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Abstract

The electrocardiogram (ECG) records the electrical activity of a patient’s heart move-

ment. It is one of the standard routine healthcare tests as it is non-invasive and easy

to apply. In this thesis, we analyze 2 million ECGs and over 260,000 patients’ health

records from the Alberta Health Service, and propose frameworks for learning diag-

nostic and prognostic models based on supervised learning methods, including ones

for survival prediction. First, we learned many models that each use a patient’s ECG

to determine if s/he has a specific disease, corresponding to an ICD-10 diagnosis

code. Our results show that these diagnosis models can accurately predict numer-

ous health conditions, beyond cardiovascular conditions. Second, we develop ECG

diagnosis models for COVID-19 and then use transfer learning to produce models

with superior performance. Finally, motivated by the evidence from earlier tasks,

we develop binary classification ECG models for predicting all-cause (fixed time)

mortality for hospitalized (resp., emergency) patients, and also survival models that

produce meaningful survival predictions for each patient. We demonstrate state-of-

the-art performance for predicting the time-until-death by using machine learning

techniques that first re-express each ECG in latent representations.
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Chapter 1

Introduction

Cardiovascular disease is the leading cause of mortality in human beings. Cardiol-

ogists often check general cardiac conditions and measure heart function with Elec-

troCardioGraphy (ECG) tests, as these tests are non-invasive and can assess general

cardiac conditions by detecting heart movement. In industrialized countries [1], ECG

tests are readily available and performed on most patients in outpatient clinics or

inpatient hospitals. These ECG test results could help medical doctors monitor a pa-

tient’s heart condition, which can identify possible heart abnormalities and be used

for the early detection of cardiovascular diseases. For example, atrial fibrillation, an

irregular and rapid heart rhythm that can sometimes exceed 400 beats per minute

can lead to blood clots in the heart. Clinical experts could recognize atrial fibrillation

in ECG signals; see Figure 1.1. Moreover, early detection of atrial fibrillation may

lead to proper treatment, which may decrease the risk of stroke, heart failure, and

other heart-related complications[2].

Despite excellent availability, there are two reasons patients do not fully receive the

benefits of ECG interpretations. Firstly, ECG patterns are complex, making them

challenging and time-consuming for clinical physicians. Secondly, as people in rural

areas may lack the motivation to take ECG tests, cardiologists in those areas have

fewer opportunities to interpret ECGs because of the complexity of ECG patterns.

Note that the infrastructure in rural health offices and clinics is inferior to major
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metropolitan centers. In developing nations, people in rural and poor communities

cannot afford ECG tests and lack the motivation to find health care because of poorer

socioeconomic status. The average doctor in rural and poor communities does not

have an opportunity to develop their skills to interpret ECG reads effectively.

Figure 1.1: An example of a 12-lead ECG of a patient with atrial fibrillation shows low
amplitude and nearly hard-to-detect P waves. (Terms defined in Section 2.1 below.
Note each row is two different leads.)

ECG interpretation remains a difficult task, even for cardiologists. Over the past

decade, Deep Learning (DL) has achieved remarkable success in various medical and

biological fields. Clinical experts and computing scientists cooperate to produce algo-

rithms that reach cardiologist-level performance in diagnosing cardiovascular diseases

(e.g., arrhythmia) [3]. ECG analysis models can assist clinicians at the point-of-care

decision-making by making an accurate prediction and facilitating a learned health-

care system. It is helpful not only to have the model detect current diseases but also,

to predict the risk of future cardiovascular problems.

The Alberta Health Services (AHS) has provided us with a large population-

level dataset containing 2,015,808 ECGs and records of 3,336,091 emergency visits,

1,071,576 hospitalizations, and over 260,065 patients. AHS uses ICD-10 (the 10th

revision of the International Statistical Classification of Diseases and Related Health

Problems) [4] codes as the diagnosis codes in emergency and hospitalization records.

By indexing the time and the patient’s ID, we can identify which ECG scan corre-
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sponds to which ICD-10 code. In this thesis, we use ResNet and gradient-boosted tree

ensembles (XGB) to produce models that, given a patient’s ECG, can identify the

ICD-10 diagnosis codes for that patient over a wide range of diseases (both cardiovas-

cular and non-cardiovascular) . In addition, we use the pre-trained ResNet DL model

to improve the performance in the diagnosis of COVID-19. Moreover, we implement

prognosis methods that, for each patient, predict: (1) binary classifications of the

mortality risk model in short-term (30 days) and long-term mortality (1 year and 5

years), and (2) individual survival model, which produces the survival probability for

all future time points.

3



1.1 Contributions

My contributions to this thesis include:

1. We design the episode generation algorithm to combine the data from hospi-

talization visits, and emergency department encounters with the same clinical

episode in Electronic Health Record (EHR) structure data. This allows us to

extract episode duration, which can then be used to match other datasets (e.g.,

ECG data) and combined diagnosis codes from different hospitalization visits

and emergency department encounters, all of which are in the same generated

episode. See Section 3.1.

2. This study shows that it is possible to learn effective models that use ECG

signals to predict a wide range of 1,414 diseases, including cardiovascular dis-

eases and many non-cardiovascular conditions such as mental, neurological,

metabolic, and infectious diseases. See Section 4.2.

3. To address the challenge of having relatively few ECG instances of patients

with some diseases, we show that the transfer learning strategy with ResNet

1414Dx model could improve the performance in diagnosing such diseases with

few instances – e.g., COVID-19 data during the 2020-2021 pandemic duration.

See Section 4.3.

4. It is essential to provide the risk scoring system for patients and doctors to

help them identify the appropriate individual therapy strategies. Therefore, we

provide the ECG prognosis models that can effectively predict the risk score,

respectively, for 1-year, short-term (30-days), and long-term (5-years) mortality.

We also evaluate the models in random ECG per patient, which we show have

good performance in AUROC [5] (also known as C-index).

5. We explore an Individual Survival Distribution (ISD) model, which provides

the survival probability for each individual patient for all future time points.
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We provide a way to learn this ISD model from the information from a survival

dataset that includes patient information and ECG data. This learned model

will then predict survival probability at all future time points. Then, we utilized

ECG ISD models to produce individual survival curves.

1.2 Thesis Organization

This dissertation contains the following chapters. Chapter 2 provides the relevant

background, which describes ECG characteristics and interpretations, previous liter-

ature on ECG-based diagnosis and prognosis tasks. Chapter 3 describes characteris-

tics of ECG measurements and ECG leads, pre-processing methods for hospitaliza-

tion, Emergency Department (ED) visits and in-hospital ECG data, training models

(ResNet, XGBoost, and MTLR) and evaluation metrics that we will use in Chapters

4 and 5. Chapter 4 provides a diagnosis model (ResNet 1414Dx) over an ICD-wide

range of diseases, based on the patient’s ECG. When we tried to learn a model that

could predict whether a patient has COVID-19 based on ECG in 2020-2021, there are

not enough instances to train a model that performs effectively. This motivated us

to use the pre-trained ResNet 1414Dx model to learn a COVID-19 prediction model;

this resulted in improved performance. In Chapter 5, we develop machine-learned

models that use a patient’s ECG data to predict the short- and long- term mortal-

ity for patients presenting to the hospital for any reason. Additionally, we learn an

MTLR model that can produce an individual survival probability distribution for a

patient, which provides the chance that the individual could live until time of event

(death). Finally, Chapter 6 provides the summary of the thesis and future plans.
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Chapter 2

Literature Review

This chapter reviews the ECG analysis in machine learning tasks, ECG-related di-

agnosis, and prognosis work. First, Section 2.1 discusses the three different ECG

formats: camera-captured ECG images, hand-crafted ECG features, and raw ECG

digitized waveform. Then, Section 2.2 summarizes existing learning algorithms that

produce machine learned models, which can diagnose cardiovascular diseases from

ECG data Most of these experiments are limited to classifying ECG abnormalities

and cardiovascular diseases. However, in the clinical background literature, we discov-

ered strong relations between ECG characteristics and numerous diseases seemingly

unrelated to cardiovascular conditions. Finally, Section 2.3 compares and reviews the

ECG-based prognosis literature. We will show our approaches in binary mortality

predictions and ISD predictions.
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2.1 ECG analysis

In a fundamental sense, ECG records electrical activity between electrodes on a pa-

tient’s body to determine cardiac activity [6]. Commonly, medical devices generate

multiple lead ECG waveforms by comparing pairs of electrodes placed at different

points in the body. See in Figure 2.4. For example, lead I can be recorded from

the position of the electrical potential difference from the right-arm electrode to the

left-arm electrode.

Figure 2.1: Image shows three main formats of ECG data: Hand-crafted ECG mea-
surements, Camera-captured ECG images, and Digitized voltage-time series ECG
waveform.

In recent years, machine learning models have reached near-cardiologist perfor-

mance levels in analyzing and classifying ECG data [3]. ECG analysis methods rely

7



on the three main formats of ECG data to generate features in Figure 2.1. (1) Camera-

captured ECG images: These images are typically used by clinical experts who have

received professional training in ECG data interpretation. In addition, these inter-

pretations are generally used as ground-truth labels for diagnostic prediction tasks.

(2) Hand-crafted ECG measurements: Traditional ECG plots [7] are presented with

the P, Q, R, S, and T waves in Figure 2.3, which summarize heart functioning with

the wave amplitude (relevant for diagnosing heart rhythm abnormality) and wave

duration (relevant for heart frequency abnormality).

In each heartbeat, the electrical impulse will go through the sinoatrial node, spread

across the atrium area, pass the atrioventricular node, and get into the ventricular

septum of the heart [8]; see Figure 2.2. ECG signals consist of several waves in

each electrical impulse in Figure 2.3. The following list summarizes the hand-crafted

feature description [9].

1. P wave: the first little bump in Figure 2.3. When the heart is in a normal state,

this wave is ≤ 0.3 millivolts (mV). and has a width of ≤ 0.12 seconds (s).

2. QRS-Complex: the big spike represents ventricular depolarization in Figure 2.3

after the P-wave area. In the standard scenario, this QRS wave has a width of

0.06–0.12 s, and the spike height depends on the lead.

3. T-wave: after this QRS-spike, there is a “bump” shortly after the complex

representing repolarization of the ventricles, called the T-wave. In a normal

heart, the T wave has a positive value in all leads.

4. PR-interval: it is measured from the front of the P-wave to the beginning of

QRS-Complex. This wave is 0.12–0.20 s of width in a normal heart scenario.

5. QT-interval: it connects the QRS complex and the T wave, and represents the

duration where the ventricles are depolarized.
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Figure 2.2: Image shows heart’s pumping action (arrows) in various chambers of the
heart.

Image source from https://www.hopkinsmedicine.org/health/conditions-and-
diseases/anatomy-and-function-of-the-hearts-electrical-system

However, extracting hand-crafted ECG measurements manually from the ECG

plots can be very time-consuming and resource intensive. Therefore, knowledge-based

algorithms can extract traditionally ’hand-crafted’ ECG measurements [10, 11].

(3) Digitized voltage-time series ECG waveform: This literature shows machine
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Figure 2.3: Above image shows the normal sinus rhythm ECG trace that include
the PQRST peaks, PR Interval, PR Segment, QRS Complex, ST Segment, and QT
Interval.

Image source from
https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg contributed by

Agateller (Anthony Atkielski)

learned models that perform well even for high-dimensional data. In this case, ma-

chine learning experts can train the deep learning model directly from the digitized

ECG waveform [12–15].

In the digital 12-lead ECG traces test, clinical doctors place ten electrodes on the

skin’s surface [16]. Figure 2.4 shows the 10 Ecg Placement on the skin of a human.
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There are six precordial electrodes to produce leads V1 to V6. Moreover, the other

four limb electrodes are right arm (RA), right leg (RL), left arm (LA), and left leg

(LL). Based on values from the four limb electrodes, it can compute the values for

the other six leads: I, II, III, aVR, aVL, and aVF. In Table 2.1, we show how 12 leads

record from ten electrodes.

Figure 2.4: Image shows 12 Lead Ecg Placements.
Image source from

https://anatomynote.com/medical-appliance/12-lead-ecg-placement/

The heart’s electrical activity has approximately three orthogonal directions: right/left,

superior/inferior, and anterior/posterior. See Figure 2.5. The leads I, II, III, aVR,

aVL, and aVF describe its motion in the heart at a vertical plane. On the other hand,
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Electrode Placement

V1 4th Intercostal space to the right of the sternum

V2 4th Intercostal space to the left of the sternum

V3 Midway between V2 and V4

V4 5th Intercostal space at the midclavicular line

V5 Anterior axillary line at the same level as V4

V6 Midaxillary line at the same level as V4 and V5

RL Anywhere above the ankle and below the torso

RA Anywhere between the shoulder and the elbow

LL Anywhere above the ankle and below the torso

LA Anywhere between the shoulder and the elbow

Table 2.1: 10 ECG electrodes’ positions and names

the leads V1 - V6, check the heart at a horizontal plane. Table 2.2 describes the 12

leads.

Through the AHS, we were granted access to many ECG images, in multiple ECG

data formats, see Figure 2.1. As a result, we trained different models using hand-

crafted ECG measurements or digitized ECG waveforms in ECG analysis and classi-

fication tasks.
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Figure 2.5: Image shows three orthogonal directions: right/left, superior/inferior, and
anterior/posterior.

Image source from https://quizlet.com/116751872/12-
lead-ekg-1-howell-q6-flash-cards/ contributed by eugene muro
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Lead Negative Electrode Positive Electrode heart plane

Lead I RA LA Lateral

Lead II RA LL Inferior

Lead III LA LL Inferior

aVR LA + LL RA None

aVL RA + LL LA Lateral

aVF RA + LA LL Inferior

V1 Septal

V2 Septal

V3 Anterior

V4 Anterior

V5 Lateral

V6 Lateral

Table 2.2: 12 ECG leads description
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2.2 ECG based diagnosis

ECG captures the propagation of the electrical signal in the heart and is routinely

used to diagnose cardiovascular diseases [17]. However, the complexity of ECG signals

is still challenging and time-consuming to interpret, even for trained ECG experts. By

developing machine learning models, computing scientists collaborate with medical

experts to extract meaningful information from ECGs. The learned models reach

near cardiologist-level performance in heart condition classification tasks [3].

Influenced by traditional ECG applications, most ECG diagnoses have been lim-

ited to typical ECG abnormalities. For example, in classification experiments, some

learned models classified ECG as either normal or abnormal (summarizing multiple

cardiac problems using single class) using a CBRNN model, which consists of two

sub-networks: convolutional neural network (CNN) and bi-directional recurrent neu-

ral network (BRNN) [18]. Other studies have predicted more specific diseases but

focus mainly on cardiovascular-related disorders. Avanzato et al. [19] used a convo-

lutional neural network model to address the multi-class: normal, atrial premature

beat, or premature ventricular contraction. However, patients could experience more

than one of these conditions simultaneously. In other words, the observed ECG could

have features arising from multiple conditions. Ribeiro et al. [14] designed a deep

neural network multi-label classification model to recognize six types of abnormali-

ties, meaning a single ECG waveform may reveal multiple ECG abnormalities. In

general, most machine learning diagnosis studies focus only on typical ECG abnor-

malities, such as arrhythmias [20], valvulopathy, cardiomyopathy, and ischaemia [21].

We extend the focus to a wide range to both cardiovascular and non-cardiovascular

diseases.

Several clinical studies have shown strong associations of ECG abnormalities with

numerous diseases beyond cardiovascular conditions, including mental disorders (de-

pression [22], bipolar disorder [23]); infectious conditions (HIV [24], sepsis [25]);
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metabolic diseases (diabetes type 2 [26], amyloidosis [27]); drug use (psychotrop-

ics [28], cannabis [29]); neurological disorders ( alzheimer disease [30], cerebral palsy

[31]); respiratory diseases ( pneumoconiosis [32], chronic obstructive pulmonary dis-

ease [33]); digestive system diseases (liver cirrhosis [34], alcoholic liver disease [35]);

miscellaneous conditions (chronic kidney disease [36], preterm labour [37], systemic

lupus erythematosus [38]), etc. However, despite well-established clinical associations

of ECG changes with multiple diseases, few studies have used the information con-

tained within ECGs to predict non-cardiovascular conditions. A major challenge is

the lack of available large training datasets of digitized ECGs labeled with the appro-

priate diagnostic information related to a wide range of disease types. In this context,

standardized administrative health data, routinely generated at each encounter, pro-

vide a wonderful opportunity to explore the full spectrum of patient diagnoses. These

data include the professional clinical records of diagnosis and any comorbidities the

patients may have or develop during the visit.
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2.3 ECG based prognosis

Cardiovascular diseases are the main cause of death in Canada and globally. Just in

2019, cardiovascular diseases took around 17.9 million lives [39]. This is why clinical

researchers seek models that can accurately estimate the probability of mortality

and assist clinicians in prioritizing their medical resources. In a recent publication,

Kwon et al. [40] implemented a deep neural network that learned a model that

used ECG data to predict patients’ 12- and 36- month mortality following acute

heart failure (DAHF). Van de Leur et al. learned models that performed well in

in-hospital all-cause mortality of COVID-19 patients with pre-trained deep neural

network (DNN) using age, sex, and the raw ECG waveforms [41]. However, no one has

yet explored the feasibility and value of linking ECG data to longitudinal population-

level administrative health data to assist clinicians at point-of-care decision-making

to complete the cycle of quality and facilitate a learning healthcare system [42, 43].

Raghunath et al. [15] predicted 1-year all-cause mortality from ECG voltage–time

traces with custom-designed DL architecture that utilized convolutional neural net-

works using five branches to accommodate varying durations of ECG acquisition

across the groups of leads at the population level (nearly 2.3 million ECGs). We

compare the results in Chapter 3. We develop additional binary mortality classifi-

cation models for shorter-term (30-days) and longer-term (5-years) mortality binary

outcomes learned from population-level ECG data. Moreover, we developed Multi

Task Logistic Regression (MTLR) [44], and Neural Multi-Task Logistic Regression

(N-MTLR) [45] models to produce personalized survival curves. The personalized

survival curve is a single curve that shows the probability of a patient’s chance to

survive at all future time points. See in Section 3.2.
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Chapter 3

Method

Section 3.1 summarizes the data from the patient’s administrative records and the

ECG data from the Philips IntelliSpace ECG system. Also, that section explains

the preprocessing methods, which include the episode generation algorithm and how

to identify poor quality ECGs, which will be removed. Next, Section 3.2 proposes

the architecture and specifies the hyperparameters of the ResNet DL model for the

12-lead digitized ECG format, the XGBoost model for the Philips ECG measurement

format, and the ISD algorithms: MTLR and N-MTLR. Finally, Section 3.3 discusses

our evaluation method in the threshold-based binary classification and individual

survival distribution models.

18



3.1 Data

The province of Alberta, Canada, has a single-payer (Ministry of Health: Alberta

Health) and single-provider (Alberta Health Services) for its healthcare system. As a

result, the 4.4 million residents of the province have universal access to the hospital,

ambulatory, laboratory, and physician services.

For this study, we linked ECG data for each patient with the following administra-

tive health databases using that patient’s unique health number: (1) the Discharge

Abstract Database (DAD) containing data on hospitalizations including admission

date, discharge date, most responsible diagnosis, up to 24 other diagnoses, and dis-

charge status (one of transfer, discharge home, died); (2) the National Ambulatory

Care Reporting System (NACRS) database of all hospital-based outpatient clinic (in-

cluding the Emergency Department, aka ED) visits. The NACRS data include the

date of admission, primary diagnosis, up to 9 other diagnoses, and the discharge

status; the Alberta Health Care Insurance Plan Registry (AHCIP), which provides

demographic information (patient’s sex, year of birth) and date of death (if relevant);

and vital status death registry. In case of conflicting mortality status or dates (1.1%

of patients), the vital status registry was prioritized over the DAD, NACRS, and

AHCIP records. The study cohort included patients presenting to 84 EDs or hos-

pitals between February 2007 and April 2020 in the northern Alberta Health Zone

and contained 2,015,808 ECGs, 3,336,091 ED visits, and 1,071,576 hospitalizations

associated with 260,065 patients. Concurrent healthcare encounters for a patient (ED

visits and/or hospitalizations) that occurred within a short period were considered

transfers (for example, from ED to hospital admission or from community hospital to

tertiary hospital) and grouped into episodes. In general, an “episode” is a sequence

of one or more ED or INP encounters that are considered a single “hospitalization”,

based on the following procedure.

We consider consecutive healthcare encounters for a patient who has several ED
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Figure 3.1: Episode generation example from Mr. ABC’s health records timeline

visits and/or INP hospitalizations that occurred within a short period of time to be

transferred, and so group them into episodes. For example, Figure 3.1 shows that

patient Mr. ABC had an ED visit in facility A on June 4. He was diagnosed with the

following ICD-10 codes I124, I20 in facility A. Then, he transferred interfacility to

inpatient hospitalizations in hospital B, starting from June 5 and staying until June

10 with following ICD-10 diagnosis codes I124, I20, Y30, I50. Then, as he recovered

from his diseases, he moved to community hospital C which is close to his family,

from June 10 to June 21. He still has some chronic diseases with ICD-10 codes I124,

I50, Z20. On June 21, he was discharged from community hospital C. According to

the above scenarios, we consider the three ED or hospital visits to be in the same

episode (Episode # 1). Thus, his diagnosis codes are shared between episode start

date-time (June 4) and episode end date-time (June 21). Then, 8 days after June

21, he re-visited the hospital for another disease; we consider this to be the start of a

new episode (Episode # 2). Based on the first 3 visits, the ICD-10 codes for Episode

# 1 are I124, I20, Y30, I50, Z20.

We use flowchart in Figure 3.2 used to define an “episode”. Each patient can have

a series of encounters, including inpatient and outpatient (including ED) visits. We

say two consecutive encounters (event 1 and event 2) belong to the same healthcare

episode whenever:

1. The patient visits the ED. Then s/he is transferred to a hospital facility within

48 hours, and ED’s discharge code is not ”home”.
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Figure 3.2: Episode generation: In this algorithm, the inputs are two consecutive
events for the individual patient. The leave of the decision trees are represent ”index
event” (two consecutive events are not in the same episode) and ”same episode” (two
consecutive events are in the same episode)

2. The patient visits the ED. Then s/he is transferred to another ED within 24

hours.

3. The patient is admitted as an inpatient in the hospital. Then s/he is transferred

to ED on the same day.

4. The patient is admitted as an inpatient in the hospital. Then s/he is transferred

to the different hospital within 24 hours.

Otherwise, the episode ended with event 1 and event 2 started the new episode.

Our episode generation algorithm combines continuous healthcare visits and diagnosis

codes from these encounters into a single healthcare episode. An ECG record is linked

to a healthcare episode if the acquisition date is within the time frame between an

episode’s admission date and discharge date.

We use standard 12-lead ECG traces and ECG measurements from the Philips

IntelliSpace ECG system [11]. For each of the 12 leads, there was a sequence of
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ECG voltage sampled at 500 Hz for 10 seconds. We also use the ECG measure-

ments that are automatically generated by the ECG machine manufacturer’s built-in

algorithm, including atrial rate, P duration, RR interval, Q wave on-set, Frideri-

cia rate-corrected QT interval, heart rate, PR interval, QRS duration, QT interval,

Bazett’s rate-corrected QT interval, frontal P axis, frontal QRS axis in the initial 40

ms, frontal QRS axis in the terminal 40 ms, frontal QRS axis, frontal ST wave axis

(equivalent to ST deviation), frontal T axis, horizontal P axis, horizontal QRS axis

in the initial 40 ms, horizontal QRS axis in terminal 40 ms, horizontal QRS axis,

horizontal ST wave axis, and horizontal T axis. Table 3.1 lists ECG measurements.

The following reasons could degrade the quality of ECG signals: patient movement,

respiration, sweating, muscle tremors, electrical interference, Etc. [11] The ECG

machine manufacturer’s built-in quality algorithm also identified poor quality ECGs

and then displayed warning flags, showing the presence of muscle artifact, AC noise,

baseline wander, QRS clipping, and leads-off [11]. Furthermore, the quality of the

ECG trace is essential for machine learning models trying to learn the relationship

between ECG abnormalities and output labels, as a poor quality ECG trace could

be misinterpreted, which degrades performance of the learned ECG model. For that

reason, we exclude poor quality ECG by annotation:

1. (1) ECG has artifacts measurement variables whose values are of ’Light’, ’Marked’,

’Severe’.

2. (2) QRS complexes are clipping.

3. (3) ECG signal is outside the measurement parameters of the instrument.

4. (4) QRS-related parameters cannot be measured in the rhythm group.
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Variable Definition Unit Short version

Atrialrate Atrial rate beats per minute Atrial Rate

Pdur P wave duration Milliseconds P duration

RRint RR interval Milliseconds RR Interval

Qonset Q wave onset Millivolts Q onset

QTcf Fridericia Rate-Corrected QT interval Milliseconds Fridericia QTc

Heartrate Heart Rate Milliseconds HR

PRint PR interval Milliseconds PR interval

QRSdur QRS duration Milliseconds QRS duration

QTint QT interval Milliseconds QT interval

QTcb Bazett’s Rate-Corrected QT interval Milliseconds Bazett’s QTc

Pfrontaxis Frontal P axis Degrees Frontal P

i40frontaxis
Frontal QRS axis

in Initial 40 ms
Degrees Frontal i40msQRS

t40frontaxis
Frontal QRS axis

in Terminal 40 ms
Degrees Frontal t40msQRS

Qrsfrontaxis Frontal QRS axis Degrees Frontal QRS

Stfrontaxis Frontal ST wave axis Degrees Frontal ST

Tfrontaxis Frontal T axis Degrees Frontal T

Phorizaxis Horizontal P axis Degrees Horizontal P

i40horizaxis
Horizontal QRS axis

in Initial 40 ms
Degrees Horizontal i40msQRS

t40horizaxis
Horizontal QRS axis

in Terminal 40 ms
Degrees Horizontal t40msQRS

Qrshorizaxis Horizontal QRS axis Degrees Horizontal QRS

Sthorizaxis Horizontal ST wave axis Degrees Horizontal ST

Thorizaxis Horizontal T axis Degrees Horizontal T

tonset T wave onset Millivolts T onset

Table 3.1: Full forms of ECG measurement names
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The Philips DXL ECG algorithm identifies each of the above poor quality criterias

[11].

After excluding the ECGs that could not be linked to any episode, ECGs of patients

under 18 years of age, and ECGs with poor signal quality, the remaining analysis

cohort contained 1,605,268 ECGs from 748,773 episodes of 244,077 patients. See

Figure 3.3 for the flowchart of the study design, showing sample sizes for the overall

study, experimental splits, and different outcomes.

Figure 3.3: Flowchart of the study design showing the sample sizes for different splits
and outcomes

This study was approved by the University of Alberta Research Ethics Board

(Pro00120852). The ethics panel determined that the research is a retrospective

database review for which subject consent for access to personally identifiable health

information would not be reasonable, feasible, or practical.
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3.2 Learning Algorithm

In this section, we quickly summarize the three main learning algorithms used for

learning the diagnostic models used in Chapter 4 and the prognostic models used in

Chapter 5. In the diagnosis tasks, we convert the diagnosis problem to a multi-label

learning task using ResNet and use XGB to predict each single diagnosis code. In the

prognosis task, we provide two different ways of modeling risk for all-cause mortality.

(1) Binary mortality classification methods: we provide the ECG prognosis models to

predict the calibrated probability of mortality for 1-year, short-term (30-days), and

long-term (5-years) mortality. (2) ISD methods: we estimate the time until death

and produce a survival probability curve for each individual patient. The following

models are implemented in Python 3.8. We train all models with 8 Tesla V100-SXM2

GPUs and 32 GB of RAM per GPU.

3.2.1 Gradient boosted tree ensembles (XGB) model

We train gradient boosted tree ensembles (XGB) [46] models, which are ensembles of

multiple decision trees. The XGB model uses binary logistic regression as the objec-

tive task and squared loss as the objective function. We tuned the hyperparameters,

such as maximum tree depth, min child weight, and scale positive weight, using 5-fold

grid-search internal cross-validation within the training sets. The models are learned

for a maximum of 200 epochs, and the learning process is stopped if performance loss

in the training/tuning set does not reduce for ten consecutive epochs. To learn multi-

labels – e.g. in Chapter 4 – we learn an XGB model for each single label (diagnosis

code).

3.2.2 Deep learning (DL) model

We use DL models to classify diagnosis codes in Chapter 4 and mortality binary

outcomes in Chapter 5. In the DL model, we implement a convolutional neural

network (CNN) based on the ResNet, consisting of a convolutional layer, 4 residual
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Figure 3.4: Schematic of deep learning model architecture used in the study

blocks with 2 convolutional layers per block, followed by a dense layer; see Figure 3.4.

We use batch normalization [47], ReLU, and dropout [48] after each convolutional

layer. Our architecture is based on a model trained on a large ECG dataset from

Brazil to identify abnormalities in 12-lead ECGs [14] with some modifications to

accommodate tabular data input for demographic features and binary output. Each
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ECG instance is represented as a 12 x 4096 numeric matrix. If additional features such

as age, sex or other tabular features are used, they are input as the binary feature (sex;

1 feature) or continuous values (age; 1 feature), then passed to a 5N fully connected

layer (where N is the number of tabular features), then concatenate with the dense

layer, and finally pass to a sigmoid function to produce the output. Binary cross-

entropy is used as the loss function with the initial learning rate of 1x10−3, Adam

optimizer [49], ReLU activation function, kernel size of 16, batch size of 512, and a

dropout rate of 0.2 with other hyperparameters set to default. Models are learned

for a maximum of 70 epochs. The learning rate is reduced to 1x10−5 if there is no

improvement in tuning loss for seven consecutive epochs, and the learning process is

stopped if the loss in the tuning set does not reduce for nine epochs. Training Each

DL model took 30 min per epoch.

3.2.3 Multi-Task Logistic Regression

Survival prediction corresponds to estimating the time until an event of interest will

occur for individuals – here, we learn a model that produces a survival distribution

for each patient. We obtain our survival model with 2 different approaches: Multi

Task Logistic Regression (MTLR) [44] and the Neural Multi-Task Logistic Regression

model (N-MTLR) [45].

Notation

Here, we define our notation: D = {[Xi
⃗ , Ti, δi]}i: is a survival dataset, where Xi

⃗ is

the patient’s vector features, Ti is a non-negative value, which is the time until i-th

patient is either censored or dead, and δi ∈ 0, 1 indicates if i-th patient is dead (1) at

that time Ti, or is censored (0).

f(t) = p(die at time t) (simple description without patient’s features) is the prob-

ability density function for the event happening at time t and F (t) =
∫︁
s=0..t

f(s)ds =

P (dead before t) is the cumulative density function for the event that happened be-
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fore time t.

S(t) is the survival function:S(t) = P (T > t) = 1− F (t).

h(t) is the hazard function representing the risk of the event of interest.

h(t) = lim
dt→0

P [t ≤ T < t+ dt|T ≥ t]

dt

or

h(t) =
f(t)

S(t)

Multi-Task Logistic Regression (MTLR) model

The MTLR model is essentially a series of logistic regression models, each providing

the probability of the event of interest happened within each interval. The MTLR

model is built by the following steps:

1. We first divide the analysis timeline into m time bins. τ = (t1, ...tm) - e.g., we

could uniformly divide 1 year study time into 10 disjoint bins from the distributions

of uncensored patients.

2. We build a logical regression for each time bin that estimates the chance that

an event happens more than the i-th time bin.

Pθi⃗
(T ≥ ti|x⃗) = (1 + exp(θi⃗ · x⃗+ bi))

−1, 1 ≤ i ≤ m

Then we generate the binary vector Y with m time bins, whose i-th entry is 1 if

the event occurs in the i-th time bin. For example, if the patient’s event occur in

the 4-th bin, thenY⃗ = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]⊤. However, if the patient is censored,

as the event occurs after he left the analysis, then we know that the patient is alive

until the censored time bin. For example if patient is censored after 7-th bin, then

Y⃗ = [0, 0, 0, 0, 0, 0, ?, ?, ?, ?]⊤.

Here, we consider the probability mass function for discrete time bins (probability

density function for continuous time points), which gives the probability that the event
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occurs in the i-th time bin. Using Θ = (θ1⃗, . . . , θm⃗) (where each θi is a dimension

vector representing weights of patient’s features, Xi is the patients’ features) and

fΘ(x⃗, k) =
∑︁m

i=k+1(θ⃗ · x⃗+ bi) for 0 ≤ k ≤ m, the probability mass function:

f(as, x⃗) = P [T ∈ [ts−1, ts]|x⃗] =
exp(

∑︁m−1
i=s x⃗ · θi⃗ + bi)∑︁m

k=0 exp(fΘ(x⃗, k))

3. In N-MTLR [45] study, we use a deep learning framework via a multi-layer

perceptron (MLP) by replacing (θi⃗ · x⃗ + bi⃗) to deep learning feature Ψi(x⃗) in the

following formula.

Pθi⃗
(T ≥ ti|x⃗) = (1 + exp(Ψi(x⃗)))

−1, 1 ≤ i ≤ m

Then the probability mass function in which the event occurs in s time bin could

be converted the following formula.

f(as, x⃗) = P [T ∈ [ts−1, ts)|x⃗] =
exp(

∑︁m−1
i=s Ψi(x⃗))∑︁m

k=0 exp(
∑︁m

j=k+1Ψj(x⃗))
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3.3 Evaluation Methods

3.3.1 Binary classification evaluation metrics

In the classification task evaluation methods, our supervised machine learning mod-

els, which we also name as threshold-model, produces a numerical prediction score

(a number between 0 and 1) for the binary label of the given instance – eg, for Mr

ABC, that score may be 0.57. In order to assign predicted binary output to each

label, we typically set a threshold Q, then if that score ≥ Q, then binary output y’

= True, else y’ = False. In Figure 3.5, when the predicted output is consistent with

the ground truth value, we call it a True Positive (TP) or a True Negative (TN). If

the predicted value is negative, but the ground truth value is positive, we call this

outcome False Negative (FN). If the predicted value is positive, but the ground truth

value is negative, we call this outcome a False Positive (FP). We binarized prediction

probabilities into binary classes using optimal cut-points derived from training set

with Youden’s index [50], and generated the following threshold-based metrics: F1

Score, Specificity, Recall, Precision and Accuracy. Further, we evaluated calibration

of our models to see whether predicted probabilities agree with observed proportions

using Brier Score [51].

In the threshold based model, we need to pick the optimal cut point, based on

Youden’s index (Recall + Specificity - 1), to split the binary output. Moreover, we

use the commonly used evaluations metrics (threshold-free metrics) in the clinician

community. Then we take multiple values from 0 to 1 as thresholds and evaluate with

aggregate values from multiple thresholds with threshold-free metrics. We reported

the following threshold- free performance metrics on the holdout set - Area Under the

Receiver Operating characteristic Curve (AUROC), Area Under the Precision-recall

Curve (AUPRC), and Average Precision (AP) [52].
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Figure 3.5: confusion matrix example

Accuracy

The accuracy is a popular score which is the number of exact matches in the overall

test dataset in Equation 3.1. However, the cons of accuracy are also obvious. The

classes of the labels might be unbalanced in deployment scenarios – e.g. in the early

stage of the COVID-19 pandemic, there could be less than 100 positive COVID-19

patients in a city with a population of a million. Then, if we design a degenerate

COVID-19 test that claims that all citizens of the city are negative for COVID-19,

the accuracy would be very high, above 99.9%. However, note that none of the

positive COVID-19 patients could be detected by the test, and hence this test would

not help.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)
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Specificity

Specificity, which is also known as true negative rate, refers to the probability that

an instance that is negative, is labeled as negative.

Specificity = TN
TN+FP

Recall

Recall, which is also known as true positive rate, refers to the probability that an

instance is positive, is labeled as positive.

Recall = TP
TP+FN

Precision

Precision refers to the probability that an instance’s label is positive, is predicted as

positive.

Precision = TP
TP+FP

AUROC

AUROC is the metric to evaluate the model performance over all thresholds. Accord-

ing to Fawcett’s paper [5], we need two functions to draw the AUROC curve: the

True Positive Rate (TPR) and False Positive Rate (FPR).

TPR = TP
TP+FN

FPR = FP
TN+FP

The TPR equals the ratio of the correct positive prediction results in overall positive

samples during the test. The FPR equals the ratio of the correct prediction results

in overall negative samples during the test.

FPR and TPR draw a ROC curve as x and y axes; when we choose a threshold

value τi, we could receive TPR and FPR from this specific threshold i classifier. We

can consider multiple threshold values, to produce multiple threshold classifiers, each

with (tprτi , fprτi). Then we can connect the dots (tprτi , fprτi) and calculate the area
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under the connected curve.

Figure 3.6: AUROC Plots

The baseline of AUROC is 0.5, which means the dummy classifier will predict all

instances as constant. The advantage of AUROC is that AUROC is a single metric

facilitating comparison to evaluate models with multiple thresholds between range

0 to 1. This is a well accepted performance metric in clinical literature [53] and it

is useful when the optimal threshold to be used in the deployment environment is

unknown during the time of model evaluation.

In our binary classification task, the data is imbalanced in terms of classes. More-

over, the cost of positive and negative misclassifications is not available to us. There-
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fore, we rely on threshold-free methods that use precision (also known as positive

predictive value) and recall (also known as sensitivity) metrics that are traditionally

used in clinical literature. In addition to AUROC, we also include the AUPRC and

AP as threshold-free binary classification performance metrics.

AUPRC and AP

AUPRC is the area under the curve formed by connecting by dots of (recallτi , precisionτi),

which are the recall and precision value associated with the i-th threshold. Then, we

could draw a PR curve with (recallτi , precisionτi). Accordingly, we calculate the

area under the connected curve as the AUPRC. AUPRC displays the trade-off be-

tween precision (instead of specificity) and recall over all possible threshold values.

Fawcett [5] has shown that the AUPRC is preferred over the AUROC for evaluating

uncommon or rare diseases.

AP is another way to calculate the weighted average of precisions at each threshold:

AP =
∑︁

τi
(Rτi − Rτi−1)Pτi where Pτi and Rτi are the precision and recall at the

i-th threshold [52].

Brier Score

A model with better calibration is equal to that the individual predicted probability

is meaningful after considering the others’ predicted probabilities [54]. Brier Score’s

baseline value is 25%; smaller score indicates better calibration [51].

BS = 1
N

N∑︁
t=1

(ft − ot)
2

F1-score

The F1-score is a binary classification evaluation metric, which is calculated from

precision and recall of the evaluation data [55].

F1 =
2

recall−1+precision−1 = 2 precision·recall
precision+recall

= tp

tp+ 1
2
(fp+fn)
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3.3.2 Survival prediction evaluation metrics

This section introduces the ISD evaluation metrics, which we used to compare the

performance of our ISD models, from Haider’s study [56]. We consider three met-

rics: model discriminability (Concordance Index), the average absolute value between

actual times to predicted event times (L1 Loss), and goodness of a predicted prob-

ability score in an interval of time points (Integral Brier Score). Using parametric

hypothesis tests for evaluating the calibration can be unsuitable since high statistical

power would flag even minor deviations in calibration as significant. Since we have

a population-level testing dataset, the calibration evaluations (e.g., 1-calibration [57]

and D-calibration [56]) that use the χ2 or HL tests, are too sensitive for a large data

set.

Concordance index (C-index)

The concordance index (C-index) is one of the most common evaluation metrics for

measuring the discriminability of a risk model. The range of the C-index is from

0 to 1, and the baseline of the C-index is 0.5, which means if we randomly assign

the probabilities in instances, then the probability of correct order is 0.5. The larger

value of the C-index indicates a better model performance. The larger value of the

C-index indicates a better model performance. The C-index is also a generalization

of AUROC.

The concordance algorithm must first determine the set of all comparable pairs.

We define the pairs (i,j) of patients, which patient j is alive when patient i is dead,

are comparable pairs (CP (D))

CPi,j = I{ti < tj ∧ δi = 1}+ I{ti = tj ∧ δi = 1 ∧ δj = 0}

, where we use δ definition in the Section 3.2.3.

Next, when we calculate the correct ranked comparable pairs, we consider An-

tolini’s study [58], where r(xi⃗ ) indicates the risk score of patient i.
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CPcorrecti,j = I{r(xi⃗ ) < r(xj⃗)} · CPi,j

Finally, we estimate C-index by estimating the percentage of correctly ranked

comparable pairs in all comparable pairs. In another word, given two randomly

patients i and j in a ISD model with 80% C-index, if r(xi⃗ ) > r(xj⃗), then there are

80% probabilities that patient i’s event will come before patient j’s event.

C − index =

∑︁n
i=1

∑︁n
j=i CPcorrecti,j;i ̸=j∑︁n

i=1

∑︁n
j=i CPi,j;i ̸=j

L1 loss

According to the definition of ISD model, ISD model produces an individual survival

curve, which also predicts median survival time t̂
0.5

which is 50% chances for patient

to survive t̂
0.5

until event comes. 1

For an uncensored patient, the L1-loss: the average absolute value of the difference

between the median survival time t̂
0.5

and true event time tevent = d. However,

since the true event time is unknown in censor patients, we consider two approaches:

L1-hinge loss and L1-marginal loss.

We know that a patient survived at least until the censor time c. Then, we calculate

L1-hinge loss ismax(0, c− t̂
0.5
). If c ≤ t̂

0.5
, then L1-hinge loss is 0, otherwise, L1-hinge

loss is c− t̂
0.5
. Therefore, the L1-hinge loss is:

L1hinge(D, t̂
0.5
) =

1

|D|
[

∑︂
i∈Duncensor

|di − t̂
0.5

i |+
∑︂

k∈Dcensor

max(0, ck − t̂
0.5

k )]

In L1-marginal loss, we also assign a ”Best-Guess” (BG) value to each censored

patient, which is that patient’s expected survival time given that s/he already survived

until c.

1According to Haider’s study [56], we will use extrapolation to extend the last point, if user’s
survival curve does not reach to median until the study ends.
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BG(c) = c+

∫︁∞
c

S(t)dt

S(c)

In our evaluation method, we use Kaplan-Meier [59] (estimator for the survival

function) ŜKM(·) from training data set to estimate survival function S(·).

The L1-marginal loss is defined as

L1margin(D, t̂
0.5
) =

1

|Duncensor|+
∑︁

k∈Dcensor
ak

[
∑︂

i∈Duncensor

|di−t̂
0.5

i |+
∑︂

k∈Dcensor

ak|BG(ck)−t̂
0.5

k |]

where αk indicates the weight in each Best-Guess estimation to contribute the L1-

marginal loss, since the instances with early censor time give less information to the

cases with late censor time, we offer more weight to the late censor time instance in

L1-marginal loss by set ak = 1− ŜKM(ck).

[Integrated] Brier Score

The Brier score [60] is a commonly used evaluate metric that (is claimed to) measures

both calibration and discrimination [56, 61–63]. The Brier score defines the mean

squared error between the true event status and the predicted survival probability

at each time t′. The perfect Brier score is 0 whenever the model predicts only 1 at

event time, and 0 at other times, but it is unrealistic in survival curve. The baseline

of the Brier score evaluation metrics is 0.25, when we have a dummy model predict

Ŝ(t′|x⃗) = 0.5 for all patients x. Therefore we seek a model that does better. The

lower score indicates the better model.

In the uncensored dataset (Duncensor), the Brier score at time t′ is

BSt′(Duncensor, Ŝ(t
′|x⃗)) = 1

Duncensor

∑︂
|xi⃗,di|∈Duncensor

(I[di ≤ t′]− Ŝ(t′|xi⃗ ))
2

.

To extend the Brier score to a series of time points, we use the Integrated Brier

Score (IBS) which provides the average value of Brier score across the time interval.
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PatientId Time(t) censor bit(1) Gˆ (t) Weight 1/Gˆ (ti) KM(t)

0 1 1

S1 1 uncensored 3/4 1 4/5

S2 2 censored 3/4 0 4/5

S3 3 uncensored 3/8 4/3 8/15

S4 4 censored 3/8 0 8/15

S5 5 uncensored 3/8 8/3 0

Table 3.2: Example with IPCW

IBS(τ,Duncensor, Ŝ(·|·)) =
1

τ

∫︂ τ

0

BSt(Duncensor, Ŝ(t|·)dt

Note this analysis implicitly assumes we have only uncensored patients (Duncensor),

we add the subset of censored patients (Dcensor) into the Brier score calculation. Graf,

Erika et al. [64] propose using the Inverse Probability of Censoring Weights (IPCW)

method, which the censor instance weight equally to the uncensored instances. In

another words, the uncensored patients’ weight G⃗(t) =
∏︁

j:tj<t
nj−cnj

nj
, where nj indi-

cates the number of all patients are possible censor at time t and cnj indicates the

number of all censor patient at time t.

Here is the example:

In Table 3.2, we list 5 patients and show weight in IPCW.

1. S1: S1: We count S1’s G(t)ˆ as 1, since no one died before S1.

2. S2: S2 is censored and three patients who are possibly censored or died after

S2’s censor time. We split the weight equally into 3 parts.

3. S3: When we calculate the weight of patient S3, we are not only adding weight

of 1 for patient S3, but also we add the weight of 1/3 from patient S2.

4. S4: S4 is censored and only S5 who is possibly censored or died after S4’s censor

time.
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5. S5: when we calculate S5’s weight, we sum S2’s weight of 1/3, S4’s weight of

4/3 (which includes the S2’s weight of 1/3) and S5’s original weight of 1, to get

the total weight of 8/3.

We use the following formula to calculate the IBS with IPCW weight.

IBS(τ,D, Ŝ(·|·)) = 1

τ

∫︂ τ

0

⎛⎜⎝
(︂
0− Ŝ(t, x⃗i)

)︂2

· 1ti≤t,δi=1

Ĝ(ti)
+

(︂
1− Ŝ(t, x⃗i)

)︂2

· 1ti>t

Ĝ(t)

⎞⎟⎠ dt

where 1 is the indicator function.

3.3.3 Bootstrap Model Comparison

For model comparisons, for each evaluation, we use 1000 iterations of random and

replace a selection of ECG instances to demonstrate consistency in the model per-

formance. We use all available ECGs in the training set and corresponding labels

while training these models. We use the same training and testing splits (including

the random selections) for the various modeling scenarios to compare performance

directly. The performance scores are compared between models by bootstrapping 100

instances with random replacement sampling from each of 10 iterations of random

ECG selection to generate a total of 1000 bootstrap replicates. The difference in the

model performances is evaluated based on the overlap of 95% confidence intervals of

evaluation scores of the compared models.
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Chapter 4

ECG-based diagnosis for multiple
diseases

In recent years, DL methods have performed close to current levels of clinical ex-

pertise in diagnosing cardiovascular diseases [17] and heart abnormalities. As dis-

cussed in Section 2.2, several clinical studies show strong associations between non-

cardiovascular diseases and ECG abnormalities. This chapter describes how we first

extract diagnosis labels from AHS data, then implement multiple diagnosis models,

and test these models to show evaluation performance for both cardiovascular and

non-cardiovascular diseases. In addition, we also explore the challenge of implement-

ing this process to diagnose for COVID-19. Despite having a relatively small number

of COVID-19 instances, we have been able to identify that transfer-weight DL method

can improve the diagnosis of COVID-19.
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4.1 Method

4.1.1 Analysis Cohort

We split our ECG dataset into the development set (random 60%: 146,446 patients

with 964,741 ECGs, used for training and internal validation) and external holdout

set (remaining 40%: 97,631 patients with 640,527 ECGs) while ensuring that ECGs

from the same patient are not shared between the sets.

Characteristics of patient cohorts used in the study are described in Table 4.1. At

the time of the ECG, the average age of patients in the development and holdout set

is 65.85 years. Recall, however, that we select the first ECG per episode from the

holdout to use for the final evaluations. The average age here is slightly lower, 64.66

years because older patients have more ECGs than younger ones and the first ECG

is in the early stage of the medical care. Similarly, men have more ECGs, so the

proportion of men is slightly lower in the first ECG per episode in the evaluation set

than in the development of holdout sets (52.72% vs 56.60%).

4.1.2 Prediction Task

We use the population-based data set with various medical conditions in-hospital ECG

in this task. Here, we use diagnoses coded using the tenth World Health Organization

International Classification of Diseases (ICD-10) [4], which we use for diagnosis labels.

Whenever there is more than one ECG in a healthcare episode, we use only the first

ECG (with acceptable signal quality) for evaluation, as it would be preferable in

actual clinical practice to make a diagnostic prediction at the first point of care in

the ED or hospital. Therefore, we train one ResNet and XGB model for each of

the full sets of ICD-10 codes. To do this, we first train and evaluate the performance

within the internal five cross-validation set and use this to select 275 top-performance

ICD-10 codes with the best discrimination performance (AUROC). We then retrain

the models (for each of these selected labels) on the entire internal validation set and
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Full Data Development set Holdout set
First ECG per episode

in holdout set*

ECG Number 1605268 964741 640527 297773

Atrial rate 85.60 ± 46.15 85.56 ± 46.11 85.67 ± 46.20 84.89 ± 42.06

P duration 155.92 ± 116.60 156.00 ± 116.39 155.79 ± 116.91 158.93 ± 113.25

RR interval 790.81 ± 213.11 790.90 ± 212.63 790.68 ± 213.83 782.79 ± 201.37

Q wave onset 508.84 ± 6.51 508.82 ± 6.29 508.87 ± 6.82 508.99 ± 6.21

Fridericia Rate-

Corrected QT interval
434.86 ± 38.05 434.96 ± 38.04 434.71 ± 38.07 431.33 ± 35.20

Heart Rate 81.64 ± 23.22 81.61 ± 23.18 81.69 ± 23.28 81.91 ± 22.04

PR interval 169.34 ± 38.46 169.44 ± 37.66 169.18 ± 39.65 167.89 ± 39.12

QRS duration 101.36 ± 24.26 101.40 ± 24.23 101.31 ± 24.30 99.66 ± 23.04

QT interval 399.81 ± 54.83 399.94 ± 54.74 399.63 ± 54.96 395.40 ± 51.06

Bazett’s Rate-

Corrected QT interval
455.02 ± 40.09 455.10 ± 40.09 454.89 ± 40.09 451.86 ± 37.18

Frontal P axis 44.85 ± 35.52 44.81 ± 35.41 44.91 ± 35.69 45.43 ± 34.22

Frontal QRS axis

in Initial 40 ms
27.50 ± 46.30 27.44 ± 46.37 27.59 ± 46.20 28.69 ± 43.58

Frontal QRS axis

in Terminal 40 ms
45.36 ± 88.15 45.74 ± 88.28 44.80 ± 87.96 45.41 ± 87.24

Frontal QRS axis 19.98 ± 54.37 20.04 ± 54.38 19.88 ± 54.37 21.07 ± 52.31

Frontal ST wave axis 90.94 ± 88.23 90.98 ± 88.07 90.87 ± 88.48 84.27 ± 85.68

Frontal T axis 55.70 ± 67.76 55.48 ± 67.60 56.03 ± 68.00 50.44 ± 59.22

Horizontal P axis 20.69 ± 47.30 20.63 ± 47.14 20.77 ± 47.52 19.43 ± 44.76

Horizontal QRS axis

in Initial 40 ms
27.79 ± 48.39 27.86 ± 48.17 27.69 ± 48.71 29.18 ± 43.86

Horizontal QRS axis

in Terminal 40 ms
34.10 ± 129.50 33.94 ± 129.40 34.35 ± 129.66 33.33 ± 128.73

Horizontal QRS axis -0.91 ± 78.19 -1.11 ± 77.91 -0.61 ± 78.62 -1.44 ± 74.31

Horizontal ST wave axis 97.02 ± 64.99 96.98 ± 65.00 97.09 ± 64.97 93.18 ± 60.92

Horizontal T axis 64.46 ± 58.98 64.27 ± 58.96 64.73 ± 59.01 57.77 ± 51.43

Table 4.1: Characteristics of patient cohorts used in the diagnosis tasks
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evaluate the external holdout set based on the set of diseases and categories selected

during the internal validation.

In short, the main goal of our study is to identify which diseases (considering

both ones that had previously known associations with ECGs and the others) can be

accurately diagnosed from the patient’s first ECG per episode based on a learned DL

model. We show the data details and models in the process flowchart, Figure 4.1.

Based on the process described in Section 3.1, we generate hospital episodes from

emergency department (ED) visits or inpatient (INP) hospitalizations encounters. In

each ED visit or INP hospitalization encounter, medical doctors recorded the diagnosis

codes in ICD-10 format. Then, we assign doctors’ diagnosis results with each ECG,

based on two assumptions” (1) since most episodes have a short duration, we assume

that all ECG tests in a single episode have the same diagnosis labels. (2) We assume

that INP doctors report more comprehensive medical tests and provide more accurate

diagnoses than ED doctors. Hence, if INP encounters and ED visits are in the same

episode, we would only take INP encounters diagnosis.

Our dataset includes 13,179 unique ICD-10 codes/diseases. According to our as-

sumptions #1 and #2, a patient experiences the same diseases throughout a single

episode. After data cleaning and exclusions, we extract 11,221 unique ICD-10 codes.

Each ICD-10 code is 3 to 7 characters that specify a specific disease, consisting of

one English letter, followed by at least two Arabic numerals, which denote the gen-

eral disease category. E.g., ’I214’ refers to ’Non-ST elevation (NSTEMI) myocardial

infarction’, and ’I21’ refers to its broader category, ’Acute myocardial infarction’. We

extract diagnostic information from ICD codes and corresponding categories and use

them for prediction modeling. To diminish the size of predicted labels, we use only

the 1414 ICD codes (full code, exact match) that are each linked to at least 1000

ECGs.

It aims to provide a proof-of-concept for high-throughput screening of an ICD-wide

range of diseases based on ECG.
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Figure 4.1: Flowchart of the study design showing the sample sizes for different splits
and prediction task (ICD-10 codes)
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4.2 Result

In our internal five cross-validations, we found a total of 276 ICD-10 codes (275

ICD-10 codes in the ResNet model and 45 ICD-10 codes in the XGB model) out

of 1414 ICD-10 codes that have AUROC ≥ 80%, and (AUPRC ≥ 0.05 or AP/test)

positive pro- portion ≥ 20. These 276 ICD-10 codes belong to 17 categories from

ICD-10 code descriptions. Finally, we examine the replication of these lists in the

external validation with ResNet and XGB models. Then, we list the number of ICD-

10 diagnosis codes that model the performance of AUROC ≥ 80%, and AUROC ≥

90% in Table 4.2. Additionally, the Appendix provides the AUROC bar plots for all

1414 ICD code categories and the diagnosis codes.
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# of ICD-10 codes with ResNet XGBoost

ICD-10 category AUROC>90 AUROC>80 AUROC>90 AUROC>80

Certain infectious and

parasitic diseases
0 4 0 3

External causes of

morbidity and mortality
3 13 1 13

Injury, poisoning and

certain other consequences

of external causes

3 19 1 13

Codes for special purposes 0 1 0 1

Diseases of the respiratory system 1 9 1 2

Factors influencing health status and

contact with health services
4 15 2 16

Endocrine, nutritional

and metabolic diseases
3 11 1 4

Congenital malformations, deformations

and chromosomal abnormalities
2 3 1 2

Diseases of the genitourinary system 1 8 1 4

Symptoms, signs and abnormal clinical

and laboratory findings, not elsewhere classified
3 8 0 4

Diseases of the musculoskeletal system

and connective tissue
0 1 0 2

Diseases of the blood and blood-forming

organs and certain disorders involving

the immune mechanism

0 3 0 1

Neoplasms 0 9 0 4

Diseases of the circulatory system 26 61 8 34

Mental and behavioural disorders 11 24 9 20

Diseases of the digestive system 6 15 0 5

Diseases of the nervous system 1 5 0 3

Table 4.2: list of categories with number of top performing ICD-codes (wrt AUROC)
that could be predicted from the patient’s first in-hospital ECG using DL.
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4.3 COVID-19 Diagnosis

Figure 4.2: Flowchart of the study design for subset of ECGs in COVID-19 pandemic
duration, showing the sample sizes for different splits.

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS CoV-

2 virus. This worldwide pandemic broke out in Hubei Province, China, at the end of

2019. There are 546,363,985 confirmed cases and 6,336,802 deaths as of July 3, 2022

[65]. Initially regarded as a respiratory infection, COVID-19 is now known to affect all

major systems in the body, including the cardiovascular system by causing myocardial

damage, vascular inflammation, plaque instability, and myocardial infarction [66].
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Kaliyaperumal et al. [67] report that COVID-19 patients can have various ECG

abnormalities – ischemic changes, rate, rhythm abnormalities, and conduction defects

and can also express a diverse set of comorbidities with ECG involvement. In this

context, ECG-based artificial intelligence, along with the utilization of bedside rapid

diagnostic tests to detect COVID-19, could prove helpful in recognizing patients who

require urgent definitive management. Furthermore, multiple reports [68–74] show

that DL models could perform well in diagnosing COVID-19 from publicly available

camera-captured ECG image data [75].

Moreover, cardiac involvement in COVID-19 results in poor prognosis and adverse

outcomes [76]. Hence, monitoring the cardiac function that identifies the need for

prompt action is crucial. The ECG, which provides essential information about the

heart’s electrical activity, is a simple point-of-care diagnostic tool [77] that can be

employed to assess cardiovascular involvement in COVID-19 patients. Unfortunately,

despite the novel coronavirus’s massive impacts, there are no available prediction

models that have been verified on the population-scale ECG dataset that can accu-

rately identify who has COVID-19.

In this study, we use population-scale administrative health records and large ECG

datasets, with two-year coverage from the start of the pandemic (Jan 2020) to De-

cember 2021, to develop DL models to diagnose if a patient with ECG data has

COVID-19.

Our AHS data includes 73,842 patients during the pandemic (2020-2021) who took

282,837 ECG tests. We exclude the ECGs that could not be linked to healthcare

episodes, are of patients < 18 years old, or are poor-quality ECGs. Then, we split

our ECG dataset into the development dataset B (random 60%: 33,197 patients

with 119,761 ECGs, used for training and internal validation) and holdout dataset C

(remaining 40%: 22,132 patients with 80,097 ECGs), while ensuring that we did not

share ECGs from the same patient; for details; see Figure 4.3. We also have dataset

A which includes 260,774 patients with 1,992,415 ECGs in the pre-pandemic period
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(Feb, 2007 - Dec, 2019); See description in Figure 4.2.

Figure 4.3: ECG data summary before pandemic, and after pandemic

According to forementioned ECG dataset splits, we design 4 different experiments

in Table 4.3.

1. Model 1: we use instances in the development dataset to train with COVID-19

diagnosis labels. Then, we evaluate the model using the holdout dataset.

2. Model 2: we use instances in the development dataset to train with 1,415 labels:

the 1,414 ICD-10 codes and COVID-19 diagnosis labels. Then we evaluate the

model using the holdout dataset for just the COVID-19 diagnosis prediction.

3. Model 3: we use the development data to train the model with 1,414 diagnosis

ICD-10 codes (as explained in Section 4.1). Then we froze the model’s earlier

layer weights and changed the last layer to predict COVID-19 labels. In this

way, we employed the transfer learning from non-COVID diagnosis to train the

COVID-19 diagnosis. Finally, we evaluated the model using a holdout dataset

with COVID-19 labels.
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Pretrain Dataset Train Dataset Test Dataset

Instances Label Instances Label Instances Label

Model 1 - -
Development

Data
Covid-19

Holdout

Data
Covid-19

Model 2 - -
Development

Data

1414 ICD

+ Covid-19

Holdout

Data

1414 ICD

+ Covid-19

Model 3
Development

Data
1414 ICD

Development

Data
Covid-19

Holdout

Data
Covid-19

Model 4
Pre-pandemic

Data
1414 ICD

Development

Data
Covid-19

Holdout

Data
Covid-19

Table 4.3: Description of models

4. We used the pre-pandemic data to train the model with 1,414 diagnosis ICD-10

codes (as explained in Section 4.1)). Next, we froze the model’s earlier layer

weights and changed the output layer to predict COVID-19 labels. In this way,

we used the transfer learning from non-COVID diagnoses and pre-pandemic

data to train a model for the COVID-19 diagnosis. Finally, we evaluate the

model using a holdout dataset with COVID-19 labels.

In the model comparison Table 4.4 and AUROC bar Figure 4.4, we take the first

ECG per episode in evaluating model performance and run bootstrap comparison

methods. We used model 1 alone to establish a baseline model performance, which

had an AUROC of 0.6064 for predicting COVID-19. Models 2 and 3, which use

the information for the other 1,414 diagnosis codes from development data, have a

substantially higher performance with AUROC of 0.6235 and 0.6125, respectively.

Finally, the best model performance is model 4 with AUROC of 0.7178, which used

a model whose weights were “transfer learned” from pre-pandemic data.

Limitation: In our data, not all COVID-19 patients took an ECG test during the

pandemic season because of the infectious nature of the disease. Also, it is likely that
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Model 1 Model 2 Model 3 Model 4

AUROC
0.606

(0.595 - 0.619)

0.613

(0.601 - 0.625)

0.624

(0.612 - 0.635)

0.718

(0.707 - 0.729)

AUPRC
0.0649

(0.0604 - 0.0699)

0.0638

(0.0597 - 0.068)

0.0716

(0.0663 - 0.0769)

0.13

(0.118 - 0.141)

AP
0.0654

(0.0609 - 0.0704)

0.0642

(0.06 - 0.0685)

0.0722

(0.0667 - 0.0776)

0.131

(0.119 - 0.142)

F1 Score
0.107

(0.102 - 0.112)

0.103

(0.0987 - 0.108)

0.108

(0.102 - 0.113)

0.164

(0.156 - 0.172)

Specificity
0.577

(0.572 - 0.581)

0.456

(0.452 - 0.46)

0.586

(0.581 - 0.59)

0.797

(0.794 - 0.801)

Recall
0.585

(0.565 - 0.604)

0.708

(0.689 - 0.726)

0.576

(0.555 - 0.596)

0.487

(0.467 - 0.508)

Precision
0.059

(0.0561 - 0.0621)

0.0558

(0.0531 - 0.0582)

0.0594

(0.0563 - 0.0624)

0.0983

(0.0932 - 0.103)

Accuracy
0.577

(0.573 - 0.581)

0.467

(0.463 - 0.471)

0.585

(0.581 - 0.589)

0.784

(0.78 - 0.787)

Brier Score
0.0416

(0.0402 - 0.0431)

0.0414

(0.04 - 0.0429)

0.0413

(0.0399 - 0.0428)

0.0415

(0.0401 - 0.0428)

Table 4.4: Evaluation of ECG COVID model performance, using in AUROC, AP,
AUPRC, AP, F1-score, etc, expressed in mean (95% confidence interval) percentage.
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Figure 4.4: Comparison of AUROC performances for ECG COVID-19 models with
ECG traces and the error bar is the lower bound and upper bound from 95% bootstrap
confidence interval.

most of the COVID-19 patients, who took ECG tests, had severe symptoms.
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Chapter 5

ECG Prognosis

This chapter explores the task of learning models for predicting prognosis using ECG

data. Chapter 4 showed that we could learn diagnosis models that can accurately

predict numerous health conditions based on ECG traces. Motivated by these findings

and effectiveness of the patients’ health condition to all cause mortality, we implement

two different prognostic prediction methods. (1) Section 5.2.1 discusses the binarized

mortality classification method, which predicts if a patient dies before a certain time

point. (2) Section 5.2.2 introduces the individual survival distribution algorithm,

which predicts a patient’s survival distribution. Finally, Section 5.3 evaluates and

compares the performances of the different prognosis models.
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5.1 Method

5.1.1 Analysis Cohort

Table 5.1 describes the characteristics and comorbidities of patient cohorts used in

the study. Table 5.2 gives statistics about the ECG measurements of the patients.

Section 3.1 explains how we split our dataset into the development set, which is used

as training set and tuning set, and holdout set, which forms the final evaluation set.

We also make sure there are no patients in both the development set and holdout set.

In our dataset, one patient could have multiple ECGs. However, patients with more

severe illness are expected to undergo ECGs more frequently, which can cause a bias

in the model performance due to the differential representation of patient phenotypes.

To mitigate such bias, we evaluate our models using a single randomly-selected ECG

per patient in the holdout set; below we refer to this as the “random evaluation set”.

At the time of the ECG, the average ages of patients in the development and holdout

sets are each 65.8 years. However, the average age in the random evaluation set is

slightly lower, 62.6 years, because older patients had more ECGs than younger ones,

and here each is only counted once. Similarly, men had more ECGs, so the proportion

of men is slightly lower in the random evaluation set than in the development set

(54.7% vs 56.7%). This pattern is observed for some of the ECG measurements

(e.g., mean of QRS duration: 97.9 vs 101.3 ms; QT interval 395.1 vs 399.8ms) and

comorbidities (e.g., ECG-wise 1 frequency for Heart Failure: 4.1% vs 6.2%; Atrial

Fibrillation 9.2% vs 15.5%).

5.1.2 Prediction Task

In recent years, exponential advancements in computational resources and machine

learning technologies, coupled with big digitized ECG datasets, have opened up op-

portunities for ECG-based prognostic predictions. Here, we used a large cohort of

1Here, each instance is an ECG, as opposed to a patient.
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Full Data Development set Holdout set
Random ECG per

patient in holdout set*

ECG Number 1605268 964741 640527 97631

Age (years) 65.80 ± 17.25 65.77 ± 17.22 65.85 ± 17.29 62.57 ± 18.59

Sex (Male in %) 56.73 56.81 56.6 54.73

Peripheral Vascular

Disease
33518 (2.09%) 19714 (2.04%) 13804 (2.16%) 2144 (2.20%)

Cerebrovascular

Disease
54349 (3.39%) 33191 (3.44%) 21158 (3.30%) 4252 (4.36%)

Hypertension 350859 (21.86%) 210275 (21.80%) 140584 (21.95%) 15387 (15.76%)

Dementia 133963 (8.35%) 80037 (8.30%) 53926 (8.42%) 8849 (9.06%)

Chronic Pulmonary

Disease
31764 (1.98%) 19215 (1.99%) 12549 (1.96%) 2078 (2.13%)

Diabetes Mellitus 120260 (7.49%) 71860 (7.45%) 48400 (7.56%) 5684 (5.82%)

Renal Disease 163262 (10.17%) 96924 (10.05%) 66338 (10.36%) 8800 (9.01%)

Liver Disease 20268 (1.26%) 12062 (1.25%) 8206 (1.28%) 1079 (1.11%)

Cancer 18905 (1.18%) 11707 (1.21%) 7198 (1.12%) 1346 (1.38%)

NSTEMI 93946 (5.85%) 55632 (5.77%) 38314 (5.98%) 8699 (8.91%)

STEMI 162274 (10.11%) 96828 (10.04%) 65446 (10.22%) 6534 (6.69%)

Heart Failure 100206 (6.24%) 60381 (6.26%) 39825 (6.22%) 4049 (4.15%)

Atrial Fibrillation 249325 (15.53%) 150055 (15.55%) 99270 (15.50%) 8958 (9.18%)

Table 5.1: Characteristics of patient cohorts used in the study. For age, we expressed
as mean (± standard deviation). For the comorbidities, we expressed as count (per-
centage).
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ECG measurements Full Data Development set Holdout set

Random ECG per

patient in holdout

set*

Atrial rate 85.60 ± 46.15 85.56 ± 46.11 85.67 ± 46.20 84.06 ± 40.30

P duration 155.92 ± 116.60 156.00 ± 116.39 155.79 ± 116.91 163.96 ± 114.06

RR interval 790.81 ± 213.11 790.90 ± 212.63 790.68 ± 213.83 790.89 ± 204.35

Q wave onset 508.84 ± 6.51 508.82 ± 6.29 508.87 ± 6.82 509.04 ± 6.17

Fridericia Rate-Corrected

QT interval
434.86 ± 38.05 434.96 ± 38.04 434.71 ± 38.07 429.55 ± 35.23

Heart Rate 81.64 ± 23.22 81.61 ± 23.18 81.69 ± 23.28 81.13 ± 21.94

PR interval 169.34 ± 38.46 169.44 ± 37.66 169.18 ± 39.65 165.99 ± 33.65

QRS duration 101.36 ± 24.26 101.40 ± 24.23 101.31 ± 24.30 97.89 ± 21.66

QT interval 399.81 ± 54.83 399.94 ± 54.74 399.63 ± 54.96 395.10 ± 51.41

Bazett’s Rate-Corrected

QT interval
455.02 ± 40.09 455.10 ± 40.09 454.89 ± 40.09 449.23 ± 37.16

Frontal P axis 44.85 ± 35.52 44.81 ± 35.41 44.91 ± 35.69 45.66 ± 32.19

Frontal QRS axis in

Initial 40 ms
27.50 ± 46.30 27.44 ± 46.37 27.59 ± 46.20 28.48 ± 42.12

Frontal QRS axis in

Terminal 40 ms
45.36 ± 88.15 45.74 ± 88.28 44.80 ± 87.96 46.24 ± 84.64

Frontal QRS axis 19.98 ± 54.37 20.04 ± 54.38 19.88 ± 54.37 22.68 ± 49.81

Frontal ST wave axis 90.94 ± 88.23 90.98 ± 88.07 90.87 ± 88.48 79.23 ± 85.11

Frontal T axis 55.70 ± 67.76 55.48 ± 67.60 56.03 ± 68.00 47.97 ± 59.90

Horizontal P axis 20.69 ± 47.30 20.63 ± 47.14 20.77 ± 47.52 21.01 ± 41.15

Horizontal QRS axis in

Initial 40 ms
27.79 ± 48.39 27.86 ± 48.17 27.69 ± 48.71 30.20 ± 42.68

Horizontal QRS axis in

Terminal 40 ms
34.10 ± 129.50 33.94 ± 129.40 34.35 ± 129.66 26.67 ± 125.58

Horizontal QRS axis -0.91 ± 78.19 -1.11 ± 77.91 -0.61 ± 78.62 -4.03 ± 69.27

Horizontal ST wave axis 97.02 ± 64.99 96.98 ± 65.00 97.09 ± 64.97 91.75 ± 60.20

Horizontal T axis 64.46 ± 58.98 64.27 ± 58.96 64.73 ± 59.01 59.30 ± 53.05

Table 5.2: ECG measurements of patient cohorts used in the study expressed as mean
(± standard deviation)
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universal health insurance patients with emergency department (ED) or hospitaliza-

tion visits in a defined geographic area to develop DL models based on ECG tracings

and XGB models based on ECG measurements to predict short-term (30 days) and

long-term mortality (1 year and 5 years) and individual survival prediction starting

from the day of ECG acquisition. We calculate the time until death based on the

difference between the death date and the ECG acquisition date. The goal of the

prognostic prediction model is to provide the calibrated probability of patients’ mor-

tality, which could assist the clinical system in (a) evaluating the patients’ risk; (b)

managing or allocating the clinical resources during patients’ stay in the hospital,

and (c) planning of patients’ subsequent visits after they were discharged from the

hospital. Figure 5.1 summarizes the number of ECGs, episodes, and patients used

for modeling for each of the 3 tasks in overall data and experimental splits.

5.1.3 Pre-processing Binary Mortality Prediction Data

In our dataset, the study interval is from 2007 to 2020. Here, we consider 3 tasks,

asking respectively if a given patient is dead within 30 days (resp., 1 year, and 5

years) after the ECG acquisition date. For each study, we exclude the patients who

left the study. Figure 5.2 shows three groups of patients. We will consider that all

ECGs, which have time intervals between ECG’s acquisition dates and study end less

than binary mortality prediction time interval, do not have enough follow-up. For

example, our study interval ends at 2020-12-31, and patient ABC’s ECG’s acquisition

date is 2018-12-10. We will consider this ECG does not have enough 5 years follow-up

interval.

1. Group A: Patients with enough follow-up time interval. For example, in the

5-year binary mortality task, if they take ECG tests before 2015-01-01 (5 years

before study ended), then we consider patients to have enough follow-up time

interval.
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Figure 5.1: Flowchart of the ECG prognosis study design showing the sample sizes
for different splits and outcomes

2. Group B: Patients are uncensored, but without enough follow-up intervals, For

example, patient Alex had an ECG test on 2018-12-10 and he died on 2019-

01-12. Then, he is uncensored but without enough follow-up interval in 5 year
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Figure 5.2: Groups of patients in binary mortality prediction task

binary mortality task.

3. Group C: Patients are alive at the study end and they don’t have enough follow-

up time intervals. For example, patient David had an ECG test on 2018-10-12

and he survived until the study ended. Then, he is censored but without enough

follow-up interval in the 5 year binary mortality task.

In the training phase, we use group A and group B patients in the training data

to retain the maximum number of instances for training. However, in the evaluation

phase, all ECGs without complete follow-up are excluded, irrespective of their death

or censoring status. Therefore, we use group A patients only.

5.1.4 Pre-processing for ISD model

In the prognosis task, the binary mortality prediction provides limited information to

clinical communities. Since clinicians only know the predicted survival probability at

a certain time-point, they might not offer the optimal decision to balance the costs

of maintaining routine medical care and an aggressive treatment plan. Therefore,
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the time until death and survival probability distribution, which ISD models provide,

could inform the clinicians about the risk for patients at each time point and the

estimated survival time.

According Section 3.2.3, we convert data to the format D = {[Xi
⃗ , Ti, δi]}i, which

provides i-th patient’s vector features Xi
⃗ ; a non-negative value Ti which is the time

until i-th patient censor or event occur, and δi ∈ 0, 1 indicate if i-th patient is dead, at

the time Ti. In our dataset, we have 25.2% of the patients (corresponding to 36.35%

of the ECGs) died before the end of study interval. We show the details in the Figure

5.1 and the Kaplan Meier curve in the Figure 5.3.

Figure 5.3: Kaplan Meier curve in study dataset, where X-axis is number of days,
and Y-axis is percent of survival.

60



5.2 Learning Algorithm

We use two approaches to detect the mortality risk in the prognosis task. Firstly,

we use a binary classification model in binary mortality tasks. To accommodate the

generally used ECG formats – ECG measurements and digitized ECG waveform –

we use both XGB and ResNet models, respectively. Secondly, we use the individual

survival distribution (ISD) method. We also use different ISD model architectures

for ECG measurements and digitized ECG waveforms.

5.2.1 Binary Mortality Classification

In this classification task, the input of the learned XGB model is 22 ECG measure-

ments, age, and sex. The XGB hyperparameter and structure have been described in

Section 3.2.1. Meanwhile, the input of the learned ResNet model is 12 leads digitized

ECG waveform, age, and sex. The hyperparameter and architecture of the ResNet

model have been described in 3.2.2.

5.2.2 Individual Survival Distribution

Individual survival analysis corresponds to converting personal data to estimate the

time until an event of interest will occur. As shown in Figure 5.4, we design the ISD

models separately from ECG measurements and 12-lead digitized ECG waveforms.

We use three different ECG feature representations as inputs for our ISD algorithms:

(A) We design the end-to-end ISD algorithm where the input is 12 lead ECGs and

demographic features, and the output is individual survival distribution. (B) We also

develop the two-step model. Here we use the 1,414 diagnoses prediction model from

Section 4.2 as the ECG feature extractor 2. Then, we used the predicted diagnosis

probabilities and demographic features to train an ISD model. (C) To accommodate

the hand-crafted ECG features, we directly use the ECG measurements, age, and sex

2We use 1,414 diagnosis codes instead of 275 top-performing ICD codes because we want com-
prehensive ECG representations for better training
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Figure 5.4: Schematic of ISD models. Three ECG feature representation: Model
A input is 12 lead ECG waveform and output is 1,414 ECG feature representation;
Model B input is 12 lead ECG waveform and output is 1,414 ICD diagnosis prediction
values; Model C input is ECG measurements. Two ISD algorithms: 1 is MTLR and
2 is N-MTLR
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as the input features to train an ISD algorithm. We use (1) MTLR and (2) N-MTLR,

described in Section 3.2.3, as our choice of ISD algorithms for each of the above three

scenarios and compared six different ECG ISD models in result Section 5.3.3.
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5.3 Result

Figure 5.5: Comparison of AUROC model performances for ResNet, XGB and com-
parable models with ECG traces and measurements

We use the evaluation methods described in Section 3.3 to estimate the model

performances. In addition, according to Section 5.1.1, we evaluate our model using a

single ECG randomly selected from multiple episodes for each patient in the holdout

set. This evaluation sampling strategy is reasonable and representative of deploying

the model in a real-world scenario on a recent ECG from a new patient, rather than

using the high mortality risk and high frequency ECGs from the same patient.

5.3.1 Binary Mortality Model comparison

Figure 5.5 and 5.6 present the comparisons of models’ performances. We use age, and

sex features alone to establish a baseline model performance, which had an AUROC

of 0.680 for 30-days, 0.716 for 1-year, and 0.776 for 5-year mortality. The ResNet

model with ECGs traces alone had a substantially higher performance with AUROC

of 0.843, 0.812, and 0.798 for 30-days, 1-year, and 5-year predictions, respectively.
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Age, sex, and ECG traces show further small but significant improvements with

AUROC of 0.852, 0.826, and 0.828 for the three-time points. ResNet with ECG traces

performs significantly better than XGB with ECG measurements for all three time

points. ResNet with ECG traces, age, and sex is the best model in this comparison,

with AUROCs consistently higher than 82%. For 5-year outcomes, XGB with ECG

measurements did not perform better than just age and sex. However, ECG traces

still provided relevant information to the prediction. They significantly outperformed

the baseline age and sex model, emphasizing the prognostic utility of ECG traces

over typically used ECG measurements. Figure 5.6 shows the superior performance

of ResNet models with ECG traces in terms of AUROC, AUPRC, F1-Score, and other

measures.

Figure 5.6: Evaluation of various model performances expressed in mean (95% confi-
dence interval) percentage

Risk Groups: We derive five risk groups - ’very low’, ’low’, ’medium’, ’high’, and

’very high’ risk groups based on 20 percent cut-points (0 - 20%, 20% - 40%, etc.,) of
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predicted probability of death from our main models (ResNet: ECG Trace, age, sex)

in the holdout set (Figure 5.8 for 1-year mortality, Figure 5.7 for 30-day and Figure

5.9 5-year mortality). The percentage of observed deaths in each predicted risk group

show good calibration with a steady increase across the risk groups (8.6%, 34.6%,

52.3%, 70.9%, and 78.9% death in the ’very low’, ’low’, ’medium’, ’high’, and ’very

high’ risk groups, respectively).

Figure 5.7: Predicted risk groups in the evaluation set for 30-days mortality with
ResNet: ECG traces, Age, Sex

Figure 5.8: Predicted risk groups in the evaluation set for 1-year mortality with
ResNet: ECG traces, Age, Sex
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Figure 5.9: Predicted risk groups in the evaluation set for 5-years mortality with
ResNet: ECG traces, Age, Sex

Diagnoses ICD Codes

Non-ST elevation myocardial infarction (NSTEMI) I214

ST elevation myocardial infarction (STEMI) I210, I211, I212, I213

Heart Failure
I50, I43, I099, I110, I130, I132, I255,

I420, I425, I426, I427, I428, I429, P290

Atrial Fibrillation I48

Diabetes Mellitus E10, E11, E12, E13, E14

Hypertension I10, I11, I12, I13, I15

Table 5.3: ICD 10 codes used for the identifying diagnostic subgroups.

5.3.2 ECG subgroups

We also investigate the learned models’ performance for specific subgroups based on

patients’ sex or disease conditions during the ECG test. We use the following diseases

based on the primary diagnosis codes with ICD-10: Non-ST elevation myocardial

infarction (NSTEMI), ST-elevation myocardial infarction (STEMI), Heart Failure,

Atrial Fibrillation, Diabetes Mellitus, and Hypertension. We present ICD-10 codes

for these six diagnostic subgroups in Table 5.3.

Mortality rates differ significantly across the diagnostic groups of interest (Figure

5.10), with patients with heart failure having the highest mortality at each time point.
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Meanwhile, most prognostic models perform slightly better in men than in women.

Figure 5.11 shows the performance of our models in these different diagnosis sub-

groups. The models perform better in patients with STEMI and NSTEMI (AUROC

of 0.87 and 0.88 for 1-year mortality, respectively) than in the overall cohort. The

model’s performance in the other subgroups is lower than in the overall holdout co-

hort. The model performs poorly in heart failure patients (AUROC of 0.75 for 1-year

mortality). The results are shown in Figure 5.12.

Figure 5.10: Kaplan Meier curves for diagnostic subgroups in the study dataset

5.3.3 ISD models comparison

This section compares the performance of the ISD models using the following evalua-

tion metrics: C-index, hinge L1 loss, marginal L1 loss, and Integral Brier Score (IBS)

(described in Section 3.3.2). We consider six ISD models described in Section 5.2.2.

Table 5.4 and C-index bar Figure 5.13 show the superior performance of ISD B2

models in terms of C-index, hinge L1 loss, marginal L1 loss, and Integral Brier Score
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Figure 5.11: Kaplan Meier curves for males and females in the study dataset

Figure 5.12: AUROC model peformances in primary diagnostic and sex based sub-
populations for 1 year mortality with ResNet: ECG traces, Age, Sex.

(IBS). The B2 model (two-step learning with ICD-10 based feature extractor) has a

significantly higher C-index of 0.8004 and significantly lower hinge L1 loss of 514.78,

marginal L1 loss of 2116.31, and Integral Brier Score (IBS) of 0.14 than the other
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Input Features
ISD

Method

hinge

L1 loss

marginal

L1 loss
C index IBS

Model A1
12 lead ECG

+ Age, Sex

Trace

+ Age, Sex
MTLR

551.6670

(550.5716 -

552.8586)

2237.7006

(2235.0975 -

2239.9825)

0.7503

(0.7492 -

0.7518)

0.1476

(0.1466 -

0.1487)

Model A2
12 lead ECG

+ Age, Sex

Trace

+ Age, Sex
N-MTLR

547.5019

(545.5068 -

549.2004)

2260.5984

(2256.2395 -

2263.8624)

0.7643

(0.7627 -

0.7660)

0.1503

(0.1490 -

0.1518)

Model B1
12 lead ECG

+ Age, Sex

1414 ICD

predictions

+ Age, Sex

MTLR

518.5863

(516.8676 -

520.5421)

2166.3025

(2162.5818 -

2170.5418)

0.7940

(0.7927 -

0.7947)

0.1419

(0.1406 -

0.1431)

Model B2
12 lead ECG

+ Age, Sex

1414 ICD

predictions

+ Age, Sex

N-MTLR

514.7825

(513.0864 -

516.7966)

2116.3125

(2112.1232 -

2120.3248)

0.8004

(0.7995 -

0.8011)

0.1368

(0.1355 -

0.1382)

Model C1

ECG

measurements

+ Age, Sex

same as

input
MTLR

646.7728

(644.265 -

650.2352)

2325.8173

(2322.8872 -

2330.3700)

0.6785

(0.6776 -

0.6795)

0.2946

(0.2936 -

0.2962)

Model C2

ECG

measurements

+ Age, Sex

same as

input
N-MTLR

564.239

(563.0365 -

566.0258)

2304.6902

(2302.1593 -

2307.9460)

0.7589

(0.7576 -

0.7597)

0.1508

(0.1495 -

0.1517)

Table 5.4: Evaluation of ECG ISD models’ (described in Section 5.2.2) performance
in hinge L1 loss, marginal L1 loss, C-index, and integrated brier score expressed in
mean (95% confidence interval) percentage

5 models. The N-MTLR ISD algorithm performs significantly better than MTLR

for all model architectures and is particularly pronounced in models C1 and C2.

Overall, models C1 and C2 (shallow models without ResNet module) show the lowest

performance.
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Figure 5.13: Evaluation C-index expressed in mean (95% confidence interval) per-
centage.

5.3.4 Comparison between binary mortality and ISD models
in time points

Table 5.5 lists the AUROC on 30 days (1 year, and 5 years) time points for ISD models

and binary mortality models 3. When the models’ inputs are raw ECG traces, age,

and sex, the ISD (A1 and A2) end-to-end models perform worse than the binary

mortality ResNet model. However, when the models’ inputs are ECG measurements,

age, and sex, the ISD model (C2) performs better than the binary mortality XGB

model. Moreover, for ISD (C1 and C2) models outperform all other models. However,

this uses the pretrained weights which is not fair in comparison with binary mortality

models.

3According to Section 5.1.3, in binary mortality tasks, we have no follow-up or censor data missing
in training and evaluation sets.
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30-days AUROC 1-year AUROC 5-years AUROC

A1 0.8303 0.8092 0.8311

A2 0.8241 0.8089 0.8316

B1 0.8626 0.8368 0.8537

B2 0.8619 0.8343 0.849

C1 0.7342 0.728 0.7622

C2 0.8099 0.7897 0.824

12-lead ECG traces,

Age, Sex with ResNet
0.8519 0.8258 0.828

ECG measurements,

Age, Sex with XGB
0.6799 0.7159 0.7763

Table 5.5: Comparison for all ISD models from Section 5.3.3 and binary mortality
models with ECG, age, and sex from Section 5.3.1.
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Chapter 6

Discussion and Conclusion

There are two main goals for this thesis. (1) Chapter 4 shows we can learn models that

can use a patient’s ECG to effectively predict multiple diseases and improve the per-

formance in diagnosing COVID-19 with ECG by using transfer learning technology.

(2) Chapter 5 shows that the all-cause binary mortality classification and survival

prediction models in ECG prognosis models for all-cause mortality have good perfor-

mance.

6.1 Future Work

Below we describe three future extensions for our study.

First, we plan to implement more DL models instead of ResNet only because, in

machine learning literature, multiple state-of-the-art DL models have shown superior

performance in ECG diagnosis of ECG abnormalities. For example, Oh Shu Lih et al.

[12] developed the U-Net model that predicted normal sinus beats, atrial premature

beats (APB), premature ventricular contractions (PVC), left bundle branch block

(LBBB), and right bundle branch block (RBBB) from ECG signals. Peng Xiong et

al. [13] used the DenseNet model to diagnose Myocardial Infarction (MI) from 12-lead

ECG Traces.

Second, we could measure the generalizability of our models and correct model bi-

ases towards certain gender or ethnic groups, because the current study demonstrates
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an exciting potential for state-of-the-art DL models trained on a ubiquitous diagnos-

tic test (ECG) linked to routinely collected health data to transform high-throughput

diagnostics for a wide range of diseases.

Finally, we might explore other study design methods for prognosis tasks. Then we

could compare the performance in binary mortality classification methods and ISD

algorithms in short- and long- time points in a fair comparison from the comparable

training and evaluation set.

6.2 Diagnosis Discussion and Conclusion

To the best of our knowledge, this is the first study that explores the ECG-based

predictability of multiple diseases over the ICD-wide diagnostic landscape. Our DL

models, which are trained and validated using population scale datasets, demonstrate

excellent AUROC (i.e high sensitivity and specificity) for several diseases; however

their precision (PPV) might be limited, partially owing to their low prevalence rates

(89.8% of diseases had < 1% of occurrence) [78]. Therefore, model predictions for

such diseases might be more suitable for ’rule out’ screening rather than ’rule in’

diagnostics. In addition, population-based records enable learning from high-volume

healthcare data. However, diagnostic labels obtained from these records may not

be considered ground truth without proper adjudication. Like any other supervised

machine learning model, the latent ECG features used for prediction in our models

may not be directly related to the underlying pathology of diseases. They could be

attributed to patients’ comorbidities, medication usage, and lifestyle factors that are

naturally correlated with disease states in the population.

Labels used in our ECG dataset are ICD-10 based medical diagnosis, whereas

most publicly available ECG datasets such as physionet used ECG abnormalities

(e.g. Abnormal T Wave) or SNOMED-CT codes (eg: 102594003). Therefore, there

is no direct way to evaluate prediction models that we developed, on the external

datasets for most of the labels. [79]. However, we compare the performance in
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ICD-10 codes associated with cardiovascular diseases (e.g. Atrial Fibrillation, and

STEMI), where it is close to the performance in SNOMED-CT in other reports, with

AUROC ≥ 90% [80, 81]. Finally, although most adult patients get an ECG at some

point during their lifetime, there is a potential for selection bias in our cohort as it

is restricted to patients who had undergone at least one ECG in the 13 years (2007-

2020). Therefore, these results should be considered preliminary proof-of-concept for

further investigation of specific diseases by future studies.

Moreover, this ICD-wise diagnosis model (ResNet 1414Dx) not only helps in future

studies in ECG abnormality related to non-cardiovascular diseases but also improves

the performance in learning ECG models from small samples using transfer learning

with pre-train weight. Section 4.3 shows a way to use the ResNet 1414Dx pre-train

weight that improves our ECG diagnosis COVID-19 model’s performance.

Several other studies [68–74] claimed excellent performance in diagnosing COVID-

19 with ECG scanned images. However, we found that all of these studies are based on

the same camera-captured ECG image data [75], where the scanner used for COVID-

19 patients was different from the scanner used for the other patients. Note this

scanner difference might boost the models’ performance; see batch effects [82]. We,

however, use the 12-lead Digitized voltage-time series ECG waveform (the numerical

format of ECG scanned images), which is much less dependent on the scanner used.

Our study focuses on raw ECG waveforms that are not available in the publicly

available camera-captured ECG image data [75]. (See the ECG formats in Section

2.1.) In the future research, we will convert our ECG waveforms to scanned image

format, which allows us to compare the models’ performance.

6.3 Prognosis Discussion and Conclusion

Our study is based on a large, population-based cohort of patients with universal

access to healthcare. It demonstrates that, for patients at high risk upon their arrival

at a hospital, machine learned models could use a patient’s ECG data to predict
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short- and long-term binary mortality as well as the survival probability for all future

time points.

Our binary mortality classification study found that ResNet models based on

12-lead ECG traces perform better than gradient-boosting models (XGB) based

on routinely-reported ECG measurements in predicting binary mortality. We also

demonstrate that ECG-based ResNet models can be used to identify patients at high

risk for short- or long- term mortality. In addition, these models perform equally well

in males and females.

We use the ISD models that can generate survival probability for all future time

points for each patient, to solve the limitations in binary mortality classification: (1)

fully leverage both censored and uncensored data; (2) provide survival probabilities

in all time points; (3) resolve the issue that exists patient’s survival probability is

lower in the short term than the long term. To our knowledge, this is the first study

that predicts individual survival curves with ECG data. Section 5.3.3 shows that the

2-step model – beginning with pre-train weight from the ICD-wise diagnosis model

(ResNet - 1414Dx) and then using the N-MTLR algorithm – significantly outperforms

the other models in terms of C-index, hinge L1 loss, marginal L1 loss, Integral Brier

Score (IBS). The 2-step models are better than others due to the pre-train weight of

the feature extraction part, which learns the correlation between ECGs and patients’

comorbidity and health conditions from a training set.
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Appendix A: Appendix A:
AUROC plots for list of categories
with top performing Diagnosis
ICD-codes tasks

Figure A.1: Certain infectious and parasitic diseases AUROC plot

Figure A.2: Codes for special purposes AUROC plot
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Figure A.3: Congenital malformations, deformations and chromosomal abnormalities
AUROC plot

Figure A.4: Diseases of the blood and blood-forming organs and certain disorders
involving the immune mechanism AUROC plot
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Figure A.5: Diseases of the circulatory system AUROC (1) plot
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Figure A.6: Diseases of the circulatory system AUROC (2) plot
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Figure A.7: Diseases of the circulatory system AUROC (3) plot
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Figure A.8: Diseases of the circulatory system AUROC (4) plot
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Figure A.9: Diseases of the digestive system AUROC plot
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Figure A.10: Diseases of the genitourinary system AUROC plot

Figure A.11: Diseases of the musculoskeletal system and connective tissue AUROC
plot
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Figure A.12: Diseases of the nervous system AUROC plot
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Figure A.13: Diseases of the respiratory system AUROC plot
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Figure A.14: Endocrine, nutritional and metabolic diseases AUROC plot
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Figure A.15: External causes of morbidity and mortality AUROC plot
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Figure A.16: Factors influencing health status and contact with health services AU-
ROC plot
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Figure A.17: Injury, poisoning and certain other consequences of external causes (1)
AUROC plot
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Figure A.18: Injury, poisoning and certain other consequences of external causes (2)
AUROC plot
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Figure A.19: Mental and behavioural disorders (1) AUROC plot

99



Figure A.20: Mental and behavioural disorders (2) AUROC plot
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Figure A.21: Neoplasms AUROC plot
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Figure A.22: Symptoms, signs and abnormal clinical and laboratory findings, not
elsewhere classified AUROC plot
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