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Abstract

Low-dose-rate-permanent-seed (LDR-PS) brachytherapy is a minimally inva-

sive radiotherapy technique used after breast lumpectomy to prevent the re-

growth of cancerous cells around the margins of a hollowed-out tumor (seroma).

This approach involves implanting multiple radioactive seeds (each measuring

2-3mm in length) in and around the seroma, gradually irradiating and elimi-

nating any remaining cancerous cells. LDR-PS brachytherapy has had signif-

icant success in treating prostate cancer and is now being explored for breast

cancer treatment. However, it has a more established history in the former.

During LDR-PS, the seeds are implanted into the breast using 6-20 fine

flexible needles under ultrasound (US) imaging, following a pre-operative plan

derived from dosimetry calculations based on the patient’s medical images

(usually Computed Tomography or CT). Besides its clinical benefits over other

radiotherapy methods like external beam radiation, LDR-PS promotes health-

care equity and inclusion by reducing frequent hospital visits, benefiting both

rural and urban patients.

However, the adoption of LDR-PS brachytherapy has encountered chal-

lenges. One significant limitation is the requirement for surgeons to undergo

substantial training for accurate seed implantation, particularly in breast can-

cer cases. Inaccurate placement of seeds during breast brachytherapy is pri-

marily due to two factors: (1) the discrepancy between the intraoperative

ultrasound images and the pre-operative CT/MRI images caused by breast

tissue deformation, and (2) the utilization of non-specialized surgical tools
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and techniques designed for prostate surgery. Incorrect seed implantation can

lead to inadequate radiotherapy and increased cancer recurrence risk. Ad-

ditionally, using instruments intended for prostate surgery is inappropriate

due to the breast’s mobility and compliance, as well as the needle’s limited

maneuverability due to its shorter insertion length.

This study explores the potential benefits of incorporating an Assistive

Robotic Surgical System (ARSS) in the context of LDR-PS brachytherapy

surgery. The research focuses on addressing the complexities of the surgical

environment, which undergoes deformation due to surgical interactions and

necessitates patient-specific tuning. The study presents a comprehensive ap-

proach to developing a simulation environment suitable for ARSS, beginning

with pre-operative design and demonstrating its effectiveness in active defor-

mation control during LDR-PS brachytherapy surgery. Moreover, the study

investigates methods for updating the pre-operative model intra-operatively

and explores the use of a robotic arm for US-probe manipulation. The re-

search provides valuable insights into the potential applications of ARSS in

enhancing the performance of LDR-PS brachytherapy surgery. The main con-

tributions of this thesis are as follows:

Active tissue deformation for target manipulation: This research tackles

the lack of real-time nonlinear tissue modeling integrated into a control frame-

work for tissue manipulation. The study demonstrates the integration of a

real-time deformable tissue solver into the control loop, enabling effective tar-

get manipulation.

Intra-operative model updates for target tracking: Two methods are de-

veloped to improve the accuracy of target tracking based on patient-specific

biomechanical models. The first method, KF-ADMM, incorporates data into

an ADMM-based Finite Element Method (FEM) solver through Kalman Fil-

tering. The second method utilizes a generative variational autoencoder struc-
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ture based on graph neural networks (GNN-VAE) to reduce the dimensionality

of the input mesh. The Ensemble Smoother with Multiple Data Assimilation

(ES-MDA) is employed for simultaneous updates, enhancing the corrective ca-

pability of the KF-ADMM method. Robot-assisted US probe manipulation:

The study utilizes a Panda dexterous robotic arm to control the US probe,

accurately following the needle tip.

Overall, this research advances the field of ARSS in LDR-PS brachytherapy

surgery by addressing tissue manipulation, target tracking, sim-to-real regis-

tration, and robot-assisted US probe manipulation. The findings highlight the

potential to improve the performance and precision of LDR-PS brachytherapy

procedures, particularly in complex surgical environments.
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Chapter 1

Introduction

Breast cancer is the most commonly diagnosed type of cancer in women ac-

counting for 25% of all cancer diagnoses [58]. In 2021, 27,700 and 284,200 new

cases of women breast cancer are estimated to be diagnosed in Canada and the

U.S., respectively [58], [90]. Most cases are diagnosed at an early stage. Com-

monly available breast cancer treatment options are mastectomy, where the

breast is totally removed, and lumpectomy or breast-conserving surgery, where

the tumour and a portion of the adjacent breast tissue are removed, followed

by external beam radiation therapy (XRT). lumpectomy is more popular than

mastectomy in part due to cosmetic reasons. During XRT, the entire breast is

treated using high-energy X-rays for 16-25 sessions lasting 3.5-7 weeks. With

the current techniques of XRT, acute skin reactions that include painful skin

breakdown are frequent. Furthermore, this long duration of treatment is too

cumbersome for some patients, leading them to choose mastectomy instead,

especially in rural Canada where the commute from home to clinic is hard.

An emerging post-lumpectomy radiation treatment option for breast can-

cer is partial breast radiation. In this technique, the radiation is delivered only

to the tumour area instead of the whole breast. Various brachytherapy tech-

niques are the most common way of delivering this treatment. High-dose-rate

(HDR) brachytherapy can be delivered in two ways: 1) Inserting a balloon

catheter that is inflatable to 40-50 mm and it is implanted in the breast for

the temporary placement of an HDR Iridium source. This procedure requires

2-3 sessions. 2) Inserting multiple catheters into the breast for 5 days, while
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receiving HDR brachytherapy twice a day for these five days. A newer option

is based on low-dose-rate permanent-seed (LDR-PS) implantation for women

who have gone through lumpectomy. The procedure uses multiple low-dose

radioactive sources distributed equidistantly across the affected volume of the

breast. This option requires a maximum of one planning session and one

implantation session, which is an advantage over other methods requiring fre-

quent sessions such as XRT.

Despite these benefits and promising results and even though it is routinely

being used for prostate brachytherapy, LDR-PS implantation is currently not

widely used to treat breast cancer, primarily due to a lack of a standard

surgical protocol and assist devices for it. The current procedure of LDR-PS

implantation for breast entails the following steps:

1. Preoperatively, a CT scan or MRI image of the breast is taken in which

the seroma (a pocket of bodily fluid that develops post-lumpectomy)

is manually segmented and used to create a dosimetry plan specifying

the number of needles, the seed distribution within each needle, and the

position and orientation (“pose“) for entry of each needle into the breast

in the CT/MRI volume’s coordinate frame. An example of a dosimetry

plan based on CT images is shown in Figure 1.1.

2. Intraoperatively, with the help of a CT simulator and through some

labour-intensive iterative steps, the CT volume and the associated pre-

operative dosimetry plan are matched to the current pose of the breast,

thus determining the pose for entry of each needle into the breast. Next,

the needles are inserted through grid holes of a grid that acts as the

needle guide.

3. Intraoperatively, a stiff fiducial needle is inserted through the centre of

the template grid and observed in sagittal US images to confirm that

the template is in the correct pose; if not, (2)-(3) are iterated for good

alignment between the CT-based dosimetry plan and the live US images.

The radiation oncologist can adjust the trajectory of the needle to some

2



extent by manipulating the tissue or by steering the needle(See Figure

1.2).

Figure 1.1: Seed-implantation task in the CT volume [63].

(a) (b)

Figure 1.2: (a) The current permanent-seed breast implant technique uses a
fiducial needle that is inserted under ultrasound (US) guidance. (b) Eventually,
a template is attached and immobilized using a passive mechanical fixture [81].

Considering that brachytherapy treatment is being done routinely for the

prostate and that studies of prostate brachytherapy are comprehensive, the

following describes the steps of prostate brachytherapy to highlight the addi-

tional challenges that arise during breast brachytherapy. The desired locations

of radioactive seeds within the prostate are determined prior to the proce-

dure in a pre-planning phase. Pre-planning is done based on the assumption

that needles remain on a straight path during insertion. Primarily due to the

beveled tip of the needles, however, the needles deflect from their straight path

during insertion [97], which causes seed misplacement and negatively affects

treatment efficiency [85], [93]. Figure 1.3(a) illustrates the needle insertion
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into the prostate. Figure 1.3(b) shows a US image acquired by a transrectal

US (TRUS) probe on the transverse plane with a grid of desired seed locations

as yellow crosses and actual seed locations as green circles. As it can be seen

in the image, the actual seed locations deviate from the desired seed locations

both because of needle deflection and due to tissue deformation during needle

insertion.

(a) (b)

Figure 1.3: LDR-PS Steps for prostate. (a) The prostate brachytherapy pro-
cedure (source: Cancer Research UK Wikimedia Commons). (b) Transrectal
ultrasound image acquired during prostate brachytherapy with an overlayed
grid of desired seed locations (green crosses) and actual seed locations (green
circles). The grid spacing is five millimetres [22].

1.1 Breast Brachytherapy Challenges

Brachytherapy for breast cancer using LDR-PS implantation is only somewhat

similar to that for prostate cancer. The following are the main differences

between prostate and breast brachytherapy:

1. Transrectal ultrasound probes are used for prostate brachytherapy, where

its movement is guided. The flat US probe used for breast brachytherapy

can move freely over the breast surface, making it more difficult to track

and control its pose.

2. In prostate brachytherapy, the guide template is rigidly attached and

registered to the US probe; however, the guide template grid is not
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rigidly attached to the US probe in breast brachytherapy. Therefore,

the template grid can be freely oriented or reoriented according to the

pre-operative plan and there is no correlation between the US images

and the template holes for needle insertion.

3. Breast tissue is highly deformable compared to prostate tissue. On the

other hand, the prostate is situated in the pubic arch and is relatively

immobile.

4. The required needle insertion length to reach the prostate is about 140

mm; however, it is much less in the breast and is about 50 mm.

In addition to the challenges inherent in prostate brachytherapy, these

differences introduce additional challenges for breast brachytherapy, some of

which are listed below:

1. Highly mobile and deformable tissue: In prostate brachytherapy,

target movement during needle insertion is not a significant challenge,

and needle target locations within the prostate are assumed to be fixed

during insertion given the anatomy of the prostate as it is located inside

the pubic arch. In contrast, during breast surgeries, displacements of up

to 7 mm are common in the target area [18], [31] which [18] only assess

the error of breast tissue phantoms. Consequently, the target movement

must be addressed during breast brachytherapy.

2. Lack of enough steerability: In prostate brachytherapy, it has been

extensively studied how to control needle deflection [22], [33], [48], [49],

[59]; however, there are limits to needle steerability due to the short

insertion length of the needle in breast brachytherapy. The short needle

insertion length minimizes the problem of the needle deviating from the

straight path; however, the steerability of the needle is also undermined

and that may not allow it to reach the moved targets.

3. Lack of assistive device for US probe manipulation: The US

probe must be held manually, and the clinician must manipulate the
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probe to track the needle tip while trying to also make sense of images

that are unregistered to the guide template.

4. Lack of registration: The template grid is not registered to US im-

ages in breast brachytherapy as the US probe is held manually. Without

image registration and absolute measurements, seeds are deposited only

relative to the stiff fiducial needle, introducing uncertainty and inaccu-

racy in their location in the breast.

Despite the inherent challenges in breast brachytherapy with LDR-PS im-

plantation, breakthroughs in Assistive Robotic Surgical Systems (ARSS) can

help tackle these issues. An ARSS may incorporate robotic devices that assist

in needle insertion, manipulation of the US probe, and registration and fusion

of imaging data. In addition, it may incorporate real-time target movement

tracking during surgery. Such a system could also aid in forecasting target

movement, allowing for dynamic adaptation of the needle insertion path to

account for these shifts. Employing an Assistive mechatronic system could

enhance breast brachytherapy accuracy and precision while reducing adverse

side effects.

1.2 ARSS for Breast-Brachytherapy

To effectively address the first challenge mentioned above and enhance seed

placement accuracy, the target location must be continuously monitored us-

ing ARSS. In order to overcome the needle’s workspace limitation (the second

challenge) and the target’s movement (the first challenge), the target can be

guided toward the needle’s workspace within the ARSS. As a result, one ob-

jective of this thesis is to develop an ARSS capable of tracking and manipu-

lating the target during surgery. To address the third and fourth challenges,

a robotics-assisted US manipulation framework is proposed. The proposed

ARSS scheme is illustrated in Figure 1.4. As shown, a patient-specific biome-

chanical model (PBM) will be created from a series of MR/CT or US images

in the pre-operative phase. The PBM will be used in the intra-operative phase
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to track internal targets and for tissue deformation manipulation. The final

target position will be shown on the US image to the surgeon.

1.2.1 The Role of Tissue Simulation within ARSS

Assistive systems present significant challenges in both design and validation.

In this process, computer simulations are useful, as they provide a safe, fast,

and cost-effective method of understanding how assistive processes should be

designed and controlled to ensure safety and maximize performance. With

customizable simulations, it is possible to analyze the system’s response to

different settings and identify potential issues or dangerous situations based on

the interaction of multiple agents, environmental conditions, and interactions

between them. Moreover, simulations can be used to anticipate the outcome

of possible actions during the execution of a task. Figure 1.5 highlights the

role of simulation in pre-operative and intra-operative phases within ARSS.

Furthermore, simulations provide an environment for generating large amounts

of data that can be used to train Machine Learning (ML) algorithms. Due to

the ability of these algorithms to learn behaviour models (e.g. of the robot or

the environment) and to control policies directly from data, these algorithms

are increasingly being used in robotics. In order to be effective, they require

substantial databases. In order to compensate for the lack of real-world data,

simulations can generate large amounts of realistic synthetic data.

There are several challenges in the development of ARSS, including the

appropriate interaction with the anatomical environment, which is composed

of soft tissues that deform due to the interaction between surgical instruments

and physiological factors (such as breathing or heartbeats). It is also difficult

to model tissue behaviour, and its properties vary greatly between individuals

and are difficult to quantify.

The complexity and uncertainty of the environment make the development

of an ARSS a challenging undertaking, as it requires consideration of a wide

variety of factors. As soon as the surgical plan has been defined, it must be ad-

justed to accommodate the specific clinical condition of the patient, as well as

the geometric and mechanical properties of the patient. Even with a patient-
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Figure 1.5: In an ARSS, a PBM is instantiated pre-operatively with patient-
specific geometry and biomechanical properties. Such model is employed to
initialize the simulation environment. In the intra-operative phase, both the
PBM and the surgical plan is adjusted depending on the current surgical sit-
uation.

specific intervention plan, the ARSS must be capable of adapting during ex-

ecution based on the current situation, as the anatomical environment may

behave differently than expected from pre-operative knowledge. Real-time

situation awareness, reasoning, and control strategies are vital for managing

uncertain environments, allowing for quick reaction and online reconfiguration
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in response to unknown or unexpected circumstances.

The availability of an anatomical environment simulation is a valuable aid

in the autonomous execution of surgical actions by an ARSS. The simulation

is based on a Patient-specific Biomechanical Model (PBM), which is created

preoperatively by extracting the geometry and physical properties of each sur-

gical area from diagnostic images of the patient or initializing the model with

values from the literature. It serves as a test bench for designing and verifying

the surgical plan before it is executed in the real system. It is also necessary

to verify robotic actions during the intervention, particularly when replanning

actions are required.

An accurate simulation of the anatomical environment can further support

the ARSS by generating realistic, patient-specific data for learning purposes.

ML algorithms are ideal for learning tasks in the medical field but are limited

by the difficulty of acquiring real-world data due to the complex environment

and the cause-effect flow that governs surgical actions. Through computer

simulation, this limitation can be addressed by generating large quantities of

realistic data that can be used for the design of novel data-driven models or

methods, thereby assisting the ARSS in the execution of its tasks. Lastly, sim-

ulation can provide the ARSS with critical information during task execution.

1.2.2 Target Manipulation within ARSS

Given a trajectory plan, the needle should be directed to follow the defined

path. The majority of studies within the literature focus on controlling nee-

dle deflection through needle steering using two control inputs: the rotation

of the bevelled tip of the needle and the lateral movement of the base of

the needle. Controlling needle deflection is more effective with a long needle

insertion length into the tissue. For example, in prostate brachytherapy, in

which the length of insertion is about 140 mm, steering a bevelled tip needle

by axial rotation exhibits satisfactory outcomes [87]. However, in the case of

breast brachytherapy, neither the target is stationary nor the insertion length

is enough to maneuver the conventional brachytherapy needle. The inser-

tion length is in the order of 50 mm, and the maximum needle tip deflection
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for a standard 18G flexible needle used in the clinic (with a curvature ra-

dius of 650 mm) for 50 mm insertion length of insertion is less than 1 mm

[47]. Therefore, a standard bevelled tip needle is just not steerable enough to

reach a continuously moving target in breast brachytherapy. To alleviate the

steerability limitation of the conventional bevelled-tip needles, a needle with a

pre-curved stylet whose deflection is controlled by retracting or extending the

stylet tip [76], and a programmable bevelled-tip needle whose curvature varies

by changing the offset between the segments have been developed in [34], [51],

[52]. The applicability of concentric tube robots as steerable needles have been

studied in [37]. Programmable bevelled-tip needles and concentric robots add

to the complexity of the procedure. Traditional brachytherapy needles are

more appropriate for the problem at hand – placing seeds at internal target

locations outside the needle workspace – especially when the tissue is highly

mobile as it is in breast surgery and the deformations of its tissue are already

complicating the procedure. An alternative solution to rectify the steerability

limitation of traditional brachytherapy needles is to manipulate the targets.

The idea is to move the internal target toward the needle workspace during

breast brachytherapy. By applying compression and tension forces to accessi-

ble points on the breast surface, breast tissue can be manipulated. The tissue

is compressed in this work, as it is easier to implement.

Among the work taking into account the tissue deformation problem in

breast surgeries, the authors in [43] developed a pneumatic MRI-compatible

tissue stabilizer, and the authors in [42], [53] minimized the extent of tissue

deformation by pre-loading breast tissue with a mechanical concave probe. A

palm-shape breast deformation device for MRI-guided breast biopsy was pro-

posed in [103] to deform and stabilize the breast using multiple pneumatic

airbags. However, in all mentioned research results, the main purpose is to

fix the breast rather than actively deform it for internal target manipulations.

A thorough search of the relevant literature yielded only a few related arti-

cles focused on active breast tissue deformation including [67] and [104]. The

authors in [104] used a suction-based manipulator to manipulate the breast

tissue from one point, reporting that the needle insertion accuracy was in-
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creased. The experimental setup of [67] and [104] are shown in Figure 1.6(a),

Figure 1.6(b), and Figure 1.6(c). In both of them, no biomechanical model for

tissue deformation prediction was used inside the control loop and a simple

PID controller was developed.

Specific Aim I:

The goal of this research is to compress the breast in order to manipulate

internal targets in a desired direction. The objective will be achieved using a

closed-loop control system based on a biomechanical model of tissue deforma-

tion. A steady-state error of less than a millimeter is desired, which means

that the target will move to the predefined location with an accuracy of less

than one millimeter.

(a)

(b) (c)

Figure 1.6: (a) Robotic image-guided breast intervention system (1. Manipu-
lation mechanism; 2. US image acquisition system; 3. needle guidance system)
[67], and (b) experimental setup (The setup uses the hybrid control architec-
ture to coordinate real-time tumour operations and ultrasound imaging) [67].
(c) Suction-based needle puncture robot [104].
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1.2.3 Target Tracking using ARSS

As a result of external influences such as the pressure exerted by the US probe,

the breast posture is altered during brachytherapy operations. Consequently,

the desired seed locations will only be aligned for the pre-operative CT breast

posture. During treatment, it is crucial to track the target locations and, if

needed, replan needle trajectories based on the location of the current targets

(see Figure 1.7 ). In multiple studies, 3D US imaging is used to find the lo-

cation of the needle tip within the breast and to control the needle insertion

based on it. However, the dependence of those systems on 3D US limits their

wide usability as 3D US machines are not abundant in clinics. Nevertheless,

the MRI/CT-US mismatch persists in the proposed systems and tracking the

seed targets has not been studied [74]. As it is shown in Figure 1.1, the de-

sired target locations for seeds may not be recognizable in US images which

usually have much noise and artifacts and where various targets may be diffi-

cult to discern based on image characteristics. Many image fusion techniques

have been investigated to create navigable anatomy reconstructions that en-

able the visualization of CT-detected targets on real-time US images [40]. In

this strategy, the two images are aligned by computing either rigid or affine

transformation, which minimizes the matching error between sets of corre-

sponding landmarks [7], [54]. The main limitation of this approach is that

it does not account for the highly deformable nature of the breast. Image

fusion techniques should be able to account for breast deformations in order

to track the motion of internal targets accurately. Therefore, the development

of models able to realistically describe breast behaviour in clinical settings

remains an active research field. Many of these methods focus on defining a

prior deformation model of the structure of interest. The 3D geometry of the

anatomy is extracted from the MRI/CT images and initialized with known

elastic properties and/or parameters. Given inputs, it is later used to predict

tissue displacements and deformations. Having an adaptive PBM will allow us

to register the pre-operative dosimetry plan to the intra-operative situation.
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Specific Aim II:

A key objective of this study is to develop an adaptive PBM that updates

its predictions based on measurements collected from the tissue surface. Ide-

ally, target tracking accuracy should be less than a millimeter, and the up-

date step should not last longer than the PBM prediction step. For breast-

brachytherapy, which happens at low velocities, an adaptive PBM with a com-

putation time of about 1-2 seconds can be considered real-time in this context.

(a) (b)

Figure 1.7: Tissue deformation and change of breast posture affect seed desired
target locations.a) Pre-operative target locations and needle trajectories.b)
Intra-operative target locations and needle trajectories [63].

1.2.4 Autonomous US-probe ManipulationWithin ARSS

Ultrasound imaging is an ideal imaging modality to use during needle insertion

procedures because of its low cost compared to CT and MR and because it does

not rely on ionizing radiation, which can be harmful to the patient when used in

large doses during continuous imaging. However, ultrasound is challenging for

needle tracking because of its low resolution and high noise. In brachytherapy,

it is necessary to track the needle tip to assure accurate seed placement. In this

report, the US probe is manipulated with a robotic arm to continuously follow

the needle tip. The 2D ultrasound transducer is placed at the tissue surface

perpendicular to the direction of needle insertion. During needle insertion, the

method automatically re-positions the transducer such that the needle tip is

in the imaging plane. Through controlled manipulation of the US probe, the
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template can be continuously registered with the US image plane.

Specific Aim III:

Our objective is to achieve real-time control and path planning in under a

second using a Panda dexterous robotic arm to track the needle tip via ul-

trasound imaging. The control loop relies solely on feedback related to the

needle’s insertion depth, with the guide template’s grid points dynamically

superimposed onto the ultrasound image.

1.3 Objectives and Contributions

The current study examines the potential benefits of incorporating an ARSS in

the context of LDR-PS brachytherapy surgery. Our focus is on addressing the

complex surgical environment, which is subject to deformation due to surgical

interaction and requires patient-specific tuning. We present a comprehensive

approach to developing a simulation environment suitable for ARSS, starting

with pre-operative design and demonstrating its utility for active deformation

control during LDR-PS brachytherapy surgery. In addition, we investigate

methods for updating the pre-operative model intra-operatively. Finally, we

explore the use of a robotic arm for US-probe manipulation. Overall, our

study provides valuable insights into the potential applications of ARSS in

enhancing the performance of LDR-PS brachytherapy surgery, particularly in

the challenging context of complex surgical environments. In particular, the

main contributions of this Thesis can be summarized as follows:

1. Active tissue deformation for target manipulation: Based on the

literature, the lack of utilization of a real-time nonlinear tissue model in-

tegrated into a control framework to do tissue manipulation (controlling

tissue deformation) is noticeable. In this report, we have shown that a

real-time deformable tissue solver can be integrated into the control loop

to implement target manipulation. It takes approximately 1-2 seconds

for the entire loop to be completed, which is considered real-time for

slow procedures such as barest brachytherapy.
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2. Development of a biomechanical model for target tracking: We

have developed a data-enhanced tissue modelling algorithm by which the

forward dynamics of tissue is solved through an optimization problem,

and data are incorporated into the model through Kalman Filtering.

The algorithm is parallelizable and suitable for real-time applications.

Using the following approach, the targeting error can be reduced to less

than one millimeter in small deformations.

3. Development of a sim-to-real registration scheme for target

tracking: We developed a novel approach which formulates the prob-

lem of sim-to-real registration of deformed tissue using a generative vari-

ational autoencoder structure based on graph neural networks (GNN-

VAE) to generate a probabilistic low-dimensional representation of the

outputs from a physics-based simulator in conjugation with an Ensemble

Smoother with Multiple Data Assimilation (ES-MDA) in order to align

simulation data with real data.

4. Robot-assisted US probe manipulation: We have utilized a Panda

dexterous robotic arm to control the US to follow the needle tip while

the only feedback to the control loop is the needle insertion length. The

guide template’s grid points are dynamically projected on the US image.

1.4 Structure of the Thesis

This manuscript begins with an overview of the world of surgical simulation

in Chapter 2. We identify the main challenges to face and review the existing

approaches that can be used to model deformable anatomy. In Chapter 3, we

have developed an MPC controller based upon the chosen model to manipulate

the internal tissue points using external points. Chapter 4 and Chapter 5

tackle the problem of intra-operative correction of the simulated model based

on real data. Chapter 6 presents a framework for autonomous robotic US-

probe manipulation in order to always track the brachytherapy needle-tip.

Finally, we draw conclusions and reasons for future research in Chapter 7.
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In Apendix A, a new Remote Center Mechanism (RCM) has been designed

and built which can be used instead of expensive robotic arms for holding the

Ultrasound probe.
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Chapter 2

Deformable Models For Surgical
Simulation

A variety of surgical applications can be improved through the modelling and

simulation of anatomical structures. In the development of deformable im-

age registration methods, the use of deformation models can be particularly

beneficial. Some of these techniques are used in medical applications, such as

radiotherapy and preoperative planning, to align images of patients.

It is possible to improve intraoperative navigation and provide valuable in-

formation to the surgeon through the use of computer-aided interventions that

incorporate anatomical models incorporating deformations resulting from sur-

gical manipulations and physiological movements. This will improve the over-

all quality of surgery. During needle-based procedures, deformation models

may also be useful when the intraoperative imaging resolution is not sufficient

to provide reliable guidance. Deformation models may be able to account for

the motion of tissues as a result of needle-tissue interactions.

Realistic surgical simulations present a number of challenges, which are

briefly discussed in this chapter. It is presented a brief overview of the major

types of deformable models for surgical simulation along with their pros and

cons. Soft tissues should be mathematically described using continuum me-

chanics principles to achieve high simulation accuracy. These simulations, how-

ever, require a significant amount of computational power. Whenever faster

solutions are required, heuristic models are introduced, which simplify the en-

vironment’s physics so that a quicker solution can be achieved. Finally, the
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chapter discusses how machine learning techniques can be utilized to predict

tissue deformations.

2.1 Continuum Mechanics

The laws of continuum mechanics can be used to describe the deformable

nature of soft tissues. Each point in the undeformed reference configuration,

X, is mapped to its corresponding point in the deformed configuration, x (see

in Figure 2.1), through the deformation gradient, F .

Figure 2.1: A body passes from its undeformed configuration X to a deformed
configuration x.

F =
∂x

∂X
= I+

∂u

∂X
, (2.1)

where u = x − X is the displacement vector. If a body defined over the

domain Ω is in static equilibrium under an applied body force b, imposing the

balance of linear momentum leads to:

∇ · σ + b = 0 in Ω, (2.2)

where ∇ · σ represents the divergence of the Cauchy stress σ. The Cauchy

stress σ is a measure of the internal state of stress of the solid, which is related

to surface tractions t via σn = t, where n is the outward unit normal to the

surface.
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On the other hand, if the body is not in static equilibrium, its behaviour is

described by the dynamics laws of motion (Newton’s second law). In this case,

2.2 must be extended to include the contribution of the inertia term, leading

to:

∇ · σ + b = ρü in Ω, (2.3)

A continuum mechanics approach relies on defining the physical laws gov-

erning the mechanical response of tissues to applied forces. Such laws are

called constitutive laws and contribute to the definition of internal forces. In

particular, they put in relation the tissue stress, represented by σ, to the tissue

strain, described by the Green strain tensor E, defined as:

E =
1

2

(︁
∇u+∇u⊤ +∇u∇u⊤

)︁
, (2.4)

being u the displacement (i.e., the difference between the positions in the

deformed and undeformed configurations). Several different constitutive rela-

tions have been suggested in the literature, ranging from a linear law to very

complex mathematical expressions [36].

2.2 Finite Element Model

The preferred numerical scheme to solve continuum mechanics laws relies on

the Finite Element (FE) method. The FE method converts the system of par-

tial differential equations describing the dynamic equilibrium motion equation

2.3 into a system of algebraic equations which can be solved numerically, after

discretizing the domain both in space and time. Geometric discretization of

the domain Ω is achieved by creating tissue 3D meshes, which describe the soft

body as composed of elementary volumetric components (usually tetrahedral

or hexahedral elements). The continuous solution u at any point in space is

obtained by interpolating the values of the discretized displacements un at the

element nodes using shape functions ϕn (i.e., polynomial functions that are

generally linear or quadratic) [16]:
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u =
Nn∑︂

n=1

ϕnun (2.5)

where Nn is the total number of nodes in the mesh. Each node ni in the

mesh is associated with a shape function ϕn, which must have local support

and be piecewise continuous. By discretizing (2.3) with the FE method, we

obtain this discrete problem on each element e:

−Keue + f ext = Meüe (2.6)

where Ke is the element stiffness matrix, Me is the element mass matrix,

and fext is the external force applied to element e. The minus symbol in

front of the stiffness matrix is added to explicitly formulate the equation as

the difference between external and internal forces (making it more intuitive).

Global mass, stiffness, and matrices of the system can be assembled from

elementary ones, leading to a global system of equations that can be written

in the form:

f(x,v) = Ma (2.7)

with u̇, ü, u, and f(x, v) representing the net force applied to the object

(difference between external and internal forces fext−Cv−Kx). A time inte-

gration scheme (implicit, explicit, or other variants) is then used to discretize

the problem over time, allowing to formulate the above 2.7 as a linear system.

The obtained set of linear equations can then be solved using either direct or

iterative solvers. Direct solvers compute the solution exactly, either calculating

the actual inverse or a factorization of the system matrix.

When a reliable constitutive model of tissue behaviour and its mechanical

parameters is available, the FE approach can simulate anatomical responses

to mechanical stimuli with high accuracy.

In order to employ FE models in applications with more stringent time

constraints, various techniques have been proposed to simplify their computa-

tional complexity. The total Lagrangian Explicit Dynamics (TLD) [70] reduces

computational load by precomputation of spatial derivatives and eliminating
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the need for iteratively solving a large system of equations. Modelling soft

tissues relying on a corotational formulation of linear elasticity is a popular

choice for achieving clinically acceptable accuracy levels. Even large deforma-

tions can be modelled with the corotational model due to its computationally

efficient linear elastic formulation [35]. This formulation has been used to

model soft tissues in applications like intra-operative image guidance, e.g. in

liver surgery [38], [82] and needle-based procedures [9]. Another method of ac-

celerating solving involves using the Graphic Processing Unit (GPU), which is

capable of obtaining significant speedups even for computationally demanding

problems [4], [44].

2.3 Heuristic Methods

While the FE method is commonly used to achieve high levels of accuracy

in modelling and simulating anatomical deformations, it can be computation-

ally expensive for some applications. To overcome this limitation, heuristic

methods are employed, which make modelling assumptions that simplify the

formulation and lead to more efficient methods. However, this approach may

result in a sacrifice of accuracy.

Mass Spring Models

The Mass Spring Model (MSM) is a method that uses a system of masses

connected by springs to model the deformation of a body. The position of

each mass is determined by balancing the internal and external forces acting

on it. This is described by Newton’s second law, which can be written as

a linear system after discretizing the problem in time. The equation for the

MSM is:

Ma + Cv + K (x− x0) = fext (2.8)

where a, v, and x are the acceleration, velocity, and position of each mass

point, x0 is the spring rest length, M is the mass matrix containing the point

masses, C and K are the damping and stiffness matrices defining the damping
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and stiffness coefficients of the springs, and fext represents the contribution of

external forces.

In comparison to Finite Element Method (FEM), MSMs are easy to imple-

ment and compute efficiently because they don’t preprocess all elements. For

realistic simulations, they need optimization methods to tune model parame-

ters [77]. A more complex version of MSM has been proposed, but its accuracy

depends on the optimization process [30]. Despite this, only a few of these ap-

proaches have been validated. An MSM is mostly used for medical training

simulators and complex surgical tasks including topology modifications [55],

[105]. Recently, computer graphics and computing architectures have led to

more physically realistic and efficient deformable models that could replace

MSMs [77].

Position-Based Dynamics Methods

Position Based Dynamics (PBD) is a simulation approach that computes the

time evolution of a dynamic system by directly updating positions, as first

described by Müller et al. in [75]. Simulated objects are discretized assets of

particles, described by their positions pi and velocities vi, subject to a set of

positional constraints Cj(p1, . . . , pn) ≥ 0. In the PBD approach, deformation

calculation becomes a constraint-function optimization problem.
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Algorithm 1: position-based method

for all vertices i do
initialize xi = x0

i , vi = v0
i , wi = 1/mi

end
while True do

for all vertices i do
vi ← vi +∆twifext(xi)
pi ← xi +∆tvi
Constraints (xi → pi)

end
for solverIteration times do

projectConstraints (C1, . . . , CM+MColl
,p1, . . . ,pN)

end
for all vertices i do

vi ← (pi − xi)/∆t
xi ← pi

end
velocityUpdate (v1, . . . ,vN)

end

Given this data and a time step ∆t, the simulation proceeds as described by

Algorithm 1. The simulation workflow starts with a prediction step in which

symplectic Euler integration is performed to guess new particle positions and

velocities. Then, a non-linear Gauss-Seidel solver is used to find the correction

∆p to apply to the estimated positions in an iterative fashion, so that each

constraint equation (after linearization) is individually satisfied.

C(p+∆p) ≈ C(p) +∇C(p)∆p > 0 (2.9)

The resulting system being under-determined, the position update ∆p is

constrained to ensure the preservation of linear and angular momenta, which

corresponds to forcing ∆p to lie in the direction of the constraint gradient ∇C.
The position update is further weighted by the inverse of the mass matrix M

and multiplied by a parameter kP,r0,1s, which represents the stiffness of the

constraint:

∆p = kλM−1∇C(p)T (2.10)

The Lagrange multiplier λ which solves (2.9)is thus unique and given by:
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λ =
C(p)

∇C(p)M−1∇C(p)T (2.11)

Finally, computed ∆p are used to correct both the positions and the ve-

locities.

When compared to continuum mechanics, the PBD approach achieves a

better trade-off between accuracy and computation time by directly updating

particle positions. Generally, particles are placed in space to fill a surface-

delimited volume without requiring the availability of a 3D mesh. In addition,

particles are advantageous when modelled topologically since element inver-

sions and distortions can be avoided. PBD faces the same problem as all

heuristic models, which is choosing parameters without any connection to real

mechanical properties.

Despite its primary computer graphic application, PBD has been applied

to medical simulation as well because of its enhanced speed, controllability,

and unconditional stability. Interactions between multiple organs and tools

have to be modelled and solved in real time [11].

PBD concept in the medical field has been used in the development of

training simulators for surgical procedures [12]. Studies show that, when ad-

hoc parameter optimization strategies are used, PBD-based models can achieve

accuracy levels suitable for surgical planning, such as kidney surgery [19], and

general laparoscopy [29].

Machine Learning Based Methods

Learning methods have been used to estimate biological tissue deformation.

Studies have demonstrated that ML models trained with implicit soft tissue

mechanical behaviour can accurately predict three-dimensional organ deforma-

tion based on surface force applications or surface displacements. Comparing

ML algorithms to FE methods, ML algorithms also enable significant compu-

tation gains in tissue deformation simulation [80].

An AI model is challenging to use to predict anatomical deformations since

the quality and quantity of data used in the training process heavily influence

its accuracy. A model like this would be ideal if it could be trained with
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unlimited data that was patient-specific and noise-free, but that’s not practical

since it’s hard to get volumetric deformations of organs. To train their models,

most studies that use machine learning to predict tissue deformations have

used data generated from finite element simulations.

A regression model was trained based on FE data that approximates the

liver’s mechanical behaviour during breathing [65]. The author of [68] inves-

tigated tree-based methods as a means to estimate breast deformation as a

result of biopsy plate compression. The generated ML algorithm is patient-

specific because it was trained on simulated data derived from a single geom-

etry. Therefore, the network will need to be trained every time a new patient

is added. The authors in [73] have trained a NN to predict liver deformations

for a given input force. Using Principal Component Analysis (PCA), they

compressed the size of the deformation modes, thus reducing the number of

neurons in the output layer, and hence the training time. The displacement of

a partial surface has been used in other studies to estimate liver deformations

[17], [79], [99]. As a result of training on several different random organ geome-

tries, the model in [79] is able to generalize to new patients. All these studies

have shown that neural networks are useful in predicting anatomical deforma-

tions because they can generate a prediction in a few milliseconds, irrespective

of the complexity of the model used to generate the data. Surgical navigation

and real-time simulation can be performed using this method because of its

high speed of inferring [17], [79], [99]. The high speed of inference makes this

method great for surgical navigation and real-time simulation.

2.4 Conclusion

In terms of accuracy, computational efficiency, and numerical stability, several

methods have been proposed to simulate soft anatomical flexible behaviour.

We present an overview of the main deformable models used in surgical simu-

lation in this chapter, along with some examples.

Numerical techniques are used to solve the physics equations that describe

tissue deformation in continuum mechanics. By discretizing the tissue into el-
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emental components, the finite element method can be used to determine the

overall behaviour of the tissue. However, finite element methods are computa-

tionally expensive and cannot be applied in real-time to nonlinear materials,

heterogeneous tissues, or anisotropy. In general, these methods are used in

applications where real-time performance is not critical. In spite of advance-

ments and improved formulations, computational efficiency is usually achieved

at the expense of some accuracy.

On the other hand, heuristic methods rely on simplified models which are

more computationally efficient but do not fully capture all possible mechanical

behaviours. It is challenging to specify model parameters to reproduce tissue

mechanical behaviour using this modelling approach because there is no well-

defined relationship between parameter values and material constitutive laws.

For the model parameters to be accurate, optimization is required. When

parameters are carefully selected, these models can achieve reasonable levels

of realism. As they are simple and don’t need 3D meshes, they are widely used

in virtual training simulators.

Last but not least, machine learning (ML) is used to predict tissue deforma-

tions. Data-driven machine learning algorithms allow the estimation of tissue

deformations without resolving expensive complex equations. For predicting

tissue deformations using ML-based approaches, most training datasets from

finite element simulations are usually used due to a lack of real-time tissue

deformation data. ML algorithms are able to learn complex deformable be-

haviours, achieving similar accuracy levels as biomechanical simulations. Ma-

chine learning reduces computation time from minutes to milliseconds (com-

pared to the finite element method).
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Chapter 3

Active Tissue Deformation for
Target Manipulation1

3.1 Problem Statement

The needles used in traditional brachytherapy are not steerable. To overcome

this limitation, it is possible to manipulate the targets. Internal targets can be

moved toward needle workspaces during breast brachytherapy. Compression

and tension forces can be applied to accessible breast surface points to manip-

ulate breast tissue. A solution for accurate target manipulation with error less

than one millimeter is presented in this chapter. This section discusses a linear

relationship between boundary point movement and internal point movement

in the development of an MPC controller.

3.2 Background

For several applications outside of medicine, manipulating the shape of de-

formable objects has been explored. In [96], the internal target of a 2D de-

formable object is modelled with the connection of a simple spring and is

controlled using a PID controller and kinematic Jacobin. In the work [67],

a force-actuated position controller is implemented to manipulate tissue for

breast biopsy. In this study, the required force to move the tumour to the de-

1A version of this chapter has been published as Mehrnoosh Afshar, Jay Carriere, Tyler
Meyer, Ron Sloboda, Siraj Husain, Nawaid Usmani, Mahdi Tavakoli, ”A Model-Based Multi-
Point Tissue Manipulation for Enhancing Breast Brachytherapy,” IEEE Transactions on
Medical Robotics and Bionics. 2022 Oct 12;4(4):1046-56.
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sired position is calculated based on real-time medical images, but no biome-

chanical model is used to approximate the tissue deformation. A tissue ma-

nipulation framework is proposed for prostate cancer treatment that utilizes

MSM to model a 2D problem of prostate motion and to manipulate the tis-

sue from one point in [95]. The drawback of the work is that the 2D linear

model is not able to address the nonlinear and large deformation of real tissue.

Target movement due to local deformations resulting from the needle-tissue

interaction is investigated by introducing an estimated needle-induced defor-

mation matrix [107]. Similar to previous works, the tissue was modelled as a

linear elastic object in [107]. From the perspective of soft robot control, the

authors in [27] used linear FEM to model a soft robot, and the control inputs

are obtained by solving an inverse FEM problem. In [10], the authors intro-

duced a robotic framework to steer a flexible needle inside a deformable tissue

based on constraint-based inverse linear FEM simulation. This work considers

tissue movement; however, it steers the needle via a robotic arm to compen-

sate for tissue deformation/movement. Active tissue deformation control was

not the main concern in [10]. A visual servoing method was implemented by

online Jacobin estimation to deform a soft object toward the desired position

[57]. In another extension to [57], instead of Jacobian estimation, the Jacobian

is obtained from a linear FEM model in the same visual servoing procedure

[106]. A number of studies have attempted to learn the Jacobian between

the deformable object and robot manipulator from visual data in an online

manner; however, the drawback of this approach is that visual feedback of the

target point on the object surface should be available. In our case, since we

intend to manipulate an internal point within the breast, it is not possible

to obtain real-time visual feedback data from the internal parts. Therefore,

the controller requires to be established based upon a biomechanical model to

simulate the internal targets’ movements.

Based on the literature, the lack of utilization of a real-time nonlinear

tissue model integrated into a control framework to do tissue manipulation

(controlling tissue deformation) is noticeable. As a result, we present a model-

based control framework that incorporates a real-time deformable tissue solver
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to implement target manipulation.

3.3 ADMM-based FEM for Object Deformable

Modelling

In FEM modelling, a deformable object is discretized using elements (i.e.,

triangle for 2D and tetrahedral for 3D) and lumped masses are integrated on

the element’s node. Each lumped mass is a DOF of the system. The dynamics

of the system based on Newton’s law is

M ẍ = Fint + Fext = f (x, t) (3.1)

Here, M is the matrix of lumped masses and Fint and Fext are the internal and

external forces acting on each , respectively. In the context of continuum me-

chanics, internal forces are calculated as the gradient of strain energy function

Fint = −∇U(x). To solve the dynamic system in (3.1), it should be inte-

grated through time. Considering the unconditional stability of implicit Euler

scheme (backward Euler), it is usually selected to solve the dynamic systems.

In this scheme, a system of implicit unknowns should be solved. The system

of dynamic equations can be defined using the following set of equations

Mv(t+∆t) = Mv(t) + ∆t f (v(t+∆t), x(t+∆t), t)

= Mv(t) + Fext(t)∆t+ Fint(t+∆t)∆t
(3.2)

x(t+∆t) = x(t) + v(t+∆t)∆t (3.3)

where (3.2) and (3.3) are a set of high dimensional and highly nonlinear

equations. One solution is to solve the set of equations using iterative methods

such as Newton’s method; however, it can be reformulated to be solved as an

optimization problem as well. The combinations of equations in (3.2) leads to

1

∆t2
M(x(t+∆t)− x̃(t+∆t)) = Fint(t+∆t) (3.4)

where,

x̃(t+∆t) = x(t) + v(t)∆t+M−1Fext(t)∆t
2 (3.5)
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determines the position of lumped masses in the absence of internal forces.

Considering the fact that Fint = −∇U(x), (3.4) can be reformulated to an

optimization form based on the work in [78]

x(t+∆t) = argmin
x

(︃
1

2∆t2
∥x− x̃(t+∆t)∥2M +U(x)

)︃
(3.6)

where ∥x∥M =
√
xTMx. Taking the gradient of (3.6) and equating it to

zero leads to (3.4), therefore, the solution of (3.6) at each time step is the

solution of (3.4). The DoF of a dynamic system is equal to the number of

nodes used to discretize the tissue domain multiplied by three in case of 3D

simulation (DoF is denoted by N ); therefore, (3.6) is still a high dimension

nonlinear optimization problem and it is not possible to be solved in an efficient

time. To overcome this issue a solution, which is suggested in [78], is to use

the alternating direction method of multipliers optimizer (ADMM) which in

general is an optimizer for distributed systems.

3.3.1 ADMM Optimizer

The basics of ADMM is described in this part. The ADMM is a method to

solve optimization problems having the following form [15]

argmin
x, z

h(x) + g(z)

s.t. Ax+Bz = C
(3.7)

where h and g are general cost functions subjected to a set of linear con-

straints, and A and B are general constant matrices. The algorithm works by

introducing a dual variable u and iterating the following update rules

xn+1 = argmin
x

(︂
h(x) +

ρ

2
∥Ax+Bzn −C+ un∥2

)︂

zn+1 = argmin
z

(︂
g(z) +

ρ

2

⃦⃦
Axn+1 +Bz−C+ un

⃦⃦2
)︂

un+1 = un +
(︁
Axn+1 +Bzn+1 −C

)︁
(3.8)

Here, n indicates the number of iterations until the ADMM converges, and ρ

is a weighting scalar.
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3.3.2 ADMM Implementation For Tissue Deformation
Dynamics

The strain energy deformation U is a function of gradient deformation matrix

(will be explained thoroughly in Section 3.3.3). A vector composed of the

elements of gradient deformation matrices associated with mesh elements can

be introduced into (3.6) as a new variable denoted by z. The relationship of

z = Dx is satisfied at each converged solution of (3.6). In fact, matrix D

transforms x variables to the gradient deformation matrix space. Therefore,

(3.6) can be reformulated as [78]

argmin
x,z

(︁
1

2∆t2
∥x− x̃∥2M +U(z)

)︁

s.t. W(Dx− z) = 0
(3.9)

where W is a weighting matrix. By comparing (3.6) and (3.7), the functions

and matrices can be chosen as

h(x) =
1

2∆t2
∥x− x̃∥2M, g(z) = U(z)

A = WD, B = −W, C = 0
(3.10)

The updated rules for the tissue deformation dynamics problem can be ob-

tained as

xn+1 =argmin
x

(︃
1

2∆t2
∥x− x̃∥2M +

1

2
∥W (Dx− zn + un)∥2

)︃

=
(︁
M+∆t2DTWTWD

)︁−1 (︁
Mx̃+∆t2DTWTW (zn − un)

)︁ (3.11)

zn+1 = argmin
z

(︃
U(z) +

1

2

⃦⃦
W

(︁
Dxn+1 − z+ un

)︁⃦⃦2
)︃

(3.12)

un+1 = un +Dxn+1 − zn+1 (3.13)

Matrices in (3.11) are fixed and can be precalculated, so the update rule for x

variable is fast.

The power of the ADMM optimizer is that (3.12) can be solved for each

element separately; therefore, the procedure can be implemented in parallel

on GPU or multi-core CPU. For each strain energy function associated with

each element, the following optimization problem should be solved separately:

zn+1
i = argmin

zi

(︂
Ui (zi) +

1
2
∥Wi (Dix

n+1 − zi + uni )∥
2
)︂

un+1
i = uni +Dix

n+1 − zn+1
i

(3.14)
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Here, i refers to the element number, and zi is a vector containing elements

of the gradient deformation matrix associated with element i. After updating

variable zi and ui associated with individual elements separately, the global

vector of z and u are updated and used to update the position vector x using

(3.11). In the next section, we will explain how to choose Ui(zi) to solve the

optimization problem in (3.14).

3.3.3 Material Model

The strain energy density function quantifies the stored strain energy per vol-

ume of an element due to deformation. The strain energy density function,

denoted by Ψ, is zero when there is no element deformation. Green-Saint-

Venant strain tensor, E, is a measure of the strain of an element and is given

by E = 1
2
(C − I), where I is second-order identity tensor and C is the right

Cauchy–Green deformation tensor, obtained by C = F⊤F, and F is the defor-

mation gradient matrix, calculated by

F =
∂x

∂X
(3.15)

where x is the current position of the element’s nodes (i.e., deformed configura-

tion) andX is the position of the element’s nodes in the reference configuration

(i.e., undeformed configuration). For a tetrahedral element (i.e., a four-node

element) F can be obtained using F = NxNX
−1, where

Nx =
[︁
x1 − x4 x2 − x4 x3 − x4

]︁

NX =
[︁
X1 −X4 X2 −X4 X3 −X4

]︁ (3.16)

Using tetrahedral elements for 3D problems, F is 3 × 3 matrix and using

triangle elements for 2D problems in the case of having a plane strain problem

F would be a 2× 2 matrix.

In general material models, Ψ is a function of E or F; However, for isotropic

materials, Ψ is a function of the invariants of the right Cauchy–Green defor-

mation tensor

Ψ = Ψ (I1, I2, I3) (3.17)

where I1 = tr(C), I2 =
1
2
[[tr(C)]2 − tr (C2)], and I3 = det(C).
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Several material models exist to describe the hyperelastic behaviour of tis-

sue, including Neo-Hookean, Ogden, Mooney-Rivlin, Arruda-Boyce [24]. The

Neo-Hookean model is the most relevant and most used model for modelling

breast tissue [89]. In this report, the Neo-Hookean material model is used for

modelling breast tissue. The strain energy function of a Neo-Hookean material

is given by [13]

Ψ =
µ

2

(︁
I1 − 3

)︁
+
κ

2
(J− 1)2 (3.18)

where J = 1
2
I3, C = J−2/3C and I1 = tr(C). Material constants are µ = E

2(1+v)
,

and κ = E
3(1−2v)

, in which E is Young’s modulus and v is Poisson’s ratio.

3.4 Control Framework

With the assumption that tissue deformation happens at low velocities, the

problem can be considered quasi-static. In each step, the internal forces are

in equilibrium with external forces. The set of control points on the tissue

surface is denoted by c and the set of target points inside the tissue is denoted

by m.

3.4.1 Model Linearization

To calculate a linear relationship between the displacement of control points

δxc and target points δxm, the Jacobian, we need to linearize the model around

the current configuration. The quasi static equation of the system Fint (xn) =

Fext is linearized using a Taylor series as Fint (xn)+
∂Fint

∂x
(xn+1 − xn) = Fext(xn+1),

where K = ∂Fint

∂x
is the tangent stiffness matrix of the system. Having an

applied variation in external forces, the variation in node positions can be

calculated using δx = K−1δFext.

In order to derive Jacobian from a linearized static equation a modification

in force vector representation is necessary,

Fext = Jcλ (3.19)

where λ is a vector including all nonzero values of external forces applied to

system DoF (i.e., if the number of control points is c, and λ is a c× 1 vector)
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and Jc is an N×c matrix consisting of zeros and ones which relates the vector

λ to the global external force vector which is N × 1. The relationship between

the parameter variations such as δxm, δxc, and δx is defined as

δxc = Jc
T δx

δxm = Jm
T δx

(3.20)

where Jm is a similar matrix to Jc that extracts target point variation from

the vector of all node displacements, δx. The relationship between δxc and

δxm and force vector λ is given by

δxc = Jc
TK−1Jcλ

δxm = Jm
TK−1Jcλ

(3.21)

By eliminating the force vector from two equations in (3.21), the final rela-

tionship is

δxm = Jm
TK−1Jc

(︁
Jc

TK−1Jc

)︁−1
δxc (3.22)

Therefore the Jacobian of system is

Js = Jm
TK−1Jc

(︁
Jc

TK−1Jc

)︁−1
. (3.23)

The tangent stiffness matrix K is computed using the Rayleigh-Ritz method

that states the first derivative of deformation, or strain energy function, with

respect to current node positions gives the nodal force and second derivative

gives the stiffness matrix; therefore,Kij =
(︂

∂2U
∂xj∂xi

)︂
. The standard approach to

calculate the global stiffness matrix of an element grid is to calculate the local

stiffness related to each element separately and then integrate the stiffness of

all elements to obtain the global matrix. The local stiffness matrix associated

with individual elements follows the relationships Ke = Ve

(︂
∂2Ψe

∂xj∂xi

)︂
. Having

the strain energy function using (3.18) and gradient deformation matrix F,

the element local stiffness matrix is obtained by computing the matrix of the

second derivative of the strain energy function with respect to the element’s

node DoF as follows:

Ke = Ve

(︁
NeDX

−1 ⊗ I3
)︁

⎡
⎢⎢⎣

(︂
µ
3
J− 2

3 I1 − κJ(J− 1)
)︂
Q(n,n)

T
(︁
F−T ⊗ F−1

)︁
+

µ
3
J− 2

3 I3 ⊗ I3 − 4µ
3
J− 2

3 vec
(︁
F−T

)︁
vec(F)T

+
(︂

2µ
9
J− 2

3 I1 − κJ(2J− 1)
)︂
vec

(︁
F−T

)︁
vec

(︁
F−T

)︁T

⎤
⎥⎥⎦

(︁
DX

−TNe
T ⊗ I3

)︁

(3.24)

35



whereNe =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
−1 −1 −1

⎤
⎥⎥⎦ for tetrahedral elements andNe =

⎡
⎣

1 0
0 1
−1 −1

⎤
⎦

for triangle elements. Q(n,n) is a n
2 × n2 matrix that is partitioned by n × n

blocks. Each block has the from Oij =
(︂
o
(i, j)
s, t

)︂
whose nonzero entry is

o
(i, j)
j, i = 1. The operator ⊗ is the Kronecker product and vec() operator

vectorizes a matrix.

3.4.2 Control and Manipulation Analysis

In order to move targets in the x-y plane in any direction, it is necessary to

investigate the number of actuators required in co-planar configurations. The

main aim of this controllability analysis is to define the desired direction vec-

tor on which the internal point will be moved. To create this direction vector,

we must consider that only a positive combination of all actuator movement

vectors is allowed (i.e., actuators can only push the breast). Under this as-

sumption, we will show that the internal target is able to be moved along any

arbitrary direction if and only if the target movement vector lays on the span

of the actuators’ movement vector.

The necessary mathematical definition of positive basis theory which is

required is summarized as follows;

Definition 1: A positive combination of a set of vectors [a1 · · · ar] ∈ Rn is

a linear combination λ1a1 + · · ·+ λrar with λi ≧ 0.

Definition 2: A a positive span or convex cone is the set of all positive

combinations of a finite set of vectors that

A = {a ∈ R
n : a = λ1a1 + · · ·+ λrar, λi ≥ 0, i = 1, . . . , r} .

Definition 3: A set of finite vectors [a1 · · · ar] is positively independent

if there is no vector ai in the set such that it can be written as a positive

combination of the others.

Definition 4: If all the vectors in set [a1 · · · ar] are positively independent,

the set is a frame of cone A. All vectors in the vector set are called the positive

basis.
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With linearly independent orthogonal bases, the number of linearly inde-

pendent bases spanning the space Rn is unique; however, with positive bases,

the number of positive bases which can span Rn and be positively independent

are not unique.

Theory 1: The minimum number of positive basis that span Rn is r = n+1

and the maximum number of positive basis that span Rn is r = 2n. The former

one is calledminimal positive bases and the latter one is calledmaximal positive

bases.

Corollary 1: A positive representation of a vector a ∈ A is unique in each

frame that spans set A.

If the internal point is moved with a distance d in any arbitrary direction,

set A (the span of positive bases) should be a circle with radius d as shown

in Figure 3.1. In a planar movement the dimension of the vector set is n = 2,

so to have positive bases which spans the whole set A based on Theory 1, at

least n+1 = 3 (minimal positive bases) and at most 2n = 4 (maximal positive

bases) actuators are required. Vectors ei i ∈ [1, 2, 3] or ei i ∈ [1, 2, · · · , 4]
(see Figure 3.1.) should be chosen such that they are positively independent

to be capable of spanning set A entirely as shown in Figure 3.1.

Based on Corollary 1, if the vectors are chosen such that they are posi-

tively independent, the representation of point ❘ in Figure 3.1 is unique in both

maximal and minimal configurations.

In order to choose between the minimal and maximal frame configurations,

a manipulability index is introduced as

Manipualbility Index =
∥p∥2∑︁n
i=1 ∥qi∥2

(3.25)

where ∥.∥2 is the euclidean norm of vectors in the global Cartesian frame

(Figure 3.1), p is the target displacement vector, and qi are the displacement

vectors of the actuators represented in the global Cartesian frame.

The amount of tissue deformation is proportional to all of the actuators’

displacements. Larger actuator displacement means the tissue is deformed

more. The manipulability index defines the ratio between target movement

and actuators movement (i.e., tissue deformation). A larger manipulability

37



index means less tissue deformation is applied to move the target for the same

amount of displacement.

In order to obtain a manipulability index for each vector p, based on (3.25),

each qi needs to be calculated. Due to the definition of the manipulability

index, this is a task-specific index. To calculate each actuator movement

vector qi, the following inverse kinematic problem under joint constraints is

solved.

argmin
q

∥p− Jsq∥

s.t. qid
T
i ≥ 0

(3.26)

where Js is the Jacobian matrix for each configuration obtained using

(3.23), and di is the acting direction of actuators. The above inverse kine-

matic problem is calculated for each actuator configuration and is shown in

Figure 3.1 with respect to three specific tasks:

1. Task 1: points inside the circle are moved by 5 mm along the negative

direction of the x axis, and their movement along the y axis is relaxed.

2. Task 2: points inside the circle are moved by 5 mm along the negative

direction of the y axis, and their movement along the x axis is relaxed.

3. Task 3: points inside the circle are moved by 5 mm along the positive

direction of the y and the x axes simultaneously.

The task will be achieved through the control objective in section 3.4.4.

The manipulability index distribution for minimal and maximal configuration

is depicted in Figure 3.2. Based on Figure 3.2, the maximal configuration with

4 actuators has the larger manipulability index in the majority of the area,

and it means that this actuator configuration can move the target with less

tissue deformation.

3.4.3 MPC Controller

A Model Predictive Control (MPC) scheme is selected because of its ability to

constrain the magnitude and direction of the control effort, to control MIMO
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(a) Minimal positive bases. (b) Maximal positive bases.

Figure 3.1: Positive bases and positive spanned area.

systems in a standard state-space formulation, and also its ability to eliminate

steady-state error. As explained in Section 3.4.1, the simulated model of the

system is linearized at each step. Using the linearized system, a multivariable

MPC controller is designed to compute the optimal displacement of boundary

points such that actuators only push the tissue and, in addition, they are not

able to retract. The linearized system can be reformulated into a state-space

formulation as follows

xm(k + 1) = xm(k) + Js(xm(k), xr(k)) u(k)

y(k) = xm(k)
(3.27)

Here, the system states consist of the position of the target point xm and

u = δxc is the displacement variation of the boundary points, which are the

control inputs. The control input matrix (i.e., the Jacobian) is a varying

parameter matrix that depends on both the current states of the system and

also the position of all other nodes within the model xr. Vector y is the

measurement vector which is the position of target point xm.

The objective of MPC is to compute a series of discrete optimal control
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Figure 3.2: Manipulability distribution maps (The black arrows show the
movement direction of internal points at each task).

inputs using the predicted future states of a system in each optimization hori-

zon to minimize the cost function and satisfy the constraints. The error signal

between the defined reference set point and predictive position of the target

from the linear model is obtained as

e(k + h) = yd(k + h)− yp(k + h) (3.28)

where yp is the predicted target location obtained using (3.27). The quadratic-

constrained optimization problem is
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J = min
1

2

Np∑︂

h=0

[︁
eTQe +uTRu

]︁

s.t.

xm(k + 1) = xm(k) + Js(xm(k), xr(k)) u(k)

y(k) = xm(k)

uidi
T ≥ 0

(3.29)

where ui is the actuator displacement of each actuator, and di is the acting

direction of actuators. Q and R are square weighting matrices. Np is the pre-

diction horizon. The system’s actuators are constrained to only move forward

based on (3.29).

A block diagram of the MPC control procedure is shown in Figure 3.3.

Figure 3.3: Block diagram of the MPC controller. The outputs are the inner
target point positions, the inputs are the displacements of the control boundary
points, and the system states are the position of the system’s DoFs at each
configuration.

3.4.4 Experimental Study and Results

To experimentally validate the performance of the proposed method in tissue

deformation prediction, an experimental setup (Figure 3.4) was built. An

Aurora electromagnetic (EM) tracker with a Planar 20-20 V2 Field Generator

(NDI Waterloo, Ontario , Canada) is utilized to track the 3D position of a

magnetic sensor which was located inside the tissue phantom at five different
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Aurora EM Tracker 

Sensor

Actuators

Phantom

Figure 3.4: Experiment setup. An Aurora electromagnetic (EM) tracker is
used to track the 3D position of targets. Linear actuators push the tissue
phantom made of plastisol.

target points as shown in Figure 5.3. Four linear actuators displaced the tissue

boundary in discrete steps of {5, 10, 15}mm (i.e., 12 experiments have been

done for each internal point separately). A tissue phantom made from plastisol

and softener (M-F Manufacturing Co, Fort Worth, USA) with an equal volume

ratio. The module of elasticity of the phantom that is calculated through the

compression test is E = 6KPa.

Five internal targets were considered inside the tissue for the model ver-

ification experiments. The experimental layout of phantom, actuators, and

targets are shown in Figure 3.5. The mesh model of the breast in Figure 3.5,

which is used for simulation, has been built based on the CAD model and the

Tetgen library is used to mesh the CAD model in MATLAB. The minimum-

energy-based method was programmed in C++ using OpenMP, and it was run

on an Intel® Core™ i5 processor with 6 cores. The total computation time

for the 800 iterations and 2331 tetrahedral elements is 20 seconds. The speed

can further be improved by implementing the algorithm on a GPU.

The time response of target number one and number two associated with

each task is shown in Figure 3.6 through 3.11. Actuator displacement in Figure

3.6 through 3.11 represents the value that each actuator pushes the breast at

each step. Retraction of actuators is not allowed in this framework. The
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(a) The top view. (b) The 3D view.

Figure 3.5: The layout of breast phantom, actuators, targets, and tasks.

red diagrams in Figure 3.6 to Figure 3.11 represent the open-loop response

of the system, which is the minimum-energy-based simulation result. The

blue diagrams are the response of the closed-loop MPC control system. As

is shown in these figures, the MPC structure with state feedback is robust to

slight simulation position error in the open-loop simulations, and the Jacobian

calculated based on the minimum-energy-based simulation results is a good

approximation of the relation between boundary points displacements and

internal target displacement.

The results for the five target points manipulation tasks are reported in

Table 3.1. The integral of absolute error,

ITAE =

∫︂
t|ε|dt, (3.30)

is used as a measure of control system performance to compare the open-

loop and closed-loop performance. The ITEA measure for all experiments and

the difference between the final open-loop target position and desired target

positions are reported in Table 3.1.

3.5 Conclusion

In this chapter, a model-based control method was presented for multi-point

tissue manipulation in breast brachytherapy, specifically for positioning a tar-

get in line with the brachytherapy needle. The method utilized a model predic-

tive controller (MPC) that incorporated an online linear approximation of the
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Figure 3.6: The time response of the target point #1 position and actuators’
movement for task one.
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Figure 3.7: The time response of the target point #1 position and actuators’
movement for task two.
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Figure 3.8: The time response of the target point #1 position and actuators’
movement for task three.
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Figure 3.9: The time response of the target point #2 position and actuators’
movement for task one.
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Figure 3.10: The time response of the target point #2 position and actuators’
movement for task two.
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Figure 3.11: The time response of the target point #2 position and actuators’
movement for task three.
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Table 3.1: ITAE index and steady-state error for closed-loop and open-loop
results.

Target ID Scenarios Open loop
ITAE

Closed
loop
ITAE

Open loop
steady-
state
error
(mm)

1
Task 1 403.40 193.23 0.66
Task 2 342.52 117.22 0.36
Task 3 910.17 231.02 0.92

2
Task 1 1172.6 155.61 1.64
Task 2 1046.8 144.67 1.47
Task 3 931.33 260.22 1.35

3
Task 1 1201.12 604.45 2.42
Task 2 752.62 171.21 0.46
Task 3 1319.85 297.01 1.88

4
Task 1 1112.89 285.3 1.37
Task 2 986.23 195.67 1.12
Task 3 1360.5 521.61 1.93

5
Task 1 1036.10 350.21 2.1
Task 2 1205.37 270.9 1.4
Task 3 1112.34 130.71 1.61

tissue biomechanical model. The MPC successfully moved the target point to

the desired location with minimal steady-state error. Experimental results on

a tissue phantom demonstrated the effectiveness of the MPC, outperforming

open-loop simulations.

To handle non-linear tissue deformation, the soft tissue dynamics were

formulated as an optimization problem, considering the deformed tissue strain

energy in the cost function. The parallelizability of the solver made it suitable

for real-time control. It is determined that configurations with three or four

actuators guarantee target mobility in a 2D plane. Four actuators were selected

since four actuators have a higher manipulaty index, resulting in less tissue

deformation for the same target movement.

The limitation of the current MPC formulation is that actuators are only

allowed to move forward, not backward, and the configuration is co-planar.

It is important to consider the effect of non-planar configurations on target

manipulability.
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Currently, the MPC relies on direct measurement of the internal target

position. However, tracking the target position through ultrasound (US) image

frames is challenging. In the next two chapters, methods will be designed based

on the biomechanical model and surface point data to estimate the position

of the internal target without requiring a sensor inside the tissue.
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Chapter 4

Tissue Deformation
Registration with Kalman
Filtering 1

4.1 Problem Statement

It remains a challenging task to develop a patient-specific biomedical model

(PBM) that can accurately describe breast behavior in clinical settings. Due

to the assumptions that have been made in PBM, simulation and reality will

always differ. Consequently, an adaptive PBM will allow for a more accurate

estimation of tissue deformation. This section focuses on developing an adap-

tive PBM capable of reducing the internal target prediction error. In order to

update the estimation in a high-dimensional space, the Linear Kalman filter

is used, although this means that the non-modeled dynamics of the PBM are

assumed to follow a giassian noise.

4.2 Background

It is worth mentioning that whether using a real-time biomechanical model

or a machine learning algorithm based on FEM simulations, additional com-

pensation must be made for the model’s inaccuracy. During surgery, real-time

1A version of this chapter has been published as Mehrnoosh Afshar, Jay Carriere, Hos-
sein Rouhani, Tyler Meyer, Ron Sloboda, Siraj Husain, Nawaid Usmani, Mahdi Tavakoli,
”Accurate Tissue Deformation Modeling Using a Kalman Filter and ADMM-Based Projec-
tive Dynamics,” IEEE/ASME Transactions on Mechatronics. 2022 May 27;27(4):2194-203.
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data from the deformed tissue captured by visual sensors can provide a reason-

able basis for updating an existing inaccurate biomechanical model. Thus, it

is beneficial to have a visual perception of the tissue and track its deformation

in real-time to correct the biomechanical model accordingly.

To resolve the problem of simulation-reality mismatch, researchers have

tried to model the end-to-end behaviour of tissue using deep learning mod-

els that are trained based on visual information from deformed tissue as the

primary source of information during operation [91], [100]. The main limi-

tation of relying only on exterior visual perception is that it cannot provide

information on the internal structure of tissues/organs [61].

On the other hand, hybrid simulators, compensate for model mismatch of

physics-based simulators with the aid of real data. For surgical applications,

real-time data from the deformed tissue captured by visual sensors can pro-

vide a good basis for updating an existing inaccurate physics-based model[61].

Liu et al. in [61] developed a real-time, online registration method that incor-

porates 3D visual perception and PBD simulation. As the PBD method are

not capable of predicting tissue deformation, in [61], the visual data from the

tissue surface is integrated with the PBD simulation to enable accurate pre-

diction of tissue deformation. However, in [61], the proposed framework has

not been tested for the ability to predict deformations of the internal points of

the tissues. As PBD is developed based on geometric constraints rather than

mechanical properties of the tissue, it will not be able to simulate the internal

deformation of the tissue accurately.

Hybrid simulators for tissue deformation estimation are still in their in-

fancy. While this type of tissue deformation model is the key to eliminating

the mismatch between the simulator and reality, and also maintaining a real-

time framework. Bayesian filtering methods are a great tool for bridging the

gap between simulation and reality. A Bayesian filter can infer from real obser-

vations in a data-efficient manner and leverage simulation as a source of prior

knowledge. However, implementing Bayesian filtering methods on deformable

tissue is challenging considering the non-linearity and high dimensionality of

the problem. In this chapter, a framework called KF-ADMM is proposed to
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simulate the nonlinear deformation of the breast tissue to track the internal

targets. In the proposed framework, the open-loop simulator (ADMM-based

FEM) is combined with a Kalman filter to realize a closed-loop simulator.

4.3 Kalman Filtering

By substituting (3.5) into (3.11) and rearranging the terms, (3.11) is trans-

formed into a discrete dynamic model with linear transition matrix and non-

linear input part, as shown below:

xn+1 =
(︁
M+∆t2DTWTWD

)︁−1
(2Mxn −Mxn−1 + Fn

ext∆t
2 +∆t2DTWTW (zn − un)

)︁

(4.1)

The following discrete state-space equation for the system of equations (4.1),

and (3.14) can be considered:

Xn+1 =

[︃
xn+1

xn

]︃
(4.2)

Xn =

[︃
A B

I 0

]︃
Xn−1 +

[︃
H (Un)

0

]︃

Un+1 =

⎡
⎣

zn+1

un+1

Fext,n+1

⎤
⎦ =

⎡
⎣

f (xn+1,un)
un + g (xn+1, zn+1)
Fext,n+1

⎤
⎦

(4.3)

In the above,

A = 2
(︁
M+∆t2D⊤WTWD

)︁−1
M

B = −
(︁
M+∆t2D⊤WTWD

)︁−1
M

H =
(︁
M+∆t2DTWTWD

)︁−1 (︁
Fext,n∆t

2 +∆t2DTWTW (zn − un)
)︁

f (xn+1,un) = argmin
z

(︃
U(z) +

1

2
∥W (Dxn+1 − z+ un)∥2

)︃

g (xn+1, zn+1) = Dxn+1 − zn+1

(4.4)

Since the matrix A is built upon matrix D, which maps the nodes’ coordinates

represented in the global framework into element representation, the matrix

contains information about the mesh structure. The first line of the equation

in (4.3), which represents the state evolution of the system, can be expressed
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in the general form of discrete dynamic systems with uncertainties as follows:

Xn+1 = SXn + U+wn

yn = CXn + vn
(4.5)

Here, the first equation presents the state evolution model, and the second line

shows the relationship between sensor measurements and the state variables.

The process noise wn and measurement noise vn are white, zero-mean, and

uncorrelated with known covariance matrices Qn and Rn respectively. In this

work, inaccuracy in the models is modelled as white noise.

4.3.1 KF Integration into the ADMM-based FEM

In summary, KF provides a recursive method for estimating the state of a

dynamic system when the system is noisy by estimating both the state vector

and the error covariance matrix simultaneously at each iteration step. One of

the main applications of KF is when a state-space model that represents an

evolving dynamic of a state variable is known, but imprecise and noisy sensor

measurements are available. The KF approach improves the accuracy of state

variable estimation by combining these two sources of information, mathe-

matical model and measurements. With this study, the aim is to estimate the

position of internal points (in this case, the state vector of the system) using

an imprecise biomechanical model. To improve the accuracy of the model,

partial measurements of the tissue surface are used to compensate for model

inaccuracies. As a result, the KF is an appropriate solution for the problem.

Kalman Filter (KF) consists of two stages: prediction and update. KF pro-

vides a recursive method of estimating the state of a dynamic system in the

presence of noise by simultaneously estimating and updating both the state

vector (xn) and the error covariance matrix (Σn) at time step n. A multi-

variable Gaussian distribution with mean vector and covariance matrix can

be used to represent the posterior probability distribution (posterior means

after update) of the state vector at time step n. The posterior mean vector

and covariance matrix are denoted by µ̂n and Σ̂n, respectively. The prediction

step includes the calculation of the prior estimation of the mean and covari-

ance matrix. µ′
n and Σ′

n are the prior estimations for the mean of xn and its
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covariance. These can be found using (4.6) for the discrete system of (4.5)

µ′
n = Sµ̂n−1 + U

Σ′
n = SΣ̂n−1S

T +Qn−1

(4.6)

In the update step, µ′
n and Σ′

n are updated by incorporating the new sensor

information yn to the estimations obtained in the prediction step for xn. These

estimations after the update step are called the posterior estimations. The final

equations for finding µ̂n and Σ̂n are given in (4.7):

µ̂n = µ′
n +Kn(yn − ŷn)

Kn = Σ′
nC

T (CΣ′
nC

T +Rn)
−1

ŷn = Cµ′
k

Σ̂n = Σ′
n −KnCΣ

′
n

(4.7)

where Kn is called the Kalman gain matrix at time step n.

The output of the open-loop tissue simulator algorithm, (the output of

(4.1)), is the prior estimation of the state vector, µ′
n. The posterior estimation

of the state vector is calculated using (4.8)

xn+1 =
(︁
M+∆t2DTWTWD

)︁−1 (︁
2Mxn −Mxn−1 + Fext,n∆t

2

+∆t2DTWTW (zn − un)
)︁

+Kn (yn − ŷn)

(4.8)

(3.14), (4.7), and (4.8) form the new KF-ADMM method, which is elab-

orated in algorithm 2. In this algorithm, for tetrahedral elements, (3.14) is

solved in parallel. In the second step, the Kalman gain is calculated using

(4.7). Then, the real positional data of the surface nodes are obtained from

the markers and are transformed into the simulation coordinate system. In the

end, using these data and (4.8), the state vector of the system is calculated.

As can be seen from equations (4.6) and (4.7), the calculation of the es-

timator covariances and the Kalman gain does not require measurement and

state values. Hence, these calculations can be done before the simulation starts

(off-line phase). In the online phase, the algorithm implements (4.8).
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Algorithm 2: The proposed deformation modelling algorithm

Data: Optical marker data y, Actuator Movements
Calculate Kalman Filter Gain (Off-line)
Σ′
n = SΣn−1S

T +Qn−1

Kn = Σ′
nC

T (CΣ′
nC

T +Rn)
−1

Σn = Σ′
n −KnCΣ

′
n

On-line Step
while n ≤ N do

yn ← Read Marker data
foreach Tetrahedral Element do

zi,n+1 = argmin
zi

(︃
Ui(zi) +

1

2
∥Wi(Dixn+1 − zi + ui,n)∥2

)︃

ui,n+1 = ui,n +Dixn+1 − zi,n+1

end
Update State Vector

xn+1 = (M +∆t2DTW TWD)−1(2Mxn −Mxn−1 + Fext,n∆t
2+

∆t2DTW TW (zn − un) +Kn(yn − ŷn)

end

The block diagram of the proposed KF-ADMM method is elaborated in

Figure 5.5. In the open-loop simulator, actuator displacements act as an input,

and at the same time, these displacements deform tissue in the real experi-

mental setup. The open-loop simulator output and measured surface points

from the experimental setup are inputs to the Kalman filter, which refines the

mesh node positions according to the positional error between the simulation

and the real exterior points’ positions. The whole process described in Figure

5.5 forms the proposed KF-ADMM method.

4.4 Experimental Study and Results

To experimentally validate the performance of the proposed method in tis-

sue deformation prediction, the experimental setup shown in Figure 5.3 was

built. A Vicon motion capture system with five cameras was used to track

4mm optic facial markers. Nexus 2.10 software (Vicon Motion Systems, UK)

54



Actuator 

Displacement 

Open-Loop 

Simulator 

Read Marker Positional Data 

using Nexus Software
Cordinate Transformation

Predition and Refinement 

(Kalman Filtering) 

Simulated Surface Points

Figure 4.1: Flowchart of the proposed KF-ADMM approach.

was used to track the markers, and data were transmitted to C++ code using

UDP protocol. Four linear actuators displaced the tissue boundary in discrete

steps of {5, 10, 15, 20} mm. The module of elasticity of the phantom that was

calculated through the compression test is E = 6 Kpa. Figure 4.3 shows the

breast mesh model including 2331 tetrahedral elements. The Tetgen library

was used to mesh the CAD model of the barest phantom. Figure 4.4 shows

the layout of the phantom, the actuators, the target, and the optical markers

for the first set, which includes 19 markers, and the second set, which includes

10 markers. The location of the internal target point, displaced by actuators,

was measured for various experiments listed in Table 4.1. To find the corre-

sponding point of exterior points in the simulation framework, the registration

matrix between Vicon’s motion capture coordinate system and the simulation

coordinate system was calculated during calibration. The covariance matrices

for the model and the measurement noises were chosen with trial and error.

The covariance matrix for the process noise is set to the value of 3I because

of the uncertain nature of the model, and the covariance matrix for the mea-

surement noise is set to the value of 0.01I because the Vicon motion capture

system measures with sub-millimetre accuracy.

4.4.1 Comparison Between the Proposed KF-ADDM
Method and the Open-Loop Simulator

To study the effect of the KF-integration on convergence rate, experiments

4,8, 12, and 16, which have the most deformations, are analyzed. The target
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Figure 4.2: Experiment setup. An Aurora electromagnetic (EM) tracker is
used to track the 3D position of targets. Linear actuators push the tissue
phantom made of plastisol. Cameras are used to track facial optic markers
mounted on the surface of the phantom. (a) Setup details including EM sensor,
optic markers, phantom and actuators. (b) The cameras’ configuration.

Figure 4.3: The cut view of the mesh with 2331 tetrahedral elements.
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(a) (b)

Figure 4.4: The layout of breast phantom, actuators, targets, and marker set
1 and 2. (a) Marker set 1. (b) Marker set 2.

Table 4.1: Experiments description.
Experiments List

Experiment Number Active Actuator Actuator Movement (mm)
1 1 5
2 1 10
3 1 15
4 1 20
5 2 5
6 2 10
7 2 15
8 2 20
9 1 and 2 5
10 1 and 2 10
11 1 and 2 15
12 1 and 2 20
13 3 and 4 5
14 3 and 4 10
15 3 and 4 15
16 3 and 4 20
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error, which is the square error between the simulation and experiment results

in the X, Y , and Z directions, are plotted against the number of iterations in

Figure 4.5. Based on the results in Figure 4.5, it is evident that convergence

happens much faster in the proposed KF-ADMM method.

According to Figure 4.5, the convergence in the proposed KF-ADMM

method is achieved after 200 iterations, while the convergence in the open-loop

tissue simulator results occurs after 500 iterations. ADMM has a tail conver-

gence, which means it decreases slowly after a certain number of iterations.

In view of Figure 4.5 in which the rate of decrease significantly decreases after

500 iterations, we consider 500 iterations to be the stopping point for ADMM

algorithms.

Figure 4.5: Error target with respect to the number of iterations for the pro-
posed (ADMM-KF) and the conventional (ADMM) methods using the first
marker set.

4.4.2 The Effect of the Marker Set Size

As feedback for the KF-ADMM method, two sets of markers were used to

investigate the effect of marker numbers on the accuracy and convergence rate

of the KF-ADMM method. A total of 19 markers are included in the first

set, and 10 markers are included in the second one (see Figure 4.4). The
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results of the KF-ADMM method using marker sets 1 and 2 are illustrated in

Figure 4.6. According to Figure 4.6, reducing the number of markers increases

the target error, though the proposed KF-ADMM with fewer markers still

increases the convergence rate and the accuracy compared to ADMM-based

open-loop simulation.

The results of the open-loop ADMM and the KF-ADMM using two sets of

markers are displayed in Figure 4.7. Based on the results represented in Figure

4.7, it is found that the KF-ADMM algorithm reduces the mean target error

to 0.8 mm while the mean target error of the open-loop simulator is 1.7 mm.

By reducing the number of markers, the mean target error of the KF-ADMM

increases to 1.1 mm. The small error of the KF-ADMM method might be due

to KF’s assumption that model uncertainty is a zero-mean Gaussian noise. As

such, KF with the conventional structure cannot compensate for biases.

Figure 4.6: Error target with respect to the number of iterations for the pro-
posed (ADMM-KF) based on the marker set 1 and 2.
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Figure 4.7: Comparison between the accuracy of the proposed and the con-
ventional method for 16 experiments.

4.5 Conclusion

In this chapter, a new method called KF-ADMM is introduced to improve

the performance of the open-loop deformable object simulator (ADMM-based

projective dynamics method). In the KF-ADMM method, a Kalman filter

is incorporated into the ADMM-based projective dynamics to improve the

modelling accuracy by updating the position of internal nodes based on the

surface node positional measurements. This data is easily obtained by us-

ing optic markers. The accuracy of the proposed approach was evaluated by

carrying out several experimental studies on a breast tissue phantom.

The intended application of the proposed KF-ADMM method is in breast

brachytherapy; however, the proposed method can be implemented in any

other applications in which a biomechanical model of the tissue is required.

The advantages of the proposed KF-ADMM over the open-loop simulator are:

1. The KF-ADMM models the nonlinear mechanical behaviour (e.g., hy-

perelasticity), and the experimental results were in agreement with the

model’s prediction.
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2. Because the KF-ADMM solution is parallelizable, this solver is an ideal

choice for real-time computer-assisted surgery applications.

3. The proposed algorithm improved the accuracy of the deformation pre-

diction by 52% on average. Based on the obtained results, the improve-

ment is more pronounced when tissue is extremely deformed.

4. The required iterations to reach convergence is reduced with the pro-

posed KF-ADMM method.

The assumption of zero-mean Gaussian distribution for unmodeled dy-

namics terms is limiting, particularly considering the nonlinearity of tissue

dynamics. In the upcoming chapter, this limitation will be addressed by in-

troducing a Neural-network based approach to update the final mesh of any

physics-based tissue simulator, including ADMM-based FEM.
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Chapter 5

Tissue Deformation
Registration with Deep
Learning1

5.1 Problem Statement

The goal of this chapter is to remove the limitations of KF-ADMM by develop-

ing a sim-to-real module that does not depend on the PBM, and can be used in

conjunction with any mesh-based tissue solver. According to the comparison

between the sim-to-real method and the KF-ADMM, the sim-to-real method

is 45 percent more accurate than the KF-ADMM. The sim-to-real module is

capable of achieving a target tracking accuracy of one millimeter.

5.2 Background

Sim-to-real approaches have been used in physics-based simulators in order to

mitigate model mismatches by incorporating real-world data. Several methods

have been proposed to address the sim-to-real gap, primarily based on two

main categories: 1) simulation parameter inference using real data to make

simulations realistic [6], [60], [64], [83], [92], and 2) residual models that an

auxiliary model attempts to rectify the sim-to-real mismatch[5], [98].

1A version of this chapter has been published as Mehrnoosh Afshar, Jay Carriere, Hos-
sein Rouhani, Tyler Meyer, Ron Sloboda, Siraj Husain, Nawaid Usmani, Mahdi Tavakoli,
”Registration of Deformed Tissue: A GNN-VAE Approach with Data Assimilation for Sim-
to-Real Transfer,” IEEE/ASME Transactions on Mechatronics. 2023
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1) Parameter inference: The authors of [6]formulate state space equations

of deformable objects using distribution representation, which allows for better

incorporation of state observations in Bayesian parameter estimation. In [92]

differentiable point cloud sampling and differentiable simulation are used to

perform simulation parameter inference. The parameter inference approaches

estimates model parameters offline using recorded trajectories, which can be

computationally challenging and limited in usefulness for real-time registration

in surgical applications [6], [60], [64], [83], [92].

2) Residual models: Combining the base model either a physics-based or

off-line learned model with a residual model is also beneficial to resolve the sim-

to-real gap [3], [26], [98], [102]. For complex deformable objects, online learning

a residual model which is data-efficient has been a challenge in the literature.

[98] proposed a linear residual model based on local Jacobian estimation to

rectify the out-put error of a GNN when it is used to predict the state of a cable.

In order to make a Jacobian prediction, it requires access to all states of the

system, and the deformation must be small. Because of these two drawbacks,

local Jacobian learning is not applicable to the entire mesh update in LDR-

PS. The KF-ADMM method, presented in the previous chapter, registers the

simulation output of a physics-based simulator with real data taken from the

surface of the tissue using a Kalman filtering framework. In this work instead of

learning an explicit residual model, the effect of unmodeled dynamics terms is

formulated as zero-mean Gaussian distribution and overcome using a Kalman

filtering framework. zero-mean Gaussian is a restrictive assumption due to the

nonlinearity of tissue dynamics.

In this chapter, the challenge of having a hybrid tissue simulator in order to

address the sim-to-real gap between the simulator and the actual intraopera-

tive behaviour of the tissue has been addressed by proposing an update scheme

based on neural networks and latent-space data assimilation. The sim-to-real

transfer challenge is addressed by formulating the problem as a probabilistic

inference over a low-dimensional representation of deformed objects. The pro-

posed method utilizes a generative variational autoencoder structure based on

graph neural networks (GNN-VAE) to generate a probabilistic low-dimensional
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representation of the outputs of a physics-based simulator. To match simula-

tion data to real data, the resultant low-dimensional distribution (i.e., prior

distribution) is updated iteratively using an Ensemble Smoother with Multi-

ple Data Assimilation (ES-MDA). The advantages of the proposed method are

1) it only uses simulation data for training the GNN-VAE, and no retraining

of GNN-VAE is required intraoperatively, and 2) is able to work with any

physics-based simulator. The proposed framework was verified both in exper-

imental and simulation studies and showed it can reduce the registration error

in tissue deformation.

In summary, the contributions of this chapter are as follows:

1. The deformed meshes obtained from physics-based tissue simulators (such

as FEM) are registered in real-time using deep learning and data assim-

ilation.

2. Through the integration of the data-assimilation method in latent space,

we are able to update the entire mesh structure in a time-effective man-

ner.

3. An ensemble smoother with multiple data assimilation (ES-MDA) is used

to implement the data assimilation and integrate discrete data points

from the tissue surface into simulation results.

4. To enhance the time efficiency of ES-MDA, the standard ensemble gener-

ation and forecast steps are replaced with the forward step of GNN-VAE

networks. This substitution enables faster real-time registration of de-

formed meshes obtained from physics-based tissue simulators.

5. A few discrete measurements on the surface of the deformable tissue

are sufficient for the proposed sim-to-real framework to work since it

does not require observation of the entire tissue. In addition, it is not

necessary to encode measurements separately into the latent space.
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5.3 The Proposed Sim-to-Real Framework

The flowchart of the proposed method is shown in Figure 5.1. In the proposed

method, the output of a physics-based deformable object simulator, which is

chosen to be the Finite Element Method (FEM) in this paper, is the input to

the sim-to-real module. FEM is implemented using the FEBio package, and it

can be replaced with any other tissue simulator. The output of the sim-to-real

module can be used as the input for FEM at the next time step.

The sim-to-real module can be seen as a Data Assimilation (DA) mod-

ule that approximates the true states/parameters of the physical system by

combining real-world observations with a theoretical model. Ensemble-based

methods are among the most successful and efficient techniques currently avail-

able for DA. To alleviate the burden of high-dimensional calculations that

would be necessary, e.g., when updating a large mesh model of soft tissue, DA

must be performed in a lower-dimensional space that still encapsulates the

principal features of the original mesh. This lower-dimensional space is called

the latent space.

In ensemble-based DAmethods, hundreds of realizations of states/parameters

must be generated and fed to the FEM to estimate the prior distributions of

states/parameters at each time step. Instead of generating hundreds of ensem-

bles to replicate the probabilistic characteristics of estimation at each step, we

propose the use of variational auto-encoders (VAE). The use of VAE can sig-

nificantly reduce the computational cost of generating ensembles.

In summary, the sim-to-real module consists of two steps. In the first

step, the distributions of the latent variable associated with the output mesh

of FEM simulation are computed using the GNN-VAE network. The GNN

is used to encode the topology of the mesh as a graph, while the VAE is

used to learn a low-dimensional probabilistic representation of the graph that

captures the variation in the shape of the mesh. Once the GNN-VAE model

is trained, it can be used to generate new meshes with different topologies

from the input mesh. In the second step, the ES-MDA method incorporates

the real-world measurements of the actual tissue surface deformations at each
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time step to update the prior distributions of latent variables and get the

posterior distributions of the latent variables. Finally, the mean of posterior

distribution as the most probable combination of the latent variable is selected

and by feeding it to the pre-trained decoder part of GNN-VAE, an updated

simulated mesh compatible with real-world measurements is constructed.

Figure 5.1: The flowchart of the proposed sim-to-real framework.

In the next section, Graph-neural network Variational Autoencoders (GNN-

VAE) are briefly explained and then the applied DA for sim-to-real using the

Ensemble Smoother with Multiple Data Assimilation (ES-MDA) is explained.

5.3.1 Graph-based Variational Auto-Encoders

The VAE structure is described in this section. Next, the application of Graph

Neural Networks is discussed for the extraction of deformation features from

deformed meshes. Finally, a GNN-VAE network is designed by combining

these two structures.

Variational Auto-Encoders

Autoencoders are a class of unsupervised neural networks that are widely used

for representation learning and dimension reduction.

An autoencoder consists of two components: an encoder and a decoder.

The encoder aims to extract low-dimensional latent features z from the high-

dimensional input data x, whereas the decoder aims to recover the predicted

input data x̂ from the latent features while minimizing the reconstruction
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Figure 5.2: Variational Auto Encoders (VAE) structure.

error. In the VAE structure, a function Eθ(x) receives a sample from x ∼ p(x)

and generates a distribution of latent-variable z, then a function Dθ(z) which

receives a random argument z ∼ p(z) and generates a sample from learned

distribution ˆ︁x ∼ pθ(x | z).
In the proposed framework, x represents a realization of the deformed mesh

(i.e., the output of FEM simulation as it is shown in Fig . 5.1). Training sam-

ples, xi, are available from the generated dataset in terms of a patient-specific

mesh whose mechanical parameters vary in a predefined range and undergo

various force excitations. Thanks to having a generative model, it is easy to

generate new deformed meshes that are distinguishable from the initial out-

put of FEM simulations. After training, by sampling from the multi-variable

learned distribution in the latent space, various meshes can be generated. This

probabilistic distribution is the prior distribution of the FEM simulation. The

objective is to update the prior distribution of latent variables using a data-

assimilation method based on measurements coming from the real tissue and

get the posterior distribution of latent variable and then sample the latent

variables with the highest possibilities (see Figure 5.1).

x ∼ p(x) (5.1)

ˆ︁x ∼ pθ(x | z)
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Graph Neural Networks

In VAE’s structure, Eθ(x) and Dθ(z) are neural networks composed of layers

compatible with data structures. While images and time series belong to Eu-

clidean domains, tetrahedral meshes belong to irregular and non-Euclidean do-

mains that can be represented with graphs. It is not possible to directly apply

ordinary 2D or 3D convolution networks to mesh data due to the irregularities

in local structures in meshes (varying vertex degrees, varying sampling den-

sities, etc.).Graph-neural networks are designed to extract information from

graph data structures. An autoencoder based on spectral convolution layers

and quadric mesh sampling methods called CoMA is proposed by Ranjan et

al. [84]. A new spiral convolution operator was introduced by Bouritsas et

al. in [14], and their Neural3DMM model achieved better accuracy for both

3D aligned face data than CoMA. The CoMA and Neural3DMM models only

work with 2D-manifold meshes. An autoencoder based on spatially variable

convolution kernels has been proposed by Zhou et al. [108], where each ver-

tex has its own convolution kernel. Based on a global kernel weight basis,

a vertex-specific kernel is estimated. As the training process progresses, the

global kernel weight basis, as well as a sampling function for each individ-

ual kernel, are learned. In irregular mesh connections, the spatially-varying

convolutions layer provides efficient means of capturing the spatially-varying

contents. In this paper, the spatially-varying convolution layer and pooling

layer introduced in [108] , are used to build the encoder and decoder of VAE.

Fully Convolutional Graph Layer In a convolutional layer, the input

data is x ∈ RV×d where V is the number of vertices, and d is the dimension of

input data, and produces output data y ∈ RV×d′ where d′ is the dimension of

the output data. A schematic of the convolution operator is shown in Figure

5.3(a). The convolution operator for each vertex of a graph can be calculated

using

yi =
∑︂

xi,j∈N (i)

WT
j xi,j + b. (5.2)
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Due to the uneven distribution of vertices on a mesh, and the different

connectivity between vertices, the same weighting schemes cannot be applied

for each vertex. Each vertex should be able to determine its convolution

weight freely. In [108], a discrete convolution kernel is defined with weights

on a standard grid which is called Weight Basis as shown in Figure 5.3(b).

The vertices of a local region of the mesh scatter within the grid. In (5.3),

the weights at real vertices can be sampled from a Weight Basis via different

functions from vertex to vertex.

Wi,j =
M∑︂

k=1

αi,j,kBk (5.3)

(a) Spatially varying graph
convolutions.

(b) Global weight basis ker-
nel.

Figure 5.3: Graph convolution and global weight basis kernel introduced in
[108].

Pooling Graph Layer In an arbitrary graph, the vertices can be distributed

quite unevenly within the kernel radius, and using max or average pooling does

not perform well. A pooling layer is introduced in [108], which applies Monte

Carlo sampling for feature aggregation as shown in Figure 5.4. In the pooling

layer, the stride is 2 and the radius is 1. The output feature of aggregated

input nodes can be calculated using

yi =
∑︂

j∈N (i)

ρ′i,jxi,j, ρ′i,j =
|ρi,j|∑︁Ei

j=1 |ρi,j|
(5.4)

where ρi,j ∈ R.
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Radius =1

Stride =2

Figure 5.4: Pooling layer on a graph data with radius=1 and stride=2.

5.3.2 The proposed sim-to-real module: Data-Assimilation
with GNN-VAE

This paper aims to propose an approach for updating the output mesh of a

finite element model (FEM) at each time step, based solely on data from the

object surface, without replacing FEM with the complicated temporal deep

network. While the Ensemble Kalman Filter (EnKF) is an effective method

for sequential data assimilation of non-linear systems, it requires learning the

temporal dependency using a complex network, making it unsuitable for our

purpose. Unlike EnKF, Ensemble Smoother (ES) does not assimilate data

sequentially in time. Instead, ES computes a global update by simultaneously

assimilating all data available. However, the accuracy of one-step ES is lim-

ited due to the large step size of ensemble updates. To address this issue, the

authors suggest employing Ensemble Smoother with Multiple Data Assimila-

tion (ES-MDA) [32], which uses an iterative approach based on measurements

at the current step to estimate the values of unknown parameters. ES-MDA

involves assimilating the same data multiple times, with the covariance of

measurement errors multiplied by the number of assimilations, resulting in

improved accuracy.

In the proposed method, the unknown parameters are low-dimensional

latent-space variables, and the relationship between these parameters and the

observations is represented by a forward model, which is the pre-trained de-

coder network of GNN-VAEs. The ES-MDA method updates the estimates of
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the unknown parameters iteratively using the available observations and the

forward model to refine the estimates at each step. This can be used to ac-

curately estimate the values of the latent-space variables that are compatible

with the observations.

This sim-to-real module integrates ES-MDA data assimilation with GNN-

VAE. The following is a summary of the detailed steps of the proposed sim-

to-real module:

1. At each time step, the output of FEM simulation is fed into the sim-to-

real module as it is shown in Figure 5.1 and Figure 5.5.

2. Initialization step of the sim-to-real module: In traditional ES-MDA, ini-

tial ensembles of parameters must be defined based on prior data. How-

ever, in the proposed method, prior ensembles are generated by sampling

from a normal distribution in the latent space,

zi ∼ p(z),

where p(z) = E (xi), and E denotes the encoder network of GNN-VAE.

The number of iterations must then be determined, and the next two

steps are repeated for that number of iterations.

3. Forecast step of the sim-to-real module: The ensemble realization i is

used as input into the forward model, the decoder network of trained

GNN-VAE, which produces an output mesh. The surface points from

the output mesh are selected to produce an ensemble of model prediction

yi at each measurement location,

yni = D (zni ),

where D denotes the forward model which is the decoder network of

GNN-VAE, i is the realization index and n is the iteration index. The

forecast step is shown in Figure 5.5.

4. Update step of the sim-to-real module: Latent-space realizations are up-

dated at each time step using a single set of measurements from that time

step. To enable iterative data assimilation based on one measurement,

the measurement vector is disturbed at each iteration using a noise vector
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multiplied by an inflated covariance error matrix. Inflating the measure-

ment error covariance matrix dampens extreme changes in the model

during early iterations. The difference between the disturbed measure-

ment vector and ensemble predictions is then calculated and weighted

based on the covariance matrices to maximize the likelihood of ensemble

prediction. The update rule can be expressed mathematically using the

following equation [32]

zn+1
i = zni +Cn

zy

(︁
Cn

yy + αnCd

)︁−1

(︂
dobs +

√
αnC

1/2
d ϵni − yni

)︂ (5.5)

where Cd is the user-defined covariance matrix and ϵni is the observation

error at iteration n, which is drawn from a Gaussian distribution N (0, INd
)

which Nd is the number of observations. αn is a coefficient that, at each

iteration n, inflates the measurement error and its covariance matrix. Values

are selected in decreasing order; in this way, the magnitude of the updates for

the first iterations, when there might be a large misfit between predictions and

observations, will be smaller to reduce the magnitude of initial updates; also,

the coefficients αn must satisfy
∑︁Na

n=1
1
αn

= 1 conditions, where Na is the total

number of iterations.

Cn
zy is the cross-covariance matrix between latent-space variables and sur-

face point predictions and Cn
yy is the autocovariance matrix of surface point

predictions. They are computed from the ensemble at each iteration n using

Cn
zy =

1

Ne − 1

Ne∑︂

i=1

(zni − z) (yni − y)T

Cn
yy =

1

Ne − 1

Ne∑︂

i=1

(yni − y) (yni − y)T
(5.6)

where Ne is the total number of ensemble realizations, z is the ensemble

mean of the latent-space variables and y is the ensemble mean of the surface

point predictions.

All steps are elaborated in Algorithm 3.

72



Figure 5.5: The flowchart of the sim-to-real module.
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Algorithm 3: The proposed Real-to-sim algorithm.

Input: Na, Ne , Cd ,α , Pre-trained GNN-VAE, and Input mesh from
FEM: Mt

Output: Updated mesh at time t: M∗
t

for time step t do
Mt ← Output of FEM simulation at time t. Calculate the prior
distribution at time t: pt(z)← E(Mt)
Sample Ne ensembles from pt(z).
while N ≤ Na do

Forecast step:
yni = D (zni )
Update step:

zn+1
i = zni +Cn

zy

(︁
Cn

yy + αnCd

)︁−1

(︂
dobs +

√
αnC

1/2
d ϵni − yni

)︂

where covariance can be calculated using 5.6.
end
Create the updated mesh:
M∗

t = D(mean(z))
end

5.4 Simulation Results

The target application of this paper is breast surgeries and the designed GNN-

VAE for the breast mesh x ∈ R4223×3 is depicted in Figure 5.6. As it is shown

in Figure 5.6, the encoder consists of 3 convolution layers and 3 pooling layers.

Each convolution layer has stride = 2 and radius =1. The details regarding

the GNN-VAE hyperparameters are discussed in Table 5.1. A vector with a

size of 26 is the final latent dimension.

To train the GNN-VAE on simulated data, a dataset consisting of 10,000

deformed meshes obtained from FEM simulations is used. To generate the

dataset, the module of elasticity of tissue is varied in the range of 10-60 Kpa,

while the external force application points including one two point of excitation

and the boundary displacement at contact locations are changed randomly.

Boundary displacements range from 5 mm to 3 cm. The training set consists

of 80%, the test set contains 10%, and the validation set contains 10% of

samples.

The accuracy of the trained network on the test data is 0.024 cm and on
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Figure 5.6: GNN-based VAE structure.
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Table 5.1: Details of the GNN-VAE layers.
Layer Layer output

Convolution (s = 2, r = 1, f = 32) x ∈ R4223×32

Pooling (s = 2, r = 1) x ∈ R811×32

Convolution (s = 2, r = 1, f = 64) x ∈ R811×64

Pooling (s = 2, r = 1) x ∈ R82×64

Convolution (s = 2, r = 1, f = 128) x ∈ R82×128

Pooling (s = 2, r = 1) x ∈ R6×128

Reshape x ∈ R1×768

Encoder

Fully connected (26) x ∈ R1×26

Fully connected (768) x ∈ R1×768

Reshape x ∈ R6×128

Un-Pooling (s = 2, r = 1) x ∈ R82×128

Trans-Convolution (s = 2, r = 1, f = 64) x ∈ R82×64

Un-Pooling (s = 2, r = 1) x ∈ R811×64

Trans-Convolution (s = 2, r = 1, f = 32) x ∈ R811×32

Un-Pooling (s = 2, r = 1) x ∈ R4223×32

Decoder

Trans-Convolution (s = 2, r = 1, f = 3) x ∈ R4223×3

the training data is 0.0205 cm. We selected ten random meshes from the test

dataset as initial meshes in the sim-to-real framework, as well as ten different

random meshes from the test data set as target meshes associated with each

of these initial meshes to determine the effect of the number of ensembles, Ne,

number of update steps Na, and measurement covariance matrix Cd on the

accuracy of sim-to-real registrations.

In Figure 5.7, Na = 5 is fixed and the effect of Ne and Cd are investigated.

Decreasing Cd from 0.1 to 0.001 decreases the average MSE error of the ten

meshes. Also, it is shown in Figure 5.7 that there is not a substantial difference

between Cd = 0.01 and Cd = 0.001. Furthermore, choosing Ne = 10 results in

inferior performance in comparison to Ne = 50 and Ne = 100, but once again

the difference between Ne = 50 and Ne = 100 is not tangible.

In Figure 5.8, Cd = 0.001 is fixed and the effect of Ne and Na are investi-

gated. According to Fig .5.8, increasing Na does not affect the final accuracy

of the sim-to-real registration. However, choosing Na to be less than 5 deteri-

orates the performance of the framework.

Figure 5.9 shows a series of mesh updates between an initial mesh and a

ground truth mesh with Na = 5, Ne = 100, and Cd = 0.001. As it is shown in

Figure 5.9, there is an initial error of 0.73 cm between the initial mesh and the
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Figure 5.7: An investigation of the effect of numeric parameters Cd, and Ne

on sim-to-real framework accuracy.

ground truth (GT) mesh, which decreases to 0.054 cm at the end of sim-to-real

iterations.
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on sim-to-real framework accuracy.
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Ground Truth Mesh

Figure 5.9: sim-to-real updates between an initial mesh and a ground truth
mesh. The MSE error is calculated between each mesh at each step and the
GT mesh.

5.5 Experimental Study and Results

In this section, the performance of the proposed sim-to-real module is validated

in tissue deformation prediction. Experiments on phantom tissue have been

conducted in which markers located on the tissue surface are utilized to track

the tissue surface movements. The experimental setup shown in Figure 5.10

was built. An Aurora electromagnetic (EM) tracker with a Planar 20-20 V2

Field Generator (NDI, Waterloo, Ontario , Canada) was utilized to track the

3D position of a magnetic sensor which was buried inside the tissue phantom as

shown in Figure 5.3. An Optic-track motion capture system with six cameras

was used to track 4mm optic facial markers. The surface of the phantom

was marked with 15 optic facial markers. The motion capture system can

track facial markers with sub-millimetre accuracy after calibration. The force

excitation is linear actuators pushing the breast phantom as shown in Figure

5.3.

In the experiment, we will investigate how much the proposed sim-to-real

module can update FEM simulation using a few measurements from the tissue

surface and the performance is compared with another registration method

called KF-ADMM from [2].

FEM with a Neo-Hookean material model with E = 10Kpa is used for
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Figure 5.10: Experiment setup.
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modelling the tissue deformation as it is being manipulated by linear actuators

in Figure 5.3. ADMM tissue simulation method uses the same mechanical

parameters as FEM, i.e., the Neo-Hookean material model with E = 10Kpa

in the ADMM solver. The tissue has been deformed in two scenarios. In

scenario 1, actuator number one pushes the phantom along the x-axis, and in

scenario 2, actuators simultaneously push the phantom along the x-axis and

y-axis.

The absolute error between the EM sensor measurements and those of

the FEM simulation, as well as the revised predicted trajectory generated

by the proposed sim-to-real method and KF-ADMM method, can be seen

in Figure 5.11 for scenario 1 and Figure 5.12 for scenario 2. Based on Fig-

ure 5.11, the postponed sim-to-real module can reduce prediction error more

than KF-ADMM especially when the deformation is extreme (for example,

when actuators move tissue boundaries by more than 2 cm, the deformation

in tissue phantom is extreme), the proposed method shows better performance

in reducing the prediction error. In Figure 5.12, the deformations are along

two directions, and tissue deformation is more extreme than in scenario 1,

the proposed method is more effective at reducing prediction error than KF-

ADMM. In the current set of experiments, the sim-to-real module reduced

the FEM prediction error by 72% on average and performed 45% better than

KF-ADMM.

5.6 Conclusion

This article addresses the challenge of registering high-dimensional tissue de-

formation models from simulation to reality. In this study, a novel sim-to-

real module was developed for registering a physics-based tissue simulation’s

output to real measurements of deformed tissue. The proposed sim-to-real

modules include graph-based variational auto-encoders (GNN-VAE) and an

ensemble smoother with multiple data assimilation (ES-MDA). To solve the

problem of updating a high-dimensional mesh in real-time for tissue deforma-

tion modelling, it integrates the generative auto-encoder networks for learning
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Figure 5.11: Prediction error before and after registration based on the pro-
posed method and KF-ADMM in scenario 1.

simulation-data distributions and the data-assimilation methods like ES-MDA

for updating the learned distributions with real measurements. The GNN-VAE

is trained on FEM simulation data and does not require retraining. Sim-to-

real reduces the registration error more efficiently than KF-ADMM in extreme

deformations, according to experiments. The method will be tested for more

complex tissue manipulation tasks in the future.
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Figure 5.12: Prediction error before and after registration based on the pro-
posed method and KF-ADMM in scenario 2.
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Chapter 6

Autonomous Ultrasound-probe
Manipulation12

6.1 Problem Statement

As the clinician manipulates the US probe to track the needle tip, they must

make sense of images that are not registered with the guide template while

manipulating the probe to track its position. Since the US probe is held manu-

ally in breast brachytherapy, the template grid is not registered to US images.

Seeds are only deposited relative to the stiff fiducial needle, causing inaccura-

cies and uncertainty. It will be shown in this chapter how to manipulate the

US problem using a robot arm that is able to register the US image with the

grid template point using the robot arm.

6.2 Methodology

The needle imaging can be carried out in the transverse [1], [72] or the sagittal

[23], [45] US imaging plane. The transverse image shows a cross-sectional view

of the needle’s longitudinal axis. The sagittal image can show a portion of this

axis (or all of it if the needle does not undergo any 3D bending). It is simpler

to control the US probe position and orientation to always capture the cross-

1A version of this chapter has been published as Mehrnoosh Afshar, Jay Carriere, Tyler
Meyer, Ron Sloboda, Siraj Husain, Nawaid Usmani, Wanyu Liu, Mahdi Tavakoli, ”Au-
tonomous ultrasound scanning to localize needle tip in breast brachytherapy,” In 2020 In-
ternational Symposium on Medical Robotics (ISMR) 2020 Nov 18 (pp. 202-208).

2REB: Measuring User Performance in Robotic Assisted Needle Insertion in Phantom
Tissue (Pro00070096)
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section of the needle tip in a transverse plane image as opposed to the sagittal

plane [46]. Therefore, in this report, we focus on tracking the needle tip in

transverse images.

Two different US probe control strategies are considered for keeping the

needle tip always visible in transverse US images;

A) Orientation Control: Rotating the US probe around its contact point on

the patient’s body surface for tracking the needle’s tip in the resulting

images;

B) Translational Control: Moving the US probe over the patient’s body

surface while its orientation is aligned with the vector heading toward

the needle tip from the probe contact point to track the needle’s tip in

the resulting images.

In brachytherapy, the needles are inserted through a hole in a square grid

(the guide template) into the tissue. The grid hole defines the insertion axis

for the needle, and it is crucial to reduce the deflection of the needle tip away

from this axis. As the user is inserting the needle, we propose using a visual

overlay of the grid point locations onto the plane of the ultrasound images.

This overlay will aid the user in understanding the deviation of the needle tip

from its desired trajectory, which is coincident with a particular grid point

position because, in brachytherapy, the needles are planned to travel in a

straight line. This situational awareness is expected to enhance the user’s

capability in steering the needle and thus the clinical outcomes.

6.3 Ultrasound probe control

The objectives of the robot controller for the US probe manipulation task are

1. Control of the position and orientation of the US probe to keep the needle

tip always visible in transverse US images,

2. Control of the normal force applied by the US probe on the tissue to

ensure satisfactory US image quality.
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Two coordinate frames will be defined to implement the position and force

control of the US probe. The first one is a fixed or base coordinate frame,

{B}, and the second one is the US probe-affixed coordinate frame, {P}. For

the experiments performed, a flat US probe is used for the experiments, and

the center of the probe frame is located in the middle of the US probe surface.

As discussed previously, for the probe orientation control scenario, the main

objective is to control the orientation of the probe around a remote center of

motion. This remote center of motion is the centre of the region where the

probe contacts tissue, and rotating the probe about this point will be used to

keep the needle tip visible in the images. In the probe translational control

scenario, tracking of the needle tip is done by moving the probe along a line

conforming to the surface of the body to keep the needle tip in the imaging

plane. In both situations, after adjusting the position and orientation of the

ultrasound probe, force control is carried out along the z-axis of the ultrasound

probe, P z.

To implement the orientation and translational control, the desired US

probe coordinate frames need to be calculated. In the following subsections,

the procedure for this is described.

6.3.1 Orientation Control

The middle point on the scanning head surface of the US probe is selected

as the probe center point as shown in Figure 6.1. The desired orientation of

the US probe frame, to enable tracking of the needle tip in the transverse

imaging plane, can be obtained by defining the desired orientation of its z-axis

represented in the base coordinate frame (Figure 6.1). The desired z-axis of

the probe, Bzd, is in the direction of the vector from the center point of the

probe frame, BPc, to the needle tip point, BNt. The US probe should rotate

around its remote center point to align its z-axis with the desired z-axis (both

are represented in the base frame).

To find the Euler angles of the final desired probe frame, the rotation

matrix from the desired probe frame to the base frame, denoted by B
DR, is

required. B
DR can be obtained through the use of screw theory. The screw
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Figure 6.1: The probe frame and the desired probe frame orientation in the
orientation control scenario.

axis, s⃗, that Bz rotates around it and reaches Bzd, can be defined through the

cross product of Bz and Bzd, as

s⃗ =
BZ⃗ ×B Z⃗d⃦⃦

⃦BZ⃗ ×B Z⃗d

⃦⃦
⃦

(6.1)

The angle of rotation, θs, is equal to the angle between Bz and Bzd,

θs = cos−1

⎛
⎝

BZ⃗ ·B Z⃗d⃓⃓
⃓BZ⃗

⃓⃓
⃓
⃓⃓
⃓BZ⃗d

⃓⃓
⃓

⎞
⎠ (6.2)

Having the screw axis and rotation angle, the 3 × 3 rotation matrix from

the desired probe frame to the base frame can be determined using,

Rs⃗,θs =

⎡
⎣

s2x(1− cθs) + cθs sxsy(1− cθs)− szsθs sxsz(1− cθs) + sysθs
sxsy(1− cθs) + szsθs s2y(1− cθs) + cθs sysz(1− cθs)− sxsθs
sxsz(1− cθs)− sysθs sysz(1− cθs) + sxsθs s2z(1− cθs) + cθs

⎤
⎦

(6.3)

where s, and c stand for sin and cos functions respectively. sx, sx, and sx are

the components of s⃗. For any given non-singular rotation matrix, the Euler

angles subsequently can be calculated. The XZY (roll-yaw-pitch) sequence of

Euler angels are used.

Having the final Euler angles for the US probe allows for velocity control

to be done in a way that rotates the probe around its remote center point to

satisfy the desired Euler angles. Force control can be carried out along the

final z-axis of the probe. The full control loop is discussed in the section 6.3.3.
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6.3.2 Translational Control

In the translational control scenario, the probe follows the needle tip by moving

over the breast surface while its orientation is aligned with the vector heading

toward the needle tip from the probe contact point in the US probe imaging

plane. To determine the desired trajectory over the breast surface for the probe

to track, we need to define an intersection between the plane {N}, containing
the axis of needle insertion and the probe contact point, and the breast surface.

This problem can be simplified, for real-time control, to finding the desired

location of the probe corresponding with the current location of the needle tip,

in a piece-wise fashion, instead of finding the whole trajectory.

Based on Figure 6.2, the desired location of the probe, Pd, can be obtained

by finding the intersection between the line perpendicular to the needle axis

is the plane {N}, denoted by LN , and the surface of the breast.

Tissue

Ni

Prependicula line (LN)
Intersec�on Circle

Plane (N)
B
zd

Pd

Needle �p

P
x

P
y

P
z

Figure 6.2: The probe frame and the desired probe position and orientation
in the translational control scenario.

To determine the breast surface function, the points on the surface of the

breast can be captured by any 3D scanner device such as Kinect. The points

captured by the 3D scanner are reported in the frame associated with the

3D scanner, denoted by {S}. As we require the points in the base frame,

a transformation should be applied to the measured data by the 3D scan-

ner, where BP̄ c =C
U TCP̄ c. The breast surface function can be defined as

Bzbreast = fc
(︁
Bxbreast,

B ybreast
)︁
, such that Bzbreast coordinate of the breast sur-

face is a function of two other independent Bxbreastand
Bybreast coordinates.

After registration and finding the function, fc, empirically, the normal vector

at each point can be calculated as we can calculate the partial derivatives
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vectors at every point by

B c⃗x (x, y, z) =

[︃
1, 0,

∂fc(
Bxbreast,

B ybreast)

∂x

]︃⊤

B c⃗y (x, y, z) =

[︃
0, 1,

∂fc(
Bxbreast,

B ybreast)

∂y

]︃⊤ (6.4)

and the cross-product of the these vectors

Bn⃗c (x, y, z) =
B c⃗x (x, y, z)×B c⃗y (x, y, z)
∥B c⃗x (x, y, z)×B c⃗y (x, y, z)∥

(6.5)

result in the normal vector. To find the intersection of line, LN , with the

breast surface, the normal vector of the surface should be aligned with the

unit vector of the line LN . By equating 6.5 and the unit vector of the line LN ,

Bn⃗c (xd, yd, zd) = [Lx, Ly, Lz] (6.6)

the intersection point can be obtained.

The desired orientation of the probe is aligned with the line LN , and the

desired Euler angles are calculated similarly to the Section 6.3.1. To maintain

adequate force contact during ultrasound scanning, the ultrasound probe is

pushed downward on tissue parallel to the Zd direction for both scenarios.

6.3.3 Robot Manipulator Controller Design

After defining the desired Cartesian position and orientation of the probe based

on what has been discussed in Sections 6.3.1 and 6.3.2, the error between

the current probe position, P⃗ probe, the orientation, E⃗probe = [α, β, γ], and the

desired position and orientation are defined as

B e⃗Positions =BP⃗Desired −B P⃗Probe

B e⃗Euler angles =BE⃗Desired −B E⃗Probe

(6.7)

For Cartesian position control, the Cartesian velocity of the probe is given

as control inputs in task space.

BV⃗ Cartesian = KB
1 e⃗Positions +K2

∫︂ t

t0

B e⃗Positionsdt+K3
dB e⃗Positions

dt
(6.8)

Where K1, K2, and K3 are control gains.
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For the orientation control, we desire that the probe rotates around its

contact point. An internal position control loop is implemented to guarantee

that the probe contact point is stationary with the tissue. A block diagram

that explains the orientation control is depicted in Figure 6.3. The angular

velocity control input is provided by the velocity controller as follows

Bω⃗ = G1e⃗Euler angles +G2

∫︂ t

t0

e⃗Euler anglesdt+G3
de⃗Euler angles

dt
(6.9)

Where G1, G2, and G3 are control gains.
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ARM
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Controller

Ed +

Ep -

Ee

Va
Ep

velocity
Controller

Wa Inverse
Jacobain

Desired RCM point
+

-

US probe position(DP)

DP

Figure 6.3: The orientation control loop block diagram.

Having the probe at the desired position and orientation, the contact force

needs to be adjusted by moving the probe downward on the tissue in the

direction of its z-axis. To define the Cartesian velocity in probe z-axis, a

similar velocity controller for force control is implemented, which is shown in

Figure 6.4.

Force
Controller

PANDA 
Robotic Arm

Probe Force
Sensor

Fd +

-Fp

Fe Va FP

Figure 6.4: The force control loop block diagram.

6.4 Grid Points Projection

To project the guide template’s points coordinates that are given in the base

frame on the US probe imaging plane, which should be represented in the US

probe frame; first, the intersections between the guide template’s lines and

the US probe imaging plane are obtained as it is shown in Figure 6.5. The
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intersection points are represented in the base frame; therefore transformation

matrix from the metric base frame to the ultrasound image’s pixel domain is

required. We are using a flat rectangular ultrasound probe that generates a

rectangular image. Therefore, an affine transformation matrix, UBT , is enough

to do the point registration. The general form of UBT is

U
BT =U

B A ·UB B ·UB C (6.10)

where A is a translation matrix from the origin of one frame to another, B is

a rotation matrix that corresponds to the angles between the frames, and C

is a scaling matrix that converts the units of one frame to another. C matrix,

which is responsible for scaling real-word domain coordinates to the image’s

pixel domain, is given by

U
BC =

⎡
⎣

U
Bsx 0 0
0 U

Bsy 0
0 0 U

Bsz

⎤
⎦ (6.11)

where U
Bsx,

U
Bsy ,and U

Bsz are the pixel domain scaling factors is x, y, and z

directions respectively.

Guide
Template

Needle
Hub

Ultrasound
Probe

Imaging Plane

{P}

Projected grid template

points on imaging plane  

{G}

Figure 6.5: Guide template’s points projection on the ultrasound imaging
plane.

6.5 Experimental Study and Results

The US probe is connected to an Axia-Net force/torque sensor (ATI Industrial

Automation, Apex, NC, USA) and is mounted on a Panda robot(Franka Emika

GmbH, Munich, Germany)(see Figure 6.6). The Ultrasonix Touch with a
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4DL14-5/38 Linear 4D transducer (Ultrasonix Corp, Richmond, BC, Canada)

is used to obtain the images. Only the 2D imaging functionality of the ul-

trasound probe is used in these experiments. The panda robot is driven by

position and force controllers. The robot controller is programmed and im-

plemented in Matlab 2019a (The Mathworks Inc, Natwick, MA, USA) and

ran using the Simulink Real-Time environment on an Intel Core i7-3930K

running at 3.20 GHz (Intel Corporation, Santa Clara, CA, USA). The Mi-

cronTracker(Claron Technology Inc, Toronto, Canada) is utilized to track the

location of the needle base in one direction. The biomimetic tissue used in

the experiments is a phantom tissue sample that is created by plastisol (M-F

Manufacturing Co, Fort Worth, USA).

Figure 6.6: Experimental setup with robot, ultrasound probe, force/torque
sensor and phantom tissue.

The experiments include four scenarios to evaluate the assistant effect of

autonomous US scanning and visual projection on the needle’s tip localization.

The Nasa Task Load Index (NASA-TLX) experiment is carried out on five

participants to assess the performance of the proposed robotic system. Those

four scenarios are as follows,

Scenario I) The translational controller will drive the US probe to track the

needle tip during needle insertion, and the grid template points will

project on the US image as well

Scenario II) The needle inserts into tissue without template visual projec-

91



tion, the US probe is driven by the translational controller for needle tip

tracking.

Scenario III) During the needle insertion into the tissue, the orientation

controller drives the US probe to track the needle tip, and the grid

template points will be projected on the US image.

Scenario IV) As the same as scenario II, the needle inserts into tissue with-

out template visual projection, but the US probe is driven by the orien-

tation controller for needle tip tracking.

Through the NASA-TLX evaluation, four criteria are taken into account,

which are the performance, effort, frustration and mental demand of the sys-

tem. In this experiment, performance means how successful the user is in

predicting the approximate location of the needle tip by using the proposed

robotics system. The effort and frustration mean how hard the task is to ac-

complish for the user and how uncertain the user is about the final result of

the task, respectively.

The averaged results for the usability of Scenario I through Scenario IV

are shown in Figure 6.7. Based on the information that is provided in Figure

6.7, the performance of the second scenario (translational probe control with

template visual projection) is higher than in other scenarios. The performance

of the needle tracking and localization increase by template visual projection.

The effort, frustration and mental demand of scenario III are higher than

others. To demonstrate the success of the visual guide template projection

in showing the needle tip deviation from the ideal position, two US images

associated with the cross-section of the tissue at the beginning and the middle

stage of needle insertion are provided in Figure 6.8(a) and Figure 6.8(b).

The green dot in both Figure 6.8(a) and Figure 6.8(b) is associated with

the center point of the guide template. The red circle pinpoints the needle’s

tip in the US image. The needle deviation from its ideal position in Figure

6.8(a) can be easily tracked in Figure 6.8(b).
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Figure 6.7: NASA-TLX results for the four sets of experiments.

(a) (b)

Figure 6.8: The US images captured through the needle insertion. (a) The
US image at the beginning of the needle insertion. (b) The US image at the
middle of the needle insertion.
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6.6 Conclusion

Currently, the control strategy switches between control of position and control

of force. As the needle tip is being tracked, it would be more appropriate if

an impedance controller were developed that considers tissue deformation and

force simultaneously.
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Chapter 7

Conclusions and Future
Directions

7.1 Conclusions

This thesis delves into the field of Assistive Robotic Surgical Systems (ARSS)

development for breast biopsy therapy treatment, with a primary focus on ad-

dressing the challenges associated with intra-operative patient-specific biome-

chanical modelling and active tissue deformation. The goal is to enhance sur-

geon tracking capability which will assist surgeons in achieving precise needle

insertion during procedures as the direct outcome.

In the current clinical practice of breast brachytherapy, there are several

aspects that can greatly benefit from the integration of robotic assistance or

computer guidance. By leveraging these technologies, clinicians can potentially

improve treatment accuracy and efficacy while also reducing the time required

for surgical planning and seed implantation. To tackle these challenges, this

research work has made significant strides in developing Assistive Robotic

Surgical Systems (ARSS) specifically designed for breast brachytherapy. The

development efforts are centred on three key objectives.

Firstly, manipulating the target tissue within the breast is achieved by

employing external indentations to deform the breast. This approach effec-

tively move targets within the workspace of needle. Secondly, real-time tissue

tracking is employed to continuously monitor and keep track of the latest lo-

cation of the target within the breast. This enables the system to adapt and
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adjust its movements accordingly, ensuring accurate targeting and treatment

delivery, although this hypothesis has not been tested in this report, accurate

target tracking would increase the accuracy of treatment delivery as a direct

outcome. Lastly, a dexterous robotic arm is utilized to manipulate the ultra-

sound (US) probe, facilitating optimal positioning and alignment for capturing

the needle tip accurately. This integration of robotic technology enhances the

overall precision and control of the procedure.

This thesis presents an investigation into the utilization of physics-based

simulations to achieve active deformation control of tissue and the adaptive

tracking of internal points within the tissue. In Chapter 3, a Model predictive

controller (MPC) is developed for manipulating target points within the breast,

utilizing a step-wise linearization approach applied to a physics-based tissue

simulator. To enable real-time nonlinear tissue simulation, an optimization-

based Finite Element Method (FEM) is employed, utilizing the Alternating

Direction Method of Multipliers (ADMM) optimizer for the parallel solution of

the optimization problem. The efficacy of the control framework is evaluated

through experiments conducted on phantom tissue. The controller is defined

based on fixed interaction points with the tissue, with the number of interac-

tion points predetermined by the user. For effective manipulation in the x-y

plane, a minimum of 3 or 4 actuators is required, ensuring sufficient movement

capability for the targets. It is demonstrated that the use of 4 actuators results

in reduced tissue deformation, as they provide enhanced manipulation capa-

bilities. Notably, controlling the target along the z-direction solely by pushing

the tissue is not applicable and requires additional considerations.

In Chapter 3, the MPC controller is designed but relies on direct mea-

surements from internal target points, which can be challenging to obtain.

To address this limitation, Chapters 4 and 5 focus on developing methods

for tracking internal points without the need for sensors located inside the

tissue. While pre-operative biomechanical models are valuable, they are not

sufficient on their own due to the inherent mismatch between simulation and

reality. Hence, strategies for intraoperative model updates are developed to

account for model deficiencies. In Chapter 4, a closed-loop solver called KF-
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ADMM is proposed by integrating the ADMM-based FEM with the Kalman

Filter. This integration utilizes surface point measurements to update the

predictions of the ADMM-based FEM. Experimental results demonstrate that

KF-ADMM achieves faster convergence and enhanced accuracy compared to

ADMM-based FEM alone. However, computational limitations restrict the

use of more complex versions of the Kalman Filter, as the computational cost

for a high-dimensional system like discrete tissue becomes impractical for the

intended purposes. Therefore, KF-ADMM’s corrective capability is limited,

and the developed ADMM-KF is specific to the ADMM-based FEM tissue

simulator.

Chapter 5 of the thesis introduces a sim-to-real scheme that addresses the

limitations of the Kalman Filter (KF). The proposed scheme utilizes a Graph

Neural Network Variational Autoencoder (GNN-VAE), a deep neural network,

to reduce the dimensionality of the input mesh. By enabling nonlinear updates

based on surface feedback, the reduced mesh enhances the KF-ADMM’s cor-

rective capability. The GNN-VAE serves as a generative model that learns the

underlying distribution of the data, allowing for the generation of new meshes

by exploring within the learned probabilistic dataset. It is designed to reduce

the dimension of the input graph with 4223 nodes to 6 nodes using a Graph

neural network variational autoencoder. The GNN-VAE is patient-specific

and needs to be trained based on each patient’s geometry. Instead of using

Kalman filtering methods, the thesis employs an Ensemble Smoother (ES)

method, specifically the Ensemble Smoother with Multiple Data Assimilation

(ES-MDA), which enables simultaneous updates using all measurements in a

single step without the need for sequential updates over time. The ES-MDA

updates the reduced mesh based on surface feedback from the tissue. Exper-

imental comparisons between the sim-to-real scheme proposed in Chapter 5

and the KF-ADMM introduced in Chapter 4 demonstrate the superior predic-

tion accuracy of the sim-to-real module. The sim-to-real module achieves an

improvement over KF-ADMM in terms of prediction accuracy, showcasing its

effectiveness in addressing the limitations of the KF.

Another aspect in which ARSS can be helpful for breast brachytherapy is
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the autonomous manipulation of an Ultrasound probe. Chapter 6 presented

the development of the robotic framework for US probe manipulation using

the Panda robotic arm to help the clinician with localizing and tracking the

needle tip. Two strategies to manipulate the US probe in synchrony with the

needle tip motion were proposed and implemented. As the needle is inserted

by the human user, in order to depict the needle tip’s deviation from its ideal

path for the human user, the ideal needle tip position, which is coincident

with one of the guide template’s grid points, was dynamically projected on

the US image in a real-time fashion. The conducted feasibility study proved

the ability of the proposed robotic system to track the needle tip accurately

and the helpfulness of the image overlay scheme for guiding the user about the

needle tip motion.

7.2 Future research directions

The goal of future works will be to consider a more realistic clinical scenario,

starting from a heterogeneous tissue phantom and then moving to ex-vivo set-

tings. In terms of task, we will tackle the autonomous execution of needle

and tissue at the same time. This requires modelling needle-tissue interaction.

First of all, moving to a more realistic setup and task will introduce some chal-

lenges in the design of a simulated environment with the required features, i.e.

able to achieve high accuracy, while guaranteeing computational performance

compatible with the execution workflow. ADMM-based FEM has not been

tested for robustness in situations where the needle is involved in the simu-

lation. Although it is desirable to have a simulation running in real-time for

such a purpose, it will still be acceptable if the simulation can provide feedback

at a lower rate with respect to the main execution loop. However, we expect

that more optimized solution methods and/or formulations will be needed as

soon as more complex interactions are involved, e.g. topological modifications

arising in the case of needle insertion, which would increase the computational

burden of the simulation.

Currently, tissue manipulation presented in Chapter 3, relies on a step-
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wise linearized model of tissue dynamics. The next step will be to develop

a nonlinear MPC to manipulate the breast shape in order to investigate the

performance of NMPC in comparison to the current MPC. To make the com-

putational applicable for real-time situations, still a reduced model of tissue

dynamic should be considered and this might compromise the performance of

NMPC that needs more investigation. The reduced-order model (ROM) of

the tissue dynamics will be developed by using the Proper Orthogonal Mode

Decomposition (POD) method in order to address the issue of high dimension-

ality. Then, a Nonlinear MPC (NMPC) controller based on the ROM system

will be developed.

At present, the GNN-VAE in the sim-to-real module presented in Chapter

5 represents a patient-specific model that can handle a single anatomy. Gener-

alization to a new geometry is already possible but requires re-training of the

network with a new geometry-specific dataset. Therefore, as an initial step,

we will make the network able to deal with any input geometry. The second

aspect that requires investigation is the possibility to model complex interac-

tions and topological modifications. At the moment, the GNN-VAE requires

a fixed and regular grid as input.

For the autonomous needle tip tracking proposed in Chapter 6, the US

probe should move over the breast surface to capture the needle tip immedi-

ately after needle insertion begins. The effect of tissue deformation has not

been considered in the trajectory generation scheme. With the help of the

biomechanical model the deformation of the tissue can be considered in probe

path planning to make sure as it follows the needle tip, it is considered the

deformation as well. Instead of position/force control, an impedance controller

will be developed which makes the interaction with tissue more compliant.
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al., “A finite element-based machine learning approach for modeling
the mechanical behavior of the breast tissues under compression in
real-time,” Computers in biology and medicine, vol. 90, pp. 116–124,
2017.

[69] K. Masuda, E. Kimura, N. Tateishi, and K. Ishihara, “Three dimen-
sional motion mechanism of ultrasound probe and its application for
tele-echography system,” in Proceedings 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Expanding the Societal
Role of Robotics in the the Next Millennium (Cat. No. 01CH37180),
IEEE, vol. 2, 2001, pp. 1112–1116.

[70] K. Miller, G. Joldes, D. Lance, and A. Wittek, “Total lagrangian ex-
plicit dynamics finite element algorithm for computing soft tissue defor-
mation,” Communications in numerical methods in engineering, vol. 23,
no. 2, pp. 121–134, 2007.

[71] M. Mitsuishi, S. Warisawa, T. Tsuda, et al., “Remote ultrasound diag-
nostic system,” in Proceedings 2001 ICRA. IEEE International Confer-
ence on Robotics and Automation (Cat. No. 01CH37164), IEEE, vol. 2,
2001, pp. 1567–1574.

[72] P. Moreira and S. Misra, “Biomechanics-based curvature estimation for
ultrasound-guided flexible needle steering in biological tissues,” Annals
of biomedical engineering, vol. 43, pp. 1716–1726, 2015.

[73] K. Morooka, X. Chen, R. Kurazume, et al., “Real-time nonlinear fem
with neural network for simulating soft organ model deformation,” in
Medical Image Computing and Computer-Assisted Intervention–MICCAI
2008: 11th International Conference, New York, NY, USA, September
6-10, 2008, Proceedings, Part II 11, Springer, 2008, pp. 742–749.

[74] D. Morton, D. Batchelar, M. Hilts, T. Berrang, and J. Crook, “Incor-
porating three-dimensional ultrasound into permanent breast seed im-
plant brachytherapy treatment planning,” Brachytherapy, vol. 16, no. 1,
pp. 167–173, 2017.

106



[75] M. Müller, B. Heidelberger, M. Teschner, and M. Gross, “Meshless
deformations based on shape matching,” ACM transactions on graphics
(TOG), vol. 24, no. 3, pp. 471–478, 2005.

[76] S. Okazawa, R. Ebrahimi, J. Chuang, S. Salcudean, and R. Rohling,
“Hand-held steerable needle device,” IEEE/ASME Transactions on
Mechatronics, vol. 10, no. 3, pp. 285–296, 2005. doi: 10.1109/TMECH.
2005.848300.

[77] M. N. Omar and Y. Zhong, “A review of mass spring method improve-
ments for modeling soft tissue deformation,” Human-Centered Technol-
ogy for a Better Tomorrow: Proceedings of HUMENS 2021, pp. 203–
215, 2021.

[78] M. Overby, G. E. Brown, J. Li, and R. Narain, “Admm : Projective
dynamics: Fast simulation of hyperelastic models with dynamic con-
straints,” IEEE Transactions on Visualization and Computer Graphics,
vol. 23, no. 10, pp. 2222–2234, 2017.

[79] M. Pfeiffer, C. Riediger, J. Weitz, and S. Speidel, “Learning soft tis-
sue behavior of organs for surgical navigation with convolutional neu-
ral networks,” International journal of computer assisted radiology and
surgery, vol. 14, no. 7, pp. 1147–1155, 2019.

[80] R. Phellan, B. Hachem, J. Clin, J.-M. Mac-Thiong, and L. Duong,
“Real-time biomechanics using the finite element method and machine
learning: Review and perspective,” Medical Physics, vol. 48, no. 1,
pp. 7–18, 2021.

[81] J.-P. Pignol, B. Keller, E. Rakovitch, R. Sankreacha, H. Easton, and
W. Que, “First report of a permanent breast 103pd seed implant as
adjuvant radiation treatment for early-stage breast cancer,” Interna-
tional Journal of Radiation Oncology* Biology* Physics, vol. 64, no. 1,
pp. 176–181, 2006.

[82] R. Plantefeve, I. Peterlik, N. Haouchine, and S. Cotin, “Patient-specific
biomechanical modeling for guidance during minimally-invasive hepatic
surgery,” Annals of biomedical engineering, vol. 44, pp. 139–153, 2016.

[83] F. Ramos, R. C. Possas, and D. Fox, “Bayessim: Adaptive domain
randomization via probabilistic inference for robotics simulators,” arXiv
preprint arXiv:1906.01728, 2019.

[84] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black, “Generating 3d faces
using convolutional mesh autoencoders,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 704–720.

[85] P. L. Roberson, V. Narayana, D. L. McShan, R. J. Winfield, and P. W.
McLaughlin, “Source placement error for permanent implant of the
prostate,” Medical physics, vol. 24, no. 2, pp. 251–257, 1997.

107



[86] J. Rosen, J. D. Brown, L. Chang, M. Barreca, M. Sinanan, and B.
Hannaford, “The bluedragon-a system for measuring the kinematics
and dynamics of minimally invasive surgical tools in-vivo,” in Proceed-
ings 2002 IEEE International Conference on Robotics and Automation
(Cat. No. 02CH37292), IEEE, vol. 2, 2002, pp. 1876–1881.

[87] C. Rossa and M. Tavakoli, “Issues in closed-loop needle steering,” Con-
trol Engineering Practice, vol. 62, pp. 55–69, 2017.

[88] S. E. Salcudean, W. H. Zhu, P. Abolmaesumi, S. Bachmann, and P. D.
Lawrence, “A robot system for medical ultrasound,” in Robotics Re-
search, Springer, 2000, pp. 195–202.

[89] A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and
pathological human breast tissues: An inversion-technique-based inves-
tigation of 169 samples,” Physics in medicine & biology, vol. 52, no. 6,
p. 1565, 2007.

[90] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics,
2021,” en, CA Cancer J. Clin., vol. 71, no. 1, pp. 7–33, Jan. 2021.

[91] J. Song, J. Wang, L. Zhao, S. Huang, and G. Dissanayake, “Dynamic
reconstruction of deformable soft-tissue with stereo scope in minimal
invasive surgery,” IEEE Robotics and Automation Letters, vol. 3, no. 1,
pp. 155–162, 2017.

[92] P. Sundaresan, R. Antonova, and J. Bohgl, “Diffcloud: Real-to-sim from
point clouds with differentiable simulation and rendering of deformable
objects,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2022, pp. 10 828–10 835.

[93] R. Taschereau, J. Pouliot, J. Roy, and D. Tremblay, “Seed misplacement
and stabilizing needles in transperineal permanent prostate implants,”
Radiotherapy and Oncology, vol. 55, no. 1, pp. 59–63, 2000.

[94] M. Tavakoli, R. Patel, and M. Moallem, “A haptic interface for computer-
integrated endoscopic surgery and training,” Virtual Reality (Special
Issue on Haptic Interfaces and Applications), vol. 9, no. 2-3, pp. 160–
176, 2006.

[95] M. Torabi, K. Hauser, R. Alterovitz, V. Duindam, and K. Goldberg,
“Guiding medical needles using single-point tissue manipulation,” in
2009 IEEE International Conference on Robotics and Automation, IEEE,
2009, pp. 2705–2710.

[96] T. Wada, S. Hirai, S. Kawamura, and N. Kamiji, “Robust manipulation
of deformable objects by a simple pid feedback,” in Proceedings 2001
ICRA. IEEE International Conference on Robotics and Automation
(Cat. No.01CH37164), vol. 1, 2001, 85–90 vol.1.

108



[97] G. Wan, Z. Wei, L. Gardi, D. B. Downey, and A. Fenster, “Brachyther-
apy needle deflection evaluation and correction,”Medical physics, vol. 32,
no. 4, pp. 902–909, 2005.

[98] C. Wang, Y. Zhang, X. Zhang, et al., “Offline-online learning of de-
formation model for cable manipulation with graph neural networks,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5544–5551,
2022.

[99] U. Yamamoto, M. Nakao, M. Ohzeki, and T. Matsuda, “Deformation
estimation of an elastic object by partial observation using a neural
network,” arXiv preprint arXiv:1711.10157, 2017.

[100] M. C. Yip, D. G. Lowe, S. E. Salcudean, R. N. Rohling, and C. Y.
Nguan, “Tissue tracking and registration for image-guided surgery,”
IEEE transactions on medical imaging, vol. 31, no. 11, pp. 2169–2182,
2012.

[101] W. C. Young, R. G. Budynas, et al., Roark’s formulas for stress and
strain. 2002, vol. 7.

[102] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” IEEE
Transactions on Robotics, vol. 36, no. 4, pp. 1307–1319, 2020.

[103] T. Zhang, D. Navarro-Alarcon, K. W. Ng, M. K. Chow, Y.-h. Liu, and
H. L. Chung, “A novel palm-shape breast deformation robot for mri-
guided biopsy,” in 2016 IEEE International Conference on Robotics
and Biomimetics (ROBIO), 2016, pp. 527–532. doi: 10.1109/ROBIO.
2016.7866376.

[104] W. Zhang, Y. Zhang, and Y. Liu, “Design and control of a bionic needle
puncture robot,” The International Journal of Medical Robotics and
Computer Assisted Surgery, vol. 17, no. 2, e2200, 2021.

[105] Y. Zhang, Z. Yuan, Y. Ding, J. Zhao, Z. Duan, and M. Sun, “Real
time simulation of tissue cutting based on gpu and cuda for surgical
training,” in 2010 International Conference on Biomedical Engineering
and Computer Science, IEEE, 2010, pp. 1–4.

[106] Z. Zhang, J. Dequidt, A. Kruszewski, F. Largilliere, and C. Duriez,
“Kinematic modeling and observer based control of soft robot using
real-time finite element method,” in 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), IEEE, 2016, pp. 5509–
5514.

[107] F. Zhong, Y. Wang, Z. Wang, and Y. Liu, “Dual-arm robotic needle in-
sertion with active tissue deformation for autonomous suturing,” IEEE
Robotics and Automation Letters, vol. 4, no. 3, pp. 2669–2676, 2019.

109



[108] Y. Zhou, C. Wu, Z. Li, et al., “Fully convolutional mesh autoencoder us-
ing efficient spatially varying kernels,” Advances in neural information
processing systems, vol. 33, pp. 9251–9262, 2020.

110



Appendix A

Spherical Remote Center Of
Motion Mechanism1

A.1 Introduction

The employment of robots and mechanisms in medical applications such as

surgeries and therapies offers benefits including high accuracy, repeatability,

and remote accessibility. One of the specific applications where robots are

used in medical procedures is ultrasound imaging with robots. In standard

practice, the ultrasound probe is manipulated by a physician. The experi-

ence and knowledge of the physician directly influence the ultrasound image

quality. Physicians find it difficult to hold an ultrasound transducer for a long

period of time in a fixed position and apply a proper perpendicular force to the

patient’s body in order to obtain a high-quality ultrasound image. Therefore,

one of our motivations is to design a system to support the human-assisted

ultrasound examination to avoid musculoskeletal injuries prevalent among ul-

trasound technicians.

In this paper, we propose the design of a spherical Remote Center of Motion

RCM mechanism to be used as a breast ultrasound scanning probe holder. An

ultrasound probe can be attached to the proposed spherical RCM mechanism,

where the hemispherical workspace of the RCM will allow for straightforward

1A version of this chapter has been presented as Mehrnoosh Afshar, Jay Carriere, Tyler
Meyer, Ron Sloboda, Siraj Husain, Nawaid Usmani, Mahdi Tavakoli, ”Optimal design of a
novel spherical scissor linkage remote center of motion mechanism for medical robotics,” In
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020
Jan 1 (pp. 6459-6465).
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scanning of a patient’s breast at any desired angle. The main design require-

ments for the spherical RCM mechanism are as follows:

1. The workspace of the proposed mechanism should cover a full hemi-

sphere.

2. The proposed mechanism should not have any internal singularities within

the workspace.

3. For the sake of simplicity in manipulation and control, the degrees of

freedom of the mechanism should be decoupled.

4. The total stiffness of the mechanism should be high in order to guarantee

ultrasound positioning accuracy in the presence of robot/tissue contact.

To achieve these requirements, an RCM mechanism which is built upon a

spherical scissors linkage will be devised. The suggested mechanism has two

decoupled rotational DoFs and an RCM located outside the mechanism. The

proposed RCMmechanism can provide a complete hemisphere workspace with-

out any singularities within the workspace. This mechanism can be motorized

and has the advantage that the motors stay in a fixed position on the mecha-

nism base (i.e. the motors do not move with the links).

Studies demonstrate that the conical workspace, provided by an RCM, with

vertex angles of 60◦ and 90◦ degrees suffices for most procedures in minimally

invasive surgery (MIS) [66]. The positioning of the RCM mechanism is critical

when a limited workspace is provided, and a user has to move and adjust

the position of the RCM mechanism when a surgeon needs to operate from

multiple directions around the patient’s body. An RCM mechanism with a

large workspace, like a hemisphere/sphere, is able to mitigate the necessity

for RCM repositioning during the operation. Therefore, another motivation

for this paper is to design an RCM mechanism that has a larger workspace,

covering an entire hemisphere.

This chapter is organized as follows: Background material will be reviewed

in Section A.2. Mechanism design and kinematics will be presented in Sec-

tions A.3 and A.3.1. An analytic stiffness derivation and the isotropy will be
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discussed in Sections A.4 and A.5, respectively. Further analysis and design

optimization will be elaborated in Section A.6. Prototype design and exper-

imental evaluation will be presented in Section A.7, and the paper will be

completed by a conclusion in Section A.8.

A.2 Background

Generally, RCM mechanisms can be classified into several basic categories

based on their kinematics [56]. The eight kinematic categories include isocen-

ters, parallelograms, circular tracking arcs, synchronous belt transmission mech-

anisms, spherical linkages, parallel manipulators, compliant mechanisms, and

passive RCMs [56]. Among those categories, parallelograms and parallel spher-

ical linkages have gained the most popularity in the literature.

Most of the studies on RCM mechanisms have focused on MIS robots, in

which designed laparoscopic instruments need to undergo spherical motions

pivoted at the point of entry into the patient’s body [94]. For ultrasound

imaging assistance, RCM mechanisms are typically employed as dexterous

robotic wrists, where the tip of the ultrasound probe is placed at the RCM

point of the mechanism; however, when an RCM mechanism is intended to be

used as a probe holder for ultrasound breast examination, the probe needs to

have a spherical motion centred at the breast center. Many works have been

conducted to utilize robotic platforms for breast examination [21], however,

an RCM mechanism has never been developed specifically for this application.

Many of the MIS robots have been built upon primary parallelogram mech-

anisms including Neurobot [28], and BlueDRAGON [86]. The authors in [88]

proposed a rotating pantograph, generating a conical workspace for ultrasound

scanning. A three DoFs movable robot, which works based on a parallel pan-

tograph and a gimbal mechanism and should be mounted on the patient’s

body, is designed in [69]. Three degrees of freedom in this robot are coupled

together and in order to reach a specific configuration, all joints should move

together in a controlled manner. Additional configurations of parallelogram

such as dual triangular-mechanism [62] and a combination of a dual parallel-
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ogram and Peaucellier-Lipkin straight-line linkage [25] have been developed.

Parallelogram-based RCM mechanisms have the drawback of linkage collision

and workspace-boundary singularity. To avoid collision between the two trans-

verse bars of the parallelogram, the bars should be mounted far enough from

each other, which increases the RCM mechanism size.

Two other categories of RCM mechanisms, spherical and circular track-

ing arc mechanisms, benefit from the geometric features of sphere and circle,

respectively. Circular tracking-based RCM mechanisms have the ability to

provide a relatively large workspace and high mechanism stiffness. A limita-

tion of circular tracking-based RCM mechanisms is that the arced links must

be very large in order to maintain an acceptable distance between the desired

RCM location and robot links to guarantee that robot does not confine the

surgeon’s workspace during the operation. An RCM mechanism comprising

circular guides linked together in a serial arrangement was constructed in [71].

The bulkiness of the system is one of its main drawbacks.

In spherical mechanisms, linkages are spherical sections with a common ro-

tation center being the RCM point. Spherical RCM mechanisms exist in both

serial and parallel configurations. Cures [50] and Raven-II [41] are RCM robots

that adopted the concept of serial spherical linkages in their structure. A se-

rial spherical linkage by mounting a two-revolute joint spherical mechanism

on a circular guide is developed in [66]. The arc angle of each spherical link in

[66] was derived through an optimization problem with the aim of maximizing

the manipulability index while preserving the compactness of the system. In

this work, the parallel configuration of the mechanism was also investigated.

In-vivo suturing and tissue manipulation experiments were used to assess the

rate of collision problem in a serial and parallel configuration; higher collisions

were reported for the parallel configuration[66].

One concern that exists for spherical serial manipulators is their low stiff-

ness; however, parallel manipulators have shown superiority in stiffness and

precision in comparison to their serial counterparts.

A three-limb spherical RCM mechanism utilizing prismatic joints (3PRP)

was developed in [8]. The complicated structure of these mechanisms, which
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consists of at least three limbs, leads to linkage interferences and an internal

singularity if the limbs are not sufficiently long. Additionally, these 3-limb

mechanisms cannot cover an entire hemisphere. A 2-DoF spherical parallel

mechanism in [20] can provide the standard cone workspace without inter-

ference and singularity in a compact and simple form. Again, however, the

workspace of this mechanism is limited to a cone. Our proposed mechanism,

which can be categorized as a parallel spherical mechanism, is able to suf-

ficiently provide a hemispherical workspace without internal singularity and

with the required stiffness for medical purposes.

A.3 Mechanism Design and Kinematics

In this section, first, the main conceptual design and embodiment of the mech-

anism will be represented. Secondly, the kinematics of the proposed spherical

mechanism, in which the individual link compliance is taken into account, is

introduced.

Stage 1

Stage 2

Stage 3

Stage 4

RCM point

RCM point

β

Θmax

Figure A.1: Model of the mechanism with four stages. a) Initial configuration.
b) Final configuration.
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A.3.1 Forward Kinematics

One of the most important performance indicators of manipulators is their

mechanical stiffness. The mechanical stiffness of the manipulator defines the

amount of deflection with respect to external force/torque exerted on the end-

effector. The higher the mechanical stiffness of a manipulator, the lower its po-

sitioning error under load. Low positioning error is crucial in medical robotics;

hence, the mechanical stiffness of the robot should be high. To model the

manipulator stiffness, we will use the Virtual Joint Method (VJM), which is

regarded as a computationally efficient approach and is generally used in the

pre-design stage.

In VJM, elastic deformations of links and joints are modelled using virtual

springs located at joints. The axis of the virtual spring at each joint is normal

to the link’s bending plane. To simplify VJM implementation and derivation

of the governing kinematics for the proposed mechanism, a distinction will be

made between a) actuated joints, b) virtual joints and c) passive joints.

1. Actuated joints: For the proposed mechanism, we only need 2 DoFs (two

actuated joints) to cover our desired hemispherical workspace. The first

actuated joint, Θ1, controls the relative angle between the two curved

links in stage one of the mechanism, which provides a circular planar

motion for the mechanism. The second actuated joint, Θ0, rotates the

entire mechanism along the common axis of the mechanism and provides

3D motion of the mechanism (Figure A.2). Activation for Θ1 and Θ0 can

be provided either by motors placed at those joints, or by a user moving

the end-effector on a sphere. 2

2. Virtual joints: Each flexible link is substituted by a rigid link, which is

connected to the previous link by a torsion spring. The joint parameters

corresponding to virtual springs are called virtual joints.

3. Passive joints: All other joints in the mechanism structure, which are

driven by actuated joints are called passive joints.

2https://youtu.be/wxHEEwwRnGU
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The forward kinematics will be derived based on the Denavit-Hartenberg (DH)

convention. The DH parameters of the actuated and virtual joints, as general-

ized coordinates, contribute to the forward kinematics equations. The passive

joint parameters can be calculated based on actuated and virtual joint pa-

rameters using analytical equations. Following the conventional approach for

the forward kinematic analysis of closed-loop mechanisms, the mechanism is

separated into two branches, where the right and left branches are depicted in

Figure A.2. There is a repetitive pattern for DH parameters between stages

of the mechanism. The DH parameters for the first stage of the left branch

links are summarized in Table A.1, and the generic DH parameters for the

other stages of the left branch links are summarized in Table A.2. Due to the

symmetry of the mechanism, the angles θi and αi of the right branch are equal

to the negative of those for the left branch, and the lengths ai and di are equal

for both branches. The link frames and virtual frames of the links associated

with the left branch and the first stage of the mechanism are illustrated in

Figure A.3. In Figure A.3, red frames represent the real link frames (similar

to those for the usual rigid mechanism), and blue frames indicate the virtual

frames associated with each virtual spring, which are shown. For more illus-

tration about θi parameters in Table A.1, each θi, which is the angle between

xi−1 and xi along zi, is shown in detail in Figure A.3.

format = hang

Table A.1: Denavit-Hartenberg for the links of the first stage of the mechanism
from the left branch.

Links θi αi ai di
1 Θ0 0 0 0
2 −Θ1 0 0 0

3 β + γ1
−π
2

0 0

4 ψ1
π
2

R3sin(β) R3 −R3cos(β)

5 β + γ2
−π
2

0 0

6 −2Θ1
π
2

R5sin(β) R5 −R5cos(β)

In Table A.1, R3 and R5 are the distances between the RCM point and

the centers of the 3th and 5th links, respectively. β is the arc angle that is

common to all links. ψ1 is the rotation angle (Figure A.3), which is a passive

angle and should be found based on Θ1,β ,γ1, and γ2. In Table A.2, s is the
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Figure A.2: Partitioning and links labeling of left/right branches in the mech-
anism.
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Figure A.3: Description of left branch’s links in terms of Denavit–Hartenberg
parameters.

118



Table A.2: Denavit-Hartenberg for the links of the other stages of the mecha-
nism from the left branch

Links θi αi ai di
4(s− 1) + 3 β + γ2(s−1)+1

−π
2

0 0

4(s− 1) + 4 ψs
π
2

R4(s−1)+3sin(β) R4(s−1)+3 −R4(s−1)+3cos(β)

4(s− 1) + 5 β + γ2(s−1)+2
−π
2

0 0

4(s− 1) + 6 −2Θ1
π
2

R4(s−1)+5sin(β) R4(s−1)+5 −R4(s−1)+5cos(β)

stage number of the mechanism. To find ψi in each stage, we will consider the

standard homogeneous transformation for the left branch LTn and the right

branch RTn of the mechanism separately where,

RT 0
n(θ) =

RT 0
1 (θ1)

RT 1
2 (θ2) . . .

RT n−1
n (θn)

=

[︃
RR0

n
RP 0

n

0T 1

]︃
(A.1)

LT 0
n(θ) =

LT 0
1 (θ1)

LT 1
2 (θ2) . . .

LT n−1
n (θn)

=

[︃
LR0

n
LP 0

n

0T 1

]︃
(A.2)

Given that the end-effector position in both the left and right branches in

each stage must be equal, i.e. RP 0
n ≡ LP 0

n , an analytic formula to derive ψi

can be found as

ψi = cos−1(
a1,i

√︂
a21,i + a22,i − a23,i + a2,ia3,i

a21,i + a22,i
) (A.3)

where

a1,i = cot(Θ1), a2,i = cos(β + γi), a3,i = − cot(β + γi+1) sin(β + γi) (A.4)

such that, γi is the DH parameter for virtual links (i.e. virtual springs ) in

each stage and β is arc angle of links.

A.4 Mechanical Stiffness

In order to derive the stiffness equation, we need to analytically develop

kinemato-static set of equations. The nonlinear kinematic equation is given

by

119



p = f(θ, γ) (A.5)

Here, vector p represents the position/orientation of the end-effector in the

Cartesian space. Vectors θ and γ contain the actuated and the virtual joint

coordinates, respectively. From (A.5), we can get

δp = Jθδθ + Jγδγ (A.6)

where δγ is the virtual angular displacement due to the bending of links

from a nominal static position and δθ is the virtual angular displacement of

the actuated joints. Jθ and Jγ are the kinematic Jacobin with respect to θ and

γ coordinates, respectively.

A kinemato-static model can be developed based on the principle of virtual

work in equilibrium static conditions. The equation

F T δp− τTγ δγ − τTθ δθ = 0 (A.7)

explains the static equilibrium equations extracted from the virtual work

principle. Here, F is the external force exerted on the end-effector. τγ is the

reaction torque in the γ coordinates and τθ is the actuator’s torques in the θ

coordinates. Putting (A.6) into (A.7) results in

F TJγ = τTγ

F TJθ = τTθ
(A.8)

An auxiliary torque-angular displacement equation, from Hooke’s law for

virtual coordinates, γ, governs the virtual coordinates:

τγ = Kγδγ (A.9)

Kγ is the stiffness matrix in the virtual joint coordinates. Given an external

force F and the desired end-effector position p, the mechanism configuration

(θ, γ) must be derived from the following system of nonlinear equations:

p = f(θ⃗, γ)

JTγ F = Kγδγ
(A.10)
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In (A.10), the first equation describes the nonlinear kinematic equation and

the second equation describes the relationship between the applied force to the

virtual joints with the angular deflections of virtual joints based on Hooke’s

law. As an inverse-kinematics problem, (A.10) is required to be solved numer-

ically. Despite the non-linearity of (A.10), the linear stiffness matrix is much

more desirable for design purposes. Therefore, we perform the linearization

for the model around θ coordinates. As we intend to extract the part of end-

effector displacement that is resulting from the link’s deflection, we assume

that δθ = 0. Then

JTγ F = Kγδγ = KγJ
T
γ δγ (A.11)

rearrangement of (A.11) results in

F = JγKγJ
T
γ δγ (A.12)

where

Kc = JγKγJ
T
γ (A.13)

represents the Cartesian stiffness of the manipulator (Kc). Kγ, is the equiv-

alent stiffness of a curved flexible beam which is subjected to the bending force

at its free end while the other end is clamped, is given by[101]

∆ =
FiR

3
i

EiIi

(︃
1

2
ϕi −

1

2
sinϕi cosϕi

)︃
(A.14)

where ∆ is the deflection of the beam’s free end due to bending force,

Fi, and ϕi and Ri are the radius and arc angle of the curved beam (Figure

A.4). Our objective is to replace flexible curved links with a torsional spring

mounted on the base of a rigid one. The torsional stiffness of the virtual spring

is what leads to the same tip deflection for the beam under the equivalent

torque. Based on the work-energy principle, the amount of bending force work

is equal to the deflection energy stored in the torsional spring. Therefore, the

equivalent stiffness is given by
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Fi∆ =
1

2
Kγi(Γi)

2 (A.15)

such that Kγi is the equivalent torsional stiffness of the beam. Γi, which is

the deflection angle, can be estimated by (based on Figure A.4).

Γi =
∆

Li
=

∆

Ri
sin(φi)

cos( 1
2
φi)

(A.16)

Therefore, Kγi can be calculated as

Kγi =
4EiIi sin(φi)

2

Ri cos(
1
2
φi)2(φi − sin(φi)) cos(φi)

(A.17)

where Ei is the modulus of elasticity and Ii is the moment of inertia. There

are various approaches for deriving algebraic characteristics of the stiffness

matrix, such as trace and eigenvalue, in order to be used as the stiffness index.

In this paper, given that the probe applies force along the radial direction, the

stiffness in the radial direction is much more important than the stiffness in

other directions. At each configuration, the total Cartesian stiffness matrix

calculated by (A.13) should be rotated and represented based on the frame

coordinate of the last revolute joint frame coordinate. Finally, one diagonal

element of the stiffness matrix, which is in the direction of the radial axis of

the sphere, is adopted as the mechanism’s stiffness index in the optimization

problem.

Figure A.4: Curved beam diagram.
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A.5 Isotropy Index

A Jacobian matrix relates the change of actuated joint angular/linear dis-

placement to the angular/linear displacement of the end-effector. In (A.6),

the Cartesian displacement of the end-effector depends on the displacement of

the actuated joints and virtual joints. To put it differently, the total Jacobian

of a flexible mechanism depends on both the kinematic configuration and the

value of the external wrench applied to the mechanism. We will define an

extra static equation,

S(F, θ, γ) = JTγ F −Kγ (A.18)

such that the relationship between δγ and δθ can be derived. Noting that

the external force F and Hooke’s law forces Kγ are balanced, we know that

S(F, θ, γ) = 0. By taking the derivative of S(F, θ, γ), i.e,

∂S

∂θ
δθ +

∂S

∂γ
δγ = 0, (A.19)

we can find the net Jacobian by putting (A.19) into (A.6), resulting in

p⃗ =

[︄
Jθ + Jγ

(︃
∂S

∂γ

)︃−1
∂S

∂θ

]︄
δθ = Jnetδθ (A.20)

If the mechanism is considered to be fully rigid then Jγ = 0 and Jnet = Jθ.

Generally, the Jacobian transforms a hyper-plane in the joint space into an

ellipsoid which is referred to as the manipulability ellipsoid in the Cartesian

space. The closer to a unit sphere the manipulability ellipsoid is, the lower the

level of error in the control positioning of the manipulator’s end-effector. The

condition number of the Jacobian can be used as a performance index that

characterizes the amount of error amplification from the joint space to the

Cartesian space, ranging from 1 to infinity. The manipulator is called isotropic

when the condition number is equal to 1, which means the manipulator has

identical movement performance in all directions. Usually, the manipulability

index, which is the inverse of the condition number and ranges from 0 to 1, is

used to evaluate mechanical performance through the workspace. Given that

the manipulability index value depends on the manipulator configuration, a

global condition index (GCI) introduced by [39] will be used to calculate the
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kinematic performance. GCI is simply an average of the isotropy index over

the workspace.

GCI =

∫︁
W

(︁
1
κ

)︁
dW∫︁

W
dW

(A.21)

where W is the manipulator’s reachable space and κ = σmax

σmin
is the condition

number of the Jacobian matrix. σmax and σmin are maximum and minimum

singular values of the Jacobian matrix, respectively. In the case of internal

singularity, the determinant of the Jacobian matrix is zero and the condition

number of the Jacobian matrix reaches infinity (i.e. a large number).

A.6 Further Analysis and Design Optimiza-

tion

The maximum reachable angle in the mechanism’s workspace, Θmax, is found

from the arc angle of links, β, and the number of links in each branch (left/right)

of a mechanism, N .

Θmax = βN (A.22)

thus, given a desirable Θmax, there are many options to choose a pair of β and

N . However, the isotropy and the stiffness of the mechanism vary based on

the choice of this pair. To cover a large range of workspace, either β or N

should increase. Figure A.5 and Figure A.6 depict the mechanism’s minimum

stiffness and GCI index variation, respectively, across various possible pairs of

N and β. Figure A.5 indicates that given a fixed workspace line, a structure

that has a larger number of links (a larger N) and a smaller β is stiffer than

a structure with a fewer number of links and a larger β; in fact, the parallel

structure of the mechanism causes this. As shown in Figure A.6, different

combinations of N and β affect the isotropy index as well. If N is increased,

with β decreasing in proportion to N such that Θmax remains constant, the

isotropy index will remain constant or grows slightly. If β expands, while N

remains fixed, the isotropy index will initially increase to some maximum value

and then decrease. To plot the stiffness and the isotropy index map, we choose

the modulus of elasticity of aluminum, E = 200Gpa, and curved links with a

rectangular section of size 1× 3cm2.
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Figure A.5: Minimum stiffness map in the β-N plane.

Figure A.6: Global Isotropy index (GCI) map in the β-N plane.
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Consequently, we are faced with an optimization problem of finding an

optimal β, as a design variable, in order to enhance the stiffness and the

isotropy of the mechanism simultaneously. In this paper, β is constrained to

be between 10◦ and 45◦. To find β, we faced a multi-objective optimization

problem as
max
β
{Kc(β), GCI(β)}

constraints =

{︃
Nβ = π

2

10◦ ≪ β ≪ 45◦

(A.23)

Generally, in multi-objective optimization problems, a set of solutions called

the Pareto frontier, denoted as Pf , is obtained instead of a single optimal

solution. The Pareto frontier represents a boundary where its points do not

dominate each other in terms of the optimization objectives. Each point se-

lected from the Pareto frontier, pi = ⟨GCIi, Ki⟩ ∈ Pf , can be considered as

an optimal solution based on the user’s preference. In this paper, we choose

the point with the highest stiffness among the points on the Pareto frontier,

denoted as ⟨GCIi, Ki⟩optimal = maxpi(Ki).

A genetic algorithm (GA) is used to perform the optimization problem.Due

to the stochastic nature of the GA, the results that are obtained from each

run differ from each other. In Table A.3, the mean and standard deviation of

10 optimization results are shown. The stiffness and the isotropy index of the

Table A.3: The optimal parameters averaged over 10 runs.

Mean Standard Deviation
β 18.21◦ 0.39◦

GCI Index 0.45 1.75e− 4
Stiffness (N/m) 1.99e+ 5 0.07

mechanism through the entire hemispherical workspace are depicted in Figure

A.7 for selected β = 18◦. The isotropy index equal or close to 0, represents the

singularity of the mechanism within the workspace. The minimum isotropy

index of the mechanism across the workspace is 0.0382, which is associated

with the boundaries of the workspace. Such a minimum isotropy index for

boundaries is common among all mechanisms. Considering the isotropy index

distribution of the mechanism in Figure A.6, being singularity free of the
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mechanism can be approved.

[ Stiffness across the workspace] [Isotropy
across the workspace]

Figure A.7: Stiffness and isotropy map.

A.7 Prototype Design and Experimental Eval-

uation

A prototype of the proposed mechanism with the curved angle of β = 18◦ was

built (Figure A.8). The left and right mages in Figure A.8 describe the initial

configuration of the mechanism when links are completely closed and the final

configuration in which the mechanism completely covers a 90◦ arc in space,

respectively.

Figure A.8: Prototype of the proposed spherical RCM mechanism.
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To experimentally validate the spherical workspace and forward kinematic

derivation of the proposed RCM device an electromagnetic tracker was at-

tached to the center of the end effector of the fabricated prototype spher-

ical RCM mechanism (shown in Figure A.8). The RCM mechanism was

tested by changing the angle Θ1 (see Figure A.2) in discrete steps such that

Θ1 ∈ {45◦, 50◦, ...80◦}. For each value of Θ1 that was tested, the device was ro-

tated about Θ0, the first degree-of-freedom, within the range Θ0 ∈ [−π/8 : π/8]

while the end effector position data was measured by the electromagnetic

tracker. For the fabricated prototype device, the distance from the RCM

point to the measured end effector position should ideally be 0.24 m through-

out the entire workspace, and was experimentally measured to be 0.246±0.004
m. Figure A.9 shows the results of the workspace validation graphically. The

contour value in Figure A.9 describes the difference between the real position

of the prototype’s end-effector and the ideal position from the forward kine-

matic calculation. These results indicate that the workspace of the fabricated

prototype device closely matches the designed workspace and that the RCM

mechanism functions as expected also the correctness of the forward kinematic

calculation is verified. For these tests, an Aurora electromagnetic tracker with

a Planar 20-20 V2 Field Generator was used. The ranges of the values for

Θ0 and Θ1 were chosen to ensure the end-effector electromagnetic tracker re-

mained within the tracking volume provided by the planar field generator.

A.8 Conclusion

In this paper, the kinemato-static equation for a novel spherical RCM mech-

anism with an arbitrary number of stages was introduced. A closed-form

solution for the forward kinematics of the mechanism was derived. Presented

kinematic equations took the link’s flexibility into account. A relationship for

the mechanism stiffness was derived. The stiffness, isotropy index and singu-

larity of the mechanism were investigated throughout the entire hemispherical

workspace. The result of the isotropy analysis indicates that the mechanism

is singularity free within this workspace. The optimal links arc angle for a
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Figure A.9: Comparison of measured end-effector position of prototype and
theoretical end-effector position.

hemispherical workspace was found by considering the isotropy index and the

stiffness as the mechanism performance index.
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