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Abstract

This thesis considers the possibility of stochastic resonance (SR) in the following

nanoscale systems: (i) hard-threshold devices; (ii) averaging structures of carbon nan-

otubes (CNTs); (iii) myoglobin atoms; and finally (iv) tubulin dimers. The description

of SR is carried out using Kramers’ rate theory in the adiabatic two-state approximation

for continuous systems and using Shannon’s information theoretic formalism for systems

with static nonlinearities. The effective potentials are modelled by asymmetric or sym-

metric bistable wells in a single reaction co-ordinate. Quantum considerations have not

been invoked. Hence, all results are implicitly valid in the high-temperature regime of

relevance to industrial applications. It is established that information transmitted by

arrays of identical CNTs is maximized by non-zero noise intensities and that the response

of myoglobin and tubulin dimers to ambient molecular forces (as described by the signal-

to-noise ratio or SNR) is enhanced by increasing temperature. Sample calculations are

shown for solvent fluctuations, ligand interactions and dipole oscillations. These results

can be used to explain: (i) the effects of temperature observed in fabrication processes

for CNTs; (ii) the dynamical transition observed in myoglobin and (iii) the 8.085 MHz

resonance observed in microtubules.
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Chapter 1

Introduction

In conventional system theory, noise is inevitably considered as a degrading factor on the

system performance. This is certainly true of all linear systems. Due to the ‘irregular’,

non-deterministic nature of noise, it is modelled as a random process influencing system

dynamics. Furthermore noise is unavoidable, it being impossible to isolate a system

perfectly from its environment. All systems interact with their thermal reservoirs, which

constitute a source of noisy dynamics. Even at zero temperature, when thermal (clas-

sical) fluctuations vanish, an interaction with zero-temperature reservoirs– a source of

quantum noise, persists. Nonetheless, the addition of an optimal level of noise sometimes

makes a nonlinear system behave in a more regular manner. Such increased ‘regularity’

manifests itself in a number of ways: (i) an increase in the signal energy in a certain

frequency bin relative to the power of noise; (ii) an increased periodicity in residence

times; (iii) an increase in synchronization between various coupled devices; and (iv) an

increase in the value of information-theoretic measures for complex signals.

Stochastic Resonance (SR) is a phenomenon manifest in certain nonlinear systems

whereby weak, input signals are amplified when subject to noise. This phenomenon

requires three basic ingredients: (i) a system characterized by a threshold or more gen-

erally an energy activation barrier; (ii) a weak, coherent input (usually a weak periodic

or semi-periodic signal); and finally (iii) a source of noise inherent in the system. The

underlying mechanism of this phenomenon is simple and robust, as will be explained

below.

An intuitive picture of how such noise-induced improvement occurs can be given

as follows. We consider the overdamped motion of a classical particle in a symmetric

double-well potential. If this system is noise-free, the particle tends to relax within

the potential well where it was initially placed. Coupling to a thermal bath results
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in random discrete jumps of the particle’s reaction coordinate. Due to these jumps,

the particle can eventually surmount the potential barrier, thereby undergoing a noise-

assisted transition to the neighbouring well. These thermal activation rates are given by

the celebrated Kramers’ formula [94]:

rK =
ωoωb

2πγ
exp

(
−∆V

D

)
. (1.1)

with ω2
0 = V ′′(xm)/m being the squared angular frequency at the potential minima

±xm, and ω2
b = |V ′′(xb)/m| being the squared angular frequency at the top of the

barrier xb; and γ being the coefficient of viscosity. ∆V is the height of the potential

barrier separating the two minima and D = kBT is the noise strength, related to the

temperature. Thus, the thermal activation rates are functions of the barrier height and

noise level. If a small periodic modulation is applied to the potential at a modulation

frequency much smaller than the intrawell relaxation rate, but in itself unable to carry

the particle deterministically across the potential barrier, the thermal activation rates

are periodically modulated in time. Consequently, at a certain phase of the signal, the

probability of undergoing a certain transition to the neighbouring well increases, whereas

the probability of the opposite transition is suppressed. If we observe realizations of

the stochastic process x(t) for different noise strengths, we see that for some finite,

optimal amount of noise, transitions between wells occur almost periodically in time. At

some noise level, the waiting time TK(D) = 1/rK between two noise-induced interwell

transitions is comparable to half the time-period TΩ of the periodic forcing. This leads

us to the matching condition given by

TK(D) =
1

2
TΩ. (1.2)

Therefore, one feature of such noise-induced behaviour in a symmetric double-well poten-

tial is the statistical synchronization observed between (i) thermally activated hopping

events from/to adjacent potential wells and (ii) the weak periodic forcing signals. For

a given period of the forcing TΩ, the time-scale matching condition can be fulfilled by

tuning the noise level Dmax to the value determined by Eq.(1.2). This somewhat counter-

intuitive, cooperative effect between a signal and noise in a nonlinear system, leading to

an enhanced response to the periodic force is termed stochastic resonance (SR).

The term ‘Stochastic resonance’ first appeared in 1981 [10], where it was proposed by

Benzi as a plausible mechanism for the almost periodic occurrence of ice ages in Earth’s

climatic history. A statistical analysis of data pertaining to the Earth’s glaciation se-
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quence over the past 700, 000 years indicates an average periodicity of about 100, 000

years. This fact is surprising as the only comparable time-scale in Earth dynamics is

the period over which the orbital eccentricity is modulated by planetary gravitational

perturbations. Furthermore, these effects cause an exceedingly small variation in the

solar energy flux on the Earth’s surface, by itself too weak to cause the observed climatic

variations. Stochastic resonance (SR) offers a simple, but by no means definitive answer

to this question. Benzi and his co-workers [10] modelled global climate by a symmetric

double-well potential in a single co-ordinate, namely temperature. One minimum rep-

resents an attractor corresponding to a cold, largely icy climate, the other to a warmer

climate. The weak modulation of the orbital eccentricity corresponds to a weak, periodic

forcing on such a system. Short-term climate fluctuations, such as annual fluctuations in

solar radiation, were modelled by Gaussian white noise. In Benzi’s model synchronized

hopping between cold and warm climates, governed by Eq.(1.2), aid and enhance the

response of the Earth’s climate to otherwise weak perturbations in its orbital eccentricity.

The first experimental verification of SR was obtained in a study of the AC-driven

Schmitt trigger with both a threshold and a hysteretic nonlinearity [39]. However, it was

the key experiment in a bistable ring laser by McNamara and Wiesenfeld [122] which

inaugurated keen interest in the SR phenomenon. Soon afterward, prominent theoretical

treatments were proposed in the adiabatic limit [48, 123, 141, 73] and in the non-adiabatic

regime [81, 82, 85]. Descriptions of SR in terms of linear response theory (LRT) have

also been frequently proposed [34, 35, 49, 85, 73].

The unifying feature of all systems said to exhibit SR is the increased sensitivity to

small perturbations at an optimal noise level. The first non-bistable systems discussed

in this category were excitable systems [103]. In contrast to bistable systems, excitable

systems have only one stable state, called the rest state. However, they also possess a

threshold to an excited state which is not stable and decays after a refractory period. The

refractory period is much longer, relative to the relaxation time of small perturbations

around the stable state. A class of very simple systems which were also discovered to

exhibit SR, also dwelt on extensively in this thesis, were threshold detectors [79, 80,

192, 51, 47]. It must also be mentioned that SR-like features were discovered in purely

autonomous systems [72, 145].

The most prominent area for applications of stochastic resonance thus far has been

in neurophysiology: SR has been demonstrated in mechanoreceptor neurons located in

the tail fans of crayfish [32] and in the hair cells of crickets [100]. The investigation of

SR in retinal and noisy neuron models has been done in [136, 137, 92, 91]. A detailed

review is given in [126]. It is noteworthy that the notion of stochastic resonance is
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not limited to the macroscopic world governed by classical physics: it has since been

extended into the domain of microscopic and mesoscopic physics. The quantum analog

of stochastic resonance was addressed in [105, 106, 58, 59]. It has been discovered in

spatially extended pattern-forming systems [83, 102]. Other important extensions of SR

include coupled systems and deterministic systems exhibiting chaos ([48] and references

therein). Apart from theoretical developments [48], the SR effect has been used in many

practical applications such as sonar arrays [4, 153]; flash analog-to-digital converters

[111]; cochlear implants [177] and motion detection systems [67]. A prominent area of

research is the investigation of stochastic resonance in nano-scale devices. Stochastic

resonance hase been explored in nanotubes [98], quantum dots [78], nano-mechanical

oscillators [7], nano-scaled gates [114] and nano-electronic cells [115]. Other applications

are listed in [125]. The use of this phenomenon in the context of signal detection, has

also received considerable interest [20, 21, 22, 23, 24, 25, 54, 155, 156, 201, 202]. The

detector consists of a stochastic resonant threshold system followed by a correlator. Such

detectors exhibit a marked improvement in performance over conventional, linear systems

for non-Gaussian noise [20, 22, 23, 24, 25, 47, 54, 201, 202]. In this thesis, we discuss

the design and construction of such a detector in greater detail.

The organization of the remainder of the thesis is as follows: in chapter 2, we present

the background theory relevant to the project; in chapter 3 we discuss the design of

the detector based on SR in threshold systems at length; in chapter 4 we investigate

SR in arrays of carbon nanotubes; and in chapters 5 and 6 we investigate SR in myo-

globin atoms and tubulin dimers respectively. Chapter 7 summarizes and concludes the

document. Chapters 3, 4, 5 and 6 relate to research articles [158, 159, 160] and [161]

respectively.
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Chapter 2

Background theory

2.1 Characterization of stochastic resonance

In this section we discuss the simplest model that characterizes a class of symmetric,

bistable systems which exhibit stochastic resonance. Such a discrete model was proposed

originally as a study case by McNamara and Wiesenfeld [122], who argued that under

certain conditions it gives an accurate description of most continuous bistable systems.

A preliminary analytical scheme for such systems can be developed as follows.

Consider a symmetric, unperturbed system which switches between two discrete

states ±xm with rates W± into either state. We define n±(t) to be the probabilities

that the system occupies either state ± at time t, i.e. x(t) = ±xm. In the presence of

a periodic input signal A(t) = A0 cos Ωt, the transition rates W±(t) depend periodically

on time. The relevant master equation then reads

d

dt
n±(t) = −W∓(t)n±(t) +W±(t)n∓(t), (2.1)

or, using the normalization condition n+(t) + n−(t) = 1,

d

dt
n±(t) = − [W±(t) +W∓(t)]n±(t) +W±(t). (2.2)

The solution of the rate equation (2.2) can be found by the standard method of inte-

grating factor for first-order ODEs [3, 18] and is given by

n±(t) = g(t)

[
n±(t0) +

∫ t

t0
W±(τ)g−1(τ)dτ

]
,

g(t) = exp

(
−
∫ t

t0
[W+(τ) +W−(τ)]dτ

)
, (2.3)
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with unspecified boundary conditions n±(t0). Following [122, 123] we will assume the

transition probability densities are periodically modulated escape rates of the Arrhenius

type, given by

W∓(t) = rK exp

[
±A0xm

D
cos Ωt

]
, (2.4)

where D = kBT represents the strength of the thermal noise similar to Eq.(2.84). Since

we are primarily interested in the transmission and detection of weak signals in this

thesis, we will assume that the energy of the modulating signal is small compared to

that of thermal noise i.e. A0xm � D. In such a case, the following Taylor’s series

expansions can be derived in the small parameter A0xm/D,

W∓(t) = rK

[
1±

(
A0xm

D

)
cos Ωt+

1

2

(
A0xm

D

)2

cos2 Ωt± . . .
]
,

W+(t) + W−(t) = 2rK

[
1 +

1

2

(
A0xm

D

)2

cos2 Ωt+ . . .

]
. (2.5)

This assumption for escape routes remains valid for small driving frequencies (adiabatic

assumption). Under such an assumption the integral in Eq.(2.3) can be performed to

give to first order in A0xm/D,

n+(t|x0, t0) = 1− n−(t|x0, t0)

=
1

2
{exp [−2rK(t− t0)] [2δx0,xm − 1− κ(t0)] + 1 + κ(t)}, (2.6)

where

κ(t) = 2rK/
√

4r2K + Ω2(A0xm/D) cos(Ωt− φ) and

φ = arctan(Ω/2 rK). (2.7)

The quantity n+(t|x0, t0) denotes the conditional probability that x(t) is in state + at

time t, given that its initial state x0 = x(t0). Here, the Kronecker delta δx0,xm is unity

when the system is initially in the state +. From the above equations, any statistical

quantity of the discrete process x(t) can be computed to first order in A0xm/D. A few

such quantities are:

1. the time-dependent response 〈x(t)|x0, t0〉 to the periodic forcing. From the defini-
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tions

〈x(t)|x0, t0〉 =
∫
xP (x, t|x0, t0)dx (2.8)

and

P (x, t|x0, t0) = n+(t|x0, t0)δ(x− xm) + n−(t|x0, t0)δ(x + xm), (2.9)

it follows that in the asymptotic limit t0 → −∞,

lim
t0→−∞

〈x(t)|x0, t0〉 ≡ 〈x(t)〉as = x(D) cos[Ωt− φ(D)], (2.10)

with

x(D) =
A0x

2
m

D

2rK√
4r2K + Ω2

and

φ(D) = arctan

(
Ω

2rK

)
. (2.11)

2. the auto-correlation function 〈x(t+ τ)x(t)|x0, t0〉. The general definition

〈x(t+ τ)x(t)|x0, t0〉 =

∫ ∫
xyP (x, t+ τ |y, t)P (y, t|x0, t0)dxdy (2.12)

greatly simplifies in the stationary limit t0 → −∞,

lim
t0→−∞

〈x(t+ τ)x(t)|x0, t0〉 ≡ 〈x(t+ τ)x(t)|x0, t0〉as

= x2
m exp (−2rK |τ |)

[
1− κ2(t)

]
+ x2

mκ(t+ τ)κ(t). (2.13)

In Eq.(2.13) we can easily separate an exponentially decaying branch due to ran-

domness and a periodically oscillating tail driven by the periodic input signal. Note

that even in the stationary limit t0 → −∞, the output signal auto-correlation de-

pends on both times t and t+ τ . However in real experiments, t denotes the time

of the data acquisition process. Typically, the averages implied by the definition of

the auto-correlation function are taken over many sampling records of the signal

x(t), triggered a large number of times t within one forcing period TΩ. Hence, the

corresponding phases of the input signal θ = Ωt+ φ, are uniformly distributed be-

tween 0 and 2π. This corresponds to averaging 〈x(t+ τ)x(t)|x0, t0〉as with respect



CHAPTER 2. BACKGROUND THEORY 8

to t uniformly over an entire forcing period, whereby

〈〈x(t+ τ)x(t)|x0, t0〉〉 = x2
m exp (−2rK |τ |)

[
1− 1

2

(
A0xm

D

)2 4r2K
4r2K + Ω2

]

+
x2

m

2

(
A0xm

D

)2 4r2K
4r2K + Ω2

cos Ωt. (2.14)

where the outer angular brackets 〈. . .〉 now stand for 1/TΩ
∫ TΩ

0 [. . .]dt.

Before proceeding further, a few salient points in the derivation of Eqs.(2.10) and

(2.13) should be outlined for the reader’s benefit. From Eqs.(2.3) and (2.5) it

follows that

g(t) = exp

{
−
∫ t

t0
2rK [1 +

1

2

(
A0xm

D

)2

cos2 Ωu]du

}
. (2.15)

Since the correction to g(t) is seen to be of the order of O(A2
0), to first order we

have the approximations g(t) = e−2rK(t−t0) and g−1(τ) = e2rK(τ−t0). Then from

Eq.(2.3) we get

n+(t) = e−2rK(t−t0)
[
n+(t0) +

∫ t

t0
rK

(
1− A0xm

D
cos Ωτ

)
e2rK(τ−t0)dτ

]
,

= e−2rK(t−t0)
[
n+(t0) +

1

2

(
e2rK(t−t0) − 1

)
− rK

A0xm

D

∫ t

t0
cos Ωτe2rK(τ−t0)dτ

]
.

(2.16)

The integral in the last equation can be evaluated by the method of residues to

give us

∫ t

t0
cos Ωτe2rKτdτ =

1

2


 e2rK t

√
4r2K + Ω2

cos(Ωt− φ)− e2rK t0
√

4r2K + Ω2
cos(Ωt0 − φ)


 .(2.17)

Substituting this result into Eq.(2.16) we get

n+(t) = e−2rK(t−t0)


n+(t0) +

1

2

(
e2rK(t−t0) − 1

)
− rK√

4r2K + Ω2

×
(
A0xm

D

){
e2rK(t−t0) cos(Ω t− φ)− cos(Ω t0 − φ)

}]

=

[
1

2
(1− κ(t)) + e−2rK(t−t0){n+(t0)−

1

2
(1− κ(t0))}

]
. (2.18)
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where κ(t) is as defined in Eq.(2.7). The equation for n−(t) follows similarly.

The evaluation of 〈x(t)|x0, t0〉 and 〈x(t+ τ)x(t)|x0, t0〉 involves a straight-forward

evaluation of the integrals in Eqs.(2.8) and (2.12). Substituting the expressions for

n±(t) from Eq.(2.18) into Eq.(2.8) we get

〈x(t)|x0, t0〉 = xm (δx0,xm − 1− κ(t0)) e−2rK(t−t0) + xmκ(t). (2.19)

In the limit as t0 → −∞ we get

lim
t0→−∞

〈x(t)|x0, t0〉 = xmκ(t) =
2rK

4r2K + Ω2

(
A0x

2
m

D

)2

cos(Ωt− φ). (2.20)

Similarly substituting Eq.(2.18) into Eq.(2.12) we get

〈x(t+ τ)x(t)|x0, t0〉 =
x2

m

4

[
A(t, t0){e−2rKτ (1− κ(t)) + κ(t+ τ)}

− B(t, t0){e−2rKτ (1 + κ(t))− κ(t+ τ)}
]
. (2.21)

where

A(t, t0) = e−2rK(t−t0)(2δx0,xm − 1− κ(t0)) + (1 + κ(t)),

B(t, t0) = e−2rK(t−t0)(2δx0,xm − 1− κ(t0))− (1− κ(t)). (2.22)

In the above we have evaluated the integral over x first. In the limit as t0 → −∞
the expression simplify considerably to give us

lim
t0→−∞

〈x(t+ τ)x(t)|x0, t0〉

x2
m

2

[
e−2rKτ (1− κ2(t)) + κ(t)κ(t+ τ)

]
. (2.23)

We can now proceed to outline the derivation of the power spectral density and

the signal-to-noise ratio.

3. The power spectral density S(ω) is defined as the Fourier transform of the averaged

asymptotic autocorrelation function. Since the averaged autocorrelation function

is given by Eq.(2.14) it follows that

S(ω) =
4rKx

2
m

4r2K + ω2

[
1− 1

2

(
A0xm

D

)2 4r2K
4r2K + Ω2

]
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+
π

2

(
A0xm

D

)2 4x2
mr

2
K

4r2K + Ω2
[δ(ω − Ω) + δ(ω + Ω)]. (2.24)

The total output power, with signal plus noise, for the two-state model discussed here,

is 2πx2
m, independent of the signal amplitude A0 and frequency Ω. Hence, the effect of

the input signal is to transfer power from the broadband noise background into the delta

spikes of the power spectral density. It is evident from Eq.(2.24) that the energy of the

signal at the frequency Ω denoted by ES , also called the coherent energy, is given by

ES =
π

2

(
A0xm

D

)2 4x2
mr

2
K

4r2K + Ω2
(2.25)

Similarly, the energy of the noise in the frequency bin [Ω− 2π/TΩ,Ω − 2π/TΩ] denoted

by EN , also called the incoherent energy, is given by

EN =
2rKx

2
m

4r2K + Ω2

[
1− 1

2

(
A0xm

D

)2 4r2K
4r2K + Ω2

]
. (2.26)

Then it follows from Eqs.(2.25) and (2.26) that the signal-to-noise ratio (SNR), defined

as the ratio of the coherent to the incoherent energy is given by

SNR =
ES

EN
= π

(
A0xm

D

)2

rK +O(A4
0). (2.27)

The residence time distribution (RTD), defined as the probability distribution of the

expected time the system coordinate remains in one particular well, denoted by N(T ),

was calculated for the two-state model in [199],[105] and [106]. To leading order in

A0xm/D we have

N(T ) = N0

[
1− 1

2

(
A0xm

D

)2

cos(Ωt)

]
rK exp(−rKT ), (2.28)

with

N−1
0 = 1− 1

2

(
A0xm

D

)2

/[1 + (Ω/rK)2]. (2.29)

N(T ) can be shown to exhibit a peak structure shown in [46] with Tn = (n − 1/2)TΩ.

However, in this thesis the RTD has been mentioned only for completeness and this

quantity will not be considered any further.

In this section the details of the symmetric two-state model exhibiting stochastic reso-
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nance were studied. The two-state model can be regarded as an adiabatic approximation

to any continuous bistable system, like the overdamped quartic double-well oscillator pro-

vided that the input-signal frequency is low enough for the notion of the transition rates

of Eq.(2.4) to apply. The difficulty lies in the derivation of time-dependent transition

rates in a continuous model. A systematic method consists of finding the unstable pe-

riodic orbits in the absence of noise, since they act as basin boundaries in an extended

phase-space description [84]. Rates in periodically driven systems can be defined as the

transition rates across those basin boundaries and correspond to the lowest-lying Floquet

eigen-value of the time-periodic Fokker-Planck operator.

2.2 Continuous bistable systems

A two-state description of stochastic resonance is of limited utility because of the follow-

ing reasons: it reduces the dynamics of the switching mechanism between two metastable

states and neglects the short-time dynamics that takes place within the immediate neigh-

bourhood of the metastable states themselves. Moreover, the goal is to describe the linear

as well as nonlinear stochastic resonance response in the whole regime of modulation fre-

quencies, extending from exponentially small Kramers rates to intrawell frequencies and

higher. Phrased differently, a more elaborate approach is required to model the non-

adiabatic regime of driving in the whole accessible state space of the dynamical process

x(t). This will be done in the class of continuous-state random systems [178, 65, 147, 190]

which can be modelled in terms of the Fokker-Planck equation.

2.2.1 The Fokker-Planck description

As a generic system modelling stochastic resonance, we shall consider the random motion

of a particle of massm that moves in a bistable potential V (x) and is subjected to thermal

noise ξ(t) of the Nyquist type at temperature T . Moreover, we perturb the particle with

a periodically varying force, described in the Langevin equation

mẍ = mγẋ− V ′(x) +mA0 cos(Ωt+ φ) +
√

2mγkTξ(t). (2.30)

Here ξ(t) denotes white Gaussian noise with zero mean and an autocorrelation function

〈ξ(t)ξ(s)〉 = δ(t− s). The external forcing term is characterized by an amplitude A0, an

angular frequency Ω and an arbitrary but fixed initial phase φ. The statistically equiva-

lent description for the corresponding probability density p(x, v = ẋ, t;φ) is governed by
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the two-dimensional Fokker-Planck equation

∂

∂t
p(x, v, t;φ) =

{
− ∂

∂x
v +

∂

∂v
[γv + f(x)−A0 cos(Ωt+ φ)] + γD

∂2

∂v2

}
p(x, v, t;φ)

(2.31)

where f(x) = −V ′(x)/m and the diffusion coefficient is given by D = kBT/m. For large

values of the friction coefficient γ the inertial term given by mẍ can be dropped, thereby

giving us the periodically modulated Langevin equation:

γẋ = f(x) +A0 cos(Ωt+ φ) +
√

2γDξ(t). (2.32)

Substituting f(x) = (ax − bx3)/m, where a > 0, b > 0, the bistable quartic double-well

potential V (x) = −ax2/2 + bx4/4. Making use of the rescaled variables:

x = x/xm, t = at/γ,A0 = A0/axm,

D = D/ax2
m,Ω = γΩ/a, (2.33)

where x = ±xm where xm =
√
a/b denote the locations of the minima of V (x), the

relevant Fokker-Planck equation then assumes a dimensionless form. For convenience,

dropping all overbars, the Smoluchowski limit of Eq.(2.31) can be recovered:

∂

∂t
p(x, t;φ) = L(t)p(x, t;φ) ≡ [L0 + Lext]p(x, t;φ). (2.34)

The Fokker-Planck operator

L0 = − ∂

∂x
(x− x3) +D

∂2

∂x2
(2.35)

describes the unperturbed dynamics in the rescaled bistable potential

V (x) = −1

2
x2 +

1

4
x4, (2.36)

with barrier height ∆V = 1
4 . The operator

Lext = −A0 cos(Ωt+ φ)
∂

∂x
(2.37)

describes the effect of the external periodic forcing with amplitude A0.
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2.2.2 Floquet approach

The inertial, as well as the overdamped Brownian dynamics in Eqs.(2.31) and (2.34) de-

scribe a nonstationary Markovian process where the symmetry under time-translation is

retained in a discrete manner only. The Fokker-Planck operators in Eqs.(2.31) and (2.34)

are invariant under the discrete time translations t→ t+ TΩ, where TΩ = 2π/Ω denotes

the modulation period. Therefore, the Floquet theorem applies to the corresponding

partial differential equation [43]. For a general periodic Fokker-Planck operator L(t) =

L(t + TΩ), defined on a multi-dimensional space of state vectors X(t) = (x(t), v(t), . . .)

one finds that the relevant Floquet solutions are of the form:

p(X, t;φ) = exp(−µt)pµ(X, t;φ) (2.38)

with Floquet eigen-value µ and periodic Floquet modes pµ,

pµ(X, t;φ) = pµ(X, t+ TΩ;φ). (2.39)

The periodic Floquet modes {pµ} are the eigen-functions of the Floquet operator

[
L(t)− ∂

∂t

]
pµ(X, t;φ) = −µpµ(X, t;φ). (2.40)

The Floquet modes {pµ} described in Eq.(2.40) are elements of the product space

L1(X) ⊕ TΩ, where TΩ denotes the space of functions that are periodic in time and

L1(X) denotes the linear space of functions that are integrable over the state space X.

As a result of the identity

exp(−µt)pµ(X, t;φ) = exp(−(µ+ ıkΩ)t)pµ(X, t;φ) exp(ıkΩt)

≡ exp(−µ̂t)p̂µ(X, t;φ), (2.41)

where µ̂ = µ + ıkΩ and k = 0,±1,±2, . . ., and p̂µ(X, t;φ) = pµ(X, t;φ) exp(ıkΩt) =

p̂µ(X, t+ TΩ;φ), we observe that the Floquet eigen-values can be defined only mod(iΩ).

Likewise, we introduce the set of Floquet modes of the adjoint operator L†(t) (adjoint

in L1(X)), that is

[
L†(t)− ∂

∂t

]
p†µ(X, t;φ) = −µp†µ(X, t;φ). (2.42)
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Here the sets {pµ} and {p†µ} are bi-orthogonal, obeying the equal-time normalization

condition

1

TΩ

∫ TΩ

0
dt

∫
dXpµn(X, t;φ)p†µm

(X, t;φ) = δn,m. (2.43)

A proof for biorthogonality used above is now given. From Eq.(2.42) it follows that

{[
L†(t)− ∂

∂t

]
p†µm

}
pµn = −µmp

†
µm
pµn and

{[
L†(t)− ∂

∂t

]
p†µn

}
pµm = −µnp

†
µn
pµm . (2.44)

For brevity call the Floquet operator T and the adjoint operator T †. From the adjoint

property we know

〈T u, v〉 = 〈u,T †v〉. (2.45)

Now, from Eqs.(2.44) it follows that

〈pµn ,T †p†µn
〉 = −µm〈pµn , p

†
µn
〉. (2.46)

From Eq.(2.45) it also follows that

〈pµn , T
†p†µn
〉 = 〈Tpµn , p

†
µn
〉 = −µn〈pµn , p

†
µn
〉. (2.47)

Taking the difference of the previous two equations we get

(µn − µm)〈pµn , p
†
µm
〉 = 0. (2.48)

For n,m distinct, µn, µm are also distinct. So it follows that 〈pµn , p
†
µm
〉 = 0. For

n,m equal, it follows that the eigen-function must be chosen such that they satisfy the

biorthogonality condition given by 〈pµn , p
†
µn
〉 = 1.

Eqs.(2.40) and (2.42) allow for a spectral representation of the time-inhomogeneous

conditional probability P (X, t|Y, s). With t > s we find

P (X, t|Y, s) =
∞∑

n=0

pµn(X, t;φ)p†µn
(Y, s;φ) exp[−µn(t− s)] = P (X, t+ TΩ|Y, s+ Ω).(2.49)

If the physical system of interest occupies all microstates corresponding to the same
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energy with equal probability, it is said to be ergodic, or alternatively is said to satisfy

the ergodic hypothesis [40]. In some physical systems of interest, the time-scales over

which the system can explore the entirety of its phase space is sufficiently large so that the

ergodic hypothesis need not be valid. Examples of such system include ferromagnetic

systems below the Curie temperature, systems which exhibit spontaneous symmetry

breaking and spin glasses [75]. Such systems will not be considered in this thesis. A

more mathematically rigorous definition of the term ergodic used in dynamical systems

must necessarily be phrased using measure theory [40]. For the purposes of this thesis,

such a definition will be avoided. If the ergodic hypothesis is said to be valid, the

governing probability distribution is also said to be ergodic. With real parts Re[µn] > 0

for n > 0, the limit s→ −∞ of Eq.(2.49) yields the ergodic, time-periodic probability

pas(X, t;φ) = pµ=0(X, t;φ). (2.50)

The asymptotic probability pas(X, t;φ) can be expanded into a Fourier series, i.e.

pas(X, t;φ) =
∞∑

m=−∞
am(X) exp[ım(Ωt+ φ)]. (2.51)

With the arbitrary initial phase being distributed uniformly, i.e. with the probability

density for φ given by w(φ) = 1/(2π), the time average of Eq.(2.52) [81]. Hence

pas(X) =
1

2π

∫ 2π

0
pas(X, t;φ)dφ,

=
1

TΩ

∫ TΩ

0
pµ=0(X, t;φ)dt = a0(X). (2.52)

Given the spectral representation of Eq.(2.49) for the conditional probability, the mean

values and correlation functions can now be evaluated. Of particular importance in

stochastic resonance is the asymptotic expectation value

〈X(t)〉as = 〈X(t)|Y0, t0 → −∞〉, (2.53)

where 〈X(t)|Y0, t0〉 is the conditional average 〈X(t)|Y0, t0〉 =
∫
dXXP (X, t|Y0, t0) is the

conditional average with P (X, t|Y0, t0 → −∞) approaching the asymptotic time-periodic

probability, the relevant asymptotic average 〈X(t)〉)as is also periodic in time and thus



CHAPTER 2. BACKGROUND THEORY 16

admits the Fourier series representation

〈X(t)〉as =
∞∑

n=−∞
Mn exp[ın(Ωt+ φ)]. (2.54)

The complex valued amplitudes Mn ≡Mn(Ω, φ) depend nonlinearly on both the forcing

frequency Ω and the modulation amplitude A0. Within a linear response approximation

(described later in the following section) only the contributions from |n| = 0, 1 are

non-zero. Nonlinear contributions to the stochastic resonance variable, both for the

first and higher order harmonics have been implemented numerically in [81] and [85] by

implementing the Floquet approach for the Fokker-Planck equation of the overdamped

driven quartic double-well potential. We must now introduce a new quantity called the

spectral amplification, denoted by η, defined as follows

η = [x(D)/A0]
2, (2.55)

where x(D) is given by Eq.(2.11), can then be written as

η =

(
2|M1|
A0

)2

. (2.56)

It is empirically observed [46] that for a fixed modulation amplitude A0 the stochastic

resonance behaviour of the spectral power amplification η decreases upon increasing

the forcing frequency Ω. It then follows from Eq.(2.56) that the behaviour of η versus

increasing Ω at fixed noise strength D is generally that of a monotonically decreasing

function. The dependence of the modulation amplitude A0 at a fixed forcing frequency Ω

is depicted in [46]. The maximum of the spectral amplification decreases with increasing

amplitude A0. Hence nonlinear response effects tend to diminish the stochastic resonance

phenomenon. For a small, fixed noise strength D, when the driving frequency Ω exceeds

the Kramers rate rK , the spectral amplification η exhibits a maximum as a function of

the forcing amplitude. The analog of the correlation function of a stationary process is

the asymptotic time-inhomogeneous correlation

〈X(t)X(t′)〉as = K(t, t′;φ) =

∫ ∫
XY P (X, t|Y, t′)pas(Y, t

′;φ) (2.57)

where t = t′ + τ with τ > 0 and t′ →∞. An additional averaging procedure (indicated

by double brackets) over a uniformly distributed phase φ for K(t, t′;φ) (or equivalently,

a time average over one modulation cycle) yields a time-inhomogeneous, stationary cor-
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relation function given by

K(τ) = 〈〈X(t)X(t′)〉〉as =
1

2π

∫
K(t, t′;φ)dφ. (2.58)

In terms of the Fourier amplitudes {Mn} of Eq.(2.59) the long-time limit ofK(τ) assumes

the oscillatory expression

lim
τ→∞

K(τ) ≡ Kas(τ) = 〈〈X(t+ τ)〉as〈X(t)〉as〉

=
∞∑

n=−∞
|Mn|2 exp(ınΩτ) = 2

∞∑

n=1

|Mn|2 cosnΩτ. (2.59)

The last expression was obtained using M0 = 0 for a reflection-symmetric potential.

This asymptotic result is independent of the initial phase φ. This is in contrast with

〈X(t)〉as as will be seen in the following section.

This oscillatory behaviour in turn yields sharp spikes at multiples of the driving fre-

quency Ω for the power spectral density of K(τ). Depending on the symmetry properties

of the Floquet operator it is found that some of the amplitudes assume vanishing weights

[81]. In particular, for a symmetric double well, all even-numbered amplitudes M2n as-

sume zero weight. Likewise a multiplicative driving xA0 cos Ωt in Eq.(2.31) in a symmet-

ric double well yields identically vanishing weights for all integer values of n. It should

be noted that the results for the corresponding conditional probability in Eq.(2.49) for

zero forcing A0 = 0 reduces to the time-inhomogeneous conditional probability density.

That is with τ = (t− s) > 0

P (X, τ |Y, 0) =
∞∑

n=0

ψn(X)φn(Y ) exp(−λnτ). (2.60)

Here, for A0 → 0 the set {µn} (with k = 0) reduces to the set of eigen-values {λn}
of L0, and the sets pµn(X, t) and p†µn

(Y, s) reduce to ψn(X) and φn(Y ), which are the

eigen-functions of the operators L0 and L†0 respectively.

2.2.3 Linear response theory

The prominent role of stochastic resonance is to boost weak signals embedded in a

noisy environment. Thus the linear response concept, or more generally the concept

of perturbation theory for spectral quantities like the Floquet modes and the Floquet

eigen-values are adequate for studying the basic physics which characterize stochastic

resonance. Both concepts have been repeatedly invoked by several research groups [44,
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122, 34, 35, 85, 86, 36]. Here we shall also focus on the linear-response concept, which

also emerges as a specific application of perturbation theory. In doing so, we shall rely

on the linear response theory pioneered by Kubo in [95, 96] and later extended to a wider

class of stochastic processes that also admit nonthermal, stationary nonequilibrium states

[65]. This extension is of particular relevance because many prominent applications of

stochastic resonance in optical, chemical and biological systems operate far from thermal

equilibrium. Without losing generality, we confine further analysis to a one-dimensional

Markovian observable x(t) subject to an external weak periodic perturbation. Following

[65], the long-time limit of the response 〈x(t)〉as due to the perturbation A(t) = A0 cos Ωt

(with φ = 0), assumes to first-order the form

〈x(t)〉as = 〈x(t)〉0 +

∫ t

−∞
dsχ(t− s)A0 cos Ωs, (2.61)

where 〈x(t)〉0 denotes the stationary average of the unperturbed process. The memory

kernel χ(t) of Eq.(2.61) is termed, hereafter, the response function. For an external

perturbation operator of the general form

Lext(t) ≡ A0 cos ΩsΓext, (2.62)

χ(t) is expressed as

χ(t) = H(t)

∫ ∫ ∫
dx dy dzP0(x, t|y, 0)xΓext(y, z)p0(z). (2.63)

H(t) denotes the Heaviside step function expressing causality of response, p0(z) is the sta-

tionary probability density of the corresponding unperturbed, generally nonthermal equi-

librium process. P0(x, t|y, 0) denotes the conditional probability density and Γext(x, y)

denotes the kernel of the operator Γext that describes the perturbation in the master

operator (either an integral or differential operator, such as in the Fokker-Planck case

where Γext(x, y) = δ′(x − y) for Eq.(2.37). An appealing form of the response function

can be obtained by introducing the fluctuation-like quantity, denoted by ξ(x(t)), defined

by

∫
dyΓext(x, y)p0(y) =

∫
dzL0(x, z)Γext(x, z)ξ(z)p0(z). (2.64)

where L0(x, z) is the kernel of the unperturbed Fokker-Planck operator. Note that ξ(x(t))

satisfies 〈ξ(x(t))〉0 = 0. The response function in Eq.(2.64) can then be expressed through
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the fluctuation theorem to be

χ(t) = −H(t)
d

dt
〈x(t)ξ(x(0))〉. (2.65)

For δx(t) = x(t)− 〈x(t)〉0 this can be recast as

χ(t) = −H(t)
d

dt
〈δx(t)ξ(x(0))〉. (2.66)

This result is intriguing: the linear-response function can be obtained as the time-

derivative of a stationary, generally nonthermal correlation function between the two

unperturbed fluctuations δx(t) and ξ(x(t)). From the spectral representation of the

time-homogeneous conditional probability Eq.(2.60), it follows immediately that (on as-

suming that the eigen-value λ0 = 0 is not degenerate)

χ(t) = H(t)
∞∑

n=1

gnλn exp(−λnt). (2.67)

The co-efficients {gn} are given by

gn = 〈δx(t)ψn(x)〉0〈ξ(y)φn(Y )〉0. (2.68)

The corresponding Fourier transform are denoted by

χ(ω) =

∫ ∞

0
exp(−ıωτ)χ(τ)dτ. (2.69)

The real and imaginary parts of χ(ω) can be separated as follows χ(ω) = χ′(ω)+ ıχ′′(ω).

Generally, the eigen-values of the real-valued operator L0 are complex-valued and occur

in conjugate pairs, λn and λ∗n with the corresponding eigen-functions ψn(x) and φn(x)

introduced above. Hence, the overall real expression for χ(t) in Eq.(2.67). Substituting

Eq.(2.67) into Eq.(2.61) we find the linear-response approximation

〈δx(t)〉 = 〈x(t)〉as − 〈x(t)〉0 =
A0

2

∞∑

n=1

λngn

[
eıΩt

λn + ıΩ
+

e−ıΩt

λn − ıΩ

]
. (2.70)

On Fourier transforming Eq.(2.67) we get the spectral representation of χ(t)

χ(ω) = χ′(ω) + ıχ′′(ω) =
∞∑

n=1

λngn

λn + ıω
. (2.71)



CHAPTER 2. BACKGROUND THEORY 20

Therefore, Eq.(2.70) can be recast into the form

〈δx(t)〉 = 2|M1| cos(Ωt− φ) (2.72)

where the spectral amplitude |M1| and the retarded phase shift φ are given by

|M1| =
A0

2
|χ(Ω)|,

φ = arctan

{
χ′′(Ω)

χ′(Ω)

}
. (2.73)

The above results are valid for a general nonthermal stationary system. The fluctuation

ξ(x(t)) can be evaluated in a straight-forward manner for all one-dimensional systems

modelled by the Fokker-Planck equations. Examples include stochastic resonance for

optical bistability or that for coloured noise-driven bistable systems [46]. In the case

of the quartic double-well potential, where the unmodulated system admits thermal

equilibrium, the perturbation operator Lext is of the gradient type: from Eq.(2.62),

Lext(t) = A0 cos Ωt[−∂/∂x]. This in turn implies that the response function obeys the

well-known fluctuation-dissipation theorem known from classical equilibrium statistical

mechanics [95, 96] i.e.

χ(t) = −[H(t)/D]
d

dt
〈δx(t) δx(0)〉0, (2.74)

where the corresponding fluctuation ξ reads ξ(x(0)) = δx(0)/D. Note that this result

holds irrespective of the detailed form of the equilibrium dynamics.

2.3 Intrawell versus interwell motion

Given the spectral representation in Eq.(2.71) of the response function χ(t), we can

express the two stochastic resonance quantifiers, namely the spectral amplification η of

Eq.(2.56) and the signal-to-noise-ratio in terms of the spectral amplitude |M1|. From

Eq.(2.73) we find the spectral amplification within linear response to be

η = (2|M1|/A0)
2 = |χ(Ω)|2. (2.75)

In view of the unperturbed power spectral density S0
N (Ω) of the fluctuations δx(t), i.e.

S0
N (ω) =

∫ ∞

−∞
e−ıωτ 〈δx(t) δx(0)〉0dτ, (2.76)
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the linear response results for the SNR reads

SNR = 4π|M1|2/S0
N (Ω) = πA2

0|χ(Ω)|2/S0
N (Ω). (2.77)

Both stochastic resonance variables possess a spectral representation via those of χ(ω)

and S0
N (ω). In the following, we shall implicitly assume that the noise strength D is weak.

This implies that for a general bistable dynamics there exists a clear-cut separation of

time scales. They are (i) the escape time scale to leave the corresponding wells i.e.

the exponentially large time scale for interwell hopping, and (ii) the time scale that

characterizes local relaxation within a stable state. The eigen-value λ1 that characterizes

intrawell dynamics is always real-valued and of the Kramers type [64] i.e.

λ1 = 2rK = r+ + r− ≡ λ, (2.78)

where r± are the forward and backward transition rates respectively, which depend

through the Arrhenius factor on the activation energies ∆Φ±
0 , where Φ0(x) is the gener-

alized (non-thermal equilibrium) potential associated with the unperturbed stationary

probability density

p0(x) = Z−1(x) exp(−Φ0(x)/D). (2.79)

The relevant intrawell relaxation rates in the two wells located at x = x1,2, where by

convention we take x1 = −
√
a/b and x2 =

√
a/b. The rates are estimated as the

real parts of the two smallest eigenvalues ([46] and references therein) that describe the

equilibration of the probability density in the vicinity of the two stable states xm,m = 1, 2

respectively. For small noise intensities, these eigen-values can be approximated as

λ2 = Φ′′
0(ξ = x1),

λ3 = Φ′′
0(ξ = x2). (2.80)

Note that, here, the indices λ2, λ3 have been chosen for later convenience and do not

necessarily coincide with the index ordering of the Fokker-Planck spectrum {λn}. Given

these three dominant time scales, the response at weak noise is cast as the sum of the first

three terms in Eq.(2.70). Truncating the summation after the third term in Eq.(2.70),

for a driving phase φ = 0 we then get the weak noise approximations

〈δx(t)〉 =
A0

2

∑

n=1,2,3

λngn

[
eıΩt

λn + ıΩ
+

e−ıΩt

λn − ıΩ

]
, (2.81)
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yielding corresponding estimates for χ(ω) and the stochastic resonance quantifiers η and

the SNR. The weights gm can be evaluated from the corresponding approximate eigen-

functions [65] or from the three-term potential ansatz for the response function [84].

For the overdamped, symmetric, quartic double-well potential given in Eq.(2.36), the

spectral amplification given by Eq.(2.75) has been evaluated [85] and [86] to give

η = D−2

[
4g2

1r
2
K

4r2K + Ω2
+

g2α2

α2 + Ω2
+

4g1gαrK(2αrK + Ω2)

(4r2K + Ω2)(α2 + Ω2)

]
, (2.82)

where λ2 = λ3 ≡ α, with α = 2, and g2 = g3 ≡ g/2. The relevant weights gn for D → 0

read

g1 ≈ 1− (1− α−1)D +O(D2),

g = D/α+O(D2), (2.83)

and rK is the steepest-descent approximation for the Kramers rate

rK = (
√

2π)−1 exp[−1/(4D)]. (2.84)

On neglecting the intrawell motion, the leading-order contribution in Eq.(2.82) gives us

η ≈ 1

D2

[
1 +

π2

2
Ω2 exp

(
1

2D

)]
. (2.85)

This approximation exhibits the typical bell-shaped stochastic resonance behaviour as a

function of increasing noise intensity. Likewise, we can evaluate the SNR for the potential

under study. In the weak noise limit we have

S0
N (Ω) ≈ 4rK

4r2K + Ω2
+

2gλ2

λ2 + Ω2
, (2.86)

whence yielding the linear-response result for the SNR

SNR =
πA2

0

2D2

4g2
1r

2
K(α2 + Ω2) + g2α2(4r2K − Ω2) + 4αg1rK(2αrK + Ω2)

2g1rK(α2 + Ω2) + gα(4r2K + Ω2)
. (2.87)

The plot of this result shows a bell-shaped behaviour as a function of D when Ω is not

too large. Also, note that the SNR diverges as D−1 in the limit as D → 0. This is due

to intra-well contributions in Eq.(2.87). This feature is in agreement with simulations

[122]. On neglecting intrawell contributions, by setting g2 = g3 = 0 we get, to leading
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order, the following result:

SNR =
πA2

0

D2
rK =

πA2
0√

2D2
exp[−1/(4D)]. (2.88)

Within this interwell approximation the SNR, contrary to the spectral amplification η in

Eq.(2.82), is no longer dependent on the angular modulation frequency Ω. This effective

two-state approximation also exhibits a bell-shaped behaviour, typical for stochastic

resonance. In contrast to Eq.(2.87), the SNR vanishes for D → 0. It is also observed

that the leading order contribution to SNR in Eq.(2.88) is proportional to rK , while η

in Eq.(2.82) is proportional to r2K .

2.4 Linear time-invariant systems

Classical signal processing algorithms have been implemented with linear, time-invariant

operators. The output of a linear system denoted by y(t) can be characterized by “inte-

gration” against a kernel h(t, τ) located at t, as follows:

y(t) = Lx(t),

=

∫
x(τ)h(t, τ)dτ. (2.89)

For numerical stability, the operator L and kernel h(., .) must have a “weak” form of

continuity i.e. if f is perturbed slightly, Lf is also modified by a small amount. This weak

notion of continuity can be formalized by the theory of distributions [3, 151]. The time

invariance of an operator L implies that if the input x(t) is delayed by τ , xτ (t) = f(t−τ),
the output is similarly delayed by τ :

y(t) = Lx(t)→ y(t− τ) = Lx(t− τ) (2.90)

Hence it follows that for a causal system characterized by linearity and time-invariance

[112]

y(t) =

∫ t

−∞
x(τ)h(t− τ)dτ. (2.91)

A linear time-invariant system is thus equivalent to a convolution with the impulse

response h. The continuity of x(t) is not necessary and the formula remains valid for any

signal x such that the convolution integral in Eq.(2.91) converges. Linear time-invariant

systems are characterized by their response, denoted by h(t), to the Dirac impulse δ(t):
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h(t) = δ(t). By the property of time-invariance it follows: Lδτ (t) = h(t− τ).
The stability property of systems demands Lx(t) is bounded if x(t) is bounded

(boundedness being defined by the L1 norm). Since

|Lx(t)| ≤
∫ ∞

−∞
|x(τ)h(t, τ)|dτ,

≤ sup
τ∈R
|x(τ)|

∫ ∞

−∞
|h(t, τ)|dτ, (2.92)

it is sufficient that
∫∞
−∞ |h(t, τ)|dτ <∞. We can say that h is stable if it is integrable. In

this thesis we will only consider systems in which the last condition for bounded norm

is met.

In this section we develop an general framework for the description of stochastic

resonance in the manner of Chapeau-Blondeau [21]. This development is generic, and

accords the advantage that it is applicable to any nonlinear system, static or dynamic.

Though elements of this framework in the narrower context of specific nonlinear systems

exist, this framework does not refer to any particular system. In a latter section, it is

shown how an explicit realization of this general framework can be achieved using static

nonlinear systems. To this end, let us consider a time-invariant nonlinear system, static

or dynamic with an output denoted by y(t). It is subject to the input of a periodic

deterministic signal x(t) with period Ts and realizations of stationary random noise

denoted by η(t). y(t) is considered the steady state response of the system, when the

above inputs are applied at t → ∞. Due to the influence of the random input η(t) and

the deterministic input x(t) the output y(t), in general, will be a nonstationary random

signal. However, since x(t) is periodic y(t) will be a cyclostationary signal with period

Ts. The random output signal y(t) can be expressed as the sum of its nonstationary

mean E[y(t)] plus the statistical fluctuations ỹ(t) around the mean:

y(t) = E[y(t)] + ỹ(t). (2.93)

Because of the cyclo-stationarity of y(t), the nonstationary mean E[y(t)] is a determin-

istic periodic function of t with period Ts, with well-defined Fourier coefficients given

by:

Yn =
1

Ts

∫ Ts

0
E[y(t)] exp (−i2πnt/Ts) dt. (2.94)

The statistical auto-correlation function for the output signal y(t), with a fixed t and τ
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is given by the expectation

E[y(t)y(t+ τ)] = E[ỹ(t)ỹ(t+ τ)] +E[y(t)]E[y(t + τ)]. (2.95)

The expectation computed above in Eq.(2.95) is a deterministic function of the variables

t and τ , and is periodic in t with a period Ts. A stationary i.e. independent of t auto-

correlation function Ryy(τ) for y(t) can be constructed through a proper time averaging

of E[y(t)y(t+ τ)] over the semi-closed interval [0, Ts) as follows:

Ryy(τ) =
1

Ts

∫ Ts

0
E[y(t)y(t+ τ)]dt. (2.96)

From Eq.(2.95) it also follows

Ryy(τ) = Cyy(τ) +
1

Ts

∫ Ts

0
E[y(t)]E[y(t + τ)]dt. (2.97)

where

Cyy(τ) =
1

Ts

∫ Ts

0
E[ỹ(t)ỹ(t+ τ)] dt. (2.98)

The power spectral density of Pyy(ν) of y(t) is defined to be the Fourier transform of the

auto-correlation function Ryy(τ) as follows:

Pyy(ν) = F [Ryy(τ)] =

∫ ∞

−∞
Ryy exp (−i2πνt) dt, (2.99)

which on combining with Eq.(2.97) gives us:

Pyy(ν) = F [Cyy(τ)] +
∞∑

n=−∞
YnYn

∗
δ(ν − nTs). (2.100)

The power spectral density of Eq.(2.100) has the form typical of that for stochastic res-

onant systems: spectral lines of magnitude |Yn|2 at integer multiples of the coherent

frequency 1/Ts, superposed on a broadband noise background given by F [Cyy(τ)]. The

autocovariance E[ỹ(t)ỹ(t+ τ)] and its time average Cyy(τ) is expected to go to zero as

|τ | → ∞. var[y(t)] = E[ỹ(t)ỹ(t)] denotes the nonstationary variance of y(t). The sta-

tionary variance of y(t), denoted by var[y(t)] = Cyy(0), can be found by time-averaging

the above over a period Ts according to Eq.(2.98). The deterministic function Cyy(τ)
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can thus be written as

Cyy(τ) = var[y(t)]h(τ), (2.101)

where h(τ) is a deterministic even function describing the normalized shape of the sta-

tionary autocovariance which satisfies the conditions h(0) = 1 and h(τ)→ 0 as |τ | → ∞
and has a Fourier transform denoted by H(ν) = F [h(τ)]. The power spectral density of

Eq.(2.100) can be expressed as

Pyy(ν) = var[y(t)]H(ν) +
∞∑

n=−∞
YnYn

∗
δ(ν − nTs). (2.102)

A classical definition of the signal-to-noise ratio (SNR) at the frequency n/Ts can be

defined as the ratio of the power contained in the spectral line alone to the power

contained in the noise background in a small frequency bin in which n/Ts is contained.

The width of the bin ∆B is decided by the sampling frequency of the relevant system.

The corresponding expression of the SNR, denoted by R, is then given by

R
(
n

Ts

)
=

|Yn|2
var[y(t)]H(n/Ts)∆B

(2.103)

The above formula provides as exact expression for the output SNR which can be eval-

uated with the explicit knowledge of the nonstationary output mean E[y(t)] and the

stationary output autocovariance function Cyy(τ).

A further property of a stochastic resonant system subject to harmonic or quasi-

harmonic signals, lies in the possibility of evaluating the phase shift between the output

and the coherent periodic input. This is achieved by computing the input-output cross-

correlation function. In order to do so, a few preliminary steps are required. For fixed t

and τ , since the signal s(t) is deterministic, it follows

E[s(t)y(t+ τ)] = s(t)E[y(t+ τ)]. (2.104)

As before, in Eq.(2.95), the quantity above E[s(t)y(t+ τ)] is a deterministic function of

the variables t and τ , and is periodic in t with a period Ts. Likewise, the stationary cross-

correlation function Rsy(τ) for y(t) can be constructed through a proper time averaging

of E[s(t)y(t+ τ)] over the semi-closed interval [0, Ts) as follows:

Rsy(τ) =
1

Ts

∫ Ts

0
s(t)E[y(t+ τ)]dt. (2.105)
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This can be interpreted as the cross-correlation function of s(t) with the nonstationary

output mean E[y(t)]. Analogously, Rsy(τ) in Eq.(2.105) is periodic with period Ts. Its

frequency content only has components at integer multiples of 1/Ts. Fourier transforming

Rsy(τ) in Eq.(2.105), we obtain the cross-power spectral density, given by

Psy(ν) = F [Rsy(τ)] =
∞∑

n=−∞
SnYn

∗
δ(ν − nTs), (2.106)

where Sn represents the nth Fourier coefficient of s(t), defined according to Eq.(2.94).

The phase shift φ between the mean output E[y(t)] and the coherent input s(t) as

considered in [37], can be evaluated for a component with frequency n/Ts from the

argument of the complex number Psy(n/Ts) as follows

φ

(
n

Ts

)
= arg(SnYn

∗
). (2.107)

To summarize, the framework presented in this section shows how stochastic resonance

in any nonlinear system can be fully characterized. In particular the output SNR and

input-output phase shift can be determined solely from observations of the nonstationary

output mean E[y(t)] over one period and of the stationary output autocovariance Cyy(τ).

This framework will now be used as a guideline to study stochastic resonance in the more

restricted case of static nonlinearities.

2.5 Static nonlinearities

We will now consider the static, memoryless nonlinearity with the input-output trans-

formation

y(t) = g[s(t) + η(t)] (2.108)

where g : R → R is a bounded, though not necessarily continuous function operating

on real numbers. In the special case when η(t) represents stationary, white noise with

a probability distribution function fη(u) and a cumulative distribution function Fη(u).

The auto-correlation function of white noise is Rηη(τ) = E[η(t)η(t+τ)] = 2Dδ(τ) and as

a consequence white noise has infinite power given by Rηη(0) = E[η2(t)] = 2Dδ(τ = 0).

This artificial singularity is due to the idealized treatment of white noise. In practice, all

realizations of white noise have small, but non-zero correlation time τc. Correspondingly,

the power of such noise is large but bounded, satisfying the condition Rηη(0)τc ∼ 2D.
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We henceforth adopt such a model for the white noise at the input.

We will also cast all succeeding formulae in the context of discrete-time signals.

This will be done, for purposes of easy comparison with simulations and experimental

implementations of nonlinear systems. The time scale will be discretized with a step

∆t � Ts such that the time period of the coherent input is an integral multiple of the

time-step: Ts = N∆t. This has the effect that the white noise η(t) only needs to have

correlation time τc shorter than ∆t and finite power E(η2) = σ2
η . Such a random process,

when sampled at intervals of ∆t acts effectively like a discrete-time white noise process

η(t = j∆t) with the auto-correlation function Rηη(k∆t) = E[η(j∆t)]E[η(j∆t + k∆t)] =

σ2
η∆tδ̂(k∆t) where δ̂(k∆t) represents the discrete-time version of the Dirac delta function

defined by

δ̂(k∆t) =

{
1/∆t for k = 0

0 for k 6= 0
(2.109)

In this realization of white noise, the power spectral density is given by

2D = σ2
η∆t. (2.110)

In this discrete-time framework the treatment that will follow is exact. In order to

proceed, we make the key observation that for white noise η(t) and a static nonlinearity

g(u), for any fixed t any fixed τ 6= 0, y(t) and y(t + τ) are statistically uncorrelated.

Consequently, we have the following relationship in the discrete-time framework

E[y(j∆t)y(j∆t + k∆t)] = E[y(j∆t)]E[y(j∆t + k∆t)], (2.111)

for any integers j and k 6= 0. For the case τ = k∆t = 0, we get

E[y(j∆t)y(j∆t)] = E[ỹ2(j∆t)] + E2[y(j∆t)],

6= E2[y(j∆t)]. (2.112)

At any fixed time t = ∆t, since ηt governed by the PDF fη(u), the random variable

s(t) + η(t) is governed by the PDF fη(u − s(t)). As a result, the nonstationary output

mean can be explicitly computed to be

E[y(t)] =

∫ ∞

−∞
g(u)fη(u− s(t))du (2.113)
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and the nonstationary output second-degree moment is given by

E[y2(t)] =

∫ ∞

−∞
g2(u)fη(u− s(t))du. (2.114)

It then follows that the nonstationary output variance, var[y(t)] = E[ỹ2(t)], is given by

var[y(t)] =

∫ ∞

−∞
g2(u)fη(u− s(t))du

−
(∫ ∞

−∞
g(u)fη(u− s(t))du

)2

. (2.115)

Substituting each individual term in Eqs.(2.111) and (2.112) with their values given by

Eqs.(2.113-2.115), we get

E[y(j∆t)y(j∆t + k∆t)] = var[y(j∆t)]∆tδ̂k∆t

+E[y(j∆t)]E[y(j∆t + k∆t)] (2.116)

for any integer j and k. The output autocorrelation function in a discrete-time framework

can be defined through a time-average as follows

Ryy(k∆t) = var(y)∆tδ̂k∆t, (2.117)

+
1

N

N−1∑

j=0

E[y(j∆t)]E[y(j∆t + k∆t)],

with the stationary output variance

var(y) =
1

N

N−1∑

j=0

var[y(j∆t)], (2.118)

which can be explicitly computed from Eq.(2.115). The stationary output autocovariance

function of Eq.(2.101), in the case of white noise and static nonlinearities, simplifies to

Cyy(k∆t) = var[y]h(k∆t) = var[y]δ̂(k∆t). (2.119)

In the frequency domain, the discrete Fourier coefficients of the deterministic periodic

signal E[y(j∆t)] can be defined as

Yn =
1

N

N−1∑

j=1

E[y(j∆t)] exp (−i2πjn/N) . (2.120)
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The discrete Fourier transform of Ryy over an integral number, given by 2M of periods

Ts is defined by

Pyy(k∆t) = Fdis[Ryy(k∆t)] =
MN−1∑

k=−MN

Ryy(k∆t) exp

(
−i2πν kl

2MN

)
∆t, (2.121)

which accords a frequency resolution of ∆ν = 1/(2MN∆t).

The autocorrelation function of Eq.(2.117) is formed by a pulse at the origin with

magnitude var(y)∆t, superposed on a periodic component with period Ts. The Fourier

transform of Ryy defined the output power spectral density Pyy which will be formed by

a background of constant magnitude var(y)∆t superposed on a series of spectral lines

at integral multiples of 1/Ts. Applying Eq. (2.121) leads to

Pyy(n/Ts) = var[y]∆t+ YnYn
∗ 1

∆ν
. (2.122)

By the condition Eq.(2.110), the first term in the above decomposition is expected to

remain finite. When the horizon M → ∞ then ∆ν → 0 and the coherent spectral lines

above the broadband noise background tend to Dirac delta functions. It then follows

that the output SNR defined in Eq.(2.103), also denoted by R, is given by

R
(
n

Ts

)
=

|Yn|2
var[y(t)]∆ν∆B

. (2.123)

This gives us an explicit formula to compute the output SNR, through the Eqs. (2.113,

2.115,2.118) and (2.120) for any noise distribution fη(t) and any periodic input s(t)

transmitted through an arbitrary nonlinearity g(u).

To summarize, with the SNR and the phase shift φ being exactly calculable from

Eq.(2.107), for various harmonics of the coherent frequency 1/Ts, we have a complete

characterization of the nonlinear system suitable for the study of stochastic resonance.

Since all relevant quantities lend themselves to direct numerical evaluation the present

theory can be used to analyze stochastic resonance in various static nonlinear systems,

as will be done later in chapter 3 of this thesis.

2.6 Statistical detection theory

We will limit out treatment to the binary hypothesis case where only two hypotheses are

possible: H0, which denotes the hypothesis where the signal is absent; and H1, which

denotes hypotheses that the signal is present. H0 and H1 are often referred to as the
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null and alternative hypotheses respectively. We start with a few basic definitions in

detection theory.

Definition. PD denotes the probability of Detection which is the conditional probability

of deciding H1 when H1 is true i.e. PD = P (H1,H1).

Definition. PFA denotes the probability of False Alarm which is the conditional prob-

ability of deciding H1 when H0 is true i.e. PFA = P (H1,H0).

Definition. The Test statistic T (x) is defined to be a function of the observations x

such that where γ is called the threshold of the system.

Definition. The Receiver Operating Characteristics (ROC) of a detector is a graph

of the values (PD, PFA). Such a graph summarizes the detection performance of any

detector. For any given value of PFA, a higher value of PD is the hallmark of an improved,

or more sensitive detector. Qualitatively, it can be said that improved detectors result

in “more convex” ROCs.

Notation. A sequence of random variables which are independent and governed by

the same probability distribution function are said to be independent and identically

distributed or IID random variables.

2.6.1 The Central limit theorem

Since observations are always available in the form of a time-series we start with the

Central Limit theorem which describes the asymptotic statistical properties of sums of

random variables.

Theorem (Central Limit Theorem). The sum of the sequence of IID random

variables {Xi} converges in law to N (µ, σ2) where the mean and variance are given by

µ =
N∑

i=1

Xi/N,

σ2 =
N∑

i=1

X2
i /N −

{
N∑

i=1

Xi/N

}2

. (2.124)

Sums of squares of independent Gaussian random variables are governed by the Chi-

squared PDFs. Their properties are now briefly described.
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2.6.2 Chi-squared (Central)

A chi-squared PDF with ν degrees of freedom is defined as

p(x) =





1

2
ν
2 Γ( ν

2
)
x

ν
2
−1 exp(−1

2x) x > 0

0 x < 0
(2.125)

and is denoted by χ2
ν . The degrees of freedom ν is assumed to be an integer with ν ≥ 1.

Γ(ν) denotes the Gamma function defined as

Γ(ν) =

∫ ∞

0
tν−1 exp(−t)dt. (2.126)

The Chi-squared PDF arises as the PDF of x where x =
∑ν

i=1 x
2
i if xi ∼ N (0, 1) and the

xi’s are independent and identically distributed (IID). By the latter we mean that each

xi is independent of the others and each xi has the same PDF (identically distributed).

The mean and variance are given by

E(x) = ν

var(x) = 2ν. (2.127)

A case of specific interest occurs when ν = 2 so that

p(x) =

{
1
2 exp(−1

2x) x > 0

0 x < 0

and is referred to as an exponential PDF. The right-tail probability for a χ2
ν random

variable is defined as

Qχ2
ν
(x) =

∫ ∞

x
p(t)dt (2.128)

which can be shown [1] to be

Qχ2
ν
(x) = exp(−1

2
x)

ν
2
−1∑

k=0

(x
2 )k

k!
ν ≥ 2 (2.129)

and for ν odd

Qχ2
ν
(x) =





2Q(
√
x) ν = 1

2Q(
√
x) +

exp(− 1
2
x)√

π
+
∑ ν

2
−1

k=0
(k−1)!(2x)k− 1

2

(2k−1)! ν ≥ 3
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2.6.3 Chi-squared (Non-central)

A generalization of the χ2
ν PDF arises as a result of summing the squares of IID Gaussian

random variables with non-zero means. Specifically, if x =
∑ν

i=1 x
2
i where xi’s are

independent and xi ∼ N (µi, 1), then xi has a non-central chi-squared PDF with ν

degrees of freedom and non-centrality parameter λ =
∑ν

i=1 µ
2
i . The resulting PDF must

be expressed either as an integral or as an infinite series. As an integral it is

p(x) =





1
2(x

λ)
ν−2

4 exp(−1
2x+ λ)I ν

2
−1(
√
λx) x > 0

0 x < 0
(2.130)

where Ir(u) is the modified Bessel function of the first kind and order r. It is defined as

[1] as

Ir(u) =
(1
2u)

r

√
πΓ(r + 1

2 )

∫ π

0
exp(u cos θ) sin2r θdθ (2.131)

and has the series expansion

Ir(u) =
∞∑

k=0

(1
2u)

(2k+r)

k!Γ(r + k + 1)
. (2.132)

The PDF tends to a Gaussian when ν, assumed to be positive, becomes sufficiently large.

Using Eq.(2.132) the PDF given by Eq.(2.130) can also be expressed as

p(x) =
x

ν
2
−1 exp(−1

2 (x+ λ)

2
ν
2

∞∑

k=0

(λx
4 )k

k!Γ(ν
2 + k)

. (2.133)

Note that for λ = 0 this reduces to the chi-squared PDF in Eq.(2.130). The non-central

Chi-squared PDF with ν degrees of freedom and noncentrality parameter λ is denoted

by χ′2
ν(λ).

2.6.4 Neyman-Pearson theorem

One of the key results in statistical detection theory is the Neyman-Pearson theorem

which states the criterion a detector has to satisfy in order to be optimal, for a given

noise distribution.

Theorem (Neyman-Pearson) To maximize PD for a given PFA = α decide H1 if

L(x) =
p(x;H1)

p(x;H0)
> γ (2.134)
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where the threshold γ is found from

PFA =

∫

{x:L(x)>γ}
p(x;H0)dx = α. (2.135)

Proof. We use Lagrange multipliers to maximize PD for a given PFA. Forming the

Lagrangian

F = PD + λ(PFA − α)

=

∫

R1

p(x;H1)dx+

(
λ

∫

R1

p(x;H0)dx− λα
)

=

∫

R1

(p(x;H1) + λp(x;H0)) dx− λα. (2.136)

To maximize F we should include x in R1 if the integrand is positive for that value of x

or if

p(x;H1) + λp(x;H0) > 0 (2.137)

When p(x;H1) + λp(x;H0) = 0, x may be included in either R0 or R1. Assuming the

PDFs are continuous, the probability of event reduces to zero. We thus decide H1 if

p(x;H1)

p(x;H0)
> −λ. (2.138)

The Lagrangian multiplier is found from the constraint and must satisfy λ < 0. Other-

wise, we decide H1 is the likelihood ratio exceeds a negative number. Since the likelihood

ratio is always non-negative, we should always decide H1, irrespective of the hypothesis,

resulting in PFA = 1. We let γ = −λ so that finally we decide H1 if

p(x;H1)

p(x;H0)
> γ (2.139)

where the threshold γ > 0 is found from PFA = α.

It immediately follows from the Neyman-Pearson theorem is that matched (linear)

filters are optimal when the noise is governed by a Gaussian PDF.

Corollary (Matched filters as optimal filters) In the problem of detecting a known

deterministic signal in white Gaussian noise, the Neyman-Pearson criterion yields the

matched filter.
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Proof: The NP detector decided H1 if the likelihood ratio exceeds a threshold or

L(x) =
p(x;H1)

p(x;H0)
> γ (2.140)

where x = [x[0], x[1], . . . x[N − 1]]T . Since

p(x;H1) =
1

(2πσ2)
N
2

exp[− 1

2σ2

N−1∑

n=0

(x[n]− s[n])2]

p(x;H0) =
1

(2πσ2)
N
2

exp[− 1

2σ2

N−1∑

n=0

x2[n]] (2.141)

We get

L(x) = exp[− 1

2σ2

(
N−1∑

n=0

(x[n]− s[n])2]−
N−1∑

n=0

x2[n]

)
] > γ. (2.142)

Taking the logarithm (a monotonically increasing function) of both sides we get

l(x) = − 1

2σ2

(
N−1∑

n=0

(x[n]− s[n])2]−
N−1∑

n=0

x2[n]

)
> lnγ. (2.143)

Alternatively we decide H1 if

T (x) =
N−1∑

n=0

x[n]s[n] > γ′, (2.144)

where γ′ = σ2γ+ 1
2

∑N−1
n=0 s

2[n]. This is our NP detector, which consists of a test statistic

T (x) (a function of the data) and a threshold γ′, which must be chosen to satisfy a certain

numerical value of PFA.

The performance of such a detector can be deduced as follows.

E(T ;H0) = E(
N−1∑

n=0

w[n]s[n]) = 0,

E(T ;H1) = E(
N−1∑

n=0

(s[n] + w[n])s[n]) = E ,

var(T ;H0) = var(
N−1∑

n=0

w[n]s[n])
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=
N−1∑

n=0

var(w[n])s2[n]

= σ2
N−1∑

n=0

s2[n] = σ2E

var(T ;H1) = σ2. (2.145)

In the above we have used the fact that the w[n]’s are uncorrelated. Thus

T ∼
{
N (0, σ2E) under H0

N (E , σ2E) under H1

It follows

PFA = Prob{T > γ′;H0}

= Q

(
γ′√
σ2E

)

PD = Prob{T > γ′;H1}

= Q

(
γ′ − E√
σ2E

)
, (2.146)

where

Q(x) =

∫ ∞

x

1√
2π

exp

(
−1

2
t2
)
dt (2.147)

where Q(x) is the complementary CDF for a N (0, 1) random variable. Since Q(x) is a

monotonically decreasing function it follows that the inverse function Q−1 is well-defined.

Therefore,

γ′ =
√
σ2EQ−1(PFA). (2.148)

Substituting in Eq.(2.146) we get

PD = Q



Q−1(PFA)−
√
E
σ2



 . (2.149)

Therefore, in conclusion we can state that non-linear detectors are useful only when

the PDF governing noise tends to be non-Gaussian. A general formalism of finding the

system transfer functions of such nonlinear detectors will be developed in the following

sections.
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2.6.5 Locally optimal detectors

Generally, for the detection of a known deterministic signal s[n] in IID non-Gaussian

noise with PDF p(w[n]), we decide H1 if

N−1∑

n=0

gn(x[n]) > γ′ (2.150)

where

gn(x) =
p(x−As[n])

p(x)
. (2.151)

This non-linearity depends on the sample to which it is applied. The determination of

PFA and PD for the detector of Eq.(2.150) is difficult due to the nonlinearity. Hence,

we resort to asymptotic analysis. In the process we obtain an equivalent asymptotic

detector. We consider the known signal As[n], where A > 0, and examine the NP

detector as A→ 0 or as the signal is exceedingly weak. Using Eq.(2.150) we view gn(x)

as a function of A and expand it in a first-order Taylor expansion about A = 0. Doing

so produces

gn(x) = −
dp(x)

dx

p(x)
As[n]. (2.152)

From Eq.(2.150) we can decide H1 if

N−1∑

n=0

gn(x[n]) = −
N−1∑

n=0

dp(x)
dx

p(x)
|x=x[n]As[n] > γ′. (2.153)

2.6.6 Periodograms or energy detectors

The detection of a sinusoid in white Gaussian noise (WGN) is a common problem in

many fields. Because of its wide practical utility we examine in some detail the detector

structure as well as its performance. The results form the basis for many practical sonar,

radar and communication systems. The general detection problem is

H0 : x[n] = w[n] n = 0, 1 . . . N − 1

H1 : x[n] = A cos(2πn/N + φ) + w[n] n = 0, 1 . . . N − 1. (2.154)

where w[n] is WGN with known variance σ2 and the parameters {A,φ} are unknowns.

We assume that the signal frequency is known and sampled at the Nyquist frequency

resulting in the discretized observation train given in Eq.(2.154) and the sinusoid is

nonzero over the entire interval [0, N−1]. We later present an analysis of the degradation
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due to uncertainty in the estimate of the signal frequency. It is found to be of second order

and subdominant to the effects of other uncertainties. The case when the signal is present

only in a sub-interval of the observation length [0, N − 1] results in “irrelevant data”.

Such irrelevant data can be excised from the observation sequence by standard procedures

[87]. The presence of such irrelevant data increases the time required by the detector to

perform but does not diminish its accuracy or performance as a detector. However we

assume that the amplitude(A) and phase(φ) are unknown. Here we assume that A > 0

as the ordered pair (A,φ) are not identifiable upto a phase change (−A,φ+ 2π).

The Generalized Likelihood Ratio test decides H1 if

p(x;H1)

p(x;H0)
> γ (2.155)

or

LG(x) =

1

(2πσ2)
N
2

exp[− 1
2σ2

∑N−1
n=0 (x[n]−A cos(2πn/N + φ))2]

1

(2πσ2)
N
2

exp[− 1
2σ2

∑N−1
n=0 x

2[n]]
> γ. (2.156)

Now, as before, the natural logarithm, being a monotonic function, can be taken on both

sides giving

lnLG(x) = − 1

2σ2

[
N−1∑

n=0

−2x[n]A cos(2πn/N + φ) +
N−1∑

n=0

A2 cos2(2πn/N + φ)

]
.(2.157)

Using the parameter transformation α1 = A cosφ and α2 = A sinφ we see that Eq.(2.157)

simplifies to

lnLG(x) =
N

4σ2
(α2

1 + α2
2). (2.158)

So we decide H1 if

N

4σ2
(α2

1 + α2
2) > ln γ. (2.159)

But

α2
1 + α2

2 =
4

N
I(f0 = 1) (2.160)
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where I(f0) is the periodogram evaluated at f0 = 1 given by

I(f0 = 1) =
1

N

∣∣∣∣∣

N−1∑

n=0

x[n] exp(−j2πf0n)

∣∣∣∣∣

2

. (2.161)

The form of the detector is identical to that for the Rayleigh fading model [87], though

the detection performance is found to be different. This detector is also called the

incoherent or quadrature matched filter. The detection performance can be found from

“first principles” as follows:

I(f0) = ξ21 + ξ22 (2.162)

where

ξ1 =
1√
N

N−1∑

n=0

x[n] cos 2πf0n

ξ2 =
1√
N

N−1∑

n=0

x[n] sin 2πf0n. (2.163)

Since ξ1, ξ2 are linear transformations of x they are jointly Gaussian. It can be shown

that for ξ

ξ = N (0,
σ2

2
I) under H0

ξ = N
([√

N

2
A cos φ,

√
N

2
A sinφ

]
,
σ2

2
I

)
under H1. (2.164)

Since under either hypothesis the random variables are independent, the PDF is related

to the central χ2 under H0 and to the non-central χ2 under H1. It remains to calculate

the defining parameters for these central and non-central χ2 PDFs. The noncentrality

parameter for the χ2 PDF can be found as follows:

λ =

(√
N A

2 cosφ

σ/
√

2

)2

+

(√
N A

2 sinφ

σ/
√

2

)2

=

(
NA2

2σ2

)
. (2.165)

As a result

PFA = Prob{I(f0) > γ′;H0}

= Prob

{
I(f0)

σ2/2
>

γ′

σ2/2
;H0

}
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= Qχ2
2

(
2γ′

σ2

)

= exp

(
− γ

′

σ2

)
. (2.166)

And

PD = Prob{I(f0) > γ′;H1}

= Prob

{
I(f0)

σ2/2
>

γ′

σ2/2
;H1

}

= Qχ2
2
(λ)

(
2γ′

σ2

)
. (2.167)

In summary the Receiver Operating Characteristics can written as

PD = Qχ2
2
(λ)

(
2 ln

1

PFA

)
(2.168)

where λ is given by Eq.(2.165). Before concluding this discussion we should note that it

is possible to generalize this approach to the case when the frequency of the incoming

sinusoid is not known [87]. That requires repeated computation of the periodogram at

various estimated frequencies and then picking the maximum amongst them as the Test

statistic. The value of the frequency or the argument corresponding to the maximum is

the estimate of the signal frequency. But in sonar applications, the frequency of target

vessels can be assumed to be known to a high degree of accuracy. Therefore, we forego

this discussion in our treatment.

In the following few sections we derive the optimal test statistics for detectors of

sinusoidal signals in various environments. They are in the following increasing order

of complexity: (i) unknown amplitude, known phase in Gaussian noise; (ii) unknown

amplitude, known phase in non-Gaussian noise; (iii) unknown amplitude, unknown phase

in Gaussian noise; and (iv) unknown amplitude, unknown phase in non-Gaussian noise.

They serve as an useful preparatory exercise for the optimal statistics of Stochastic

resonant detectors, to be derived later in chapter 3, and they illustrate the utility of the

Neyman-Pearson criterion and Likelihood ratio test.
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2.6.7 Detection of a sinusoidal signal with unknown amplitude but

known phase in Gaussian noise

From the likelihood ratio test if the Neyman-Pearson criterion given by Eq.(2.134)

LG(x) =

1

(2πσ2)
N
2

exp[− 1
2σ2

∑N−1
n=0 (x[n]−As[n])2]

1

(2πσ2)
N
2

exp[− 1
2σ2

∑N−1
n=0 x

2[n]]
> γ. (2.169)

Now, as before, the natural logarithm, being a monotonic function, can be taken on both

sides giving

lnLG(x) =
1

2σ2

[
N−1∑

n=0

+2x[n]As[n]−
N−1∑

n=0

A2s2[n]

]
> ln γ. (2.170)

From lnLG > γ and some re-arrangement we get,

T (x) =
N−1∑

n=0

x[n]s[n] >
2σ2γ +

∑N−1
n=0 A

2s2[n]

2A
(2.171)

which gives us the optimal test statistic. However when A is unknown this argument

cannot be repeated. In this case

lnLG(x) =
1

2σ2

[
N−1∑

n=0

+2x[n]As[n]−
N−1∑

n=0

A2s2[n]

]
> ln γ (2.172)

can be thought of as a quadratic equation in A as follows

2AB −A2 > γ′ (2.173)

where

B =

∑N−1
n=0 x[n]s[n]
∑N−1

n=0 s
2[n]

and γ =
2σ2 ln γ

∑N−1
n=0 s

2[n]]
. (2.174)

This can be re-written as

B2 − (B −A)2 > γ′. (2.175)
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Since A is indeterminate, the expression on the left-hand side has an infimum given by

T (x) = B2 =

[∑N−1
n=0 x[n]s[n]
∑N−1

n=0 s
2[n]

]2

> γ′′, (2.176)

where γ′′ denotes the modified threshold for the Test statistic.

2.6.8 Detection of a sinusoidal signal with unknown amplitude but

known phase in general non-Gaussian noise

As before, from the Neyman-Pearson criterion as given in Eq.(2.134)

LG(x) =
N−1∏

n=0

p(x[n]−As[n])

p(x[n])
> γ. (2.177)

The governing PDF of the noise is denoted by p which need not be a Gaussian. Taking

the natural logarithm and keeping only till the first order term in the Taylor series

expansion in As[n], we get

lnLG =
N−1∑

n=0

ln
p(x[n])− p′(x[n])As[n]

p(x[n])
> ln γ. (2.178)

On some minor rearrangement we get

lnLG =
N−1∑

n=0

ln

[
1− p′

p
(x[n])As[n]

]
> ln γ. (2.179)

Taking the Taylor expansion for ln(1 + x) in the argument of the logarithm, we get

−
[

N−1∑

n=0

p′

p
(x[n])s[n]

]
A+

[
N−1∑

n=0

(
p′

p
(x[n])

)2

s2[n]

]2

A2 > ln γ (2.180)

which can be re-written as a quadratic expression in the amplitude A

−2AB + CA2

2!
= −C

2!
(A−B/C)2 +

B2

2C
> ln γ (2.181)

where

B =

[
N−1∑

n=0

p′

p
(x[n])s[n]

]
and C =

[
N−1∑

n=0

(
p′

p
(x[n])

)2

s2[n]

]2

. (2.182)
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Therefore the Test statistic is taken to be the infimum which is

T (x) =
1

2C

[
N−1∑

n=0

p′

p
(x[n])s[n]

]2

. (2.183)

2.6.9 Detection of sinusoidal signals with unknown amplitudes and

phases in Gaussian noise

The Neyman-Pearson criterion Eq.(2.134) states

LG(x) =

1

(2πσ2)
N
2

exp[− 1
2σ2

∑N−1
n=0 (x[n]−A cos(2πn/N + φ))2]

1

(2πσ2)
N
2

exp[− 1
2σ2

∑N−1
n=0 x

2[n]]
> γ. (2.184)

Now, as before, the natural logarithm, being a monotonic function, can be taken on

both sides giving

lnLG(x) =
1

2σ2

[
2A

N−1∑

n=0

{2x[n]A cos(2πn/N + φ)−
N−1∑

n=0

A2 cos2(2πn/N + φ)

]

=
1

2σ2

[
2A

{(
N−1∑

n=0

2x[n]A cos(2πn/N)

)
cosφ−

(
N−1∑

n=0

2x[n]A sin(2πn/N)

)
sinφ

}

−A2/2

{
N−1∑

n=0

(1 + cos(4πn/N + 2φ))

}]
. (2.185)

This can be re-written as the quadratic

lnLG(x) =
1

2σ2

[
2A {B1 cosφ−B2 sinφ} −A2N

2

]
. (2.186)

The above equation holds regardless of the value of φ. The terms B1,2 are given by

B1 =
N−1∑

n=0

x[n] cos(2πn/N) and B2 =
N−1∑

n=0

x[n] sin(2πn/N). (2.187)

The first term in the quadratic can be re-arranged as follows:

B1 cosφ−B2 sinφ = B̂ cos(φ− β), (2.188)

where β = tan−1(−B2/B1) and B̂ = (B2
1 +B2

2)
1/2. The above expression has an infimum
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B̂. The test statistic can be taken to this infimum squared as follows,

T (x) = B̂2 =

(
N−1∑

n=0

x[n] cos(2πn/N)

)2

+

(
N−1∑

n=0

x[n] sin(2πn/N)

)2

. (2.189)

2.6.10 Detection of a sinusoidal signal with unknown amplitude and

phase in general non-Gaussian noise

The Neyman-Pearson criterion Eq.(2.134) states

LG(x) =
N−1∏

n=0

p(x[n]−A cos(2πn/N + φ))

p(x[n])
> γ. (2.190)

Taking the natural logarithm

lnLG =
N−1∑

n=0

ln
p(x[n])− p′(x[n])A cos(2πn/N + φ)

p(x[n])
> ln γ. (2.191)

Keeping only till the first order terms in the Taylor series expansion in As[n],

lnLG =
N−1∑

n=0

ln

[
1− p′

p
(x[n])A cos(2πn/N + φ)

]
> ln γ. (2.192)

Taking the Taylor expansion about zero, we get

lnLG = −
[

N−1∑

n=0

p′

p
(x[n]) cos(2πn/N + φ)

]
A+

[
N−1∑

n=0

(
p′

p
(x[n])

)2

cos2(2πn/N + φ)

]2

A2,

= −
[

N−1∑

n=0

p′

p
(x[n]) cos(2πn/N + φ)

]
A+

NA2

2
. (2.193)

As in the previous section this expression can be re-written as the quadratic

lnLG(x) = −A [B1 cosφ−B2 sinφ] +
NA2

2
, (2.194)

where B1 =
∑N−1

n=0
p′

p (x[n]) cos(2πn/N) and B2 =
∑N−1

n=0
p′

p (x[n]) sin(2πn/N). This can

be further re-written as

lnLG(x) = −AB +NA2/2, (2.195)
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where B = B̂ cos(φ − β), B̂ = (B2
1 + B2

2)1/2 and β = tan−1(−B2/B1). The above

quadratic in A can be rewritten as follows,

lnLG =
N

2

[
A2 − 2A

B

N

]
=
N

2

[(
A− B

N

)2
]
−B2/2N. (2.196)

Since A and B are indeterminate, we can say that the infimum of the above expression

is given by B2/2N which again is upper bounded by (B2
1 +B2

2)/2N . Therefore, the test

statistic can be taken to be

T (x) =

(
N−1∑

n=0

p′

p
(x[n]) cos(2πn/N)

)2

+

(
N−1∑

n=0

p′

p
(x[n]) sin(2πn/N)

)2

. (2.197)

This test statistic will be used in chapter 3 of this thesis to quantify the effectiveness of

detectors based on the principle of stochastic resonance. On this note, we can conclude

our short digression into statistical detection theory.

2.7 The theory of Beaulieu series

A recurring problem in many signal processing and communication applications is that

of determining the probability density function, or equivalently the complementary dis-

tribution function, of a sum of independent random variables (RVs) each of which is gov-

erned by a given distribution function. In this chapter we outline a convergent infinite

series for the computation of the complementary probability distribution function (CDF)

of a sum of independent RVs. This series expansion was derived by N. C. Beaulieu [9]

and has been subsequently named after its originator. It has been widely used in various

areas of communication such as detection, equalization, synchronization, interference

analysis and modulation. The derivation of Beaulieu series applies more generally to

sums of independent RVs which do not possess the same distribution. Therefore, we

outline the derivation of the infinite series when the RVs are required only to be inde-

pendent. The theory is developed by first considering bounded RVs (in Sec.(2.7.1)) and

then extended to the case of unbounded RVs (in Sec.(2.7.3)), as done by Beaulieu in his

seminal paper [9].

2.7.1 The infinite series for bounded random variables

Beaulieu’s original approach to the problem in question consisted of casting the CDF of

the sum of random variables in terms of an appropriate transformation of the periodic
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square wave [9]. This is manifest by the fact that the Fourier coefficients of the square

wave form the “weights” in this series expansion. Before retracing this derivation some

terminology will be necessary.

Let Xi, i = 1 . . . L be bounded independent RVs each with a probability density

function (PDF) fXi
(x). Each of the random variables are assumed to be upper and lower

bounded, implying fXi
(x) = 0 for all xi > BU

i and for all xi < BL
i . We choose to denote

the sum of the L independent random variables by X,X =
∑L

i=1Xi, the complementary

distribution function of X by GX(x) and the PDF of X by fX(x). It follows that X

is lower bounded by BL =
∑L

i=1B
L
i and upper bounded by BU =

∑L
i=1B

U
i . Also we

choose to denote the periodic square wave by S(x) as follows

S(x) =






0 for −T/2 < x < 0

1/2 for 0 < x < T/2

1 for x = ±T/2
(2.198)

S(x+mT ) = S(x),m = 0,±1,±2, . . . (2.199)

By definition of the CDF it follows that

GX(εL) = Pr(X ≥ εL) = E[S(X − εL)], (2.200)

where E[X] denotes the expected value of X. Eq.(2.200) is valid for T/2 = max[BU −
εL, εL− BL] when the PDF does not have an impulse at a discontinuity of S(X − εL).

The square wave S(x) has the Fourier series representation [18] given by

S(x) =
1

2
+

∞∑

n=∞,odd

Cne
jnωx for Cn = 1

πnj (2.201)

where ω = 2π/T . The equality in Eq.(2.201) is in the mean square sense, and pointwise

convergence is guaranteed by a Fourier theorem [27]. Combining Eqs.(2.200) and (2.201)

we get

GX(εL) =
1

2
+

∞∑

n=∞,odd

CnE[ejnω(X−εL)],

=
1

2
+

∞∑

n=1,odd

E[ejnω(X−εL)]− E[e−jnω(X−εL)]

nπj
,

=
1

2
+

∞∑

n=1,odd

E[exp{jnω(
∑L

i=1Xi − εL)}]− E[exp{−jnω(
∑L

i=1Xi − εL)}]
nπj

,
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=
1

2
+

∞∑

n=1,odd

∏L
i=1E[ejnω(Xi−ε)]−∏L

i=1E[e−jnω(Xi−ε)]

nπj
,

=
1

2
+

∞∑

n=1,odd

{∏L
i=1Aine

jΘin

}
−
{∏L

i=1Aine
−jΘin

}

nπj
,

=
1

2
+

∞∑

n=1,odd

{∏L
i=1Ain

}(
ej
∑L

i=1
Θin

)
−
{∏L

i=1Ain

}(
e−j

∑L

i=1
Θin

)

nπj
,

=
1

2
+

∞∑

n=1,odd

Ane
jΘn −Ane

−jΘn

nπj
,

=
1

2
+

2

π

∞∑

n=1,odd

An sin(Θn)

n
, (2.202)

where

Ain =
√
{E[cos(nωXi)]}2 + {E[sin(nωXi)]}2,

Θin = tan−1
(
E[sin(nω(Xi − ε))]
E[cos(nω(Xi − ε))]

)
, (2.203)

and

An =
L∏

i=1

Ain,

Θn =
L∑

i=1

Θin. (2.204)

In the case of L iid RVs, Eqs.(2.202-2.204) simplifies to

GX(εL) =
1

2
+

2

π

∞∑

n=1,odd

Ain sin(Θn)

n
, (2.205)

where Ain and Θin are independent of i and are given by Eqs.(2.203) and (2.204) respec-

tively. The characteristic function of the RV Xi be denoted by φi(ν) = E[ejνXj ]. Then

Eq.(2.202) can be re-written in terms of the characteristic functions

GX(εL) =
1

2
+

∞∑

n=1,odd

∏L
i=1 φi

(
2πn
T

) (
e−j 2πnεL

T

)∏L
i=1 φi

(
−2πn

T

)(
ej

2πnεL
T

)

nπj
,(2.206)
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or the characteristic function of the sum, denoted by φ(ν), as follows

GX(εL) =
1

2
+

∞∑

n=1,odd

∏L
i=1 φ

(
2πn
T

) (
e−j 2πnεL

T

)∏L
i=1 φ

(
−2πn

T

)(
ej

2πnεL
T

)

nπj
,(2.207)

which shows that the CDF can be found using Eq.(2.202) if the characteristic function

is known at countably many uniformly spaced points. The infinite series in Eq.(2.202)

can be used, to compute the complementary distribution function of the sum of L in-

dependent random variables. In general, the terms of the series may decrease faster

than 1/n because the quantities An and sin(θn) may decrease with increasing n. Since

|φ(ν)| < φ(0) = 1 [132] the convergence rate of the series is often better for larger values

of L. It may be noted that the convergence of the series to impulsive PDFs has been

poor [9]. In this thesis such impulsive PDFs will not be considered for discussion.

2.7.2 Bounds for truncation error

In practical implementations infinite series expansions as given in Eqs.(2.205,2.206) and

(2.207) have to be truncated after a certain threshold. This threshold is determined from

the required accuracy of the algorithm. Therefore, we now proceed to derive a bound

for the truncation error for the case where the PDF of X is not impulsive. As will be

shown, this error can be made arbitrarily small by including large enough terms in the

summation. Let SN denote the partial sum of order N :

SN =
1

2
+

2

π

N∑

n=1,odd

An sin(Θn)

n
(2.208)

and let RN denote the corresponding remainder

RN =
2

π

∞∑

n=N+2,odd

An sin(Θn)

n
(2.209)

where N is odd. Then the CDF of X evaluated at εL, GX(εL) may be upper and lower

bounded using Eqs.(2.200) and (2.202),

SN − |RN | ≤ GX(εL) ≤ SN + |RN |. (2.210)
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These bounds are preserved if |RN | is replaced by an upper bound BR such that |RN | ≤
BR, whereby

SN −BR ≤ GX(εL) ≤ SN +BR. (2.211)

Using Eqs.(2.198,2.200,2.201,2.208) and (2.209) we get

|RN | = |E



−N−2∑

n=−∞,odd

ejnω(X−εL)

πnj
+

∞∑

n=odd,N+2

ejnω(X−εL)

πnj


 |. (2.212)

Let

DN+1 =
−N−2∑

n=−∞,odd

ejnω(X−εL)

πnj
+

∞∑

n=odd,N+2

ejnω(X−εL)

πnj
(2.213)

and

EN+1 =
−N−2∑

n=−∞,odd

ejnωx

πnj
+

∞∑

n=odd,N+2

ejnωx

πnj
, (2.214)

then we may derive through repeated use of Schwarz’s inequality [132]

|RN | = |
∫ T/2

−T/2
fX(x)DN+1(x)dx|

≤
(∫ T/2

−T/2
fX(x)dx

∫ T/2

−T/2
fX(x)|DN+1(x)|2

)1/2

=

(∫ T/2

−T/2
fX(x)|DN+1(x)|2

)1/2

≤
(

(sup fX(x))

∫ T/2

−T/2
|DN+1(x)|2

)1/2

≤
(

(sup fX(x))

∫ T/2

−T/2
(EN+1(x))

2

)1/2

(2.215)

In the above sup denotes supremum over the real line. The last equality follows from the

orthogonality of the series basis functions on the interval [−T/2, T/2]. If fX(x) has no

impulses, it follows that sup fX(x) <∞. It then follows that there is at least one i, i =

1, . . . , L such that sup fXi
(xi) <∞. It can then be shown that sup fX(x) < sup fXi

(xi)
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for all i = 1, 2, . . . L [9]. Thus

|RN | ≤
(

(sup fXi
(xi))

∫ T/2

−T/2
(EN+1(x))

2dx

)1/2

= BR. (2.216)

Since the Fourier series of Eq.(2.201) converges in the mean to S(x) given in Eq.(2.198),

we get as in [27]

lim
N→∞

∫ T/2

−T/2
(EN+1(x))

2dx = 0. (2.217)

The preceding results imply that the CDF can be computed as accurately as desired by

including a sufficient number of terms in the series Eq.(2.208). A more convenient form

of the result Eq.(2.216) can be obtained by using the relation [27]

1

T

∫ T/2

−T/2
(EN+1(x))

2dx =
1

T

∫ T/2

−T/2
(S(x))2dx−

N∑

n=−N,noddorn=0

|Cn|2, (2.218)

which along with Eq.(2.216) and Eq.(2.201),

|RN | ≤ BR =



 min
i=1,...,L

{sup fXi
(xr)}



T
4
− 2T

π2

∞∑

n=1,odd

1

n2








1/2

. (2.219)

This form shows that limN→∞BR = 0, since
∑∞

n=1,odd
1
n2 = π2

8 . It is observed that BR

decreases monotonically with increasing N .

2.7.3 The infinite series for unbounded random variables

In the preceding section we considered a sum of bounded RVs. In this section we will

generalize the results to sums of unbounded RVs. We will then apply this series to the

benchmark case of a sum of Gaussian RVs in order to verify the technique.

We proceed as follows. It is assumed that the RVsXi and their sumX are unbounded.

Furthermore, on the grounds that the CDF is a bounded nondecreasing function of its

argument, it is assumed that BL and BU can be chosen such that Pr(X < BL) and

Pr(X < BL) are “negligible”. As before, let the {Xi} be independent RVs and let

T/2 = max[BU − εL, εL−BL]. The probability of a random variable exceeding a certain

bound can be rewritten as

Pr(X ≥ εL) = 0× [Pr(X < εL)] + Pr(X ≥ εL)
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and on some rearrangement it follows that

Pr(X ≥ εL+ T/2) + E([S(X − εL)] ≥ Pr(X ≥ εL) ≥ E([S(X − εL)]− Pr(X ≥ εL− T/2).

As T → ∞, Pr(X ≥ εL) = GX(εL) → E([S(X − εL)] since Pr(X < εL − T/2) → 0

and Pr(X ≥ εL− T/2) → 0. Therefore, we use E([S(X − εL]) as an approximation of

GX(x). The error ∆ resulting from this truncation is

∆ = E([S(X − εL])−GX(εL). (2.220)

Combining with Eqs.(2.198,2.200) and (2.220) we get

|∆| ≤ max [GX(εL+ T/2), GX (εL− T/2)] .

For symmetric distributions and for one-sided distributions the following relations hold

respectively: GX(x) = 1 − GX(−x) and GX(x) = 0∀x < 0. In both cases Eq.(2.221)

simplifies to

|∆| ≤ max [GX(εL+ T/2), GX (T/2− εL)] .

or equivalently,

|∆| ≤ GX(εL+ T/2)

where BL = 0 for a one-sided distribution. The error ∆ can be bounded using the

Chernoff bound. In addition to the error ∆ there is also an error resulting from series

truncation. From Eq.(2.221) we get

E([S(X − εL]) = ∆ +GX(εL) = SN +RN (2.221)

which implies that

SN − |RN | − |∆| ≤ GX(εL) ≤ SN + |RN |+ |∆|. (2.222)

The earlier upper bounds derived for sums of RVs in Eqs.(2.216) and (2.219) remain valid

for sums of unbounded RVs. Thus, the series in Eqs.(2.202) and (2.207) can be used

to compute the GX(εL) for sums of unbounded RVs. The error incurred from domain
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truncation is upper bounded by

|error| ≤ BR + |∆|. (2.223)

Now we will apply the technique to a sum of L zero-mean unit-variance Gaussian

Random variables (RVs). For a zero-mean, unit-variance Gaussian RV, Xi we get

E[cos(nω(Xi − ε))] =

∫ ∞

−∞

1√
2π
e−x2/2 cos(nω(x− ε))dx,

= e−n2ω2/2 cos(nωε),

E[sin(nω(Xi − ε))] =

∫ ∞

−∞

1√
2π
e−x2/2 sin(nω(x− ε))dx,

= −e−n2ω2/2 sin(nωε), (2.224)

and using (2.202)

An = e−n2ω2/2,

θn = −nωε. (2.225)

The series for the CDF of the sum of L zero-mean unit-variance Gaussian RVs can be

expressed using Eqs.(2.205) and (2.225) as follows

GX(εL) =
1

2
− 2

π

∞∑

n=1,odd

e−n2ω2L/2

n
sin(nωεL). (2.226)

Questions of numerical accuracy and convergence have been addressed in [9].



53

Chapter 3

Stochastic resonance in

hard-threshold devices

3.1 Introduction

The phenomenon of stochastic resonance refers to a coupling between deterministic driv-

ing signals and random fluctuations observed in certain nonlinear dynamical systems

whereby deterministic effects are amplified. Originally, stochastic resonance was studied

in threshold systems driven by weak, sub-threshold signals. A study of this phenomenon

in quantizers is given in [20, 25]. In that and subsequent works quantizers have since

been shown to demonstrate an improvement over conventional matched filters for the

detection of signals corrupted by non-Gaussian noise [20, 22, 23, 24, 25, 47, 54, 201, 202].

For reviews of quantization the reader is referred to [12, 57]. Such a quantizer-detector

was designed for the detection of weak, sinusoidal signals in a marine environment [155].

Physically, this corresponds to a remote target to be detected. The detector consists of a

stochastic resonant quantizer followed by a correlator. The SNR gain must be optimized

in the appropriate asymptotic limit, ensuring that the detector works in the peak of its

stochastic resonant regime. Hence, we refer to it as the stochastic resonant (SR) detec-

tor. SR detectors have the following advantage. It is well-known that [87] a quadrature

or incoherent matched filter is the optimal detector if a signal with unknown amplitude/

phase is buried in Gaussian noise. Here, optimality refers to maximization of the prob-

ability of detection constrained by a fixed probability of false alarm. The matched filter

though easy to implement and analyze, is not optimal under conditions of non-Gaussian

noise prevalent in marine environments. Optimal detectors in non-Gaussian noise are

nonlinear and are not easy to implement. Hence, suboptimal nonlinear detectors which
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are easier to implement are often employed for the detection of signals in non-Gaussian

noise. If the SNR gain is greater than unity, a combination of the SR system and a

matched filter will yield a detection performance that is better than that of the matched

filter alone [21]. While conventional studies of stochastic resonance search for the opti-

mal noise level, keeping the system fixed [47, 25], in detection schemes the problem is

reversed; the system parameters are optimized for a given noise level and type. This has

been demonstrated by Chapeau-Blondeau for the detection of pulse trains using quan-

tizers with optimizable thresholds [22].

In this chapter we follow a similar approach. The results are presented as follows.

In Section 3.2, properties of stochastic resonance demonstrated by quantizers and their

utility in signal detection are discussed qualitatively. It is shown that the maximum SNR

gain is less than unity if the input noise is Gaussian, but the SNR gain can exceed unity

if the noise is non-Gaussian. In Section 3.3, an algorithm for optimizing the SNR gain of

the symmetric 3-level quantizer is developed, and is applied to mixture-of-Gaussian noise

PDFs. In Section 3.4, the monotonic dependence of the receiver operating characteristics

on the SNR gain is established. It is also observed that if the noise PDF belongs to a

sub-class of the Gaussian mixture family, the asymptotic performance of the quantizer-

detector is significantly better than that of the matched filter but not as good as that

of the optimal nonlinear detector. Section 3.5 presents perturbative corrections due to

(i) small input SNR Rin and (ii) minute temporal variations in the probability density

function (PDF) governing the noise of the ocean. Section 3.7 contains an outline of the

hardware implementation of such an SR detector. Section 3.8 contains the conclusions

and future directions of work. The issue of relative stability of 2-level and 3-level quan-

tizers is addressed in [156]. The performance of an SR detector for generalized Gaussians

is given in [155].

3.2 Review: Stochastic resonance in 3-level quantizers

Our treatment of quantizers exhibiting stochastic resonance in rooted in the SNR Gain

formalism given in [25]. We consider a symmetric 3-level quantizer with thresholds−vt, vt

and quantization levels −1, 0, 1. If the quantizer is driven by a sequence x[n], the output
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sequence y[n] is given by the relation

y[n] =






−1 for x[n] ≤ −vt

0 for −vt < x[n] ≤ vt

1 for x[n] > vt

(3.1)

The input x[n] is assumed to be the sum of an N -periodic sinusoidal signal with a

known frequency but unknown phase and a zero-mean additive noise with variance σ2.

The input sequence can then be written as

x[n] = A1 cos (2πn/N − φ) + σw[n] (3.2)

where w[n] are zero-mean, unit-variance independent and identically distributed (iid)

random variable with probability density function f(x) and cumulative distribution func-

tion F (x). The incoming signal s[n] is assumed to be subthreshold such that A1 ≤ vt.

In the absence of input noise, the output y[n] remains unchanged at the initial state.

When noise is also present at the input, the output exhibits random transitions from

one state to another. For a sinusoidal signal we need to consider the output SNR at the

1st harmonic alone, which as discussed in [25] is given by

SNRout =
|Y1|2
σ2

y

(3.3)

where Y1 is the 1st Fourier coefficient of the sequence E(y[n]) and σ2
y is the average of

the sequence σ2
y [n], and are given by

Y1 =
1

N

N−1∑

n=0

E(y[n]) exp(j2πn/N)

σ2
y =

1

N

N−1∑

n=0

σ2
y [n] (3.4)

Similarly the input SNR is defined as:

SNRin =
A2

1

4σ2
(3.5)

It may be noted that the output SNR depends on the input signal waveform and the

input noise probability density function. On the other hand, the input SNR depends

only on the input signal amplitude and the input noise variance. The SNR gain of such
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a threshold system G̃, as defined in [20], is given by

G =
SNRout

SNRin
(3.6)

From Eqs.(3.3,3.4) and (3.5) it then follows

G =
4σ2|Y1|2
A2

1σ
2
y

. (3.7)

Claim 1: For a symmetric 3-level quantizer with thresholds −vt, vt and quantization

levels −1, 0, 1, driven by a weak, subthreshold signal (A1 � vt and A1 � σ) and

noise governed by a symmetric PDF, the SNR gain then has the following Taylor series

expansion to the first nonvanishing power of A,

G̃(x) = G(x) + g1(x)A
2 +O(A4), (3.8)

where the dominant term is given by

G(x) =
2f2(x)

1− F (x)
(3.9)

and the 1st nonvanishing correction, subdominant to G(x), can be written as

g1(x) =
1

2

(
f(x)f ′′(x)
1− F (x)

)
+

1

4

(
f ′(x) + 4f2(x)

1− F (x)

)
G(x). (3.10)

Proof: For a 3-level quantizer with symmetric quantizer thresholds and levels, the

expectation and variance of the output sequence y[n] are given by

E[y(n)] = P (y[n] = 1)− P (y[n] = −1),

= 1− F (x−Acn)− F (−x−Acn),

σ2
y [n] = P (y[n] = 1) + P (y[n] = −1)− {E[y[n]]}2,

= 1− F (x−Acn) + F (−x−Acn)− {E[y[n]]}2.

where

A = A1/σ, x = vt/σ, cn = cos(2πn/N − φ). (3.11)

In deriving the above relations we have used Eqs.(3.1,3.2) and the following intermediate
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relations

P (y[n] = 1) = P (x[n] > vt) = P (A1cn + σwn > vt) = P (wn > (vt −Acn)/σ)

= P (wn > x−Acn) = 1− F (x−Acn),

P (y[n] = −1) = P (x[n] ≤ vt) = P (A1cn + σwn ≤ −vt) = P (wn ≤ (−vt −Acn)/σ)

= P (wn > −x−Acn) = F (−x−Acn). (3.12)

The parameter x, referred to henceforth as the normalized threshold is the ratio of

the normalized threshold vt to the noise standard deviation σ. For the nondegenerate

and degenerate forms of Eq.(3.1), vt is positive and zero, respectively. Therefore, it

follows that x is always non-negative. To include the first non-vanishing power of A in

the quantities above, we take the Taylor series expansion to 2nd order about x, to get

E[y(n)] = F (x+Acn)− F (x−Acn),

= 2f(x)Acn +
f ′′(x)

3
(Acn)3 +O(A5),

σ2
y [n] = 2− F (x+Acn)]− F (x−Acn)− {E[y[n]]}2,

= 2[1− F (x)]− (f ′(x) + f2(x))(Acn)2 +O(A4).

Substituting the above expressions into the SNR gain defined in Eqs.(3.4) and (3.7) and

keeping only terms to the first order, we then get the following expansion

G̃(x) =

[
2f2(x)

1− F (x)
+

1

2

(
f(x)f ′′(x)
1− F (x)

)
A2

] [
1− 1

4

(
f ′(x) + 4f2(x)

1− F (x)

)
A2

]−1

,

=
2f2(x)

1− F (x)
+

[
1

2

(
f(x)f ′′(x)
1− F (x)

)
+

2f2(x)

1− F (x)

1

4

(
f ′(x) + 4f2(x)

1− F (x)

)]
A2 (QED).

3.3 The unperturbed functional G(x)

In the weak signal limit, when Rin � 1, the expansion of the gain in Eq.(3.8) has an

appealing and useful explanation in perturbation theory,

1. G(x), the unperturbed functional, dominates the ‘landscape’ of G̃(x), and there-

fore largely determines the maxima of the gain, and the values of the normalized

threshold (x) where they are attained.

2. g1(x), the first order perturbing functional, contributes small corrections of O(A2)

thereupon.
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The unperturbed functional G(x) attains its local maxima at

{
x :

dG

dx
= 0 and

d2G

dx2
< 0

}
. (3.13)

From Eq.(3.9) it follows
dG

dx
=

2f(x)

(1− F (x))2
C(x), (3.14)

where C(x) is the characteristic function defined as

C(x) = 2[1− F (x)]f ′(x) + f2(x). (3.15)

At maxima/minima of the gain, where dG
dx = 0, it then follows

d2G

dx2
=

2f(x)

1− F (x)
f ′′(x). (3.16)

Equivalently, G(x) is locally maximized at

{
x : C(x) = 0 and f ′′(x) < 0

}
. (3.17)

Thus, finding the local maxima of G(x) has reduced to the simpler algebraic problem of

finding the zeros of C(x). This observation helps us derive a few important qualitative

properties of the unperturbed functional G(x).

3.3.1 Existence of critical points

Lemma 1 (Existence): In the real half-line R+, there exists at least one critical point

of G(x).

Proof: Assuming f(x) to be positive definite, we can take the exponential form of

the PDF, so that;

f(x) = eP (x). (3.18)

Therefore, f ′(x) = P ′(x)eP (x) and 1 − F (x) =
∫∞
x eP (u)du. Multiply and divide the

right-hand side by P ′(x) and then integrate by parts to get

1− F (x) =

∫ ∞

x

1

P ′(u)

(
P ′(u)eP (u)

)
du =

∫ ∞

x

1

P ′(u)

(
d

du
eP (u)

)
du

=

∫ ∞

x

d

du

(
1

P ′(u)
eP (u)

)
du−

∫ ∞

x

(
d

du

1

P ′(u)

)
eP (u)du
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= − 1

P ′(x)
eP (x) +

∫ ∞

x

P ′′(u)
P ′2(u)

eP (u)du.

We now introduce the modified characteristic function defined as

C̃(x) = C(x)/f2(x),

= 2
[1 − F (x)]f ′(x)

f2(x)
+ 1. (3.19)

Since the denominator is positive definite, the functions C(x) and C̃(x) have the same

set of zeros. From Eq.(3.18) and Eq.(3.19), the modified characteristic function reduces

to

C̃(x) =

[
2P ′(x)e−P (x)

∫ ∞

x

P ′′(u)
P ′2(u)

eP (u)du− 1

]
,

=

[
2

∫ ∞

x

P ′′(u)
P ′2(u)

eP (u)du/

(
eP (x)

P ′(x)

)
− 1

]
.

As the terms in the numerator and denominator approach zero as x → ∞ we may use

l’Hospital’s rule, and then rearrange, to obtain

C̃(x) =

[
2

P ′′(x)
P ′′(x)− P ′2(x)

− 1

]
.

If we assume P (x) ∼ −x1+α where α > 1 (this assumption is valid for generalized

Gaussians with p > 1 and mixtures of Gaussians), then we have, P ′(x) ∼ −(1 + α)xα

and P ′′(x) ∼ −(1+α)αxα−1. Therefore, it follows P ′′(u)
P ′′(u)−P ′2(x) ∼ α

1+αx
−(1+α) which→ 0

as x→∞ ∀α > 0. Thus, for all PDFs considered here

lim
x→∞

C̃(x) = −1.

Similarly, for symmetric differentiable PDFs f ′(0) = 0, and therefore C̃(0) = 1. Since

C̃(x) is a continuous function, by the intermediate value theorem [152] it must have at

least one zero crossing. It follows that G(x) must have at least one critical point (QED).

3.3.2 Non-uniqueness of critical points

Unfortunately, the uniqueness of critical points cannot be assured. This reflects the

fact that G(x) need not be unimodal. Deterministic global optimization algorithms for

multimodal functions exist [13], but are computationally intensive. However, using some

additional properties of the unperturbed functional G(x), we can develop a more efficient
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deterministic algorithm, the basic premise of which reads:

1. The positive real half-line (R+) can be partitioned into disjoint intervals on whichG

is unimodal. These intervals can be found from the zeros of f ′′(x), which can be cal-

culated from detailed phenomenological studies of marine noise ([110, 140] and ref-

erences therein). On each such interval, the necessarily unique maximum/minimum

can be found using classical techniques (Newton’s, Bisection), thereby greatly im-

proving computational efficiency.

2. The global maximum can then be found by taking the maximum from the resulting

set of local maxima/minima.

Thus, we are using a priori information to develop an algorithm which is necessarily

specific to our problem, but is more efficient than its more generic alternative. Towards

this goal, we derive a few preliminary results.

Claim 2: At any critical point x, and in the limit as x → ∞ the following equality

holds

G(x) = B(x), (3.20)

where the ‘Bounding function’ B(x) is defined as

B(x) = −4f ′(x). (3.21)

Proof: If x is a critical point, from Eqs.(3.14,3.15) and the assumed positivity of f(x)

(i.e. f(x) > 0), it follows that C(x) = 0. This equality and Eq.(3.15) gives

f2(x)

1− F (x)
= −2f ′(x).

Substituting in Eq.(3.9) this gives us

G(x) = −4f ′(x) = B(x) ∀ x : G′(x) = 0.

In the limit as x→∞ the numerator and denominator of Eq.(3.9) are vanishingly small.

We may apply l’Hospital’s rule to Eq.(3.9), which gives us, for large x:

lim
x→∞

G(x) = −4f ′(x) = B(x) (QED).

In qualitative terms, G(x) closely ‘follows’ the Bounding function B(x), intersecting it

at all critical points and then approaching it asymptotically. A deeper link between the
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functions G(x) and B(x) exists, as we shall now show. The zeros of f ′′(x) and B′(x) are

identical and are assumed to occur at isolated points (i.e. we assume f ′′(x) and therefore

B′(x) does not vanish identically over an interval). Furthermore, we assume these points

are finitely many. These assumptions are satisfied by both generalized Gaussians and

mixtures of Gaussians. Then we can define an ordered set of zeros of f ′′(x) (or B(x)) as

follows: ZB = {a1, a2, .....aN} or

ZB = {aj} j = 1, . . . , N. (3.22)

These zeros or roots can be found from phenomenological studies of governing noise

PDFs [110, 140]. This induces the following sequence of disjoint intervals:

IB = {Ij} j = 0, . . . , N, (3.23)

where

I0 = [0, a1],

Ij = [aj , aj+1] j = 1, . . . , N − 1,

IN = [aN ,∞). (3.24)

It is observed R+ =
N⋃

j=0
Ij . The intervals in IB thus form a partition of R+.

Claim 3: Any point in the interior of an interval Ij ∈ IB where G′(x) = 0, must

correspond to a local maximum/minimum of G(x).

Proof: Any point where G′(x) vanishes must correspond to a (i) a local maximum/

minimum (G′′(x) 6= 0) or (ii) an inflection point (G′′(x) = 0). At an inflection point

by Eqs.(3.14,3.16,3.21), C(x) = 0 and f ′′(x) = B′(x) = 0. So x must be an element of

ZB and cannot be in the interior of any interval Ij ∈ IB. This contradicts our starting

assumption. Hence, x must be a local maximum/ minimum of G(x) (QED).

Claim 4: Let x1, x2 be successive local maxima/minima of G(x). The interval

(x1, x2) contains a zero of f ′′(x).

Proof: The expression for G′′ at local maxima/ minima is given in Eq.(3.16). Assume

without loss of generality, that G′′(x1) < 0 and G′′(x2) > 0. Therefore f ′′(x1) < 0 and

f ′′(x2) > 0. By the intermediate value theorem the interval (x1, x2) must contain a zero

of f ′′(x) (QED).

Corollary: An interval Ij ∈ IB may contain atmost one local maximum/ minimum

of G(x).
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Proof: (by contradiction) Assume two local maxima/minima of G exist in Ij. Call

them x1, x2. By Claim 4, the interval (x1, x2) must contain another zero of f ′′(x), at say

a. Observe that a is in the interior of Ij. Hence a /∈ ZB . But ZB is, by construction,

the set of all zeros of f ′′(x). Hence we have arrived at a contradiction (QED).

The above results can be collected into the following key lemma.

Lemma 2 (Piecewise unimodality): Consider any interval [x1, x2] = Ij ∈ IB.

If G′(x1) and G′(x2) are of opposite signs, then the interval [x1, x2] contains a unique

maximum/minimum of G(x). Otherwise, the interval [x1, x2] does not contain a maxi-

mum/minimum of G(x).

Proof: By conditions of the claim, f ′′(x1), f
′′(x2) = 0. First part: ifG′(x1) andG′(x2)

are of the same sign or if either G′(x1) or G′(x2) equals zero, G′(x) must have either null

or an even number of zero crossings in the interval (x1, x2). If null, the case is proved.

For an even number, we proceed as follows. By Claim 3, all zero crossings of G′(x)

in the interval (x1, x2) correspond to local maxima/minima of G(x). Consider any two

such successive local maxima/minima of G(x), say y1 and y2. By Claim 4, (y1, y2) must

contain yet another zero of G′(x), which contradicts our starting assumption. Therefore,

G′(x) has no zero crossings on the interval [x1, x2]. Second part: if G′(x1) and G′(x2)

have opposite signs, G′(x) must have either one or a higher odd number of zero crossings

in the interval [x1, x2]. In case of a higher odd number of zero crossings, pick any two.

Repeat the reasoning of the first part. A similar contradiction follows. By exclusion,

therefore, G′(x) must have a unique zero crossing on the interval [x1, x2]. By Claim 3,

this unique zero crossing must correspond to a unique local maximum/minimum of G(x)

(QED).

Note: We can extend Lemma 2 to include the semi-infinite interval [aN ,∞), as

similar reasoning holds.

Corollary: If G′(a1) is negative, the interval I0 = [0, a1] contains a unique max-

imum/minimum of G(x). If G′(aN ) is positive, then the semi-infinite interval IN =

[aN ,∞) contains a unique maximum/minimum of G(x). Otherwise, I0 and IN do not

contain maxima/minima of G(x).

Proof: For symmetric PDFs f ′(0) = 0. From Eq.(3.9) we then get G′(0) = 8f3(0) >

0. From Lemma 2, it follows when G′(a1) is negative, then the interval I0 = [0, a1]

contains a unique maximum/minimum of G(x). As x → ∞, from Eq.(3.20) we get

G′(x)→ −4f ′′(x). If we take the exponential form of the PDF f(x) = eP (x), we obtain

f ′(x) = P ′(x)eP (x),

f ′′(x) = [P ′2(x) + P ′′(x)]eP (x).
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All PDFs can be described for large x as follows: (a) P (x) ∼ −x1+α where (α > 0)

and (b) P (x) ∼ −α log(x) where (α > 1). Case (a) includes generalized Gaussians

and mixtures-of- Gaussians, while Case (b) includes the Cauchy PDF. Thus, for large x,

f ′′(x) ∼ (1+α)2x2αf(x) and f ′′(x) ∼ α(1+α)x−2f(x) for cases (a) and (b), respectively.

Therefore, for large x G′(x) is a small negative number. Hence, from Lemma 2, if G′(aN )

is positive the interval [aN ,∞) contains a unique maximum/minimum of G(x) (QED).

3.3.3 The global optimization algorithm

We are finally in a position to outline our global optimization algorithm, which is based

on the Piecewise Unimodality Lemma (Lemma 2).

1. Consider the intervals in Eqs.(3.24):

I0 = [0, a1], Ij = [aj , aj+1], 1 ≤ j ≤ N − 1, IN = [aN ,∞).

2. for j = 0: If G′(0) < 0, I0 contains a unique maximum/minimum which may be

found by Bisection (on I0) or Newton’s method (starting at either 0 or a1). Else,

ignore I0. Increment the value of j.

for j = 1 to N − 1: If G′(aj) and G′(aj+1) are of opposite signs, Ij contains a

unique maximum/minimum which may be found by Bisection (on Ij) or Newton’s

method (starting at either aj or aj+1). Else, ignore Ij . Increment the value of j.

for j = N : If G(aN ) is positive, IN contains a unique maximum/minimum which

may be found by Bisection (on [aN , B] where B is a suitably large bound) or New-

ton’s method (starting at aN ). Else, ignore IN .

3. Collect the set of maxima/ minima (S) and corresponding values of the Gain G(S)

thus obtained. S and G(S) are finite sets of cardinality at most N + 1.

4. The global maximum denotedbyGSR is the maximum of all the local maxima/minima

G(S) and the optimal value of x is the corresponding member of S;

xopt = Argmax G(S),

GSR = Max G(S). (3.25)

In the foregoing treatment we have assumed G′(x) vanishes only at isolated points. This

assumption is satisfied by most PDFs. However, the algorithm can be generalized to
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include the case when G′(x) vanishes over an interval of finite length.

3.3.4 Computational complexity

Thus, we have reduced a multimodal optimization problem to a sequence of atmost

N + 1 unimodal optimization problems. If L is the length of the longest interval, then

the worst case complexity of the above algorithm, measured by the maximum number

of steps required, is given by

NCSR = (N + 1) log2 (L/ε) , (3.26)

where ε is the required accuracy of the root finding procedure. The roots in Eq.(3.22)

which divide the search space into disjoint intervals as in Eq.(3.24) are known in the

application being considered. Consequently, the complexity of finding the partition in

Eq.(3.24) can be ignored. For comparison, the worst case complexity of Brent’s standard

algorithm for globally optimizing multi-modal functions [13] is given by

NCclas = B

√
M

2ε
log2



B

√
M

2ε



 , (3.27)

where B is the upper bound of the interval [0, B] over which the search for optima is

conducted, and M denotes an upper bound on the second derivative of the functional

being optimized, i.e. Sup|G′′(x)| ≤ M . We can make an immediate observation about

the relative worst case complexities. For finite M,B and L, as ε → 0+, we obtain the

following scaling laws: NCclas ∼ ε−1/2 log2 ε
−1 and NCSR ∼ log2 ε

−1. Therefore,

NCclas

NCSR
∼ ε−1/2. (3.28)

We conclude that for increasing accuracy of optimization, the complexity of the classical

technique increases as ε−1/2 compared to the algorithm outlined in this chapter.

Now, we proceed to analyze the relative complexity for thicker marine noise PDFs.

The acoustic noise in the ocean is produced by a variety of uncorrelated sources. The

governing unit variance PDF can be modelled [110, 140] by a mixture of two Gaussians

and is given by

f(x) =
c√
2π

[
αe−(cx)2/2 +

1− α
β

e−(cx)2/2β2

]
, (3.29)
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where

c = [α+ (1− α)β2]
1
2 , 0 < α < 1, β > 0, (3.30)

α and β denote the mixing parameter and the ratio of the deviations of the component

PDFs respectively. Also,

f ′′(x) =
c3√
2π

[
α{(cx)2 − 1}e−(cx)2/2 +

1− α
β3
{(cx/β)2 − 1}e−(cx)2/2β2

]
. (3.31)

Thicker PDFs of this family occur when β � 1. In this limit it is observed [155] that the

optimal value of the normalized threshold x→ 0. Consequently, F (x)→ 1/2. The values

of f(x) and f ′′(x) do not reach an asymptotic limit, but from Eq.(3.29) and Eq.(3.31)

are observed to scale as c and c3, respectively. From Eq.(3.16) we know that at any

maximum/minimum G′′(x) = 2f(x)
1−F (x)f

′′(x), which then scales as c4. Hence, the upper

bound M also scales as c4. We also know the upper bound of the search interval B scales

as 1
c (log c)

1/2. The length of the largest unimodal interval L, which is bounded above by

B, will also scale as 1
c (log c)

1/2. These scaling laws suggest that the relative complexity

of the two algorithms scales as

NCclas

NCSR
∼ c(log c)1/2. (3.32)

Since for β � 1, c→ (1−α)1/2β we infer NCclas

NCSR
∼ β(log β)1/2. Consequently, for similar

accuracy, the classical, benchmark algorithm become rapidly intractable, relative to the

algorithm in the previous section, in the case of heavy-tailed marine noise PDFs.

3.3.5 Values of CPU run-time

For increasing accuracy of optimization, as ε→ 0+, it can be shown from Eqs.(3.27) and

(3.26) that the relative worst-case complexity can be approximated by

CBrent

CPU
∼
[

B
√
M

2
√

2(N + 1)

]
ε−1/2 (3.33)

From the values of B,M and N given in the preceding sections and an assumed value of

ε = 0.001 it can be inferred that the Piecewise unimodal algorithm will converge 10− 20

times faster than the classical Brent’s algorithm.
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Figure 3.1: Three-dimensional plot of the gain of the SR detector in mixture-of-Gaussian
noise as a function of the parameters α and β of the noise PDF.
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Figure 3.2: Three-dimensional plot of the normalized threshold of the SR detector in
mixture-of-Gaussian noise as a function of the parameters α and β of the noise PDF.
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Figure 3.3: Contour plot of the gain of the SR detector in mixture-of-Gaussian noise as
a function of the parameters α and β of the noise PDF.

3.3.6 Results: Mixture of Gaussians

It is apparent from Eq.(3.29) that PDFs belonging to the Gaussian mixture family can

be uniquely characterized by two parameters: α and β. Therefore GSR and xopt are

plotted as functions of both α and β in Figs.(3.1) and (3.2). It is observed that as α→ 0

or α → 1, the PDF tends to a Gaussian, and the gain GSR falls below unity. But for

intermediate values of α, GSR → ∞ as β → ∞. This divergence of GSR can also be

explained by asymptotic analysis. As β →∞, the optimal normalized threshold

x→ 0, c/β → (1− α)1/2 and c/
√

2π exp(−(cx)2/2)→ δ(x),

where δ(.) denotes the Dirac delta function. Thus we have

lim
β→∞

f(x) = αδ(x) + (1− α)3/2/
√

2π exp(−(1− α)x2/2),

which is a divergent(generalized) function. Consequently GSR defined in Eq.(3.25) di-

verges. The values of (α, β) for which GSR > 1, are identifiable from the region enclosed

by the contour GSR = 1 in Fig.(3.3). For these values of (α, β) and for the corresponding

PDFs therefore, the performance of the SR detector shall be superior to that of the linear

detector. For a more explicit comparison the SNR gains of the SR, linear and optimal

nonlinear detectors are plotted for a fixed value of α with varying β in Fig.(3.4), and

then for a fixed value of β with varying α in Fig.(3.5).
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Figure 3.4: Variation of the gain of the optimal detector, SR detector and matched filter
in mixture-of-Gaussian noise as a function of the parameter β of the noise PDF, with
α = 0.2.
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Figure 3.5: Variation of the gain of the optimal detector, SR detector and matched filter
in mixture-of-Gaussian noise as a function of the parameter α of the noise PDF, with
β = 2.5.
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3.4 Detection statistics

In statistical detection theory it is customary to state the signal detection problem as

that of testing two hypotheses: ‘signal present’ and ‘signal absent’, denoted by H1 and

H0, respectively. The decision can be reduced to the following test:

Decide H1 is true if T (x) > η

Decide H0 is true if T (x) < η.

Here T (x) is the Test Statistic, a function of the data vector x[n], and η is the

detector threshold. If the amplitude and phase of the sinusoidal signal are unknown, the

Test Statistic for the optimal detector and the more conventional quadrature detector

share the following generic form:

T (x) =

∣∣∣∣∣
1

N

N−1∑

n=0

g(x[n]) exp(−j2πfon)

∣∣∣∣∣

2

(3.34)

The test statistic T (x) is therefore the periodogram of the transformed data vector

g(x[n]) at the frequency f0. It can be shown [87] that for this class of test statistic,

under hypothesis H0 the random variable (2/σ2)T has chi-squared distribution with two

degrees of freedom, and that under hypothesis H1, the random variable (2/σ2)T has a

noncentral chi-squared distribution with two degrees of freedom and noncentrality pa-

rameter λ defined by

λ =
GEs

2σ2
=
GRin

2
(3.35)

where G is the SNR gain of the system, Es is the energy of the signal, σ2 is the noise

power and Rin is the input SNR. Hence, the probability of false alarm is given by

PF = P (T > η;H0) (3.36)

= exp(−η/σ2)

and the probability of detection is given by

PD = P (T > η;H1) (3.37)

= Q
χ
′2

2 (λ)
(2η/σ2)
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where Q
χ
′2

2 (λ)
(.) denotes the right-tail probability of the noncentral chi-squared PDF

with two degrees of freedom and noncentrality parameter λ. The corresponding receiver

operating characteristic (ROC) is given by

PD = Q
χ
′2

2 (λ)

(
2 ln

1

PF

)
(3.38)

For the quadrature detector or incoherent matched filter, gMF (.) is the identity trans-

formation, which is the optimal transformation in Gaussian noise,

gMF (x[n]) = x[n]

(3.39)

Since the SNR gain of the matched filter is unity, GMF = 1 and the noncentrality

parameter is given by

λMF =
Es

2σ2
=
Rin

2
(3.40)

For non-Gaussian noise the optimal nonlinear transformation gopt can be derived from

the Neyman-Pearson criterion and is defined [87] as follows,

gopt(ξ) = −σ2 f
′(ξ)
f(ξ)

(3.41)

where f ′(ξ) is the derivative of the PDF f(ξ). The SNR gain Gopt and the resulting

noncentrality parameter λopt of the resulting optimal nonlinear detector [87] are given

by:

Gopt = σ2

∞∫

−∞

(f ′(ξ))2

f(ξ)
dξ (3.42)

λopt =
GoptEs

2σ2
=
GoptRin

2
(3.43)

As shown in [87] the optimal nonlinear transformation yields an effective SNR gain Gopt

whose value is greater than unity if the noise is non-Gaussian. We can obtain a sub-

optimal detector of sinusoidal signals by replacing the optimal nonlinear transformation

gopt(.) defined in Eq.(3.41) by a stochastic resonator (SR) operating at maximum gain.

The SNR gain can be maximized by choosing the threshold γ1 according to the optimiza-

tion algorithm outlined in Section 3.3. The test statistic of the SR detector is therefore
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given by

TSR(x) =

∣∣∣∣∣
1

N

N−1∑

n=0

gSR(x[n]) exp(−j2πfon)

∣∣∣∣∣

2

(3.44)

where gSR(x[n]) = y[n] is the output of the stochastic resonator.

Now the expressions for PF and PD have the form as in Eqs.(3.36, 3.37), but the

parameter λ is redefined as

λSR =
GSREs

2σ2
(3.45)

Since the ROC for the stochastic resonator is now given by

PD = Q
χ
′2

2 (λSR)

(
2 ln

1

PF

)
(3.46)

and Q
χ
′2

2 (λ)
(x) increases monotonically with λ for all x, it follows that

1. By maximizing GSR we shall maximize PD for a given PF , thereby optimizing the

detection performance of the SR detector.

2. If GSR > 1, the SR detector performs better than the conventional matched filter.

We observe that for Gaussian mixtures, for any ordered pair (α, β) for which GSR ≥ 1,

the SR detector shows an improvement over the matched filter. For (α, β) = (0.3, 10) this

is borne out from the ROCs of the matched filter, SR and optimal nonlinear detectors

for the low input SNR of Rin = −10dB as shown in Fig.(3.6). When the given value

of α is kept constant, the degree of improvement increases markedly as β is increased,

as shown in Fig.(3.7). This is because, as observed in Section 3.3, for a fixed value of

α such that 0 < α < 1, GSR diverges as β → ∞. When the given value of β is kept

constant, the ROC shows improvement as α is increased from 0, but then decreases as α

approaches 1. This is illustrated for β = 20 in Figs.(3.8) and (3.9). The plots of the SNR

Gains and the ROCs also illustrate an interesting trend first reported in [21] namely by

Chapeau-Blondeau: quantizer detectors show greater improvement over matched filter

detectors as the noise PDF becomes more heavy-tailed or leptokurtic in nature, as is the

case when p → 0+ for generalized Gaussians, and β → ∞ for a fixed α for Gaussian

mixtures.

A tentative explanation is as follows: quantizers, being threshold systems, always

have bounded outputs. Thus, upon quantization, the expected output noise power is

necessarily finite, regardless of the input. For increasingly leptokurtic PDFs however,

the expected input noise power diverges. Therefore for matched filters, the expected
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output noise power diverges. Thus, quantizers ‘damp’ the degenerative effects of noise

more effectively than do matched filters, for more heavy tailed or leptokurtic PDFs.

Hence the pronounced improvement for detectors with quantizer nonlinearity for such

PDFs.
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Figure 3.6: Receiver Operating Characteristics of linear, SR and optimal nonlinear de-
tectors in mixture-of-Gaussian noise with (α, β) = (0.3, 10).

3.5 Perturbative corrections (i): due to non-zero input

SNR

In this section we derive the corrections for the normalized threshold x and the SNR

gain G, due to the small but nonzero input SNR Rin. Our approach is rooted in per-

turbative analysis. Here the asymptotic SNR gain G corresponds to the unperturbed

cost functional which is relatively simple to optimize. In the unperturbed problem, the

optimal normalized threshold and optimal gain (x,G(x)) can be calculated using the

algorithm outlined in the previous section. Here, g1 represents the 1st order correction

due to finite input SNR and corresponds to a weak, sufficiently smooth perturbing func-

tional, subdominant to G. The resultant 1st order corrections denoted by (δx, δG(x))

may then be computed from g1. In order to do so, we proceed closely following the

approach presented by Sakurai [163].
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Figure 3.7: Variation of Receiver Operating Characteristics of the SR detector in
mixture-of-Gaussian noise as β →∞, with α = 0.3.
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Figure 3.8: Variation of Receiver Operating Characteristics of the SR detector in
mixture-of-Gaussian noise for α = 0.05, 0.25, 0.45, 0.65, with β = 20.
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Figure 3.9: Variation of Receiver Operating Characteristics of the SR detector in
mixture-of-Gaussian noise for α = 0.65, 0.88, 0.95, with β = 20.

If the unperturbed functional G attains its global maximum at x, then

G′(x) = 0, G′′(x) < 0. (3.47)

As the perturbation is subdominant and smooth, the perturbed functional G̃ = G+g1A
2

attains its global maximum at x+ δx where δx� 1. Therefore,

(G′ + g′1A
2)(x+ δx) = 0, (G′′ + g′′1A

2)(x+ δx) < 0.

Expanding in Taylor’s series about x, and keeping only the first order corrections yields

G′(x) +G′′(x)δx + g′1(x)A
2 = 0. (3.48)

Using Eqs.(3.47) and (3.48) it follows

δx = −A2 g
′
1(x)

G′′(x)
. (3.49)

The first order correction to the SNR gain is

δG = (G+ g1A
2)(x+ δx) −G(x).

Proceeding as before by taking the Taylor’s series about x, keeping only the first order
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corrections and using Eq.(3.47) we obtain

δG = A2g1(x). (3.50)

The values for the correction to the threshold and SNR gain in Eqs.(3.49) and (3.50) are

observed to depend on A2 and are thus proportional to the input SNR Rin in the weak

signal limit. The values of these corrections for the moderately high input SNR of −20dB

and for the mixture-of-Gaussian PDFs are shown in [157]. These figures indicate that

the magnitude of the corrections increase with the SNR gain and are more pronounced

for heavy-tailed PDFs. These PDFs correspond to central values of α, for fixed β and to

increasing values of β, for fixed α. The input SNR, due to a mobile target vessel, varies

typically between −40dB(A = 0.01) and −14dB(A = 0.2). The disparity between the

original and corrected values of the Gain, may be expected to increase for values of input

SNR higher than −20dB. For higher input SNRs and correspondingly higher values of

A, a linearized treatment in the weak signal limit will no longer be tenable. Thus they

cannot be considered here.

3.6 Perturbative corrections (ii): due to variation of ma-

rine noise PDF

The marine environment is dynamic in nature. Consequently, the PDF that governs

marine noise shows considerable temporal variation. In this section, our aim will be to

compute the necessary perturbative corrections to the normalized threshold (x) and the

system gain (G). In order to do so, we will assume throughout that the system adjusts

instantaneously to a variation in the noise PDF. This assumption is validated by the

relative timescales involved; the timescale of variation of the marine noise PDF is ∼ 1 hr,

whereas the system response time for most sonar hardware is ∼ 0.1 secs. In the manner of

first order perturbation theory we will consider the change in the unperturbed functional

(G) only. All other effects such as the change in the first perturbing functional (g1) will be

of higher order, and therefore subdominant. At first, we will try to keep the treatment

as general as possible, and compute the corrections for all PDFs. In the subsequent

section, we will restrict our attention exclusively to PDFs governing marine noise. The

relevant corrections for SR quantizers in noise governed by generalized Gaussian PDFs

are derived in [156].
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3.6.1 General formalism

The characteristic function in Eq.(3.15) may be considered as a functional of the nor-

malized threshold (x) and the PDF (f),

C(x, f) = 2[1 − F (x)]f ′(x) + f2(x). (3.51)

We have included the second argument f to explicitly denote the dependence on the

noise PDF, hitherto assumed static. When the noise PDF suffers a change by δf , the

system adjusts adiabatically with a change in the threshold given by δx, resulting in

C(x+ δx, f + δf)

= 2[1− (F + δF )(x+ δx)][(f ′ + δf ′)(x+ δx)] + (f + δf)2(x+ δx).

Expanding in series and keeping only till the first order corrections, we get

C(x+ δx, f + δf)

= 2[1 − F (x)]f ′(x) + f2(x)− 2f ′(δF + F ′δx)

+2(1 − F )(f ′′δx+ δf ′) + 2f(f ′δx+ δf). (3.52)

For optimality in the original and perturbed configurations,

C(x, f) = C(x+ δx, f + δf) = 0.

Therefore, from Eqs.(3.51) and (3.52) we get

−f ′δF + (1− F )(f ′′δx+ δf ′) + fδf = 0,

which after rearrangement, yields the following expression for the correction to the

threshold:

δx =
fδf + (1− F )δf ′ − f ′δF

(1− F )f ′′
. (3.53)

The perturbative correction to the gain can be computed in a similar manner. The

unperturbed Gain in Eq.(3.15) is a functional of the normalized threshold (x) and the

PDF (f),

G(x, f) =
2f2(x)

1− F (x)
. (3.54)
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After the perturbations to the PDF and the normalized threshold,

G(x+ δx, f + δf) =
2(f + δf)2(x+ δx)

1− (F + δF )(x + δx)
,

= 2

(
f2(x) + 2fδf + 2ff ′δx

1− F (x)

)(
1− fδx+ δF

1− F

)−1

.

Keeping only the first order corrections, it follows that

G(x+ δx, f + δf)

=
2f2(x)

1− F (x)
+ 4

(
fδf + ff ′δx

1− F

)
+ 2f2

(
fδx+ δF

(1− F )2

)
. (3.55)

The correction terms can be rearranged to give

G(x+ δx, f + δf)

=
2f2(x)

1− F (x)
+

2f

(1− F )2

(
2f ′(1− F ) + f2

)
δx

+
2f

(1− F )2
(2δf(1− F ) + fδF ) . (3.56)

The coefficient function of δx vanishes at extremal points from Eq.(3.15). Combining

Eqs.(3.55) and (3.56), we get

δG =
2f

(1− F )2
(2δf(1 − F ) + fδF ) . (3.57)

This relation can be simplified using the optimality criteria Eqs.(3.15,3.17) to get

δG =
4

1− F
(
fδf − f ′δF ) . (3.58)

These formulae, while being very general, are computationally intensive as at each

step they require the computation of an integral for the perturbation of the probability

distribution function δF (x) =
∫ x
−∞ δf(u)du. In addition, they require substantial mem-

ory allocation for the storage of the measured values of the perturbation δf . In the next

section, we alleviate this problem by working in a restricted class of PDF relevant to the

ocean acoustic scenario, namely the mixture-of-Gaussian PDFs.



CHAPTER 3. STOCHASTIC RESONANCE IN HARD-THRESHOLD DEVICES 79

3.6.2 Mixture-of-Gaussians

This class of PDF defined in Eq.(3.29) is uniquely defined by the mixing parameter (α)

and the ratio of the component Gaussians (β). Therefore, the perturbation f → f + δf ,

which represents a flow in function space, can be reduced to (α, β) → (α + δα, β + δβ)

which is a flow in the space of two real variables (R2). Since the perturbations in the

parameters α and β are assumed to be independent, it follows that

δf =
∂f

∂α
δα +

∂f

∂β
δβ.

Similarly,

δf ′ =
∂f ′

∂α
δα+

∂f ′

∂β
δβ and δF =

∂F

∂α
δα+

∂F

∂β
δβ.

Substituting the above formulae into Eqs.(3.56) and (3.58), we get

δx = − 1

(1− F )f ′′

(
f
∂f

∂α
+ (1− F )

∂f ′

∂α
− f ′∂F

∂α

)
δα

− 1

(1− F )f ′′

(
f
∂f

∂β
+ (1− F )

∂f ′

∂β
− f ′∂F

∂β

)
δβ (3.59)

and

δG =
4

1− F

[(
f
∂f

∂α
− f ′∂F

∂α

)
δα+

(
f
∂f

∂β
− f ′∂F

∂β

)
δβ

]
. (3.60)

As may be observed, by considering the perturbations in the parameters α and β, we have

alleviated the need to calculate δF and to store the values of δf . Therefore, our procedure

is now amenable to an application with faster run-time and scarce hardware. These

corrections can be expressed in terms of standard integrals, the details of which are given

in Appendix B. For illustration, these corrections are plotted for mixture-of-Gaussian

PDFs in [157], for the values of δα = 0.1 and δβ = 0.1, which correspond to the average

drift in parameters of the ocean on a timescale of 1hr [110, 140]. These corrections

exhibit a similar pattern as those for finite input SNR: they are more pronounced for

heavy-tailed PDFs which correspond to central values of α, for fixed β, and to increasing

values of β, for fixed α. Though they are of the same overall order as, they are smaller in

magnitude than the corrections due to finite input SNR. This pattern can be expected

to be more pronounced for higher values of input SNR.
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3.7 Hardware implementation

The instructions for the detection algorithm given in the preceding sections, can be

programmed into the Texas Instruments (TI) processor (Model:TMS320C6713). This

processor is a low-cost development platform designed specifically for the development

of high precision signal processing applications [196]. The basic architecture is outlined

below:

• An instruction set for the threshold device, the global optimization procedure and

perturbative calculations can be embedded into the development platform using

an assembly language, C or C++.

• Tables of the roots of the second derivative of the PDF (f ′′(x)) for various values of

the mixing parameters (α, β) can be pre-computed and stored on available memory

(ROM). Thus the time required for these steps is reduced to ROM look-up time.

Tables for standard functions required for perturbative calculations can be similarly

stored therein.

The signal is input to the threshold device and its output is tested for the detection

hypothesis. The device communicates in a forward one-way loop to the control circuitry.

The control circuit denotes an embedded instruction set for the global optimization

routine which calculates the optimal threshold value. This part communicates with the

segment of the memory which contains the locations of the roots of f ′′(x) for various

values of the mixing parameters (α, β), which characterize the PDFs which govern marine

noise. The threshold device, control circuitry and the necessary ROM comprise the entire

SR device to be built, and must be integrated on a single platform/ motherboard.

Conventional sonar detectors consist of the following stages: the transducer or acous-

tic sensor which converts incoming pressure signals in a chosen frequency to electrical

signals in the same frequency; and a higher level processing stage which conducts the

detection hypothesis test to decide is the signal is present or absent in that particular

frequency bin [87]. In the upgraded sonar, the input signal is pre-processed by the SR

device, thereby amplifying its signal content, before being led to the detection hypothesis

testing stage. Thus, the SR device must be installed between the transducer and the

detection hypothesis testing stages of any sonar. The advantages such a design accord

are:

• The entire SR device, comprising the instruction sent and the necessary ROM

can be implemented on a single commercially available DSP platform, thereby

alleviating the need for custom-made hardware.
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• In most modern sonars, the internal circuitry carry digital signals. The use of the

SR device as an intermediate stage, therefore, avoids the need for cumbersome

Analog-to-Digital (AD) and Digital-to-Analog (DA) converters.

• The resultant chip can be installed in existing, possibly remote sonar platforms as

a plug-in.

3.8 Conclusions

We have investigated the convergence properties and stability of stochastic resonant

(SR) detectors. The case of weak, sinusoidal signals is considered. We prove that the

asymptotic expression for the SNR gain can be globally optimized by an algorithm of

logarithmic complexity. The worst case complexity of this algorithm is better than that

of standard algorithms in the following two cases: (i) for increasing accuracy of the opti-

mization procedure (ii) for increasingly heavy tailed marine noise PDFs, corresponding

to more turbulent ocean conditions. This improves real-time performance and avoids

expensive hardware requirements. The effects of small non-zero input SNRs and drift

in the marine noise PDF are found to be first order perturbative corrections. An un-

certainty in the estimate of the signal frequency is found to result in a second order

perturbative correction which is therefore subdominant to the former two effects. While

the theoretical development is kept as general as possible, numerical simulations are car-

ried out exclusively for the mixture-of-Gaussians, a class of PDFs which govern oceanic

noise. For this class of PDFs, all corrections are expressed in terms of standard functions,

making them readily implementable on sonar hardware. Numerical illustrations indicate

that the SR detector is stable with respect to variations considered in a typical ocean

acoustic scenario. They also indicate that non-zero input SNRs tend to be dominant

amongst all corrections to the SNR gain considered. Hence, the SR detector has been

shown to be a robust and viable alternative to matched field detectors. Therefore, using

this device, even isolated hydrophones i.e. sonobuoys, can be upgraded economically. A

conceivable generalization of this work would be to consider arrays of quantizers, with

feedback. Aspects of this problem have already been studied [120, 119, 175, 201, 202].

However, the detection performance of a model incorporating all these features, such as

a neural network, in a dynamic ocean acoustic scenario with correlated noise, remains

to be investigated. This will be done in the future.
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Chapter 4

Stochastic resonance in Carbon

nanotubes

4.1 Introduction

Electrical signals can help pulse-train detection at the nanolevel. Experiments on a

single-walled carbon nanotube transistor confirmed that a threshold device exhibited

Stochastic resonance (SR) for finite-variance and infinite-variance noise: small amounts

of noise enhanced the nanotube detector’s performance [98, 99]. The experiments used

a carbon nanotube field-effect transistor to detect noisy subthreshold electrical signals.

Three measures of detector performance showed the SR effect: Shannon’s mutual in-

formation, the normalized correlation measure, and an inverted bit error rate compared

the input and output discrete-time random sequences. The nanotube detector had a

threshold-like input-output characteristic in its gate effect. It produced little current for

subthreshold digital input voltages that fed the transistor’s gate. The observed nanotube

effect was robust: it persisted even when noise with infinite-variance governed by the

Cauchy distribution corrupted the signal stream.

The SR theorems in [92] give broad sufficient conditions for SR to occur in any

threshold system for all possible finite-variance noise types and for most infinite-variance

noise types. Simulations show that these SR theorems apply to a threshold-like ramp

function that often models the transistor’s current-voltage (I−VG) characteristics: Y =

G(S−VT ) where Y is the output current, VT is the threshold voltage and G is a nonzero

gain for suprathreshold inputs S ≥ VT . The simulated transistor had the parameters

G = −1nA/V and VT = −2V . The plots of Shannon’s mutual information I(S, Y ), a

normalized correlation measure C(S, Y ) and an inverted bit error rate 1−BER show an



CHAPTER 4. STOCHASTIC RESONANCE IN CARBON NANOTUBES 83

optimal noise standard deviation σopt in the range (0.3, 0.5). The input si = bi + ni was

a sum of Gaussian noise ni and binary input (Bernoulli) symbols bi for the equally likely

ON/OFF symbol pair −1.6V and −1.4V . Experiments using a pristine (undoped) single-

walled carbon nanotube transistor confirmed these predictions [98, 99]. The nanotube

effect was observed as one of 4 successful combinations of input binary values with the

parameter choices ON = −1.6V and OFF = −1.4V . This SR effect occurred inspite of

nanotube instabilities that caused fluctuations in the stochastic I − VG curve.

A semiconductor single-walled carbon nanotube (SWNT) can change its conductivity

in response to an external electric field in a gate effect [179, 121]. The SR experiments

used a chemical-vapour-deposition (CVD) grown SWNT [76, 61]. The semiconductor

SWNT forms a Schottky Diode at the interface with metal so that a metal-nanotube-

metal contact forms a field-effect transistor (FET) with an adjacent gate electrode [193].

The typical current-voltage (I − VG) characteristics given by

I =

{
G(V − VT ) for VG ≤ VT

0 otherwise.
(4.1)

indicate that the pristine semiconductor nanotubes act as hole-doped semiconductors at

room temperatures and that nanotubes are p-type FETs [179]-[121], [6]. The transcon-

ductance G is negative and the gate voltage VG ≤ VT is suprathreshold for p-type FETs.

The SR result does not specify the material or the dimensions of the threshold device

and could apply to materials such as inorganic nanotubes, nanowires, nanofibers and

nanoscale transistors [98]. Further details of the fabrication of such nanodevices can be

found in [89] and references therein. Nanotube FET technology produces detectors that

typically exhibit hysteresis. The detector is not ideal as its conductance, gate effect and

hysteresis changed over time. The detector exhibited some hysteresis but not enough

to prevent the SR effect. The current-voltage loop exhibits the hysteretic loop in [98].

For details of how hysteresis occurs and how it can be prevented please refer [98] and

references therein.

Recent experiments have demonstrated the occurence of Stochastic Resonance (SR)

in individual carbon nanotubes driven by sub-threshold binary input signals [98, 99].

In a manner typical to SR, various measures such as Shannon mutual information,

input-output correlation and inverted bit-error rate increase with increasing noise intensi-

ties [98, 99] attaining a maximum at a non-zero value for the noise intensity. These results

are theoretically significant as they validate certain ‘forbidden interval theorems’ which

guarantee such non-monotonic performance of threshold systems [136, 137] under certain

conditions. Signal detectors or sensors based on such nanotubes have the potential for
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application to broadband or optical communication systems that use sub-microamp cur-

rents, nanolevel parallel signal processing, spread-spectrum communications or chemical

detection—see [98] and references therein. Such detectors can also be interfaced with

biological systems [98]. These suggested applications would require nanotubes to be

driven by continuously valued input signals in contrast to sub-threshold binary input

signals. This in turn would necessitate parallel arrays of nanotubes in order to avoid

significant loss of information. Furthermore, individual nanotubes or nanoscaled gates

produced using current fabrication technologies exhibit a variety of internal parameter

variations. They also exhibit many sources of internal noise and a large number of phys-

ical defects. Alternative methods of fabrication, such as those based on self-assembling

materials, fault-tolerant computing using reconfiguration or encoding strategies have

been shown to be either unviable or unattainable in emergent nanotechnologies. It has

been suggested that the use of redundant structures or averaging structures with mid-

high redundancy factors may constitute a more realistic alternative for building reliable

nanoscale gates [114, 171]. A typical cell architecture in such a case [115] consists of a

parallel array of threshold devices each of which can be potentially implemented on a

nanotube or a cluster of nanotubes, followed by an adder and a restitution device which

restores digital levels degraded by system transfer.

The phenomenon of Stochastic resonance (SR) in such threshold systems and static

nonlinearities has been extensively studied in literature [46, 19]. SR is said to occur

when the response of a nonlinear system to a signal can be improved by the addition

of noise [46, 126]. Conventional SR requires the signal to be ‘sub-threshold’ [192, 19].

Coupling many nonlinear devices in the manner suggested in [115] can lead to a variant

of SR, where the sub-threshold requirement need not hold [176, 177, 117]. An immediate

consequence of these results is that arrays of carbon nanotubes considered in [114, 115]

are prime candidates for exhibiting SR. In this chapter, therefore, we study such a system

within the related framework of quantizer-arrays [175]. In such an array, each component

nanotube modeled as a quantizer performs independently noisy binary quantization, after

which the measurements are summed. Henceforth, the word ‘device’ is used to refer to

a single-walled carbon nanotube or an equivalent binary quantizer.

The main purpose of this chapter is to show that, in a manner characteristic of SR,

the Shannon mutual information attainable by an array of identical nanotubes (or an

averaging structure) will increase with increasing noise intensities, attaining a maximum

at a non-zero value for the noise intensity. This result is exceedingly relevant as given

current nano-fabrication processes, only arrays of carbon nanotubes with identical di-

mensions and chemical composition can be realized. Furthermore, such nanotubes have



CHAPTER 4. STOCHASTIC RESONANCE IN CARBON NANOTUBES 85

inherently static electrical conduction properties. From a theoretical point-of-view, it

is also interesting to consider the maximum Shannon theoretic information attainable

by an array of carbon nanotubes. Ideally, the mutual information can be maximized

by optimizing the threshold voltages and conductance gains dynamically, as a function

of ση. It is shown that though the transmitted information is higher, the SR effect

disappears in such a system. The remainder of this chapter is organized as follows:

Section 4.2 contains the necessary background theory; Sections 4.3 and 4.4 contain the

asymptotic formulas and the experimental observations affirmed respectively; and finally,

Section 4.5 concludes the chapter. These results are intended to complement existing

studies of bio-molecules at the nanoscale [183, 197].

4.2 Background theory

4.2.1 Mutual information in the Network

The two cases considered in this chapter are both summing networks of N threshold

devices, each of which operates on the sum of a common input signal x(t) and indepen-

dent, identically distributed (iid) additive noise, ηi(t), i = 1 . . . N . The additive noise at

each device has the same standard deviation ση. Though the noise is assumed to be of

finite variance our analysis can be extended to noise distributions with infinite variance

but finite dispersion. The output of each individual device yi(t), i = 1 . . . N is given by

the Heaviside function with an adjustable threshold,

yi(t) = H(x+ ηi −Θi) =

{
1 x(t) + ηi(t) > Θi

0 otherwise.
(4.2)

The overall response of the network y(t) is found by summing the outputs of each device,

y(t) =
∑N

i=1 yi(t), and is a count of the number of devices in state 1.

If the common input signal, x(t), is a random variable, then the network can be

analyzed using information theory [132]. Specifically, the relative degradation in signal

quality due to random noise and quantization can be measured using mutual informa-

tion [132], which can be written as

I(x, y) =

∫ ∞

−∞
fx(x)

[
N∑

n=0

Py|x(n|x) log2 Py|x(n|x)
]
dx

−
N∑

n=0

Py(n) log2 Py(n). (4.3)
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where Py|x(n|x) and fx(x) represent the conditional probability distribution of the output

given the input and the probability density function (PDF) of the input (assumed to be

known) respectively, and Py(n) represents the output probability mass function and can

be obtained as

Py(n) =

∫ ∞

−∞
Py|x(n|x)fx(x)dx n = 0, .., N. (4.4)

Simplification of the mutual information for the binary network requires an expression

for Py|x(n|x). This can be achieved as follows. Let Pi(x) be the conditional probability

of the i–th device being in state 1,

Pi(x) =

∫ ∞

Θi−x
fη(u)du = 1− Fη(Θi − x), i = 1, .., N, (4.5)

where fη(·) and Fη(·) represent the PDF and the cumulative distribution function (CDF)

governing the noise with standard deviation ση. The unit-variance PDF f(·) and the

unit-variance F (·) are given by:

f(u) = σηfη(σηu) and F (u) = Fη(σηu). (4.6)

When all threshold values (Θi)
N
i=1 are not equal (henceforth referred to as config-

uration (i)), Py|x(n|x) is given by the coefficient of zn in the power series expansion

of
N∏

i=1

[1− Pi(x) + zPi(x)] . (4.7)

In the more restricted case when all threshold levels are equal (henceforth referred to as

case (ii)), Py|x(n|x) is binomial,

Py|x(n|x) =

(
N

n

)
Pn(x) (1− P (x))N−n . (4.8)

4.2.2 Relevance as nanotube models

The pristine (undoped) nanotubes considered in [114, 115] exhibited current-voltage

characteristics that were consistent with p-type transistors. The input-output transfer

function can be described by the following memoryless, threshold-like nonlinearity given

by

I =

{
G(V − VT ) V < VT

0 otherwise.
(4.9)
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where I and V refer to the output drain-to-source current and input gain voltage respec-

tively. They are related by the transconductance gain G and the threshold voltage VT ,

the values of which can be found by regression analysis. Typical values areG = −1 nA/V,

VT = −2 V, 3−5 µm for the length and 2 nm for the diameter of single-walled nanotubes

respectively. Such nanotubes were grown between two electrodes using a combination

of chemical vapor deposition and electron-beam lithography. For more details about the

manufacturing process and modes of operation the interested reader is referred to [98]

and references therein.

It can be shown that the threshold device modeled by Eq.(4.2) and the nanogate

considered in Eq.(4.9) are equivalent. We introduce the following unitless variables:

x = −(V/|VT |+ 1); ηi = −δVi/|VT |; Θi = 0;

and yi = Ii/(|G||VT |), i = 1 . . . N. (4.10)

The index i refers to the ith of N identical nanotubes in a summing array described

in [114, 115]. By construction of such averaging structures, such constituent nanotubes

are subject to a common input voltage V but varying voltage fluctuations δVi and con-

sequently produce varying output currents Ii. The set of unitless variables chosen is

by no means unique, but accords us simplicity in the sections to follow. Substituting

Eq.(4.10) into Eq.(4.9) it can be seen to be equivalent to Eq.(4.2) except for the fol-

lowing difference: they describe continuous and discrete output respectively. However,

the probabilities contained in Eqs.(4.4),(4.5),(4.7) and (4.8) depend only on the input

exceeding a certain value of the threshold, irrespective of the actual value of the device

output. Therefore, the mutual information in Eq.(4.3) for both systems with correspond-

ing threshold values will be equal. The same cannot be said however, of metrics such

as the input-output correlation or bit-error rate. They will therefore, be excluded from

consideration here. It must also be noted that due to the transformation in Eq.(4.10) all

devices now have a common threshold value Θi = 0, i = 1 . . . N .

Furthermore, we consider a random input sequence where the random variable is

continuous and governed by the input PDF fx(.) and the corresponding CDF Fx(.).

Such a model is a generalization of the Bernoulli sequences which can be as input. If

we assume the PDF fx(.) to be a sum of two equally weighted Dirac delta (generalized)

functions:

fx(x) =
1

2
δ(x) +

1

2
δ(x − 1), (4.11)

the input sequence then reduces to a Bernoulli sequence. With these remarks, we can

proceed to the main section of this chapter.
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4.3 Asymptotic analysis

In this section we derive asymptotic expressions for the mutual information of an array

in the limiting cases of high and low noise. We assume throughout that the input to

each quantizer is a random signal x with finite variance σ2
x, and mean µx and iid additive

white noise with PDF fη(·), median 0, and finite variance σ2
η. The key results are:

• In the high noise limit, the mutual information for both configurations are equiv-

alent and decay quadratically;

• in low noise, the mutual information of configuration (i) has a maximum at zero

noise and decreases linearly with increasing noise intensities;

• in the low noise limit the mutual information of configuration (ii) however, increases

in a sub-linear manner from unity. From these limiting values, it is apparent that

the transmitted information should be maximized at a non-zero value for the noise

intensity.

In the following section the asymptotic formulas are stated without derivation. All

derivations and relevant details are relegated to Appendix C.

4.3.1 Asymptotic equivalence in high noise

We show equivalence of the two configurations by deriving the dominant values for the

mutual information for both configurations at high noise levels and showing that they

are the same.

Formula 1 : For a summing network of N asymmetric 2-level quantizers—where the

threshold levels (Θi)
N
i=1 either (i) can assume independent non-identical values, or (ii)

are constrained to be equal—and where the input to each is the sum of a random signal x

and iid additive white noise, the mutual information defined in Eq.(4.3), in the high-noise

limit given by σ2
η � Nσ2

x, has the asymptotic form

I(x, y) =
2N

log 2
f2(0)

σ2
x

σ2
η

+O(1/σ3
η), (4.12)

where f(·) represents the unit-variance PDF governing noise, given by f(u) = σηfη(σηu).

An illustration of such high-noise behavior for a few widely-used PDFs is given in

Fig. (4.3.1).

The value of the mutual information given by Eq.(4.12) depends explicitly only on

the number of devices N in the system. The fluctuations due to variations in nan-
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Figure 4.1: Asymptotic behavior of mutual information of a summing network of carbon
nanotubes in either configurations (i) or (ii) under high noise (with number of devices
N = 8 and Gaussian input noise of intensity σ2

x = 1).
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otube parameters such as conductance, gate voltage and hysteresis will therefore be

sub-dominant to this term in the high noise limit. Also, for PDFs with infinite variance

but finite dispersion the formula in Eq.(4.12) must be modified to read:

I(x, y) =
2N

log 2
f2(0)

σ2
x

γ2
η

+O
(

1

γ3
η

)
, (4.13)

where f(·) represents the unit-dispersion PDF governing noise, given by f(u) = γηfη(γηu).

4.3.2 Limiting behavior of configuration (i) in low noise

In this section we consider a parallel array of nanotubes with threshold levels {Θi}Ni=1

that can assume independent non-identical values. When ση = 0 the set of thresholds

attain distinct (non-degenerate) values which can be arranged in the following strictly

increasing order Θ1 < . . .Θi < Θi+1 . . . < ΘN . Therefore the conditional probabilities

in Eq.(4.5) are given by:

Pi(x) = H (x−Θi) . (4.14)

It then follows that

Py/x(0/x) = 1−H (x−Θ1) ,

Py/x(i/x) = H (x−Θi)−H (x−Θi+1) ,

Py/x(N/x) = H (x−ΘN ) . (4.15)

Consequently, the unconditional probabilities defined in Eq.(4.4) simplify to:

Py(0) =

∫ Θ1

−∞
fx(x)dx =

1

N + 1
,

Py(i) =

∫ Θi+1

Θi

fx(x)dx =
1

N + 1
,

Py(N) =

∫ ∞

ΘN

fx(x)dx =
1

N + 1
. (4.16)

It can be shown that the mutual information defined in Eq.(4.3) attains a maximum value

given by I(x, y) = log2(N + 1) when the unconditional probabilities defined in Eq.(4.4)

attain a common value of Py(n) = 1/(N + 1) for all values of n = 1 . . . N . Our basic

approach will be to compute the corrections to the above unperturbed value for small

but non-zero noise intensities. In order to do this, a few preliminaries are necessary. It
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can be shown (Ineqs.(C.3,C.4) in Appendix C) that the probabilities Pi(x) and 1−Pi(x)

can be upper bounded as follows:

Pi(x) ≤ f

(
Θi − x
ση

)(
ση

Θi − x

)
for x > Θi,

1− Pi(x) ≤ f

(
x−Θi

ση

)(
ση

x−Θi

)
for x < Θi,

i = 1, .., N. (4.17)

The upper bounds of Pi(x) and 1 − Pi(x) on the right-hand sides of the Ineqs.(4.17)

decay rapidly as ση → 0. In the immediate neighborhood of a certain threshold value

Θj, it then follows that Pj(x) ≈ 1 when j < i; Pj(x) ≈ 0 when j > i; and that

N∏

j=1

[1− Pj(x) + zPj(x)] ≈ zi−1 [1− Pi(x) + zPi(x)] . (4.18)

The coefficient of zn in the power series Eq.(4.7) or Eq.(4.18) give us Py|x(n|x). Conse-

quently, in the neighborhood of Θi, we have

Py/x(i− 1/x) = 1− Pi(x) = F

(
Θi − x
ση

)
,

Py/x(i/x) = Pi(x) = 1− F
(

Θi − x
ση

)
. (4.19)

Alternatively, they can be rearranged to get the following sequence of relations:

Py/x(0/x) = F

(
Θ1 − x
ση

)
x ∼ Θ1,

Py/x(i/x) =





1− F
(

Θi−x
ση

)
∀x ∼ Θi

F
(

Θi+1−x
ση

)
∀x ∼ Θi+1

Py/x(N/x) = 1− F
(

ΘN − x
ση

)
x ∼ ΘN . (4.20)

Now, we will find the implications of these relations on the unconditional probabilities

Py(n). Therefore, the values of quantities such as Py(n), represented as integrals contain-

ing these terms, as in Eq.(4.4), are largely determined in the immediate neighborhood

of Θi. This property can be used to greatly simplify the expressions for the mutual

information as ση → 0 as is now shown. Now we can proceed to the main formula of
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this section.

Formula 2 : For a summing network of N carbon nanotubes with threshold levels

(Θi)
N
i=1, i = 1 . . . N that can assume independent non-identical values, the mutual in-

formation defined in Eq.(4.3), in the limit as ση → 0, has the following asymptotic

form

I(x, y) = log2(N + 1) + 2(B1B2)ση +O(σ2
η), (4.21)

where B1 =
∑N

i=1 fx(Θi) and B2 =
∫∞
−∞ F (u) log2 F (u)du.

4.3.3 Limiting behavior of configuration (ii) in low noise

In this section we will find the limiting value of the mutual information I(x, y) of a parallel

array of nanotubes with equal threshold levels as ση → 0. We proceed as follows: the

empirical values for the noise-free case are taken as “unperturbed values”; the correction

induced due to small but non-zero ση are then found. This correction is found to be

sub-linear.

When ση = 0, it is observed Θ = 0. The probability of any device being on defined

in Eq.(4.5) is given by the Heaviside function:

Pi(x) = H (x) i = 1, 2 . . . N.. (4.22)

For low noise levels (ση nonzero but small) the following occurs: for positive x the

probability of a single device being on decreases by a modest amount say ε(x); for

negative x the probability of a single device being off increases by a similarly modest

amount, also denoted here by ε(x). This can be encapsulated into the following definition:

ε(x) =




P1/x = 1− F

(
Θ−x
ση

)
∀x < 0

1− P1/x = F
(

Θ−x
ση

)
∀x ≥ 0

(4.23)

From the observed value Θ = 0 and Eq.(C.2) it then follows:

ε(x) =




F
(

x
ση

)
∀x < 0

1− F
(

x
ση

)
∀x ≥ 0

(4.24)

The above expressions and Eq.(C.2) make evident that ε(x) is symmetric. The average
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of ε(x) given by Eq.(4.23) can then be defined by

ε =

∫ ∞

−∞
fx(x)ε(x)dx = 2

∫ ∞

0
fx(x) [1− F (x/ση)] dx. (4.25)

The second expression is derived using the symmetry of ε(x) and Eq.(4.24). The proba-

bilities in Eq.(4.8) on being linearized in terms of ε(x) can be expressed as:

For x < 0:

{
P (0/x) = 1−Nε(x),
P (1/x) = Nε(x).

(4.26)

For x > 0:

{
P (N − 1/x) = Nε(x),

P (N/x) = 1−Nε(x).
(4.27)

All other probabilities are of the order ε2(x) and are therefore sub-dominant to these

values. Substituting Eqs.(4.26) and (4.27) into Eq.(4.4) yields:

Py(0) = Py(N) =
1

2
[1−Nε] ,

Py(1) = Py(N − 1) =
1

2
Nε. (4.28)

In deriving these relations we have used (i) the symmetry of fx(x) which implies
∫ 0
−∞ fx(x)dx =

∫∞
0 fx(x)dx = 1/2 and (ii) the additional symmetry of ε(x) which implies

∫ 0
−∞ fx(x)ε(x)dx =

∫∞
0 fx(x)ε(x)dx = ε/2. We are now in a position to derive the main result of this section.

Formula 3: For a summing network of N nanotubes with a common voltage threshold

Θ, the mutual information defined in Eq.(4.3), in the limit as ση → 0, has the following

asymptotic form:

I = 1 +N [(I2 − I1 log2 I1) ση − I1ση log2 ση] +O(σ2
η), (4.29)

where I1 and I2 are constants related to integrals of the unit-variance complemen-

tary distribution function and are given by: I1 = 2fx(0) [
∫∞
0 (1− F (u)) du] and I2 =

2fx(0) [
∫∞
0 (1− F (u)) log2 (1− F (u)) du]. Illustrations of such low-noise behavior for a

few widely-used PDFs are given in Fig. (4.3.3).

A few other observations can also be made. For low ση the dominant component of

Eq. (4.29) is given by:

I ∼ 1−NI1ση log2 ση. (4.30)

Since I1 is positive definite, it follows that I(x, y) should increase with ση. Such non-

monotonic variation with noise intensity indicates the existence of a supra-threshold
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Figure 4.2: Asymptotic behavior of mutual information of a summing network of carbon
nanotubes in configuration (ii) under low noise (with number of devices N = 8 and
Gaussian input noise of intensity σ2

x = 1).
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stochastic resonant (SSR) peak for this configuration. As before, for PDFs with infinite

variance but finite dispersion the formula in Eq. (4.29) must be modified to:

I = 1 +N [(I2 − I1 log2 I1) γη − I1γη log2 γη] +O(γ2
η). (4.31)

We conclude this section with the following remark: due to the dimensionless quantities

introduced in Eq.(4.10), the formulas derived in this section given in Eqs.(4.12,4.21) and

(4.29) can be seen to be similarly unitless and therefore dimensionally consistent.

4.4 Continuity with experiments

The importance of the preceding calculations lies in the fact that they demonstrate

theoretically that the stochastic resonance (SR) phenomenon can be observed in arrays of

carbon nanotubes [114, 115]. For low ση it follows from Eq.(4.30) the mutual information

increases with the rate I ′ which can be found from differentiating Eq.(4.30). Since for

small arguments the natural logarithm diverges to −∞ [152], it constitutes the dominant

term in the result and gives us: I ′ ∼ −NI1
log 2 log ση. For low ση being considered, this

term is strictly positive. For high ση we know from Eq.(4.12) the mutual information

decreases with the rate I ′ = −4N
log 2 f

2(0)σ2
x

σ3
η
. For high ση being considered, this term is

strictly negative. It follows [152] that the mutual information defined in Eq.(4.3) must

have a stationary point, where I ′ = 0 for the intermediate range of noise intensities

(alternatively, the continuous function I ′ must have a zero-crossing for intermediate

values of ση). By virtue of the preceding arguments for low and high ση, such a stationary

point must be a local maximum corresponding to the SR peak. An analytical estimate

of the location of the SR peak however, seems far from straight-forward.

It has also been demonstrated that SR can occur for finite dispersion but infinite

variance noise distributions. As earlier remarks show, such PDFs are amenable to our

treatment. An example is the Cauchy distribution, which has a PDF given by

fγη(x) =
1

π

γη

γ2
η + x2

. (4.32)

The importance of the Cauchy PDF lies in the fact that it can be used to test the

robustness of the SR effect in nanotubes to infinite variance noise.

Nanotube FET technology produces detectors that typically exhibit hysteresis [98].

Such a detector is not ideal as its conductance, gate voltage and hysteresis change over

time. It has been shown that in the high noise limit such variations will have negligi-

ble effect on the mutual information values for an array of nanodevices. The effect of
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variations in a parameter can be taken into account more rigorously by invoking the

central limit theorem [132] as in [114, 115]. Analytical expressions for the mean and

variance of important nanotube parameters with variations in these properties can be

found in [114, 115].

4.5 Implications for nanoelectronics and conclusions

This chapter gives theoretical arguments for the possible observation of stochastic res-

onance (SR) in carbon nanotubes. It has been repeatedly observed [114, 171] that cell

architectures based on the averaging of multiple nanodevices alleviate the three main

problems of the nanodevices at the gate level: high defect ratios, large parameter vari-

ability and reduced noise margins. Such architectures make possible the construction

of reliable mid/large nanocircuits. Such averaging structures have low implementation

complexity which further reduces fabrication defects. Such averaging structures are

studied in two distinct configurations: (i) when all constituent nanotubes have dynamic,

adjustable conductance parameters; and (ii) when they have equal, static parameters.

Configuration (ii) is realizable using current technology and can demonstrate the SR

phenomenon. Configuration (i) is neither currently realizable nor can demonstrate the

SR phenomenon, but provides an upper bound on the transmitted information attain-

able with such structures. Both configurations are equivalent at high noise. In addition,

there seems to be a growing realization that quantum coherence plays an important role

in mesoscopic systems, even at temperatures where intrinsic decoherence was formerly

thought to be dominant [93]. The results presented in this chapter, being based on

classical information theory, can provide a benchmark to gauge or constrain the effects

of quantum coherence on such nano-architectures. Further analytical results, such as

the effects of empirical models of inter-device coupling, parasitic capacitance and device

hysteresis will be published in a forthcoming work. The focus will be on real-time, in-

dustrial nanocircuits based on SR, as has been done in nanomechanical structures [7]

and neuronal arrays [69]. Example applications to be cited include the development of

low-power flat-panel displays; electron microscope sources, fuel cells and finally “ultra-

capacitors” [98]. It must be stressed that such SR-based nanodevices are made possible

due to the enhanced transmission accorded by SR and the unique thermal and mechan-

ical properties of carbon nanotubes. It is also stressed that these results are of relevance

to existing nano-scale studies of filaments and molecules [183, 197].
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Chapter 5

Stochastic resonance in myoglobin

5.1 Introduction

Myoglobin is one of the most well-characterized functional proteins, its function being to

store oxygen supplied by blood until its release for some form of metabolic activity. In

this capacity it is crucial for supporting intense levels of aerobic activity and for biological

sustenance during hypoxic (low oxygen) conditions. In addition to this widely accepted

role in cellular oxygen transport and oxygen buffering, recent experiments have revealed

that myoglobin scavenges [42] and produces nitric oxide (NO) [29] during oxygenated and

deoxygenated conditions respectively. An excess of nitric oxide reduces cardiac muscle

contractility and decreases the heart rate. By reacting rapidly with and thereby removing

excess nitric oxide, oxygenated myoglobin protects cellular respiration [42]. However,

nitric oxide also suppresses the production of damaging reactive oxygen species (ROS)

[29]. Therefore, by generating nitric oxide from circulating nitrite in cardiac muscle

cells under hypoxic stress, deoxygenated myoglobin acts as a mediator in limiting tissue

damage due to restricted blood flow [29].

The dynamics of myoglobin have been variously studied using phonon-assisted Moss-

bauer scattering [2], standard X-ray crystallography [128], Mossbauer absorption spec-

troscopy [134, 135, 129], time-resolved spectroscopy [131] and inelastic scattering of syn-

chrotron radiation [133]. Interest in the dynamics of such functional proteins, stems from

the fact that their biological functioning is influenced by the structure fluctuations and

conformational changes that are induced by binding to ligands and substrates. In the

case of myoglobin, small diatomic ligands such as Oxygen which bind to the iron atom

in the heme group enter and leave via the Histidine gate (His-64) [168]. The molecular

oxygen binds at the active site of the protein and one of the six co-ordinations of the
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iron atom. The process of binding and releasing of the ligand is reversible [5]. It is now

widely accepted that proteins exist in numerous conformations which provide a reservoir

of entropy essential for its functioning [41, 45]. Large scale protein motions such as the

exit of a ligand from the protein interior follow the dielectric fluctuations in the bulk

solvent, whereas fast fluctuations are controlled by fluctuations in the hydration shell.

The former and latter are respectively termed α- and β- fluctuations in analogy to such

relaxations in glasses [41].

Experiments using flash photolysis indicate an effective potential with a single reac-

tion co-ordinate [131]. A double well potential has been used to explain elastic incoher-

ent neutron scattering data on myoglobin [31]. Other experiments have used inelastic

Rayleigh scattering of Mossbauer radiation to determine the temperature dependence of

the mean-square displacement (MSD), denoted by < x2 >, in myoglobin [133]. Some ex-

perimental results for myoglobin were analyzed using non-Gaussian statistical methods

[187, 188]. In the low-temperature (below 180K) range the temperature dependence is

observed to be linear. In the high-temperature (above 180K) range the slope of the curve

increases dramatically, by more than a factor of ten in one case. The low-temperature

behavior was attributed to harmonic motions of the protein and the high-temperature

behavior was attributed to diffusive motion limited by bonding forces within the protein

[133]. An explanation for this phenomenon involving thermal fluctuations in a system

with multiple potential minima corresponding to the protein’s stable conformations was

provided in [189]. These results were in agreement with the results of conformational

kinetics [131]; more intensive molecular dynamics simulations performed for myoglobin

[174, 173]; and experimental measurements of the iron atom’s positional fluctuations

measured by Mossbauer absorption spectroscopy [134, 135, 129].

Though the results of [41, 45] raise doubts about the validity of such models, such

multi-well potentials offer a template for the study of stochastic resonance (SR) [46,

64, 94, 122]. In this chapter, we explore some implications of Kramers’ rate theory

[64, 94] for such a multi-well potential, including the possibility of stochastic resonance

[46, 64, 94, 122]. Stochastic resonance (SR) refers to the phenomenon whereby the

addition of random noise enhances the propagation of signals within the system. This

phenomenon has been observed in numerous biological detection systems such as sensory

neurons [104], mechano-receptor cells of crayfish [32], cercal systems of crickets [100]

and passive receptors of electrical signals in paddlefish (Polyodon spathula). At the

sub-cellular level SR has been observed experimentally in an artificial system of ion

channels [11] and theoretically in a single Shaker potassium channel [55]. An important

biomedical application of SR concerns the use of electrical and mechanical noise to detect
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sub-threshold mechanical cutaneous stimuli [28]. For other details and references on the

topic the interested reader is referred to [63]. The remainder of this chapter is organized

as follows: Section 5.2 provides necessary background; Section 5.3 presents the main

results concerning vibrational statistics and harmonic response; and finally Section 5.4

concludes the chapter.

5.2 Background theory

The necessary background consists of the asymmetric bimodal potential postulated ear-

lier for myoglobin [189]; and a few relevant quantities which follow from Kramers’ rate

theory applied to such an asymmetric potential [77, 194]. They are now briefly reviewed.

5.2.1 An effective potential for the problem
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Figure 5.1: The effective bimodal potential of myoglobin as given in Eq.(5.1).

The notion of a potential with multiple minima has often been invoked for myoglobin

[31, 187, 188, 189]. A self-consistent model [189] postulated an effective potential of the

form:

V (x) = ax4 + bx3 + cx2 + V0, (5.1)

with the coefficients

a = 1.52 × 10−20J/A4, b = 4.33 × 10−21J/A3,

c = −5.29 × 10−20J/A2. (5.2)

A plot of the potential given by Eq.(5.1) has been illustrated in Fig.(5.1). The motivation
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for a model of this form can be found in [131]. The positions and the depths of the

potential wells are denoted by x1,2 and V1,2, where S1 and S2 refer to the deep and

shallow wells respectively. Their numerical values are found to be x1 = −1.4302Å, x2 =

1.2166Å, V1 = 34.5kJ/mol and V2 = 22.4kJ/mol [189].

The Langevin equation for the damped motion of a particle of mass m in the effective

potential is given by

mẍ+ γẋ = F (x) + ξ(t), (5.3)

where x denotes the reaction co-ordinate of the effective potential or the amplitude of the

“principal mode”; m denotes the mass; γ denotes the viscosity; F (x) = −∂V (x)
∂x denotes

the deterministic force due to the effective potential; ξ(t) denotes the random force. The

fluctuating random force ξ(t) denotes Gaussian white noise with zero mean, and obeys

the fluctuation-dissipation theorem given by:

< ξ(t) > = 0,

< ξ(t)ξ(t′) > = Eξδ(t− t′), (5.4)

where Eξ = 2γkBT . The probabilities of inter-well transitions between S1 and S2, given

by Kramers’ rate theory [94, 64] in the overdamped limit, are

p12 = W1 =

√
V ′′(x1)|V ′′(0)|

2πγ
e−V1/kBT ,

p21 = W2 =

√
V ′′(x2)|V ′′(0)|

2πγ
e−V2/kBT . (5.5)

The numerical values were found from Eq.(5.1) to be:

W1 =
2.4828

γ
× 10−20J/A2e−V1/kBT ,

W2 =
2.2906

γ
× 10−20J/A2e−V2/kBT . (5.6)

We can now outline quantitative estimates for the mean-squared displacement (MSD)

and the signal-to-noise ratio (SNR) which follow from Kramers’ theory [94, 64].

5.2.2 Preliminary results from Kramers’ theory

When considering inter-well transitions the details of intra-well dynamics can be conve-

niently ignored. The master equation governing the change of probabilities of states S1
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and S2 [122] is given by

π̇1 = W2π2 −W1π1,

π̇2 = W1π1 −W2π2. (5.7)

From the solution of Eq.(5.7) given by [122] it follows that the long-time limiting values

of the probabilities and the inter-well mean-squared displacement are given by

[
π1

π2

]
=

1

W1 +W2

[
W2

W1

]
, (5.8)

MSDinter = < x2(t)|x0, t0 > − (< x(t)|x0, t0 >)2 ,

= (x1 − x2)
2 W1W2

(W1 +W2)2
. (5.9)
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Figure 5.2: The inter-well mean squared displacement (MSD) and total mean squared
displacement (MSD) in myoglobin as given by Kramers’ rate theory and the effective
bimodal potential as given in Eq.(5.1).

A plot of the inter-well MSD given by Eq.(5.9) has been illustrated in Fig.(5.2). A

comparison with the experimental data shown in [189] reveals that though this approach

correctly predicts the increase in MSD observed in the temperature range 180 − 300K,

it is inadequate in the low-temperature regime. The low-temperature spectral data

are dominated by intra-well motions. Therefore, a more complete description requires

analysis of intra-well motion as will be done later.

We now investigate the response of such an asymmetric potential to weak, periodic
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forcing. Such forcing terms can originate in biologically transduced vibrations or from

the coupling of the myoglobin globule to glass-forming solvent fluctuations [45, 41, 108].

The modified effective potential then reads

V (x) = ax4 + bx3 + cx2 + V0 +Ax cos(ωst). (5.10)

If the amplitude A is assumed to be sub-dominant to the depth of the potential wells V1

and V2 such that A� V1, V2, the modified time-dependent interwell transition probabil-

ities denoted by W1(t) and W2(t) are found to be:

W1(t) = W1

[
1− Ax1

kBT
cos(ωst)

]
,

W2(t) = W2

[
1− Ax2

kBT
cos(ωst)

]
. (5.11)

For the asymmetric bistable potential well the auto-correlation function is given by

[77, 194] to be

C(τ)inter = R0 +R1e
−µ|τ | +

A2R2

2

(
ejωs|τ | + ejωs|τ |

)
, (5.12)

where µ, R0, R1 amd R2 are given by [77, 194];

µ = W1 +W2,

R0 =

(
x2W1 + x1W2

W1 +W2

)2

;R1 =
(x1 − x2)

2W1W2

(W1 +W2)2
;

R2 =
(x1 − x2)

4(W1W2)
2

2(kBT )2(W1 +W2)2((W1 +W2)2 + ω2)
. (5.13)

The power spectral density for positive frequencies is given by [77, 194]:

< S(ω) >inter = R1
2µ

µ2 + ω2
+ πA2R2δ(ω − ωs). (5.14)

The SNR, defined as the ratio of the strength of the output signal and the output

broadband noise evaluated at the signal frequency, denoted by R can be found from [77]

to be:

R =
πA2(x1 − x2)

2W1W2

4(kBT )2(W1 +W2)
. (5.15)

For solvent-driven fluctuations the surface tension coefficient for a droplet of molecular
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Figure 5.3: The signal-to-noise-ratio (SNR) in a myoglobin globule due to (i) molecular
vibrational modes or (ii) fluctuations in the hydration shell.

size aM [108] is given by

σ0 =
3

4

kBT

a2
M

ln

(
a2

M

d2
Lπe

)
. (5.16)

Here dL represents the Lindemann length, which characterizes the motional freedom in

the solvent [108]. Approximating the molecule as a sphere of radius aM (of surface area

4πa2
M ) and combining Eqs.(5.4) and (5.16) we get

A2 =
6πγkBT

τ0
ln

(
a2

M

d2
Lπe

)
. (5.17)

For α fluctuations of the solvent shell which couple to the fluctuations of myoglobin

[41, 45], the rate constant is given by the Vogel-Tammann-Fulcher relation to be:

(1/τ0) = f1 exp{−f2/(T − TG)}, (5.18)

where f1 = 8.74 × 1012s−1, f2 = 2670K and TG = 105K, as experimentally determined

[170]. The theoretical basis for the Vogel-Tammann-Fulcher relation can be found from

[50]. In accordance with [108] we have taken aM/dL ∼ 10. Relevant values of γ can be

found from [71].

Protein-ligand interactions at large distances are described by the sum of the Lennard-
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Jones potential and the Coulomb potential [191]:

V (r) = VLJ(r) + VC(r). (5.19)

The Lennard-Jones potential is an empirical relation used to describe the effects of

Hydrogen bonds between molecules, and for myoglobin [172] is given by

VLJ(r) = 4U
(
(σ/r)12 − (σ/r)6

)
, (5.20)

where σ = 3.165Å and U = −41.8kJ/mol. The Coulomb potential for myoglobin and

an approaching ligand interacting through their permanent dipole moments along the

equatorial plane is given by

VC(r) =
kep1p2

ε(r)r3
. (5.21)

ke represents the Coulomb constant given by ke = 8.789× 109Nm2/C2. The dipole mo-

ments of myoglobin, Carbon monoxide (CO) and Nitric Oxide (NO) are 172 D, 0.112 D

amd 0.07 D respectively. The distance dependent permittivity ε(r) is empirically given

by

ε(r) = ε1 +
ε2

1 + ε3 exp(−λr) , (5.22)

where ε1 = −8.55, ε2 = 69.95, ε3 = 7.78 and λ = 0.2539/Å. For our sample calculations

we have taken A = −∂V
∂r at r = 4Å. The effects of temperature dependence of dipole

moments and the permittivity were found to be negligible. Though a distinct peak is

absent, these results show that Kramers’ theory predicts that the response of a myoglobin

globule to ambient, biomolecular forces are enhanced by increasing temperatures. The

SNR due to Kramers’ theory given by Eq.(5.15) is independent of the driving frequency.

This is no longer the case when intra-well motion is considered, as will be shown later.

5.3 Effect of intra-well motion

In this section we will compute the mean-squared displacement (MSD) and the signal-to-

noise ratio (SNR) due to intra-well motion of myoglobin atoms in a multi-well potential.

The canonical approach requires the numerical solution of the Langevin equation [122].

However, in this chapter we follow an alternative approach. A massive particle trapped

in a multi-well potential can execute two distinct forms of motion: transitions from
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one well to another (termed inter-well transitions); and vibrations within a well (termed

intra-well motion [122]). Observables such as the MSD and SNR due to inter-well motion

can be found from Kramers’ theory as given by Eqs.(5.9) and (5.15). However, the effect

of intra-well motion on these quantities remains to be found. This is now done.

5.3.1 MSD due to intra-well motion

For motion in the neighborhood of the meta-stable state xn, n = 1, 2 we can use the

harmonic approximation F (x) = −mω2
n(x − xn) in Eq.(5.3), in the manner of [75],

thereby getting

mẍ+ γẋ−mω2
nx = ξ(t). (5.23)

The oscillation frequencies for the two meta-stable states are given by ω2
n = V ′′(xn)/m, n =

1, 2. Taking the Fourier transform we get

X(ω) =
ξ(ω)

m(ω2 − ω2
n) + iγω

. (5.24)

The power spectral density is given by

< X∗(ω′)X(ω) >=

< ξ∗(ω′)ξ(ω) >

(m(ω′2 − ω2
n)− iγω′)(m(ω2 − ω2

n) + iγω)
. (5.25)

From Eq.(5.4) it follows that

< ξ(ω) > = 0,

< ξ∗(ω′)ξ(ω) > = 2πEξδ(ω − ω′). (5.26)

Therefore,

< X∗(ω′)X(ω) >=
2πEξδ(ω − ω′)

(m(ω2 − ω2
n))2 + (γω)2

. (5.27)

The auto-correlation function is then given by

< x(t)x(t′) > =
Eξ

2π

∫ ∞

−∞

eiω(t′−t)dω

[(m(ω2 − ω2
n))2 + (γω)2]

. (5.28)
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It follows that the MSD in the nth well, characterized by frequency ωn, is given by

< x2(t) >n =
Eξ

2π

∫ ∞

−∞

dω

[(m(ω2 − ω2
n))2 + (γω)2]

=
Eξ

2mγω2
n

=
kBT

mω2
n

. (5.29)

The intra-well MSD is given by the sum of < x2(t) >1 and < x2(t) >2 weighted by the

probabilities of the two states:

MSDintra = π1 < x2(t) >1 +π2 < x2(t) >2

=

[
W2

(W1 +W2)

kBT

mω2
1

+
W1

(W1 +W2)

kBT

mω2
2

]
. (5.30)

Therefore, combining Eqs.(5.9) and (5.30), we get:

MSD = (x1 − x2)
2 W1W2

(W1 +W2)2
+

[
W2

(W1 +W2)

kBT

mω2
1

+
W1

(W1 +W2)

kBT

mω2
2

]
. (5.31)

A plot of the total MSD given by Eq.(5.31) has been illustrated in Fig.(5.2). It can

be observed that it is in good agreement with experimental data over all temperature

ranges.

5.3.2 SNR due to intra-well motion

When a particle in the neighborhood of the meta-stable state xn, n = 1, 2 is subject to

a linearized potential and a weak harmonic force, the Langevin equation is given by:

mẍ+ γẋ+mω2
0x = ξ(t) +A cosωst. (5.32)

Taking the Fourier transform of Eq.(5.32) we get

X(ω) =
ξ(ω) + πA (δ(ω − ωs) + δ(ω + ωs))

(m(ω2
n − ω2)− iωγ) . (5.33)

The power spectral density is then given by

< X∗(ω′)X(ω) >=
2πEξδ(ω − ω′)

(m(ω2 − ω2
n))2 + (γω)2
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+(πA)2
(δ(ω − ωs) + δ(ω + ωs))(δ(ω

′ − ωs) + δ(ω′ + ωs))

(m(ω2
n − ω2)− iωγ)(m(ω2

n − ω′2) + iω′γ)
. (5.34)

For positive frequencies, the PSD for a single well is then given by

S(ω) =
Eξ

[m2(ω2
n − ω2)2 + (ωγ)2]

+
πA2

2

[
δ(ω − ωs)

m2(ω2
n − ω2)2 + (ωγ)2

]
. (5.35)

It follows that for two potential wells of different depths the PSD due to intra-well motion

is given by:

< S(ω) >intra= Eξ

[
π1

m2(ω2
1 − ω2)2 + (ωγ)2

+
π2

m2(ω2
2 − ω2)2 + (ωγ)2

]

+
πA2

2

[
π1

m2(ω2
1 − ω2)2 + (ωγ)2

+
π2

m2(ω2
2 − ω2)2 + (ωγ)2

]
δ(ω − ωs). (5.36)

Therefore, the combined PSD due to inter-well motion and intra-well motion, is given

by

< S(Ω) >=< S(Ω) >inter + < S(Ω) >intra

=

[
R1

2µ

µ2 + ω2
+ Eξ

{
π1

m2(ω2
1 − ω2)2 + (ωγ)2

+
π2

m2(ω2
2 − ω2)2 + (ωγ)2

}]

+A2
[
πR2 +

π

2

{
π1

m2(ω2
1 − ω2)2 + (ωγ)2

+
π2

m2(ω2
2 − ω2)2 + (ωγ)2

}]
δ(ω − ωs).

(5.37)

Therefore, the SNR is then given by:

R =
πA2

4mkBT

[
β2
(

W1W2

W1+W2

)2
+ (g1 + g2)

]

[
β
(

W1W2

W1+W2

)
+ ωd(g1 + g2)

] , (5.38)

where A2 can be found separately for solvent α- fluctuations or for approaching ligands

and

β =
m(x1 − x2)

2

kBT
, ωd = γ/m,

gi =
πi(µ

2 + ω2)

(ω2
i − ω2)2 + (ωωd)2

, i = 1, 2. (5.39)

It is observed that for low and high frequencies respectively, the SNR is a monotonically

decreasing function or a monotonically increasing function. For intermediate frequencies,
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the SNR shows a transition from decreasing to increasing behavior.

5.4 Conclusions

This chapter considers the possibility of stochastic resonance (SR) in an effective po-

tential model for myoglobin. If the potential is approximated by an asymmetric bi-

modal well, it is shown in some frequency regimes, that the Signal-to-Noise Ratio (SNR)

increases with temperature. This effect persists even at physiological temperatures of

∼ 300K. This has the extremely interesting interpretation that the response of myoglobin

to weak, harmonic forces arising from solvent fluctuations or approaching (NO/CO) lig-

ands, modelled by the Vogel-Tammann-Fulcher relations or the Lennard-Jones Potential,

is enhanced by ambient thermal fluctuations. Alternatively, this chapter gives a theoreti-

cal argument for the vibrational statistics of myoglobin based on Kramers’ theory and the

Langevin equation. The temperature dependence of these statistics has drawn numerous

computational and theoretical efforts, variously based on conformational kinetics [131];

the harmonic approximation [133]; molecular dynamics [174, 173]; and non-Gaussian

statistics [187, 188, 189]. It has been repeatedly argued in analyses of these fluctuation

statistics [2, 128, 129, 131, 133, 134, 135, 187, 188, 189] that myoglobin exhibits an ef-

fective potential with multiple minima corresponding to its stable conformations. We

use a simple, yet self-consistent model developed in [189] where the potential is modeled

by an asymmetric bistable potential well in one reaction co-ordinate. The transitions

between two wells, often referred to as inter-well transitions [122] can then be described

by Kramers’ rate theory. They account for the anomalous, almost ten-fold increase in the

mean-squared-displacement of myoglobin in the high-temperature range 180−300K. The

fluctuations in the vicinity of each well, referred to as intra-well fluctuations, can then be

described by the Langevin equation using the harmonic approximation. In this descrip-

tion, they are shown to be dominant in the low-temperature regime. The sum of these

two terms gives an estimate for the mean-squared-displacement of myoglobin. These re-

sults are seen to be in excellent agreement with experimental data. It is noteworthy that

the measurements in [31] analyzed in this chapter, are intrinsically time-dependent due

to the lifetime of the Mossbauer excited state of approximately 140ns. This raises the

possibility that kinetic effects resulting from a time-dependent rate distribution should

be considered. This will be done in a forthcoming work. The biological significance of

these results is as follows: thermal vibrations, mediated by dielectric fluctuations, induce

fluctuations in the position of the iron atom in myoglobin (corresponding to the reaction

coordinate of the system). Such fluctuations are linked to the binding and unbinding
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of ligands, and therefore to myoglobin’s capacity to serve as an oxygen buffer and as a

regulator of the concentration of nitric oxide in the bloodstream. Therefore, stochastic

resonance exemplifies a means by which the effect of temperature can be evident of these

crucial physiological functions of myoglobin.
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Chapter 6

Stochastic resonance in tubulin

dimers

6.1 Introduction

The electrical properties, signaling and information processing capabilities of micro-

tubules (MTs) have been the subject of increasing interest in computational neuroscience

[15, 182]. This stems from the fact that MTs play an essential role in transport and neu-

ronal plasticity through their regulation of cell shape [33, 149]. It has been shown that

MTs modeled as dipole lattices with some overall polarization [15] may assume ferroelec-

tric phase long-range order, optimal for signaling and assembly/ disassembly [182]. Local

conformation changes in tubulin dimers could lead to the formation of solitonic excita-

tions detectable through Mossbauer spectroscopy [165]. Such a ferroelectric phase can

be shown to be formally equivalent to a liquid crystal model, which can then be used to

study the stability of such excitations [166]. Implications of this model for the dynamic

instability of MTs and transport properties have been studied in [167]. A biophysical

mechanism for the effect of MT on neuronal function given in [143] goes thus: (i) elec-

trical signals from a presynaptic neuron, which arrive at a postsynaptic neuron within

the dendritic spine, trigger ionic waves to travel along actin filaments to the connected

MT network; (ii) the MT network then evolves these states via protein conformational

changes, or changes in the electromagnetic signal; (iii) these signals or conformational

changes are propagated to remote voltage sensitive ion channels where they regulate

temporal gating states, thereby regulating membrane conductive properties. In addition

to such classical approaches, the quantum information processing capabilities of micro-

tubules have also been investigated [62, 17], though the existence of quantum behavior is
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yet to fully reconciled with persistent decoherence effects at physiological temperatures

[180]. Such properties can be related to quantum information processing in neurons im-

plicated in the phenomena of consciousness [143, 62, 138]. These results gain additional

focus because in conventionally accepted models of the brain each neuron, modelled by

the Hodgkin-Huxley relations [70, 68], passively integrates synaptic signals received by

its dendrites generating an action potential spike if the total membrane potential ex-

ceeds a certain threshold. However, such a model cannot account for the complexity of

dendritic integration, or the inter-spike variability of neuron thresholds amongst other

features [127]. This suggests a need for an alternative, more viable, model based on

active integration, in a sub-cellular structure such as the neuronal cytoskeleton [62, 138].

Much indirect evidence also suggests that MTs are computationally relevant to cogni-

tive processes [60, 53, 144] and in references in [17]. Certain other theoretical results of

interest include: the dynamical instability of individual MTs leading to assembly and

disassembly [16]; and treatment of nucleation and oscillations in an MT plasma using

the Landau-Ginzburg formalism [169].

MTs are tubular polymers consisting of long fibers of the protein tubulin, arranged

in a cylindrical manner [184] as shown in Fig.(6.1.B). Each tubulin molecule is a hetero-

dimer consisting of α- tubulin and β-tubulin monomers (Fig.(6.1.A)). The α− and β−
monomers are homologous with an average weight of 50−55kDa and consisting of approx-

imately 450 amino-acids [185]. On average, each tubulin molecule, or αβ-heterodimer,

has dimensions of 46× 80× 65Å and is polar. Based on the crystal structure of tubulin,

it has been shown to have an electric dipole moment of 1740 Debye, a refractive index

of 2.90, a high-frequency dielectric constant of 8.41 and a high-frequency polarizability

of 2.1× 10−33Cm2/V [124]. Also, an electrostatic potential map of the crystal structure

has shown that the interior of the tubulin molecule contains a confining potential for a

mobile electron [17, 185] (Figs.(6.1.C, 6.1.D)). Physical consequences of these results in

terms of effects of neighboring microtubules, and length-scales over which electrostatic

effects are significant for interactions with biomolecules and ions are outlined therein.

Recent studies based on electron crystallography have produced a refined structure of

the tubulin molecule with a 3.5Å resolution [107], the resulting map having the follow-

ing cross-sections: two regions of positive potential surrounded by negative potential [8]

(Fig.(6.1.C)). This region is located near the separation between the α− and β− tubulin

monomers, approximately 4.5 nm from the tip of the α− monomer, with the positive

potential regions separated by 2 nm. This structure may provide a local double-well

potential for a mobile electron transfer process within the protein. Though it is common

to have hydrophobic neutral residues in the interior of a protein, yet the double-well po-
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tential seems decidedly polar: a negative electron with two positive holes. It was found

that the amino-acids around the double-well region were mainly charged with only a few

hydrophobic residues in the vicinity. Such a double-well structure is a prime candidate

for observing stochastic resonance (SR) [46, 64, 94, 122]. SR refers to the phenomenon

whereby the addition of random noise enhances the propagation of signals within a sys-

tem. This phenomenon has been observed in numerous biological detection systems such

as sensory neurons [104], mechano-receptor cells of crayfish [32], cercal systems of crick-

ets [100] and passive receptors of electrical signals in paddlefish (Polyodon spathula). At

the sub-cellular level SR has been observed experimentally in an artificial system of ion

channels [11] and theoretically in a single Shaker potassium channel [55]. An important

biomedical application of SR concerns the use of electrical and mechanical noise to detect

sub-threshold mechanical cutaneous stimuli [28]. For other details and references on the

topic the interested reader is referred to [63].

A proper study of this phenomenon in tubulin dimers is of biophysical relevance for

the following reasons:

• at physiological temperatures, long-range tunneling over distances upto 10Å is a

viable mechanism for electron transfer in proteins, processes which are believed to

mediate protein function [107]. In our system, the residue tryptophan is located

approximately 8Å from the left well [56] and could supply a mobile electron to the

double well for such transfer processes;

• the double-well is located within 5Å from a colchicine binding site and within 8Å

from a non-hydrolyzable GTP on the α− tubulin monomer. Since colchicine is an

MT inhibitor, and GTP must be bound to both the α− and β− monomers for the

formation of MT through polymerization, such a location may be related to the

stability of the dimer and its ability to polymerize [17];

• the maximum energy of a bound electron calculated from the Coulomb interac-

tion between mobile electrons in adjacent (nearest neighbor) sites is found to be

approximately 0.6 eV, much less than the reported energy gap to the conduction

band for most proteins [17]. Therefore, it can be assumed these mobile valence

electrons cannot reside in the conduction band;

• tubulin dimers can be modeled as quantum well structures containing an electron

that can exist in at least two distinct quantum states: its ground state and its first

excited state. These excitonic states and microtubule (MT) lattice vibrations (i.e.

phonons) determine the state space of individual tubulin dimers within the MT lat-
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tice. Following mechanisms of exciton energy propagation based on Scheibe aggre-

gates [186], the strength of exciton and phonon interactions and their influence on

the formation and dynamics of coherent exciton domains within MTs can be stud-

ied [17]. It has been shown that sufficiently long-lived coherent exciton/ phonon

structures cannot exist in the absence of thermal isolation mechanisms;

• in stochastic resonance (SR) the effect of thermally mediated transitions between

adjacent wells on the long-time dynamics of the system is considered [46, 64, 94,

122]. Thus SR constitutes a thermal effect.

The remainder of this chapter is organized as follows: Section 6.2 provides necessary

background theory; Section 6.3 presents the main results and finally Section 6.4 concludes

the chapter.

6.2 Background theory

6.2.1 An effective potential for the problem

The double well described above can be modeled by a symmetric bistable potential in a

single reaction co-ordinate of the form

V (x) = V0 −
a

2
x2 +

b

4
x4. (6.1)

with the coefficients

a = 1.578 eV/nm2 b = 4.152 eV/nm4. (6.2)

A plot of the potential given by Eqs.(6.1) and (6.2) has been illustrated in Fig.(6.1.D).

The positions and the depths of the potential wells are denoted by x1,2 and V1,2, where S1

and S2 refer to the left and right wells respectively. Their numerical values are found to

be x1,2 = ±0.616 nm and V1 = V2 = 150 meV . The Langevin equation for the damped

motion of a particle of mass m in the effective potential is given by

mẍ+ γẋ = F (x) + ξ(t), (6.3)

where x denotes the reaction co-ordinate of the effective potential or the amplitude of the

“principal mode”; m denotes the mass; γ denotes the viscosity; F (x) = −∂V (x)
∂x denotes

the deterministic force due to the effective potential; ξ(t) denotes the random force. The

fluctuating random force ξ(t) denotes Gaussian white noise with zero mean, and has a
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Figure 6.1: (A) A molecular surface representation of a tubulin dimer (α-monomer,
pale green; β-monomer, forest green); (B) A molecular surface representation of a B-
lattice microtubule; (C) An in-plane slice of the electrostatic map of tubulin showing
the double well potential (black arrows) (red negative, blue positive; values between −75
and 75 kB T/e); (D) The effective potential of tubulin as given in Eq.(6.1); Scale bars
in (A) through (C) are 5 nm in length.
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correlation function given by:

< ξ(t) > = 0,

< ξ(t)ξ(t′) > = Eξδ(t− t′), (6.4)

where Eξ = 2γkBT . The probabilities of inter-well transitions between S1 and S2, given

by Kramers’ rate theory [64, 94] in the overdamped limit, are

p12 =

√
V ′′(x1)|V ′′(0)|

2πγ
e−V1/kBT ,

p21 =

√
V ′′(x2)|V ′′(0)|

2πγ
e−V2/kBT . (6.5)

The numerical values were found from Eq.(6.1) to be:

W = p12 = p21 =
1√
2π

a

γ
e
−

a2

4b
kBT . (6.6)

From the symmetry of the potential it also follows that the natural oscillation frequencies

in both wells have the common value ω2
0 = a/m. The symbol π denotes the constant

pi with a numerical value of 3.1453, and does not denote a probability. Based on re-

sults in this section, we are now in a position to derive quantitative estimates for the

mean-squared displacement (MSD) and the signal-to-noise-ratio (SNR) which follow from

Kramers’ theory [64, 94].

6.2.2 Preliminary results from Kramers’ theory

When considering inter-well transitions the details of intra-well dynamics can be conve-

niently ignored. The master equation governing the change of probabilities of states S1

and S2 [122] is given by

π̇1 = W (π2 − π1),

π̇2 = W (π1 − π2). (6.7)

The solution of Eq.(6.7) is given by [122]. It follows that the long-time limiting values

of the probabilities and the inter-well mean-square displacement are given by:

π1 = π2 = 1/2. (6.8)



CHAPTER 6. STOCHASTIC RESONANCE IN TUBULIN DIMERS 116

Figure 6.2: (A) Inter-well transition; (B) Intra-well fluctuation; (C) Noise impingent on
a symmetric double-well potential cannot cause a transition. A weak periodic driving
signal, which cannot cause well transitions on its own, rocks the double well allowing an
optimal amount of noise to induce synchronized transitions between wells creating an
semi-periodic output signal with enhanced amplitude.



CHAPTER 6. STOCHASTIC RESONANCE IN TUBULIN DIMERS 117

MSDinter = < x2(t)|x0, t0 > − (< x(t)|x0, t0 >)2 ,

= a/b. (6.9)

When such a system is subject to weak, periodic forces the effective potential is modified

to

V (x) = V0 −
a

2
x2 +

b

4
x4 +Ax cos(ωct). (6.10)

If the amplitude A is assumed to be sub-dominant to the depth of the potential wells V1

and V2 such that A � V1, V2, the modified time-dependent inter-well transition proba-

bilities denoted by W1(t) and W2(t) are found to be:

W1(t) = W1

[
1− A

√
a/b

kBT
cos(ωct)

]
,

W2(t) = W2

[
1 +

A
√
a/b

kBT
cos(ωct)

]
. (6.11)

It follows that the long-time limiting values of the probabilities and the inter-well mean-

square displacement are given by

[
π1

π2

]
=

1

2 W

[
W − a cosωct

W + a cosωct

]
, (6.12)

where the coefficient a is given by

a =
2WA

√
a/b

kBT
. (6.13)

For a symmetric bistable well the auto-correlation function is given by [122] to be

C(τ)inter = (a/b) e−2W |τ | +
A2a2W 2

b2(ω2 +W 2)(kBT )2

(
ejωcτ + e−jωcτ

)
. (6.14)

The power spectral density (PSD) is given by [122] to be

S(ω)inter =
(a/b)4W

(ω2 + 4W 2)
+

2πA2a2W 2

b2(ω2 +W 2)(kBT )2
δ(ω − ωc). (6.15)

The SNR, defined as the ratio of the strength of the output signal and the output
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Figure 6.3: The signal-to-noise ratio (SNR) in a tubulin hetero-dimer as given by
Kramers’ theory and the effective potential as given in Eq.(6.1)

broadband noise at the signal frequency, denoted by R can be found from [122] to be

R =
a2

√
2bkBT

e
− a2

8bkBT . (6.16)

For dipole oscillations of tubulin dimers in a microtubule lattice the amplitude squared

of the resultant force, denoted by A2, can be approximated by

A2 =
e2D2

T τ0
mT r2Tω

2
T

kBT, (6.17)

where DT , rT ,mT and ωT are the dipole moment, approximate radius, mass and os-

cillation frequency of the tubulin dimer; τ0 = m/γ represents the non-zero correlation

time [71]. For numerical simulations we have taken the values DT = 1740D, rT =

50Å,mT = 50kDa and approximating ωT by the frequency of a MT protofilament

ωT = 3.17 × 1011rad/s.

6.3 Effect of intra-well motion

In this section we will compute the MSD and the SNR due to intra-well motion of tubulin

dimers in a multi-well potential. The canonical approach would require a numerical

solution of the Langevin equation as outlined in [122]. However, in this chapter we

follow an alternative approach. A massive particle trapped in a multi-well potential

can execute two distinct forms of motion: transitions from one well to another (termed
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inter-well motion in literature [122]) shown in Fig.(6.2.A); and fluctuations within a well

(termed intra-well motion) shown in Fig.(6.2.B). Observables such as the mean-squared-

displacement (MSD) and the signal-to-noise ratio (SNR) due to inter-well motion can be

found from Kramers’ theory as given by Eqs.(6.14) and (6.16). The effect of intra-well

motion remains to be found. This is now done.

6.3.1 MSD due to intra-well motion

For motion in the neighborhood of the meta-stable state xn, n = 1, 2 we can use the

harmonic approximation F (x) = −mω2
0(x− xn) in Eq.(6.3) as in [75], thereby getting

mẍ+ γẋ+mω2
0x = ξ(t). (6.18)

Taking the Fourier transform of Eq.(6.18) we get

X(ω) =
ξ(ω)(

m(ω2
0 − ω2)− iωγ) . (6.19)

The power spectral density is given by

< X∗(ω′)X(ω) >=
< ξ∗(ω′)ξ(ω) >(

m(ω2
0 − ω′2) + iγω′) (m(ω2

0 − ω2)− iγω) . (6.20)

From Eq.(6.4) it follows that

< ξ(ω) > = 0,

< ξ∗(ω′)ξ(ω) > = 2πEξδ(ω − ω′). (6.21)

Therefore,

< X∗(ω′)X(ω) >=
2πEξδ(ω − ω′)

(m(ω2 − ω2
0))

2 + (γω)2
. (6.22)

The auto-correlation function is then given by

< x(t)x(t′) >=
Eξ

2π

∫ ∞

−∞

eiω(t′−t)dω

[(m(ω2 − ω2
0))

2 + (γω)2]
. (6.23)

It follows that the MSD in the nth well is given by

< x2(t) >n =
Eξ

2π

∫ ∞

−∞

dω

[(m(ω2 − ω2
0))

2 + (γω)2]
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=
Eξ

2mγω2
0

=
kBT

mω2
0

. (6.24)

Therefore, combining Eqs.(6.9) and (6.24) we get

MSD =
a2

4b
+
kBT

mω2
0

. (6.25)
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Figure 6.4: The signal-to-noise ratio (SNR) in a tubulin hetero-dimer due to dipolar
oscillations at angular speeds ω = 108, 109 and 1010 rads/s.
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Figure 6.5: The signal-to-noise ratio (SNR) in a tubulin hetero-dimer due to dipolar
oscillations at angular speeds ω = 1012, 1013 and 1014 rads/s.
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6.3.2 SNR due to intra-well motion

When a particle in the neighborhood of xn, n = 1, 2 is subject to a linearized potential

of the form Eq.(6.1) and a weak harmonic force, the Langevin equation is given by

mẍ+ γẋ+mω2
0x = ξ(t) +A cosωct. (6.26)

Taking the Fourier transform of Eq.(6.26) we get

X(ω) =
ξ(ω) + A

2 (δ(ω − ωc) + δ(ω + ωc))(
m(ω2

0 − ω2)− iωγ) . (6.27)

Now

< X∗(ω′)X(ω) >=
2πEξδ(ω − ω′)

(m(ω2 − ω2
0))

2 + (γω)2

+(πA)2
(δ(ω − ωc) + δ(ω + ωc)) (δ(ω′ − ωc) + δ(ω′ + ωc))(

m(ω2
0 − ω′2) + iγω′) (m(ω2

0 − ω2)− iγω) . (6.28)

It follows that the power spectral density due intra-well motion is given by

< S(ω) >intra=
Eξ

[(m(ω2 − ω2
0))

2 + (γω)2]
+
πA2

2

[
δ(ω − ωc)

m2(ω2
0 − ω2)2 + (γω)2

]
. (6.29)

It follows that the power spectral density due to inter-well and intra-well motion, given

by the coherent sum of Eqs.(6.15) and (6.29), is

< S(ω) > = < S(ω) >inter + < S(ω) >intra

=

[
(a/b)4W

ω2 + 4W 2
+

Eξ

[(m(ω2 − ω2
0))

2 + (γω)2]

]

+A2

[
2πa2W 2

b2(ω2 +W 2)(kBT )2
+
π

2

1

m2(ω2
0 − ω2)2 + (γω)2

]
δ(ω − ωc).

(6.30)

Therefore, the SNR is given by

R =
πA2

makBT

(
β2W 2 + g

βW + ωdA

)
, (6.31)
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where A2 is given by Eq.(6.17) and

β =

(
2ma

bkBT

)
, ωd = γ/m and g =

ω2 + 4W 2

(ω2 − ω2
0)

2 + (ωωd)2
. (6.32)

Plot of the SNR given by Eqs.(6.31) and (6.32) are shown in Figs.(6.4) and (6.5). It is

observed that for all frequency regimes, the SNR shows a distinct peak at T ∼ 150K,

indicative of stochastic resonance (SR). Simulations indicate that the SR effect is robust

to a wide range of model parameters.

6.4 Conclusions

This chapter investigates stochastic resonance (SR) in the electrostatic double-well po-

tential located in tubulin dimers. Delocalized electrons can be transferred within a

tubulin dimer (shown in Fig.(6.1.A)) by the process of tunneling. This process has an

appealing, geometric explanation: the electrostatic map of a tubulin dimer (Fig.(6.1.C))

shows a double-well potential at the interface of the two constituent monomers (shown

in greater resolution in Fig.(6.1.D)). Within the double well, indicated by arrows in

Fig.(6.1.C) or plotted with respect to inter-well distance (the reaction coordinate of the

system), the electron can make interwell or intrawell transitions induced by thermal fluc-

tuations. In the system considered here, SR refers to the phenomenon by which noise,

in the form of random thermal fluctuations, together with a weak, sub-threshold, input

signal, such as molecular vibrations (phonon modes) or dipole oscillations, assists the

delocalized electron/ small polaron in crossing the energy threshold between adjacent

wells as shown in Fig.(6.2.C). The combination of a weak periodic driving force and

noise induce synchronized transitions resulting in an increased output signal-to-noise

ratio resulting in a more meaningful transfer of information. It is shown that for fre-

quencies ranging from 10 MHz to 10 THz the SNR is unimodal, with a distinct peak at a

temperature of T ∼ 150 K, a characteristic of SR. The effective potential is modeled by a

symmetric bimodal well in one reaction co-ordinate. The transitions between two wells,

often referred to as inter-well transitions [122], can then be described by Kramers’ rate

theory. The fluctuations in the vicinity of each well, referred to as intra-well transitions,

can then be described by the Langevin equation using the harmonic approximation. The

sum of these two terms also gives an estimate for the mean-squared-displacement (MSD)

of tubulin. These results imply that the response of a tubulin dimer to weak, harmonic

forces arising from molecular vibrations or dipolar oscillations reaches a maximum at

T ∼ 150K, thereafter decreasing monotonically with temperature. While this indicates
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the occurence of SR in the tubulin protein, the peak is well below physiological tempera-

tures where cold-induced depolymerization and denaturation of microtubules (MTs) and

the tubulin protein would be expected. However, even at physiological temperatures of

∼ 300K, the output signal-to-noise ratio is still above unity, allowing the possibility of

meaningful information transfer. In addition, the synchronization of transitions induced

by SR can be regarded as a clocking mechanism. The 10 MHz range is of particular

interest as MTs exhibit a natural resonance at 8.085 MHz, for which thermally induced

resonance has been suggested as a possible cause [139]. It has also been suggested that

the 8.085 MHz MT resonance is due a weak Frolich condensate [146]. These results show

SR in a single tubulin dimer within a classical framework. In a future correspondence,

they will be extended to an array of dimers using a quantum many-body formalism.
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Chapter 7

Conclusions

This thesis explores the possibility of stochastic resonance (SR) in: (i) single (hard) thresh-

old devices used to model neurons; (ii) averaging structures of carbon nanotubes (CNTs);

(iii) myoglobin atoms; and finally (iv) tubulin dimers.

In chapter 3, we consider a nonlinear detector of weak acoustic signals in a realistic

noisy environment. As the performance of such a detector is dependent on the PDF gov-

erning noise, a technique to estimate the PDF, based on Beaulieu series, is also proposed

(Appendix B). Physically, the SR detector consists of a threshold system followed by

a correlator. The convergence properties, perturbative corrections and signal detection

statistics are derived in the weak signal limit. A deterministic algorithm is developed

to globally optimize the performance of the SR detector. It is established that this

algorithm converges with logarithmic complexity. Scaling arguments demonstrate an

improvement over standard, deterministic algorithms in two important limiting cases:

(i) increasing accuracy of the optimization procedure; and (ii) increasingly heavy tailed

probability density functions (PDFs). It is demonstrated that the detection performance

of the SR detector is better than that of the matched filter for a large class of PDFs.

Numerical simulations indicate that the SR detector is stable under most perturbative

corrections. The architecture of efficient and inexpensive hardware devices based on

these results, for possible use in cochlear implants, is briefly outlined.

In chapter 4, we demonstrate the possibility of observing Stochastic Resonance (SR)

in arrays of averaging structures of carbon nanotubes using theoretical arguments. The

scope of the SR phenomenon is extended to summing arrays (averaging structures) of

carbon nanotubes. Such arrays are considered in two different configurations: (i) when

all devices have dynamically adjustable conductance gains and threshold voltages; and

(ii) when all devices have static, equal conductance gains and threshold voltages. Both
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configurations are described using Shannon’s Information theoretic formalism. Asymp-

totic expressions for the mutual information of both configurations are derived in the

limiting cases of high and low noise. These formulas indicate that: (i) both configura-

tions are equivalent at high noise; (ii) the mutual information of an array of nanotubes

with fixed parameters is non-monotonic and is maximized for non-zero noise intensity,

thereby fulfilling the criterion for SR. Our results can be used to establish performance

bounds on nanoscale architectures with high redundancy factors and to gauge the effect

of quantum coherence in such mesoscopic systems. A numerical estimate for the value

of noise intensity where the SR peak is reached is derived.

In chapter 5, we present a theoretical explanation for the observed mean square dis-

placement (MSD) vs. temperature curve of myoglobin. The effective potential of myo-

globin is modeled as an asymmetric bimodal potential well. It is shown that the anoma-

lous increase in the mean-square-displacement (MSD) for high temperatures (180K-

300K) is due to thermally mediated inter-well transitions. It is also shown that the

dominant contribution to the MSD at lower temperatures is due to intra-well vibrations

in the vicinity of the meta-stable states. Our approach is rooted in Kramers’ rate the-

ory and the Langevin formalism. It is shown that these results are in agreement with

existing experimental data. Another prominent result which follows from Kramers’ rate

theory is that the response of the myoglobin globule to ambient harmonic forcing terms

is enhanced by temperature. Two example calculations of this phenomenon are cited for

(i) transduced molecular vibrations and (ii) fluctuations originating in the solvent/ hy-

dration shell.

In chapter 6, we consider the possibility of stochastic resonance (SR) in tubulin

dimers. A formula for the signal-to-noise ratio (SNR) of tubulin as a function of tem-

perature is derived. The effective potential experienced by a delocalized electron in such

a dimer is postulated to be a symmetric bimodal well. Inter-well and intra-well motion

are described by Kramers’ rate theory and the Langevin formalism respectively. The

frequency-dependent expression for the SNR shows that the response of the electron-

tubulin dimer system is enhanced by ambient dipolar oscillations in some frequency

regimes. This is a characteristic of SR. Biophysical implications of this property such

as the relevance to 8.085 MHz microtubule resonance and the clocking mechanism are

detailed.

Finally, it could be mentioned that these results lead to significant avenues for future

investigation.
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Appendix A

Miscellaneous relations

A.1 Upper bound of search interval

Eq.(3.29) describes a Gaussian-Gaussian mixture. Since the first component Gaussian

is larger than the second component Gaussian, we get

f(x) <
c√
2π

[
α+

1− α
β

]
exp

(
−c

2x2

2

)
.

Inverting the RHS of this inequality, we get f(x) ≤ ε̃ ∀x ≥ B for

B =
1

c

[
2 log

(
α+ (1− α)/β√

2πε̃
c

)]1/2

.

For our simulations we choose ε̃ = 0.01 and the corresponding value of B.

A.2 Formulas for partial derivatives

From the definition of the Gamma integral

Γ(u, a) =

∫ ∞

u
e−tt−1+adt.

Therefore, Γ′(u, a) = −e−uu−1+a. From the definition of c in (3.30) it follows

∂c2

∂α
= (1− β2) and

∂c2

∂β
= 2(1− α)β.
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For mixtures-of-Gaussians, integrating (3.29), we get

[1− F (x)] =
α

2
√
π

Γ((cx)2/2, 1/2) +
1− α
2
√
π

Γ((cx)2/2β2, 1/2). (A.1)

Therefore,

∂F

∂α
= − 1

2
√
π

[
Γ((cx)2/2, 1/2) − Γ((cx)2/2β2, 1/2)

]

+
x(1− β2)

2c
√

2π

[
αe−(cx)2/2 +

1− α
β

e−(cx)2/2β2

]
,

∂F

∂β
=

xα(1− α)

c
√

2π

[
βe−(cx)2/2 − 1

β2
e−(cx)2/2β2

]
. (A.2)

Similarly, from (3.29) it also follows

∂f

∂α
=

1

2c
√

2π
[{α(1 − β2)(3− (cx)2) + 2β2}e−(cx)2/2

+
1

β
{(1− α)(1 − β2)(3− (cx/β)2)− 2}e−(cx)2/2β2

],

∂f

∂β
=

α(1 − α)

c
√

2π

[
β(1− (cx)2)e−(cx)2/2 − 1

β2
(1− (cx/β)2)e−(cx)2/2β2

]
. (A.3)

In the above formulae, the dependence of the LHS on the argument x has been suppressed

for convenience.

A.3 Structured version of Brents’ algorithm

The classical version of Brent’s algorithm [13] requires GOTO and break statements. A

slightly modified version of Brent’s algorithm without such unstructured programming

is presented. The step numbers to the left margin do not have any functional purpose

and have been kept to indicate a correspondence with the original [13].

The Algorithm:

Initialize lx = 0; ux = B; M = 10; flag1=0; ε = 0.0001

δ = min(|ε/M |,
√
|ε/M |).

1. φ← min(G(lx), G(ux)),

if(φ == G(lx)) then µ← lx, else µ← ux.

x2 ← lx.

2. flag1=1, x3 ← some point in (x2, ux].

while(flag1==1){



APPENDIX A. MISCELLANEOUS RELATIONS 139

if((x2 >= (ux− δ))or(|x3 − x2| < δ)) then flag1=0.

else x3 ← some point in (x2, ux].

flag2 = 1;

while(flag2==1){
3. if(G(x3) < φ) then µ← x3,φ← G(x3).

4. if the parabola y = P (x) defined by P ′′(x) = M ,

P (x2) = G(x2) and P (x3) = G(x3) satisfies

the condition P (x) ≥ φ− δ∀x ∈ [x2, x3]

then flag2 ← 0,

else x3 ← (x2 + x3)/2.

}end (of flag2 loop)

5. x2 ← x3;

}end (of flag1 loop)

Certain details necessary to the implementation of the above algorithm are mentioned

now.

1. The condition in step 4 is equivalent to stating, “if the minimum of the parabola

y = P (x) . . . denoted by Pmin satisfies Pmin ≥ φ− ε”. Pmin is found to be

Pmin = G(x3)−
DG.M

2
(x3 − x2)−

M

4
(x3 − x2)

2 − DG2

4
,

where DG = G(x3)−G(x2)
x3−x2

.

In step 2, a good choice of x3 is given in[13] to be

x3 = min

{
ux, x2 +

√
G(a2)− φ+ ε

M/2

}

The implementation and the convergence properties are seen to depend crucially on M

the upper bound of the absolute value to the second derivative of the Gain functional

i.e. Sup|G′′(x)| ≤M . M can be estimated to be ∼ 10.
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A.4 A bound for M

The polynomial factors in both terms in Eq.(3.16) can be bounded over finite intervals

giving,

|f ′′(x)| ≤ c3√
2π

[
αM1e

−(cx)2/2 +
1− α
β3

M2e
−(cx)2/2β2

]
. (A.4)

where

M1 = Max[0,B]

(
(cx)2 − 1

)
,

M2 = Max[0,B]

(
(cx/β)2 − 1

)
,

= Max[0,B/β]

(
(cx)2 − 1

)
(A.5)

Since the maximum taken over a smaller interval/set must necessarily be smaller, it

follows

M2 ≤M1. (A.6)

Combining the inequalities (A.4,A.6) and Eq.(3.16) we get

|G′′(x)| ≤
[
M1

c3√
2π

]
2f2(x)

1− F (x)
,

≤
[
M1

c3√
2π

]
G(x) (A.7)

Therefore taking the supremum of both sides,

Sup|G′′(x)| ≤
[
M1

c3√
2π

]
SupG(x) (A.8)

For large values of B the bound M1 can be approximated as M1 ≈ (cB)2 and from

numerical simulations we know that for ranges of α and β considered, Sup G(x) ≤ 12.

Therefore,

Sup|G′′(x)| ≤ 12c5B2

√
2π

(A.9)

Though rigorous, this bound give a value of ∼ 100 which is very conservative, the

maximum value observed from numerical simulations being ∼ 5. Such an over-estimate
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would result in 20 times more computation than for an ideal, exact estimate. In order

to reduce complexity, a sharper bound is therefore necessary.
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Appendix B

Noise characterization using

Beaulieu series

In this section we propose a computational technique for estimating parameters of prob-

ability density functions (PDFs) governing marine noise, using Beaulieu series. The

PDFs are assumed to be mixtures-of-Gaussians from the widely used Middleton’s Class

A model. The Beaulieu series for such PDFs are derived. Such an approach is orders

of magnitude more efficient than approaches based on convolution integrals, and can be

done in real-time. The computational complexity for the technique is then derived. Such

a procedure can be used in conjunction with existing detectors on sonar platforms.

B.1 Problem formulation:

The inverse problem of characterizing marine noise from sonar data requires the repeated

computation of the PDF of sums of random variables. Let Xi, i = 1, . . .M denote

independent R.V’s each with a PDF f(.). Denote the sum of the M Random Variables

(RVs) by Y i.e. Y =
∑M

i=1Xi and its probability density function (PDF) and cumulative

distribution function(CDF) by g(.) and G(.), respectively. The classical formulae for g(.)

and G(.) given by (i) the M − 1-fold convolution g(x) = f ∗ f ∗ . . . f ∗ (x) and (ii) the

integral G(x) =
∫ x
−∞ g(u)du represent a computationally exorbitant task. In [9] Beaulieu

developed an infinite series representation for the CDF G(.). The utility of Beaulieu

series lies in the fact that M successive integrals by quadrature, have been replaced by a

single rapidly convergent summation. In this section we derive the Beaulieu series for a

large class of marine noise PDFs, and propose an iterative technique for estimating the

parameters defining the PDF from sonar time-series. An estimate of of the computational
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complexity is also derived.

B.2 Proposed technique:

Our proposed technique has three main components: (i) Derivation of the Beaulieu series

for mixture-of-Gaussian PDFs which largely govern marine noise; (ii) Calculation of a

cost functional which relates the theoretical estimate of CDF Gα,β(.) from Beaulieu series

to that observed from sonar data; and lastly (iii) Calculation of the optimal values for

the parameters α and β which the define marine noise PDF. These components are now

described in succession.

Phenomenological studies of marine environments [110] show the PDF governing

ocean acoustic noise can be modelled as a weighted sum of two Gaussians as given

by Eqs.(3.29) and (3.30). The Beaulieu series for mixture-of-Gaussian PDFs can be

expressed as

Gα,β(y) =
1

2
+

2

π

∞∑

n=1,odd

sin (nωy/M)

n
×

[
αe−n2ω2/2c2 + (1− α)e−n2ω2β2/2c2

]
. (B.1)

where ω = 2π/T . Some relevant values are T = 196.8 and ω = π/98.4 [9].

The mean squared error (MSE) between the theoretical and empirical estimates of

the CDF for particular values of (α, β) is then given by

MSE(α, β) =

∫ ∞

y=−∞
|Gα,β(y)−Gobs(y)|2dy. (B.2)

Typical surface plots of MSE(α, β) using synthetic data and Beaulieu series generated

from assumed values of the mixing parameters (α, β) show the functional to be unimodal

in nature [113]. The optimal estimates (αopt, βopt) are given by the values which minimize

the MSE as follows:

(αopt, βopt) = Argminα,βMSE(α, β). (B.3)

These estimates can be found by a classical, deterministic algorithm developed by Brent

[13]. In addition, this benchmark algorithm is guaranteed to converge to the global

optimum in a finite number of steps.

The proposed technique can then be summarized as follows:

• Minimize MSE(α, β) defined in Eq.(B.2) using Brent’s algorithm;
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• At each iteration evaluate G(α, β) using Beaulieu series given in Eq.(B.1).

The stopping criterion is achieved when within 0.1% of the global minimum ofMSE(α, β).

Numerical studies of the stability of these estimates were done in [113].

B.3 Computational complexity:

The computational complexity of the proposed algorithm is evidently the product of the

complexities of (i) the Beaulieu series summation given by Eq.(B.1); (ii) the computation

of the integral in Eq.(B.2) by quadrature and lastly (iii) Brent’s algorithm, denoted by

C1, C2 and C3 respectively.

C1 can be taken to be the number of terms after which the series in Eq.(B.1) is trun-

cated. It can be shown [9] that the error incurred by truncating the summation at the

N1
th term, denoted here byRN1

is upper bounded by: |RN1
| ≤

{
[sup f(x)]

[
T
4 − 2T

π2

∑N1

n=1,odd
1
n2

]}1/2
.

Inverting this bound we get

C1 =

√
2

π5
Tc

[
α+

1− α
β

]
ε−1. (B.4)

Theoretical estimates of C2 and C3 are found [13] and [142] to be:

C2 = 2B2

√
UαUβ

ε
log2


2B

√
Uα

2ε


 log2


2B

√
Uβ

2ε


 ,

C3 =

[
2

3
B3Uy

]1/2

ε−1/2, (B.5)

where Uα, Uβ and Uy denote upper bounds on various second order partial derivatives of

the functional being optimized given by Sup|∂2MSE(α,β)
∂α2 | ≤ Uα, Sup|∂2MSE(α,β)

∂β2 | ≤ Uβ

and Sup|∂2MSE(α,β)
∂y2 | ≤ Uy, respectively.

The total computational complexity of the procedure Ctotal is then given by

Ctotal = C1 × C2 × C3,

=
[
(16/3π5)1/2B7/2 (UyUαUβ)1/2

]
Tc

[
α+

1− α
β

]
ε−5/2

log2



2B

√
Uα

2ε



 log2



2B

√
Uβ

2ε



 (B.6)

It can be inferred for sufficiently high accuracy i.e. as ε→ 0+, the complexity is propor-
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tional to

Ctotal ∝ ε−5/2(log2 ε)
2 (B.7)

For a typical marine ocean acoustic environment, this translates to ∼ 107 elementary

arithmetic operations for the entire optimization routine. On a cluster of 4 Pentium-5

160Mhz computers this would require 0.01 − 0.02 secs, and 0.02 − 0.04 secs on a Texas

Instruments(TI) DSP platform (Model: TMS320C6713).

B.4 Conclusions:

We develop a procedure for the application of Beaulieu series to the estimation of PDFs

governing marine noise. The Beaulieu series for a large class of marine noise PDFs are

first derived. An iterative procedure to compute the optimal estimates of the parameters

defining the PDF, from sonar time-series is then formulated. Unlike existing methods,

this procedure can be performed in real-time. These results indicate that such a pro-

cedure can be used in tandem with nonlinear detectors with system parameters which

depend on marine noise PDFs.



146

Appendix C

Derivations for Chapter 4

C.1 Miscellaneous (useful relations, values etc)

For |an| ≤ 1 the following expansion can be used:

log(1 + an(x)) ≈ an(x)− 0.5an(x)2. (C.1)

For symmetric PDFs it can be shown:

F (−u) = 1− F (u). (C.2)

The following inequality can be found by integrating by parts [40]:

f

(
Θi − x
ση

)[(
ση

Θi − x

)
−
(

ση

Θi − x

)3
]

≤ 1− F
(

Θi − x
ση

)
≤ f

(
Θi − x
ση

)(
ση

Θi − x

)
. (C.3)

where f(·) and F (·) represent the unit-variance PDF and CDF governing noise respec-

tively, as defined in Eq.(4.6). The first inequality in (4.17) is straightforward from

Ineq.(C.3) and Eq.(4.5). From Eq.(4.5) and the assumed symmetry of the PDF it also

follows

1− Pi(x) =

∫ Θi−x

−∞
fη(x)dx =

∫ ∞

x−Θi

fη(x)dx

= 1− Fη(x−Θi) = 1− F
(
x−Θi

ση

)
. (C.4)
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The second inequality in (4.17) then follows.

The term B1 in Eq.(4.21) is a function of the threshold values (Θi)
N
i=1, i = 1 . . . N

which in turn are functions of the noise intensity σ2
η. It can be empirically observed that

(Θi)
N
i=1, i = 1 . . . N form a symmetric set for low values of ση. Since fx(.) is a symmetric

PDF, it follows that B1 can be regarded as a constant in this interval.

The integral B2 in Eq.(4.21) must in general be evaluated numerically. For a few

important PDFs it is given by B2 = −
√

3 log 2/2 = −1.2494 (Uniform); −1.3030 (Gaus-

sian); −1.3082 (Logistic); and −1.3010 (Laplacian). The integrals (I1, I2) in Eq.(4.29)

must also be evaluated numerically. For a few important PDFs they are given by

(0.3447,−0.5939) (Uniform); (I1, I2) = (0.3183,−0.6578) (Gaussian); (0.5530,−0.6905) (Lo-

gistic) and (0.3989,−0.5756) (Laplacian).

C.2 Derivation of Eq.(4.12)

The set (Θi)
N
i=1 being real-valued and of finite cardinality is bounded. Our derivation

relies on the condition |x−Θi|
ση

� 1 ∀ i. It will be shown later that the probability of x

assuming a value beyond these bounds remains negligible. Case (i) All threshold levels

independent: Eq.(4.5) can be rewritten as

Pi(x) =

∫ ∞

0
fη(u)du−

∫ Θi−x

0
fη(u)du.

The median of the noise being zero, the first term equals 1/2. Through a change of

variable u→ u/ση the second term becomes:

∫ Θi−x

0
fη(u)du =

∫ Θi−x

ση

0
f(u)du = f(ξi)

(
Θi − x
ση

)
.

The last equality follows from the Mean Value Theorem [152] where ξi denotes a point

in the interval
[
0, Θi−x

ση

]
. For sufficiently large ση, the interval length becomes negligible

for relevant values of x and f(ξi) can be approximated by f(0) up to a second order

correction, giving us

Pi(x) =
1

2
− f(0)

(
Θi − x
ση

)
. (C.5)

Substituting the above into Eq.(4.7) and linearizing, and then proceeding to Eq.(4.4),

we get

Py|x(n|x) = Dn (1 + an(x)) , Py(n) = Dn (1 + bn) , (C.6)
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where the terms Dn, an(x) and bn are given by

Dn =

(N
n

)

2N
, an(x) =

(N − 2n)

ση
2f(0)(Θ − x),

and bn =
(N − 2n)

ση
2f(0)(Θ − µx). (C.7)

The mean of the threshold values is denoted by Θ =
(∑N

i=1 Θi

)
/N . Provided |an(x)| ≤ 1,

the first term of the mutual information in Eq.(4.3) then has the following asymptotic

form:

∫ ∞

−∞
fx(x)

N∑

n=0

Py|x(n|x) log2 Py|x(n|x)dx ≈
∫ ∞

−∞
fx(x)×

N∑

n=0

(
Dn logDn + (1 + logDn)Dnan(x) + 1

2Dnan(x)2
)

log 2
dx

≈
N∑

n=0

Dn logDn

log 2
+

N∑

n=0

Dn

2 log 2

(∫ ∞

−∞
fx(x)an(x)2dx

)
. (C.8)

The first relation follows from Eq.(C.6), (C.7) and the approximation (C.1). The first

term in the intermediate expression is independent of x and can be taken outside the

integral which then becomes
∫
fx(x)dx = 1. As an(x) ∝ N − 2n and Dn given by

Eq.(C.7) are anti-symmetric and symmetric in n respectively, it follows that the second

term is anti-symmetric in n, and vanishes on summation. The second relation then

follows. Analogously for the second term we get,

N∑

n=0

Py(n) log2 Py(n)

≈
N∑

n=0

(
Dn logDn + (logDn + 1)Dnbn + 1

2Dnb
2
n

)

log 2

≈
N∑

n=0

Dn logDn

log 2
+

N∑

n=0

Dn

2 log 2
b2n. (C.9)

Substituting Eqs.(C.7), (C.8) and (C.9) into Eq.(4.3) and rearranging the result we get

I(x, y) =
N∑

n=0

Dn

2 log 2

(∫ ∞

−∞
fx(x)an(x)2dx− b2n

)
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=




N∑

n=0

2Dn

log 2

(
f(0)(N − 2n)

ση

)2

σ2

x. (C.10)

Noting that Dn, n = 0, .., N is the probability mass function of a binomial distribution

with equal probabilities of success or failure (of 1/2), we get
∑

(N − 2n)2Dn = N , and

the prefactor in Eq.(C.10) reduces to 2N
log 2f

2(0)/σ2
η . Therefore, the mutual information

simplifies to as given in Eq.(4.12).

Case (ii) All threshold levels equal: All (Θi)
N
i=1 are constrained to a common value Θ.

This trivially reduces to the previous case with Θ = Θ.

The condition for validity of this expression may now be derived as follows. The

starting approximation used to derive Eq.(C.5) is valid if |x−Θi| � ση. Since x denotes a

random variable it follows the approximations are valid only in the event space ∩N
i=1{|x−

Θi| � ση}. It follows that the probability measure of the complement of the above

set given by Prob
[
∪N

i=1{|x−Θi| > ση}
]

should be sufficiently small. From the sub-

additivity of probability measures it follows

Prob
[
∪N

i=1{|x−Θi| > ση}
]
≤

N∑

i=1

Prob [|x−Θi| > ση] . (C.11)

The Chernoff bound [132] for each component term gives:

Prob [|x−Θi| > ση] ≤
E (x−Θi)

2

σ2
η

. (C.12)

Combining Eqs.(C.11) and (C.12) we get

Prob
[
∪N

i=1{|x−Θi| > ση}
]
≤ Nσ2

x +
∑N

i=1(Θi − µx)2

σ2
η

. (C.13)

It follows that a sufficient, but not necessary, condition for the approximations to be

valid is given by σ2
η � Nσ2

x +
∑N

i=1(Θi − µx)2. For sufficiently high values of ση it is

empirically observed that the threshold converges to the signal mean: Θ → µx. Then

the condition for validity can be modified to σ2
η � Nσ2

x.

C.3 Derivation of Eq.(4.21)

The proof follows from computing the dominant order corrections to the unperturbed

values given by Eqs.(4.14,4.15) and (4.16) due to the perturbed values given by Eqs.(4.19)
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and (4.20). The first term in Eq.(4.3) has the following asymptotic form

∫ ∞

−∞
fx(x)

N∑

n=0

Py|x(n|x) log2 Py|x(n|x)dx

≈
∫ ∞

−∞
fx(x)×

N∑

i=1

[
F

(
Θi − x
σ

)
log2 F

(
Θi − x
ση

)

+

(
1− F

(
Θi − x
ση

))
log2

(
1− F

(
Θi − x
ση

))]
dx

≈
∫ ∞

−∞

{
N∑

i=1

fx(Θi − σηu)

}
[F (u) log2 F (u)+

(1− F (u)) log2(1− F (u))] σηdu. (C.14)

The second relation follows from the change of variable u = Θi−x
ση

in each summand and

re-summing the resultant integrals. Also limση→0

{∑N
i=1 fx(Θi − σηu)

}
=
∑N

i=1 fx(Θi),

which being a constant can be pulled out of the integral. By the symmetry relation (C.2)

we then get:

∫ ∞

−∞
fx(x)

N∑

n=0

Py|x(n|x) log2 Py|x(n|x)dx ≈

2ση

{
N∑

i=1

fx(Θi)

}
×
{∫ ∞

−∞
F (u) log2 F (u)du

}
. (C.15)

It can be shown that the absolute value of the term within brackets can be upper bounded

as:

|fx(Θ1 + σηu)− fx(Θ1 − σηu)| ≤ 2K1σηu. (C.16)

where K1 can be taken to be an upper bound on the absolute value of the derivative

of f ′x(.) for differentiable PDFs, or the Lipschitz constants for non-differentiable, but

Lipschitz continuous PDFs (such as the Laplacian). Therefore, by the Mean Value

Theorem [152] it follows:

Py(0) =
1

N + 1
+O(σ2

η). (C.17)

The correction terms of O(σ2
η) are sub-dominant to the linear order terms in Eq.(C.15)

and can be ignored. As the same relation holds for all i, it then follows that the second
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term of Eq.(4.3) is given by

N∑

n=0

Py(n) log2 Py(n) ≈ − log2(N + 1). (C.18)

Summing Eqs.(C.15) and (C.18) we get Eq.(4.21).

C.4 Derivation of Eq.(4.29)

The first term of the mutual information given by Eq.(4.3) can be approximated as

follows:

∫ ∞

−∞
fx(x)

N∑

n=0

Py/x(n/x) log2 Py/x(n/x)dx

≈
∫ ∞

−∞
fx(x) [Nε(x) log2Nε(x)

+(1−Nε(x)) log2(1−Nε(x))] dx
≈ Nε(log2N − 1) +N

∫ ∞

−∞
fx(x)ε(x) log2 ε(x)dx.

(C.19)

The intermediate expression can be found by keeping only the dominant terms in the

sum (given by n = 0, 1 for x < 0 and by n = N − 1, N for x > 0 in Eqs.(4.26) and (4.27)

respectively. Applying Eq.(C.1) to the first term in the summand and then substituting

Eq.(4.25) the second expression follows.

The second term of I(x, y) in Eq.(4.3) can be found from Eqs.(4.28) and (C.1) to be

N∑

n=0

Py(n) log2 Py(n)

≈ (1−Nε) log2
1−Nε

2
+Nε log2

Nε

2
≈ Nε log2 ε+Nε (log2N − 1)− log2 2. (C.20)

The other terms in the sum being sub-dominant can be ignored. Combining Eqs.(C.19)

and (C.20) we get

I(x, y) = 1 +N

{∫ ∞

−∞
fx(x)ε(x) log2 ε(x)dx− ε log2 ε

}
. (C.21)
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From Eqs.(4.24,C.2) the following linear scaling relations can be derived

∫ ∞

−∞
fx(x)ε(x) log2 ε(x)dx = I2ση, ε = I1ση. (C.22)

where I2 = 2fx(0) [
∫∞
0 (1− F (u)) log2 (1− F (u)) du] and I1 = 2fx(0) [

∫∞
0 (1− F (u)) du].

Substituting Eq.(C.22) into Eq.(C.21), and keeping both terms, as there are no correc-

tions to linear order, we get Eq.(4.29).


