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Abstract

Existing user interface models in UIMSs such as the Seeheim model emphasize the abstrac-
tion of dialogue from the application computation. They support top-down architectures by
providing a complete set of top level components and leave designers with the task of config-
uring or instantiating them. These models tend to restrict the design of various applications.
Component models in existing interface toolkits. such as the MVC (Model-View-Controller)
model, focus on a component abstraction for an individual interface object. They provide
programming abstractions, but not an architecture.

This thesis explores a particular model -— an application-oriented architectural model for
user interfaces that provides abstractions for constructing various application-specific user
interface structures and leads to an effective implementation of a user interface development
tool.

The major results of this research are the following:

e A new user interface architectural model was developed. The model identifies the
components the user interface designer needs when describing a user interface’s struc-
ture and provides mechanisms that allow the designer to compose these components
to meet the application needs. The model provides a set of middle-level components,
compared with the top-level components in the Sesheim model and low-level blocks
in the MVC model, together with a composition means that supports the construction

of a wide variety of application-specific structures for interactive systems.

¢ Two new user support frameworks: undo and customization were developed on top
of the above architectural model. They support the construction of effective support

facilities in a user interface.

® A non-trivial user interface development tool, called the User Interface Structure De-
sign Tool (UISDT), was developed. UISDT, a tool based on the architectural model,



allows the designer to produce a nser interface using a graphical editing metaphor.,
UISDT supports the designer in defining an object model of his/her application by
providing abstractions and in implementing the application by producing a prototype

from the object model,
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Chapter 1

Introduction

Graphical user interfaces (GUI) for workstation applications are difficult 1o design and ox

pensive to build. The creation of a user interface is currently a liigh percentage of the cost of
application software. This percentage will increase as users demand higher-quality interfaces
and more powerful interaction devices become available, One way to reduce the difficulty
and the cost of user interface creation is to provide designers with better development
tools. This research investigates the architectural issues of Ul construction: the selection of
components from which they are composed, the interactions among components, and the
composition of interacting components. The Ul structure is a very important part of a Ul
construction, yet structural design is the least supported part of current Ul development
tools. This dissertation describes the design and implementation of UISIYT  an object-
oriented user interf:.ce structure development tool, that allows Ul designers to ereate a Ul
by building up its structure. UISDT embeds an application-oriented user interface architec
tural model whose abstractions make it easier for designers to build application-specific Ul
structures. These abstractions are middle-level components targeted specifically towards
object-oriented GUIs with powerful user support features such as undo and customization.
UISDT is a design tool that focuses on the architectural issues and supports the rapid pro-
totyping of a UL UISDT demonstrates that the effort of creating « graphical user interface
can be greatly reduced if these middle-level components and their composition mechanisms

are carefully designed and implemented.
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1.1 Problems -

Ul research has provided extensive theory and techniques for the creation of interaction
styles and there is no longer any reason for interfaces to he flawed by such problems as
inadequate menu selection techniques and inconsistent commands. However, the use of the
best available interaction techniques does not assure the production of a good UL GUI
dovelopment is no longer dependent only on advances in technology to provide increased

functionality. Success in Ul creation comes when a Ul properly addresses the semantics of

of the task and the domain into the Ul is to let designers specify the application-specific
structures of a Ul, since much of the quality of an interactive system can be traced to the
software structure which underlies it. There are clear relationships between the quality of
an interactive system and not only the software components of that system, but also the
embracing structure of these components. That is, architectural support is an important
way to create a good Ul and the key design issue is an architectural one. A good architectural
model reduces the possibility of inflexible design and leaves designers free to concentrate on

making it difficult to make some design decisions.

Two major approaches for user interface development are user interface management
systems (UIMS) and user interface toolkits. The UIMS approach provides an environment
for producing quality interfaces faster and easier. UIMSs are usually based on a linguistic
paradigm and emphasize the separation of the interaction dialogue (syntactic level) from
the application computation (semantic level). UIMSs factor out user-application dialogue
by providing a domain of large-grain dialogue traces, along with some high-level notation
to describe them. Most existing Ul architectures in UIMSs bear some resemblance to the
Seeheim model [Gre85a] that provides a complete set of top level components and supports
a top-down design method. They make the top level components application-independent
by cutting across application dependent categories. They allow Ul designers to concentrate
on dialogue design and leave the details of the implementation to the underlying system.
However, in UIMSs it is usually difficult for a designer to create new components, though
the designer can easily identify subcomponents of the given top level components. The
problem with UIMSs is their traditional premise: that Ul software can be separate from
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the application.  The confusion is that this split works on a small scale. on particular
applications, and at a conceptual level, but becomes hopelessly complicated and diflicult

when applied on a large scale, and a wide range of applications,

The toolkit approach provides a progran.ming abstraction for building interfaces with
a kit of well designed components that are general enough to cover the interaction require
ments of most applications. GUls are typically object-oriented beeause direet manipulation
involves the user associating appearance and behavior with an object on the sereen. Major
toolkits are based on the object-oriented paradigm and component abstraction encapsu
lates data. computation. input and output of each individual interactive object. Toolkits
factor out the interactive functionality of applications by providing a domain of generie
components. Rather than limiting Ul designs to combinations of a limited set of high-level
components, designers can have a relatively large selection of low-level components and in
addition, toolkits vary considerably in the way they are coupled to the rest of an applica.
tion. There are several models, such as Model-View-Controller (MVC) [GRSS] and active
value [HHRB, MyeRs], for facilitating the construction of object-oriented Ul objects. They
provide flexibility in the way that interactive components are coupled 1o the rest of an appli-
cation and support the bottom-up design method. However, they provide only components
and no architecture support. They only provide implementation support for individual U]
objects and force the designers to specify the Ul in great detail. The problem with the
toolkits and their Ul builders is the assumption that interactive systems are frequently
built “bottom-up”, however, applications are built “top-down™. The result is that toolkits

are overwhelming in complexity and underwhelming in functionality to designers.

User support means a class of facilities that assist the user’s ongoing interactions and
enhance the usability of Uls. User support includes online help, user recovery, and uner
modeling. User support has been considered one of the important issues in constructing

good Uls. However, effective support facilities need direct access to the semantics of the
interactions, the knowledge about the context of actions and what meaning a particular
sequence of actions might have, as well as knowledge about the context of interface objects
that might be inferred from the fact that a user is manipulating a certain collection of
objects. This requires that the support facilities penetrate into the internal structure of the
system and the supporting concepts pervade the system. Previous work has been ad hor
and highly application specific.
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The remainder of this chapter defines terminology that is used throughout this disser-
tation, states the thesis, describes the goals, and presents results and contributions of this

research.

1.2 Terminology

The term “application™ has several meanings. We define an application to be the total
system that is developed for its end users. An interactive application consists of application
domain software and Ul software. The application domain, or simply the domain, is the
field of interest of, and reason for, the application.

The term user interface management system (UIMS) is widely used both to refer to an
architecture emphasizing separation between the Ul and the application semantics and to
refer to the tools used to specify and execute the Ul. We will use the term to designate
integrated environments that are built on top of window management systeins and pro-
gramming facilities and that helps an interface designer to create and manage many aspects
of Uls, such as design, prototyping, execution, and maintenance.

Widgets, also called interaction techniques, are ways to use input devices to enter infor-
mation into the computer and are application independent high-level functions built on top
of window systems, such as buttons, dialog box, etc. A Ul toolkit is a collection of interaction

capabilities (e.g., Motif from OSF, OpenLook from Sun, and MFC from Microsoft).

A Ul builder is a system that lets the Ul designer arrange Ul elements into a prototype
of the final interface. It allows Ul toolkit components to be assembled on the screen without
writing any code.

There are many users within the domain of Ul. We refer to an end user who runs the
final interactive system as the user, while the tool users who set up the overall architecture
of the interactive system, create the software structure, or structure the software are called

designers.

1.3 The Thesis

Creating a Ul using a UIMS is like constructing a building with a set of large-grain frames,
such as wall and roof frames. We are able to construct a particular building by instantiating
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the frames with different appearances and functions. These frames are casy to use when
we ouly need to construct a particular kind of building. but their value is limited if we are
trving to create different kinds of buildingz. Uls are more dynamic than buildings in terms
of structures and we usually cannot immediately decompose an interactive systems into a
set of fixed top-level components. Instead. higher levels of the final software structure will
reflect a specific design. and good designs show that no two applications have the same
structure.

Constructing a Ul with a toolkit is like creating a building with a set of prinvitive con
struction elements, such as bricks, and wood. The simple structure of these components
places fewer restrictions on their use, and therefore, different Kinds of buildings can be com
posed from these components. The complexity introduced by a large number of components
is countered by the simplicity of each component. Construction can be relatively casy to
carry out if builders know the frame of the building and understand what works and doesn’t
work in the world of components. Constructing a Ul is more complex than construeting a
building. First, components in a toolkit are much more complicated than the bricks and
wood, and designers usually do not have the understanding necessary to make appropriate
use of toolkit components. Second, and more importantly, a software structure is a collec-
tion of development resources combined in a particular way. Combining components in Uls
is more difficult than putting bricks together. Various toolkits p -ovide varions composition
techniques and different components in a toolkit require different fitting methods,

A better architectural model, or a better set of Ul building blocks, needs middle-level
components. These components are lower than components in a UIMS in the sense that
they do not define particular Ul structures, but provide basic components together with
composition means that can be combined in a prescribed way to forin more complex compo-
nents until the top levels of the applications are reached. They are higher than components
in toolkits in the sense that they support structure construction by encapsulating certain
system properties and provide abstractions that shield designers from extrancous detail of
the components’ composition mechanism and behavior implementation.

The above discussion brings out the thesis of this dissertation which has the following

parts:

a) Much of the information needed by a Ul from an application’s semantic side could be

categorized into a relatively small number of abstract queries that work well across
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a wide range of Ul styles and application domains. Common protocols can be de-

interactive objects can access the application semantics.

b) A Ul architectural model need not support the construction of all other higher level
components other than basic interactive and application components. Instead, it
should provide the means — composition patterns, for combining these components

to build up application-specific components or integrating user support components.

¢) An object-oriented GUJ composed from these components is flexible and significantly

easier to design than one designed with traditional design approaches,

d) Such application-specific architectures can be implemented through the re-use of Ul

e) User support features of a Ul are system properties, not just the properties of spe-
cific objects and are related to overall software structure. They should and can be

addressed at the structure design stage.

14 Goals
To prove the above thesis, | set the following goals:

1. Develop a new Ul architectural model that describes ways of creating interfaces from
ponents supports specific aspects of a Ul behavior.

2. Design new user support frameworks, undo and user customization, that provide
application-independent approaches for constructing user support facilities by embed-
ding basic mechanisms into the UI architectural model.

3. Build a prototyping system supporting the creation of Uls based on the above Ul
architectural model.

4. Demonstrate the practicality of this approach by building applications.

tecture model that supplies a set of basic components with composition mechanisms for
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combining them. Second. two new user support frameworks: undo and customization, Fi
nally, the design and implementation of a Ul structure development system (UISDT) that
provides the environment for connecting various parts of the architectural model and ansist
Ul designers to design and implement object-oriented GUIs easily and guickly. Success of
this research is measured in terms of how well UISDT supports Ul development and how
easy it is to use compared with existing UIMSs and conventional programming with Ul
toolkits.

1.5 Results and Contributions

This dissertation contributes a novel approach for creating graphical Uls by implementing
UISDT, a system that supports GUI design, implementation, and refinement. By identifying
and characterizing a class of middle-level components and their relationships in applications,
we are able to design and build a general software tool for supporting their development.
the prototype implementation of UISDT simplifies their realization.

UISDT demonstrates that the Ul architecture is a very important dexign issne and the
proposed architecture shows a powerful and practical way to create a UL The dissertation
has demonstrated the viability of the architectural model and UISDT implementation hy
using UISDT to create GUIs in several different domains. Though these interfaces do not
represent polished systems, they have proven themselves useful tools for their intended
purposes,

This architectural model provides a non-trivial framework for building user support
facilities. The abstractions provided by the primitive components of the facilities and the
mechanisms that are nested into the Ul structures make it significantly easier to incorporate

them into Uls.



Chapter 2

Related Work

User interface development is currently a very active area of research. Work relevant to the

project described here includes the following:
e user interface management systems,
e user interface builders,
e user support facilities.

In this chapter we describe the methodologies, the current developments. and systems that
characterize these three areas of user interface development. We conclude by discussing the

shortcomings of existing approachs and systems in achieving the goals of this research.

2.1 User Interface Management Systems

UIMS studies have been reviewed in several surveys which emphasize the techniques used to

describe Uls [HHR9, Gre86), tools used to construct Uls [Mye89, Lee90], and the generations

Bod91] offer a way to understand the nature of the cognitive process and human activity

8
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Interactive
Components

Figure 1: Secheim Ul model

involved in human-computer interaction. They are useful tools for thinking, but provide
little help with the practical implementation of interactive systems, What we are interested
in is an architectural model that describes the interfaces in terms of structure and provides
designers with a framework for describing interactive software. The model defines how 1o

separate the interactive component from computational component of an application at

The Seeheim model [GreBha] is a general framework that can describe the Ul strue
ture of most interactive applications. The Seeheim model divides the Ul into three logical
components; the presentation component, the dialogue control component, and the appli
cation interface model (see figure 1), each of them has a different function in Uls. The
presentation component is responsible for generating images on the display scroen, aceept-
ing user input, and converting input data into the form required by the other components
in the interface. The dialogue control component is responsible for managing the dialogue
between the user and the application. It defines the structure of the dialogue and serves
as a mediator between the user and the application. The application interface model is
responsible for communications between the Ul and the application. It is a representation
of the functionality of the application from the Ul's view and the functionality of the Ul

from the application’s view.

The Seeheim model is an abstract model of the functionality of Uls that does not
represent how a Ul should be structured or implemented, many UIMSs’ architectural models
were based on or influenced by this logical model. Some UIMSs developed hefore the
Seeheim model employed Ul models that had similar ideas and can be considered as variants
of the Seeheim model. We review the UIMSs in the terminology of the Sesheim model.
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Separation Between an Application and the Ul

Separation of the interface from the computational component in design and implementa-
tion is crucial to easy modification of the interface by iterative refinement and has been the

first principle of Ul studies. Though different UIMSs may use different techniques to achieve

strict division of responsibility between the Ul and the application: the application did the
work and the Ul communicated with the user. As suggested in the Seeheim model, this
separation is implemented by the application interface model that contains both the appli-
cation view of the interface and the interface view of application. In COUSIN [HSLR&5], slots
are used to separate the Ul from application, a slot is defined for each piece of information
the Ul and application need to exchange and the applications access slots with a set of
accessory routines. Open Dialogue [SRH85], FLAIR [WR82], RAPID/USE [Was85], and
Sassafras [Hil86] use a similar approach by providing a special definition language to define
the interface between the Ul and the application. The interface view of an application is
implemented as a set of application routines and the user actions are mapped to invoca-
transition networks are used to specify the separation. A node describes where the user ac-
tion would lead the system to (the system state) and what application procedure would be
called in response to this action (the system response). In [Gre85b, SG91], the application
interface model is expressed by a set of event handlers that accept user generated events,
transform them to tokens, and pass tokens to application routines. A token is the smallest
dialogue unit that has meaning to an application system. The event handlers separate the
application from the interaction part.

These UIMSs’ models achieved the separation by specifying a set of call-back application
routines. They are called call-back routines because once the application starts, it gives
control to the Ul, which can then call the application back when appropriate. Call-back
routines minimize the interaction between the application and the UI, which results in
a low-bandwidth connection between the two, thus maximizing their independence. To
overcome the limited bandwidth problem, the application interface model should include
more application semantic information as is suggested by the Sesheim model [Gre85a).
In the Serpent UIMS [Bas88], data shared between the application and Serpent is used
explicitly as the application interface model to achieve the separation. In the Higgens UIMS
[HK88], a special semantic data model is used to define the interface that not only represents
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the application data related with interaction, but also it represents and implements the
application semantics associated with these data. In the knowledge based UIMS [FGRKNS),
frames are used to define the application interface which contains the information required
by dialogue control for routing tokens to the appropriate place within the application il

constraints on the use of the application routines,

The User Interface Description

A UIMS usually provides the interactive dialogue abstractions that allows the designer to
concentrate on the structure of dialogues without concern for the interaction technigues
involved in the dialogues. A Ul specification method is a mechanism for designers to express
and record their designs. Numerous techniques based on different interaction modeling
approaches have been used to support the dialogue specification. One widely known and
used approach is the language model that views the human-computer interaction from a
linguistic viewpoint at conceptual, semantic, syntactic, and Inxical lovels [Mors1],

The techniques used to support this modeling approach include formal grammars [ODK3,
VPH83, SY88], state transition networks [Jac’3, Olsdd, SBRKR5, Jacr6], and the dialogue
transition model [HHR7). All of them can only describe sequential interactions  a con
versation style. This style of interaction moves in a predictable manner from one part of
the dialogue to the next and depicts request-respons» interactions. Grammars, finite state
transition diagrams, and transition models which is a combination of the first two, provide
formal ways to describe valid sequences of tokens. [hus, this style works well in describing
most conventional text-based Uls and produces the entire Ul controlled by a single dialogue,

Because of its linguistic nature, many results from formal language theory can be applied
to this approach. This allows some kinds of analysis to be performed on a dialog, such as
predicting some of its human factor characteristics [BFR2]. However, it has been found
that the linguistic model may not be the best way to deal with GUIs which usually use
direct manipulation interaction style. This style provides a world model of some sort which
the user can manipulate directly. The problems are that: a) although the linguistic model
provides a useful framework for focusing on issues that occur within the semantic, syntactic,
and lexical levels of a dialogue, it encourages the designer to view each of these levels in
isolation, which is not compatible with interactivity where even simple lexical feedback

sometimes requires a certain amount of semantic knowledge, and b) they have difficulty
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transition model [HHR7). All of them can only describe sequential interactions  a con
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Because of its linguistic nature, many results from formal language theory can be applied
to this approach. This allows some kinds of analysis to be performed on a dialog, such as
predicting some of its human factor characteristics [BFR2]. However, it has been found
that the linguistic model may not be the best way to deal with GUIs which usually use
direct manipulation interaction style. This style provides a world model of some sort which
the user can manipulate directly. The problems are that: a) although the linguistic model
provides a useful framework for focusing on issues that occur within the semantic, syntactic,
and lexical levels of a dialogue, it encourages the designer to view each of these levels in
isolation, which is not compatible with interactivity where even simple lexical feedback

sometimes requires a certain amount of semantic knowledge, and b) they have difficulty
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domains and different requirements, the way of organizing domain concepts in the system
‘I'hat is, as the application domain models change, the resulting architectures change. For
example, designing a Ul for a dat. "2+ application requires an emphasis on the information
being viewed and manipulated by the user. Organizing complex data structures may be
of paramount concern for one application, while capabilities for mapping nser actions into
for the same information may outweigh other considerations in a graphical drawing editor

application.

2.1.2 User Interface Construction in UIMSs

evaluation, and maintenance of Ul software. The Ul model employed in a UIMS serves as
a framework for understanding and describing the elements of interfaces and for providing
guidance for the Ul construction, while the tools are doing the real job of Ul development.
There are a number tools that have been created for various UIMSs and these tools are
different from each other in terms of methodologies they support for Ul design, implemen-
existing tools according to the tasks supported, such as design, implementation, and rapid
prototyping, and the ways that designers use them.

Most of the tools in UIMSs can be classified as Ul implementation tools in the sense
that they are used in the implementation stage of Ul construction. The designer specifies
the Ul in terms of interaction components and application routines using a specific form
that the tool can understand. These tools help the designer to implement the Ul design by
choosing the pre-defined interaction techniques or generating the code to implement these
components, producing the interface by combining the interaction code with application
routines, and finally allowing the designer to modify the interface interactively. The spec-
ification is either in a declarative form using a special-purpose abstractions or a graphical

Declarative Specification

Existing UIMSs are based on the linguistic model, where the human-computer interaction is
basically a dialogue. The dialogue is expressed as a language, the design of the Ul is based
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on the semantics, syntax, and lexicon for the language, and the tool generates the Ul by
producing an interpreter for the language. The specification of the dialogue can take many
forms, including context-free grammars (ORI, VPHSI, SYSK], state transition networks
[Jac83, OlsR4, SBK&5, JacR®6), and menu trees [Kas®2]. The advantage for this language
based approach is that there exist well-developed techniques for the design and implement
these tools. The tools hased on these techniques can achieve the goal of automatic (or
semi-automatic) construction of Uls. However, due to the inherent sequential character of
language theory and its low level deseription techniques, this approach has limited capability
for describing Ul i terms of the styles of Interactlon, the strueture of the UL control, and
the level of specification.  The interaction has to be command -based, the UL control s
sequential, and the designer specifies the Ul at the syntactic and lexical levels (command

names, menu organization, and sequential rules).

The non-linguistic description approaches, such as the event model [Gresib, HilsG,
FB87, SRH85, $G91), dialogue cells [HHB7], and templates [FGKKRR, dBFM92b, Sze900),
suggest a higher level of specification. In using the tools based on these approaches, the
designer expresses his/her Ul in terms of objects and actions in the Ul which is beyond the
levels of syntax and lexicon of dialogue design. The specification form is usnally based on

higher level abstractions of interactions that have been implemented by pre-defined blocks

in the UIMS. The tools accept the Ul requirement, then choose the appropriate pre-defined
blocks to implement them, and finally combine them with the application routines. We can
see that the functionality of these tools covers not only the Ul implementation, but also
the set of pre-defined blocks used by the tool is limited in the range of Uls they support

and can only be used to generate simple Uls.

Interactive Graphical Specification

Graphical interfaces, because they can help convey concepts in an application to the aser
through visual perception, have become very popular Uls. Due to the visual aspects, it
is very difficult to describe a GUI in a declarative specification. However, the visual pre-
sentation of the Ul is of primary importance in GUls. To overcome this difficulty, many
Ul development tools, such as those in Blox [Rub82], Menulay [Bux83}, Trillium [Hen&6),
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RAPID/USE [Was85), Peridot \yess], UofA* [S(91], and GROW [BarR6], have been cre-
ated using the idea of building the interface interactively and using a Ul editor to build the
UL, i.e. allowing the Ul to be defined by placing objects on the screen using a mouse.

The interactive tools in Blox, Menulay, Trillium, and UofA* let the designer place text,
icons, and meny buttons on screen, draw interface layouts, and test the Ul prototype which
is exactly what the user will see when the application runs. These tools automatically
generate the code to implement the interaction technigues and combine them with applica-
tion routines. Fach active item, such as menu items and icons. in the display is associated
with an application routine supplied by the application developer and this routine is in-
voked when the user selects that item. The interaction techniques are usually fixed and
pre-defined, but not sufficiently general to cover most of the common cases. Peridot goes
one step further by allowing the designers to create the interaction techniques themselves,
The designer manipulates primitives provided by Peridot to construct the more complicated
interaction techniques he/she needs. However, there are several shortcomings with these
tools: 1) they support the creation of a limited range of interfaces due to the small number
and simple interaction techniques they can implement; 2) they promote a narrow connection
between the interface to be created and the application as the Ul models employed support

the strict separation at the system level.

GROW is a comprehensive interactive environment for Ul development, which is com-
posed of a powerful Ul structure editor - SOW and a powerful Ul toolkit Impulse-86
[SDB86). SOW lets the designer create graphical objects to be used in the Ul and define
their composite structure and graphical dependencies interactively. These objects are the
extension of objects in Impulse-86 which manage user interaction. Once these Ul objects
have been created, GROW links the interface and the application that involves creating
calls from the Ul objects to the application routines. GROW is more powerful in that it
allows the designer to define various Ul objects for his/her Ul interactively, but GROW still
restricts the connection between the interface and the application call-back procedures.

Problems With User Interface Development Tools

UIMSs have gained wide acceptance in the Ul research community and the concepts and
techniques for d« veloping tools in UIMSs have drawn great attention from researchers which
can be seen by the large number of papers on UIMSs that appear in conferences and
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magazines, and the great deal of new tools developed by businesses,  However, oxisting

UIMSs' tools have several shortcomings:

Enforce a rigid system decomposition In UIMSs it is usually diflicult for a designer
to create new components, though the designer can casily identify subcomponents of
that Ul software can be separate from the application. The confusion is that this split
works on a small scale, particular applications, and at a conceptual level, hut becomes
hopelessly complicated and difficult when applied on a large scale, and a wide range

of applications,

they provide Ul designers with very little control over design decisions.  However,
generating good Ul designs is intrinsically difficult. Principles of good UL design are
automatically prune the relative large design space. It is hard to tell a UIMS about

application-specific considerations that affect alternatives,

2.2 User Interface Builders

Few UI builders today are written from scratch. Most Ul bhuilders benefit from a toolkit

based implementation. The toolkit approach provides a programming abstraction for build-
ing interfaces with a kit of well designed components that are general enough to cover the
interactive requirements of most applications. Toolkits factor out some of the functionality
of applications by providing a domain of generic components. Toolkits vary considerably in

the way they are coupled to the rest of an application.

2.2.1 Component-Oriented UI Models

Ul models for object-oriented Uls have been investigated for a long time under different con-
texts: such as the MVC in Smalltalk [GR83, KP88], the Subject-View(5V) in InterViews
[LVC89] and in Andrew [And88] for toolkits, GROW [Bar86], GWUINS [SHBXG) and Template

PAC [Coo89, BC91|, Daemon [N*' 1], and MacApp [SchS7] for interactive systems. The most

difficult and important par . these models is the mechanism that separates the interaction
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Figure 2: The Model-View-Controller model

part from the application at implementation time and combines the interaction part with
the underlying data at run time.

The MVC model (shown on figure 2) has been widely used and influenced many other
models in object-oriented paradigm. It is like the Sesheim model for non-object-oriented
models that presents the logical components that appear in a Ul object. In fact, MVC is like
the Sesheim model in that it utilizes functional decomposition to develop the architecture
of a Ul object instead of an entire Ul. The MVC paradigm has three components: model,
view, and controller. The model in MVC represents the data structure of the application.
The view deals with everything graphical; it requests data from its model, and displays
the data. The view can contain not only the component needed for display, but can also
contain sub-views and be contained within super-views. It is the views of interactive objects
that make the composition of interactive objects possible. The controller contains the
interface between its associated model ind view, and the input devices, It also schedules
interactions with other view-controller pairs. Each view-controller pair has one model, but
each model can have several view-controller pairs. MVC is a highly coupled model in that
the design and implementation of the three components are closely related. Although the
MVC provides a compelling object-oriented division at the abstract-level, this coupling
makes the independent design of the concrete interactive objects difficult and weakens the
separation of interaction and semantic operations in the objects, which is very important
in many aspects of Ul design.

MoDE [Sha90] suggests the mode approach to overcome the shortcomings of MVC
model. A mode, like a MVC object, contains three parts: appearance, interaction, and
semantics. The mode approach decouples the connection between the components by defin-
ing a standard internal communication protocols between the three components and gives
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the semantic component more control over the other two components. The mode approach
supports reusability by encouraging the orthogonal design of the three components. How-
ever, many object-oriented Uls support direct-manipulation Uls that require the tight cou-
pling between input and output of a manipulable object. Design and implementation of the
appearance component and the interaction component of an object independently would

increase the total number of objects in the interface and potentially decrease its officieney.

The Subject-View (SV) paradigm in InterViews puts the functionality of MVC con-
troller and view into one single object  the view that handles input and output, while the
subject is similar to model in MVC. This consolidation reflects the tight coupling between
input and output in direct-manipulation interface objects. The composition hierarchy of
the objects is represented in the views of sub-objects. The views in SV are often involved

in processing the semantics in addition to the input and output.

The Active Value approach is another well-known paradigm for combining interactive
objects with the underlying data. The active values are similar to parameters to procedures,
When a graphical object depends on an active value, a data constraint is antomatically cro-
ated, so the object will change immediately when the value is updated. In GROW [Barsd),
an association table of graphical objects and its application-defined keys (active value) are
used for the conimunication between the interactive components and application compo-
nents. In Peridot [Mye88], active values are used as hooks to glue the interactive objects
with the application part; they can be set by the application part at any time to update
the graphics, application operations can be attached to the active value to pass information
back to the application part when the active value changes. The disadvantage of the active
value approach is that exposing the data structure to both interaction part and application
part results in a tightly coupled structure and makes the orthogonal implementation of the

two parts difficult.

Daemon [NMK91] is a coordination mechanism. A daemon attached to an object can
monitor the object bound to a particular instance variable. Whenever a specific message is
sent to the object, the daemon invokes a method of the object. Typical methods invoked by
daemons maintain consistency between two objects. This mechanisin can be used to connect
an interactive part with its application part. The problem is how to specify a darmon which
could be a mechanism similar to active value and how to implement a daemon mechanism

without special support from the programming language.
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In Humanoid [Sze90, SLN92), templates are used to connect interactive widgets with
the abstract application data that specify how to map application data structures to the
interactive widgets, how to break down complex data structures into substructures, and
how to assign a widget to display each substructure. The difficulties are how to design
the templates and how to reuse the predefined templates as they contain so much domain-
specific knowledge about the connections.

The PAC model [CooR9] like MVC is a composite defined by its three components:
Presemtation, Abstraction, and Control. However, the Presentation defines both input and
output behavior of the object, the Abstraction contains the functional core of the application
semantics, and the Control maintains the consistency between the other two components.
PAC has a different composition strategy: the hierarchy of a composite object is represented
hy the Controls of its components. The advantage of this composition approach is that it
distributes semantic and syntactic processing at various levels of abstractions and suppresses
boundaries between the application and the UL PAC also uses Control to serve as an explicit
bridge between the Abstraction and the Presentation. PAC's composition is based on the
Controls which is recursively applicable except it is very difficult to apply this composition
on graphical objects. Most composite objects in Uls are graphical objects which usually
have their own state attributes, The state of a graphical composite should be defined as the
combination of its components’ state and its own. This leads to the composition depending
on the Presentation and the Abstraction not on the Control.

GWUIMS is one of the early UIMSs that used an object-oriented paradigm. However,
the object-oriented approach is used only as an implementation technique, while the design
GWUIMS focused on defining the boundaries of the lexical, syntactic, and semantic levels
of interface language in terms of objects.

In general, studies investigating object-oriented Ul models concentrated on the methods
of combining the interactive part with the application part in Ul objects which is no longer
a simple set of call-back routines. The difficulty is to decide where to draw the line between
these two parts and how to implement this decision. We know that an ideal separation is
hard to define and even harder to achieve. The existing models have addressed this issue
extensively, and have made great progress in both understanding and solving the issue, but
none has adequately solved it. We can see the separation between the interactive behavior

and application semantics is the key issue in a successful Ul design and implementation.
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There is no absolute measurement about the separation and therefore, there is no standard
criterion for the best separation. The principle is to separate the interactive behavior
and application part as much as possible in the Ul development, but at the same time
satisfying the application requirements and the end user demands. The basic requirement
is to separate interactive components from computation components conceptually at the

design stage, implement them independently, and integrate them at run time.

2.2.2 User Interface Builders

Ul builders [Mic90. VT91, Wehr9] are interactive graphical tools that allow Ul toolkit
components to be assembled on the screen without writing any code. Builders sit between
UIMS and UI toolkits in that they allow some non-programmatic specification of Uls and
do not have the strict separation of Ul from the rest of application just as their underlying
toolkits do not. Though the level of support offered can vary widely, a typical Ul builder
will allow a Ul to be constructed using direct manipulation techuniques, giving an essentially
instantaneous WYSIWYG view of the Ul under construction, and relieve the developer of at
least some of the coding work which would otherwise be involved in building the UL Many
builders treat the external visual representation of the Ul as the fundamental representation
used by the designer. Components are added by dragging from a palette onto the wysiwyg
view; the builder determines the internal structure of the Ul the designer is creating, and
then generates code to implement this Ul

Ul builders promote visual Ul design and development to minimize the need for conven:
tional programming. Due to their connection with toolkits and their ease of use compared
with toolkits, Ul builders have become very popular Ul development tools. Current com-
mercial and research builders support mainly the construction of interaction objects and
they differ in two major aspects: 1) the manner in which interaction ohjects are composed
to create composite interaction objects and 2) the degree to which designers may change
the appearance of interaction objects without having to reenter the relationships between
interaction objects and the underlying application functions. These tools support Ul spec-
ification on several levels: 1) most support the interactive layout of a Ul, that is, absolute
position of widgets by direct manipulation, 2) a few offer mechanisms for expressing spatial
relationships between widgets, which define the resize semantics of an interface, and 3) some
support hierarchical structuring of interaction objects to aid in the specification of complex

layouts.



CHAPTER 2. RELATED WORK 22

2.2.3 Summary

In summary, object-oriented models are more flexible than the function-oriented models in
that they support multiple instances of components and architectures built up from lower
level components: no single top-level composition is imposed. They provide flexibility in
the way that interactive components are coupled to the rest of an application and support
the bottom-up design method. However, toolkits' architecture models as well as Ul builders

suffer from the following problems in terms of Ul structure construction:

Force designers to handle too many design details Working at the component level,
builders or toolkits force designers to handle too much detail and designers are forced

to make design commitments down to the level of individual widgets.

Support only low-level component composition Another problem with the toolkits
and their Ul builders is the assumption that interactive systems are frequently built
“bottom-up”, however, applications are built “top-down”. The result is that toolkits

are overwhelming in complexity and underwhelming in functionality to designers,

2.3 User Support Facilities

From a user's point of view a Ul has task-oriented and support-oriented features. User
support means a class of facilities that assist the user’s ongoing interactions and enhance
the usability of the UL User support includes online help, user recovery, and user modeling,.
Their design and presentation have a major impact on the usability of an application. We

discuss two types of user support facilities: undo and customization.

2.3.1 Undo

Undo/Redo features in interactive systems have been studied for a long time in several con-
texts. Interlisp [Tei75], COPE [Arc84], and PECAN [Rei84] are systems that have recovery
facilities and US&R [Vit84) is a general undo/redo framework for interactive systems. Yang
[Yan88] gives a comprehensive formal discussion of recovery features in interactive systems.
While these recovery facilities seem to take different approaches to implementing recovery,

all adopt the same idea. That is:

on the objects in the systems) and their effects on the system,
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b) provide a set of meta commands, such as undo, redo. and skip. which operate on

primitive commands in the recorded history list.

History lists can be implemented in several ways: a stack is used in InterLasp to store the
commands, a file system is used to save the updated objects after exeeuting a command
in COPE, and a tree-like data structure organizes the executed primitive commands in
US&R. All of these structures have the same purpose, recording recovery information for
ulate the history list to perform undo/redo operations. This mechanismm works well for
non-object-oriented interactive systems, where the interaction is based on a sequence of
commands implemented by individual procedures. The procedures are the functional part
of the system and the data structures represent the system state, ‘The data structures are
determined by the procedure structure and they tend to be globally accessible. This kind
of system architecture provides a convenient mechanism for supporting domain-dependent
covery approach is not suitable for object-oriented systems due to the structural differences
between non-object-oriented software and object-oriented software,

There have been several studies on recovery facilities related to object-oriented meth-
ods. Rathke [Rat87] proposed a recovery mechanism using ohject-oriented tochuniques, ‘I'he
basic unit of recovery in his approach is the individual object. The recovery operations are
included as methods in a recovery object. The state variables, which have been changed
when operations are performed on the object, are collected within a slot of this recovery
ing inverse functions. The interaction history is a list of recovery objects. Thongh an
object-oriented method is used to implement the history list, this framework is intended
for systems designed using a non-object-oriented methodology. The recovery approach is
purely command-oriented in the sense that each reversible system function has its own
recovery object and data structures that are globally accessible. It would violate object
structuring rules to use this mechanism to handle recovery in an object-oriented system,
since this mechanism requires the exposition of the internal states of objects,
for creating object-oriented graphical editors. Logs are used to represent the history of undo-
able operations. There are two logs: a past log that keeps a list of previously-executed
commands, and a future log that is a list of reverse-executed commands. undo will cause
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the commands in the past log to he reverse-executed and moved to the future log. and
redo will re-execute the commands in the future log and move them to the past log.
This architecture works well with the command based components of unidraw by supporting
arbitrary-level undo and redo semantics, due to the unique structure of unidraw and the
rich protocol between command objects and other unidraw objects, Command objects in
unidraw are very interesting objects: they are like messages in the sense that they can be
interpreted by other objects, they are like methods in the sense that they are executable, and
they are like transactions in the sense that they can be reverse-executed to a previous state,
However, the idea behind this structure is similar to the ones used in non-object-oriented
systems that record undo-able information at the system level: the ohject’s state change is
stored in the executed command object which is then stored in the logs. The abstractions
provided by the unidraw architecture makes this framework powerful in unidraw-based
applications, but it will not work with other object-oriented systems whose components do

not implement unidraw abstractions.

2.3.2 Customization

One of most effective modeling techniques is user customization, which is also called demon-
strational interface [Mye90], intelligent interface, programming by example [Myes8)], or pro-
gramming in the Ul [MW89, Cyp91]. This technique provides facilities that allow the user
to change the system behavior to meet the user’s needs by creating general abstractions
from the specific ex:: nples. However, it is relatively difficult to implement customization
facilities in Uls. There are no well-known ways for organizing the software, and there are
certainly no support abstractions to help implement customization facilities. Most existing
systems have been individually crafted.

Common tools to support customization are macro utilities and scripting languages.
Macro facilities, such as that of Emacs, record sequences of actions and can replay these
sequences. These utilities have limitations because they are diflicult to implement in graph-
ical interfaces, and they record low-level actions and have no variables, or conditions that
are necessary to create a general abstraction of the user’s interactions. Scripting languages
are easier to learn than programming languages but they are still a form of programming

and poee as great an obstacle to end-users.

and the system infers how the examples should be generalized to create something that is
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more general-purpose. Successful systems based on this approach are SmallStar [Halxy),
Peridot [MyeS8], Metamouse [MWK=R9], and Eager [Cyp91]. Most of these inference sys
tems use a rule-based mechanizsm to guess the generalizations. T'he “condition™ of the rule
assert the generalization. In some systems, rales also contain messages 1o serve as foedhack
that the rule is going to fire. These successful customization facilities hmit the inferences
to a specific domain and each of them has its own application and domain dependent way
to record and intoerprot the uxer’s intoractions,

Peridot [MyeR¥] is a system for building user interaction tochnigques, such as menus and
scroll bars by using a programming by example metaphor. Peridot is able to infer the user's
action in user interface design by using a rule-based mechanism. For example, after the
user places the first few items of a list in a menu, it can infer the placement of the rest of
the items in the list. This mechanism is supported by Peridot's specific architecture,

Metamouse [MWKR89] watches user actions and writes a program which generalizes those
actions. The whole system is designed specifically to support programming by example.
Whenever Metamouse detects a pattern, it predicts subsequent actions and then eagerly
reveals its predictions as soon as it can,

Eager [Cyp91] is similar to Metamouse and offers a solution to the task of specifying

ticipates each next action by proposing a hypothesis. If the user performs the action that

matches the anticipation, he/she confirms the pattern, otherwise the hy pothesis is rejected,



Chapter 3

A User Interface Architectural
Model

The UIMS and Ul builder approaches center on the selection and description of the external
behavior of the interface. It is common to find published descriptions of UIMSs and builders
that extensively describe the supported interaction styles, but devote hardly any space to
structural descriptions of interactive systems. Difficulties in implementing modern interface
styles via UIMSs and builders have led to the recognition of the significance of structural
issues. This thesis is concerned with the internal structure of an interface, rather than
the external appearance of the Ul It discusses the software structures with which a given
external specification for a Ul might be best implemented; it does not address what that
specification should be.

This chapter describes a new Ul architectural model. It begins with an argument that
what is really needed to support Ul construction is an application-oriented architectural
model that identifies the needs of the Ul designer when building application-specific archi-
tectures and defines abstractions that address these needs. It then discusses the process and
the methodology for designing an interactive system to bring out the kind of support the
designer really needs, and presents the Ul model with an overview of the abstractions, re-
lating the philosophy behind it, outlining its major elements, and showing how the elements
are coordinated to form various Ul structures. The chapter concludes with a su:nmary of
the proposed model.
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3.1 The Application-Oriented Model

Ul architectures based on the Seeheim model are function oricnted: they offer pre defined
structures that divide the functionalities of an interactive system into three top level com
ponents: presentation, dialogue control, and application interface, For example, UINSs
nsually provide the structure from a functionality perspective with fixed top level compo
nents and narrow communication channels between them. Toolkits are component oriented:
common In user Interaction problems. To achieve a cruly powertul interactive application,
however, the entire application must be addressed. Therefore, what we really want is an
application-oriented model; it addresses what the designer needs to build application specific
Ul structures. An application-oriented model should define abstractions that help U1 de
signers specify the Ul structure by reflecting application demands without heing restricted

by any pre-defined structure or implementation technigues,

For a dialog-based Ul, the difference between the Sesheim model and an application
oriented model is comparatively small. In both approaches we need to define a parser, and
a Ul for initiating application actions together with abstract-token-stream communication
between them. The structure stresses loose coupling among components and specialization
of components. However, the difference is significant for a more complex direet manipulation
GUlI like a drawing editor. A function-oriented model wust make many assnmptions about
the nature of the application data and the way in which the data is manipulated. Bat an
application-oriented model will not need to make such assuniptions, because its abat ractions
should be equally as valid for building a drawing editor as they are for building a dialogae
Ul since the same basic components underlie both,

A considerable difference also exists between component-oriented models and application
oriented models. The application-oriented approach will give more attention to the flexibil
ity of the system as a whole than to the properties of individual components, Such a holistic
perspective suggests that there are system properties related o overall software structure
and not just to the properties of specific components, such as help and undo/redo user
support features. The basic abstractions provided to the designer should take into acconnt
their contributions to the system as a whole.

An application-oriented model does not try to define a high-level stracture to problems
like a dialogue based Ul or a drawing editor UL lustead, it identifies the components the
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Ul designer needs when describing Ul structures and provides mechanisms that allow the
designer to compose these components to meet the application needs.

Although most existing Ul development tools (UIMSs, toolkits, and builders) do not
include application-oriented structure support. there are a fow that do, to various degrees.
T'hree of these systems, listed bellow, represent current research trends and have had a great

impact on this research:

o Nephew [SzeR9] demonstrates how to keep Uls separate from the rest of an application,
while still providing rich. semantic-based feedback. Its approach is to characterize the
kind of information that a Ul needs from the semantics, and then define a protocol
that allows Uls to access this information. The result is an application structure
with three well-defined stages semantics, high-level dialog, and low-level event
handling and rendering  with clear protocols between them. Nephew's successor
HUMANOID [SLN92] continues this trend, focusing on automatic generation of Ul
from designer-provided data models.

o UIDE [FGKKS88, dBFM92a] has been applying knowledge bases and tools to aid
Ul design above the widget level. UIDE shows how design tools and declarative
descriptions of application semantics can be combined to help design Uls. For example,
UIDE provides a mechanism for making the effect of semantic operations available
to the interface, as well as facilities for automating common interface designs and

changes.

e Unidraw [VIi90] is a framework for creating object-oriented graphical editors in do-
mains such as technical and artistic drawing, and circuit design. The Unidraw archi-
tecture supports the construction of these editors by providing a set of programming
abstractions and composition means that the designers need to build new kinds of
graphical editors. Unidraw greatly simplifies the development of direct-manipulation-
based graphical editors.

These systems have advanced application development technology to a new level beyond
the limitations of traditional UIMSs, toolkits, and builders. Nephew and Unidraw have
strongly influenced this research, and some of the recent work on UIDE and HUMANOID
has similar idea with this thesis. Although these research efforts have paid more attention
to applications than just separating out and facilitating Ul development, that is, they
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no longer treat interface-semantics relationships ax unknown and unpredictable, they still
components as well as application components in isolating in the sense that the deseription

for combining the structure of these components is not well supported.

3.2 Domain Mapping Approach

Ul theory suggests a fundamental separation between the UL or interactive components, and
the computation components in an interactive system. In the Ul commponent, o fundamental
distinction is again made between application data and interactive view. Application data
(or domain) objects are manipulated by the computational component and presented to
users through the interactive view objects. Similarly, interactive views aflect application
data objects as a response to user inputs. The terms “application data object™ and “domain
object™ are used interchangeably throughout the thesis. and so are the terms “interactive
view” and “view”,

Each application has a specific domain of concepts. These concepts and their relation-
that should be represented by application data objects in the interactive system. To present
the domain model to users through various media, corresponding media-dependent inter
active view objects are defined which specify the interface to application data objects, If
the application data objects present a richly-structured domain, then the application’s view
objects should reflect that structure in the UL View objects present the visual structure of
the application —- an application specifies its appearance by defining and composing view
objects. That is, building an interactive application involves the design of both a domain
model which reflects a specific domain of concepts and an interface that presents the domain
model to the user.

In the design process, the design .rst defines the application domain model where each
data object has an associated set of at.1butes and behavior. The attributes and behavior of
an object are either internal or external. Internal attributes and behavior are meant for use
within the application and not exposed in the Ul, such as domain data and operations that
provide functionality not associated directly with the Ul. External attributes and behavior
are represented in the Ul by interactive view objects of application duta that allow the user
to control and manipulate domain objects. After the application domain model has been
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Figure 3: The abstract architecture of an interactive system

completed, the designer then maps the application domain concepts onto the interactive
views. The external attributes and behavior of the domain model are represented as the
interactive attributes and behaviors of these view objects.

The above domain-mapping design approach suggests that the specification and organi-
zation of the view objects should reflect their corresponding application data objects, and
interactive view objects are usually as abstract ana domain-specific as the application data
objects they represent. The Ul structure is usually reprerented as a tree of view objects
reflecting the hierarchy of the application data objects. In multiple-view situations, the Ul
is based on multiple trees. Within a given Ul, all the interactive views do not have to be
isomorphic to the application data tree. Figure 3 specifies the abstract architecture for an
interactive system. Typically, the view trees have more objects in order to supply Ul details
for control and decoration. Thus many view objects will not be linked to any application
data objects (since we are interested in the internal structure of an interactive system, we
do not include those view objects (such as menus, buttons, frames, etc) in figure 3).

In summary, in the design process, the designer defines his/her application domain
model, and then builds the Ul structure by mapping the data objects to the view objects.



CHAPTER 3. A USER INTERFACE ARCHITECTURAL MODEL 41

These view objects are domain-specific objects that reflect the semantics of applications
and match the user’s conceptual model. In the implementation stage. these domain specifie
view objects can be realized by using components of a toolkit. Ul toolkits provide basie
building blocks for building the Ul and it is usually up to the programmer to map the
domain-specific objects onto these basic building blocks.

With the above high-level overview. the following are considered necessary operations

in designing an interactive system:
e control, manipulate and retrieve domain data and porform other domain tasks,
e reorganize domain data for Ul purpose,
e provide multiple views,
¢ make media decisions,

o provide physical interaction with the user, and

3.3 The Architectural Model

Part of the design philosophy behind our model is that there is much more to a good U than
just nice-looking widgets, and that higher-level aspects of the design (e.g. task specificity of
the interface and the application) are more important than the lower ones, The importam

goals of the proposed architectural model are to support:
o developing application semantics as well as Uls,

e developing Uls that are well-matched with, and well-connected to, application seman

tics.
The following describes the new architectural model in encugh detail to allow the develop-

ment of a useful implementation.

3.3.1 Basic Abstractions

In describing the architectural model the focus was on the common attributes of domain-
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are divided into three parts: Ul objects, user-transparent application objects, and user

support objects as shown in figure 4:

e Ul components are directly related to user interactions. They define the input
and the output behavior of the system and the related applifatian pFDEE‘SEiilgV Thf-v
reorganize domain data for Ul purposes, pmvxde muluple view consistency. and dmgsc-

media for interactions. A Ul object includes two kinds of components:

to, the abstria-ct mfmmatmn (dcn:mam dat,a) of the apphc’atmm They cnmml. ma-

nipulate and retrieve domain data and perform other domain-related functions,

- Interactive View (IV) components which present the information to the users,
and allow the users to control, manipulate, and retrieve the information. They

support the physical interaction with the user.

o User-transparent application components are the components of an application
that do not interact with the users directly, but contain the functional core of the
system, i.e. they implement the concepts of the task domain but as far as the users

are concerned, they are not aware of the existence of these components.
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e User support components are the components that provide services for other
objects in the system to implement user support facilities, such as animation, cus
tomization, and recovery. These user support features of a UL are system properties,
not just the properties of specific objects and therefore are related to overall sofiwiare
structure. They must be addressed at the structure design stage. User support issues

will be discussed in the next chapter.

To drive the following discussion. a chess program is used as an example to help explain
the concepts defined in the model. Chess was chosen as an example because it is often wsed
in illustrating concepts in the Ul literature, and the context is familiar The chess program

from the Ul viewpoint is capable of two things:

e checking the legality of user moves according to the rules of chess and reporting special

conditions such as illegal moves, pieces removed, ete; and
e responding to a legal user move with an application move,

Using the above abstractions, the chess program has four kinds of objects: piece, board,
monitor, and machine-player. Each piece is an interactive graphical ohject with position
on the board as its inner state. A piece can send messages to the board for notifying
when its state has been changed, to the monitor for verifying its movement, and to the
machine-player for informing it of the piece’s new position. The board is a Ul object that
arranges pieces on the display, forwards the input events to the piece, and updates the
display when a piece is moved. The monitor and the machine-player ohjects are user-
transparent application objects in the system that do not interact with the user directly,
but contain most of the application related knowledge.

The Ul objects are the most important part of the system in terms of Ul construction,
while the user-transparent application objects are the interests of the application designer,
The way that these three kinds of components are integrated depends on the abstractions
used to structure each kind of component, as these ahstractions define the domains which
can be handled by the model.

3.3.2 User Interface Objects

In an interactive system, it is always true that some of objects are directly related to user

interaction, while others are not. The objects directly involved in interaction are called
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“I'l objects™ or interaction objects in the literature. Ul objects are software abstractions
designed to permit interaction with the user. They represent syntactic or semantic concepts
that an interactive system wants to convey 1o its users, or allows its users to manipulate the
system to perform their tasks. Thus, they have behavior: they are observable. they have
properties, and their actions are determined by their states and built-in computations.

In general, a Ul object includes techniques for either output. input, or both. OQutput
provisions of a Ul object define a perceivable behavior in terms of media properties, such as
visual or auditory properties. For example, an icon has a specific shape. may be highlighted.
and may produce a sound. change color or shape when pressed. Input provisions determine
the physical actions the user can perform on the Ul object through physical devices such
as mouse and data glove. For example, an icon can be moved around with the mouse.
From the point of view of the application core that consists of user-transparent application
objects, a Ul object is an abstraction capable of hiding the details of interaction with the
\IKOT,

At the Ul object level, we are concerned with four aspects of Ul objects:
e Ul ohjects as abstractions,

Architecture of a Ul object,

e Composite Ul objects, and

Organizing Ul objects into a software structure.

User Interface Object Architecture

In our model, each Ul object is divided into two parts: an IV that handles the inputs and
feedback of the Ul object; and an AAD that implements the application central structure,
which defines data structures (attributes) and application semantic processing functions
on the data structures. This separation is similar to the MVC. There are several reasons
for separating it into two components. First, this approach separates interactive behavior
from abstract behavior of an object, so that the orthogonal design of these two components
is possible. Second, it supports different views of the same AAD to fit the particular
application or to customize interaction style. Lastly, it is independent of Ul toolkits. Ul

toolkits provide various widgets or interaction techniques which define ways to use input
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Figure 5: User interface object model

mappings between an IV and its AAD; inputs and semantic operations, display and state.
The parser maps a sequence of physical inputs to a sequence of state transformations, the
viever maps a state change to display changes (if there are several different displays, i.e.
one AAD has several different IVs, this mapping will appear in every display). The parser
and the viewer serve explicitly as a translator and a linker. Figure 5 is the logical model
of a single Ul object. The user’s input is accepted by the IV and then forwarded to its
AAD as a message through parser. The AAD responds to the message by performing the

produces a visible display of state by invoking the display methods in the IV.

The standard interaction cycle in a Ul object goes as follows: the user takes some action,
the parser analyzes the input sequence and then notifies the AAD by sending a message;
the AAD responds by carrying out the corresponding semantic operations and possibly
changing its state and then notifies the viewer that the state has been changed in some
way; the viewer, depending on the nature of the change, updates the display by invoking
the display methods in the IV that have access to the AAD’s state of interest.

In the chess example, each piece is a Ul object that has two parts: an IV component that
handles the input and the output of the chess piece on the display, and an AAD component
that contains its side and its logical position on the board as its internal state and provides
a set of operations on these descriptions as its behavior. The IV component of the piece
forwards the user actions to its AAD component through parser and the AAD component
notifles its change to its IV through viewer which then tells the board about its change.
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This approach supports the direct manipulation style. In the model, the ordering of
physical inputs reflects the ordering of command invocations and there is no intermediate
level to reorder invocation in any way. because the inputs are forwarded to AAD directly
through parser. Display in the model gives a mirror representation of the AAD state, Ax
manipulations are performed on the AAD attributes, the effect of the manipulations are
immediately visible in the display. Since cach Ul object models one individual and small
dialogue in the system and because they are independent of cach other, a collection of U]

objects models multi-thread dialogues.

Composite User Interface Objects

In many cases, multiple Ul objects can be combined to form composite objects, which
appear to the user as a single object. An example might be a dialogue box, which is a
collection of individual widgets that appear to the user as a single interaction entry, In one
Ul object architecture, a composite can be [V, AAD, or both IV and AAD. In general, the
composition is usually referred to as a look-and-feel composition. that is, IV composition
in our Ul object architecture. If a Ul object is declared to be a composite object, it can
have children. Composite objects allow the creation of a run-time hicrarchy in which the
position of a child is specified relative to the position of the parent. If the parent is moved,
the child is automatically moved. Therefore, this run-time hierarchy of widgets is hased on
the underlying windows from which the widgets are constructed.

For composite Ul objects, we are concerned about the following facets: management
of the geometry of composite Ul objects, and use of constraints to express relationships
between Ul objects. Many of the existing toolkits [LVCR9, FouR9, Bork6, Szesn] assume
responsibility for managing the interrelationships among some of their widgets which can
be used to implement IVs in this Ul object architecture and therefore a great deal of new
power is introduced by using these tooikits. In this thesis, the concern is more with Ul
internal structure rather than the geometrical composition of Ul ohjects in the traditional

sense.

Formal Definition of User Interface Object

We can give a formal description of the Ul object model as follows: a Ul ubject is a tuple
(I.T.S, D, parser, viewer ) where I is a set of physical inputs, 7' is a set of valid state
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Figure 6: Hierarchical structure of the model

transformations, $ is a set of all possible states the object can have, and D a set of visible

state displays.

parser : iC/ —1t€eT
parser maps the inputs into a valid state transformation.

teT :5,€S—s,€8

t transforms the object state from s, into s;.

viewer : s€5 —deD
viewer produces a visible display of the state s.

3.3.3 User Interface Object Organization — UI Structures

We have identified and discussed the logical components of interactive systems. The is-
sue discussed in this section is how these logical elements are organized into a software

architecture.
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From section 3.2, the design process of an interactive system begins with building an
application domain model which, from the Ul perspective, is represented by a collection
of AADs, and then the Ul is constructed by mapping the application objects onto I1Vs,
Therefore. in a great many cases, the structure of the Ul is more complex than a simple
pair: an IV and an AAD, since an AAD can have one or more Vs, which provide multipie
views of the AAD. On the other hand. an IV or an AAD may be a primitive or a composite,
and a composite IV (or AAD) contains other IVs (or AADS) as its components, That s,
the Ul structure is usually represented as a hierarchy of IVs, which is the domain mapping
of a hierarchy of AADs, Ina multi view situation. the ULis based on multiple trees of Vs,

Figure 6 shows the possible logical relationships among IVs and AADs, The well defined
protocol of viever and parser, hetween the AAD and the IV maintains the consisteney
between the AAD and its IVs (figure 6a). When a Ul object is composed of sub objects in

a hierarchical manner, the hierarchy can be represented in three ways in this model:

a) in the AADs of the objects, such as in structured graphics where the AADs are graphical

objects, this structure is shown in figure Gb;

b) in the IVs of the objects, such as grouping several 1Vs which usually coordinate their

behaviors, this structure is shown in figure Gc;
c) in both the AADs and the IVs of the objects, this structure is shown in figure Gd.

In the chess example, chess has the structure of figure 6d. 'I'he board’s AAD in a
composite that contains the pieces’ AADs. The board’s IV is a componite that contains
the pieces’ IVs.

The above protocols have responsibilities to cover the following three aspects of a Ul

1. for task-level sequencing between the user and the portion of the application domain

that depends upon the user,
2. for providing multiple view consistency, and

3. for mapping back and forth between domain-specific formalism and interface. specifie

formalism.

It is important to mention that the above discussion lists the primitive, logical compo.

sition patterns among the Ul components that may appear in a Ul structure, They are
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the primitive patterns that complicated patterns can be built from. They are the logical
patterns, and the actual patterns in Uls may not be exactly the same. For instance, a
composite AA1 has an IV but its component AADs may not have corresponding IVs and
their interactions with the user are implemented in their parent AAD. A composite IV may
have an AAD but its element IVs may not have AADs.

The composition is done through construction by standard protocols, such as Inscrt,
Append, Remove, Delete and child iteration and manipulation operations (First, Nerl, ete).,
hetween the composition object and its component objects so that the behavior and the
attributes of the composite depend on its components and the way they are composed. The
compositional mechanism is very important for building up sophisticated and diverse Ul
objects. We believe that the above composition patterns, though very simple. are powerful
enough to describe most Ul structures. This approach to support Ul structure description is
to implement these patterns though well-defined protocols among IV and AAD components

which can provide different sorts of composition.

Structure Orientation and Function Separability

The proposed architectural model can support a wide range of structures from data-oriented
to interaction-oriented. ata-oriented systems such as database applications have extensive
facilities for mapping information flow, to the end users, often with minimal interaction
capabilities. These systems typically concentrate on the information being viewed and
manipulated by the user. Interaction-oriented systems such as graphics drawing editors
have extensive capabilities for mapping user actions into the behavior of the UI, such as
controlling appearance, and choosing different interaction techniques for representing the
same information. The figure 6b structure is suitable for describing data-oriented systems,
while figure 6¢ is good for most interaction-oriented systems.

The different ways of communicating between the application and the interface define
different levels of separability. It is possible to have the whole application functionality de-
fined within the IV hierarchy or AAD hierarchy, which gives a low degree of both functional
separability and interactivity between the application and its interface. For example, in
a drawing editor application, the functionality of the system would be defined mostly in
IV hierarchy by providing sophisticated GUIs, while in a banking system, the functionality
would be mostly the manipulation of the application data model and therefore defined in-
side AAD hierarchy. The structures in figure 6b and figure 6¢ are suitable frameworks for
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describing applications with low functional separability and low component interactivity.
At the other end of the spectrum, the application functionality can be spread aeross the
boundary of IVs and AADs, giving a high degree of functional separability and component

interactivity. Applications like this can be deseribed by straetures similar to ligiure Ge.

Abstraction Levels

The architecture derived from the above model convevs a hierarehy that can be usefully ox
ploited for defining levels of refinements or relationships in an application. We can deseribie

the abstractions in an application from the high to low levels.

High level abstraction. At the top level of the hierarchy, the AAD corresponds o the
functional core of the interactive system. For example, in the chess program, the
abstraction of the board’s AAD is shown in Figure 7. At this level of this abstraction,
it checks the validity of the user’s actions by calling monitor, maintains the state of
chess playing, and invokes the machine-player to respond to state changes. I'his
top-level control has a role similar to that of the dialogue control component in the
Seeheinm model. It bridges the gap hetween the functional core and the perceivable

world in the following two ways:

o It provides mechanisms for indirection and translation between the application

processing and the Ul For example, in the chess program, the user’s physical
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protocol onto the implementation objects which are provided by available Ul toolkits. The
high-level components are closely related to the abstraction of the above Ul model and are
general within the object-oriented paradigm and, on the other hand, independent from the
specific details of the implementation. The current implementation is based on InterViews
toolkit [LVC89] - a powerful C4++ GUI toolkit. We do not present a detailed description

of every class; instead, the key classes and their protocols were considered.

AAD Component

Table 1 lists the AAD protocol’s basic operation. One of major responsibilities of an AAD
is to handle the communication between an AAD component and its IV component(s).
An AAD object defines Attach and Detach operations to establish or destroy a connection
with an 1IV. These two methods take an IV as an argument. The Notify method alerts
the attached 1Vs to the possibility that their state is inconsistent with the AAD’s. Upon
notification, an IV reconciles any inconsistencies between the AAD’s state and its own. The
{'pdate operation notifies the AAD that some state upon which it depends has changed.
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The AAD is responsible for updating its state in response to an Uplate message and then
tells attached IVs through Notify. The change of an AAD's state is usually caused by
there are situations where the synchronization between an AADx state and its IVS” display
is controlled by the AADs client (IV or other object). The Update method is visible to
its clients, The Message Handle method is defined as a general communication channel
between an AAD and its IVs or other clients which takes a message object as argument and
responds to the message by invoking the appropriate member funetions. T'he semanties of
this operation is AAD-specifie; an AAD typically retrieves information from the message
object for internal use. A message defines a request from a client object in a special format
just like an event object defines an event. An AAD's client objecta include, but are not
limited to its IVs. Tool and Command objects introduced below can also regquest services
from an AAD by passing a message.

Another major responsibility of AAD’s protocol is to provide means to organize AAD
components to build application data models. An AAD object can be added to (removed
from) a composite AAD via the Add ( Remove) operation. The Get Pare nt operation returns
the AAD’s parent (if any) to allow traversal up the AADs hierarchy. AAD objects also
define a family of operations for iterating through their child AADs (if any) and for re
ordering them. These operations include First, Next, Last, etc which support iterating over
the children of an AAD. An AAD may also support maintaining its children in a particular
order based on the value of some attribute in its child AADs. The base AAD class only
defines the protocol to specify what is desired rather than how to accomplish it.

Finally, in the basic protocol, AADs can communicate with user support facilitios to

provide context-dependent information. Right now, AADs can set and access its undo

The above protocol is for AAD components in general and can be extended depending
on the application semantics. The library has the GraphicAAD as an extension to support
the structured graphics. Structured g:aphics refers to a graphics model in which geometric
primitives such as polygons can be assembled into hierarchies. Fach graphical object has

cation specific-semantics. Primitives can be composed hierarchically to impose structure on
the graphics being displayed. Structured graphics can simplify the implementation of direct-

manipulation GUIs because it makes creating and manipulating graphical objects easy. The
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Return | Operation Argument | Role -
Attach - IV ohject establish connection
Detach IV object destroy connection
Notify alert attached 1Vs
Update update state
MessageHandle Message

AAD GetParent return AAD’s parent
Add AAD object | add an AAD as its child
Remove AAD object { delete a child AAD
{child iteration and
manipulation methods}

RO GetUndo
SetUndo RO object

Teble 1: AAD object protocol

extension of the basic AAD protocols adds graphic-specific operations, such as accessing
or setting geometric information, concatenating transformation, etc. The implementation
of the GraphicsAAD is an extension of the structured graphics provided by InterViews so
that GraphicAAD objects support AAD’s protocol as well as the operation of creation and
manipulation of graphical objects.

IV Component

Table 2 presents the basic IV protocol. The base protocol for IV components supports
geometry management, rendering, and structuring multiple IVs into an aggregate. The
IV protocol duplicates some of the AAD protocol’s operations ( Update and GetParent,
for a composite IV, Add, Remove, and those for iteration and child manipulation), adds
SetAAD and GetAAD operations that set and return the IV’s AAD, and defines the base
functionality of a view, like Hide and Show. In addition to the communications with undo

facility, 1Vs can also support user customization by having its own customization object

The Draw method displays the IV by first drawing its appearance on the underlying
window and then asking all the contained IVs (if the IV is a composite and has child 1Vs)
to display themselves. The built-in clipping algorithm is set by a composite IV before
drawing its children.
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A major responsibility of an IV is to handle event dispatching. An IV defines Fren-
tHandle to interpret the user's input events forwarded by the underlying window system
and the semantics of this operation are IV-specific. Events are low-level objects that ap-
plication code should rarely need to access directly. The EventHandle method processes
events to the IV by translating events to member function calls or dispatching events to
other IVs. The event-driven model, as it has been used for most window-based interactions,
is the underlying interaction mechanism. The containing relationships among IV define the
composition of physical IVs, where the relationships among the IVs® FoentHandle methods
specifies the logical composition among the 1Vs.

IV components are generic objects and therefore, their protocols are independent from
the implementation-platform and interaction details supported by the implementation class
which is encapsulated by the IV protocol. The base protocol of IVs here only covers the com-
position of physical and logical IVs. The implementation objects’ protocol should specify
how to map IV objects onto a screen and receive events from input devices. An imple-
mentation object should create a canvas that is bound to a portion of the screen when the
IV is mapped and implement many other IV related-operations such as move, raise, and
resize. In the current implementation, the underlying window system is X-windows and
the IV implementation is build on top of interactor class in InterViews. Interactor is the
base class for all interactive objects provided by InterViews and has a shape variable that
defines the desired screen space, an input variable for reading events, and a output variable
for performing graphics operations. Interactor is a heavy-weight widget that encapsulates
almost all the details necessary for performing window interactions.

A selection object is nominally a convenient interface for managing a set of distinguished
component views. To support the selection concept as well as scrolling and zooming manip-
ulation, a special subclass of IV called Viewer is introduced. A Viewer displays an AAD),
most often the root of an AAD. It can also process user input events and dispatch them
to selected objects. Its protocol supports set and get selection object and scrolling and
zooming manipulation on the display.

Other Components

IV and AAD components are used to express the concepts of the application and define
the structure of an interactive system. There is a need for other objects for the application
semantics and control aspects of a UL In our prototype library, we have user-transparent,
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Return

Operation

Argument

Role

AAD

v

RO

CusOhj

SetAAD
GetAAD
Notify
Update
EventHandle
Add

Remove
GotParent

{child iteration and
manipulation methods}

GetUndo
Setl/ndo
GetCusObj
SetCusObj
Draw

Hide

Show
HighLight

UnHighight

AAD object

Event object
IV object
IV object

RO object

CusObj object

| establish connection

alert attached IVs
update state

add an IV as its child
delete an child 1V

return I\V’s parent

display itself

make the IV invisible
make the IV visible
highlight the IV
unhighlight the IV,

Table 2: IV object protocol

AR

command, tool, user-support and UlIShell classes. User-transparent components are the
objects in an interactive system that contains the application semantics which is not directly
related with user interactions but defines the protocol to talk with Ul objects, for example
the base class we used to define the monitor object in our chess example. The command
object is the base class for the objects that allow the user to directly access or invoke some
of the attributes and methods of a Ul object via menu, button, and dialog objects. The
tool object is a component that supports direct manipulation of a Ul object which, together
of 1V tree associated with ool and command objects and dispatches inputs. A user-support
object implements user support features for a Ul object. Detailed descriptions of these
objects’ functionality and protocols will be presented in the following chapters.
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3.4 Designing An Interface with the Model

The proposed Ul model provides a unified architecture for user interfaces. An interface is

data model. and then constructs the representation of the application by mapping the AAD
hierarchy to an IV hierarchy, and finally, specifies other system components, such as menus,
tools, UlShell, etc. Fach of the AAD or IV components represents o domain concept and
is extended from the AAD or IV abstractions in the framework with application-specific
behavior. This approach models the application domain with domain-specific ADDs and
IVs that can be refined individually, while the relationships between these components
define the application structure. The UISDT, described in chapter 5, supports the above

activities as well as prototyping the design.

3.5 Summary

The UIMS model supports a high level abstraction used to define the UL Although these
abstractions (or specification techniques) tend to be easy to use, it is usually the case that
they are not general enough to allow the specification of all the required facets of the U1,
and more importantly they work well only in a limited domain. To get around this problem
the designer has to access a lower level programming language or the underlying toolkit
which is used to implement the higher level abstractions, and which is general enough to
allow all aspects of the Ul to be defined. These low level languages (or toolkits) are difficult
languages or toolkits. The toolkits’ model, on the other hand, works the opposite way and
supports the low level programming abstractions which are general enough to cover most
"look-and-feel’ aspects of the Ul

Figure 10 shows the Ul design pyramid. The width of the pyramid represents the Ul
design space supported at that level. The top level is the UIMS environments, although
the Ul is easy to generate, the designer is limited to a narrow design space. Because of
automation in most UIMSs, they provide Ul designers with very little control over design
decisions. However, generating good Ul designs is intrinsically difficult. Principles of good
Ul design are not yet well specified, (at least not at the implementation level), and cannot
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Figure 10: User interface design pyramid

be used to automatically prune the relative large design space. In contrast, at the base
of the pyramid, the toolkit or UI builder situation, the specification is more general, and
the design space is correspondingly wider. Working at the corponent level, builders or
toolkits force designers to handle too much detail and designers are forced to make design
commitments down to the level of individual widgets, and thur. distract them from design
decisions at the conceptual level. The sharp edge of the pyramid shows the long drop (or
jump) between these two levels. This drop (or jump) can often be intimidating for designers
and currently there isn't smooth movement between the top level components and low level
components.

In this proposed model an attempt has been made to provide a middle level between
the two extremes so that the Ul parts of an application can blend seamlessly with the other
parts, separating them as deemed most appropriate by the designers.

This level is supported in our model by providing a set of middle-level components that
top-level components defined in UIMSs can be built from, and low-level blocks supported
by Ul toolkits can be used to realize these components. From the Ul point of view, their
behaviors are specified by well-defined protocols: the communication protocols between
the AAD and the IV and the composition protocols among AADs or among IVs. Any
interactive widget can be used as an IV as long as it satisfies the protocols required between
the objects, and the same is true for application objects.



Chapter 4
User Support Facilities

User support has been considered one of the important issues in constructing good Uls,
However, effective support facilities need direct access to the semanties of the interactions,
This requires that the support facilities penetrate into the internal structure of the system

and the supporting concepts pervade the system. Previous work in this field has been ad hoe

have to be constructed from scratch for each application. We have developed two user
support facilities: an undo framework [WG91] and a user customization framework [WGH3)
as part of the Ul architectural model. The components in these frameworks can be woll
integrated into a Ul structure and provide support features by cooperating with the U]
components discussed in chapter 3. Our goal is to provide frameworks with three key
attributes:

a) They adopt the object-oriented model in which objects encapsulate the common at-
tributes of domain-specific support facilities,

b) They provide user support abstractions in a broad range of domains and mechanisms

that integrate these abstractions into application-specific Ul structures seemlessly,

¢) They minimize the effort required to develop domain-specific user support facilities.

4.1 An Event-Object Recovery Framework

In section 2.3.1, we briefly reviewed traditional undo approaches and pointed out that they

51
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recovery approaches are not suitable for object-oriented systems based on the structural
differences between non-object-oriented software and object-oriented software. These dif-

ferences lead to the introduction of a new approach - an event-object user recovery model.

4.1.1 The Problem

From a procedure-oriented perspective, an interactive system can be described as a set
of data structures and a set of primitive commands manipulating these data structures.
The state of the system is represented by the collection of these data structure values. A
command changes the status of some data structures which leads to a change of the state
of the system. The system history is described by a sequence of system state changes
caused by a sequence of primitive commands. Primitive commands can be considered as
transformations of system states. In order to undo a primitive command. therefore, the
reverse transformation of that command must be applied to the system state.

Assuming that we have a history list H that records all the state changes made during
the interaction, and a command list L which is a sequence of primitive commands issued
by the user, then, H describes a locus of the state of the system in the space of all possible
system states under the actions of L. The recovery meta command undo can operate on
the commands in L, and reverse the effects of the issued commands to restore both H
and the application to a previous state. We call this approach the command-oriented
approach, since the commands causing the changes of state are the units of recovery both
for storage and actions. This model is based on the assumptions that 1) the individual
procedures, which implement the commands, dominate the system structure and 2) the
data manipulated by these procedures are globally accessible.

An object-oriented system can be described as a set of objects, where each object is an
independent component and provides certain services to other objects. The relationships
between objects determine the ways the objects work together to meet the requirements of
a particular application. All computations in the system take place as a result of message
passing among cooperating objects. Rather than invoking procedures to act on passive data
as in procedure-oriented software, messages evoke object activity. The action taken by an
object is a function of its interpretation of the message and its internal state. The input
events and the messages passed between objects change objects’ states and lead to changes
to the system state. The effect of an event upon system behavior depends on the event type
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and the objects that respond to the event. Therefore, the system state can be represented
by the collection of states of all the objects.

There are several reasons why the command-oriented approach is no longer suitable
as a recovery method for object-oriented systems. First, the command-oriented approach
requires the system to be able to find commands that cause changes in systew state, and find
an inverse function for each command that can be used in recovery. Although the procediires
that define the interfaces to the objects may be accessible from a system perspective, the
implementation of these procedures and the specification of their data stroctures are no
longer visible at the system level. This requirement violates the basic principle of object
oriented design - encapsulation. in which the implementation of member functions is
private to the object and not available to its users. Second, since the specification of
data structures for an object is private to the object, the internal state of the object ix
not available to other objects, and therefore it is impossible to describe the system state
explicitly at the system level. In other words, an object-oriented architecture cannot provide
the context-dependent information needed to perform recovery at the system level. The
interaction history, the log of information and events that have already taken place earlier,

is distributed inside the cooperating objects.

4.1.2 The Event-Object Model

Let us look at how a particular object-oriented system works. In the chess program, suppose
the user wants to move piece A from position 1 to position 2 in order to capture piecce I
in position 2, the user generates a move event that is sent to piece A by downclicking on
A, moving it to piece B, and upclicking piece A in position 2. This event causes A to
move to position 2, then A sends a capture message to piece /3, and H responds to this
message by moving itself off the chess board. We can see that it is the events and the object’s
response to these events, either directly or indirectly, that determine the effects of the user’s
action upon the system. Therefore we can derive an explicit description of the system state
changes by recording events that occur during interactions and the actions that the objects
perform after receiving these events. That is, the events and the objects responding to the
events provide a representa‘ion of the user interaction and its effects on the system. This
observation is consistent with the fact that most object-oriented interactive systems are

based on an event-driven interaction paradigm.
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Given the fact that in object-oriented interactive systems the events and the objects
responding to the events form the major part of the recovery information, the next question
it how to record this information and organize it so that it can be used for later recovery.
Our philosophy is that recovery information should be recorded at a relevant level in the
system.  As we have discussed above, in an object-oriented structure, the system only
knows the reason (the event that occurred and the objects that responded to it) for the
complete recovery information and apply recovery operations directly at the system level.
For example, In the chess program, to reverse the above move action of piece 4, the system
needs to send the undo move message to both .1 and B, and let A and B undo their actions
by themselves. In order to record the effects of an interaction, which will be used as recovery

information for later undo/redo, it is necessary for the system to know the event and the

each object involved in the interaction should also know all the other objects (such as its
components for a composite object) that have responded to the same event as this object,
Therefore recovery facilities should be distributed inside the cooperating objects, since only
the objects know what has happened to them. Furthermore, the recovery facility should be
able to organize the recovery information in a way that reflects the relationships between
the objects so that the control flow in the recovery process implements the correct recovery

semantics.

There are several advantages to binding recovery facilities to objects. First, the infor-
member functions that cause the change, and the messages it sends when the object is
responding to the event, are only available inside the object. Second, the object knows
whether an action is an undo-able action, because it knows the implementation of its nem-
ber functions. If the action is undo-able, the object knows how to collect the recovery

information and later use this information to reverse its effects when the object receives
may either have no effect on the object state, such as printing or accessing object state, or
do not have a general method for recovery. However, the object is the right place to decide
what to do, as long as the actions happen inside the object. Finally, with the object’s own
history log, locating the recovery information is easier and modifying the implementation of
the recovery facility for a particular object is simple and localized. In summary, attaching



CHAPTER 4. USER SUPPORT FACILITIES hh

the recovery facility to the objects supports recoveries that are unique to the domain and
context specified by that object.

The recovery facility structure shonld specify the way that the local recovery facilitios
work together to record the system interaction history during interaction, and propagate the
recovery information in the system during the recovery process. We use the statie structure,
the containing relationships among objects of the UL as the strueture for organizing local
recovery facilities in objects. There are two reasons why this structure is a good way to
organize the recovery facilities. First, the system structure reflects the wayv that a svstem
performs actions to meet its functional requirements, and thorefore this stracture is o natural
way to group the recovery facilities, Secoud, this static stracture is known when the Ul
structure is provided and hence it is easy for the designer to incorporate the recovery facility

into the application structure without changing the existing Ul structure.

4.1.3 The Recovery Framework

maintains the history list for the attached object,

¢ Recovery Commands (RCs) which specify the undo requests such as undo, redo. ete.
an RC is passed to RO as a request and leads to the changes in the history list in the
RO.

e Recovery Information (RI) is an object which defines an event, an object set, and

recovery data. Each item in the history list is a RI.

When a Ul object receives an event that causes the object to perforin a reversible action
and change its state, it will create an RI with the event and the recovery data and then put
this RI on its history list. When an RO receives an RC, it responds to the RC according
to the current RI: performing the recovery operation based on the event and the recovery
data in the RI, and at the same time forwarding the RC to the objects in the RIs object
set if there are any. The whole recovery facility in an interactive system contains a set of

local ROs attached to Ul components. The control mechanism for recovery has two parts:
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Figure 11: The Components of the undo framework

I. the local control mechanism, which is responsible for making sure that the interaction

history is recorded and that the recovery operations are performed in correct order

for each Ul object, and

2. the global control mechanism, which is responsible for organizing and synchronizing
the local mechanisms in the recovery process, and ensuring that the correct user

recovery is performed.

Components of the Recovery Facility

Figure 11 illustrates the components in the framework, and in section 4.1.3, we will describe
the objeet protocols for these components. The recovery framework is composed of a set
of ROx that are nested in the Ul objects. ROs are organized in an hierarchical structure
reflecting the containing relationships among the Ul objects in which the ROs are nested.
Except for the system (or top-level) RO, which will be discussed later, each RO has a parent
RO that is either the system RO or the RO of the composite object that contains the object
that the RO attaches to.

An Rl object contains three elements: an event, an object set and the local data for
recovery. Anevent is something that happens at a point in time, such as the user pressing the
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left mouse button or a message being sent from one object 1o another, For user interaction
recovery purposes, we are interested in the events that change the Ul objocts’ states, The
events that are the events of interest depend on the objects that respond 1o the events,
The object set in an RI contains the objects that are components of the attached UL object
which responded to the event. In other words, these objects assisted their parent object in
the processing of the event. We will discuss how these objects are added to the set later,
Since object data structures vary from one class to another, cach class should have its own
specific recovery data structure. For example, in the chiess program, the recovery data for

chess piece movement is the distance the piece moved on the hoard.

The Rls are organized in a double-linked list local to the RO. There is a pointer variable
in the RO, called the history-1ist-pointer which points to the current item in the list.
When a new Rl is added to the list, it will be inserted into the list at the pointer position,
The history list can be considered as the internal state of an RO, and the interpreter for
the RCs together with an Rl insertion method forms the interface to an RO, The RO s

built into a Ul object as an instance variable.

RCs are the recovery commands that can be accepted by an RO and are applied to
the history list to perform different actions. They are recovery commands in the sense
that they can be issued by a user, can be applied to an RI, and can change the history list
pointer, but they cannot create new Rls. I'here are fonr RCs: undo, redo, skipback, and
skipforward. undo reverse-executes the action(s) recorded in an RI and moves the history
list pointer back one Rl. redo re-performs the action(s) undone by undo and moves the
history list pointer forward one RI. skipback and skipforvard move the pointer backward
and forward without any action. The last two operations increase the flexibility of the
recovery mechanism. It is important to note that the introduction of the skipback and the
skipforvard commands allows a user to have complete control over the previous actions
that are undone or redone. It is obvious that this could lead to trouble since the user
can undo actions that occurred previously without first restoring the system to the state
immediately following that action. Unless the user is clear about what he/she is doing, these
two commands should not be issued. In addition if an action has been undone, undoing it

again is not allowed.
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Return Operation | Arguments Role
an Rl Undolnfo | event.object, | create an Rl
recovery data
AddObject | object add the object
to object set
Object Set | GetObject return object set
SetPrev RI sot previous Rl
SetNext RI set next Rl
an Rl GetPrev return previous Rl
an RI GetNext return next RI

Table 3: Recovery information protocol

Component Protocols

The implementation of the proposed recovery framework in an object-oriented paradigm
is straightforward. The Rl is implemented as a class that has an event, an object set and
local recovery data as its attributes. The local recovery data varies from one Ul object to
another. An application-specific Ul object can extend the RI via subclassing to support
specific recovery data types. Table 3 lists the Rl object protocol.

The RO is also defined as a class and its protocol is described in table 4. Handle processes
an RC by first looking at the current Rl to see if its object set is empty. If the object set
is not empty, Handle sends the RC to the Handles of the objects’ ROs in the set. Then

the RC and determines the action it should take and decides how to do it. This decision is
based on the RC, the event type and the recovery data in the RI. Like the recovery data,
the U/ndo’s implementation relies on the Ul objeci.. An application-specific object should
define its own specific {/ndo via subclassing. The Insert method will append a given Rl to
its history list. The Remove method will remove the Rl from its history list that has the
same event identification as the given RI. The Notify method is invoked by the children
ROs when they create new Rls. They tell their parent RO that a new Rl is constructed in

response to an event.
The addition of an RO to a Ul object is straightforward, since all that a Ul developer
needs to do is to specify the RO as a member variable of the object, modify the methods
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Return | Operation | Argument ] Role N ]
an RO [ UndoObj [object | create a new RO
nested in the object
Handle RC process RC
Insert Rl add Rl to RI list
Remove Rl remove R from RI list
Notily event object T message from children ROs
SetParent | RO set parent RO
Undo RC perform a recovery operation
specified by the RC
Remove remove oldest RI from R1 list

Table 4: Recovery object protocol

of the object that implement reversible operations so that they create an RI when they are

invoked, and define the [/'ndo method for the RO.

The Local Control Mechanism

of the object to which the RO is attached. The RO of the object does not react to events
that have nothing to do with the object, nor cause the object to change its state, or lead
to an action that is not undo-able. The RO reacts only to events that cause the ohject to
change its state by performing undo-able operations or recovery requests (RC).

Figure 12 diagrams the communication between an RO and the U] object to which the

RO is attached. The numeric labels in the diagram correspond to the transmission sequence:

1. Recording the recovery information:
a) The Ul object receives an event and performs an undo-able operation to change
its state,

b) The Ul object creates an RI with the event and the recovery data it needs to
reverse its action and then sends the Rl to the RO.

c) The RO inserts the RI into its history list and if it has a parent, it forwards a
copy of the RI to its parent RO.
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Figure 12: Communication during recording and recovering process

2. Performing the recovery:

a) The RO receives an RC, such as undo,

b) The RO picks up the current Rl in its history list and passes the recovery com-

mand to the objects that are in the object set of the RI

¢) The RO performs the recovery operation on the Ul object according to the event
type and the recovery data in the RI.

To illustrate this process, consider a piece object in the chess program. Suppose the user
moves piece A from position 1 to position 2. Piece A receives a motion event, performs
a translation on its position, and creates an Rl in its RO with the motion event and the
translation distance. When the RO receives an undo from its parent later, in this case from
the RO attached to board object, it performs the undo by applying the reverse translation
to the piece's position. At this time the object set in the RI is empty as the piece object is
not a composite object.

The objects in the RI's object set are child objects of the object to which the RO is
attached. These are the objects that assisted the parent object in the processing of the

user's request. There are two situations in which these objects are added to the object set:

a) When the parent object responds to an event, it sends an event to a child object
that causes this child object to perform reversible actions and change its state. As a
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result, this child object must be added to the object set of the Rl in the parent. When
the parent RO receives an RC, it knows that this RC must also be sent to this child
object. For example, a composite graphics object contains a set of other graphices
objects as its components and when we manipulate the compaosite, the composite
will pass the manipulation event to its components. Later in the process of undoing
this manipulation event, the composite must inform its components to undo their

operations.

b) A child itself receives an event from an object other than its parent and as a result
it changes its state by performing undo-able operations. In this caxe. the child is
also added to the object set in the parent’s RI. This ensures that the parent (and
eventually the system RO introduced later) knows all the undo-able operations that
have been performed by the user. For example, in the chess program, the board object
contains a set of piece objects and when we move a piece, that piece will be added
to the RI's object set in the board’s RO, so that in later recovery the board knows

which piece needs to be undone,

We will give a further description of how these objects are added to the object set of their
parent’s RI when we discuss the global control mechanism.

In the recovery process, whenever an RC is sent to an RO, the RO first picks the current
Rl in the list and performs the required recovery operation for the object to which the RO
is attached. If there are objects in this RI's object set, the RO sends the RC' to these
objects. The order in which RCs are sent to the child objects in the object set of the Rl s
the reverse from the order in which these objects are added to the vhject set.

The Global Control Mechanism

Conceptually there is a single recovery facility at the system level for recording the interac-
tion history and performing recovery. Though each object has its own recovery facility and
the recovery mechanism for the system is composed of these local facilities, from the user
recovery perspective, a user’s action together with the system’s response to this action, is
considered to be one recovery unit. That is, a user input event together with the series of
events passed among objects caused by this event is interpreted as one recovery event in the
interactive system. For instance, in the chess program, the actions of moving piece A from
position 1 to position 2 and capturing piece B at position 2 are interpreted as one action
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(moving) for recovery, even though there are several operations among objects. To support
this scope of recavery, the event definition for RI's contains a tag field that distinguishes
ovents caused by one user action from the events caused by other user actions.

When an object performs a reversible action(s) in response to an event, it creates an Rl
Insert operation will first check the current RI (pointed to by its history pointer) in the Rl
list to see whether its event tag is the same as the event tag in the new RL If these two event
tags are identical (i.e. both of them are caused by one user action), the recovery information
in the new Rl is incorporated into the current Rl, otherwise the new RI is added to the list
and becomes the current Rl If the object has a parent, the inserting method notifies its
parent RO of the event and the object to which it belongs. The parent RO, after receiving
a notifying message from its children, first checks if its current RI has the same event tag,
If it does, the RO updates the object set of the current RI by adding the child object to
the object set of the RI. Otherwise, a new Rl is created with the given event and the child
object is added to the object set.

In additional, a special RO — the system RO is introduced to provide a single recovery
facility for the user. This RO is nested in the top-level Ul object of the system, the UlShell
object, that usually contains the control part of the Ul (menu bars and tool panels) and
coordinates the main interaction loop. The system RO is presented as a pull-down menu

containing 4 RCs as menu items (or buttons) to the user and it accepts user requests directly.

level. However, it does not perform any recovery operations itself when it receives an RC
from the user, because it is not attached to an application-related object. It passes the
user's RC to the objects in the object set of the current RI, if the set is not empty.

The actual structure of the recovery facility for a particular interactive system depends
on the structure of the application. The local RO can be attached to an IV or AAD
depending on the Ul structure as discussed in 3.3.3. Figure 13 shows how the recovery

control flows amongst the local recovery facilities in the process of recording the interaction
history and performing recovery. For instance, in Figure 13(1), a user input event goes to
composite object 2, which then causes its two component objects 5 and 6 to perform actions.
Two new Rlis are created in the ROs of objects 5 and 6 when they perform reversible actions
and their states are changed due to their actions. Object 2 does not need to create an RI for
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its RO at first, if it does not take any action to change its own state (without considering
its components) after it received the event, or its state is completely determined by its
components (it does not have any state except the states of its components). However,
when its RO receives messages from its children, objects 5 and 6, it creates a new RI with
the user event and an object sct containing objects 5 and 6. The order that objects 5 and
6 are added to the object set is determined by the order in which they performed their

actions and report to object 2. The reverse order is used when an RC is sent to these

causes its component object 6 to take some action. When the primitive object 6 performs a
reversible action on its own state, it sends a message with an event tag to primitive object
7 that leads to a state change in object 7. The primitive object 7 is not a component of
object 2, but a component of the composite object 4. Therefore, when object 7 creates a
new RI, it causes its parent object 4 to create an RI for the user event. At some future time,
itself, but will send the RC to object 7's RO. The creation of this RI for object 4 is purely
for the purpose of control flow in performing the recovery among cooperating objects. The
rest of the diagrams can be explained in a similar way.

In the above discussion, we focus on the control structure and nechanism in the recovery
facility and describe how the control mechanism can meet various recovery requirements.

In an interactive system, however, the actual application semantics may restrict the way

an interaction can undo their operations and others involved in the same interaction can’t,
the entire interaction may not be undoable if these objects have dependencies amongst their
states. The definition of the RO protocol takes this into account by allowing a child RO to
cancel its parent’s RI. This cancellation can be propagated along the RO hierarchy to the
top-RO, so that the entire interaction can’t be undone later.

4.1.4 Performance of the Framework

The number of recovery objects in an application will be proportional to the number of Ul
objects, i.e. IVs and/or AADs, in the program, and these recovery objects will be executed
each time the user interacts with the system. Each user action will also result in the creation
of one or more RI's. Consequently, the storage requirements for ROs and the operations that
traverse an RO hierarchy are potentially expensive. Though the actual performance of the
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framework in an application depends on the application semantics (storage of recovery data
and execution of inverse functions or reassignments), the basic definition of the framework

could critically affect the program’s performance.

The base class for RO objects requires no memory beyond what the language requires.
In the C++ implementation we use, an RO coutains several words of storage: a pointer to
the table of functions that define the RO's interface, a pointer to its parent RO, a pointer
to the history list, a pointer to the object in which it is nested, and two words for itself.

Our scheme for keeping track of the propagation of multiple object changes in the
interaction stage and for informing all the relevant objects in the recovery stage is similar to
the reasoning process in TMS [Doy79] and constraint-satisfaction processes [DPR7]. These
processes can be very expensive because they require multiple traversals of the dependency
structure. Our approach avoids this problem by using the static structure of the application
system. This structure is stable in the interaction process and has a single dependency
hierarchy. In our implementation, during the process of state change propagation (recording
the interaction history), each RO will only communicate to its parent RO, while in the
recovery process, the RO will only send recovery commands to its child ROs, which are
recorded in the object set of the RI.

The storage requirements for an RI mainly depend on the recovery data that must be
stored in it. The basic RI object, without recovery data, only requires storage for a fow
pointers. However, when the Ul is running, a large number of Rls are generated (at least
one Rl for each user action). Because the user usually only wants to undo recent operations,
only the most recent Ris need to be stored. The Remove method of the RO can remove
the old Rls from its RI list. The system RO will check the length of its RI list against a
predefined maximum length each time a new Rl is inserted in the list. ‘The maximum length
can be specified by the user or it can take a default value. If it is beyond the maximum
length, the oldest RI is removed from the list and its memory is freed. The remove uperation
also propagates the removal request to objects in the object set of the removed RI, so RO«
in these objects will remove the oldest Rls in their Rl lists. This process will continue
until the object set of the RI being removed is empty. The remove operation is part of the
internal implementation of the RO and users are unaware of it.

Compared with a single system history list implementations, our approach does add a
certain amount of overhead by attaching ROs to Ul objects. However, the major storage
and execution time requirements in any recovery facility for interactive systems, especially
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defines the basic abstractions that the designer can use and extend 1o build his/hers cus
tomization facility in a specific application system. The emphasis is on interaction pattern
customization since users usually want to customize patterns of behavior rather than other
preferences [Mac91].

The philosophy behind this approach is as follows:
o Users™ preferences can be demonstrated by their behaviors.
e Behavior patterns can be generalized from the user’s interaction history.,

e Behavior patterns can be redisplayed by an active “agent™, an object that performs

the same task or shows the same behavior.

e The mechanism to record the interaction history, generalize the behavior patterns,

and synthesize the agent, can be implemented in a Ul.
To have such capabilities in the framework, the following problems must be addressed:

How to record the interaction history? To perform the hehavior trace, the mecha

nism must decide what should be recorded and at what level it is recorded:

What are the patterns? Given the interaction history, the mechanism should decide how
to interpret the behavior trace, i.e., how do we define the class of behaviors the

mechanism can recognize;

How to synthesise the agent? After identifying the behavior pattern, the mechanism
should be able to generate the agent that simulates the user’s behavior from the

pattern; and

How to refine the agent? The mechanism should be able to accept the user’s comments
or advice about the agent it created and refine the agent.

In the rest of this section, we begin with the discussion of our application-independent
approach to building customization infrastructure, then the basic abstractions of the frame-
work are discussed in detail, including their semantics and relationships, and finally proto-
types and applications of the framework are presented.
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4.2.1 Domain Independent Approach

From an application perspective, interactions can be described at three different levels:
physical actions with the input device, interaction tasks, the type of information entered by
the user [FDFH90], and dialogue. An interaction task is the entry of a unit of information
by the user, such as selecting from a menu or picking an ohjeet on the display. A dialogue is
built on top of the interaction tasks and combines these tasks into a unit task meaningful to
the application domain or the problem solving process, such as creating a graphical object
on the display or performing a computation on an object, Dialogues are usually application
dependent and their definitions or interpretations rely on the particular application domain
or the problem solving process.

From a system viewpoint, interactions can also be analyzed at three different abstract
levels: input devices, interaction techniques, and Ul software. Input devices can be ab-
stracted into the legical devices that shield the system from the details of the physical in-
put devices. Logical devices categorize how user actions are accomplished by the underlying

window system and graphics package. Mackinlay et al [MCR91] provides a comprehensive

information into the computer and they are built on top of input devices. Interaction tech-
niques are the primitive units of interpretation in Ul software and form the basic building
blocks of a Ul Widgets in various Ul toolkits are examples of interaction techniques that

There is a correlation between the conceptual hierarchy of interaction descriptions from
the application viewpoint and from the system viewpoint. Specifically, the concepts in the
latter hierarchy are implementations of the concepts in the former hierarchy. Input de-
vices make the user actions understandable to the computer system, interaction techniques
support interaction tasks (many different interaction techniques may be used for a given
interaction task), and the Ul software allows the user to carry out different application-
dependent dialogues with the system.

A user’s behavior is demonstrated by the dialogues he/she carries out with the system,
i.e. his/her behavior patterns or preferences are determined by the kinds of interactive dia-
logues he/she has with the system and the ways he/she interacts with the system. Therefore,
the interaction history from the user side is a sequence of interactive dialogues. Most existing

customization mechanisms record interaction history at the dialogue level. However, differ-
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The history recording mechanism is application specific if the recording fevel is at the level
of interactive dialogues. This is why existing enstomization mechanisms are implemented in
particular applications. Our approach is to provide application-independent primitives on
which the construction of application specific customizations can be hoalt Ui o primitives
together with the common protocols among them provide the fundament o o iisms and
the hooks required to implement various application specific customizations. \u interactive
dialogue is made up of interaction tasks which are application independent,  To have an ap
plication independent mechanism, we need to bind eustomization primitives to interaction
tasks. From the system side. this requires that the primitive mechanisms peneteate into the
interaction techniques,

In the following sections, we present our framework for constructing customization fa
cilities in GUIs. It has two levels of supporting mechanisms. At the lower level, i.e. at the
interaction technique level, there are a set of application-independent customization prim
itives that are bound to individual interaction techniques so they can store customization
information and play back user interactions for each interaction technique. At the higher
level, there arc a set of abstractions that coordinate the lower level primsitives to perform

three major functions:
¢ behavior trace that records interaction history by gathering customization primitives,

e modeling that generalizes user behavior patterns and rearranges the customization

primitives to form a simulation agent, and
¢ simulation that performs the tasks on the hehalf of user,

These high-level abstractions are application related and they will be extended to ineclide
application-specific semantics and requirements when the framework is integrated into an

4.2.2 The Architecture

In designing the architecture of the framework we focused on the common attributes of user

customization. The attributes we have identified are reflected in four classes of objects:

Customisation object is a primitive bound to an individual interaction technigue that

provides technique-specific recording and replay mechanisms for user interactions. For
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this selection.

Logger watches how the user accompiishes a particular task or performs routine tasks
through communications with the customization objects bound to interaction tech-
niques involved in the user interactions. It records the user interaction history by
grouping customization objects and the corresponding interaction techniques. It is

used to represent the user behavior and interaction history,

Modeling component interprets the recorded user behavior and identifies his/her behayv-
jor pattern or intentions according to pre-defined “models™ or templates. A model is a

We defir~ a specific user interaction behavior as an instantiation of a model.

Siinulation agent is created based on the behavior model and acts as an active agent in
the UL It has a control structure defined by the model and the semantics provided
by the logger. It can perform tasks on behalf of the user,

The idea of models is a useful design aid for exploring the architecture of customization
before having to contend with details of specific behavior patterns. There are a few appii-
cation independent behavior patterns such as repeating a sequence of actions or perforiming
the same operation several times. These patterns can be defined as models, the structures
used to describe the behavior patterns. such as sequential control for routine tasks and loop
for iteration tasks. There are also application dependent behavior patterns, where their
interpretation needs knowledge about the task dommain. The mo. ..g component contains
an extensible set of these models and interprets the user interaction history in order to
transform the models and fill in the model with the knowledge of a user’s behaviors. This
modeling approach is similar to application-dependent planning [Geo87, Rob83). The mod-
els correspond to generalized plans, the interpretation of a user interaction history is the
process of plan recognition, and agent creation and execution is the process of plan synthesis
and execution. We will discuss the details of these components later. Since the task domain
and therefore the behavior patterns usually are well-defined ahead of time in Ul design,
we can also define them as application-dependent models with rules and conditions specific
to the app'ication. These models define the area that the customization facility targets in
assisting the user in customization. They are the skeletons of the desired behavior patterns
which can be fleshed out with the interaction history of the user.
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Figure 14: Structure of the customization framowork
Figure 14 shows the general structure of the user customization facility,

4.2.3 Basic Abstractions
By identifying the common attributes of direct manipulation GUIs, we identified the fol

lowing abstract interaction components:

IV components represent the clements of the task domain. A UD's main objective is to
a piece’s IV on the Lsard is an interactive component that the player can move on

the board.

Command components are special interactive components that present some control as.
pects of Ul objects to the end user and define operations on Ul objects. When a
Command object, such as menu item or a button, is selected, it applies the specified

operation to the selected component,

Tool components are similar to command components that present manipulation aspects of

Ul objects to the user and support direct manipulation of the interactive components,
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A tool defines a particular way to manipulate components aund its selection makes this
manipulation mode active, For example, selection of a move tool allows the user to
move objects in a drawing area, and selection of a component tool allows the user to

instantiate an instance of that component in the drawing area,

Customization Object and Logger

By definition, customization is the act of altering something to meet the unique requirements
of a particular person. Therefore customization can only he achieved if we are able to reason
about user behavior. ‘Fo perform such reasoning. we must have a mechanism whereby we can
gain knowledge of the user. A customization object gathers data about the user interaction
with a particular interaction technique. Acquiring user knowledge through customization
objects is therefore applic:iion independent and transparent to the user,

The purpose of customization objects is to record the user actions on the individual
techniques and replay the user actions on the techniques later. Customization objects are
special objects that are created by individual techniques, stored in the logger as part of the
hehavior history, interpreted by a modeling agent, and executed by a simulation agent. For
the three abstract interactive components mentioned above, we define three corresponding
customization objects (CusObj): a CusObj for IV components that records the effects of
the selection and the resuits of manipulations, and replays them back on the component;
a CusObj for command component that records the selection and plays the selection back:
and a CusObj for tools that records if this tool has been selected and how it is used after

it is selected.

is more general in that interaction techniques and interaction tasks are well-recognized
concepts compared to the high-level events in Eager. It is also more flexible in that for a
complex interactive component composed of primitive techniques, we can simply assemble
primitive customization objects to form a composite customization ob ject,

The logger represents the interaction history in terms of customization objects. They
are organized in a linear list, when an interactive component is involved in interaction, a
customization object for the component is created as an item in this list. The logger can
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Modeling and Simulation

The modeling process is perhaps the most important stage in customization. The model
ing component contains a set of pre-defined models as its knowledge base for interpreting,
the given logger. The model encapsulates the mechanism of a particular hehavior pattern
through its protocol. The modeling component miaps the interaction bebavior in the logger
to one of models and transforms the selected model into an executable object, a simualation
agent in the UL The transformation starts by analvzing the user behavior and then incor
porating the customization objects in the history list into the matehed model, and ereating
a simulation agent that the user can use as if it was part of the UL The model can define
iteration and conditional structures with variables as in Peridot and Metamouse,  These
structures are matched by analyzing the recorded behavior history with variables replaced
by corresponding interactive components,
Figure 15 shows the communication between different components in the customizition
process. This process has three phases:
1. The logger watches the user as he performs a series of operations on the system and
saves the trace of user-system interactions.
a) the modeling component receives a user signal indicating the start of hix example;
b) the modeling component puts interactive components in trace mode;

c) when an interactive component is engaged in user interactions, it creates a related
customization object;

d) the customization object records user interactions on the interactive component;

e) when the interaction is done, the customization object is sent to the modeling

component,

2. The modeling component maps the trace to one of the pre-defined hehavior models

and the trace is transformed into an executable agent.
a) the modeling component receives a user signal indicating the end of the trace
and starts interpreting the recorded behavior;
b) the modeling component replays the recorded behavior 1o accept user advice on
refining it;

c) the modeling component creates generalized behavior as an active agent.
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3. The created simulation agent is integrated with the rest of Ul and acts like a new

menu item,

We use lazy analysis of the user behavior pattern. Eager uses an eager evaluation
strategy where pattern identification analysis is performed on each event as it is logged.
We can easily implement eager evaluation in our framework by invoking the interpretation
process each time a customization object is recorded in the logger. We think lazy evaluation

is more efficient since user patterns may change several times during a trace.



CHAPTER 4. USER SUPPORT FACILITIES ™

Operation | Arguments | Role T Return J
CusObj interactor | create a CusObj [ a CusOQbj
Store ‘event accept event

Filter event filter event hoolean
Playback replay

Table 5: Customization object protocol

4.2.4 Prototype

We developed a prototype to test the viability of the architecture, Subsequently, the proto
type was used to build two customization facilities in two different GUIN for experimental
evaluation of the framework. We focus on the salient aspects of the prototy pe implementa
tion. We do not present a detailed description of every object: instead. we consider the key

objects and their protocols.

Customisation Object

The customization object’s protocol defines basic operations for recording, maintaining
and replaying user actions on the interactive components: IV (IVCus). command (Com-
mandCus), and tool (ToolCus). It defines and manages information necessary to replay
user actions on the component. Table 5 lists basic operations in the customization ob-
ject’s (CusObj) protocol. A CusObj is created by passing an object for which it provides
customization service. It communicates with the object to acquire the event information
through a Store protocol. A CusObj maintains an event list that records the events neces.
sary to repeat a user’s actions on the interactive component. The Playback protocol lets the
interactive component replay its behavior by supplying the recorded event list. Since not
every event passed to an interactive component during interaction is important for later
replay, the Filter operation implements a component dependent event filter o weed out

trivial or . relevant events.

CommandCus, ToolCus, and IVCus are defined as subclasses of CusObj that provide
commands, tools, and 1V components with specific customizations separately. With the dy-
namic binding mechanisms in C++, these objects are derived from CusObj with particular
behavior defined by their own Filter and Playback methods.
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Oporation | Arguments | Role | Return

Trace set trace mode
Addltem | CusObj append CusObj to logger
Simulate replay the logger
Interpret identify pattern a Model
Create | Model create an active agent a Agent

Table 6: Modeling component protocol

Conceptually, the modeling component is the only component that is known to the user,
It encapsulates the three major functionalities for customization, namely trace, modeling,
and simulation. It contains an extensible set of models that are the pre-defined hehavior
patterns the customization facility can support. It also stores a logger as its internal state.
It interacts with the user through menus that allow the user to customize the Ul The
modeling component protocol is shown in Table 6. The Trace operation allows the Modeling
component to watch the user during interaction. It informs all the techniques involved in

the interaction to record their local customization information by creating technique-specific

80bj, in the order they were added to the logger. to repeat the interaction process that has
been recorded. The purpose of this operation is to give the user a chance to confirm his
behavior pattern, and allows the customization facility to accept the user’s comments in
order to refine the generalized pattern. The user can interactively verify the replay and the
simulation process and can modify the logger. The previous undo facility is used to reverse
the effect of undesired actions during replay.

The Interpret operation implements behavior pattern identification and model gener-
pre-defined models by analyzing the logger and comparing it with the models. Different
models need different matching algorithms. The default implementation of the Interpret
operation is to match sequential control for routine tasks and loop for iteration tasks.

The sequential pattern is the simplest model that is used to describe the control for
routine tasks. The model defines an array of CusObjs whose number and contents depend
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on the interpretation, and a for loop control structure which invokes cach of the array
elements sequentially. The interpretation process moves the CusObhjs out of the logger and

For iterative patterns, the model describes a loop structure for certain tasks, the mateh
ing algorithm analyzes the CusObjs in the logger to find similar CusObjs where the inter
active components involved are the same type, and the contents involved in the interaction
fit into some regular pattern (e.g. open two *.c” files), The definition of similarity can be
varied depending on the applications. For example, it could be the same type of events,
the same response from the interactive components, or the repetition of the same action
sequence.

The Create operation creates an agent from the matched model and integrates it into
the Ul so the user can directly access it through a menu. The ageut is an object that looks
and behaves like a menu item and can execute a user behavior pattern by invoking CusObjs’

Playback methods.

4.2.5 Experience

We installed our framework in two different graphical applications to evaluate both the
concepts and the prototype implementation. Qur aim was to demonstrate that the frame-
work supports diverse domains, and reduces development effort. The graphical applications
requirements. We discussed the drawing editor’s application in this section and the chinese
program application in chapter 6.

The drawing editor, called idraw, is built on top of InterViews and is distributed with
the InterViews library. It is similar to MacDraw in that it provides an object-oriented,
direct-manipulation editing environment for producing drawings and diagrams. By using
idraw to produce drawings, individual users develop their own drawing patterns for their

drawing tasks. For example, the background of figure 12 is a particular pattern that was

instantiating another rectangle on top to it with dash-line border and non-fill pattern, and

finally grouping them together. To create such a background, the user needs to select

developed by idraw users through using it, such as laying graphical objects on the screen
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customization patterns we need are the defaunlt ones  sequential control for routine actions
and loop control for iterative actions, The CommandCus and ToolCus can be used directly
by idraw menus and tools. The IVCus is extended to record the user operations on viewer
(a subclass of interactor) between his/her seloections of tools or menus. This extended idraw

has been used to produce various drawings with customized interfaces,

4.2.6 Summary

We proposed a framework for building user customization facilities in GUls implemented
with Ul toolkits. The framework simplifies the construction of domain-specific customiza-
tions by providing programming abstractions that are common across domains. It defines

three basic abstractions:

e primitive customization objects encapsulate the recording and replay mechanisms for

individual interactive objects in a domain, i.e. they are embedded in IVs;

e the modeling component records user’s interaction, identifies the user's behavior pat-

tern and creates a simulation agent;
o the simulation agents perform the tasks on behalf of the user.

This framework has been integrated into our Ul model, so as Undo framework.

Note the this framework does not present a solution for particular types of customiza-
tion or any application system. It also restricts its application on direct-manipulation
based GUIs and encapsulates a few simple appcation-independent customization mecha-
nisms. The framework is based on a task-oriented approach instead of the solution-oriented
approach that have been used by many existing systems. Its basic abstractions support
low-level customization tasks that most customization facility need rather than high-level

application-dependent customization mechanisms that are provided by other customization

infrastructure or a skeleton that Ul designers can use and extend to build their application-
specific customization facilities.

The hard technical problem in customization has always been how to infer the right
generalization. An effective customization requires generalization to turn a trace of user

interaction into a useful agent. Although building a successful system requires extensive
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knowledge about the application domain (for example Metamouse sueceds in its well
defined limited domain) and our framework does not address this issue divectly, we tey to

define an organization or infrastructure to minimize the ditliculty in solving the problem,



Chapter 5

UISDT — A User Interface
Design Tool

‘The User Interface Structure Design Tool (UISDT) is an experimental design tool that
allows the designer to produce a Ul using a graphical editing metaphor UISDT, a tool
based on our model, imposes many more constraints on the designer than the model itself,
since it serves different functions, it embodies a model of an interactive system (the Ul
architecture model) as well as a model of a design process. The goals and strategies
UISDT’s design are:

e Embed our application-oriented model in the design tool. This Ul model is the in-
frastructure upon which an application-specific structure is constructed. The middle-
level components provide basis for application-specific objects. The default values
in middle-level components as well as the protocols provide a certain level of design

automation.

e Separate the Ul structure from the design of the external appearance. UISDT em-

phasizes Ul structure design instead of look-and-feel design as in most UI builders.

e Adopt an object-oriented model for UI design. UISDT supports designers in defin-
ing object models of their applications by providing abstractions and implementing

applications by producing prototypes.
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e Provide adequate balance between control over design Hexiblity and design antoma
tion. UISDT strikes this balance botween given designers control over the details of o

design, and providing a high level of design automation.

o Provide an exploratory environment for Ul design. The Ul architectural model is a

reference framework that guides the process of Ul software organization,

5.1 UISDT in Action

VISDT is first deseribed in relation to a concrete oxample, ‘Phis section illustrates the
nse of UISDT to create an interface for the chess program example that used thronghout
this thesis. Space limitations require that some details be left out, but a comprehensive

UISDT screen is shown in Figure 16. ‘There are six parts: a title bar on the top, a status
line immediately below the title bar, a menu bar immediately under the status line, a toolbar
immediately below the menu bar, a toolbox at left of the sereen, and a drawing area. The
title bar gives the name of UISDT and is conmmon to most X-window based applications,
The drawing area takes up much of the center of the screen,

Selecting items from the pull-down menus listed on the menu bar is one of most common
ways to unleash the power of window-based applications. The same is trae for UISD'T. The
menu bar gives a designer the tools needed to develop, test, and save his/her application.
The File menu contains the commands for working with files that go into the application.
The Edit menu contains many of editing tools that help the designer in editing his/her
application, such as commands for generating the code of the ongoing design, testing the
application, and undoing the editing operations. The View menu allows the designer to
have multiple views of several versions of his/her ongoing application design. The Custom
menu lets designers to customize their design patterns or create macros for their routine
design steps.

As is becoming more common in window applications, UISD'T uses a toolbar to let
designers activate common tasks without using the menus. Sinee every item on the toolbar
also has a keyboard equivalent the designer can choose his style of interaction. We will

explain the items on the toolbar later. The tool palette (toolbox) contains the 14 basic
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component tools for a designer to develop his/her application. The details of the toolbox
are discussed later in this chapter.

The first step in developing an interactive system within UISD'T is to specifyv the applica-
tion model  in other words, to design the system structure, What kinds of domain objects
do you want to model? What are the relationships among them?! How are these objects
delegated 1o a user?” What kinds of controls does a user have over these components? With
UISDT. application models are created by dragging objects out of abstractions supplied by
UISDT (the left-hand toolbox in Figure 16) and pasting them together. In Figure 16, the
designer has created a Board AAD a composite graphic ADID that models the board
concept and various piece AADs that model piece concepts. The designer drags the desired
component in the toolbox (in this case the composite graphic AAD) and places it in the
drawing area.

The designer defines the application-specific component’s behavior by using the refine
tool from the toolbar and performs in-place editing on the component. By dragging a

component tool from the toolbox and dropping it on the drawing area. the desiguer tells

component is based on the abstraction that the tool represents. By engaging the refine
tool, the designer can view as well as edit the properties and behaviors of a component.
The designer presses a mouse button on top of the component and a new window opens up
with three categories of information, properties, behaviors, and relations. The designer can
pursue each category by opening the sub-windows. The details of this process are presented
in the following sections. In general, the designer can change the default behaviors and add
new behaviors through the component’s in-place editing feature.

The Board AAD contains various pieces, and the Piece AAD is the base class for

various pieces, each of which differ in appearance (bitmap) and behavior (moving and

(board AAD) to a primitive AAD (a piece AAD), while a subclassing relationship is created
connecting two classes, such as piece and pawn, with the inherit relation tool selected from
the toolbar. By defining AADs and the relationships among them, we specify the hierarchy
of the AADs in the chess program, its application data model.

Next, the designer creates two IV components: Board IV and Piece IV. The Board IV,
a composite 1V, defines the interaction behavior for the Board AAD that displays the board
on the screen as well as pieces (by invoking the Piece I1V's draw method), and receives the
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user’s input. The Piece IV specilies interaction hehavior for the Piece AAD. The process
of creating components and establishing relationships is similar 1o drawing a picture with
a drawing tool. The most important relationship is the relation between AADs and Vs,
The result is shown in Figure 17,

Finally, the designer creates a top IV component  a subelass of UIShell that provides
a top-level view for the chess program by containing the Board IV and a set of meny
buttons (nawgame, quit, ete), The designer uses the same approach to deline the properties,
behaviors, and relations of these components as in specifving AAND and IV components. The
result is shown in Figure 18,

This section mainly described building a UL structure in UISDT, leaving out the details
of refining cach component (its behavior as well as semanties). A more detailed deseription
of how to use UISDT to build applications appears in the next chapter. In the rest of this
chapter, we describe UISD'T by first deseribing the design process it supports, then the

components it provides. and finally its prototyping capabilitios,

5.2 Architecture of UISDT

UISDT is a tool that supports the designer in developing a Ul based on an object-oriented
model. It improves on other Ul design tools that generate parts of a Ul from data mod
els, such as tools producing widgets from data types [dBFM92a, MackG], or syntactic
components and external layout of a Ul from dialog and Ul component specifications
[Mye90, SG91]. In particular, it relies on the object model of the application and takes
advantage of the relationships among the objects,

User interface structure construction is the primary interest. Unlike most Ul builders,
UISDT is designed to support the internal structure of the Ul, not the external appearance
or layout of a user interface. UISDT supplies the components of the proposed Ul architec.
tural model for the designer to specify his/her domain concepts and provides composition
mechanisms for building his/her application-specific Ul structures,

UISDT divides the development task into two major steps: first, building object models
in which designers are engaged in specifying application object models by using and extend-



CHAPTER 5.

UiIspT

A U'SER INTERFACE DESIGN TOOL

FILE: /step2 _ [Connection Mode: ® Flexble

‘Refine €

Select s

ORigid|

Move m Scale S Rotster

Group g

Associste a VisibieRelate V InvisibleReiste | Instance o Inherit h Using H

Figure 17: Building view model

bl



CHAPTER 5. UISDT \VUSER INTERFACE DESIGN 100!

FILE: ./step3 Conn -
Aefine E Scale 5 Rotater Groupg
Assoclate a VisibleRelate V invisibieRelste | instance o inherit h Using H

Figure 18: Building user interface strurture



CHAPTER 5. UISDT A USER INTERFACE DESIGN TOOL N7

In particular object relationships can be used to derive the overall strueture of the UL In
CISDYT, these relationships among objects in the object model are the basis for the U]

struetyre,

5.3 Design Process

A fundamental design decision in UISDT is to support object-oriented methodologies. and
UISDYT offers designers a graphical editing environment to build object models {Boo91.
RBP+91] of their applications though a direct-manipulation UL An object model captures
the static structure of a system by showing the objects in the svstem. the relationships
hetween objects, and the attributes and operations that characterize each class of objects.
The design process of an QO interactive system can be described as a modeling process
[Boa91, RBP*91]. The modeling process takes place between the real world (the referent
systemi) and a software model (the model system). The reference system consists of phe-
the designer finds elements that model the phenomena and objects in the OO paradigm
that are natural models of phenomena. To simulate the real world. behaviors of objects
have to he defined, which leads to the specification of relationships among the objects.
There are four aspects of the OO design cy le, namely abstraction, interface design,
implementation and verification. The primary step of OO design is to identify the objects or
candidate abstractions of the problem domain and their relationships. An object explicitly
embodies an abstraction that is meaningful to its clients. Abstractions can be generally
defined as the identification of concepts in a domain such that similarities are fundamental
and differences are insignificant for the purpose at hand. The abstraction is characterized
by a set of services (operations) that clients can request. The relationships between objects
determine the ways the objects work together to meet the requirements of a particular
application. The interface design phase translates abstractions into a computer-specific
form, specifying class definitions, class hierarchy and class behavior, i.e, defines classes
of these objects and structures the system. The implementation phase is the point at
which implementations are provided for the class interfaces designed in the interface design
phase. Finally, the validation phase checks that the resulting system adequately models the

refercnce system and meets other requirements. This validation of the model system leads
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Figure 19: Object-oriented software development cirele

to the start of the next design refinement cycle. Fipure 19 digrams a typical development
cycle for constructing object-oriented software.
UISDT is designed to support the above OO design process cyele, particularly the list

three phases.

5.3.1 Component Definition

Defining components in an object model is the most important part of a system design, I'he
designer expresses the domain concepts in terms of objects existing in the application. The
questions that the designer keeps in mind are: what are the different kinds of entities that
my program needs to manipulate? and how do these entities interact? The design process
is simplified in UISDT by building an AAD tree and 1V tree(s) which represent the object.
model of the application. Domain concepts are expressed by Ul objects, which in turn split
functionality between the AADs and IVs. UISDT provides the following components as the
basis on which an application-specific object model can be built:

AAD defines the base class for objects that store, provide access to, or modify the abstract
information of the application that is directly related to user interactions. AADx are
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used to define domain-specific interaction semantics. There are general ADDs and

GraphicAADs (for structured graphics); primitive AADs and composite AADs.

IV defines the base class for objec's that present, or allow the users to directly manipulate,
the information stored in its corresponding AAD. IVs specify domain-specific interac-
tion behaviors. Both AADs and IVs are referred to as domain objects that define and

-nage information to mimic the behavior of real-world objects. There are general

-« graphical IVs (for displaying structured graphics): primitive and composite IVs.

UlIShell is the root of the IV tree that has user-accessible commands and tools and provides
multiple views of the same or different IV sub-trees. UlIShell defines operations to
initialize the environment, interpret application parameters, and run an event dispatch

loop.

User-Transparent Objects define application objects that are not directly related to
interaction, but contain the functional core of the system. The user-transparent com-
ponents help integrate the Ul and the application code, and their relationships with

Ul components keep the two sides consistent amidst changes to one or the other.

Command components map some of the external attributes and methods of an object
model onto a set of controls, such as menus and dialogs, that are common control
objects in many GUIs. Examples include a menu item for selecting and executing an

action on a objert, or a dialog box for changing attributes of domain objects.

Tool components present interactive features of domain concepts to the user. Examples
includes tools for selecting domain objects for subsequent editing and for connecting
domain objects. Tools are different from commands in that they support the direct-
manipulation of domain objects. The concepts of command and tool are similar to
those in Unidraw, and menus and tools in Macintosh applications.

User-support objects provide services for other domain objects in the system to im-
plement user support facilities. UISDT provides two kinds of user support objects:
undo and customization. The designer can extend their default behavior to specify

domain-specific semantics.
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Figure 20: Define Component

Accessories are the components that supply Ul details for control and decoration. Exam
ples include a sc-libar for controlling the view of a large domain object (like text or

graphics) and an active message for displaying status information.

Figure 20 shows a component defined in UISDT: the user is inspecting the behavior
of the BlockIV component in the POAT structure whose design will be presented in the
next chapter. The designer can instantiate any of these components by first engaging the
component tool and then clicking in the viewing area. The designer can then inspect,
modify, or define new application-specific behaviors and properties of the component using
the refining tool. After engaging the refine tool, the designer can examine the BlockIV
component by clicking on it. A menu pops up with three items: Relation, Behavior, and
Internal. By choosing the Behavior item as in Figure 20, the designer views the behavior
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type or function name field) or clicking the Rep button which launches a text editor to edit
the code for that function. The designer can also add or delete a method.

There are three different aspects of a component that can be extended from the default
hehavior defined by UISDT abstractions: relationship with other components, external
behavior visible to other components, and the internal implementation. The relationships
between components are a critical part of the software structure and will be discussed in
the next section. The external behavior defines the operations that can be applied to the
component by other components. Each kind of component has default behaviors that can
be overridden or extended by domain specific semantics in C++ style. UISDT supplies a
behavior inspection and modification dialog box together with emacs-like text editor for
the behavior specification. The internal implementation defines attributes and behavior
implementation details which can also be inspected, modified. and extended in the same

way as the external behavior.

5.3.2 Relationship Specification

Relationships are associations among the objects that define the structure of the system.
whereby objects work together to provide system behaviors. These relationships are im-
portant in UISDT not only for describing the Ul structure, but also for generating code in
the prototyping stage. There are four important associations supported explicitly in the

UISDT environment:

IV-AAD (..) association defines the connections between IV and AAD components and
keeps consistency between them during interactions. The pre-defined protocols that
implement this connection address the issues of what information IV(s) and AAD
need about each other and how to get this information. This connection is the most

important relationship in terms of Ul structure.

Containing (——) association is the “part-whole” relationship in which objects represent-
ing components of something are associated with an object representing the entire
assembly. For example, an IV can contain several other IVs as its components as in
the chess example the board’IV contains piece’s IVs.

Using (—) association defines the link between two objects when one of them uses the
services provided by another to perform its own action. For example, a command
component would invoke a domain object’s method to respond to a user’s request.
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Inheritance (—e-) association is the *is-a™ relationship between a component and one
or more refined versions of it such as a defanlt IV and an application speciic 1V,

Inheritance is helpful during implementation as a vehicle for reuse.

betwern components. A relation tool involves two components, the source and the target.
The designer identifies the source by downclicking on it, then moves the mouse with a
rubberband line to the target. and finally selects the target by upelicking on it. VISD'T will
interpret the connection according to the context and establish the appropriate connection
between them. i.e. the semantics of the connection depends on the components involved, For
example, relating an AAD and an IV establishes an IV-AAD association, while connecting
two AADs establishes a containing relationship. Relating a conunand (or menn) component
to a UlShell means that this UIShell component contains this menu component in its layout.,
while associating a menu component to an IV implies that when the user selects this 1V,
this menu will be popped up. To avoid cluttering the display and distracting the designer
by having too many connection lines, some of the associations such as the using relationship
are not visible through connecting lines (unless requested by the designer), but displayed
in their relation inspection dialog box. The designers can also set up a connection between

components through a relation inspection dialogue instead of through direct manipulation.

Structure Editing

In UISDT’s viewing area, components in the scene (i.e. in the specification of a Ul structure)
can be moved, scaled, duplicated, added, and deleted. The associations can also he added
and deleted like components. Components can be grouped as one geometrical object or
ungrouped as several independent geometrical objects in the viewing area. The group
operation has different meanings when it is applied to different kinds of components. For
example, when a set of menu components are grouped, this grouping operation establishes
a hierarchical relationship among the grouped components and this relationship leads to
the generation of a menubar that contains a set of menu items.

In order to better support the graphical editing metaphor, UISI)T uses both constraint
and persistence techniques in Ul structure editing. Constraint mechanisms are used to make
it easy for the designer to place components in the viewing area and maintain the layout.

area, i.e. managing the geometrical aspects of the components in the viewing area. The
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camponetts supported by UISIYT are graphical objects. The designers attach constrain s
to these objects resulting in constrained lines, i.e.. when two components are connected
by a line, a geometrical constraint is established, Supported constraints inehide horizontal,

vertical, equivalency (two points in an equivalency relationship always move to the identical
loeation ), fixed length, and slope. These are binary and bidirectional constraints: once a
binary relation is imposed on two objects, moving cither one forces the underlyving constraint
satisfaction system 1o reposition the other to satisfv the constraint.

The persistence technique is mainly used to save and restore the intermediate rosalts
of the ongoing design. Each component supported by UISD'T has the ability to manage
its state cross sessions. That is, components can save as well as restore their specification
information. geometrical information (including geometrical constraint if they have anv).

and information ahout their relationships with other components in a system.

5.3.3 User Support Facilities

The difficulty in building user support facilities in most UIMSs is due to the lack of a
good framework, One unique feature in UISJT is that it provides a powerful Undo and
customization frameworks that allow designers to build user support facilities into their Ul
structures when they define the Ul architectures.

Our event-object undo mode] proposes a new way of recording recovery information and
organizing the undo/redo facility. The Undo component provided by UISDT makes it very
easy to build an application-specific recovery facility at the time the designer constructs the
Ul structure. The U/ndo component encapsulates the basic behavior of the local recovery
facility described in chapter 4 and can be extended to have component-specific recovery
semantics when the designer defines the domain components. By associating an Undo object

to a domain object (IV or AAD) via the relation tool, the designer assigns the selected {'ndo

After completing the Ul structure specification, the designer also installs an application-
specific recovery facility that utilizes the Ul structure for organizing local recovery facilities.

The same approach is employed by UISDT for installing the user customization facility.
The CusObj components provided by UISDT define the customization support for major
interactive components in UISDT, namely the IV, Command, and Tool components. The

designer can extend these pre-defined customization components, particularly IVCus, to
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have component-specific cnstomization support,  The designers are encovraged to define
their own domain-specific models and integrate them into the modeling component instead

of using pre-defined models,

5.4 Code Generation

A Ul development tool’s objective is to implement a UL from the user’s high level specitica
tion. Though this prototype tool’s goal is to assist the Ul design, particnlarly structure con
struction. it also supports incremental. evolutionary developent by generating structure
definitions as well as toolkit code and performing test runs. By drawing system strueture
in the viewing arca, the designer can quickly generate an initial prototype with sinple he
UISDT also provides a persistence mechanism for its components” representation and their
associations so that the designer can save the ongoing Ul design across sessions and reload
it later. This persistency makes it easy for iterative design and testing,

The code generation algorithm makes it possible to transform the specific architecture
to the code structure of the final implementation using a toolkit. The approach we took to
design the algorithm was to make the components of a structure independent of a particnlar
toolkit. while the transformation mapped these generic components to a specific toolkit
code. The algorithm makes use of structural relations (inheritance, composition, and using
relationships) from the design and automatically generates all the structural information
(i.e. relationships amongst components) and part of the behavior code, ‘The components in
UISDT define the protocol to specify their behavior and have very little information abont
window-level implementation. The algorithm maps these components to the components
provided by a toolkit that implements interaction techniques.

Generation of a Ul from an object model is not merely a matter of finding a formal
mappiny - rom component definitions of a Ul structure specification to widget implementa-
tions in an available toolkit. The overall object structure and the relationships among the
objects have an impact on transforming the specific architecture to the code structure of
the final implementation using a toolkit.

We define a CodeRep as the base class from which the external representation objects
for each component in the architecture are derived. The protocol of CodeRep spocifies

the algorithm that maps the structure component to the building blocks provided by a
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toalkit and defines the necessary operations to generate the code representation for the
component, Fach subelass is responsible for generating the source code representation for
the corresponding subject it represents, The various CodeRep classes. such as ones for
IV, AAD, UlSheli, ete, provide component-specific implementations of the code generation
method.,

The algorithm consists of the following steps:
e Analyze the component definitions, and build an index of component relationships.
e For every component defined, create its CoreRep instance,

e For every CoreRen object, link the CoreRep objects according to the corresponding

component relations.

e Traverse the CodeRep hierarchy and invoke CodeRep object’s methods for first gen-

erating class definition (headey) files, then generating class implementation fiies.
¢ Build the application (generate the makefile and then make the application).

Code generation takes place in mv'tiple phases guided by the relationships amongst com-
hicrarchy. This hierarchy (i.e., the Ul structure) mirrors the component hierarchy created
by the designer. Each CodeRep object in the hierarchy generates the proper code fragment
in a given phase and not all CodeReps participate in all phases. This process is independent
of any particular toolkit implementation. The current implementation of code generation
maps IV objects onto the tools in the InterViews toolkit, a C++ object-oriented graphical
Ul toolkit [LVCR9]. InterViews is a powerful toolkit that provides common Ul objects,
graphical objects, and layout objects with a natural C++ API.

The information collected in generating code for components in the Ul structure is then
used to generate the makefile for the application. The generated code and makefile can be
used either by UISDT to build the application or by the designer to refine them by hand.

5.5 Discussion

In the development of the UISDT framework, an important goal was to design a generic
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systems, and supporting this decomposition with standard abstractions and hierarchical
organizations. The arcnitecture is specified in terms of the stracture of the cliss and obiject
hierarchies that would P e expected in any interactive applicatior, A “fonnework™ of <stan
dard classes and mechanisms that would allow a prototype svstem to he assembled simply
and quickly was implemented,

Peridot [Myery] and CofA* [SGON] attempted to produce such a generie architecture
by following the Seeheim model starting with a functional decomposition of the application
and the Ul sub-systems. The Ul is then further sub-divided into components such as
presentation. dialogue and application linkage. However, their separations by funetional
decompaosition breaks down when the interactive svstemn is considered as a whole, e
design of the application software is constrained by the requireinents of imeraction and the

Ul software must take the application semantics into aceount



Chapter 6
Experimental Applications

We have built graphical interfaces for three different applications to evaluate both the ar-
chitectural model and UISDT implementation. Our aim was to demonstrate that the model
supports diverse domains. ‘hat the abstractions provided by the model are powerful and
flexible enough to produce application-specific Ul structures, that UISDT reduces devel-
opment time significantly, and that the r. g applications are comparable in utility to
their conventionally-developed counterparts.

In the following, we use three applications that we built as examples to give a more

detailed description of the UISDT environment. The applications include a performance

gram, and an interface for Enterprise, an interactive graphical programming environment
for distributed systems. These applications represent typical graphical applications and
show many important interface features. Moreover, there is little overlap in their design
goals and the application domains.

This chapter covers both the design and implementation of these applications using
UISDT. We conclude this chapter by evaluating the generality and productivity of UISDT.

6.1 Performance Monitor

The performance monitor, called POAT (Performance Optimization and Analysis Tool),

ing the performance of application programs running in an experimental virtual reality
environment. The experimental virtual reality environment consisis of: 1) two graphics

97
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workstations for real time stereoscopic image generation: 2) an (optional) workstation for
position and orientation sensing: 3) several (optional) workstations for real time sinla

tion/computation; and a high-speed network connecting these workstations. The perfor

mance of an application in this environment is mainly determined by the rate at which
the display is updated. It has been observed that low update rates are mainly due to
poor distribution of the computational load and delays in data communications and syn

chronization. Performance analysis requires real-time monitoring of the time spent in the
blocks that make up the program. Optimization can be achieved by re arrauging program
blocks in a manner that enhances performance. Because there are certain temporal depen-
dencies among different blocks (e.g. the user's head position/orientation must he acquired
before hidden surface removal can be performed), the re-arrangement must satisfy a set of

constraints based on these dependencies.

6.1.1 POAT’s Functionality

POAT is designed to allow a user to interactively analyze the performance of application

programs. and to optimize their performance through automatic or manual changes to the

program structure while ohserving certain constraints. It provides the following functions:

1. automatic decomposition of program code according to directives in the form of com-

ments, and the graphical display of the structure,
2. the input of user specified constraints,

4. test run of the program in the virtual reality environment,

[ ]

. performance data gathering and graphing,
6. traversal of all possible alternative program structures satisfying the constraints, and
7. interactive modification of the program structure, with constraint checking,.

In addition, due to the nature of multiprocessing for virtual reality applications, POAT is
a multiple-view interface that monitors several programs running on several workstations.
Figure 21 shows a monitor session and depicts the default interface schematically. After

POAT reads in the source code and its accompanying constraints, it displays the program
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Figure 21: POAT system prototype and structure design in UISDT

structure on the screen. Each block of code is shown as a node on the diagram. The user
can invoke a visual editor provided by POAT to modify the code within a block. This
allows the user to further decompose the source code by adding more directives, Likewise,
POAT provides a merge operation which allows the user to combine several blocks into
one. The user can change the structure by dragging the nodes to the desired position in
the diagram. If the change violates certain constraints, POAT will issue a warning message
and undo the change. After the user feels ready to perform a test run, he can choose the
code generation function to produce a version of the program containing timing code and
then perform the test run. The performance data is gathered automatically by POAT and
graphically displayed on the left portion of the monitor.

\M\

6.1.2 OAT’s Architecture

The first step is to build the application model. In UISDT, an application model is a hi-
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application model is a separate hierarchy of IVs that defines views and the user aceessible
control aspects of the application. Program blocks, program, and performance data are the
domain objects with which a user interacts. We define blockAAD to model the program
perfAAD for collecting. storing. and managing performance data. These components and
their relationships represent the application data model. A blockAAD represents a program
block. Associated with each blockAAD is a segment of code, a block name. and the geo
metrical shape used to represent the block graphically. The blockAAD, i subiclass of the
GraphicAAD component, inclides the extended behavior for program block specific seman
tics, i.e. a set of properties and a set of operations to access and modify these properties, A
programAAD, representing a program, is a composite object that contains a list of blockAADs
as its components. The programAAD is derived from the composite GraphicAAD to represent
the semantics of a program as well as its structure. When an instance of programAAD is
created by reading a program, a set of blockAADs as well ax their bloekIVs are also created
as a result. The perfADD. a subclass of AAD, has the data structure to represent the per-
formance data of a program’s execution and provides a set of operations to manipulate this
data structure. An instance of the perfAAD is used to collect and store the performance
data for one particular configuration of a program. In POA'T, a programAAD object can be
associated with a set of perfAADs giving its performances in various configurations,

Next, the IVs required for the above AADs are defined and placed in the viewing area.
BlocklIV, programlV, and perfIV are defined to map the above domain concepts respec.
tively onto the Ul as interaction objects (see Figure 21). A blockIV, a subclass of IV,
defines an interactive view for a blockAAD that allows a user to view as well as directly
manipulate a program block graphically. A programIV, a subclass of composite 1V, rep-
resents a programAAD on the display and provides the user with direct access to program
structure. A perflIV, a subclass of IV, displays its perfADD’s state (i.c. performance data
stored) graphically on the Ul, but no interaction is allowed.

a top-level view for POAT; provides menus to issue commands such as editing the code
in the currently selected blockAAD, reading in a new program to create a programAAD and
a programlIV, performing a test-run, collecting and graphing performance data (creating

manipulate blockIVs such as selecting, moving, and merging; labels to display status; and
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dialog boxes for entering data and showing warning message are provided by the MonitorlIV.
The master-monitorAAD derived from MonitorIV maintains several monitorlVs that are
started for monitoring slave programs running on different workstations.

After building the structure of POAT, we can invoke the generate command in UISDT to
generate C++ source code together with a Makefile. We can then build POAT and execute
it. We can refine the system by repeating the above steps. The undo facility is useful in
POAT allowing the user to reverse his/her changes on the program structure. By extending
the default RO and RI objects to include recovery information (translation distance) and
the reverse-translation operation and attaching the extended RO to blockIV, we can install

undo facility in POAT easily.

6.2 Chinese Chess Program

An object-oriented, direct manipulation interface has been developed for a Chinese Chess
Program called Abyss [Ye92] using UISDT. XAbyss is a chinese chess program developed
at the University of Alberta that plays close to D class of chinese chess and has a direct-
manipulation interface (see figure 22). XAbyss has been distributed freely on internet and
has a substantial following of users.

Chinese chess has lots of similarities with chess, and therefore, the analysis we had for
the chess program used in previous chapters can be applied to XAbyss. In this section,
we only outline the system structure, instead of the detailed analysis of the design. Using
our abstract model of interactive systems, the XAbyss is separated into three parts: user-
transparent application objects which include most of Abyss, Ul objects which define the
interface between the user and the user-transparent application objects, and user-support
objects which, through their cooperation with other objects, provide user support facilities
for undo/redo and customization.

The system has four kinds of objects: piece, board, monitor, and machine-player.
Each piece is an interactive graphical object which has a position on the board as its
internal state. A piece can send messages to the board for notifying its change, to the
momitor for verifying its movement, and to the machine-player for telling its new position.
The board is a composite object that contains all piece objects as its components. The
sonitor and the machine-player objects are not visible to the user, but contain most of the
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Figure 22; Chinese chess program
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Figure 23: Chinese chess program structure in UISDT

application related knowledge. The Monitor and the machine-player are user-transparent
application components.

The Ul objects use an AAD-IV separation: the application data is structured as a
hierarchy of AADs: PieceAAD, BoardAAD; the view structure is a hierarchy of IVs: PieceIV
and BoardIV. The ChessIV is the top-level window for displaying the chinese chess program,
providing buttons to control the playing, a panner to zoom the board, and dialog boxes to
display various messages (see figure 23). The way to define these components and layout
the XAbyss structure in UISUT is similar to what we have described for POAT and we do
not go to that detail here again.

One of the major parts in designing XAbyss is to install undo and user customization
in XAbyss. We extended the undo and the customization components to provide chess-
specific undo and customization. The installation of the undo framework is quite easy,
since each piece has its own RO and the board has an RO which serves as the parent of
the pieces’ RO. The piece-specific RO is bound with the PieceAAD, instead of the PiecelV.
The reason is that XAbyss can have two displays so that two players can play XAbyss
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across a network and thus. each PieceAAD is associated with two PieceIVs. A PieceAAD
has all semantics related with the piece it models. The ROs and the Rls are instances of
the RO and the RI classes in the POAT program. The only change that was made was
to change the Undo method so that it can interact with the two non visible objects and
perform semantic operations correctly during recovery. This application structure is similar
to (2) in Figure 13.

For the purpose of training and improving XAbyss, we often need to repeat some open
ings, middle games, and end games, or when the program loses a game we want to replay
the player’s moves to figure out the problem in the program. These requirements lend to
the need of for a customization facility that allows XAbyss to record certain move patterns
and play them back as many times as we want to study the program’s behavior. For this
reason, we installed the customization framework discussed in section 4.2 into XAbyss, A
PiecelIV has its own IVCus to record as well as playback a user's interaction on a piece
object. The modification to IVCus is made so that IVCus can use the knowledge of the
piece in replay. For example, if piece A was moved from position 1 to position 2 in recording
and in replay, and a piece on the other side of play is in a position that can capture the
piece in position 2. In this situation, we can not move piece A from position i to position 2
any more in replay and piece A has to move to another position by asking for help from the
machine-player. The models that are extended in the modeling component include several
skeletons of openings and middle games in chinese chess. The customization facilities, con
sist of an XAbyss-specific modeling component containing models, customization objects
attached to PieceIVs, the logger, and simulation agents, can map the recorded player's
moves in the logger to one of these models and create the simulation agent. ‘I'hat is, we can
generalize the trace of pieces’ movements to one of these skeletons to turn the trace into a

useful game.

6.3 Enterprise User Interface

Enterprise is a programming environment for designing, coding, debugging, testing, moni-
toring, profiling and executing programs in a distributed hardware environment [LLM*92).
The Enterprise system is built with the following objectives:

e to provide a simple high-level mechanism for specifying parallelism that is independent
of low-level synchronization and communication protocols, and
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® to provide transparent access to heterogencous computers, compilers, languages, net-
works, and operating systems,

6.3.1 Enterprise Concepts

The overall organization of a parallel or distributed program in Enterprise is similar to
the organization of a sequential program. The user views an Enterprise program as a
collection of modules, Each module consists of a single entry procedure that can be called
by other modules and a collection of internal procedures that are called for sequential or
distributed execution, There is an analogy hetween Enterprice programe and the structure of

an organization. In general, an organization has various assets available to perform its tasks.

different parts of the organization (individuals, departments, lines or divisions) to perform
in parallel. In addition, an organization usuvally provides many standard services (like

Enterprise An enterprise is a single program. It is analogous to one orgar..ation.

Individual An individual contains no oiher asset. An individual is analogous to an indi-
vidual person in an organization. When called, an individual executes its sequential
code to completion. Therefore, any subsequent call to the same individual must wait
until the previous call is finished. In general, an individual can be replaced by a
line, department or division at any time. However, there are two special kinds of
individuals: one is called a receptionist and the other is called a representative.
Receptionists serve as the first element of any composite asset and cannot be replaced
by any other asset nor can they be replicated. Representatives can be replicated but
they can only be replaced by divisions.

Line A line contains a fixed number of heterogeneous assets in a fixed order. Each asset
contains a call to the next asset in the line. A line is analogous to a construction,
manufacturing or assembly line in an organization where at each point in the line, the

work of the previous asset is refined.

Department A department contains a fixed number of heterogeneous assets. A single
receptionist asset shares its name with the department so that it can be called by
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external assets. However, unlike a line, the other assets in a department do not eall
each other in a fixed sequential order. Instead, all other assets are called directly by
the receptionist. A department is analogous to a department in an organization where
a receptionist is responsible for directing all incoming communications to the appro-
priate place. A department consists of a collection of assets of any kind: individuals,

departments, lines and divisions.

Division A division contains a hierarchical collection of identical assets where work is
divided and distributed at each level. They can be used to parallelize divide and
conquer computations. When a division is created, it has a singl receptionist asset
that shares its name with the division so that it can be called by external assets. In

addition it has a single representative asset that represents the recursive call made

division’s first level by replicating the representative. The nser may add a level to the

depth of the recursion by replacing the representative by a division.

Service A service contains no other assets. However, unlike an individual that can only
answer a single call at any one time, a service may be used by more than one asset
at the same time. A service is analogous to any asset in an organization that is not
consimined by use and whose order of use is not significant.

6.3.2 User Interface Functionality

using a GUL Using the GUI, the user draws a diagram of the parallel computation and
writes sequential code that is devoid of any parallel constructs. Based on the user’s dia-
gram, Enterprise automatically inserts all the necessary cade for controlling the parallelism,
communication, synchronization and fault tolerance. It then compiles the routines, dynam-
ically assigns processes to processors and establishes the necessary connections. Processes
run in the background, taking advantage of any available resources on the network.

Enterprise’s Ul was designed to allow a user to express parallelism in a simple graphical
editing manner. In Enterprise, the application graph is an asset graph and it is constructed
in a novel way. The user starts with an asset and constructs the graph by replacing and
expanding individual icons corresponding to six different assets described previously above.
Figure 24 shows Enterprise’s UL
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Each asset has a context-sensitive menu. If the user presses the middle mouse hutton
when the cursor is over an asset. then a pop-up menu appears containing all of the operations
that are valid for that asset. The user can also invoke the operation through menn bar. The

foile ving operations can be performed on assets, although not all are valid for all assets:
@ namne or re-natie thi‘ asset,
o open an edit window on the code of the asset,
o read v oa file contuining the code of Tor the ranet.
¢ write the code of the asset to a file,
e replicate an asset by providing minimum and maximum replication factors,
e replace an asset by a Department, Division, Individual or Line asset.
o add or delete an asset,
o expand an asset s0 its component assets are displayed, and
o collapse an asset so that its component asset are hidden,
In addition, the following operations can be performed on the viewing canvas in general:

a) create a new program consisting of a single enterprise asset and Ai-play it on the

canvas,
b) save the current program,

c) input an existing program by offering the user a file chooser and displaying its graph

on the canvas,
d) compile the current program,
e) run the current program, and

f) undo or redo the user operations.
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6.3.3 User Interface Implementation

Figure 25 :hows the object-model of the Enterprise user interface designed in UISDT. It
describes the system structure together with its abstractions, The class organization among
Asset classes describes their behavior and relationships. Asset class is an abstract base class
for asset components that defines common behaviors and basic protocols for asset objects,
the AssetIV class which specifies interactive behavior of asset objects. Components, such
as Service, Individual, Receptionist and representative. are inherited from Asset
directly. In addition to the behavior of Asset class, these components define and implement
their semantics-specific properties and operations described before.

Notice that the AssetlV class is connected with a set of menu buttons. In UISDT, the

as a menunbar and the association between a menu (menu item or menubar) and an IV
component means that the menu is a popup menu associated with that instance of the IV
operation is to press mouse button 2). Although nine operations are defined in the menubar,
not all of them are active to all Asset instances. For example, Erpand and Collupsc does not
make sense for primitive Assets, such as instances of Service and Individual. Replace is
not allowed to apply to instances of both Representative and Receptionist and neither
is Replicate for instances of Receptionist.

The Compose class is an abstract subclass of both the Asset and composite AAD that
adds some composition behavior to the Asset class so they can contain other Asset instances
as their components. Components, such as Line, Dept Division and Program, are sub-
classes of the Compose class with specific behaviors. The ComposelV class is a subclass of
AssetIV that provides interactive view for Compose. All the nine menu items in the popup
menubar are active under instances of ComposeIV, though the context and semantics may
not be the same. Fzpand and Collapse operations allow a user to view an Asset as well as
the program at different levels of abstraction.

WorkSpace is a subclass class of composite AAD which organizes Asset components
and conveys them to the user through WorkSpacelV, a subclass of Viewer described in
election concept so the system menus as well as the tools discussed later can be applied to
a selected Asset.
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UL derived from UIShell. is the top view of the Faterprise UL It contains WorkSpacelV
as its viewing area for a user to design parallel programs and a set of commands as well as
tools for helping him manipulate and control his design. Uhe system menus. sueh as Input,
Save, etc, are derived from Command, with application-specific extensions,  'here are two
Contain, and Tools to instantiate instances of Asset. By selecting More tool, a user can
move Assets around inside WorkSpace. and by selecting Contamn tool, o wser can let one
component tools that allows the user 1o mstantiate instances of various asset components

in workspace,

6.4 Experience With UISDT

Building POAT, XAbyss, and the Enterprise Ul with UISD'T demonstrates how the archi
tectural model facilitates the design of Ul structures and how the 1ool supports Ul imple
mentation by transforming the architecture into the final software code, Each application
has features that set it apart from the others, thereby offering different perspectives on the
architectural model. This section discusses the generality as well productivity of VIS

based on the experience of producing the above three applications.

6.4.1 Generality

It is very difficult to discuss formally the range of Uls that UISD'I' can create bocause there
are no taxonomies of existing Uls. UISDT was designed 1o support graphical and direct
control structure. The three applications are typical examples of direct-manipulation GUIx
with manipulable graphical objects and visual controls, such as menus and tools, ‘Theoreti-
cally, alinost any direct-manipulation GUIs could be build with the UISD'T framework. ‘The
UISDT framework provides all the necessary abstractions a designer can use or extend to
build GUI-based applications. The three applications are different enough to preclude easily

turning one into another, For example, POAT is designed to have sophisticated backgrond

computations, and XAbyss is meant to facilitate the design of parallel programs. However,
the current implementation of the framework limits the possible interfaces and platforms.

Additionally, the three applications, though their application domains are very different,



CHAPTER 6.

EXPERIMENTAL APPLICATIONS

Refine € Selects Move m Scale S Rotater Group g

[associete a VisibleRelate V invisibleRelate | Instance o Inherit h Using H

Figure 25: Enterprise user interface structure in UISDT

111



CHAPTER 6. EXPERIMENTAL APPLICATIONS 112

have many similarities in their Uls: they all are graphics-based front-end GUlIs with simple
application data structures. It would be more convincing if we had built a wider range of
applications. For example, a GUI for a database application and a GUI for text-editing,
The reason for selecting the above three applications is largely the range of applications
available at the time the author was looking for applications to test UISD'T. Finding a good

application itself is a challenge for GUI research.

6.4.2 Productivity

One of initial goals in building a Ul development tool was to increase the productivity of
constructing Uls, The experience of using UISD'T has shown that UISD'T has achieved this
goal through its high level abstractions and prototyping facilities. In addition, the power
as well as the generality provided by InterViews, especially its high-level encapsulation
and its composition abstractions, makes the mapping from the UISD'T abstractions (1Vs)
to InterViews classes casy and flexible. Using UISDT, the designer can easily create a
structure design for an application and then implement or modify it. With the guick
prototyping ability, the designer can minimize the effort required to iteratively refine the
previous design in the UISDT environment. Each of these three applications built with
UISDT reflects a significant reduction in development effort comparcd with designing from
scratch using GUI toolkits directly.

Of the three experimental applications we built with UISI)YT, the Enterprise Ul gives us
the best opportunity for comparison with existing prototypes. There were three different

Ul designs and implementations before UISDDT was used to build Enterprise Ul

1. an object-oriented design with (44 implementation using InterViews toolkit, its

development took about a half year from the design to prototype,

2. a different design with almost the same functionality as 1) with a C implementation

using Xt toolkit, it took about four months to complete this prototype, and

3. an object-oriented redesign with a Smalltalk implementation, this last effort took
about one month from design to prototype.
Without sharing the design knowledge as well as the implementation experience of the above
development efforts, the author took only one week to complete the design and implemen-
tation of the new Enterprise Ul using UISDT. This prototype provides approximately the

same functionality as the previous prototypes.
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Note that UISDT is the result of an individual research project and an experimental tool
in the testing stage. It has been used < tar mainly by the author. The claims made about
development time reduction is primarily based on a) observations of how UISDT supports
and facilitates the development process of Ul design and b) comparisons with the author’s
experience of writing Uls with and without UISDT. The claims would be more convincing
if we had let other Ul developers build Uls with UISDT. Due to the time constraints, we

were unable to perform such an experiment,
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Conclusion

We began this work by examining an important aspect of user interface development, Ul
structure design. This aspect has been difficult to design, and the least supported part of
current Ul development tools, despite advances in Ul technology. ‘This problem prompted
our hypothesis that a Ul architectural model need not support the construction of all other
higher lcel components other than the basic interactive and application componeuts, as
well as providing a means for combining these components to build up application specific
components. This hypothesis in turn led to an experiment in which we formulated such a
model, an application-oriented Ul architectural model, extended this model to embed user
support frameworks, implemented the model by building a library, and tested the model hy

constructing a Ul design tool to verify our thesis.

7.1 Summary of Work and Contributions
This research contributes to user interface development by achieving the following goals.

An application-oriented user interface model. The model identifies the designer’s needs
by defining a set of components and provides mechanisms that allows the designer to
compose these components to meet application needs. The model greatly facilitates
the design of Ul structures, bridging the gap between the domain concepts and Ul
components, and narrowing the design space of interactive systems. We believe that,
by defining the basic components on which application-specific structures depend, the

model can support a greater rang . pplications without pre-judging their structures,
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User support facilities. The holistic view of Ul structure we took gave rise 1o research
on formulating and testing user support features in Ul structures, These features are

treated as structure properties rather than the properties of an individual Ul ohjects,

e Our recovery approach of dividing traditional history/command lists into per-
object lists is dilferent from the other recovery methods in that it meshes well
with object-oriented structure. It allows recovery to be handled without violating

object-oriented principles or restricting the structure of object-oriented systems.

& Our domain independent object-oriented framework for supporting programming-
by-example in Uls simplifies the construction of domain-specific customizations

by providing programming abstractions that are common across domains.

We believe that interaction history is better collected at the relevant level, which in

must pervade throughout the system, and the structure of the support facilities should
be flexible enough to reflect the different interaction patterns of application objects.
The Undo and the customization frameworks have simple semantics and fit well within
the Ul architecture. The abstractions provided by the frameworks make it easy to

install user support facilities in Uls systematically.

A non-trivial user interface development tool. UISDT is a Ul tool based on the ar-
chitectural model that is special for Ul structure design. UISDT provides an en-
vironment for connecting up the various parts of the architectural model. UISDT’s
implementation simplifies Ul structure design by providing high-level abstraction com-
and powerful enough to construct application-specific Ul structures, and eliminates
the need to hand-craft most of the code for specifying Ul structures. UISDT assists
in settling many details of structure design before the designer starts. A potential
drawback of this approach is that it may place restrictions on what the application
can do; however, we did not find this to be a problem when we built our experimental
applications. The granularity of the components lets us do what we want and the

result has reassured us that the architectural model is sound.
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7.2 Future Work

The work reported here can be extended and improved in many ways.

7.2.1 Productivity Measurement

The goal of Ul development tools is to increase the productivity of Ul construction. We have
argued that the proposed architecture model is better than the models used in UIMSs and
toolkits in terms Ul structure design. LExperience with using UISDT 1o build applications

has supported this argument. However, a more comprehensive and systematic measuroment

Ul design as well as different application domains into consideration. 'T'he experimental
applications should be constructed separately using a Ul builder, a UIMS, and UISDT
that have similar functionalities. The goal of this measurement is not only to further back
the claims made by this thesis, but also to set up a benchmark for similar comparisons,
Success of the experiment depends on the selection of the applications and the criteria for

the comparison.

7.2.2 New Features in the Model

The proposed architcrt:ral model is an attempt to be an application-oriented model by
identifying what the designer needs and providing abstractions to address these needs, The
current abstractions address only the common Ul aspects in graphical Uls as shown in

our experimental applications. We would like to go beyond the current limited support to

or multimedia Uls. The possible extensions to the model in terms of features include, but

are not limited to the following:

model were made without considering three dimensional graphics. Future refinement
of the model is needed to support these features. This will lead to the extension of
the IV protocols since they are the components dealing with display.

Constraint system Constraint mechanisms are an important paradigm in user interfaces,
allowing the designer to specify interactions among components in terms of their re-

lationships. We can add a constraint system to the architectural model by extending
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the protocols of the components. For example, a simple geometrical constraint system
that can be used to define the geometrical relationships between interactive compo-
nents to specify the screen layout. In this case, the constraints (or relations) can be
defined among 1Vs and the constraints would be notified in a fashion similar to the

way the 1Vs are notified when an AAD changes state.

Multimedia GUIs Muitimedia GUls have become popular among modern Uls with the
advance of sophisticated interactive devices. We can add multimedia features to the
existing architectural model by extending the IV components. The protocols of the
existing IVs are not restricted to graphics, although the current implementation is
on top of a window system. Of course, by introducing new media into Vs, there are
many other problems, such as those related to storage, retrieval, composition, and
synchronization. New protocols and composition mechanisms are needed to integrate

multimedia features into the model.

7.2.3 Component Refinement

The components of the model are undergoing continuous refinement as we use them to build
different applications and examine various features of Uls. The emphasis on application-
orientation needs more effort in identifying the tasks the Ul designers face in building

application-specific Ul structures and to providing better abstractions to support the tasks.

The design of the prototype library is guided by the principle of separating the interface
objects that define the abstractions of the Ul model components from the implementation
objects that realize the interface protocol by utilizing an available toolkit. Our current
implementation achieves this by having two different types of classes: interface classes that
are related to the abstractions of the model and independent from the specific details of
the implementation, and implementation classes that are objects in an available toolkit and
hidden from the user as a member variable of the interface class. This method makes it
difficult for the code generation in UISDT to take advantage of the library implementation.
[Gui91] uses multiple inheritance to combine two classes and we are interested in applying

this technique in our library implementation.
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SDT Extension

The interactive display organization and layout of Ul components is supported by the
the external appearance of a Ul is not the focus in UISDT, this support is necessary for Ul
design. We are planning to take advantage of existing Ul builders such as 1Build [V'1'91]
to deal with the external appearance of the UL These Ul builders are powerful in terms of
specifying the properties of widgets and defining their geometrical relationships. We will let
UISDT generate the external representation of the Ul in the format that other Ul builders
can understand and then refine the layout of the Ul in builders.

Another possible extension to the current UISDT implementation is to have UISD'T
generate code for different GUI toolkits. Our code generation algorithm is not tied to a
particular toolkit, though UISDT now can only produce InterViews based code. We can
provide drivers for different GUI toolkits and by choosing a different driver, UISD'I can

generate a different toolkit-based implementation of a Ul design.

7.2.5 Powerful User Support Facilitier

In the undo framework, we have the following future work under consideration. First, we
have a strong motivation to apply the recovery framework to various applications, specifi-
cally CSCW and multimedia user interfaces. The distributed and the object-oriented na-
ture of the framework makes it suitable for both CSCW and multimedia application. In
the current implementation, the framework supports only traditional GUls. By providing
more sophisticated ROs, such as ones for multimedia objects and groupware widgets, the
framework would be able to handle various recovery operations in ('SCW and multimedia
applications, Second, the current framework proposes a new implementation, not a new
semantics for the recovery. It focuses on organization and control of the recovery facilities
in user interfaces. The investigation of new recovery semantics is important, especially in
are planning to extend the applicability of the framework by incorporating not only more
powerful ROs, but also new mechanism to handle new recovery semantics.

The customization framework has achieved its initial goal by proving the concepts of our
approach, however, it has limited power in terms of building useful customization facilities.
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It just defines a framework that an application-specific user customization can be built on.
The hard problem in customization is generalization, and the algorithm that is used by
the modeling component is the key for constructing a useful customization facility. In the
future, we would like to investigate the following areas: more customization objects that
could incorporate various interaction techniques and expand the generalizations that the
framework is capable of making. We are looking for new applications that have well-defined

domain so that we can define powerful models and generalization algorithms.
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