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aEcology and Evolutionary Biology, University of Toronto
bBiological Sciences, University of Alberta

cCurrent address: Biological Sciences, University of Calgary
dMathematical and Statistical Sciences, University of Alberta

eBiological Sciences, University of Toronto Scarborough

Abstract

Spatial variability in host density is a key factor affecting disease dynamics of wildlife,
and yet there are few spatially explicit models of host-macroparasite dynamics. This limits
our understanding of parasitism in migratory hosts, whose densities change considerably in
both space and time. In this paper, we develop a model for host-macroparasite dynamics
that considers the directional movement of host populations and their associated parasites.
We include spatiotemporal changes in the mean and variance in parasite burden per host, as
well as parasite-mediated host mortality and parasite-mediated migratory ability. Reduced
migratory ability with increasing parasitism results in heavily infested hosts halting their
migration, and higher parasite burdens in stationary hosts than in moving hosts. Simula-
tions reveal the potential for positive feedbacks between parasite-reduced migratory ability
and increasing parasite burdens at infection hotspots, such as stopover sites, that may lead
to parasite-induced migratory stalling. This framework could help understand how global
change might influence wildlife disease via changes to migratory patterns and parasite de-
mographic rates.

Keywords: macroparasite; population; animal migration; disease; partial-differential
equation; spatial dynamics

1. Introduction1

Many animals undergo arduous migrations to track seasonal changes in environmental2

conditions and resources. The resulting spatiotemporal changes in host density have pro-3

found and diverse consequences for the dynamical interactions between hosts and parasites4

(Altizer et al., 2011). For example, host migration may facilitate the spread of parasites into5

new areas where they might infect novel host species - an increasing concern in the face of6

warming temperatures that allow parasites to persist where they previously could not (e.g.,7
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Kutz et al., 2013). Alternately, migratory hosts may escape parasitism by moving away8

from infection hotspots where parasites have accumulated in the environment (Bartel et al.,9

2011). Such migratory escape has, for example, been proposed as a driver of post-calving10

migration in caribou (Folstad et al., 1991). Migratory lifecycles may also reduce transmission11

of parasites from adults to juveniles, termed migratory allopatry, as is the case for sea louse12

parasites of Pacific salmon (Krkošek et al., 2007). Mechanisms such as parasite spread and13

migratory escape may act simultaneously, with their relative importance depending on the14

life histories of both the parasite and the host. Further, changes in host-parasite dynamics15

due to, for example, climate change (Kutz et al., 2013) or the introduction of reservoir hosts16

(Krkošek et al., 2007; Morgan et al., 2007) may alter how migration influences host-parasite17

dynamics. These complexities make it difficult to understand and predict the how migration18

influences host-parasite dynamics.19

Mathematical models describing the growth and spread of infectious pathogens through20

a host population have been integral to the understanding of disease dynamics in both21

human and wildlife populations (May and Anderson, 1991; Hudson et al., 2002). Two basic22

structures have been applied in modelling disease dynamics: (1) compartmental models23

typically used to describe microparasites and (2) macroparasite models. Compartmental24

models track the transition of hosts between susceptible (S) and infected (I) categories and25

thus describe the prevalence of infection within the host population. Sometimes immune or26

recovered (R) hosts are also considered, leading to the common designation as SIR models.27

These models are typically used to describe microparasites (e.g., viruses, bacteria) because28

the impact of the parasite is assumed to be independent of the number of parasites infecting29

a host (Anderson and May, 1979).30

Several recent studies have used compartmental models to understand and predict para-31

site dynamics in migratory wildlife (e.g., Hall et al., 2014; Johns and Shaw, 2015; Hall et al.,32

2016). These models tracked the densities of susceptible and infected hosts at different stages33

in the annual cycle (e.g., breeding, migration, and overwintering). Hall et al. (2014) describe34
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an SI model in which mortality of host populations during migration depends on their infec-35

tion status at the end of the breeding or overwintering season. They found that migration36

lowered pathogen prevalence via culling of infected hosts, and thus host population health37

improved with earlier departure and longer-distance migrations. Johns and Shaw (2015)38

built upon that model to look at disease prevalence in migratory vs. non-migratory pop-39

ulations with similar results: host populations ended up healthier if they spent more time40

migrating and had higher mortality during migration due to disease or other factors. More41

recent work on vector-borne diseases has also considered how changing phenology associated42

with climate change might lead to “migratory mismatch” of host and vector densities (Hall43

et al., 2016).44

Macroparasite dynamics require a different model structure than microparasites because45

the impact of macroparasites on hosts is often proportional to parasite burden, as is typical46

for many helminths (parasitic worms; e.g., tapeworms, flukes) or ectoparasites (e.g., ticks,47

lice). Macroparasites also tend to be aggregated among hosts (Shaw et al., 1998). Ex-48

plicitly considering the intensity of infection and the degree of aggregation is important in49

macroparasite models because the mortality of heavily infected hosts will result in dispro-50

portionate mortality in the parasite population, which in turn feeds back on host population51

health (Anderson and May, 1978). A less-recognized complication is that the degree of ag-52

gregation will change with any process that tends to select heavily infested hosts, such as53

parasite-induced host mortality, with subsequent impacts on parasite population dynamics.54

This additional complexity has hindered the development of spatially explicit models for55

macroparasite dynamics (Riley et al., 2015). Spatial effects have been implicitly included in56

macroparasite models via spatial patchiness in infection pressure (Cornell et al., 2004; May,57

1978) or discrete geographic areas (Morgan et al., 2007), but models that explicitly track the58

movement of hosts and their parasites have been lacking (but see Milner and Zhao, 2008,59

who consider passive flow of parasites in a river system).60

Explicitly spatial macroparasite models are needed to understand and predict how host61
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movement and parasitism might interact to affect wildlife health, which is especially im-62

portant for migratory species. Existing models of parasite dynamics in migratory animals63

(e.g., Hall et al., 2014; Johns and Shaw, 2015; Hall et al., 2016; Morgan et al., 2007) do not64

consider how parasite burdens change dynamically over time and space or incorporate the65

dynamic processes occurring during movement that might influence parasite burdens, such66

as transmission and parasite-mediated migratory ability. These shortcomings not only limit67

our understanding for macroparasites, but ignore important aspects of host biology. Animals68

with high parasite burdens, for example, often show reduced migratory ability (Risely et al.,69

2017). Monarch butterflies infested with protozoan parasites are slower and fly shorter dis-70

tances (Bradley and Altizer, 2005) and juvenile salmon infested with sea lice have reduced71

swimming performance (Nendick et al., 2011) and compromised schooling behavior (Krkošek72

et al., 2011). Parasite-mediated migratory ability may affect both the spatial distribution of73

hosts, reducing the distance migrated by parasitized individuals, and the spatial patterns in74

parasite burden, resulting in higher parasite burdens of stationary hosts left behind.75

Here, we develop a new modelling framework for migratory-host and macroparasite pop-76

ulation dynamics that considers dynamic changes in host abundance, parasite burden, and77

parasite aggregation. This extends previous host-macroparasite models (e.g., Anderson and78

May, 1978; Kretzschmar and Adler, 1993) to explicitly include spatial representation of a79

migration corridor. Parasite aggregation, as well as abundance, is allowed to change dynam-80

ically in space and time as a consequence of multiple interacting demographic, spatial, and81

epidemiological processes. First, we introduce the model and then we explore the model-82

predicted dynamics under a range of parameters. These simulation exercises provide new83

insights, such as the potential for parasite-mediated migratory stalling, and hint at the po-84

tential for broader application of the model in future studies.85

4



Table 1: Abundance variables∗ in the migratory host-macroparasite model.

Symbol Description

pi Abunance of stationary hosts with i parasites at (x, t)

N =
∑∞

i=0 pi Abundance of the total stationary host population at (x, t)

P =
∑∞

i=0 ipi Abundance of the total parasites on stationary hosts at (x, t)

ri = pi/N Proportion of stationary hosts with i parasites

m = P/N Mean parasite burden of stationary hosts

A Variance-to-mean ratio (VMR) of parasites on stationary hosts

L Density of infectious parasite larvae in the environment (section 2.2)

∗Variables are all dependent on space and time (i.e., pi = pi(x, t)) but we have dropped the (x, t)
for brevity. The variable for stationary hosts is shown, but the same variable exists for moving
hosts, denoted by ˆ.

2. Model86

We develop a model that tracks changes in host abundance, parasite burden, and the87

aggregation of parasites along a one-dimensional migration corridor using a system of partial88

differential equations (PDEs). The model includes potential impacts of parasite burden on89

the migratory ability of hosts by dividing the host population into two categories: those90

that are moving at a constant speed and those that are stationary. We consider the rate at91

which hosts change from moving to stationary (i.e., stopping) to be a function of parasite92

burden. We also consider how the aggregation of parasites in the host population might93

change as the host population migrates (Adler and Kretzschmar, 1992; Kretzschmar and94

Adler, 1993). In the following section, we develop equations describing the spatiotemporal95

changes in host abundance, mean parasite burden, and the variance-to-mean ratio in the96

parasite distribution among hosts.97

2.1. Birth, death, stopping, and starting98

Following the approach of Anderson and May (1978) and Kretzschmar and Adler (1993),99

we begin with a system of differential equations that describe the number of hosts with i100

parasites, pi. We extend the model of Kretzschmar and Adler (1993) to include a spatial101
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component, and distinguish moving and stationary hosts, where pi(x, t) is the number of102

stationary hosts with i parasites at location x and time t, and p̂i(x, t) is the number of103

moving hosts at location x and time t. For all variables, we use ˆ to denote the moving104

population. Moving hosts stop at parasite-dependent rate γi and stationary hosts start105

moving at constant rate ω. Other parameters in the model do not directly depend on106

whether hosts are moving or stationary. Hosts are born parasite-free and stationary at rate107

β; we assume the host birth is independent of parasite burden, although this assumption108

could be relaxed in future models (e.g., Dobson and Hudson, 1992). Hosts die at natural109

rate µ, with additive parasite-induced mortality at per-parasite rate α (Anderson and May,110

1978). Parasites attach at rate φ (see section 2.2), reproduce within the host at rate ρ, and111

die at rate σ. We assume that parasite demographic rates are density independent, except112

that the rate of parasite-induced host death depends on parasite burden. The basic model113

is described by four partial differential equations:114

∂p0

∂t
= β

∞∑
i=0

(pi + p̂i)− (µ+ φ)p0 + σp1 + γ0p̂0 − ωp0 (1)

∂pi
∂t

= − (µ+ φ+ i(α + σ + ρ)) pi + σ(i+ 1)pi+1 + φpi−1 + ρ(i− 1)pi−1 + γip̂i − ωpi (2)

∂p̂0

∂t
− c∂p̂0

∂x
= −(µ+ φ)p̂0 + σp̂1 − γ0p̂0 + ωp0 (3)

∂p̂i
∂t
− c∂p̂i

∂x
= − (µ+ φ+ i(α + σ + ρ)) p̂i + σ(i+ 1)p̂i+1 + φp̂i−1 + ρ(i− 1)p̂i−1 − γip̂i + ωpi

(4)

for all i ≥ 1. Descriptions of the variables and parameters are given in Tables 1 and 2,115

respectively. In Appendix A, we show that the solution to equations (1-4) and equation (5)116

are bounded, positive, and unique for all t ≥ 0, x ∈ Ω, and i ∈ {1, . . . , I}, where I is some117

number of parasites larger than the carrying capacity of hosts, provided pi(0, x), p̂i(0, x),118
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Table 2: Parameters in the migratory host-macroparasite model.

Symbol Description Baseline value Units

β Host birth 0 yr−1

µ Natural host mortality 0 yr−1

φ Parasite attachment see section 2.2 yr−1

α Parasite-induced host mortality 0.1 parasite−1 yr−1

ρ Within-host parasite reproduction 0 parasite−1 yr−1

σ Within-host parasite mortality 5 parasite−1 yr−1

κ Production of free-living parasites 1 yr−1

λ Infection probability 0.01

µL Mortality of free-living parasites 5 yr−1

c Migration speed 10 000 km yr−1

γ Stopping rate 1 yr−1

θ Per-parasite increase in stopping 0 parasite−1 yr−1

ω Starting rate 1 yr−1

and L(0, x) are non-negative, continuously differentiable, and integral in R. Although I in119

the system of equations (1-4) above is infinite (as parasite attachment can always lead to120

hosts with more parasites), considering I finite or I = +∞ are equivalent if the distribution121

of parasites among hosts has finite moments (Appendix A.4).122

2.2. Attachment rate123

The per-host attachment of parasites takes place at rate φ, in proportion to the number124

of infectious parasites at (x, t). We derive a formula for φ by considering a transmission stage125

of larval parasites, L(x, t), that are free-living, such as eggs, spores, or cysts. These larval126

parasites exist outside of the (primary) host and are assumed to be stationary relative to127

the distances moved by the migratory host population. The dynamics of the larval parasites128

are described by:129

∂L

∂t
= κ(P + P̂ )− µLL− λL(N + N̂), (5)
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where κ is the within-host rate of production of larvae by attached parasites, P and P̂ are130

the total densities of attached parasites on stationary and moving hosts, respectively, µL is131

the mortality rate of larval parasites, λ is the infection rate, and N and N̂ are the densities of132

stationary and moving hosts, respectively (see section 2.4). The per-host rate of attachment133

is therefore φ = λL.134

In cases where the development time of eggs, cysts, or spores is short, it may be justifiable135

to assume that the dynamics of parasite production and attachment occur on much faster136

timescales than the lifespans of hosts and parasites (Anderson and May, 1978). We refer to137

this as direct transmission because the time that parasite larvae spend in the environment138

is assumed to be negligible. In the case of direct transmission, we can assume that equation139

(5) is at equilibrium or quasi-equilibrium:140

L∗ =
κ(P + P̂ )

µL + λ(N + N̂)
, (6)

in which case the attachment rate becomes:141

φ = λL∗ =
κ(P + P̂ )

µL/λ+N + N̂
. (7)

The timescale assumption eliminates the need to track the dynamics of L explicitly. However,142

we have chosen to model L explicitly because the infection rate of moving hosts is sensitive143

to the difference between infection and mortality rates of free-living larvae, allowing for144

dynamics like migratory escape.145

2.3. Movement status146

Hosts are classified as either stationary or moving. Moving hosts migrate at a constant147

speed, c, regardless of the number of parasites they harbour, but hosts stop moving at148

parasite-dependent rate γi and stationary hosts start moving at constant rate ω. We assume149

that the stopping rate increases linearly with the number of parasites in or on a host: γi =150
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γ + θi, where θ is the per-parasite increase in the stopping rate. Although a saturating151

stopping rate may be more realistic, once γi becomes much greater than ω, most hosts will152

be stationary and the rate of stopping becomes biologically irrelevant. We assume for our153

analysis that the rate of starting does not depend on parasites, but depending on the system154

of interest, ω could also be a function of parasite burden. For an initial exploration of155

the model’s behavior, this seems to be a biologically reasonable assumption because if an156

individual’s ability to migrate is adversely affected by parasites, they may still experience157

the drive to complete the migration, but as parasite burden increases their progress will be158

hindered as they make increasingly frequent stops.159

2.4. Equations for the total population size160

We can write equations for the total host population (N and N̂) and total parasite161

population (P and P̂ ) at (x, t) by summing equations for pi and p̂i over all possible numbers162

of parasites (Table 1). The aggregate equations are:163

∂N

∂t
= β(N + N̂)− (µ+ ω)N − αP + γN̂ + θP̂ (8)

∂P

∂t
= ρP − (µ+ ω + σ)P + φN + γP̂ − αN

∞∑
i=0

i2ri + θN̂
∞∑
i=0

i2r̂i (9)

∂N̂

∂t
− c∂N̂

∂x
= −(µ+ γ)N̂ − (α + θ)P̂ + ωN (10)

∂P̂

∂t
− c∂P̂

∂x
= ρP̂ − (µ+ σ + γ)P̂ + φN̂ + ωP − N̂(α + θ)

∞∑
i=0

i2r̂i, (11)

where ri and r̂i are the proportion of stationary and moving hosts, respectively, harbouring i164

parasites (Table 2). The original model in equations (1-4) cannot be completely described by165

the above equations because the summations over ri require information on the distribution166

of parasites among hosts.167
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2.5. Mean parasite burden and the variance-to-mean ratio168

The mean parasite burden is the expected number of parasites that a host would have. To169

provide a more biologically intuitive measure of the infection level, we can rewrite equations170

(8-11) as a function of the mean parasite burdens per host, m and m̂. The variables m and171

m̂ are well defined because N and N̂ remain positive for all t and x (Appendix A). Using172

the chain rule:173

∂m

∂t
=

1

N

∂P

∂t
− m

N

∂N

∂t
. (12)

We also introduce the variance-to-mean ratio (VMR), A, which describes the aggregation174

of parasites among hosts. We can write the summations in equations (8-11) in terms of the175

VMR:176

∞∑
i=0

i2ri = variance +m2 = m(A+m). (13)

Calculating the change in mean number of parasites per host using equation (13) we arrive177

at:178

∂N

∂t
= β(N + N̂)− (µ+ ω + αm)N + (γ + θm̂)N̂ (14)

∂m

∂t
= ρm+ φ−m

(
σ + αA+ β

(
N + N̂

N

))
+
N̂

N

(
γ(m̂−m) + θm̂(Â+ m̂−m)

)
(15)

∂N̂

∂t
− c∂N̂

∂x
= −

(
µ+ γ + (α + θ)m̂

)
N̂ + ωN (16)

∂m̂

∂t
− c∂m̂

∂x
= ρm̂+ φ− m̂

(
σ + (α + θ)Â

)
+
N

N̂
ω(m− m̂). (17)

As previously mentioned, macroparasites are often aggregated among hosts with a distri-179

bution that is well described by the negative binomial (Shaw et al., 1998). Thus, we proceed180

by assuming that parasites are distributed according to the negative binomial with mean181
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parasite burden m and overdispersion parameter k. The VMR is related to the overdisper-182

sion parameter by k = m/(A − 1). Although many macroparasite models assume that k is183

constant (and therefore the VMR changes predictably with the mean) (e.g., Anderson and184

May, 1978; May, 1978; Krkošek et al., 2011), we do not make this simplifying assumption185

because we expect that the aggregation of parasites among hosts will change in space and186

time with parasite-mediated migratory behaviour and parasite-induced host mortality. In187

the following section, we follow the approach of Kretzschmar and Adler (1993) and derive188

the equation for the VMR as an additional dynamic variable.189

2.6. Variance-to-mean ratio as a dynamic variable190

We derived equations for the change in the VMR of parasites on stationary and moving191

hosts, A and Â, respectively, following the approach of Kretzschmar and Adler (1993). The192

derivation of the VMR equations, and the general form that can be applied for parasite193

distributions other than the negative binomial, can be found in Appendix B. If we proceed194

with the assumption that parasites are distributed according to the negative binomial, we195

can write the equations for the dynamic VMR as:196

∂A

∂t
= βm

(
N + N̂

N

)
+ 2ρ+ (1− A)

(
φ

m
− ρ+ σ + Aα

)
+
N̂m̂

Nm

[
θ
(
Â(3m̂+ 2Â− 1− A− 2m) + (m̂−m)2 − Am̂

)
+ γ
(
m̂+ Â− A− 2m+

m2

m̂

)]
(18)

∂Â

∂t
− c∂Â

∂x
=2ρ+ (1− Â)

(
φ

m̂
− ρ+ σ + Â(α + θ)

)
+
Nm

N̂m̂
ω

(
m+ A− Â− 2m̂+

m̂2

m

)
(19)

The complete system describing the spatial and temporal dynamics of hosts and parasites197

under the negative binomial assumption is described by equations (14-17) and (18-19).198
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3. Simulations and results199

In this section, we illustrate how migration can affect parasite burden and the impor-200

tance of including a dynamically changing VMR using simulations of the host-macroparasite201

model introduced in section 2. In its basic form, the model captures the spatiotemporal202

disease dynamics along the migration corridor but does not consider the full annual migra-203

tion cycle, including overwintering and breeding. However, in section 3.4 we also illustrate204

how the model can be extended to consider breeding and overwintering seasons when a host205

population is not migrating.206

3.1. Simulation methods207

We simulated the model over a discrete space-time grid using a numerical scheme that,208

at each time step, split the problem between two different processes: (1) spatial dynamics of209

moving populations and (2) temporal dynamics of birth, mortality, and switching movement210

status. This approach is known as operator splitting in the numerical solution of advection-211

diffusion-reaction equations (Hundsdorfer and Verwer, 2013). We considered a migration212

corridor that was long enough to accommodate migrants who moved for the entire simulation213

(migration season), which eliminated the effect of boundary conditions. An alternative214

approach that may be more appropriate if the end of the migration occurred at a certain215

point in space would be to consider an absorbing boundary. For details of our numerical216

methods, see Appendix C.217

The model we have described is general, and different parameterizations make it adapt-218

able to a variety of life-histories of both the parasite and host. For our initial exploration219

of the dynamics, we considered a theoretical population migrating 2000 km along a one-220

dimensional migration corridor, with a spatial grid consisting of steps ∆x = 1 km in length.221

First, we consider the migratory season only when hosts have left their breeding grounds222

and therefore host reproduction is β = 0 yr−1. In section 3.4, we consider β > 0 during223

a breeding season. Other parameters were varied from their baseline values (Table 2) in224
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sensitivity analyses exploring their effect on the dynamics, with details given in the relevant225

sections below. The migration period lasted 0.2 yr (or 73 days), simulated using a time step226

of ∆t = 0.0001 yr.227

We initiated all simulations with a host population that had a peak abundance of 1000228

individuals at the start of the migration (arbitrarily set at 130 km) and a Gaussian spatial229

distribution with a standard deviation of 30 km. We added one individual to both the initial230

moving and stationary host populations to ensure the problem was well posed; we required231

that N and P be positive in order to define m and A (Appendix A) and to avoid numerical232

issues when host abundance was zero due to the ratios in equations (18-19). This meant233

that host abundance was never exactly zero in our simulations. We assumed an initial234

parasite burden of m(x, 0) = m̂(x, 0) = 5 parasites per stationary and moving host with235

overdispersion of k = 0.8, giving a VMR of A(x, 0) = Â(x, 0) = 7.25. The initial density of236

free-living parasites was L(x, 0) = 1 km−1.237

3.2. Parasite burden of moving and stationary populations238

We contrasted the parasite dynamics of non-migratory and migratory host populations239

with the production of free-living parasites ranging from κ = 0 to κ = 10 parasite−1 yr−1 and240

the within-host reproduction ranging from ρ = 0 to ρ = 10 parasite−1 yr−1. We hypothesized241

that increases in ρ would affect parasite burdens of stationary and migrating hosts in a similar242

way because within-host reproduction of parasites would track the movement of migratory243

hosts. In contrast, increases in κ would emphasize any differences in parasite dynamics244

between stationary and migrating hosts because migratory hosts will move away from areas245

where free-living parasites accumulate.246

For these simulations, we set γ = ω = 0 and θ = 0 so that hosts did not switch between247

stationary and moving. The initial non-migratory host population was entirely stationary248

and remained so throughout the simulation. The initial migratory host population was249

entirely moving and therefore migrated at the constant speed c for the duration of the250

simulation. We report the host abundance, parasite burden, VMR, and density of free-living251
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Figure 1: Host abundance for a non-migratory population (a; red) and a migratory host population that
migrates 2000 km (b; blue) from t = 0 (orange/light blue) to t = 0.2 yr (dark red/blue). Parasite burdens
declined in both cases but were much lower at the end of the migration season for migratory populations
(e) than non-migratory populations (d), due to migratory escape from the buildup of free-living parasites
(j,k). Dotted lines correspond to regions in space where host abundance was less than one individual. The
change over time in variables at peak host abundance is shown on the right, emphasizing differences between
migratory (red) and non-migratory (blue). Parameters for the simulation are given in Table 2, with the
exception of ω = 0, γ = 0, ρ = 0, and κ = 10. See https://rawgit.com/sjpeacock/Migration_model/

master/MigVsStat.html for an animated version.
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parasites after 0.2 yr for the non-migratory and migratory populations (Fig. 1). These252

variables correspond to the stationary and moving populations for the non-migratory and253

migratory simulations, respectively, because hosts were not allowed to switch movement254

status in these simulations.255
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Figure 2: The host population (a,e), parasite burden (b,f), VMR (c,g), and density of free-living parasites
over time for increasing within-host parasite reproduction (ρ, left) and production of free-living parasites (κ,
right). As for the right-hand column of Fig. 1, dark red lines correspond the non-migratory populations at
the initial location x0 = 130 km and the lighter blue lines correspond to the migrating populations at the
location of peak host abundance (i.e., x(t) = x0 + ct).

The effect of increasing within-host parasite production had similar effects for non-256

migratory and migratory populations, as we predicted. As ρ increased, host populations257
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declined more rapidly (Fig. 2a), parasite burdens increased more rapidly (Fig. 2b), and258

parasites were more aggregated among hosts (Fig. 2c). The build-up of free-living parasites259

at the location of the non-migratory host population was higher (Fig. 2d) and resulted in260

slightly higher parasite burdens on non-migratory hosts than on migratory hosts.261

Increases in κ also led to lower host densities, but the effect was much larger for non-262

migratory hosts (Fig. 2e). Parasite burden was higher for non-migratory hosts than migra-263

tory hosts when κ > 0 (Fig. 1, Fig. 2f). While increasing ρ resulted in a higher VMR (Fig.264

2c), increasing κ had the opposite effect (Fig. 2g); parasites were less aggregated because265

infection by free-living parasites occurred at random, evening out the parasite distribution266

among hosts. The simultaneous decline in host population (Fig. 2e), parasite burden (Fig.267

2f), and VMR (Fig. 2g) for both non-migratory and migratory populations suggest that268

the most heavily infected hosts are suffering parasite-induced mortality. The VMR declined269

more rapidly for non-migratory hosts than migratory hosts as κ increased (Fig. 2g) due to270

parasite-induced mortality culling heavily infected individuals. For non-migratory popula-271

tions, new infections may have been more important in lowering the VMR as the exposure272

to free-living parasites was much higher for non-migratory hosts (Fig. 2h).273

3.3. Effect of dynamic variance-to-mean ratio274

Kretzschmar and Adler (1993) were the first to consider modelling the VMR as an addi-275

tional dynamic variable. They found that hosts and parasites coexist at a stable equilibrium276

only if the VMR increases with increasing mean of the parasite distribution, due to the277

associated increase in per capita parasite death with higher parasite loads. However, they278

also found that in cases with very strong aggregation, parasites may be unable to effectively279

control the host population and the system is unstable. Therefore, to say something about280

stability, it is necessary to include the VMR as a dynamic variable whenever parasite bur-281

den affects host survival and therefore parasite survival. But what of our migratory model,282

where it is the transient dynamics during a migration season that are of interest? How does283

a dynamic VMR affect parasite burdens and host densities compared to simpler models?284
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To answer this question, we compared simulations using three variants of the model:285

(1) the Poisson model, assuming a Poisson distribution of parasites among hosts where the286

variance was always equal to the mean (i.e., A(x, t) = Â(x, t) = 1 and k → ∞), (2) the287

constant aggregation model, assuming a negative binomial distribution of parasites among288

hosts with a constant aggregation parameter of k = 0.8 such that A(x, t) = m(x, t)/k + 1289

and Â(x, t) = m̂(x, t)/k + 1, and (3) the dynamic VMR model given by equations (18-19).290

In a spatial context, we were most interested in how these models compared when parasites291

had a strong influence on the rate of host stopping. Therefore, we compared simulations292

under baseline parameter values (Table 2) with the exception of the per-parasite increase in293

stopping which we set at θ = 10.294

For each variant of the model, the parasite burden was always higher on stationary hosts295

than on moving hosts due to the tendency for infected hosts to have higher rates of stopping296

(Fig. 3b). This parasite-induced migratory stalling also led to a relatively high abundance297

of stationary hosts at the start of the migration, where parasite burdens were highest, and a298

long-tail that extended behind the moving population as hosts stopped along the migration299

route.300

The Poisson distribution led to the lowest host abundance (Fig. 3a) and the highest mean301

parasite burden (Fig. 3b) for the moving population. Under the Poisson model, parasites302

were more evenly distributed among hosts and so the prevalence of infection was higher for a303

given mean parasite burden. Thus, a larger proportion of the host population experienced an304

increase in stopping rates, leading to fewer moving hosts. Further, parasite-induced stopping305

was less effective at reducing the mean parasite burden of moving hosts, leading to higher306

mean parasite burdens among moving hosts.307

The constant aggregation and dynamic VMR models predicted very similar host densities308

along the migration (Fig. 3a), but there were slight differences in the parasite burdens (Fig.309

3b). As might be expected when migratory ability depends on parasite load, the dynamic310

VMR model predicted higher parasite burdens at the tailing edge of the moving population,311
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Figure 3: The spatial distribution of moving and stationary hosts (a; N̂(x, t) and N(x, t), respectively) and
their respective mean parasite burdens (b; m̂(x, t) and m(x, t)), part-way through a migration at t = 0.08 yr
(approx. 30 days). The full model given by equations (18-19) was simulated but the solutions for VMR and
the density of infectious parasite larvae in the environment are not shown. The per-parasite increase in the
rate of stopping was high (θ = 10), resulting in much of the host population being left behind and a lower
parasite burden on those hosts that continue to migrate. All other parameters were at their baseline values
(Table 2).

and lower parasite burden at the centre and leading edge of the moving population.312

3.4. Annual dynamics313

Thus far, we have focused on migration and ignored host reproduction and natural mor-314

tality. In many systems, hosts will migrate between breeding and overwintering grounds and315

parameters in the model may differ among these seasons. To illustrate how the model can be316

used to understand host-parasite dynamics over an annual cycle, we combined simulations317

using different parameters for each of four seasons within a year: breeding, fall migration,318

overwintering, and spring migration. During the breeding and overwintering seasons, we319

assumed that all hosts were stationary with γ = ω = 0 so that no hosts switched to migrat-320
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ing. During the breeding season, hosts reproduced at rate β = 2.5 yr−1, and for all other321

seasons we set β = 0 yr−1. At the beginning of the migration seasons, all hosts switched322

from stationary to moving at speed c = 10000 km yr−1. At the end of migration seasons,323

moving hosts and their parasites switched back to stationary wherever they were when the324

migration season ended, and remained there for the following breeding or overwintering sea-325

son. We ignored stopping, starting, and migratory stalling, keeping γ = ω = 0 and θ = 0326

for simplicity (this assumption could be relaxed in future analyses). Other parameters were327

set at their baseline values (Table 2) except for the mortality of free-living parasites, which328

we varied from µL = 0.5 to the baseline value of µL = 5 and host mortality which was329

highest during migration (µL = 0.1) and lowest during the breeding season (µ = 0.05) with330

overwintering intermediate between those two (µL = 0.08).331

We report the host abundance and parasite burden over a 100-year simulation at the332

location of peak host abundance in space. The peak host abundance was centred at the333

breeding grounds during the breeding season (i.e., 130 km along the spatial corridor), at the334

overwintering grounds during the overwintering season (i.e., 2130 km), and moved in between335

those two locations during the migration seasons. At baseline parameter values (Table 2), we336

observed cyclic dynamics in host abundance and parasite burden with a period of ≈ 8 years337

(Fig. 4a). Parasite burden tended to lag a year or so behind host abundance, which has also338

been observed in previous host-macroparasite models that display cyclic dynamics (Dobson339

and Hudson, 1992). Within a given year, we saw an increase in host abundance during the340

breeding season and a decline in host abundance throughout the rest of the year due to341

natural and parasite-induced mortality (Fig. 4b). During the first decade of the simulations,342

the parasite burden increased during the breeding season, declined during migration, and343

increased again during overwintering. However, over the longer term, this annual pattern did344

not hold (Fig. 4b), perhaps due to the buildup of free-living parasites along the migration345

route eroding some benefit of migratory escape.346

To understand the effect of migration on multi-year host-parasite dynamics, we compared347
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the dynamics of our spatially explicit migration model to the dynamics of the non-spatial348

model developed by Kretzschmar and Adler (1993) that was otherwise the same (i.e., included349

dynamic VMR). For the non-spatial simulations, we still assumed four seasons within the350

year but the “migratory” seasons did not include the movement of hosts. This altered the351

dynamics in that the density of free-living parasites that hosts encountered only changed352

due to host and parasite dynamics but not due to host movement away from larval patches353

as for the spatial model. We used the same parameterization as for spatial model in order354

to isolate the effect of adding a spatial component on host-parasite dynamics.355

Predictions from the non-spatial model showed similar qualitative behaviour as our spa-356

tial model when the mortality of free-living parasites was high; populations underwent cycles357

with approximately the same amplitude and period whether or not spatially explicit migra-358

tion was included (Fig. 5a). When the mortality of free-living parasites was low, both models359

predicted lower host abundances (Fig. 5b), likely due to a higher abundance of free-living360

parasites in the environment regulating host populations. However, our spatial model pre-361

dicted lower and more frequent peaks in host abundance than the non-spatial model (Fig.362

5b). The frequency of cycles was more similar to the high µL scenario than for the non-363

spatial model, likely because the migration away from infection hotspots mitigated the effect364

of low free-living parasite mortality. Conversely, in the non-spatial model, hosts could not365

move away from high densities of free-living parasites that accumulate when the mortality366

of free-living parasites is low, and so the dynamics were quite different under low µL than367

under high µL.368

4. Discussion369

Animal migrations may have profound implications for parasite dynamics in wildlife by370

spreading parasites to new areas, allowing hosts to escape infection hotspots, or culling371

infected individuals from host populations (Altizer et al., 2011). These mechanisms may372

influence parasite burdens of migratory hosts in opposing ways, making it difficult to under-373
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stand the net effect of migration on animal health. We recognized a need for a modelling374

framework that could incorporate host migration and macroparasite dynamics to predict the375

conditions under which we might expect, for example, migratory escape from parasites. In376

this paper, we developed such a framework and showed how it builds upon previous models377

of host-parasite dynamics by explicitly accounting for parasite burden and aggregation, in-378

cluding spatial dynamics, and allowing the distribution of parasites among hosts to change379

dynamically in space and time.380

Migration can be energetically taxing, and the extra cost of infection may compromise381

a host’s ability to keep up with the herd (Risely et al., 2017). Our analysis revealed a phe-382

nomenon we have termed parasite-induced migratory stalling, whereby parasite-impacts on383

migratory ability can lead to positive feedbacks in parasite transmission that may result in384

the host population halting their migration. Our model is the first to exhibit this behav-385

ior because it includes two key features that previous models (e.g., Hall et al., 2014; Johns386

and Shaw, 2015) were lacking: transmission dynamics during migration and spatiotempo-387

ral dynamics of the parasite burden of hosts. These features allowed us to explore how388

parasite-mediated increases in the rate that hosts stop moving affect migratory ability and389

parasite burdens. When the rate of stopping increased with parasite burden, we found that390

hosts tended to accumulate in the stationary category. In the case of parasites that are391

environmentally transmitted, moving hosts can escape infection hotspots while stationary392

hosts experience higher infection pressure. We also observed spatial structure in the parasite393

burden even within the moving host population; hosts at the leading edge of the migration394

tended to have lower parasite burdens than hosts at the tailing edge, while stationary hosts395

had even higher parasite burdens. Our model simulations were not specific to any biological396

system, but specific parameterizations could be adopted to understand, for example, the po-397

tential for migratory stalling of birds at stopover sites, which tend to be infection hotspots,398

or the risk of migratory stalling for wildlife in contact with domesticated animals that can399

act as reservoir hosts.400
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Our model predictions are consistent with several empirical studies of parasite burdens401

in migratory wildlife. In species that show partial migration, where only certain popula-402

tions display migratory behaviour, sedentary populations often have higher parasite burdens403

across taxa. For example, in Canada, migratory elk are less likely to be infected with the404

trematode Fascioloides magna than resident populations (Pruvot et al., 2016). Similarly,405

the migration of red deer in Norway is associated with lower tick abundance (Qviller et al.,406

2013). The loss of migratory behaviour in certain populations of monarch butterflies in the407

USA has led to higher prevalence of protozoan parasites than in migratory conspecifics (Sat-408

terfield et al., 2015). Further studies have shown a negative relationship between the distance409

migrated and parasite prevalence (e.g., Bartel et al., 2011). Globally, animal migrations are410

under increasing pressure from anthropogenic environmental change with observed declines411

in migratory behaviour (Wilcove and Wikelski, 2008). Quantitative models such as ours412

allow scientists to predict the potential consequences for animal health.413

Although limited in scope, the annual simulations illustrated how our model could be414

used to understand seasonal effects of migration and host breeding on parasite dynamics,415

and the long-term implications of seasonal or climatic changes in parameters such as the416

mortality of free-living parasites. We found that host and parasite populations tended to417

cycle on long timescales, but the exact period of oscillations depended on the mortality418

of free-living parasites. Red grouse have classically illustrated such population cycles and419

experimental studies have suggested that parasites may be the cause of these cycles (Hud-420

son and Greenman, 1998), although other factors are likely also at play (Redpath et al.,421

2006). Many wildlife populations display such cycles, including migratory species such as422

caribou (Ferguson et al., 1998), leaving it open for future work to examine possible links423

with parasitism. If parasites are contributing to population cycles, then our model simu-424

lations suggest that changes to the mortality of free-living parasites due to, for example,425

climate change (Dobson et al., 2015), may have important consequences for the period of426

host population cycles. The presence of migratory behaviour tended to mitigate changes to427
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population cycles that resulted from reduced parasite mortality, suggesting that migratory428

species might be more resilient to changes in parasite survival. Alternatively, higher survival429

of free-living parasites combined with the loss of migratory behavior associated with global430

anthropogenic change (Wilcove and Wikelski, 2008) could lead to dramatic changes in host431

population cycles.432

One important aspect of migration that is missing from our model is the collective be-433

havior of migratory animals. We assume that an individual’s movement depends on parasite434

burden but is independent of what other animals in the herd, school, or flock are doing. In435

reality, many animal groups move as a cohesive unit to avoid predation and increase foraging436

efficiency (Alexander, 1974). Thus, a single individual with a high parasite burden may be437

left behind, but perhaps healthy individuals would hang back if the prevalence of parasitism438

in the herd was high. This kind of collective behavior may exacerbate the effect of migratory439

stalling that we have described. Models with simple rules for attraction, repulsion, and ori-440

entation among neighbours in a herd can reproduce the seemingly complex group dynamics441

observed in nature (e.g., Couzin et al., 2002; Eftimie et al., 2007). Incorporating the effects442

of parasites into these simple rules may provide insight into how collective dynamics would443

affect the inferences we have made, and is an area for future research.444

The model we have presented is a general framework for host-macroparasite dynamics445

along a spatial domain, such as a migration corridor. Because of its generality, it can be446

adapted to answer a number of important questions facing wildlife disease ecology. What447

are the conditions under which we might expect migratory escape, migratory culling, or448

migratory stalling? How might the effect of rising temperatures on developmental rates of449

parasites and/or migration timing of hosts affect the health of migrating animals? More450

than just changing parameters, the structure of the model can be adapted in various ways;451

for example, to examine how reservoir hosts, such as domestic animals, influence parasite452

dynamics of sympatric migratory wildlife. We have provided the basic framework for these453

and other future studies that will shed light on how parasites might affect wildlife populations454
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in a changing world.455
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Krkošek, M., Gottesfeld, A., Proctor, B., Rolston, D., Carr-Harris, C., Lewis, M.A., 2007.519

Effects of host migration, diversity and aquaculture on sea lice threats to Pacific salmon520

populations. Proceedings of the Royal Society B 274 (1629), 3141–3149. doi:10.1098/rspb.521

2007.1122.522

Kutz, S.J., Checkley, S., Verocai, G.G., Dumond, M., Hoberg, E.P., Peacock, R., Wu, J.P.,523

Orsel, K., Seegers, K., Warren, A.L., Abrams, A., 2013. Invasion, establishment, and524

28



range expansion of two parasitic nematodes in the canadian arctic. Global Change Biology525

19 (11), 3254–3262. doi:10.1111/gcb.12315.526

Lutscher, F., 2002. Modeling alignment and movement of animals and cells. Journal of527

Mathematical Biology 45 (3), 234–260. doi:10.1007/s002850200146.528

May, R.M., 1978. Host-Parasitoid Systems in Patchy Environments: A Phenomenological529

Model. Journal of Animal Ecology 47 (3), 833–844.530

May, R.M., Anderson, R.M., 1991. Infectious Diseases of Humans. Oxford University Press,531

Oxford.532

Milner, F.A., Zhao, R., 2008. A deterministic model of schistosomiasis with spatial structure.533

Mathematical Biosciences and Engineering 5 (3), 505–522. doi:10.3934/mbe.2008.5.505.534

Morgan, E.R., Medley, G.F., Torgerson, P.R., Shaikenov, B.S., Milner-Gulland, E.J., 2007.535

Parasite transmission in a migratory multiple host system. Ecological Modelling 200 (3-4),536

511–520. doi:10.1016/j.ecolmodel.2006.09.002.537

Nendick, L., Sackville, M., Tang, S., Brauner, C.J., Farrell, A.P., 2011. Sea lice infection538

of juvenile pink salmon (Oncorhynchus gorbuscha): effects on swimming performance and539

postexercise ion balance. Canadian Journal of Fisheries & Aquatic Sciences 68 (2), 241–540

249. doi:10.1139/F10-150.541

Pruvot, M., Lejeune, M., Kutz, S., Hutchins, W., Musiani, M., Massolo, A., Orsel, K., 2016.542

Better Alone or in Ill Company? The Effect of Migration and Inter-Species Comingling543

on Fascioloides magna Infection in Elk. Plos One 11 (7), e0159319. doi:10.1371/journal.544

pone.0159319.545

Qviller, L., Risnes-Olsen, N., Bærum, K.M., Meisingset, E.L., Loe, L.E., Ytrehus, B., Vilju-546

grein, H., Mysterud, A., 2013. Landscape Level Variation in Tick Abundance Relative to547

Seasonal Migration in Red Deer. PLoS ONE 8 (8). doi:10.1371/journal.pone.0071299.548

29



Redpath, S.M., Mougeot, F., Leckie, F.M., Elston, D.A., Hudson, P.J., 2006. Testing the549

role of parasites in driving the cyclic population dynamics of a gamebird. Ecology Letters550

9 (4), 410–418. doi:10.1111/j.1461-0248.2006.00895.x.551

Riley, S., Eames, K., Isham, V., Mollison, D., Trapman, P., 2015. Five challenges for spatial552

epidemic models. Epidemics 10, 68–71. doi:10.1016/j.epidem.2014.07.001.553

Risely, A., Klaassen, M., Hoye, B.J., 2017. Migratory animals feel the cost of getting sick: a554

meta-analysis across species. Journal of Animal Ecology In press. doi:10.1111/ijlh.12426.555

Salsa, S., 2015. Partial differential equations in action, volume 86. Springer-Verlag, Milan,556

Italy, second edition. doi:10.1007/978-3-319-15093-2.557

Satterfield, D.A., Maerz, J.C., Altizer, S., 2015. Loss of migratory behaviour increases558

infection risk for a butterfly host. Proceedings of the Royal Society B: Biological Sciences559

282, 20141734. doi:10.1098/rspb.2014.1734.560

Shaw, D.J., Grenfell, B.T., Dobson, A.P., 1998. Patterns of macroparasite aggregation in561

wildlife host populations. Parasitology 117, 597–610. doi:10.1017/S0031182098003448.562

Wilcove, D.S., Wikelski, M., 2008. Going, going, gone: Is animal migration disappearing?563

PLoS Biology 6 (7), 1361–1364. doi:10.1371/journal.pbio.0060188.564

30



Appendix A. Well posedness and positivity565

In this appendix, we prove the well posedness and positivity of the solution to equations566

(1-5) and show the existence of N , m, and A and their moving counterparts. We start by567

considering the problem posed by equations (1-5), but instead of considering i up to an568

infinite number of parasites, we assume that the number of parasites per host is bounded569

by some large number I (e.g., the carrying capacity for macroparasites on hosts). Equations570

(1-5) then become:571



∂p0
∂t

= β
∑I

i=0(pi + p̂i)− (µ+ λL+ ω)p0 + σp1 + γp̂0

∂pi
∂t

= (λL+ ρ(i− 1))pi−1 − (µ+ λL+ i(α + σ + ρ) + ω)pi + σ(i+ 1)pi+1 + (γ + iθ)p̂i

∂pI
∂t

= (λL+ ρ(I − 1))pI−1 − (µ+ λL+ I(α + σ + ρ) + ω)pI + (γ + Iθ)p̂I

∂p̂0
∂t

+ c∂p̂0
∂x

= ωp0 − (µ+ λL+ γ)p̂0 + σp̂1

∂p̂i
∂t

+ c∂p̂i
∂x

= (λL+ ρ(i− 1))p̂i−1 − (µ+ λL+ i(α + σ + ρ) + γ + iθ)p̂i + ωpi + σ(i+ 1)p̂i+1

∂p̂I
∂t

+ c∂p̂I
∂x

= (λL+ ρ(I − 1))p̂I−1 − (µ+ λL+ I(α + σ + ρ) + γ + Iθ)p̂I + ωpI

∂L
∂t

= κ
∑I

i=1 i(pi + p̂i)− µLL− λL
∑

i=0 Ipi + p̂i

(A.1)

for all x ∈ Ω = R, t > 0, i ∈ {1, . . . , I − 1}, for some I ∈ N large enough, with the initial572

conditions pi(0, x) = p0
i (x), p̂i(0, x) = p̂0

i (x), and L(0, x) = L0(x) given for all i ∈ {0, . . . , I}573

such that p0
i , p̂

0
i and L0 are non-negative, continuously differentiable, and integral in R. More574

assumptions on the positivity of the initial conditions follow.575

First, we prove the local existence of problem (A.1) and the uniqueness of a maximal so-576

lution, satisfying the initial condition (and boundary condition, when needed) using classical577

arguments as in Salsa (2015, Section 11.2.2) and Lutscher (2002). Then we prove that when578

they exist, the solutions are non-negative (assuming the initial conditions are non-negative)579

and can not blow up in time. This will prove the existence and uniqueness of a global so-580

lution. Using the Gronwall Lemma, we prove that each pi is bounded from below by an581
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exponential function in time, which proves that as soon as the initial condition is positive,582

the solution is positive for all time. We then deduce that N > 0, N̂ > 0, P > 0 P̂ > 0 and583

m, m̂, A, and Â are well defined for all time.584

Appendix A.1. Existence and uniqueness of the solutions for small time585

Using the methods of characteristics and the Banach fixed point theorem (see Sec-586

tion 11.2.2 of Salsa, 2015; Lutscher, 2002), we prove that there exists a smooth solution587

(p0, p1, . . . , pI , p̂0, . . . , p̂I , L) defined on some interval [0, T1] for T1 small enough.588

One starts by considering the problem along the characteristics. To make things clearer589

we will denote by u = (u0, . . . , uI , uI+1, . . . , u2I+1, u2I+2) = (p0, . . . , pI , p̂0, . . . , p̂I , L) and590

define c = (c0, . . . , c2I+2) = (0, . . . , 0, c, . . . , c, 0) as the migration speed associated with591

each ui. Now for each i ∈ {0, . . . , 2I + 2}, let xi(t) = cit + constant. Then, denoting592

vi(t) := ui(t, xi(t)), vi solves the following ODE:593

v̇i = fi(u(t, xi(t))) (A.2)

with fi being the reaction term of ui in problem (A.1). The · on vi stands for the derivative594

with respect to time. Integrating equation (A.2) with respect to time, we obtain for each i595

ui(t, xi(t)) = ui(0, xi(0)) +

∫ t

0

f(u(s, xi(s)))ds. (A.3)

Notice that this argument can be adapted if x ∈ Ω ( R and instead of going from 0 to t596

on the right hand side above, we will go from t0 to t with xi(t0) on the left boundary of the597

domain (as the population migrate from left to right).598

Let C0((0, T1), B(u0, β)) be the set of continuous function defined for all t ∈ [0, T1], taking599

its values in the ball centred at u0, a continuous function, with radius β > 0. Then the second600

step is to prove that there exists some β, T1 > 0 such that if u ∈
(
C0((0, T1), B(u0, β)

)m
,601

with m = 2I + 2, then the right hand side of (A.3) also belongs to
(
C0((0, T1), B(u0, β)

)m
.602
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We know that f is locally Lipschitz, thus for all u0 ∈ (B(0, β))m and u ∈
(
B(u0, β)

)m
, there603

exists kβ > 0 such that604

||f(u)|| ≤ kβ||u|| ≤ kβ · 2β := M. (A.4)

Choose T1 = β/M(= 1/(2 · kβ), then for all t ∈ (0, T1),605

ui(0, xi(0)) +

∫ t

0

f(u(s, xi(s)))ds ∈ B(u0, β). (A.5)

Moreover, with the same choice of T1 above, one can prove that u 7→ u(0, xi(0))+
∫ t

0
f(u(s, x(s)))606

is a contraction. Using the Banach fixed point theorem, we obtain the existence and unique-607

ness of the maximal solution of problem (A.1) defined for all t ∈ (0, T ), for some T > 0 and608

x ∈ R (or Ω ( R).609

One has thus proved the existence and uniqueness of a maximal mild solution of our610

problem defined for all t ∈ (0, T ), for some T > 0, and for all x ∈ R. To prove the existence611

of a classical solution (that is, a solution in C1), one can use the same argument with the612

initial condition (and boundary condition if Ω ( R) in C1 and f ∈ C1,1
loc and prove that the613

solution is integrable on R for all t ∈ (0, T ), for some T > 0 (as we assumed that the initial614

condition is integrable). Now one needs to prove that the solution of problem (A.1) exists615

for all time t ∈ R+, that is the solution can not blow up in finite time.616

Appendix A.2. Existence, uniqueness, and non-negativity of the solutions for all time617

First notice that all the components of the problem ui, i ∈ {0, . . . , 2I + 2} stay non-618

negative if the initial condition is non-negative. Indeed, if ui touches 0 and all the other619

functions uj, j 6= i stay non-negative, then d
dt
ui(t, xi(t)) ≥ 0 and thus ui stays non-negative.620

This argument can be applied to all ui, i ∈ {0, . . . , 2I + 2} to prove the non-negativity of621

our system.622
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Now one can study the behaviour of the total abundance of hosts at (x, t), considering623

N̄ =
I∑
i=0

pi + p̂i (A.6)

and then624

¯̄N(t) =

∫
Ω

N̄(t, x)dx <∞ (A.7)

Summing and integrating the PDEs from (A.1) we obtain that

d ¯̄N

dt
=−

∫
Ω

c ·
I∑
i=0

∂xp̂i(t, x)dx

−
∫

Ω

(µ− β)
I∑
i=0

(pi(t, x) + p̂i(t, x))dx

−
∫

Ω

[
(λL+ Iρ)(pI(t, x) + p̂I(t, x)) + α

I∑
i=1

i(pi(t, x) + p̂i(t, x))

]
dx (A.8)

Using the regularity of the solution, we know that for all t ∈ R+, −
∫

Ω
c·
∑I

i=0 ∂xp̂i(t, x)dx = 0,625

when Ω = R. In the case of bounded domain, for Dirichlet boundary conditions or periodic626

boundary conditions, the first term on the right-hand side is equal to or less than zero and627

because of the non-negativity of the solution we get628

d ¯̄N

dt
≤ −(µ− β) ¯̄N(t). (A.9)

Using Gronwall Lemma we obtain that629

¯̄N(t) ≤ ¯̄N(0)e−(µ−β)t (A.10)

which yields, for each i ∈ {0, . . . , 2I + 1}, ui(t, x) ≤ ¯̄N(0)e−(µ−β)t for all t ≥ 0, x ∈ Ω. This630

proves that the solution of problem (A.1) can not blow up in time and it is thus global in631

time, in the sense that there exists a unique maximal solution of problem (A.1) that exists632
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for all t > 0, x ∈ Ω.633

Moreover, notice that as soon as β < µ we obtain that ¯̄N is decreasing in time and thus634

for all i ∈ {0, . . . , 2I + 1}635

ui(t, x) ≤ ¯̄N(0) (A.11)

That is for all i ∈ {0, . . . , I}, pi and p̂i are bounded for all t ≥ 0, x ∈ Ω.636

Appendix A.3. Positivity of the solutions637

Using the same argument as in previous subsection, we can prove that for all t > 0, x ∈ Ω638

L(t, x) ≤ f(t) (A.12)

with f being a positive function defined for all t > 0. Then using equations (A.1) we obtain639

for each i ∈ {0, . . . , I},640

∂pi
∂t
≥ −(µ+ f(t) + i(α + σ + ρ) + ω)pi (A.13)

and641

dp̂i
dt

(t, ct+ x0) ≥ −(µ+ f(t) + i(α + σ + ρ) + γ + iθ)p̂i(t, ct+ x0). (A.14)

Using the Gronwall lemma once again, we obtain that for all i ∈ {0, . . . , I},642

pi(t, x) ≥ e−
∫ t
0 µ+f(s)+i(... )+ω)dspi(0, x) > 0 (A.15)

and643

p̂i(t, ct+ x0) ≥ e−
∫ t
0 µ+f(s)+i(... )+γ+iθ)dsp̂i(0, x0) > 0 (A.16)

for all t > 0, x ∈ Ω. This proves that as soon as the initial condition is positive, the solution644

is positive for all t > 0. Then the total population of stationary hosts NI(t, x) :=
∑I

i=0 pi645

is positive, the total population of moving hosts N̂I(t, x) :=
∑I

i=0 p̂i is positive, the total646
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population of parasites in/on stationary hosts PI(t, x) :=
∑I

i=0 ipi is positive, and the total647

population of parasites in/on moving hosts is P̂I(t, x) :=
∑I

i=0 ip̂i(t, x) is positive.648

Appendix A.4. System with N , m and A and their migratory counterpart649

Considering NI :=
∑I

i=0 pi, PI :=
∑I

i=0 ipi and QI =
∑I

i=0 i
2pi (see Appendix B for the650

definition of Q), we obtain the following system of partial differential equations for NI , PI ,651

QI and their moving counterparts (we omit the subscript I for N , P and Q and their moving652

counterparts for simplicity of notation):653



∂N
∂t

= β(N + N̂)− (µ+ ω)N − αP + γN̂ + θP̂

−pI(λL + p)

∂P
∂t

= λLN − (µ+ ω + σ − ρ)P − αQ+ γP̂ + θQ̂

−pI(λL(1 + I) + ρ(I2 + I))

∂Q
∂t

= (λL− αg′′′(1))N + (σ + 2λL+ 2α + ρ)P

− (µ+ 2σ + ω + 3α− 2ρ) + θĝ′′′(1)N̂ − 2θP̂ + (γ + 3θ)Q̂

−pI(λL(I2 + 2I + 1) + ρ(I3 + 2I + I))

∂N̂
∂t

+ c∂N̂
∂x

= ωN − (µ+ γ) N̂ − (α + θ)P̂

−pI(. . . )

∂P̂
∂t

+ c∂P̂
∂x

= ωP + (λL− (α + θ)ĝ′′′(1))N̂ − (µ+ σ + γ − 2(α + θ)− ρ)P̂ − 3(α + θ)Q̂

−pI(. . . )

∂Q̂
∂t

+ c∂Q̂
∂x

= ωQ+ (λL− (α + θ)ĝ′′′(1))N̂ + (σ + 2λL+ 2(α + θ) + ρ)P̂

− (µ+ 2σ + γ + 3(α + θ)− 2ρ)Q̂

−pI(. . . )

∂L
∂t

= κ(P + P̂ )− µLL− λL(N + N̂)

(A.17)
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Because the sums are finite, we end up with some extra terms depending on I and pI ,654

highlighted in bold, which do not appear in the main problem (14 - 19). However, assuming655

that for all n ∈ N,656

lim
I→+∞

I∑
i=0

inpi and lim
I→+∞

I∑
i=0

inp̂i (A.18)

exist for all t > 0, x ∈ Ω, we can define N∞ := limI→+∞NI , P∞ := limI→+∞ PI , Q∞ :=657

limI→+∞QI , and their moving counterparts. This assumption roughly means that the dis-658

tribution of parasites among hosts has finite moment, which is true, for instance, for the659

Poisson or negative binomial distributions. This assumption was implicitly made (at least660

up to n = 3) in Kretzschmar and Adler (1993). From this assumption we also obtain that661

for I large enough and for all n ∈ N,662

pI < I−n << 1 (A.19)

and thus when I is large enough, system (A.17) can be approximated by663



∂N
∂t

= β(N + N̂)− (µ+ ω)N − αP + γN̂ + θP̂

∂P
∂t

= λLN − (µ+ ω + σ − ρ)P − αQ+ γP̂ + θQ̂

∂Q
∂t

= (λL− αg′′′(1))N + (σ + 2λL+ 2α + ρ)P

− (µ+ 2σ + ω + 3α− 2ρ) + θĝ′′′(1)N̂ − 2θP̂ + (γ + 3θ)Q̂

∂N̂
∂t

+ c∂N̂
∂x

= ωN − (µ+ γ) N̂ − (α + θ)P̂

∂P̂
∂t

+ c∂P̂
∂x

= ωP + (λL− (α + θ)ĝ′′′(1))N̂ − (µ+ σ + γ − 2(α + θ)− ρ)P̂ − 3(α + θ)Q̂

∂Q̂
∂t

+ c∂Q̂
∂x

= ωQ+ (λL− (α + θ)ĝ′′′(1))N̂ + (σ + 2λL+ 2(α + θ) + ρ)P̂

− (µ+ 2σ + γ + 3(α + θ)− 2ρ)Q̂

∂L
∂t

= κ(P + P̂ )− µLL− λL(N + N̂)

(A.20)

which yields problem (14-19).664
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Appendix B. Derivation of dynamic equations for the VMR665

Following the derivation of the non-spatial model of Kretzschmar and Adler (1993), we666

introduce a third aggregate variable, Q =
∑
i2pi (and its migratory counterpart, Q̂). The667

following equations describing the change in Q and Q̂ were found by multiplying equations668

(1-4) by i2 and summing (as for P and P̂ ):669

∂Q

∂t
= −(µ+ 2σ + ω)Q+ (σ + 2φ)P + φN + γQ̂− αN

∞∑
i=0

i3ri + θN̂

∞∑
i=0

i3r̂i (B.1)

∂Q̂

∂t
− c∂Q̂

∂x
= −(µ+ 2σ + γ)Q̂+ (σ + 2φ)P̂ + φN̂ + ωQ− (α + θ)N̂

∞∑
i=0

i3r̂i. (B.2)

Applying the chain rule as above, we can get equations for u = Q/N and û = Q̂/N̂ . We670

can use a trick with probability generating functions to deal with the sums in equations671

(B.1-B.2). The sums can be expressed as:672

∞∑
i=0

i3ri = g′′′(1) + 3u− 2m, (B.3)

where g(z) is the probability generating function of the distribution of ri (e.g., the negative673

binomial distribution), and g′′′(1) is the third derivative evaluated at z = 1 (see Appendix674

II of Kretzschmar and Adler (1993)). Inserting equation (B.3) into equations (B.1-B.2) and675

solving for ∂u/∂t and ∂û/∂t− c ∂û/∂x, we get676
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∂u

∂t
=− u

(
2σ + β

(
N + N̂

N

))
+m(σ + 2φ) + φ− α(g′′′(1) + 3u− 2m− um)

(B.4)

+
N̂

N

[
θ (ĝ′′′(1) + 3û− 2m̂− m̂u) + γ(û− u)

]
∂û

∂t
− c∂û

∂x
= û

(
m̂(α + θ)− 2σ

)
+ m̂(σ + 2φ) + φ+ ω

N

N̂
(u− û) (B.5)

− (α + θ)(ĝ′′′(1) + 3û− 2m̂)

The VMR, A, can be expressed in terms of u and m:677

A =
variance

m
=

∞∑
i=0

i2ri −m2

m
=
u−m2

m
. (B.6)

We can use equation (B.6) to obtain a differential equation for A of the form:678

∂A

∂t
=

1

m

∂u

∂t
− u

m2

∂m

∂t
− ∂m

∂t
. (B.7)

Using equations (B.1-B.2), (15), and (17), and substituting u = m(A+m) and û = m̂(Â+m̂),679

we can write the equations for the change in the VMR:680
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∂A

∂t
= βm

(
N + N̂

N

)
− (A− 1)

(
σ +

φ

m

)
− α

(
g′′′(1)

m
+ 3(A+m)− (2 +m(A+m))− A(A+ 2m)

)
+

N̂

Nm

[
θ

(
ĝ′′′(1) + 3m̂(Â+ m̂)− m̂(2 +m(A+m))− m̂(Â+ m̂−m) (A+ 2m)

)

+ γ

(
m̂(Â+ m̂)−m(A+m)− (A+ 2m)(m̂−m)

)]
(B.8)

∂Â

∂t
− c∂Â

∂x
=(α + θ)

[
Â(3m̂− 3 + Â) + m̂(m̂− 3) + 2− ĝ′′′(1)

m̂

]
− (Â− 1)

(
σ +

φ

m̂

)
+ ω

Nm

N̂m̂

(
A+m+

m̂2

m
− Â− 2m̂

)
(B.9)

To apply the model in equations (14-17) and (B.8-B.9), we need to define g′′′(1) and681

ĝ′′′(1) by assuming a distribution of parasites among hosts. Defining the distribution still682

allows for the mean and VMR in the parasite burden to change in space and time, thus683

accounting for changes in the overdispersion.684

If we assume that parasites are distributed among hosts according to the negative bino-685

mial, then we can make the substitutions:686

g′′′(1) = m(m+ A− 1)(m+ 2(A− 1))

ĝ′′′(1) = m̂(m̂+ Â− 1)(m̂+ 2(Â− 1)) (B.10)

These substitutions simplify equations (B.8-B.9), yielding equations (18-19).687
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Appendix C. Numerical methods688

We numerically simulated model solutions on a discrete space-time grid where:689

x → xi ∈ {x0, x1, . . . , xnx}

t → tk ∈ {t0, t1, . . . , tnt}.

We set the grid spacing in the spatial domain, ∆x, based on the length of the migration690

route being considered such that nx was reasonably large but still computationally feasible.691

We then chose a sufficiently small time step that densities did not move more than one grid692

space to avoid numerical errors (i.e., the Courant-Friedrichs-Lewy condition; Courant et al.,693

1967). In general, the time step should be set to ∆t ≈ ν∆x/c, where 0 ≤ ν ≤ 1 is the694

Courant number and c is the migration speed. Note that if ∆t is exactly ∆x/c, then the695

numerical approximation to the advection equation (step 1 below) is exact. This was the696

case for our general simulations where we chose a migration speed of c = 10000 km yr−1
697

(Table 2), ∆x = 1 km, ∆t = 0.0001 yr, and ν = 1. By using the exact solution, we avoided698

the effect of “numerical diffusion”, whereby the numerical approximation of advection results699

in a spreading out of the population densities. We denote the numerical approximation of700

N̂(xi, tk) at point (i, k) on the grid as N̂i,k.701

At each time step in the numerical simulation of the model, we split the model equations702

into an advection processes, consisting of movement of migratory populations, and a reaction703

process, consisting of temporal change in population densities, consisting of host birth/death,704

parasite attachment/death, and switching status between migratory and stationary. As an705

example, equation (16) can be written as:706

∂N̂

∂t
= c

∂N̂

∂x︸ ︷︷ ︸
A

−
(
µ+ γ + (α + θ)m̂

)
N̂ + ωN︸ ︷︷ ︸

R
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where A is the advection process and R is the reaction process.707

We assumed Neumann boundary conditions where the derivative across the boundary708

is zero. This was simulated by adding a ghost node onto either end of our spatial grid, at709

i = −1 and i = nx + 1. The numerical algorithm proceeded as follows. For each time step k710

in 1 to nt:711

1. Force boundary conditions by setting N̂−1,k = N̂1,k and N̂nx+1,k = N̂nx−1,k.712

2. Solve ∂N̂A
∂t

= A with N̂A(xi, 0) = N̂i,k on [0,∆t] using a finite upstream differencing713

method (Hundsdorfer and Verwer, 2013).714

3. Solve ∂N̂R
∂t

= R with N̂R(xi, 0) = N̂A(xi,∆t) on [0,∆t] using a fourth-order Runge-715

Kutta method.716

4. Set N̂i,k+1 = N̂R(xi,∆t).717

The above scheme is written for N̂ , but at each step, the algorithm was applied to the other718

variables as well. Note, however, that for the non-migratory variables N , m, A, and L,719

A = 0 and thus NA(xi,∆t) = Ni,k.720
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