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ABSTRACT

The present study models the daily human-caused wildfire occurrence in
Whitecourt Forest, Alberta, using geographic and temporal variables from the forest
environment. The main hypothesis in the study was that the extent and location of
fire-producing activitics are determined by the state of the forest environment at any
given time. The following variables were identified as relevant to the human-caused
fire problem: distance to closest road, town, and campsite, clevation, fuel category,
land ownership, forest commerciality, and location on a certain forest district, and Fire
Weather Index, Initial Spread Index, Build-Up Index, Fine Fuel Moisture Code, Duff
Moisture Code, relative humidity, wind speed, and month. These variables were used
for building logit models and ncural network predictive models.

A binary logit model was successfully developed to predict daily human-caused
fire occurrence in eight fire occurrence prediction units (all less than 5,000 km?) in the
Whitecourt Forest. This model provided a binary prediction of fire occurrence for
each fire occurrence prediction unit and day within a standard fire scason (April 10
October) using unit area (km?), Forest District, Build-Up Index, and Initial Spread
Index values to compute the probability of fire occurrence. This model cosrectly
classificd 79% of the observations used for model building, and correctly predicted
74% of the outcomes in an independent data set not used in the development of the
model.

A back-propagation neural network model was developed to predict the daily

probability of fire occurrence in the same eight fire occurrence prediction units. As



with the logit model, predictions were limited to days within a standard fire season
(April to Octobher), and the prediction was binary fire occurrence for cach area &nd
day. The network used the fire occurrence prediction unit area (km?), Fire Weather
Inde:x, and Forest District as inputs, The network was able to correctly classify 81%
of the outcomes in the training data set. It also predicted outcomes for a test set not
previously used for mode) building with a 76% accuracy.

The general conclusion of the study was that both logit models and ncural
nctwork models can be effectively used for human-caused wildfire occurrence
prediction. These models captured very well the relationships between several
geographic und temporal variables and fire occurrence, Performance of the neural
network model for prediction was slightly better that the performance of the logit
model, but the improvement was not sufficient to compensate for the higher
computational cost involved in the network development. Reluctance by users to
adopt "black box" models might also suggest the use of logit models over the neural

networks at this point in time.



ACKNOWLEDGEMENTS

I wish to express my sincerest gratitude to all individuals and institutions that
have made this study possible.

I am specially indebted to my supervisor, Dr. Paul M. Woodard, for his never-
faltering dedication, friendly guidance, and support throughout my program, and for
his patience and helpful advice during the writing of this thesis. 1 am aiso sincerely
grateful to my supervisory committee members: Dr. Wiktor L. Adamowicz (Rural
Economy Dept.), Mr. Bryan S. Lee (Forestry Canada), Dr. William E. Phiilips (Rural
Economy Dept.), and Dr. Stephen J. Titus (Forest Science Dept.), for their helpful
suggestions and advice all along.

Special thanks go to Mr, Mag A. Steiestol of the Alberta Forest Service for his
expert advice and continuous disposition to help. I am also particularly grateful to the
staff of the Northern Forestry Centre, Forestry Canada, for their friendship and support
in the last three years, specially: Mr. Kerry R. Anderson, for his helpful comments
and assistance; Mr. Scott R. Henderson, for his aid when computers mishchaved; Mr.
Richard M. Smith, for his advice on GIS-related matters; Mr. Marty E. Alexander, for
his helpful suggestions and contribution of bibliographic material; and Mr. Max Pinedo
and Mr. Kelvin Hirsch, for their help on literature citing matters.

Thanks are also due to Mr. Terry Taerum (U of A) for his statistical advice,
the Department of Forest Science staff for their assistance, and fellow graduate

students for their friendship and support.



I would also like to thank the following institutions: the Ministry of Education
and Science of Spain for sponsoring my education at the University of Alberta;
Forestry Canada, Northwest Region, for their financial and technical support and the
usc of their facilities; and the Alberta Forest Service, Forest Protection Branch, for
graciously donating the fire data needed for the study.

Most of all, I wish to thank my husband Jorge and all my family for their

support, encouragement, and patience during the course of this study.



TABLE of CONTENTS

Chapter 1
The fire occurrence prediction problem: Introduction. ... 1
Ll GENCTAL .. recrecie e s n e stene e e r e sa e s sr e sr s aae s n e a e sen e ee s saresbas srasans 1
1.2, Risk related consSiderations. ... uvceerneennssscesrene e stesnesssesesssssesssssassesnsnaces 2
1.3. Successes in predicting daily fire OCCUITENCE.....coerririercenineerinsessrinenenians 6
L. OB CClIVES cereceeie e reeciree et s ee e ree s et e st ns e seesan et se e saerassbe s et st ene st areraes 8
1.5, StAY GCSI8M ittt e et et assiesssn st ss bt s s er s s s be st b e e ens 9
1.6, RO EICICES .o eicreeiereersvassnrversraneesnerses saessessenssassasssasssvessnsssnasssssseessssssssrnssneesess 10
Chapter I1
Selecting variables important for predicting human-caused fire occurrence ........ 16
2.1, KilrOUUCHOMN ettt cceeree it stne st rse e n et srne s e sessnessrmseanocsnnessbsnmenss sabs 16
2.2, MEIROAS ... ittt e e e bbb 18
2.2.1. Geographic variables ..o I8
2.2.2. Temporal vamiables......oou it sisnsesines 23
2.2.3. Geographic distribution of human risk ...ceevvniviinniinnnnnn. 25
2.3. Results and DiSCUSSION ... iicreiiessiiresiessineieesrerienresassserssesssasssssasssessaessessns 26
2.4, Management iMpPHCAtONS . ittt ressseresmresnesseseseeseseeseserssressesssansanes 32
2.5, CONCIUSIONS . c.veitiveerreerieriesrctaster s etesesassesaaesessesseseasseas ressnesnessasmessnaresbe seessssnes 35
2.6, ROICICIICES ovivvierrrieeeeerareeaeerresseeeerae st assesasssesresasssesneseesessnsensasesnenssssnessenessssnen 37
Chapter 111
A logit model for human-caused forest fire occurrence prediction........covenvenveinin 40
3.1 INTOQUCHON ettt bt sbs s b bt bbbt s r s s b s anan 40
311, Model SCIECHON vttt e s 41
3.2, MEUROGS. c.veciiiecriae sttt e st sa e ans sen e pena s sres e sressr e ne s an e 44
3.2.1. Model develOpmEent ittt st sra s 44
3.2.2. Criteria for model evaluation ......c.cceveeevre s 49
3.3, ROSUMS ittt bttt ess s e et e e e ses e e snbe e 51
3.3.1. Model SCICCHOM .ccceviisirccerenie e ccens s e sesee et esce st cnaessasaes 51
3.3.2. Strategics for testing the model ....vvviviccvnrnnnenn. 53
3.4, Management IMPlCAUONS ..ottt sttt 55
3.5, REIEIEICES. 1vvarrirrrereenresreraesassesiessnstarsnrsessaesssssnssrssnesessanssraesasssessssssssassesansses 61



Chapter IV

Applying neural network technology to human-caused wildfire occurrence

PrediCHON. (oot s s s 64
4.1, INUOGUCHON ittt ettt esa b s bbb e e sa e s e snsa s a e nanobe s 64
4.2, ODJCCHVES. .cvrareieieereee e rts et et e st s e et s b s s b s dss ae s an et s s ab e e e e s e nrens 66
4.3, Neural network model ChOICE .ovuivivmeiiri i 66
4.4. Model deveIOPMENL ......coiiiivisrissvirnisirciessresnese s sasnerssnnasesresst sssssssassases 67
4.5. Results and DiSCUSSION ...uiiciiiiiinn st ssses s sscssne s nnss e 75
4.6. Management impliCAtONS. ....iriiisiniiriiiire s s ssssssensessensassssssans 80
4.7, RE{CIENCES ettt sttt st s s ss s ssaassr s sn e se b enes 84
Chapter V
CONCIUSIONS. .....erieciicr ittt bbb bbb e sr s e s n s e et s ba s e e S0 sa b s ann s s eas 87
Chapter VI
Futtre ReSearch... ..ottt sttt es s b s e s s esss s s ssassre st aas 20
Appendices
Appendix A: The location of the Whitecourt Forest in AlDErta .....coovieeees oviviecinanenn 92
Appendix B: Pearson correlation analysis for all geographic and temporal
VATADICS c1vevecteeminirsre et sese st ens e sneses et snnase srasnasssten s sssnoses st ssssnsbbasirnssnsrasansansenssssnssessnsans 93
Appendix C: SAS outputs for the six best 1ogit MOdelS.....ccveiiniiciiiiniimiienn 96
Appendix D: Classification tables for indecpendent data. Logit models 1-6................ 109
Appendix E: Classification tables for independent data. Best neural network
TOACIS «.e ettt sttt e e st st eras s s s rr s sr st e s s en e sas s b bR RS s R s eR S S s s e s e R R e R e s R e s e R e ens 112

Appendix F: A network-specific generated C COE ..ovvvrvmrvnniinniivcnininnnesernnenis 116



LIST of TABLES

Table 2.1. A list of geographic variables to be tested in their relationship to wildfire
OCCUITEIICE cviuretenessereesnestne e r et ee e sk r bt s e sr e s st er et ea st s s s bsabeeanamaras sasm s nEee e at e eeseem s neears neaans 20

Table 2.2. A list of temporal variables 1o be tested in their relationship to wildfire

OCCUITCIICE ..vvevtieuinrsstraaesarasaerbs st ass s e res st e sene s st bssase s s s e e oanatsrn e nbearEssa b s srassh e ns R e aaaeresanis 24
Table 2.3. A list of geographic variables and their Chi-square test values.....coveene. 27
Table 2.4. A list of temporal variables and their Chi-square test values ..., 27

Table 3.1. Geographic variables assigned to each prediction unil.....vnicniininn 46
Table 3.2. Temporal variables assigned to cach prediction unit, each day .......ccoeena 46
Table 3.3. Classification table of observed and predicted responses ..eceecenseneaen, 51
Table 3.4. Criteria for Model 1 SEIECHON ......ccovviciriicrcr e 52
Table 3.5. Classification table for the model building data: Model l.......coiiviininnnnn 52
Table 3.6, Classification table for an independent data set: Model 1. 55

Table 4.1, Classification table to evaluate the performance of the best neural network
model on the raining data SEl.....cccveriierienrrerenereersieestsesecserassesessasssmsesssssessessasssss snasses 77

Table 4.2. Classification table to evaluate the performance of the best neural network
model on an independent Al SEL......viiiiiiiairiieiissesn s s srsesas sreses st sb s st 79



LIST of FIGURES

Figure 2.1. Whitecourt Forest Map of Risk based on seven risk factors: closencss to
roads, campsites, and towns, low elevation, private land, uncommercial forest, and
presence of certain fuels. Darker shades indicate higher HisK..oiveneinenniinenen 31

Figure 2.2. Man of non-visible high-risk areas in Whitecourt FOrest...uoviinaniannnens 34

Figure 3.1. Eizht management units for the logit analysis: four forest districts within the
Whitccourt Forest divided in areas € 5 km from a road and areas > 5 km. Road network
OVErlaid ON the MAD...ci it eras b asss s et b s b e rsr e s esas e ss e nbe s nsae 45

Figure 3.2. Plots of predicted vs actual fire occurrences in District 2, zone € 5 km from
roads. Predictions vary between 0 and 1, actual fire occurrences are represented in the
graph by vertical lines extending from 0 10 1 .o 59

Figure 4.1. The four forest districts were divided in areas < 5 km from a road and areas
> 5 km, for a total of eight management units. Also shown is the road network.........69

Figure 4.2. Best neural network model, and instruments to monitor and evaluate
TFAININE c.oceraereernirereeresnssrersoseesessensrsersmassssessssesesassratessessss rassas sasessssostsbessssbsssesnsotosestrssssesssssen 78



CHAPTER I

The fire occurrence prediction problem: Introduction.

1.1. General

Human-caused forest fires are not random events. Most often, they are located
in the proximity to human habitations and transportation corridors. They arc believed
to follow seasonal, weekly, and even daily patierns (Martell er al. 1987, Todd and
Kourz 1991).

Experienced fire managers are usually capable of assessing future fire
occurrence trends and locations (Cunnigham and Martell 1976, Todd and Kourtz 1991)
but rarely are they able to provide daily predictions specific for a well-defined
geographic area,

The need for adequate daily predictions of human-caused wildfire occurrence
has been long recognized. In Canada, fire occurrence prediction has becn considered a
national research priority by universities and the Canadian Forestry Service for at lcast
two decades (Lynham 1989). A model capable of predicting wildfires on a daily basis
for areas of administrative significance would enable resource managers Lo morc
effectively and efficiently deploy fire suppression resources. This would result in a
reduction in costs and losses. The development of such a model anywhere faces one
great difficulty which is probably the reason why so few are in operation, that is the
uncertainty associated to human behaviour with respect to fire.

Human-caused fires usually result from a combination of dangerous conditions



in the forested environment and presence of human sources of ignition. Specifically,
the environment at any location encompasses the topography (particularly slope,
aspect, elevation), fuel (as it is affected by site quality and disturbance history), and
weather (which affects plant growth, mortality, biomass, moisture content). All these
factors affect the likelihood of fire ignition and determine fire behaviour (Merrill and
Alexander 1987). Topographic, fuel, and weather variables can be ineasured, and the
Canadian Forest Fire Weather Index System (Van Wagner 1987), and the Fire
Behaviour Prediction System (Forestry Canada Fire Danger Group 1992) provide
procedures that enable managers to quantify the effect of these physical environment
variables on fire ignition and behaviour, Unlike the forest environment, human
sources of ignition are more uncertain. For example, often we do not know how many
people are in the forest, how many people use fire, and how safely do they use fire.
The "chance of fire starting as determined by the presence and activity of
causative agents" is vsually referred to as risk (Merrill and Alexander 1987). Data
required for risk assessment, such as number of people in an area on a particular day,
and the activities they are engaged in, are usually unavaiiable (Martell ez al. 1987).
This has led researchers to investigate techniques to obtain indirect estimates of risk,

or to leave the human risk component out of their prediction models altogether.

1.2. Risk related considerations
A number of studies have been conducted to identify human-related

characteristics that would account for variability in fire occurrence rates in different



areas in the United States (Cole and Kaufman 1963, Johnson 1968, Christiansen and
Folkman 1971, Doolittle 1972). Even though some population variables, such as rural
population density, showed positive correlation to fire occurrence, they were usually
poor indicators of the number of actual or future fire starts (Doolittle 1972, Altobellis
1983, Donoghue and Main 1985, Doolittle and Donoghuc 1991). These approaches to
risk estimation did not consider the characteristics or influences of transients in fire
occurrence rates, since it was assumed that the majority of fire starters were members
of the local population (Christiansen and Folkman 1971, Doolittle 1972). Doolittle
(1972) suggested population variables in areas where many fires occur can sometimes
indicate Jow risk, and therefore be misleading, if only a few individuals (arsonists) are
setting the fires. Altobellis (1983) further suggested that fires in the southern United
States were most likely caused by the activities of a small percentage of the total
population. Doolittle (1972) concluded that further study of fire-producing activitics
and individuals was needed before human risk could be used as an input in any fire
danger rating system.

In a study on human behaviour with respect to fire in a wildland situation,
Folkman (1977) reported that all types of persons are a potential source of
uncontrolled fire, but his results suggested that the activity in which a person was
engaged was the major determinant of the risk they represented. This conclusion was
supported by Doolittle (1972), who reported that certain activities such as camping or
smoking or the operation of machinery, increased the risk of wildfire in forests. Based

on the knowledge that wildland fires are commonly related to human activities,



managers usually stratify fires by categories for reporting purposes (Main and Haines
1974, Donoghue 1982, Woodard and Niederleitner 1983, Higgins and Ramsey 1992)
and try to infer danger levels from these data. Deeming et al. (1977) introduced in the
U.S. Forest Service's National Fire Danger Rating System (NFDRS) a human-caused
fire occurrence prediction model in which risk was estimated from previous records of
fire starts and a subjective daily managerial assessment of fire-producing activities
levels. This model, which is still in operation, has the common pitfalls of models that
rely on subjective assessments.

The present study attempts a new approach to risk estimation based on the
above considerations. The main hypothesis in the present study is that the extent and
location of fire-causing human activities are shaped by the state of the forest
environment at any given time. This hypothesis arises from the work that has been
done in the recreational field. Recreation choice behaviour has been shown to be
related to site attributes. Site-related geographic and temporal variables have been
used 10 describe human use in a particular area. Recreationalists prefer certain
attributes in their recreational environment, and for specific activities some attributes
arc absolutely required. In the same way the environment shapes recreational
activities, it also shapes all other activities taking place in the forest, including the fire-
causing activities. Access is the best example of a required attribute for all activities,
whether it be by land, water or air. Access by manual or imechanical means is a
variable that limits the number and distribution of humans as possible ignition sources

in the forest. Given reasonable access, variables such as availability of fruits for



picking, lakes for trophy fishing, flat spots near water for tenting, or timber of high
value for cutting, in addition to the periods of time when such activitics are engaged
in, play an important role in determining when and where people will use fire in the
forest.

This hypothesis implies that geographic and temporal variables, then, can be
used to estimate indirectly the risk posed by humans in certain areas, for specific
periods of time. Chou ez al. (1990) found several geographic variables such as
vegetation type, location close to road or campsite to be related to human-caused fire
occurrence in the San Jacinto Ranger District, San Bernardino National Forest,
California, and more importantly, suitable for fire occurrence prediction. An extension
of this hypothesis, first proposed by Phillips and Nickey (1978), is that given identical
conditions in two forest environments, risk levels should be equal. It is recognized
that this simplification of the fire producing process only considers the influence of
external stimuli, which if known are easy to measure, in human decision-making and
behaviour and leaves out internal/personal motivations or predispositions, which arc
difficult to evaluate in comparison. Modeling these internal forces has been
accomplished in the behavioral sciences, but that is beyond the scope of this work.

This approach to risk estimation, presents the advantage of being equally valid
for transient and resident sources of ignition. This hypothesis also recognizes the dual
impact that some factors have on fire cccurrence. For instance, plant communities can
be viewed as fuel types, and as attractors or detractors for certain recreational

activities. Also, rain dampens dead woody material and prevents ignition, but also



keeps more campers home.

1.3. Successes in predicting daily human-caused fire occurrence

There are few models that attempt to predict wildland fire occurrence on a
daily basis. Subjective probability assessments have been used to predict fire
occurrence (Cunnigham and Martell 1976), as they have been used to estimate risk
(Deeming et al. 1977), but most models arc based on statistical analyses of fire
occurrence data with respect to weather data, and all are specific to well defined
geographic cells or areas.

The first attempt at predicting the probability of human-caused fire occurrence
was reported in Crosby (1954). He used linear regression to relate number of fires in
Clark National Forest to the ratings of the Central States Danger Meter. Bruce (1963)
used the negative binomial distribution to relate daily fire occurrence data from
Louisiana and Missouri to fire danger rating class. Deeming et al. included in 1977 a
human-caused fire occurrence prediction model in the U.S. National Fire Danger
Rating System. In this model, fire occurrence predictions are a function of an ignition
component (IC} and human risk, which is estimated from historic data and a daily
subjective assessment. A multilinear regression approach was used by Haines et al.
(1983}, who related the probability of a fire day in portions of the states of Michigan,
Wisconsin, and Pennsylvania to the Ignition Component (IC) of the U.S. National Fire
Danger Rating System. Loftsgaarden and Andrews (1992) used a logit model to

describe the probability of a fire day in Lolo National Forest, Montana, based on the



Energy Release Component (ERC) of the National Fire Danger Rating System
{Deeming er al. 1977).

In Canada, Cunnigham and Martell (1973) used the Poisson model to relate the
average number of fires per day (A parameter of the distribution) in Ontario to the
Fine Fuels Moisture Code (FFMC), which is one of the outputs of the Canadian Forest
Fire Weather Index System, CFFWI, (Van Wagner 1987). This relationship was
further studied using a logit model to predict the probability of a fire day (Martel} er
al. 1985, 1987) by season and cause, based on the Codes and Indices in the CFFWI,
In a later version of this model, Martell er al. (1989) grouped causes of fires into two
categories and added periodic variables (trigonometric functions of the Julian date and
FFMC) which accounted for seasonal variability, to the variables FFMC and BUI (Van
Wagner 1987) to predict the probability of a fire day. A similar approach developed
for Ontario by the Petawawa National Forestry Institute (PNFI) resulted in the
PEOPLE fire occurrence prediction modei. Todd and Kourtz (1991} have tested this
model in Quebec. This model uses a gamma distribution to calculate expected daily
numbers of fires (A) using FFMC, DMC (Van Wagner 1987), and wind speed as
independent variables (Tithecott 1990b). The authors considered the A parameter of
the Poisson distribution to be a random variable with a gamma distribution, and
revised the gamma parameters with a Bayesian process 1o incorporate recent trends in
fire occurrence. Ontario has used the last two models for the past few years. An
evaluation of: (1) Martell’s model, (2) the PEOPLE model, and (3) an expert system

(FUZZY) developed also by PNFI, was conducted in 1989 in Ontario. The results of



these tests are reported in Tithecott (1990a, 1990b, 1990c). Davidson (1993) produced
probability curves to predict a fire day for Pictou County, Nova Scotia, as a function
of the FFMC (Van Wagner 1987) and the subsecason. Summaries of other related
works have been compiled by Martell and Otukol (1985), Lynham (1991}, and
Tithecott (1993).

Currently, no models attempt to account for daily differences in the presence
and aclivity of causal agents within prediction units, although Martell er al. (1987) did
use cause, subseason and day in the week as surrogate variables for the day to day
variation in land use activities. These above consideration suggests a need for
empirical prediction methods that go beyond the capabilities of current models by

incorporating some parameters that account for the human risk factor.

1.4. Objectives

The objective of this study was to build a daily, human-caused, fire-occurrence,
prediction model using temporal and weather variables, and some geographic variables
capable of describing the arrangement and variation of risk levels and fuels (hazard) in
the study arca. At this point, the following questions arose:

1. Which variables have a strong association to fire occurrence?

2. What kind of model best describes the relationship between these variables
and fire occurrence?

3. Can this relationship be used to predict fire occurrence by location or day

with enough accuracy that it would be useful for managerial purposes?



1.5. Study design

The Whitecourt Provincial Forest in Alberta, Canada, (see Appendix A) was
selected as the study area because digitized geographic information was available for
this Forest. Since information pertaining to geographic characteristics change over
time due to the construction of new roads, facilities or other developments, it was
important to use a short time period because the accuracy of the recorded geographic
information would be more reliable, but the period needed to be long enough to show
trends in patterns of fire starts by humans. The 5-year period between 1986-1990 was
selected for developing the model, since fire occurrence data in this period were
believed to be complete, reliable, and sufficient to show trends in fire starts patterns
by humans. The geographic information was also digitized during this period (1986-
1987). Both data sets were used in the analysis. By using this rather short time
period, errors arising from relating fires to geographic features that were non-existent
at the time the fires took place were minimized,

The first objective of this study was to identify the key variables important in
predicting human-caused fire starts in the Whitecourt Forest. This information was
needed before proceeding to the actual model building phase of this study.

Fire occurrence models were built using these variables and both logistic
regression analysis (the logit model) and neural net technology (NeuralWare Inc,

1991)'. The reasons for choosing these analytical procedures are presented in detail

' The use of trade, firm, or corporation names in this thesis is for ease in reproducing
the results reported, and does not constitute endorsement.
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in their corresponding chapters. The performance of these two approaches was tested
using data from the 1991 and 1992 fire seasons.

This thesis is presented in chapters. Each chapter is designed to stand alone.
In Chapter 11, various weather, temporal, vegetation, topographic and positional
variables were analyzed in an attempt to identify the variables most related to human-
caused fire occurrence. The next two chapters present the models developed by using
results from Chapter II. The ability of the logistic regression analysis techniques to
represent human-caused occurrence data is discussed in Chapter III, while the ability
of neural nctwork technology to predict human-caused fire occurrence is presented in
Chapter IV, Chapter V presents the conclusions of the study, and Chapter VI

summarizes future research needs.
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CHAPTER I1

Identification of geographic and temporal variables related to

human-caused wildfire occurrence’

2.1. Introduction

The timing and location of human-caused wildfires in a forest are dependent on
temporal and spatial variables, which determine the number and distribution of human
sources of ignition and the ease of ignition and fire spread. A list of time-related
variables may include: long (holiday) weekends, berry picking seasons, hunting and
fishing seasons, and summer breaks from school, for instance, and weather. Site-
related variables are: access, towns, campsiles, timber, and other attractors, and
topography and fuels. All these variables vary in time and space within a forest,
resulting in a variation in the risk of wildfire at every site for any srecific point in
time.

Chou et al. (1990) explored some of these geographic and spatial factors in
human-caused fire occurrence using Geographic Information System (GIS) technology

and found a significant relationship between them. A GIS can be described as "an

! Some material in this chapter has been published as: Vega-Garcia, C., P.M.
Woodard, and B.S. Lee. 1993. Geographic and temporal factors that seem to explain
human-caused fire occurrence in Whitecourt Forest, Alberta. Pages 115-119 in
Proceedings of the GIS'93 International Symposium, Vancouver, British Columbia,
Canada, February 15-18th, 1993, Vol 1. 591 pp.
and: Vega-Garcia, C., P.M. Woodard, and B.S. Lee. 1993. Mapping risk of wildfires
from human sources of ignition with a GIS. Pages 419-426 in Proceedings of the
Thirteenth Annual ESRI User’s Conference, Palm Springs, California, USA, May 24-
28th, 1993,Vol.1. 608 pp.
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organized collection of computer hardware, software, geographic data, and personnel
designed to efficiently capture, store, update, manipulate, analyze, and display all
forms of geographically referenced information” (Environmental Systems Research
Institute Inc. 1991b).

By using the powerful capabilitics of a GIS, another subsct of geographic
variables (vegetation, topography, and human development factors) was chosen 1o
study how they relate to wildfire occurrence. The goal of this study was to test the
relationship of many geographic variables, together with some commonly used weather
and temporal variables, to human-caused fire occurrence.

It was recognized that fire prevention efforts alter both the fire environment
and risk levels in an area (Moak 1976, Doolitile and Donoghue 1991). But the
effects of prevention measures on fire occurrence are very difficult to assess, and the
lack of adequate data on the effectiveness of prevention efforts in the Whitecourt
Forest prevented consideration of this aspect in the analysis.

Also, the available historic records of human-caused wildfire occurrence
considered alluded only to fires detected or actioned by fire management agencics or
“fire arrivals", as they have been named by Tithecott (1993). Thus, delection
capabilities in the area should also be considered when studying the human-caused fire
occurrence process. The rationale is that scarce or limited detection resources delay
the report of the fires, and create a time lapse between the actual fire Gecurrence and
its detection by the agency responsible for forest protection. Delayed "arrivals” could

introduce serious errors in correlating fire occurrences to temporal and weather
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variables. Also, abundant and effective detection resources may increase deleclion
efficiency and increase the number of “arrivals”, thus resulting in more fires being
reported. The current detection level in the study area (Whitecourt Forest, in
Appendix A} is considered to be adequate and most fires are detected (recorded) on
the day they occur. This is a commonly accepted assumption for human-caused fires
elsewhere (Tithecott 1993), and it might be due to the important role that other
humans in the same area play in detecting fires. The work described here was based
on this assumption, but three detection-related variables were also analyzed as part of
this study. They were: (1) atmospheric visibility (temporal), (2) distance 10 a lookout
tower (geographic), and (3) position in area seen by 0,1,2,3 or more lookout towers
{geographic), as variables that could partially affect the probability of fire arrivals

because all three variables can significantly affect detection efficiency.

2.2. Methods
2.2.1. Geographic Variables

The 20,000 km? study area (the Whitecourt Forest) was divided into about
30,500 cells using a griding procedure in ARC/INFO (Environmental Systems
Rescarch Institute Inc. 1991a). Each cell measured 800 m on a side because fire
locations in Alberta are recorded using the Alberta Township System, to the level of a
quarter section (0.5 mile by 0.5 mile, which is approximately 800 m by 800 m). The
geographic characteristics and past fire history of each cell formed the population for

analysis.
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Each cell was coded with information relative to the 18 attributes presented in
Table 2.1. The different categories of ASPECT, ELEVATION, and SLOPE were
determined by ARC/INFO software based on contour lines digitized originally by the
federal Department of Energy, Mines and Resources (DEMR) from the 1:250,000
topographic map of the area. Distances to the closest CAMPSITE, LAKE,
LOOKOQUT tower, RIVER, ROAD, and TOWN were obtained by applying the
ARC/INFO’s GRID euclidean distance function (Environmental Systems Research
Institute Inc. 1991a) to coverages digitized by the DEMR from the 1:250,000 base
map of the forest. The location of campsites within the Forest were digitized from
this same base map for this study. FUEL categories were coded using the Alberta
Phase 3 Forest Inventory (Alberta Energy and Natural Resources 1985). A digital
coverage for this data set was provided by the Timber Management Branch of the
Alberta Forest Service. This coverage contained Alberta Phasc 3 Forest Inventory
stand attributes summarized for all quarter sections in Alberta. The Alberta Phase 3
Forest Inventory coverage was also used to code cells relative to PROPERTY, stand
AGE, stand HEIGHT, forest COMMERCIALITY and tree DENSITY. VISIBILITY
was computed with the GRID subsystem in ARC/INFO, which used position and
height data for cach lookout tower as provided by the Forest Protection Branch of the
Alberta Forest Service, and the elevation coverage. The variable DISTRICT, included
to account for general differences among forest districts other than arca, was also

assigned using a forest districts coverage digitized for the study.
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Table 2.1. A list of geographic variables to be tested in their relationship to wildfire

oCCurrence.
Abbreviation Description Units
ASPECT Topographic aspect of the cell | flat, north, south, cast, and
west
ELEVATION Topographic elevation meters above sea level
SLOPE Topographic slope in the cell percentape
CAMPSITE Distance to closest campsile meters
LAKE Distance to closest lake meters
LOOKOUT Distance to closest lookout melers
tower
RIVER Distance to closest river meters
ROAD Distance to closest road meters
TOWN Distance to closest town meters
PROPERTY Land ownership, classified as: forest management arca, forest
quota area, private land, other
FUEL Fuel catcgory, classificd as: FBP system categories'
AGE Stand age in the cell years
HEIGHT Stand height in the cell meters
COMMERCIALITY Forest commercial value, lumber, roundwood, low
classified as: uncommercial, high
uncommercial
DENSITY Tree density in the cell 0-25%, 26-50%, 51-75%, 76-
100%
VISIBILITY Cell located on area seen from | N=0, 1,2, 3, 3+
N lookout lowers
DISTRICT Location in Forest District M M=12234
OCCUR Number of fires in the cell for | integer (C-3)
the period 1986-1990

! Categorics recognized by the Fire Behaviour Prediction System (Forestry Canada Fire Danger
Group 1992).
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Lastly, the number of fire occurrences for each cell (OCCURY) was coded.
Fire occurrence data were obtained from the records maintained by the Forest
Protection Branch of the Alberta Forest Service, in Edmonton. Only data {from 1986
to 1990 were used in this study in an attempt to maintain good agreement with the
dating of the geographic information available. Again, the purpose was to reduce the
problems that arise from relating fire locations to geographic featurcs that did not exist
at the time of the fire occurrences. Whenever the number of fire occurrences in a cell
was 2 (or 3) for the period 1986-1990, the cell was counted twice (or three times).

The null hypothesis (H) was stated as follows: the frequency distributions of
geographic variable X in the cells with number of fire occurrences equal or greater
than one (fire cells) and in the entire population of cells (the forest) are the same,
Accepting this hypothesis implies that X and fire occurrence are not related. I a
geographic variable X is unrelated to fire occurrence, then the values of that variable
in the fire cells exhibit the characteristics of a random sample taken from the total
population, because the fires are located randomly in the forest with respect to the
variable. Thus, the frequency distribution of the variable X among the fire cells (the
sample) is equal to the frequency distribution of X in the population encompassing all
cells in the forest (except for the samphiag crror). If fires are related to a vanable X
then they tend to be associated with the occurrence of X or certain values of X,
histograms in the fire cells (sample) and in the entire population of cells are different,
and the null hypothesis cannot be accepted. Therefore, rejecting the null hypothesis

implies a relationship between fire occurrence and the geographic variable X,
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To test this hypothesis, the frequency distributions of the geographic variables
for the 233 fire cells and for all cells in the forest (about 30,500 depending on the
missing values of the variable) were calculated. The values obtained from ARC/INFO
grids were grouped by classes using SAS (SAS Institute Inc. 1985) to remove
distortion caused by partitioning in cells, prior to calculating the frequency
distributions using the procedure FREQ (SAS Institute Inc. 1985). Then, the Chi-
square goodness-of-fit test (Gibbons 1976) was applied to every pair of sampled and
hypothesized distributions. The lack of fit is calculated in the Chi-square goodness-of-

fit test through the statistic Q (Gibbons 1976):

{=r (0‘_ i)z

v 2.1)
wl E‘

Q-

where E; = expected frequency in the class i

O, = observed/sampled frequency in the class i

r = number of classes

The sampling distribution of Q is approximately the Chi-square distribution
‘with r-1 degrees of freedom, when the sample is sufficiently large (n>30)(Gibbons
1976). In general, small @ values suggests an agreement between the two
distributions, while large @ values favour rejection of the null hypothesis (Hy) of equal
frequency distributions in fire cells and all cells in the forest (Gibbons 1976). The
decision rule chosen was 1o reject Hy when @ > %%, at a significant level of o =.01.

This relatively low o value was chosen to reduce the probability of a type I error
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(reject Ho when true) and therefore weed out with great confidence (99%) non-

significant variables.

2.2.2. Temporal variables

The units for the temporal analysis were the days in the 1986-1990 fire scasons
and the weather and temporal variables associated with these days, within each of the
four forest districts in the Whitecourt Forest. This weather information was obtained
from historic records kept at Northern Forestry Centre, Forestry Canada, in Edmonton.
The period 1986-1990 can be described as average in terms of weather, based in a
comparison between the total annual precipitation at the Whitecourt weather station
those years and the 30-year average from 1951-1980 (Canadian Climate Program
1982). The years 1986 and 1989 were above average, but not exceedingly so.

The 12 temporal variables that were analyzed are presented in Table 2.2.
The entire collection of days in the five fire seasons was used as the population for
analysis. A fire season for the Alberia Forest Service usually begins in April and ends
on October. The beginning and end dates depend on the snowfall, The days with one
or more fires (the fire days) were considered a sample, investigated in regards 1o its
randomness with respect to the population. Days which suffered 2 (or more) fire
occurrences were included twice (n times) in the database for analysis.

The null hypothesis was that the frequency distribution of a variuble X among
the fire days (the new sample) is equal to the frequency distribution of X in the

population encompassing all days for the forest.
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Table 2.2. A list of temporal variables to be tested in their relationship to wildfire

occurrence.

Ahbreviation

Description

Units

district for the period 1986-

1990

FI'MC Fine Fuel Moisture Code' open-ended scale
DMC Duff Moisture Code! open-cnded scale
DC Drought Code' open-ended scale
ISt Initial Spread Index' open-ended scale
BUI Build-up Index’ open-ended scale
Fwi Fire Weather Index! open-ended scale
TEMPERATURE Daily wemperature centigrades
HUMIDITY Relative humidity percentage
WIND Wind specd km/h
VISIBILITY Atmospheric visibility melers
WEEKDAY Day of the week Saturday through Sunday
MONTH Montl April 1o October
OCCUR Number of fires in the day and | integer {0-8)

! Codes and Indices from the Canadian Forest Fire Weather Index (Van Wagner 1987).
* Classed as the Fire Season in Alberta.
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The frequency distributions of the temporal variables for the fire days (199)
and for all days in the population (4,082 obscrvations=+200 days/ycar x 5 years x 4
districts) were calculated with the procedure FREQ in SAS (SAS Institute Inc. 1985).
The Chi-square goodness-of-fit test was applied to every pair of sampled and
hypothesized distributions. The same decision rule was used in both geographic and

temporal variable testing procedures.

2.2.3. Geographic distribution of human risk

The tests described above were expected to identify geographic factors relevant
to human-caused wildfire occurrence. The geographic variables identified as being
significant by the test were considered to be good descriptors of the geographic
distribution of human risk levels in the Whitecourt Forest, according to the main
hypothesis of the study (Chapter I). The frequency histograms of the significant
variables were analyzed (o establish criteria for risk definition with respect to cach
variable. The ARC/INFO coverages relative to these variables were combined to
provide a visual representation of the geographic location of human risk in the
Whitecourt Forest in the form of a map processed by ARC/INFO's GRID
(Environmental Systems Research Institute Inc. 1991a). All risk-related variables werc
given the same importance in building the map. Then, fire data from 1991-1992 was
overlaid on this map to test the validity of the geographic arrangement of risk levels
found. These years were also average weather years according to the criterion used

above. The standard Chi-square test was used to compare the frequency distribution
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of the 1991-1992 fires throughout zones in the map assigned to a certain risk level
(low, moderate, high, very high) with the frequency distribution to be expected in this
zones if fires were not related to human risk as defined by the significant geographic

variables.

2.3. Results and Discussion

The values obtained for the test statistic @ and ¥*,,,, are shown in Table 2.3
for all geographic variables and Table 2.4 for all temporal variables. Also present in
both tables are the number of classes (r) for each variable, the result of the test, and
the associated P-value. Even though this is an approximate test and P-values are
asymplotic, the approximation of Q provided by the Chi-square distribution can be
considered reliible in this case, because the sample size is sufficiently large and
recommendations have been followed with respect to the expected class frequencies E;
(not smaller than five) (Gibbons 1976).

The tests suggest fire occurrences are not randomly distributed throughout the
Whitecourt Forest with respect to distance to road, land ownership, distance to town,
distance to campsite, elevation, forest district, fuels and some forest characteristics.
All these variables are associated with wildfires. These results agree with findings in
California with respect to distance to roads, distance to campgrounds, and vegetation
(Chou er al. 1990). Also, fire occurrences are influenced by ISI, FWI, FFMC, relative
humidity, month, DMC, BUI, and wind speed. These variables are highly related to

timing of fire occurrences, and in that order of importance, according to the test.
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Table 2.3. A lisr of geographic variables and their Chi-square test values.

r variable o] p AT reject H, p-value
10 ROAD 177.38 21.7 yes < ,001

4 PRCPERTY 84.07 11.3 yes < .001

10 TOWN 61.70 21.7 Yes < 001

il CAMPSITE 50.76 23.2 yes < ,001

11 ELEVATION 49.06 23.2 yes < .001

4 BISTRICT 36.68 11.3 yes < .001

5 FUEL 33.50 13.3 yes < .001

5 COMMERCIALITY 19.13 13.3 yes < 001

] AGE 19.34 18.5 yes .005< P <.010
[ HEIGHT 17.98 15.1 Yes .001< P <,005
8 LAKE 16.99 18.5 no .010¢ P <.,025
5 DENSITY 9.11 13.3 no .060< P «.100
4 VISIBILITY 8.83 11.3 no L.025< P <.05%0
7 LOOKOUT 6.68 16.8 no >.100

7 SLCPE .92 16.8 no »>.100

7 RIVER 3.35 16.8 no >.100

5 ASPECT 2.51 11.3 no >,100

r=numier of classes, Q:=gocdness-of-fit test statistic

Table 2.4. A list of temporal variables and their Chi-square rest values.

r variable o] 2! er reject H, p-value
6 ISl 242.14 15.1 yes < .001

10 FWI 237.7G 21.7 yes < .001
9 FFMC 200.43 20.1 yes < .001
g HUMIDITY 161.74 18.5 yes < .001
7 MONTH 103.27 16.8 yes < .001
9 DMC 98.13 20.1 yes < .001
1 BUI 76.34 16.8 yes < .00%

11 WIND 29.02 23.2 yes 001« P <.005
7 .o 16.61 16.8 no .010< P «<.025
8 VISIBILITY 14.19 18.5 no .025< P «.050
5 TEMPERATURE 10.16 13.3 no 025« P <.050
7 WEEKDAY 4.46 16.8 no >.100

r=number of classes, Q=goodnessa-of-fit test statlstic
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These results concur with theoretical expectations formulated by Alexander (1986) for
ISI, FWI, FFMC, and by Maxey and Lee (1973) for relative humidity. They also
agree with findings by Martell et al. (1987) for FFMC and BUI, by Todd and Kourtz
(1991) for FFMC, DMC and wind speed, and with several other studies in different
locations.

Slope and weckday, which have been traditionally regarded as relevant to the
occurrence of human related forest fires were not found to be significant according to
this test. With regards to weekday, the result of this study agrees with the findings of
Martell er al. (1987) for the northern region of Ontario. The lack of significance
relative to slope might be due to lack of variability in data values caused by the
general flatness of the study area. In all other cases, there was enough variability in
data values in the populations to assume that any trend in fire occurrence would be
identificd by the test.

No consideration was given to the possibility that the variables were correlated.
Instead, each variable was evaluated independently in the test, when in fact, strong
correlations are likely among geographic variables and among temporal variables. For
instance, ISI is calculated from wind speed and FFMC values, FWI is calculated from
BUI and 1SI indices. Roads are buill low in the river valleys, and form denser
networks around population centres. Grass fuels are predominant in privately owned
land. This issue should be considered in future studies of fire occurrence prediction
that includes the variables selected as relevant in this study.

Further analysis of the frequency histograms for the significant geographic

28



variables yielded important information for several fire management applications in the
form of a map. For numeric variables this analysis led to the use of the 90th
percentile of the distributions to define risk. For instance, 90% of the human-caused
fires started within 4.8 km from a road. The other 10% started within a wider range of
4.8 10 16.8 km from a road. Some of these fires were suspected of being mismatched
in time with respect to the road coveruge available for the study, others of being
exceptions to the general trend. Therefore, arcas within 4.8 km (the 90th percentile)
from a road were declared at risk due to their physical location relative to the risk
factor roads. A grid was then developed in ARC/INFO, reclassifying these risk arcas
as 1 and all others as 0. The same criteria and process were followed for: distance to
closest town, distance to closest campsite, and elevation variables. The 90th
percentiles for these three variables were 35 km, 30 km, and 1,000 m (rounded).

The frequency distributions for the categorical variables: fuels, land ownership,
and forest commerciality were analyzed differently. The categories represented in the
fire cells with percentages higher than the corresponding ones in the forest were
declared categories of risk. For instance, fuels in the forest were distributed as
follows: 61.8 % conifers, 34.9 % deciduous, 0.6 % open fuels, and 0.8 % slash. Fucls
in the fire cells, though, were: 47.9 % conifers, 42.5 % deciduous, 2.7 % open fucls
(grass), and 1.6 % slash. Therefore, arcas classed as deciduous, grass, or slash were
identified as risk factors, and an ARC/INFO coverage (grid) was ceveloped
reclassifying these areas as 1, and the rest (conifers, water, no fuel) as 0. The higher

risk categories associated to land ownership and commerciality were: "private land"
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and "highly uncommercial”, respectively.

The seven partial risk grids were then summed using ARC/INFO's GRID
software (Environmental Systems Research Institute Inc. 1991a) to obtain a composite
grid, a "Map of Risk for the Forest". The risk values of this composite grid ranged
from 0 to 7. Areas of value 0 showed no risk “actor, as defined above, present. In
these arcas, humans posed very litte risk of fire occurrence. Areas with a value of 7
had all risk factors present, and most fire occurrences were expected to start here. For
displaying purposes and easier interpretation, this grid was reclassified according to
the following criteria: 0-1 = low risk, 2-3 = moderate risk, 4-5 = high risk, 6-7 = very
high risk, and it is displayed in Figure 2.1. Paler shades of grey indicate lower risk,
whereas black depicts very high risk areas in the Forest.

Fire data from 1991-1992 was overlaid on this Map of Risk to assess the
validity of the geographic arrangement of the risk levels found. The number of f{ires
in the low-risk zone was 4 fires per miltion ha, and in the moderate-risk zone was 22
fires per million ha. The high-risk zone suffered 45 fires per million ha, 55 fires per
million ha occurred in the very-high-risk zone. The Chi-square goodness-of-fit test
(Gibbons 1976) applied established the significant relationship between the location of
the fires in 1991-1992 and the distribution of human risk in the Whitecourt Forest as
defined by the seven geographic variables (@ = 14.99, ¥%,,; = 11.3).

The Map of Risk seemed to properly describe the arrangement of risk levels
due to people in Whitecourt Forest according to the new fire occurrence data. The

Map of Risk developed also agreed with the actual geographic distribution of human
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Figure 2.1. Whitecourt Forest Map of Risk, based on seven risk factors: Closeness 1o
roads, campsites, and towns, low elevation, private land, uncommercial forest, and
presence of certain fuels. Darker shades indicate higher risk.
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risk estimated by the fire personnel in the Whitecourt Forest?, and consequently,
prevention efforts are currently being applied to much of the area classified as of very-

high-risk.

2.4. Management Implications

Phillips and Nickey (1978) stated that siniilar numbers of fire occurrences
should be expected in arcas with similar environmental and fire-related characteristics,
unless prevention efforts introduced a difference in those characteristics. Effective
forest fire prevention can pay dividends (Moak 1976) and efforts are usually designed
to reduce the occurrence of unwanted fires in areas where fires have historically
occurred within the past five years. Yet this approach cannot account for areas of risk
where fires have not yet occurred. Fire prevention programs could benefit from risk
maps to identify zones where advertising and poster campaigns can be more effective,
or areas where personal contact (Doolittle and Welch 1974) with the target publics
should be increased, or as an aid in scheduling or routing detection patrols.

In combination with more complete information about hazard levels (fuel
related) in the Forest, these maps can aid in designing efficient strategies for fuel
modification where required. Several examples of spatial strategies for prescribed
burning in San Bernardino National Forest, California, using ARC/INFO, were

presented in Chou (1992).

? Personal communication, Mag Steiestol, Fire Prevention Co-ordinator, Alberta
Forest Service, Forest Protection Branch, Edmonton.
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There are other possible applicaticns for a risk map in firc management.
Incorporation of risk arcas to the daily planning for aerial patrols should improve its
effectiveness and increase efficiency since one of the major difficultics these resources
face in operation is the uncertainty associated to the route planning process. Usually,
patrol routes and patro! frequencies are established using predefined guidelines
depending on the daily weather parameters and visibility (Kourtz 1987).

A typical application of GIS to fire management is the determination of visible
arcas from fixed lookout towers. Mapping of arcas of high risk that are non-visible
from lookout towers allow managers to allocate other detection resources to them and
make sure they are covered. Figure 2.2 shows the locations of those non-visible high-
risk and very-high-risk arcas in Whitecourt Forest. They have been calculated simply
by combining visibility and risk grids. Also, high-risk areas can be accounted for
when positioning new detection resources, thus maximizing their productivity.

Some of the most important values-at-risk in a forest can be expected to be
close 10 human-caused fires starts: the humans themselves. It is important that towns,
campgrounds, airfields, or in general "man-made" structures arc properly identificd.
This features, and other values-at-risk such as timber, or personal property, can be
easily displayed on a risk map. Hence, measures can be taken to insure their
protection.

The usefulness of a human risk map is limited by the rapidly changing
conditions in the fire environment, in particular fucls and weather. This problem can

be partially solved by computing seasonal or daily maps. These maps can account for



Figure 2.2, Map of non-visible high-risk areas in Whitecourt Forest
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well known variations in  combustibility of certain fuels throughout the fire season.
The map in Figure 2.1 is applicable when all grass, deciduous and slash areas are
prone to burn. These conditions frequently exist during Spring (April-June) and Fall
(August-October). During the Summer, after green-up has taken place, a map
including cnly grass and slash arcas may require concentration of efforts and describe

better the risk of fire occurrences.

2.5. Conclusions

Human-caused wildfire occurrences are rare events that exhibit complex
relationships with geographic and temporal variables, There is a great degree of
randomness associated with the fire occurrence prediction process, and we will never
be able to account for singularities in human behaviour, But until now we have not
taken full advantage of some geographic and temporal relationships that appear to be
quite well defined as a result of this study, and may broaden ouor understanding of
human risk and improve current wildfire occurrence predictions.

The following temporal varinbles are significantly related to human-caused
wildfire occurrence in Whitecourt Forest: FFMC, DMC, BUI, ISI, FWI, relative
humidity, wind speed, and month. The following geographic variables: distance to
roads, towns, and campsites, topographic elevation, land ownership, forest
commerciality, and fuels are also significantly related to fire occurrence. Furthermore,
these peographic variables can be vsed to describe and map risk associated to human

sources of ignition in the Whitecourt Forest,
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Mapping of human risk can be of help to fire managers in making decisions
about prevention, detection, and suppression actions. The usefulness of a map of risk
is limited by the changing characteristics in the fire environment. Seasonal, even daily
maps could be used for certain applications, but a preferable solution for dealing with
human-caused forest fires is the development of a daily fire occurrence prediction
model.

This mode! should incorporate risk and environmental factors and consider
their geographic and temporal variation. It should also be able to deal with
presumable correlations among the variables involved. Such a model was attempted in
this study and it is described in the next chapters, The variables found to be
significantly related to fire occurrence in this chapter were the factors considered for
modeling fire occurrence in the same study area. By doing so, the human-caused fire
occurrence prediction model building process was conducted more efficiently.

The local character of this selection of variables is stressed, though. Paticrns
of fire starts by humans vary across geographic arcas and climates. There is no
guarantec that these same exact results will apply elsewhere. Some of the variables
selected in this study are probably not so strongly related to wildfire occurrence in
other regions {(month, for instance, cannot be expected to be relevant in equatorial
regions where there are no scasons). Some of the variables rejected in Whitecourt
might show a strong relationship to human-caused fires in other areas (distance to a
lookout tower in areas with very scarce resources, slope in very steep country). A

screening of variables is recommended prior to any fire occurrence prediction model
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building.
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CHAPTER 1T

A Logit Model for Daily Human-caused

Forest Fire Occurrence Prediction

3.1, Introduction

Human-caused wildfires are the result of a complex interaction between human
sources of ignition and the physical environment of the forests. In a certain area, at
any point in time, there are only two outcomes for this interaction: either a fire occurs
or it does not. Th: capability of predicting fires on a daily basis for a certain region,
for instance a forest district, can be very useful for many fire management
applications, since many fire prevention decisions are made at a district level.
Tithecott (1993) has pointed out that fire control experts want reliable predictions of
occurrence for their daily planning, but they do not expect exact numbers of fires,
rather some indication of the severity of the fire day and where fires are likely to
occur.

Previous studies have explored the relationship between human-caused fires
and several weather variables (Martell er al. 1987, Todd and Kourtz 1991), or
geographic variables (Chou er al. 1993). The present work builds on these studies in
an attempt to combine both weather variables and geographic variables in a daily
human-caused fire occurrence prediction model for Whitecourt Provincial Forest,

Alberta (Appendix A).
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3.1.1. Model selection

A dichotomous dependent variable such as Fire Yes/No can be studied through
several binary data analysis techniques. Common choices for models with
dichotomous dependent variables are discriminant analysis, the lincar probability
model, the probit model, and the logit model (Ben Akiva and Lerman 1985, Cox and
Snell 1989). Models relying on discriminant analysis were ruled out because it is not
logical to assume that the independent variables available for use are normally
distributed. Incorporation of dummy variables was anticipated; in this case normality
assumptions would be violated, and the discriminant analysis estimator would not be
consistent (Maddala 1983).

The linear probability model is not well suited for this application, mainly
because the predictions would not always be restricted to the interval (0,1) (Maddala
1983, Cox and Snell 1989). This limitation can be overcome by using cither the logit
or the probit model. Though they are equal in predictive power, the logit model offers
computational advantages (Maddala 1983). Furthermore, logit models have been
successfully used in many similar applications. Martell et al. (1987) developed a daily
human-caused fire occurrence prediction model where the probability of a fire-day was
given by a logit model, as a function of weather parameters, in the Northern Region of
Ontario. Loftsgaarden and Andrews (1992) used a logit model to describe the
probability of a fire-day in the Lolo Nationa! Forest, Montana, based on the Energy
Release Component (ERC) of the National Fire Danger Rating System (Deeming et al.

1977). Chou er al. (1993) have also used the logit mode! to identify arcas of high
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probability of fire occurrence in San Bernardino National Forest, California, based on
environmental, human, and spatial factors.

The logit model assumes the existence of a "latent” dependent variable, in this
case the fire occurrence probability for a day, that is not observable other than as a
dummy variable Y of value 0 (no-fire occurrence) or 1 (fire occurrence) (Maddala
1988). In this model, the daily probability of fire occurrence (at least one fire), P, is

assumed to be adequately described for any observation i by the logistic function,

exp(Z;
P‘.:P(Y=1)=ﬁ_ 3.1
1+exp(Z)
where Z, is a function of the independent variables, in this case;
ek
ZB,*Y. BX; (32)

J=l

where x;; are the k explanatory variables, and By, B, By....., the k+1 parameters to
estimate. Substracting equation 3.1 from 1 and simplifying leads to the daily
probability of no-fire occurrence,
1 —P,.=P(Y=0)=m (3.3)

Because the daily probability of fire occurrence is assumed to be a logistic
function of the independent variables, the logit models are often referred to as "logistic
regression models" or simply "logistic models".

Dividing equation 3.1 by 3.3 and taking the logarithm on both sides of the

equation gives the log-odds ratio of the two possible outcomes, a linear function of the
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independent variables (Maddala 1988),
k
ln(—P‘ y=Z.=p + ) (3.4)
i Bl) E Bjxu
I—P‘ ‘ j-l

where P; is the probability of Y = 1, for any observation {
1-P, is the probability of Y = 0,
x; are the k explanatory variables or covariates,

and B, B,.B,.....5, are the k+1 model parameters to estimate.

Estimation of the model is conducted through maximum likelihood methods
when analyzing individual observations such as Fire Yes/No (Stynes and Peterson
1984). Data pertaining to fire occurrence in the study area must be collected in order
to estimate the model parameters. An adequate sampling strategy must be followed.
Since sampling is usually random and fires are rare events, the data on fire occurrence
is not easily acquired. A random sample of daily observations in the Whitecourt
Forest for any period of time includes very few fire observations and a large number
of no-fire observations. This problem has been often mentioned by fire researchers in
other studies. The logit model allows the use of different sampling rates for the two
subpopulations of fire and no-fire observations to obtain a balanced data set for the
model estimation (Maddala 1988). Prediction for the entire population is permitted by
making an appropiate adjustment in the intercept (Prentice 1986, Maddala 1988,
Hosmer and Lemeshow 1989). This transformation is not valid for the probit or linear

probability models (Maddala 1988). This was the most important factor in sclecting
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the logit as the model for this study.

3.2. Methods
3.2.1. Mudel development

Previous work in the Whitecourt Forest (Chapter II} identified important
geographic and temporal factors as relevar: to the human-caused wildfire occurrence
problem. Those factors are the basis for constructing the independent variables for the
present study. They include: distance to nearest road, distance to nearest town,
distance to nearest campsite, topographical elevation, fuels, forest commerciality, forest
district, codes and indices in the Fire Weather Index (Van Wagner 1987), except the
Drought Code, relative humidity, wind speed, and month.

A Geographic Information System (ARC/INFO, Environmental Systems
Research Institute Inc. 1991), was used to map eight fire occurrence prediction units
in the study area. Each of the four forest districts was divided in two zones; Arcas <
5 km from a road, and areas > 5 km from a road (Figure 3.1). Five kilometres was
found to be the threshold distance from roads within which 90% of all fires start
(Chapter 1I). This partition was expected to increase the variability in the geographic
variables for analysis, while keeping the number of prediction units low. Predictions
for these units would be useful for fire managers in the Forest making decisions at the
district level. The fire occurrence prediction units ranged in area from 805 to 4,660
km’. Some units were contiguous, but most of the prediction units were formed by

summation of fragmented subunits within each forest district sharing the same
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Figure 3.1. Eight fire occurrence prediction units for the logit analysis: four forest

districts within the Whitecourt Forest divided in areas £ 5 km from a road and areas >
5 km from a road. Road network overlaid on the map.
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"distance to road" characteristics.
Each fire occurrence prediction unit was coded, by using the ARC/INFO
software and digital information from different sources (Chapter II), with information

pertaining to the variables presented in Table 3.1:

Table 3.1. Geographic variables assigned to each prediction unit.

Abbreviation l Description Units'

AREA Fire occurrence prediction | km?%/10,000
unit area

ROADDIS Average distance to roads | km/100

TOWN Average distance to town | km/100

CAMP Average distance to km/100
campsites in the unit

ELEV Average topographic meters above sea level /
elevation 10,000

PPA Total area privately km?/1,000
owned in the unit

COMH . Tota! area of highly km?1,000
uncommercial forest value

FUELL! Total area of deciduous km?/10,000
fuel in the unit

FUEL2 Total area of grass fuel km?100

FUEL3 Total area of slash fuel km?%/100

ROAD Dummy variable for unit 1,0
distance to road < or >
than 5 km

DISTRICT Dummy variable for 1,0
location in Forest Distric!
2 or Forest Districts 1,3,4

'‘Numeric variables were scaled down to obtain parameter estimates in the same
order of magnitude.
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The two dummy variables were included to account for sources of variability
not included in other the factors. The dummy variable ROAD with a of value ! for
the prediction units within 5 km from roads, and O for units farther than 5 km from
roads, was included because distance to road is the most significant geographic
variable in explaining fire occurrences in the Whitecourt Forest (Chapter I1). The
dummy variable for DISTRICT with a value of 1 for prediction unit located in district
2, and O for prediction unit located in any other district was included because District
2 suffers from higher human pressure in the form of developmental activities, and is
closer to Edmonton, Alberta, which has a population > 500,000 people.

The database for the analysis included observations for each day in the fire
seasons 1986-1990 (April-October), in each of the prediction units described above
(£200 days/fire season x 5 fire seasons x 8 units = 8,009 observations). This five-year
period was chosen to keep agreement with tine digitizing date of the geographic data.
The daily weather variables assigned to each unit every day were averaged from the
weather stations available in the district where the unit was located, and are listed in
Table 3.2.

The Canadian Fire Weather Index System did not start on the same day for all
stations and for any one station among years. Starting dates depend on a set of rules
(Van Wagner 1987), which are influenced by local weather conditions. Days without
codes and indices were not used in the analysis. The dummy variable MONTH, with
a value of 1 for days in April and May, and 0 in June-October, was included to

account for seasonal trends in fire occurrence in the Whitecourt Forest (50% of the
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Table 3.2. Temporal variables assigned to each prediction unit, each day.

- Abbreviation Description Uhnits’
FFMC Fine Fuels Moisture Code | open-ended scale?/100
DMC Duff Moisture Code open-ended scale’/:00
BUI Build-Up Index open-ended scale’/100
ISI Initial Spread Index open-ended sc.le?/10
FWI Fire Weather Index open-ended scale’/100
RH Relative humidity percentage/100
WS Wind speed (km/h)/100
MONTH Dummy variable for 1,0

'Numeric variables were scaled down to obtain parameter estimates in the same
order of magnitude.
%as defined by Van Wagner (1987)

human-caused fires occurred in Spring in 1986-1990). The binary dependent variable
OCCUR was assigned a value of 1 if at least one fire occurred in the unit and day of
the observation, and a 0 value if there was no fire.

The result of this suatification was a data base of 8,009 observations, of which
only 157 were fire observations. Since the logit analysis is not affected by unequal
sampling rates (Maddala 1988, Prentice 1986), a random sample of 157 no-fire
observations was obtained and used with the 157 fire observations for the logit
analysis,

The SAS procedure LOGISTIC (SAS Institute Inc. 1989) was used to compute
the logit models. This program computes the maximum likelihood estimates of the

regression parameters using the "Iteratively Reweighted Least Squares (JRLS)"
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algorithm (SAS Institute Inc. 1989). Eighty-eight models, all in linear form, were
built following recommendations from Cox and Snell (1989) and Hosmer and
Lemeshow (1989) for model building with large numbers of explanatory variables. In
the model building process:

1. Variables thought to be of special importance such as AREA, DISTRICT
were forced in some of the models.

2. Totals, such as RTC = ROADDIS + CAMP + TOWN, or ratios, such as
ARRODIS=ROADDIS/AREA or F=(FUEL1+ FUEL2+ FUEL3)/AREA, were
calculated in an attempt to reduce the number of independent variables.

3. Stepwise regression and backward elimination were used to help assess the
influence of several variables, but were not relied on when choosing the final
variables. Hosmer and Lemeshow (1989) have reported that mechanical selection
procedures such as these can select models containing irrelevant or noise variables as
best models.

4. Pairwise correlation coefficients {Appendix B) for all variables indicated that
strong multicollinearity effects should be expected. For this reason, only one variable

from each subset of highly correlated variables (correlation > 50 %) was included in

each model.

3.2.2. Criteria for model evaluation

Three criicria were used to compare the usefulness of the :models developed.

1. Criteria based on the estimated parameters.
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First, signs of estimated parameters were checked to make sure they agreed
with theoretical expectations based on previous knowledge of the fire occurrence
problem. Seccondly, the Chi-square test and Wald statistic (Ben-Akiva and Lerman
1985) were used to assess the significance of estimated parameters.

2. Criteria based on goodness of fit of the models to the data.

Loftsgaarden and Andrews (1992) recommended the use of the Hosmer and
Lemeshow (1989) goodness-of-fit test to assess {it in models with two or more
variables. This test was computed by the LOGISTIC procedure, with the usual
likelihood ratio test, and the Akaike Information Criterion and Schwartz Criterion
statistics. The last two statistics are used when evaluating different models for the
sume data, and the lower their values, the more accurate the model is (SAS Institute
Inc. 1989). These were used as secondary decision criteria in cases where similar
values were obtained in two or more models for the Hosmer and Lemeshow goodness-
of-fit test statistic, the main criterion.

3. Criteria based on predictive capabilities of the models.

The predictive capabilities of the models were measured using the 2x2
classification table (Table 3.3) of observed and predicted responses (SAS Institute Inc.
1989) as the most important criterion. The total percentage correctly predicted by the
table is computed as A+D/A+B+C+D. Several indices of rank correlation between the
predicted probabilities and observed responses given by the same procedure (%
concordant, Somers’ D, Gamma, Tau-a, ¢) were used as the secondary decision criteria

in models with similar classification tables.
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Table 3.3. Classification table of observed and predicted responses.

Frequency Table

Row Pet. | Predicted no-fire Predicted fire
A B
Observed no-fire Specificity False Positive
C D
Observed fire False Negative Sensitivity

The analysis of influential observations and outliers was carried out according to the

logistic regression diagnostics developed by Pregibon (1981).

3.3. Results
3.3.1. Model Selection

SAS outputs for the best six models are given in Appendix C. They are all
valid models; they are very similar in variables chosen and parameter estimates; and
they are all parsimonious (only 3-5 variables). Nonc of the 314 observations used for
model building were considered to be outliers acording to the diagnostics developed
by Pregibon (1981}, so none was removed from the analysis. Models 4 and 5 best
fitted the data. Yet Model 6 scored the highest in total percentage correctly predicted.
But Model 1 was chosen as the best based on its overall good values for most
selection criteria (Table 3.4, Table 3.5). Since all the models had similar total
percentages correctly predicted, selection was based on the specificity (percentage of
no-fires correctly predicted; Table 3.3}, and false positive values (percentage of no-

fires predicted as fires; Table 3.3), since these were the categories with more cases in

51



Table 3.4. Criteria for Model 1 selection.

response levels = 2
number of ohservations = 314

Analysis of maximum likelihood estimates

Varishle DF Parameter Standard Wald P>
estimate emor Chi-square Chi-square

INTERCEPT 1 -3.6048 0.5917 60.5551 0.0001

AREA 1 7.6590 1.2198 35.4268 0.0001

DISTRICT 1 0.7367 0.3429 4.6159 0.0317

BUI l 20478 0.9936 4.2482 0.0393

151 1 39563 0.6323 39.1474 0.0001

Hosmer and Lemeshow goodness-of-fil test
Goodness-of-fit statistic = 10.94 with 8 DF {p=0.2051)

the classification table after removing the bias introduced by different sampling rates.
The estimated coefficients values and signs were as expected, and they were
significant at 0.05 level. The Hosmer and Lemeshow (1989) goodness-of-fit test
showed adequate fit of the model to the data (Chi-square value 10,94, p-value 0.2051).
This model correctly classified 79.0 % of all the observations, 120 (76.4%) out of 157
fire days, and 128 (81.5%) of the 157 no-fire days, it failed to predict 37 of the fires,

and produced 29 false alarms (Table 3.5).

Table 3.5. Classification table for the model building data: Model 1.

Frequency Predicted no-fire Predicted fire
Row Pct.
128 29
Observed no-fire 81.5% 19.5%
37 120
Observed fire 29 49% 76.4%

Model | parameter estimates (Table 3.4) were calculated from groups with

unequal sampling rates (P,=157/157 for tue fires, P,=157/7852 for the no-fires), hence
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an adjustment in the intercept was needed in order to use the modcl for wildfire
prediction (Maddala 1988). After subtracting the correction value from the intercepi
(3.9122 = In(157/157)-In(157/7852)), the probability (P,) of at least a human-caused
fire occurrence happening in any fire occurrence prediction unit in Whitecourt, on any
given day, can be established using equation 3.1, where Z, is a linear function

(equation 3.2) of the independent variables for any obscrvation i,

Z,=-8.5171+7.6590«AREA,+0.7367+ DISTRICT+2.0478 « BUI,+3.9563 + IS, (3.5)

3.3.2. Strategies for testing the model

Data collected in 1991 and 1972 were used to test the predictive capabilitics of
the models for indeperdent data. This independent data included 3,294 new
observations, of which only 58 were fire occurrences. In accordunce with the actual
proportion of fires versus no fires in the real-world data, most predicted values of
probability of fire occurrence for each zone and day were zero or close to zero in all
models.

In the logit model, the summation of predicted probabilitics is equal to the total
number of observations in which Y=1 (Ben-Akiva and Lerman 1985). For the model
building data the summation of probabilities of Y=1 was 157 in all models because
that many fire observations were in the 1986-1990 data set. For the independent data
the predicted probabilities summed 94 in Model 1, which compared to the actual
number of 58 occurrences in 1991-1992 data set indicates a trend with Model | to

overestimate the number of fires. This trend is visible also in all other models.
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Model 4 best predicted the total number of fires in 1991-92 test years (71.7 vs 58), but
it performed worst ini the classification table (71.58% total percentage correctly
predicted).

Classification tables (Tabie 3.3) were used to evaluate the performance of the
models in predicting for the 1991-1992 independent data. Computation of
classification tables usually involves establishing a probability level (cut-off point) to
segregate observations into “likely events” (in this study prospective fire occurrences)
and "unlikely events" (prospective no-fire occurrences) (Schuster 1983, Jamnick and
Beckett 1987). This probability level is customarily set at 0.5, vhich is the midpoint
of the logistic distribution. 0.5 was the cut-off point used in computing the
classification tables for the model building data.

Nevertheless, this cut-off point is arbitrary, and ultimately depends on the
objectives for the model or the goals of the user (Jamnick and Beckett 1987). A
decision about the "best" probability level involves a trade-off between predicting
correctly the fires and predicting correctly the no-fires (Schuster 1983, Jamnick and
Beckett 1987). Schuster (1983) suggested this problem is similar to a Type I versus
Type 11 statistical problem. The objective in this study was to obtain similar accuracy
in predicting both fires and no-fires. By defining an arbitrary probability level of 0.02
in the classification table of Model 1 for the independent data set (Table 3.6), 74.10 %
of the total number of new observations, 74.14 % of the fire days, and 74.10 % of the
no-fire days were correctly classified.

The classification tables presented in Appendix D show the relative
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Table 3.6. Classification table for an independent data set: Model 1.

Frequency Predicted no-fire Predicted fire
Row Pct.
2398 838
Observed no-fire 74.14% 25.90%
15 43
Observed fire 25 86% 74.10%

performance of the best logit models on an independent data set. The cut-off point

0.02 provided the best predictions for the independent data in all 6 models.

3.4. Management Implications

Several binary logit models were successfully developed and validated for the
human-caused fire occurrence data available in Whitecourt Forest, Alberta, for the
1986 through 1992 fire scasons. The best model included the covariates of AREA,
DISTRICT, ISI, and BUI. This low number of variables indicates a parsimonious,
practical model. Its few requirements of input data should make it casy to apply and
operate in daily prediction of wildfire occurrence. An additional desirable feature of
all the models was obtained from the way the fire occurrence prediction units were
defined. The models predict fire occurrence for prediction units close to roads (<
5km) and for prediction units far from roads (>5km). This implics that predictions are
given for areas easily accessible by road or areas located in more remote situations for
the suppression forces. It also means that predictions are provided for arcas morc

exposed to the public view for detection and areas where detection cannot rely on
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resources other that those provided by the fire protection agency concerned.

In its application for prediction, though, several considerations must be made:

1. The Fire Weather Index System was designed to provide numerical ratings
of fire danger during a snow-free fire season that usually spans from April to October
in Whitecourt. Hence, durinig the winter period, and other days outside of the period
in which codes and indices in the FWI are computed, no predictions can be made,
since the logit model developed relies on the daily BUI and ISI. Nevertheless, fires
occurring out of the fire season are few in numbers and are usually easy to control.
These fires are not a big concern for most fire protection agencies.

2. The prediction provided is only fire "Yes/No" for each prediction unit and
day. No estimation is given for actual numbers of fires. In the period 1986-1990,
there was just one occurrence per unit and day in most instances (124 of 157), but in
17 of the observations in which Y=1 (fire days) there were actually two fires, in four
of the observations there were three fires, in one there were four fires and in another
there were eight fires. This information about multiple fires on the same day and unit
was not considered on the analysis. Nevertheless, placement of suppression resources
according to this model should suffice to cope with the current fire loads, since
multiple fire situations are so uncommon, and the number of simultaneous fires is low.

3. If desired, the probability that N fires will occur in one of the prediction
units on a certain day can be calculated by means of a Poisson process described in
Martell er al. (1987). The logit model in the present study gives the estimated

probability that "one or more fires" will occur in a certain area and day. This
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probability can be used 1o estimate the A parameter of the Poisson distribution used by
Martell et al. (1987) to model daily human-caused wildfire occurrence. These authors
also determined the probability of having at least one fire occurrence per prediction
unit and day by logistic regression analysis. They used the codes and indices in the
Fire Weather Index (Van Wagner 1987) as explanatory variables. Their models
selection criteria (average score), though, has been questioned by Loftsgaarden and
Andrews (1992), who stated that it does not truly indicate "how good the models arc
or how well they fit the data". Loftsgaarden and Andrews (1992) recommended the
use of the Hosmer and Lemeshow (1983) goodness-of-fit test instead, advice that has
been {ollowed in this study.

4. Performance of the model depends on the probability value chosen to form
the classification table. The value 0.02 was arburarily selecled in order to obtain
balanced accuracy in predicting fires and no-fires. This probability level could, and
should be selected based on the objectives of the Fire Agency using the model. A
higher value (less false alarms but lower accuracy in predicting the fires) may be
preferred if: (1) scarce suppression resources are available, (2) if they are expensive to
deploy, or (3) if high protection levels are not critical for values at-risk, A lower
probability value (higher accuracy in predicting the fires, but more false alarms) would
be preferred for an area where values-at-risk are high and there are abundant and
mobile suppression resources readily available. In this case, false al"rms would be
less of a concern than a fire getting away. Economic considerations should be used

when determining the accuracy level to be used in each case.
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5. A model tiiat overestimates the number of fires tends to reduce its
credibility when applied in prediction. False alarms will occur occasionally regardless
of the probability level used to separate fires and no-fires. This problem, though,
diminishes in importance when the predicted fires are plotted against the actual fires
over time because false alarms very often associated with periods of high risk, which
are usually associated with actual fire occurrences (Figure 3.2).

6. No geographic variable was included in the final model, and only &
summation of areas of dangerous fuels divided by unit area (F) and the average
distance to road divided by unit area (ARRODIS) were present in two of the other
models (Appendix C), even though several have been found to be significantly related
to human-caused fire occurrence (Chou ez al. 1993, Chapter II in this thesis). The
small range in their values may have masked the true importance of the variables thus
resulting in their elimination. Only eight values (one for each prediction unit) were
included for each geographic variable across the database for analysis. A larger study
area may have encompassed more geographic variability, but the data required for
such an analysis were not available. Also, it is unrealistic to assume that the area
covered by fuel types in any zone would remain unchanged for a period of seven
years or that new roads were not built, but again, none of these data were available on
a yearly basis.

7. Todd and Kourtz (1991) suggested that patterns of fire starts by humans can
change very quickly. The model proposed in this study could be re-evaluated/updated

to account for new trends every year, but no provision was made to account for new
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Figure 3.2. Plots of predicted vs actual fire occurrences in District 2, zone < 5 km from
roads. Predictions fluctuate between 0 and !, actual fire occurrences are represented in
the graph by vertical lines extending from 0 to 1.
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trends throughout the current fire season.

8. Weather variables from previous days strongly influence the conditions and
likelihood of fire occurrence in the current period, a fact that would suggest the need
for including "lagged" variables in the logit models (for instance, "amount of
precipilation in the previous three days"). The reason why no "lagged" variable was
included is that this past weather influence has been built-in in the tables for
computing codes and indices in the Fire Weather Index (Van Wagner 1987). In
calculating its daily outputs, this system includes some outputs of the previous day
(FFMC, DMC, and DC). Nevertheless, this introduces serial correlation in the data'.
For this study serial correlation among independent variables was ignored.

9. Predictions of fire occurrence for the next day have to rely on forecasted
ISI and BUI values. The use of forecasted weather indices can affect the performance
of the model, because predictions become dependent on the reliability of the forecasted
weather indices. Users should be aware of the effect a forecast can have on this or
any other fire occurrence prediction model (Tithecott 1990).

None of these considerations prevent application of the models for wildfire
occurrence prediction within their limits of applicability. Logit models can be used to
predict daily human-caused fire occurrence in Whitecourt Forest. Predictions will

probably be much improved once accurate and updated geographic data are obtained

' Exploratory data analysis using 1986 data in District 1 of the Whitecourt Forest
suggests the current values were serially correlated to past values as far back as 8 days
for FFMC, 14 days for DMC, 24 days for DC, 15 days for BUI, 9 days for 18I, and
12 days for FWIL
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and made available for this and other applications.
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CHAPTER IV

Applying Neural Network Technology to Human-Caused

Wildfire Occurrence Prediction

4.1. Introduction

Artificial Neural Networks (ANN) are a new technology for processing
information. This technology is modelled after the computing system thought to be
used by the human brain (Klimasauskas 1991a). Neural nets, as they are frequently
referred to, are composed of many processing elements (PE), the artificial equivalents
of ncurons. These elements are capable of relatively simple opeiations, and are
usually grouped in layers or slabs. There is typically an input layer where data are
presented to the network, an output layer that provides the response of the network to
the input data, and one or more "hidden” layers in between (NeuralWare Inc. 1991).
The PEs are interconnected through connections of variable strength, called "weights”,
and operate in a parallel manner. A typical network, then, "consists of a sequence of
layers or slabs with full or random connections between successive layers”
{NeuralWare Inc. 1991).

Artificial Neural Networks have a large processing capacity because of the way
they are structured. The capability to perform intelligent tasks such as: (1) learning by
example, (2) gencralizing learned knowledge, and (3) recognizing patterns make this
technology extremely powerful and useful. These capabilities are achieved through a

“learning phasc” in the operation of a network, "Learning" is a process of modifying
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the connecting weights in response 1o data being presented at the input layer (and the
output layer, optionally), according to a predefined mathematical algorithm or
“lcarning rules” (NeuralWare Inc. 1991). In this way, the neiwork shapes itself 1o
reflect the relationships between inputs and outputs in a "training” data set
(Klimasauskas 1991a).

Regression analysis is one of several statistical approximation methods which
can accurately approximate functions or describe relationships. The advantages of
ANN are that they do not require assumptions on the underlying distribution of the
data, and allow variable interaction and non-lincarity in the data (NeuralWare Inc.
1989). Neural networks may be more robust and predict better than statistical maodels
when non-linear relationships are studied and distributions are non-normal (Neuralware
Inc. 1989, Cook er al. 1991). In some applications, ANN have achieved reductions in
error ranging from 35 10 50%; in others where the problem was well understood, it
merely matched or approximated the corresponding statistical model developed for the
same¢ application (Klimasauskas 1991a).

ANN have been used successfully for signal and language processing, image
compression, character recognition, combinatorial problems and servo control
(NeuralWare Inc. 1991). Recent applications in the natural resources ficld included
classifying data for land-use planning (Yin and Xu 1991), satellite imagery
interpretation for cloud-type analysis (Peak and Tag 1992), modeling tree survival
(Guan and Gertner 1991), and for several forecasting problems such as predicting solar

flares (Klimasauskas 1991a).
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4,2, Objectives

The objective in the present study was to test if neural network technology
could be used to improve current human-caused fire occurrence predictions. The same
data were used in this analysis as in the binary logit analysis applied to the fire
occurrence prediction problem that was described in Chapter 11, thus insuring
comparability between the results of both model. An attempt was made to develop a
simplc network model for wildfire prediction from 20 geographic and temporal
variables. Non-relevant variables would be eliminated, using sensitivity analysis on
inputs, throughout the network development process. Guiver and Klimasauskas (1991)
advise that "the less superfluous information the network is given, the better it is able
to latch on to the true relationships in the data”. These authors recommend the use of
experts when selecting inputs.  For this reason, two neural network models were also
developed to match the best daily human-caused fire occurrence prediction logit
models (Model 1 and Model 2} described in Chapler 1, using their same variables as
inputs. In this case, the expertise used for input selection was provided by the logit

analysis.

4.3, Neural network model choice

"Back-Propagation feedforward networks with non-linear PEs" have become the
standard choice for modcling, forecasting, and classification (Klimasauskas 1991b). In
this type of network:, there are no feedback connections among Jayers (NeuralWare

Inc. 1991). The PEs reach an internal activity level by summing the weighted inputs
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given. Then the summation is modified by a continuous transfer function (usually a
sigmoid) and passes i0 the output path of the PE (Neuralware Inc, 1991}

The learning rule in back-propagation nctworks is the generalized delta rule
developed by Rumelhart et al. (1986). A back-propagation network uses input data o
compute ils own output, then compares it with the desired output. If no crror is being
made, no learning occurs (Rumelhant et al. 1986). If the output is in crror, back-
propagation assumes that all PEs and connections are to blame. To reduce the
difference between desired and actual output, the weights are changed by propagating
the output error backward through the connections to the previous layer (NeuralWare
Inc. 1991). The process of presenting pairs of input/output vectors to the network lor
weights update is continued until a single set of weights is found thal produces zero
error (or an error sufficiently close to zero, such as 0.001) for all pairs presented. The

nctwork then, is said to have "converged” (NecuralWare Inc. 1991).

4.4. Model Development

The software package NeuralWorks Professional Il/plus (NeuralWare Inc.
1991) was used for developing the networks. All data processing was done on a SUN
Sparcstation 10 platform. This too! allowed for experimentation with different
network architectures, learning rules, and transfer {urctions in the PEs. Klimasauskas
(1991a) served as the authority for the procedures used in developing the neural nets
reported in this study.

1. Data colicction.
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Abundant geographic, weather and fire data were available for the Whitecourt
Forest, Alberta (Appendix A), so this forest was selected as the study area. These dala
were available from the Forest Protection Branch of the Alberta Forest Service,
Edmonton; and Forestry Canada, Northwest Region, also in Edmonton.

Previous work (Chapter II) determined that human-caused fire occurrence in
Whitecourt Forest is highly related to the following geographic ard temporal variables:
(1) distance to nearest road, (2) town, and (3) campsile, (4) topographical elevation,
(5) fuels, (6) forest commerciality, (7) forest district, (8) all codes and indices in the
Canadian Forest Fire Weather Index System (Van Wagner 1987) (except the Drought
Code), (9) relative humidity, (10) wind speed, and (11) month.

A Geographic Information System (ARC/INFOQ, Environmental Systems
Research Institute Inc. 1991), was used to map cight fire occurrence prediction units in
the study arca. Each of the four administrative forest districts within the Whitecourt
Forest was divided in two zones: arcas < 5 km from a road, and areas > 5 km from a
road (Figure 4.1). Five kilometres was found to be the threshold distance from roads
within which 90% of all fires start (Chapter II). These fire occurrence prediction
units ranged in area from 805 to 4,660 km®. These arcas were in general fragmented
within each Forest District, but some were conliguous.

Each prediction unit was coded with information pertaining to the following
variables using ARC/INFO software: (1) unit arca (AREA) in km?, (2) average
distance to roads (ROADDIS) in km, (3) average distance to towns (TOWN) in km,

(4) average distance to campsites (CAMP) in km, (5) average topographic elevation
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Figure 4.1. The four forest districts were divided in areas <5 km from a road and areas
> 5 km from a road, for a total of eight fire occurrence prediction units. Also shown is
the road network.
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(ELEV) in m, (6) total area privalely owned (PPA), (7) total area of highly
uncommercial forest value (COMH), (8) total area of deciduous fuel (FUEL1), (9)
total arca of grass fuel (FUEL2), (10) total area of slash fuel (FUEL3), all in km®.
Two dummy variables were also included. The dummy variable (11} ROAD which
had a value of 1 for zone within 5 km from roads, and 0 for zone farther than 5 km
from roads, was included because distance to road is the most significant geographic
variable in explaining fire occurrences in the Whitecourt Forest (Chapter II, this
thesis). The second dummy variable (12) for DISTRICT had a value of 1 for area in
District 2, and 0 for area in any other District. This was done because District 2
suffers from higher human pressure in the form of developmental activities, and is
closer to Edmonton.

The database for the analysis included observations for each day in the fire
scasons 1986-1990 (April-October), in each of the prediction units described above.
This five-year period was chosen because it coincided with the digitizing date of the
geographic data. The weather variables assigned to cach prediction unit every day
were averaged from the weather stations available in the district where the unit was
located. These variables were: Fine Fuel Moisture Code (FEMC), Duff Moisture
Code (DMC), Build-up Index (BUI), Initial Spread Index (ISI), Fire Weather Index
(FWI), as defined by Van Wagner (1987), and relative humidity (RH) and wind speed
(WS). A dummy variable MONTH, with a value of 1 for days in April and May, and
0 for days between June and October, was used to account for the traditional high fire

occurrence rate in Spring. The binary dependent variable OCCUR was assigned value
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1 if at least one fire occurred in the management unit and day of the observation, and
0 value if there was no fire. The result of this stratification was a data base of 8,009
observations (200 days/fire season x 5 fire seasons x 8 units), of which only 157
were fires.

2. Daia separation into training and test sets.

A random sample of 157 no-fire observations was obtained from the data base
of 8,009 observations, and analyzed with the 157 fire observations. All training data
sets included these same 314 daily observations in the eight prediction units in the
Whitecourt Forest for the period 1986-1990. This same data set had been used in the
logit analysis, Chapter III, but this was not the reason to chose this pooportion of
fire/no-fire observations in the training data sets. Rather, it was important to distribute
the number of training observations equally in ¢ach output category (Klimasauskas
1991b) to avoid having the networks learn that by classifying all outputs as no-fires,
they would be right most of the time. The dala were presented to the networks in
ASCII format. For comparison with Logit Model 1, an ASCII file was prepared
including only the variables: AREA, DISTRICT, Initial Spread Index (ISI), and
Build-Up Index (BUI) (Van Wagner 1987), and the dependent variable OCCUR of
value 1 or 0 depending on if at least a firc occurred in that unit and day or not. For
comparison with Logit Model 2, the training data set included the variables AREA,
DISTRICT, and Fire Weather Index (FWI1) (Van Wagner 1987), and OCCUR,

Test sets were also required to avoid overtraining. Overtraining may result in

the network "memorizing" the data, or learning very specific and non-desirable
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features in the training data set (Everly 1993). Overtrained networks are not able to
generalize the learned knowledge, and predict properly for new data. This problem
can be avoided by checking the leaming process periodically and evaluating the
performance of the network in predicting fire occurrence for an independent test data
set at every step (Everly 1993). The ideal test data should be representative of the
real-world conditions (Klimasauskas 1991b), and should not include data previously
used in as part of the training exercise. Hence, fire occurrence data from 1991-1992
were used in testing the networks. This data set included 3,294 new observations, of
which 58 were fire observations,

3. Data transformation into network appropriate inputs.

Numeric inputs such as AREA, ROADDIS, PPA, ISI, BUI, or WS, were re-
scaled for input to the network (typically in the ranges from 0 to 1, or -1 to 1) by
specifying the MinMax Table option in the Professional I/plus. DISTRICT, ROAD,
MONTH and OCCUR were categorical. Categorical inputs were encoded using a "one
of N" encoding, which means that each category was assigned to a separate input node
{Klimasauskas 1991b) where 1 would be coded as (1,0) and 0 would be coded as
0,1).

4. Select, train, and test the network.

Exploratory analysis was used to select the more suitable transfer functions
{sigmoid or hyperbolic tangent) and learning rules (delta rule, cumulativ'e delta rule, or
normalized cumulative delta rule) (NeuralWare Inc. 1991). Trials indicated that the

best results for this problem could be achieved by using the sigmoid transfer function,
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and the generalized delta rule with very small learning rates, where the o in output
layer=0.01-0.005, and the a in hidden layer=0.1-0.05, and the momentum= 0.4-0.7. A
variation of the back-propagation algorithm (Fast Back-propagation (NeuralWare Inc,
1991)) was used to speed training.

Different network architectures were tried; yet, all trials employed just one
hidden layer. Klimasauskas (1991c) suggests most problems can be solved with one
hidden layer. The number of PEs in the hidden layer (H) were estimated from the
following guiding formulac (Neuralware Inc. 1989):

H = (1/2)*(1+0)

H = (1+0)'"
H = 1*0
H = (1+0)

where I=number of inputs (20 for the general model; 5 for model 1; or 4 for model 2)
and O=number of outputs (2 nodes to map the output 2-dimensional vector).

Network architectures for the general model with all twenty variables ranged
from 5 to 48 PEs in the hidden layer, according to the formulac above. Network
architectures for Model 1 had 3,4,5,7, and 10 PEs in the hidden layer, also according
to the formulae. Network architectures for Model 2 were built with 2,3,4,6, and 8 PEs
in the hidden layer. Layers were fully connected to the previous one, but connections
were not allowed to jump layers, since previous trials showed that this did not
improved performance of the networks. Five copies of cach of the several networks

thus developed were created and their weights were randomized to obtain different
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starting points for training.

The training process was conducted differently for the networks with all
variables and for the networks created for comparison with Logit Models 1 and 2.

The obscrvations were presented to the 50 comparison networks randomly by selecting
the "File Rand." option in the IO Menu in NeuralWorks Professional Il/plus. Every
1,000 iterations, the performance of the network being trained was tested with respect
to the independent test set, and the network was saved only if improvement had taken
place. An improvement was defined as a reduction in the Root Mean Square (RMS)
Error in the output layer for the test set. The RMS error adds up the squared errors of
each output PE (two in this case), the total is divided by the number of output PEs to
average, and then takes the square root of the average (Neuralware Inc, 1991).
Classification tables of observed and predicted responses were then calculated to select
the best network within each group of networks with the same architecture.

For the network model with all 20 variables, several architectures were built,
each with five randomizations. Training examples were also presented to the networks
in random order. No pre-set limit of iterations was imposed. The networks were
trained to their best performance by testing every 1,000 interactions on the test data
sct. Then, the "Explain” function within NeuralWorks Professional II/plus was used
to perform sensitivity analysis on the inputs. This function allows one to identify
inputs that consistently exhibit very little influence on the outputs (NeuralWare Inc.
1991). These inputs were dropped, and the model building process was re-started with

a smaller set of inputs. New architectures were built, with different randomizations,
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and trained. Different combinations of the inputs that exhibited the most effect on the
output were also explored. Classification tables of observed and predicted responses
(Table 3.3, Chapter IIT) were also calculated to select the best network within each
group of networks with the same architecture. Selection of the best network of all
developed was based on its best performance on the training and test sets. A network-
specific C code was generated by making use of the "FlashCode" option in the

Professional II/plus for deployment of the best neural network model,

4.5. Results and Discussion

Sensitivity analysis of the inputs in the general model led to the selecion of
RH, FWI, 18I, FFMC, and ROAD as the more consistent contributors to the good
performing networks. DMC, BUI, and MONTH were also important but contributed
less to the performance of the networks derived. Only once out of 15 networks, was
DISTRICT the main contributor. Hence, several network architectures were built
including the five selected variables, plus AREA. AREA was included because
observations are ticd to prediction units of variable size and it was considered a key
factor in the prediction. Since it is recommended to have at least 5 training examples
for each weight in the network (Klimasauskas 199, ., network sizes had to be limited
to a maximum of 63 weights (314 training examples/5 = approx. 63). This limitation
applied also to the networks for comparison with Logit Models 1 and 2. Subsets of
the selected variables were chosen for network development in an atlempt to obtain

small-sized networks to be trained more efficiently. These subsets were formed by
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excluding highly correlated variables one at a time. Performance of the networks is
not affected by high correlations among the input variables (NeuralWare Inc. 1989).
This elimination was motivated only by a desire to reduce redundant information in
the inputs and achieve a reduction in network size and complexity.

The classification tables for the various networks which best modelled the
variables or the architecturcs used as part of this analysis are presented in Appendix E.
All the networks presented smooth RMS error graphs, which descended slowly during
learning, but none reached convergence. In fact, the RMS error dropped only from
0.31/0.30 to 0.24/0.23 over the training phase, but this was not considered to be a
problem since a zero error in this case would likely indicate memonzation of the
training data. Training was completed after 19,000 iterations for most of the networks,
The entire training set of 314 observations was presented to the networks some 60
times in those 19,000 iterations (19,000/314~60), each time in a different random
order. Performance did not improve, in general, beyond this point. The weights for
cach layer grew at the same rate through the operation of the network adopting a bell
shape when plotted in a weights histogram. There was no PE satvration during the
initial stages of training to indicate values outside the range of the transfer function.
These two facts, plus the fact that the RMS graphs descended slowly suggested that
the networks behaved properly throughout the training process. Professional II/plus
provided several graphs or instruments 1o monitor training progress. These
instruments are displayed in Figure 4.2 which presents the best network developed for

the training data set.
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Figure 4.2. Best neural network model, and instruments provided to monitor and evaluate
training.
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The best network used the input variables of AREA, DISTRICT, and FWI,

which were the same variables selected for Logit Model 2. It had four input nodes

and two output nodes (as a result of the one of N encoding;. This network was able to

predict correctly 85% (133) of the no-firc observations, and 78% of the fire

observations (122) in the training data set. The total percentage correctly predicted

was 81%. The classification table for the training data set is presented in Table 4.1.

Table 4.1. Classification 1able to evaluate the performance of the best neural nerwork

model on the training data set.

Frequency Predicted no-fire Predicted fire |
Row Pct.
133 24
Observed no-fire 4.71 15.29
35 122
Observed fire 22.29 77.70

For the test set the total percentage correcly predicted was 76%. The network

was able to classify correctly 76% of the no-fire observations and 75.8% of the fire

observations in the period 1991-1992. The classification table for the test set of this

model is presented in Table 4.2,

The classification tables were calculated assuming the Huang and Lippmann

(1987) criterion for classifying network outputs on encodings similar to the ones in

this study. According to this criterion, the output node with the largest value over 0.5

was the correct one (Huang and Lippmann 1987, Cook et al. 1991). So, if the

network produced an output of (0.7, 0.1), it was considered equivalent to (1,03, and

classified as a predicted fire. Likewise, a network output of (0.45, 0.65), for instance,
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Table 4.2. Classification table to evaluate the nerformance of the best neural network

model on an independent test set.

Frequency . '
Row Pct. Predicted no-fire Predicted fire
2462 774
Observed ne-fire 26.08 1192
14 44
Observed fire 2414 Do

would be classificd as a no-fire prediction.

The network-specific C code generated for the Professional 11/plus for

deployment of the best network is presented in Appendix F.

The improvement in predictions provided by the ANN model with respect to

morc traditional sys'ems was not as dramatic as it has been in other similar

applications. The total percentage correctly predicted by the best network for an

independent data set improved only by 2% with respect to the total percentage

correctly predicted given by the best logit model available for the Whitecourt Forest

(Table 3.6, Chapter 111} for the same independent data. Data available for model

building were limited in time and space, and data are the most important factor in

detcrmining a model's performance.

Any model /5 only as good as the data it relies on. The fact that two very

different techniques, the logit models in Chapter 111 and the ANN model in this

Chapter, reached almost identical accuracy in predicting human-caused wildfire

occurrence in the Whitecourt Forest seem to indicate limitations in the data, not in the

techniques used to develop the models.
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4.6. Management Implications

The limitations of this neural network modei must be weighted against its
usefulness before it could be used for daily human-caused wildfire occurrence
prediction. Some of these limitations are shared by other prediction models of
wildfire occurrence developed before (such as the logit models in Chapter HI).

1. This model can not provide predictions for the days outside of the fire
season period because codes and indices produced by the Canadian Forest Fire
Weather Index System (CFFWIS; are not computed for these days. This limitation is
unavoidable in any model that relics on the CFFWIS. Nevertheless, fires occurring
out of the fire season are infrequent and usually weather conditions make it easy to
control such fires. This objection does not reduce the benefits of including among the
variables for prediction, codes and indices developed to provide a genceral estimation
of forest fire danger in Canada (Van Wagner 1987).

2. This model do not estimate the actual number of fires to occur for cach
prediction unit and day, only that wildfire (one or more) would or would not occur,
Nevertheless, this is not a serious limitation, since ANN can be built to predict
numbers of fires, when enough cases or data are available for training in each desired
category. Currently, there is a shortage of data, which prevents the development of
such a sophisticated model. In the five-year period considered, only 23 out of 157 fire
observations included more than one fire. Among those 23, only 6 included more than
two fires. It can be argued that a larger arca or a longer period of time should have

been considered for the analysis, but the geographic data needed for such an analysis
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were not available.

3. The number of "false alarms" (no-fire observations predicted as fires) given
by the model was high (774 over a two-year p.criod with 3294 observations). This
was considered to be the worst pitfall in using the model for daily fire occurrence
prediction. False alarms reduce credibility in the prediction system among fire
management personnel. Neural network parameters could be tuned to reduce "falsc
positives" by using "non-standard error tables" during training (Klimasauskas 1991d).
This is an advantage these models possess over logit models. Likewise, this technique
can be used to reduce false negatives (fires the system failed to predict). Economic
considerations and priorities set by the corresponding fire protection agency indicate
which way the analysis should proceed. Inclusion of these economic goals in ANN
development was considered Lo be beyond the scope of this study.

4. The time serics character of the fire occurrence data can be incorporated in
the ncural network development process. ANN have been successfully applied to
prediction problems involving time serics data (financial applications, for instance). In
this study, however, build-up of dangerous conditions in the fire environment due to
past weather circumstances was considered to be accounted for by the codes and
indices of the CFFWIS. Yesterday's FFMC, DMC, and DC are inputs for calculation
of today's FFMC, DMC, and DC in this system. Yel, this introduces problems for
such regression analyses as the logit, due to serial correiation in the data. These
problems add to the difficulties in the regression analyses due to high correlations

among the geographic variables, and among the temporal variables (multicollinearity).
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ANN have an advantage in this stedy over statistical techniques because the
performance of the ANN is not affected by high comelations among the variables used
for input to the network (NeuralWare 1989).

5. Several back-propagation ncural networks were successfully developed for
the human-caused firc occurrence problem. Most of them achicved performance Jevels
comparable or superior to that of logit models in Chapter I for predicting fire
occurrences. This study indicated that ANN could be used to predict fire occurrence
at least as well as logit models. The best of these networks outperformed the best
logit models in the classification table of observed versus predicted responses for the
model building data and the test data. However, this best network benelitied from the
expertise provided by the logit analysis in selecting its inputs. This apparently
confirms the importance placed on expert guidance to select ANN's inputs by Guiver
and Klimasauskas (1991).

6. An advantage this model shares with the logit models in Chapter 111 over
models developed elsewhere is that the fire management units considered for
prediction were relatively small (all less that 5,000 km?). This is a desirable feature in
a prediction model from the point of view of the fire protection agency concerncd.
Furthermore, the division of areas within a District in zones < 5km from roads, and
zones > Skm from roads, provides an indication of accessibility or remoteness 10 the
fires should they occur, and of their probability of being easily detected by unplanned

detection resources.

7. Some considerations must be made with respect to the deployment and
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maintenance of the developed model. Professional 1I/plus features a "FlashCode”
command to produce a network-specific generated C code for deployment of the best
network (in Appendix F). Managers must consider that the acceplance of "black box"
systems such as this one among all possible users would be expected to face more
difficulties than the acceptance of a more "familiar" system, such as a regression
equation. Also, maintenance levels should be similar for both the ANN model or any
other model, since updating of any model is driven by fire occurrence trends (changes
in land use patterns, for instance).

Logit models have been successfully built for human-caused wildfire
occurrence prediction in the Whitecourt Forest (Chapter III, this thesis) and other
geographic locations (Martell er al. 1987, Chou er al. 1990). Therefore, perhaps one
would ask the question: "Should this neural network model be recommended for field
testing with preference to others available to managers?”. In deploying a neural
network instead of a more traditional statistical system two factors must be considered
(Klimasauskas 1991d): (1) the improved performance of the ANN, if any, and (2) the
additional computational cost that implies executing the ANN. The best ANN
developed in this study outperformed the best logit model available for the Whitecourt
Forest only by 2% in total percentage correctly predicted, and predictions involved a
considerable computational cost. Predictions with the logit model required a few
simple operations that even a pocket calculator could handle. It would appear that the
cost-effective system for deployment in this case would be the logit model.

However, the full potential of neural computing was not explored in this study.
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There arec many types of ANN with specialized feedforward architectures (self-
organizing maps, for instance) or automatic learning rules (delta bar delta, directed
random scarch, and so on) that have been developed for prediction. The problem is
that there is a general lack of bibliographic references on the use of those newly
developed networks. The process of network building remains an art, even without
considering the difficulty of selecting inputs. But as this technology evolves, many
applications will benefit from what Klirnasauskas (1991a) calls its "ability to
approximate complex mathematical mappings”. This study suggests that fire

occurrence prediction will be one of those applications.
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CHAPTER V

Conclusions

The present study aimed o model daily human-caused wildfire occurrence in
Whitecourt Forest, Alberta (Appendix A) utilizing geographic and temporal variables
from the forest environment. A preliminary study based on the Chi-square goodness-
of-fit test identified the following geographic and temporal variables as relevant to the
human-caused fire problem in this Forest: (1) distance to closest road, (2) land
ownership, (3) distance to closest town, (4) distance to closest campsite, (5) elevation,
{6) location in a certain forest district, (7) fuels, (8) forest commercial value, age, and
height, and (9) Initial Spread Index, (10) Fire Weather Index, (11) Fine Fuel Moisture
Code, (12) relative humidity, (13) month, (14) Duff Moisture Code, (15) Build-Up
Index, and (16) wind speed. The tests also suggested the following geographic and
temporal variables to be irrelevant in human-caused wildfire occurrence: (1) distance
to closest lake, (2) forest density, (3) location in area seen by lookout towers, (4}
distance to closest lookout tower, (5) slope, (6) distance to closest river, and (7)
aspect, and (8) DC, (9) visibility, (10) temperature, and (11) weekday.

A Map of Risk for the Whitecourt Forest was delineated by using a Geographic
Information System and the geographic variables related to wildfire occurrence. Such
a map could have important applications in fire prevention, detection, and
presuppression planning. Nevertheless, rapidly changing conditions in the fire

environment, in particular fuels and weather, are not accounted for in a Map of Risk,
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unless they are computed daily. This led me to consider the development of a daily
prediction model, which is a much more effective planning tool.

A binary logit model was successfully developed to predict daily human-caused
fire occurrence in eight fire occurrence prediction units in the Whitecourt Forest. This
model provided a prediction of fire "yes/no” for cach unit and day within a standard
fire season (April to October) using the corresponding unit arca (km?), location in
forest district 2 (dummy), BUI, and ISI values to compute the probability of fire
occurrence. This model was able to predict correctly 74% of the outcomes in a
validation data set not used in the development of the model.

A back-propagation neural network model was successfully developed to
predict the daily probability of fire occurrence in eight fire occurrence prediction units
within the Whitccourt Forest. As with the logit model, predictions were limited to
days within a standard fire season (April to October), and the prediction was fire
“"yes/no” for each arca and day. The network was presented randomly the same dat
set of 314 examples of fire and no-fire observations until it "learned” the relationship
between unit area (km®), FWI, location in forest district 2 (dummy), and fire
occurrence. The network was able to correctly predict 76% of the outcomes in a test
data set not previously used for training.

Both techniques achieved similar accuracy in predicting daily human-caused
forest fire occurrence in eight fire occurrence prediction units in the Whitecourt Forest.
The models developed for the 1986-1990 data set correctly predicted 79-81% of the

time. When these models were used on the 1991-1992 data set, fire occurrence
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prediction was 74-76% accurate. The fact that two very different techniques, the
binary logit and the ANN, reached almost identical accuracy in predicting fire
occurrence suggests limitations in the data, not in the models. Geographic data
available for this study was certainly limited, and the variation of geographic
characteristics of the study area during 1986-1990 could not be accounted for (for
instance, building of new roads). Hence, there is much room for improvement in this
respect but several techniques currently available do adequately model this complex
process of human-caused fire occurrence. Logit models and neural network models can
both be used, but economic and user-related considerations might advise the use of

logit models over the deployment of ANN at this point in time.
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CHAPTER VI

Future Research

The principal hypothesis in this study was that human risk could be estimated
from the state of the forest environment at any given ime. This assumption ignored
differences in perception, reascning, and decision making capabilities in the human
population. As a result, there were situations in the original data in which all physical
variables indicated high risk of fire, but no fire happened, and there were situations in
which everything pointed to the impossibility of a fire occurring, and a fire did occur.
Data about human presence, their distribution and activities in the forest areas are
necessary in future studies. These data must be collected in the ficld, and a
methodology defined to obtain a continuous flow of information to the fire protection
agencies concerned. This continuous flow of information will enable managers to
update the data sets used in developing models and if ANN systems arc used learning
will be facilitated.

Artificial neural networks have shown great potential in their application in
this field. Nectworks specifically developed for prediction should be tried in future
models. Both logit models and neural nets allow for much improvement in current
predictions, through further model refinement, the addition of higher-order terms, and
the addition of new variables, current models can be enhanced.

There were some limitations in the data available for this study. There was no

information on how the geographic data available changed over the 5-year period used
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to model fire occurrence. The variable "distance to roads”, which it has been found to
be relevant wo fire occurrence prediction, is expected to have changed in value
continuousiy due to construction of new roads. In Whitecourt Forest, there are about
1,0uu road consuuction proposals submitled every year. Other geographic factors may
change less rapidly over time, such as property, or more rapidly, such as fuels. In
future studies it will be important to incorporate accurate geographic data and keep
track of the variability of these geographic data in time. A yearly update of these data
is probably sufficient to improve current predictions.

The adequacy of the study area chosen must also be considered. This Forest
was selected because sufficient geographic and weather information was available to
attempt modeling fire occurrence in the Forest. A change in the paysical location of
the test site is more than likely to affect the results obtained in this study. Re-
evaluation of the models using the same techniques is encouraged, but considering
again all geographic and temporal factors available to the future researcher that could
have an effect on human-caused wildfire occurrence. The absence of certain variables
in the models developed might have been more related to the peculiarities of the data
used in this study (peculiarities of the Whitecourt Forest), than 10 the reality of

human-caused wildfires elsewhere. Future studies will provide insight on this issue.

91



APPENDIX A

The location of the Whitecourt Forest in Alberta

The four forest districts shown are management or administrative arcas within

the Forest.

P N o

District 4

District 1

/k District 3
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District 2
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APPENDIX B

Pearson correlation analysis for all

geographic and temporal variables
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APPENDIX C

SAS outputs for the six

best logit models
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APPENDIX D

Classification tables for independent datc

Logit Models 1-6
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Classification Table for Model 1
Varlablas: Intercept, Area,District,BUILISI

Frequency Predicted Pradicted Total
Parcoant No Fire Firg
Row Pet
Actual 2398 838 3236
No Fire 72.80 25.44 98.24
7410 2590
Actual 15 43 58
Fire 0.46 1.31 1.76
25.86 74.14
Total 2413 881 3294
73.25 26.75 100.00
olal parcenlage corraclly predictec=74 1%, 3 pred.prob.= 84.
Classification Table for Model 2
Varlables: Intercept,Area,District, FWl
Frequency Predicted Predicted Total
Pearcent No Fire Fire
Row Pct
Actual 2410 826 3236
No Fira 73.16 25.08 08.24
74.47 25.53
Actual 15 43 58
Fire 0.46 1.31 1.76
25.86 74.14
Total 2425 869 3294
73.62 26.38 100.00
lolal percentage conecly prediclagara.5, » pred.prob.= U3.535
Classification Table for Model 3
Variables: Intercept,Area, FFMC,FWILF
Frequency Pradicted Predicted Total
Percent No Fira Fire
Row Pct
Aclual 2303 933 3236
No Fire 69.91 28.32 88.24
7117 28.83
Actual i5 43 58
Fire 0.46 1.31 1.76
25.86 74.14
Total 2318 976 3294
70.37 29.63 100.00
olal percentage corecly predicied=/1.2%, », pred.prob.= 84,506
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Classlification Table for Mode! 4

Variables: Intercept,Area,District, FFMC,BUI

Fraquency Predicted Predicted Total
Parcant No Firs Fire
Row Pct
Actual 2345 891 3236
No Fire 71.18 27.05 88.24
72.47 27.53
Actual 17 41 58
Fire 0.52 1.24 1.76
29.31 70.69
Total 2362 932 3204
.71 28.29 100.00
olal parcanlage comacly predicled=/2.4, ) pred.prob.= 71,679
Classification Table for Model 5
Variables: Intercept, Area,District,IS!
Frequency Predicted Pradicted Total
Parcent No Fire Fire
Row Pct
Aclual 2435 801 3236
No Fire 73.92 2432 98.24
75.25 2475
Actual 17 41 58
Fire 0.52 1.24 1.76
28.31 70.69
Total 2452 842 3294
74.44 25.56 100.00
olal parcenlage corraclly prediclea=75.2%, L pred.prob.= 5401
Classification Table for Model 6
Variables: Intercept, Arrodis,ISLFFMC
Frequency Pradicted Predicled Total
Percent No Firs Fire
Row Pt
Actual 2339 897 3236
No Fire 71.01 2123 98,24
72.20 27.72
Actual 15 43 58
Fire 0.46 1.31 1.76
25.86 74.14
Total 2354 240 3294
71.00 29.00 100.00
oial percentage comecly predicled=/2.3°%, L prad.prob.= 85.B27, pal.U2d
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APPENDIX E

Classification tables for independent data

Best Neural Network Models
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ANN Models for comparison with logistic regression models

Classification Table for Model 1 with 10 hidden PEs
Varlables: Ares,District, BUIISI

Frequency Predictad Pradicted Total

Percent No Fire Fire

Row Pet

Actual 2356 880 3236

No Fire 71.52 26.71 98.24
72.80 27.19

Actual 17 41 58

Firs 0.£2 1.24 1.76
29.31 70.69

Total 2373 921 3294
72.00 28.00 100.00

Alter 13,000 derations, AM5=.24B, Tolal pcl correclly predicted=72.5%
Classification Table for Mode! 2 with 4 hidden PEs
Varl:. '--2: Area,District, FW!

Frequency Pradicted Pradicted Total

Pearcent No Fire Fire

Row Pet

Actual 2462 774 3236

No Fire 74.74 23,50 98.24
76.08 23.02

Actual 14 44 58

Fire 0.43 1.34 1.76
24.14 75.86

Total 2476 818 3284
7517 24.83 100.00

Aller 13,000 fteralions, AM5=.245, Tolal pct correclly pradicied=76.1%
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ANN General Models

Classification Table for Model with 14 hidden PEs
Varinbles: Area, FWI,RH,FFMC,ISLROAD

Frequency Fradictad Predicted Total
Percent No Fire Firs
Row Pct
Actual 2422 814 3236
No Fire 73.52 241 98.24
74.84 25.15
Actual 17 41 58
Fire 0.51 1.24 1.76
29.3 70.68
Total 2439 855 3294
74.04 25.95 100.00
Alter 13,000 #taralions, HMS=.238, 1olal pcl corfaclly predicted=74.8%
Classification Table for Model with 4 hidden PEs
Variables: Area, FWI,RH,1S]
Frequency Predicted Predicted Total
Parcent No Fire Fira
Row Pct
Actual 2428 808 3236
No Fire 73.70 24.53 88.24
75.03 24.96
Actual 16 42 58
Fire 0.48 1.27 1,78
27.58 72.41
Total 2444 850 3204
74.19 25.80 100,00
Atler 29,000 iteralions, HMb=,247, tofal pel correcﬁy predicled=/5.0%
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Classification Table for Model with 4 hidden PEs
Variables: RH,ISLROAD

Fraquency Pradicted Pradicted Total
Parcent No Fire Firs
Row Pct
Actual 2356 880 3236
No Fire 71.52 26.71 98.24
72.80 27.19
Actual 14 44 58
Fire 0.42 1.33 1.76
2413 75.86
Total 2370 924 3294
71.94 28.05 100.00
Afler 18,000 deralions, HM5=.243, Tofal pct correclly predicted=/2.9%
Classification Table for Model with 4 hidden PEs
Variables: Area,FWI,ROAD
Frequency Fredicted Fredicted Total
Parcent No Fire Fire
Row Pet
Actual 2393 843 3236
No Fire 72.64 25.59 98.24
73.94 26.05
Actual 16 42 58
Fire 0.48 1.27 1.76
27.58 72.41
Total 2409 885 3284
73.13 26.86 100.00

Aller 19,000 feralions, HMS=.245, tofal pct correclly predicied=73.9%




APPENDIX F

A network-specific generated C code

/* Fri Sep 3 15:58:27 1993 (m2.c) Recall-Only Run-time for <bestever> */
/*  Control Strategy is: <bkpfast> */

#if _ STDC__

#idefine ARGS(X) x
#else

#define ARGS(x) ()
#endif /* __STDC__ ¥/

/* --- External Routines --- */
extern double exp ARGS((double));
¥ ¥ MAKE SURE TO LINK IN YOUR COMPILER's MATH LIBRARIES *** #/

#if _ STDC__
int m2_start{ void *NetPtr, float Yin[4], float Yout{2] )
#else
int m2_gtart( NetPtr, Yin, Yout )
void *NetPtr; /* Network Pointer (not used) */
float Yin[4], Yout[2]; /* Data */
#endif /* __STDC__ */
{
float Xout[12]; /* work arrays */
long ICmpT; /* temp for comparisons */

[* *¥% WARNING: Code generated assuming Recall = (0 *** #/

/* Read and scale input into network */
Xout[2] = Yin{0);
Xout[3] = Yin[1];
Xout[4] = Yin[2] * (0.00025943704) + (-.20905436);
Xout[5] = Yin[3] * (0.027777778);
LABI110:

{* Generating code for PE 0 in layer 3 */

Xout[6] = (float)(-.82123846) + (float)(-.23006813) * Xout[2] +
(float)(-.74295259) * Xout[3] + (float)(1.5722935) * Xout[4] +
(float)(2.3422184) * Xout[5];

Xout[6] = 1.0 / (1.0 + exp( -Xout[6] ));
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/* Generating code for PE 1 in layer 3 */

Xout[7] = (float)(-1.4312007) + (float)(-.37953216) * Xout[2] +
(float)}(-.97151035) * Xout[3] + (float)(2.1379476) * Xout[4] +
(float)(3.5678072) * Xout[S];

Xout[7] = 1.0/ (1.0 + exp( -Xout[7] ));

* Generating code for PE 2 in layer 3 */

Xout[8] = (float)(1.0924038) + (float)(.28197211) * Xout[2] +
(float)(.75670433) * Xout[3] + (float)(-1.7059669) * Xoui[4] +
(float)(-2.9353254) * Xout[5),

Xout[8] = 1.0/ (1.0 + exp( -Xout[8] ));

/* Generating code for PE 3 in layer 3 */

Xout[9] = (float)(.24200568) + (float)(-0.063673533) * Xout[2] +
(float)(.15872669) * Xout[3] + (float)(-.60328162) * Xout[4] +
(float)(-1.174696) * Xout[5];

Xout[9] = 1.0/ (1.0 + exp( -Xout[9] });

/* Generating code for PE 0 in layer 4 */

Xout[10] = (fioat}(-.2924175) + (float)(.82507396) * Xou{6] +
(float)(1.3176024) * Xout[7] + (float)(-1.1102298) * Xout[8] +
(float)(-.41101122) * Xout[9];

Xout[10] = 1.0/ (1.0 + exp( -Xout[10] ));

/* Generating code for PE 1 in layer 4 */

Xout[11] = (float)(.25909081) + (float}(-.84139597) * Xoul[6] +
(float)(-1.2789248) * Xout[7] + (float)(1.1355991) * Xout[8] +
(float)(.43569073) * Xout[9];

Xout[11] = 1.0/ (1.0 + exp( -Xout[11] ));

/* De-scale and write output from network */
Yout[0] = Xout[10] * (1.6666666) + (-.33333333);
Yout[1] = Xout[11] * (1.6666666) + (-.33333333),
return( 0 );
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