) = 4, according to the inequality

in (5.0.1), the highest order of vanishing moments that we can achieve is 2.

Using Theorem 5.2.2 with m = 2, we obtain a quasi-tight M√2-framelet filter
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bank {a; b1, . . . , b7}(ε1,...,ε7), where

b̂1(ξ) =
√

2
2

(1− e−iξ2)2 −
√

2
256

(1− e−iξ1)(1− e−iξ2)(1− e−i(ξ2−ξ1)),

b̂2(ξ) =
√

2
2

(1− e−iξ2)2 −
√

2
512

(1− e−iξ1)2(e−2iξ2 − 1− 16e−i(ξ2−ξ1)),

b̂3(ξ) = 129
√

2
256

(1− e−iξ1)2 +
√

2
256

(1− e−iξ1)(1− e−iξ2)(e−iξ1 − 2 + e−i(ξ1−2ξ2)),

b̂4(ξ) =
√

2
2

(1− e−iξ2)2 +
√

2
256

(1− e−iξ1)(1− e−iξ2)(1− e−i(ξ2−ξ1)),

b̂5(ξ) =
√

2
2

(1− e−iξ2)2 +
√

2
512

(1− e−iξ1)2(e−2iξ2 − 1− 16e−i(ξ2−ξ1)),

b̂6(ξ) = 127
√

2
256

(1− e−iξ1)2 −
√

2
256

(1− e−iξ1)(1− e−iξ2)(e−iξ1 − 2 + e−i(ξ1−2ξ2)),

b̂7(ξ) = 1
8
(1− e−iξ1)2e−iξ1

with ε1 = ε2 = ε3 = 1, and ε4 = ε5 = ε6 = ε7 = −1. All the high-pass

filters have at least 2 vanishing moments. Since sm(a,M√2) ≈ 0.235724,

{φ;ψ1, . . . , ψ7}(ε1,...,ε7) is a quasi-tight M√2-framelet in L2(R2), where φ, ψ1, . . . , ψ7

are defined in (5.1.1) with M = M√2 and s = 7. Note that all the functions

ψ1, . . . , ψ7 have at least 2 vanishing moments.

Example 5.7. For d = 2, we consider the low-pass filter

a =



0 0 − 1
16

0 0

0 1
16

1
8

1
16

0

− 1
16

1
8

1
2

1
8
− 1

16

0 1
16

1
8

1
16

0

0 0 − 1
16

0 0


[−2,2]×[−2,2]

.

Since sr(a,M√2) = 2 and vm(ua) = lpm(a) = 4, according to the inequality in

(5.0.1), the highest order of vanishing moments that we can achieve is 2. Using

Corollary 5.2.3 with m = 2, we obtain a quasi-tight M√2-framelet filter bank

{a; b1, . . . , b19}(ε1,...,ε19), where all the high-pass filters are differencing filters

given by

b̂1(ξ) = 1
16

(1− e2iξ2)(1− e−iξ2)2, b̂2(ξ) =
√

6
8

(1− e−iξ2)2,

b̂3(ξ) =
√

2
8
e−iξ1(1− e−iξ2)2, b̂4(ξ) = 3

16
(1− e−i(ξ2−ξ1))(1− e−iξ1)(1− e−iξ2),
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b̂5(ξ) = 3
16

(e−iξ1 − eiξ2)(1− e−iξ1)(1− e−iξ2), b̂6(ξ) =
√

3
16

(1− e−2iξ2)(1− e−iξ1)2,

b̂7(ξ) = 1
16

(1− e2iξ1)(1− e−iξ1)2, b̂8(ξ) =
√

6
8

(1− e−iξ1)2,

b̂9(ξ) =
√

2
8
e−iξ1(1− e−iξ1)2, b̂10(ξ) =

√
2

16
(1− e−iξ1)(1− e−iξ2)2,

b̂11(ξ) =
√

2
16

(1− ei(ξ1+ξ2))(1− e−iξ2)2, b̂12(ξ) =
√

2
16

(1− e−i(ξ2−ξ1))(1− e−iξ2)2,

b̂13(ξ) =
√

10
32

(e−iξ1 − eiξ1)(1− e−iξ2)2, b̂14(ξ) =
√

2
16

(e−2iξ1 − e−iξ1)(1− e−iξ2)2,

b̂15(ξ) =
√

2
16

(1− ei(ξ1+ξ2))(1− e−iξ1)2, b̂16(ξ) = 1
4
(1− e−iξ1)(1− e−iξ2),

b̂17(ξ) = 1
4
e−iξ1(1− e−iξ1)(1− e−iξ2), b̂18(ξ) =

√
2

16
(1− e−i(ξ2−ξ1))(1− e−iξ1)2,

b̂19(ξ) =
√

26
32

(e−i(ξ1+2ξ2) − e−iξ1)(1− e−iξ1)2,

and ε1 = · · · = ε9 = 1 and ε10 = · · · = ε19 = −1. Since sm(a,M√2) ≈ 1.801593,

{φ;ψ1, . . . , ψ19}(ε1,...,ε19) is a quasi-tight M√2-framelet in L2(R2), where φ, ψ1, . . . , ψ19

are defined in (5.1.1) with M = M√2 and s = 19. Note that all the functions

ψ1, . . . , ψ19 have at least 2 vanishing moments.

Without requiring differencing high-pass filters, we can obtain a quasi-tight

M√2-framelet filter bank {a; b1, b2, b3}(1,1,−1), where

b1 =

 0 −
√

2
8

0

−
√
2
8

√
2

2
−
√

2
8

0 −
√

2
8

0


[0,2]×[−1,1]

, b2 =

 0 −
√

6
8

0
√
6
8

0
√

6
8

0 −
√

6
8

0


[0,2]×[−1,1]

,

b3 =



0 0 − 1
16

0 0

0 1
16

1
8

1
16

0

− 1
16

1
8
−1

2
1
8
− 1

16

0 1
16

1
8

1
16

0

0 0 − 1
16

0 0


[−2,2]×[−2,2]

with vm(b1) = vm(b2) = 2, and vm(b3) = 4. Since sm(a,M√2) ≈ 1.801593,

{φ;ψ1, ψ2, ψ3}(1,1,−1) is a quasi-tight M√2-framelet in L2(R2), where φ, ψ1, ψ2, ψ3

are defined in (5.1.1) with M = M√2 and s = 3. Note that all the functions

ψ1, ψ2, ψ3 have at least 2 vanishing moments.
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Figure 5.4: In Example 5.7: (a) Refinable function φ. (b) - (d) Framelet functions
ψ1, ψ2, ψ3 corresponding to the high-pass filters.

Example 5.8. For d = 2, we consider the following bivariate low-pass filter

a =



0 0 − 1
64
− 1

32
− 1

64

0 − 1
32

5
32

5
32

− 1
32

− 1
64

5
32

11
32

5
32

− 1
64

− 1
32

5
32

5
32

− 1
32

0

− 1
64
− 1

32
− 1

64
0 0


[−2,2]×[−2,2]

.

Since sr(a, 2I2) = 2 and vm(ua) = lpm(a) = 4, according to the inequality

in (5.0.1), the highest order of vanishing moments that we can achieve is 2.

Using Theorem 5.2.1 with m = 2, we obtain a quasi-tight 2I2-framelet filter
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bank {a; b1, . . . , b5}(ε1,...,ε5), where

b1 =


1
16

0 − 5
16

0 1
2

0

− 5
16

0 1
16


[0,2]×[0,2]

, b2 =


0 0 − 5

16
0 1

16

0 0 1
2

0 0

1
16

0 − 5
16

0 0


[−2,2]×[0,2]

,

b3 =



0 0 1
16

0 0 0

− 5
16

1
2
− 5

16

0 0 0

1
16

0 0


[0,2]×[−2,2]

, b4 =



0 0 1
16

0 0

0 0 0 0 0

0 0 − 3
16

0 1
16

0 0 0 0 0

1
16

0 0 0 0


[−2,2]×[−2,2]

,

b5 =



0 0 − 1
64
− 1

32
− 1

64

0 − 1
32

5
32

5
32

− 1
32

− 1
64

5
32

−21
32

5
32

− 1
64

− 1
32

5
32

5
32

− 1
32

0

− 1
64
− 1

32
− 1

64
0 0


[−2,2]×[−2,2]

and ε1 = ε2 = ε3 = 1 and ε4 = ε5 = −1. Note that vm(b1) = . . . = vm(b4) = 2

and vm(b5) = 4. Since sm(a, 2I2) ≈ 0.885296, {φ;ψ1, . . . , ψ5}(ε1,...,ε5) is a

quasi-tight 2I2-framelet in L2(R2), where φ, ψ1, . . . , ψ5 are defined in (5.1.1)

with M = 2I2 and s = 5. Note that all the functions ψ1, . . . , ψ5 have at least

2 vanishing moments.
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Figure 5.5: In Example 5.8: (a) Refinable function φ. (b) - (f) Framelet functions
ψ1, . . . , ψ5 corresponding to the high-pass filters.
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Chapter 6

Conclusions and Future Work

In this thesis, we studied the construction of OEP-based quasi-tight framelets

in both univariate and multivariate cases. For the one-dimensional case studied

in Chapter 2 and Chapter 3, we proved that given a refinable function φ ∈
L2(R) derived from an arbitrary low-pass filter a ∈ l0(Z), â(0) = 1 and an

arbitrary moment correcting filter Θ ∈ l0(Z), Θ? = Θ, Θ̂(0) = 1, we can always

derive a homogeneous quasi-tight framelet {ψ1, . . . , ψs}(ε1,...,εs) ⊂ L2(Rd) with

highest possible order of vanishing moments, for all s > maxz∈T ν+(Ma,Θ(z))+

maxz∈T ν−(Ma,Θ(z)). Our construction is based on the generalized spectral

factorization of Hermitian matrices of Laurent polynomials in Theorem 2.3.1

and Theorem 3.1.2. In Chapter 4, we studied the quasi-tight framelet system

{ψ1, ψ2}(1,−1) with symmetry. Given a low-pass filter a ∈ l0(Z) and a moment

correcting filter Θ ∈ l0(Z) with symmetry, such that a(1) = Θ(1) = 1 and Θ? =

Θ, we find the necessary and sufficient conditions for the existence of quasi-

tight framelet filter bank {a; b1, b2}Θ,(1,−1) with symmetry in Theorem 4.4.2.

The construction is also based on the result of spectral factorizations of 2× 2

matrices of Laurent polynomials with symmetry in Theorem 4.3.6. In the

multivariate case studied in Chapter 5, given an arbitrary dilation matrix M

and an M-refinable function φ ∈ L2(Rd) derived from some real-valued low-pass

filter a ∈ l0(Zd), â(0) = 1, we proved that we can always derive a quasi-tight

framelet {φ;ψ1, . . . , ψs} ⊂ L2(Rd), with directionality or highest possible order

of vanishing moments.

There are a few related questions that are still unresolved, which could be
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future research problems.

In the univariate case, we might still be able to get some stronger versions

of the Theorem 2.3.1 and Theorem 3.1.2 on spectral factorizations of matrices

of Laurent polynomials. For the positive semi-definite version of Theorem 2.3.1

(known as Matrix-Valued Fejér-Riesz Lemma), it can be shown (see [54]) that if

the given Hermitian matrix A(z) of Laurent polynomials has real coefficients,

then the factorized matrix U(z) of Laurent polynomials can also have real

coefficients. However, the construction procedure in our proof of Theorem 2.3.1

relies on the Theorem 2.3.5, which cannot guarantee real factorizations in

general. We might need some new construction ideas to get real solutions.

Also, the construction algorithms we built in Chapters 2, 3 and 4 generally

require steps of finding roots of Laurent polynomials in C \ {0}. This type

of algorithms is good enough in the theoretical proof of the existence of the

solution. However, they are not numerically stable in the computation. Nu-

merical aspects of spectral factorizations of matrices of polynomials/Laurent

polynomials have been studied using different approaches in the literature (for

example, see [56, 26, 89, 1] and many references therein). But to the best

of our knowledge, there is no result built in the setting of Theorem 2.3.1 or

Theorem 3.1.2. This could also be a future research topic.

Although there are quite a few results in constructing framelets with sym-

metry, characterizing all possible framelets with symmetry is still not an easy

task. Using two framelet generators, [40, 48] characterized all the possible

tight framelet filter banks {a; b1, b2}Θ with symmetry, where the conditions

are similar to those of our Theorem 4.3.6 and Theorem 4.4.2 for quasi-tight

framelet filter bank {a; b1, b2}Θ,(1,−1). For tight framelets with three genera-

tors, [43] classified the possible symmetry types of the high-pass filters into two

cases, and fully characterized one of them. Therefore, we can see that the com-

plete characterizations of general tight/quasi-tight framelets with symmetry

(or spectral factorizations of matrices of Laurent polynomials with symmetry)

are still unknown in the literature.

In the multivariate case, since our construction is so flexible that we can

use any arbitrary low-pass filter a and dilation matrix M to construct high-

pass filters with directionality, we might try to apply such transforms on signal
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processing tasks. Besides the directionality property, another benefit of using

the framelets we constructed in Section 5.1 is that the high-pass filters are

only supported on two points. In the signal processing applications, we need

to calculate the discrete framelet/wavelet transform of the 2D/3D signal using

the filter bank. The bottleneck of the computational speed is usually the

lack of efficiency in the convolution step of the signal x and the filter b`.

For nonseparable filters, if the size of the support of the filter b` is large, we

normally have to use FFT(Fast Fourier Transform) to convert the calculation

into frequency domain. As a matter of fact, in many applications, to get

translation invariance, people often use undecimated transforms, where the

filters need to be upsampled after each level/scale. So the size of the support

of the filters grows exponentially for multi-scale transforms. However, the high-

pass filters we constructed in Section 5.1 are only supported on two points.

So to compute the convolution x ∗ b`, we just need to shift the signal x twice

and compute their linear combination. This would be very efficient for high

dimensional signal processing problems. As the mechanism to use quasi-tight

framelets with general dilation matrices is still unknown, this could also lead

to future research problems.
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A State Space Approach to Canonical Factorization with Applications,

volume 200. Springer Science & Business Media, 2011.

[2] Ilker Bayram and Ivan W Selesnick. On the dual-tree complex wavelet

packet and M-band transforms. IEEE Transactions on Signal Processing,

56(6):2298–2310, 2008.

[3] Ning Bi, Xinrong Dai, and Qiyu Sun. Construction of compactly sup-

ported M-band wavelets. Applied and Computational Harmonic Analysis,

6(2):113–131, 1999.

[4] Emmanuel J Candès, Laurent Demanet, David Donoho, and Lexing Ying.

Fast discrete curvelet transforms. Multiscale Modeling & Simulation,

5(3):861–899, 2006.

[5] Emmanuel J Candès and David L Donoho. New tight frames of curvelets

and optimal representations of objects with piecewise C2 singularities.

Communications on Pure and Applied Mathematics, 57(2):219–266, 2004.

[6] Maria Charina, Mihai Putinar, Claus Scheiderer, and Joachim Stöckler.
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