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ABSTRACT 

Transportation planning are important for improving traveler’s efficiency and saving energies to 

provide a more sustainable community. Traditional methods of conducting the transportation 

planning origin-destination estimation and multi-modal analysis are heavily relying on the 

labour-intensive data collection that are no longer suitable for today’s increasing demand of 

travel needs. That being said, the rapid development of new technologies in telecommunication 

networks is producing large amounts of network data regarding how people and their devices 

move around in the city. In contrast to traditional GPS data that required additional geographical 

sensors and applications to record the information, network data has the advantage of high 

market penetration rates, low costs, and daily collected geographical information when 

considering urban travel behaviour analysis. The geographical information embedded in the 

network data offers researchers the potential to investigate travel mobility behaviour. However, 

due to the noise and spatial/temporal sparsity of network data, extracting mobility information, 

such as transport mode, from these data is challenging. This thesis proposes a complete 

architecture of transport mode detection based on the network data to monitor the Light Rail 

Transit ridership during daily use and to estimate the ridership and origin-destination matrices 

from an “easy-to-detect” transport mode, like the LRT. A hybrid heuristic method that combines 

a time-window based method and a pattern-based method is proposed to process the raw network 

data, followed by a binary logit model to estimate the probability of one candidate trip being an 

LRT trip. The statistical results from the network data analysis are validated by third party data 

reported by the City of Edmonton that shows passengers boarding and alighting at each station. 

Although the performance of the proposed methods lacks prior analysis, owing to the absence of 

ground truth, the results in this study are analyzed based on the prior knowledge and intuitive 
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understanding of the City’s LRT system operation. Finally, this study reviews the current 

research gaps within the transportation field regarding data cleaning methods, mode detection 

models, and bias issues.  
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CHAPTER 1. INTRODUCTION 

 

This chapter presents the background of the study using network data to conduct multi-modal 

transportation planning analysis. The limitations of traditional on-board survey method is also 

described and the research motivation, research objectives, and the structure of the thesis are 

also presented.  

 

1.1 Background 

Transportation planning is an important field that can impact on the efficiency and 

sustainability of commuters’ daily experience and routine. Government decision-makers are keen 

to understand how people travel through the city to facilitate infrastructure investment decisions. 

The four-step model, as one of the most prevalent models in the transportation field, has been 

utilized to help transportation engineers and researchers quantify the travel behaviour in a given 

study region. It is a systematic view of how residents regularly travel around a city, providing a 

strategic view of how city builders can improve the system. The model includes trip generation, 

trip distribution, mode split, and traffic assignment. Through these four steps, urban movements 

are categorized into several types of trips that represent the overall city travel patterns.   

 

However, human travel behaviour is highly complex, and collecting and classifying the 

travel data can be extremely difficult and tedious. Over the past several decades, researchers 

have implemented various methods of collecting travel data that can be used to supplement this 
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transportation planning model(1). GPS-enabled devices, travel diary surveys, and traditional 

video surveillance data, are all methods that can confer travel patterns to a degree. From the 

1990s(1), growing cell phone use has given researchers a new way of tracking passengers daily 

movement. The data provided by cell phone use have facilitated better understanding of the way 

people travel around cities, helping city managers seeking to improve the transportation system 

to meet increasing travel demands.  

 

Among all the data collected by various technologies, the travel trajectories, defined as a 

set of location records with the corresponding timestamp to infer the human movements over a 

certain time period, have been utilized by researchers and engineers to monitor urban dynamics. 

Before the big data era, transportation experts used telephone surveys, mail-in travel diaries, and 

point-based observatory equipment to estimate daily traffic (2). The traditional four step-model 

heavily relies on trip diaries to reflect travel patterns and continues to be one of the most 

common types of travel trajectories. However, these traditional methods are time-consuming, 

labour-intensive, and costly, with results only updated once every five or ten years. Today, 

community development and travel demands are growing rapidly and a newer, faster way of 

evaluating travel patterns, and thus needs, is required.  

 

More recently, people have tried a variety of new technologies to monitor human 

movements across the city. Point-based technologies like video cameras and loop detectors are 

stationary data collectors are one method but only cover small areas, limited by their fixed 

locations. As such, the collected data cannot accurately represent the movements of the whole 

transportation network. Probe-vehicle type technologies like GPS data and network data, on the 
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other hand, are location-information devices that can be carried with individual passengers or 

vehicles across an entire journey. A key drawback here is that these technologies are restricted 

by their market penetration rate and, as such, the sampling size is unlikely to be representative of 

the whole population.  

 

Network data, as one of the many new data sources, can play an important role in 

supplementing the traditional traffic analysis tools. Network data is collected by mobile phone 

operators for non-transportation purposes like billing and network operation, etc. With no 

accurate geographical location information given, the data framework informs the connected cell 

tower, current timestamp, and billing activities. Due to the technological limitations of the cell 

network framework, network data are commonly utilized in macro-level travels including 

Origin-Destination (OD) table estimation or inter-city traffic. However, long update time 

intervals and inaccurate location information have historically made the data difficult to be 

implemented for micro-level traffic movements, like traffic volumes on a designated road 

segment, or for transportation mode detection.   

 

This, however, is changing and offering greater opportunity for data gathering. In the era 

of 4G technologies, the number of cell towers has significantly increased due to the shorter 

coverage distance of high-frequent signals. As a result, update intervals between two consecutive 

cell records have reduced from average 86 minutes down to 5 minutes(3). With the improvement 

of both temporal and spatial resolution, the network data make smaller-scale and more detailed 

analysis possible. The shorter update intervals can better reconstruct trip trajectories, and the 

higher density of cell towers provide more accurate location information.  
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Of course, traditional Call Detailed Record (CDR) data and sighting data can only collect 

trace information when subscribers are actively using the mobile phone. CDR data, normally 

referred as the billing records collected by the network service providers, collects timestamps and 

spatial reference information when subscribers are using the cellphone. Sighting data, on the other 

hand, uses the triangulation method from the surrounding network stations to approximately 

estimate the locations of subscribers. The signal strength of three closest network stations are 

calculated to provide the approximate latitude and longitude of the current location. We can see 

from previous research (3)(4)(5) that the two data sources are still sparse in temporal resolution, 

and trips that happen between two recorded data points are missed due to low update frequency. 

On the contrary, new ‘ping’ records have been introduced in the network system that regularly 

collect the connection information, even when mobile phones are not in use. These ‘ping’ records 

can largely make up the gap between two activities and reconstruct the real movement trajectories 

that CDR data and sighting data cannot capture. For the case presented here, the average update 

interval between two consecutive records is 5 minutes, which is considerably smaller than CDR 

data or sighting data. In order to support high web access speed, especially in urban areas, cell 

towers intricately overlap. In our case, as for most urban areas, subscribers could be covered by 

more than ten cell towers simultaneously.  

 

1.2 Problem Statement 

The traditional methods of information gathering for transportation planning, like 

household travel surveys and four-step modelling, have difficulty monitoring the increasing 

demands in transportation. The conventional household travel survey does not provide enough 



5 

information on public transportation service for city residents, nor does it provide insight into 

areas for service improvement. In addition, public transport analysis is based on the household 

data suevey information that is collected annually and is not always representative due to its 

small sample sizes and relatively short time span. Therefore, a new and better way to estimate 

and map public transportation usage on a day-by-day basis is important for planners and decision 

makers.  

 

Other methods pose difficulties in providing complete and accurate data for planners. 

LRT passenger boarding and alighting information is conducted by on-board surveys and the 

Automated Passenger Count (APC) system(6), both of which are time-consuming and costly. In 

addition, these methods are difficult to implement in large-scale sample sizes. Alternatively, 

researchers have explored various new data sources that are more affordable and accessible to 

estimate the transit ridership(7). Hand-held GPS equipment is one popular choice used to record 

travel information and monitor individual transit passengers. Its drawbacks are the expense of the 

equipment and privacy issues, making individual GPS trajectories less than ideal. On the other 

hand, network data as a passively collected data source possesses several strengths. Firstly, the 

data is collected from existing cell stations and servers, so additional infrastructure investment is 

unnecessary. Secondly, the penetration rate of network data normally exceeds 30%, making it 

more representative than any other data source. Lastly, network data covers full 24-hour periods 

so that full-day trajectories can be completely represented (5). 

 

 Current research, however, does not provide any systematic data processing architecture, 

given the spatial and temporal characteristics of the network data. A new proposed method that 
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takes advantage of new generation network data would greatly benefit urban travel dynamics 

analysis since the increased temporal and spatial resolution opens up the possibility to 

extrapolate more traffic information. This thesis proposes a comprehensive data processing 

architecture for the given data that addresses this gap in the current research and, importantly, 

addresses the limitations and drawbacks that the data possesses.   

 

1.3 Research Motivation 

Network data have proved to be a great data source that covers people’s movement over a 

full day(8). It can trace travel trajectories quickly and accurately without additional infrastructure 

investment and provide efficient ways to conduct transportation planning to meet the increased 

needs of urban travellers. This novel technology has provided new data sources to monitor the 

daily travel activities that could potentially be utilized in transportation modelling. As the largest 

mobility data source, it can potentially help to supplement traditional transportation planning 

methods and provide a macro-scale picture of daily passenger flows. However, it also requires a 

comprehensive understanding, appropriate assumptions, and suitable analytical skills to interpret. 

Recent research has seldom tried to utilize the network data to estimate the urbanized Light Rail 

Transit (LRT) passenger origin-destination matrices and passenger ridership(9)(2). This research 

presented in this thesis aims to find a practical way to interpret detailed travel information for 

travellers in an urban context.  

 

1.4 Research Objectives 

In this thesis, a novel methodology is proposed to identify Light Rail Transit passengers from 

the raw network data and estimate OD matrices for LRT stations. As such, the objectives are: 
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1. To provide greater market penetration rate samples as a supplement the household travel 

survey when analyzing the growing number of trips undertaken in urban areas; 

 

2. To suggest a new way of monitoring public transportation over a longer time period that 

can map usage changes on different days of the week, or even in different seasons, while 

the method itself remains cost-effective; 

 

3. To propose a novel network data processing algorithm that can take advantage of this 

new data source to provide detailed travel information that supplements traditional travel 

diary survey data. 

 

 

1.5 Structure of the Thesis 

This thesis includes five chapters: 

Chapter 1 has introduced the background to multiple probe vehicle technologies and the 

estimation of transit ridership from big data technologies. The problem statement and research 

objectives have also been outlined in this chapter.  

Chapter 2 is the literature review of related research. The review focuses mainly on 

research around network data and its application to the identification of transportation modes. 

The pre-processing methods and methods to identify the transportation modes are also included.  

Chapter 3 outlines the methodology implemented in this study, and the study area of the 

LRT Capital Line within the City of Edmonton.  

Chapter 4 analyses and presents the results generated from transit ridership identification.  
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Chapter 5 concludes the study and offers suggestions for future studies about transit 

ridership utilizing novel probe technologies.  
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CHAPTER 2 LITERATURE REVIEW 

This chapter summarizes the current researches and literatures about the multi-modal 

transportation analysis to fill the gap of traditional household travel survey. The data processing 

techniques and transport mode identification methods utilizing the network data are also 

discussed in this section.  

 

2.1 Background 

In the era of big data and emerging technologies, researchers have access to various types 

of data when solving transportation problems. People use data mining tools and mathematical 

models to extract hidden information from the raw data. The following section describes the state-

of-the-art methodology and applications of the big data technologies, including a variety of data 

sources, followed by a range of research work related to transport mode detection and public transit 

analysis. The limitations of previous research, as well as the comparison between the method 

presented in this thesis and other methods, are highlighted.  

 

 Researchers are continually searching for new approaches to transportation planning for 

future city growth and development. In the past several decades, collection of the data input for 

traditional transportation planning models, like the four-step model, has been difficult. Traditional 

methods of collecting traffic data have included travel diaries, loop detector data, manual traffic 

count boxes, and traffic surveillance cameras. All of these methods are labour intensive and 

expensive, which makes immediate updating of the four-step model difficult. However, recent 

probe vehicle technologies have become more prevalent, making the construction of daily travel 

trajectories easier.  
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Probe types of data like network data and GPS data have contributed significant amounts 

of travel trajectory information that facilitate the understanding of travel behaviour. Because all 

data are collected by different methods and technologies (3)(5)(4)(10)(11), their position accuracy, 

update interval, and penetration rates are different. Network data, for instance, possesses high 

penetration rates but low spatial and temporal accuracy. It is used mostly to generate Origin-

Destination matrices, to identify the hotspots in urban areas, or to distinguish transport modes 

during long-distance travel. GPS data, on the other hand, has much higher geographical location 

accuracy and smaller update intervals. However, it normally requires an additional device to 

collect(12). In comparison, network data has a much higher market penetration rate, which can 

better represent macroscopic traffic dynamics.  

 

This section aims to provide a comprehensive overview of the current transportation mode 

identification methods and approaches based on the various data sources. As demonstrated in other 

studies(9), the process for transport mode identification normally includes data cleaning, data 

segmentation, and mode inference, common in many urban mobility applications. Each step 

requires detailed analysis and understanding before proceeding to the next level, and this study 

aims to answer the following questions: 1) What are the characteristics of the data, and how does 

the data need to be implemented to identify the transport mode? 2) What are the existing pre-

processing methods? How can researchers define and validate samples? 3) What is the current 

mode detection model that is being implemented? How does our model improve the reliability and 

accuracy in comparison with other proposed models? 
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GPS data provide accurate geographical locations with timestamps and are considered 

prevalent information sources for identifying and tracking movement trajectories when trying to 

overcome the limitations of traditional travel surveys(13). The dedicated GPS loggers and more 

recent GPS-enabled smartphones can be used to record travel movements for a whole day. 

Researchers have processed the data information to extract the important trip characteristics for 

transportation analysis(14). One common form of study using GPS data is to infer the transport 

mode using various methods and approaches, e.g. rule-based methods, logit models, machine 

learning, etc.(9). However, these approaches to collecting the traces of movement has required 

GPS loggers or GPS recording applications to be active for the entire time, which limits the scale 

of travel data collection.  

 

2.1.1 GTFS (General Transit Feed Specification) Data for Identifying the Transit Ridership 

From earlier literature, the GTFS data are predominantly used to estimate the transit 

vehicle trajectories(15). The GTFS data defines a common format for public transit in terms of 

scheduling and geographical information and is a significant source to monitor transit bus 

operations. The geographical information collected periodically can be used to monitor vehicle 

speed, bus stop on-time rate, etc. The data itself includes GPS information collected from on-

board sensors to reflect the travel trajectories along the transit route. However, the data only 

reflects the vehicle trajectories in service while the passenger trajectories remain unknown. 

Researchers have tried using Automatic Passenger Count (APC) data(16), Smart Card data(12) 

for recording the boarding and alighting information, and other data sources to capture the 

passenger’s behaviour(8).  
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In order to estimate the transit system operation and usage rate, Luo (17) has 

implemented a clustering method for estimating the origin-destination matrix for the transit 

system. This research combined the GTFS data as vehicle trajectories and the Automated Fare 

Collection (AFC) system as the passenger trajectories to infer the transit ridership for the 

Haaglanden area in the Netherlands. Gundlegård (18)(19), on the other hand, proposed a 

comprehensive method of estimating the transit ridership through GTFS records and APC 

data(20). Different types of data sources do bring biases to the analysis. For instance, while 

GTFS data are limited by the frequency and bus schedule, network data lean towards heavy cell 

phone users. Zhang (21), in his paper, has compared and contrasted the differences in monitoring 

the urban travel behaviour between various data sources and proposed a fusion data architecture 

to compliment the differences in each type of data.  

 

In many cities where the transit system is lacking passenger recording information, transit 

ridership can be difficult to estimate independently from the GTFS data. Other types of data 

sources are often utilized to supplement the missing passenger information. On-board surveys, 

APC systems(16), and smart IC card information(22)(23) are the common methods to collect the 

detailed passenger information that, by themselves, all have drawbacks. On-board surveys 

normally can only be implemented in a small range and during limited periods. The APC system 

collects all the boarding and alighting information of passengers at each stop or station, but the 

more detailed origin-destination information is not available and further processes are required. 

Smart IC cards provide the most comprehensive information in terms of tracking passengers in 

and out of the station. However, the whole system requires large infrastructure investment and 

maintenance and is not available for all public transit.  
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2.1.2 Network data for Identifying the Transit Ridership  

Only a few studies have utilized network data to detect transportation modes (9)(2). Rather, 

methods like map-matching algorithms and supervised learning algorithms have been the main 

approaches to infer the geolocation of transport networks, using mainly GPS data(13)(24). In the 

transportation planning four-step model, these methods can be utilized to estimate the trip 

generation and trip attraction information, but the mode split, and trip assignment may require 

additional data to support the analysis. Compared to GPS data, raw network data without any pre-

processing are coarse, noisy, and sparse, making the reconstruction of travel trajectories more 

difficult.  

 

Call Detailed Record (CDR) data and sighting data have been two major data sources for 

previous research that considered network data(5)(25). CDR data is collected by cellphone carriers 

when subscribers are actively using the cellphone for activities such as calling, text messaging, or 

internet access. Sighting data, on the other hand, is generated using the triangulation method to 

estimate the current location of the cell phone user. When derived from older generation of mobile 

technology, both CDR data and sighting data have some common issues: spatial resolution and 

temporal resolution(5).  

 

2.2 Nature of Network data 

During the last two decades, researchers have conducted various investigations to 

extrapolate embedded information in network data and apply the data to different transportation 

applications(26)(20)(27)(28). Network data, as a data source that is not primarily intended for 
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transportation purposes, requires thorough analysis and appropriate assumptions to use it in a 

valid and appropriate way (29). Two types of network data are currently used: CDR data and 

sightings data. The former contains user ID, timestamps, and the cell tower location information 

that is channeling all activities. The latter includes the user ID, timestamps, and the estimated 

geographical locations resulting from the triangulation of multiple cell towers connected with 

any one mobile phone at the same time(30)(31). The temporal and spatial resolutions of the 

network data are two major aspects that impact the quality of results, and both should be 

evaluated in a detailed manner.  

  

 For typical network data, the smallest spatial entity is called a ‘cell’ that represents one or 

more antennae covering a defined area. A set of antennae covering one defined area forms a 

Base Transceiver Station (BTS) that is responsible for the communication between the cell 

network and a cellphone. A set of BTSs is controlled by a Base Station Controller (BSC) that 

manages the radio communications between them to ensure the network service is optimized 

(9)(2). Together, one or more BSCs and the ‘cells’ covered by BTSs formed a Location Area 

(LA) that covers a given region, as demonstrated in Figure 2.1. The base station antenna 

coverage and orientation are shown below, with each cell corresponding to one specific direction 

of the base station. Overlaps could exist between different sectors if the user was close enough to 

the base station. However, in this case, it is assumed that for each base station, the geolocation 

coverage is subdivided by three directions, where each set of antennae is responsible for 120 

degrees coverage.  

 



15 

 

FIGURE 2.1 Base station antenna coverage and orientation example 

 

 In this context, a record or sighting of both data types is regarded as a trace of the user. In 

current research (32), the 3G network or GSM network relies on phone usage, which can be 

temporally sparse throughout an entire day. The trace will only be collected by the network when 

users are actively making use of the phone, i.e. a phone call, text message, or downloading data. 

Both CDR and sighting data type do not cover travel movements over the course of the entire 

day due to the low temporal resolution, and both are heavily dependent on the frequency of 

usage. The evident problem with this recording mechanism is that only the phone call, text 

message, or data usage activity is collected and could happen not only when the user is travelling 

but also when they are stationary.  

 

 Nonetheless, network subscribers, according to the International Telecommunication 

Union 2017 statistics, have risen to 7.7 billion internationally, with a penetration rate of 127.3% 
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in the developed world and 98.7% in the developing world(3). The potential of network data use 

to conduct travel behaviour analysis with its low investment costs and infrastructure support is 

attracting transportation researchers(30).  

  

Passively generated network data, including CDR and sighting data, are characterized as 

temporally and spatially uncertain. For temporal resolution, network data possess a low update 

frequency compared with GPS data, Wi-Fi signals, and Bluetooth. The billing records are 

collected only when the cell phone users are calling, texting, or web browsing. Due to the data 

collecting mechanism, the temporal resolution can vary from person to person; the arithmetic 

average of the update interval means is 84 minutes, and the average inter-event time is 260 

minutes, as established by previous studies(3). For the spatial resolution, the billing records only 

provide the geographical location of cell towers that are connected with the cellphones at any 

given time, while the sighting data estimates the approximate location of users using the 

triangulation of several cell towers and their signal strength to the cell phone(33)(34). It is key to 

note here that both types of data have significant error in estimating the users’ location. It is 

estimated that the users’ location error for billing records with cell tower information is around 1 

km, and the estimated location error is 200 metres(35).  

 

Therefore, since both the temporal and spatial resolution of network data have been 

acknowledged as less accurate than other probe-type technologies(36),  researchers must take 

care regarding their assumptions and methodology utilized to analyze network data in order to 

get credit and meaningful results.  
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2.3 Pre-Processing Methods of the Network Data 

 Signals from different cell towers may cover the device of a cell-phone subscriber in any 

city location. When the signal strength of these cell towers is relatively similar, the signal 

connection can switch between the cell towers even when the device is stationary(37). The user, 

then, could appear to travel long distances in seconds. This phenomenon is called ‘ping-pong’ or 

‘oscillation’ in the network(2, 9, 38). When oscillation happens, the network can witness a fast 

switch between two or more cell tower antennae, which can be misleading data in trip 

identification. Because such recorded data cannot be directly used to infer the traveller’s 

movement trajectories, several methods were introduced to mitigate the potential problems of 

this ‘ping-pong’ effect (39).  

 

2.3.1 Time-Window Based Method 

 Previous research has identified the time-window based method as one way of mitigating 

the oscillation phenomenon. To resolve this issue, Diao (37) has proposed a time-window based 

method that eliminates records when the switching speed between two cell towers is abnormal 

(25). In scanning through the record sequences, a short time-window Tw is applied for every 

record d0. When the switch speeds between two adjacent cell towers have exceeded the pre-

defined time-window Tw, the following record is considered as a ‘ping-pong ’effect and will be 

regarded as a pseudo trip (38).  

 

 The time-window based method is simple to implement. However, there are several 

major drawbacks. First, determining the time-window Tw is difficult. If the time window is too 

short, the oscillation effects may not be removed from the database; on the other hand, if the time 
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window is too long, then true trips will be removed, and the record will contain long-distance 

travel only. For this method, most researchers determine their threshold based on prior 

knowledge about one single trip or the characteristics of the data (9).  

  

2.3.2 Pattern-Based Method 

 Since the time-window based method may not solve all oscillations due to the sparse data 

records, a pattern-based method of eliminating the ‘ping-pong’ effect is utilized by other 

researchers(40). The pattern-based method relies on prior knowledge of the oscillation pattern, in 

which the signal bouncing between several different cell towers noted as L0, L1, and L2), such as 

L0 – L1 – L0, or L0 – L1 – L2 – L0, where the signal connection will always switch back to the 

original cell tower(26)(41). The oscillation sequences are removed after being identified. This 

method relies heavily on heuristic rules that often struggle to deal with complex situations and 

that can result in either including pseudo trips or mistakenly removing real travel. The observed 

pattern is usually connected with the incredible switch speed that is faster than a certain 

threshold (200 km/h). Sometimes, other types of information are also used to improve the 

accuracy of identifying real movement, such as trajectories or travel speeds (3).  

   

2.4 Trip Identification Methods 

 After pre-processing, the researcher must identify the moving segment of the records, 

normally containing one single transport mode. This step is called Trip Identification or segment 

identification. The purpose of this step is to identify the meaningful stop (the start and end of a 

single trip) and moving/passing-by records that are realistic trips conducted by 

subscribers(19)(42)(43). Previous researchers have provided four major ways of conducting 
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transport mode detection from the given data sources. In most the cases, they have attempted to 

identify the simple transport mode (e.g. subways and light rail transit system) while omitting 

transport modes that are mixed with other modes such as transit buses, bicycles, or walking (9). 

Due to the temporal and spatial resolution limitation, the mode inference engine normally works 

when detecting a more general mode group with similar characteristics.  

 

 In terms of additional data sources, a geographical road network is commonly used to 

supplement the main traveller’s trajectory data. The geographical information for transport 

infrastructure can provide additional knowledge to the architecture to better conduct mode 

detection (43).  

 

 Georeferencing, as one of the most straight forward and commonly used methods, 

determines whether the pre-defined geographical coverage of network data intersects with the 

geographical boundaries of certain train stations, Traffic Analysis Zones (TAZs)(44), or 

municipalities(45)(46). This method works well in clearly pre-defined areas where the cell 

towers in both regions are unlikely to have interfered with one another. Georeferencing is 

commonly used in long-distance travel where people travel from one city to another and has 

achieved relatively high accuracy rates.  

 

 The rule-based heuristic (RBH) method is a set of rules or constraints set up to identify 

the transport mode between two or several transport modes(44). Due to a lack of detailed 

positioning information, these rules are based on prior knowledge and experience with either the 

data itself or the characteristics of the transport mode. Travel speed differences between public 
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and private transport are common features that are used to help identify whether passengers are 

taking the LRT or private cars. Other features like geographical reference, proximity to either 

road networks or metro lines are also key features that can be utilized to infer the means of 

transportation.  

 

 The frequency-based method (45) is deployed when detecting travel at certain times of 

the day connected with important places (e.g. home, workplace, school, etc.). In previous 

research, daytime and nighttime are commonly used to identify a traveller’s workplace and/or 

home based on their repetitive travel patterns (36). Some studies have also generalized travel 

trajectories into pre-defined trip types, which can summarize a person’s life across a relatively 

long period (37). The frequency-based method is normally employed for long-period analysis, 

and people with a regular daily routine are more easily identified.  

 

 Another method to identify the transport mode is clustering (unsupervised machine 

learning)(4). The k-mean clustering algorithm and hierarchical agglomerative clustering method 

were both employed in several different papers (3)(5). These methods classify the ‘unlabeled 

data’ into different cluster groups based on their trip characteristics/ features(17). This approach 

selects the first group of data records by measuring the distance between two consecutive points 

and assesses whether the distance exceeds a certain pre-set threshold. When the distance exceeds 

the threshold, the time between the two records is examined to see if the traveller is truly moving 

or not. However, this method is more likely to be used in sighting data where the geographical 

location of the network data is measured in triangulation using the signal strength between three 
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different cell towers. As such, the method is difficult to be employed for network data with the 

location estimation using Cell of Origin (CoO)(9).  

 

  Based on different data sources and data collecting methodologies, these methods all 

have strengths and weaknesses in terms of identifying the trips conducted. Georeferencing works 

best in long-distance travel where there are clear, pre-defined boundaries at the start and the end 

of trips. The rule-based method is good at identifying movement but cannot deal with more 

complicated scenarios since outliers and missing information can easily skew the results. The 

frequency-based method can capture trip trajectories fairly well for people with regular daily 

travel patterns, but a long period of data is required. Last, the clustering method is the most 

accurate in terms of the geographical location, but the data sources required are limited as the 

longitude and latitude data for each record are estimated from the triangulation estimation of the 

signal strength from the nearby three cell stations. 

 

2.5 Transport Mode Identification Method 

 Due to the spatial and temporal granularity of network data, previous research tries 

identifying 2 to 3 modes of transport, where train and car are the most popular. Most papers have 

focused on the inter-city trips where the travel distance is long enough and the Euclidean 

distance between the train line and highway is greater than the cell station coverage 

distance(9)(46)(47). For longer travel distance, the recorded data are less likely to be affected by 

the oscillation phenomenon, and the longer Euclidean distance between different types of 

transport is easier to detect when considering the relatively low spatial and temporal resolution.  
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 The Rule-Based Heuristic method(29)(48) is the most commonly used transport mode 

identification method that involves pre-defined and curated rule sets to identify between different 

transport modes based on prior knowledge and understanding (47). The basic principles are to 

either compare certain trip features, like the Euclidean distance from the trip trajectories to either 

rail or road network, or to set up various travel speed thresholds to differentiate between various 

transport modes. Another way of establishing the ruleset is to construct the geographical 

reference locations and give the best ‘matching’ results between several different types of modes 

(47). For instance, the inter-city trip mode detection between two major cities in Canada is 

deployed by two simple rules where, 1) trip duration between 0.5 to 1.5 hours is assigned as air 

trip and, 2) trip duration between 2 to 6 hours is assigned as ground transport. Furthermore, more 

complicated heuristic methods can be implemented in an urban context where trip characteristics 

of travel speed lower than 8 km/h and travel distance less than 3 km is identified as walking, and 

those with travel speed greater than 15km/h and no bus stop or train station is within 500 m of 

the trip destination are classified as car mode. All other trips in between are classified by a logit 

model whereby travellers decide their transport mode based on the utilities available and their 

surrounding environment.  

 

 In previous studies, cars, trains, and planes are the three modes of transport that are 

commonly detected, and active transport like walking and biking are difficult to identify due to 

their low speed. The clustering method(3)(10)(11), which is normally referred to as k-means 

clustering and hierarchical agglomerative clustering, is another approach to identify transport 

modes. The main idea is to cluster the selected trip attributes or features summarized from the 

raw unlabeled data and classify their centroids into multiple different clustering formed around 
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similarities and differences and based on prior knowledge, common sense, or additional 

information. These methods are powerful when the raw data can provide the triangulated 

geographical location of the trip trajectories.  

 

The third method is statistical analysis developed to identify transport modes and 

differentiate between driving, bicycling, and walking. Statistical analysis aims to infer the most 

likely trip sequence based on the given trips and the historical data of the relevant routes. Xu (51) 

proposed a method consisting of a Hidden Markov Model (HMM) with two different sub-models 

to identify different transportation modes, where the speed distribution law is implemented to 

distinguish different travel speeds that are learning from the pre-defined (labeled) training set.  

 

Comparing all three methods, the Rule-Based Heuristic method is the most commonly 

used method in the research literature, which relies on existing prior knowledge about either the 

travel behaviour or the means of transport. Common sense knowledge is also implemented, 

together with the geographical information, which works well for detecting trips along the 

railways (train, LRT, subway) (2). This study presented in this thesis will set rules to classify the 

transport mode and find the appropriate threshold values between different transport mode 

clusters. The resulting clusters are interpreted by human analysis due to lack of ground truth, and 

the final outputs are analyzed based on prior knowledge and intuitive judgments.   
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CHAPTER 3 METHODOLOGY 

This chapter introduces the proposed data processing methods to conduct the transit ridership 

and OD matrices estimation. The implementation of data pre-processing, trip identification, and 

the LRT trip probability estimation are also covered in this section.  

 

For the research presented here, the third-party company data provided is fourth 

generation network data, which has largely improved the temporal and spatial resolution in 

comparison with traditional CDR and sighting data. The major motivation of this thesis is to 

address weak or insufficient urban travel dynamic information in other studies by using the new 

data source to extrapolate more detailed information. The previous research discussed in the 

literature review here is limited to large-scale Origin-Destination matrices and home and 

workplace estimations due to the nature of their data types. With a lack of detailed and accurate 

geographical and time resolution, more detailed travel information like the transport modes and 

travel routes are elusive. However, with the new generation of the network data and improved 

temporal and spatial resolution of the data, this thesis will explore the possibility of extrapolating 

detailed travel information from the data trajectories formed by the network data. The LRT 

system, which is relatively isolated from road networks and is not impacted by road traffic 

volume, provides a comparatively simple use case for this method since train travellers should 

demonstrate similar travel patterns that can be captured by the network data.  

 

To infer the transportation mode, especially in an urban context, the proposed method 

aims to explore the feature handover behaviour between cell towers along the LRT line. The 
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sequence of feature handover locations can be used to identify whether the traveller is on the 

LRT line or not since the metro line is relatively isolated from the whole road network. Network 

data are characterized by spatial-temporal uncertainties that normally require extra data cleaning 

procedures before performing the detailed modelling analyses. The data utilized in this research 

are not reported to have an estimation of the spatial location accuracies. In comparison with other 

research papers with similar data sources, the spatial resolution can vary between 200-400 meters 

in urban areas where the base stations are denser and the coverage is smaller, and up to several 

kilometres in suburban areas where the population density is lower.  

 

 In terms of the data preparation process, network data requires some data cleaning 

procedures before conducting any analysis, due to the inherent nature of the data collection 

process. Previous research has tackled the problem in two respects: temporal and spatial 

uncertainties (9). Depending on the device activities and usage intensity, the recorded data can be 

heterogeneous and irregular, being more active during normal work hours and less frequent at 

other times. A common way of dealing with temporal irregularity is to filter out the low-

frequency users while focusing on the high-activity users, or else to utilize the data interpolation 

method to fill the gap between two records with long-time discrepancies.  

 

For spatial uncertainties, the oscillation phenomenon is a common problem that causes 

noises and pseudo movements in the cell network system. This phenomenon is commonly 

impacted by the signal strength and load balancing policies in the network. As previously 

outlined, three types of methods are proposed from previous studies to resolve the problem: 
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time-window-based, pattern-based, and hybrid methods (the combination both both time-

window-based and pattern-based method to improve the accuracy of the transport mode 

identification). A time-window-based method removes the abnormal records when the device is 

switching from one base station to another under a certain time threshold. The pattern-based 

method extracts the record sequence that matches with certain pre-defined switching patterns 

between base stations (e.g. L0 – L1 – L0, which L0, L1 represents the base station) and labels the 

extracted record sequences as oscillation. A hybrid method, on the other hand, combines the two 

methods to identify more complicated scenarios while reducing the elimination real trips.  

 

In this study, the network data was pre-processed using a hybrid method to extrapolate 

the possible travel sequences from the raw network data, which considered both trajectory 

pattern match and travel time when identifying transit trips. The newly proposed hybrid method 

is different from previous research that served a more dedicated purpose to filtering all the non-

LRT travellers that are currently not within the boundaries of LRT line or remaining idle at the 

time. The newly proposed method is able to take better advantage of the finer time intervals 

between pairs of records that are passively generated during the travel movements of subscribers.  

 

In previous studies, both temporal and spatial problems were considered when 

conducting the data cleaning procedure (2)(9). In the present study, travel patterns have been 

defined as the cell tower clusters that can stably cover the LRT stations and routes between 

stations. All cell towers covering a specific station have been denoted as the station cluster, while 

the cell towers that only cover the path between stations are denoted as the path cluster. The 
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handover behaviour between clusters are the handover pattern used to identify whether the 

travellers are riding the LRT or not.  

 

The proposed method here can be regarded as a hybrid heuristic method where the 

algorithm combines the pattern-based and time-window based method to improve the accuracy 

of mode identification. Travellers not only have to meet the sequential pattern constraints along 

the LRT but also match the travel time constraints of the LRT train. The overall workflow below 

indicates the general process of identifying the candidate trip trajectories and the selection 

process for each step the data. The first step is the pre-processing, where the pattern-match based 

method and the time-window based methods are both implemented to select the travellers with 

the potential to take the LRT as part of their journey. The overall workflow of the proposed 

method is shown in FIGURE 3.1: 

 

FIGURE 3.1 The overall workflow of the data processing architecture 
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3.1 Data Preparation 

The main data in this study is the network data that recorded billions of rows representing 

various activities and location information collected from users. In this research, the network 

data provided includes approximately 30% residents and travellers out of 1.27 million total 

population in Edmonton metropolitan area, Alberta, Canada. The original dataset consists of two 

consecutive weeks in September 2017 that covered both residents and travellers within the 

Edmonton area at the time. The network data records were produced not only when subscribers 

called, messaged, and data browsed, but also collected ‘ping ’information that was triggered by 

the network itself to examine the status of the cell phone. The active ‘ping ’records decreases the 

time interval between two consecutive records from several hours to several minutes, greatly 

increasing the temporal resolution of the data. All the records were passively generated, and the 

record frequency was still dependent on cell phone usage. The spatial and temporal 

characteristics are presented for the network data, and the scale of the data and geographical 

scope of the study are explained in the following section.  

 

The study region covers the only LRT line, the Capital Line, that is operating in a North-

South direction consisting of 14 stations. The LRT line travels from residential suburbs in the 

North-East quadrant of the city, through the Downtown area, the new Rogers Arena, the 

University of Alberta’s North and South Campuses, and several major transit hubs, which makes 

it an important transport corridor. In this research, the detailed LRT line information was 

downloaded from the Edmonton Open Portal that is independent of the road network. As shown 
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in FIGURE 3.2, the LRT line can be extracted into a set of nodes representing the stations and a 

set of links representing the rail lines.  

 

 

FIGURE 3.2 The study area includes all the stations on the Capital Line and its corresponding 

base stations. 

 

3.2 LRT Cell Tower Clusters 

The information collected from field tests is plotted in FIGURE 3.2. The cell tower 

clusters are classified into three categories: on-surface station, underground station, and on-route 
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path. Because there is no underground base station, subscribers can only get a connection with 

the network when he or she leaves the underground area and reconnects with the surface base 

station. Subscribers who travel along surface stations and on-route paths can normally connect 

with the network. Therefore, their travel trajectories can be captured during the whole trip.  

 

 As seen in FIGURE 3.2, the adjacent base stations have been labelled with their covered 

LRT stations showing in different colours. The geographical coverage is based on the field tests 

conducted for eight times in four different days in March 2019. The field test data collects all the 

base station information that is adjacent to the LRT stations and connection opportunities for 

passengers.  

 

The data was generated once per second, providing the most comprehensive information 

possible regarding cell tower connection in real-time. For this study, there was a buffer zone 

created around each station, in which all GPS points that fall within the buffer zone were 

considered in-station GPS points and all other GPS points were considered on-route GPS points.  

 

The cell tower information embedded in the GPS records was then labelled and grouped 

as station and on-route towers to help define the possible travel pattern when people are taking 

the LRT. Because one traveller could potentially connect with several cell towers and antennae, 

their record pattern along the LRT line would be the combination of various sequential potential 

cell towers that cover different stations.  
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3.3 Defining the Travel Pattern and Train Trajectories 

At any given location, travellers could connect with several signals from different cell 

tower antennae with similar signal strength; the network determines the connection depending on 

many factors, like volume load on each antenna. The network connection bouncing between 

several antennae is the oscillation in the network. Therefore, to accommodate these various, 

potential occurrences when traveling on the train, the proposed handover pattern categorized the 

cells into several nodes and links representing the LRT line.  

 

 

FIGURE 3.3 demonstrates the LRT stations and the geographical locations of the surrounding 

base stations.  
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This step is equivalent to a transport land-use partitioning that correlates the LRT line 

segment by segment with the mobile network. According to the field-collected data and the 

given theoretical coverage of base stations, labels were given to each station and link to represent 

the probability of users taking the LRT.  

 

3.4 Pre-processing Algorithm: Heuristic Hybrid Identification Model 

A hybrid method was introduced in this research to overcome the signal oscillation and to 

identify the real movements of subscribers that happens between adjacent cell towers. The 

method incorporates two criteria that combine both speed requirements and pattern requirements 

to allow the researcher to infer whether the person is travelling along the LRT line. For one 

subscriber who connects with one of the potential pre-defined LRT clusters, the algorithm will 

search for the next record that falls within other clusters within the time threshold. For instance, 

Subscriber A has a sequence of network data records as follows: 

 

ID Timestamp (s) Matched Records Clusters 

178******** 2609 AB11191 Century Park 

178******** 2632 AB11191 Century Park 

178******** 3197 AB16051 Southgate 

 

TABLE 3.1 One example, Subscriber A, with a sequence of network data 
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 As shown above, the ID is the unique identification code each subscriber possesses, 

which will remain the same, even on different days, to trace down the network activities. The 

Timestamp, on the other hand, uses the UNIX timestamp to demonstrate the time when the 

network system collects the record passively. The latter two columns are defined in accordance 

with the research scope. The Matching Records show the cell to which the subscriber is currently 

connected and that falls within the defined LRT geographical area. The Cluster represents the 

station to which the cell is belongs.  

 

The pre-processing algorithm selects the candidate trips that fulfil both speed and cluster 

pattern constraints. In this section, the signal oscillation and location uncertainties are detected 

by both the time-constraint and pattern-based methods, which largely eliminates the risk of 

identifying the pseudo-trips in the process.  

 

The pattern-matching method is different from the previous studies discussed since the 

signal coverage of cell towers is assumed not to overlap. In the real world, the user can connect 

with multiple surrounding base stations simultaneously, and the connection is determined either 

by the signal strength at the time or station load balancing policies. Thus, the oscillation 

phenomenon and location uncertainties would be more prevalent in the 4G network since the 

temporal resolution is much higher. Traditional pattern-based methods have difficulty dealing 

with the increased number of records, and a simple (L0 – L1 – L0, or L0 – L1 –L1 – L0) pre-

defined pattern could result in many pseudo trips. In this study, a novel approach to better 

conduct the pattern-matching algorithm is proposed.  



34 

 

 

FIGURE 3.4 The base station coverage demonstration 

 

 As shown above, base stations will cover different parts of the network, from which the 

passengers riding the LRT train can receive the signal communication sequentially. The 

generated travel trajectories formed by a series of network data records are important for 

identifying the transport mode since repetitive travel patterns should indicate everyday travellers. 

As the travellers ride the LRT train, their passively generated network data should align with the 

base stations that are covering the LRT line. As shown in the FIGURE 3.6, the LRT passengers 

should receive the signal from base station 3, to base station 2, to base station 1, sequentially 

since the moving train is entering and leaving each base stations’ coverage area one by one.   

 

The time-constraint method is drawn from previous research (5)(9), in which a small 

time-window Tthreshold is introduced when scanning through the record trajectories. From 
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previous studies (3)(5), the 15-minute time threshold is considered reasonable to filter out most 

of the oscillation phenomena in the database. As shown in the descriptive statistics of the 

network data, 5 minutes is the average update interval of the network data, which, for more than 

80% of the users, averages at least 4 records per hour. The 15-minute time threshold was selected 

to cover most of the users without being too aggressive with the data filtering and inadvertently 

losing important travel information.  

 

Due to the 4G network’s improved temporal resolution, this study found the Tthreshold 

sufficient to filter idle users and travellers who deviated from the LRT line. A user was 

considered as idle under several conditions; 1) the geolocation reference stopped updating for 

time longer than the Tthreshold, or 2) The geolocation reference updated but, according to the 

algorithm, the movement was considered as oscillation phenomenon, or 3) the user did not 

receive any record updating events and/or the record ceased updating for a time longer than the 

Tthreshold.  
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Algorithm 1. Pre-processing 

Input: Coordinates of Base Transceiver Stations; 

Pre-defined cluster pattern groups for LRT line; 

Raw input network data; 

Output: Matched candidate sequential trajectories; 

For each User ID j do 

|    search for the record sequentially that is matched with the cluster pattern groups; 

|    if record i  pre-defined cluster pattern groups; 

|    |    i = i + 1; 

|    else  

|    |    if record i  pre-defined cluster pattern groups; 

|    |    |    add record i in new_trajectory; 

|    |    |    i = i + 1; 

|    |    else if ti+1 – ti < tthreshold; 

|    |    |    add record i+1 in new_trajectory; 

|    |    else 

|    |    |    the new_trajectory is finished and stored; 

|    |    end 

|    end 

end   
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FIGURE 3.5 Workflow for trip identification 

 

The algorithm in FIGURE 3.5 demonstrates how the raw network data is processed and 

grouped into travel trajectories with decision programming. The trip identification selects the 

candidate trip clusters travelling along the LRT railways that could potentially be LRT trips. All 

other trips that either do not travel along the geographical location of the LRT railways or 

possess a staying time that is longer than the threshold value is considered other travel behaviour 

and will not be evaluated in the following model. The candidate trip clusters are trips that match 

with both pre-defined trip pattern and the time constraints. The travellers are considered to be the 

passengers of either the LRT line or private vehicles along the road network besides the LRT 

railway.   
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FIGURE 3.6 One example of pattern matching for identifying an LRT trip 

 

 FIGURE 3.6 shows Traveller A with trajectories {a a a a ’d g ’g g h (each letter represents 

a location identifier)}. The matching pattern given from Station A to Station C derives from the 

stable cells that are covering the station or the path between two stations. Due to the self-

organized algorithm in the cell system network, travellers could potentially connect with any of 

these stable cells. Some noise can be detected as oscillation happens; however, these stable cells 

give a clear indication of the location information. Due to sparse records and relatively low 

temporal resolution in comparison with GPS data, there could be either stations or paths that are 

omitted during the trip. For instance, Traveller A has skipped the georeferencing pattern Path B-

C. However, this does not affect the whole trip being intact as the pattern matching process 

would only stop when either Traveller A left the LRT geographical area completely or remained 

at one location for a longer period of time.  
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3.5 Binary Logistic Regression Model 

According to the temporal and spatial constraints from the last step, all travellers who are 

moving along the LRT line are considered candidates for further analysis. In the pre-processing 

algorithm, the hybrid time-constraint and pattern-based method only selects potential LRT 

travellers but cannot accurately identify whether the person is actually on the LRT or in another 

vehicle. All prior studies have stopped at this stage as either their data sources do not have 

enough time or spatial resolution to support the analysis, or else they only define the 

geographical meaning of their network data separately. Yet, the travel trajectory formed by a 

sequence of network data could potentially provide more information about how the subscribers 

travelling around the city. Therefore, in this research, the travel trajectories are important since 

their relative positioning of each cell shows how the trips are made.   

 

The binary logistic regression model is proposed to capture the travel features one LRT 

passenger could have. The features are constructed intuitively to represent the possible network 

data trajectories when subscribers are considering taking the LRT as their mode of transport.  

 

3.5.1 Feature construction with the transport networks 

 

A travel trajectory is a sequence of visited inferred network locations utilized in this study to 

exam the probability of taking the LRT during the trip. Here, the selected features from the 

visited inferred network location sequence were constructed based on the related information 

between the network tower and the transport network. To construct the travel features, prior 
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knowledge and intuitive determination were employed to select the best context framework for 

considering the probability of taking the LRT during the trip. Major arterial roads, tramways, and 

train stations were downloaded from the Edmonton Open Portal, which provided the 

geographical information about the selected features. All the following features are constructed 

to represent the trip characteristics: 

• Nstation: Number of station clusters connected during one trip 

• Nroute: Number of on-route path clusters connected during one trip 

• Nmatch: Number of records where travellers are matched with the pre-defined pattern 

• Pmatch: Percentage of records where travellers are matched with the pre-defined pattern 

• Tmatch: Time length that travellers are connected with the pre-defined network clusters 

• Pt-match: Percentage of time during the whole trip that travellers are connected with the 

pre-defined network clusters 

• Tdifference = 
|𝑇𝑡𝑜𝑡𝑎𝑙−𝑇𝑒𝑥𝑝𝑒𝑐𝑡|

𝑇𝑒𝑥𝑝𝑒𝑐𝑡
 

o 𝑇𝑡𝑜𝑡𝑎𝑙 is the total travel time for the current trip from the origin station to the 

destination station 

o 𝑇𝑒𝑥𝑝𝑒𝑐𝑡 is the expected travel time for the same origin station to the destination 

station 

 

To more accurately interpret the candidate users from the network data, several features 

were extrapolated from the raw data to help to identify LRT passengers. Based on prior 
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knowledge about LRT operation and passengers’ cell phone usage habits, several assumptions 

were made to more accurately infer the probability of taking the LRT as transport when 

travelling. First, the LRT is a specialty form of transit that operates on a fixed rail and therefore 

has a determined route, unlike private vehicles and bikes that allow passengers to vary their 

routes by choice. Therefore, the longer the passenger travels along the LRT, and thus the 

determined, mapped route, the higher the probability that the passenger is taking the LRT train. 

Second, the more network records and connections made with the cell towers belonging to the 

pre-defined clusters, the higher the probability that the candidate passenger is taking the LRT 

train. In these field tests, all the collected cell tower information is from relatively stable cell 

towers when taking the LRT; people who are connected with these cell towers have a higher 

probability of taking the LRT at the time. Third, since the LRT trains are regularly on schedule 

and without traffic interruptions, the travel time for every passenger should be relatively stable 

from boarding to alighting. Thus, those who travel with abnormal speed (i.e. too fast or too slow 

from the expected travel time) are considered less likely to be on an LRT trip. Based on these 

assumptions, there were nine features extracted from the pre-processed results as input for the 

binary logistic model to identify the probability of the candidate passenger taking an LRT trip.  

 

The probability 𝜋𝑖,𝑙𝑟𝑡 of one candidate Traveller i taking the LRT is defined as: 

𝜋𝑖,𝑙𝑟𝑡 = 𝑙𝑜𝑔𝑖𝑡−1ሺ𝑢𝑖ሻ =
𝑒𝑢𝑖

1+𝑒𝑢𝑖
……………………………..(3.1) 
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where all other means of transport have been classified as ‘other’ in this model. The logit 

𝑢𝑖 follows the linear model that has been built from the training dataset, where Traveller i with a 

probability of taking LRT 𝜋𝑖,𝑙𝑟𝑡 higher than the probability of taking other transport modes 

𝜋𝑖,𝑜𝑡ℎ𝑒𝑟.  

𝑦𝑖 = ൜
1, 𝜋𝑖,𝑙𝑟𝑡 > 𝜋𝑖,𝑜𝑡ℎ𝑒𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

…………………………………(3.2) 

 The model is designed to select these LRT trips from all other trips undertaken by 

subscribers. Therefore, a higher probability indicates that the trajectory features are closer to an 

LRT trip as understood from the prior knowledge and intuitive understanding. Lower probability 

indicates that the person is distant from the LRT line and is travelling with no comparable pattern 

to an LRT trip.  

 

Variables in the Equation 

Step 

Number 

Variables B S.E. Wald df Sig. Exp(B) 

Step 1 Nstation 1.287 0.271 22.482 1 0.000 3.621 

Nroute 0.564 0.310 3.299 1 0.069 1.758 

Pmatch 0.047 0.029 2.535 1 0.111 1.048 

Nmatch 4.625 1.092 17.924 1 0.000 101.967 
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Tdifference -5.474 0.938 34.067 1 0.000 0.004 

Tmatch 0.000 0.001 0.002 1 0.966 1.000 

Pt-match 0.142 0.122 1.345 1 0.246 1.152 

Constant -7.102 1.433 24.567 1 0.000 0.001 

Step 2 Nstation 1.288 0.270 22.665 1 0.000 3.624 

Nroute 0.560 0.298 3.540 1 0.060 1.751 

Pmatch 0.047 0.029 2.547 1 0.111 1.048 

Nmatch 4.616 1.071 18.572 1 0.000 101.053 

Tdifference -5.478 0.933 34.441 1 0.000 0.004 

Pt-match 0.141 0.122 1.343 1 0.247 1.152 

Constant -7.077 1.309 29.231 1 0.000 0.001 

Step 3 Nstation 1.317 0.272 23.432 1 0.000 3.730 

Nroute 0.655 0.287 5.196 1 0.023 1.926 

Pmatch 0.042 0.029 2.113 1 0.146 1.043 

Nmatch 4.491 1.069 17.659 1 0.000 89.222 

Tdifference -5.511 0.933 34.880 1 0.000 0.004 
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Constant -6.686 1.254 28.409 1 0.000 0.001 

Step 4 Nstation 1.5.3 0.248 36.807 1 0.000 4.497 

Nroute 0.766 0.277 7.653 1 0.006 2.151 

Nmatch 4.396 1.046 17.656 1 0.000 81.166 

Tdifference -5.322 0.911 34.157 1 0.000 0.005 

Constant -6.769 1.231 30.235 1 0.000 0.001 

 

 

TABLE 3.2 The seven features extracted from the pre-processed results and the selected features 

that have a significant impact on determining the candidate trajectories 

 

According to previous research (2), prior knowledge about LRT operation, and intuitive 

understanding, the following seven features are classified for each trip trajectory for future 

analysis: 1) Number of stations connected, 2) Number of on-route path-connected, 3) Number of 

records that match travellers with the pre-defined pattern, 4) Percentage of records that match 

travellers with the pre-defined pattern, 5) Time length that travellers are connected with the 

location clusters, 6) Percentage of the travel time that travellers are connected with the location 

clusters, and 7) Travel time difference. 
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 Concerning the first feature, it is assumed that the longer the person is travelling along 

the LRT route, the higher the likelihood the person is taking the LRT train. Thus, the number of 

stations to which a particular trip is connected can be used as an indicator for detecting the 

transport mode. For the same reason, the number of on-route paths (the second feature) can also 

be utilized to indicate whether the person is travelling along the LRT line or is geographically 

proximate to the LRT. Another feature is the number of records that match travellers with the 

pre-defined pattern. In addition, when the traveller is moving along the LRT line while using the 

cellphone, the corresponding records should be connected with the adjacent base stations. 

Despite possible outliers where the cellphone is connected with one base station further away, 

travellers should still commonly have a high percentage of records that are connected with the 

adjacent base stations, especially during the travel time when the towers switch between different 

base stations. Another feature is the total time that the cellphone is connected with the adjacent 

base stations. It is assumed that the longer the time the cellphone is connected with the 

surrounding antenna, the higher the possibility that the person is taking the LRT. The last feature 

is the travel time difference. The LRT is rail-based and has signal priority when travelling 

through the city. This would suggest that the travel time is not likely to be impacted by on-road, 

vehicular or pedestrian traffic. In that case, the travel time between each station can be estimated 

confidently according to the schedule. Therefore, the travel time difference between the traveller 

and the theoretical travel time estimated from the LRT schedule is a valid feature to determine 

LRT ridership.  

 

The backward stepwise method is implemented to determine the best variables to 

describe the features, and the number of stations matched, number of paths matched, number of 
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clusters matched, and expected travel time error were selected. TABLE 3.2 demonstrates the 

nine features extracted from the pre-processed results, from which the trip features were used to 

estimate the probability of passengers taking the LRT. Due to lack of ground truth, 550 candidate 

trips were manually marked as LRT and non-LRT trips for building the binary logistic model. 

These candidate trips were determined by the empirical judgement that trips accorded with the 

LRT speed and the pre-defined travel patterns and was based on the intuitive and prior 

knowledge about how the LRT line is operating across the city. For instance, we know that the 

signal disconnects when the LRT is traveling underground in the downtown and university areas; 

we also know that LRT travel speeds are stable in comparison to private vehicles whose speeds 

can vary more widely and more frequently.  

 

All these trips were marked to be either LRT or non-LRT trips and the backward 

stepwise method helped to select the significant travel features to extinguish between the two 

trips. From the prior knowledge and intuitive judgement, the lengths of trips that matched with 

the travel pattern along the LRT line, and the speeds of the travellers, helped the model to 

identify the candidate’s trips considered to be taken by LRT passengers.  

 

3.6 Data Validation and Training 

 

According to previous studies (9), validating the results generated from the network data 

with third-party data is difficult. GPS records, one of the most accurate technologies to determine 

the geolocation of a person carrying a device with GPS tracking technology, will not always be 
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as prevalent or have as high a market penetration rate as with network data. Other traditional 

ways of conducting travel pattern analysis are based on groups of people. Due to its small sample 

size, it can only be used to validate general travel patterns like total trip generation and trip 

attractions. These aggregated results can represent the general trend of the data but cannot 

represent personal travel trips. Therefore, in this study, some of the standards are defined to 

estimate the accuracy and reasonableness of the results based on the prior knowledge and 

intuitive understanding of how people normally travel within the city.  

 

3.6.1 Trajectory Probabilities of Binary Logit Model 

  

The probability density function for a binary logit model is used to identify the 

homogeneousness of the result distribution after all the analysis. By using the binary logit model, 

the derived transport mode probability distribution of trajectories is one of the performance 

indices to help understand how results react to the model.  
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CHAPTER 4 RESULTS AND ANALYSIS 

This section presents the main results generated from the model, the interpretation of the 

outcomes, the analysis of the current model, and future research possibilities for improvements 

to the use of big data technologies to infer transport mode.  

 

In recent years, new data sources have provided more accurate and reliable information 

about how people move across the city, and new technologies come with challenges for 

researchers to explore. The 3G network data that this research is implemented have been through 

multiple studies and analysis (3)(5)(9), however, the 4G network data with better temporal and 

spatial resolution, gives the opportunities to supplement the limitations of traditional household 

travel survey. The high market penetration rate and large sample sizes are asset that traditional 

data collecting methods cannot compete. With the improved data quality provided, the LRT 

transit system in the City of Edmonton are being selected as the study scope as the current 

transportation planning methods are difficult to monitor the operation level and travel demand. 

Therefore, this study is focusing on utilizing the network data to fill the gaps and provide a 

sustainable way to monitor the public transit system.  

 

Transportation mode analysis assesses the mode split between one origin-destination pair 

and how many people are taking public transit instead of private vehicles. The major identifiers 

are the travel time and the pattern matching results. As the road test is conducted for the LRT 

line in Edmonton, the trip pattern for the LRT line is confirmed. To estimate the public transit 

share, the same method is used to create a trip pattern for the LRT line and bus transit. However, 

bus transit is difficult to distinguish from general traffic, and more road tests are required to 
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create accurate trip patterns. The road test shows the trip pattern collected for the LRT line. As 

for the trip pattern matching process, all travellers with a high match rate to the LRT line are 

considered LRT passengers, where their cell sequences comply with the trip pattern along the 

LRT line. With the support of the road test data to generate the trip pattern, Edmonton 

passengers taking LRT trips can be distinguished by a travel pattern match to the road test data.  

  

4.1 Study Area 

 In this study, the LRT Capital Line was selected as the study area that travels in a north-

south direction. The Capital Line is approximately 22 kilometres in length and includes 14 

stations in total, traversing the most populated areas in the City of Edmonton. The LRT line 

passes through several major districts including the University of Alberta’s North Campus, the 

downtown business district, Century Park (southern major transit hub), Southgate (southern 

major business district), and Clareview (northern major transit hub). Century Park and Clareview 

are also hubs in the Edmonton Park and Ride program. Therefore, the daily passenger boarding, 

and alighting patterns are representative and can be used to validate the results.  

 

 In network data, the location information is based on the cell tower antennae. According 

to cell tower information provided by the operators, the theoretical coverage of each cell tower 

and antenna can be calculated. However, different physical environments, different weather, and 

operation purposes, could affect the real coverage as compared to the theoretical coverage. To 

mitigate these differences, field tests were conducted along the LRT line that aimed to plot the 

real connections between cell towers and LRT passengers.  
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4.2 Field Test Results 

In this research, the field test was an important component to acquire the baseline of real 

cell tower coverage. As explained above, real cell tower coverage can be very different from the 

given theoretical coverage or normally assumed Voronoi polygon shape. Therefore, to accurately 

map the handover features and the stable cell cluster covering station and path, field tests were 

used to map the handovers between cell tower antenna. The GPS records are the best way to 

verify the individual trajectory result estimation, although GPS data requires additional 

equipment to collect geographical information. As a result, the data can only be implemented on 

a small scale compared to network data that covers more than 25% of the total population.  

 

 In this study, one complete trip from Century Park station to Clareview station was 

collected with both GPS records and network data available at the same time. This was also the 

only trip that had GPS ground truth that could be used as a reference to compare accurate 

trajectories and our model. As seen in FIGURE 4.1, the model has captured the whole trip of the 

target trajectories with the underground station missing due to lack of cell network coverage.  

 

The field test was conducted in February 2018 during peak and non-peak hours to 

decipher the cell towers that travellers may connect to during their LRT rides. An Android 

application was utilized to collect both the GPS data and information on the cell phone-tower 

connections. The Android application was based on the GPS sensors and GSM modules of 

Google Nexus 5 to collect the longitude, latitude, timestamp, and current connecting cell tower 

information once per second. The collected field data were used as the reference data to 

demonstrate the signal coverage of cell towers along the LRT line.  
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As we can see below, the idle smartphone is constantly communicating with the network 

system while the passively generated network data have plotted out the entire trip when the 

smartphone is traveling with the LRT train from Century Park station to Clareview station in the 

northbound direction. In the section below, the station number and name represent the traveller’s 

current location along the LRT line, and the matched records demonstrate that the network 

subscriber is currently communicating with the cell towers that are covering the selected station. 

 

FIGURE 4.1 One example of the field test along the Capital Line 
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Due to missing information from the reference data, there was no third-party dataset that 

could be utilized for comparison and result validation. In that case, the field test data in this study 

became an important independent data source that could validate the proposed methodology. As 

stated in the literature review, the rarity of validation data and methods has been a consistent 

drawback for network data, adding uncertainty to the analyzed results.  

 

4.3 Descriptive Statistics of Network data 

 Data used in this research consists of 4G Network data from approximately three hundred 

thousand users in the Edmonton metropolitan area during two complete weeks in 2017. The 

database includes all active devices that were connected with the network of mobile carriers 

within the Edmonton metropolitan area. The network data were collected by mobile operators for 

operation and billing purposes and to ensure that mobile users remained connected with the 

network. Each record contains the User ID (encrypted user ID), a timestamp, cell tower 

information, and type of activities. According to the descriptive statistics, the mobile users 

included in the records could be long-term residents, short-term residents, visitors and/or 

commuters.  

 

 Before any processing steps, the raw network data contained all three hundred thousand 

possible travellers within the Edmonton metropolitan area. According to the Edmonton census, 

the population for the metropolitan areas is approximate 1.27 million. The network data are 

passively generated by the mobile operators and include all types of users as long as they are 
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active in the network. Unlike traditional methods of conducting the travel survey, network data 

can capture all types of commuters, including both regular and irregular travel. The raw network 

data contain about 30% of the total population, and the network data can be viewed as a 

representative sample in the study.  

 

 The network data itself provides some self-selection bias that can skew the analysis 

slightly and may represent groups that are more active and travel more frequently. The groups 

with higher cell phone usage will be better captured because of high frequency activity records. 

The first hour included data from the previous day due to the packing process of the data 

providers.  

 

 

FIGURE 4.2 The hourly recorded network data by event type 

 

 In general, the weekly passenger volume pattern for each station is presented below, 

where the usage of each station on weekdays is seen to be repetitive. The week of data collection 

included a national statutory holiday on the Monday as shown. The output result also 

demonstrates that there was a significant drop in volume during both morning and afternoon 

Data from previous day 
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peak hours. Also evident is that the Century Park Station, University District, and Downtown 

areas were three hotspots with large amounts of passengers boarding and alighting at these 

stations. The passenger number estimation for working weekday have shown in great 

consistency as university and downtown areas have greater travel demand, in contrast to the 

passenger number in weekday and statutory holiday.  

 

 

FIGURE 4.3 The weekly pattern of boarding and alighting passenger volume for each LRT 

Capital Line station  
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4.4 Performance Index of Transport Mode Inference  

4.4.1 Trajectory probabilities  

Using the binomial logit model, the probability distribution of trajectories was derived 

below. The distribution of probability for the different types of transport mode is shown in 

FIGURE 4.4, which demonstrates how the model estimates the different types of transport mode 

during the trips. For most of the identified candidate trips are being categorized as non-LRT trips 

since the trip identification step have included all trips conducted near the LRT line. However, 

those trips are mostly being considered as other modes of transport in our transport mode 

inference method.  

 

  

FIGURE 4.4 The probability density function for the binary logit model 
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4.4.2 Cross-Validation with LRT Annual Report 

The results presented are derived from the network data gathered over two weeks in September 

2017 and was compared with the LRT annual report 2017 that is collected and analyzed by the 

City of Edmonton for the general information about the LRT operation and passenger counts for 

each station. For comparison, the estimated passenger counts were projected to the whole 

population with a 95% confidence level. The annual report used the traditional methodology of 

collecting the passenger data by manually counting the boarding and alighting of passengers at 

the door from the beginning to the end of the service. During both survey periods, there were no 

big events such as sports games or major outdoor activities. This is significant because special 

events can potentially create variance in the passenger count and have an impact on the results. 

As shown below FIGURE 4.5, the average weekday comparison between the estimated 

passenger count and the annual report passenger count at each station shows similar trends with 

minor differences at certain stations.  
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FIGURE 4.5 Projected Estimated Passenger Count per day vs. Annual Report Passenger Count 

 

FIGURE 4.5 shows the daily estimated travellers taking the LRT during the weekday, 

compared to the real-world morning peak and afternoon peak hours. As per data providers, 

network data is inclined to have lower update frequency and activity events as people tend to use 

their cellphones less frequently in the evening. Therefore, the p.m. peak hours demonstrate lower 

numbers. However, a general trend is still identifiable as more people tended to take LRT 

between 4 p.m. and 6 p.m. The passenger count increased dramatically, starting at 5 a.m., which 

is congruent with the first LRT train departing at the same time. Moreover, the passenger count 

peaked at 7:30 a.m., which can reasonably be assumed to be related to work travel in the 

morning.  
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In a general trend, the estimated passenger count is higher than what the LRT annual 

report is suggesting, which could be resulted in several reasons. For certain stations like Grandin, 

Corona, Bay Enterprise Square, and Central station where the annual report is significantly lower 

than what the model is estimated. This may due to that the underground station does not have the 

cell tower coverage which there is no data being collected while the travellers are underground. 

The only travel information that the network data can capture is when the travellers are about to 

entering the station and the first records when the travellers are leaving the station underground 

area. Therefore, the underground to underground station trip trajectories will be lacking enough 

travel information, and other trips like private vehicles traveling within the downtown area or 

pedestrians walking through the downtown pedway system could be miscounted as an LRT trip. 

As might be expected, the proposed method is more accurate in identifying the long distance 

trips where there are more collected records along the route. Trips that are conducted within 

downtown areas where people are simply travelling between different buildings along the LRT 

line would be tricky to identify.  

 

The Century Park station was the only station where the passenger count from the LRT 

annual report was significantly higher than the model estimation. One reason could be that the 

Century Park station is located in the southern part of the city where business activity is low. The 

cell tower density, as mentioned in the previous section, is significantly lower than that of other 

core areas like the downtown or university. As such, the subscribers could have connected with 

other cell towers due to network system balancing procedures. The model, in that case, will not 

be able to detect if those travelers collected to other cell towers are starting from the Century 

Park station.  
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Although the LRT annual report is the only reference document for the comparison 

analysis, the estimations in the report itself were conducted using a traditional data collection 

method.  The report stated that the passenger count at each station was collected by two data 

collectors riding the LRT train and counting the number of passengers boarding and alighting at 

each station. The data collection was conducted over a single day, leading to potential bias based 

on the small sample size. The difficulty of monitoring actual public transportation use and the 

current labour-intensive form of data collection provide justification to find better ways to 

conduct these audits, especially since detailed and accurate information is key for transportation 

planners, engineers, and decision makers.  

 

 

 

 

FIGURE 4.6 Daily Estimated Travellers Taking the LRT Capital Line for All Stations  
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Because the Edmonton LRT annual report does not have an hourly passenger count data, 

the estimated passenger count was analyzed to match with the prior knowledge that morning and 

afternoon peak hours should occur during the weekday and the volume of travellers are much 

higher in weekdays than that in weekends.  

 

 Before conducting the pre-processing step, the network data contained all users who 

commuted through the City of Edmonton. To identify the LRT passengers through the day, the 

nature of network data was considered. Even though the 4G network increases the temporal 

resolution of data so that more comprehensive travel trajectories can be plotted, there are still 20 

to 30 % of users whose daily number of records are less than 100. In that case, only users whose 

records were collected by the operator when taking the LRT simultaneously could be identified. 

Therefore, the first step was to identify candidate passengers whose mobile records matched with 

the pre-defined LRT line. The candidate passenger trips identified from the pre-processing steps 

were not the actual LRT trips, but the trips associated with LRT or surrounding road networks.  

 

4.5 Comparison between Proposed Method and Traditional Mode Identification Methods  

 

To record the accurate geographical location of travellers in comparison with the 

proposed model estimated travel trajectories, this research used built-in GPS sensors in the field 

test. The following is an example of the road test conducted for validation and comparison for 

the model on January 16, 2018.  
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FIGURE 4.7 Smartphone collected GPS records for comparison 

 

As discussed, the test passenger boarded the LRT at Century Park station and alighted at 

Clareview station, travelling through the whole network. As per the proposed model, the 

probability of this subscriber taking public transit, based on their long-distance travel route, is 

likely. This is especially the case because the LRT track is geographically isolated from the 

major arterial road network. Although the southern part of the track is close to the major roads, 

the northbound train track is more isolated, and therefore the model can more easily monitor the 

traveller and identify whether the person is travelling on LRT or other means of transport.  
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TABLE 4.1 The stepwise result for the same trip from the network data 

 

As shown in TABLE 4.1, the tester was identified as boarding the LRT line at Century 

Park station, heading northbound. The surface stations both on the south and north side of the 

network are easily identified since the network connection was strong and updated frequently 

during that time. The underground stations that are not covered by the network tower signals are 

between the Health Science station and the Stadium station. This large signal offline gap can also 

be utilized as a travel identification feature since other means of transport, like private vehicles 

and transit buses, are still on the ground; therefore, the network connections are still in progress 

and handling activities can still proceed.  

 

 

4.6 Passenger Statistics and Origin Destination Estimations between Stations 

 

 A major result generated from the proposed model to represent estimated transit ridership 

from the network data is the overall general statistics. The estimated results show relative 

conformity with the LRT annual report (the third-party data) with minor differences, due mostly 

to the biases of the network data and its features in data collection.  
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 There are several biases and drawbacks when utilizing network data to monitor urban 

dynamics and travel behaviour. The first one is that the network data is impacted by the usage 

frequency of cellphone users. Although the communication frequency between network towers 

and cellphones are more intense in the era of the 4G network than the 3G network or the GSM 

network, the data quality and update activity interval can still be as low as several hours. In our 

study, the evening data quantities dropped dramatically with lower usage across all users.  

  

 The network system does take some time to update the location information, with the 

update interval normally around two hours. As a result, the call or text records could be made 

during a trip but not at the beginning or at the end of the trip. This could potentially mislead the 

researchers to use the location as a pseudo origin or destination. The temporal resolution has 

improved with the new 4G network system and does update the location information on a regular 

basis. Statistically, an average subscriber has 254 records per day, and over 70% of users have 

one hundred or more records, as shown in FIGURE 4.8. 

 

 

FIGURE 4.8 The cumulative percentage of user’s record number 
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As mentioned above, the network data utilized had a sample rate of 30% of the City of 

Edmonton’s total population. However, not all the samples could be utilized in the estimation 

since approximately 20% of the population have less than twenty-four daily records. This means 

that the update interval for these users is greater than one hour. These people are generally 

considered invalid in the model presented here since the data quality is too low and the update 

interval is too long to estimate the real travel behaviour, especially as the total travel time from 

the first LRT station to the last station takes approximately forty-five minutes.  

 

 

 

 

 

 Identified Total 

Sample Size 

95% confidence 

level valid 

sample size 

Projected total 

population 

based on valid 

samples 

Scaling 

reference from 

the passenger 

count number 

Transit Ridership 

on average 

35,789 16,105 120,787 112,805 

TABLE 4.2 The identified sample size and 95% confidence level sample size 

 

According to the model and confidence level estimation, 16,105 out of 35,789 records 

were considered valid samples with a confidence probability higher than 95%. All other records 

were considered not valid since the model could not make a judgement about the means of 
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transport or whether the person was stationary at points during the entire day. The valid samples 

were projected to match the total passenger number recorded by the LRT annual report, and all 

other estimations were based on the projected records.  

 

The following two TABLE 4.3 and 4.4 represent the total origin-destination matrix for all 

the LRT stations. As shown, the gradient of red represents the intensity of station usage for 

boarding and alighting during the whole day of operation. The northbound LRT operation matrix 

shows that most people alighted within the university area during the day, which is intuitively 

correct since students form a significant percentage of passengers taking the LRT. Furthermore, 

a significant number of passengers used Grandin station, which linked to key provincial 

government legislative buildings. The southbound LRT operation matrix shows that the 

University station was again the most popular boarding station, where students board to go 

home.  

 

It should be noted that because the LRT track in the downtown area is not covered by the 

network tower signals, the first or the last on-surface connection is used to determine the station 

boarded or alighted from by passengers. This estimation could be less accurate than that for the 

surface stations since the pedways in the downtown area are used by people to travel from one 

building to another and may distort their true destinations.  

 

As shown in the TABLE 4.2, the surface stations tend to have fewer differences between the 

estimated passenger boarding and alighting data and the LRT annual report results. These also 
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match with the study’s assumption that the data quality is higher for surface stations than for 

underground stations due to poor connections between network towers and cellphones. 

 

 

TABLE 4.3 The northbound origin-destination matrix for LRT Capital Line from the valid 

samples 
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TABLE 4.4 The southbound origin-destination matrix for LRT Capital Line from the valid 

samples 
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Number ID Station Name 

1 Century Park 

2 Southgate 

3 South Campus 

4 Belgravia 

5 Health Science 

6 University 

7 Grandin 

8 Corona 

9 Bay/ Enterprise Square 

10 Central 

11 Churchill 

12 Stadium 

13 Coliseum 

14 Belvedere 

15 Clareview 

 

 

TABLE 4.5 The station number indication 

 

 Both the northbound and southbound origin-destination matrix (TABLE 4.3 and TABLE 

4.4) show that both the university and downtown areas are the busiest districts along the LRT 

Capital line. TABLE 4.5 outlines the Number ID for viewing the origin-destination matrice.  
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4.7 Hotspot Comparison between Network data and Third-Party Data 

 

 The hotspot analysis can help to further understand the validity of the results. In this case, 

the Century Park station to the University area was chosen for analysis because it is a typical 

route for students travelling to school and for people using the park and ride to travel to work. 

The passenger volume changed throughout the day. During the AM peak hours, fewer 

passengers travelled from the university district to Century Park; during the PM peak hours, 

large amounts of passengers were captured travelling from university district to Century Park, 

presumably after work or school.  

 

 

 

FIGURE 4.9 Hotspot stations trip pattern – the LRT ridership from University to Century Park 
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CHAPTER 5. CONCLUSION 

This chapter gives a summary of the research and its limitations at the current stage. Some 

thoughts about future work are also discussed in relation to the benefits of this technology on 

further research and transportation applications.  

 

5.1 Research Summary and Limitations 

 

In this study, a completed data processing architecture was built to capture passenger 

travel behaviour along the LRT line. A novel method based on pattern matching and trip feature 

extractions was proposed to infer the LRT trips and non-LRT trips from network data. Network 

data, transport networks, and travel survey information are jointly implemented in this transport 

inference model associated with network data travel trajectories. Compared to a traditional travel 

survey, network data are low-cost, require a less labour-intensive process, and provide up-to-date 

data information for transportation planning purposes. The proposed model has demonstrated 

reasonable results in comparison with third-party data and validation methods, and the resulting 

OD matrices have shown a high correlation with the household travel survey with reasonable 

differences at certain stations.  

 

 Although network data have been more commonly used in identifying the transport 

mode, the methodology utilized was discussed. The whole data processing architecture included 

data pre-processing, trip identification, and transport mode identification, where each step 

required deliberate assumptions to ensure the validity of the output results. As was outlined in 

the literature review, three types of pre-processing methods have been commonly used in recent 

studies: pattern-based, time-window-based, and hybrid. The new generation of network data has 
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a higher update frequency and denser cell station distribution, thus increasing the complexity of 

the raw data. This study has implemented the hybrid method to conduct the data cleaning 

process, regarded as the most useful method for more complicated trip scenarios.  

 

 In terms of trip identification, this study proposed a novel pattern-matching algorithm to 

estimate the origin-destination flows and transit ridership of the selected LRT line. The pre-

defined pattern incorporates the network geolocation, transport networks, and travel survey 

information that were implemented in the transport mode inference engine. Furthermore, several 

travel features were extrapolated from each identified candidate trip to estimate the probability of 

rail travel through a binary logit model. The output results of the OD matrices for the LRT 

stations on the Capital Line have shown high levels of correlation with reasonable absolute 

differences, despite some small differences in particular scenarios. Low signal coverage of 

underground LRT stations in Edmonton meant that the boarding and alighting volumes of the 

surface stations showed better accuracy and stability than those of underground stations.  

 

5.2 Research Contributions 

 

 The output results have demonstrated the capability of capturing everyday travel 

behaviour. Weekday travel behaviour is highly consistent while it varies with weekend and 

statutory holiday travel. The travel patterns are also highly repetitive for certain hotspots along 

the LRT line, such as the University district and Century Park station, where the boarding and 

alighting volumes are reversed in the morning and afternoon peak hours.  In comparison with the 
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field collected GPS data, the model has shown good reliability in identifying long distance rail 

trips with high confidence.  

  

 There are still some limitations to this research. There are no real benchmarks for the OD 

comparison or for weekday and weekend ridership differences. Therefore, analysis of the results 

required prior knowledge and common sense. Also, this study focuses on an easy-to-detect 

transport mode (rail vs. road), which is relatively limited in real world implementation. A more 

general classification of transport modes would require large numbers of accurate ground truth 

data, which are difficult to obtain. Considering the advancement of network data technology with 

improved temporal and spatial resolution, the use benefits of network data to conduct future 

transport mode studies in large-scale city contexts are increasingly more attractive, particularly 

in terms of its reduced labour and expense costs. By sufficiently understanding network data, 

transportation researchers and engineers will be able to improve transport mode identification in 

large-scale regions and facilitate the investigation of daily city travel.  
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