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Abstract

Geostatistics aims at applying statistics to quantitatively describe geolog-
ical deposits and assess the uncertainty due to incomplete sampling. Strong
assumptions are required regarding the location-independence of statistical pa-
rameters to construct numerical models with geostatistical tools. Most geo-
logical data often exhibit trends or non-stationary location-dependent features.
Such location-dependence in the average grade violates common geostatistical
assumptions and the results may be suboptimal. Non-stationary geostatistical
techniques have been developed; however, there are concerns with all current
approaches of dealing with location-dependent mean values. Developing a prac-
tical framework that accounts for location-dependent features would improve
geostatistical models in these situations.

This dissertation develops a practical geostatistical modeling workflow to
account for the deterministic and stochastic features of continuous regionalized
grade variables. The main contributions of the thesis include: (1) the construc-
tion of a deterministic trend model that realistically represents the primary fea-
tures of the geological process. A mathematical form for the trend is established;
(2) the development of an objective function to optimize the calculation of the

large-scale trend features. The objective function is established with a synthetic
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example to minimize the mean squared error values between the modeled trend
and the true trend for cases when the true trend is known; (3) the incorpora-
tion of the non-stationary features into geostatistical modeling. A parametric
stepwise conditional transformation is considered to provide a stable and arti-
fact-free numerical model. The complex features of the regionalized variable in
the presence of a trend are removed in the forward transformation and restored
in the back transformation; (4) the demonstration of the proposed techniques
with real data. The trend is modeled with corrected parameters in an objective
manner, and further, considered in subsequent geostatistical modeling for a more
robust and reliable result.

The importance of the trend for improving performance in resource esti-
mates is demonstrated in this thesis. The ultimate goal of this research is to

improve resource management in the presence of a deterministic trend.
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Chapter 1

Introduction

Resource management should be undertaken in the presence of the best possible
understanding of the natural resources under consideration. A numerical model
is an essential tool to describe and communicate the behaviour of the natural
resources. These numerical models should represent the natural resources with
the greatest possible geological realism. Resource management depends on such
realistic numerical models for the best possible decisions.

Geostatistics provides tools to construct realistic numerical models and
supports mineral and petroleum resource estimates. Geostatistical simulation
techniques generate multiple realizations that are used to characterize the geo-
logical heterogeneity and uncertainty. The difference between multiple realiza-
tions represents the geological uncertainty. This uncertainty is combined with
other aspects of a project to provide a quantified basis for decision-making.

Geostatistical modeling requires parameters and assumptions because of
the limited data available for a particular deposit. The parameters include global
probability distributions, variograms and training images. A common assump-
tion of geostatistical modeling is that the parameters are location invariant, for

example, the expected value or the mean value of grades is constant for all
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locations within each domain. This assumption is part of the decision of station-
arity. Many techniques are available for conventional geostatistical modeling of

stationary regionalized variables.

1.1 Problem Statement

A deterministic trend is often seen in geological phenomena, for example, the
Copper distribution in the Pulang Deposit (Wang et al., 2012) and the plan view
of Uranium recovery at the 450-meter elevation in the Olympic Dam Deposit
(Boisvert et al., 2013; Rossi and Deutsch, 2014), see Figure 1.1. The geological
variables show a considerable amount of variations in addition to the determin-
istic component. This deterministic component represents large-scale spatially
continuous geological information. The small-scale stochastic component car-
ries information on the high-frequency variations of the geological process. The
numerical geological models must consider both deterministic and stochastic fea-
tures.

The non-stationary spatial features should be modeled properly so that
final predictions are accurate and precise. This would lead to improved deci-
sion making. The trend model should be smooth and contain the large-scale
deterministic knowledge of the geologic data. There are several techniques for
modeling the large-scale deterministic trend including regression, kriging, moving
window averages and others (Krige, 1976; Journel and Huijbregts, 1978; Journel
and Rossi, 1989; Goovaerts, 1997; Brunsdon et al., 1998; Gonzalez et al., 2000;
Hong and Deutsch, 2009; Rossi and Deutsch, 2014). However, the inference of
the deterministic component is difficult since there is no unique objective ap-
proach to define the trend parameters. In addition, there is no approach to
quantitatively judge the goodness of a trend model, see Figure 1.2. An under-

fitting may not capture important features from the geological property, while
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Figure 1.1: Trend appearance in two real case studies showing high and low
values in large regions

an over-fitting can result in a lower error but an unrealistic model. The trend

model should be constructed without under-fitting or over-fitting.
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Figure 1.2: Schematic illustration of the judgment on the goodness of a trend

Different theories for non-stationary geostatistics have been developed.

One common approach to non-stationary geostatistics is data decomposition into

a deterministic trend model and a random fluctuation (Krumbein, 1959; Wat-

son, 1972; Delfiner, 1976; Journel and Rossi, 1989; Wackernagel, 2003; Chiles and
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Delfiner, 2012). The deterministic trend is modeled and then subtracted from
the data values. The conventional kriging estimation is applied to the residuals
assuming they are stationary. The local trend values are added back after the
residuals have been estimated. The final result strongly depends on how the
deterministic component has been estimated.

Another approach of dealing with non-stationary variables is to consider
a conditional transformation. A modified normal score transformation was de-
veloped by Leuangthong and Deutsch (2003). The residual component is trans-
formed conditional to the deterministic trend to arrive at a more stationary
variable. The reproduction of complicated relationship between the trend and
its residual is reasonable. However, the application has encountered difficulties
that using the residuals is unstable and the results show binning artifacts. A
new non-stationary geostatistical algorithm should be developed to increase the

reliability of resource management.

Proposed Thesis Statement: A flexible trend modeling implementation will

improve high-resolution geostatistical models; therefore, improving the perfor-

mance of the local estimates and the prediction of resources.

1.2 Dissertation Contributions

This research focuses on developing numerical geological models of non-stationary
variables. The goal is to improve resource estimates by ensuring the reproduction
of the large-scale and short-scale variabilities of realistic geological features. Four
main areas of research are presented to address current shortcomings: (1) develop
a flexible trend modeling algorithm accounting for the large-scale continuous fea-

tures; (2) establish an optimality criterion for trend modeling; (3) propose an
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improved numerical geostatistical modeling approach in the presence of a deter-
ministic trend; and (4) develop a case study that demonstrates the improvement

brought by the proposed methods. The objectives will be briefly discussed below:

o A flexible mathematical form of the deterministic trend will be considered.
The weighting function, anisotropy and other considerations will be estab-
lished. The purpose is to characterize the deterministic trend with the

correct parameters.

e An optimality criterion for trend modeling will be proposed. The goal is to
propose a robust and reliable measure that leads to reliable trend models

and improved predictions at unsampled locations.

e A geostatistical simulation algorithm in the presence of a deterministic
trend will be developed. The developed geostatistical algorithm must ac-
count for the deterministic component in an artifact-free fashion. The

developed algorithm will improve the high-resolution geological modeling.

e The improved geological models will be evaluated by case studies to val-
idate the proposed methods. The primary goal is to evaluate the perfor-

mance of the proposed model relative to conventional techniques.

The aim of the proposed research is to increase the robustness and reliability of
geostatistical modeling algorithms and reduce uncertainty. Realistic data will be
considered to show the improvement brought by the proposed methods in the

estimation.

1.3 Assumptions and Limitations

Some assumptions related to the proposed non-stationary algorithm should be

mentioned.



Chapter 1. Introduction 6

The research aims to extract as much useful information as possible from
the geologic data. The complexity of real-life geological phenomena may not
be amenable to an expression in terms of simplified mathematical algorithms.
An assumption that the mathematical notions can be used to approximate the
geologic data is required. In addition, an assumption that the observed data
are representative of the true conditions of the geologic processes is made by
geostatistical modeling techniques.

Geologic data with non-stationary features are considered as locally sta-
tionary with a varying mean over the interest. Such geologic data could be
dissociated into two components. The trend component can be represented as
a gradual change over the domain(Watson, 1972; Journel and Huijbregts, 1978;
Myers, 1989; Deutsch and Journel, 1998; Lloyd, 2011). This assumption of a
trend model is often made in many fields. The residual component exhibits a
random variation around the local mean. Some particular assumptions are also
made about the structure of the residual field: (1) the residuals are uncorrelated,;
and (2) the average value of the residuals over the entire set of the observations
is zero.

The third assumption in trend modeling is that the trend can be reason-
ably approximated by a smooth continuous model. Such smooth model can be
calculated by a simple mathematical expression. Additionally, the trend is as-
sumed to represent the large-scale variability beyond the length scales of the
data spacing. The short-scale features trends will not significantly affect the
large-scale trend modes, see Figure 1.3.

In this thesis, the trend is modeled deterministically and assumed to have
no uncertainty. In addition, besides the description of the gradually changing
mean, the real trend could abrupt changes at specific locations within the do-
main. Figure 1.4 shows a 1-D schematic illustration of possible trends that a

general increasing value z(u) with a coordinate u. The trend can be seen as a
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Figure 1.3: Schematic illustration of the decision on the scale of the trend
(Deutsch, 2010a)
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Figure 1.4: Schematic illustration of possible trends for a general increasing
attribute z(u) with the coordinate u (Journel and Rossi, 1989)

single function plus the fluctuations (a red line or a blue line) or by a constant
value plus fluctuations in each segment (red dash lines). In this research, these

sudden changes, such as the red-dash line in Figure 1.4, are not considered.
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1.4 Dissertation Outline

The goal for this dissertation is to develop a practical algorithm accounting for
non-stationary features in continuous regionalized variables. The outline of the
dissertation is as follows.

Chapter 2 begins with a brief review on the basic concepts of the essentials
of geostatistics. Most geostatistical modeling techniques are addressed with the
decision of stationarity; however, they are inappropriate to be considered when
non-stationary features from the regionalized variable exist. Several current geo-
statistical methods regarding non-stationary features are then presented. The
limitations of these methods are discussed.

Chapter 3 is the core chapter on trend modeling. The goal is to develop
a reasonable function to mathematically describe the trend-like features in the
geological phenomenon. This chapter also discusses how to choose these trend
parameters. The choices of trend parameters in practice come from a synthetic
example. After that, an objective function is determined so that the resulting
trend model best represents the large-scale observed data. The novel weighting
function for trend extrapolation is proposed and applied with a small example
at the end of the chapter.

Chapter 4 addresses geostatistical modeling in the presence of a trend. The
stepwise conditional transformation and the expectation maximization algorithm
for Gaussian mixtures are reviewed and implemented with an example in the
presence of location-dependent features. The results show the benefits with the
incorporation of Gaussian mixtures. Additional information from the trend is
also discussed and would be accounted for in Gaussian mixture models. The
consideration of the incorporation of the missing trend values is introduced so
that all trend features would be considered.

Chapters 5 and 6 illustrate the proposed methods with actual examples
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and show the importance of considering the trend features into geostatistical
predictions. The demonstrations are discussed using case studies with: (1) a
summary of the choices of the trend parameters; (2) a review of the conventional
geostatistical prediction; and (3) the implementation of the proposed technique
combining the trend model into the geostatistical modeling. The results show
the improved performance by the proposed method.

Chapter 7 wraps up the thesis with conclusions and future work. The
benefits and limitations of using the proposed approaches in trend modeling and
modeling with a trend are evaluated. Future developments in trend extrapolation
and other implementations in details are contemplated.

Appendix A contains the derivatives of the weighting function for a 1-D
trend extrapolation. Appendix B provides the descriptions of the Fortran coded
programs related to the trend modeling and modeling with a trend. Methodol-
ogy that is developed in this thesis has been implemented with the stand-alone
programs. The programs use text-based data files and parameters. The results

in this thesis could be repeated.



Chapter 2

Theoretical Background

This chapter briefly outlines a literature review of the material that is relevant to
standard geostatistical modeling. Numerous geostatistical modeling algorithms
have been developed and implemented. Care should be taken to choose the ap-
propriate geostatistical algorithm that reasonably describes the geological prop-

erty being modeled.

2.1 Essentials of Geostatistics

The fundamental decision in geostatistical analysis is to model the geologic vari-
ables within stationary domains. The concept of stationarity is reviewed with

the notation that will be used in the thesis.

2.1.1 Random Function Model

Consider an attribute z in the domain A where z is measured on a constant
volume or mass support. The actual value at a location is considered as a
Regionalized Variable (ReV) that may be One-, Two- or Three-dimensional (1-
D, 2-D or 3-D) in real space. A certain measurement, for example, a copper

grade value at location u, is characterized by a ReV that is denoted with a lower

10
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case z(u) (Wackernagel, 2003; Oliver and Webster, 2015). A random mechanism
viewpoint could be considered for a ReV. A measured value z(u) represents one
draw from a distribution. Such a variable at location of u is called a Random
Variable (RV) which is denoted with an upper case Z(u). There are many
locations within the domain of interest A. Our knowledge of each continuous
RV Z(u) is fully characterized by a Cumulative Distribution Function (CDF)
(Goovaerts, 1997; Deutsch and Journel, 1998; Wackernagel, 2003):

Fz(u;z) = Prob{Z(u) <z} Yuc A (2.1)

here F'z(u) represents the CDF of a continuous RV Z(u).

Multiple spatially related RVs are assembled into a Random Function (RF).
Consider a set of attribute values {z(u;),i =1,--- , N} at a set of N locations.
The multivariate CDF of the corresponding RF {Z(u;),i=1,--- ,N} can be
expressed by (Matheron, 1971; Journel, 1986; Deutsch and Journel, 1998):

Fzuy), o 2un) (2(w1), -+, 2(uny) = Prob{Z(u1) < z(u1), -+, Z(un) < 2(un)}
Vu, € Aand i=1,--- N
(2.2)

here N is the number of locations in the domain A. An assumption of stationarity

is made to infer this probability function at unsampled locations.

2.1.2 Stationarity

Statistical modeling requires a reasonable decision of stationarity. Stationarity
is a critical decision related to the invariance of the multivariate CDF with
respect to the translation within the attribute of interest (Journel and Huijbregts,
1978; Davis, 2002). Stationarity is related to a random function instead of the

actual data (Isaaks and Srivastava, 1989). The decision of stationarity is made
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prior to any statistical prediction. Most decisions are implicitly made with the
application in a particular algorithm. Geostatistical modeling is often based
on less restrictive assumptions, such as second-order stationarity and intrinsic
stationarity.

Geostatistical inference of the random function is often limited to the first
two moments that are the expected value and the variance/covariance functions.
If the attribute of interest is divided into several sub-regions and the expected
values of these sub-regions tend to be the same, this is referred to as first-order
stationarity. In addition, the regionalized variable is considered as second-order
stationarity if the variance/covariance between two random variables changes
only with the relative distance h. Considering Z(u) to be a second-order sta-

tionary random function, we can summarize:

E{Z(u)} =m
_ )2l — — 2
E{(Z@) —m)*} = C(0) 23
E{(Z(u)  Z(u+h))} —m? = C(u,u+h) = C(h)

Vu,h,u+he A

here m, o2 and C(h) represent the mean, the variance and the covariance of the
variable, respectively. The properties of the mean and the variance/covariance
do not depend on location within the domain A. Stationarity of the first two
moments is also called weak stationarity.

If the first two moments of the difference between pairs of regionalized
values are location invariant, this is referred to as intrinsic stationarity that leads
to the notion of the variogram. Intrinsic stationarity only requires increments of
the random function Z(u) to be stationary. Suppose a pair of points at locations
of u and u-+h, and such pairs of observations are separated by a lag vector h. The

variance of the increments is given as (Matheron, 1963; Journel and Huijbregts,
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1978; Isaaks and Srivastava, 1989; Goovaerts, 1997; Wackernagel, 2003):

Var {(Z(u) — Z(u+ b))} = 29(h)
= (k) = LB {(Z(u) ~ Z(u + b))} (2.4)

Vu,h,u+he A

The variogram ~y(h) (without the 2, this is also called the semi-variogram) is
defined based on the intrinsic hypothesis that is a half of the expected squared
difference between paired observations of the random function. Matheron (1971)
proposed the classical experimental variogram calculation that can be estimated

from the paired observed values {z(u;), z(u; + h)}, that is,

n(h)
~v(h) = 5 Tll(h) Z[z(uz) — z(u; + h)]* Vu, hu;+he A (2.5)
i=1

here n(h) represents the number of paired samples with a distance vector approx-
imately h. The variogram is modeled from the available data. The variogram

relates to the covariance C'(h), that is (Journel, 1974; Rossi and Deutsch, 2014),
v(h)=0?>—-C(h) Yhe A (2.6)

The model fitted to the variogram/covariance is used for estimation or simulation
to characterize the spatial variability of the regionalized variable.

If all higher moments only depend on the relative distance between loca-
tions, the random function has the property of strong stationarity. However,
such strong stationarity in natural phenomena rarely exists. The decision of
stationarity allows the spatial invariant distribution of data within the domain
(Myers, 1989; Goovaerts, 1997; Deutsch and Journel, 1998; Davis, 2002; Wack-
ernagel, 2003; Pyrcz and Deutsch, 2014).
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2.2 Geostatistical Techniques for Stationary Predic-
tion

In a mineral deposit, a numerical model is needed to quantify rock properties at
all locations. Geostatistical techniques provide tools to predict the values at all
unsampled locations. There are two standard geostatistical techniques for the
spatial prediction: estimation and simulation. A decision of weak stationarity

must be made for these techniques to be applied.

2.2.1 Estimation

Kriging is a Best Linear Unbiased Estimation (BLUE) method in spatial statis-
tics. The value at an unsampled location is estimated based on the structural
characteristics of the observed data which are summarized by the variogram/-
covariance model (Journel and Huijbregts, 1978; Goovaerts, 2000; Chiles and
Delfiner, 2012). The locations with known values are relative to the locations
being estimated. The variogram /covariance captures the spatial dependence and
accounts for the spatial configuration between samples.

Simple Kriging (SK) provides a minimized estimation error variance when
the mean of the regionalized variable is constant and known. Consider n observed
measurements {z(w;),i =1,--- ,n} at locations {u;,i =1,---,n} in a spatial
domain A. The mean m is constant and known for the area of interest A. In this
content, the mean is calculated as the average of the observed data. SK estimate
at unsampled location ug is written as (Deutsch and Journel, 1998; Wackernagel,

2003; Leuangthong et al., 2011):

Zarc(wo) —m =Y A (u) - [2(u;) — m)]
= . (2.7)
= Z5rc(wo) = > N (W) 2(w) + 1= N Kw)]-m Vu,uo,u; € A
i=1 i=1
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here 2% (ug) is the estimated value at location of ug, while {z(u;),i =1,--- ,n}
represent a set of m nearby relevant samples. {)\ZSK (w),i=1,--- ,n} de-
note the kriging weights that are assigned to each of the n surrounding data
{z(u;),i =1,--- ,n}. SK does not constrain the kriging weights and works with
the stationary residuals from the mean, and therefore, the mean of the regional-
ized variable has to be known.

The kriging estimator is enforced to be unbiased, that is, E{Z% (uo)} =
E{Z(up)} given the minimum squared error criterion. The simple kriging
weights are determined based on minimizing the expected squared difference
between the estimated value and the true value at an unsampled location of uy,
namely, o3y (o) = E {(Z§ (uo) — Z(up))?}. Kriging assesses the uncertainty
in the estimate by the minimized estimation error variance (kriging variance).

The error variance of SK can be calculated by (Deutsch and Journel, 1998):

n

oir(w) =0 =Y M) Clui,uo) Vu,uo,u,; € A (2.8)
i=1

o? is the stationary variance of the data and {C(u;,ug),i = 1,--- ,n} represents

the covariance between the data location {u;,i = 1,--- ,n} and the location be-

ing estimated ug. Once the variogram model has been established from the

observed data, the covariance matrices {C(u;,up),i =1,--- ,n} are calculated

and determined.

Ordinary Kriging (OK) is another kriging estimator where the mean of
the data is implicitly estimated as a constant value within each search window
(Deutsch and Journel, 1998). The consideration of a moving search window
allows OK to balance the decision on the stationarity and the number of obser-

vations to consider (Chiles and Delfiner, 2012). The OK estimate at unsampled
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location ug is given as:

2o (@) —m =Y APK(u) - [2(w;) —m]
= . (2.9)
= 25 (o) = D AK (W) 2(w) + (1= D APK )] m Vu,ug,u; € A
=1 i=1

OK constrains the sum of the kriging weights so that the mean m in Equation 2.9
is not used in the estimate. The kriging weights of OK are constrained to be
unity:
n
1-> A Xu)=0 vucA (2.10)
i=1

The unknown mean m does not influence the estimation. The error variance of

OK estimate is calculated by (Deutsch and Journel, 1998):

03 = 0% — % (u) — ZAZOK(u) -Cluj,ug) Vu,u; € A (2.11)
=1

here 9% (u) is the Lagrange parameter associated with the constraint in Equa-
tion 2.10. The minimization of OK estimation variance with the constraint on the
weights requires a stationary spatial dependence structure in each local search
neighborhood.

Estimation methods provide unique and smooth models. The conditioning
data are reproduced; however, the estimation does not produce the variability of

the regionalized variable and does not assess the uncertainty.

2.2.2 Simulation

Geostatistical conditional simulation has become popular to quantify uncertainty
at multiple locations simultaneously. Simulation provides an expected value at
each location, as well as alternative realizations to quantify the variability and

uncertainty of the regionalized variable. The generated realizations depict the
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statistical characteristics of the observed data and unsampled locations (Rossi
and Deutsch, 2014). The scheme of Monte Carlo Simulation (MCS) is utilized

in simulation methods (Metropolis and Ulam, 1949).
Fz (zw) Gy (yw)

% Original Distribution * Standard Normal Distribution
1.0 1.0
T T E—
: mean=0.0
st.dev.=0 i stdev.=1.0
0.0 > 0.0 v >
Z Y1 Y

Figure 2.1: Schematic illustration of the NS transformation

Simulation of continuous variables is almost always done in Gaussian units
due to the simplicity and tractability of the multivariate Gaussian distribution.
Consider a continuous variable z with a univariate CDF {Fz(z(u;)),i =1,--- ,n}
that represents the entire study area A. The Normal Score (NS) trans-
formation is applied to convert the original variable Z that follows a dis-
tribution {Fz(z(u;)),i =1,--- ,n} with a mean of m and a standard devia-
tion of o to another variable Y that follows a standard normal distribution
{Gy(y(u;)),i =1, -+ ,n} with a mean of zero and a standard deviation of one.
The normal distribution is a parametric distribution and is schematically illus-

trated in Figure 2.1 that is give as (Deutsch and Journel, 1998):
y(u;) = Gy' (Fz(2(u;))) Vu; € Aandi=1,---,n (2.12)

here {y(u;),i =1,--- ,n} is the transformed Gaussian variable at n data loca-
tions. Gy (+) represents the inverse Gaussian CDF of the random variable Y and

Fz(-) indicates the CDF of the original random variable Z. This transformation
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is a nonlinear quantile-to-quantile transform. The unique property of the multi-
variate normal distribution is that all conditional and marginal distributions are
normal distributed (Deutsch, 2010a). After the normal score transformation, a
simulation path is defined randomly. Gaussian realizations are back transformed

to the original distribution according to (Deutsch and Journel, 1998)
z(u;) = F, ' (Gy (y(w;))) Yu;€ Aandi=1,---,N (2.13)

once all simulation nodes N have been visited.

An MCS method called Sequential Gaussian Simulation (SGS) is widely
used for modeling the continuous variables. SGS is conducted in a sequence of
conditional distributions. Consider N dependent events {A4;,i =1,---, N}, the

simulation proceeds (Deutsch and Journel, 1998; Pyrcz and Deutsch, 2014):

PrOb{A1,~ <. ,AN} = PI"Ob{AN | Al, cee ,ANfl} . PI“Ob{Al, cee ,ANfl}
= Prob{An | A1,--- ,An—1} - {AN—1| A1,--- ,AN_2} - Prob{Ay,--- | An_2}

= PI‘Ob{AN ’ Al, s 7AN—1} . {AN—l ’ Al, ce ,AN_Q} cee Prob{A2 | Al} tee Prob{Al}
(2.14)

Where {4;,i=1,---, N} symbolically represents a Gaussian value in the se-
quence. This algorithm is performed in Gaussian units. The central step in the
simulation is to randomly draw simulated values from conditional distributions.
These conditional distributions are derived from the simple kriging mean and
variance that are calculated by the data values and previously simulated values
using Equations 2.7 and 2.8. SGS assumes a multivariate Gaussian distribution.
Each variable is transformed to be a univariate Gaussian distribution using nor-

mal score transformation. The results are restored using the associated normal
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score back transformation. The application is well established and straightfor-
ward to execute (Deutsch and Journel, 1998; Chiles and Delfiner, 2012; Rossi
and Deutsch, 2014).

Turning Bands Simulation (TBS) originated by Matheron (1973) and
developed by Journel (1974) provides 3-D unconditional realizations. The
data are transformed into Gaussian units to ensure the reproduced statistics.
The first step in TBS algorithm is to generate unconditional simulated values
{ybc(u),l =1,--- ,L} with the total number of realizations L based on the co-
variance models from the regionalized variables. In this case, the data are not
reproduced in realizations. The conditional kriging is then carried out to ensure
the data are reproduced, namely, {yxc(u)}. The kriging with the unconditional
simulated values {leU(u),l =1, ,L} at conditioning data locations is then
conducted. The final conditional simulated values {y.q(u),l=1,---,L} are
calculated by the unconditional simulated values and the difference between the

kriged values that are given as (Rossi and Deutsch, 2014):
yos(w) = yuo(w) + (yxc(w) = yky(w) VueAdandi=1,-- L  (2.15)

This algorithm is fast; however, some artifacts may be shown in realizations due
to the limitation of the partitioned lines in the 3-D space (Deutsch and Journel,
1998; Ren et al., 2004; Ren, 2005).

Lower - Upper (LU) triangular matrix simulation is often considered in the
presence of few conditioning data, small grid nodes and high demanding in the
number of realizations (Goovaerts, 1997; Deutsch and Journel, 1998; Rossi and
Deutsch, 2014). The large and positive definite covariance matrix C' is solved by

Choleski LU decomposition (Deutsch and Journel, 1998; Villalba and Deutsch,
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2011):
C = [Cy(ui’uj)] nn [Cy(ui’uﬁ)] n-N
Ov@yu)| O, u))]
=L-U Vui,uj,u/a,ulﬁeA
,j=1,---,nand a,=1,--- ,N
here the subscripts {u;,u;,i/j =1,--- ,n} represent the conditioning data lo-

cations and {u/a,ulﬁ,a/ 6=1,---,N } represent the simulated grid nodes. L
represents the lower triangular matrix, while U represents the upper triangu-
lar matrix. The realization {y(l),l =1, ,L} in the conditional simulation is
calculated by the lower triangular matrix L and a normally distributed random
matrix w®) (Deutsch and Journel, 1998). More realizations could be obtained
by drawing a new normal random matrix w. The LU formalism provides a fast
solution once the decomposition is complete. All grid nodes and data locations
are considered simultaneously in a single covariance matrix in LU decomposi-
tion algorithm. The drawback of such approach is memory requirements due to
a potentially large covariance in Choleski LU decomposition. This method is
not suitable for a large amount of conditioning data or for a large number of
simulated locations.

The simulation method reproduces the conditioning data, the histogram
and the spatial variability. Multiple realizations provide an assessment of the
uncertainty. The simulation algorithm is popular because of straightforward im-
plementation and robustness; however, all simulation algorithms make a strong
assumption of stationarity. The local accuracy of the predicted uncertainty may

be unreliable if this assumption is not satisfied.
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2.3 Trend Description, Importance and Detection

Most mineral deposits have high valued locations and lower grade locations, see
Figures 1.1a and 1.1b. These examples suggest some deterministic variation to
the spatial features. Such features violate the assumption of stationarity and the

application of geostatistical modeling is no longer straightforward.

2.3.1 Trend Description

The trend is understood as large-scale spatial varying features of the property
(Watson, 1972; Journel and Huijbregts, 1978; Myers, 1989; Deutsch and Journel,
1998; Lloyd, 2011). One common approach of representing a regionalized variable
in the presence of a trend is to consider two components, namely a deterministic
trend and a random fluctuation (Krumbein, 1959; Watson, 1972; Delfiner, 1976),

that is,

An observed geologic data value =
A smoothly varying deterministic trend

+ A rapidly varying stochastic fluctuation

In geological terms, the deterministic trend represents the regional behavior of
the geological phenomenon at a large-scale, whereas the stochastic fluctuation re-
flects local changes at a short-scale. In common geostatistical notation (Delfiner,

1976; Journel and Rossi, 1989; Wackernagel, 2003):

Z(u) = m(u) + R(u) Yu e A (2.17)
——
Deterministic trend  Stochastic fluctuation
here Z(u) is a random variable under consideration. The random variable R(u)
is a spatially correlated fluctuation plus some actually random differences where

E{R(u)} = 0. The fluctuation is often understood as a stationary regionalized
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variable with some spatial correlation. m(u) is a deterministic variable and it is
considered to be a predicable locally varying mean. The trend values are often
assumed uncorrelated with the fluctuations, that is, p{m(u), R(u)} = 0. The

trend values equal the expected value of Z(u) at locations m(u) = E{Z(u)}.

2.3.2 Trend Importance

Rivoirard (1987) discussed the importance of the trend which could be under-
stood by the kriging weights applied to the local mean. Consider the trend
values {m(u;),i =0,1,--- ,n} are known throughout the domain A. Assuming

second-order stationarity and kriging equation is written as:

n

2" (ug) — m(ug) = Z Ai(w) - [z(u;) — m(u;)] Vu,up,u; € A (2.18)

i=1
here z*(up) is an estimated value, while {z(u;),7 = 1,--- ,n} are the surround-
ing data values. {A;(u),i=1,---,n} denote the kriging weights assigned

to each data Let us suppose the trend is location-independent that means

{m(u;) = m(up),i =0,1,--- ,n}. Then, the estimate could be re-written as:

n

Fug) = [1=> N(w)] -muo) + Y Aiw)-2(w;) Vu,ug,u; €A (2.19)
i=1

=1

weights given to trend

here {1 —>"" ; Ai(u)} represents the weight given to the mean or the spatial
trend. This is an indicator of how the trend affects the estimation. The impor-
tance of the trend from Equation 2.19 is understood as |1 — > ; Ai(u)|. The

less weight given to the data, the more important the spatial trend.
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2.3.3 Trend Detection

The large-scale trend features in the data must be detected before geostatistical
modeling. Some statistical tools to help with this include a location map, a
scatter plot applying regression analysis (Davis, 2002; Chatfield, 2004), a neutral
model of the regionalized variable (Deutsch and Journel, 1998) and the variogram
(Leuangthong, 2003). The practitioner should decide if there is a trend based

on large-scale average values of the regionalized variable.
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Figure 2.2: Common methods for trend detection

The most obvious way of identifying the local variations is simply to map
the data values with a standard automatic contouring algorithm. This approach
provides the first hint of large-scale trends. The location map of thickness with
contour lines is shown in Figure 2.2a. High values are shown in the North and

the values are reduced to the South.
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Regression analysis could be considered to describe the regularity of the
change. Correlation between the data and the coordinates are summarized by
a regression function providing a measure of the trend. Figure 2.2b shows the
location map of the reducing thickness values with the depth. The relationship
between the data values and the depth is fitted by a linear regression model
showing a reducing value with increasing depth. The regression analysis is used
for confirming the existence of a trend.

A neutral model analysis provides an indication of the relative importance
of large- and short-scale variabilities. Kriging strongly depends on the decision
of stationarity; however, it can still be used for mapping large-scale trends in
some cases. Almost all kriged maps show some artifacts. These artifacts exist
due to the limited search neighborhood typically used in kriging. Global kriging
uses all data values for estimation at each location and the kriged map smoothly
varies without artifacts. Figure 2.2¢ shows a kriged map with global kriging
where high values are concentrated in the North.

The spatial trends may also be revealed from the variogram model. The
experimental variogram is calculated by Equation 2.5 and it may show trend fea-
tures in one or more directions. The trend can be identified when the variogram
increases above the expected sill (the data variance) for large lag distance h in

some directions, see Figure 2.2d.

2.4 Techniques for Trend Modeling

The aim of modeling a trend is to understand the large-scale regionalized variable
and to remove the trend properly in order to satisfy the stationarity assumption

in geostatistics.
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2.4.1 Trend Modeling Techniques

The spatial trend must be inferred from the data or other geological information
(McLennan, 2007). Over the years, trend modeling algorithms have been well
developed and many different trend methods are found in the literature. Hand
mapping and computer mapping are two commonly used methods to construct
a trend (McLennan et al., 2005; Pyrcz and Deutsch, 2014). It is hard to de-
cide which method would provide the best trend model. The decision for trend
modeling function should be made by users.

A traditional approach for trend modeling is hand mapping. The geologist
delineates the trend model based on the available data and their understandings.
Contour mapping is one of conventional hand-made trend modeling methods and
could be applied on many different types of maps such as rock attribute maps
(Krumbein, 1959). This process is a flexible human interpretation technique;
however, it is time-consuming and it could only be applied in fairly simple cases
(Krumbein, 1959; Pyrcz and Deutsch, 2014).

Some computer mappings could be applied. Polynomial fitting is a mul-
tiple linear regression function that is a widely used method for fitting a trend.
The mathematical and statistical theories associated with polynomial regressions
are represented by a number of authors (Miller, 1956; Krumbein, 1959; Journel
and Rossi, 1989; Goovaerts, 1997; Howarth, 2001; Rossi and Deutsch, 2014).
Values at unsampled locations are computed by the polynomial function (Rossi
and Deutsch, 2014). One common form of the polynomial functions for trend

modeling is given as (Journel and Rossi, 1989; Goovaerts, 1997):

L
m*(w) =Y au)- filu) VueA (2.20)
1=0
where {fj(u),l =0, ---,L} are functions of the data coordinates u, by con-

vention, fo(u) = 1. {a/(u),l=0,---,L} are unknown parameters and
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{l,l =0,---, L} represent the number of functions. The advantages of the poly-
nomial function are flexibility and computational savings (Grant, 1957). How-
ever, the polynomial methods are not generally recommended in trend modeling
due to unstable extrapolation properties (Stoer and Bulirsch, 2002).

Gonzalez et al. (2006) and Hong and Deutsch (2009) discussed the idea
of constructing a trend with lower order trends. A full three-dimensional trend
m*(x,y, 2) is calculated from a 2-D areal trend m*(z,y) and a 1-D vertical trend

m(z):
m*(z) ) m*(x7y7z)

m*(z,y,2) = Ve,y,z € A (2.21)

Mgobal
here mgopar is the global mean from the distribution. This equation scales the
vertical trend by the areal trend. The disadvantage of this method is that the
trend in areal and vertical directions must be independent which is unrealistic
in real geological phenomena (Deutsch, 2010a).

Kriging is a straightforward, effective and robust trend modeling approach
(Journel and Huijbregts, 1978; Deutsch and Journel, 1998). Kriging assumes
stationarity over the domain, but it still provides an estimate that may have the
target properties of a trend. The kriged trend model may not be smooth with
a low nugget effect. Kriging can be used to model a trend but it is relatively
computationally demanding. Additionally, kriging is an exact estimation and
block kriging must be used to avoid the exact reproduction of the data values.

Moving window averages are straightforward for fitting a set of observed
values. This method does not make strong assumptions about the statistical
properties of the data. Moving window averages are usually computed on a
regular grid that will be used for the subsequent geostatistical modeling. Krige
(1976) introduced moving averages to avoid systematic overestimation of reserves
in the field of mining. The benefit of this function is that all estimated values are

bounded by the minimum and maximum data values and no extreme values are
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interpolated (Crain and Bhattacharyya, 1967). The difficulty of this approach
exists due to many mathematical functions available to define a weighting func-

tion. The general prediction formula is given as:

n

m*(u) =Y wu)-2(u;) Vu,u €A (2.22)
i=1
here m*(u) is the estimated trend value, {z(u;),i = 1,--- ,n} are the data values

and w(u) denote the moving average weights assigned to the data in the domain
A. The trend models depend on the choice of the weighting function. The trend
would be modeled differently with nearby data according to different weighting

schemes.
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Figure 2.3: Modeled trend using Voronoi algorithm

The nearest neighbor is the simplest method that assigns known data val-
ues at unsampled locations with the same values from the nearest data based
on polygons. The boundary of each polygon could be determined by Voronoi or
Thiessen algorithm. The known values {z(w;),i = 1,--- ,n} are located in the
centers of the polygons {V(u;),i =1,--- , N}. All gridded cells within the same

polygon are assigned with the same value (Webster and Oliver, 2008; Lloyd,
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2011). Figure 2.3 shows the modeled trend with Voronoi algorithm and poly-
gons are dyed with data values. The generated map produces abrupt jumps in
the surface at the polygon edges. Nearest neighbor methods are not suitable
for trend modeling. Alternative polygonal vector schemes, such as Delaunay
triangulation (Burrough et al., 2015) and natural neighbors (Tily and Brace,
2006; Webster and Oliver, 2008), are also implemented. However, this method
only produces a smooth trend model within the boundary of the available data
and cannot extrapolate outside the convex hull of the data locations. The trend
values beyond the data locations are invalid.

Moving averages with a distance-related weighting function are naturally
adapted to the geological variables. More weights to the nearby data and assign
less weights to more distant data. The spatial importance of geologic data rarely
changes linearly (Brunsdon et al., 1998). A linearly decreasing weighting func-
tion that ignores the complex spatial relationships between geologic data is not

considered. Some non-linear weighting functions are applied for trend modeling.

Weight

Distance, m

Figure 2.4: IDW weights with different exponents w

Moving averages algorithm with an Inverse Distance Weighting (IDW)

function is a simple spatial prediction technique that considers the similarity
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between data (Bartier and Keller, 1996). Figure 2.4 shows the weighting schemes
with different exponents w and the weights are scaled to unity. The estimated
location receives more weight than those further away. IDW weighting allows
a non-linear calculation and controls weights by the exponent and the distance.
Figure 2.5 shows the trend models with different exponent weights. The trend
model using lower exponent weights (no more than 2) tends to make a smooth
surface with gradual gradients but obvious changes near data locations, while the
model with higher exponent weights (greater than 2) produces a relatively flat
trend surface near data locations but very steep changes between data locations
(Shepard, 1968; Isaaks and Srivastava, 1989).A satisfactory empirical exponent
is 2 for trend surface mapping, see Figures 2.5¢ and 2.5d, although the trend
surface is not smooth near data locations. The artifacts can be found due to
large weights near data locations.

Most mineral grades show a nearly positively skewed distribution (Krum-
bein, 1937; Agterberg, 1970; Sadler, 1981). Moving window averages algorithm
with an exponential weighting function becomes popular (Brunsdon et al., 2002;
Fotheringham et al., 2002). Figure 2.6a shows the spatial exponential kernels
with different exponents w. The spatial kernel with a small exponent produces a
rough trend model, see Figure 2.6b with an exponent of 1; the spatial kernel with
a large exponent produces a trend model with patchy artifacts, see Figure 2.6d
with an exponent of 5. A reasonable exponent of 2 is a Gaussian-shape weighting
function that generates smooth surfaces, see Figure 2.6c. Manchuk and Deutsch
(2011) developed this method and included anisotropy in the trend modeling.
The problem in this developed method is that the Gaussian weighting function
must be specified and there are no objective manners of determining the correct

trend parameters.



Chapter 2. Theoretical Background

31

Weight

0 0.5 1 1.5 2 2.5
Distance, m

(a) Weights with different w

Northing, m

0. 128.
East, m

(c) Trend model with w = 2

Eﬂ
2
s
Z
East, m
(b) Trend model with w =1

128. 40m
e«\
2
E
(=}
Z

0.0 m

East, m

(d) Trend model with w =5

Figure 2.6: Modeled trend using moving averages with different exponential
functions

2.4.2 Best Fit of Trend Modeling

It is necessary to consider a measure of the goodness of a trend model and to

determine if the trend component is the statistically significant. Some statistical

functions could assist in determining the optimum amount of a trend.

The theory of the least squares method is developed by many authors

(Mandelbaum, 1963; Harbaugh and Merriam, 1968; Wren, 1973; Opsomer et al.,

2001; Kariya and Kurata, 2004). This approach could be applied in the objective
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description of a trend model. The goal of the least squared method is to choose
the trend values that minimize a measure of samples. The best trend model
is measured by residuals that are the offsets between the data values and the

trend values. The trend values could be obtained by minimizing the sum of

the squared differences between the actual values {z(u;),i =1,--- ,n} and the
predicted trend values {m*(u;),i =1,--- ,n}:
n
mse =Y (z(u;) —m*(w;))® Vu; € A (2.23)
i=1

The indicator mse measures the similarity between the modeled trend and the
data and it quantifies the goodness of the fit of the trend. The indicator mse
should be as small as possible. However, this would cause over-fitting and a
discontinuous trend model.

Other statistical approaches are considered for deciding the goodness for
trend modeling. McLennan (2007) proposed that the variability between the

deterministic trend and the observed data should be no more than 50%, that is,

2

g
mu) < 50% Vue A (2.24)
7 ()

however, the guideline of 50% is subjective. The covariance between the trend
and the residuals at a lag distance of zero o2 or Cy,z(0) is a good indicator for
the goodness of the fit. This assumes that the trend and the residuals should be

independent. This assumption lacks verification.
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2.5 Geostatistical Techniques for Non-Stationary

Prediction

The process of removing the trend from the observed data is useful in the identifi-
cation of geological structures. In classic geostatistics, non-stationarity geostatis-
tics refers to locally varying statistics (Journel and Huijbregts, 1978; Goovaerts,
1997; Deutsch and Journel, 1998). A non-stationary geostatistical modeling ap-
proach may be considered more appropriate than a stationary modeling approach
when trend features exist in the data. Non-stationary models have been applied
in geostatistics for many years.

One method of dealing with non-stationarity is subdividing the domain
into more stationary sub-regions based on the property of rock types or grade
values. Compared with the local varying mean in the whole domain, the mean
and variance in each sub-region are assumed constant. Several authors have
proposed to divide the spatial domain into several disjoint regions by different
partitioning schemes, such as hierarchical clustering of observations, assuming
the covariance structure is stationary and the data are location independent
within each sub-region (Kim et al., 2005; Heaton et al., 2017). These methods
fail to account for the spatial correlation between neighboring locations located
in different sub-regions. Meanwhile, the resulting models could show abrupt

unreasonable changes at boundaries.

2.5.1 Estimation

OK is discussed in Section 2.2.1 assuming a constant but unknown local mean
within each search window. In general, OK estimation is commonly used in the
presence of a trend. This algorithm assumes a non-stationary RF model that
contains a locally varying mean but stationary covariance (Goovaerts, 1997; Rossi

and Deutsch, 2014). The constraint in Equation 2.10 implies the existence of the
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non-stationary features. The estimated location-dependent mean m™*(u) replaces

the constant mean m in Equation 2.9, that is,

285 (wo) = zn: MK () - z(ug) + [1 — Zn: MK ()] -m*(u)  Vau,up,u; € A (2.25)
=1 =1

Assumed = 0

In this case, OK does not require the local mean to be specified over the whole
area of interest and the algorithm works in the non-stationary scenario.

Another commonly used technique for non-stationary estimation is to
krige with the stationary residuals instead of kriging the data directly. A
known and constant mean m is replaced by a smooth and estimated trend
{m*(u;),i=1,--- N} at each grid cell. This algorithm is called Simple Krig-
ing with Locally Varying Mean (SK-LVM), also known as Kriging the Resid-
uals (KR). Consider Z(u) is not a second-order stationarity random function.
This non-stationary random function Z(u) could be divided by a determinis-
tic mean m(u) and a stochastic random function R(u) in Equation 2.17. The
trend is modeled first so that the estimated trend value at each location is
known, that is, {m*(u;),i =1,--- , N}. The estimation variance of the residual
data E{(R5x_pvar (o) — R(ug)?)} at estimated location is assumed identical
to that of the original data E {(Z%x_ .y (w0) — Z(ug)?)}. The residual values
{r*(u;) = z(u;) — m*(u;),i =1,--- ,n} are obtained from the data values and
the prior estimated mean at sampled locations. The kriging system in SK-LVM
is similar as for OK. The difference is that sum of weights should be zero. The
kriging variance of the original data comes from the variance in the trend model
and the kriging variance of residual data (Wackernagel, 2003).

Kriging with a Trend (KT), which is also called Universal Kriging (UK),
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is a an extension of OK. The establishment of this method comes from Equa-
tion 2.17 that where data are decomposed into a deterministic trend plus corre-
lated residuals (Armstrong, 1984). Unlike OK, the generalization of KT allows
the forms of the trend model to be varying in space, such as Equation 2.20 (Math-
eron, 1971; Davis, 2002). The estimator of KT expands the constant trend from
zero order to a polynomial of order [ in Equation 2.20. The covariance of residual
data rather than the covariance of the original variable should be used in KT
system (Deutsch and Journel, 1998). The error variance of the KT estimate is

calculated by (Armstrong, 1984; Deutsch, 2000; Chiles and Delfiner, 2012):

L

n
U%(T = U%% — Z /\ZKT . CR(UO,UZ') — Z,ul(u) . fl(u) Vu,uo,ui €A (2.26)
i=1 =0
here % is the variance of the residuals. {Cr(uo,u;),i=1,---,n} represent

the covariance matrices of the residual data between the data locations and the
locations being estimated. {u;(u),l =0,---,L} are the Lagrange multipliers.
Care must be taken with the functions {f;(u),l =0,---, L} in Equation 2.20.
KT may not be stable because of the indeterminancy of the trend model, as well
as the underlying variogram model (Olea, 1974; Armstrong, 1984).

Kriging with an external trend (KED) is a variant of KT. The secondary
variable is incorporated in the estimation of the primary variable. The function
of the spatial coordinates {fj(u),l =0,---,L} in KT is replaced by a smooth
and exhaustive secondary variable s(u) into kriging. This single trend function
is defined at each location and often considered from an external secondary

variable and limited to two terms (Deutsch and Journel, 1998), that is,

E{Z(u)} =m(u)=ao+a;-s(u) ueA (2.27)

where is s(u) is assumed the spatial trends that contains a linear relationship
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with the variable z(u). ap and a; are the linear parameters between variables.
The external variable s(u) should be smooth and known at all locations. The
problem with this method is that the assumption of the linear relationship be-
tween the primary variable and the secondary variable is may not be realistic
and the relation between the two variables should make geological sense (Rossi
and Deutsch, 2014).

Intrinsic Random Function with order k (IRF-k) offers an alternative pro-
cedure to model the non-stationary features (Matheron, 1973; Delfiner, 1976;
Chiles and Delfiner, 2012). This method requires the existence of the generalized
covariance functions that overcomes the possible bias from the trend dichotomy
calculation in Kriging (Knotters et al., 1995). Consider that Z(u) is an IRF with
order k, then an isotropic function K (h) exists. The estimator of the intrinsic

function with order k at unsampled location ug is given as:

n

Ziproro) = Y A Fw) - 2(u;) wuo,u € A (2.28)
i=1
here {)\ZI RE _k( u),i=1,- } are the IRF weights. The estimation error at an

unsampled location ug is given as:

Var {Zipp_i(wo) — Z(uo)} = ZZ)\IRF PR () K (g, u5) Y, ug,u;); € A

j=11i=1
(2.29)
here {K(u;,u;),i/j =1,--- ,n}, short for K (h), are the generalized covariances
. : IRF—k IRF—k
with order k between the locations. {)\j (u), \; (w),i/j=1,- } are

the estimation weights assigned to data values. The model of the generalized

covariance K (h) is given as the polynomial function (Matheron, 1973):

k
K(h) =opd(h)+ ) (1" b, [h|* ! Vh e A (2.30)
p=0
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here the coefficients {b,,p =1,---,k} satisfy b, > 0. k represents the order.
0% (h) is the nugget effect. The intrinsic kriging variance is given as (Chiles and

Delfiner, 2012):

n L
OtRp_ = Ok — Z Ai(w) K (uo, u;) — Zm(u)fz(U) Vu € A (2.31)
i=1 1=0
here {y;(u),l =0,---, L} are the Lagrange multipliers. The system of the IRF-k
kriging variance is the same as the KT system. The kriging variance only de-
pends on the generalized covariance. IRF theory is based on the stationarity of
generalized increments that avoids the estimation of the trend model and the
prediction with the spatial structures from the residual data; however, the algo-
rithm increases the cost of statistical inference where the high-order generalized
covariance may not be easily defined (Matheron, 1973; Myers, 1989; Deutsch and
Journel, 1998).

2.5.2 Simulation

Non-stationary simulation is similar to non-stationary kriging assuming a trend
is added to stationary residuals in Equation 2.17. Simulation with a locally
varying mean assumes the local mean is informed by a secondary data. This
method accounts for the trend model as a secondary data. The trend would
be removed from the regionalized variable at the start. All simulation steps are
consistent with conventional simulation on the residual data. The trend model
is added to each of the residual realizations {r(l) (w),l=1,--- ,L} to obtain

multiple realizations of the regionalized variable {z(l) (w),l=1,--- 7L}:

2O@) =rVDw)+mu) vueAandl=1,--- L (2.32)
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here {l,l =1,---,L} represent the number of realizations. Some unexpected

simulated values may be encountered in this algorithm. For example, when

simulating the mineral grade values in the presence of a trend, some negative

simulated values are found if the simulated residuals are less than the local mean.

A correction of the algorithm would be required to avoid such simulated values.
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Figure 2.7: Schematic illustration of the reject sampling in simulation

Qu and Deutsch (2014) proposed to use the standardization transformation
where the regionalized variable is standardized by a local mean (trend value) and
a local standard deviation (trend standard deviation):

Zetand (1) = W Vu e A (2.33)

This standardization transformation is simple and flexible. The assumption of
stationarity is enforced in standardized units. The standardized residual val-
ues Zgtand (#) are used in the geostatistical modeling. To avoid the unexpected

negative simulated values in original units, a constraint is considered as follows:

2(u) = Zstand (©) - o(uw) +m(u) >0

(2.34)
— Zstand(u) > —LL(U) Vu e A
ou

Figure 2.7 shows a schematic illustration of a Probability Distribution Function

(PDF) fzstand(2) of a standardized residual data Zganq. The original true mean
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of the standardized variable is shown with a red dash line. Simulated values
m(u)
o(u)

mean of each realization increases and is shown with a green dash line. Some

less than —

should be rejected during the simulation process. The updated

high values with an arbitrary threshold in Figure 2.7 are also rejected to keep
the local mean unbiased and the final local mean is shown with a blue dash line.
This method is motivated by a desire to reproduce the conditioning data, and
it modifies the updated local mean (blue dash line) which is very close to the
true local mean (red dash line). This method could better reflect the behavior
of non-stationary features; however, other features of the regionalized variable
are poorly reproduced.

Machuca-Mory and Deutsch (2013) proposed a locally stationary approach
that builds a location-dependent probability function under an assumption of lo-
cal stationarity. The non-stationary features are captured by location-dependent
distributions using a Gaussian weighting distance approach. The local spatial
distributions are locally transformed to be Gaussian. However, a practical dis-

advantage of this approach is the computational cost.

2.5.3 Transformation

Geostatistical modeling with a decomposition of a regionalized variable in the
presence a trend is not always possible. A conditional transformation could be
considered in an attempt to remove the trend-like features from the regionalized
variable. The complex relations in the regionalized variable should be restored
after the simulation and all features are reproduced.

Projection Pursuit Multivariate Transform (PPMT) is used for transform-
ing complex data to an uncorrelated multivariate Gaussian distribution (Barnett
et al., 2014). This transformation can be applied in high dimensions and requires
fewer tuning parameters. Figure 2.8 shows the core engine of the algorithm.

The conditioning data are normal score transformed independently, and then,
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Forward Transfonn

Figure 2.8: Schematic illustration of forward and back Gaussian mapping
transformation associated with the PPMT (Barnett et al., 2014)

sphered forcing the marginally standard normal distributions and the orthogonal
covariance matrices (Friedman, 1987). The values along projection vectors are
transformed to be Gaussian. This step is iterated until a multivariate Gaussian
distribution is reached. Simulation with transformed stationary data is then
conducted. The relative distances between the simulated node and its nearest
neighbors are persevered in the back transformation. No binning or griding is-
sues exist. The challenge of this method, in the context of considering a trend,
is that the transformation can only be applied to the equally sampled variables,
yet the trend is available everywhere.

The Stepwise Conditional (SC) transformation technique was introduced
by Rosenblatt (1952) and it is an extension of the normal score transformation.
Leuangthong (2003) introduced this technique to geostatistics and developed the
practical application (Leuangthong and Deutsch, 2004). The advantage of this
transformation is that it addresses multivariate complexities, such as removing

the non-linear, heteroscedastic and constraint features from geologic data. The
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(a) Partition residual data, r(u), into classes conditional to normal scores of trend component, m(u).

~~
=)

N—"
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(b) Normal score transform each class of R(u
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=
e
L e

NSCORE
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(c) Crossplot of normal score residuals, Y(u), and trend, m(u).

Figure 2.9: Schematic illustration of the Transformation with stepwise condi-
tional transformation: (a) partition the residual data r(u) into several classes
(b) normal score transform each residual
class; and (c) gather all transformed residuals from all classes and plot against
the trend to show bivariate distribution with approximately zero correlation
and the marginal distribution of Yr(u) is in Gaussian units (Leuangthong and
Deutsch, 2004)

based on the trend values m(u);
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idea is to transform the k*" variable conditional to the previous k — 1 variables.
The original proposed stepwise conditional transformation algorithm works on
the residual data (Leuangthong, 2003). Figure 2.9 shows the schematic illustra-
tion of the transform with stepwise conditional transformation algorithm using
the residuals. The residual data are normal score transformed conditional to its
trend component. The corresponding residual data are conditionally transformed
by the probability classes of the trend component (Leuangthong and Deutsch,
2004):

Yr(u) =G (Fryn(u)) Vue A (2.35)

Conventional univariate simulation can be conducted with this de-trended vari-
able and the trend features would be restored in the back transformation. This
method successfully reproduces the complex relationship between variables; how-
ever, simulated values should be examined due to some unexpected simulated
values. Silva and Deutsch (2016) proposed a Gaussian mixture model that would
be combined with the stepwise conditional transformation in geostatistics. The
use of Gaussian mixtures allows the easy assessment of any conditional distribu-
tions of regionalized variables and removes the binning issue. More discussions
of the stepwise conditional transformation and the Gaussian mixture model are

found in Chapter 4.



Chapter 3

Trend Modeling

Trend modeling is inevitably subjective and dependent on the practitioner. Mod-
eling a reasonable trend is essential for the best possible geostatistical prediction.
The challenge of this chapter is to develop a practical framework to account for
the deterministic and stochastic features of regionalized variables. The goal is
to model an artifact-free trend model that leads to the best possible future pre-
dictions in an objective manner.

This chapter will primarily focus on creating reasonable trend models in the
presence of non-stationary variables. Three objectives are summarized as: (1) the
construction of a trend model by a mathematical function that realistically repre-
sents the deterministic character of the regionalized variable; (2) the calibration
of the trend parameters, including the background value, the anisotropy and
other specific considerations in an objective manner; and (3) the development of
an objective function to assess the trend models in order to improve geostatisti-
cal modeling in the presence of a trend. Details of the trend modeling algorithm
are described and illustrated with examples. A final section in this chapter fo-
cuses on the challenge of trend extrapolation modeling. The formation of a novel

weighting function is proposed for trend extrapolation.

43



Chapter 3. Trend Modeling 44

3.1 Parameterization of Trend Modeling

Trend modeling aims to use the limited available samples to map some primary
large-scale features over a specified domain. The challenges of trend modeling are
related to the complexities of the geological phenomena, the scale of the trend
model, as well as computational constraints of the trend modeling algorithm.
First, the trend model captures an approximation of the real geological process.
Many geological characteristics are highly non-linear. A reasonable trend should
be inferred in the presence of the best possible understanding of the geological
context. Second, the trend appears at different scales. The decision should be
made on how much of the variability to put into the trend model. The trend is
modeled for large-scale features relative to the data spacing. The choice of the
trend function, the spatial weighting function and the anisotropy are discussed

for trend modeling.

3.1.1 Choice of Trend Function

Several trend functions are reviewed in Chapter 2. Weighted average statistics
are considered reliable to characterize a realistic geological trend. The equation

for the weighted trend m(u) is expressed by:

D iy wlug) - 2(ug)
> iy wlw)

m(u) = Yu,u; € A (3.1)

where m(u) denotes the locally varying trend at the location being esti-
mated u. {u;,i=1,---,n} represent a set of n surrounding observed data.
{z(u;),i =1,2,--- ,n} denote the observed values at data locations. The weights
are denoted by {w(u;),i = 1,2, -+ ,n} and they depend on the unsampled loca-

tion u being considered. All samples are considered within the domain A.
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The mathematical formulation of the trend modeling algorithm is under-
standable and accessible. This trend function averages the influence of extreme

values and produces a smooth trend model.

3.1.2 Choice of Spatial Weighting Function

Several requirements should be accounted for in the proposed weighting function,
including a smooth decrease with increased distance, positive weights, indepen-
dence of units and a global consistency for all statistics (Machuca-Mory, 2010).
There are alternative spatial interpolation algorithms discussed in Chapter 2 that
could be applied, but they have disadvantages relative to the proposed method.

An exponential weighting function that has less numerical difficulties and
produces a smooth model consistent with the notion of a trend model is con-
sidered. Observed data are connected with a non-linear spatial pattern. More
weight is given to close samples and less weight to more distant samples. The

proposed Gaussian-like weights w(u) are written as:

U)(’ll,) = [6 + (1.0 — 6) . exp(—3.0 . dQ(’U,i())] . wdec(ui) ( )
3.2
Yu,u;,up € Aand i =1,2,---,n

here the total weights will be scaled to a unit sum. e is a background value that
avoids computational problems and controls the smoothness of the trend estimate
far from the data. exp(-) is the exponential function. {d(ui),i=1,2,---,n}
are the standardized anisotropy-corrected distances between the observed loca-
tions {u;,7 = 1,2,--- ,n} and the location ug where the trend is being estimated.
anmax 18 @ distance factor that ensures a continuous trend. This factor would
be determined by a smoothing parameter and is discussed below. The number
of the nearest samples involved in the calculation is determined by a threshold

distance, beyond which points receive a background value in the calculation.
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{Wqec(©;), i =1,2,--- ;n} are the declustering weights assigned to the observed
data. Note that declustering is considered if the samples are preferentially sam-
pled.

The weighting function would be tuned so that the trend is smooth and
free of artifacts. However, the moving average trend function with such expo-
nential weighting scheme is reasonable. The weights w(u) approach to the back-
ground value (with declustering) when the distances {d(u;),7 = 1,2,--- ,n} be-
come large. Furthermore, the trend estimate values approach the global (declus-
tered) mean. This may not be a desirable feature when extrapolating beyond
the data in the presence of a large scale trend. An alternative weighting function
should be considered. Trend extrapolation will be discussed at the end of this

chapter.

3.1.3 Choice of Anisotropy

Geologic data exhibit spatial variability that depends on directions. In geosta-
tistical modeling applications, the experimental variogram is a practical tool to
reveal the behavior of the spatial data and quantify the anisotropy of the region-
alized variable. The anisotropy must be accounted for to obtain a realistic trend
model.

Consider that ug represents the location where the trend is being estimated
and {u;,i =1,--- ,n} are the data locations. {h;0,i =1,---,n} represent the
distance vectors between the location being considered and the data locations,

where

hx,iO
hjo =u; —ug = hyJO i=1,---,nand Vh,ug,u; € A (3.3)

hz,iO
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here h% = {hx,i0, Pyi0, hsio} are the distances in the original X, Y and Z axes,
respectively. The vectors {h;p,i = 1,--- ,n} should be rotated to the principal
directions of anisotropy. The anisotropy-corrected vectors after the rotation

/ . .
{hio,z =1,--- ,n} are given as:

hmin,iO hX710
h;O = hmax,iO = [T] “hip = [T] ’ hy,iO i=1--,n (34)
hvert,iO hz,iO

here [T] is the rotation matrix following the consistent definitions of the directions

and ranges in variogram models, that is,

1
i : 0 cos) 0 sind 1 0 0 cosae —sina 0
min 1
[T] = 0 0 |- 0 1 0 [-]0 cosB sinB|- |sina  cosa 0
Ohmax
0 0 —sind 0 cosf 0 —sinf cosp 0 0 1
Qhvert
K Dip Rotation Plunge Rotation Azimuth Rotation
Scaling Range
(3.5)

{@hmin, @hmax, Ghvert } are the ranges in the minimum and maximum horizontal
directions (within the plane of the greatest continuity) and the vertical direction
(perpendicular to the plane of the greatest continuity), respectively. The dip
rotation denotes a counter-clockwise rotation with a angle of § where Y axis
remains the same. The plunge rotation is a rotation matrix corresponding to
a counter-clockwise rotation with a angle of g around X axis. The matrix of
the azimuth rotation corresponds to a clockwise rotation of X-Y plane with the
angle of o where Z axis remains the same (Goovaerts, 1997; Deutsch and Journel,
1998; Leuangthong et al., 2011; Deutsch, 2015). Figure 3.1 shows the schematic
of the anisotropy rotation in the directions. The anisotropy takes the form of an

ellipsoid oriented according to the directions and length scales of continuity.
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Figure 3.1: Schematic illustration of the anisotropy rotation on 2-D and 3-D
views (modified from Deutsch and Journel (1998))
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Choice of the appropriate directions and the scaling ranges are important
for trend modeling. The directions of the anisotropy {«, 3,0} in Equation 3.5
should follow the continuity of the regionalized variable indicated by the di-
rectional variogram models. The scaling ranges in Equation 3.5 quantify the
anisotropy and are often determined by the variogram ranges. The scalar nor-

malized distances with the anisotropy d(u;p) in Equation 3.2 are calculated as:

h2 ‘+hmin‘2+hr’2
d(ui) = \/ et D = 1n (3.6)

|A[- SP

here |A| represents the domain size and SP represents a smoothing parameter.
This formalism allows a dimensionless smoothing parameter to be tuned to adjust
the trend model with less concern for the modeling units.

Tabular deposits such as coal seams may pose a challenge in that the
variogram ranges may not be calculated accurately due to a lack of data in some
directions or due to a zonal anisotropy. In this case, the ranges in different

directions could be specified independently.

3.1.4 Anisotropy Correction

As mentioned above, the anisotropy ratios are often obtained from the variogram
ranges in different directions. Data with an obvious trend often show a strong
anisotropy that does not have a straightforward range parameter. For example,
a zonal anisotropy makes the range a difficult parameter to estimate. Figure 3.2
shows a schematic illustration of the variogram models with a zonal anisotropy.
The left figure indicates a variogram model in the major direction, while the
right figure shows the model in the minor direction. The red and blue markers
denote the experimental variograms in the major and minor directions, while the
red and blue lines represent the fitted stationary variogram models in different

directions. The range in the minor direction apmi, (blue line) is estimated as
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the distance where the experimental variograms (blue markers) reach to the sill

variance o2

, see Figure 3.2b; however, the range in the major direction apma;
(red line) is unclear, see Figure 3.2a. The range in the major direction is often
set as an arbitrarily large number for the variogram modeling, but this causes

the anisotropy ratio to become unstable.

4 4

} Semi-Variogram in Major Direction } Semi-Variogram in Minor Direction

°
= °
| d
0.0 ; > 0.0

Nugget X Nugget i
Effect Lag Distance Effect Lag Distance

Range —

[€—— ¢
4

ahmin

(a) Variogram model in major direction  (b) Variogram model in minor direction

Figure 3.2: Difficulty on determining the range with a zonal anisotropy

The calculation of the anisotropy ratio should be done in a robust manner.
Instead of using the range ratios, the area ratios under the variogram model

curves are considered. The rotation matrix [T] in Equation 3.5 is corrected to:

areapmin 0 0 cosd 0 sinf 1 0 0 cosae  —sina 0
!
[T] = 0 areanmax 0 : 0 1 0 |-|0 cosp sinB|-|sina cosa 0
0 0 areanyert —sinf 0 cosf 0 —sinfB cosp 0 0 1
Corrected Scaling Range Dip Rotation Plunge Rotation Azimuth Rotation
(3.7)

here areay,.x represents the area under the variogram model curve in the major
direction, while areaj,in and areapyert denote the areas in the minor and vertical
directions, respectively. The advantage of this approach is that the anisotropy
ratios are stable and robust, and not depend on the unstable choice of an arbi-

trarily range.
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Figure 3.3: Schematic illustration of the proposed anisotropy ratio calculation
on variogram models

Two questions need to be considered in calculating the stable anisotropy
ratio: how to fit the variogram models with non-stationary features and what is
the available lag distance to consider for the area calculation. The experimental
variogram in the minor direction (blue markers) in Figure 3.2 continues to climb
steadily above the sill variance showing the presence of a spatial trend, while
the experimental variogram in the major direction (red markers) stays constant
in the long distance due to the regionalized variable having a great continuity
in this direction. The proposed variogram fittings should be modeled following
the experimental variograms without considering the sill variance, that is, the
variogram may be fitted above the sill in one direction and below the sill in
another direction, see lines in Figure 3.3.

The proposed anisotropy by area ratios is then calculated. Suppose the
lag distances of the non-stationary variogram model in X axis are divided into
several segments {LD(I),Z =0,1,--- ,L} and the corresponding variogram values
are labeled as {'y(l),l =0,1,--- ,L}. The area under the variogram model curve

is calculated with these segments that is given as:

LDW&)
area = / ~v(h)d(h) (3.8)
LD
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here 7(h) represent the variogram values and {LD(Z),Z =0,1,--- ,L} are the lag
distances at a segment of [ from the origin. (%) is the initial variogram value
that denotes the nugget effect of the variogram model and LD is the origin.
~L) and LD represent the maximum variogram value and the corresponding
maximum lag distance for the area calculation, respectively. The maximum lag
distance should be chosen carefully in calculating the area ratios. A value one

half the domain size in each direction appears reasonable.

3.2 Implementation of Trend Modeling

The trend modeling function with the exponential weighting in Equa-
tion 3.1 and 3.2 has several parameters. The selections of these param-
eters should be optimized to minimize subjectivity and improve the fi-
nal geostatistical model to the greatest extent possible.  These parame-
ters include: (1) background value €; (2) anisotropy, including directions
{a, 8,0} and ratios {r1,re} = {::S:Ez;z, :fee:;lz;i

{wgec(w;),i =1,--- ,n} and (4) smoothing parameter SP. These parameters will

}; (3) declustering weights

be investigated and validated by cross validation with examples where the true
trend is exhaustively known. The suggestions on the selection of optimal trend
parameters would be useful for practitioners.

The trend parameters will be validated with cases where a true trend is
known. A small 2-D synthetic example is presented for demonstrating the pa-
rameters of trend modeling. Figure 3.4 shows the reference models. Figure 3.4a
illustrates the synthetic true trend with a strong anisotropy in the direction of
135°, while Figure 3.4b shows a random residual model on 128 x 128 regular pixel
grids. Figure 3.4c shows a 2-D well-defined true image that is combined with
the trend and the residual model. 51 data with black circles are sampled from

this exhaustive image. Data are preferentially collected in high grade zones. The
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Figure 3.4: Synthetic subsurface models for trend parameter selections. The

true trend values are shown in Figure 3.4a and the true residual values are

shown in Figure 3.4b. The true subsurface model in Figure 3.4c is combined

with the true trend model and the true residual model. 51 black circles/mark-

ers represent the conditioning data. Figure3.4d shows a 2-D kernel density
estimation (KDE) scatter plot
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Figure 3.5: Variogram models from 51 data. The sizes of the markers repre-
sent the relative pairs of the experimental variogram in each lag distance

trend model could not be appropriately extrapolated beyond the area sampled
by the data. Thus, in this example, several control points close to the edge of the
study area are included in order to avoid this extrapolation issue. The correlation
coefficient between the trend and the residuals at 51 data (black markers) loca-
tions is shown on a 2-D density estimation that is around —0.11 in Figure 3.4d.
A standardized experimental variogram model from 51 data is calculated and
shown with markers in Figure 3.5. The major direction is at 135° and the minor
direction is at 45°. The experimental variogram (blue markers) goes above the
sill in the minor direction, while the experimental variogram in the major direc-
tion (red markers) shows the presence of a zonal anisotropy and stays below the

expected sill variance. The variograms are modeled with Equation 3.9 as below:

f)/(h') = 015 : Sph(h) a=135° + 085 . GaUSS(h) a=135° (39)
ahmax:gg’ m ahmax=1,62500 m
Ghmin= m Ahmin= m

here 7(-) represents the variogram model and h denotes the lag vector. Sph(-)
represents the spherical structure of the variogram model and Gauss(-) represents

the Gaussian structure. « is the azimuth rotation in the horizontal direction,
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while apmax and apmin are the variogram ranges in the major and minor direc-
tions. No nugget effect is considered in this synthetic example. The variogram

models are isotropic at small distances and anisotropic at long distances. The

1,200 m

———— = 18.46.
60 m

This anisotropy ratio is unstable due to an ill-defined range in the major direc-

conventional anisotropy ratio with range calculations is r| =

tion.

Cross validation is a simple way to check the models. The purpose is to
assist in choosing the correct parameters to arrive at the best possible trend.
The difference between the true trend value and the modeled trend value at
all locations gives a measure of how well the estimated trend approximates the
true trend. There are various performance indexes to measure the discrepancy
between the true trend and the predicted trend. Commonly used error measure-
ments include the mean error value and the mean squared error value. Mean
error determines the bias in the estimates, while mean squared error indicates
the precision in the estimates (Sheiner and Beal, 1981). Here, mean squared er-
ror values are used to help choose the best parameters for trend modeling. Mean

squared error (MSE) value mse is given as:

N
1 * 2
mse = z;[m(ui) —m*(w;)]? Vu; €A (3.10)
where {m(u;),i=1,---,N} is the known trend values at exhaustive loca-

tions {u;,7i =1,2,--- , N} and {m*(u;),7 = 1,--- , N} is the exhaustive predicted
trend values at all locations within the entire domain A. mse should be mini-

mized with correctly chosen trend modeling parameters.

3.2.1 Background Value

The background value e in Expression 3.2 is designed for computational stability

when all of the weights to the samples might go to nearly zero. Figure 3.6 shows
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the weighting functions with different background values. The weight reduces
gradually as increasing the distance from the estimate location and stabilizes
to the background value when it is far away from the estimate location. The

background value permits some contributions from distant samples.
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— Weight Function 3
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Figure 3.6: Schematic illustration of the Gaussian weighting functions
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Figure 3.7: Schematic illustration of the importance of a background value
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Figure 3.7 shows the importance of considering a background value into
trend modeling. The estimate location receives a gradually reduced weight from
samples. The samples that are far away from a location being estimated con-
tribute zero weights. These zero weights lead to an unstable jump in the trend
model, see Figure 3.7a. A noncontinuous trend surface could be generated with-
out considering the background value. The trend value approaches the global
mean if a background value € is considered in trend modeling. The introduction
of a background value ensures a smooth trend, see Figure 3.7b. An appropriate
background value should be incorporated into trend modeling.

Several trends are modeled with different background values. In order to
show the importance of the incorporation of a background value, the spread of
the weighting kernels should be steep, that is, the smoothing parameter is set to
a small number 0.3. The rest of the trend parameters stay the same. Figure 3.8
shows modeled trends with different background values of a zero value, 0.001 and
0.05, respectively. The result shows that the trend with a large background value
shows a smoothly varying model compared with the one with a small background
value. The mean squared error comparison is made between the modeled trend
and the true trend and shown in Figure 3.8d. The optimal background value is
0.002 that minimizes the mean squared error value.

The observation that a small background value leads to the best trend
leads to the consideration of a local search in the trend calculation. Considering
all of the data in the domain may not be required; however, for computational
stability and to avoid search artifacts, a global search for data in trend modeling
is considered. Thus, setting up a background value with a small number for
computational stability and not for the smoothness is recommended. Other

trend parameters are tuned for trend smoothness.
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Figure 3.8: Modeled trends with different background values and MSE com-
parison
3.2.2 Anisotropy
The anisotropy is considered in the distance values {d(u;),i =1,2, -+ ,n} in

the exponential weighting function in Equation 3.2. The same 2-D example is

used to illustrate the anisotropy (angles and ratios) in trend modeling.

The first application is the choice of the anisotropy directions in trend

modeling. Thirty-six trends with different anisotropy directions are modeled

and with a 5° increment. Four of them, 0°, 45°, 90° and 135°, are shown in
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Figure 3.9: Modeled trends with different anisotropy directions

Figure 3.9. The mean squared error calculation is shown in Figure 3.10. The
map that shows the lowest mean squared error is obtained with the direction of
135°. The anisotropy direction of the trends matches the major direction in the
variogram models in Figure 3.5. Thus, as expected, the selection of anisotropy
directions in trend modeling should follow the global variogram model.
Another test on the anisotropy ratio is developed. The conventional
anisotropy ratio in Figure 3.5 is estimated as 18.46 : 1 from the large-scale struc-

ture range in Equation 3.9. Figures 3.11a, 3.11b and 3.11c show three trend
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Figure 3.10: MSE comparisons with anisotropy directions

models with anisotropy ratios of 1.0 : 1, 3.1 : 1 and 10.0 : 1, respectively. The
trend model is excessively smooth with an isotropic ratio, while it shows abrupt
jumps with a large anisotropy ratio. The mean squared error value between the
true trend and the modeled trend is calculated and shown in Figure 3.11d. Ac-
cording to the minimization of the mean squared error value, the test indicates
that the optimal anisotropy ratio is around 3.1 : 1 for trend modeling. The re-
sult shows that the anisotropy in trend modeling is more isotropic than the one
suggested by the stationary variogram ranges from the experimental variogram.
The anisotropy ratio should be re-considered so that it supports a smooth trend.

The developed anisotropy ratio by the areas under the variogram model

curves is considered. The non-stationary variogram model is given as:

v(h) = 0.20-Sph(h) =135 +1.00-Sph(h) =135 +1.80-Sph(h)  ,=135°

Ahmax =600 m Ahmax=23,000 m Ahmax=10,000 m
Ahmin=280 m Ahmin=280 m Ahmin=280 m
(3.11)

here three spherical-type variograms with a continuity of 135° are considered.
The total contribution of the non-stationary variogram model is 0.2+1.0+1.8 =

3.0. The maximum distance LD for calculating the anisotropy ratios should
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Figure 3.11: Modeled trends with different anisotropy ratios

be then determined from the domain size. Figure 3.12 shows the non-stationary
variogram models with different maximum distances. These distances that are 45
meters, 90 meters, 135 meters and 180 meters corresponding to a quarter, half,
three quarters and whole of the domain size with the rotation are considered. The
sizes of the markers represent the relative pairs of the experimental variogram in
each lag distance. The anisotropy ratios based on the area calculations under the
variogram model curves are 3.02 : 1, 3.85: 1,4.77 : 1 and 5.51 : 1, respectively, for

these cases. The area ratio with a maximum distance of L D) = 45 meters closes
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Figure 3.12: Inference of the maximum distance in calculation of proposed
anisotropy ratio. The sizes of the markers represent the relative pairs of the
experimental variogram in each lag distance.

to the minimized mean squared error value in Figure 3.11d; however, the pairs

of the experimental variogram are not reliable due to fewer lags are calculated

in pairing samples within such a short distance. The experimental variograms

are also unstable beyond half of the domain size.

Thus, half of the domain

1
size LD = §|A| is considered reliable to model the non-stationary variogram

models, and further, calculate the anisotropy ratios which is recommended. The

proposed anisotropy ratio in this case is close to 3.85 : 1 when LD = 90

meters.

In order to show the stable proposed anisotropy ratio calculation, a test
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on changing the non-stationary variogram model is considered. Another non-

stationary variogram model fitted with the same experimental variograms is

given as:
v(h) =0.20 - Sph(h) ,=135c0 +2.30- Gauss(h) ,=1350 (3.12)
Ahmax=60 m Ahmax=9,000 m
ahmin:140 m ahmin:140 m

here the variogram model with two spherical structure in a continuity of 135° is
used. The total contribution of the non-stationary variogram model is 0.2+2.3 =
2.5. The anisotropy ratio under the variogram model curves within half of the
domain size is 4.30 : 1, see Figure 3.13. The result indicates that the proposed
anisotropy ratio does not significantly change with the way of fitting the non-
stationary variograms. This result also provides a relatively stable anisotropy

ratio.

3.2.3 Declustering Weight

Geologic data are often preferentially sampled at locations with high values be-
cause of their economic and technical importance (Davis, 2002). The proposed

weighting method is affected by the clustering data. Such clustered sampling
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may induce a bias and impact the results. Declustering should be used to cor-
rect the weights in trend modeling.

Declustering is applied for correcting the histogram of spatially clustered
data. The declustering weights {wgec(ui),7 = 1,--- ,n} in Equation 3.2 are cal-
culated based on the distance between the data. Polygonal declustering and cell
declustering are two common declustering methods. Polygonal declustering is
straightforward, but it is considered unstable in 3-D (Pyrcz and Deutsch, 2014).
Cell declustering method is considered to be a robust method where the weight
is assigned based on the cell size and the number of data in different cells. This
method is suitable for a range of data configurations (Pyrcz et al., 2003).

The original weights at the data locations are shown in Figure 3.14a. The
declustering with a 24-meter cell size is applied with 51 data and shown in Fig-
ure 3.14b to obtain the declustered statistics. Figure 3.14c shows the corrected
weight where the samples in the high-density zones is given lower weight than
that in the low-density zones. Figure 3.14d highlights the use of declustering
weights. After the correction, the trend is modeled with a better fit to the grades
where the closer spaced samples are collected. The use of declustering weights
ensures that the final trend model is unbiased. Thus, it might be appropriate to

consider declustering in situations when data are clustered together.

3.2.4 Smoothing Parameter

The smoothing parameter SP simplifies the length scale settings for the major
direction apmayx in Equation 3.6. The smoothing parameter is an alternative for
controlling the length scales, and further, controlling the spread of the weight-
ing kernel. A smaller weighting kernel matches the data better, while a larger
weighting kernel leads to a smoother trend model. The smoothing parameter is
introduced to more easily understand and simplify the length scale settings for

practitioners.
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Figure 3.14: Modeled trends with the declustering correction

The smoothing parameter changes the length scales of smoothing in a con-

tinuous way. Figures 3.15a, 3.15b and 3.15¢ show modeled trends with different

smoothing parameter values of 0.5, 1.0 and 3.0, respectively. Other trend pa-

rameters are held constant. The trend model becomes smoother with increasing

smoothing parameter. Figure 3.15d compares the true trend with the modeled

trend based on the mean squared error value. In this case, a value of 1.0 appears

optimal when the mean squared error value reaches the minimum. A user would

set reasonable length scales and then fine tune the results with the smoothing



Chapter 3. Trend Modeling

66

Northing, m

East, m
(a) SP=0.5
128.r5 n - e 40m
(0] (e [*) ] [
E_ e e o o o o
j)]
£
£
‘g ] o o
z
[e] [e] (¢
[e] o] ®
128, 0.0 m
East, m
(c) SP=3.0

Northing, m

East, m

(b) SP =1.0

g
n

—e—mse
* Min. mse

= = =
[ [0%) s

i
—_

Mean Suared Error Value (M.S.E.)

1.0 2.0 3.0 4.0 5.0
Smoothing Parameter

(d) MSE comparison

Figure 3.15: Modeled trends with different smoothing parameters

parameter. The objective function for trend modeling will be inferred from this

parameter and discussed in the next section.

3.3 Trend Optimization

The trend-like features in real geological phenomena are usually more complex

than a simple model can capture. The ultimate aim of trend modeling is to
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provide accurate and precise predictions for improved engineering designs. Vi-
sualization can help decide whether a trend model is appropriate for the data;
however, this is subjective and could lead to an over- or under-fit trend model. An
over-fitted trend leaves too little variation and too little uncertainty in the pre-
diction and an under-fitted trend does not reproduce large-scale features (Pyrcz
and Deutsch, 2014). A goal of this research is to develop an objective function
to optimize the trend for the subsequent geostatistical modeling.

The proposed objective function should be calculable and straightforward
to implement. Here, the objective function is to minimize the mean squared error
in Equation 3.10 when the true trend is known. Then, the objective function

can be applied where the true trend is not known.

3.3.1 Relations between Observations, Trend Values and Resid-

ual Values

The analysis of trend modeling is designed to separate the observed data Z(u)
into two components: a large-scale trend m(u) influencing the entire domain
and the residuals R(u) that are the difference between the observed data and
the trend values expressing the local effects. The trend values are modeled by
neighboring observed data with the moving average method resulting in calcu-
lation of the residuals. The residuals, with respect to the neighboring observed
data, are either positive or negative. A zero mean value of residuals E{R(u)} =0
is assumed in Equation 2.17, in which the amount of the positive and negative
values in residuals are equal likely. If the mean value of residuals R(u) equals to
zero, then it follows that E{Z(u)} = m(u), that is, the local mean of the region-
alized variable Z(u) equals to the trend value m(u). If these assumptions are
made, the relationships of the decomposed geologic data could be explained as:
(1) the trend values should match the observed data values as much as possible;

and (2) the trend values and the residuals should be uncorrelated.
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The variance of the random variable Z(u) is given as:

Var{Z(u)} = Var{m(u) + R(u)}
(3.13)
=05 =02 +oh+2-Crr(0) YucA

here 0%, o2, and O'%% represent the variance of the original data, the trend model

and the residual model. The covariance C),(0) is an important part of deciding
on the trend at zero lag distances (McLennan, 2007). The variogram of the

random variable Z(u) can be decomposed to:
vz(h) = Ym(h) +Yr(h) +2 - ymr(h) Vu,he A (3.14)

here vz (h), ym(h) and yr(h) represent the direct variograms of the original data,
the trend model and the residual model. ~,,z(h) is the cross variogram between
the trend values and the residual values at a lag distance of h and is related to
the covariance Cp,r(h). Thus, the trend values and the residuals are assumed
uncorrelated at all lag distances so that the minimized correlation between the
trend m(u) and residuals R(u) is a promising solution.

Figure 3.16 shows the correlations among the observed data, the trend
values and the residual values with increasing smoothing parameter. There are
two concave functions, p{m(u), R(u)} and p{Z(u), R(u)}, and one monotonic
function, p {m(u), Z(u)}. The possible numerical optimization would be selected
from these two concave functions such that a simple maximization/minimization
might be obtained.

The relationships between these components by the geological context are
analyzed here: (1) the correlation between the trend values and the observed
values should be maximized, that is, max. p{m(u), Z(u)}; and (2) the abso-
lute value of the correlation between the trend values and the residual val-

ues should be minimized, that is, min. |p{m(u), R(u)}|. These correlations
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Figure 3.16: Relationships on observations, trend values and residual values

could be considered; however, some of them may have no clear geological ex-
planations, for example, the absolute correlation between the observed values
and the residual values, that is [p{Z(u), R(u)}|, does not have obvious geo-
logical meanings. Moreover, although a combination of the relations, such as
p{m(u), Z(u)} —|p{m(u), R(u)} |, may have a clear geological context, this com-
bination is abandoned because the weight to each factor is difficult to determine.
Thus, one promising correlation that could be considered for the trend objective
function is that the trend and the residuals should be absolutely and minimally
correlated, that is, min. |p{m(u), R(u)} |.

The same 2-D example in Figure 3.4 is considered. The smoothing pa-
rameter SP is the only factor that will be varied with an increment of 0.01.
Figure 3.17 shows the original and the absolute correlations between the trend
and the residuals p {m(u), R(u)} and |p {m(u), R(u)|} that are overlapping. The
best smoothing parameter corresponding to a minimized absolute correlation

(red marker) is 0.52.
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3.3.2 Inference of Trend Objective Function

The goal is to develop a general objective function that leads to an optimal trend.
The smoothing parameter that minimizes the absolute correlation between the
trend and residuals appears to provide a reasonable estimate; however, it may
not reach to the final decision of the objective function. In this validation mode,
the true trend is assumed known. An adjustment factor f is introduced to tune
the smoothing parameter so that it determines how the factor would lead to a
trend estimate close to the known trend in a wide variety of circumstances. In
the future, the optimal trend could be determined with this factor when the true
trend is not known.

Cross validation is considered to check the model. Figure 3.18 shows a
schematic illustration for the determination of the factor f. A variety of trends
are modeled with increasing smoothing parameter. The absolute correlations
between the trend and residuals |p {m(u), R(u)} | are calculated and shown with
the black line. The chosen smoothing parameter that minimizes this correla-

tion is labeled as SP. The mean squared errors between the trend where they
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are available and the trend being estimated are also calculated and shown with
the red line. The corresponding smoothing parameter with the minimized mean
squared error comparison is labeled as SP*. The smoothing parameter that
minimizes the correlation would be, ideally, closely related to the smoothing pa-
rameter that minimizes mean squared error value. The smoothing factor for a
trend model that minimizes the mean squared error has been observed some-
what larger than the one that minimizes the correlation between the trend and
residuals. The adjustment factor should match the two smoothing parameters,
that is, SP* = f x SP.

The previous 2-D synthetic example is expanded to determine the ad-
justment factor f. A set of trends are modeled with increasing smoothing pa-
rameter using an increment of 0.01. Figure 3.17 shows the correlation function
|p{m(u), R(u)} | and the smoothing parameter corresponding to the minimized
correlation SP in a reasonable condition equals to 0.52. The difference between
the modeled trend and the known trend is compared by the mean squared error
in Figure 3.19a and the smoothing parameter with a minimized comparison value
is SP* = 1.14. Figure 3.19b compares the difference between these two smooth-

ing parameters, namely SP and SP*. In order to easily compare the results, the
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Figure 3.19: Determination of a trend objective function with smoothing
parameters

mean squared error value between these smoothing parameters is standardized
showing an adjustment factor close to 2.0. Figure 3.20 shows the trend models
and scatter plots with different factors. The trend model appears to show too
much variability with a factor of 1.0, while it appears excessive smooth and con-
ditional biasedness with a factor of 3.0. The optimal trend with a factor of 2.0 is
shown in Figure 3.20c that performs a fairly smooth and variable trend model.
Another example with different data is also checked in Figure 3.21. The
2-D synthetic trend and residual models stay the same and shown in Figures 3.4a
and 3.4b. 41 data are sampled in this exhaustive subsurface showing a N45E
trend, see Figure 3.21a. The scatter plot of 41 data shows a correlation of
—0.06 in Figure 3.21b. A variety of trend models are constructed with increas-
ing smoothing parameter using an increment of 0.01. Figure 3.21c¢ shows that
a smoothing parameter of 0.56 reaches to the minimized absolute correlation,
while Figure 3.21d shows the calculation based on the mean squared error com-
parison indicating an optimal smoothing parameter of 1.18. Figure 3.21e shows

that the adjustment factor of 2.1 is the optimal. The result also confirms that
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Figure 3.20: Modeled Trends and Crossplot with different adjustment factors.

The scatter plots are shown in 2-D KDE units
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an adjustment factor of 2.0 provides very good results in this example. The
optimal trend model with a smoothing parameter of 2 x 0.56 = 1.12 is shown in
Figure 3.21f.

In conclusion, the absolute correlation between the trend values and the
residual values provides a good indicator of an optimal trend model. The rec-
ommended adjustment factor f of 2.0 works for a wide variety of trend modeling

cases. The final objective function for trend modeling is given as:

Objective Function = 2.0 - SP when |p {m(u), R(u)} | is minimized  (3.15)

Note that the adjustment factor is optional in the software. The users may

change the adjustment factor based on site specific information.

3.3.3 Considerations for the Trend Objective Function

Experience shows that, in most cases, the function |p {m(u), R(u)} | has only one
minima; however, difficulties may arise when the absolute correlation between the
trend and the residuals has more than one local minimum value. Several studies
are tested for the assessment of the optimal trend function in Equation 3.15.
Three situations are considered below.
Situation 1: Multiple Minima in Correlation Function

Sometimes, the absolute correlation function has more than one minima.
The multiple minima might exist if the smoothing parameter is chosen in an
unexpected range. Constraining the smoothing parameter in a reasonable range
leads to a well behaved function.

The synthetic trend model in Figures 3.4a stays the same, while a new
synthetic residual model in Figure 3.22a is considered. 51 data are sampled in
this exhaustive subsurface in Figure 3.22b indicating Northeast trend features.

A variety of trend models are constructed with increasing smoothing parameter.
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Figure 3.22: Synthetic subsurface models for determining an optimal SP in

the presence of multiple minima in trend objective function. The true trend

values are shown in Figure 3.4a and the true residual values are shown in

Figure 3.22a. The true subsurface model in Figure 3.22b is combined with

the true trend model and the true residual model. 51 black circles/markers
represent the conditioning data



Chapter 3. Trend Modeling 7

The absolute correlation function |p {m(u), R(u)} | is shown in Figure 3.22c. The
smoothing parameter equals to SP = 0.25 when it reaches to the first minimized
correlation value (red marker), and SP = 0.52 when it reaches to the second
minimized value (blue marker). Figure 3.22d shows the minimized mean squared
error value between the true trend and the modeled trend showing a smoothing
parameter of 1.14. The optimal trend model that is obtained from Equation 3.15
is the one that doubles the smoothing parameter when the absolute correlation
function first reaches to a minimum. Figure 3.22e shows the trend model with a
smoothing parameter of 2 x 0.25 = 0.50. The trend model is not that continuous
and smooth as expected through the visualization. SP = 0.50 is not a reasonable
value due to the trend model appears over-fit. Figure 3.22f shows the trend model
with a smoothing parameter of 2 x 0.52 = 1.04 showing gradually increasing
values from Southwest to Northeast. The inferred trend model appears more
reasonable. This result indicates that, in a circumstance of a concave absolute
correlation function, the optimal smoothing parameter should be determined by
the last minimized value from the correlation function.

Situation 2: Negative Values in the Correlation Function

The correlation between the trend and the residuals is not always positive,
so an absolute correlation function |p {m(u), R(u)} | is considered.

The synthetic trend in Figure 3.4a stays constant and residual models are
shown in Figures 3.23a. 51 data are sampled in the exhaustive subsurface in
Figure 3.23b. Northeast trend features exist. A variety of trends are modeled
with increasing smoothing parameter using an increment of 0.01. Figure 3.23c
shows the original correlation between the trend and the residuals with a gray
line and the absolute correlation with a black line. The minimum value of the
absolute correlation is the one shown with a red marker, SP = 0.58. Figure 3.23d

shows the calculation based on the minimized mean squared error comparison
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Figure 3.23: Synthetic subsurface models for determining an optimal SP in

the presence of negative values in trend objective function. The true trend

values are shown in Figure 3.4a and the true residual values are shown in

Figure 3.23a. The true subsurface model in Figure 3.23b is combined with

the true trend model and the true residual model. 51 black circles/markers
represent the conditioning data
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indicating an smoothing parameter of 0.96. Figure 3.23e shows that the adjust-
ment factor of 1.70 reaches to the optimal. Still, an adjustment factor of 2.0
provides very good results in this example. The trend model with a smoothing
parameter of 2 x 0.58 = 1.16 is shown in Figure 3.23f.

Situation 3: Complex in the Correlation Functions

The absolute correlation function is often shown with a single concave
function; however, sometimes, it may be a combination of a convex and concave
functions. Similar to the multiple minima values in Situation 1, the optimal
smoothing parameter should be inferred in a reasonable range.

Another synthetic trend model is established in Figure 3.24a and a ran-
dom model is shown in Figure 3.23a. Figure 3.24b shows the exhaustive true
image and 51 samples are collected from it. More high values are concentrated
in the center. The trends are modeled with increasing smoothing parameter.
Figure 3.24c shows the absolute correlation between the trend and the residuals.
The minimum value from this function could not be decided due to the complex
function. In the inference of the absolute correlation function, only the values
in the concave ranges are considered. A smoothing parameter of 0.13 reaches a
minimized concave function. Figure 3.24d shows the calculation based on the
mean squared error comparison indicating an optimal smoothing parameter of
0.25. Figure 3.24e shows that the adjustment factor of 1.9 reaches to the opti-
mal. The result also confirms that an adjustment factor of 2.0 works well. The
optimal trend model with a smoothing parameter of 2 x 0.13 = 0.26 is shown in

Figure 3.24f.

3.4 Special Topic of Trend Modeling

Extrapolation in trend modeling, that is, the trend predictions outside the range

of the available data is a challenge and must be considered carefully. In this
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Figure 3.24: Synthetic subsurface models for determining the optimal SP in

the presence of mix types in trend objective function. The true trend values are

shown in Figure 3.24a and the true residual values are shown in Figure 3.23a.

The true subsurface model in Figure 3.24b is combined with the true trend

model and the true residual model. 51 black circles/markers represent the
conditioning data
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section, trend extrapolation is explored with a novel weighting function.
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Figure 3.25: Schematic illustration of the weighting functions for trend ex-

trapolation: (a) location map of samples indicating some trend-like features.

ug is located outside of available data location ranges and the trend value at

location wug is required to estimate; (b) conventional non-negative weighting

function; and (e¢) proposed weighting function suited for trend extrapolation
purpose

An illustrative ease example is considered with the proposed approach.
Figure 3.25a shows a 1-D schematic illustration. The true trend is shown with
a red line. 10 black markers are known data and labeled with numbers from p;
to pjg- These data perform a strong trend in the interpolation region, while the
trend value at the location of ug is being estimated in the extrapolation region.
Figure 3.25b shows the conventional weighting function in Equation 3.2 when
four data (p; to p,) are incorporated into the weight calculation. More weight

is given to the closest data and the less weight is given to the further data.
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The weight becomes almost zero or a small background value when the sampled
location is far away from the modeled location. Then, the weight is combined
with the data values to construct a trend model. The modeled trend is shown
with a blue line in Figure 3.25a. The trend value goes to a constant value where
the estimate is away from the given samples.

Care should be taken when modeling a trend in a region beyond the range
of the data values. Three basic steps should be followed when considering the
trend extrapolation. The first is to assemble the available samples, such as the
grade values and define the extrapolation boundary for the regionalized variable.
The second step is to choose a proper weighting function and the appropriate
parameters for the trend model. The choice of the weighting function provides
a basis for constructing a reasonable trend model in the extrapolation region.
The final step is to use the proposed mathematical function and the estimated
parameters to infer the trend model.

A novel weighting function is proposed where nearby data are given more
positive weights and the distant data are given progressively negative weight.
Figure 3.25¢ shows a sketch of the developed weighting function suited for the
trend extrapolation. Four data from p; to p, are assigned with the positive
weights; two following data ps and pg are given with the negative weights; and
rest of data, from p; to pyg, are useless. Distance Dy is a transition point from the
positive weight to the negative weight, and D, is the distance between the data
with the last negative weight and the next unused data. Two quadratic functions
are considered to define the new weighting scheme. {f(u;),i =0,1,--- ,np} rep-
resent the positive weights and {g(u;),7 =0,1,--- ,nn} represent the negative

weights that are given as:

Ui, U; € A (3.16)

g(uj) if D1 < u; < D2
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In a condition of

np+nn<n

here n is the total number of available samples within the domain A. np repre-
sents the number of data that are given with the positive weights, while nn repre-
sents the number of data that are given with the negative weights. Distances Dy
and Dy are the transition points from the positive weight to the negative weight
and from the last negative weight to the following zero weight, respectively. The
derivations of the weighting functions are appended in Appendix A. The final

weighting functions are written as:

flw) =1- 5z uf
g(uj) = 6 'A'Dl'DQ—L'A'(DQ"‘Dl)'U""L'A'Uz
’ (D2 — D) (D2 — D) 7 (D2~ Dy)? !
ui,quA
(3.17)

here the transition point D; can be expressed by a simple average distance

DP4+DI)5

between point 4 and point 5 in Figure 3.25¢, that is, . The distance Do

D Ps +D b7
—
A is a factor that accounts for the sum of the negative weights. The equation is

could also be easily calculated between point 6 and point 7, that is,

given as:

> g(uj) = -A (3.18)
j=1

The factor A can be inferred by different functions. Here, a linear increment is
considered. The sums of the positive weights and the negative weights should

be normalized to 1.0, and then, the total positive weights can be given as:

ﬁiﬂm):1+A (3.19)
i=1
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Thus, the equation for the trend value m(u) using the moving average statistics

is expressed by:

Doy flui) - 2(uy) +E?219(“j)'2(w)

n nn u,u;,u; € A 3.20
>ty f (wi) Zj:l 9(u; ) ! ( )

m*(u) =
where {z(u;),7 =1,2,--- ,np} and {z(u;),j =1,2,--- ,nn} denote the observed
value at the u; and u; location within the domain A, respectably. Weights are
denoted by the functions {f(u;),a =1,2,--- ,np} and {g(u;),b=1,2,--- ,nn}.
np represents a set of data that are given with the positive weights, and nn
represents a set of data that are given with the negative weights. Note that
the used number of data could not exceed the total available samples n, that is,

np +nn < n.
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Figure 3.26: Problem with current proposed trend modeling function in Equa-

tion 3.15 indicating the importance of an appropriate trend function suited with

trend extrapolation. Several data are collected in a shallow depth. The true

trend (black line) is considered as a reference indicating a reducing value as the

depth lower than 1000 meter. The optimal trend (blue line) is modeled with

corrected trend parameters in a objective fashion. The trend values increases
as the depth showing the importance of the trend extrapolation
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A 1-D synthetic example is shown in Figure 3.26 for demonstrating the pro-
posed weighting function in trend extrapolation. 96 samples with black markers
are collected on 1 x 1280 grid nodes and they are preferably sampled in the
shallow depth from 0 meters to 1000 meters and no data are sampled from 1000
meters to 1280 meters. The true trend is shown as a black line. The gray dashed
line represents the global mean from 96 data with declustering weights. Trends
are modeled with moving averages in Equation 3.1 with the corrected parameters
mentioned in previous sections. The optimal trend is chosen by Equation 3.15
and the optimal trend is shown with a blue line in Figure 3.26. This modeled
trend looks reasonable at the shallow depth where there are lots of data; however,
the trend model goes back to the global mean at the depth in extrapolation; this
does not appear reasonable.

1000 meters is considered as a transition point from the interpolation es-
timate to the extrapolation estimate. All trends are modeled with the proposed
weighting function using the closest 40 data. Figure 3.27a represents the modeled
trend using the nearest 10 data with positive weights and the following 30 data
with negative weights. Figure 3.27b shows the modeled trend using the closest
20 data with positive weights and the following 20 data with negative weights.
Figure 3.27c represents the modeled trend using the nearest 30 data with positive
weights and the following 10 data with negative weights. These modeled trends
show reasonable extrapolations; however, the models contain some variabilities
in the interpolation region due to the unsmoothness proposed weighting function
in Equation 3.17 and obvious artifacts at the transition point at the location of
1000 meters due to the linear function of the indicator A in Equation 3.18.

Weights at different locations should be checked. The weights at —500.50
meters (trend interpolation) and —1100.50 meters (trend extrapolation) are
shown in Figure 3.28. The left figure shows the probability distributions of the
weights with 40 data, and the right figure shows the cumulative distributions
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Figure 3.27: Modeled trends with proposed trend extrapolation function with
different number of Data

of the weights with these data. Similar to the conventional weighting function,
there are no negative weights at the location of —500.50 meters since data are
more informed in this location. Unlike the conventional weighting function, the
positive weights and negative weights are both considered and used at the loca-
tion of —1100.50 meters. The total weights are then scaled to a unit sum.

This trend extrapolation method suffers from several shortcomings. The
proposed weighting algorithm does not account for the differences in the geolog-
ical processes. Consequently, the model with the trend extrapolation may not
be stable and realistic. Additional resources, such as geological mapping and
seismic data, may be helpful to model a realistic trend model. Additionally, the
proposed objective function with the correlation does not work for the extrapo-
lation. Visualization by practitioners may be the only choice to determine the
optimal trend model. Further, the discontinuities in the weighting function lead
to discontinuities in the trend predictions, so does the indicator. A more smooth
and continuous weighting function and other types of the indicator should be

considered in future research.
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different estimate locations.
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3.5 Remarks

This chapter emphasizes the model of a deterministic trend and stochastic fluc-
tuation of regionalized variables. The trend model characterizes the large-scale
physical features and the residual model captures the short-scale variations with
limited data. The optimal selections of parameters for trend modeling including
the background value, anisotropy, declustering weights and smoothing parame-
ter are demonstrated with examples. The deterministic trend can be calculated
in an objective and repeatable manner.

The smoothing parameter has been calibrated with synthetic examples
where a reference trend model is available and where cross validation could be
used to validate the objective function. Considering a smoothing parameter
that is double that obtained by minimizing the absolute correlation between the
trend and residuals ensures a reasonable trend model. This objective function is
typically simple to understand and easy to implement.

Although there is a gap between the theory and the practice in the inference
of the optimal trend function, the practical success of the objective function is
shown. In practice, this objective trend function is well behaved; however, there
is a lack of the theoretical understanding why the algorithm on trend modeling
works well. The mathematical proof for the algorithm should be considered in
future work.

Trend extrapolation is always a challenge and must be considered in 2-D
and 3-D cases. A preliminary approach is proposed to infer the trend model in
extrapolation. The proposed weighting function considers positive and negative
weights. The result provides a useful starting point for future research in trend

extrapolation.



Chapter 4

Prediction with a Trend

The conventional procedure for simulation is to transform the regionalized vari-
able into a Gaussian distribution. The regionalized variable is forced to be uni-
variate Gaussian after the normal score transformation; however, the trend-like
features are not removed in the normal score transformation, see Figure 4.1a. The
relationship between the original values and the trend values, see Figure 4.1b,
will not likely be preserved in simulation. Trend features must be considered
and enforced properly in geostatistical simulation.

This chapter develops a technique for transforming the values and the trend
model to be multivariate Gaussian. The proposed method will account for the
trend features in the regionalized variable, reduce the uncertainty of the models
and improve the characterization of the variability. The original stepwise con-
ditional transformation proposed by Leuangthong and Deutsch (2003) and the
Gaussian mixture model proposed by McLachlan and Peel (2000) are reviewed.
A methodology similar to this non-parametric stepwise conditional transforma-
tion is proposed. The conditional distribution is calculated by Gaussian mixture
models fitted to the deterministic trend and the data. The trend-like features in

the regionalized variable are removed by the conditional transformation. Details

89
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Figure 4.1: Location map from 51 transformed data in NS units and crossplot

of the trend model with 51 data in original units. The location map shows

obvious trend features that high values are located in the Northeast and low

values are in the Southwest. The crossplot is shown on 2-D KDE units. Data
in the presence of a trend show heteroscedasticity features.

of the proposed geostatistical modeling algorithm are described and illustrated

with examples where the values show an apparent trend.

4.1 Review of Conditional Transformation

The original stepwise conditional transformation and Gaussian mixture models

are outlined. The advantages and drawbacks are pointed out.

4.1.1 Stepwise Conditional Transformation

The stepwise conditional transformation technique proposed by Leuangthong
(2003) provides an alternative to the conventional normal score transformation.
This transformation captures non-linear features in the multivariate distribu-

tions. The stepwise conditional transformation is identical to the normal score
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transformation for the first variable; subsequent variables are normal score trans-
formed based on the previous variables. All variables are uncorrelated and in-
dependent at a zero lag distances after the transformation. The back transfor-
mation brings all non-linear features back to the original distribution and all
correlations between multivariate variables are preserved.

Consider {Z(u;),i=1,---,nand k=1,--- , K} is a set of K stationary
random functions at a set of n data locations in the domain A. The observa-
tions of the random function at the location {u;,i =1,---,n} are denoted as
{zi1, -+ ,zik}. The first variable {2;;,i=1,---,n} is transformed indepen-
dently to Gaussian units. The second variable {z;2,7 =1,--- ,n} is transformed
conditionally to the probability classes of the first variable {z;1,i =1,---,n}.
The {k:th, k=1,--- ,K} variable {z; 1,7 =1,--- ,n} is partitioned to the prob-

ability classes of the previous (k — 1) variables, and so on. The process is given

as:
yin =G (F1(2i1))
Yio=G! (Fy1 (2i2 | 2i1))
(4.1)
Yie =G (Fyp por (Zig | Zig o Zig-1))
Yik =G (Fgp ko1 (zig | 2ig, - zik-1)) i=1,---,n
here {y;r,i=1,--- ,nand k=1,--- ,K} are the transformed multivariate

Gaussian variables that are uncorrelated and independent. G~!(-) represents
the inverse Gaussian CDF and F(-) indicates a CDF derived from the original
data. The co-located complex features are removed in this forward transforma-

tion.
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All variables are in the standard Gaussian units after the stepwise condi-
tional transformation. The transformed variables are simulated independently.
The stepwise back transformation brings all the complexities back into original

units by reversing the order of the forward transformation, that is,

zig=F""! (Grytye -1 Wik | Y1, Yik—1))

Zip = F Gy ho1 Wi | Yits Y1) (42)

zip=F""! (Gop (yiz | yin))

zip=F "' (Gi(y;n) i=1,--,N

where N represents the number of the grid nodes where typically n < N. The
complex features are restored after the back transformation and the primary
correlations between variables are re-introduced.

The original stepwise proposal assumes that the correlations for all lag
distances h are removed; however, only features at h = 0 are removed and all
multivariate distributions are in the Gaussian shapes at h = 0. There is no
guarantee of de-correlation at non-zero lag distances.

The order of the stepwise transformation is important. The derivation
of the conditional distribution becomes increasingly difficult as k& increases. The
conditional distribution for the first variable is well established; and the accuracy
will decrease with the following variables due to a decreasing number of data
will be used to infer the conditional distribution. Choosing the most continuous
variable to simulate first works well in practice.

The original stepwise proposal considers the non-parametric conditional
distributions for the transformation. This approach, however, suffers from ar-

tifacts due to the bins used for the conditional distributions. There must be
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enough data to inform the conditional probabilities for the transformation in
each bin. Each bin requires a minimum of 10 observations for each variable. The
required total number of data would be 105 where K is the number of variables.
There are rarely sufficient data to reliably identify the conditional distributions
with K > 3 variables. Leuangthong (2003) proposed a nested application to

reduce the SCT data requirement; however, the binning nature is still shown.

4.1.2 Gaussian Mixture Model Fitting

The Gaussian distribution is fully parameterized by a mean vector and a covari-
ance matrix. One single Gaussian model cannot capture all the complex features
of geologic data, while one Gaussian kernel per observation is computationally
expensive with a large number of data (Parzen, 1962; Rosenblatt, 1956; Silver-
man, 1986; Gray and Moore, 2003). Mixture models with a small number of
Gaussian kernels could be considered for simplifying the calculation.

Pearson (1894) proposed the underlying theory of the mixture models. A
number of authors including Gilardi et al. (2002) and Silva and Deutsch (2016)
have used them into geostatistics. The benefits of the Gaussian mixture model
(GMM) are that the complex features can be captured by Gaussian components
and any conditional distribution can be easily calculated.

The Gaussian mixture model is a probabilistic model and assumes all data
can be generated from a mixture of a finite number of Gaussian components
with unknown parameters. Consider a set of K dimensional variables at n data
locations z = {le, e ,zg} in the domain A where the superscript 7" denotes the

vector transpose. y = {le, e ,yg} are the set of the normal score transformed
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variables where each variable is transformed independently. The Gaussian mix-
ture model is a multivariate probability density function. Such probability den-

sity function is written as a sum of g components or mixtures:
) g
Fill®) = mo@ | p,S) i=1--,n (4.3)
j=1

here f’ (+) is the estimated probability density distribution. ¥ is a set of unknown
parameters {my, -+, Tg; b1, ,fgi 21, - , g} in the mixture model and would
be determined. {m,---,m,} are the non-negative mixing proportions/weights

assigned to each mixture:
O<m<l j=1,---,9

and

i?‘l’j =1 (44)
j=1

¢(-) is the probability density function. {¢ (y; | p;,%;),i=1,--- ,nand j=1---

represent the component densities of the normal mixtures. {g1,--- ,py} indicate
the mean vectors of all variables and {¥1,---,3,} refer to a set of covariance

matrices between variables for each mixture.

4.1.2.1 Expectation Maximization

The Expectation Maximization (EM) algorithm is often considered to determine
the parameters of the mixture models. The approach of the EM technique was
well explained by Dempster et al. (1977). The EM technique involves two steps
that are the Expectation step (E-step) and the Maximization step (M-step). The
expectation of the log likelihood with the current estimate parameters is built

in the E-step. In the M-step, these parameters are re-estimated by maximizing

, 9}
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the generated expectation of the log likelihood in the E-step. EM is an iterative
algorithm. The log likelihood of the data increases with each iteration and
approaches a local maximum.

The log likelihood log{L (¥)} for a set of unknown parameters ¥ can be

formed from the observed data {y;,7 =1,---,n} and given as:
log{ L (@)} = > o /' (i | ©)
i=1
n g
= log { > mio (i | #j,Ej)}
i=1 j=1

The parameters of the mixtures would be iteratively fitted so that f/() closely
fits the experimental data. In this context, any conditional distribution can be
easily obtained once the function f/(-) is fit. The means, covariance matrices
and the mixing proportions for each component should be determined so that
the log likelihood log{L (¥)} in Equation 4.5 is solved in a reasonable way. The
procedure in EM algorithm is described as follow.

Consider a set of K-dimensional n observed Gaussian data y =
{le, e ,yg}T. A set of n unobserved vectors x = {J:{, .zl T is intro-
duced and considered as component-label variables which contain the additional
information. If {y;,i =1,--- ,n} belongs to the {jth,j =1, ,g} component
of the mixtures, then the component {z;; = (z;);,i =1,--- ,nand j =1,--- ,g}
equals to 1. Otherwise, {z;; = (;); =0,i=1,--- ,nand j=1,---, g} is satis-
fied.
E-Step

The E-step initializes the unknown parameters ¥(®) and calculates the

unknown labels from the unobserved data {z;;,j=1,---,gandi=1,--- ,n}

on the [*! iteration.
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The initializations of the mixing proportions, means and covariance ma-
trices {\Il(o) = <W§0)7“§0)72§0)) =1, g} for each component are required
before the iteration. The initial parameters are chosen randomly. K-means+-+
algorithm proposed by Arthur and Vassilvitskii (2007) is considered for the ini-
tialization. The observed data {y;,i = 1,--- ,n} are initially partitioned into g
components.

The unobserved data {xﬁ),j =1,---,gandt=1,--- ,n} represents the
probability if the observed samples {y;,7 = 1,--- ,n} belonging to the 7™ compo-

nent of the mixtures on the initial iteration. The initial conditional expectation
(0)

of the random variable given the observed data z;; = Ey ) (X, | ¥i) using the
current the parameters {\II(O)} is estimated. The unobserved data continues
to be calculated given the current mixing proportions, means and covariance
matrices estimation for each component.

M-Step

The process in the M-step requires the global maximization of the log
likelihood with respect to the parameter ¥ on the (I + l)th iteration.

The set of parameters {\Il(l+1),l =0,1,2,---, } for each component are re-
estimated based on the just-computed unobserved data by maximizing the log
likelihood in Equation 4.5 on the (I + 1)th iteration. The mixing weights, mean
vectors ad covariance matrices in this set of parameters could be calculated by
collecting the observed data according to the unobserved data and proportionally
averaging the observed values.

The convergence of Gaussian mixtures is considered by the calculation
of the log likelihood after each iteration. The log likelihood value is a non-

decreasing function after the E- and M-iterations (Dempster et al., 1977). The

E- and M-steps are repeated until

L (\IJ(H-l)) 1 (W(l)) 1=0.1, -
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(a) Initial a set parameters W (mixture proportions, means and
covariance matrics) and partition the observed data in the
E-step.

2 Initial Components

o
£ 5 ;/ s 5 E
a 3 3 S & O
© = 2 £ < Q.
Q5 /g 529
o .v . O a
S8 LA N\

Vov O SN ?/(?O@ S Location

Mean of each component Data

o
25 / I.z 06
£= / 5S¢
23 <8
83 / =8
3 o =

O €] [CINC) ® 0000 © .
Location

(b) Calculate the probability of each unobserved data given
the current set of parameters in the E-step.

(¢) Calculate a better parameters W based on just-computed
unobserved data by maximizing the log likelihood function
over all possible unobserved data in the M-step.
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Figure 4.2: Schematic illustration of the EM algorithm: (a) initial the un-

known set of parameters ¥ to some random values; (b) calculate the probability

for each unobserved data given the unknown parameters ¥; (¢) re-calculate the

parameters ¥ given the unobserved data in step b; and (d) iterate the steps b
and ¢ until convergence (Modified from Lavrenko (2014))
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is arbitrarily small indicating convergence of the sequence of the log likelihood
value reaches a local optimum. Figure 4.2 shows a schematic illustration of the

EM algorithm.

4.1.2.2 Expectation Maximization with Exhaustive Values

Data should be conditionally transformed by a representative trend distribution.
This conditional transformation requires the use of a bivariate distribution of
the data and its trend model. Missing values in the trend model make the EM
algorithm questionable to apply.

Figure 4.3 illustrates the bivariate distribution between the data and it
trend model in original units. The black lines represent the distributions at
sampled locations, while the red lines represent the true/exhaustive distributions.
Note that the exhaustive trend model is not the same as the true trend model.
The exhaustive trend model is constructed based on observed data and selected
in an objective manner, while the true trend model is only available in synthetic
examples and it is hard to know in real cases. The distribution of the co-located
trend (black line) is different with that of the exhaustive trend (red line). If
the co-located trend values are used for inferring the conditional transformation,
some important features at unsampled locations are ignored and it may introduce
some artifacts. Missing trend values should be accounted for in Gaussian mixture
models.

EM algorithm can handle the missing values accounting for the missing
values in an imputation mechanism (Dempster et al., 1977). The multivariate
probabilities should be marginalized by the observed data and the exhaustive
trend model in the E-step. The conditional expectations of the missing compo-
nents given the observed data should be included in each Gaussian component.

In the M-step, the means and the covariance matrices in a set of parameters ¥
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Figure 4.3: Schematic illustration of the missing trend values in the condi-
tional transformation

are re-estimated from the imputed data values (Roberts, 2010; Delalleau et al.,

2012; Little and Rubin, 2014).

4.2 Parametric Stepwise Conditional Transformation

The original stepwise conditional transformation proposed by Leuangthong and
Deutsch (2003) transforms the residuals conditional to the trend. This approach
has binning artifacts due to the non-parametric conditional distributions and
creates some negative estimates due to variations within the bins. A revised
methodology is proposed. The first change is to transform the variable condi-
tionally to the trend; not the residuals conditioned to the trend. The second
change is to use a Gaussian mixture model instead of arbitrary classes to avoid
the binning artifacts. The objective of this transformation is to remove the
trend-like features from data in a bin-free manner that accounts for the spatial
structure and multivariate relationship between the data and the trend.
Consider a set of n observations, {z;,i = 1,--- ,n}. The trend is assumed
exhaustive and known. It is represented by {m;,i = 1,--- , N}. Figure 4.4 shows

a schematic illustration of the proposed transformation sequence. The steps for
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(a) Normal score transform the exhaustive trend component m(u) to get Ym(u)
Normal score transform data component Z(u) to get Yz(u)

NSCORE
m(u) Ym(ll)
NSCORE
Z(u) Ya(u)

(b) Crossplot of the normal scored data Yz(u) and trend component Ym(u)

Yz(ll)

(c) Fit the crossplot by the multivariate probability density distribution

Yz(ll)

Ym(ll)

(d) Data Y-(u) are transformed conditional to the fitted Gaussian mixture

model to get Y’z(u)

Y’z(u)

Figure 4.4: Schematic illustration of the proposed parametric conditional
transformation procedure: (a) normal score transform the trend model and
data; (b) crossplot of the transformed data and the trend values; (¢) fit with

Gaussian mixtures; and (d) transform the data with the Gaussian mixtures
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the stepwise conditional transformation using Gaussian mixture models are as

follows:

1. Normal score transformation: the trend and the data are transformed into
standard normal score units through the normal score transformation in-
dividually. The trend model is exhaustive and there is no need to consider
the declustering, while the data should be transformed with declustering
weights if they are unequally sampled. The normal score transformations
are written as:

Ym, = G (F(my)) i=1,--- N

(4.6)
Y = G (Fz(z) i=1,---,n

here {ym,,i =1,---, N} denote the Gaussian transformed trend values.
Such trend values are known everywhere. N is the number of grid nodes
from the exhaustively sampled trend. F,(-) represents the cumulative
distribution function of the exhaustive trend values. {y.,,i=1,---,n}
is the Gaussian transformed data, while Fz(-) represents its cumulative
distribution function of data values. n represents the number of data where

typically n < N.

2. Review the transformed variables: the transformed data and the co-located
transformed trend are cross plotted. This crossplot is used to help choose
the number of Gaussian mixture components, g, for the bivariate fitting
and the conditional transformation. Too many mixture models will over-
fit the complexity of the data, while too few mixture models would fail
to reproduce important complexity. The number of the Gaussian mixture
models should be reasonable, such that it gives reliable conditional dis-
tributions from the bivariate distribution of the data and the trend in an

artifact-free fashion. It is common to choose between 2 to 5.
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3. Multivariate density estimation: consider Gaussian mixture models using
a reasonable fitting function to fit the bivariate distribution of the trans-
formed variables. The estimated multivariate density function is calculated

by Equation 4.3.

4. Conditional transform the normal score data: the normal score data,

{ys,,i=1,--- ,n}, are transformed by the conditional distribution of y.,
given {ym,,7 = 1,--- ,n}. The equation is given as:
Y., = G_l (FZ|m(y21 ’ ymz)) t=1,---,n (47)

where the random variable y;i indicates the transformed data by the Gaus-
sian mixture models. Fyj,,(-) represents the cumulative distribution func-
tion of the data given the exhaustive trend. The cumulative distribution
function of the trend facilitates fitting of the mixture model. The trans-
formation considers the trend at each location. The transformed data and

the co-located normal score transformed trend has almost no correlation.

The proposed parametric conditional transformation removes the trend-like fea-
tures that may be problematic in the modeling of the raw data directly. Gaussian
simulation can now be used to generate realizations with the transformed data.
The back transformation will ensure that the trend model is used everywhere.

The trend features will be reproduced in original units.

4.3 Implementation of Modeling with a Trend

In this research, the stepwise conditional transformation with Gaussian mixture
models is used to generate multivariate Gaussian variables with synthetic data.
The same 2-D example in Chapter 3 is considered and applied. The dataset

contains 51 observations. The optimal trend is shown in Figure 3.20 and assumed
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known without uncertainty. The data are conditionally transformed to the trend
model and applied with sequential Gaussian simulation.

The steps for the simulation using stepwise transformation with Gaussian
mixture models are as follows: (1) decluster the data in order to obtain a repre-
sentative distribution; (2) normal score transform the exhaustive trend and the
declustered data; (3) fit the bivariate distribution of the trend and the data with
Gaussian mixture models; (4) transform the data with Gaussian mixture mod-
els; (5) calculate the variogram models of the transformed data; (6) simulate the
transformed data and generate realizations; (7) back transform the realizations
by reversing the stepwise conditional transformation and the normal score trans-
formation; and (8) validate the simulated results. All steps are demonstrated

with 2-D example.

4.3.1 Data Pre-Processing

The data consist of 51 values. The crossplot of the optimal trend with 51 samples
is shown with a correlation coefficient p = 0.97 in Figure 3.20d. The Gaussian
mixture models should be fitted in normal score units, thus each variable should
be transformed to be a standard normal distribution prior to fitting.

The declustering weights in Section 3.2.3 are considered. The data are
normal score transformed with a reference distribution in Figure 3.4c¢ showing
slight differences with the assumed mean and standard deviation values. The
values of the exhaustive trend model and 51 data are mapped in normal score
units in Figures 4.5a and 4.1a. The crossplot in Figure 4.5b shows an almost

linear bivariate distribution in density estimation units with a correlation of 0.90.

4.3.2 Gaussian Mixture Model Fitting

Gaussian mixture models are required for the stepwise conditional transforma-

tion. Gaussian mixture models incorporate the structures of data that can be
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Figure 4.5: Location maps and crossplot of the trend model with 51 data
(circles/black markers) in NS units

seen in the crossplot in Figure 4.5b. The EM algorithm is considered for fitting
the bivariate distribution of the data values and the trend values for Gaussian
mixture models.

Two conditional transformations are constructed based on different types
of trend model. Gaussian mixture models with the co-located trend values and

Gaussian mixture models with the exhaustive trend values are applied.

4.3.2.1 Fitting with Co-Located Trend Values

Gaussian mixtures with the co-located trend model is considered here for com-
parison. The mean and covariance of each component from the mixture models
are calculated according to the co-located trend values. The fitted Gaussian
mixture model, for example with three components, closely matches the prob-
ability distribution of the co-located normal score transformed trend values in
Figure 4.6a showing a high frequency in high values. However, it does not match
with the exhaustive trend distribution in Figure 4.6b. The mismatch of the

marginal distribution of the exhaustive trend values would lead to a bias in the
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Figure 4.6: Univariate distributions of the GMM fitting with co-located trend
values using 3 Gaussian components in NS units

final models. Missing values in the trend model should be considered in mixture

fittings.

4.3.2.2 Fitting with Exhaustive Trend Values

The EM algorithm that accounts for the missing values from the trend is applied.
The fitted Gaussian mixture models using the exhaustive trend with different
Gaussian components are shown in Figure 4.7. The deviation appears to be very
small. However, the marginal distributions from the Gaussian mixture models
of the data values are not exactly normal in Figure 4.8 and small deviations
are shown. The bivariate distributions with different Gaussian components are
displayed on a 2-D density estimation plot in Figure 4.9. The implementation
shows that the Gaussian mixtures with exhaustive trend values work better in
fitting with the variables. These Gaussian mixtures using different components

are considered to conditionally transform the data.
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Figure 4.7: Univariate distributions of the GMM fitting with exhaustive trend
values using different Gaussian components

4.3.3 Parametric Conditional Simulation

Data are conditionally transformed to standard Gaussian distributions according
to the chosen Gaussian mixtures. The conditional transformations in Figure4.9
are considered. The order of the stepwise conditional transformation is impor-
tant. The trend model inferred from the variable must be the primary variable
and the the data values are transformed conditionally to the trend model.
Data after applying the stepwise conditional transformation becomes in-

dependent from the trend. The location maps of the transformed variables with
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Figure 4.8: Univariate distributions of the GMM fitting with 51 data using

different Gaussian components

different Gaussian components are shown in Figure 4.10. The variables after

the stepwise conditional transformation yield a bivariate Gaussian distribution.

Figure 4.11 shows the crossplots of the trends with 51 transformed data us-

ing different Gaussian mixtures in stepwise units. The correlation between the

transformed data and the trend is almost zero. These two variables are assumed

independent and the transformed data is considered in sequential Gaussian sim-

ulation.
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Figure 4.9: Bivariate distributions of the GMM fitting using different Gaus-
sian components

The spatial statistics of the transformed data can be calculated and mod-
eled by variogram models. The experimental variograms are calculated in the
Northeast (green markers) and Northwest (blue markers) directions, as well as
the omni-directional (red markers), and shown in Figure 4.12. A zero nugget
effect is considered in this synthetic example. One spherical structure is con-
sidered due to the simplicity of the variogram. A fitted variogram model (black
line) of the transformed variable is shown in Figure 4.12.

Sequential Gaussian simulation is used to generate many realizations at
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Figure 4.10: Location maps from 51 transformed variables with different

Gaussian components in SC units

a cell size of 1 m x 1 m in North and East directions. The trend model is ex-

haustively known and it is not simulated. The simulation is performed with the

transformed observed data values. Figure 4.13 shows the first three realizations

with different Gaussian components in stepwise units. No obvious trend fea-

tures are seen. The simulation results are back transformed to original units.

The first back transformation is the stepwise conditional back transformation.

Similar to the forward transformation, the back transformation for the simulated

variable should be performed in a conditional fashion using Gaussian mixtures.
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Figure 4.11: Crossplots of the trend model with 51 transformed variables
with different Gaussian components in SC units

Figure 4.14 shows the first three realizations with different Gaussian components

in NS units and the trend features are restored. The second back transforma-

tion is the normal score back transformation. After the back transformation, all

realizations are in original units. Figure 4.15 shows the first three realizations

with different Gaussian components in original units. The maps show that high

values are located in the Northeast and the values are reduced to the Southwest.

The simulation results also show good consistency with the true subsurface in

Figure 3.4c.
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Figure 4.12: Variogram models from 51 transformed variables with different
Gaussian components in SC units. The sizes of the markers represent the
relative pairs of the experimental variogram in each lag distance

4.3.4 Validation of Simulation

Some checks should be considered to validate the simulated results. The input
information including the correlation structures, the data distribution and the
spatial relationship in the simulation should be honored.

The relationship between the data values and the trend values is checked.
The correlation from the input distribution is 0.97 in Figure 3.20d. Figure 4.16
shows the crossplots of 100 simulated values and the trend values with different
Gaussian components. All plots show good reproductions of the bivariate distri-
butions with strong correlations. The results show that the proposed stepwise

conditional transformation with Gaussian mixture models performs well and no
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Figure 4.13: First three realizations with different Gaussian components in
SC units. The GMM is fitted with exhaustive trend values
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Figure 4.14: First three realizations with different Gaussian components in
NS units. The GMM is fitted with exhaustive trend values
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Figure 4.15: First three realizations with different Gaussian components in
original units. The GMM is fitted with exhaustive trend values
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Figure 4.16: Crossplots of the trend model with 100 simulated realizations
in original 2-D KDE units. 51 conditioning data are shown with black markers

artifacts are introduced. However, there is a gap in the crossplot with 5 com-

ponents in Figure 4.16d due to the complexity in the high number of Gaussian

mixtures in Figure 4.9d.

The histogram of the simulated values is an important parameter. The

histograms over many realizations should be similar to the data histogram with

comparable statistics. Figure 4.17 shows the histogram reproduction in step-

wise units. A mean value and a standard deviation associated with the global

distribution of each realization are calculated and plotted with the black lines,
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Figure 4.17: Histogram reproduction over 100 realizations in SC units. A

mean value and a standard deviation associated with the global distribution

of each realization are plotted with the black lines. 51 conditioning data are
shown with a red line as a reference

while the input conditionally transformed variable is shown with a red line as
a reference. The first and second order statistics of realizations with different
Gaussian mixtures are close to the mean and the standard deviation of the input
variable. Figure 4.18 shows the performance of the histogram reproduction with
the summarized statistics over 100 realizations in original units. The reference
of the 51 original data showing with a red line is approximately in the middle of
the realizations. Overall, the distribution and the statistics of the input data in

original units are satisfactorily reproduced.
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Figure 4.18: Histogram reproduction over 100 realizations in original units.
A mean value and a standard deviation associated with the global distribution
of each realization are plotted with the black lines. 51 conditioning data are

shown with a red line as a reference.

The variogram should be checked in stepwise units since the input vari-

ogram is considered in simulation and should be reproduced. Figure 4.19 shows

the result of the variogram reproduction in stepwise units. The experimental

variograms in different directions (Northeast, Southwest and omni-directional)

are shown with different colors of markers. The variogram model of each real-

ization is plotted with the light gray line and the average of 100 realizations is

shown with a dark gray line. The variograms over 100 realizations closely follow

the input stepwise variograms (black line). The variogram in original units is

also checked. Figure 4.20 shows the variogram reproduction over 100 realizations
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Figure 4.19: Variogram reproduction over 100 realizations in SC units. The

experimental variograms in different directions are shown with different colors

of markers. The sizes of the markers represent the relative pairs of the experi-

mental variogram in each lag distance. The variogram model of each realization

is plotted with the light gray line and an average realization is shown with a
dark gray line.

with different Gaussian mixtures. The overall variogram models from realiza-
tions (gray lines) match with the experimental variogram models (markers) in

original units, although the variogram reproduction is better with fewer Gaussian

components.
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Figure 4.20: Variogram reproduction over 100 realizations in original units.
The experimental variograms in different directions are shown with different
colors of markers. The sizes of the markers represent the relative pairs of the
experimental variogram in each lag distance. The variogram model of each
realization is plotted with the light gray line and an average realization is
shown with a dark gray line.

4.4 Special Topic of Modeling with a Trend

The missing values in the trend model must be considered, especially when the

trend model is exhaustively known, see Figure 4.3. An alternative method, in-

stead of using an arbitrary data imputation mechanism in EM algorithm, is pro-

posed and implemented. The marginal distribution of the updated trend values

can be imposed on fitting the bivariate distribution to improve the estimates.
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Figure 4.21: Schematic illustration of the updating trend distribution

4.4.1 Fitting with Pseudo Data

The idea is to correct the bivariate distribution of the trend and the data values
by providing some pseudo data, that is, data that do not exist but could be gen-
erated to modify the bivariate distribution in a desirable fashion. An assumption
is that the expected value of data equals the trend values at each location, that
is, F{Z(u)} = m(u). The procedure is to draw multiple representative points
from the exhaustive trend distribution so that the updated trend distribution
matches the exhaustive trend distribution. Such correction leads to provide an
unbiased and accurate conditional transformation.

Figure 4.21 shows the iterative updated probability function of the trend
values. Figure 4.21a shows the initial distribution of the trend values. The red
line shows the distribution of the exhaustive trend fe(m(u)), while the black line
represents that distribution only at data locations fq(m(u)). The distribution of
the trend is more informed if the probability of the co-located trend is higher than
that of the exhaustive trend, that is, fa(m(u)) > fe(m(u)), and the distribution

of the trend is not required to be updated; otherwise, the distribution of the
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trend is required an update. The regions that require an update are shown with
the blue stripes in Figure 4.21a. Once one value is drawn from the distribution
of the exhaustive trend, the distribution of the updated trend f;(m(u)) is shown
with the gray line in Figure 4.21b. The regions that require the update are
changed. The target difference between the exhaustive trend distribution and

the updated trend distribution is denoted as A f(m(w)) which is given as:

Af(mw) = fe(m(u)) = fa(m(u)) iffa(m(u)) < fe(m(u)) VucA (48)

0 otherwise

here f,
and fd

(m(u)) represents the probability function of the exhaustive trend values
(m(u)) represents the probability function of the updated trend values.
A f(m(u)) represents the difference between these distributions that can be iter-
atively updated only when the distribution fgq(m(u)) is improved. The similarity

sim between the exhaustive trend and the updated trend is discretized and can

be quantified by:

ndis
1 2
sim = —— z; Af2(m(u)) Yuec A (4.9)

here ndis represents the number of the discretization of the probability func-
tion. The number of iterations should be balanced with the similarity measure
and the computational cost. A perfect match sim = 100% is highly unlikely to
be reached, whereas a lower similarity does not improve the bivariate distribu-
tion too much. Higher than 85% similarity is recommended in practice. Some

deviations from the exhaustive trend distribution always exist.



Chapter 4. Prediction with a Trend 122

The trend distribution continues to be updated. The pseudo data value is

corrected by this updated trend value that is given as:

z(uj) = 7(u;) - o +muy) Vui,uj,uy, € A (4.10)
j=12--- i=1,2,--- . nandp=1,2,--- N

where {j =1,2,---} represent the number of the updated data values,

{i =1, -+ ,n} represent the set of original n data locations and {p =1,--- , N}
are the number of the exhaustive trend values. {7(u;),i = 1,--- ,n} are the global
distribution of the residuals at n original data locations. {m(u,),p=1,--- ,N}

donate the trend values that are randomly drawn from the distribution of the
exhaustive trend. ¢ is a known function of the residual data conditional to the
trend model. The trend value is iteratively drawn from the exhaustive distribu-
tion and the pseudo data is computed. The iterative procedure stops when the

similarity indicator sim reaches to the target.

4.4.2 Implementation of Fitting with Pseudo Data

The aim of the pseudo data addition helps to build a representative conditional
distribution. The same 2-D example is considered. The known exhaustive trend
is discretized into 2000 intervals. The distribution of the trend model is calcu-
lated in each interval. Due to the simplicity of the example, the similarity target
is set to 99%.

Figure 4.22 shows the probability distributions of the trend models with
iterative draws from the exhaustive trend distribution. The black line represents
the target distribution that is the probability function of the exhaustive trend
model. The initial trend distribution comes from the co-located trend values that
are represented by a blue line, see Figures 4.22a. The differences between these

distributions are clear. One value is randomly drawn from the exhaustive trend
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Figure 4.22: PDFs of the updated trend in original units. Values are ran-
domly drawn from the exhaustive trend distribution. The iteration stops until
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original units. Pseudo data are calculated by Equation 4.10
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Figure 4.24: Univariate and bivariate distributions of the GMM fitting with
pseudo data addition (top, middle) and crossplots of the trend model with 51
transformed variables using different Gaussian components (bottom)

model and the distribution of trend is updated and shown in Figure 4.22bh. Note
that the new distribution in Figure 4.22b does not display remarkably differences
with the previous distribution in Figure 4.22a. The improvement is visible in
more iterations, see Figure 4.22d with 300 iterations. The iteration continues
until the similarity between the exhaustive trend distribution and the updated
trend distribution is satisfied, see Figure 4.22f.

The pseudo values are calculated by Equation 4.10 as drawing new trend

values. Figure 4.23 shows the crossplots of the drawn trend and with calculated
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data values. 51 original data values are shown with pink markers, the updates in
previous iterations are shown with black markers, and the current updated pair
is shown with a green marker. The background values are shown in a 2-D density
estimation plot (blue-red markers in transparent shades) that are inferred from
the true distributions (true trend model and true subsurface model) in Figure 3.4.
596 pseudo data are generated until a target satisfaction of 99% is met. The plot
in Figure 4.23f shows a close match to the 45° regression line and the background
values.

The conditional transformation is informed by a total of 51 + 596 = 647
data and the corresponding trend values. The Gaussian mixture models with
different components are constructed with 647 data. The univariate distributions
of the trend model with different Gaussian components are shown in Figure 4.24a.
The fitted Gaussian mixtures with pseudo data performs better than that with
co-located trend values due to the fitted distribution closes to the exhaustive
trend distribution, although the deviations are shown because of the mismatch.
Figure 4.24b shows bivariate distribution of Gaussian mixtures with different
components. Some unreasonable Gaussian components are generated when a
large number of components is chosen.

51 data are conditionally transformed according to the bivariate distribu-
tions in Figure 4.24b into stepwise units. The correlations between the data and
its trend are reduced to around 0.35 after the transformation in Figure 4.24c and
some trend features are still stored in 51 data.

Geostatistical modeling with 51 transformed data is applied and the simu-
lated values are back transformed into original units. Figure 4.25 shows the first
three realizations with different numbers of Gaussian components. Realizations
are compared with the true image in Figure 3.4c. Some extremely high values
can been seen in middle-value locations. Figure 4.26 shows the crossplots of the

trend models with 100 simulated values in original units. Some obvious artifacts
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Figure 4.25: First three realizations with different Gaussian components in
original units. GMMs are fitted with pseudo data

Crossplots of the trend model with 100 simulated realizations in original units
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Figure 4.26: Crossplots of the trend model with 100 simulated realizations
in original units

are seen far away from the regression line due to the unexpected features in

mixture distributions in Figure 4.24b.
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4.5 Validation of Parametric Conditional Transfor-

mation Methods

The main goal in this section is to validate the simulated results in Sections 4.3
and 4.4. The applications of the conditional transformations combining co-
located trend values, exhaustive trend values and pseudo data are required to be

validated.
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Figure 4.27: Uncertainties with different conditional transformations and
Gaussian components in NS units

The uncertainty with different conditional transformations is checked in
normal score units. The simulated realizations in stepwise units are conditionally
back transformed into normal score units. All realizations are averaged. The
standard deviation of the averaged simulation at 128 x 128 = 16384 checking

locations could be understood as the uncertainty of the numerical model. The
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plots in Figure 4.27 show the uncertainty in the model in terms of Gaussian
mixtures fitting with co-located trend, exhaustive trend and pseudo data. The
uncertainty is quite high with a fitting of the co-located trend values and low
with other two methods. The results highlight that the missing trend values
should be considered in the conditional transformation and the uncertainty is

reduced in the model.
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(c) Cross validation using the conditional transformation with pseudo data fitting

Figure 4.28: MSE comparisons with different conditional transformations
and Gaussian components in original units

The cross validation is designed to assess the goodness of a algorithm with

data. The true values that are included with the input 51 values are compared
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with the simulated averages in original units. Figure 4.28 shows the compar-
isons between the true data and the etype results (average values from 100 re-
alizations). The strong positive correlations between true and etype are seen.
Discarding unequally sampled trend values impacts the final estimates and some
unexpected relationships are found, see Figure 4.28a.

The mean squared error value measures the difference between true data
and what is being estimated, and further, summarizes the prediction perfor-
mance. The results indicate that the conditional transformation using pseudo
data fitting with 3 components shows a minimum mean squared error value.
Although this method leads to a minimum mean squared error value, this appli-
cation is not recommended due to some unstable Gaussian mixture models, see
Figure 4.24b, and some artifacts in realizations, see Figure 4.25.

The statistics are other factors to quantify the performance of the im-
plementation. The mean and the standard deviation in the simulated results
in Figure 4.28b close to the truth. Gaussian mixture model using exhaustive
trend model produces a stable and reasonable Gaussian components and pro-

vides artifact-free estimates.

4.6 Remarks

The developed geostatistical modeling algorithm considers the deterministic fea-
tures of the continuous variable in an artifact-free fashion. Data with an appar-
ent trend are transformed conditionally by a parametric transformation. The
stepwise conditional transformation with Gaussian mixture models removes the
complexity multivariate features. The variables at zero lag distances are de-
correlated and form uncorrelated multivariate Gaussian distributions. The im-
proved performance of the geostatistical algorithm is attributed to the station-

arity of the transformed result after the parametric conditional transformation
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in artifacts-free fashion.

The trend is estimated and exhaustively known after trend modeling. The
trend values at unequally locations could be considered in the conditional trans-
formation. As the missing values are not random, some pseudo data can be
introduced to correct the bivariate distribution of the Gaussian mixtures and
generate appropriate results. However, some unreasonable mixtures may be pro-
duced and they obstruct the estimates. EM algorithm also provides an stable
imputation mechanism that the multivariate probabilities are marginalized by
the observed data and the exhaustive trend.

In this chapter, a 2-D example illustrates the fit with different Gaussian
components, although the optimal number of components for the mixture mod-
els is not known in general. Data in the presence of a trend are transformed by
a parametric conditional transformation. Sequential Gaussian simulation is ap-
plied with the transformed variable. Original complex features are re-introduced
in the back transformation. The performance of numerical models, the reproduc-
tion of geological characterizations and the local uncertainty are analyzed. The
results show that the proposed Gaussian mixture approach produces a consistent

estimate and too many mixtures would increase the complexity of the model.



Chapter 5

Case Study 1: 2-D Sub-Surface

Mapping

The theories on modeling a trend and incorporating it into geostatistical pre-
diction are given in Chapters 3 and 4. The objectives of this chapter are to
model a 2-D sub-surface in the presence of a trend and demonstrate the im-
portance of considering the trend in geostatistical modeling. Figure 5.1 shows
the overall workflow. Visual inspection and some basic statistical analyses of
the data including the location map and the variogram indicate the existence
of trend-like features. Conventional geostatistical modeling without considering
a trend is considered for comparison. The procedure involves a normal score
transformation, variogram fitting, sequential Gaussian simulation and a normal
score back transformation. Then, the assumption of stationarity is relaxed, and
the developed geostatistical modeling workflow is implemented. The developed
method includes the averaged anisotropy calculation, trend modeling, the selec-
tion of the optimal trend model, a normal score transformation, Gaussian mix-
ture model determination, the stepwise conditional transformation, variogram

fitting, sequential Gaussian simulation and two back transformations. Finally,

132
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the performances of the geostatistical predictions are assessed by cross valida-

tions. The cross validation shows that the model with the proposed method is

better than that with the conventional method.
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Figure 5.1: Overall workflow description for sub-surface

without a trend

5.1 Data Analysis

mapping with and

Data provided by Alberta Energy Regulator come from the sub-surface of the

Blue Ridge Member inside the Graminia Formation located in West Central

Alberta (Choquette, 1955; Switzer et al., 1994). The variable to be modeled is the
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sub-surface top elevation. Data contains 1,227 valid values. The location range
of this variable is from 389, 200 to 638, 000 meters in the East and from 5, 922, 800
to 6,108,600 meters in the North. The location map and the histogram are
shown in Figure 5.2. The value of the elevation gradually increases from the
Southwest to the Northeast. The mean of the variable is —1,877.17 meters and

the standard deviation is 591.82 meters.
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(a) Location map (b) Histogram

Figure 5.2: Location map and histogram from 1,227 data

A global simple kriging with a high nugget effect of 20%, and a Gaussian
structure model with an isotropic range of 2,000,000 meters is considered. The
somewhat high nugget effect is used to filter the short-scale variability. Fig-
ure 5.3 shows a map of the global kriging result that considers all the data in
each estimate. The map indicates a gradual increase from the Southwest to the

Northeast. The most continuous direction is at an azimuth of 146°.

5.2 Data Preparation

Total 1,227 data are divided randomly into a modeling set and a test set. Around
75% of the data, that is 827 data, are selected for conducting the geostatistical
prediction and the remainder are considered for checking the simulated results.

The prediction quality is determined by comparing the actual elevation values
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-550 m

-3600 m

Figure 5.3: Global simple kriging from 1,227 data

with the simulated values using 400 test data. The prediction quality criterion
are considered by the uncertainty and the mean square error value.

Figure 5.4 shows the location map and the histogram from 827 modeling
data, while Figure 5.5 shows the location map and the histogram from 400 test

data. The statistics for these dataset are summarized in Table 5.1.

Name of Data Number of Data Mean, m Std. Dev., m

Total Data 1,227 -1,877.17 591.82
Modeling Data 827 -1,868.58 601.78
Test Data 400 -1,894.93 571.02

Table 5.1: Summary statistics for each dataset

5.3 Conventional Geostatistical Modeling

Conventional geostatistical modeling assumes that the attribute of interest over
the domain is stationary. The conventional conditional simulation workflow is

presented in Figure 5.1. The key points can be summarized as follows:

1. Preprocess data
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Figure 5.5: Location map and histogram from 400 test data

o calculate cell declustering weights with 827 modeling data

o transform 827 modeling data into normal score units with declustering

weights

o transform 400 test data into normal score units using 827 modeling

data as a reference distribution

2. Conduct sequential Gaussian simulation

o calculate the experimental variograms in important directions using

827 modeling data

e define the principle direction of continuity
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fit the variogram model in the major and minor continuity directions

generate many realizations using the normal transformed data

transform all realizations back to original units

check the histogram and variogram reproduction over realizations

summarize the averaged simulated results

3. Cross validate the numerical model:

o calculate the accuracy and the precision of the numerical model with

400 test data

e check the mean squared error between the numerical model with 400

test data

Details of this conventional simulation workflow are described below.

5.3.1 Normal Score Transformation

827 modeling data in Figure 5.4a shows some clustering and cell declustering
is applied. Figure 5.6a shows a diagnostic plot of the declustered mean versus
the cell size. The declustered mean reduces with increasing cell size. 33,000
meters is used for defining the cell size when the declustered mean closes to the
minimum value. Figure 5.6b shows the declustered histogram with a mean of
—1,917.37 meters and a standard deviation of 761.28 meters.

Declustering weights are incorporated into the normal score transforma-
tion. The 827 modeling data are transformed into a standard Gaussian distribu-
tion with the defined declustering weights. The location map and the histogram
with the transformed 827 modeling data are shown in Figure 5.7. The 400 test
data are also normal transformed with the reference distribution from 827 mod-

eling data. The location map and the histogram from 400 test data are shown in
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Figure 5.7: Location map and histogram from 827 modeling data in NS units

Figure 5.8. The mean and the standard deviation are 0.010 and 0.735, respec-

tively.

5.3.2 Sequential Gaussian Simulation

A variogram model is required to capture the spatial variability of the normal

score regionalized variable. The experimental variograms are calculated in the

primary directions of 146° as the principle direction of continuity and 56° as

the minor direction. The directional variograms are plotted with markers in

Figure 5.9. The variogram shows a strong continuous structure, and a Gaussian

type is considered to fit the experimental variograms. The variogram model is
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Figure 5.8: Location map and histogram from 400 test data in NS units

given by:

’Y(h) = 0'00]—Nugget + 0.999 - Gauss a=146° (51)
Ahmax=2,500,000 m
Ahmin=100,000 m

The stationary variogram is fitted with a unit sill. A small nugget effect is used to
minimize the numerical instability common with the Gaussian-type variogram.
This variogram model that is shown with lines in Figure5.9 will be considered in

simulation.
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Figure 5.9: variogram models from 827 modeling data in NS units.

A regular grid is established. The grid system is specified by the number

of grid nodes (nx, ny), the center of the first grid node (xmin, ymin) and the size
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of the grid nodes (xsize, ysize), see in Table 5.2. Note that no data are sampled

in the Southwest areas. These areas will be omitted.

nx, xmin, xsize 312  389,400.0  800.0

ny, ymin, ysize 234 5,922,400.0 800.0

Table 5.2: Grid nodes specification for simulation

Sequential Gaussian simulation is a widely used geostatistical technique
for modeling continuous variables. Simple kriging is employed in the simulation.
The minimum search data is 8 and the maximum search data is 24 within a
search ellipse. The search ellipse is defined based on the variogram ranges. A
random path is defined. Many realizations are generated. Figure 5.10a shows
the histogram of simulated values with the first 100 realizations. Note that the
results do not exactly follow the standard normal score distribution.

The simulation parameters should be checked using the same parameters
with unconditional simulation. Figure 5.10b shows the histogram of the uncon-
ditional simulated values with the first 100 realizations that closely follow the
standard Gaussian distribution. The results indicate that the parameters in the
conditional simulation are acceptable.

The first three realizations and the average simulated results over 100
realizations with the conditioning 827 modeling data are shown in Figure 5.11.
The results show that the simulated values gradually increase from the Southwest
to the Northeast. High variability at the edges is due to a lack of conditioning
data.

Normal score back transformation brings all realizations to original units.
Figure 5.12 shows the results with the first three realizations and the average
results over 100 realizations in original units. The simulated elevation values
gradually change from Southwest to Northeast. Figure 5.12¢ shows the variance

over 100 realizations. This plot shows strong artifacts. These artifacts exist
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Figure 5.10: Histogram from 100 realizations in NS units

0.003

'0.000

5
East, m

(b) Average values over 100 (c) Local variance over 100
realizations realizations

Figure 5.11: First three realizations and average results over 100 realizations
in NS units. 827 modeling data are shown with black circles
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due to the transformation table from normal score units to original units. The
transformation table does not provide a smooth and reasonable forward/back
transformation. The transformed values are smooth in normal score units; how-
ever, the elevation values change substantially in original units due to small
spikes and flat spots in the empirical distribution. A smooth transformation

table must be considered.

s
x10

(b) Average values over 100 (c¢) Local variance over 100
realizations realizations

Figure 5.12: First three realizations and average results over 100 realizations
in original units. 827 elevation values are shown with black circles

5.3.3 Transformation Correction

Normal score transformation is a quantile-to-quantile transformation that trans-
forms the original elevation values to a standard Gaussian distribution. The
transformation table is used for viewing the original values and the correspond-
ing normal score values. The black line in Figure 5.13a shows the transforma-

tion table from the conventional normal score transformation. It shows obvious
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abrupt jumps that leads to a high variance in the transformation. It is the reason

for the zebra-like artifacts shown in Figure 5.12c.
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(a) Transformation table (b) Cumulative distribution

Figure 5.13: NS transformation table comparison from 827 modeling data

Silva and Deutsch (2015) have introduced a tool for estimating the univari-
ate cumulative distribution function that allows to generate a smooth empirical
distribution. A normal score transformation with a kernel density estimation
is considered to correct the transformation table. The red line in Figure 5.13a
shows a smooth transformation table so that the variable could be transformed
continuously. Figure 5.13b shows the cumulative distribution function of the
elevation value after the correction in normal score units. The black line is
the cumulative distribution from the conventional normal score transformation,
while the red line performs the cumulative distribution function using the kernel
density estimation. A smooth cumulative distribution is generated if the kernel
density estimation is applied.

Figure 5.14 shows the location map and the histogram from 827 modeling
data in normal score units with a transformation correction. All procedures of
the conventional simulation are conducted with the corrected normal score vari-

able. The first three realizations, the average simulated elevation values and the
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Figure 5.14: Location map and histogram from 827 modeling data with a
transformation correction in NS units
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Figure 5.15: Corrected first three realizations and average results over 100
realizations in original units
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variance with the first 100 realizations in original units are shown in Figure 5.15.
No obvious artifacts from the average variance are shown in Figure 5.15c. The
elevation values in the middle area contain more uncertainty than the values in
the Southwest and Northeast. The existence of the high variation in the middle

is due to the incomplete smoothing of the distribution.
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Figure 5.16: Histogram and variogram reproduction with the conventional
geostatistical modeling in original units

The histogram of the first 100 realizations is shown in Figure 5.16a. The
black lines represent 100 realizations, and the red line indicates 827 weighted con-
ditioning data. The histogram reproduction in the middle value zone is slightly
different from the conditioning data. The mean of the realizations, —1,899.08
meters, is close to the reference mean, —1,917.37 meters; the standard devia-
tion, 734.60 meters, is slight lower than the conditioning variance, 761.28 meters.
Overall, the reproduction of the distribution seems reasonable.

Figure 5.16b checks the spatial correlation from the variogram model. The
experimental variogram model in the direction of 146° from 827 modeling values

is plotted with red points. Light gray lines are the variograms of each realization
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and the dark gray dash-dot line represents the average of the first 100 realiza-
tions. The variogram model from realizations is well reproduced the expectation

variogram from 827 modeling data (the black line).

5.3.4 Cross Validation

Two tests are run to check the numerical model versus the true values at the
400 test data locations. The simulated values at the grid nodes closest to the
test data are extracted from the gridded realizations. 2 data out of the 400 test
data fall into the same grid cell and another 8 data fall into the same grid cell as
one of the 827 modeling data. Finally, 390 test data are considered for the cross
validation.

The first validation is to compare the true data and the simulated average
values in normal score units. The accuracy plot in Figure 5.17a checks the
reliability of the probabilistic estimates. The accuracy is checked by calculating
the number of values that fall within an interval versus the probability of being in
that interval (Deutsch, 2010b). The dots in intervals fall on the 45° line represent
the predictions are accuracy and precision. The predictions are accurate but
not precise if the dots fall above the 45° line, while the predictions are neither
accurate nor precise if the dots fall below the 45° line. The result shows that
the uncertainty represented in simulated values is close to the truth for the first
half of the probability intervals and underestimated for the second half of the
intervals. The uncertainty is summarized by an average variance of 0.00123 over
100 realizations. The accuracy and the precision are 0.211 and 0.997.

The second validation is to compare the true values and the average of the
simulated values in original units. The mean squared error comparison between
the true values and the simulated values is shown in Figure 5.17b. The mean

of the model, —1, 898.19 meters, is close to the true mean of —1,895.46 meters.
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Figure 5.17: Accuracy plot in NS units and the mean squared error compar-
ison with the test data in original units

The mean square error between the true values and the simulated average values

is 411.63 square meters at the 390 test data locations.

5.4 Developed Geostatistical Modeling - Gaussian

Mixture Model

The assumption of stationarity is relaxed. The trend is incorporated into the

geostatistical prediction and the non-stationary geostatistical method is consid-

ered. The developed geostatistical method is presented in Figure 5.1. The major

points of the developed method can be summarized as follows:

1. Model the trend

define the principle direction of the continuity from 827 modeling data

calculate the averaged anisotropy ratio

model the trend with increasing smoothing parameter

find the optimal trend model
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2. Reconstruct data

assemble the input data including 827 modeling data and the optimal

trend model in regular grids
transform the exhaustive optimal trend model into normal score units
calculate cell declustering weights from 827 modeling data

transform 827 modeling data into normal score units with the declus-

tering weights

transform 400 test data into normal score units using the 827 modeling

data as a reference distribution

3. Define the conditional transformation

fit the Gaussian mixture model between the variable and the trend

model in normal score units

transform the variable according to the Gaussian mixture models

4. Conduct sequential Gaussian simulation

fit the variogram model with the directions of anisotropy
generate many realizations with the transformed variable
transform many realizations back to original units

check the histogram reproduction and variogram reproduction over

realizations

summarize the averaged simulated results from realizations

5. Cross validate the numerical model:

check the accuracy and precision of the distributions of uncertainty

with true test data



Chapter 5. Case Study 1: 2-D Sub-Surface Mapping 149

e check the mean squared error between the simulated averages and

true test value

The steps with the stepwise conditional transformation using Gaussian mixture

models are described below.

5.4.1 Trend Modeling

The location map in Figure 5.2 and the global kriging in Figure 5.3 show a
very strong trend with high values concentrated in the Northeast and values
decreasing to the Southwest. Further evidence of an existence of a trend comes
from the crossplot of the East coordinate and the elevation values shown in
Figure 5.18. The crossplot is fitted by a linear regression model with a black
line. The map shows gradual changes from low values to high values and a clear

trend is shown.
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Figure 5.18: Crossplot of the location with the elevation values fitted with a
linear regression model

5.4.1.1 Averaged Anisotropy Calculation

827 data are used to model the variogram. The anisotropy direction should
follow the greatest continuity direction of the variable that is 146° in the hor-

izontal direction. The proposed range of the variable is determined based on
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Figure 5.19: Variogram models with non-stationary features from 827 mod-
eling data

the experimental variogram within a half of the domain size. Variogram models

with non-stationary features in an azimuth angle of 146° is given as:

r}/(h) = 0004 : Sph a=146° + 1999 . GauSS a=146° (52)
Ohmax=90,000 m Ghmax="7,000,000 m
ahmin:2007000 m ahmin:QO0,000 m

Figure 5.19 shows the variogram models with non-stationary features from 827
modeling data fitting within a half of the domain size. The anisotropy ratio
based on areas under the variogram curves is around 247 : 1. This anisotropy

ratio is extremely high, but it is more robust than the range ratio.

5.4.1.2 Trend Construction and Optimization

Several parameters are required for trend modeling. The first parameter is the
background value. A small amount of background value 0.001 is considered to
ensure the computational stability. The second parameter is the anisotropy di-
rection and ratio. The anisotropy model should be followed by the variogram
models with non-stationary features in Figure 5.19 showing a direction of 146°
and a ratio of 247. The third parameter is the smoothing parameter that controls

the smoothness of the trend model. Several trends are modeled with increasing
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Figure 5.20: Modeled trends and crossplots with different smoothing param-
eters. 821 elevation values are shown with trend models with black circles

smoothing parameter. Figure 5.20 shows trend models and the scatter plots of
the trend models and 827 data with smoothing parameters of 12.5 and 58.5,
respectively. The trend models require some extrapolated values, see North-
east and Southwest corners in Figure 5.20a, that close to the global mean. The
color bar in scatter plots represents the accurate state-of-the-art bivariate den-
sity estimation. The trend model becomes smoother with increased smoothing
parameter.

The selection of an optimal trend for further geostatistical modeling is
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required. The objective function considers the correlation between the trend
and its residual data. According to the developed objective function, the optimal
trend model is the one when the smoothing parameter is SP = 2 x 19.5 = 39,
shown in Figure 5.21. Figure 5.22 shows the optimal trend model with the

smoothing parameter of 39.

62 Adjust Factor: 2.00
1 Min. SP: 19.5

0.7213 Optimal SP: 39

0621

p 0‘521_: Optimal SP

0.421 ]

0321

0221 —

L —
05 105 205 305 405 505
Smoothing Parameter

Figure 5.21: Determination of the optimal smoothing parameter

-550 m

-3600 m

Figure 5.22: Optimal trend model with a smoothing parameter of 39. 827
elevation values are shown with black circles

Figure 5.23a shows the residuals that remove the trend from 827 modeling

data. The mean of the residuals is 12.48 meters and the standard deviation is
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45.88 meters. The residual model reaches to a stationary model and there is much
less trend in the residual model. Figure 5.24a shows the scatter plot between the
data and the optimal trend with a high correlation of 0.998. Figure 5.24b shows
the scatter plot between the optimal trend and the residuals with a correlation

of 0.381.
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Figure 5.24: Crossplots of the observed data and residual data with trend
values



Chapter 5. Case Study 1: 2-D Sub-Surface Mapping 154

5.4.2 Data Transformation

827 modeling data should be pre-processed so that they are assigned to grid
nodes. The aim is to combine the 827 modeling data with the optimal trend
for subsequent geostatistical modeling. The number of data is reduced from
827 to 821 due to multiple data falling into the same grid cell. The statistical
analysis should be also re-calculated. The mean of the 821 modeling changes
from —1, 868.58 meters to —1, 865.86 meters and the standard deviation changes
from 601.78 meters to 601.94 meters.
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Figure 5.25: Location map and histogram from the re-constructed 821 mod-
eling data in original units

The declustering weights are also re-calculated with the 821 modeling data.
33,000 meters is kept for defining the cell size. The 821 modeling data are
transformed into normal score units with declustering weights. The corrected
transformation table based on a kernel density estimation is required to transform
the 821 modeling data into normal score units.

The optimal trend is exhaustively normal transformed and is shown in Fig-
ure 5.26a. There is no need to correct the trend transformation table; however,
the transformed trend shows some artifacts at the edge of the Northeast (dis-

played in Figure 5.26b) and the Southwest (displayed in Figure 5.26¢). These

artifacts exist due to the lack of conditioning data in these areas and trend values
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Figure 5.26: Trend model and artifacts in Northeast and Southwest in NS
units. 821 elevation values are shown with black circles

come close to the global mean of the data. Figure 5.27 shows the crossplot of

the trend with 821 modeling data in normal score units with a high correlation

of 0.996. The 400 test data are also transformed into normal score units with a

reference of 821 modeling data.
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Figure 5.27: Crossplot of the trend values with 821 modeling data in NS
units

5.4.3 Stepwise Conditional Transformation with Gaussian Mix-

ture Model

The developed method, stepwise conditional transformation with Gaussian mix-
ture models, is considered. The Gaussian mixture model fits to crossplot of the
trend with 821 modeling data in Figure 5.27. Two components are considered
to fit the scatter plot. The univariate distribution of the normal score trans-
formed trend is shown in Figure 5.28a that is closely fitting the mixture models.
The univariate distribution of the normal score transformed data is shown in
Figure 5.28d that is nearly a standard Gaussian distribution. The bivariate dis-
tribution is shown on a 2-D density estimation plot in Figure 5.28¢c. Transformed
variables of the trend and the data in stepwise units are uncorrected, 0.070, in
Figure 5.28b.

After a stepwise conditional transformation, the transformed 821 modeling
data are shown in Figure 5.29a. The large-scale trend-like features are removed,
and some spatial structures, such as high values in the center, still exist. The

variogram model of this transformed data is shown in Figure 5.29b with an
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Figure 5.28: Bivariate and univariate marginals of the Gaussian mixture
model fitted to 821 modeling data

isotropic variogram model given by:

’Ydirect(h> = O-OOINugget + 0.099 - Sph

hmax=38,000 m
Ahmin =8,000 m

a=0° 4+ 0.900 - Gauss a—0°
Ahmax=175,000 m

Ahmin=75,000 m
(5.3)
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Figure 5.29: Location map and variogram model from transformed 821 mod-
eling data in SC units

5.4.4 Sequential Gaussian Simulation

Sequential Gaussian simulation is applied on the transformed variable. The grid
system is defined in Table 5.2. The minimum and maximum search data are 8
and 24, respectively. The search ellipse is defined based on the variogram ranges
in Equation 5.3.

Many realizations are generated. Figure 5.30 shows the first three realiza-
tions, an average simulated map and the variance overs the first 100 realizations.
High values that are concentrated in the center are shown in the average real-
ization. The high variance is located at the edge of the domain due to lack of
conditioning data.

A stepwise conditional back transformation with Gaussian mixture models
is then conducted. Data would be back transformed conditional to the trend.
Figure 5.31 shows the first three realizations, an average simulated map and
an average variance over the first 100 realizations. The average realization per-
forms a smooth result, and the average variance over 100 realizations shows some

artifacts in the Northeast/Southwest and West areas.

Let us consider the Northeast corner first. The Northeast corner is shown
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(b) Average values over 100 (c¢) Local variance over 100
realizations realizations

Figure 5.30: First three realizations and average results over 100 realizations
in SC units

(b) Average values over 100 (c¢) Local variance over 100

realizations realizations

Figure 5.31: First three realizations and average results over 100 realizations
in NS units
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Figure 5.32: Realizations and the average simulated results in the Northeast
corner in NS units

in Figure 5.32 in normal score units. The upper figures are the first three real-
izations that show a visible artifact at the edge due to the artifacts in the trend
in Figure 5.26b. The extrapolation of the trend in the Northeast affects the
conditional transformation. All realizations are averaged, and the variance over
100 realizations shows a high variability at the Northeast corner. Such artifact
also holds for the Southwest.

Let us now consider the West corner. The West corner is shown in Fig-
ure 5.33 in normal score units. The upper figures are the first three realizations
and the average results are shown in the bottom. The high variance comes from

the bivariate distribution of the Gaussian mixture model in Figure 5.28c. Two
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components of mixture models could not allow a good convergence and is over-
fitting the distributions from the data in this example. Less components should

be used in Gaussian mixture models.

6.1 6.1

6.081 6.081

g

g

=

.06

=

.06

North,
Q.
North,

6.04 6.04

6.02 6.02

6 6
4 42 4.4 4.6 4 42 4.4 4.6
East, m N 105 East, m N 105 East, m N 105

(a) First three realizations

0.0 0.002

m

North.

4 42 44 46 4 42 44 .65
East, m 5 105 East, m < 10

(b) Average values over 100 (c¢) Local variance over 100
realizations realizations

Figure 5.33: Realizations and the average simulated results in the West corner
in NS units

5.4.5 Gaussian Mixture Model Correction

One Gaussian component is considered to avoid the over-fitting in this example,
although this does not take full advantage of the concept of a Gaussian mixture

model. Figure 5.34a and 5.34d show the univariate distribution of the trend and
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the data, respectively. Figure 5.34c shows the bivariate distribution of the Gaus-

sian mixture model and Figure 5.34b shows the scatter plot of the transformed

variable with a zero correlation.
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Figure 5.34: Corrected bivariate distribution of the Gaussian mixture model
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fitted to 821 modeling data

Sequential simulation is conducted on the stepwise transformed data and

many realizations are generated. Figure 5.35 shows the simulated results. Two

back transformations would apply on 100 realizations. The first back transfor-

mation is the stepwise back transformation. Simulated results would be back
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transformed with the Gaussian mixture model. Figure 5.36 shows the first three
realizations, the average realization and the average variance over 100 realiza-
tions in stepwise units. The simulated map shows a smooth result. No obvious
artifacts exist except in the Northeast and the Southwest corners due to the
trend extrapolation. The second back transformation is the normal score back
transformation. All realizations are transformed back into original units. Fig-
ure 5.37 shows the first three realizations and the averages over 100 realizations.
The values gradually increase from Southwest to Northeast. No artifacts can be

found in the average variance over 100 realizations.

North, m

(b) Average values over 100 (c¢) Local variance over 100
realizations realizations

Figure 5.35: First three realizations and average results over 100 realizations
in SC units

The reproductions of the histogram and the variogram are checked. Fig-
ure 5.38a shows histogram reproduction. The black lines represent the 100 real-
izations, while the red line represents the weighted conditioning data. The simu-
lated values are well reproduced, although they are slightly lower than the condi-

tioning data in middle quantiles and slightly higher in high quantiles. The mean
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Figure 5.36: First three realizations and average results over 100 realizations
in NS units
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(b) Average values over 100 (c¢) Local variance over 100
realizations realizations

Figure 5.37: First three realizations and average results over 100 realizations
in original units
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of the realizations, —1,921.54 meters, is close to the reference mean, —1,914.22
meters and the standard deviation, 745.20 meters, is close to the conditioning
standard deviation, 759.67 meters. The realizations successfully reproduce the

global mean/standard deviation and the global distribution of the conditioning

data.
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Figure 5.38: Histogram and variogram reproduction with the proposed geo-
statistical modeling in original units

The spatial correlation from the variogram model is shown in Figure 5.38b.
The red markers represent the calculated experimental variogram in the most
continuous direction. The black line is the expectation variogram model from
the experimental variogram. The light gray lines indicate the variograms inferred
from 100 realizations and the gray dash-dot line represents the average model
over 100 variogram models. The spatial relationship is reproduced and the model

has less uncertainty than the model from the conventional method.

5.4.6 Cross Validation

The first validation is to check the uncertainty in normal score units. 390 test
data are used. Figure 5.39a shows that the probability intervals are slightly
overestimated in the first-three-quartile of the intervals and become wider un-

derestimated in the upper-quartile probability intervals. The uncertainty is a
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relatively small value, 0.00017, indicating an improvement of 86.18% compared
with the conventional method. The prediction with the proposed method also

shows more accurate than the one with the conventional method.
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Figure 5.39: Accuracy plot in NS units and mean squared error comparison
with test data in original units

The comparison of the mean square error between the truth and the sim-
ulated values is shown in Figure 5.39b. The mean square error value is 249.83
square meters that is smaller than that in conventional simulation procedure,

411.63 square meters. The developed method shows a significant improvement.

5.5 Remarks

The goal of this case study is to demonstrate a geostatistical modeling framework
to account for non-stationary features of regionalized variables. A conventional
geostatistical modeling workflow and the developed geostatistical modeling work-
flow with trend modeling are implemented. The assumption of stationarity is
made in the conventional geostatistical prediction. The kernel density estimation

is involved to provide a smooth empirical distribution. The simulated average



Chapter 5. Case Study 1: 2-D Sub-Surface Mapping 167

shows a fair smooth map and the simulated average variance shows a high vari-
ance in the middle. The benefits of incorporating the trend into geostatistical
modeling is clearly visible in the simulated results. The non-stationary features
can be addressed with the technique by modeling the trend deterministically and
inferring an optimal trend objectively. The stepwise conditional transformation
with Gaussian mixture models is robust and is able to reproduce the complex
features of the regionalized variable.

Prediction with a trend can be an important consideration for improving
the predictions. This chapter shows an advantage of trend modeling as part of
geostatistical modeling with the cross validation. The cross validation is used
to guide the selection of parameters in the absence of independent validation
data. The numerical model contains less uncertainty with the proposed method.
The mean square error is much less than conventional geostatistical modeling; a

39.31% improvement is shown in this case study.



Chapter 6

Case Study 2: 3-D Mapping

This case study shows the predictive performance of non-stationary geostatistical
modeling in a 3-D realistic scenario. A porphyry copper deposit with 3,302
data is considered where the grades show a trend. Trend detection methods are
discussed. The trend modeling technique is applied to establish an optimal trend.
Comparisons to conventional geostatistical calculations are made. The results
show that the proposed geostatistical modeling with trend modeling outperforms
the conventional geostatistical modeling techniques with less error and better

reproduction of essential features of the regionalized variable.

6.1 Data Analysis

The data shown in Figures 6.1a (2-D top view with drillhole ID) and 6.1b (3-D
view) contain 121 drillholes with 3,302 grade measurements from a porphyry
copper deposit. The location coordinates range from 34,200 to 36,200 meters
in the East, from 27,400 to 28,800 meters in the North, and from 600 to 1,300
meters with an interval of 9 meters in the Elevation. The value of the copper
ranges from 0.0% to 3.4% with a mean of 0.262% and a standard deviation

of 0.266%. The histogram is shown in Figure 6.1c. Some copper grades are

168
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constant values at the detection limit and due to the number of decimal places
in the database. Such ties of constant values should be broken so that the
variogram calculation and the normal score transformation work properly (Rossi
and Deutsch, 2014). Despiking of the data is considered and the histogram after
the despiking is shown in Figure 6.1d with a mean of 0.263% and a standard
deviation of 0.265%.
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Figure 6.1: Location maps and histograms from 3,302 data

More samples are taken in the high grade center area in Figure 6.1 and the
equal-weighted statistics are not representative of the entire population. Declus-
tering should be considered so that the distribution of the regionalized variable
is representative. Figure 6.2a shows the diagnostic plot of the cell size against

the declutered mean. The decluster reduces with increasing the cell size. A
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500-meter cell-size is determined for the cell declustering where it reaches to the
minimized declustered mean. The corrected histogram from 3,302 data is shown

in Figure 6.2b with a mean of 0.195% and a standard deviation of 0.225%.
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Figure 6.2: Histogram with the cell declustering from 3,302 data

6.2 Trend Modeling

Spatial trends are not consistent with the assumption of stationarity that the
conventional geostatistical modeling considers. The spatial trend should be de-
tected before the geostatistical modeling. After deciding to model a trend, an
artifact-free trend should be modeled to investigate the performance of the non-

stationary geostatistical modeling.

6.2.1 Trend Detection

Visualization of the data is the simplest way to determine if the attribute of
interest is stationary. Figures 6.1a (2-D top view) and 6.1b (3-D view) show the
location maps from 3,302 data. Drillholes with high values are concentrated in
the center of the domain and values are decreased to the edge. Such gradually

change of values is an evidence of a trend.
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The regression analysis from the data can be also considered for the trend
detection. Figure 6.3 shows the crossplot of the data against the elevation on a
2-D density estimation plot. A quadratic regression model that is accomplished
by the least square method is shown with a black line where a change in the

local mean is noticed.

Elevation, m

Figure 6.3: Visualization of the trend by the quadratic regression model from
3,302 data

Global kriging is another way to map the large-scale trend-like features. A
global kriging is performed with an isotropic variogram with a 20% nugget effect

and a range of 1,000 meters. The variogram model is summarized as:

~v(h) = 0.20Nugget + 0.80 - Sph(h)  4—ge (6.1)
Ahmax=1,000 m
ahminzl,OOO m
Ahvert=1,000 m

The global kriging result in Figure 6.4 reveals an obvious trend where high values
are in the center and lower grades toward the edges. The most continuous
direction is at an azimuth of 110° in the horizontal plane and at a dip of 90° in
the vertical direction.

The additional evidence of the trend comes from the variogram. The stan-

dardized experimental variograms calculated from 3,302 data in the major (110°
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Figure 6.4: Visualization of the trend by global kriging estimates from 3, 302
data

in horizontal), minor (20° in horizontal) and vertical directions are calculated
and plotted with markers. These variograms are fitted with lines and shown in
Figure 6.5. No nugget effect is considered in variograms. The trend-like features
are most noticeable in the horizontal plane. The experimental variogram in the

minor direction (blue markers) climbs steadily above the sill which indicates the

existence of a trend.
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Figure 6.5: Visualization of the directional variograms from 3,302 data. The
sizes of the markers represent the relative number of pairs at each lag distance.
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6.2.2 Trend Construction

Trend parameters should be optimized to minimize the subjectivity and im-
prove the final geostatistical model to the greatest extent possible. In trend
modeling, several parameters are required including: (1) the background value;
(2) the declustering weights; (3) the anisotropy involving directions and ratios;
and (4) the smoothing parameter.

The background value controls the tails of the weighting function. It can
be used for averaging the values when no data are found in the defined length
scales and avoiding some computational problems. The background value should
not be too high so that it ignores the spatial correlation between the geological
observations and overly averages the trend model. Meanwhile, the background
value can not be extremely small which could cause an unstable weighting func-
tion. A background value of 0.001 is considered here for modeling the trend.

Declustering is used to remove the bias from the calculated summary statis-
tics and the histogram. Such unbiased statistical distribution from the data
should be considered for trend modeling. Figure 6.2b shows the diagnostic plot
between the declustered mean and the cell size. The declustered mean reduces
with increasing cell size. A 500-meter cell size is applied to the 3,302 copper
data when the declustered mean closes to the minimum value. The declustered
mean from 3,302 data is 0.195% and the standard deviation is 0.225%. These
declustering weights are assigned to each sample to construct the trends.

The anisotropy parameters are required for trend modeling. The directions
of the trend model should follow the global variogram directions that are 110°
in the horizontal direction and along the drillholes in the vertical direction. The
standardized experimental variograms are shown with markers in Figure 6.6. The
experimental variogram in the horizontal direction shows a geometry anisotropy.

The variograms with non-stationary features are modeled within a half of the
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Figure 6.6: Variogram models with non-stationary features from 3,302 data.
The sizes of the markers represent the relative number of pairs in each lag
distance

domain size, that is, around 1,200 meters. The variogram model with non-

stationary features is given as:

v(h) = 0.45-Sph(h) 4=110c +0.55-Sph(h) ,=1100 +1.50-Sph(h)  ,=110°

Ahmax=120 m Ahmax=b500 m Ahmax=20,000 m

Ahmin=100 m Ahmin=400 m Ahmin=3,000 m

Ahvert=10 m Ahvert=400 m Ahyert=8,000 m
(6.2)

A zero nugget effect is considered due to the variability in the short-scale does
not impact the results of trend modeling. The spatial correlation is relatively
isotropic at short-scale distances and is more anisotropic at large-scale. The area
ratio under the variogram curves is considered to calculate the anisotropy ratios
in Chapter 3. Anisotropy ratios of 1.42 : 1 and 1.14 : 1 are calculated for the
minor and vertical directions.

The smoothing parameter is the last parameter that is tuned for the trend
modeling. A variety of trends are modeled with increasing smoothing parameter.
Figure 6.7 shows several trend models with the smoothing parameters of 0.20,
0.40 and 0.60, respectively. The black markers represent the 3,302 data. The
result confirms the apparent areal trend where high values are concentrated in

the center and reduced to the edges.
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Figure 6.7: Modeled trends with different smoothing parameters at an eleva-
tion 775.5 meters in 2-D/3-D views
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Some artifacts exist at the edge due to a limited number of the data in
those areas. The trend value approaches the declustered mean in extrapolation
regions due to the algorithm. 3-D trend extrapolation is an important topic for
future research and the predictions beyond the limits of the data will not be

considered here for trend modeling.

6.2.3 Trend Optimization

The objective function of the absolute correlation between the trend and the
residuals is shown in Figure 6.8. According to the developed objective function,
the optimal trend model is the one when the smoothing parameter doubles the
value that minimizes the absolute correlation between the trend and the residu-
als, that is, 2 x 0.20 = 0.40. The optimal trend is shown in Figure 6.7¢ (2-D top
view) and 6.7d (3-D view). Figure 6.9a shows the cross plot between the data
and the optimal trend with a correlation of 0.49. Figure 6.9b shows the scatter

plots between the optimal trend and the residuals with a correlation of 0.26.

J Adjust Factor: 2
0.457_ Min. SP.:  0.20
1 Optimal SP.:  0.40
5 0.357
©
e Optimal SP
o
o
0.257_
0.157_ :

— R S e R :
0.05 0.25 0.45 0.65
Smoothing Parameter

Figure 6.8: Determination of the optimal smoothing parameter

The residual model is checked to ensure the trend-like features are rea-

sonably removed. Figure 6.10 shows the location map and the histogram of
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Figure 6.10: Visualization of the location map and histogram from 3,302
residuals

the residuals, that is, the data values minus the trend values. The mean of
the residuals is 0.027% and the standard deviation is 0.240%. The variogram
of the residuals is also modeled. Data are closely sampled along the drillholes
and sparsely sampled in the horizontal direction. In this case, the small-scale
features from the data are captured from the variogram in the vertical direc-
tion and the trend-like features are captured in the horizontal direction. The

experimental variograms of the grade values and the residuals are compared and
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plotted in Figure 6.11 where the sill is the data variance, 0.070%. The vertical
variogram models of the grade values with green markers/line and the residuals
with gray markers/line show that no obvious spatial continuity is removed due to
the large-scale features are not captured in the vertical direction. The horizontal
variogram model of the observation shows that the experimental variogram of
the grade values (red markers/line) goes above the data variance (sill), while
the horizontal variogram model of the residuals shows that the experimental
variogram (gray markers/line) reaches to the data variance and stays constant
afterwards which is consistent with a stationary regionalized variable. The trend
features are removed from the data and the result could be considered for the

subsequent stationary geostatistical modeling.
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Figure 6.11: Variogram models of the data and residuals from 3,302 data

6.3 Data Preparation

Figure 6.1 shows the despiked 3,302 copper grade values. In order to check the
importance of the trend modeling in the geostatistical prediction, the total data
are randomly divided into a modeling set and a test set. In this case, 80% of the
total data, that is 2,496 data from 88 drillhole, will be used for the geostatistical

modeling. The remaining will be considered for checking the simulated results.
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Figures 6.12 show location maps of the 2,496 modeling grades from 88 drillholes
in the modeling data. The cell declustering is performed with a 500-meter cell-
size in Figure 6.13a. The corrected histogram with a mean of 0.203% and a

standard deviation of 0.218% is shown in Figure 6.13b.
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Figure 6.12: Location maps from 2,496 modeling data
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Figure 6.13: Cell declustering and corrected histogram from 2,496 modeling
data

2,496 modeling data are pre-processed with the normal score transforma-
tion and variogram model fitting. The normal score transform considers the
declustering weights. The transformed 2,496 modeling data with declustering

weights show a standard normal distribution, that is, the mean is 0.0% and the
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standardized deviation is 1.0%. The location maps after the normal score trans-

formation are shown in Figure 6.14. The directional experimental variograms in

normal score units are modeled with an isotropic variogram given as:

~v(h) = 0.4 - Sph(h)

a=0°
Ahmax=20 m
ahmin:20 m
Ahvert=20 m

+0.6 - Sph(h)

a=0°
Ahmax=550 m
Ahmin =550 m
Ahvert =550 m

(6.3)

No nugget effect is considered. The variogram models are shown in Figure 6.15.
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The location of the remaining 806 test data are labeled with the drillhole
IDs and shown in Figure 6.16. 806 values with a mean of 0.247% and a standard
deviation of 0.287% in Figure 6.17a are transformed into normal score units
with a reference distribution from 2,496 modeling data. Figure 6.17b shows the

transformed test data with a mean of 0.155 and a standard deviation of 1.055.
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Figure 6.17: Histograms from 806 test data

6.4 Conventional Stationary Geostatistical Modeling

Conventional geostatistical modeling assumes stationarity. Although the given

data show a trend, the assumption of stationarity is made. Major points of the
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conventional simulation can be summarized as: (1) conduct sequential Gaussian
simulation of the normal score transformed data; (2) generate many realiza-
tions; (3) transfer all realizations back to original units; and also (4) check the
histogram and variogram reproduction of models over all realizations. The pro-

cedure is demonstrated step by step.

6.4.1 Sequential Gaussian Simulation

Sequential Gaussian simulation with simple kriging is well established, easy to
implement and is considered with the normal score transformed data. Several
parameters must be chosen for the simulation. The search data for the simula-
tion must be large enough so that enough neighbors are considered. A search
ellipse is defined by the variogram ranges in Equation 6.3. Many realizations are
generated. The first three realizations and the average values over the first 100
realizations in normal score units are shown in Figure 6.18.

A normal score back transformation is considered to bring all realizations
back to original units. Figure 6.19 shows the back transformed results with
the first three realizations and the averages of all realizations in original units.
The variance of 100 values at each location is shown in Figure 6.20. There is a
low variance in the low-valued zones and a high variance in high-valued zones
as expected with a positively skewed distribution. The variance is high in the
margins because of few conditioning data.

Histogram reproduction can be checked to ensure that the geostatistical
realizations reproduce the input histogram. The histograms of the first 100
realizations are shown with black lines, while the 2,496 conditioning data are
shown with a red line in Figure 6.21a. The mean of the realizations, 0.198%, is
slightly less than the reference mean, 0.203%; the standard deviation, 0.199%, is
lower than the conditioning variance, 0.218%. Although the statistics from the

realizations are slightly lower than the 2,496 conditioning data, the realizations
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Figure 6.18: First three realizations and averages over 100 realizations in NS
units

successfully reproduce the global distribution of the 2,496 conditioning data.
The histogram reproduction appears reasonable.

The variogram measures the spatial variability of the regionalized variable.
Figure 6.21b shows the variogram reproduction in original units. Directional
experimental variograms are plotted with markers. The black line is the expected
isotropic variogram from the original 2,496 values. Light gray lines represent
the variograms of the first 100 realization, while the dark gray dash-dot line
represents the average of all realizations. The predicted model captures more
variability from the grade values in the short-scale structure and contains more
continuous in the large-scale structure. Overall, the variograms of all realizations

compare closely with the original isotropic variogram.
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geostatistical modeling in original units

6.4.2 Cross Validation

The first validation is to compare the true values with the distributions of the
uncertainty at the 806 test locations. The distributions of the local uncertainty
are specified by the normal equations in normal score units. The plot in Fig-
ure 6.22 shows the accuracy of the simulated distributions of the uncertainty in
normal score units. The grid of light lines shows the probability intervals, while
the red lines and black dots show the deviations of the actual proportions from
the predicted probability intervals (Deutsch, 2010b). The prediction is neither
accurate nor precise due to the observed fraction in each probability interval is
less than the predicted values (45° black line). The model appears to slightly un-
derestimate the uncertainty. The local uncertainty is 0.589 with the conventional
method.

The second validation is to compare the 806 real values with the simulated
average values in original units. Figure 6.23 shows the comparison. The mean of
the average checks the bias of the predicted model and the standard deviation
of the average measures the smoothing effect of the predicted model. The mean

of the average values, 0.231%, is slightly lower than the true mean, 0.247%.
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Figure 6.22: Cross validation from 806 test data with the conventional geo-
statistical modeling in NS units

The standard deviation of the average values is 0.108% that is much lower than
the truth, 0.287%. This low standard deviation is due to the average of many
realizations being overly smooth. The mean squared error value summarizes
the prediction performance and it should be small. The mean squared error
value between the true values and the average values is 0.06304. The statistics
from 3 drillholes that are extracted from high-, medium- and low-valued zones
are calculated showing the mean squared error values of 0.11989, 0.06173 and

0.01358, respectively.

6.5 Conventional Non-Stationary  Geostatistical

Modeling

The assumption of stationarity on the data is relaxed and the stationary as-
sumption is applied on the residuals that removes from the optimal trend. The
approach of modeling with residuals and adding the trend model back in the

final model is considered. The major steps of this conventional non-stationary



Chapter 6. Case Study 2: 3-D Mapping

187
1 . 1
o0
o« o o
08 e 0.8
° ® d .
& [P H31: 29
X 0.6 Truth (p): 0.247 X 0.6 Truth (p): 0.610
g Truth (o): 0.287 g Truth (o): 0.331
- -
= =
. Etype (pn): 0.231 . . Etype (p): 0.421
Etype (o): 0.110 Etype (o): 0.080
.
0.2 p: 0.500 0.2 . p: 0.575
M.S.E. : 0.06319 Se M.S.E. : 0.11800
00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
Etype, % Etype, %
(a) 806 data from 33 DHs (b) 29 data from DH 31
%
1 1 1.0
L]
0.8 0.8
° H75: 43 H 1: 10
X 0.6 Y Truth (p): 0.276 X 0.6 Truth (p): 0.052
£ : Truth (): 0.241 £ Truth (): 0.048
= A4 =
= =
. 4 Etype (p): 0.194 . Etype (n): 0.178
8 Etype (c): 0.018 Etype (o): 0.016
0.2 .%- p: 0.267 0.2 p:-0.198
i H M.S.E. : 0.06121 i 3.: M.S.E. :0.01832 oo
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ’
Etype, %

(c) 43 data from DH 75

Etype, %

(d) 10 data from DH 1

Figure 6.23: Mean squared error values from 806 test data with the conven-
tional geostatistical modeling in original units

geostatistical method can be summarized as: (1) obtain residuals that removes

the optimal trend from data; (2) transform the residuals into normal score units;

(3) conduct sequential Gaussian simulation on the normal score transformed

residuals; (4) generate many realizations; (5) back transform all realizations into

original units; (6) add the trend model back to the simulated residuals; and

(7) check the histogram and variogram reproductions of the simulated residuals

and the final simulated values over all realizations. Details will be demonstrated

with the same data.
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Figure 6.24: variogram models from 2,496 residuals in NS units

6.5.1 Sequential Gaussian Simulation with Residuals

A scatter plot of the residuals against the trend model is shown in Figure 6.9b
with a correlation of 0.26. The location map and the histogram from the residuals
are shown in Figure 6.10. Still, the 500—meter cell size is considered for the
cell declustering. Residuals are transformed into normal score units with the
declustering weights. The isotropic variogram model in normal score units is

given as:

y(h) = 0.45 - Sph(h) a—ge  +0.55-Sph(h)  a_pe (6.4)
Ahmax=10 m Ahmax=200 m
Ahmin=10 m hmin=200 m
Ahvert=10 m Ahvert=200 m

The variogram model is shown in Figure 6.24. The markers with the red, blue
and green colors represent the experimental variograms in the major, minor
and vertical directions, respectively, and the black line indicates the isotropic
variogram model.

Sequential Gaussian simulation is conducted on the transformed residuals
and many realizations are generated. A normal score back transformation is
considered to bring all realizations of residuals back to the original units. Fig-

ure 6.25 shows the back transformed residuals with the first three realizations
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and the averages of the first 100 in original units. The simulated residuals show

more randomness.
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Figure 6.25: First three realizations and the average over 100 realizations of
residuals in original units
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Figure 6.26: Histograms correction of the final simulated values
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Figure 6.27: First three realizations and the average of the final model over
100 realizations in original units

The trend in Figure 6.7d is added back to the simulated residuals. A con-
straint that the final model should not contain negative grade values in original
units z(u) > 0.0 is considered so that the existed negative values in the final sim-
ulated model should be reset to zeros. Figure 6.26a shows the naive histogram
of the first 100 realizations after adding the trend back and Figure 6.26b shows
the constraint corrected histogram from realizations of the final model so that
no negative values exist. Figure 6.27 shows the first three realizations and the
averages of the final model over all realizations in original units. Figure 6.28
shows the variance over all realizations. This model has more variability than
the preceding model of sequential Gaussian simulation directly.

Histogram reproductions of the residuals and the final grades over 100 real-

izations are checked. The red line represents the cumulative distribution function
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Figure 6.28: Local variance of the final model over 100 realizations in original
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Figure 6.29: Histogram reproduction with the conventional non-stationary
geostatistical modeling in original units

from 2,496 modeling residuals/data and the black lines are the histograms from
all realizations. The realizations of the residuals in Figure 6.29a successfully
reproduce the global mean, —0.005%, the global standard deviation, 0.197%,
and the global distribution of the residuals in original units. Figure 6.29b shows
the histogram reproduction of the final grades that shows an obvious bias. The
mean of the realizations of the final model without negative values, 0.184%, is
lower than the reference mean, 0.203%. The standard deviation of the final

model, 0.212%, successful reproduces the conditioning standard deviation of the
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regionalized data, 0.218%. However, the distributions of all realizations fail to
reproduce the global distribution of the regionalized data. The histogram repro-
duction of the final simulated values performs poor.

Figure 6.30 shows the variogram reproduction of the residuals and the
final model over 100 realizations. The red, blue and green markers represent
the experimental variograms in the horizontal major, horizontal minor and the
vertical directions. Light gray lines are the variograms of each realization and
the dark gray line represents the average of all realizations. The variogram
model with the residuals in Figure 6.30a performs reasonable reproduction that
reproduces the variogram model from 2,496 modeling residuals (black line). The
variogram model after adding the trend back contains similar variability shown
by a black line in Figure 6.30b. Overall, the variogram reproduction with the

final simulated values is well performed.
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Figure 6.30: Variogram reproductions with the conventional non-stationary
geostatistical modeling in original units

6.5.2 Cross Validation

The first validation is to compare the true residuals with the simulated aver-

age residuals at 806 test locations in normal score units. The residuals are
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obtained from the data that removes the optimal trend. These residuals are
assumed known without uncertainty. 806 true residuals are transformed into
normal score units with the reference distribution of 2,496 modeling residuals.
Figure 6.31 shows the uncertainty of the 806 true residuals and the simulated
average residuals in normal score units. The dots in each intervals fall close to
the 45° line so that the predicted residuals are accurate and precise. The local
uncertainty with the trend dichotomy technique is 0.821 which shows 40% more

variability than that from the conventional method.
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Figure 6.31: Cross validation from 806 test residuals with the conventional
non-stationary geostatistical modeling in NS units

The second validation is to compare 806 real values with the simulated
average values of the regionalized data in original units. Figure 6.32 shows the
comparisons. The mean of the average values, 0.238%, is close to the true mean,
0.247%. The standard deviation of the average values, 0.118%, is lower than
the true standard deviation, 0.287%, but is higher than that of the conventional
method, 0.108%. The mean squared error value measures the difference between
the truth and what is being estimated, and further, summarizes the prediction

performance. The minimized mean squared error can be used to identify the
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best method. The mean squared error values between the true values and the
average values are 0.06229 with a mild improvement of 1.19% with the preceding
model of sequential Gaussian simulation directly. 3 drillholes show the improve-
ments of 8.43%, 5.64% and 85.80%, respectively, compared with the conventional

stationary geostatistical modeling technique.

1
0.8 0.8
. H31: 29
X 0.6 Truth (p): 0.247 X 0.6 Truth (p): 0.610
g Truth (o): 0.287 g Truth (o): 0.331
- -
= 0. - =04 -
Etype (p): 0.240 . Etype (p): 0.443
Etype (5): 0.118 ° Etype (c): 0.088
L
0.2 p: 0.503 0.2 % p: 0.567
M.S.E. : 0.06227 ‘ M.S.E. : 0.10882
0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
Etype, % Etype, %
(a) 806 data from 33 DHs (b) 29 data from DH 31
%
1 1 1.0
0.8 0.8
I8 H75: 43 H1:10
X 0.6 .y Truth (p): 0.276 X 0.6 Truth (p): 0.052
= = Truth (): 0.241 = Truth (): 0.048
c ! c
0 o Etype (n): 0.206 0 Etype (n): 0.070
»° Etype (o): 0.024 Etype (c): 0.018
*
ode
0iz e :0.311 0.2, 0:0.526
3’ M.S.E. : 0.05843 M.S.E. : 0.00188
0 —— 0L 0.0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Etype, %

Etype, %

(c) 43 data from DH 75 (d) 10 data from DH 1

Figure 6.32: Mean squared error values from 806 test data with the conven-
tional non-stationary geostatistical modeling in original units
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6.6 Developed Geostatistical Modeling

The stepwise conditional transformation with Gaussian mixture models is now
considered. In the application of the transformation, 2,496 modeling data are
transformed conditional to the trend component. The complex features in the
data are removed so that the transformed variable stays stationary. All complex
features should be reproduced in the back transformation. The major points of
the developed method can be summarized as: (1) normal score transform the
optimal trend model and the modeling data; (2) fit the Gaussian mixture model
between the normal score transformed trend model and data; (3) transform the
data in normal score units according to the Gaussian mixture model; (4) conduct
sequential Gaussian simulation on the transformed data; (5) generate many real-
izations; (6) transfer all realizations back to normal score units, and then original
units; and (7) check the histogram and variogram reproductions of the models
over all realizations. Details with the developed simulation workflow will be

described with the same example.

6.6.1 Gaussian Mixture Model

The trend model contains the large-scale variability and is shown in Figure 6.7d.
Obvious trend extrapolations exist in the Southwest and Northeast areas where
the trend values approach the declustered global mean of the regionalized vari-
able. Figure 6.33a shows the histogram of the exhaustive trend mode with a
mean of 0.182% and a standard deviation of 0.073%. There are high frequencies
near the declustered global mean of the regionalized variable because of the trend
model calculations in trend extrapolation regions. The scatter plot between the
trend and the data in original units is shown in Figure 6.9a indicating a correla-
tion of 0.49. The exhaustive trend model is transformed into normal score units,

see Figure 6.33b, while 2,496 modeling data are transformed into normal score
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units with the declustering weights independently. Figure 6.34 shows the trans-
formed trend model and the transformed scatter plot on a 2D density estimation

showing a direct relationship with a correlation of 0.54.
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Figure 6.33: Histograms of the trend models in original and NS units
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Figure 6.34: The transformed trend model and crossplot from 2,496 data in
NS units

The scatter plot in Figure 6.34 shows obvious artifacts. The gridding from
the data sampling causes these artifacts. Figure 6.33b shows the histogram of
the fully transformed trend model under the standard normal distribution and

Figure 6.35 shows the histogram of the trend model only at data locations in



Chapter 6. Case Study 2: 3-D Mapping 197

Zone3
0.12
—p | —
0.1 Data: 2496
—> Zone1 <«—] fonep k:0.749
o :0.802
,5.0'08 """ I i min : -1.137
2 i max : 2.538
S 0.06 >
g one Bl | |—>||«—
= N 26
0.04f
|- Zone7
0.02 1 |I | ‘hT
(-)2 1 0 1 2 3
NS Trend Values

Figure 6.35: Histogram from the trend model at 2,496 modeling data loca-
tions in NS units

normal score units with a mean of 0.749% and a standard deviation of 0.802%.
The trend values are divided into zones. These categories are defined by the
frequencies from the probability distribution function in Figure 6.35. Zones 1, 3,
5 and 7 have relatively low probability and Zones 2, 4 and 6 have relatively high
probability. Zones 3 and 6 are the stripe-like artifacts are located in the scatter
plot. Figure 6.36 shows the contour maps of the normal score transformed trend
values in different elevation levels and the dots represent the 2,496 modeling
data within each category. Not many samples could be found in Zone 3 and 5
so that causes less points in that area of the scatter plot. Other examples with
more random sampling have been tested and there are no such obvious strips.
The stepwise conditional transformation with a Gaussian mixture model is
considered to remove the complexity from the data. The decision of the number
of mixture components is subjective. Too many components of the Gaussian
mixture model could over-fit the relationship between the trend and the data,
especially when the density issues in the scatter plot exist. In this case study,
two components are determined by visual inspection to fit the scatter plot. Fig-
ure 6.37 shows the Gaussian mixture model. The univariate distributions of the
trend model and the data are shown in Figure 6.37a and Figure 6.37d, respec-

tively. The marginal distributions from the Gaussian mixture models are not
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Figure 6.36: Contour maps of the trend model with 2,496 Modeling data in
NS units

exactly normal; however, the deviation appears to be very small in Figure 6.37a
where the combined mixture distribution and an exact normal distribution are
almost perfectly overlapping. The bivariate distribution is shown on a 2D prob-
ability density plot in Figure 6.37c. The transformed variables are uncorrelated,
0.18, in Figure 6.37b. Note that the striping artifacts in the scatter plot come

from the normal score transformation rather than the conditional transforma-

tion.
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Figure 6.37: Bivariate and univariate distributions of the Gaussian mixture
model

6.6.2 Stepwise Conditional Transformation

The data after the stepwise conditional transformation in Figure 6.38a show a
randomness and the large-scale trend-like features are removed. The directional

variograms in stepwise units are fitted with an isotropic variogram model. The
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isotropic variogram model is shown in Figure 6.38b and the equation is given as:

y(h) = 0.50 - Sph(h)  w—ge  +0.50-Sph(h)  aege (6.5)
Ahmax=10 m Ahmax=180 m
ahminzlo m ahmin:180 m
Ahvert=10 m Ahvert=180 m

The sizes of the markers represent the relative number of pairs in each direction.
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Figure 6.38: Location map and variogram model from 2,496 modeling data
in SC units

6.6.3 Sequential Gaussian simulation

Sequential Gaussian simulation is conducted on the transformed variable. The
search radii and ellipsoid are defined based on variogram ranges in Equation 6.5.
Many realizations are generated. Figure 6.39 shows the first three realizations
and the average over 100 realizations in stepwise units. No trend-like features
exist in the simulated results. A stepwise conditional back transformation with
the Gaussian mixture model is performed. Figure 6.40 shows the first three real-
izations and the average of 100 realizations in normal score units. The simulated
results show that the trend-like features are restored in the back transformation.
The initial normal score transformation should be also reversed. Figure 6.41

shows the first three realizations and the average of 100 realizations in original



Chapter 6. Case Study 2: 3-D Mapping 201

=

=3

S
=
S
S

Elevation, m

)

=3

S

Elevation, m

©
S
S

3.58

Easting, m 362 Northing, m Fasting, m 3.62 Northing, m
(a) Realization 1 (b) Realization 2
2.0
-

12004

900

Elevation, m
©°
S
3

Elevation, m

600

x 10 x 10
3.58 3.58 -2.0
. 3.62 Northing, m . 3.62 Northing, m
Easting, m Easting, m
(c) Realization 3 (d) Average values over 100 realizations

Figure 6.39: First three realizations and the averages over 100 realizations in
SC units

units. The local variance is calculated and shown in Figure 6.42. The map shows
the high variance in the central region due to the low variance at the margins.
The histogram of realizations should be consistent with the histogram from
2,496 conditioning data. The realizations over all locations are considered. The
histogram is reasonably reproduced in original units, see in Figure 6.43a. The
mean over 100 realizations is 0.193% that is slightly lower than the conditioning
mean, 0.203%. The standard deviation is 0.202% that is reasonably close to the
standard deviation from the conditioning data, 0.218%. The histograms of all
realizations are reproduced well. Figure 6.43b shows the variogram reproduction.
The overall variogram reproduction from realizations is better than that from

the conventional (non-)stationary methods in Figure 6.21b and Figure 6.30.
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Figure 6.40: First three realizations and the averages over 100 realizations in
NS units

6.6.4 Cross Validation

806 true values and the simulated average values in normal score units are com-
pared. The local uncertainty appears accurate and the average uncertainty,
0.653, with the developed method in Figure 6.44. Although higher than the
conventional method, the predicted uncertainty values are precise. Meanwhile,
the numerical model by the developed method contains less variability than the
model by the conventional non-stationary method due to the trend subtrac-
tion and addition are required by the conventional non-stationary method. The
accuracy and precision of the developed method outperforms the conventional
(non-)stationary geostatistical modeling methods.

806 true values and the simulated average values are compared in original

units. The mean of the developed method, 0.238%, is close to the true mean,
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Figure 6.44: Cross validation from 806 test data with the proposed geosta-
tistical modeling in NS units

0.247%. The standard deviation of the average values with the developed method
is 0.130%. The result by the proposed method contains the most variance than
those by the conventional methods, 0.108% and 0.118%. The mean squared
error values between the true values and the average values is 0.06118. It shows
a 2.95% improvement in the developed method than the conventional stationary

method. 3 drillholes are compared and shown in Figure 6.45 showing 8.37%),
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4.49%, and 87.11% improvements, respectively. The developed method shows a

significant improvement, especially near the edges of the model.
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Figure 6.45: Mean squared error values from 806 test data with the proposed
geostatistical modeling in original units

6.7 Remarks

A real porphyry copper deposit with an obvious trend is used to demonstrate
the practical framework for non-stationary geostatistical techniques. The data

are divided into a modeling set and a test set. The modeling set is used for
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geostatistical modeling and the test data is used for checking the results. The
performance of the numerical models, the reproduction of geological characteri-
zations and the analysis of the local uncertainty are compared.

The assumption of stationarity is made in the conventional (non-
)stationary geostatistical prediction. The map shows that the simulated results
might be underestimated by the conventional stationary method. The trend di-
chotomy approach is also implemented. The optimal trend is removed prior to
the simulation. Then the residual model is applied into the numerical model for
the prediction. Finally, the optimal trend model is added to the simulated values.
The constraint of non-negative simulated values is considered for the final sim-
ulated attributes. A significant improvement is found by using this detrending
approach; however, the model contains more variability and high uncertainty.

A strategy of the stepwise conditional transformation with a Gaussian
mixture model is proposed to improve the prediction accuracy. The assump-
tion of stationarity is relaxed in the proposed method. The variable is trans-
formed conditional to the trend. The proposed method is more accurate, but
with greater uncertainty than the conventional stationary geostatistical model-
ing and less uncertainty than the conventional non-stationary modeling. The
mean squared error comparisons show a modest yet important 2.95% improve-
ment in the proposed method. Drillholes in the margins of the deposit show the
greatest improvement.

The trend dichotomy approach could also be applied with the stepwise con-
ditional transformation. The approach of modeling with residuals using Gaussian
mixture models and adding the trend model m*(u) back in final models, that is,
r(u) = z(u) — m*(u) then z(u) = m*(u) +r(u), is also implemented, but it is not
demonstrated in this chapter. The local uncertainty is 0.861 that is higher than
the proposed technique of modeling with data directly. The mean squared error

value between the truth and the simulated results is 0.06159, indicating a 0.03%
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loss. The results of 3 drillholes show 0.78%, 0.07%, and 12.29% worse than the
proposed method of modeling with the data. The performance of modeling with
the trend dichotomy approach using Gaussian mixture models is not as good as
the proposed method, which models the data more accurately. In addition, the
constraint of the non-negative simulated values z(u) > 0.0 is required. Thus, the

Gaussian mixture model approach should be applied to the grade values directly.



Chapter 7

Concluding Remarks

A methodology for geostatistical simulation in the presence of a trend has been
developed and demonstrated with numerous 2-D synthetic examples and two real
case studies. The contributions and future work for the research and practical

application are summarized in this chapter.

7.1 Summary of Contributions

Geostatistics is used for predicting spatial variability. Conventional geostatistical
techniques begin with a set of assumptions such as stationarity. Stationarity
refers to the properties at all locations in the statistics of the region of interest,
that is, the regionalized variable does not change over the domain. Real geologic
data often exhibit trend-like features that represent the large-scale variability of
the regionalized variable. The assumption of stationarity is not satisfied in the
presence of a trend. The trend should be treated to lead more accurate estimates.

The research focuses on developing and enhancing geostatistical algorithms
suited to modeling in the presence of non-stationary variables. The first main

contribution is to develop a function to model the deterministic component that
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accounts for all available data, anisotropy and other considerations in an ob-
jective manner. The second main contribution is to establish a framework for
geostatistical techniques using the modeled non-stationary component. Further-
more, in addition to the small 2-D illustrative examples, the research is applied
to realistic case studies.

The contributions of this thesis can be highlighted as follows:

¢ Placing emphasis on understanding and modeling the trend fea-
tures that characterize the large-scale features of a regionalized

variable

Geological explanations highly depend on observed data. These observa-
tions are collected for understanding, for example, establishing a geological
model, identifying an estimate of a geological variable and analyzing the
spatial relationship between variables (Sarma, 2009). A numerical model
that is built with geostatistics can be used to quantify and predict the

spatial variation of these observations.

Most spatial data show some spatial dependence, for example, the mineral-
ization displays the preference that high grades concentrate in some areas
and low grades are in other areas. This locally varying spatial dependence

features should be taken into consideration.

Trend modeling analysis is a procedure for separating the relatively large-
scale changes from the essential small-scale variations. The approach of
dealing with a non-stationary variable is the data decomposition into a
trend component with large-scale features and a stochastic component with
small-scale variations in Equation 2.17. The scales of the large-scale fea-
tures refers to the data spacing. The large-scale features represent the de-

terministic trend m(u) that conveys some important geological structures
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at the large-scale, while the residual data reflects some spatial geological

features and randomized geological events.

e The decision on the trend modeling function and the optimal
selection of trend parameters to avoid excessive subjectivity in

trend modeling

The trend function using the moving averages with a Gaussian kernel
weighting function is determined to be free of artifacts. The weighted aver-
aged trend reflects smooth large-scale features of the regionalized variable,
and the remaining component is a fluctuation. The benefit of the moving
average function is simplicity, fast calculation, ease of programming and

reasonable estimates for different types of geologic data.

The optimal selection of parameters for trend modeling are considered in-
cluding anisotropy, background value, smoothing parameter and declus-
tering weights in Chapter 3.2. The anisotropy includes the continuity
directions and the length scales of the regionalized variable in the pri-
mary directions. A stable anisotropy factor in trend modeling is proposed
and implemented. A small amount of background value is considered to
smooth the local anomalies. In this study, data within the defined length
scales are taken into consideration. The requirement of a background value
makes it possible to smooth data by using successively neighboring points
around each location and to ensure computational stability. The smooth-
ing parameter is introduced to control the variance of the Gaussian kernel
function and simplify the length scale settings. Different trend values can
be constructed by changing the smoothing parameters. In real mining or
petroleum applications, geologic data are often sampled unevenly. Declus-

tering and debiasing techniques are required in trend modeling to generate
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a representative distribution of the regionalized variable. All trend param-
eters have been calibrated with a 2-D synthetic example where a true trend
model is available and where the cross validation is established to validate
the parameters. The trend parameters can be calculated in an objective

and repeatable manner.

o Establishment of the trend modeling function in terms of trend
extrapolation. The trend values in the extrapolation regions fol-

low the continuity from the interpolation regions.

The trend prediction using the standard moving averages algorithm may
not work as well in some scenarios, for example, the trend model is unre-
liable with less or even no controlling samples. The trend model with the
standard non-negative Gaussian weights could not be inferred properly in

regions of beyond the data locations.

Extrapolation is an estimation value by extending a sequence of known val-
ues beyond the last known value in the attribute of interest. The moving
averages method with positive and negative weights is proposed in Chap-
ter 3.4 so that the trend model could be extrapolated in a more reasonable
way. The non-positive weights are only assigned in the extrapolation re-
gions. The assumption underlying the trend extrapolation method is that
the trend values in interpolation regions continue to be extended in extrap-
olation regions. The extrapolation regions must be preliminarily informed
before modeling. The implementation on a 1-D example is demonstrated.
The number of samples that are assigned to the positive weights and the

negative weights leads to different results in trend modeling.

¢ An objective function for optimum trend modeling. A smoothing

parameter that minimizes the absolute correlation between the
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trend and residuals is the basis for inferring a reasonable trend

model.

The trend optimization is an important part of trend modeling. The goal is
to infer a general objective function that could find an optimal smoothing
parameter, and further, generate an optimal trend associated with that

optimum smoothing parameter.

The criterion of the objective trend modeling considers both the determin-
istic and stochastic components of the regionalized variable. The first nu-
merical experiment in Chapter 3.3.2 is to determine a relationship function
between the deterministic trend and stochastic residuals. |p {m(u), R(u)} |
is a conventional way to summarize the relationship. The second numeri-
cal experiment is to find an appropriate adjustment factor associated with
the proposed correlation function. A factor of 2 works consistently. The
optimal smoothing parameter is then determined in Equation 3.15. This
objective function is a robust and reliable measurement so that it leads to
construct a reasonable trend model and improve predictions at unsampled

locations.

e Construction of conditional distributions using Gaussian mixture

models with different fitting data.

The Gaussian mixture model is introduced to reduce binning artifacts in
the forward conditional transformation. The benefit of the Gaussian mix-
tures allows the easy assessment of any conditional distribution and suits

high dimensional data spending significantly lower computational cost.

The co-located trend values with the data are considered in the construc-
tion of mixture models; however, some important structures in the trend
are not captured. Gaussian mixtures must be modeled properly. The

spatial trend structures in the data are decomposed into several Gaussian
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mixtures. Discarding some available trend values may introduce the con-
ditional bias in estimates. Accounting for the trend values at unevenly
sampled locations is significant. It helps to form a representative con-
ditional transformation. The marginalized distributions of the observed
data and the exhaustive trend must be in a standard normal score units.
The test shows that Gaussian mixture model fitted with all trend values

performance the best.

o A geostatistical modeling framework using a parametric condi-
tional transformation to account for non-stationary features of

regionalized variables in an artifact-free fashion

A modified stepwise conditional transformation for geostatistical modeling
is implemented. The stepwise conditional transformation attempts to re-
move the trend-like features from the regionalized variable and de-correlate
the trend values with the regionalized variable at a zero lag distance to form
an uncorrelated Gaussian variable. The standard geostatistical algorithm
is attributed to the stationarity of the transformed variable. The back
transformation reintroduces the original trend-like features. The use of
the Gaussian mixtures eliminates the artifacts from data binning in the
conventional stepwise conditional transformation. This stepwise condi-
tional transformation with Gaussian mixture models is suitable for a high

dimensional dataset and no artifacts are introduced.

The example addresses the application of the parametric stepwise con-
ditional transformation. 2-D synthetic data with an apparent trend are
transformed conditionally by a parametric transformation. This paramet-
ric conditional transformation brings a low uncertainty and more accuracy
to the numerical models. The correlation structures, the data distribution

and the spatial relationship are well reproduced.
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e Applications on the real data with an obvious trend. The pro-
posed algorithm improves the performance of non-stationary geo-

statistical modeling.

A practical framework for non-stationary geostatistical techniques using
the parametric conditional transformation is established. The comparison
with the standard geostatistical technique is made. The performance of

numerical models is compared.

The data are divided into a modeling set and a test set. The modeling
set is used for proceeding the geostatistical modeling and the test data
is used for checking the results. The assumption of stationarity is made
in the conventional geostatistical prediction and loose in the developed
method. The conventional modeling includes the normal score transforma-
tion, variogram fitting, sequential Gaussian simulation and normal score
back transformation. The developed modeling requires the construction
and the optimization of the trend model. A conditional transformation
is considered to transform the data in the presence of the modeled trend
and transformed data reach to a stationary regionalized variable. Standard
Gaussian simulation is applied. The back transformation brings all trend

features into original units.

The validations are made by comparing the simulated results with the
test data. The results show significant improvements if the trend model is
used for the prediction instead of considering the original observed values

directly, especially in the margins of the domain.

The programs related to the trend modeling and modeling with a trend are writ-

ten in FORTRAN 90 following a GSLIB-style format and shown in Appendix B.
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7.2 Limitations and Future Work

Limitations still remain and further research is required. A numbers of imple-
mentation details could be considered to improve performance of non-stationary

geostatistical modeling.

e« The implementation with other trend modeling functions

It should be noted that the approach of the moving averages may not
always provide the best trend function. The calculation of the trend model
requires relative high computational time when a large amount of data
is incorporated. It is worth trying other trend functions that are more

straightforward and efficient.

The trend model is difficult to construct beyond the range of available
data. Exhaustive and auxiliary secondary data cound be introduced and
merged with the primary non-stationary data together to generate more
stable trend models in the regions with less primary data. In this case, the
trend extrapolation is also solved. The purpose is to gain the confidence
in the trend modeling with less primary data and improve geostatistical

modeling.

e The implementation with other possible objective functions for

trend modeling

An objective function associated with the correlation at data locations is
used for determining the optimal trend model. However, the objective
function does not work well in obvious trend extrapolations. The difficulty
is that the model could not be achieved by an optimal removal of the
unwanted trend. A new objective function would be proposed to account
for the trend model in the interpolation regions, as well as the extrapolation

regions.
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e The optimal components for Gaussian mixture model fitting

A visual inspection of the optimal components of Gaussian mixtures is a
common approach. 2-5 components for the Gaussian mixture modeling
are recommended in this thesis. The decision on the number of compo-
nents is subjective and depends on the practitioner. Chen and Kalbfleisch
(1996) have demonstrated the importance of choosing an optimal number
of Gaussian components. The mixture model may over-fit the data if too
many components are used, while the mixture models may not be enough
to capture the true underlying data structure if too few components are
considered. The selection for the number of Gaussian mixtures is not only
for theoretical interest, but also contains significant useful in the practical

applications.

The decision on the number of Gaussian components should be determined
objectively. The re-sampling technique, for example, the spatial bootstrap
technique implemented by Deutsch (2004) and uncertainty measurement

proposed by Yamamoto et al. (2014) seems a promising start.

e Data in the presence of trend after the parametric stepwise con-
ditional transformation should be multi-Gaussian at all lag dis-

tances

The covariance after the stepwise conditional transformation is zero at a
lag distance h = 0 and may not be zero at other lag distances that could
affect the result (Leuangthong and Deutsch, 2003). The use of Minimum /-
Maximum Autocorrelation Factors (MAF) (Desbarats and Dimitrakopou-
los, 2000) may be considered on the transformed variables if remnant cross
spatial correlation is present. There are challenges related to the unequal

sampling of the data.
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e The parametric stepwise conditional transformation with multi-

variate variables in the presence of different trends

More than one variable is often considered in mineral deposits. There may
be multiple valuable elements and contaminants in the presence of trends.
Accounting for the multivariate non-stationary data significantly increases

the complexity of geostatistical modeling.

Multivariate geologic data in the presence of trends should be considered
simultaneously in numerical models used for resource management. The
specification of the direct- and cross-covariance functions in the presence
of trends refers to the spatially varying linear model of coregionalization
(Gelfand et al., 2004). The misrepresentation of the multivariate non-
stationary spatial features may lead to incorrect decision-making. Mul-
tivariate non-stationary regionalized variables could be considered simul-
taneously in a hierarchical workflow when using the parametric stepwise
conditional transformation. FEach variable could be processed according
to the proposed workflow in Figure 4.4, and then another Gaussian mix-
ture models could be fitted to the de-trended multivariate variables. A
second parametric stepwise conditional transform would remove the de-
pendency between the multivariate variables. Gaussian simulation of the
independent factors would proceed, then the back transformation would be
performed in reverse order to account for multivariate dependencies and

the non-stationary trend features.

Another challenge on the applications with non-stationary multivariate
data arises because multiple data sources may come from different scales,

for example, the geophysical data are much larger than the drill core data
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(Kupfersberger et al., 1998; Ren, 2007). Geologic data also exhibit de-
terministic trends at different scales. Understanding multivariate non-
stationary variables with scale differences will better describe the het-
erogeneity at all relevant scales and improve the prediction of resource
management. The grid-free simulation approach proposed by Zagayevskiy
(2015) provides a flexible implementation of the multivariate conditional
simulation that addresses the multi-scale problem. One promising method
is to represent all available data including the trends, secondary variables
and primary variable at the same scale using the point-scale block value
representation (Zagayevskiy, 2015). This will simplify the representation
of the data and will not involve an explicit downscaling or upscaling. The

research will be required to understand the limitations and applications.

More research should be applied to increase the robustness and reliability of
geostatistical modeling algorithms and reduce spatial uncertainty in the presence
of non-stationary features. The proposed research should also be implemented
in realistic sets of data and validated to show the improvement brought by the

proposed methods.
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Appendix A

Appendix - Description of
Trend Extrapolation

The problem of the extrapolation in trend modeling at an unsampled location
using the available samples is considered, see the 1D schematic illustration in
Figure 3.25a. ug represents the location to be modeled, while black dots are the
known observed samples. These ten samples are labeled with numbers (p; to p;g)
by the distances from the unsampled location ug. A novel weighting function
in Figure 3.25¢ that accounts for the positive weights and negative weights is
considered. The derivation of the expression is illustrated below.

Suppose a quadratic equation for expressing the weighting function
{f(u;),i =0,1,--- ,np} with np samples given of the positive weights. The func-
tion is considered as:

f(ul) = ap+a1 -u; + as ~u§
(A1)

u; € (O,Dl) and u; € A

here {u;,i = 0,1,--- ,np} represent the data locations will be given with positive

weights to the estimate in the domain A. Dy is the distance that the weight stays
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non-negative. ag, a; and ag are constant numbers that will be decided by some
constraints.

Three conditions are considered to generate the final positive weighting
function {f(u;),i =0,1,--- ,np}: (1) the total weight 1.0 is given at the location
to be estimated, that is, f(0) = ap+a1-0+a2-0? = 1.0 ; (2) the maximum weight is
given at the location to be modeled, that is, f'(0) = a1 +2az-0 = 0.0; and (3) the
weight equals to zero at the location of Dy, that is, f(D1) = ag + ag - D? = 0.0.

Thus, the final equation for expressing the positive weights is written as:

1
fu;) = 1.0——5 - u?
Dy (A.2)

u; € (O,Dl) and u; € A

The area of the positive weighting zone (dark gray zone in Figure 3.25¢)
is expressed as:
Dy
f(uz)d(ul) =1+A (A3)
0
here A is a factor that accounts for the sum of the negative weights. This integral

is solved as follows:

D}
D1 1 1 3D1
11
1-Dy—=-— -D}I=1+4+A (A.4)
3 D?
2.D
L_1+A
2.D
A = L1
3

Let us suppose an other equation for expressing the weighting function

{9(u;),j =0,1,--- ,nn} with nn samples given of the negative weights. The
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equation is given as:

g(u;) = bo+by - uj + by - u?
’ ’ ’ (A.5)
u; € (Dl,Dg) and u; € A

here {u;,j =0,1,--- ,nn} represent the data locations will be given with neg-
ative weights to the estimate. D; is the distance that the weight stays non-
negative, and Dy is the distance between the data with the last negative weight
and the next unused data. by, by and by are the constant numbers that will be

considered by:

g(Dl):bo+bl'D1+bg'D%:O

g(Dg):b0+bl-D2+b2-D% =0
A new system would be obtained by g(D2) subtracting g(D1), and get
b1 - (Dy— Dy)+by- (D3 — D7) =0
(D2 — D1) - [b1 + b2 - (D24 D1)] =0

where Dy # D1, and then by = —by - (D2 + D7). Consider to put b into g(D1),

and obtain
bo—by- (Do+ Dy)- Dy +by-D? =0
bo—by-Dy-Do—by-D?+by-DI=0 (A7)
bo = by - Dy - Do

Thus, the final equation for expressing the negative weights is written as:

g(u;) =ba- Dy - Da—by - (Dy+ Dy) -u‘+b2-u2-
’ ’ ’ (A8)
u; € (Dl,Dg) and u; € A
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The area of the negative weighting zone (light gray zone in Figure 3.25¢)

is expressed as:

Dy
/ gluy)d(;) = —A (A.9)

Dy

where A standardizes the total weights. Then, this expression is solved as:

Do
/ (bg - Dy - Dy — by - (D2 + Dl) “uj + by u?)d(u]) =—-A
Dy
Do 1 Do 1 Do

— Z by (Dy+ D1) - u Zbyud| = —A
D 2 7 (D2 + D) u]D1+3 gule

1 1
by Dy Dy (Dy—Dy)— = by (Da+Dy)- (D3 —D3)+ < by~ (D3 — D) = —A
2 3

1
é‘bg‘(DQ—Dl)'[6'D1'DQ—S'(D2+D1)2—2'(D§+D%+Dl‘DQ):_A

bg-Dl-DQ-’U,j

1
—— by-(Dy— D)= -A

6

6

= - A
2 (D2 — Dy)?
(A.10)
The final equation for expressing the negative weight is written as:
(u)—L A-Di-D —L~A-(D + Dy)-uj+
6

A2 A1l
D DF A (A.11)

u; € (Dl,Dz) and u; € A
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Appendix - Description of

Fortran Programs

The descriptions of the Fortran coded programs are provided in this Appendix.
The presented programs are VMODEL_AVG for the calculation of the average
anisotropy ratios, TMODEL for the construction of the smooth trend models,
TFUNCTION for the selection of an optimal trend model among input trends,
TREND_EXTRP for the creation of the trend models with the proposed extrapo-
lation algorithm, and SMP_ADD for the correction of the bivariate distribution

between the trend values and data values.

B.1 Program VMODEL_AVG

The provided VMODEL_AVG program is written in FORTRAN 90 and followed
a GSLIB-style functionality which controlled by a text-based parameter file
(Deutsch and Journel, 1998) and is presented in Section 3.1.4 of Chapter 3.
A default parameter file of the program is shown in Table B.1. The descriptions

are provided as follows.

234
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Table B.1: Default parameter file of program VMODEL_AVG

1- Parameters for VMODEL_AVG Program

2- stk ok o ok sk koK ok ok ok sk skok ok o ok

3-

4-  START OF PARAMETERS:

5-  vmodel_avg.var - file for modeled variogram
6-  vmodel_avg.dbg - file for debugging output
7- 256 0.5 1.0 - nx, xmin, xsize

8 128 0.5 1.0 - ny, ymin, ysize

9- 64 0.5 1.0 - nz, zmin, zsize

10- 3 - number of directions

11- 135.0 0.0 1.0 - azm, dip, lag interval
12- 45.0 0.0 1.0 - azm, dip, lag interval
13- 0.0 0.0 1.0 - azm, dip, lag interval
14- 2 0.00 - variogram: nst, nugget

15- 1 0.75 135.0 0.0 0.0 - it, cc, angl, ang2, ang3
16- 30.0 30.0 30.0 - al, al, a3

17- 1 0.75 135.0 0.0 0.0 - it, cc, angl, ang2, ang3
18- 10000.0 700.0 200.0 - al, al, a3

19-

20- Additional Notes:

21- - Line 11 should be specified with the major direction.

e Line 1-4: The headers of the parameter file. All input and output data files

are in GeoEAS formats with the first four lines being a title.

e Line 5: The output file contains the conventional semi-variogram model val-
ues. Two additional columns, the area under the variogram model curves
in each lag distance and the total areas from the origin to the specific lag

distance, are added to the output file.

e Line 6: The debugging file contains some useful information about the semi-
variogram models, such as the domain size, the area under the variogram
models in each direction and the calculation of the recommended anisotropy

ratios.
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e Line 7-9: The grid parameters of X, Y and Z directions. The X, Y, Z axis are
associated with the directions of East, North and Elevation. The coordinate
system is established by specifying the center of the first grid (xmin, ymin,
zmin), the number of grid nodes (nx, ny, nz), and the size of the grid nodes

(xsize, ysize, zsize).

e Line 10: The number of directions for the variogram models that are needed

to be considered.

e Line 11-13: The directions of the anisotropy are specified by the azimuth

and dip. A unit lag offset must be also specified.
e Line 14: The number of the nested structures and the nugget effect.

e Line 15-18: The types of the structures, the sill contributions, the principal
directions of the anisotropy, and the variogram ranges are required to set up

the variogram models.

e Line 21: Additional Notes. It illustrates some useful information to help
practitioners better understand some parameters in this program. Line 11
must be specified with the major direction. Line 12-13 can be either the

minor direction or the vertical direction.

B.2 Program TMODEL

This program is prepared to model the trend, which is presented in Section 3.1
of Chapter 3. Trend models which are built through the smoothing parameter
are defined by the GSLIB conventions. Different parameters depending on the
practitioners could lead to a variety of trend modeling results. The default
parameter file is shown in Table B.2 and detailed demonstrations are explained

below.
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Table B.2: Default parameter file of program TMODEL

1- Parameters for TMODEL Program

2- stk ok ok ok ok ok ok ok oK ok ok ok ok ok ok ok ok ok

3-

4-  START OF PARAMETERS:

5-  ../data/data.dat - file with data

6- 123 - columns for X, Y, Z

7- 45 - columns for variable and weight

8- -998 1.0e21 -  trimming limits

9- 1.0 0.001 - smoothing parameter, background value
10- 50 0.5 1.0 - nx, xmin, xsize

11- 50 0.5 1.0 - ny, ymin, ysize

12- 50 0.5 1.0 - nz, zmin, zsize

13- 2.0 1.0 - angles for three directions

14- 30.0 10.0 0.0 - anisotropy length scale

15- ./trend.out - file for trend output

16- ./datapoints.out - file for data output

17- 0 - if export the weight at each location
18- ./weight.out - file for weight at each location

19-

20- Additional Notes:

21- - The weighting function is a Gaussian-like distribution and
22- scaled by the smoothing parameter.

23- - Two outputs in Line 15 and 16 containing the grided file and
24- the point file are generated, respectively.

25- - The weights that are assigned from each datum are exported
26- if the option 1 in Line 17 is chosen.

e Line 1-4: The headers of the parameter file. All input and output data files

are in GeoEAS formats with the first four lines being a title.

e Line 5-8: Specify the input reference distribution including X, Y, Z coordi-
nate, the predictive variable and the declustering weight if applicable. The

trimming limits apply to the input file.

e Line 9: The smoothing parameter controls the smoothness of the trend mod-

els. The defaulted parameter sets 1.0 that would be chosen reasonably by
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practitioners. The smoothing parameter scales the range in the major direc-
tion, and further, scales the shape of Gaussian distribution. A small back-

ground is set for the stability of the algorithm.

e Line 10-12: The grid parameters of X, Y and Z directions. The X, Y, Z axis
are associated with the direction of East, North and Elevation. The coordinate
system is established by specifying the center of the first grid (xmin, ymin,
zmin), the number of grid nodes (nx, ny, nz), and the size of the grid nodes

Xsize, ysize, zsize).
y

e Line 13-14: Set the anisotropy ratios and directions. The stable anisotropy
ratios are generated by the program VMODEL_AVG. Three anisotropy directions
that are associated with the azimuth, dip and third arbitrary direction should

be provided.

e Line 15-16: Output grid file and point file. The output grid file appends the
gridded X, Y, Z coordinates, trend values, standard deviation of the trend.
The output point file includes the original information from the input data
file, and adds the predictive trend values, trend standard deviation, residuals

and the standardized residuals to the file.

e Line 17-18: The weights that are assigned from each datum are exported

(option = 1). Note that the program will run slowly if the option 1 is chosen.

e Line 20-26: Additional Notes. It illustrates some useful information to help
practitioners better understand some parameters in this program. A moving
average statistics with the Gaussian weighting function in this software is

considered. Ideally, this software is not designed for the trend extrapolation.
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B.3 Program TFUNCTION

This program is used to find an optimal trend model from several given modeled

trends in program TMODEL, which is presented in Section 3.3.2 of Chapter 3. The

parameters are shown in Table B.3 with some explanations.

15-
16-
17-
18-
19-

Table B.3: Default parameter file of program TFUNCTION

Parameters for TFUNCTION Program
sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok

START OF PARAMETERS:
10

../data/datapoints_1.
../data/datapoints_2.
../data/datapoints_3.
../data/datapoints_4.
../data/datapoints_5.
../data/datapoints_6.
../data/datapoints_7.
../data/datapoints_8.
../data/datapoints_9.

./data/datapoints_10.out

9 12
2
title
tfunction.ps

out
out
out
out
out
out
out
out
out

number of
file with
file with
file with
file with
file with
file with
file with
file with
file with
file with

column

files
data
data
data
data
data
data
data
data
data
data
for tmodel, tresidual

adjust factor

title

plot of the optimal function

e Line 1-4: The headers of the parameter file. All input and output data files

are in GeoEAS formats with the first four lines being a title.

e Line 5: Specify the input number of trend model files. The number of files

must match with the following settings.

e Line 6-15: Specify the names of the input trend model files. The number

of the files should be consistent with Line 5. The trend model contains the

predicted trend values and the residual values that is generated from the

program TMODEL.



Appendix - Description of Fortran Programs 240

Line 16: Specify the input reference distribution including the predicted

trend column and the residual column from the input trend model files.

Line 17: The setting for the adjustment factor which is presented in Sec-
tion 3.3.2 of Chapter 3. The default parameter is f = 2.0. The users could

change this adjustment factor with different scenarios.

Line 18: The title of the PostScript plot. The default program includes a
40-character title in the top of the plot.

Line 19: The file for the PostScript output.

B.4 Program TREND_EXTRP

The program TREND_EXTRP is written by the text-based parameter file. The

theoretic algorithm is presented in Section 3.4 of Chapter 3. A default parameter

file of the program is shown in Table B.4. The descriptions are provided as

follows.

Line 1-4: The headers of the parameter file. All input and output data files

are in GeoEAS formats with the first four lines being a title.

Line 5-6: Specify the input data file including X, Y, Z coordinate and data

values.

Line 7: The trimming limits apply to the predictive data values. The value

beyond these limits will be discarded.

Line 8: The option for the trend extrapolation. The program only works on
a 1D case (option = 0). If 0 is chosen, the interpolation region (“from”and
“to”) must be given. If other options are chosen, no result will be obtained

in this version.
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Table B.4: Default parameter file of program TREND_EXTRP

1- Parameters for TREND_EXTRP Program

2- Kok ok KoK ok KoK o KK ok R KoK ok K

3-

4- START OF PARAMETERS:

5-  ../data/data.dat - file with data

6- 0017 - columns for X, Y, Z, variable

7-  -998 1.0e21 -  trimming limits

8 0 0.0 1000.0 - option: 0=1D, Interpolation Region
9- 20 20 - number of postive,negative weights
10- 1 0.51.0 - nx, xmin, xsize

11- 1 0.5 1.0 - ny, ymin, ysize

12- 1280 0.5 1.0 - nz, zmin, zsize

13- 0 15 - min and max value

14- 1 - flag of debug file? (0O=no;1l=yes)
15- trend_extrp.dbg - file for debug

16- data_extrp.out - file for data output

17-  trend_extrp.out - file for trend ouput

18-

19- Additional Notes:

20- - Program only works on 1D trend extrapolation.

¢ Line 9: The number of data that would be participated in the trend modeling.
The first column requires the number of data that are assigned by the positive
weights, and the second column requires the number of data that would be
given by the negative weights. Different numbers for the positive and negative

weights could lead to a variety of trend modeling results.

e Line 10-12: The X, Y, Z axis are associated with the direction of East, North
and Elevation. The coordinate system is established by specifying the center
of the first grid (xmin, ymin, zmin), the number of grid nodes (nx, ny, nz),

and the size of the grid nodes (xsize, ysize, zsize).

e Line 13: The lower and upper limits that apply to trend values are given
in this line. If the trend values to be modeled are lower or greater than the

defined tails, the trend values will be given with the defined limits.
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e Line 14-15: Some detailed information containing both the positive and the
negative weighs are exported to the debugging output file. It can be indicated
here using the value of 1. If the user is not interested in this information, the

value should be set to 0.

e Line 16: Output data file contains input data file appending the trend values

and the residuals at the data locations.

e Line 17: Output grid file appends the gridded X, Y, Z coordinates and the

trend values.

e Line 19-20: Additional Notes. The current program only works on a 1D

trend extrapolation.

B.5 Program SMP_ADD

This program SMP_ADD in Section 4.4.1 of Chapter 4 allows for generating trend
values from the exhaustive trend model and matching the target trend distri-
bution. Data values are updated with the iteration. The bivariate distribution
between the trend values and data values is corrected by this program. The

parameters are shown in Table B.5 with some explanations.

e Line 1-4: The headers of the parameter file. All input and output data files

are in GeoEAS formats with the first four lines being a title.

e Line 5-6: Specify the input data file only including the exhaustive trend

model and data values.

e Line 7: The trimming limits apply to both the exhaustive trend values and

data values. Variables with values beyond these limits will be discarded.

e Line 8: The user defined bandwidth value is provided here. The distribution

will be more smoother if a large kernel bandwidth is set.
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Table B.5: Default parameter file of program SMP_ADD

1- Parameters for SMP_ADD Program

2- Kok ok KoK ok Kok ok KK ok KoK ok K

3-

4- START OF PARAMETERS:

5-  ../data/data.dat - file with data

6- 12 - columns for exhaustive variable

7-  -998 1.0e21 -  trimming limits

8 0.01 - kernel bandwidth

9- 2000 - number of discretization

10- 10 - number of classes

11- 1 - variance correction: O=constant, 1=linear
12- 0.90 - degree of matching with exhaustive trend
13- 69069 - seed number (if automatic)

14- 0 15 - min and max value of drawing

15- 0 - output distributions? (O=no;l=yes)

16- ./smp_dist/ - directory for updated trend distribution
17- smp_add.dbg - file for debug

18- smp_add.out - file for data output

e Line 9: Number of the discretization that is applied in both the exhaustive
trend distribution and the data distribution. The probability distribution

function of variables will be calculated in each discretization point.

e Line 10: Number of the classes that is applied in calculating the conditional

distribution of the residuals given the trend model.

e Line 11: The conditional variance of the residuals given the trend model
{w(aR(ui),m(up)),i =1,---,nandp=1,---,N} in Equation 4.10. There
are two options for fitting the conditional variance of the residuals: (1) a

constant fitting and (2) a linear fitting.

e Line 12: The similarity between the exhaustive trend distribution and the
updated trend distribution. The trend continues to be updated until it reaches

to the defined similarity.
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e Line 13: The random seed is provided for drawing the trend values randomly.

e Line 14: The lower and upper limits that apply to update data values are
given in this line. If the updated trend value is lower/greater than the low-

er/upper tail, the update trend value will be discarded and draw it again.

e Line 15-16: All probability distributions including the updated trend value
and the exhaustive trend are calculated by the algorithm. It can be indi-
cated here using the value of 1. If the user is not interested in this in-
formation, the value should be set to 0. If the distributions are required
to be exported (option=1), the user should provide the path to a existing
folder for all outputs. Files with the target true trend will be named as:
{path}/trend.out. Files with updated trend distributions will be named as:
{path}/distribution_ {i}.out where {i} is replaced by the number indicating
the {ith,i =0,1,--- } updated procedure of the updated trend model. Note
that the initial distribution of the trend at the data location is provided with

an indicator of 7 = 0.

o Line 17-18: The debugging file contains some necessary information (op-
tion=1). The information includes the conditional mean, the conditional

variance of the residuals and the fitting regression parameters.

e Line 19: The output file contains the updated trend and updated data values.



