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ABSTRACT

This research involves investigation of aggregate production simulation using an
aggregate production simulation program called CRUISER. The research included onsite
aggregate testing, simulation model testing, and program implementation. Neural
networks and belief networks were two forms of artificial intelligence used to enhance
the developed model. Large amounts of representative gradation data for crushers were
simulated. Neural networks were then used to pattern this data after a cone crusher for
eventual integration into the CRUISER program to model a specific crusher type and
setting. A belief network was developed to semi-automate the optimization of the final
product gradation for the user. The model can be used after each simulation run, after the
gradation results provided by CRUISER are known. Procedures for using the developed
belief network along with CRUISER are outlined and could be used in an employee

training program or for educational purposes.
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1.0 Introduction

1.1 Overview

The construction industry is responsible for consuming large amounts of aggregates. The
primary uses of aggregates are for concrete production and road construction. Aggregate
exists in nature in various sizes and shapes. Aggregate processing is required for
aggregate to meet construction specifications, which are determined by the final use of
the aggregate product. The two main processes involved in aggregate production are size
reduction through crushing and size separation through screening. Size reduction is
achieved through the use of specialized crushing equipment which operate on the
principles of nipping (jaw, gyratory, and cone crushers) or high impact (single and double
impeller impactors). The screening operation classifies the aggregate by grading the
individual particles according to their minimum cross-sectional length. Typical screens
contain a number of decks with varying opening sizes. Simple static screens transport the
material across its surface by inclining the surface enough that the material is moved by
gravity. Other screens transport material by utilizing a combination of gravity and
rotating motion, which is supplied by vibration. The use of conveyors for transportation
of the raw, intermediate and final products is quite popular since the particle size is
smaller than the conveyor belt width in most cases. Despite the high capital cost, the use
of conveyor transport is usually better than truck transport, since it has lower operating
costs. Typically, decisions regarding plant changes and estimates of production are made
by an experienced individual in the field. Through the use of computer modelling, an
efficient and cost effective means of aggregate production decision-making can be

achieved by personnel with limited levels of experience. The computer model used and



on which this research is based is called CRUISER (Hajjar and AbouRizk, 1997). The

CRUISER name is a short form of CRUshIng Simulation EnviRonment.

1.2 Statement of the Problem

The use of simulation in describing a problem and producing meaningful results can be
quite costly and time consuming, depending on the task. Simulation is still a relatively
new area that has been expanding along with the growing use of computers and data
collection methods. The construction industry is quite traditional in nature and the use of
new ideas and methods often conflict with preferred traditional methods, however
inefficient or cumbersome they may be. It is difficult to quantify the dollar savings
arising from the use of simulation up front without doing any initial work on a given
problem. A substantial investment of time, resources, and patience is required before a
working simulation model accurately reflects the actual processes. Any simulation
program developed for the construction industry must be user friendly and must
accomplish the desired task as easily as possible. Moreover, it must be accurate in its
assessment of the actual processes being simulated so that conclusions about the
behaviour of the simulated system can be relied upon with confidence. Simulation allows
for inexpensive assessments as experimentation with the real variables occurs using the
computer model. There is a challenge in developing a simulation model which is not too
general yet not too specific so that it is practical and applicable to real life situations.
Simulation is used to produce results of a set of variables in a given system, but is not
often enhanced to optimize the results through the use of an automated process.

Typically, the user must adjust the variables thought to significantly affect the result and



keep track of the changes to the simulation results. Although there are many challenges
and obstacles for simulation in the construction industry to overcome, the power it can

demonstrate when developed properly can be very impressive.

1.3 Research Objectives

The objective of this research is to investigate the use of artificial intelligence in
aggregate production simulation. Both neural networks and belief networks will add
flexibility and additional modeling techniques to improve the simulation accuracy and
use of the CRUISER program. Neural networks will be used to model a dynamic and
unique aspect of aggregate production - crushing. The CRUISER program will be
validated with actual data and inaccuracy will be improved primarily through the use of
neural networks. Belief networks will add an optimization aspect to the program along
with diagnostic features to enhance the various applications for use of the CRUISER

program.

1.4 Methodology of the Solution

The methodology used to achieve the research objectives will be separated into three
parts: The first part will outline the effectiveness of the existing aggregate simulation
model and lead to program improvements. The second part will involve the development
of a neural network to improve the crushing simulation portion of the model. The third
part will include the use of belief networks to optimize the output gradation and serve as

a diagnostic tool.



1.4.1 Aggregate Production Simulation - CRUISER
To demonstrate the current effectiveness of the CRUISER program and make program
modifications to improve accuracy, the following steps will be taken.

1. Actual plant data will be collected, analyzed, and compared to CRUISER

options and final output product gradation.
2. Components of the plant (i.e., crushers and screens) will be analyzed
separately with the collected data as much as possible.
3. Further analysis of the crushing and screening processes within CRUISER

will be evaluated and modified to improve simulation results from the

program.

1.4.2 Neural Networks
To enhance the crushing portion of the CRUISER program, a neural network will be
developed. Several options will be explored to obtain an accurate and yet realistic model
for actual crushing data. The following steps were considered:
1. A prototype model will be developed to evaluate feasibility of the project.
2. Several tests with respect to neural network parameters will be evaluated;
the data will be optimized to best represent actual crushing production
situations.
3. A final model to enhance the crushing process with the CRUISER program

will be made.



1.4.3 Belief Networks
To optimize the process of obtaining an acceptable gradation within the CRUISER
program as well as develop a diagnostic and educational tool, a belief network will be
developed. This will be done using the following approach:
1. Aggregate plant production diagnostics will be obtained from an expert.
2. A belief network will be developed using expert information while
maintaining its ability to be used in conjunction with the CRUISER
program.
3. The belief network will be tested and guidelines for its use will be

developed.

1.5 Thesis Organization

Chapter 2 presents the literature review for this research. It covers the topics of aggregate
production, neural networks, and belief networks. Chapter 3 presents the research
involved in validating the CRUISER program with actual aggregate production plant data
and analyzing the results. Chapter 4 contains further analysis of the CRUISER program
pertaining to crushing and screening analysis. Chapter 5 presents a number of neural
networks developed for the crushing simulation process within the CRUISER program.
Chapter 6 demonstrates the use of a belief network to optimize the process of changing
aggregate plant parameters in order to arrive at an acceptable final product gradation.
Chapter 7 provides a conclusion to this research and identifies recommendations for

future work with respect to neural networks and belief networks.



2.0 Literature Review

2.1 Introduction

The purpose of this literature review is to provide background information as well as
insight into the purpose of this research. Background information on aggregate
production and the maturity of this topic in simulation programs will be covered first.
Aggregate production will be broken down into two main processes: crushing and
screening. Two aggregate production simulation programs will be evaluated and
compared. Second, background information and discussion of neural networks will be
presented along with past research which has used this form of artificial intelligence.

Third, the theory and background of belief networks will be presented and discussed.

2.2 Discussion of Aggregate Production

Mechanical size reduction is mainly carried out by crushing and grinding machines based
on the principle of nipping the rock (e.g. cone, gyratory and jaw crushers) or of direct
impact (e.g. impact crushers and hammermills). The particle sizing of fine and coarse
material is based on the use of screens. Transportation of material to crushers, screens,
and the product pile is achieved primarily with the use of conveyors. Some material
hauling by a loader or dump truck is done within a crushing plant, but is usually kept to a

minimum because of high costs.

2.2.1 Crushing
Crushing is usually a dry process, performed in a number of stages, with small reduction

ratios ranging from three to six in each stage. The reduction ratio of a crushing stage can



be defined as the ratio of maximum particle size entering the crusher to maximum
particle size leaving the crusher. The breakage of particles is achieved mainly by
crushing, impact, and attrition. The three modes of particle fracture (compressive,
tensile, and shear) can be discerned depending on the rock mechanics and the type of
loading. When a particle encounters crushing (compression failure), the products fall into
two distinct size ranges. One size range of coarse particles results from tensile failure.
The other size range results from compressive failure near the points of loading or by
shear at projections of the particle. With impact crushing (tensile failure), a particle
experiences a higher stress than is necessary to achieve simple fracture, and therefore
tends to break apart rapidly. The resulting products are often very similar in size and
shape. Attrition (shear failure) is due to particle-particle interaction, which results in
large amounts of fine material. This can occur when a crusher is fed too fast and is
usually undesirable. Crushing in closed circuit operations produce more undesirable fine
material than do open circuit operations. The crushing action comes from stresses
applied to rock particles by moving parts of the machine. The object of crushing in
aggregate production is size reduction to a specified size range, with a minimum
production of finer material. Energy requirements in crushing are relatively large, as the
rock is essentially broken by compressive forces exerted on the material by the machine.
Cone, gyratory, and jaw crushers achieve size reduction mainly by compressing particles
between relatively slow moving, inclined surfaces. The material being fed into the
machine enters from above, where the crushing surfaces are furthest apart, and is crushed
into smaller fragments as it descends down into the narrowest zone of crushing and is

finally discharged by gravity. The crushing surface in a jaw crusher consists of two



rectangular plates, whereas in cone or gyratory crushers it is in the form of truncated
conical shells. Jaw crushers usually consist of one fixed crushing face and an inclined
mobile face, which moves a small distance back and forth from the fixed face. The major
variables in jaw crushing are the angle of the jaws, rate of jaw movement, displacement
of the mobile plate, and the distance between the jaws at the discharge end, which
controls the product size. Gyratory crushers consist of an upward pointing solid rotating
cone set within an inverted cone of varying angles. The inner cone rotates eccentrically
so that it approaches and recedes from a given point on the outer cone during each
revolution. Again, material is fed into the machine from above and is alternately
compressed and released during the rotation of the inner cone. The eccentricity of the
inner cone is arranged so that the apex maintains a fixed position, while the maximum
displacement occurs near the bottom or the discharge area. Gyratory crushers have
several advantages over jaw crushers in that they make more economical use of power
and can handle wet and slightly clayey materials more effectively. However, jaw
crushers can handle occasional oversize material while gyratory crushers cannot.
Although gyratory crushers cost approximately three times more than jaw crushers, they
are often selected because of their higher output rates. Jaw crushers are usually selected
in cases where flexibility and intermittent use of the equipment become factors in the
selection process. Cone crushers are similar to gyratory crushers except that the outer
crushing surface is in the form of an upward pointing apex, which results in the two
crushing surfaces being nearly parallel to each other. This design allows the crushed
material to spread out as it works its way downward while preventing close packing and

blockages in the discharge area. There are a large variety of different crushing surface



geometries; these depend on the particular desired aggregate requirements. The two
crushing surfaces are held together by springs so that they can separate under a load to
allow any tough oversize material to pass through without interrupting the crushing
process. These characteristics, together with a high speed of rotation, make the cone
crusher highly suitable for achieving high throughputs of intermediate particle size where
a limited reduction in particle size is required. Typically, cone crushers are used
sometime after jaw or gyratory crushers (i.e., for secondary crushing). Cone crushers do
have one significant disadvantage; they tend to produce more flake-shaped particles than

other crusher types.

Impacting machines are also widely used in aggregate production. Hammermill type
crushers are characterized by a fast moving rotor with attached beaters or hammers which
use a striking action to break the rock. Internal stresses may then cause the particle to
shatter immediately or it may be sent, with broken fragments, against an impact plate.
Further shattering may occur when the particle or particles hit the impact plate. Various
sizes, as well as different discharge and rotor configurations, can be found. The
maximum product size is controlled by the distance between the hammers and breaking
plates. Sometimes this distance varies to provide room for successive breakage of
particles. Advantages of impacting machines include lower energy requirements, an
ability to handle high proportions of clay or shale, a tendency to produce more cube-like
particles, the capacity to achieve a large reduction ratio, and small space requirements.
The one major disadvantage of impact crushers is that tough abrasive fragments cause

intense wear on the moving parts, which results in a high cost. Therefore, they are



usually used for crushing limestone, which is not very abrasive. Sometimes they are used
in situations where their tendency to produce minimum amounts of elongated particles is

of some value in meeting the specifications with difficult materials.

The presence of significant amounts of fine material in the feed stream to a crusher
decreases the tonnage of coarser material that can be processed. A steady continuous
supply stream is important for the optimum performance of a crusher. This is usually
accommodated with the use of a surge bin at the raw input stage in an aggregate
processing plant. Sometimes intermediate surge bins are required when the large raw

product particle sizes are too large for a single surge bin to handle.

2.2.2 Screening

Most aggregate sizing operations are carried out with the use of a screening operation
which grades particles according to the minimum cross section presented to a wire mesh
or some other gradation device. The rate of material passing through a gradation media is
directly proportional to the hole size which is presented to the material. The types of
screens that process material can vary in the method they use to transport the material
across the gradation media. Simple static screens transport the material by inclining the
surface sufficiently for the material to be moved by gravity. Other inclined screens
utilize gravity along with vibration to transport the material. Another type of screen is an
inclined cylindrical screen, which transports the material by gravity and rotary motion.
Other screens, know as horizontal screens, transport material through the use of vibration

only. There are two reasons for screens to become blocked and therefore less efficient in

10



screening material. The first is when single particles become wedged in the screen
openings. This occurs most often when a high proportion of material with diameters
between 70 and 110% of the screen size is present in the feed. This situation can be
minimized through the use of thinner, rubber or flexible wire screens. Adjusting the
vibration rate of a screen can also help with this problem. Another situation is where fine
particles adhere to each other and block the screen openings. This is usually due to
excess moisture or clay particles in the material and is typically resolved by prewashing
the material or screening under a water spray. Screen openings are normally square,
circular, or slotted in shape. Mostly square screen openings are used, but circular and
slotted openings are used for special applications. Circular openings are good for
screening angular or flaky particles, whereas slotted openings are good for screening
finer particles. However, in most circumstances, the selection of the shape is secondary

to the selection of the right opening size for a screen.

Recently other material surfaces have been sought for screens as a substitute for steel.
These are usually rubber or some other polymer material and are available with or
without steel or fabric reinforcement. Although rubber screens can cost up to three times
more than steel ones, they can last up to ten times longer. Another advantage of using
these substitutes is that they have a lower level of operating noise, which is becoming
increasingly important due to current health and safety regulations. Polymers are
typically weaker than steel and require more supporting material, thus increasing the

screen wire diameter and reducing the amount of effective screening area for aggregate to

11



pass through. As a result, polymer screens are used where abrasive material warrants

their use to offset maintenance costs.

The functions of screens are: 1) to protect crushers by controlling the material size of the
feed and 2) to grade the crushed material into specific size ranges. The design of a
screening layout depends upon the optimization of several factors. These factors are
economic and mechanical in terms of size distribution to be processed and the markets in
which the aggregate will be sold to. There are a number of screen types that are
commonly used in aggregate production. The most widely used type is the inclined
vibrating screen. Vibration is produced by a single eccentric driving shaft and the angle
of the screen can vary depending on the direction of material flow across the screen.
Angles of up to 20 degrees are used if the direction of motion is the same as the transport
direction. Occasionally angles of 20 to 30 degrees are used if the motion is opposite to
the material flow and a more vigorous screening action is required. The inclination of the
screen is very important because too much slope results in material flow across the screen
occurring too quickly for the undersize particles to pass through the openings, while too
little slope results in a reduced screening capacity. The use of multiple decks on one
screen does not provide the optimum screening process, but separate screening machines
are too costly and therefore multiple deck screens are often used. Usually, screen decks

are divided into splits that allow for the use of different screen sizes on the same deck.
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Sometimes finer screen sizes are used at the feed end of the screen and coarser sizes at

the discharge end to regulate the gradation more precisely.

A second type of screen is the horizontal vibrating screen. This screen type is often
sloped up to 5 degrees and makes use of linear motion, which stratifies as well as
transports aggregate along the screen deck. Horizontal screens are more costly than
inclined screens but have more capacity and are lower in stature. Either advantage can
come into play when contemplating the use of a horizontal screen. A third type of screen
is the trommel screen. It consists of a slightly inclined cylindrical screen that rotates as
material is passed through it. Material enters the trommel at the higher end and is
discharged as undersize underneath the screen or as oversize at the end of the screen.
Advantages of trommels are that they are strong and cheap, and that they utilize no
vibration for screening. However, they have a poor capacity for their screen surface area
and changing the screens can become difficult. They are still used intermittently and for
washing applications. A fourth type of screen is the grizzly screen, which consists of
parallel bars of various cross sections held together by widely spaced bars. They are very
tough and are mainly used for initial screening of the untreated raw product. They may
be inclined to allow the oversize material to slide off the screen, or kept horizontal to act
as a device to break large rock fragments. Vibrating grizzlies are often used to feed
coarse material into a primary crusher and separate undersize particles that do not require
processing or are unsuitable for the final product. This material can then be treated as

waste, sold as-is, or further processed as required. Screens that perform the initial
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screening of the raw product are often referred to as scalper screens because they remove

the waste or scalpings from the final product.

Another type of material separation involves the use of classifiers and is typically used to
remove finer material. These can be of either a dry or wet type but usually have some
size of tank for receiving a slurry feed. Fine particles are carried upwards with the flow
of water and are discharged over a weir, while coarser material settles to the bottom
where it is discharged from the tank in a variety of ways. It can be done through a valve
in the base of the tank, by elevated buckets, or by a spiral or rake moving along the
bottom of the tank on an incline. The size at which separation occurs is a function of the

height of the weir and the flow rate of the water.

Another machine sometimes used in the classification process is the cyclone. This
machine is mainly used in sand treatment plants for the rejection of material finer than 75
microns and for dewatering. It is made up of a hollow inverted cone with axial discharge
points and an inlet near the top. Slurry enters into the cyclone through the vertical axis
and a vortex about the vertical axis sends coarse particles to the wall of the cone where
they encounter a downward flowing zone that directs the material to the discharge point.
The finer particles move in an upward flow towards a tube, which then extracts them
from the cyclone. Cyclones are relatively cheap and small, and have few mechanical
parts. Theoretically, they are complex in that the size at which they separate is governed

by factors like feed rate, feed pressure, feed inlet diameter, and outlet diameter.
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Therefore individual cyclones are optimized for a particular duty within an aggregate

production plant and are more commonly found in industrial aggregate processing plants.

2.2.3 Equipment Selection

The selection of equipment for the design of an aggregate plant is not an easy task. There
are some general principles to follow with respect to the procedures most suitable for
particular materials. Impact machines are mostly used for processing limestone or other
plastic materials. Sometimes it is necessary to process hard material using impact
machines just to obtain a more cube-like particle shape. For harder materials, a jaw
crusher or gyratory crusher is typically used to carry out the primary crushing process.
Gyratory crushers are mostly used for large continuous operations. For secondary
crushing, cone crushers are used because they can maintain high throughput due to their
requirement of a uniform top size of feed. The only problem with cone crushers is their
ability to produce some flaky particles, which can occasionally cause problems. The
greatest control of particle size and shape is obtained by restricting the achieved size
reduction in every crushing pass of the material. The restriction of having small size
reductions for each crushing pass is the increased number of crushing stages needed for a
given plant. The benefits of each crushing component must be justified against their high
initial costs as well as operating and maintenance costs. The capital cost per tonne of
product made at the same closed side setting does not decrease significantly with crusher

size.

When selecting a crusher, the most important factors are the required capacity and

expected feed size. Screens are used to remove finer material from the product as well as
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control the material flow to crushers. The finer material is usually the weaker portion of
the final product and therefore it is desired to minimize its presence in the final product
while yet retaining some for volume purposes. Screening is also used to reduce the
proportions of flaky or elongated particles in order for the product to meet specifications.
When processing sands, low density materials with relatively low particle velocity in
water can be removed using cyclones or classifiers. Since particle velocity depends on
size as well as shape, cyclones or classifiers are only effective for sands where quartz
grains and undesirable flaky material are of the same size. Therefore, for optimum
results, it is preferable to screen the sand into relatively similar size fractions before
classification. Wet processing is necessary when the moisture content of the material is
too high or the level of clay content would cause plugging in a dry screening process.
Wet operations involve the additional expense of providing a suitable water supply,
dewatering equipment, particle settlement, and water circulation. Stationary plant layouts
vary from operation to operation because the nature of the natural source is rarely the
same from one location to another. Sometimes the need for the plant to be mobile or the
use of existing equipment governs the equipment layout of the plant. These plants
usually sacrifice optimizing the aggregate production process to some degree, but the cost
effectiveness of their operations still warrants their existence. Plant design usually
involves laboratory testing along with several trials during the initial plant setup stages to

accurately determine the value of an aggregate crushing operation.
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2.3 Accomplished Work on Aggregate Production

There is ongoing research in Europe pertaining to modifying the crushing process to
obtain higher quality aggregate, thus counteracting the problems of a high usage of
studded tires and winter freeze-thaw cycles (Heikkila, 1992). The trade off of higher
production costs and profit against better quality aggregate could not be determined,
since the research could not affect the aggregate production schedules. The research
pursued three objectives: 1) to determine the existing quality obtained using current
crushing processes, 2) to test ways of improving the quality, and 3) to suggest ways to
improve the quality of aggregate production with only minor changes in the equipment

being used.

Major findings in this research were:

1. Blasting of rock should be done more carefully to reduce the amount of poor
aggregate generated by this necessary process, therefore improving the quality of the
final product. However, the improvement in quality resulted mostly from changing
crushing processes instead of more careful blasting of rock.

2. Poor strength and badly shaped particles from blasting and primary crushing should
be removed from the final product. When top-quality is desired, it is necessary to
remove the product from the intermediate crusher as well. Doing this improved the
quality dramatically and proved to be a feasible change for most aggregate plants.

3. Compatibility and not availability should govern the selection of crushers.

4. Regular crusher maintenance is essential for producing good quality aggregate.
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5. A closed crushing circuit for the last crushing stage dramatically improves the quality
of aggregate.

6. The best shaped properties in the crushed product are those in the particle size
fraction closest to the setting of the crusher.

7. The highest quality of aggregate was obtained from the product of the final crushing

stage instead of the final product of the entire plant.

2.4 Accomplished Work on Aggregate Production Simulation

2.4.1 Crushing

Some simulation work has been done on the area of mineral crushing and processing
plants. Some of the same processes and equipment are used for aggregate production
processes as well and will form a portion of the discussion in this section. Early research
into the understanding of the comminution process was concerned with the relationship
between the energy consumed and the size reduction attained by that energy. This
consideration of energy input as a function of the grinding system was very attractive at
the time, but was much more complicated than originally realized. Not all of the
expended energy is spent in the breakage of particles only; forms of friction and sound
also require energy. Comminution is basically considered to be a result of a mechanical
operation that consumes energy and indirectly achieves a reduction in particle size. As
outlined by Lynch (1977), it is generally considered that energy size-reduction
relationships are not suitable to define the process of size reduction due to the difficulty

in measuring energy losses in the form of friction and sound.
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One approach developed by two groups of researchers (Gurun, 1973) and (Canalog and
Geiger, 1973) used stored performance data supplemented by simple empirical
relationships to construct models of unit processes and complete circuits. These models
do not take into account the changes in the performance of the machines under different
loading and operating conditions. Nor do they allow for an optimum design or
consideration of future expansion. Another approach involving accurate mathematical
models of unit processes developed from plant data had limitations as well. According to
Lynch (1977) these models are only useful when expanding an existing plant or
designing a new plant for processing material similar to that on which the model is based.
Parameters in these mathematical models can be estimated from laboratory or pilot-scale

data, but presently it is not possible for this to be achieved with sufficient accuracy.

There have been only a few attempts to model the crushing process with mathematical
models. One basic underlying mechanistic model, proposed by Epstein (1948), showed
that the distribution function after a number of steps (N) in a repetitive breakage process
can be described by a probability function and a distribution function. This concept has
led to the development of matrix and kinetic models. The matrix model considers
comminution to be a succession of breakage events, whereas the kinetic model considers
it to be a continuous process. In the matrix model, one part of the underlying theory is
that particles in all size ranges have some probability of falling into any smaller size
interval. This model requires the development of these probabilities from actual data.

The probabilities may change as the size of the particles change, making it increasingly
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difficult for the model to be useful. Another part of the theory is the development of a
breakage function, which is used to describe the product of a single breakage event. This
function has been very difficult to determine experimentally because there is no non-
destructive testing technique which will give information about the inherent breakage
properties of minerals. In the kinetic model, comminution is considered to be a rate
process expressed in terms of continuous functions and discrete distributions. As
outlined by Lynch (1977), the major difficulty in the application of the continuous
distribution model to practical problems is that of obtaining a satisfactory definition of

the continuous function for the distribution of particle sizes.

2.4.2 Screening

There have been a couple of attempts at developing mathematical models for screen
operations for use in simulation studies. Gurun (1973) developed a representation of
screen behaviour by a column vector in which successive elements described the
probability of each fraction appearing in the oversize. For any given case, the column
values were chosen from a set of equipment and performance data. This model becomes
useful when predictions about screen behaviour are available and correct, but are limited
in other instances. For example, the model would have difficulty predicting screen
behaviour when a screen is operating under a fully loaded or overloaded condition. Other
work was done by Whitby (1958) to predict screen behaviour, but this involved batch
screens only. Batch screens are where particles are placed on the screen and vibrated for
a period of time before being removed from the screen and replaced with another batch.

While there is a close relationship between batch and continuous screening, the
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adaptation of Whitby’s model for simulation purposes would require considerable

amount of special data collection from continuous screens; this has not yet been done.

A more recent application of simulation in a mineral processing environment was done
by Du Plessis (1994). In this study, a system simulation was done where different
process units are linked together and interact with each other. Each process unit performs
a function separate from the entire system, but on a much smaller scale. Within the
model, each process unit is a subroutine of code. The primary simulation model used in
this research is called Siman 4. This simulation package performs discrete simulation
that utilizes entities and attributes which describe those entities. Historical data from an
actual plant was collected to determine the size distributions for the feed and product
streams for the screen and crushers at different settings. These samples were collected by
stopping selected conveyor belts and obtaining a 2 meter long section from the beit on
which a sieve analysis was done. The feed rate of the raw product was variable, so it was
modeled with an exponential distribution describing the probable arrival times of entities
into the simulation system. Experiments were also carried out on the plant to determine
the correlation between energy consumption and tonnage handled by the screens and roll
crushers. Flow rates were determined by taking weightometer readings during plant

operations.

The simulation model for the screens is based on the Karra model (Karra, 1979). Karra’s
model is a predictive one; it describes screen behaviour using capacity factors which

depend on the tonnage, and size distribution of the material fed onto the screen, as well as
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the characteristics of the screen itself. This model is entirely empirical. The simulation
model for the crushers is based on the classification and breakage model developed by
Whiten at the Julius Kruttschnitt Mineral Research Center. This model was designed to
simulate the crushing process for mineral processing applications. It does not account for
varying feed rates, which affect the final product size distribution. This limits the
applicability of this model to certain operating conditions. The researcher verified the
accuracy of the model and used it to develop alternative plant operating strategies. The
plant actually implemented some of the changes suggested by the researcher and verified
the results of the anticipated changes. This research demonstrated the use of a general
purpose simulation model with animation for evaluating the operating performance of a

metallurgical plant.

Another application of simulation for mineral processing was done by Duursma (1990).
In this research, an iron ore benefaction plant was evaluated using a simulation package
called Microsim. Some crushing and screening models were studied, developed and
enhanced. The Whiten crushing model was modified for hematite and a new model was
developed for gyradisc crushing of iron. A Nordberg crushing model was evaluated with
actual plant results and was found to be less accurate than the Whiten model. The Karra
screen model was enhanced to include other deck types and non-square apertures to
properly model the existing plant. The simulated crushing and screening processes were
specifically tailored to processing of iron ore. This was done using previous research on
mineral crushing along with screening data gathered in many conditions over several

operational years of the plant.
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This model relies on the user to ensure that screen efficiencies used for a particular
simulation apply for the feed rates calculated after a simulation run. The screening
models developed rely on either empirical data, or on both empirical and experimental
data. The simulation model was accurate in predicting output flow rates within 1% but
was less accurate in predicting the gradation for some portions of the plant. The
researcher attributes this to the inaccuracy of the gyratory crushing model or the
variability in material flow rates occurring in the actual plant. The main problem with
this model is its inability to accurately simulate variable feed rates; this problem is
common at ore processing plants. A second limitation in the use of this model is that it
can only be used by an experienced Microsim operator. The researcher concluded that
Microsim should not be used to simulate crushing circuits that may contain unsteady flow
conditions. It is noted as well that the accuracy of the model also depends on the quality
of data used as input for the model. Overall, this research resulted in an accurate steady-
state crushing model applicable for an iron ore benefaction plant. The screening models
were enhanced to model a particular plant, but are easily transferable to other mineral
screening operations. The researcher demonstrated that the developed simulation model

could be used as an aid in solving ore dressing production and design problems.

2.4.3 Mathematical Modeling

A mathematical model of aggregate production for simulation purposes was developed in
the early 1970’s (Hancher and Havers, 1972). The goal of this research was to provide an

analytical model to evaluate the production characteristics of an aggregate production
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plant. It was intended for use by industry personnel both for the design of new aggregate
processing plants and for the analysis of existing plants. The model has been developed
with a number of subroutines, each analyzing a specific aspect of the plant. The output
from the model predicts the flow rate and final product gradation for each material stream
in the plant, whether it is for a conveyor or product pile. The screening process is
modeled through the use of empirical data and equipment manufacturing specifications.
The capacity of a screen deck is determined using a formula which is based on equipment
manufacturing specifications. The efficiency of a screen deck is modeled by empirical
data created in the 1960’s by the Allis-Chalmers Manufacturing Company. The actual
capacity of the screen deck is determined by adjusting the calculated theoretical capacity
by using the empirical efficiency curve. This actual capacity affects rates of material
flow from the screen deck as well as the oversize and undersize product gradations. The
crushing process is modeled through the use of equipment manufacturing data, which
describes output gradation depending on the crusher type, model, and selected crusher

setting.

This research was the first valid aggregate production simulation model found for general
application rather than exclusively for specific industrial plant designs. This model
contributes to more effective plant utilization and plant design. The model can also be
used to evaluate the maximum production capabilities of existing plants and assist in
identifying the plant components that limit the production capabilities of a given plant.
The model should also assist the plant operator in arriving at values for plant variables,

such as crusher settings and screen mesh sizes, which are required to obtain multiple
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product output from a single plant. However, the predictions of the model should provide
reasonable initial estimates for the plant variables, and thus reduce the field adjustment
process. The researchers verified the model by comparing simulation results with those
obtained from a number of limestone processing plants. Sampling performed at each
plant was only sufficient to provide an approximate estimate for the plant output. A
rigorous study of the fluctuations in the output characteristics for each plant would
involve the collection and analysis of a large number of samples, which was not feasible
at the time the research was conducted. The available data pertaining to the production
capabilities and related characteristics of aggregate plant equipment were essentially
confined to limestone processing. Therefore, the capability of the model to provide
acceptable aggregate processing predictions for aggregates whose properties are

significantly different from those of limestone are unknown.

The researchers obtained satisfactory results from the computer model for the plants
discussed. This might be attributed to a good initial estimate of the raw feed contents,
and to the fact that the plant is a limestone processing facility, the type for which the
predictive data is most applicable. The predictions for the larger particle sizes varied
substantially more from the sampled results than did the predictions for the smaller sizes.
The likely reason for this is due to the sampling process. It was difficult to obtain a
uniform sample from the screen, both because of the sizes of the larger particles and
because of the fast flow of material across the screen. It is also probable that a greater
number of samples should have been taken for accuracy analysis. For two out of the three

plants, reasonable agreement was found to exist between the predicted results and the
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observed results for most of the processing streams. Excluding the raw feed streams, the
predictions for the 14 of the streams sampled were consistently within 20% of the
observed results. Appreciable variation could logically be attributed to sampling
difficulties. The apparent failure at the third plant was attributed to two causes: First,
some of the particle sizes in the raw feed stream were so large that it was not feasible to
sample or measure them, so they were estimated by the plant superintendent. Second,
there was a reversible impactor crusher, for which the equation used was not considered

satisfactory.

Overall, the model has been developed as a system of subroutines, each one of which
performs a specific task in the analysis of a plant. It provides a simple format for setting
up a plant analysis; it allows the model to be programmed for small computers; and it
facilitates updating or extending the basic production model. It should be noted that
available data pertaining to the production capabilities and related characteristics of
aggregate plant equipment, which were used to formulate the input-output relationships
for the simulation model, were largely derived from the industrial experience in
processing limestone materials. Therefore, the capability of the model to provide
acceptable aggregate-processing predictions for aggregates whose properties are

significantly different from those of limestone are unknown.

One improvement that could be made to assist in industry’s general adoption of this

model is to have an interface which would make the model more user friendly.

Understanding when this model was developed leads us to believe that an improvement

26



in this area would have been investigated if it were possible to do so at the time. Another
significant improvement would be to enhance the modeling of crushers to increase the
accuracy of modeling this process. The data provided by equipment manufacturers is

somewhat crude and inaccurate.

A third improvement to this model pertains to circulating loads in a closed-circuit
aggregate plant operation and would assist the user in proper equipment selection and
plant design. This model does not sufficiently address the issue of circulating loads in a
closed-circuit operation. When a closed-circuit plant is first put in operation, the
circulating load will build up, quickly at first, then more gradually as the material begins
recycling through the plant. A maximum or “steady-state” value of the circulating load
will ultimately be reached if the plant equipment in the closed-circuit is of adequate
capacity, and if the raw feed rate is reasonably uniform. The user must estimate the
expected size of the circulating load with reasonable accuracy if the plant is to be
designed efficiently. The circulating load in a closed-circuit aggregate plant operation is
a significant factor in equipment selection and plant design. A poor estimate of this load
can lead to over-design and unnecessarily high investment costs, or to under-design and,

again, unnecessarily high operating costs.

A fourth improvement would involve enhancing the screen capacity calculations, thus
allowing the model to accurately predict the actual capacity of screens. The screen
capacity calculations are somewhat sensitive to variable changes. This is because of the

method used to predict screen efficiency; there are only minor changes in the size
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separation predictions, unless the screen is considerably overloaded. The predicted
screen efficiency does not drop below 65 % until the actual load exceeds 180% of the
rated capacity. Also, for screen loading ranging between 50% and 135% of the rated

load, the predicted screen efficiency only varies from 80% to 95%.

These are not the only improvements that could be made to the model, but they are the
major ones required for improving the accuracy and acceptance of the model. Even
without these aforementioned suggestions the model is a significant improvement over
those preceding it. This model was the basis on which the CRUISER program was
developed (AbouRizk and Hajjar, 1997). A user manual for the CRUISER program can
be found in Appendix A. The user interface of the CRUISER program utilizes a visual
object oriented environment, which makes the model much more user friendly. The
modeling of the crushing process is enhanced by this research through the use of a form
of artificial intelligence called “neural networks”. The modeling of circulating loads has
been enhanced within the CRUISER program by the process of looping through the
necessary subroutines that represent the given plant layout. The simulation of the closed-
circuit is completed when a relatively constant output load from the closed-circuit portion
of the model is achieved. This research has improved the screen capacity evaluation by
doing two things: First, factors within the model responsible for the screen capacity
calculations were adjusted to reflect actual collected data more accurately. Second, the
user is now able to choose between the empirical approach for the screen capacity
evaluation and inputting their own educated prediction of the screen efficiency for a

specific deck on a particular screen within the model.
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2.4.4 Simulation Model Comparison

A simulation model, similar to CRUISER, was developed by Cedarapids Inc.
(Cedarapids, 1994 ). It is called CompuCrush©. This simulation model utilizes a visual
object oriented environment in which a plant layout can be modeled and gradation output
can be determined when samples of input are given. The methodology of how the
simulation model works is expected to be somewhat similar to that of CRUISER.
However, a test to see how this software compares to CRUISER will be done to evaluate
its comparative performance. A view of the interface and plant modeling is shown in

Figure 2-1. Additional screens of CompuCrush along with comparable screens from

CRUISER can be found in Appendix B.

Figure 2-1 Plant Layout in CompuCrush
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There are a few main differences between the layout options found in CompuCrush and
those found in CRUISER: CompuCrush has additional icons representing a VSI crusher,
HRSI crusher, grizzly, hammermill, washer/classifier, and a generic cone. Of these
additional icons, the grizzly and generic cone options are not really necessary but are
convenient for visually modeling an actual plant. The grizzly is a simple slotted screen
used to screen fine material before a jaw crusher. The generic cone allows a user to
model his/her own brand of crusher, which may not be of a Cedarapids brand. This is
convenient, but the input for this cone is just a gradation for a specific closed side setting
of the crusher. This is characteristic of the pocket reference handbook, but does not
model different material types, nor other variables affecting the gradation. CompuCrush
also has a text box for the user to insert comments on the screen, which will be displayed

on the layout of the plant.

2.4.4.1 Screens

In CompuCrush there are only three deck screens allowed, whereas CRUISER has up to
four decks for the user. CompuCrush has only two splits for each deck for the user to
configure options for. CRUISER has up to four splits for each deck if the user desires to
use them. Although CRUISER has more options as far as the number of decks or screens
available, the more limited options pertaining to screens within CompuCrush will be
sufficient in most cases. CompuCrush has only three different wire types, whereas
CRUISER has a total of five different types. This difference between the two is not very
significant; the three specified in CompuCrush are typically used, and the type of screen
used on a screen has a lesser effect on the gradation than other screening variables (i.e.,

screen size).
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One major difference between screening processes is how each model utilizes screening
efficiency. Within CompuCrush, the default screen efficiency for each deck is 90%, and
the user has the option of manually changing this if so desired. However, the screen
efficiency default within CRUISER is a calculation based on screen loading for each
deck during the simulation process. CRUISER also provides the option of letting the
user define a desired efficiency for each deck, as does CompuCrush. CompuCrush does
provide the option for the user to view the factors for the screen that the model uses as
based on the options the user selected while configuring the screen. This is useful in that
the user can further evaluate the screening calculations and determine which factors
might be affecting the output gradation of the screen. Instead, the response of a screen to
various factors could be evaluated through a trial and error process, but this leaves the
user somewhat uninformed unless he/she understands the information in the Pocket
Reference Book provided by equipment manufacturers. CompuCrush supports a
washer/classifier type of screen, whereas CRUISER does not. Although this screen is
limited in its available options, it is based on the Pocket Reference Book and is typical of

the more common applications for this screen.

2.4.4.2 Crushers

With respect to cone crushers, CompuCrush has the option of selecting either a standard,
fine, or sand type of conehead for simulating the crushing process. CRUISER does not
have this option of conehead type. Impeller, jaw, and roll crushers are modeled the same
way in each model. CompuCrush does model three other types of crushers: Vertical

Secondary Impactor (VSI), Horizontal Rotor Secondary Impactor (HRSI) and a
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hammermill crusher. A HRSI crusher is typically used to process limestone material. A
hammermill crusher is usually a secondary crusher used for processing high quality
limestone. These three crusher types are not typically used in aggregate production in
Canada. They are, however, commonly used in mineral aggregate processing and

limestone production in the United States.

2.4.4.3 Conveyors

Conveyors are used in each model to connect equipment components and direct the
material through the plant. CRUISER uses the conveyors to visually demonstrate the
direction of material flow through the plant, whereas CompuCrush does not. Another
difference between the two models is that CompuCrush determines the tonnes per hour
(TPH) capacity of the conveyor based on user information. This information consists of
belt width, roller type, and the speed of the conveyor in feet per minute (FPM). For
CompuCrush to calculate the estimated horsepower required for a chosen conveyor the
user must supply the model with the overall length of the conveyor and its elevation
angle. CRUISER does not calculate the capacity for conveyors, nor the required
horsepower to operate them. Both models allow for the user to view the gradation of the

product on every conveyor in the model once the simulation has been run.

2.4.4.4 Final Product Gradation

CompuCrush has two options for viewing the gradation output: One involves viewing a
line graph with the values as % passing or % retained. The other option is to view the
gradation by way of a histogram in either % passing or % retained. CRUISER gives the
option to view the gradation in the same manner as CompuCrush, with the exception that

there is no option to view the results in the form of a histogram.
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2.4.4.5 Accuracy

The final product gradations were evaluated for a comparison between the two aggregate
production models. A total of seven different samples that were collected through this
research was compared between the two models. Graphs of the actual output,
CompuCrush, and CRUISER gradations in percent passing format can be found in
Appendix B. The actual gradation was obtained from plant testing, and the parameters
for both models were put to the same settings. The error for both models as compared to
the actual and then to each other can be found in the table below. One sample type is
called ACO, which stands for Asphalt Concrete Overlay, and is a product used for
pavements put over existing pavement. Another sample type is called ACR, which
stands for Asphalt Concrete Residential, and is a product used for pavements in
residential areas. The last product type sampled is called 20 mm Road Crush, and is

typically used for road base underneath asphalt pavement.

Table 2-1 Average Absolute Error Per Sieve Size

Sample Type and Number of | CompuCrush CRUISER Error Ratio of CompuCrush
Samples to CRUISER

ACO (3 samples) 9.9 6.2 1.7

ACR (3 samples) 11.1 5.0 2.3

20mm Road Crush (1 sample) 9.6 7.6 1.3

It is clear that CRUISER is more accurate than CompuCrush in predicting the final output
of an aggregate plant. It is shown in Appendix B that CompuCrush generally predicts a
more coarse product than the actual gradation, while CRUISER generally predicts more

fine than the actual gradation. The only exception to this is the 20mm Road Crush
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product type where CRUISER is also coarse. It can be said that the accuracy of
CompuCrush comes closest to CRUISER when a coarser final product aggregate is being
simulated. This could be due to the fact that CompuCrush is designed more so for
industrial aggregate processing than CRUISER. Industrial aggregate processing typically
handles larger aggregate sizes and utilizes different types of equipment. It is the
conclusion of the researcher that CRUISER is more accurate because of the difference in
the screen modeling process. The modeling of crushers is identical for both models at the
present time, and is therefore not a factor in how the final product between each models

deviates from each other.

2.4.4.6 Overview

In general, the two models are quite similar in that they are both object oriented and work
out of a Windows© based environment. They also handle raw data input and display
product output in very similar ways. The visual display of the objects with the CRUISER
model is better than that of CompuCrush. How the two models describe a given plant
with various components is quite similar. How the equipment within each model is
configured is done in much the same manner. CompuCrush does model more screen
types than does CRUISER although the screen modeling options are similar. The
CRUISER model does allow for user input for screen efficiency calculations whereas
CompuCrush does not. CompuCrush contains more crusher types than does CRUISER.
CompuCrush allows for more descriptive information to be added to the model and has
better reports for results than CRUISER. With the samples obtained in this research
CRUISER is more accurate in predicting the final product gradation than CompuCrush.

In overall user friendliness both models are quite good.
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2.5 Discussion of Neural Networks

Neural networks are a branch of artificial intelligence. Neural computing is an attempt to
model the processing power and functionality of the human brain using a computer. The
functions of the human brain modeled by neural networks are the problem solving and
memory functions. The basic element in a neural network is a processing element,
modeled after the basic unit of the human brain, the neuron. Each neuron is a simple
processing unit; when connected to each other they form powerful processors. Every
neuron or node takes several inputs simultaneously and adds them, resulting in a response
dependent on the level of inputs received. The reaction of the node depends on whether
the sum of the inputs is high or low. The sum of the input values is then modified for
output by means of a transfer function. The transfer function can be a threshold function,
which only passes on information if the combined input reaches a particular value. It can
also be a continuous function, which allows emphasis to be placed on certain input
values. The transfer function might add weight to high value patterns and ignore low

ones. Figure 2-2 shows the relationship between a node and other network components.

Input Connection Weight Weight Output Connection
Weight
Input Connection E;“;f:'n Output Connection
Weight}
Weight
Input Connection Output Connection

Figure 2-2 A Node — The Processing Element
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Nodes are arranged on layers where every node in one layer is connected to every node in
the next layer. The connections between each layer are assigned weights that adjust the
importance of an input as it is passed to the next node. The network learns by changing
the weights in response to target outputs so as to determine which combinations of inputs

are most important. Figure 2-3 shows the basic components of a neural network.

p{ Output

Input Middle Output

Figure 2-3 Neural Network Structure

Just like the human brain, neural networks apply knowledge from past experiences to
new problems. Neural networks acquire this knowledge by training on a set of data.
After this training phase, testing it with data the network has not seen before can validate
the model. After validation, the network can be used to predict the type of output the
network was trained with. It is important to train the network with a sufficient number of

records and use a data set to validate the performance of the network. This data is
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retained from the training phase for testing only. A general guideline for the minimum
amount of data required to train a network is 10(M + N) where M equals the number of
inputs and N equals the number of outputs. Another guideline is to have 10 times more
training cases than model weights. Figure 2-4 demonstrates the training phase and Figure

2-5 demonstrates the recall phase of neural network development.

Training Phase

Neural
Network

Training Input L > p| Training Output

Predicted output values are compared to
actual output values. Error is then propagated
back through the network to adjust internal

weights.

Propagation of Error back
through the network

<

Once the weights between all layers have been adjusted,
the process begins again from the input nodes to the output nodes.

Figure 2-4 Training Phase of Network Development

Recall Phase

Recalllnput | | Nl\::v‘t?rlk | 5| Recall Output

The recall input is sent through the network once to predict the output.
The error between the recall output and the actual output can now be evaluated.

Figure 2-5 Recall Phase of Network Development
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Unlike traditional statistical methods, neural networks do not require assumptions about
model form. Neural networks learn the patterns in the data, whereas statistical analysis
assumes a model form to the data and then tests to see if the data fits the assumed
structure. Statistical analysis requires an assumption about which form (i.e. linearity)
characterizes relationships between variables. Neural networks are more tolerant of
imperfect data or variance from a known model. Neural networks perform better than
traditional statistical methods when the model form is unknown or nonlinear, or when the
problem is complex with several interrelated relationships. Neural networks have the
capacity to learn rapidly and change quickly as data and outcomes change. This feature

of neural networks allows for excellent adaptation to constantly changing information.

There are two main learning methods for neural networks: supervised and unsupervised.
Supervised learning is used as a prediction tool. It requires historical data with input and
output parameters to train the model. With this method, the network can compare the
predicted results to the actual results and adjust the model accordingly. The adjustment
to the model is done by feeding the error between the predicted and actual output back
through the network. This method of correcting the error working from the output end
towards the input is called back-propagation. Unsupervised learning is more effective for
describing data rather than predicting it. As part of the training process, the neural
network is not shown any outputs from which to develop errors. This type of learning
groups the data into similar categories and requires no initial assumptions about what
constitutes a group or how many groups there should be. This method of training

eliminates bias from the factors that should be the most important.
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Limitations in neural computing include difficulty in explaining the model in a useful
way, and explaining why it predicts the way it does. It is also difficult to extract rules
from neural networks. Furthermore, one must spend time understanding the problem or
the desired predicted outcome. In order for the network to produce good results, the data
used to train the network must be appropriate and representative of the problem being

solved.

In conclusion, neural networks are powerful predictive tools for handling large amounts
of complex data and recognizing patterns. Neural networks readily adapt to changing
information and new data. Neural network performance can be as good as classical
statistical modelling and is better for some problems. Although neural networks are
computational intensive, they can be solved within reasonable time using today’s

personal computers.

2.6 Neural Network Applications in Construction

Neural networks are increasingly investigated for use in the construction industry. A
number of researchers have discussed neural networks and the numerous applications for
them in civil engineering and construction (Moselhi, Hegazy, and Fazio, 1990), (Flood
and Kartam, 1994), and (Garrett, 1992). The primary use of artificial intelligence in
construction has been in the form of expert systems. The faults of expert systems lie in
their lack of ability to learn by themselves, generalize solutions, and adequately respond
to incomplete or previously unseen data (Moselhi, Hegazy, and Fazio, 1990). Expert

systems involve deep reasoning about the problem elements, whereas neural networks
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involve pattern recognition, which is more characteristic of the majority of construction

problems. Neural networks are seen as a supplement or in some cases a replacement of

expert systems.

Some advantages of neural networks over other artificial intelligence techniques are:

1.

They are suited for pattern recognition tasks where a large number of attributes

must be considered in parallel.

. They learn by example and model many example patterns and associations.
. Once developed they produce fast responses.

. They have distributed memory. The individual connection weights are the

memory of the network.

. They have associative memory. The network responds in an interpolative way to

incomplete or previously unseen data.

. They are fault tolerant. Since the memory is distributed, small failures in the

network will only have a slight effect on the overall performance of the network.

. They require only slight amounts of storage memory since there is only one set of

network weights that are capable of representing a large space of stored patterns.

Moselhi et al. (1990) presented a neural network for determining the optimum bid

markup. A feed-forward back-propagation three-layered network was used. The input

parameters were: the number of typical competitors, the mean of the distribution of the

ratio of the competitor’s bid prices to the contractor’s estimated cost in previous

encounters, and the standard deviation of the previously described distribution. Three
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bidding strategies were used to determine the optimal bid markup for the network. The
outputs of the network were three optimal bid markups for each of the different

strategies.

Murtaza and Fisher (1994) presented a neural network approach to modular construction
decision making. The relevant factors were classified into the following five groups:
plant location, labour conditions, environmental and organizational factors, plant
characteristics, and project risks. Each of these five major group factors is represented by
a two layer neural network. The second layer of each of these networks acts as input into
the third layer, which integrates the networks from the five major groups. A multi-
layered classification network was utilized and proved to be accurate with both new and

incomplete data.

Sawhney et al. (1993) presented a neural network model for accurate forecasting of
construction cost escalation. Cost escalation of labour and materials is a viable factor
when preparing a bid, especially in long-term projects. A recursive neural network was
developed to forecast the prefabricated wooden buildings industry index (PWBII). The
neural network was composed of three layers with a recursive portion to model time
dependent processes. The input parameters to the network were the month and year, and
the output was the price index. The input into the recursive portion included input from
the current value of the index and the values from previous iterations. This recursive

portion would account for past monthly index values influencing future predicted values
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from the network. This neural network has the ability of continuously learning and

improving its performance based on further training with additional data.

Al-Tabtabai et al. (1996) developed a neural network to identify the variances in quantity
of any particular construction work package. Work packages are basically manageable
units of a project, defined for the purpose of efficient management and control during
construction. The developed network would be used by a project manager to estimate the
variance from the estimate quantities gathered during the planning stages of the project.
The network was a feed-forward three-layer back-propagation model with six input
parameters. These six parameters were: volume of rework, volume of waste and scrap,
scope changes, quality of the quantity estimates, percentage of work completed for the
work package, and the past and present trend in quantity variance. The output of the
network was a ratio of the variance in quantity as compared to the current level of
variance. The developed neural network is one component of a construction project
control system being developed by the authors. It will include schedule and cost control

modules that will be integrated within current developed project management systems.

Savin et al. (1996) developed a neural network model for construction resource leveling.
The neural network model is comprised of two main blocks. The first block consists of a
discrete-time Hopfield neural network, which is a single-layer feedback network with
complete interconnections. The second block is a control block for the adjustment of
Lagrange multipliers in the augmented Lagrangian multiplier optimization, and for the

computation of the new set of weights for the neural network block. Verification of the
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model on small sized projects was completed successfully. Difficulty with selecting
initial Lagrange parameters for larger projects was encountered with no apparent
solutions to the problem. This has led the researchers to suggest that additional
investigation is required to apply the developed neural network to medium and large-

sized projects.

Chao and Skibniewski (1993) presented an approach to estimate the productivity of a
common excavation-hauling operation. Utilizing neural networks proved to be beneficial
in mapping the complex and nonlinear attributes of construction productivity. The model
contained four input factors and one output factor in modeling an excavator’s cycle time
under various conditions. Data for the network was obtained with simulation by means

of a small-scale robotic excavator.

Wales and AbouRizk (1996) developed a neural network application for estimating
construction labour productivity. The factors included in this model consisted of
environmental conditions such as temperature, relative humidity, precipitation, and wind
speed. These environmental processes were considered to be random events within the
simulation model. The random events were given to the neural network to predict the
daily productivity, which was then used in the simulation process to generate

construction schedules.

AbouRizk et al. (1996) developed a neural network for estimating trenching productivity

in pipeline operations. A feed-forward back-propagation model was used. The five input
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factors were: hours worked per day, percent of project complete, temperature, type of
equipment used, and weather severity. The output of the network was the predicted rate

of pipeline trenching productivity.

Portas (1996) developed a neural network application to aid in the estimation of labour
productivity for concrete formwork. A feed-forward back-propagation network was used
that contained fifty-five input nodes and thirteen output nodes. A total of 30 factors that
affect formwork productivity were input into the model through the fifty-five input
nodes. The thirteen output nodes represent a binary output pattern corresponding to
subset ranges of productivity values. Ranges of productivity values were given by the
network instead of a point estimate to account for uncertainty and to reduce errors from
poor training data. From this research, knowledge about which factors affect labour
productivity was gained and a predictive tool for estimating formwork productivity on

future projects was developed.

2.7 Discussion of Belief Networks

Belief networks, also known as influence diagrams, causality diagrams or Bayesian
networks, were first developed in the 1970’s. Belief networks can be thought of as a way
to model a situation in which causality plays a role, but where an understanding of what
is actually happening is fuzzy, so things must be described probabilistically. Belief
networks are directed, acyclic graphs (DAG), made up of arcs and nodes; they utilize
Bayes’ Theorem and the concepts of conditional probability. A simple belief network as
adopted from Charniak (1991) is shown in Figure 2-6. This network models the situation

where a father wants to determine whether his family is home or not before he enters the



home. The factors which are used to model the situation are whether the family is home
or not, the outside light is on or not, the dog is out or not, the dog has a2 bowel problem or
not, and if the dog barks or not. This network will be further discussed later on in this

section.

bowel-problem

Figure 2-6 A Simple Belief Network

The nodes represent the variables of the domain, and the arcs represent the dependence
between the nodes. The term ‘directed’ refers to the fact that the arcs have an explicit
direction and are represented by arrows showing the direction. ‘Acyclic’ means that the
arrows may not form a directed cycle or loop in the network (i.e., the path cannot be
circular when the path of arrows is considered). The node at the beginning of the arc is
called the parent, whereas the node at the arrow end of the arc is known as the child node.
The parent is assumed to affect the states of the child. In Figure 2-6 a parent node could

be ‘family-out’ with the child nodes being ‘light-on’ and ‘dog-out’. Nodes not directly
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joined by arcs are either independent, or may be evaluated as being conditionally
independent. The belief network can predict causal outcomes differently based on the
evidence or observed conditions entered into a constructed network. One might be
tempted to think that the probabilities of the nodes are changing, when actually the
conditional probability is changing as a result of the changing evidence. One important
feature of belief networks is the simplification of probability calculations as compared to
traditional probabilistic models. In traditional models the elements are completely
interconnected, whereas in belief networks they are only connected to factors that can
affect them. The number of probabilities required is much lower due to the built-in
independence assumptions within belief networks. This is evident in Figure 2-7, where
each network has the same number of nodes, but one has more connections between
nodes than the other. Network 1 represents a more traditional method of connecting
nodes where each node is connected to all other nodes. Network 2 represents how nodes
are connected in a belief network where there is only one connection between each node.
Assuming that each node is binary (i.e., has only two states), the number of probabilities
that must be evaluated for the state of E in Network 1 is 2*= 16. The node has two
possible states and four parents. However, in Network 2 the number of probabilities
required is 2! = 2. By reducing the number of connections between the nodes, one
improves the efficiency of the model. Also by structuring the network effectively, the
number of probabilities required to represent the real system is reduced, resulting in a
more efficient model. Network 2 has an exact solution, whereas there is no polynomial

time algorithm to determine the solution of Network 1 Charniak (1991). Research
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continues to improve the techniques for developing more efficient algorithms to solve

these types of networks.

A

KT S
- ==
S

Network 1 Network 2

Figure 2-7 Network Structure Comparison

Independence can occur when two variables can cause the same result, but are in no other
way connected. For example, either the family being out or the dog having a bowel
problem can cause the dog to be put out. The network shows that the family being out
has no direct relationship with the dog having a bowel problem. However, these two
variables can be conditionally dependent on each other if evidence of the result is entered
into the network during evaluation. The built-in independence assumptions are input into
the network with the guidance of an expert. This expert subjectively assesses the
probabilities that are necessary for the evaluation process in a belief network. One study
of doctors’ assessments (Spiegelhalter et al., 1989) showed that the assessment
probabilities required for a belief network were indeed very close to the numbers that
were subsequently collected. One problem cited in this research was that the doctors

were typically too quick to give assess as a zero probability of occurrence.
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P(fo) = 0.15 P(bp) = 0.01

family-out (fo) bowel-probiem (bp)
P(do | fo bp) = 0.99
dog-out (do)

P(do | fo - bp) = 0.80
hear-bark (hb)

P(do | —~fo bp) = 0.97
P(do|~fo ~bp) = 0.3
P(hb|do)=0.7
P(hb [~ do) = 0.01

P(lo | fo) = 0.6
P(lo |- fo) = 0.05

Figure 2-8 A Belief Network for the Family-out Problem

Figure 2-8 shows a belief network with the attached conditional prior and posterior
probabilities. Prior probabilities are those assigned to nodes with no parents (i.e., nodes
at the top of the network). Posterior probabilities are those assigned to child nodes that
are conditional to the various combinations of the states of the parents. To define a few
of the symbols in a belief network, refer to Figure 2-8. The statement P(lo}fo) = 0.6
means that the probability of light-on = true given that family-out =true is 0.6. The
statement P(loj~fo) = 0.05 means that the probability of light-on = true given that family-
out = false is 0.05. The statement P(dojfonbo) = 0.99 means that the probability of dog-
out = true given that family-out = true and bowel-problem = true is 0.99. Knowing what
the symbols mean we can see that if the family leaves the house, they will turn on the
outside light 60 percent of the time, but the light will be turned on even when they do not

leave 5 percent of the time (i.e., a guest is expected). Now giving evidence to the
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network will involve conditional probabilities to be calculated by the network. Ifit is
observed that the light is on (i.e., light-on = true) but the dog is not heard barking (i.e.,
hear-bark = false), the conditional probability that the family-out = true calculates to 0.5.
The calculation of conditional probabilities is usually referred to as ‘evaluating the belief

network’.

Belief networks use Bayes’ Theorem, as shown in Equation 1,which follows from the
basic conditional probability relationship P(AAB) = P(B|A)*P(A) = PA|B)*P(B). Bayes’
Theorem may also be used to analyze multiple influences in the form of Equation 2,
where the denominator is the expansion of the denominator in Equation 1, and is the

unconditioned P(A = true).

Equation 1
PB4 =LA jf();)P(B)
Equation 2
P(B| 4) =L A1B) " P(B)

> P(4| Be) * P(Br)

k=1

For an illustration of how a belief network works refer to Figure 2-8. This simple
network is designed to evaluate whether a family is home or not before the home is

entered. All of the variables in this network are binary (i.e., either true or false).
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Now consider the situation where the person approaching the home hears the dog bark
and observes that the light is not on. Given this evidence, the person now wants to know
if the family is out or not given this evidence. The problem statement is: P(folhbA—lo)
where fo represents the true state of the node family-out, hb represents the true state of
the node hear-bark, and —lo represents the false state of the node light-on. With all
information contained in the network relying upon conditioning on the parent, the
problem statement must be manipulated until the required information may be read
directly from the network. Using Equation 1, the problem statement is rearranged so that
it is conditioning on a parent.

P(hb Alo| fo)* P(fo)

P(fo|hb A —lo) = B o)

P(fo) may be read directly from the network, but the other two elements require further
analysis. With fo assumed to be known, the two variables hb and lo are D-separated and
are therefore independent. To explain D-separation, also known as direction-dependent
separation, consider nodes A and E in Network 2 of Figure 2-7. The nodes are obviously
connected and are therefore dependent upon one another. However, if a node between
them is known and there is no other path between them that is not blocked by any given
node, then the two become D-separated, or independent of each other. So the equation

may be restated as:

P(hb A —lo| fo) = P(hb| fo)* P(~lo| fo)
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To evaluate P(hbifo), the probability of hb must be conditioned on all of the parents. So
the node is evaluated for the given information (i.e., P(fo = true), and on all conditions of

the remaining parents.

P(hb| fo)=P(hb| fo Ado)* P(do| fo)+ P(hb| fo A —~do)* P(~do| fo)

In the expression P(hb|fondo), hb and fo have become D-separated by do, and now the
probability of hb now only depends upon do. The term may now be expressed as
P(hb|do), leaving P(do|fo) to be evaluated with all combinations of its parents. Also note

that P(—do|fo) = 1-P(do|fo).

P(do| fo) = P(do| fo n bp)* P(bp) + P(do| fo n —bp)* P(=bp)

The numerator of the problem statement is now in a form where the information may be

read directly from the network. The denominator may be restated as:

P(hb A ~lo) = P(~lo| hb) * P(hb)

Because P(~lojhb) = 1- P(lo|hb), the evaluation of P(—lohb) may be simplified to the

following:

1-P(lo| hb) =1—(P(lo| hb A fo)* P(fo|hb)+ P(lo| hb A —fo)* P(~fo| hb))
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_P(hb| fo)* P(fo)
P(fo|hb)= D)
and

Now lo and hb have been D-separated by fo and therefore reducing the term P(lojhbafo)
to P(lo|fo) which can be read directly from the network. With the value of P(hb|fo)
already being evaluated, all but P(hb) can be read from the network. So hb is evaluated

by being conditioned on all combinations of the parents.

P(hb) = P(hb|do)* P(do) + P(hb | —do)* P(—do)

and

P(do) = -P(do | bp A fo)* P(bp) * P(fo) + P(do | bp A —fo)* P(bp)* P(—fo)
+P(do| —bp A fo)* P(-bp)* P(fo) + P(do | —bp A —fo) * P(—bp) * P(—fo)
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Now the network provides all of the information required for evaluating the problem

statement. Working through the above equations in the reverse order we find:

P(do)=(0.99*0.01*0.15) + (0.97 *0.01* 0.85) +(0.9* 0.99 * 0.15) + (0.3 * 0.99 * 0.85)
=0.3583
P(hb)=(0.7*0.3583) + (0.01* (1 — 0.3683) = 0.2831

P(do| fo) = P(do| fo n bp)* P(bp) + P(do| fo A -bp) * P(—bp)
=(0.99*0.01) + (0.9 * 0.99) = 0.9009

P(hb| fo) = P(hb|do) * P(do| fo) + P(hb|—~do)* P(~do| fo)
=(0.7*0.9009) + (0.01* (1 — 0.9009)) = 0.6316

P(hb n —lo| fo)= P(hb| fo)* P(~lo| fo)= P(hb| fo)* (1 - P(lo| fo)
=0.6316*(1-0.6) = 0.2526

P(fo|hb) = P(hb| fo)* P(fo)/ P(hb)=(0.6316*0.15)/0.2831 = 0.3346
P(~lo| hb)=1~(P(lo| hb A fo)* P(fo|hb) + P(lo| hb A —fo) * P(—fo| hb))
=1~ ((0.6 *0.3346) + (0.5 * 0.6653)) = 0.7660

P(hb A —lo) = P(—lo| hb)* P(hb) = (0.7660 * 0.2831) =0.1771

P(fo|hb A —lo) = P(hb A —lo| fo)* P(fo)! P(hb A —lo)=(0.2526*0.15)/0.1771=0.21

The homeowner could therefore conclude with 21% confidence that the family is out, or
with 79% confidence that the family is in. Evaluating the situation where the light is on

and the dog is not heard barking gives a result of 50% confidence that the family is out.

In general, belief networks can be used to predict what will happen (i.e., the family goes
out, the dog goes out) or to infer causes from observed effects (i.e., if the light is on and
the dog is out, then the family is probably out). Evaluation of a belief network basically
involves the computation of every node’s belief (i.e., its conditional probability) given

the evidence that has been observed so far. A conditional probability is a probability or
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likelihood of a variable that is dependent on the value of another variable. For example,
given that the grass is wet, the cause could either be that it just rained or that the sprinkler
system was just on. The likelihood that it has rained is differs depending on whether one
knows if there was a rainstorm in the area. Ifit is known that there was a rainstorm that
had passed by recently, then the likelihood that the sprinkler system was the source of

precipitation is significantly less than if it was known that a rainstorm was not in the area.

Belief networks are very flexible in how input is accepted and output is provided. They
allow for variables to be either input or output without redesigning the system. This
characteristic is not present in many other forms of artificial intelligence. Rule-based
expert systems are based on a number of ‘expert’ rules and do not require large amounts
of data, much like belief networks. The advantage of using belief networks is that rule-
based expert systems permit evidence to enter the system only at specified points; they
must be restructured to allow for intermediate points to accept evidence. Expert systems
determine the causes given only the evidence and require an entire new set of rules to
work in the opposite direction. Another form of artificial intelligence, known as neural
networks, has a more rigid structure than belief networks or expert systems. If any of the
variables are changed, then an entirely new network must be created to model the data.
One major advantage of belief networks is that they have the ability to both accept
evidence at any point in the system and provide output at any point in the system
(Henrion et al., 1991). Belief networks are mainly used for diagnostics, also called
diagnostic inference. This is where evidence of the symptoms are supplied to the

network and the network determines the likely cause for the given symptoms. However,
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belief networks can also be used to provide information about the symptoms and the
network can determine the likely result. This is called ‘causal inference’ and can be done
utilizing the same network structure. Belief networks can also be used for what is called
‘intercausal inference’ (Henrion et al., 1991). Here, the belief of each node is determined
with the entry of additional evidence. New evidence is entered at any point in the
network, and the likelihood of the remaining variables is determined and compared to the

belief values evaluated before the new evidence was given to the network.

To have the greatest affect on the conditional probabilities when using a belief network
for diagnostic purposes, the evidence nodes should be at the bottom of the belief network.
The model developed in this research will follow this guideline and the evidence nodes
will be found at the bottom of the network. When any evidence is found it will be
entered at these points and the network will be evaluated. The reason for this is that
when entering evidence into a node in the middle of the network, one does not include
any of the node’s dependent nodes (i.e. nodes below) to give us the probable cause at the

top of the network.

The software used in this research is called Microsoft® Bayes Networks (MSBN™),
MSBN (Microsoft Corporation, 1996) integrates with both C and Visual Basic
programming code and is therefore compatible with the developed CRUISER program.

This will allow for possible integration between the two software packages for practical

purposes.
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2.8 Belief Network Applications in Construction

Some artificial intelligence researchers like Charniak (1991) assert that, despite the
importance of these networks, the ideas and techniques have not progressed beyond the
research community that developed them. This is most likely due to the fact that the
ideas and techniques are not very easy to understand. The main problem with
incorporating expert opinion into a belief network is the general lack of understanding of
probability theory. Some applications for belief networks have been found in other fields
like environmental engineering (Chong and Walley, 1996), medicine, and software
development (Heckerman and Wellman, 1995). One application of belief networks for
the construction industry has recently occurred in the area of earthmoving operations. In
this research, a belief network was developed to assist the user of an earthmoving
simulation model in determining what parameters to change in order to optimize either
the production or the construction schedule (McCabe, 1997). The belief network was
designed to perform a number of iterations with the earthmoving model, and provide the
results in an output file. The earthmoving model was to be designed by the user with
Visual SLAM® and AweSim® simulation software. In the output file the user can see
how each iteration change made by the belief network further optimized the model. The
model can be optimized by one of the two methods chosen by the user. Although belief
networks have not been utilized very much in the construction industry, it is the desire of

the researcher to expand their use through this research.
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3.0 CRUISER Validation

3.1 Introduction

In order to determine where improvements can be made, a validation process for a
simulation model must be undertaken. Data from the real situation is usually the best
place to start. Previous research has been done to validate the CRUISER simulation
model with actual aggregate plant data (Chehayeb, 1996). Data was collected from a
total of three different aggregate plants. One important finding in this research is that
the output gradation is quite dependent on the gradation of the input feed. One
modification to the CRUISER program was to implement a stochastic modeling process
so that the user would supply more than one raw feed gradation. The model then runs a
specified number of simulations and the final product gradation is supplied with
production statistics such as the mean, standard deviation, percentile values, and
confidence intervals. The results show that the final product variations depend on
variations in inputs. Model accuracy was best with the largest plant of the three, which
has a total of two crushers and six screens. The CRUISER gradation varied at this plant
from -12% to +8% on the cumulative percent-passing curve. At the second plant 20mm
and 50mm products were made. The CRUISER gradation varied from -30% to +5% on
the cumulative percent-passing curve. The third plant produced a 40mm product and the
CRUISER varied from -25% to 0% on the cumulative percent-passing curve. This
researcher attributes inaccuracy of CRUISER results to the inconsistency of production
from small, mobile aggregate plants. The problem with this reasoning is that relatively

similar accuracy was obtained from plants with more crushers and screens. The
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accuracy of the model should be independent of the size of a plant if the crushing and
screening processes are properly simulated by CRUISER. Results from this research
consisted mostly of improvements to the user interface and graphical displays of output
data within CRUISER. Chehayeb (1996) recommended collecting data on the input and
output of every screen and crusher in order to perform a more detailed validation
analysis of the CRUISER model. Another suggestion was to use neural networks to

simulate the crushing and screening processes within CRUISER.

For data collection in this research, a number of site visits were made to the Lafarge
crushing plant just north of Villineuve, Alberta. The data collection took approximately
one month starting on October 1, 1996. A total of seven samples were taken over the
course of the month. Four of these samples contain aggregate gradations for all
locations of the plant. Samples were collected and tested onsite before and after each
screen and crusher. The other three samples contain aggregate gradations for the raw
pile, the waste sand pile, and the product pile. This is because after the fourth sample
was obtained, the plant could not be shut down in mid-stream for data collection
purposes. From then on, only samples were taken from the input, and output of the sand
and product streams. The main purpose here was to see if actual data obtained in the
field was comparable to what CRUISER would evaluate. This procedure was done to
test how accurately CRUISER would predict versus the ‘real world’ aggregate

processing.
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3.2 Data Collection
3.2.1 Procedure

A Data Collection Handbook was made for data collection purposes when site visits
occurred. It consisted of a number of pages for information on site layout, crusher
information, screen information, conveyor information, and site reports. Site reports
contained the pertinent site visit information, such as changes in operations, loader
analysis, conveyor analysis, production rate analysis, and the completed sieve tests. An

example of the Data Collection Handbook is shown in Appendix C.

After the first site visit to the plant it was decided that additional information might be
obtained by taking the samples off of the conveyors in a particular way. This would
allow for obtaining production rates for each aggregate stream sampled. These
production rates could then be compared with the rates obtained from the CRUISER
program after analysis. The production rate gained from this process would be used as a
check on the values of raw feed and final product. For the raw product rate, a loader
analysis was done in which the number of loads and the approximate load volume over a
given time were recorded, then a production rate was calculated. The time over which
this analysis was done for each site visit was about 20 minutes. For the final product, a
weigh scale was present to record the instantaneous production rate for the product.

This scale was monitored for a period of about 20 minutes; recordings were taken every
minute on each site visit. The density for each aggregate sample from each conveyor
was also calculated. This was done using the samples obtained for the sieve analysis

and a volumetric pail for which a volume was known. The density of the aggregate was
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determined using CSA Test Method A23.2-10A. The sieve analysis of the fine and

coarse aggregate was determined using CSA Test Method A23.2-2A.

3.2.2 Samples

A total of four complete sample sets have sieve analysis data for all components of the
aggregate plant. Three of these samples were taken when Asphalt Concrete Overlay
(ACO) was being made. The other sample was taken when Asphalt Concrete

Residential (ACR) was being made.

An additional three samples were obtained with sampling from the raw, waste, and
product piles. The reduced amount of sampling was due to the constraints of limited
plant shutdowns. These samples were obtained during normal plant operations with no
plant shutdown required. These additional samples would be used in evaluating the
plant as a whole instead of the individual components separately. One product type was
20mm Road Crush; the other two were ACR product, which was being made for the
City of Edmonton. The main difference between the ACR product for Lafarge or the
ACR product for the City of Edmonton is that the ACR product for the City has 6%
more sand than the same product type made for Lafarge. An additional difference
between ACO and ACR is that ACO contains 80% fractured rock, and ACR contains

75% fractured rock in their respective specifications.

3.2.3 Analysis

Differences between the alternative methods of collecting data for the input production

rate are shown in Table 3-1. Table 3-2 shows the comparison of the two output
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production rate methods. Full details for these tables are included in Appendix D. We

can see that the different methods of calculating the tonnes per hour (TPH) for the input

(i.e. raw product) and the output (i.e. final product) were similar in results. The greatest

difference between any two methods was 18%. Errors were larger between the methods

for the output rates. The average error there was 12.2%. This might be due to

inaccuracy of the data because of weight scale that was used. The error between the

methods on the input end seemed to be quite low, with an average error of 6.6%. These

results are quite good considering that the loader analysis method involved quantitative

observations regarding loader volumes. Another factor to consider in the accuracy of

the TPH calculations obtained from the samples collected is that two individuals

collected all of the samples during any one site visit. This was done because the

shutdown time of the plant had to be minimized. The fact that the gradations were

analyzed by more than one person contributed to inconsistency errors. The time

constraint during sample collection is likely to have contributed some error as well.

Table 3-1 Input Production Analysis

Sample Description Conveyor TPH | Loader Analysis TPH | % Difference
ACO Trial #2 538.2 503 7
ACO Tral #3 528.2 521.2 1.3
ACR Trial #4 598.6 563.7 6.2
RC 20mm Trial #5 677 5823 16.3
ACR CoE Trial #6 4554 494.5 -79
ACR CoE Trial #7 522.2 528.4 -1.2
Average Difference 6.6 %
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Table 3-2 Output Production Analysis

Sample Description | Conveyor TPH | Weigh Scale Analysis TPH | % Difference
ACO Trial #2 370.5 3138 18.1
ACO Trial #3 391.2 3355 16.6
ACR Tnal #4 379.7 3722 2
Average Difference 12.2 %

The method of determining the density of each sample was deemed to be highly relevant
and accurate. The densities did not always make sense when one looked at the different
products within a given sample. Typically, the more the raw product is crushed, the
denser it becomes. This is not necessarily observed when one looks at a specific sample.
However, when analyzing between samples with the same final product being made, the
numbers between individual samples are quite close. The density for the screened pit
run (i.e., the second sampling location) increased; this is because the majority of sand
was removed by this point, leaving more rock in the sample and creating a
corresponding higher density. Any small errors within a sample (i.e., before and after a
crusher) are likely due to an absence of compaction of the samples when weighed for
volumetric purposes. Itis to be noted, though, that the researcher was looking for the
“as-is” state density at the time; this explains why the density values for the samples

from a given test as a whole might not appear to make sense.
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3.3 Plant Characteristics

The model of the crushing plant is as shown below in Figure 3-1.

Final Product
Wasoua gand 0.00

Figure 3-1: Site Model (as depicted using CRUISER)

Tables 3-3, 3-4, and 3-5 outline the screen information for Screens 1 through 3. The
settings of the components within CRUISER were set as follows:

Screen #1
Deck Size: Sx 14°
Condition: Dry quarried material, 4% or less moisture; crushed rock
Incline Factor: Horizontal, Normal Amplitude Stroke

Table 3-3 Screen #1 - Screen Information

Deck # | Split # Opening Slot Length/Width Open Area Factor
(inches)
1 1 1.250 1:1 (Square) 50% - Standard Wire
2 0.875 1:1 (Square) 50% - Standard Wire
3 0.875 1:1 (Square) 50% - Standard Wire
4 1.250 1:1 (Square) 50% - Standard Wire
2 1 0.375 More Than 6:1 50% - Standard Wire
2 0.375 1:1 (Square) 50% - Standard Wire
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Screen #2

Deck Size: 6’ x 20’
Condition: Dry quarried material, 4% or less moisture; crushed rock
Incline Factor: 20 Degrees

Table 3-4 Screen #2 - Screen Information

Deck # | Split # Opening Slot Length/Width Open Area Factor
(inches)
1 1 1.250 1:1 (Square) 50% - Standard Wire
2 1 0.438 1:1 (Square) 50% - Standard Wire
Screen #3
Deck Size: 6’ x 20’
Condition: Dry quarried material, 4% or less moisture; crushed rock
Incline Factor: 20 Degrees

Table 3-5 Screen #3 - Screen Information

Deck # | Split # Opening Slot Length/Width Open Area Factor
(inches)
1 1 0.750 1:1 (Square) 70% - Very Light Wire
2 1 0.563 1:1 (Square) 70% - Very Light Wire
Crusher #1 Crusher #2
Type: Cone Cone
Size: 54" 36” (Actually 667)
Setting: 1.000” 0.4375”
Suggested Capacity: 181 TPH 35 TPH
Set Capacity: 400 TPH 250 TPH

3.4 Product Sampling and Results
3.4.1 ACO Product Type

Three samples were collected and tested individually by way of the deterministic feature
in CRUISER. The material weight was specified as 113 Ibs per cubic foot. This was an
average from the data collection process for the ACO product types. The most likely

feed rate was set at 530 TPH.



The stochastic sampling option within CRUISER was attempted with the three ACO
samples. For the stochastic process a low of 510 TPH, a mode of 530TPH, and a high of
540 TPH was used. This was estimated based on the input rates determined from the
data collection process. Another important note is that the percent flow of sand to the
final product was set at 6% for the ACO product type. The resulting output product
gradation carries upper and lower bounds along with it. These upper and lower bounds
are found to vary up to 2%, which does not improve the gradation results enough to
bring them within the gradation specifications. It was found that with similar raw input
gradations better results were achieved. With inputs that are more varied, the results
become skewed towards the coarser or finer input results, depending on whichever input
type is greater in number. Varying the high and low feed rates to achieve a greater
variability of input rate does not affect the variance of the upper and lower bounds any
more than * 2%, as before. In conclusion, it is best to have several input gradations
that reflect the actual conditions most closely. However, the stochastic sampling feature
within CRUISER still will not improve the results enough to meet specifications, which

is the desired goal for the program user.
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3.4.1.1 Results

A graph presenting the average results for the three samples along with the product

specifications is shown in Figure 3-2.
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Figure 3-2 Actual vs CRUISER Results for ACO Product Type

Additional results presented in graphical form for the ACO product type are located in
Appendix E. A few general comments can be made for this product type: The raw input
gradation varies substantially, especially on the larger sieve sizes. The actual product
gradation varies 8% at the most among the samples. The product gradation obtained
from CRUISER is fairly consistent and is less variable than the actual product gradation.
When evaluating all three samples at once, we can see that the three actual samples
reflect a finer product than what CRUISER predicts throughout most sieve sizes. The
average product gradation obtained from CRUISER is approximately 3 to 5% lower on

the cumulative percent passing graph for the larger sieve sizes. CRUISER is
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approximately 5 to 11% lower on the smaller sieve sizes. This indicates that CRUISER
results are coarser than the actual product. CRUISER is up to 1% higher on the
cumulative percent passing graph, revealing that CRUISER results are just slightly finer
on one larger sieve size only. The actual product gradation meets the product
specifications, whereas the product predicted by CRUISER does not meet the product

specifications.

3.4.2 ACR Product Type

Three samples of this product type were collected and tested individually by way of the
deterministic feature in CRUISER. The material weight was specified as 109 Ibs per
cubic foot. This was an average obtained from the data collection process for the ACO
product types. The most likely feed rate was set at 550 TPH. Out of the three samples,
one was a ‘Lafarge’ ACR while the other two were ‘City of Edmonton’ ACR products.
The main differences between the two are in the specifications and the material handling
process. The ‘City of Edmonton’ ACR has 6% more sand than the ‘Lafarge’ ACR
product. The product was collected off of the continuous conveyor into a small
collecting hopper, which was used to store the product temporarily before it was loaded
onto dump trucks. This was a requirement in the specifications from the City and was
enforced mostly to prevent segregation of the final product. Usually, the product is
stockpiled using large conveyors which create large product stockpiles, thus increasing

the amount of segregation.
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The stochastic sampling option within CRUISER was attempted with the three ACR
samples. For the stochastic process, a low of 500 TPH, a mode of SS0TPH, and a high
of 600 TPH was used. This was estimated based on the input rates determined from the
data collection process. Another important note is that the percent flow of sand to the
final product was set at 12% for the ACR product type. The resulting output product
gradation carries upper and lower bounds along with it. These upper and lower bounds
are found to vary up to + 2%, which does not improve the gradation results enough to
bring them within the gradation specifications. It was found that more comparable raw
input gradations usually increased the result quality. The presence of some coarse and
some finer inputs will skew the results depending on whichever input types are greater
in number than the other. Varying the high and low feed rates to achieve a greater
variability does not affect the variance of the upper and lower bounds any more than +
2%, as before. In conclusion, it is best to have numerous inputs which reflect the actual
conditions most closely. However, the stochastic sampling results will still not improve

the results to within specifications, i.e. the desired goal.
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3.4.2.1 Results
A graph presenting the average results for the three samples along with the product

specifications are shown in Figure 3-3.
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Figure 3-3 Actual vs CRUISER Results For ACR Product Type

Additional results presented in graphical form for the ACR product types are located in
Appendix F. A few general comments about this product type can be made: The raw
input gradation varies substantially, especially on the larger sieve sizes. One sample in
particular seems to deviate from the other two quite significantly. The actual product
gradation varies 9% at the most among the samples. The product gradation obtained
from CRUISER is fairly consistent for two of the samples, but on the whole is more
variable than the actual product gradation. By evaluating all three samples at once it
was found that the three actual samples are generally finer than what CRUISER predicts.

The actual gradation of the third sample becomes coarser than what CRUISER predicts
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for a few of the higher sieve sizes. This could be due to sampling or testing error. The
average product gradation obtained from CRUISER is about 1 to 5% lower on the
cumulative percent passing graph for the larger sieve sizes. CRUISER is about 2 to 11%
lower on the smaller sieve sizes. This indicates that CRUISER results are coarser than
the actual product. CRUISER is up to 2% higher on the cumulative percent-passing
graph, indicating that CRUISER results are finer on one larger sieve size only. The
actual product gradation meets both product specifications (i.e. Lafarge and City of
Edmonton), whereas the product predicted by CRUISER does not meet the

specifications of either product entirely.

3.4.3 20mm Road Crush Product Type

Here, only one sample was collected and tested using the deterministic feature within
CRUISER. The material weight was specified as 118 Ibs per cubic foot. This value was
obtained from the data collection process for this product type. The most likely feed rate
was set at 677 TPH. No stochastic sampling was attempted since only one sample of

this type was obtained.
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3.4.3.1 Results

A graph presenting the average results for the three samples along with the product

specifications is shown in Figure 3-4.
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Figure 3-4 Actual vs CRUISER Results For 20mm Road Crush Product Type

Additional results presented in graphical form for the 20mm Road Crush product type
are located in Appendix G. A few general comments can be made for this product type:
The raw input gradation is characteristic of the other raw input samples. The actual
product gradation cannot be compared to other samples of this type since only one
sample was obtained. The product gradation obtained from CRUISER cannot be
compared to other samples of this type since only one sample was obtained. The
product gradation obtained from CRUISER is approximately 2 to 10% lower on the
cumulative percent-passing graph for the larger sieve sizes. CRUISER is approximately
2 to 16% lower on the smaller sieve sizes. This indicates that CRUISER results are

more coarse on the middle to lower sieve sizes. CRUISER does not predict a finer
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product on any sieve size for this product type. The actual product gradation meets the
product specifications, whereas the product predicted by CRUISER does not meet the

product specifications on the middle and lower sieve sizes.

3.4.4 TPH Analysis

Table 3-6 below shows the production in tonnes per hour (TPH) for each of the
respective streams for all of the samples. Only four of the seven samples have actual
individual component data to compare to CRUISER predictions. Average TPH rates
were taken for crushers where the input and output rates should be equal. It can be
seen from the table that CRUISER does not predict the tonnage of intermediate streams
very accurately, but does indeed predict the final product tonnage within an average of
13.7%. For the two ACO product types the average difference between the actual and
the production predicted by CRUISER is 6.1%. The error difference between the actual
and predicted production rates is directly related to the gradation of the intermediate
streams. The error is largest in the crushing input and output streams. This may be due

to the inaccuracy of the crushing analysis within CRUISER.
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Table 3-6 Actual and CRUISER Simulated Results

ACO#1 | ACO#2 | ACO#3 | ACR#1 | ACR#2 | ACR#3| RC
Pitrun 530 530 530 550 550 550 677
Sand 140.44 178.55 164.13 55.88 202.18 58.18 110.39
(Cruiser)
Sand n/a 220 201 145 n/a n/a n/a
(Sampled)
Difference n/a 23% 23% 159% n/a n/a n/a
Screened 380.6 340.05 3554 483.09 320.25 483.88 559.57
Pitrun
(Cruiser)
Screened n/a 260 329 392 n/a n/a n/a
Pitrun
(Sampled)
Difference n/a 31% 8% 23% n/a n/a n/a
Coarse 587.15 293.11 460.60 837.37 251.47 848.77 807.09
Feed
(Cruiser)
Coarse n/a (342+36 (314+28 (215+20 n/a n/a n/a
Feed 1)/2=352 5)/2=300 7)/2=211
(Sampled)
Difference n/a 20% 54% 297% n/a n/a n/a
Coarse 587.15 29311 460.60 837.37 25147 848.77 807.09
Return
(Cruiser)
Coarse n/a (342436 (314+28 (215+20 n/a n/a n/a
Return 1)/2=352 5)/2=300 7)/2=211
(Sampled)
Difference n/a 20% 54% 297% n/a n/a n/a
Fine Feed 331.54 3259 321.74 424 .88 312.67 427.17 368381
(Cruiser)
Fine Feed n/a (188+20 (241+21 (252+22 n/a n/a n/a
(Sampled) 9)/2=199 1)/2=226 8)/2=240
Difference n/a 64% 42% 77% n/a n/a n/a
Fine 331.54 325.9 321.74 424 88 31267 427.17 368.81
Return
(Cruiser)
Fine n/a (188+20 (241+21 (252+22 n/a n/a n/a
Return 9)/2=199 1)/2=226 8)/2=240
(Sampled)
Difference n/a 64% 42% 77% n/a n/a n/a
Product 389.56 351.45 365.86 491.05 34723 49183 566.58
(Cruiser)
Product n/a 370.5 391 380 n/a n/a n/a
(Sampled)
Difference n/a 5.3% 6.9% 29% n/a n/a n/a
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3.4.5 Summary
CRUISER can predict the ACO gradation output within approximately 11% lower and

1% higher than the actual gradation. CRUISER predicts the ACR gradation output
within 11% lower and 2% higher than the actual gradation. The Road Crush gradation
output was predicted within approximately 16% lower to 0% higher than the actual
gradation. Overall, CRUISER predictions of the output gradation are within +10% error
over 40 to 60% of the sieve sizes on any given sample. The error on the remaining sieve
sizes can vary up to +2 and —16% on any given sieve size. Even with this range of
accuracy, it is not sufficient to predict within product specifications used for the product
types sampled. In reference to the tonnages predicted by CRUISER, it is evident that
the program does quite well in predicting the final product tonnage within an average of

13.7% for only three samples.

3.5 Separate Component Analysis

As a means of analyzing the errors that propagate through CRUISER, when performing
an analysis of an entire plant layout, a separate component analysis with respect to the
actual data was completed. Basically, the actual input into the component was used as
input into CRUISER for the component being analyzed and then CRUISER results were
compared to the actual results. The four data sets used here are comprised of 3 ACO

and 1 ACR product types.
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It is important to note that CRUISER combines gradation streams in the following

manner:

1.

The cumulative percent passing of gradation #1 (i.e., Sample #1) is converted to
TPH for each sieve size by multiplying the percent passing on each sieve by the TPH
of that stream.

The cumulative percent passing of gradation #2 (i.e., Sample #2) is converted to
TPH for each sieve size by multiplying the percent passing on each sieve by the TPH
of that stream.

These two streams are then added and divided by the total TPH for the combined
stream, which is just the sum of the TPH from gradation #1 and gradation #2. This

gives the cumulative percent passing for the combined stream.

75



3.5.1 Coarse Crusher
A graph presenting the average results for two of the four possible samples is shown in
Figure 3-5. Two samples had obvious erroneous gradation results and were omitted

from the average calculation.
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Figure 3-5 Actual vs CRUISER Results for the Coarse Crusher

Additional graphs for the coarse crusher are located in Appendix H. A few comments
can be made for this crusher: The input gradations as obtained by the tester are fairly
similar for all four samples However, two of the output gradations obtained by the tester
are similar and two are not; the dissimilar two were omitted when an average of the
results was calculated. The CRUISER output is very similar for all four samples. For
the two more reliable samples, CRUISER predicts too coarse of a final product on the

higher sieve sizes and too fine in the middle to lower end sieve sizes.
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3.5.2 Fine Crusher
A graph presenting the average results for three of the four possible samples is shown in

Figure 3-6. One sample was omitted due to questionable input gradation.
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Figure 3-6 Actual vs CRUISER Results for the Fine Crusher

Additional graphs for the fine crusher are located in Appendix I. A few comments can
be made for this crusher. The input gradations as obtained by the tester are fairly similar
for three of the four samples. The CRUISER output for the four samples is very similar.
For this crusher CRUISER predicts too coarse of a final product on all of the sieve sizes
except for the last two sieve sizes. It is interesting to note that although CRUISER is

more course that the actual product, it is only coarse by 7% passing at the most.
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3.5.3 Scalper Screen
A graph presenting the average results for three of the four possible samples is shown in

Figure 3-7. One sample was omitted due to questionable input gradation.
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Figure 3-7 Actual vs CRUISER Results for the Scalper Screen

Additional graphs for the scalper screen are located in Appendix J. A few comments
can be made for this screen. The input gradations as obtained by the tester are fairly
different for all four samples. This is due to the high variability in the raw product as
discussed earlier. A graph of the input gradation into the plant can be found in
Appendix K. Three of the output gradations obtained by the tester are similar. One is
not and was omitted when an average of the results was calculated. The CRUISER
output for the four samples is fairly different on the higher sieve sizes, becoming

increasingly similar as the gradations approach the smaller sieve sizes. For this screen,
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CRUISER predicts too coarse of a final product on all of the sieve sizes. Again, the
comparison of CRUISER to actual samples might be distorted here because of the high
variability in the raw product on the higher sieve sizes due to large rocks. It is
interesting to note that CRUISER does predict the output quite accurately for one of the
three decent sample results. On this sample, CRUISER predicts too fine by 11% passing

and too coarse by 7% passing at the most.

3.5.4 Coarse Screen — Upper Deck

A few calculations had to be made to formulate the actual gradation of the input, which
was also input into the CRUISER analysis. The plant layout can be referred to in Figure
3-1 for an easy understanding of how the streams were combined. The input into this
screen was made up of the raw feed stream that had passed through the scalping screen,
and the return feed stream from the coarse crusher. This was accomplished by the
following process: The cumulative percent-passing on each sieve size was multiplied by
the TPH for each respective stream. The two streams were then added together to form
a combined stream. This combined stream was then divided by the total TPH from both
streams, yielding a cumulative percent-passing gradation, which was then converted into
a percent retained gradation. A graph presenting the average results for all four possible

samples is shown in Figure 3-8.
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Actual vs Cruiser Resulits For Coarse Screen (Upper Deck)
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Figure 3-8 Actual vs CRUISER Results for the Coarse Screen - Upper Deck

Additional graphs for the coarse screen are located in Appendix L. A few comments can
be made for the top deck of this screen. The input gradations as obtained by the tester
are fairly similar for all four samples. These more consistent results are likely due to the
addition of the crushed product from the coarse crusher combining with the higher
variable raw product at this sampling location. All four of the output gradations
obtained by the tester are similar and were included when an average of the results was
calculated. The CRUISER output for the four samples is a little different on the higher
sieve sizes and becomes increasingly similar as the gradations approach the smaller
sieve sizes. CRUISER predicts too coarse of a final product on the larger sieve sizes
and a little too fine on the smaller sieve sizes. Only with the second sample did
CRUISER predict too fine of a product for a few sieve sizes. On this sample, the actual

gradation as obtained by the tester varies from the actual results of the other three
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samples. The comparison of CRUISER to actual samples may be slightly distorted
because of the high variability in the raw product on the higher sieve sizes due to large
rocks being present in the samples. The return product being fed into this screen by the
coarse crusher slightly reduces the variability. Given the samples obtained from the top
deck of this screen, it is evident that CRUISER predicts too coarse of a product on

higher sieve sizes and too fine of a product on lower sieve sizes.

3.5.5 Coarse Screen — Lower Deck

Due to the dependence of analysis of this deck on output streams that could not be
sampled, accurate graphs revealing the efficiency or gradation were not created.
However, the level of actual efficiency of this deck’s performance could be
approximated. Samples from an input stream into the second crusher included the
combined streams of the oversize from the lower deck on Screen #2 and the oversize
from both decks on Screen #3. So the evaluated efficiency of this sample is actually a
combined efficiency of three decks from two screens. Table 3-7 shows the efficiencies

for the four samples using the limiting sieve size of 0.4375 inches.

Table 3-7 Coarse Screen — Lower Deck Efficiency

Sample #1 Sample #2 | Sample #3 | Sample #4

% Passing > 0.4375 inches 84 83 54 84

It is evident that for three out of the four samples, the efficiency of these three decks
combined is approximately 83 to 84 %. One thing to note is that, from observations
when collecting samples, the two decks on the third screen were deemed to be operating

quite efficiently. The restricting sieve size on the second deck of this screen was 0.5625
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inches. So the majority of the inefficiency from the screening process of this combined
stream is due to the lower deck on Screen #2. It is not possible to determine exactly
what the inefficiency is, although it is likely to be in the 12 to 14 % range out of the

possible 16 % inefficiency known to exist.

3.5.6 Fine Screen - Upper Deck

It has been determined that there are too many unknowns surrounding this screen to
perform a reliable analysis. Additional sample locations for the obtained samples are
required to determine unknown gradations and/or stream capacities in TPH. Analysis of
this screen was attempted by checking how much material was larger than the screen
size of the lower deck of Screen #3 in the input stream into Crusher #2. This could
possibly evaluate the amount of undersize (i.e., material passing through the screen) in
the oversize (i.e., material remaining on top of the screen) from Screen #3. Analysis of
the data did not result in an accurate efficiency for Screen #3. The increase in percent
passing the 0.563 inch lower deck screen size of the four samples is presented in Table

3-8 below.

Table 3-8 Fine Screen — Upper Deck Efficiency

% < 0.563 inch Sample #1 Sample #2 Sample #3 Sample #4
% Passing Input 60 60 33 54
% Passing Qutput 88 88 88 88
% Difference 28 28 56 33

It is evident from the data that no strong conclusions could be made about the efficiency
of Screen #3. However, we can conclude that the average percent passing increase on

this sieve size is about 36% using all four samples and 30% using three of the samples.
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The analysis of this screen beyond what is shown here is not attainable without
additional gradation samples. Only one more sample location of a possible two would
be required, however, sampling from either of these two streams was physically

impossible to obtain in the same manner as the others.

3.5.7 Fine Screen — Lower Deck
Accurate graphs revealing the efficiency or gradation for the lower deck could not be

created due to the lack of sample locations required to perform the analysis.

3.5.8 Results

It is difficult to generalize the results based on just crushing or screening characteristics.
Not every crusher or screen produced results which were consistent from like
component to like component (i.e., from Crusher #1 to Crusher #2). In terms of the
crusher analysis, it can be said that CRUISER generally predicts too coarse of a product
gradation on the higher sieve sizes regardless of whether a coarse or fine crusher is used.
However, with the middle to lower sieve sizes, CRUISER predicts too fine of a product
with a coarse crusher and too coarse of a product with a fine crusher. The discrepancy
in error between actual and CRUISER predicted results is greater with the coarse
crusher in the middle to lower sieve sizes. In terms of the screening analysis, it can be
said that CRUISER has difficulties with predicting product gradations accurately when
there is high variability in the input stream. This can also be due to the sampling

process, where it is not possible to sample the input and output stream from the same
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relative sample, thus the accuracy of the actual results will be affected. This apparent
inaccuracy can be seen quite easily on Screen #1 and on the upper deck of Screen #2. A
source of error for the screening process is the efficiency determination portion of the
program. It has become evident that CRUISER predicts a lower screening efficiency

than what is actually achieved.

3.6 Conclusion

The data that was collected from an actual aggregate plant was assessed and used to
determine as much as possible the accuracy and inefficiencies of CRUISER. One major
difficulty in obtaining data was due to the difficulty of retrieving aggregate samples
safely from the conveyor belts of screens. Some of these conveyor belts were located
under the screen itself and accurate sampling was impossible. The second major
difficulty in obtaining meaningful data was that the aggregate plant had to be shut down
in mid-stream to allow for sampling of several product streams. Starting up when
loaded with aggregate is not something the aggregate plant is designed for. After the
first case of equipment failure when starting up the plant after obtaining samples in mid-

stream occurred, the sampling of intermediate aggregate streams was no longer allowed.

Gradation data from all streams is the most meaningful data to analyze CRUISER. It
allows for specific detection of gradation errors within individual processes in the
program and the causes for them. Overall, CRUISER is fairly accurate when predicting
the final product gradation with some error. The final product gradation is within £10%

error over 40 to 60% of the total number of sieve sizes on any given sample. The final
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product gradation predicts up to 16% coarser and 2% finer than the actual results over
all samples. Even with this range of accuracy, it is not sufficient to predict within
product specifications used for the product types sampled. In reference to the tonnages
predicted by CRUISER, it is evident that the program does quite well in predicting the
final product tonnage within an average of 13.7%. Analyzing individual equipment
components of the plant presented a more detailed analysis of where inaccuracies in
simulation analysis could be found. The result of the coarse crusher analysis is that
CRUISER generally predicts too fine a gradation. The result from analyzing the fine
crusher is that the gradation is generally predicted too fine by the CRUISER program
but with less error than the coarse crusher. When looking at the screening results, it
became evident that the scalper screen results were quite variable. Analysis was
difficult because the raw feed was quite variable, being mostly sand with some large
rocks. The sampling of before and after this screen is likely the main cause of most of
the error. The results from the next screen are more indicative of where screening errors
might be occurring. It is evident that on the top deck that CRUISER predicts too coarse

on the larger sieve sizes and too fine on the smaller sieve sizes.
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4.0 Simulation Analysis of CRUISER

4.1 Introduction

Improvements to the CRUISER program could occur in the crushing and screening
processes. Each of these options were explored and evaluated to attain additional
accuracy for each of these processes. For the crushing process, only two parameters
could be modified to change the gradation. One was where the cutoff of which sieve
sizes were absolutely crushed; the other of which remained uncrushed. For the screening
process, an area of improvement is the screen efficiency calculation. Evaluation of this

area and improvements to the program will be implemented in this chapter.

4.2 Crusher Sensitivity

The effectiveness of the crushing process is measured by the ability of the crusher to
break down the aggregate to a specified smaller maximum aggregate size. The ability of
a crusher to achieve this may be affected by several operating conditions, such as high
moisture content, winter conditions and crusher overloading. The following algorithm

models the crushing process within CRUISER:

1. If there is no oversize (i.e., material larger than the crusher setting) in the input
stream to the crusher, then the output stream is the same as the input stream.
2. If the input stream load exceeds the crusher capacity, an error is reported after

analysis is completed.
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3. Calculate the effective tonnage to crush. The effective tonnage is the sum of the
materials larger than half the crusher setting and smaller than one and a half the
crusher setting.

4 Set the initial output gradation to the expected gradation as given by empirical
tables.

5. If the amount of oversize in the output exceeds that of the input, then adjust the
oversize in the output.

6. Add material that is unaffected by the crushing process (i.e., material less than 0.5

x the crusher setting) to the output gradation.

For the crushing operation within CRUISER, the sensitivity analysis will be approached
in the following manner: First, three samples will be tested over all of the crusher
settings available within CRUISER. The main assumptions with respect to the crushing

process within CRUISER at the present time are the following:

1. All material above 1.5 x the crusher setting will be crushed.

2. All material below 0.5 x the crusher setting will remain uncrushed.

For this reason, one of the samples will be considered a coarse sample and weighted on
the upper end to test the first assumption. This sample will be referred to as a high
weighted sample. The second sample will be in between the two assumptions, consisting
of a more nominal or typical gradation. This sample will be referred to as a medium

weighted sample. The third sample will be considered a finer sample and weighted on
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the lower end to test the second assumption. This sample will be referred to as a low

weighted sample.

Each of these samples will be put through a chosen setting a number of times while
varying the 1.5 and 0.5 factors. The 1.5 factor will be varied from 1.0, 1.25, and 1.5.
The 0.5 factor will be varied from 0.25, 0.5, and 0.75. While one factor is being varied,

the other will remain fixed (either 0.5 or 1.5).

Since there are 10 crusher settings and 5 combinations of factors for each crusher setting,
the result is a total of 50 output gradations for each sample gradation. This comes to a
total of 150 gradations from all three samples. For ease of evaluation, 3 sets of crusher
settings were compared, where the lowest setting is 0.375, the middle setting is 1.0, and

the highest setting is 2.0.

4.3 Crusher Analysis

4.3.1 Crusher Setting

A typical example of a graph showing the resulting gradations after crushing with
different crushing factors is shown in Figure 4-1. Additional graphical results can be
found in Appendix M. One general observation is that the range of the output gradation

curves increase as the crusher setting increases.

88



1.0 Crusher Setting, 5§ Factor Combinations, and 3 )
Sample Types
100 T —e—11.0-1.005 | N\
20 —a—11.0-1.2505
80 —-a—L1.0-1.50.5
—¢—L1.0-1.50.25
70 —=—11.0-1.50.75
60 —o—M1.0-1.005
——M1.0-1.250.5
50 M1.0-1.505
———M1.0-1.50.25
40 —o—M1.0-1.50.75
30 —o—H1.0-1.005
—a—H1.0-1.250.5
20 —e—H1.0-1.505
10 ——H1.0-1.5-0.25 .
—2—H1.0-1.50.75 N
0 +r—m—m———— E— — .
838“"%&'5“%"'”%“’:{5222
I s S " @ @ © 283 8
Sieve Size

Figure 4-1 Various Crushing Parameters on Three Typical Gradations

With all three crusher settings (i.e. 0.375, 1.0, and 2.0), adjusting the 0.5 factor up or
down does very little to change the gradation in most cases, regardless of whether the
gradation is low, medium or highly weighted. With all three crusher settings, varying the
1.5 factor does indeed affect the upper end of the gradation curve. This factor controls

the last sieve size in which 100% passing occurs.

A high weighted sample will not vary in the upper end by a low crusher setting (however,
this is not a realistic case since a crusher at this setting would not be used on such a finely
graded material). The opposite is true, where a low weighted sample will not vary in the

lower end by a high crusher setting.



4.3.2 Crushing Factors

Table 4-1 shows the variation in percent passing when using factor combinations other

than 0.5 and 1.5.

Table 4-1 Percent Passing Error of Lower and Upper Bound Factors

Sample 0.375 0.375 1.0 1.0 2.0 2.0
Max. Max. Max. Max. Max. Max.
(-ve) (tve) (-ve) (tve) (-ve) (+ve)
Low-1.0-0.5 0 5 0 2 0 1
Low-1.25-0.5 -3 3 0 0 0 0
Low-1.5-0.25 -9 4 -14 4 -2 0
Lowl.5-0.75 -4 2 -1 1 0 0
Med-1.0-0.5 0 11 0 15 -5 10
Med-1.25-0.5 0 6 0 6 -6 6
Med-1.5-0.25 -4 2 -8 3 -14 3
Med1.5-0.75 -2 2 -5 6 -3 2
Hgh-1.0-0.5 0 14 0 24 0 25
Hgh-1.25-0.5 0 8 0 10 14
Hgh-1.5-0.25 0 0 0 0 -1 0
Hghl.5-0.75 0 0 0 0 -4 6

From Table 4-1 we can see that the major variance from using the factors of 1.5 and 0.5

occur when the upper bound factor is 1.0, or when the lower bound factor is 0.25. The

value of 1.0 for the upper bound factor is impractical since it is not possible that 100% of

the material will be crushed to the crusher setting or below it, unless no crushing occurs
which is also impractical. The value of 0.25 for the lower bound factor could be
impractical as well. This would mean that 25% of the material of less size than the
crusher setting will not be further crushed. It would also mean that the remaining 75%

would be reduced in size due to inter-particle attrition.

e
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4.3.3 Lower Bound Factor - 0.5

Significant deviations only occur in the middle portion of the gradation when the 0.5
factor is changed to the extremes of either 0.25 or 0.75. The 0.25 factor results in a
significantly lower gradation in three out of the nine possible samples with the 0.5 factor
set at 0.25. This is because CRUISER crushes everything above 0.25 x the crusher
setting and references the exact input for every sieve size below this setting. Only once
out of nine times does the 0.75 factor cause the gradation to become higher. This is
where the medium gradation is used in combination with a nominal crusher setting of 1.0,
a typical crushing situation. The variance increases up to +6% passing in the upper
middle of the gradation and down to —5% passing in the lower middle of the gradation.
This might be an important result and therefore might warrant a change in the lower
bound factor from 0.5 to 0.75 if the accuracy of CRUISER results are improved to better

match actual results.

Based on an evaluation of the limited number of samples obtained from an actual plant,
the value for the lower bound factor should be changed from 0.5 to 0.75. This change,
however, will result in an accuracy gain of less than 1% on any given sieve size upon
which it has an effect. This factor would have a greater influence on finer graded
materials; however, this type of material is not typically further crushed. Analysis was
done using ACO sample #1 and ACR sample #4 on both the coarse and fine crushers.
Since it was found that only a modest gain in accuracy would be achieved in pursuing

this factor, the evaluation was stopped after two samples.

91



4.3.4 Upper Bound Factor — 1.5

Varying the 1.5 factor to 1.0 or 1.25 does indeed affect the upper end of the gradation
curve. This factor controls the last sieve size in which 100% passing occurs. Setting the
factor to 1.0 is not realistic, since it is not possible for all oversize material to be crushed
by the cone crusher. This factor was adjusted to 1.0 was used for sensitivity purposes

only.

Table 4-2 details the range in which the upper bound factor should fall in order to match
the actual sieve results for all four samples when evaluated with both fine and coarse
crushers. This particular factor will only determine where the last sieve with 100%
passing will be. The next sieve down will be read from the table of gradations for the

crusher setting specified. All remaining sieve sizes will not be affected by this factor.

Table 4-2 Range of the Upper Bound Factor

ACO ACO ACO ACR
Sample#l Sample #2 Sample #3 Sample #4

Coarse Crusher 1.3to0 1.45 1.3to1.45 1.3t0o 1.45 1.8t01.95

Fine Crusher 1.25t0 1.28 1.29 to 1.55 1.45 to 1.55 1.45to 1.55

Based on an evaluation with the limited number of samples obtained from the actual
plant, the recommended value for the upper bound factor of 1.5 is 1.45. This value will
satisfy 6 out of the 8 samples so that they properly match the last sieve size to have 100%
passing. One correlation that could be seen here is that the higher the crusher setting, the
lower the range of what the 1.5 factors should be. Conversely, the lower the crusher

setting, the higher the range of factors results. With these eight samples, the value of
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1.45 fits into the corresponding range for six samples. This value may only be
representative of this particular plant or aggregate pit. Changing either factor to the
values found here may not necessarily improve the gradation results of the program for

all future cases.

4.3.5 CRUISER Program Improvements

As a meaningful addition to CRUISER which will improve its accuracy, the researcher
suggests that the program interface be modified with respect to these factors. This will
allow the user to input different upper and lower bound factors to better reflect the
aggregate production model in question, or the aggregate pit from which the product is
being produced. To do this, the user must calibrate the model before using it to find out
what combination best represents the actual data for the specific plant arrangement.
While this improvement does make the program more accurate when compared to actual
results, the increase in accuracy does not warrant trading off the simplicity of the
crushing model. Making the user interface portion of the program more complicated will
only deter the industry from using the program. As a result, the program improvement
suggested in this section should be postponed until it is deemed necessary for slight
accuracy improvements to be made to the crusher modeling within CRUISER. Greater
additional accuracy for this process will be achieved through the use of neural networks;

these will be discussed in Chapter 5.
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4.4 Screening Efficiency

Screening efficiency is a measure of the effectiveness of the ability of a screen to separate
an input stream into its respective undersize and oversize aggregate streams. Efficiency
of a screen can be affected by several operating conditions; such as moisture content,
screen angle, and screen overloading. A 90% efficiency value indicates that 10% of the
undersize material failed to pass through the screen openings and remained in the

oversize stream. Typical values for screen efficiency can range from 60 to 100%.

The aggregate plant observed had three screens, the first of which processed the raw feed
into the plant. The primary function of this first screen is to remove the majority of the
fines (i.e., sand) from the raw product. Determining the efficiency of this screen is not
generally reliable since it directly depends on the raw feed, which varies widely.
However, analysis will be performed on this screen because the results may still be
meaningful. A portion of the second screens will be analyzed for more reliable efficiency
results. For reasons explained later, efficiency analysis was not performed on the second
portion of the second screen as well as the third screen. CRUISER determines each
screen’s efficiency individually. At the observed aggregate plant, efficiency was
evaluated by determining the amount of undersize (i.e., aggregate smaller than a given
screen size) in the oversize (i.e., aggregate larger than a given screen size). To calculate

actual screen efficiency, the following procedure was executed:

1. Determine the amount of undersize in the oversize stream by weight in grams.
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2. Add this weight to the undersize weight to get the total undersize weight. (Note:

When combining streams, match the total weight for both streams so that they are

equal before adding their weights together).
3. Divide the amount of undersize in the oversize by the total undersize.
4. Multiply by 100% to determine the screen inefficiency or subtract this amount

from 100% to get screen efficiency.

Within CRUISER, screening efficiency is directly dependent on a loading ratio. This
ratio is a relationship between the actual load on the screen and the rated capacity of the
screen. This relationship as shown in Figure 4-2 was developed by Allis-Chalmers
(Hancher and Havers, 1972) and is the current basis of screen efficiency analysis within

CRUISER.

Allis-Chalmer Relationship For Screen Efficiency
Calculation
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Figure 4-2 Allis-Chalmers Screen Efficiency Curve
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The rated capacity of the screen is based on a formula that takes a basic screen capacity
per square foot and multiplies it by the surface area of the screen deck being evaluated.
This number is then multiplied by a number of factors: screen incline, deck number,
gradation oversize and undersize percentages, material condition, material particle shape,
percent open area of the screen, and screen hole shape. The values for these factors are
obtained from an aggregate production handbook (Cedarapids, 1984). Since the actual
load also affects how CRUISER determines the efficiency, actual recorded TPH amounts
will be entered for each specific sample. Once screen efficiency is calculated, the size
distribution of undersize particles remaining in the oversize stream is determined using
developed relationships (Hanchers and Havers, 1972). Previous experience shows that
the undersize material is equally distributed above the optimum loading ratio. Below the
optimum loading ratio, the percentage of undersize material in the larger sizes increases
exponentially. A graph of the relationship used to determine the distribution of the

undersize in the oversize when the loading ratio is less than 0.75 is shown in Figure 4-3.
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Figure 4-3 Distribution of Undersize In Oversize Based On Loading Ratio

The algorithm for the screening process is as follows:

1.

2.

Calculate rated capacity for the screen.

Calculate loading ratio using the rated capacity and the input stream load.
Calculate efficiency using the Allis-Chalmers relationship.

Calculate undersize and oversize streams based on 100% efficiency.

Adjust for inefficiency by removing appropriate amounts, for each size, from the
undersize stream and adding them to the oversize stream. If the loading ratio is
greater than 0.75, then the size distribution of the undersize material is equally
distributed. If the loading ratio is less than 0.75, then the distribution of the

undersize material is determined using Figure 4-3.
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For the first sample (ACO #1) the method of determining the TPH for the measured
aggregate streams was not yet developed. For this sample, the average of the two other
samples of this product type will be used as an approximation. Table 4-3 outlines the

input tonnage per hour for each of the three screens and four samples.

Table 4-3 Screen Input TPH

ACO #1 ACO #2 ACO #3 ACR #4
Screen #1 533 538 528 598
Screen #2 617 (260+360) = (329 +285) = (391 +207) =
(screened pitrun 620 614 598
+ coarse return)
Screen #3 210 209 211 228

The greatest difference between the minimum and maximum TPH values for a given
screen are: 13% for Screen #1, 4 % for Screen #2, and 9% for Screen #3. The greatest
difference is in the first screen, which is expected since the TPH determination was based
on the weight of a relatively small sample. Also, this sample being of the raw feed to the
plant is highly variable. The evaluation of this difference between TPH calculations
determined from the plant was important since these TPH values were necessary to

compare actual and CRUISER predicted screen efficiencies.

4.5 Screening Analysis

When evaluating CRUISER on an individual component basis, one input is the actual
load in tonnes per hour. Varying this can have a direct result on the efficiency calculated
using the Allis-Chalmers relationship, and therefore the gradation results as well. A trial

test was done using the ACO Sample #1 input gradation into Screen #2 and varying the
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feed rate. Both the efficiency used by CRUISER for the top screen deck and the output
gradation were recorded to evaluate whether or not a particular efficiency affects the
accuracy in a positive way. The accuracy was measured in terms of absolute total error

on all sieve sizes. Table 4-4 contains the results of this experiment.

Table 4-4 Efficiency Sensitivity

Actual Load Rated Capacity | Ratio = Allis-Chalmers | Absolute Total
(TPH) (TPH) AL/RC Efficiency (%) | Error (% Passing)_
600 322 1.86 61 160
500 322 1.55 73 138
400 322 1.24 84 122
300 322 0.93 91 117
200 322 0.62 91 125

The gradations from each of the test runs were compared with the actual results. It was
found that the best results were obtained when the efficiency was the highest at 91%.
This reveals that the output gradation is directly dependent on the efficiency of the
screen, as determined by CRUISER during analysis. One important point to note is that
the efficiency graph CRUISER uses is based on a rated capacity, which is somewhat

based on the input gradation as illustrated below.

An analysis was performed using CRUISER and screen #2 only. The efficiency of both
the bottom deck and (most importantly) the top deck was evaluated. The output from the

analysis is presented in Table 4-5.
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Table 4-5 Efficiencies Calculated by CRUISER

ftem | Description | Sample #1 | Sample #2 | Sample #3 | Sample #4
Top Deck Actual Load 620 610 630 600
Rated Capacity 326 340 515 495
% Loaded 190 179 122 121
% Efficiency 59 64 84 85
Actual Efficiency 98.8 98.8 98 98.6
% Difference 40 33 14 13.6
Bottom Deck  Actual Load 244 255 364 318
Rated Capacity 303 296 309 413
% Loaded 80 86 118 77
% Efficiency 94 93 86 94
TPH Top Deck 376 355 266 282
Bottom Deck 189 199 230 173
(oversize)
Bottom Deck 54 56 134 146
(undersize)

From the above table one can see that the efficiency used by CRUISER is quite variable
for the top deck (59% to 85%) and fairly consistent for the bottom deck (86% to 94%).
Comparing the actual efficiency of the top deck to the efficiency predicted by CRUISER
reveals that there is a discrepancy of about 14% for two of the samples and 33 to 40% for
the other two samples. One important point to note is that the only variables that change
from sample to sample are the input load in TPH and the input gradation. It is interesting
to note that Samples #1, #2, and #3 are all within 6 TPH of each other, yet Sample #3 has
a remarkably different efficiency than the other two. This is a result of the variance in the
rated capacity for each sample, which is based on the calculation of a basic capacity
multiplied by a number of factors. Some of these factors are based on the gradation of
the input material, which results in a wide variance in different rated capacities. This can
be corrected by both using the existing efficiency curve and determining new rated

capacities, or by using the existing rated capacities and developing a new efficiency

100



curve. Either way, numerous data points will be required to determine an adequate range
of rated capacities or develop an efficiency curve. This data is not available at the

moment but will be required to find a solution to one of these two options.

In reference to the actual efficiency of the screen, 98.8% efficiency means that 1.2% of
the undersize material was found to be in the oversize stream from this screen. It can be
said that CRUISER underestimates the efficiency of the screening process, thus affecting
the gradation results in a negative manner. The researcher suggests that the efficiency
determination within CRUISER be changed to better reflect the actual results of
efficiency and gradation. This is to be done by allowing the user of the CRUISER
program to define screen efficiencies for each screen deck, thus improving the accuracy

of the screening analysis.

4.5.1 CRUISER Program Improvements

As previously mentioned, either the existing efficiency curve or the rated capacity
determination must be modified. Either way, numerous data points will be required to
either determine an adequate range of rated capacities or develop an efficiency curve.
This data is not easily obtainable and is necessary for finding a solution to one of these
two problems. The most viable solution would be to leave the model the way it is and
give user the option to override the suggested efficiency of the screen. This efficiency

could be a factor based on past experience or historical information.

The last option was chosen, allowing the user to override the calculated efficiency for any

deck of a screen. If the user gives no efficiency input, then the default is to determine the
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efficiency by calculated means as done previously using the Allis-Chalmers relationship.
A simple experiment was done to evaluate the accuracy improvements. This was done
by matching actual results with four samples, using the screen efficiency with minimum
error for Screen #2 deck one. The total absolute error and average absolute error for all
four samples is given in Table 4-6. An important note is that the average absolute error is
taken from the total absolute error and divided by the number of gradation sieve sizes

containing material, which was, on average, 26 for the four samples.

Table 4-6 Gradation Error Using Actual Screen Efficiency

ACO #1 ACO #2 ACO #3 ACR #4
Allis- | User Allis- | User Allis- | User Allis- | User
Chalm | Defined | Chalm | Defined { Chalm | Defined | Chalm | Defined
Eff. Eff. Eff. Eff. Eff. Eff. Eff. Eff.
Efficiency 59 80 64 85 86 86 94 95
Total 165 136 194 160 230 230 294 290
Absolute
Error (%)
Average 6.3 52 7.5 6.15 8.8 8.8 11.3 11.1
Absolute
Error (%
per sieve)

It is clear that for three of the four samples tested, an accuracy improvement does occur.
However, this accuracy improvement has a minimal effect, decreasing the error by an
average of 1 % for each sieve for two of the four samples. Although this seems good, it
is not enough improvement to bring the CRUISER predicted results within gradation
specifications. The graphs comparing the actual results for various user input efficiencies
can be found in Appendix N. Itis evident that certain chosen efficiencies model the

actual gradation better than others, although none are close enough for any sieve size.
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Another comparison was done with utilizing the option of manually changing the screen
efficiencies. This time, the screen efficiency was changed until the tonnage per hour
reflected what was obtained on site for the output stream of the top deck of Screen #2.

The results of the comparison can be found in the Table 4-7.

Table 4-7 Calculated Efficiency with Accurate TPH

Sample #1 Sample #2 Sample #3 Sample #4
Measured TPH 330(estimated) 350 305 205
CRUISER 75 65 75 N/A
Matched
Efficiency (%)

These new efficiencies varied from the optimum efficiencies differed from 5 to 20% in
terms of average absolute error. However, this is a slight growth in error from CRUISER
predicted efficiencies, which varied by 0 to 15% across all four samples. As mentioned
before, CRUISER predicts the final output tonnage within 14% but is not as effective in

predicting intermediate streams, which were used in this comparison.

4.6 Conclusion

With respect to improvements to the CRUISER program, changes were made to the
crushing process to enhance gradation accuracy. An attempt was made to improve the
accuracy by adjusting two cut-off factors; some gain in accuracy occurred. The research
in the next chapter will add more accuracy to this process within CRUISER than what the

adjustment of these two cut-off factors could. The cut-off factors could vary for each
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plant or aggregate pit and would likely require calibration. A neural network could
incorporate these changes much more accurately and model more factors than these two
cut-off factors. The screening process had a weakness in the way the efficiency of a
screen was calculated. This modification to the screening efficiency will have an affect
on gradation and TPH calculations. The user can select from a calculated efficiency or
input an efficiency value for each screen deck of each screen in the CRUISER program.
The user defined efficiency can be obtained from a plant operator who is familiar with
the plant equipment and product being produced or it can be achieved by obtaining
samples from a screen and determining the actual efficiency. For these reasons a more
area-specific and plant-specific approach should be taken. The following section will
discuss how this can be done using a form of artificial intelligence called neural

networks.
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5.0 Developing A Crushing Neural Network For CRUISER

$.1 Introduction

In this chapter a neural network is presented. This model will replace the algorithmic
model used in CRUISER. A neural network accepts more variable input and creates
output data that more accurately reflects actual results. Presently, the “CRUSH” routine
accepts variable data as input but the output is mainly dependent on the crusher setting.
As demonstrated in chapter 4, the number of sieve sizes has a slight bearing on the output
gradation. The crusher setting basically determines which set of empirical data will be
chosen as a basis for the output gradation. The number of variables in the neural network
reflects the amount of individual data coming into and going out of the existing
“CRUSH?” routine (i.e., 40 sieve sizes for input and output). Throughout the
development of a crushing neural network, the eventual incorporation into CRUISER was
kept in mind so this research would be both meaningful and useful. This chapter will
include a prototype model, several intermediate models, and a final neural network
model. Guidelines on how to create more of the same data for the training of additional

crusher types or crusher settings are included as well.

5.2 Crushing Neural Network - Prototype
5.2.1 Sample Development

The development of a neural network requires sufficient amounts of data to represent the
problem properly. The data needs to include the global spectrum of what the network is
expected to predict. The network will not be able to predict the crushing of coarse
samples if we only train it with finer samples. It would be ideal data to develop a

crushing neural network with actual crushing data. Since large amounts of data are
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required to develop a meaningful model, simulation was used to create variation in the
data. Simulation was used because data could not be obtained from local aggregate

producers or aggregate production manufacturers.

Training a neural network requires sets of input and output. To obtain several sets of
input and CRUISER processed output, a Visual Basic program was developed. The
program essentially generates sample gradations, converts these numbers into a form for
the CRUISER “CRUSH” routine, process the data, and stores both the gradation input
and output in an Access database. The data is then copied into Excel and converted into a
file that can be read by Neural Works Explorer. A neural network will then be trained

and tested to evaluate its accuracy. The code of the program can be found in Appendix O.

A total of 500 sample gradations were obtained using this program. Each of these 500
samples were processed by the “CRUSH” routine from CRUISER 10 times, once for
each of the 10 possible cone crusher settings available in CRUISER. The overall sample
total was 5000 for both input and output data. A plot of 250 gradation samples can be
found in Appendix P. The primary model is created for a cone crusher, but could be
easily modified to create data for other types of crushers within CRUISER.
Manufacturers of aggregate production equipment recognize that cone crushers are
affected by more factors than other crusher types (Pioneer, 1996). Cone crushers are
more commonly used in practice, so a trained neural network representing this crusher
type would be most beneficial. The following reasons represent the large variability in

empirical data required to adequately model cone crushers:
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. Capacities and product gradations produced by cone crushers will be affected by the
method of feeding, characteristics of the material, speed of the machine, power
applied, and other factors.

. Properly controlled, continuous, uniform feeding of material around the feed opening
of a cone crusher is essential for maximum production.

. Hardness, compressive strength, mineral content, grain structure, plasticity, size and
shape of feed particles, moisture content, and other characteristics of the material
affect production capacities and gradations.

. The minimum closed side setting (CSS) of the crusher may vary. This is the smallest
size opening possible for material to pass through as the mantle of the crusher rotates
against the bowl. The CSS may be greater than listed since it is not a fixed
dimension. It will vary depending on crushing conditions, the compressive strength
of the material being crushed, and stage of reduction. The actual CSS is the setting
just before the bowl assembly lifts minutely against the factory recommended
pressurized hydraulic relief system.

. The manufacturer’s data is based on a 20% recirculating load in a closed-circuit
crushing cycle. The manufacturer also specifies that the screen opening for a closing
cycle must be something larger than crusher CSS to control recirculating to a
maximum of 20%. The data collected in this research indicated that the circulating
loads were in the range of 24 to 37%. Due to the variability of rock sizes in the raw
feed stream, it would be impossible to control the recirculating loads near a certain

percentage to be able to use existing manufacturing crushing data.
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These factors could also be included within the neural network model when actual data

can be obtained.

5.2.2 Neural Network Architecture

The neural network used was a feed-forward, back-propagation 3-layered neural network.
The number of variables the “CRUSH” routine within CRUISER presently uses governs
the number of input and output variables. This was done so the developed model could
replace the “CRUSH” routine. The neural network architecture consists of 41 input
nodes, 20 hidden layer nodes, and 40 output nodes. The input nodes are made up of a
crusher setting and the weight retained on each of 40 sieve sizes. The output nodes are
made up of the weight retained on each of the 40 sieve sizes after being processed by the

“cone crusher”.

5.2.3 Optimum Training Parameters

Due to the length of time it took to train one network, only one combination was
executed using Neural Works Explorer. The Delta learning rule, the Sigmoid transfer
function, and a learning rate of 0.8 was used to train the model. The neural network was
trained with a total of 750,000 iterations when it was certain that the error of the network

had stabilized and the error on any given node was less than 0.0005.
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5.2.4 Neural Network Weights
The network weights can be found in Appendix R. These weights could be hard coded

into a program if so desired to produce the same accuracy and results which have been

found in this research.

5.2.5 Neural Network Accuracy

The network was trained with 4750 sample gradations and tested with 250 sample
gradations. The testing set amounted to 5% of the total generated sample set. The
average absolute error for each of the 250 test samples is shown in Figure 5-1. The range
of the absolute error is from 2 to 7 grams or 3 to 11%. The minimum error of any given
sieve was O grams; the maximum error was 82 grams. The average of the absolute error
across all 250 samples was 4.5 grams per sieve size. This translates into 4.5 grams x 40
sieve sizes for a total of 180 grams of error for any given sample. The average sample
size is approximately 2500 grams, which translates into this network as having an
average error of 7.2%. This is an acceptable amount of error considering the randomness
of the samples created and used to test the network. One important thing to note is that
the neural network was trained using output data from the “CRUSH” routine. This shows
that the neural network can replace the existing crushing module within CRUISER with

allowance for some error.
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Figure 5-1 Prototype Neural Network Accuracy

5.3 Crushing Neural Network — Full Scale

5.3.1 Sample Development

Sets of input and output are required for the training of a neural network. To obtain
several sets of input and CRUISER processed output, the Visual Basic program from the
prototype was used. It was modified and enhanced to create gradation samples more
representative of real data. The prototype model originated all samples beginning at a
sieve size of 20 inches and ending at a sieve size of O inches. This reference line is
referred to as “a gradation gradient” upon which a number of randomly created
gradations are based. Adjusting the gradation gradient creates a greater variety of data.
The gradient can be adjusted along the bottom size while keeping the top sieve size
constant. After adjusting all bottom sieve sizes and generating the desired samples, the

top sieve size is increased by one size and the bottom sieve sizes are varied again. Figure
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5-2 shows a sample for each gradation gradient created when varying the bottom sieve
size and keeping the top sieve size constant. A wider variety of gradation samples can be
obtained this way to mimic actual samples, as discussed in chapter 2. The program
operates just like the prototype in how it stores and processes the data. The neural
network is then trained and tested to evaluate its accuracy. The code of the program can
be found in Appendix Q. For a full-scale model, a total of 20 random gradation samples
for each of the 651 selected gradation gradients were put through the program. This

yielded a total of 130,200 unique training samples.
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Figure 5-2 Sample Gradation Gradient Lines

5.3.2 Neural Network Architecture

The same architecture was utilized as in the prototype model. There were 41 input nodes
and 40 output nodes. Of the input nodes, 40 were for the sieve sizes and 1 was for the

crusher setting.
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5.3.3 Preliminary Results

When the network was trained it failed during testing despite several options and
attempts to improve accuracy. The researcher then decided to use a small scale sample
set to determine which network variables would allow for the most accurate training.
Also, it was considered feasible to evaluate the reduction in the amount of data the neural

network was trying to train.

5.4 Crushing Neural Network — Trials

5.4.1 Decreasing the Number of Gradients

A sample set of 20 over 5 gradation gradients was created and put through 10 crusher
settings for a total of 1000 unique samples. 900 samples were used for training the
network and 100 were used for testing purposes. Varying the training parameters did
very little to increase the predictive accuracy of the network. It was discovered that using
only 20 samples per gradation gradient as compared to 500 samples in the prototype had
some bearing on the accuracy of the model. Ofthe 41 input nodes in the network, 1 input
is setup for the crusher setting and the remaining 40 are for the sieve sizes. The result of
reducing the number of gradients from 651 to 20 was that the average absolute error
reduced significantly from that of the full-scale model. However, compared to the
prototype model, there was still a significant difference in average absolute error. The
prototype model had an average absolute error of approximately 5 grams while the error
obtained here varied from 10 to 20 grams. The average of the error for this network was
approximately 14 grams per sieve size. This translates into 14 grams X 40 sieve sizes for

a total of 560 grams of error for any given sample of approximately 2500 grams. This
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network has an error range of up to 22%. The results from this test can be seen in Figure

5-3 in section 5.4.4 under Trial #1.

5.4.2 Emphasizing the Crusher Setting

It was thought that the network would predict more accurately by placing more emphasis
on the crusher setting. The crusher setting value was converted into a binary number
consisting of four digits. These four digits were placed into four separate input nodes
representing the crusher setting. This created less consistent predictability with little
additional accuracy. The average absolute error of this network varied from 10 to 25%
with some errors as high as 40%. The results from this test can be seen in Figure 5-3 in

section 5.4.4 under Trial #2.

5.4.3 Cumuiative Percent Retained

An idea to convert the gradation data into a form that may assist in training a neural
network resulted in two possibilities: The first one was to convert the weight retained on
each sieve size to a cumulative percent-retained value. The second idea was to convert
the weight retained on each sieve size to a percent retained on each sieve size. The first
test resulted in a network accuracy which was better than all previous attempts. The
average absolute error of the weight retained on each sieve size was approximately 8
grams. The main limitation of this method is that the data was taken from only one
gradient. The results from this test can be seen in Figure 5-3 in section 5.4.4 under Trial

#3.
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5.4.4 Percent Retained on Each Sieve Size

The second test in which the gradation data was converted into the form of a ratio
resulted in a network accuracy which was even better than the prototype model. The data
was converted into a percent-retained value for each sieve size instead of a cumulative
retained value. The data was taken from only one gradient for this test. The researcher
decided to implement the data in this ratio form on a larger scale by modelling more
gradients. This would help the neural network reflect actual data more accurately. The

results from the test using a single gradient can be seen in Figure 5-3 under Trial #4.
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Figure 5-3 Neural Network Accuracy - Trials

5.4.5 Increasing the Number of Gradients

To enhance the ability of the neural network to effectively handle actual gradation data,
the researcher decided to increase the number of gradients. It was expected that a
decrease in network error would result. The main objective was to minimize the error of

the network as much as possible. The previous tests all had 20 samples over all 10
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crusher settings and along only one gradient. The researcher decided to remove the
crusher setting node in order to reduce the error within range of a single gradient
network. In orderto be used in CRUISER, a network with this structure would be needed
for each crusher setting. Figure 5-4 shows the network accuracy of a neural network for
one particular crusher setting and 30 gradation lines. The gradient lines were chosen
around gradients from actual data for a crusher with a 1 inch crusher setting. The 30 lines
come from varying the starting position and finishing position of each gradient over five
bottom sieve sizes and six top sieve sizes. This model was compared to a previously
developed network for which there was 10 crusher settings and only 1 gradient. The
prototype model results are shown to demonstrate the accuracy of the latest model, even
though the results are quite high for certain test samples. All of these networks had 20

sample gradations for each gradient.
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Figure 5-4 Neural Network Accuracy - Comparison
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The average of the absolute error for the prototype model is 4.8; for the 1 gradient
percent-retained model it is 2.0, and for the 30 gradient percent-retained model it is 4.8.
The major difference between the 30 gradient model and the other two models are
occasional poor test results. This is acceptable since the network represents more

meaningful gradation data for the a particular crusher setting.

5.5 Crushing Neural Network — Final Model

The number of gradients within the model was optimized to best represent actual
gradation data while retaining as much network accuracy as possible. It was found that
the optimum number of gradients was 15, of which there was an average of the average
absolute error of 3.1%. This is lower than the 30 gradient model by 1.7% and higher than
the 1 gradient model by 1.1%. Using a 2500 gram sample, this translates into an error in
weight of 5% as compared to 7.7% using the 30 gradient model and 3.2% using the 1
gradient model. This 15 gradient model will have a range in error of 3.8 to 8.3% using
the average error and the largest and smallest sample sizes found in the data. Taking into
account the odd test result of 12.5 average absolute error, the error in weight of the
sample will be only 20%. This is acceptable in order to achieve a more representative
neural network model to predict crushing gradations. The network accuracy of the final

model, with 15 gradients, as well as the 1 and 30 gradient models are found in F igure 5-5.
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Figure 5-5 Neural Network Accuracy — Final Model

5.5.1 Neural Network Architecture

The neural network used was a feed-forward, back-propagation 3-layered neural network.
The neural network architecture consists of 40 input nodes, 30 hidden layer nodes, and 40
output nodes. The input nodes contain the weight retained on each of 40 sieve sizes. The
output nodes are made up of the weight retained on each of the 40 sieve sizes after being

processed by the “cone crusher”.

5.5.2 Optimum Training Parameters

The training parameters used for the final model were Norm-Cum learning rule, the Tanh
transfer function, and a learning rate of 0.4. The neural network was trained with a total
of 135,000 iterations before it was certain that the network had stabilized. The error on

any given node was approximately 0.001 or less.
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5.5.3 Neural Network Weights

The network weights for this network model can be found in Appendix R.

5.5.4 Model Implementation

The above mentioned model can be utilized with knowledge of the neural network
weights obtained from training. These weights can be hard coded into the CRUISER
program for the particular crusher type and setting. In addition, the raw gradation data
can be input into a neural network trainer. Using a network trainer would allow
additional data (i.e. a user’s own crushing data) to be added to the existing data and
retraining of the network could take place. It was found that by adding existing crushing
data to the network already created through this research, the overall error of the entire
network increased. This is mostly due to the randomness of the created data, which does
not describe actual data in its entirety. Usually the bottom and more often the top end of
the gradation curves are a lot more gradual than described by the simulated data. For the
final developed model, two samples were incorporated with the created data and one
sample was retained for testing. The average absolute error of this network was 7.5
grams for each sieve size. This translates into an average 12% error, whereas the final
model had an average error of only 5%. The average absolute error for the added test
sample was 16 grams, which translates into an error of 25%. One thing to note is that the
two samples added to the model made up less than 1% of the entire sample set on which
the neural network was trained. With time and the incorporation of more actual data, the

neural network will establish more accurate ‘actual’ results.
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5.6 Data Creation Procedure

For the purpose of creating more data for additional crushers, the Visual Basic program
(Nndata.vbp) developed in this research can be used with a few modifications depending
on the number of samples the user desires. The following procedure outlines the steps for
the creation of more data and subsequent training of neural networks with the

accumulated data:

1. Select the Visual Basic program for the particular crusher and copy a previously
used ACCESS database. This ACCESS database will have the necessary tables
and queries to manipulate the data into a form that is almost ready to be used

within the neural network trainer called ‘Neural Works’.

2. Determine the number of samples required to adequately train and test the
network.
3. Change some of the parameters within the Visual Basic Program. The total

number of samples as well as the lower and upper limit sieve sizes can be
changed. For example, a lower limit of 16M and an upper limit of 4 inches was
used in this research. This controlled the creation of gradation gradients for the
given model. The number of random samples desired for each gradation gradient
must then be entered. For example, twenty samples were used for each gradient.
The total number of samples is related to the upper and lower limits as chosen by
the user. In this example, the total number of samples equals to 651 with one
sample for each gradient. This 651 is then multiplied by the number of random

samples desired for each gradation gradient (i.e. 20) for a total of 13,020 unique
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samples. Each of these samples is put through all possible crusher settings (i.e.
10) for a total of 130,200 unique input and output samples for the neural network.
The reference to the ACCESS database within the program should be changed to
the name of the copied database.

Run the program. This may take some time depending on the number of samples
desired by the user.

After the program is finished, open the database where the data is stored. Within
the database, a total of three queries must be run. The first query is called
CombinedQuery which incorporates an InputCrosstab and OutputCrosstab
queries. Using Visual Basic code to handle the data within ACCESS, the
CombinedQuery puts the input and output data in a form for the neural network
software. The second query is called GenNNtrainData; it extracts the randomly
created samples from the table created by the CombinedQuery to be used for
training the neural network. Criteria within this query can be modified to adjust
the number of samples desired for training and subsequent testing. Usually the
number of data sets used for testing are about 10 to 15% of the total number of
data sets. The third query is called GenNNtestData; it extracts the samples which
are not extracted to train the neural network but will be used to test the network
after it is trained.

The total weight retained for each sample in the training set is then calculated by
running the CalcTotalRetForNNTrainData, which creates a NNTrainDataWgtRet

table and extracts data from the NNTrainData table. This is also done for the
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10.

testing set of data by running the CalcTotalRetForNNTestData, which creates a
NNTestDataWgtRet table and extracts data from the NNTestData table.

The percent retained on each sieve size is calculated by running the
NNTrainData%Ret and NNTestData%Ret queries. These queries create the
NNTrainDataPerRet and the NNTestDataPerRet tables. These tables contain the
data in the appropriate form for the training and test of the neural network.

The sample numbers must be deleted from the NntrainData%Ret table and the
NntestData%Ret table. Each of these tables must be selected separately and
saved as a text file in space delimited format in order to load the data into the
neural network software. If the headings are retained in the text file then a “!” is
to be placed in front of the text row in the text file. The file extensions for the
training and testing files need to be changed from “filename TXT" to
“filename.NNA” using Windows Explorer.

Open the neural network training program, Neural Works, and change the
directory to where the two files are located. Select the training and testing files
from within the program and input the number of input and output nodes required
by the data, as well as the number of hidden layer nodes desired. The neural
network can now be trained and tested. The output from testing the neural
network can be found in the file “filename.NNR” This file contains the data sets
used for testing and the predicted sets of data from the trained network.

Evaluate the accuracy of the network by comparing the actual output data to the

predicted output data.
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5.7 Implementation of Neural Networks

A neural network trainer is to be developed for a number of projects within the
Construction Engineering and Management program at the University of Alberta. This
network trainer will be incorporated into CRUISER to enhance the modeling features of
the program. The neural network parameters developed in this research could be hard
coded into the CRUISER program. The developed trainer could also use the created data
to train a network within the CRUISER program. The interface for the crusher option
within CRUISER will be modified to allow the user to choose the desired crusher
analysis method. The first option would be the old method of analysis, in which the
output gradation is selected from a chart depending on the crusher setting. The second
option would be to use a developed neural network for a particular type of crusher. This
could be either hard coded or redeveloped using the developed neural network trainer. A
third option would be to choose a neural network developed by the user. A neural
network could be created by putting input and output data into a blank spreadsheet and

then training and testing the network.

5.8 Conclusion

The results of this chapter clearly indicate that the developed neural network model will
serve its purpose to expand the crushing analysis capabilities of CRUISER. This research
will facilitate the use of neural networks and the incorporation of actual data by the users
of the program. Additional work to create neural networks for additional crusher types
and settings must be developed. The collection of actual data will allow for more

accurate modeling but is not absolutely necessary. One option could be to develop neural
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networks for common crusher types and settings. Other types could be handled by
supplying a neural network framework to incorporate the user’s own crushing data. This
would be done through the use of a neural network trainer. A neural network trainer
within the CRUISER program will allow a user to add additional data to an existing
network, retrain the network, and use the developed crushing network. The user could
select from three options when configuring a crusher within CRUISER. One option is to
use gradation data from an aggregate production handbook. A second option is to select
the analysis to use an already trained neural network. The third option would be to add
additional data to an existing network and retrain it before using it for analysis. It is
recommended that users develop their own data for the crusher types and settings they
use most often. This would result in more accurate results than just adding a few sets of
data and retraining an already developed network. Obtaining data and developing a
network from scratch will allow for the neural network to become more aggregate pit,
equipment, and product specific. This will in turn create a more accurate and meaningful
crushing analysis for the user of the CRUISER program. Adding accuracy to the
program will increase its acceptability and reliability, thus encouraging aggregate

production personnel to use the program.
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6.0 Optimizing Parameter Selection Using Belief Networks

6.1 Introduction

In general, the initial parameters of the CRUISER program will be setup by the user and
then go through one simulation process. After this simulation is complete and the
resulting output gradation is viewed, the user will have the option to say if he/she would
like a suggestion to bring the output gradation within specifications. Choosing this
option will then prompt the user to tell the model what to optimize. The model will then
optimize the specifications. Once the model knows this, it will look at the probabilities
associated with the elements of the model and how they affect the gradation. Evaluating
the probabilities, CRUISER will then suggest a change to the model. The user can then
make this change to the model and run the simulation for the second time. Presently, the
changes to the model are done manually by the user; this is an acceptable means of model
optimization. In future work the link between the belief network model and CRUISER
can be accomplished by a computer programmer. This will, in effect, make CRUISER a
‘smart simulation’ model. If desired, the model developed in this research can be

incorporated into the CRUISER program in an automated fashion.

The first characteristic of belief networks that made it a strong candidate for diagnostic
purposes was the ability to approach the problem from more than one direction.
Although the model developed in this research does not take full advantage of this
benefit, the network can be expanded at any time. Either the known states of variables
could be entered as evidence, or the diagnostic tool could be permitted to determine the

likelihood of a variable being the cause of poor performance in the absence of evidence.
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This ability of adjusting variables to be input or output without having to redesign the
system is uncommon to other forms of artificial intelligence. For example, neural
networks do not allow for different input variables from one simulation to another.
Instead, the model is trained with specific inputs and outputs and can only predict
adequately when given these inputs. This research utilizes belief networks to allow a
number of different combinations of input into the network and giving relevant output.
The greater amount of input evidence provided to the network will exploit the network’s
ability to combine probabilities to show the most likely causes for the numerous observed
pieces of evidence. Another strong characteristic of belief networks is the ability of the
model to accept expert opinion instead of requiring historical data, which is not always

available, nor in desired quantity and quality.

6.2 Network Development

The development of the belief network consisted of combining expert advice and
computer simulation routines to arrive at a relatively generic network. The first phase of
development began with obtaining information from an expert in the field of aggregate
production. This information was the basis of more than half of the nodes that comprise
the model. The second stage involved a sensitivity analysis of the CRUISER program
and discovery of the degree to which characteristics affected the product gradation. This
was done to enhance the network by including more features of the simulation program,
therefore making the program more educational. The features of the simulation model
that were to be added to the model were ranked by both the researcher and Bill Laisse
according to the importance and relevance of the factor in changing the gradation. The

expert advice and ranking order was then combined into the model in the form of
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probabilities for each node. After attaching the probabilities to each factor, a testing
phase was implemented to evaluate the accuracy of the network in assessing the causes of
the product being out of specifications with a given layout. Not only was the model to be
tested with the plant layout from which it was developed, but also with smaller models,
which had fewer pieces of equipment than the original one. The model on which the
belief network was modeled is shown in Figure 6-1. This model was chosen primarily
because the expert and the researcher were most familiar with its corresponding plant
layout. Developing a model of larger magnitude would involve an additional industry
contact and a more complicated aggregate plant site. The location of the plant layout
used for this research was only 1 hour from the city of Edmonton, which made

discussions with plant personnel and progress of the research much more efficient.
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Figure 6-1 — Initial Plant Layout
The researcher decided not to utilize the ability of belief networks to suggest to the user
the probability of any one causal node being responsible for an inadequate product in the
absence of evidence would not be utilized. It was not deemed to be a useful tool for this
particular application, since each causal node would have different probabilities based on
the equipment used and the initial characteristics of the plant. For a less experienced user
at the plant setup stage there would likely be an equal probability of any one cause
resulting in an inadequate product. An inexperienced user is likely to begin with a
number of plant characteristics that will require changing. For a more experienced user,
the initial characteristics of the plant will be closer to the final characteristics that are

required to produce a product within specifications. In this case, the probabilities of any

127



one causal node being responsible for making an inadequate product may be reflected
differently because of the specific equipment being used and the experience of the plant
superintendent. The experience of the superintendent will affect the probabilities of the
causal nodes because each superintendent will assess the probabilities differently,
depending on the characteristics of the plant at the start of plant testing. When no
evidence is given to the belief network, varying types of equipment and levels of
superintendent experience make it more difficult to model the probabilities of the causal
nodes. Belief networks will only be useful as an optimization tool if evidence is provided
to the network to evaluate the causes or vice versa. Since it is easier to attain the
evidence observed rather than the resulting cause, this is the usual starting point. For
curiosity’s sake, it may be interesting to determine the probabilities of any one node
being the cause; however, this would be meaningless for optimizing the characteristics of
the aggregate plant. It is very difficult to obtain the optimal solution if one only knows
one side of the equation and not the result. For this to be possible, a plant superintendent
would have to know the exact characteristics of the plant from the very beginning, and

experimentation would no longer be necessary.

6.3 Expert Information

Much of the expert information on how an aggregate production plant is run and operated
was obtained from Bill Laisse of Lafarge. Questions were asked and the pertinent
information gained from these visits was recorded to develop the belief network for
practical use. Some of the significant factors were the screen sizes and shapes at
particular locations in the plant layout, crusher settings, and regulating native sand input.

Some actual diagnostics while operating an aggregate plant were also included in the
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model. This will give some insight to users who lack hands-on plant experience, telling

them what factors to look for to source the problem resulting in an inadequate product.

A number of on-site factors had to be assessed as to their practicality for inclusion in the
model. Changing the bow! and mantle of the crushers is considered to be a maintenance

item, in practice they are checked more often when it seems likely that they are wearing

out. This can vary from 3 weeks to 6 weeks, depending on the equipment used and how
hard the crusher has to work. Since this varies so much from site to site, it was left out of
the model. Some of the diagnostics of the model could only be interpreted as
approximate since the relationship between certain variables will vary from one pit to
another. For instance, how changing the operating speed of a screen will affect the
gradation of the final product depends on the equipment. In practice, aggregate
producers use various screens that are composed of light or heavy wire. A screen with
lighter wire will provide more hole openings over the full deck of the screen. This will
allow for a slight increase in production and will generate a coarser product. The typical
range of increasing or decreasing the surface area opening on a plant site is + 5%. The
options within CRUISER allow for up to = 20%. Although the full range of this option
within CRUISER is not used in the practical field, it was still a useful option for
enhancing the simulation model. Since adjusting the surface area of the screen will
indeed affect the gradation to a small degree, this option was included within the belief

network model.

One problem with testing the belief network against the CRUISER program is that the
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inaccuracy of the program is quite sensitive to the crusher setting. As discussed
previously, this is because the program presently describes the output of a crusher at a
particular setting which remains the same no matter what the input gradation is. So the
setting for secondary or finishing crushers in the plant will have far greater affect than
primary crushers on the product gradation. This is also true in the real world, but is not
totally characteristic of what actually happens. Just the same, the belief network was
designed to best represent the actual situation within the confines of the CRUISER
program. It is believed that the network will perform better in this respect once the
program has enough input into the developed neural networks to model crushers more

effectively.

Crusher settings can be adjusted from one to three times daily both to keep the material
flow optimum to the crushers and to keep the final product within specifications. It is
also common practice to observe these material flow changes while the aggregate plant is
in operation. The way the settings should be adjusted is determined through a trial and
error approach based on experience and specific conditions. It is also common practice
to inspect the screens on the top decks for holes at regular intervals since little evidence
of holes on these screens is found by monitoring the final product gradation. This is
because oversized material that does pass through the screen will still proceed through a
crusher instead of arriving at the final product. Changing the speed of a screen can also
affect the product gradation. Increasing the speed of a finishing screen will cause more
material that could pass through the screen to continue on through the crushing process

again. This will result in a finer product. The opposite is true for the same reasons:
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Decreasing the speed will cause some material that is likely to go through the crushing
process to pass through the screen and appear in the final product. It was found that the
pitch of a screen (angle at which the material is thrown) was selected for a plant with
consideration of the equipment being used and material being processed. For these
reasons, the degree of pitch was left out of the belief network. It was also revealed
through discussions that cross-slot screens are only used on the scalper screen, where
sand screening is required. CRUISER contains options for implementing slotted screens
on any deck of any screen; the model is therefore focused around the program for the
factor of slotted screens. The maximum slot length/width ratio of a screen size was
incorporated into the model but must be used with caution because it varies in actual
practice as to what the specifications allow from job to job. It is assumed that the user is
conforming to the specifications of the job both when using this option within CRUISER
and when evaluating it within the belief network. Another on-site occurrence is when
material clumps up and either restricts material flow or ends up in the final product in a
smaller clump. The clumping of material occurs during the winter months due to sub-
zero temperatures and can increase the amount of fines < Smm in the final product. Bill
Laisse also informed the researcher that there are two factors that affect the % fracture in
the final product: One factor is the amount of sand in the final product; the other is the
use of screens smaller than the product top size on the bottom deck of the finishing
screen. The second factor will cause more material to be sent through the finishing
crusher, resulting in a slightly finer product. The first solution for a % fracture problem,
is to change the amount of sand in the product if the specifications allow for it. If the

specifications restrict this, then some screens on the bottom deck of the finishing screen
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are made smaller or larger, depending on the top size of the final product. Sometimes
there are two causes for the same result with an equal probability of occurring, but one
cause is easier and more likely to be corrected in the real situation. In this case, the
researcher attaches a greater probability to the cause that is most likely to be changed in
the real situation. If this cause cannot be changed, then the user should progress on to the
second suggestion from the network, continuing with any one suggestion as long as the
user is satisfied with the improvements to the product gradation. For example, if the final
product has too high a percentage of fractures, there are two possible causes: One cause
is that there is too little sand in the product, and the other is that the splits on the further
end of the material flow on the bottom deck of the finishing screen are too small below
the maximum top size of the final product. Each cause has an equal chance of occurring,
but the more likely resolution to this problem would be to increase the amount of sand to
the product since this is the quickest and easiest to do in the field. However,
specifications may prohibit adding additional sand to the product. In this case, the second

option, that of changing the screens should be used to resolve this problem.

The belief network is designed for a plant layout that produces one final product.
Therefore it must be noted that if any intermediate or secondary products are being made,
it is up to the user to make logical plant changes to attain the specifications for these
intermediate products. However, it has been found that the belief network can still be
used as an aid in making corrective decisions for smaller plant layouts. This will be

discussed further in the testing section of the belief network model.
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Another assumption of the belief network model is that to gain maximum production
from a plant, the undersize of the bottom decks of any primary or intermediate screen will
proceed to the final product without any additional processing. This is typically observed
in the field and is a logical step in maximizing production. It was discovered that the
belief network could not account for some of these logical decisions in attaining

increased production or an acceptable gradation.

In actual practice, a jaw crusher is sometimes used in place of a scalper screen. Use of a
jaw crusher would increase production, but only slightly. The jaw crusher would have a
grizzly before it to screen out the sand before the crushing process. Gates to regulate the
flow of sand would be found below the grizzly and would act in the same manner as
those found in the scalper screen. The only other change would be that the secondary
crusher could have a medium head bowl instead of a coarse head bowl. The brunt of the
crushing process would still be with the third, or finishing, crusher. The net effect of
using a jaw crusher in place of a scalper screen on the final product gradation is
negligible, so this was left out of the model. The setting on a jaw crusher that proceeds
two other crushers is changed to regulate the material flow in the system, and not to

correct any changes in the final product gradation.
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6.4 Simulation Information

As previously discussed, some additional factors were implemented into the model after
the expert opinion was implemented. Some of these factors would only make slight
adjustments to the gradation output of the simulation model but were incorporated into
the belief network to further optimize the gradation, even to a small degree. A sensitivity
analysis was performed on the CRUISER program to evaluate the changes affecting the
gradation for two areas, one being >5mm and the other being <Smm. This division is
used in practice as the basis for determining plant adjustments and changes. It divides the
product into two relatively equal parts, as shown in Figure 6-2. The product gradation in
this figure is for a 15mm aggregate. The dashed lines are the high and low boundary
specifications. If the product gradation line is above the upper boundary, the gradation is
too fine. Likewise, if it below the lower boundary line, the gradation is too coarse. The
solid line is the simulated product gradation from the CRUISER program. Following the
analysis, factors were ranked according to their importance in affecting the gradation
either positively (i.e., finer) or negatively (i.e., coarser) on a graph, which shows the
results in a percent passing format. These factors were combined with the factors
provided by Bill Laisse to arrive at the variables included in the network model. The
probabilities for each factor were determined through discussions with Bill Laisse to

ensure that the model would reflect the actual causal probabilities.
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Figure 6-2 — Output Gradation as Observed in CRUISER

6.5 Belief Network Structure and Probabilities

The network is made up of seven evidence nodes and thirty-one causal nodes. Of the

thirty-one causal nodes, twenty-five are directly connected to the evidence nodes, which

will be referred to as “first layer causal nodes’. The other six causal nodes are indirectly

connected to the evidence nodes through the twenty-five directly connected nodes. These

nodes will be called ‘second layer causal nodes’. The entire network as viewed in

Microsoft Belief Networks (MSBN) is shown in Figure 6-3.
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Figure 6-3 — Aggregate Production Belief Network

Of the seven evidence nodes, four of them will be called primary evidence nodes since
they pertain to the gradation parameters with which the researcher is most concerned.
These four nodes are located at the bottom of the network, as shown in Figure 6-3. They
are labeled: “Too Coarse >5Smm”, “Too Coarse <Smm”, “Too Fine >5mm”, and “Too
Fine <Smm”. Two other evidence nodes are linked to another specification of the
aggregate product; these can be considered to be secondary evidence nodes. These nodes
refer to the percentage of aggregate that has been fractured during the crushing process.
These two nodes are: “High % Fracture” and “Low % Fracture”. Another evidence node,

which accounts for a common diagnostic problem during the winter months, is

136



considered to be a tertiary evidence node. This node is labelled “Presently Winter

Season”. Over the winter months sub-zero temperatures can cause fines to clump and, as

a result, the total amount of fines in the final product increase.

The following table lists the description of selected causal nodes for interpretation by a

user of the belief network model. The corrective action the program user should make to

the plant characteristics is also given.

Table 6-1 Causal Node Descriptions and Corresponding Corrective Actions

Causal Node Description

Corrective Action

Coarse Crusher Setting Too Large

Decrease the coarse crusher setting.

Screenl Bottom Deck Possibly
Damaged

Replace the damaged screen at the described
location.

Top Deck Screen3 Too Large

Decrease the screen size of a split or deck at the
described location.

Bottom Deck of Screen3 Larger
Than Prod Max Top Size

Ensure the screen size is no greater than the
maximum size of the product and decrease the
screen size of a split or deck at the described
location.

Screen3 Bottom Deck Has Light
Wire

Use a coarser type of wire for the entire deck.

Increase Slot Length/Width Screenl
Bottom Deck

Increase the Slot Length/Width ratio of a split or
deck at the described location.

Speed of Screen3 [s Too Fast

Decrease the speed of screen 3.

Clumping of Fines Due To Frost

Try to obtain the raw product from a more
localized area to reduce the amount of frozen soil
entering the plant.

Further Splits On Bottom Deck
Screen3 Too Small Below Prod Max
Top Size

Increase the screen size for splits furthest away
from where the material initially flows onto the
screen at the described location.

Too Little Sand

Increase the flow of native sand to the final
product.

The following seven tables show the probabilities that were entered for each causal node.

Only the four primary nodes have both first and second layer causal nodes. Second layer

causal nodes will be described as being connected to first layer causal nodes or “sub-
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causal” nodes. Remember that the probabilities in a belief network reflect the probability
that the causal node is false. In other words, the lowest probability is the causal node
most likely to be responsible for the present result. The probabilities were generated by
way of the following process. For each evidence node, the corresponding characteristic
and diagnostic nodes were listed in a ranking order. This order was determined through
discussions between the aggregate production expert and the researcher. Some
characteristic probabilities were determined with more influence by the researcher to
whom the operation of the CRUISER program was more familiar. Some characteristic
probabilities were not of much interest to the expert and these probabilities were again
determined by the researcher. These probabilities reflect the factors to which the

CRUISER program is more or less sensitive in optimizing a product gradation

Table 6-2 Probabilities for Too Coarse > Smm Causal Node — Layer #1

Probability Causal Node Description

0.1 Bottom Deck of Screen 2 is Too Large

0.3 Bottom Deck of Screen 3 is Too Large

0.4 Oversize Rock Is Cracked or Fractured

0.4 Screen 3 Bottom Deck Has Light Wire

0.5 Screen 3 Top Deck Has Light Wire
0.55 Top Deck of Screen 3 is Too Large
0.55 Fine Crusher Setting is Too Large

0.6 Oversize Rock is Round

0.8 Top Deck of Screen 2 is Too Large

0.8 Further Splits on Bottom Deck of Screen 3 are Too Large up to the

Maximum Top Size of the Product
0.9 Bottom Deck of Screen 1 is Too Large
0.9 Speed of Screen 3 is Too Slow
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Table 6-3 Probabilities for Too Coarse > Smm Causal Node — Layer #2

Sub Causal Node Description Probability Causal Node Description
Oversize Rock is Cracked or 04 Screenl Bottom Deck May Be
Fractured Damaged
Oversize Rock is Cracked or 0.6 Screen 2 Bottom Deck May Be
Fractured Damaged
Oversize Rock is Round 0.9 Screen 3 Bottom Deck May Be

Damaged
Fine Crusher Setting is Too Large 0.3 Coarse Crusher Setting is Too Large
Fine Crusher Setting is Too Large 0.7 Coarse Crusher Setting is Too Small

Table 6-4 Probabilities for Too Coarse <5Smm Causal Node — Layer #1

Probability Causal Node Description

0.1 Bottom Deck of Screen 2 is Too Large
0.3 Bottom Deck of Screen 3 is Too Large
0.3 Screen 3 Bottom Deck Has Light Wire
0.5 Too Little Sand
0.6 Screen 3 Top Deck has Light Wire
0.6 Top Deck Screen 3 is Too Large
0.6 Slot Length/Width Ratio of Screen 1 Bottom Deck is Too Large
0.8 Further Splits on Bottom Deck Screen 3 are Too Large
0.8 Top Deck Screen 2 is Too Large
0.9 Speed of Screen 3 is Too Slow

Table 6-5 Probabilities for Too Fine >5mm Causal Node — Layer #1

Probability Causal Node Description

0.1 Bottom Deck of Screen 2 is Too Small
0.3 Fine Crusher Setting is Too Small
0.4 Bottom Deck of Screen 3 is Too Small
0.5 Screen 2 Bottom Deck Has Heavy Wire
0.5 Screen 3 Bottom Deck Has Heavy Wire
0.7 Top Deck Screen 3 is Too Small
0.8 Bottom Deck of Screen 1 is Too Small
0.9 Speed of Screen 3 is Too Fast

Table 6-6 Probabilities for Too Fine > Smm Causal Node - Layer #2

Sub Causal Node Description Probability Causal Node Description
Fine Crusher Setting is Too Small 0.7 Coarse Crusher Setting is Too Large
Fine Crusher Setting is Too Small 0.3 Coarse Crusher Setting is Too Small
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Table 6-7 Probabilities for Too Fine < Smm Causal Node — Layer #1

Probability Causal Node Description
0.1 Bottom Deck of Screen 2 is Too Small
0.3 Too Much Sand
0.3 Screen 2 Bottom Deck Has Heavy Wire
0.5 Screen 3 Bottom Deck Has Heavy Wire
0.6 Fine Crusher Setting is Too Small
0.6 Top Deck of Screen 3 is Too Small
0.8 Bottom Deck of Screen 3 is Too Small
0.8 Further Splits on Bottom Deck of Screen 3 are Too Small
0.8 Slot Length/Width Ratio of Screen 1 Bottom Deck is Too Small
0.9 Speed of Screen 3 is Too Fast
Table 6-8 Probabilities for Too Fine < 5Smm Causal Node ~ Layer #2
Sub Causal Node Description Probability Causal Node Description
Fine Crusher Setting is Too Small 0.7 Coarse Crusher Setting is Too Large
Fine Crusher Setting is Too Small 0.3 Coarse Crusher Setting is Too Small
Presently Winter Season 0.95 Clumping of Fines Due to Frost

Table 6-9 Probabilities for High % Fracture Causal Node

Probability Causal Node Description
0.6 Further Splits on Bottom Deck of Screen 3 are Too Small Below the
Maximum Top Size of the Product
04 Too Little Sand
Table 6-10 Probabilities for Low % Fracture Causal Node
Probability Causal Node Description
0.6 Further Splits on Bottom Deck of Screen 3 are Too Large up to the
Maximum Top Size of the Product
0.4 Too Much Sand

There is a twenty percent chance of either a high or low percentage of fractures occurring
and neither causal node being responsible. This twenty percent chance of other causes is

mostly due to the nature of the material, which can be highly variable.

Other probabilities with small and seemingly insignificant values had to be entered so

that the belief network would work. The network requires probabilities greater than zero

for each causal node in order for it to calculate combined probabilities when more than
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one node is given evidence. For example, evidence nodes can have a probability of
occurring due to a cause not included in the network. This cause could be unknown or
not included because of its complexity. The causal nodes in the model must also have
causal probabilities when no evidence is provided to the network. This was difficult to
evaluate because it is contingent on how the plant is laid out and the predetermined
characteristics of the model for the first simulation run. The probability assigned to each
causal node is 0.5 when no evidence is provided to the network. This value was chosen
arbitrarily as a starting point. With all nodes having the same value and no evidence
being given to the network, each node has an approximately equal chance of being the
cause for the gradation to be inadequate when compared to the specifications. Therefore,
with no evidence given to the network the probabilities should be around 0.5. The only
probabilities that will not be exactly 0.5 are those causal nodes which connect other

causal nodes indirectly to the evidence nodes.

To understand the power of combining probabilities via the belief network, the network
will be presented with evidence supplied first to only one node and then to two nodes.
Before doing this, some heuristic rules for which a user of the network model should
follow will be presented. Some more specific rules will be discussed later on in the
section on using the belief network. It was decided that a set of heuristics would be
added to the model to allow for three different scenarios. The first scenario is when a
person with very little aggregate plant production experience is using the model along
with the CRUISER program. This scenario could occur in an educational setting, for

example. When using the belief network model in this situation, the user should only use
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suggestions from the network pertaining to the CRUISER program (i.e., characteristic
suggestions). The second scenario is during the operation of a plant where an adequate
product has been produced with the given setup. When using the belief network model in
this situation, the user should only use the diagnostic suggestions (i.e. expert knowledge)
from the network. These suggestions would pertain to a change in gradation due to slight
changes in the plant that may periodically require attention. Suggestions to change the
plant characteristics are not usually necessary at this stage, since the plant has previously
produced a satisfactory product and only minor equipment adjustments or component
replacements are required. The user would not need to use both the CRUISER program
along with the belief network for this scenario. The third scenario is during the primary
setup and gradation testing of a plant. When using the belief network in this situation, the
user could use both sets of suggestions or the belief network model in its entirety. In this
scenario, the plant characteristics are undergoing experimentation to produce a product
that meets specifications. At the same time, there is a chance that the gradation may be
brought within the specifications with only minor equipment adjustments. Since
changing the characteristics of the plant is more likely to bring the gradation within
specifications, these nodes within the network are given higher probabilities of being the
causal node than those which are more diagnostic in nature. A more experienced
CRUISER user may want to utilize the model in this scenario to help educate him/herself
as to what problems actual plant personnel may encounter when operating an aggregate
plant. The primary evidence nodes are to be used for the first scenario. The secondary
and tertiary evidence nodes are to be used for the second scenario. All evidence nodes

are to be used for the third scenario.
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Evidence may be supplied to the network through one node or through a combination of

nodes. The case where only one node is given evidence will be shown here, even though

the probabilities indicate the same ranking as what was given to the network at the time

of development. Then evidence into another node will be added to the network and the

changes in the causal probabilities will be recorded. Evidence into another node will be

added to the first two nodes and the probabilities will be recorded again.

The connected causal nodes for the “Too Coarse > Smm” evidence node are presented in

Table 6-11. This table shows the node’s probability, rank, whether the node is

characteristic or diagnostic, and a description of the node. Remember that characteristic

nodes are to be used for scenarios one and three. The diagnostic nodes are to be used for

scenarios two and three.

Table 6-11 Case #1: Too Coarse > Smm

Probability | Rank | Nature of Cause (C or D) Causal Description
0.09 1 C Bottom Deck of Screen 2 is Too Large
0.23 2 C Bottom Deck of Screen 3 is Too Large
0.29 3 D Oversize Rock is Cracked or Fractured
0.29 4 C Screen 3 Bottom Deck has Light Wire
0.33 5 C Screen 3 Top Deck has Light Wire
0.35 6 C Top Deck of Screen 3 is Too Large
0.35 6 C Fine Crusher Setting is Too Large
0.37 7 D Oversize Rock is Round
0.44 8 C Top Deck of Screen 2 is Too Large
0.44 8 D Further Splits on Bottom Deck of

Screen 3 are Too Large

0.47 9 C Bottom Deck of Screen 1 Too Large
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For the second example of output from the belief network another primary node will be
given evidence. This node will be the “Too Coarse < Smm” node. The case refers to
whether the causal node is primarily linked to the first causal node, the second causal

node, or both. The cause is again whether the node is characteristic or diagnostic.

Table 6-12 Case #2: Too Coarse > Smm and Too Coarse < Smm

Rank | Case and Cause (C1, Causal Description
Probability C2, CB, D1, D2 or DB)

0.01 1 CB Bottom Deck of Screen 2 is Too Large

0.08 2 CB Bottom Deck of Screen 3 is Too Large

0.11 3 CB Screen 3 Bottom Deck has Light Wire

0.23 4 CB Screen 3 Top Deck has Light Wire

0.24 5 CB Top Deck of Screen 3 is Too Large

0.29 6 D1 Oversize Rock is Cracked or Fractured

0.33 7 C2 Too Little Sand

0.35 8 D1 Oversize Rock is Round

0.37 9 Cl Fine Crusher Setting is Too Large

0.37 9 C2 Slot Length/Width of Screen 1 is Too
Large

0.39 10 CB Top Deck Screen 2 is Too Large

0.39 10 DB Further Splits on Bottom Deck Of
Screen 3 are Too Large

0.44 11 D2 Speed of Screen 3 is Too Slow

0.47 12 C1 Bottom Deck of Screen 1 is Too Large

Adding evidence to two nodes instead of one has increased the number of possible
suggestions from the network and has rearranged the ranking order of the suggestions.
Only the first two suggestions remain in the order they were in when evidence was
supplied to only one node. The primary nodes are the evidence nodes connected to the
majority of the causal nodes. Any permissible dual combination of these four evidence
nodes will indeed improve the ranking order of the suggestions more than any dual

combination of a primary node and secondary or tertiary node. However, adding

144




evidence to two primary nodes and a secondary node will affect the ranking order of the

causal nodes linked to the secondary node to a greater degree.

Table 6-13 Case #3: Too Coarse > Smm and Too Coarse < Smm and High % Fracture

Probability | Rank | Case and Cause (C1, C2, Causal Description
CB, D1, D2 or DB)

0.01 1 CB Bottom Deck of Screen 2 is Too
Large

0.08 2 CB Bottom Deck of Screen 3 is Too
Large

0.11 3 CB Screen 3 Bottom Deck has Light
Wire

0.23 4 CB Screen 3 Top Deck has Light Wire

0.24 5 CB Top Deck of Screen 3 is Too Large

0.29 6 D1 Oversize Rock is Cracked or
Fractured

0.17 3.5 C2,3 Too Little Sand

0.35 8 D1 Oversize Rock is Round

0.37 9 Cl Fine Crusher Setting is Too Large

0.37 9 C2 Slot Length/Width of Screen 1 is
Too Large

0.39 10 CB Top Deck Screen 2 is Too Large

0.38 95 D1,2,3 Further Splits on Bottom Deck Of
Screen 3 are Too Large

0.44 11 D2 Speed of Screen 3 is Too Slow

0.47 12 Cl1 Bottom Deck of Screen 1 is Too
Large

Even though the ranking order only changed the two causal nodes that were connected to
the secondary evidence node added, the optimization of arriving at an acceptable
gradation is improved. This additional evidence node, like all other non-primary
evidence nodes, is diagnostic in nature. Evidence into these nodes will only be required

when the network is used in scenarios two or three as previously discussed.
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The total number of possible combinations of evidence can then be supplied to the
developed network is seventeen. The other fourteen combinations of evidence nodes into

which the node can be stated as true are listed below:

.  Too Coarse <Smm

2. Too Coarse<5Smm and High % Fracture

3.  Too Fine >Smm

4. Too Fine <Smm

5. Too Fine <Smm and Low % Fracture

6. Too Coarse >Smm and Too Fine <Smm

7.  Too Coarse >Smm, Too Fine <Smm and Low % Fracture

8. Too Coarse >Smm, Too Fine <Smm and Presently Winter Season
9. Too Coarse >Smm, Too Fine <Smm, Low % Fracture and Presently Winter Season
10. Too Fine >5Smm and Too Coarse <Smm

11. Too Fine >Smm, Too Coarse <5Smm and High % Fracture

12. Too Fine >5mm and Too Fine <Smm

13. Too Fine >5mm, Too Fine <Smm and Low % Fracture

14. Too Fine >5mm, Too Fine <Smm, Low % Fracture and Presently Winter Season

After developing the belief network structure and incorporating probabilities into it, the

next step was to test the network to evaluate the accuracy of its suggestions.
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6.6 Testing the Belief Network

The first test of the belief network was to see if it could suggest improvements to a
similar simulation model upon which the model was based. A model similar to the one
used as a basis for developing the belief network was used for the first test. The
researcher was familiar with the layout but not the characteristics of the plant components
already modeled into the layout. Using the belief network, the researcher was able to
make informed decisions and arrive at a product that met specifications after only six
simulation iterations. After completing two more, the gradation was further optimized
between the high and low specifications. For each simulation iteration, only one specific
component change to the plant was made as it pertained to the suggestion from the belief
network. It is possible to give evidence for more than one factor of the network,

however, for simplicity’s sake, only one result was evaluated during this test.
One must keep in mind that any suggestion from the network was repeated if necessary
until further improvements to the gradation were no longer realized. Then, if possible,

the network’s next suggestion was implemented to improve the gradation results.

Table 6-14 Testing the Belief Network

Iteration Gradation First Possible Characteristic Change Suggested By
No. Results Network

Plant As-Is | Too Coarse | Bottom Deck of Screen 2 is Too Large
>5Smm (changed size from 0.5 to 0.4375)

1 Too Coarse | Bottom Deck of Screen 3 is Too Large
>5mm (changed size form 0.5 to 0.375)

2 Too Coarse | Screen 3 Bottom Deck Has Light Wire
>Smm (changed from standard to coarse wire)

3 Too Coarse | Screen 3 Top Deck Has Light Wire
>5mm (changed from standard to coarse wire)

4 Too Coarse | Too Little Sand
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<Smm (increased flow of sand to final product from 50% to 70%)
5 Too Coarse | Too Little Sand

<Smm (increased flow of sand to final product from 70% to 95%)
6 Within Top Deck of Screen 3 is Too Large

Specifications | (changed top deck from 0.5 to 0.375)
(decided to
continue)
7 Better Bottom Deck of Screen 3 is Too Large
(changed bottom deck from 0.375 to 0.25)

8 Best

T

o
&
product 3

pr%dggt 2 0.00

......................................................................

Figure 6-4 — Initial Plant Layout

The second test of the belief network was to see if it could suggest improvements to a
simulation model with fewer components than the one on which the model was based.

The plant, its characteristics, and its specifications were used as provided in a graduate
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course. The plant layout of the model can be seen in Figure 6-4. Following the material
flow through the system it is clear that product #3 is produced first, followed by product
#2. The first thought was to view the product gradation of product #3 first, use the belief
network, and make changes until it met specifications, and then repeat the procedure for
product #2. Instead the researcher tried to implement the suggestions of the belief
network, implicitly focussing on the pieces of equipment the network was referring to for
the suggestions. After the first simulation run it was discovered that both product #2 and
#3 were too fine in the >Smm range. The first suggestion made by the network was to
increase the screen size on the intermediate screen (i.e., screen 2) on the second deck.
For this plant layout there is no intermediate screen and so the suggestion does not apply
and is skipped. The second suggestion was to increase the setting on the finishing
crusher. This was done, making the product only minutely coarser. As a result the
researcher moved onto the third suggestion, which was to increase the screen size on the
finishing screen (i.e. screen 3) on the second deck. This suggestion was repeated for the
next two simulation runs until product #3 met specifications and then continued with the
same suggestion until product #2 also met specifications. Overall, the belief network
functioned well, even for a layout producing two products at once. Using the belief
network model the researcher arrived at a product that made specifications in four
iterations. Without the model it took the researcher six iterations to solve this problem
using trial and error. Another benefit of using the network was that a more optimal
solution than the one obtained by the trial and error was gained. A gradation that met
specifications could have been reached after only two simulation runs if the screen size

was sufficiently increased. This shows that the number of simulation runs depends not
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only on the number of suggestions made by the belief network, but also on the number of
iterations for which the user remains on the same suggestion. The user must use his/her
own discretion as to how fast a suggestion is implemented so as to optimize the gradation
with a given suggestion from the network. It is also up to the user to determine when to

continue on to the next suggestion from the network.

6.7 Using the Belief Network

It is suggested that, when using the model, only one of the four primary nodes containing
“out of specification” results should be pursued at any one time. A novice user could
also have two combinations in the model. Only where both sides of the gradation (i.e.,
>5mm and <5Smm) are either too coarse or too fine does the model handle similar causal
factors. Any combination of too coarse and too fine together would suggest to the user a
greater number of possible changes that could be made at one time. Here, the user would
be making corrections to both ends of the gradation more efficiently. However, the user is
less likely to understand the effects of each model suggestion. It is understood, however,
that the user cannot suggest to the model that the gradation is both too coarse and too fine
on the same side of the gradation, either the <Smm or >5mm side. A more experienced
user might not have too much difficulty in making multiple changes at once while
maintaining what effects the changes are making to the gradation. When assessing a
given plant layout with specifications for more than one product, it is recommended that
the user implement suggestions while observing the coarser product (i.e., product made
first) until the specifications for this product are met. Then the user should implement

changes to the finer product (i.e., product made second) until the specifications are also
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met. The user should monitor the effects of implementing suggestions on the coarser
product, whose specifications are already met, while trying to meet the specifications of
the finer product. For some plant layouts, implementing the suggestions as stated may

bring the gradation for both products within the specifications at the same time.

It was decided not to implement an automated process using belief networks, mostly
because there is more than one specific way to optimize the characteristics of a given
plant. The user can use the belief network only as a guideline in the decision-making
process and can implement a given suggestion as quickly as he/she desires. There are
different combinations of plant characteristics that will produce the same product
gradation, and there are a number of different layouts that require different suggestions to
reach a product meeting specifications with a minimal number of iterations. Sometimes
the user for either logistic reasons or out of user preference does not pursue a suggestion
made by the network. As demonstrated in the testing phase, belief networks can assist a
user of CRUISER in attaining the parameters of a plant required to produce a product
within specifications. However, incorporating the belief network into the CRUISER
program could allow for future automation of changes to the plant parameters. For
automation purposes, the researcher suggests that suggestions to the model be
implemented in small steps, since it would only involve computational time and not
human resources. When a using the model a user may want to implement changes at a

faster pace, which is likely to achieve the same result and much more efficiently.
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Some of the heuristics rules for using the model were developed with the help of Bill
Laisse. His input was needed because a causal node might have a greater probability of
being the cause while another causal node may be adjusted to help the gradation meet
specifications. This is done because in the field some adjustments to the plant are
executed more easily and quickly than others. For example, if the product has too high a
percentage of fractures, then the causes are either a lack of sand or the splits on the
bottom deck of the finishing screen are too small. The field personnel would attempt to
fix the problem by adjusting the percentage of sand entering the final product before
stopping the plant and changing screens, although the probabilities would suggest
otherwise. Most of the situations were accounted for within the model using probabilities
and dividing up the causal nodes into the different scenarios of use. The user must still
employ some logical thinking as to which parameters are likely to be changed at a plant
to minimize plant downtime for example. In most cases, the user will not have the
knowledge to make these logical decisions until some actual plant experience is gained.

This is where the heuristic rules built within the model come into play.

However, to use the model developed in this research a set of steps should be followed.
These steps are listed below. They describe how the model is to be used independantly
from the CRUISER program and also how the model could be incorporated within the
program. Before using the model, the user must set up an aggregate production model
within CRUISER and run one simulation to get one set of gradation results. It is also
required that the user has product specifications or has at least some indication of where

he/she wants the gradation to be. Step #1 describes what the user would do if the belief
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network model was incorporated with CRUISER. Some information is given in step #4

if the model is not incorporated with the CRUISER program.

Step #1: The user must inform the model as to the layout of the model and what
equipment components exist within the model. To use the developed belief network, the
CRUISER model must not have more than three screens or two crushers. The network
model within CRUISER would require this information to eliminate some of the possible

suggestions from the network.

Step #2: The user must decide which of the three scenarios applies before implementing
the belief network for suggestions to the model that he/she has developed. Depending on
the scenario chosen, certain causal nodes may be ignored. These can either be made
known to the user in the form of a user manual or may be hard coded into the CRUISER
program. If the belief network model is incorporated into the CRUISER program, each
causal node may be given a code that corresponds to each scenario. If the chosen
scenario does not request a specific causal node, it will be left out of the suggestion list to
the user when the model is activated. Referring to Table 6-11 through Table 6-13 it can
be seen that the node are described as either characteristic or diagnostic in nature. This is
denoted by a “C” or a “D” in the tables and can be used to describe all three possible

scenarios for which the model is developed for.

Step #3: The user must then decide which evidence nodes he/she will provide evidence

to. This can be anywhere from one to four nodes based on the developed network and the
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chosen scenario. A novice user would probably want to enter evidence into the network
in only one node at a time. A more experienced user may want to enter evidence in two
or more nodes. Ifthere is more than one evidence node to pursue, a novice user should
start with the evidence node that applies to his/her gradation according to the following
list:

1. Too Coarse >Smm

2. Too Fine >5Smm

3. Too Coarse <Smm

4. Too Fine <5mm

After continuing past this step the user must not change the scenario that he/she has

chosen.

Step #4: The user must then evaluate the suggestions provided by the belief network and
make one change at a time to the model. How great a change should be left up to the
user’s discretion. For automation purposes, the researcher suggests that suggestions to
the model be implemented in small steps since only computational time would be spent,
and not any human resources. However, when a user is using the model he/she may want
to implement changes at a faster pace, which is very likely to achieve the same result and
much more efficiently. A user may want to experiment with implementing more than
one suggestion from the model. This may be acceptable for a more experienced user but

is not recommended for a novice user. Implementing too many suggestions at once
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would lead to confusion instead of an increased understanding of what changes affect the

gradation more significantly.

When any causal node is evaluated and is found to be either true or the likely cause, then
all preceding nodes connected to the causal node must be evaluated before continuing
onto the next most probable first level causal node. The second level causal nodes should

only be evaluated if the first level causal nodes are being evaluated.

If the belief network model is not incorporated within CRUISER, the user would then
have to ignore certain suggestions depending on the numbers of screens and crushers in
the model the user is evaluating. Refer to Table 6-15 as a guide to ignoring suggestions
from the network if there are less than three screens or less than two crushers in the plant
layout.

Table 6-15 Suggestions for Different CRUISER Scenarios

Different Equipment Scenarios Suggestions to Use

3 Screens All Screen Suggestions

2 Screens Only Screen 1 and 3 Suggestions
1 Screen Only Screen3 Suggestions

2 Crushers All Crusher Suggestions

1 Crusher Only Crusher2 Suggestions

Step #5: The CRUISER simulation model must be run at this time to arrive at a change in
gradation. This will allow the user to go back to Step #3 to use the belief network again.
If the information in Step #3 does not need to be changed, the user may continue
implementing a network suggestion to a greater degree or proceed on to the next
suggestion by the network. Steps 3 through 5 may be repeated until the product meets

specifications. The user must then decide to stop the optimization process or further
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optimize the gradation within the specifications. This can be done by progressing along

the rank order of suggestions provided by the belief network.

6.8 Conclusion

The developed belief network has proven to be an effective diagnostic model for quickly
attaining a final product that meets specifications. Some of the suggestions to the user of
the CRUISER program are of characteristic in nature to represent an aggregate plant
setup situation. Other suggestions are diagnostic in nature to represent problems
encountered during actual plant operation, which may cause the final product to become
unacceptable with respect to the specifications. It is recommended that further testing of
the developed model be done with other aggregate plant configurations and with larger
plants to assess its applicability. This future research could serve to expand or modify the
developed model to increase its accuracy and applicability to other aggregate plant
models. Visual Basic code could be written to incorporate the belief network within
CRUISER to fully automate the equipment parameter selection for attaining a final
product gradation that meets specifications. This will greatly enhance the power of the
developed model to assess several possible factors at one time and present more than one
possible final solution to the user. The researcher views this process as being an iterative
one that is performed a specified number of times by the user. The program will monitor
the equipment parameter chosen at a particular step in the optimization process and will
not be allowed to repeat this selection for every iteration following unless a previous step
selection between the two respective iterations was different. This would allow the user

to select the combination of plant parameters that are most favourable with respect to the
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aggregate being processed and other economic related concerns in making the desired
final product. For example, a thin wire screen might be suggested by the model as a final
equipment parameter, but these screens may not be economical for use with the raw
product being used (i.e., an abrasive material), so this final setup output by the simulation

could be rejected by the user.
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7.0 Final Discussion

7.1 Summarized Findings

The focus of this research has been to evaluate an aggregate production simulation
program called CRUISER and develop models using artificial intelligence to improve it.
A crushing model was developed to improve the accuracy and flexibility of the
CRUISER program analyzed in this research. An optimization process was developed to
add optimization and diagnostic features to CRUISER. The following describes the
developments achieved and the findings reached during simulation analysis, and using

neural and belief networks.

7.1.1 Simulation Analysis

CRUISER was found to be a user friendly and fairly accurate aggregate production
simulation program. The output gradation is within +10 % error over 40 to 60% of the
sieve sizes on any given sample. The final product gradation predicts up to 16% coarser
and 2% finer than the actual results over all samples used in this research. However, this
range is still not accurate enough to predict a product gradation within specifications.
CRUISER predicts the final product tonnage within an acceptable range. CRUISER does
not predict the tonnage of intermediate streams very well, but predicts the final product
tonnage with an average of 14%. An analysis of individual components revealed
crushing errors to be more significant with the coarse crusher than with the fine crusher.
Analysis of the screening process was difficult due to the high variability of raw product
into the first screen. Complete analysis of the second and third screens could not be fully
realized due to the inaccessibility of some product streams during the sampling process.

However, in the portion of the screening analysis completed, gradation error was still
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significant. When evaluating the crushing process within CRUISER, modifications to the
existing parameters resulted in slight gains in accuracy. When the screening process was
evaluated, a discrepancy in screen efficiency was found. Allowing the user of the
program to override the efficiency did result in an improvement in accuracy. However,
this additional accuracy was not significant enough to predict a product gradation within

specifications.

7.1.2 Neural Networks

On average, CRUISER predicts a coarser final product than what is actually produced.
Additional modifications to the crushing and screening parameters in CRUISER did not
significantly improve the gradation results of the program in this research. Focus was
placed on the crushing process; neural networks were used to model this process. A
prototype model was developed and the neural network obtained good results. A full-
scale model was developed with greater variety in aggregate gradations. The neural
network would not train with this data, and experimentation ensued. A smaller sample
set was used to find that a single gradient model with 10 crusher settings yielded better
error results than the prototype model. However, several single gradient models would
be necessary to model one crusher type and setting. This was an impractical solution.
The final model has comparable results as the single gradient model has fifteen gradient
with only one crusher setting. Using this model would mean that ten neural networks
would have to be developed for the crusher type, one for each setting. This final model

can be used within the CRUISER program to enhance its crushing analysis capabilities.
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7.1.3 Belief Networks

The developed belief network has proven to be an accurate diagnostic model that quickly
attains a final product that meets specifications. Expert information on how changes in
plant parameters affect the final product gradation was obtained and incorporated with
the model in the form of nodes and probabilities. The network nodes were categorized
into two types for two different types of users of the model. Some of the suggestions for
the user of the CRUISER program are characteristic in nature to represent an aggregate
plant setup situation. Other suggestions are diagnostic in nature to represent problems
encountered during actual plant operation, which may cause the final product to become
unacceptable with respect to the specifications. Incorporating the belief network within
CRUISER and fully automating the optimization process will greatly enhance the power
of the model. This will allow a user to assess several possible factors at one time and will
present more than one possible final solution to the user. This would allow the user to
select which combination of plant parameters that are most favourable with respect to the
aggregate being processed. The selection could include other economic concerns related
to making the desired final product. The use of belief networks to incorporate expert
decision making into CRUISER has made the program more useful in terms of

optimizing the equipment parameters for plant setup or during plant operation.

7.2 Contributions

A review of other aggregate production simulation models and a comparison with
CRUISER was done to evaluate the accuracy and general modeling of existing programs.
A neural network was developed as a basis to replace the crushing modeling process

within CRUISER to increase accuracy and reflect actual crushing processes. The
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network can model the crushing process with additional plant specific information much
more accurately than the traditional method of using aggregate production handbooks as
a guideline for the gradation output resuits.

A belief network was developed and proven to be an accurate diagnostic model in
quickly attaining a final product that meets specifications. The network nodes were
categorized into two types with different users of the model in mind. The developed
network handles three different user scenarios-educational, plant setup, and plant
operation. Further testing of the developed model with other aggregate plant
configurations and with larger plants will add to its ability to optimize other aggregate
models. The use of the developed network incorporates expert decision-making into
CRUISER and has added an optimization feature for use during plant setup or plant

operation.

The main objective of this research was to assess the ability of CRUISER to model the
aggregate production process, make analysis improvements, and add additional functions
to further its applicability and usefulness for the aggregate industry. All of these
objectives were achieved with this research and will contribute to the development of

CRUISER as an accepted aggregate production modeling program within industry.

7.3 Final Comments

This research has shown the accuracy of the aggregate production simulation program,
CRUISER, in actual use. Areas of improvement to the program were identified to
increase the accuracy of CRUISER. This research has also proven the relevance and

applicability of artificial intelligence for aggregate production modeling. Two primary
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forms used were neural networks and belief networks. The advantages of neural
networks for modeling the crushing process more accurately will be reflected in the final
product results. Neural networks will also serve to instigate a method of actual data
collection by CRUISER users, which will be very beneficial, especially in the long term.
Additional neural networks should be developed using the generated data process
discussed in this research as an alternative to obtaining actual crushing gradation data to
train networks. Additional neural networks for other crusher types and settings will need
to be developed. The collection of actual data will allow for more accurate modeling but
is not absolutely necessary. One option could be that neural networks would only be
developed for common crusher types and settings. The remainder would have the neural
network framework in place to incorporate a user’s crushing data into the program
through the use of a neural network trainer. A neural network trainer within the
CRUISER program would allow a user to add additional data to an existing network,
retrain the network, and use the developed crushing network. The user could select from
three options when configuring a crusher within CRUISER. The traditional method of
using gradation data from an aggregate crushing handbook would be one analysis option.
A second option would be to select an already trained neural network for analysis. The
third option would be to add additional data to an existing network and retrain it before
use in the analysis. It is recommended that users develop their own data for the crusher
types and settings they use most often. This would result in a neural network with better
results than just adding a few sets of data onto an already developed network and
retraining it. Obtaining data and developing a network from scratch will allow for the

neural network to become more aggregate pit, equipment, and product specific. This
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will, in turn, create the most accurate and meaningful crushing analysis for the user of the
CRUISER program. Finally, further work integrating the framework of the developed
neural network into the CRUISER program will need to be done in order to take full

advantage of this research.

The use of belief networks in optimizing aggregate plant setup or operation has been
demonstrated in this research. The use of this model in combination with CRUISER will
serve to automate the process of optimizing the equipment parameters required to achieve
a final product gradation that meets specifications. Additional testing of the belief
network model with other plant configurations and larger plants than the ones used in this
research may be beneficial, further enhancing and expanding the existing model. This
future research could serve to expand or modify the developed model to increase its
accuracy and applicability to other aggregate plant models. The developed model can be
easily modified to add findings from future research on different plant models. Further
work automating the use of the developed belief network by integrating it within
CRUISER will need to be done in order to take full advantage of this research. This will
involve using Visual C++ and Visual Basic code to link the two models together in an
efficient manner, minimizing the computational time required for the optimization
process. An overview of how the two models may interact with one other is presented in
this research. However, additional processes of how the model is used to present several

possible equipment parameter scenarios should still be investigated.
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This research has shown the usefulness and predictive power of artificial intelligence in
aggregate production modeling. Artificial intelligence was used in conjunction with the
CRUISER program in two different manners. One of these is a neural network, which
was used to improve the crushing analysis within CRUISER. The second is a belief
network, which was used to incorporate expert decision-making to develop a semi-
automated process of attaining the right combination of plant parameters to achieve a
final product that meets specifications. Through the use of both models, the aggregate
industry will benefit from additional modeling accuracy and automation in obtaining the

desired product results through the use of CRUISER.

Overall, the incorporation of these two forms of artificial intelligence into the CRUISER
program will result in additional modeling accuracy, as well as creating a useful
diagnostic and education tool. These improvements will encourage industry acceptance
and increase the reliability of CRUISER and will serve to improve this simulation tool for

the aggregate production industry.
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Introduction

CRUISER (Crushing Simulation Environment) is a Windows application designed to simulate the
operations of a crushing plant. The objective of CRUISER is to provide managers with a tool to
experiment with several possible altematives for plant design. This program allows the simulation
of many different situations to be performed very easily by changing the desired parameters and
re-simulating. The application takes care of all the tedious and time-consuming work of analysis
that would otherwise be done by hand.

The analysis of crushers and screens is based on empirical data collected from field operations.

Installation

System Requirements

o Pentium or better IBM compatible computer.
A minimum of 16 MB of RAM (32 MB is recommended.)
A hard disk with at least 15MB of free space available.
SVGA or better resolution monitor.
Micrasoft Windows version 95 or higher.

Installation Procedure

e Run setup.exe from the first disk of the installation diskettes and follow the instructions.

e The setup program will copy all files to the specified directory and install various libraries in
the Windows directory.
Run cruiser.exe from the installation directory or use the newly created program shortcut.
CRUISER will perform one time initialization the first time it is run.

Technical Support

If you have any comments or require any help with regards to any aspect of this program, please
contact Dany Hajjar at:

Email (Preferred)

hajjar@cem.civil.ualberta.ca

Mail

220 Civil/Electrical Building
University of Alberta
Edmonton, Alberta
Canada T6G-2G7

Phone
(403) 492-2276
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Getting Started

When CRUISER is started a screen appears which contains the following toolbar.

NEEER

A?|

D2

Alala B S|B[<[0] S

Each button on the toolbar represents an object or a function in the CRUISER program. A list of
the buttons and their functions follows:

CRUISER Utilities:

a,

il

Zoom Lens (Right Click on work
area to zoom in on screen
objects, left click to zoom out.)

This button is used to return the
mouse pointer to the default
mode from any other mode. To
do so, click on the button when
the pointer is in an auxiliary
mode.

CRUISER Components:
/__’—"*__ Raw Pile
L-:}.. Product Pile
ﬁ* Waste Pile
g Surge Pile
Crusher object

[&]% 2 @

X

K3

Help Pointer. (To get helpon a
certain object, click this button
then click again on the object with
which you need help.

General information click this
button and a box containing
general information on the
program will appear on the
screen.

Screen

Conveyor

Add joint

Split Joint



The CRUISER Menu

The menu bar in CRUISER consists of the following categories and sub categories. (Explanation
of the function of these sub categories will be given when necessary.)

File

* New File

* Open Existing file

e Save File

¢ Save (File) as (the desired name
here).

e Print

s Print Preview
Print Setup

Edit

s Cut

« Copy

o Paste

* Properties — To edit the properties

of an object, select that object, then
select “Properties” from the “Edit”
menu and the screen that allows for
editing of properties will appear. For
instance, to edit the properties of a
raw pile object, select the raw pile,
then select “Properties” from the
“Edit” menu and the window shown
in Figure 4 will appear.

Tools — This menu performs the same
function as the CRUISER object buttons
that appear on the previous page. To
place an object on the working area, go
to the Tools menu and select the desired
object then move the pointer to the place
on the desktop where you wish to put
the object, click the left mouse button
and that object will appear.

Screen

Crusher

Product Pile

Waste Pile

Raw Pile

Surge Pile

Conveyor

Add Joint

Split Joint

Model

e Check (model) Integrity — This
function is used to ensure that none
of the necessary elements in the

model are missing or not properly
connected.

* Analyze (model) Streams — This
function initiates analysis of the
model.

Output

Print

Print Preview

Enable All Nodes — Select “Enable

All Nodes™ from the “Output” menu

to have the “Display Results” box

automatically checked for every
component in the simulation.

* Disable All Nodes— Select “Disable
All Nodes™ from the “Output™ menu
to have the check mark removed
automatically from the “Display
Resuits” boxes for every component
in the simulation.

 Show - To view the results of the
most recent simulation, select
Show” from the “Output™ menu and
the results box will appear.

e Hide - To hide the results of the
most recent simuiation select “Hide"
from the “Output” menu and the
results box will disappear.

e Clear — To clear the results from the
Results box, select “Clear” from the
“Output” menu.

+ Settings - Background information:
When any conveyor is clicked with
the right mouse button, the data for
that conveyor is dumped into the
results box and can be viewed.
When “Settings” is selected from the
“Output” menu, a window appears in
which the option to have the Results
box cleared before each dump. To
have the results cleared from the
box, ensure that a check appears in
the “Clear Window Before Conveyor
Dump” box.

View - This menu allows for modification
of the appearance of the program on the
screen. It allows for zooming in and out
as well as regulation of the
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appearance/disappearance of the (See Appendix D for the screen that

toolbar and status bar. appears when “Sieves” is selected.)
o 130 (%) « Desired - By selecting “Desired”
e 110(%) from the “Options” menu, it is
e« 100 (%) possible to set the desired
e 90 (%) percentage pass low and the
o 80 (%) desired pe_mentgge pass high val_ues
. 70(%) for each sieve size. (See Appendix

o v D for the screen that appears when
© 80(%) “Desired” is selected.)
o Toolbar )
« Status Bar e Helo
. e [ndex
* Qofions « Using Help

+ Sieves — By selecting “Sieves” from
the “Options” menu, it is possible to
modify sieve sizes within the model.

e About CRUISER

Creating Components

e To place a new object in the working area, click on the corresponding button with the pointer.
(After selecting the desired component, the cursor shape will change to reflect the current
state.)

e Move the pointer to the place where you wish the object to be.

Click the left mouse button and the object will appear on the screen. This newly created
component will have default specifications. (To change the specifications, doubie click on the
component (or selects “Properties” from the “Edit” menu). A dialog box specific to the type of
object selected will be displayed. The specifications of that object can be modified in the
dialog box.)

e Once placed, moving objects around the site layout can be accomplished using simple click
and drag operations.

Deleting Components

o To delete a component, select the desired object by clicking on it, then press the “DEL" key or
select “Cut” from the “Edit” menu.

Note: All information on connections to and from the deleted object will be
deleted along with that object.

Directing Stream Flow

In CRUISER, conveyers provide the means of identifying the propagation and direction of
streams. Each component posses one or more “connection circles”. These are special sub-
components that allow each object to be connected to other components through conveyers. To
connect two components, create a conveyer and place its “source circle” on top of the “destination
circle” of the source component and vice versa for the other side of the conveyer. An arrow from
the source circle to the destination circle indicates the direction of the conveyer. When a
connection between a conveyer and a component is established, the interior color of the
connecting circle is changed to red. Any subsequent movement of the conveyer or the connected
component can cause the connection to be deleted. To prevent disconnection, press the “Ctri”
key before selecting the object and hold it down while dragging the object.

Note: The crushing model can be as large as needed. (CRUISER supports scrolling and zooming
capabilities.)
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Analysis Process

The steps used to analyze a proposed plant are illustrated in Figure 1.

(1) Enter sieve sizes and raw feed properties.

(2) Design plant layout using
provided components.

(3) Enter/Change the specifications of each
component.

l

(4) Simulate

l

(5) Examine intermediate and
final stream gradation.

Results Unacceptable

Figure 1 - Steps Used to Analyze a Proposed Plant

CRUISER Components

CRUISER provides a wide range of components that are used to represent an actual crushing
operation. Each component has graphical properties used for display purposes and specification
data that defines how it behaves during analysis. All components have a “name”. This name is
used as a title or description on the screen and in the analysis results. All the components also
have the “Display Result” property that determines if the output specific to the component will be
displayed or sent to the results file (if you have chosen to create one).

A waming message box may appear on the screen during simulation if the program detects the
possibility that an error has occurred. You may continue on to view the simulation resuits after the
warning message appears, or you may decide to go back and alter the parameters and run the

simulation again. The following is an overview of the major components along with any properties
that require clarifications:
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Conveyers

Conveyers are used to define the propagation of stream flow throughout the plant. They can be
used to connect components together or to connect components to piles. By moving one of the
two end circles, the conveyer can be sized to whatever length (graphical) and angle is appropriate.
Clicking and dragging the “body” of the conveyer will move the whole conveyer without changing
the shape. Connecting two components is accomplished by placing one of the end circles on top

of the destination circle of the destination component. (When a connection is present, the circle
will be red. When there is no connection, the circle will be white.)

Conveyers also store the properties of the intermediate streams of the plant. After simulation,
double clicking on any conveyer brings up the property dialog box as shown below in Figure 2
where stream gradation can be examined graphically.

— The Graphical display can be
L ™ i T B = < represented as a “Cumulative
T T estm o _ i Percent Retained,” or as a

‘ Descictore i1 ) i i “Cumulative Percent
. [ DiplayResuts [ StesdyState - Passing” graph. To select the

' Average: - [EX="3 §ld devln

| Goshtee - [CumdaveZwaned  *]  type of graph displayed, use
the “Graph Type” drop-down
Cumulative % Retained On Each Sieve Size box.

Note: It is possible to view
the average specific
information on the selected
stream. Click with the right
mouse button on the desired
conveyor and the following
information will be displayed
in a result box: actual
2 o e o ™ e ™ o M e tonnages retained, percent
retained and cumulative
=1 oeet | percent retained on each

84 &8 8 3

o

sieve size.

Figure 2 — Graphical Representation of Stream Properties
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Whenever a conveyer represents the exit point of a cycle, it should be set as “Steady State” by
ensuring that there is a check mark in the “Steady State” box (found in the window shown in
Figure 2). Otherwise the closed circuit operation will not be analyzed correctly. All other
conveyers should have the “Steady State” property unchecked. The diagram in Figure below
demonstrates which conveyers should have the “Steady State™ box checked.

Set the “Steady
< |State” Property in
— —>
7 these conveyers

b

Figure 3 - Setting the "Steady State” Property
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Raw Pile

Beie
1éah

Every project must have one and only one Raw Pile object. These are used to store the
properties of the initial feed stream and represent the starting point of the simulation. When the
“Raw Pile” object is double clicked, the screen shown in Figure 4 appears.
There are two possible sampling techniques

Tasl employed by CRUISER: deterministic and
stochastic. The deterministic technique is used to
analyze one sample. The stochastic technique is
used to analyze more than one input. The
stochastic technique gives an output with some
variants from the most likely result. To set the
R sampling technique, double click on the source
; : A B object and the box shown in Figure 4 will appear.
i  Feed Rate Most ek [355 [ ST . Select the desired sampling technique from the
|

screen shown in Figure 4. To have the program
use the deterministic sampling technique, ensure
that a dot appears in the “Deterministic” box (as in
. Figure 4). On this screen, also set the material
- weight and the most likely feed rate. When all
information has been entered, select “OK.”

Gmﬂlsm[v
|'ox | Cancel ez Cpmiz o
| ! Descigiorc” [0 DusplayResuts
Figure 4 - The Deterministic Sampling MasadWet [0 t/euh
Technique _c
€ Determiniztic & Siochauc
CRUISER can be set to allow for the ' FeedRazLow [
representation of uncertainty in input data.
This can be accomplished by specifying a Feed Rate Mast Lkely: [200 TPH
stochastic instead of a deterministic sampling " FeedRate Hight o
technique. When stochastic sampling is L
selected (as in Figure 5), the low, high and Nod smstonimatns i

most likely feed rates must be set along with
the number of iterations. Once these are set,
CRUISER will execute the simulation for a
specified number of runs. To obtain the
values for the above fields, a random sample
of the input feed rate could be taken by
obtaining 10 readings over the course of a
day. Forinstance, the readings could be as : [Tk ] coeet | ozsev | b
follows: 200, 400, 450, 325, 350, 375, 425,

275, 350 TPH. The low feed rate would be
200, the most likely feed rate would be 347.5
(the average of all the samples) and the high
feed rate would be 450.

Figure 5 - The Stochastic Sampling Technique
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The production results from the stochastic sampling technique will be presented in the form of an
average and a standard deviation. The gradation is presented as a 95% confidence interval and

can be examined in the product pile.

To enter information on samples, select the “Samples” tab and the box shown in Figure 6 will

appear on the screen.

General Samples] - R v
Nunbes of Sarvles - ﬁ_

Euaém&m;h_c;mu‘ve Percent Astainod

Kieve Label|Sieve Size [Sample 1| -
20 2 0.0} -

16 _ 16 _ 053

14 14 105

12 12 1.58| -

10 10 AL

8 8 283( - =

6 __ _ _B| . _3®.

5 5 388| "

412 45 a2

4 4 474 =
3-12 35 £2% B
3 3 5.79

2-3/4 273 6.32

2-12 25 6.84 - -
214 225 737

2 2 . 788

1.314 175 842

Figure 6 - The "Samples" Tab

Enter the data on the samples in the
“Sample 1" column. If you do not have
data for all of the intermediate sieve sizes,
enter the data you do have and, providing
that data for a range of sieve sizes is
present, select the “Interpolate” button
and the program will interpolate the data
for all sieve sizes without data.

Interpolation can be executed in two ways,
by a linear or duplication method. The
linear method interpolates data between
the entered data points in a linear fashion.
The duplication method repeats the
manually entered information from the
previous cell until a cell with manually
entered information is encountered. When
all the data has been entered, select the
“OK” button. To print the chart, select the
“Print” button.

See Appendix C for information on

transferring information to and from Excel
spreadsheets.
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Crushers

ROLL

There are four types of crushers (shown above) that can be simulated by CRUISER. When a
crusher object is double clicked, the window shown in Figure 7 appears. Information falling under
the following categories can be entered from this screen. (Not all of the categories listed below will
apply to every crusher. The categories that apply to the specified crusher will appear on the
screen when that crusher is selected from the drop-down list in the “Type” box.)

Tvoe: The type of crusher being used (Jaw, Cone, Roll Single

Impeller Impact Breaker (S1iB), or Double Impeller Impact
Breaker (DIIB)). - Graphical Properties

| Desciotore [g
Model: The model number of the crusher being used in the ¥ Display Resuts
simulation. (This section only applies to Roll, SIIB and DIIB.) :

~ Speciications
Size: The size of the crusher. (This only applies to the Cone [ Twe  [Rol =
Crusher.) Modet 1616 -
Dimensions: The dimensions of the crusher. (This only applies St - [0Z0000 =] supgenet User
to the Jaw crusher.) . _ Capacly [
Setting:
The crusher setting in inches. x| Corcet |
Czpacity:
The estimated capacity of the crusher in TONNES per hour. Figure 7 - The Edit Crusher
The suggested value is placed above this entry box. The value Object Window
is extracted from the Cederapids Pocket Reference books and

is based on the dimensions and settings of the crusher.

[Note: This value does not have to be used; it's only a recommendation. J

ltype:
This is the operating speed combination for single (1 - 8) and double impeller impact breaker
(1 - 11). Each type corresponds to a specific relationship of input-output that is used to predict the

product gradation. (See tables in Appendix A.) (This category only applies to the SIIB and the DIIB
crushers.)

Note: For information on customizing crusher performance specifications by replacing gradation
data, see Appendix B. o
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Screens

Screen objects in CRUISER have the ability to model screens with muitiple decks and splits.
Muitiple splits allow for the representation of varying mesh sizes on the same deck.

When the Screens object (shown above) is double - Ubrect

clicked, the box shown in Figure 8 appears on the [~ Sereen Fropers - :
screen. The following information can be entered in Dé"‘f“ | _ ™ Dislay Rexus
this box: Dekz [T =] Wadhalegt(t [5x76 o] .

A description of the screen. If no description is
entered, the description will remain as the

Ca:?—nu [Dwmdme@.&abswaxdfdmj

number it was assigned upon placement. Incine Factor [icegees) =]
In the “Decks” box, set the number of decks (up i Deck Effic
\ Deck: - Efficiency:
to four decks maximum). b K i- Colcudatedt ©
s - S | -[ efined & {100 %

The condition of the material in the “Condition™ 5:4 2 L ct
box. - om e

! sk - _ —
The incline factor of the conveyor in the “Incline | f 3 Ooemgfechest [0875 2]
Factor” box. This box indicates whether the , Sktlengh/Widte  [13(Square) =]

screen is of a horizontal type or is inclined at

- " OpenArea Factor . -
some specified angle. : [50% - Standad e 7]

In the “Deck” box, from the drop down list, select

the deck for which you wish to enter information. —C""‘;’

The information shown in the window will

represent the properties of the active deck. The Figure 8 - The Edit Screen Object Window
active deck can be changed using the “Deck”

drop-down list.

In the “Splits” box, enter the number of splits to be present in the specified deck (up to a
maximum of four splits per deck).

In the “Spilit” box, select the split for which you wish to enter information. The information
shown in the window will represent the properties of the active split. The active split can be
changed using the “Split” drop-down list.

Enter the desired information about the specified split in the “Split Info” section.

If all the splits on the specified deck have the same properties you do not need have more than
one split for that deck. If you have multiple splits with different properties, select the next split
for which you wish to enter information and enter that information (If you neglect to set different
properties for each split they will all have the same properties as the first split by defauit.)

When all information on the splits on the specified deck has been entered, select the next deck
for which you wish to enter information. If all the decks on the specified screen have the same
properties you do not need the set the properties for the other decks.

When all information has been entered on the decks and their splits, select the “OK” button.

Ilote: For information on calibrating screen efficiency within the model, see Appendix B. ]
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Product Piles

Product piles provide detailed information about the stream properties of the final product. After
the simulation is complete, the dialog box displays the stream gradation and tonnage in a table or
in graphical format (shown in Figure 10). The output can be viewed alongside a desired group or
envelope. By selecting a group from the *Desired Group” combo box, the information appears in
the fifth and sixth columns.

To print the chart shown in Figure
9, select the “Print Grid" button.
s o - Deiedvien pmm—————— | To edit the information in the
Oesited Grougx: - 2 -] - Detiedview" (g P - N .

R sl et A | Desired % Pass High” and
Sieve - Pase. | Hiah- | Desired % -] Desired % .| St |2 “Desired % Pass Low" use the
Ginches)| low |%Pase | High:| R AT oo High |deviation | “Options” menu. (For more

20 100 1000 1000 (] oo 00 . . Y . n
15 X WE %S . ___.B&_ __ 31 _ ap information on the OpthﬂS
11 225 925 @5 T um T gw 00 menu, see page thee.)

12 E75 875 edrs 200 100 00
10 BS0 850 eso %57 1333 00

B 8125 g1 8125 nyn 1657 00

& 75 175 775 400 20 00

5 25 71275 71375 857 23 oo

12 00 70 7040 553 X7 0o

B B35 B2 &5 . sa . mo ao

3172 €25 " 85 &5 6133 nn aol .

) o\ et /

& | Cecd | Pugd | [ewer]
Figure 9 - The ""Edit Finished Pile” Window

By pressing the

“View Graph” Spmr ] Bl - o
button, a graphical ] - : : —_l

representation of . . .
the gradation and % Passing On Each Sieve Size
the high and low
specifications is " \\
presented (as N
shown in Figure o NN
v
10). N\ \‘: ~.
o7 " \‘ \‘\\ . :
Passin S
To Print the Graph g i ael ~ - :
shown in Figure 10, TTeelll N
select the “Print" nl I i
button. DR i
AT M A3 ory e e T LR AR MR :
% 11z 3 4 3 .ae 1472144 1% 11Ageng e 516 4 10X J8a 1800 Fen f

s T ) ] ‘

Figure 10 — Graphic Display of Product Pile Data.
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Surge Piles

Surge Piles are inserted into the plant to control material flow at a specific location. The serge pile
allows only a specified percentage of the input to pass along to the output. To set this percentage,
double click on the serge pile and the box shown in Figure 11 (below) will appear.

Enter the desired percentage in the “% Surge Output” box
S AT o T T --f and select “OK.”
Desoipior - [0 o
F Disploy Resds =

ssweome S [

Figure 11 - Surge Pile
Window

Waste Piles

Waste Piles are inserted into the layout of plants to collect unwanted products. They do not have
properties. To view gradation data on the material entering the waste pile, double click on the
conveyor that is connected to that waste pile. If you require more detailed information on the
contents of waste piles, use a product pile instead and label it as a waste pile. This will enable you
to view information on the material in the pile.

Ed Waste Pie % The only modification that can be made to the waste pile is

the description and whether the results are displayed or

Descrios not. When the waste pile is double clicked, the box shown
el in Figure 12 appears.

Figure 12 - The "Edit Waste
Pile"” Window
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Simulation

The Integrity Checker

An integrity check can be performed on the model by selecting “Check Integrity” from the “Model”
menu. This will display all the connection errors that are found in the model if any. The following
is a list of errors that can occur along with explanation wherever necessary.

* “Unable to find any Raw Feed Piles.”

» Every model must have a raw input pile that defines the gradation, material weight, and
tonnage of the initial feed stream.

* "Only one Raw Feed Pile allowed.”
* CRUISER currently supports only one raw feed per project.

* “lInvalid Output Connection for Component <component name>"
¢ The component <component name> was not connected appropriately. An error message
specific to the component in question will be displayed following the above message, which
details where exactly the problem is.

Simulation

CRUISER has the ability to analyze both open and closed circuit models. Open-circuit models
involve straightforward analysis where each component is analyzed once. Closed-circuit models
however involve special modeling considerations as discussed in the conveyer section of this
user's guide. Closed-circuit models involve cycles where some of the crushed material is recycled
back to a previous stage of analysis.

Once the plant design is complete, the analysis can be initiated by selecting “Analyze Streams”
from the “Model” menu. This will start the integrity checker to make sure there are no errors
before performing the analysis. (To run the integrity checker without running the whole analysis,
select “Check Integrity” from the “Model” menu.) After the analysis is done the output window
displays all the results from the components that had the “Display Resuits” box checked. At this
point the stream gradation can be displayed at any conveyer by clicking on the desired conveyer
with the right mouse button. This will dump the stored results to the output window. The
gradation can also be viewed graphically by double clicking on the conveyer with the left mouse
button. Final product results can be examined through the Product Pile object.
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Appendix A

Itype setting for single impeller impact crushers

Model Model
3020 700 600 500 400 3020
3026 700 600 500 400 3026
3623 630 5390 510 470 430 390 3623
3633 630 590 510 470 430 390 3633
4325 650 600 550 500 450 400 4325
4336 650 600 550 500 . |}450 400 4336
4326 650 600 550 500 450 400 4326
4340 650 600 550 500 450 400 4340
5348 440 410 380 350 5348
ITYPE | |1 2 3 4 5 6 7 8 ITYPE
Itype setting for double impeller impact crushers

Model Model
2222 7001650 ||600 ||550 ||500 {]|450 |[400 2222
3042 7001650 ||600 ||550 ||500 ||450 | {400 3042
3645S 3645S
3645H 610 1580 |[550 [|520 |]490 |l460 ||430 ||400 ||370 3645H
4350S 610 /1580 [{550 ||520 ||490 | {460 ||430 |{400 |[370 4350S
4350H 530 |[505 | |480 |[455 ||430 ||405||380 ||4350H
5060H 530 ||5S0S |1480 ||455 [|430 }|405|[380 ||sos0H
ITYPE ||1 2 3 4 5 6 7 8 9 10 |11 ITYPE
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Appendix B

Calibration of the Screens to Actual Plant Operations

When selecting a user defined efficiency for a chosen deck within a screen object, the best
source of information would be through actual sampling from the screen being modeled. This can
be done by sampling the oversize stream of a given deck and knowing what screen sizes were
used on this deck. From the weight of the sample obtained it can be determined what percentage
of the entire gradation sample was in the oversize stream that actually should have been in the
undersize stream based on the screen sizes. This percentage of material is considered to be the
inefficiency of the deck being sampled. Therefore the efficiency of this deck is 100% minus the
percentage of undersize in the oversize stream. This efficiency value can then be relied upon as
the actual efficiency and can be entered into the model to enhance the accuracy of the analysis.
Repeating the above process.

Entering Additional Actual Crushing Gradations into CRUISER

It might be found that in some situations the accuracy of the final product gradation contains some
deviations from the actual observed results. Some of this error can be attributed to the gradations
the program uses based on certain types of crushers and their crusher setting. If desired, more
specific crushing data for a given crusher and setting can be determined in the field and added to
the program. To enter additional or replace existing gradation data for crushers the following
crusher specific data files can be edited by opening them using any given text editor (such as

Notepad).

Tvoe of Crusher Data File to Edit
Jaw Crusher jawi.dat

Cone Crusher conei.dat

Roll Crusher rolli.dat

Single Impeller Impact Breaker sinpacti.dat
Double Impeller Impact Breaker doupacti.dat
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Appendix C

Transferring Information to and from Excel Spreadsheets

To transfer information to and from an Excel spreadsheet, Click on the “Sample 1" column in
Figure 13, then, double click on that column with the right mouse button and the “Workbook
Designer” box (shown in Figure 13) will appear. From this screen, highlight the information that
you wish to transfer to the Excel document. Copy that information by selecting “Copy” from the
“Edit" menu. You can then paste the information into the Excel document of your choice by

opening that document and
selecting “Paste” from the
“Edit” menu. Information
can also be copied from an
Excel document into
CRUISER by following a
similar procedure. Select
and copy the desired
information from the Excel
document then switch to
CRUISER and open the
*Workbook Designer”
screen shown in Figure 8
(by following the procedure
detailed above). Paste the
information from Excel into
the “Workbook Designer®
and close the “Workbook
Designer,” then select “OK”
in the window shown in
Figure 6.

7 Formula One Woskbook Desgnes NEE|

Fle E@t View Data Sheet Fomal Qbect Heb

M_Eﬁ!ﬂ_
e L

Sieve Label|Sieve Size |Sample 1] - =
20 2| 00 R ' : —
16 18 0.53 i

14 14 . 1_05 S -

12 12 138

10 10 211

8 B 263

6 & 316

5 5 363

2112 45 a2

4 4 474

3-12 35 525

3 3 579

2.4 275 6322

212 25 684

2-1/4 225 737 .
[For Help vezz F1 MY

Figure 13 - Formula One Workbook Designer
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Appendix D

Sample Screens from the Options Menu.

errior o A &

— ___1 = _1 o R

% Passing I Sleves Label Sieves Size -~
I Desired % De ;s B Lt (inched —
eve esire esire L
Labels Pass. Low Pass. High || . 52 32‘_33"35
20 100.0 1000] |- 14 14.0000
16 100.0 1000 12 12.0000
14 100.0 1000} | . 10 10.0000
12 100.0 1000 |- 8 8.0000
10 100.0 1000 |- 6 6.0000
8 1000 1000 5 50000
6 100.0 R (1 s 1] I I 412 4.3000
5 1006 o] |- 4 4 0000
FRYy) 1000 10.0 3R 3.
4 100.0 1000 3 30000
312 1000 100.0 2-3/3 27500
K] 1000 1M0nle 2.172 2.5000
2-1/4 22500 -

o« | C"“‘J_f"‘_l ok | caea | Pt |

Figure 15 - This screen appears when Figure 14 - This screen appears w hen
"Sieves...” is selected from the "Desired..." is selected from the "Options
"QOptions" Menu. menu.
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CompuCrush
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Plant Layout - CompuCrush
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Raw Feed Configuration - CompuCrush
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Raw Feed Gradation Input (Chart) - CompuCrush
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Raw Feed Gradation Input (Graph) - CompuCrush
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Conveyor Configuration - CompuCrush
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Cone Crusher Configuration - CompuCrush
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Final Product Output (Chart Format) - CompuCrush
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Final Product Output (Graph Format % Retained) - CompuCrush

LGB i

-
Y W OW Y

-y

- e wo-

>
.

>
‘-
lf
»
L S
3
l‘.
o
i
®

k3
R
K
.
I.)
“‘.‘
t)\
5
=

I CompuCiush fos Wind, | BY Mice

ey, gyttt ey Wi ity 14—

199



Final Output (Graph Format - % Passing) - CompuCrush
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CRUISER
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Plant Layout - CRUISER
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Raw Feed Configuration — CRUISER
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Raw Feed Gradation Input (Chart) - CRUISER

= |8
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Screen Configuration - CRUISER
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Conveyor Output - CRUISER
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Cone Crusher Configuration - CRUISER
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Final Product Output (Chart F ormat) - CRUISER
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Final Product Output (Graph Format — Cumulative Retained) - CRUISER
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Final Product Output (Graph Format - % Passing) - CRUISER
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Gradation Comparison
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APPENDIX C
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University of
Alberta

Analysis of Crushing Plant
Operations

Data Collection Handbook | |



COMPANY : LOCATION :
DATE : ARTIST :

SITE LAYOUT

Provide an accurate diagram of the site layout and label each equipment - for conveyers
use numerical labels. Repeat the same drawing on the next page for the tester. Make sure
you label required test points.

221



Site Layout (Tester’s copy)
Required Information For Samples:

1.

Al ol A

Source of material (refer to labels in the diagram)
Date and time.

Gradation using as many sizes as possible.
Moisture content.

Density (example 100 ibs/cuft).

Weather Conditions (normal, rain,...)

222



CRUSHER INFORMATION

Label Type | Manufac | Age | Serial # | Setting Speed | Head & | Age of
(From turer Liner liners

diagram) Type
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SCREEN INFORMATION

Fill in screen information into tables provided on next two pages. Use
the following guidelines:

A : Inclination - Possible values are

1) Horizontal, High Speed Sand, 2) Horizontal, Low Amplitude Stroke, 3) Horizontal,

Normal Amplitude Stroke, 4) 5°, 5) 10° 6) 15°, 7) 20°, 8) 25°, or 9) 30°

B: Material Condition - Possible values are :

1) Moist or dirty stone, 2) Moist ore from underground; coal, 3) Dry quarried material,

4% or less moisture; crushed rock and gravel, or 4) Dry uncrushed material, 6% or less

moisture; hot dry material from drier; gravel - clean, not cemented; wet screening with

sprays, 1’’ material.

C: Slot Length/Width Ratio- Possible values are

1) 2:1, 3) 3:1, 4) 4:1, 5) 5:1, 6) 6:1, 7) more than 6:1, 8) Square, or 9) Round

D: Width x Length -

E: Opening Size -

F: Percent Open Area - Possible values are the following:

1) 30% - Very Heavy Wire, 2) 40% - Heavy Wire, 3) 50% - Standard Wire, 4) 60% -
Light Wire, or 4) 70% - Very Light Wire
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D

Deck | Split | C

A

Label

(From

diagram)

225



CONVEYER INFORMATION

Label Length- Axle Time for Five | Production Rate
(From Axle to Axle | diameter revolutions (tph)
diagram) | (feet) (inches) (min)
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Site Report

Date Collected
Date Tested
Tester

Temperature

To Do:
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CHANGES IN OPERATIONS

Verify all equipment information. Comment on any changes in site layout, crusher
settings, screen sizes, etc. Verify dates of changes.
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Material Information

Loader Analysis. 10 minute study information:

Dump Number | Bucket Capacity | Dump Number | Bucket Capacity
1 6

2 7

3 8

4 9

5 10

Struck Bucket Capacity: Time at last dump:

Production rate according to loader time studies:

Production Rate Analysis
Production rate according to weight scale: (1 min

intervals):

Average Rate(tph):

Conveyer Analysis

Conveyer Label

Length
of Strip
(feet)

Sample
Pale
Weight

(Ib)

Volumetric
Pale
Weight

Distance
From
Top
(cm)

Density

(Ib/ft3)

TPH
Calculated

Pitrun

(Ib)

Sand

Screened Pitrun

Coarse Feed

Coarse Return

Fine Feed

Fine Returmn

Product

Volumetric Pail:
weight (empty): 25 Ib
diameter = 0.8399 feet

Regular Pail weight (empty): 2.51b

height = 0.869 feet

volume = 0.48169 cubic feet

229




SIEVE TESTS

VERIFY THAT ALL REQUIRED INFORMATION
HAS BEEN SUPPLIED

Number of samples:
Sample locations:
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Input Gradation (20mm Road Crush)
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nnlnput - 1
Option Explicit

Private Declare Function crush Lib "numrec.dll® (nstin As Single, Byval sset As Single, nsout A

s Single, ByVal nctype As Single, ByVal itype As Single. SIZES As Single, ByVal nsieve As Single
} As Integer

‘Description: generates random #s, utilizes the °*CRUSH® routine and creates NN input and cutput
for training purposes

‘Input: # of different random combinations to be sent to the °CRUSH® routine for all ten crushe

r settings

*Output: NN input and NN output for training purposes

‘Side Effects: the nstin and nscut arrays are passed to other functions and change for each set
of different random numbers °

Private Sub cmdrun_Click()

* Declazxe Variables
Dim nstin(0 To 41) As Single
Dim sset As Single
Dim nsout{0 To 41) As Single
Dim ntype As Single
Dim itype As Single
Din nsizes(0 To 41) As Single
Dim nsieve As Single
Dim result As Integer
Dim i As Integer
Dim j As Integer
Cim k As Integer
Cim 1 As Integer
Dix Sum As Single
Dim MyDb As Database
Dim SezArray(0 To 10) As Single

Inizialize Parameters (leave ntype as 3(ie cone crusher) and ityre as 1)

‘sset = Val(txtset.Text)
ntyce = 3
itype = 1

nsieve = 39

Inicialize the Sieve Size Array

20
16
14
12
10

nsizes(l)
nsizes(2)
nsizes(3)
nsizes(4)
nsizes(5S)
nsizes(6)
nsizes(7)
nsizes(8)
nsizes(9)
nsizes(10)
nsizes(11)
nsizes(12)
nsizes(13)
nsizes(14)
nsizes(15)
nsizes(16)
nsizes(17)
nsizes(18)
nsizes(19)
nsizes (20)
nsizes(21)
nsizes(22)
nsizes(23)

LI T LI T IO O T T T}
hunom
. wn
w
(%]

e
[SEV RS
w wn

.

HEEMMONND WL,
. .
[ SRV N

wv

1.11111

0.875
0.75
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nsizes(24) = 0.6875
nsizes(25) = 0.625
nsizes(26) = 0.562S
nsizes(27) = 0.5
nsizes{28) = 0.4375
nsizes(29) = 0.375
nsizes(30) = 0.3125
nsizes(31) = 0.25
*all the imperial °M sizes® come after this line
nsizes(32) = 0.187
asizes(33) = 0.132
nsizes(34) = 0.0787
nsizes(35) = 0.0469
nsizes(36) = 0.0234
nsizes(37) = 0.0117
nsizes(38) = 0.0059
nsizes(39) = 0.0029

'set the number of data sets to be created
'k = Val(txtnumbset.Text)
‘For 1 =1 To k

‘set the database for data storage
Set MyDb = DBEngine.Wo:kspaces(O).OpenDatabase('c:\civilSS\civSOl\proje:c\nndata.mdb‘)

‘initializing the crusher setting array with the 10 settings available in the *CRUSH® routine

SetArray(l) = 2
SetArray(2) = 1.75
SetArray(3) = 1.5
Setarray(4) = 1.25
SetArray(S) =1
SetArray(6) = 0.875
SetArray(7) = 0.7S
SatArray(8) = 0.5
SetArray(9) = 0.437S

SetArray(10) = 0.375

‘set the number of data sets to be created

'se= k to 500 when actual data is to be cktained (for a total cf S000 irmput and €000 cutput gTa
dations)

k = 500

For 1 =1 To k

‘obraining random numbers for %retained for each sieve
For i = 1 To 40
nstin(i) = 1000 * Rnd()
Next

‘data is sent to a temperary table to sort the data
DataTemp nstin, nsizes, 1, MyDb

'eranslate the Sretained to weight retained on each sieve

nstin(l) = nstin(l)

nstin(2) = nstin(2) - astin(l)

nstin(3) = nstin(3} - nstin(2) - nstin(l})

nstin(4) = nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(S) = nstin(5) - astin(4} - nstin(3) - nstin(2) - nstin(l}

nscin(6) = nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(l)

nscin(7) = nstinl(7) - astin(6} - nstinn(5) - nstin(4) - nscin(3) - nstin(2) - nstin(l)

nstin(8) = nstin(8) - nstin(7) - nstin(6} - nstin(5) - nstin(4) - nstin(3) - nstin(2) - ost
in(l)

nscin(9) = nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S) - nstin(4) - nscin(3} - nst

in(2) - nstin(l)

nstin(l0) = nscin(l10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S) - nstin(4} - n
szin(3) - nstin(2) - nstin(l)

astin(ll) = nstin(ll) - nstin(10) - astin(9) - nscin(8) - nstin(7) - nstin(6) - nstin(5) -
nstin(4) - nstin(3) - nstin(2) - nstin(l}
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nstin(12) = nstin(12) - nstin(ll) - nastin(l0) - anstin(9) - mstin(8) - nstin(7) - nstin(§) -
nstin(S) - nstin(4) - nstin(3) - astin(2) - astin(l)

astin(13) = nstin(13) - nstin(l2) - nstin(ll) - nstin(10) - nstin(9) - nstin(8) - nstin(7)
- nstin(6) - nstin(S) - nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(1l4) = nstin(14) - nstin(13) - nstin(12) - nstin(ll) - nstin(10) - nstin(9) - nstin(8)
- astin(7) - nstin(6) - nstin{5) - nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(l5) = nstin(15) - nstin(14) - nstin(13) - nstin(12) - nstin(ll) - astin(10) - nstin(9
) - nstin(8) - nstin(7) - nstin(6) - nstin(S) - nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(l6) = nstin(1l6) - nstin(1lS) - nstin(1l4) - nstin(13) - nscin(12) - nstin(ll) - nstin{l
0) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S) - nstin(4) - nstin(3) - nstin(2) - ns
tin(l)

nstin(l7) = nstin(17) - nstin(16) - nstin(1S) - nstin(l4) - nstin(13) - nstin(l2) - nstin(l
1} - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S) - nstin(4) - nstin(3) - n
stin(2) - nstin(l)

nstin(l8) = nstin(i8) - nstin(l7) - nstin(l6) - nstin(15) - nstin(14) - astin(13) - nstin(l
2) - mstin(ll) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S5) - nstin(4) -
nstin(3) - nstin(2) - nstin(l)

nstin(1l%) = nstin(19) - nstin(18) - nstin(l7) - nstin(16) - nstin(lS) - nstin(14) - astin(l
3} - mstin(12) - nstin(1l) - nstia(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(5) -
nstin(4) - nstin(3) - nstin(2) - nstin(l)

astin(20) = nstin(20) - nstin(19) - nstin(18) - nstin(17) - nstin(16) - nstin(iS) - astin(i
4} - nstin(13) - nstin(12) - nstin(1ll) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6)
- nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(21l) = nstin(21) - nstin(20) - nstin(l9) - nstin(18) - nstin(1l7) - nstin(l6) - astin(l

S} - mstin(1l4) - nstin(13) - nstin(l2) - nstin(ll) - nstin(l0) - nstia(9) - nscin(8) - nstia(7)
- nstin(6) - nstin(S) - astin(4) - nstin(3) - nstin(2} - astin{l)

nstin(22) = nstin(22) - nstin(21) - nstin(20) - nstin(19) - nstin(18) - nstin(l7) - nstin(l
6) - nstin(lS) - nstin(l4) - nstin(13) - nmstin(1l2) - nstin(ll) - nstin(10) - nstin(9) - nstin(s
) - nstin(7) - nstin(6) - nstin(5) - nstin(4) - nstin{3) - nstin(2) - nstin(l)

nstin(23) = nstin(23) - nstin(22) - nstin(2l) - nstin(20) - nstin(1l9) - nstzin(18) - mstin(l
7) - nstin(l6) - nstin(1lS) - nstia(l4) - astin(13) - nstin(l2) - nstin(ll) - nmszin(l0) - nscin(
9) - mstin(8) - nstin(7) - nstin(6) - nstin{S) - nstin(4) - nstin(3) - nstin(2) - astia(l)

nstin(24) = tin(24) - nstin(23) - nstin(22) - nstin(2l) - nstin(20) - nscia(l9) - mstin(l
8) - mstin(l7} - nstin(16) - nstin(1lS) - nstin(1l4) - mstia(lld) - mscin(l2) - nsctia(ll) - nstin
10} - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S) - nstin(4) - nstin(3) - mszin(2) - n
stin(l)

nstin(25) = tin(2S) - nstin(24) - nmstin(23) - nstin(22) - nstin(2l) - nstin(20) - mstia(l
$) - mstin(l8) - nstin(l7) - nstin(l6) - nrstin(lS) - nstin(l4) - nstin(i3} - nstin(l2) - nscin
11) - mstin(l0) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S) - nstin(4) - nssin(3d) -
nstin(2) - mstin(l)

tin(26) = nstin(26) - nstin(25) - nstin(24) - nstin(23) - nstin(22) - nstin(2l) - nsctin(2

0) - nstin(l9) - nstin(18) - nstin(l7) - astin(i6) - mstin{lS) - nstin(l4) - nstin(i3d) - nstin
12) - nstin(ll) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstirn(S) - nstin{4) -
n£stin(ld) - nstin(2) - nstin(l)

nstin(27) = nstin(27) - nstin(26) - nstin(25) - nstin(24) - nstin(23) - nscin(22) - mstin(2
1) - nstin(20) - nstin(l9) - nstin(l8) - nstin(l7?) - nstin(ié) - nstin(lS) - nstin(l4) - nstial
13) - mstin(l2} - nstin(ll) - nstin{(10) - nstia(9) - nstin(8) - nstin(7) - nstin(6) - nscin(5)
- mstin({4) - mstin(3) - mstin(2) - nmstin(l)

nstin(28) = nstin(28) - nstin(27) - nstin(26) - nstin(25) - astin(24) - nstin(23) - nstin(2
2) - nstin(2l) - nstin(20) - nstin(19) - nstin(18) - nstin(l7) - nstin(l6) - nstin(lS) - nstia{
14) - nstin(13}) - nstin(l2) - astin(ll) - nszin(10) - nstin(9) - nstin(8) - nstin(7) - nstia(6)
- nstin(S) - nstin(4) - nstia(3) - nstin(2) - nstin(l)

rstia(29) = nstin(29) - nstin(28) - nstir(27) - nstin(26) - nstin(25) - nstin(24) - ostin(2
3) - mstin(22) - nstin(2l) - nstin(20) - nstin(19) - anstin(18) - nstin(l7) - nstin(l6) - nstin(
15) - nstin(14) - nstin(l3) - nstin(l2) - nstin(ll) - nstin(10) - astin(9) - nstin(8) - nstin(7
} - mstin(6) - nstin(S) =~ nstin(4) - nscin(3) - nstin(2) - nstin(l)

nstin(30) = nstin(30) - nstin(29) - nstin(28) - nstin(27) - nstin(26} - nstin(25) - nstin(2
s) - nsein(23) - nstin(22) - nstia(2l) - nstin(20) - nstin{(19) - nstin(18) - nstin(l7) - nstinf
16} - nstin(1S) - nstin(14) - nstin(13) - nstin(12) - nstin(ll) - nscin(10) - astin(9) - nstinf(
2} - nstin(7) - nstin(6) - nstin(5) - nstin{4) - nstin(3) - nstin(2) - nstin(l})

astin(3l) = nstin(31l) - nstin(30) - nstin(29) - nstin(28) - nstin(27) - nstin(26) - nscin(2
3) - nscin(24) - nstin(23) - nstin(22) - nstin(2l) - nstin(20) - nstin(19) - nstin(l18) - nstinf
<7) - nstin(l6) - nstin(lS) - nstin(l4) - nstin(13) - nstin(12) - nstin(ll) - nstin(10) - nstin
{8} - nstin(8) - nscin(7) - nstin(6) - nstin(S) - astin(4) - nstin(3} - nstin(2) - nstin(l)

nstin(32) = nstin(32) - nstin(31l) -~ nstin(30) - nstin(29) - nstin(28) - nstin(27) - nstin(2
6§} - nastin(25) - nstin(24) - nstin(23) - nstin(22) - nstin(21) - ascin(20) - nstin(19) - nstin(
18) - nstin(l7) - nstin(16)} - nstin(15) - nstin(14) - nstin(13) - nstin(12) - nstin(ll) - nstin
(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S) - nstin(4) - nstin(3) - nstin(2) -

324



nninput - 4

astin(l)

astin(33) = nstin(33}) - nstin(32) - astin(31) - nstin(30) - nstin(29) - nstin(28) - nstin(2
7) - nstin(26) - astin(2S) - nstin(24) - astin(23) - nstin(22) - nstin(2l) - nstin(20) - nscin{
19) - nstin(18) - nstin(l17) - nstin(l6]} - nstin(lS) - astin(1l4) - nstin(l3) - nstin(l2) - nstin
{11) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S)} - nstin(4) - nstin(3) -
nstin(2) - astin(l)

nstin(34) = nstin(34) - nstin(33) - nstin(32) - nstin(31l) - nstin(30) - nstin(29) - nstin(2
8) - nstin(27) - astin(26) - nstin(25) ~ nstin(24) - nstin(23) - nstin{22) - nstin(2l) - nstin(
20) - nstin(l9) - nstin(l8) - nstin(l7) - nstin(16) - nstin(1S} - nstin(14) - nstin(13) - nstin
(12} - nstin(ll) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S) - nstin(4}
- nstin(3) - nstin(2) - nstin(l)

nstin(35) = nstin(3S) - anstin(34) - nstin(33) - nstin(32) - astin(31) - nstin(30} - nscin(2
9) - nstin(28) - nstin(27) - anstin(26) - nstin(25) - nstin(24) - nstin(23) - nstin(22) - nstin(
21l) - nstin(20) - nstin(l9) - nstin(18) - nstin(l7) - nstin(l6) - nstin(l5) - nstin(14) - nstin
(13) - nstin(12) - astin(ll) - nstin(10) - nstin(9} - nstin(8) - nstin(7) - nstin(6) - nstin(S)
- nstin(4) - astin(3) - astin(2) - nstin(l)

nstin(36) = nstin(36) - nstin(3S) - nstin(34) - nstin(33) - nstin(32) -~ nstin(31l) - astin(3
0} - nstin(29) - nstin(28) - nstin(27) - astin(26) - nstin(2S) - nstin(24) - nstin(23) - nstinl(
22) - nstin(21) - nstin(20) - nstin(l9) - nstin{l18) - nstin(l7) - nstin(16) - nstin(1S) - nstin
(14) - nstin(13} - nstin(l2) - nstin(ll) - nstin(1l0) - astin(9) - astin(8) - nstin(7) -~ ostin(6
} - nstin(S) - nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(37) = astin{37) - nstin(36) - nstin(35) - nstin(34) - nstin(33) - nstin(32) - nstin(3
1} - nstin(30) - nstin(29) - nstin(28) - nstin(27) - nstin(26) - nstin(25) - astin(24) - nstin(
23) - nstin(22} - nstin(2l) - nstin(20) - nstin(19) - nstin(18) - nstin(l7) - nstin(l6) - nstin
(15) - nstin(14) - nstin(13) - nstin(l2) - ascin(ll) - nstin(10) - nstin(9) - nstin(8) - nstin(
7) - nstin(6) - nstin(S) - nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(38) = nstin(38) - nstin(37) - astin(36) - nstin(35) - nstin(34) - nstin(33) - nstin(3

2) - nstin{3l) - mrstin(30) - nstin(29) - nstin(28) - nstin(27) - nstin(26) - astin(2S) - nstin(
24) - nstin(23) - nstin(22) - nstin(2l} - nstin(20) - nstin(19) - nstin(18) - nstin(l17} - nstin
(16) - nstin(15) - mstin(14) - nstin(l3) - nstin(i2) - astin(1ll) - nstin(i0) - nszin(9) - nstin
(8) - nstin(7) - nstin(6) - nstin(S) - nstin(4) - nstin(3) - nscin(2) - nsctin(l)

nstin(39) = nscin(39) - nstin(38) - nstin(37) - nstin(36) - nstin(35) - mnstin(34) - nstin(3
3) - mstin(32) - mstin(3l) - nstin(30) - astin(29) - nsctin(28) - nstin(27) - nstin(26) - nstin(
25) - mstin(24) - nstin(23) - nstin(22) - nstin(2l) - nstin(20) - nstin(l9) - nstin(l8) - nstin
(17) - nstin(16) - mstin(l5) - nstin(l4) - mstin(l3) - nstin(l2) - mstin(ll) - nstin(l0) - nsti
n{9) - nstin(8) - nstin(7) - nstin(6) - nstin(S} - nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(40) = nstin(40) - nstin(39) - astin(38) - nstin(l7) - nstin(36) - nstin(3s5) - nstin(3
4) - nstin(33) - nstin(32) - nstin(3l) - nstin(30) - nstin(29) - astin(28) - nstin(27) - mstinl
2§} - nstin(25) - nstir(24) - nstin(23) - nstin(22) - astin(2l) - nstin(20) - nstin(l9) - nstin
(18) - nstin(l7) - nstin(l6) - nstin(l5) - nstin(14) - mstin(13) - nstin(l2) - nstin(ll) - nsti

n(l0) - nstin(9%) - nstin(8) - nstin(7) - nstin(6) - nstin(S5) - mstin(4) - nstin(l) - nstin(2) -
nstin(l)

‘send *nstin® (input data) to the database input takle here in the form cf weight retained ¢
n each sieve size

DataInput nstin, nsizes, 1, MyDb

‘to oktain several cutput data based on crusher settings fcr a given ingut
For j = 1 To 10

sset = SetArray(j)

‘call the crush routine

result = crushi{nstin(0), sset, nsout(0), ntype, itype, nsizes(0). nsieve)

‘the next three lines are for checking why the °*CRUSH® routine does nct work when debug

‘result = 0 success
* -1,-2,-3 errors
‘MsgBox result

‘send °*nsout® to the database output table here in the form of weight retained on each
sieve size
DataOutput nsout, nsizes, sset, 1, Mybb

Next
Next
¥sgBox °*Data processing is complete !°
Unload nnInput
End Sub
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Option Explicit

‘Descripticn: stores the data processed by the "CRUSH® routine in the form of weight retained o
n each sieve size

*Iaput: nsout array cf output, # of sieve sizes, # of samples to be generated, database locatio
n

‘Output: Fills in the OUTPUT table in an ACCESS database with the ocutput training data

‘Side Effects: no global variables are changed by this functicn

Function DataOutput(nsout() As Single, nsizes() As Single, sset As Single, 1 As Integer, MyDb A
s Database)

‘declare variables

Dim RSOutput As Recordset
Dim j As Integer

‘open the temp table
Set RSOutput = MyDb.OpenRecordset (°Output®, dbOpenTable)

‘now add the processed data to the cutput table
For j = 1 To 40
RSOutput.AddNew
RSOuzput! (Sampleé#] 1
RSOutput! [Setting] sset
RSOurput! (Size] = nsizes())
RSOutput! (Retained] = nsout(j)
RSOutput.Update
Next

‘close the table
RSCutput.Close

Erd Function

‘Description: stores the sorted data that has been converted into weight retained cn each sieve
‘Input: nstin arrayof input, # of sieve sizes, # of samples to be generated, database location
*Qurput: Fills in the INPUT table in an ACCESS database with the NN training data

"Side Effects: no global variables are changed by this function

Functicn DataInput(nstin() As Single, nsizes() As Single, 1 As Integer, MyDb As Database)

‘declare variables

Dim RSInput As Recordset
Dim i As Integer

Dim j As Integer

‘cpen the input table
Set RSInput = MyDb.OpenRecordset(*Input®, dblOpenTable)

‘now add the input

For j = 1 To 40
RSInput.hddNew
RSInput! (Sample#] = 1
RSInput! [Size] = nsizes(j)
RSInput! [(Retained] = nstin(j)
RSInput.Update

Next

‘close the table
ESInput.Close

End Function

‘Description: stores the random numbers generated for each sample and sieve size X
‘Inpuc: nstin arrayof input, # of sieve sizes, & of samples to be generated, database location
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*Output: Fills in the TEMP table in an ACCESS database with the random #s
*Side Effects: no global variables are changed by this function

Function DataTemp(ByRef nstin() As Single, ByRef nsizes() As Single, 1 As Integer, MyDb As Data
base)

*declare variables

Dim RSTemporary As Recordset
Dim i As Integer

Dim j As Integer

Dim SQLtemp As String

Dim numcount As Integer

‘open the temp table
Set RSTemporary = MyDb.CpenRecordset(“*Temporary®. dbOpenTable)

‘now add the random number input

For j = 1 To 40
RSTemporary .AddNew
RSTemporary! (Sample#] = 1
RSTemporary!(Size] = nsizes(j)
RSTemporary![Retained] = nstin(j)
RSTemporary .Update

Next

RSTemporary.Close
*sert the data in ACCESS

SQLtexp = °"SELECT DISTINCTROW Texmporary. [Rezained] -
SQLtecp = SQLtemp & "From Temporary Where Temporary. [sazple#]= ° & 1
SQLtexp = SQLtexmp & * ORDER BY Texporary. [Retained];*

Set RSTemporary = MyDb.OpenRecordset (SQLtemp, dtOpenlymaset)
RSTemporary.MoveFirst

RSTexmperary .McovelLast

numcount = RSTemporary.RecordCount

RSTemporary.MoveFirst

*send the data back to VB

For j = 1 To numcount

nstin(j) = RSTexmporary! (Retained]

If j < numcount - 1 Then RSTexporary.McveNex:t
Next

‘close the table

RSTemporary.Close
End Function
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option Explicit

Private Declare Function crush Lib "numrec.dll® (nstin As Single, ByVal sset As
single, nsout As Single, ByVal ntype As Single, ByVal itype As Single, SIZES As
Single, ByVal nsieve As Single) As Integer

Private Sub cmdrun Click()

‘'This version of the program is for a Cone Crusher

'‘Description: generates random numbers, utilizes the "CRUSH" routine, and create
s NN input and output for training and testing purposes

"Input: a number of different random combinations to be sent to the "CRUSH" rout
ine for all ten crusher settings

'Output: NN input and NN output for training and testing purposes

‘side Effects: the nstin and nsout arrays are passed to other functions and chan
ge for each set of different random numbers

' Declare Variables
Dim nstin(0 To 41) As Single
Dim sset As Single
Dim nsout(0 To 41) As Single
Dim ntype As Single
Dim itype As Single
Dim nsizes(0 To 41) As Single
Dim nsieve As Single
Dim result As Integer
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer
Dim Sum As Single
Dim MyDB As Database
Dim SetArray (0 To 10) As Single

Dim LowerBound As Integer
Dim UpperBound As Integer
Dim NumSamples As Integer

‘Dim m As Integer
‘Dim n As Integer

' Initialize the Boundaries and Number of Samples Desired
LowerBound = 1
UpperBound = 41
NumSamples = 0
‘where m is equal to the number of samples for each gradient
‘m = 20

' Initialize Parameters (leave ntype and itype as 1)

' Ntype: 1=Jaw, 2=Roll, 3=Cone, 4=Single Impeller, S=Double Impeller
'sset = Val(txtset.Text)
ntype = 3
itype = 1
nsieve = 39

' Initialize the Sieve Size Array

nsizes(l) = 20
nsizes(2) = 16
nsizes(3) = 14
nsizes(4) = 12
nsizes(5) = 10
nsizes(6) = 8
nsizes(7) = 6
nsizes(8) = 5
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nsizes(9) = 4.5

nsizes(10) =
nsizes(11l) = 3.5
nsizes(12) = 3
nsizes(13) = 2.75
nsizes(14) = 2.5
nsizes(15) = 2.25
nsizes(16) = 2
nsizes(17) = 1.75
nsizes(18) = 1.5
nsizes(19) = 1.25
nsizes(20) = 1.11111
nsizes(21) = 1
nsizes(22) = 0.875
nsizes(23) = 0.75
nsizes(24) = 0.6875
nsizes(25) = 0.625
nsizes(26) = 0.5625
nsizes(27) = 0.5
nsizes(28) = 0.4375
nsizes(29) = 0.375
nsizes(30) = 0.3125
nsizes(31) = 0.25
tall the imperial "M sizes" come after this line
nsizes(32) = 0.187
nsizes(33) = 0.132
nsizes(34) = 0.0787
nsizes(35) = 0.0469
nsizes(36) = 0.0234
nsizes(37) = 0.0117
nsizes(38) = 0.0059
nsizes(39) = 0.0029

‘nsizes (40) = 0.000001

‘set the number of data sets to be created
'k = Val(txtnumbset.Text)
'For 1 = 1 To k

‘set the database for data storage .

‘*Set MyDb = DBEngine.Workspaces(O).0penDatabase("d:\the51s\vbaccess\generate\nnd
ata.mdb")

Set MyDB = DBEngine.Workspaces(O).OpenDatabase(“d:\thesis\vbaccess\generate\nnda
ta3b.mdb")

'‘MsgBox "Passed"”

tinitializing the setting array

SetArray(l) = 2

SetArray(2) = 1.75
SetArray(3) = 1.5
SetArray(4) = 1.25
SetArray(5) =1
SetArray(6) = 0.875
SetArray(7) = 0.75
SetArray(8) = 0.5
SetArray(9) = 0.4375

SetArray(10) = 0.375

tget the number of data sets to be created
'set k to 500 when actual data is to be obtained . .
‘set k to 651* the number of samples desired over one spectrum of gradation orie

ntations(say 20,s0 14000)
'k = 14000
‘For n=1Tom

‘k = 14000
k = 100
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‘I am expecting 13020 samples to be generated
For 1 = 1 To k
‘obtaining random numbers for %retained for each sieve
For i = 1 To 40
nstin(i) = 1000 * Rnd()
Next

'data is sent to a temporary table to sort the data
DataTemp nstin, nsizes, 1, MyDB

'translate the cumulative weight retained to actual weight retained on each siev
e

nstin(l) = nstin(1)

nstin(2) = nstin(2) - nstin(1)

nstin(3) = nstin(3) - nstin(2) - nstin(l)

nstin(4) = nstin(4) - nstin(3) - nstin(2) - nstin(1)

nstin(5) = nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(6) = nstin(6) - nstin(S) - nstin(4) - nstin(3) - nstin(2) - nstin(1l)

ns?i?(7) = nstin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) -
nstin(1l

nstin(8) = nstin(8) - nstin(7) nstin(6) - nstin(5) - nstin(4) - nstin(3) -
nstin(2) - nstin(l)

nstin(9) = nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(5) - nstin(4) -
nstin(3) - nstin(2) - nstin(1l)

nstin(10) = nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(s)
- nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(11l) = nstin(l1) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(é
) - nstin(S5) - nstin(4) - nstin(3) - nstin(2) - nstin(l)

nstin(12) = nstin(l2) - nstin(11l) - nstin(10) - nstin(9) - nstin(8) - nstin(
7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(1l)

nstin(13) = nstin(13) - nstin(l2) - nstin(1l) - nstin(10) - nstin(9) - nstin
(8) - nstin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(1l)

nstin(14) = nstin(14) - nstin(13) - nstin(12) - nstin(11l) - nstin(10) - nsti
?(9) - Qs%i?(s) - nstin(7) - nstin(6) - nstin(S) - nstin(4) - nstin(3) - nstin(2

- nstin(l

nstin(15) = nstin(15) - nstin(14) - nstin(13) - nstin(12) - nstin(1ll) - nsti
n(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(S5) - nstin(4) - nstin(
3) - nstin(2) - nstin(1l)

nstin(16) = nstin(16) - nstin(15) - nstin(14) - nstin(13) - nstin(12) - nsti
n(11) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(5) - nstin
(4) - nstin(3) - nstin(2) - nstin(1)

nstin(17) = nstin(17) - nstin(16) - nstin(15) - nstin(14) - nstin(13) - nsti
n(12) - nstin(11) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nsti
n(5) - nstin(4) - nstin(3) - nstin(2) - nstin(1) .

nstin(18) = nstin(18) - nstin(17) - nstin(16) - nstin(15) - nstin(l4) - nsti
n(l3) - nstin(12) - nstin(il) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nst
in(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(1l)

nstin(19) = nstin(19) - nstin(18) - nstin(17) - nstin(16) - nstin(15) - nsti
n(14) - nstin(13) - nstin(12) - nstin(l1) - nstin(10) - nstin(9) - nstin(8) - ns
tin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(1l) X

nstin(20) = nstin(20) - nstin(19) - nstin(18) - nstin(17) - nstin(16) - nsti
n(15) - nstin(14) - nstin(13) - nstin(12) - nstin(1l) ~ nstin(10) - nstin(9) - n
s%i?(s) - nstin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nsti
n(l

nstin(21) = nstin(21) - nstin(20) - nstin(19) - nstin(18) - nstin(17) - nsti
n(16) - nstin(15) - nstin(14) - nstin(13) - nstin(12) - nstin(11) -~ nstin(10) -
nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nst
in(2) - nstin(1) . .

nstin(22) = nstin(22) - nstin(21) - nstin(20) - nstin(19) - nstin(18) - nsti
n(17) - nstin(16) - nstin(15) - nstin(14) - nstin(13) - nstin(12) - nstin(11) -
nstin(10) ~ nstin(9) - nstin(8) =~ nstin(7) - nstin(6) - nstin(S5) - nstin(4) - ns
tin(3) - nstin(2) - nstin(1) .

nstin(23) = nstin(23) - nstin(22) - nstin(21) - nstin(20) ~ nstin(19) - nsti
n(18) - nstin(17) - nstin(16) - nstin(15) - nstin(14) - nstin(13) - nstin(12) -
nstin(11l) - nstin(10) -~ nstin(9) - nstin(8) - nstin(7) - nstin(6} - nstin(S) - n
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stin(4) - nstin(3) - nstin(2) - nstin(l)
nstin(24) = nstin(24) - nstin(23) - nstin(22) - nstin(21) - nstin(20) - nsti
n(19) - nstin(18) - nstin(17) - nstin(16) - nstin(15) - nstin(14) - nstin(13) -
nstin(12) - nstin(1l) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) -
nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(1) .
nstin(25) = nstin(25) - nstin(24) ~ nstin(23) - nstin(22) - nstin(21) - nsti
n(20) - nstin(19) - nstin(18) - nstin(17) - nstin(16) - nstin(15) - nstin(14) -
nstin(13) - nstin(12) - nstin(11) - nstin(10) - nstin(9) - nstin(8) - nstin(7) -
nstin(6) - nstin(S) - nstin(4) - nstin(3) - nstin(2) - nstin(l)
nstin(26) = nstin(26) - nstin(25) - nstin(24) - nstin(23) - nstin(22) - nsti
n(21) - nstin(20) - nstin(19) - nstin(18) - nstin(17) - nstin(16) - nstin(15) -
nstin(14) - nstin(13) - nstin(12) - nstin(11) - nstin(10) - nstin(9) - nstin(s8)
- nstin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(l) .
nstin(27) = nstin(27) - nstin(26) - nstin(25) - nstin(24) - nstin(23) - nsti
n(22) - nstin(21) - nstin(20) - nstin(19) - nstin(18) - nstin(17) - nstin(16) -
nstin(15) - nstin(14) - nstin(13) - nstin(12) - nstin(11) - nstin(10) - nstin(9)
-tqs%i?(S) - nstin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) -
nstin(1l
nstin(28) = nstin(28) -~ nstin(27) - nstin(26) - nstin(25) - nstin(24) - nsti
n(23) - nstin(22) - nstin(21) - nstin(20) - nstin(19) - nstin(18) - nstin(17) -
nstin(16) - nstin(15) - nstin(14) - nstin(13) - nstin(12) - nstin(1l) - nstin(10
) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) -
nstin(2) - nstin(1)
nstin(29) = nstin(29) - nstin(28) - nstin(27) - nstin(26) - nstin(25) - nsti
n(24) - nstin(23) - nstin(22) - nstin(21) - nstin(20) - nstin(19) - nstin(18) -
nstin(17) - nstin(16) - nstin(15) - nstin(14) - nstin(13) - nstin(12) - nstin(ll
) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6} - nstin(5) - nstin(4)
~ nstin(3) - nstin(2) - nstin(1) .
nstin(30) = nstin(30) - nstin(29) - nstin(28) - nstin(27) - nstin(26) - nsti
n(25) - nstin(24) - nstin(23) - nstin(22) - nstin(21) - nstin(20) - nstin(19) -
nstin(18) - nstin(17) - nstin(16) - nstin(1i5) - nstin(14) - nstin(13) - nstin(12
) - nstin(l1l) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(s)
- nstin(4) - nstin(3) ~ nstin(2) - nstin(l) .
nstin(31) = nstin(31) - nstin(30) - nstin(29) - nstin(28) - nstin(27) - nsti
n(26) - nstin(25) - nstin(24) - nstin(23) - nstin(22) - nstin(21) - nstin(20) -
nstin(19) ~ nstin(18) - nstin(17) - nstin(16) - nstin(15) - nstin(14) - nstin(13
) - nstin(12) - nstin(il) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(é
) - nstin(S) - nstin(4) - nstin(3) - nstin(2) - nstin(1)
nstin(32) = nstin(32) - nstin(31) - nstin(30) - nstin(29) - nstin(28) - nsti
n(27) - nstin(26) - nstin(25) - nstin(24) - nstin(23) - nstin(22) - nstin(21) -
nstin(20) - nstin(19) - nstin(18) - nstin(17) - nstin(16) - nstin(15) - nstin(14
) - nstin(13) - nstin(12) - nstin(11) - nstin(10) - nstin(9) - nstin(8) - nstin(
7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(1)
nstin(33) = nstin(33) - nstin(32) - nstin(31) - nstin(30) - nstin(29) - nsti
n(28) - nstin(27) - nstin(26) - nstin(25) - nstin(24) - nstin(23) - nstin(22) -
nstin(21} - nstin(20) - nstin(19) - nstin(18) - nstin(17) -~ nstin(16) - nstin(15
) - nstin(14) - nstin(13) - nstin(12) - nstin(11l) - nstin(10) - nstin(9) - nstin
(8) - nstin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(l)
nstin(34) = nstin(34) - nstin(33) - nstin(32) - nstin(31l) - nstin(30) - nsti
n(29) - nstin(28) - nstin(27) - nstin(26) - nstin(25) - nstin(24) - nstin(23) -
nstin(22) - nstin(21) - nstin(20) - nstin(19) - nstin(18) - nstin(17) - nstin(16
) - nstin(15) - nstin(14) - nstin(13) - nstin(12) - nstin(11) - nstin(10) - nsti
?(9) -tgs%i?(s) - nstin(7) - nstin(é) - nstin(5) - nstin(4) - nstin(3) - nstin(2
- nstin(1
nstin(35) = nstin(35) - nstin(34) - nstin(33) - nstin(32) - nstin(31) - nsti
n(30) - nstin(29) - nstin(28) - nstin(27) - nstin(26) -~ nstin(25) - nstin(24) -
nstin(23) - nstin(22) - nstin(21) - nstin(20) - nstin(19) - nstin(18) - nstin(1l7
) - nstin(16) - nstin(15) - nstin(14) - nstin(13) - nstin(12) - nstin(1l) - nsti
n(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(5) -~ nstin(4) - nstin(
3) - nstin(2) - nstin(1l)
nstin(36) = nstin(36) - nstin(35) - nstin(34) - nstin(33) - nstin(32) - nsti
n(31) - nstin(30) - nstin(29) - nstin(28) - nstin(27) - nstin(26) - nstin(25) -
nstin(24) - nstin(23) - nstin(22) - nstin(21) - nstin(20) - nstin(19) - nstin(18
) - nstin(17) - nstin(16) - nstin(15) - nstin(14) - nstin(13) - nstin(12) - nsti
n(li) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nstin(6) - nstin(5) - nstin
(4) - nstin(3) - nstin(2) - nstin(l)
nstin(37) = nstin(37) - nstin(36) - nstin(35) - nstin(34) - nstin(33) - nsti
n(32) - nstin(31) - nstin(30) - nstin(29) - nstin(28) - nstin(27) - nstin(26) -
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nstin(25) - nstin(24) - nstin(23) - nstin(22) - nstin(21) - nstin(20) - nstin(19
) - nstin(18) - nstin(17) - nstin(16) - nstin(15) =~ nstin(14) - nstin(13) - nsti
n(12) - nstin(1l) - nstin(10) - nstin(9) - nstin(8) =~ nstin(7) - nstin(6) - nsti
n(S) - nstin(4) - nstin(3) - nstin(2) - nstin(1l) X .

nstin(38) = nstin(38) - nstin(37) - nstin(36) - nstin(35) - nstin(34) - nsti
n(33) - nstin(32) - nstin(31) - nstin(30) - nstin(29) - nstin(28) - nstin(27) -
nstin(26) - nstin(25) - nstin(24) - nstin(23) - nstin(22) - nstin(21) - nstin(20
) - nstin(19) - nstin(18) - nstin(17) ~ nstin(16) - nstin(1s) - nstin(14) - nsti
n(13) - nstin(12) - nstin(11) - nstin(10) - nstin(9) - nstin(8) - nstin(7) - nst
in(6) - _nstin(S) - nstin(4) - nstin(3) - nstin(2) - nstin(l) . .

nstin(39) = nstin(39) - nstin(38) - nstin(37) - nstin(36) - nstin(35) - nsti
n(34) - nstin(33) - nstin(32) - nstin(31) - nstin(30) - nstin(29) - nstin(28) -
nstin(27) - nstin(26) - nstin(25) - nstin(24) - nstin(23) - nstin(22) - nstin(2l
) - nstin(20) - nstin(19) - nstin(18) - nstin(17) - nstin(16) = nstin(15) - nsti
n(14) - nstin(13) - nstin(12) - nstin(1l) - nstin(10) - nstin(9) - nstin(8) ~ ns
tin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nstin(l) .

nstin(40) = nstin(40) - nstin(39) - nstin(38) - nstin(37) - nstin(36) - nsti
n(3s5) - nstin(34) - nstin(33) - nstin(32) - nstin(31) - nstin(30) - nstin(29) -
nstin(28) - nstin(27) - nstin(26) - nstin(25) - nstin(24) - nstin(23) - nstin(22
) - nstin(21) - nstin(20) - nstin(19) - nstin(18) - nstin(17) - nstin(16) - nsti
n(15) - nstin(14) - nstin(13) - nstin(12) - nstin(11) - nstin(10) - nstin(9) - n
s?in(s) - nstin(7) - nstin(6) - nstin(5) - nstin(4) - nstin(3) - nstin(2) - nsti
n(1)

' decide on what to zero
If NumSamples < 19 Then
NumSamples = NumSamples + 1

Else

' Increment the lowerbound value of which the upperbound value depends u
pen

LowerBound = LowerBound + 1

If LowerBound = UpperBound - 4 Then
LowerBound 1
UpperBound
End If

UpperBound - 1

NumSamples = 0
End If
' for lowerbound control of sieve sizes to set to zero
For i = 1 To LowerBound
nstin(i) = 0
Next

' for upperbound control of sieve sizes to set to zero
For i = 40 To UpperBound Step -1

nstin(i) = 0
Next

' Increment the lowerbound value of which the upperbound value depends u
pon
'LowerBound = LowerBound + 1

! If LowerBound = UpperBound - 4 Then
' LowerBound = 1

' UpperBound = UpperBound - 1
'End If

'send "nstin® to the database input table here
DataInput nstin, nsizes, 1, MyDB

‘to obtain several output data based on crusher settings for a given input
For j = 1 To 10

sset = SetArray(j)
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'call the crush routine

result = crush(nstin(0), sset, nsout(0), ntype, itype, nsizes(0),
nsieve)

'‘the next three lines are for checking why the crush routine does not wo
rk when debugging

'result = 0 success

' -1,-2,-3 errors

'MsgBox result

'send "nsout" to the database output table here in the form of weight re
tained on each sieve size

DataOutput nsout, nsizes, sset, 1, MyDB
Next

' to terminate the orientation of sampling and the entire process it k = 651
* number of samples desired for each gradation orientation line
If UpperBound = 10 Then Exit For

Next

'Next

MsgBox "Data processing is complete !"
Unload nnInput

End Sub
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option Explicit . .

Function DataOutput(nsout() As Single, nsizes() As single, sset As Single, 1 As
Integer, MyDB AsS Database)

‘Description: stores the data processed by the "CRUSH" routine in the form of we
ight retained on each sieve size

tInput: nsout array of output, # of sieve sizes, # of samples to be generated, a
nd the database location

‘Qutput: f£ills in the OUTPUT table in an ACCESS database with the output trainin

g data
iside Effects: no global variables are changed by this function

‘declare variables

'Dim MyDb As Database
Dim RSOutput As Recordset
Dim j As Integer

tadd the output into the output table

'SetDatabase MyDb

'Segbuybb = DBEngine.Workspaces(o).OpenDatabase(“c:\civilQG\civ603\project\nndat
a.mdb")

‘open the temp (temporary table and enter the data
Set RSOutput = MyDB.OpenRecordset("Output", dbOpenTable)

'now add the processed data to the output table
For j = 1 To 40
RSOutput.AddNew
RSOutput! (Samplef] = 1
RSOutput! [Setting] = sset
RSOutput![Size] = nsizes(j)
RSOutput! {Retalned] = nsout (3)
RSOutput.Update
Next

tclose the table
RSOutput.Close

End Function

Function DataInput(nstin() As single, nsizes() As single, 1 As Integer, MyDB As
Database)

‘Description: stores the sorted data that has been converted into weight retaine
d on each sieve size

‘Input: nsin array of input, # of sieve sizes, # of samples to be generated,and
database location

‘output: Fills in the INPUT table in an ACCESS database with the NN input traini
ng data

15ide Effects: no global variables are changed by this function

tdeclare variables

'Dim MyDb As Database
Dim RSInput As Recordset
Dim i As Integer

Dim j As Integer

1add the sorted input into the input table

'SetDatabase MyDb .

tSet MyDb = DBEngine.Workspaces(O).OpenDatabase("c:\civi196\c1v603\project\nndat
a.mdb")

‘open the input table and enter the data
Set RSInput = HyDB.OpenRecordset("Input", dbOpenTable)

‘now add the input
For j = 1 To 40
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RSInput.AddNew
RSInput! [Samplef] = 1 .
RSInput![Size] = nsizes(]}) |
RSInput! [Retained] = nstin(j)
RSInput.Update

Next

‘close the table
RSInput.Close

End Function . . .

Function DataTemp(ByRef nstin() As Single, ByRef nsizes() As Single, 1 As Intege
r, MyDB As Database) . X
'Description: stores the random numbers generated for each sample and sieve size
‘Input: nstin array of input, # of sieve size, # of samples to be generated, and
the database location . .

'Output: fills in the TEMP table in an ACCESS database with the random numbers
'side Effects: no global variables are changed by this function

‘declare variables

'Dim MyDb As Database

Dim RSTemporary As Recordset

Dim i As Integer

Dim j As Integer

Dim SQLtemp As String

Dim numcount As Integer

tadd the random input into the temp table

'SetDatabase MyDb L. . .
‘Set MyDb = DBEngine.Workspaces(O).OpenDatabase(“c:\c1v1196\c1v603\pro;ect\nndat
a.mdb")

‘open the temp table and enter the data
Set RSTemporary = MyDB.OpenRecordset ("Temporary", dbOpenTable)

‘now add the random number input

For j = 1 To 40
RSTemporary .AddNew
RSTemporary!{Sample#] = 1 .
RSTemporary![Size] = nsizes(]) .
RSTemporary! [Retained] = nstin(j)
RSTemporary.Update

Next

‘close the table
RSTemporary.Close

‘sort the data in ACCESS .

SQLtemp = "SELECT DISTINCTROW Temporary.[Retained] "

SQLtemp = SQLtemp & "From Temporary Where Temporary. (sample#}= " & 1
SQLtemp = SQLtemp & " ORDER BY Temporary. [Retained] ;"

Set RSTemporary = MyDB.OpenRecordset(SQLtemp, dbOpenDynaset)
RSTemporary .MoveFirst

RSTemporary.MovelLast

numcount = RSTemporary.RecordCount

RSTemporary .MoveFirst

‘send the data back to Visual Basic
For j = 1 To numcount
nstin(j) = RSTemporary!Retained
If j < numcount - 1 Then RSTemporary.MoveNext
Next

fclose the table

RSTemporary.Close
End Function
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Neural Network Weights For Prototype Crushing Neural Network
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41 « 0

42 “ 0

43 Hidden -0.139563
44 « -0.517306
45 « -0.158918
46 «“ -0.421807
47 “ -0.150705
48 -0.852999
49 -0.439972
50 « -0.196728
51 “ -0.153452
52 «“ -0.425756
53 « -0.158896
54 “ -0.109626
55 « -1.068437
56 “ -0.129131
57 “ -0.125322
58 “ 0.005145

59 “ -0.166987
60 * -0.185345
61 ¢ -0.041228
62 “ -0.160466
63 Output 0.000707
64 « 0.001051

65 ¢ 0.001065

66 “ -0.000714
67 “ 0.000929

68 “ -0.001313
69 « -0.009024
70 “ -0.002218
71 «“ 0.000425

72 «“ 0.000337
73 “ 0.003365

74 “ -1.660398
75 ¢ -1.659711
76 « -1.489924
77 ¢ -0.314595
78 « -0.803267
79 “ 0.542023

80 « 1.069307
81 «“ 0.928765

82 «“ 0.322698

83 “ 1.098145

84 “ -0.34626
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85 “ -0.313396
86 “ 0.680092
87 “ -0.708380
88 « -1.126101
89 « -0.576094
90 “ -1.374429
91 «“ -0.662417
92 «“ -0.465843
93 « -0.780161
94 “ -1.159663
95 « -1.049586
96 “ -0.748155
97 “ -1.222885
98 « -0.478078
99 « -1.297313
100 “ -0.901520
101 h -1.476395
102 “ -0.6594315
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IMAGE EVALUATION
TEST TARGET (QA-3)
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