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Abstract

Recent strides in lower-limb exoskeleton development have significantly enhanced the

potential for more effective rehabilitation and assistance for individuals with mobility

impairments. Despite these advancements, the widespread adoption of exoskeletons

demands improvements in both hardware and software design to enhance user comfort

and safety. This doctoral research addresses this need by focusing on the implemen-

tation of personalized and safe locomotion patterns, addressing a critical shortfall in

existing exoskeleton designs.

To empower users with the ability to modify gait trajectories during walking, a

novel adaptable gait trajectory shaping method is introduced, leveraging adaptable

central pattern generators (ACPGs). These ACPGs are synchronized across various

joints and dynamically updated in response to the physical interaction between the

human and the robot. Expanding on this, a fusion of reinforcement learning and

ACPGs is proposed, enabling the generation of user-specific locomotion trajectories.

This innovative approach reads the user’s physical human-robot interaction (pHRI)

over time, facilitating the achievement of desired gait patterns, such as step length

and walking velocity. Experimental validation on able-bodied individuals using the

Indego lower-limb exoskeleton demonstrates the capability of refining exoskeleton gait

trajectories in real-time.

To elevate safety levels, an algorithm is introduced to assess postural stability

during changes in exoskeleton trajectories governed by ACPGs. An extended model

for the divergent component of motion (DCM) is tailored for multi-degree-of-freedom

(DOF) exoskeletons. Leveraging this algorithm, the exoskeleton gains the ability to
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ensure postural stability and the viability of locomotion in pHRI by employing a

DCM-based hip correction strategy to adjust the upper body position. The effective-

ness of this intelligent controller for ensuring safe and stable locomotion is rigorously

investigated through experimental studies conducted on the Indego lower-limb ex-

oskeleton.
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The ultimate goal of this project is to make lower-limb exoskeletons adaptive to the
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a multidisciplinary research collaboration, led by Dr. Mahdi Tavakoli (principal in-

vestigator) at the Department of Electrical and Computer Engineering, University

of Alberta and Dr. Vivian Mushahwar at the Department of Medicine. All of the
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tems Lab and the Rehabilitation Innovations Core of the Sensory Motor Adaptive

Rehabilitation Technology (SMART) Network at the University of Alberta.
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formation and manuscript composition.
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Chapter 3 of this thesis was published as: Mojtaba Sharifi, Javad Khodaei Mehr,
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Chapter 1

Introduction

1.1 Motivation

Millions of people all over the world are currently experiencing neurological conditions,

including stroke, spinal cord injury, multiple sclerosis, and cerebral palsy [1]. Each

year, more than 15 million people in the world experience a stroke [2]. The statistics

for SCI show that about 500 thousand people worldwide experience SCI annually

[3]. CP is the most common neurological impairment in childhood; one out of every

500 babies is born with this condition [4]. Similarly, MS is another neurological

impairment, affecting a large group of people. There are now 2.8 million people

worldwide who have MS [5]. Note that the mentioned conditions are only some

cases that can result in mobility impairments. Any method that can help people

with mobility impairments to have a more independent life will have a considerable

impact.

A robotic exoskeleton, inspired by the natural armor of insects, is a sophisticated

mechanical device designed to enhance human physical capabilities while reinforcing

the body’s structure. Crafted from durable materials, these exoskeletons envelop and

engage with the user’s limbs or core, acting as an external scaffold that facilitates

movement, and imporoves strength, and stability. Exoskeletons integrate sensors and

intelligent control systems to seamlessly respond to user movements, ensuring intuitive

operation and a harmonious man-machine interaction. Figure 1.1 depicts some of the

1



Figure 1.1: Lower-limb exoskeletons developed for assisting/rehabilitating people with
neurological imparements: a) HAL, b) ReWalk, c)Indego, d) Exo H3, and e) Ekso
GT [13]

commercially available exoskeletons which are specific for lower-limb assistance.

Robotic exoskeletons find diverse applications, from aiding in medical rehabilita-

tion for individuals with mobility impairments to transforming industrial settings by

reducing physical strain and boosting productivity. Their potential to enhance hu-

man performance and elevate quality of life continues to expand, driven by ongoing

advancements in technology. As these innovations unfold, robotic exoskeletons stand

as a testament to humanity’s relentless pursuit of innovation and its ability to redefine

the boundaries of human potential.

Using lower-limb exoskeletons to assist people with mobility impairments in daily

living activities will enhance their quality of life and facilitate rehabilitation. In com-

parison with traditional physical therapies, powered exoskeletons have the ability to

provide frequent, consistent and long-term assistance with minimal engagement of a

therapist [6]. This leads to a lower cost and higher efficiency of task execution by

accurately rendering the required assistance level to any person with specific neuro-

logical conditions. Moreover, precise measurements of human limb movements can

be collected for continuous monitoring of the user’s condition by deploying embedded

sensors in the exoskeleton’s structure. In this regard, powered lower-limb exoskeletons

(such as Indego [7], ReWalk [8], HAL [9], Ekso GT [10], and Exo-H3 [11]) have been

invented to assist and rehabilitate individuals with neurological impairments [12].
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Despite all of the endeavours in designing and deploying exoskeletons for medical

purposes, compliant interaction between the robot and wearer is an important safety

issue that still needs to be addressed [14]. In order to facilitate complaint and safe

human-robot interaction (HRI), autonomous strategies are required to be investigated

for generating motion trajectories. Note that, trajecories are joint angles and veloci-

ties that dictate the movement of the exoskeleton’s mechanical joints, such as those

at the hip, knee, and ankle. Most commercial exoskeletons have been programmed

to track pre-recorded trajectories to ensure repeatability and controllability of the

movements. Therefore, next generations of the exoskeletons need to focus on the

improvement of software to refine gait pattern based on the HRI. For that goal we

have devoted our research in development of intelligent locomotion planning methods

to

• Provide an approach that can facilitate real-time modifications in the exoskele-

ton’s gait

• Make the gait trajectories adaptive with the user’s target locomotion

• Adjust upper-body position and enhance postural stability

1.2 Contributions of this research

1.2.1 Provide an approach that can facilitate real-time mod-
ifications in the exoskeleton’s gait

The biological central pattern generator is a neural circuit located in the spinal cord

and brainstem responsible for generating rhythmic motor patterns such as walking,

swimming, and breathing, without requiring constant input from the brain. In hu-

mans, the CPG plays a crucial role in coordinating the complex sequence of muscle

activations and movements involved in locomotion. Research suggests that the hu-

man CPG receives sensory feedback from various sources, including proprioceptive

signals from muscles and joints, cutaneous feedback from the skin, and vestibular
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input related to balance and orientation. These sensory signals provide important

feedback to the CPG, influencing the timing and intensity of muscle activations dur-

ing locomotion. Understanding the input signals to the human CPG is essential for

elucidating the mechanisms underlying motor control and for developing therapies for

movement disorders and rehabilitation strategies [15].

In robotics, Central Pattern Generators (CPGs) are modeled after their biologi-

cal counterparts and implemented to generate rhythmic joint trajectories for robotic

systems, particularly in tasks requiring repetitive or cyclic motion, such as legged lo-

comotion or robotic swimming. By mimicking the principles of biological CPGs, these

artificial systems can produce coordinated and stable rhythmic patterns of movement,

enabling robots to walk, run, swim, or perform other locomotion tasks autonomously

and efficiently [16]. While CPGs present a promising avenue for motion planning in

lower-limb exoskeletons, a significant drawback lies in their lack of adaptability to

human users.

Studying human walking, one can notice that there are considerable differences

in walking patterns among different people. Additionally, even for one person, can

vary within one day and over time for a variety of reasons, including aging, fatigue,

load-carrying, etc. [17]. Using a pre-defined trajectory is one of the significant short-

comings of commercially available exoskeletons, limiting the willingness toward using

these systems. To provide comfort for the exoskeleton users, the systems need to be

automatically adapted to the user’s locomotion pattern. To address this challenge,

we proposed the adaptable central pattern generators (ACPGs) method [18, 19].

In this study, the adaptable CPG structure was considered for modulating and

controlling a lower-limb exoskeleton that results in a compliant and safe physical

interaction with the human. The proposed ACPG dynamics had adaptable online

features to update the gait characteristics in response to the pHRI torque. To es-

timate the pHRI torque, we introduced two distinct algorithms: one based on a

nonlinear disturbance observer and the other utilizing a deep neural network (NN).
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The contributions of these studies encompass:

• For the first time, we introduced adaptable CPGs which has the capability to

refine exoskeletons gait trajectory in response to the pHRI torque while walking.

It’s important to note that the proposed algorithm isn’t confined to a particular

exoskeleton model but can be applied universally across various exoskeletons

with differing degrees of freedom (DOFs) in their motion planning.

• The proposed ACPGs have the ability to adjust walking velocity, step length,

and even the starting and ending positions for each joint of the exoskeleton,

such as the hip and knee.

• For the first time, we introduced a nonlinear disturbace observer which aims to

enhance the stability of exoskeletons concerning the uniform ultimate bound-

edess (UUB) of both trajectory tracking and pHRI estimation errors. Unlike

previous disturbance observer designs for exoskeletons, which neglected the sta-

bility aspect of the controlled system, this approach prioritizes stability consid-

erations to ensure robust performance.

1.2.2 Make the gait trajectories adaptive with the user’s tar-
get locomotion

The ACPGs mentioned earlier have the potential to address the adaptability challenge

in exoskeleton motion planning, provided that the user-specific ACPG parameters are

accurately identified, and the user’s physical interaction behavior remains relatively

stable over time. However, these two conditions impose constraints on ACPGs in

delivering personalized locomotion trajectories. In simpler terms, individuals using

exoskeletons must familiarize themselves with and adjust to the dynamics of ACPGs

to modify their gait pattern, including factors such as frequency and amplitude of

gait, to align with their preferences.

5



In order to adress this challenge a reinforcement learning-based approch was intro-

duced for exoskeleton motion planning. The reinforcement learning (RL) algorithm

adjusted the user’s physical interaction with the exoskeleton. Put simply, if the user’s

physical interaction wasn’t sufficient to achieve the desired gait within a reasonable

timeframe, the proposed RL algorithm amplifies the interaction to expedite the pro-

cess. Conversely, if the user’s physical interaction exceeds the necessary threshold for

the ACPGs to achieve the target gait, the RL component reduces this interaction to

prevent excessive oscillation around the desired values. Consequently, the integration

of RL with ACPGs, referred to as intelligent CPGs (iCPGs), effectively resolves the

personalization challenge in exoskeleton motion planning. Followings are the major

contributions of these studies:

• We introduced a novel framework that merges RL with ACPGs for adaptive

motion planning tailored to human users. This innovative algorithm addresses

a significant limitation of ACPGs in accommodating users with varying levels

of muscle strength.

• We have developed a simulation environment for the first time, which replicates

human behavior during physical interactions with exoskeletons to alter gait tra-

jectories using ACPGs. This environment is valuable for training RL algorithms

or gathering data for training various supervised learning algorithms.

1.2.3 Upper-body position adjustment and postural stability

Refining exoskeletons’ gait to be close to users’ walking patterns is integral to making

these systems suitable for assistance/rehabilitation applications. However, although

the ACPG method can address this issue, the algorithm also needs to monitor pos-

tural stability while reshaping the walking pattern. To this end, we introduced the

divergent component of motion (DCM) for the lower-limb exoskeletons [20]. While

walking with the exoskeleton, the DCM analysis monitors the position and velocity
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of the exoskeleton’s center of mass (CoM) and adjusts the upper-body position to

maintain postural stability. Therefore, the exoskeleton had the authority to ensure

postural stability and viability of locomotion while the user reshape their gait pattern

via pHRI.

In this project, an intelligent control strategy was developed and tested for lower-

limb exoskeletons by introducing a new integration of DCM and CPG schemes to

facilitate both posture stability and adaptable locomotion planning. The DCM anal-

ysis, which was previously developed for bipedal locomotion of humanoid robots, was

extended and generalized for the human-exoskeleton system (HES) for the first time.

To this end, the linear inverted pendulum flywheel (LIPF) model was replaced with

a new 4-DOF body (4DB) model to address the following issues: (a) In the LIPF

model, the CoM of the whole system is considered to be at the middle of the line

that connects the right and left hips. However, for humans, the CoM is mostly higher

than this level and can be different for users based on their body characteristics.

Taking the 4DB model into account, the CoM of combination HES can be upper or

lower than this level at any point. (b) Due to the attachment of exoskeleton to the

human body, the mechanical properties (e.g., moment of inertia and mass) for differ-

ent segments of the HES can be significantly different for various wearers. Using the

proposed 4DB model, these dynamic parameters can be personalized for each user to

make the locomotion control strategy case-specific.

Using the proposed DCM analysis, a hip joint correction was generated in real-time

to amend the trunk position and consequently adjust the DCM on its desired value

at the end of each step. The introduced ACPGs were used to shape joint trajecto-

ries in response to the human interaction torques by regulating the step length and

velocity of walking. In addition, the ACPG dynamics were designed to guarantee

that gait velocity is less than the maximum stable velocity of walking and the output

trajectories are within the feasible movement ranges of the exoskeleton joints. Ac-

cordingly, the commands generated by the DCM and ACPG schemes were combined
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to autonomously facilitate locomotion trajectories compatible with the user’s desired

gait and ensure the viability of walking through the postural stability. summary of

the main contributions of this study are as follows:

• We have introduced an algorithm for the first time to monitor and improve

postural stability in exoskeletons. This algorithm is designed to work seamlessly

with the previously introduced ACPGs, adjusting the upper-body position in

response to modifications in the gait trajectory made via ACPGs.

• The proposed algorithm extends an existing model in bipedal robotics and intro-

duces a new model that considers the body characteristics of exoskeleton users,

such as limb weight and inertia. This incorporation is essential for studying

postural stability in lower-limb exoskeletons.

The concepts of amplitude, frequency, and phase in walking will be consistently

referenced throughout the thesis in all chapters. Amplitude indicates the range of

motion for individual joints, such as the hip and knee, with higher values reflecting

a broader range of motion and resulting in larger steps. Frequency measures the

number of steps taken within a given timeframe, where higher frequencies correspond

to faster walking speeds. Phase pertains to the coordination of movements among

different joints in the exoskeleton, such as the synchronization between the right and

left hips and knees.

1.3 Outline of this dissertation

The subsequent chapters of this dissertation are structured as follows: In Chapter 2,

an exploration of literature regarding motion planning algorithms for exoskeletons,

methods for estimating pHRI torque, RL methods for exoskeletons, simulation envi-

ronments for physical human-exoskeleton interaction, and postural stability in bipedal

locomotion is undertaken. Chapter 3 introduces the first generation of ACPGs with

the capability of adjusting step length and walking velocity. Additionally, a nonlinear
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disturbance observer-based algorithm for estimating pHRI torque is presented in this

chapter. Chapter 4 unveils our latest generation of ACPGs, which boasts the ability

to update step length, walking velocity, and the start and end positions of each joint

during walking. Safety terms have also been incorporated into this version of ACPGs

to ensure that gait parameters remain within a safe range. In Chapter 5, the integra-

tion of RL with ACPGs is introduced, resulting in iCPGs that generate personalized

locomotion trajectories. Chapter 6 serves as an extension of Chapter 5, addressing

the incapability of the previous RL agent to decrease pHRI, particularly in scenarios

of strong muscle engagement, further elaborated in Chapter 6, for facilitating person-

alized locomotion planning. Chapter 7 introduces a novel DCM structure designed

to enhance postural stability for exoskeleton users. Finally, in Chapter 8, concluding

remarks and future directions for this research are discussed.
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Chapter 2

Literature review

2.1 Adaptive locomotion planning

Different nonlinear methods were proposed in the literature for high-level motion plan-

ning of robotic systems, including dynamic movement primitives (DMPs) and central

pattern generators (CPGs). DMPs were defined in Schaal er al. [21] as a combina-

tion of several differential equations to mimic the stream of movements captured from

humans and animals. Researchers employed DMPs for locomotion trajectory gener-

ation and position/torque control of powered lower-limb exoskeletons [22], [23], [24].

Yuan et al. [22] used a point-attractor DMP structure for the trajectory shaping of

hip and knee joints, augmented by reinforcement learning (RL) to update the DMP

parameters with the purpose of minimizing the error between the target and actual

trajectories [22]. With a similar objective, the locally weighted regression (LWR)

method was suggested in Qui et al. [23] to regulate the weights of basis functions

in the DMP dynamics. Huang et al. [24] developed another DMP structure by em-

bedding the HRI torque in the point-attractor DMP dynamics to shape the pilot

locomotion trajectory online.

Among the strategies suggested for motion planning of lower-limb exoskeletons and

bio-inspired robots, the CPG is an appropriate one because of its inherent feature of

producing time-continuous rhythmic motions synchronized for adjacent joints similar

to natural bipedal locomotion. CPGs are structured as connected modules that are
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able to generate oscillatory movements with organized patterns in response to non-

periodic inputs [16]. The functional capability of CPGs in generating fluctuating

activities has been studied for the trajectory shaping of lower-limb exoskeletons in

previous research studies [20, 25–27]. The CPG parameters were optimized by a

genetic algorithm in Schrade et al. [25] for steady-state locomotion with a lower-

limb exoskeleton implemented by a torque controller, where the knee stiffness was

adjusted by activating stiffening CPG units. Gui et al. [26] benefited from CPGs and

admittance control to provide flexibility in terms of the measured electromyography

(EMG) signals while tracking pre-specified motion trajectories for the knee and hip

joints. A robotic rehabilitation system was developed by incorporating functional

electrical stimulation (FES) and torque control for a knee exoskeleton [27], where

CPGs generated fixed rhythmic movements for both the FES feedforward controller

and the feedback torque controller. Due to the tight coupling between the wearer and

exoskeleton, it is essential to take HRI signals into account for CPG-based motion

planning, which has not been addressed in most previously proposed high-level control

strategies.

2.2 pHRI estimation methods

Obtaining the interaction torque between the human and exoskeleton is a pivotal

point and a practical challenge to design appropriate control policies responsive to

human physical behavior to enhance safety and compliance. To this end, two kinds

of sensory information acquisition techniques have been used in the literature to esti-

mate the human torque; embedding force/torque sensors in the exoskeleton structure

and attaching electromyography (EMG) sensors to the human body. Electromechan-

ical force/torque transducers and strain gauges mounted between the human and

exoskeleton can not isolate the active portion of the human’s physical effort [28].

In other words, sensory data contains undesired components related to the human

body’s gravity, friction, inertia, and also the passive portion of the muscles, which
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makes the extraction of the human active torque out of data difficult [29, 30].

On the other hand, EMG as a biological signal represents the activity level of the

muscle, which is effective in identifying the human motion intention. As the EMG

signal is transferred through neural pathways, it can be detected before muscle action

and motion generation. Accordingly, this signal has been utilized in intelligent control

of assistive exoskeletons for estimation of the active HRI torque [30, 31]. In several

studies, musculoskeletal models have been employed to estimate the active portion of

the muscle force and determine the exerted torque on the corresponding joint [32–34].

Teramae et al. [32] have proposed a linear proportional model (LPM) to estimate

the human active torque on the elbow joint based on the EMG activity of biceps and

triceps muscles during the interaction with a robot. A model predictive control (MPC)

approach was taken into account to derive deficient joint torque needed for tracking

predefined desired trajectories considering the EMG-based estimation of the human

torque [32]. Ao et al. [33] utilized a Hill-type neuromusculoskeletal model (HNM) for

the tibialis anterior and gastrocnemius muscles in the actuation of the ankle joint,

which resulted in more accuracy in EMG-based torque estimation compared to the

LPM’s outcome. The obtained torque was amplified by a one-DOF exoskeleton to

assist the wearer in a tracking task [33]. In a similar study [34], a radial basis function

neural network (RBFNN) was trained to update the activation coefficient of the HNM

in order to enhance the accuracy of human torque estimation in the presence of the

time-varying EMG features [34].

Although model-based torque estimation methods can provide reasonable accu-

racy, identifying the corresponding model parameters necessitates a high volume of

mathematical calculations in both offline and online data processing modes. In this

regard, neural networks (NNs) have been employed for torque estimation, dynamic

identification, trajectory shaping, and gait phase estimation for lower-limb exoskele-

tons in most of the recent studies. This is due to the fast training rate and the

model-free aspect of learning using NN structures, making them desirable options for
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distinguishing the underlying relations between various input and output data.

An individualized motion planning was developed in Wu et al. [35] based on NNs

in which body parameters and target walking speed were fed to a Gaussian process

regression to identify and classify gait characteristics [35]. Two radial basis function

neural networks (RBFNNs) were suggested to approximate passive and active HRI

torques in Gui et al. [30]. In this work, a passive torque model was presented

and EMG signals were employed for training the RBFNNs to estimate the active

human torque [30]. Kang et al. [36] proposed an NN-based strategy to estimate the

locomotion phase based on the hip joint angle and thigh inertial measurement unit

(IMU) data as the inputs and the heel contact information as the output for offline

training of the NN [36]. In a similar approach, a nonlinear autoregressive network

with exogenous inputs (NARX) was utilized to capture the ankle joint dynamics based

on the collected data of a typical walking [37]. The EMG activity of shank muscles

and knee joint position were considered the inputs, and the ankle joint position as

the NARX structure’s output to be estimated [37]. In another study, NARX was

employed in the estimation of the foot angular position for the purpose of controlling

an active prosthetic [38]. The gait data from seven able-bodied people were used in

the training process and the angular velocity of the shank was considered as the input

of the network [38].

2.3 Reinforcement learning algorithms for exoskele-

tons

The inherent characteristic of reinforcement learning (RL) is learning while interacting

in real-time making it a good fit for personalization applications. The method pro-

posed by Shen et al. [39] modelled the human-exoskeleton system as a leader-follower

system and used an RL-based control algorithm to adjust the walking assistant level.

Huang et al. [40] used a mass-spring-damper model to estimate physical interaction

between humans and exoskeletons, and they used RL to learn the spring and damper
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coefficients in the model. They employed the estimated interaction in high-level con-

trol of an exoskeleton [40] (the impedance model changes the trajectory generated

by dynamical movement primitives; DMPs). RL has also been used in manipulating

motion planning algorithm parameters by Zhang et al. [41]. Here, the RL algorithm

adjusted the gain in trajectory generated by DMPs while taking the stability of the

system into consideration [41].

Among RL algorithms used for robotic applications, deep deterministic policy gra-

dient (DDPG) has been commonly used, including control of a biped robot [35] and

motion control of a six-degree-of-freedom arm robot [42]. However, DDPG suffers

from overestimating future rewards, and optimal policy convergence [43]. The twin

delayed deep deterministic policy gradient (TD3) addresses these limitations. TD3 is

a model-free, off-policy, actor-critic algorithm used for online learning in an environ-

ment with continuous action spaces. Thus, TD3 is an improvement over DDPG, and

related algorithms by increasing its robustness through clipped double-Q learning and

decreasing the likelihood of Q-function exploitation via policy smoothing [43, 44].

2.4 Exoskeleton simulating environments for train-

ing RL agents

Despite the potential of personalized trajectory generation, the use of RL in ex-

oskeleton control raises concerns about the stability and safety of the agent’s actions

[45, 46]. RL agents are known to explore different actions in order to learn, which

can lead to unpredictable and potentially dangerous behavior. This holds particu-

lar significance within the realm of exoskeletons, as any instability or unsafe actions

pose significant risks to the well-being of the human user [47]. A widely adopted

approach, that is extensively documented in the literature, involves leveraging simu-

lation environments. These simulation environments serve as the foundational step

in incorporating RL within exoskeleton control systems, ensuring that algorithms are

thoroughly prepared for experimental testing. A method proposed by Peng et al. [48]
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used a simulation environment to check whether the RL controller is adaptable to the

disturbance or not. A 2-DOF manipulator was implemented in the simulation with

an RL controller, and white noise was added to the controller as a disturbance. Rose

et al. [49, 50] used the OpenSim API platform [51] to simulate RL for exoskeleton ap-

plication. OpenSim-RL is the simulation environment designed for simulating RL as

a controller of 3D objects. The simulation environment used in Huang et al. [52] was

for testing the performance of the controller on a single DOF robot resembling 1-DOF

in an exoskeleton robot. Dong et al. [53] designed a simulation environment where

exoskeleton robots were able to interact with the environment where the controller

manipulated the trajectories for the robot’s motion control.

2.5 Postural stability for bipedal locomotion

Divergent component of motion (DCM) analysis was employed in trajectory genera-

tion for the center of mass (CoM) in bipedal locomotion of humanoid robots [54–56].

In this method, a linear inverted pendulum (LIP) model was used to represent the

bipedal movement and the divergent part of the LIP dynamics was introduced as the

DCM [57]. Considering this model, two strategies have been used to overcome the

disturbance applied during bipedal locomotion, including the adjustments of the step

time and length that affected the frequency and amplitude of the gait, respectively

[58]. However, these strategies are not applicable to the exoskeleton applications

since the gait parameters (e.g., amplitude and frequency of walking) are desired to

be regulated based on the wearer’s intention. Studies have designed optimal con-

trollers to combine both of these adjustment strategies in order to realize a stable

walking for bipedal robots. In Khadiv et al. [58] and Jeong et al. [59], a higher cost

was allocated to the regulation of the foot landing position in the objective function

to keep the preplanned foot-print as much as possible. Jeong et al. [56] employed

a linear inverted pendulum flywheel (LIPF) model to extend the DCM adjustment

strategy and introduce a hip strategy (applying torque to the upper-body) for that
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purpose. Similar to the previous studies, an optimization approach was suggested to

minimize the error between desired and actual DCM by regulation of the ankle and

hip trajectories in addition to the step size and walking speed [56].

Englsberger et al. [60] presented an enhanced centroidal moment pivot (eCMP)

and virtual repelling points to extend the DCM trajectory in 3D space. The DCM

dynamics utilized to determine the required force for a stable bipedal walking over

uneven ground and to generate a smooth path for the eCMP point [60]. In a similar

approach 3D DCM planning [61], the foot landing position was controlled and the

required ground reaction force (GRF) was determined based on a viscoelastic model

for the foot contact. It is worth mentioning that DCM adjustment has not been

utilized for the posture stability of users wearing lower-limb exoskeletons so far.
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Chapter 3

Autonomous Locomotion
Trajectory Shaping and Nonlinear
Control for Lower-Limb
Exoskeletons

3.1 Introduction

Millions of people all over the world are currently experiencing neurological impair-

ments, including stroke, spinal cord injury, multiple sclerosis, and cerebral palsy [1].

Assisting these individuals in daily living activities by robotic systems (e.g., exoskele-

tons) will enhance their quality of life, and facilitate rehabilitation. In comparison

with traditional physical therapies, powered exoskeletons have the ability to provide

frequent, consistent and long-term assistance with minimal engagement of a therapist

[6]. This leads to a lower cost and higher efficiency of task execution by accurately

rendering the required assistance level to any subject with specific neurological con-

ditions. Moreover, precise measurements of human limb movements can be collected

for continuous monitoring of the user’s condition by deploying embedded sensors in

the exoskeleton’s structure.

Due to the inability of passive orthoses to assist people with movement disorders

to realize an appropriate upright walking, powered lower-limb exoskeletons (such as

Indego [7], ReWalk [8], and GEMS [62]) have been designed and fabricated as an
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alternative solution [12]. Although these developed exoskeletons are now deployed in

some clinical settings to assist and rehabilitate people [12], a compliant interaction

between the robot and wearer is an issue that still needs to be resolved [63]. To

address this challenge, industrial exoskeletons such as Honda SML [64], Samsung

Electronics [65], and Keeogo [66] have benefited from adaptive strategies to shape the

exoskeleton’s walking trajectories based on user-specific gait patterns. However, these

exoskeletons have not utilized any online estimation of pHRI torque in locomotion

planning and they were designed for assisting/rehabilitating only one single joint

(hip or knee). Control strategies for lower-limb exoskeletons play the most critical

role in providing safe and comfortable interaction between the wearer and the robot,

which are divided into high-level and low-level categories. The motion trajectory and

sequence of locomotion are planned at the high level (based on the user’s intention

and motor capacity) and are implemented at the low level using position, force or

impedance controllers. To date, some studies have developed control schemes in

both levels, while others focused only on the low-level control design by employing

pre-specified reference gait trajectories [30, 67, 68].

In the present chapter, a novel nonlinear autonomous control strategy is proposed

to realize compliant, safe and case-specific physical human-robot interaction (pHRI)

for lower-limb exoskeletons by integrating ACPGs and a time-varying bounded-gain

adaptive (TBA) disturbance observer. At the high level of this strategy, new ACPGs

are investigated to shape rhythmic locomotion trajectories in real-time based on the

interaction between the human (wearer) and exoskeleton. The initial gait trajectory

is extracted from typical gait data of able-bodied individuals and mathematically

represented by an eight-term expansion of the Fourier series. For the first time, the

nonlinear ACPGs’ dynamics is augmented by pHRI torque estimation in order to up-

date the amplitude, frequency, and phase of walking based on the wearer’s intention

(physical behavior). Amplitude denotes the extent of motion for individual joints,

such as the hip and knee. Higher amplitude values indicate a broader range of mo-
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tion for the joints, leading to larger steps. Frequency quantifies the number of steps

taken within a specific timeframe, with higher frequencies correlating to quicker walk-

ing speeds. Phase refers to the synchronization of movements among various joints

in the exoskeleton, such as the right and left hips and knees. A new multi-layer TBA

disturbance observer is formulated to estimate pHRI torque to be employed in (a) the

low-level torque controller for motion tracking, and (b) the high-level ACPG-based

locomotion planning for rendering human flexibility. The stability of this autonomous

pHRI system, and the uniform ultimate boundedess (UUB) of trajectory tracking er-

ror and torque estimation error are guaranteed through a comprehensive Lyapunov

analysis. The main contributions of this strategy over previous ones can be summa-

rized as:

• The pHRI torque is employed in the defined nonlinear ACPG dynamics to gen-

erate adaptable reference trajectories for the gait cycles. Previous CPG-based

controllers [25–27, 69, 70] for lower-limb exoskeletons have not taken pHRI

torque into account in their CPG structures. This feature of the proposed

strategy makes the exoskeleton significantly compliant with the wearer’s phys-

ical interaction and enhances safety by raising her/his high-level authority in

motion planning.

• The nonlinear multi-layer TBA disturbance observer is designed to facilitate ex-

oskeletons’ stability regarding the UUB of both tracking and estimation errors.

Previous disturbance observer designs have not taken into account the stability

of the controlled system [71]. Other disturbance observers [72], [73] have been

developed for a single-joint (knee) exoskeleton with a scalar dynamic model and

fixed adaptation gains that need to be determined through trial-and-error. In

this study, a TBA disturbance observer is developed for multi-DOF exoskeletons

with a nonlinear coupled matrix formulation. Moreover, a nonlinear adaptation

is defined for automated online regulation of the time-varying bounded gain in
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the observer’s structure to facilitate smooth torque estimation. In comparison

with previous observers [72], [73], a first-order dynamics is also employed in

this scheme for intermediate variables of the combined exoskeleton-human limb

system to diminish undesired noise in these signals and avoid reflecting it in the

torque observation.

The rest of this chapter is organized as follows. The nonlinear dynamic model of

the lower limb exoskeleton and the structure of the ACPGs (high-level control) are

presented in Sec. 3.2. The proposed TBA disturbance observer, the low-level torque

control strategy and the closed-loop system’s stability are explained in Sec. 3.3. The

experimental evaluations of the developed autonomous control scheme are presented

in Sec. 3.4 and discussed in Sec. 3.5. The concluding remarks are provided in Sec.

3.6.

3.2 Exoskeleton Dynamics and Adaptive CPG-Based

Online Trajectory Shaping

The nonlinear dynamics of a lower-limb exoskeleton shown in Fig. 3.1 with n joints

together with the human user is given as

Mq(q)q̈ + Cq(q)q̇ +Gq(q) = τmot + τhum (3.1)

where q is the vector of exoskeleton joints’ (right and left hips and knees) position,

Mq(q) is the inertia matrix, Cq(q) is the matrix of Coriolis, centrifugal and damping

terms, Gq(q) is the vector of gravitational torques, τcon is the exoskeleton’s motor

torque, and τhum is the human torque generated by his/her muscles’ contractions.

Property 1: The inertia matrixMq is positive definite and uniformly bounded such

that there are a min-bound on the minimum singular value and a max-bound on the

maximum singular value of this matrix [74]:

0 < M1 ≤ ∥Mq∥ ≤ M2 < ∞ (3.2)
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Figure 3.1: The employed lower-limb exoskeleton (Indego by Parker Hannifin Corpo-
ration), and joint consequences from the stance leg to the swing one based on pinned
(point-feet) model

where M1 and M2 are the uniform bounds, and ∥.∥ is the induced norm. The matrix

Ṁ q − 2Cq is skew symmetric, and the left side of (3.1) can be linearly parameterized

[75, 76] as

Mq(q)ϕ1 + Cq(q)ϕ2 +Gq(q) = Yq(ϕ1, ϕ2, q, q̇)θq (3.3)

in which Yq is the regressor matrix defined in terms of known variables including ϕ1

and ϕ2, and θq is the vector of unknown parameters of the robot dynamics.

For the high-level control of the exoskeleton, a learning-based locomotion path

generation is developed by defining an ACPG, as illustrated schematically in Fig. 3.2.

To this end, human physical behavior is taken into account during the motion and

interaction with the exoskeleton. In order to interpret this behavior, the estimated

pHRI energy is defined for each joint i as follows:

Ei(t) =

∫︂ t

0

τHRIi(t) q̇i(t) dt (3.4)

where q̇i(t) is the velocity of the joint i = 1, ..., n, and τHRIi(t) is the estimated value of

the human torque on this joint of the exoskeleton after applying a dead-zone function:

τHRIi =

⎧⎪⎨⎪⎩
τ̂humi

− τthr pos for τ̂humi
> τthr pos

0 for τthrneg ≤ τ̂humi
≤ τthr pos

τ̂humi
− τthrneg for τ̂humi

< τthrneg

(3.5)
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in which τthr pos and τthrneg are the positive and negative thresholds of this dead-

zone for the estimated human torque τ̂humi
. In other words, if human users apply

any torque larger than these thresholds, they will be able to modify the locomotion

trajectory’s characteristics as explained below.

Suppose that both τHRIi and q̇i in (3.4) are either positive or negative. In this

case, the operator applies a torque/force in the same direction as the joint’s motion

by injecting energy into the system (Ėi(t) > 0) to accelerate this movement. On

the other hand, Ėi(t) < 0 implies dissipating energy by opposing torque/force of the

human user with respect to the motion. Accordingly, the proposed ACPG dynamics

for the phase θi(t), frequency ω(t) and amplitude µ(t) of locomotion trajectories is

formulated as a coupled system of nonlinear oscillators as

θ̇i(t) =ω(t) +

mi∑︂
j=1

γij(Ėi − Ėj) +

mi∑︂
j=1

vij sin(θi(t)− θj(t)− ϕij)

ω̈(t) = βω(
βω
4
(Ω +

n∑︂
k=1

ψkEk − ω(t))− ω̇(t))

µ̈(t) = βµ(
βµ
4
(A+

n∑︂
k=1

λkEk − µ(t))− µ̇(t))

(3.6)

in which mi is the number of adjacent joints to the joint i, and n is the number

of all joints. γij, ψk and λk are constant factors of pHRI energy effect on phase,

frequency and amplitude variations of locomotion, respectively. vij, βω and βµ are

other constant parameters of this dynamics. The desired trajectory for the joint i of

the exoskeleton is defined as

qdi(t) = µ(t)(ai0 +

Ni∑︂
l=1

(ail cos(lθi(t)) + bil sin(lθi(t))) (3.7)

where ail and bil are the coefficients of Fourier series (with Ni terms) to initially match

the desired trajectory of the joint i to a typical walking trajectory, as demonstrated

in Fig. 3.2. The amplitude and phase of these oscillatory motions are updated in

real-time by µ(t) and θi(t) obtained from (3.7). Note that the generated reference

trajectory in (3.7) is continuous in time and differentiable, which are beneficial fea-
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tures for the control scheme presented in the next section. To perceive the proposed

adaptive autonomous trajectory shaping (3.6) and (3.7), the following characteristics

can be mentioned.

A coupling between all joints is facilitated, having the same principal frequency

of ω(t) to synchronize generated locomotion trajectories. The scaling factor of these

trajectories is specified to be the same µ(t), while the initial coefficients of the Fourier

series ail and bil for each joint i are determined from typical experimental data. This

mutual adjustment of ω(t) and µ(t) for all joints guarantees synchronized multi-

DOF locomotion and provides the appropriate overground motion of the feet in the

Cartesian space.

The pHRI energy Ek(t) injected to or dissipated from the system by the wearer

through each joint k of the exoskeleton can affect the frequency ω(t) and the amplitude

coefficient µ(t) of locomotion trajectory. Based on this feature, human users can

physically demonstrate their compliance or resistance by applying accelerating or

decelerating torques with respect to the implemented gait trajectories of all n joints

of the exoskeleton. This effect can be regulated by ψk and λk as the authority factors

of each joint torque over the generation of the overall gait pattern.

The other adjustable coupling in the proposed ACPG-based trajectory shaping is

the online variation of phase lead/lag between adjacent joints. The difference between

the rate of exerted energy by the human user on two adjacent joints (Ėi − Ėj) will

affect the phase difference between these joints (i and j). In this regard, the human

behavior on accelerating/decelerating the motion of one joint i with respect to its

adjacent joints is perceived by the pHRI energy estimation Ei. Another harmonic

term for connecting ACPGs correspond to adjacent joints is facilitated by sin(θi(t)−

θj(t)−ϕij) based on the scheme presented in [77]. The coefficients γij and vij specify

the gains of this synchronized phase variation for each joint.

Regarding the requirement of torque estimation τ̂humi
in the proposed ACPG for-

mulations (3.4), (3.5) and (3.6), a new adaptive disturbance observer is defined in the
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Figure 3.2: Autonomous two-level control strategy for lower-limb exoskeletons: Adap-
tive CPG-based gait trajectory update in high-level and nonlinear torque control in
low-level, employing an adaptive HRI torque observer

next section together with a nonlinear low-level controller for trajectory tracking.

3.3 TBA Disturbance-Observer-Based Control

In this section, an autonomous observer-based strategy is developed for the low-

level controller of the exoskeleton. In this strategy, the human interaction torque

is estimated via a multi-layer TBA disturbance observer in order to be employed in

the high-level gait generation (3.4) and (3.6). At the same time, this pHRI torque

estimation is also utilized in the low-level control law for tracking the generated

locomotion trajectory, as seen in Fig. 3.2.

3.3.1 Controller and Observer Design

For the purpose of controlling motor torque and estimating HRI torque, the tracking

error eq, its dynamics ϵq and the corresponding auxiliary variable q̇r are defined:

eq(t) = q(t)− qd(t)

ϵq(t) = ėq(t) + κ1eq(t)

q̇r(t) = q̇d(t)− κ1eq(t)

(3.8)
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The proposed nonlinear trajectory tracking control law for the exoskeleton’s motor

torque is formulated as

τmot =Mq(q̈r − κ2ϵq) + Cq q̇r +Gq − τ̂hum (3.9)

in which κ1 and κ2 are positive constant gains. Substituting the proposed controller

(3.9) in the user-exoskeleton dynamics (3.1) leads to the following closed-loop dynam-

ics:

Mq ϵ̇q = −κ2Mqϵq − Cqϵq − τ̃hum (3.10)

where τ̃hum = τhum − τ̂hum is the pHRI torque estimation error. Now, the multi-

layer TBA disturbance observer is formulated in a couple of steps for estimation

of τ̂hum. The final adaptation law is proposed in (3.31), and required intermediate

variables, their boundedness and mathematical derivations are mentioned as follows.

Considering a state variable as z1 = ϵq, the dynamics (3.10) can be presented as

ż1 = Ψ(z1, τ̂hum) + χ τhum (3.11)

in which

Ψ = −κ2z1 +M−1
q Cqz1 −M−1

q τ̂hum , χ =M−1
q (3.12)

Then, the filtered variables z1f , Ψf and χf are defined, having ξ > 0, as

ξż1f + z1f = z1 , z1f (0) = 0

ξΨ̇f +Ψf = Ψ , Ψf (0) = 0

ξχ̇f + χf = χ , χf (0) = 0

(3.13)

Lemma 1: According to the system dynamics (3.11) and the filters (3.13), the

manifold [(z1 − z1f )/ξ −Ψf − χf τhum] remains bounded for any finite positive value

of ξ and converges to zero if τhum is constant or ξ −→ 0.

Proof. Considering (3.13), the filter 1/(ξs+ 1) is applied on (3.11) as

1

ξs+ 1
[ż1] =

1

ξs+ 1
[Ψ] +

1

ξs+ 1
[χ τhum] (3.14)
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Based on (3.13) and the swapping lemma [78] for [1/(ξs+1)][χ τhum], one can rewrite

(3.14) as

z1 − z1f
ξ

= Ψf + χf τhum + v1 (3.15)

where the residual term v1 is obtained as a filtered version of τ̇hum:

v1 =
ξ

ξs+ 1
[χ τ̇hum] (3.16)

As a result, when τhum is constant or ξ = 0, it is concluded that v1 = 0. More-

over, since χ = M−1
q and due to Property (3.2) of the inertia matrix, χ is bounded.

Consequently, its filtered version χf is also bounded, i.e., ||χf || ≤ ρχ = 1/M1. Re-

garding the boundedness of the human torque ||τhum|| ≤ ρτ and its time derivative

||τ̇hum|| ≤ ρτd , v1 is bounded for any finite value of ξ > 0, i.e., ||v1|| ≤ γ1.

The dyanmics of two new intermediate variables [79] are defined for the TBA

observer design as

Ḟ 1 = −cF1 + χTf χf , F1(0) = 0

Ḟ 2 = −cF2 + χTf

(︃
z1 − z1f

ξ
−Ψf

)︃
, F2(0) = 0

(3.17)

in which c is a positive constant. Two other intermediate variables are also formulated

in terms of F1 and F2 and the estimated pHRI torque τ̂hum as

T1 = F1 τ̂hum − F2

T2 = χTf χf τ̂hum − χTf
(︃
z1 − z1f

ξ
−Ψf

)︃
(3.18)

Lemma 2: The defined variables in (3.18) can be expressed as

T1 = −F1 τ̃hum + v2

T2 = −χTf χf τ̃hum − χfv1
(3.19)

where v1 was defined in (3.16) and v2 is presented as

v2 =

∫︂ t

0

e−c(t−r)χTf (r)[χf (r)(τhum(t)− τhum(r)) + v1(r)]dr (3.20)

This residual error is bounded as ||v2|| ≤ γ2 = (2ρ2χρτ + ρχγ1)/c in which ||χf || ≤ ρχ,

||τhum|| ≤ ρτ and ||v1|| ≤ γ1.
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Proof. The time integration of (3.17) results in

F1 =

∫︂ t

0

e−c(t−r)χTf (r)χf (r) dr

F2 =

∫︂ t

0

e−c(t−r)χTf (r)χf (r)

(︃
z1 − z1f

ξ
−Ψf

)︃
(r) dr

(3.21)

Employing (3.15) and substituting (3.21) into (3.18) leads to Eq. (3.19) where the

boundedness of v2 is obtained as

∥v2∥ ≤
∫︂ t

0

e−c(t−r)
⃦⃦
χTf (r)

⃦⃦
[∥χf (r)∥ ∥τhum(t)− τhum(r)∥

+ ∥v1(r)∥]dr

≤
∫︂ t

0

(︁
2ρ2χρτ + ρχγ1

)︁
e−c(t−r)dr

≤
2ρ2χρτ + ρχγ1

c
= γ2

(3.22)

Lemma 3: The matrix χf is persistently exciting (PE) as
∫︁ t
0
χTf (r)χf (r) dr ≥ ηχI

for t > 0 and ηχ > 0, and the matrix F1 in (3.17) is positive definite, i.e., λmin(F1) ≥

ηF > 0 for t > 0.

Proof. Based on the definition of the regressor matrix χ =M−1
q and Property (3.2)

of the inertia matrixMq, and due to the employed low-pass filter (3.13) with the stable

minimum phase transfer function 1/(ξs+ 1) [80], one can write: ||χf ||min ≥ (1/M2).

As a result: ∫︂ t

0

χTf (r)χf (r) dr ≥
∫︂ t

0

⃦⃦
χTf
⃦⃦
min

I ∥χf∥min I dr

≥
∫︂ t

0

(︃
I

M2

)︃(︃
I

M2

)︃
dr =

(︁
t/M2

2
)︁
I

(3.23)

Considering ηχ = t/M2
2, the first proposition in Lemma 3 is proven. Now, the

variable matrix F1 in (3.21) is analyzed as

F1 ≥
∫︂ t

0

e−c(t−r)
⃦⃦
χTf
⃦⃦
min

I ∥χf∥min I dr

≥
(︃

I

M2
2

)︃∫︂ t

0

e−c(t−r) dr =

(︃
1− e−ct

cM2
2

)︃
I

(3.24)
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Having ηF = (1 − e−ct)/(cM2
2), the positive definiteness of F1 with the minimum

singular value of ηF is guaranteed.

The nonlinear dynamics of time-varying adaptation gain for the observer is formu-

lated as

Ḣ τ = cHτ −Hτχ
T
f χfHτ (3.25)

According to the fact that (d/dt)HτH −1
τ = Ḣ τH −1

τ +Hτ (d/dt)H −1
τ = 0 and using

(3.25), (d/dt)H −1
τ = −cH −1

τ + χTf χf and thereby:

Hτ =

[︃
e−ctH −1

τ (0) +

∫︂ t

0

e−c(t−r)χTf (r)χf (r) dr

]︃−1

=
[︁
e−ctH −1

τ (0) + F1

]︁−1

(3.26)

Regarding (3.26), the gain matrix Hτ exponentially converges to F−1
1 , i.e., HτF1 −→ I.

Lemma 4: The adaptation gain matrix Hτ is bounded with lower and upper

bounds.

Proof. To investigate the boundedness of the adaptation gain Hτ , Eq. (3.26) is

rewritten as

H −1
τ (t) = e−ctH −1

τ (0) + F1(t) (3.27)

Based on Lemma 3 and positive definiteness of F1(t),

H −1
τ (t) ≥ ηF I (3.28)

On the other hand, due to the upper boundedness of ||χf || ≤ ρχ, one can conclude

from (3.27) that:

H −1
τ (t) ≤H −1

τ (0) + ρ2χ

∫︂ t

0

e−c(t−r)I dr ≤H −1
0 +

ρ2χ
c
I (3.29)

Therefore, the boundedness of time-varying observer gain is perceived from (3.28)

and (3.29) as

R1I ≤Hτ (t) ≤ R2I (3.30)

in which R1 = 1/(λmin(H
−1
0 )+ρ2χ/c) and R2 = 1/ηF are its upper and lower bounds,

respectively.
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The adaptation (estimation) law for the pHRI torque in this nonlinear TBA ob-

server is defined as

τ̇̂hum = −ΓτHτ (T1 + αT2) (3.31)

where Γτ > 0 and α > 0 are the constant scaling factors.

3.3.2 Unified Stability Proof

Theorem: Combining the control law (3.9) that dictates the motor torque and the

observer estimation of the pHRI torque (3.31) for the exoskeleton, the convergence of

tracking error ϵq and the torque estimation error τ̃hum to a compact region is achieved.

In other words, the system response is uniformly ultimately bounded (UUB) in track-

ing the desired locomotion trajectory and estimating the bounded pHRI torque.

Proof. The following Lyapunov function candidate is utilized to ensure the sta-

bility of controlled exoskeleton:

V (t) =
1

2

(︁
ϵTqMqϵq + Γ−1

τ τ̃ThumH −1
τ τ̃hum

)︁
(3.32)

and its time derivative is obtained as

V̇ (t) = ϵTqMq ϵ̇q + Γ−1
τ τ̃ThumH −1

τ (τ̇hum − τ̇̂hum) +
1

2

(︂
ϵTq Ṁ qϵq + Γ−1

τ τ̃ThumḢ
−1

τ τ̃hum

)︂
(3.33)

Substituting the closed-loop dynamics (3.10), the adaptation gain’s time variation

(3.25) and the observer formulas (3.19) and (3.31) for the HRI torque into (3.33)

results in

V̇ (t) =− κ2 ϵTqMqϵq − ϵTq τ̃hum +
1

2
ϵTq (Ṁ q − 2Cq)ϵq + Γ−1

τ τ̃ThumH −1
τ

(︁
τ̇hum

+ ΓτHτ (−F1 τ̃hum + v2 − αχTf χf τ̃hum − αχfv1)
)︁

+
1

2
Γ−1
τ τ̃Thum(−cH −1

τ + χTf χf )τ̃hum

(3.34)

Considering Property 1 of the exoskeleton dynamics, and the lower and upper bounds

of matrices and vectors, one can obtain the following upper bound of V̇ (t):

V̇ (t) ≤ −Dϵ ∥ϵq∥2 −Dτ1 ∥τ̃hum∥
2 + ∥ϵq∥ ∥τ̃hum∥+ Dτ2 ∥τ̃hum∥ (3.35)
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in which the gains Di are defined in terms of matrices’ and vectors’ norms as

Dϵ = κ2 λmin(Mq) = κ2M1

Dτ1 = ηF +
α

M2
2

+
c

Γτ R2

− 1

Γτ M2
1

Dτ2 =
ρτd

Γτ R1

+ γ2 +
αγ1
M2

1

(3.36)

As a result, the time derivative of the Lyapunov function is negative definite V̇ (t) < 0

outside of this compact region:

∥ϵq∥ ≤
−B2 +

√︁
B2

2 + 4B1B3

2B1

∥τ̃hum∥ ≤
−B5 +

√︁
B2

5 + 4B4B6

2B4

(3.37)

where B1 = Dϵ, B2 = ∥τ̃hum∥, B3 = Dτ2 ∥τ̃hum∥, B4 = Dτ1 , B5 = ∥ϵq∥ + Dτ2 and

B6 = Dϵ.

According to the above analysis, the positive definite Lyapunov function declines

outside of the bounded region introduced in Eq. (3.37). Therefore, the convergence to

this compact region is achieved whose dimensions are obtained regarding the bounded

time derivative of the pHRI torque (τ̇hum). This guarantees the UUB of the system re-

sponse in terms of the bounded trajectory tracking error ϵq (and consequently eq) and

the bounded pHRI torque estimation error τ̃hum in (3.37). Thereby, the closed-loop

exoskeleton system interacting with the human user is stable under the assumption

of bounded-varying interaction torque (||τ̇hum|| ≤ ρτd) employing the proposed TBA

disturbance-observer-based nonlinear strategy for the low-level control.

3.4 Experimental Studies

In order to evaluate the performance of the developed autonomous control scheme and

assess its adaptive features in high and low levels, comprehensive experiments were

conducted on the Indego exoskeleton (Parker Hannifin Corporation) as the testbed.

Two able-bodied wearers (33 and 27 years of age) wore the exoskeleton as shown in

Fig. 3.3 and performed the locomotion experiment with a minimum duration of 100
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Figure 3.3: Indego lower-limb exoskeleton worn by two able-bodied users for over-
ground walking: first participant (33 year-old) and second participant (27 year-old)

sec. To implement the proposed controller, the major computational effort consists

of the time integration of the CPG dynamics (3.6) and Eqs. (3.17), (3.25), (3.31) in

the disturbance observer structure, as well as performing the required calculations to

command the control law (3.9) for each joint of the exoskeleton. The proposed strat-

egy was implemented in the real-time MATLAB-Simulink environment running on a

PC (Intel Core i7-8650U CPU @ 1.90GHz and 8.00 GB RAM) and required commu-

nications (between sensors, PC, and actuators), and the required computations were

conducted with the sampling time of 5 msec. Preliminary tests were first conducted

to identify the passive dynamic parameters of the combined exoskeleton-human limb

system to implement the proposed torque control law accurately.

The initial hip and knee trajectories were extracted from motion capture data of

typical human locomotion in the literature [81], [82]. To acquire this experimental

data, the subject walked for at least 20 sec in each trial for a total of approximately 1

hour and 10 min (with more than 3600 gait cycles). A marker-based motion capture

system was employed to obtain 2D joint angles and velocities. A Fourier analysis

was conducted on the acquired trajectories to obtain the minimum adequate number

of series and identify the best values of corresponding coefficients. Eight terms of
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Hip initial motion Knee initial motion

Coefficients of
Fourier series

a0 = 10.13 a1 =
21.80, a2 = −5.07 a3 =
−0.49, a4 = −0.52 a5 =
0.20, a6 = −0.07 a7 =
−0.09, a8 = −0.09 b1 =
−10.77, b2 = −2.21 b3 =
1.86, b4 = 0.41 b5 = 0.20,
b6 = −0.06 b7 = −0.05,
b8 = −0.05

a0 = 22.44 a1 =
−2.93, a2 = −14.32 a3 =
0.05, a4 = −0.38 a5 = 0.36,
a6 = 0.20 a7 = −0.01, a8 =
0.03 b1 = −26, 48, b2 =
9.81 b3 = 4.44, b4 = 1.87
b5 = 0.59, b6 = −0.15 b7 =
−0.08, b8 = −0.07

Table 3.1: Coefficients of the Fourier series (3.7) for the hip and knee initial motions
based on the analysis of normal gait trajectories

the Fourier series (Ni = 8 in (7.17)) were sufficient to estimate these hip and knee

motions with the sine and cosine functions. Attained coefficients of the Fourier series

for the hip and knee motions based on this analysis are listed in Table 3.1, which

resulted in estimation of the typical gait [81, 82] with more than 98% accuracy for

each joint.

Parameters and initial values of the proposed ACPG dynamics for the hip and

knee joints of both legs are listed in Table 3.2. The initial phase difference of π rad

was considered between the left and right legs’ motions, as is the case for typical

bipedal locomotion. The estimated pHRI torques of all joints, determined based on

the TBA observer law (3.31) and the defined dead-zone function (3.5), are shown

in Fig. 3.4a for the first wearer (33 year-old participant). The corresponding pHRI

energy transferred through each joint and obtained by (3.4) and the total value of

this energy are demonstrated in Fig. 3.4b for this experiment. As seen, this wearer

applied the major torques over the first four steps (with a maximum magnitude of 7.1

N.m) to personalize the gait motion. According to Figs. 3.4a and 3.4b, he injected

most of the pHRI energy by the right hip torque and then the right knee torque to

accelerate the motion, while he applied decelerating torques on the left knee joint to

control the gait. The effect of this interaction on the variation of the total locomotion
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Hip and knee CPGs’ parameters

Dynamic parame-
ter values

γh−h = 0.0075, γh−k = 0.0075, γk−h = 0.0075, βω =

10π, βµ = 10π, ψ = 0.0045 λ = 0.006, Ω =
π

2
, A = 1

Initial values θright(0) = 2 rad, θleft(0) = 2 + π rad, ω(0) =
1.26 rad/s, µ(0) = 1

Table 3.2: Parameter and initial values of the proposed ACPGs dynamics (3.6) for
the hip and knee joints

frequency ω(t) is depicted in Fig. 3.4c. Rapid online response of the ACPG (3.6)

to these interactions was achieved during each stride. The steady-state magnitude of

the locomotion frequency in Fig. 3.4c had a 42% increase with respect to its initial

magnitude of 1.17 rad/s and finally settled on 1.66±0.02 rad/s.

Due to this real-time update of ACPG and the obtained Fourier coefficients in Ta-

ble 3.1, the desired locomotion trajectories, generated by (3.7) for the right knee and

hip joints, are shown in Fig. 3.5a together with the exoskeleton response. The first

human user applied the interaction torques in sequential steps (Fig. 3.4a) to modify

and increase the gait amplitude (step size) by 15% (Fig. 3.5a) in addition to the walk-

ing frequency (Fig. 3.4c), which provided a synchronized variation of the generated

bipedal locomotion cycles. The proposed TBA disturbance-observer-based torque

controller could facilitate an appropriate convergence of joint positions to the desired

gait trajectories with a small bounded tracking error eq in the steady-state response

(less than 1 degree for each joint), as presented in Fig. 3.5b. This is in accordance

with the stability analysis in Sec. 3.3.2 and implies an appropriate estimation of the

pHRI torque with a small bounded error τ̃hum, employing the disturbance observer

defined in Sec. 3.3.1.

In order to elaborate more on the autonomous shaping of locomotion, the reference

trajectory and phase variation of the right hip with respect to the left hip are plotted

in Fig. 3.6 for the first wearer. The increase of 15% in total gait amplitude µ(t)

and its convergence to a steady-state response, together with the relative motion
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Figure 3.4: Estimated pHRI (a) torque and (b) energy for different joints, and (c)
total frequency of the locomotion, obtained from the proposed ACPG in the presence
of HRI for the first wearer

adjustments of adjacent joints, are illustrated in these diagrams. Accordingly, the

desired ranges of motion of the knee and hip joints were amended to 78.7 and 61.2

degrees, respectively, from 68.4 and 53.2 degrees. As shown in Fig. 3.6, an average
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Figure 3.5: (a) Desired and actual trajectories, (b) and (c) tracking errors of the knee
and hip joints for the right leg in the presence of pHRI for the first wearer

phase lead of 13.0 degrees in the right hip motion was eventually obtained over the

left hip motion in addition to their initial phase difference of 180 degrees, due to the

asymmetric rendering of the interaction torques (Fig. 3.4b).

For the second wearer (27 year-old participant), the estimation of pHRI torques and

corresponding pHRI energy (3.4) transferred through different joints (hips and knees)

are represented in Figs. 3.7a and 3.7b. This wearer exerted the major torques over

the first six steps (with a maximum magnitude of 3.61 N.m) to adjust his locomotion

pattern. As observed in Figs. 3.7a and 3.7b, this wearer transferred most of the energy

through the left hip and then the right hip to accelerate the gait. The variation of

the locomotion frequency ω(t) in response to this HRI is shown in Fig. 3.7c with a

steady-state variation of 53% compared to its initial magnitude of 1.17 rad/s. The

generated reference trajectory and phase variation of the right hip with respect to

the left hip is illustrated for the second participant in Fig. 3.8.
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Figure 3.6: Trajectory and phase variation of the right hip with respect to the left
hip for the first wearer

3.5 Discussion

Due to the adaptiveness of the proposed ACPG-based control strategy, the obtained

locomotion trajectories were personalized for the two participants engaged in this

study. As seen in Fig. 3.4, the first wearer (33 year-old participant) injected 73%

of accelerating energy by the right hip torque and 24% by the right knee torque.

However, the second wearer (27 year-old participant) modified his gait frequency by

transferring 69% and 29% of positive pHRI energy via the left hip and right hip

joints, respectively, to accelerate the locomotion, as demonstrated in Fig. 3.7. This

implies a significant difference in pHRI over hip joints of the lower-limb exoskeleton

between the first and second wearers, in regard to the modification of the locomotion

pattern. In addition to this pHRI difference in various joints, the second wearer came

up with a final locomotion frequency with 11% more increase from its initial value

in comparison with the one achieved by the first wearer. Furthermore, the second

wearer made this gait adjustment in 23 sec (over 6 steps), which was 35% longer than
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Figure 3.7: Estimated pHRI (a) torque and (b) energy for different joints, and (c)
total frequency of the locomotion, obtained from the proposed ACPG in the presence
of HRI for the second wearer
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Figure 3.8: Trajectory and phase variation of the right hip with respect to the left
hip for the second wearer

the time duration of 15 sec spent by the first wearer to modify his walking pattern

(over 4 steps).

An analysis of the relative joint trajectories and phase variations in Figs. 3.6

and 3.8 can provide additional insight into this personalized gait amendment. The

second participant decided to raise his steady-state gait amplitude µ(t) by 13% (Fig.

3.8) which is slightly less than the 15% increment provided by the first participant

(Fig. 3.6). This difference was due to the larger height (longer body segments of

the lower limbs) of the first participant and their personal preferences for the step

size in their natural walking. The other significant differences between two wearers’

performance achieved by employing the proposed intelligent control strategy were the

synchronization and phase shifts between the hip and knee joints. Figure 3.8 shows

that the second participant made an average phase lag of 4.8 degrees in the right

hip motion relative to the left hip; however, the first participant made an average

phase lead of 13.1 degrees between these joints’ motions (Fig. 3.8). As a result of this
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difference, the distortion of the relative trajectories in Fig. 3.6 for the first wearer was

more toward the bottom right as compared to the variation in Fig. 3.8 for the second

wearer, which was more toward the top left. This is due to rendering most (73%) of

the accelerating interaction torques on the right hip by the first wearer (Fig. 3.4b)

rather than the left hip that was employed for applying 69% of the accelerating torques

by the second wearer (Fig. 3.7b). This performance implies adjustable flexibility in

locomotion speed and amplitude, and modification of the synchronization between

different joints using the proposed APG-based control strategy for the lower-limb

exoskeleton in response to the estimated interaction torques.

3.6 Conclusion

A new autonomous control scheme was developed in this work to facilitate flexible

and personalized locomotion based on pHRI torque for lower-limb exoskeletons. At

the higher level of this scheme, ACPGs were proposed to update the frequency and

amplitude of desired gait trajectories for all exoskeleton joints (hips and knees). Si-

multaneously, the ACPGs were responsible for synchronizing adjacent joints’ motions

by adjusting their phase differences. These adaptations were defined based on the

estimation of pHRI torque and its corresponding energy.

For the low-level control, a multi-layer TBA disturbance observer integrated into

a nonlinear torque controller was investigated to estimate and compensate for the

HRI torque and to track the desired locomotion trajectories. In addition, this torque

estimation was also employed in high-level CPG-based motion planning. The ex-

oskeleton’s closed-loop stability was ensured via a Lyapunov analysis such that the

UUB of the trajectory tracking error and the torque estimation error was guaranteed.

The developed autonomous control strategy was evaluated experimentally using

the Indego exoskeleton (Parker Hannifin Corporation) and having an able-bodied

wearer. Smooth and rapid shaping of the gait trajectories was achieved using the

proposed ACPGs in real-time for various arbitrary interactions over different joints.
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Wearers amended the locomotion frequency and amplitude by up to 53% and 15%,

respectively, and modified the phase synchronization between hip motions by up to

13% due to their individual preferences. Appropriate tracking performance of the

nonlinear torque controller with a small bounded error (less than 1 degree for each

joint) was obtained due to the precise estimation of the interaction torque via the

proposed TBA disturbance observer.
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Chapter 4

Adaptive CPG-based Gait
Planning and Control for
Exoskeletons

4.1 Introduction

Globally, millions of people have experienced stroke, spinal cord injury, multiple scle-

rosis, and cerebral palsy resulting in physical impairments [83]. To improve their

quality of life, assistive robotic systems are developed to help these individuals in

routine activities as well as during therapy programs. In this regard, powered lower-

limb exoskeletons (such as Indego [7], ReWalk [8], HAL [9], Ekso GT [10], and Exo-

H3 [11]) have been invented to assist and rehabilitate individuals with neurological

impairments [12]. Despite all of the endeavours in designing and deploying these sys-

tems for medical purposes, compliant interaction between the robot and wearer is an

important safety issue that still needs to be addressed [14]. In order to facilitate com-

plaint and safe physical human-robot interaction (pHRI), autonomous strategies are

required to be investigated for generating motion trajectories; however, most commer-

cial exoskeletons have been programmed to track pre-recorded trajectories to ensure

repeatability and controllability of the movements. These robotic systems have been

controlled using various methods to conduct reproducible physical therapies and re-

habilitation exercises [84], [85], [86], [87], in addition to performing safe interactions
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in assistive and resistive tasks [88], [89], [90], [91], [92].

In the this chapter, an intelligent strategy is presented based on a new ACPG

structure for modulating and controlling of a lower-limb exoskeleton that results in

a compliant and safe physical interaction with the human. The ACPGs proposed in

this chapter have been developed to address some of the shortcomings encountered

while utilizing the ACPGs introduced in Chapter 3. One significant improvement in

these ACPGs, compared to the previous version, is the ability to adjust the starting

and ending positions of each joint. Additionally, a crucial feature added to these

ACPGs is the incorporation of safety terms to ensure that gait characteristics remain

within safe limits. Furthermore, despite the introduction of a disturbance observer

in Chapter 3, a multi-layer neural network utilizing the NARX model is employed to

estimate pHRI torque and energy transmitted through various joints. This approach

aims to simplify the pHRI estimation task and avoid the use of complex model-based

observers and controllers. The neural network is trained first in a supervised fashion

to estimate the closed-loop nonlinear dynamics of the multi-DOF exoskeleton-limb

system with various position and velocity trajectories. The responsive features of the

proposed ACPGs that enable the wearers to accelerate/decelerate, magnify and shift

the synchronized motions of all exoskeleton joints for the bipedal locomotion can be

summarized as follows.

• The overall gait frequency is tunable in real-time in terms of the pHRI energy

transmitted through all exoskeleton joints.

• The oscillation range for each joint trajectory is also adjustable online based

on the pHRI energy, while its initial trend is determined by a Fourier series

analysis on experimental sample gait data.

• The mean value of each joint’s motion as its equilibrium position is regulated

for each person in response to the time integral of pHRI torque.
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Subtracting the learned passive dynamics from the simultaneous joint torque during

the main gait cycle, the active pHRI torque is determined. Having a PD controller

combined with the pHRI torque compensation, an appropriate tracking of joint tra-

jectories (generated by ACPGs) is facilitated.

4.2 ACPG-Based Gait Planning

The nonlinear dynamics of a multi-DOF lower-limb exoskeleton interacting with the

human user is represented as

Mq(q)q̈ + Cq(q)q̇ +Gq(q)− τhumpas = τmot + τhumact (4.1)

where q is the vector of exoskeleton joints’ position, Mq(q) is the inertia matrix,

Cq(q) is the matrix of Coriolis, centrifugal and damping terms, Gq(q) is the vector of

gravitational torques, τmot is the exoskeleton’s motor torque, and τhumpas and τhumact

are passive and active portions of the human torque vector.

Our proposed ACPG is formulated for high-level control of the exoskeleton to

manage both legs’ locomotion trajectories in real-time. This ACPG dynamics is

proposed for variations of the overall locomotion frequency ω(t), equilibrium position

ξi(t) and oscillation amplitude ρi(t) of each lower-limb joint’s motion and its phase
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variation ϕi(t) by a nonlinear coupled system as

ω̈(t) = γω(
γω
4
(Ω +

n∑︂
k=1

ψkEk(t)− ω(t))− ω̇(t))

ρ̈i(t) = γρ(
γρ
4
(Aρi + λiEi(t)− ρi(t))− ρ̇i(t))

+ kρ u(ρi(t)− ρith+ ) log

(︄
ρimax − ρi(t)
ρimax − ρith+

)︄
ξ̈i(t) = γξ(

γξ
4
(Aξi + βiTi(t)− ξi(t))− ξ̇i(t))

+ kξ1 u(ξi(t)− ξith+ ) log

(︄
ξimax − ξi(t)
ξimax − ξith+

)︄

− kξ2 u(ξith− − ξi(t)) log

(︄
ξimin

− ξi(t)
ξimin

− ξith−

)︄

ϕ̇i(t) =ω(t) +

mi∑︂
j=1

ηij sin(ϕi(t)− ϕj(t)−∆ϕij)

(4.2)

in which n is the number of active exoskeleton joints on the right and left legs,

and mi is the number of adjacent joints to the joint i. γω, γρ and γξ are constant

parameters. ρith+ is the positive threshold value of ρi(t) that triggers the deceleration

term with the gain kρ to avoid reaching the maximum allowable amplitude ρimax of

oscillation for each joint. ξith+ and ξith− are the positive and negative thresholds ξi(t)

that if exceeded the deceleration and acceleration terms with the gains kξ1 and kξ2 to

not cross the maximum and minimum allowable magnitudes ξimax and ξimin
for the

equilibrium position of each joint. u(.) is the step function that activates the log(.)

function when the corresponding thresholds mentioned above are crossed. ψi, λi and

βi are constant gains for updating frequency, amplitude and equilibrium of the gait

cycles, respectively, based on the injected pHRI energy Ei and the time integral of

corresponding pHRI torque Ti, which are defined for each joint i as

Ei(t) =

∫︂ t

0

τHRIi(t) q̇i(t) dt

Ti(t) =

∫︂ t

0

τHRIi(t) dt

(4.3)

where q̇i(t) is the velocity of the exoskeleton’s joint i, and τHRIi(t) is the estimated
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human torque on this joint after applying a dead-zone function:

τHRIi =

⎧⎪⎨⎪⎩
τ̂humacti

− τth+ τ̂humacti
> τth+

0 τth− ≤ τ̂humacti
≤ τth+

τ̂humacti
− τth− τ̂humacti

< τth−

(4.4)

in which τth− and τth+ are the negative and positive thresholds of this dead-zone

function. Wearers can modify the gait cycle characteristics if they apply any torque

beyond these thresholds. The reference trajectory for the joint i of the exoskeleton is

defined using Fourier series expansion as

qri(t) = ξi(t) + ρi(t)

Si∑︂
l=1

(cil cos(lϕi(t)) + dil sin(lϕi(t)) (4.5)

where cil and dil are the coefficients of the Fourier series (with Si terms) that initially

harmonize the reference motion of the joint i with a typical walking trajectory. The

equilibrium ξi(t), amplitude ρi(t) and phase ϕi(t) of each joint’s oscillatory motion in

(4.5) are amended in real-time by the proposed ACPG-based update rules (4.2), as

illustrated in Figs. 4.1a and 4.1b. As the reference trajectory generated in (4.5) is

time-continuous and differentiable, the proposed learning-based control strategy can

facilitate a smooth tracking performance. Other features of the proposed adaptive

locomotion planning (4.2) and (4.5) are mentioned as follows.

Synchronized gait trajectories are generated for different joints with the same over-

all frequency ω(t). The other coupling between phases of adjacent joints is defined by

the sin(.) function in the connected dynamics of ϕi(t) in (4.2), based on the method-

ology proposed in [16]. The amplitude of each joint trajectory ρi(t) is amended online

based on (4.2), while the corresponding initial Fourier coefficients cil and dil are spec-

ified from the analysis of experimental data. The transmitted pHRI energy Ei(t)

through each joint i of the exoskeleton can modify the range of oscillation ρi(t) for

that joint. The gait frequency ω(t) is also adjusted in real-time according to (4.2) in

terms of the pHRI energy
∑︁n

k=1 ψkEk(t) transmitted through all exoskeleton joints

with the scaling factors of ψk. Due to this feature, by applying the interaction torques
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and transferring energy Ei(t), the wearer is capable of accelerating or decelerating the

synchronized locomotion speed/frequency of all n joints of the exoskeleton. If the ap-

plied pHRI torque τHRIi is in the same direction as the velocity q̇i for each joint over

time, the wearer will inject energy to the system based on (4.3) and this would increase

the walking speed. Conversely, having the torque and velocity in opposite directions

and making negative Ei in (4.3) would result in the speed reduction in (4.2). At the

same time, human users can increase or decrease the range of motion for each joint

with the authority factor of λi for any symmetric or asymmetric walking. In addition,

a logarithmic barrier function is defined in (4.2) to control and decelerate the rising

rate of ρi(t) after crossing the threshold ρith+ to stay below the maximum allowable

amplitude ρimax of each joint oscillation regarding the exoskeleton’s feasible range of

movement.

The other variable that is adjusted in the proposed ACPG-based gait planning

(4.2), in response to the time integral of pHRI torque Ti, is the equilibrium position

ξi(t) of each joint’s motion. This is due to the difference in mean values of joint

trajectories for various individuals with or without disabilities. However, if a human

user exceeds the upper or lower threshold (ξith+ or ξith− ) of this mean value, a log-

arithmic barrier function in the dynamics of ξi(t) will be activated to decelerate its

magnitude variation with the gains of kξ1 and kξ2 . These thresholds and barrier func-

tions are devised to ensure that the maximum and minimum allowable magnitudes

of equilibrium positions ξimax and ξimin
are not crossed.

4.3 Learning-Based pHRI Torque Estimation and

Tracking Controller

In this section, an NN-based technique is utilized in a supervised fashion to learn the

dynamics of the exoskeleton-limb system (4.1) and finally estimate the active pHRI

torque τhumact . To this end, the NARX neural network model is employed to learn the

exoskeleton-limb dynamics and estimate HRI torque. The estimated pHRI torque is
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employed in the proposed ACPG structure to shape the gait trajectories of all joints

based on the wearer’s pyisical interaction with the exoskelton. At the same time, the

estimated pHRI torque is compensated in tracking control law to follow the generated

reference trajectories properly, as depicted in Fig. 4.1a.

4.3.1 NARX Neural Network Scheme

Since the development of NNs, they have been explored as appropriate computing sys-

tems with generalization properties that are beneficial for identifying dynamic systems

and predicting their time-series responses [93]. The NARX is a dynamic recurrent

network which has been widely used in the dynamic identification of different robotic

systems [37], [38], [94]. This network has outstanding capabilities in effective learning

including fast convergence, high accuracy, and appropriate generalization compared

to the conventional recurrent neural networks [93], [94]. Also, the employment of the

historical data in the estimation of the system’s current output, makes the NARX an

excellent tool for the identification of nonlinear dynamics. Accordingly, the NARX

structure is taken into account in this study to learn the nonlinear passive dynamics

of the human-exoskeleton system (the left side of (4.1)). This learning is organized

based on preliminary experimental data gathered when the exoskeleton is worn by the

user, and the whole system is driven and moved by motors τmot with minimum active

torque generation τhumact (by relaxing the lower-limb muscles). Position, velocity, and

torque data for all joints of the human-exoskeleton system are collected for various

locomotion patterns (frequencies and amplitudes). These data are used to train and

assess the NN with the joint position and velocity considered as the input u(t) and

the motor torques as the output y(t) of this network. The discrete-time nonlinear

function of the NARX model [95] is defined as

y(t) =f [y(t− 1), y(t− 2), ..., y(t− dy);u(t− 1),

u(t− 2), ..., u(t− du)]
(4.6)
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(a)

(b)

(c)

Figure 4.1: ACPG-based gait planning: (a) control architecture, (b) ACPG structure
for online adjustment of the locomotion’s frequency, amplitude and mean value, and
(c) NARX model for the estimation of active pHRI torque
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where u(t) and y(t) are input and output vectors of this model, and dy and du denote

the input and output memory orders, respectively. A schematic of the employed

NARX neural network with one hidden-layer is depicted in Fig. 4.1c. Considering k

as the current time step, the input of each neuron in the hidden layer at time k + s

is given as [96]

n1
i (k+s−1) = b1i +

min(s,du)∑︂
j=1

w1
i,ju(k+s−j) +

du∑︂
j=s+1

w1
i,ju(k+s−j)+

min(s−1,dy)∑︂
j=1

w1
i,j+duy(k+s−j) +

dy∑︂
j=s

w1
i,j+duy(k+s−j)

(4.7)

where w1
i,j are weights and b1i are biases of this network. The outputs of the hidden

layer and output layer are defined respectively as

n2
1(k+s) =

S1∑︂
i=1

w2
1,if1 [n

1
i (k+s−1)] + b21

y(k+s+1)= a21(k+s+1) = f2 [n
2
1(k+s)]

(4.8)

in which S1 denotes the number of neurons in the hidden layer. f1 and f2 are acti-

vation functions of hidden and output layers, set to be tangent-sigmoid and purelin

functions, respectively.

Two different modes of the NARX neural network were suggested in the literature,

including the parallel and series-parallel modes [37, 38, 93, 94]. The estimated output

is fed back to the neural network’s inputs in the parallel mode; however, the real values

of output are used in the series-parallel mode [95]. In this study, the series-parallel

mode is utilized to avoid error accumulation and achieve a more accurate pHRI torque

estimation.
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4.3.2 Learning Algorithm

Having m samples from one set of data, the mean square error (MSE) and the cost

function (J) are formulated as [96]

MSE(w, b) =
1

m

m∑︂
k=1

[y(k)− ŷ(k)]2

J(w, b) =MSE(w, b) +
1

m
λ
∑︂
w

wTw

(4.9)

where w and b are the weight and bias values in the NARX structure, and λ > 0 is the

regulation parameter. In order to determine the minimum amount of the cost function

(J), the partial derivatives of that with respect to w and b need to be minimized.

The steepest descent method is used for this purpose, which results in the following

update rule for the structural NARX parameters for each iteration [96]

bnext =bcurrent − α
∂

∂b
(MSE)

wnext =(1− αλ

m
)wcurrent − α

∂

∂w
(MSE)

(4.10)

in which α is the learning rate of the steepest descent method. Note that the output of

this learning technique is the estimated dynamics of the combined exoskeleton-limb

system (the left side of (4.1)) for each joint i with minimum active torque τhumact

obtained from preliminary experiments:

τ̂ dyni
(t) = y(t) (4.11)

Given this estimation, the active pHRI torque can be estimated in the main experi-

ments based on (4.1) at any instance of the motion as

τ̂humacti
(t) = τmoti(t)− τ̂ dyni

(t) (4.12)

which is employed in the proposed ACPG structure (7.16)-(4.4).

4.3.3 Tracking Controller with Torque Compensation

As a result of learning the exoskeleton-limb dynamics in various positions and veloc-

ities using the NARX model and estimating τhumact , this torque can be compensated
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in the control law to achieve a precise trajectory tracking performance. Accordingly,

the position controller is designed as a combination of an error-based proportional

derivative (PD) term and a torque compensation term as the output of proposed

learning-based torque estimation:

τmoti(t) = Kp(qri(t)− qi(t)) +Kd(q̇ri(t)− q̇i(t)) + τ̂humacti
(t) (4.13)

where Kp and Kd are the constant gains of this tracking controller. Note that a

typical PD controller, without any torque estimation/compensation or having any

online trajectory shaping, is embedded in the Indego exoskeleton system (the test-

bed in this work) for clinical gait therapy.

4.4 Experimental Evaluations

The proposed autonomous control strategy was assessed experimentally to evaluate

its adaptive capabilities in gait trajectory planning and control using the Indego ex-

oskeleton (Parker Hannifin Corporation). An able-bodied user (27-year-old male)

wore the exoskeleton and used a safety harness connected to an overhead lift to avoid

injury in the event of falling, as shown in Fig. 4.2. This experiment was planned

to demonstrate the adaptibility of locomotion trajectories in response to different

arbitrary pHRI torques on different joints of the exoskeleton. MATLAB-Simulink

was employed in the real-time mode as the control software to implement the pro-

posed strategy, receiving the sensory data and sending the command to actuators at

a sampling rate of 200 Hz. Using a CAN interface (Vector VN1610) with 2 channels,

the exoskeleton was connected to the operating system (a Core i7 laptop with 16GB

RAM) via USB to implement the control strategy. Preliminary tests were first car-

ried out to learn the passive human-exoskeleton dynamics using the NARX model

(presented in Sec. 4.3.1), which were required to estimate the active pHRI torque in

the proposed strategy.
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Figure 4.2: Indego lower-limb exoskeleton assisting a human user in overground walk-
ing with a safety harness

A Fourier analysis was carried out on the primary hip and knee motions captured

from a typical human gait motion [81], in which eight terms of this series (Si = 8 in

(4.5)) were sufficient to estimate trajectories accurately. The bipedal phase difference

between the left and right legs’ motions is π rad. Initial values and parameters of the

proposed ACPG scheme for the hip and knee joints are provided in the Appendix.

These values were specified by trial-and-error, and performing initial tests to achieve

user comfort as well as smooth variation of the locomotion trajectory by applying

interaction torques around different joints. Accordingly, the exoskeleton flexibility

was assessed to display enough deviation from the primary trajectory based on the

human’s physical interaction by appropriate regulation of ACPG gains. In this trial-

and-error method, increasing the gains ψi, λi and βi in (4.2) increased the human

authority in modifying gait speed, and amplitude and equilibrium position of each

joint. Moreover, by decreasing the gains γω, γρ and γξ, the response of trajectory

variation became smoother (with smaller accelerations) and more damped. Ω in (4.2)

is the pre-determined frequency of walking chosen by the user before online modifi-

cation. ρith+ = 1.1− 1.15 and ρimax = 1.2 were regulated in (4.2) to avoid exceeding
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the joint limits of the exoskeleton during the primary trajectory of locomotion, as

described in Section 4.2. ξith+ and ξith− were chosen to have a range of 10-12 degrees

of variation to amend the equilibrium positions of the hip and knee joints for each

person with respect to the typical gait cycle.

Preliminary experiments were performed while the human user wore the exoskele-

ton and relaxed his lower extremity muscles such that minimum active muscle force

was generated. The motion (position and velocity) and actuation (motor torque)

data for twenty repetitions, each for 300 seconds, were gathered and combined to

include various walking scenarios. These preliminary tests were used to identify the

nonlinear passive dynamics of the human-exoskeleton system, as described in Section

4.3.1. Between these empirical tests, the amplitude of walking for different joints

had a maximum of 20% variation due to the motion limit of the exoskeleton joints,

and the speed of walking experienced a 200% change from the original locomotion

pattern (designed to have hip and knee amplitudes of 59 and 70 degrees, and walking

frequency of 1.41 rad/s). Also, the equilibrium position for each joint motion had a

variation of 100% from the initial value considered at the beginning of the main exper-

iments to cover a wide range of joint motion for human locomotion. Seventy percent

of the collected data in preliminary experiments was used for offline training of the

NARX model, 15% of that was employed for assessment of the torque estimation,

and 15% for validation. The NARX model was structured with ten hidden neurons

and two steps of time delay. The Bayesian Regularization method was utilized for

training and the maximum torque estimation error after 1 epoch of training (with

less than 300 iterations) was 1.5× 10−3 N.m, which is negligible.

After offline training of the NARX model using the obtained motion and actuation

data from the passive dynamics of the human-exoskeleton system, this model was

utilized in real-time by the Function Fitting Neural Network block in the Simulink

environment. The passive dynamics τ̂ dyni
(t), approximated with high accuracy, was

employed in (4.12) to estimate the active human torque τ̂humacti
(t) in the main exper-
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Figure 4.3: Variation of (a) interaction torque integral, (b) equilibrium position, and
(c) corresponding logarithmic function value for the right and left hip joints
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iments. For both preliminary and main tests, the user wore a safety harness attached

to an overhead lift during walking that prevented injury in the case of falling as seen

in Fig. 4.2. In this experiment, a human operator applied arbitrary torques on dif-

ferent joints (hips and knees) to change the equilibrium position ξi(t) of locomotion

and make it personalized for user. The rapid variation of this equilibrium in response

to the time integral of pHRI torques TRightHip and TLeftHip is demonstrated in Fig.

4.3 based on the proposed ACPG dynamics (4.2).

As seen, the pHRI torques of the right and left hips experienced variations at

the beginning of walking while they became respectively negative and positive from

t = 13.7 s, resulting in a decline of ξRightHip(t) and an elevation of ξLeftHip(t). Con-

sequently, ξRightHip(t) passed its negative threshold value ξHth−
= 5.13 degrees at

t = 14.4 s and ξLeftHip(t) exceeded its positive threshold value ξHth+
= 15.13 degrees

at t = 14.1 s. In response, the logarithmic barrier functions in (4.2) were activated

and returned non-zero values to decelerate these variations and avoid the extreme

magnitudes ξHmin
= 2.13 degrees and ξHmax = 18.13 degrees. The logarithmic func-

tion was zero when the equilibrium position variation for each joint was within its

allowable range.

To elaborate more on the autonomous shaping of the gait cycles, the reference

trajectory of the left hip with respect to the right hip and left knee motions are

shown in Fig. 4.4. The smooth modification of the mean values for the right and left

hip motions is observed by the movement of its relative trajectories. This implies a

shift of the relative hip trajectories to the top and left due to the increase of the left

hip’s equilibrium position and the decrease of the right hip’s equilibrium position, as

illustrated by red arrows in Fig. 4.4a. In this regard, the pattern of left hip-knee

trajectories experienced a movement toward the right and bottom in Fig. 4.4b.

The wearer also applied active torques on different joints of the exoskeleton to

amend their oscillation ranges of motion ρi(t) according to (4.2). As illustrated in

Fig. 4.5, the increase of pHRI energy transferred through the right and left hip joints
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Figure 4.4: Variation of trajectories for (a) left hip with respect to right hip, and (b)
left knee with respect to left hip (black arrows show the direction of locomotion and
red arrows show the direction of trajectory deviation)
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Figure 4.5: Variation of (a) injected pHRI energy, (b) motion amplitude, and (c)
corresponding logarithmic function value for the right and left hip joints

ERightHip and ELeftHip over the first stride resulted in a maximum growth of 14%

and 11% in the amplitude ρRightHip(t) and ρLeftHip(t) of these joints’ motions. This

variation exceeded the amplitude threshold ρHipth+ = 1.1 at t = 1.3 s and t = 7.5

s for the right and left hips, respectively, and turned the corresponding logarithmic

function on to restrict this escalation. This function gained negative values over

the next steps to hold the amplitudes of hip joints below their maximum feasible

magnitude ξHipmax
= 1.2.

Having these adjustable features for shaping the gait cycles and considering feasible

motions for exoskeleton joints, the reference trajectories were generated in real-time

as demonstrated in Fig. 4.6a for the right hip and left knee. Suitable tracking
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performance using the proposed PD controller with torque compensation (4.13) was

attained with small bounded errors in their steady-state response (2 and 4 degrees for

the right hip and left knee, respectively). The fluctuation of the right hip equilibrium

position (illustrated in Fig. 4.3) and the variation of the maximum value of the left

knee motion are also depicted in Fig. 4.6a. Regarding the speed of walking, the

wearer torques on different joints could modify the overall locomotion frequency ω(t)

due to its dynamics (4.2). As seen in Figs. 4.6b and 4.6c, by transferring energy

through all of the joints Ei(t), the locomotion accelerated and the gait frequency

increased from 1.41 rad/s to 4.08 rad/s. After this online adjustment in the first 15

s, the user continued walking with this higher speed for the rest of the path.

4.5 Conclusion

In this study, an intelligent control strategy was designed and tested to provide com-

fortable and safe bipedal locomotion using lower-limb exoskeletons. To this end, a

new ACPG structure was proposed to generate synchronized oscillatory motions for

different joints that are responsive to the active pHRI torque. This adaptiveness was

facilitated by the amendment of the gait frequency, amplitudes of reference trajec-

tories, and equilibrium positions in terms of the pHRI energy and torques transmit-

ted through the exoskeleton joints. A supervised NN-based learning algorithm was

utilized based on the NARX model to learn the passive exoskeleton-limb dynamics

and then estimate the active pHRI torque in the joint space. This control strategy

was implemented on the Indego exoskeleton (Parker Hannifin Corporation), and ex-

perimental results showed suitable flexibility for different locomotion features (with

variations in amplitude, equilibrium, and frequency) in the presence of active human

behavior. In this work, we gained the benefits of fast supervised learning of the pHRI

dynamics and online trajectory shaping by designing a new ACPG structure that can

adjust the gait cycles according to the wearer’s physical interaction with exoskeleton.

However, the following technical challenges and limitations should be addressed in
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Figure 4.6: Amendment of (a) response trajectories with adjustment of equilibrium
position and amplitude of the motion for the right hip and left knee, (b) overall
locomotion frequency, and (c) pHRI energy transferred through all joints
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future studies: (i) designing a nonlinear controller for trajectory tracking that facili-

tates close-loop stability analysis (instead of the proposed PD controller with torque

compensation), and (ii) employing reinforcement learning algorithms to update the

approximation of system dynamics during the main walking task considering changes

or disturbances in the environment or pHRI.
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Chapter 5

Deep Reinforcement Learning
based Personalized Locomotion
Planning for Lower-Limb
Exoskeletons

5.1 Introduction

Neurological impairments, such as spinal cord injury, stroke, and multiple sclerosis,

result in mobility impairments that reduce the quality of life of millions worldwide.

The use of assistive and rehabilitative exoskeletons can help individuals maintain

their independence and improve their physical fitness. Several powered exoskeletons

such as Indego [7], Exo H3 [11], ReWalk [8], HAL [9], and Ekso GT [10] have been

developed in recent years for user assistance and rehabilitation in clinics. Despite the

great capability of these devices, there still exists a need for software improvement to

increase the demand for their use.

The ideal exoskeleton controller must understand a user’s intention and adapt to

their gait pattern. Que et al. [23] used electroencephalogram (EEG) and electro-

cardiogram (ECG) signals to determine a user’s intention and appropriately adjust

the exoskeleton’s assistance level. The method developed by Gue et al. [97] used

EEG and ECG signals to select between three predefined trajectories (static, normal

walking, high leg lifting) with a neural network classifier. Although using these types
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of sensors is a promising way of understanding intention, their usage is limited due to

difficulties in attaching the sensors to the user’s body in addition to signal processing.

In a different approach, some studies [35, 98] considered the body features, e.g., age

and weight, to reshape the exoskeleton’s walking pattern. However, to be sufficiently

accurate to capture all features of user’s locomotion, a large number of parameters

need to be considered, which makes implementing the method challenging. An alter-

native solution for these challenges is to use advanced motion planning methods in

combination with machine learning (ML) based intention estimation.

This chapter introduces the intelligent CPG (iCPG), which combines reinforcement

learning with ACPGs for personalized motion planning of exoskeletons. This method

resolves the need for precise initialization in ACPGs (introduced in chapters 3 and

4), which is necessary for effective human-robot interactions (HRIs). Furthermore,

our proposed method can adapt to changes in the interaction behaviour of users. The

contributions of the paper are summarized as follows:

• We introduce a novel RL-based method to modify pHRI energy based on the

user’s interaction behaviour.

• The ACPG structure is improved, and the iCPG method is introduced for the

first time to resolve challenges with previous ACPGs [18, 19].

Note that the pHRI torque estimation discussed in this chapter is identical to the

algorithm introduced in Chapter 4. Additionally, apart from the modification of pHRI

energy using RL in this chapter, the other components of iCPGs closely resemble the

ACPGs introduced in Chapters 3 and 4.

5.2 Intelligent CPG dynamics

A multi-degree-of-freedom lower-limb exoskeleton interacting with a human user can

be modeled as follows:

Mq(q)q̈ + Cq(q)q̇ +Gq(q) = τmot + τhum,p + τhum,a (5.1)
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Figure 5.1: Schematic of the proposed iCPG method for personalized motion plan-
ning.

where Mq(q), Cq(q), and Gq(q) are the inertia matrix, the matrix of Coriolis, cen-

trifugal, and damping terms, and the vector of gravitational torques, respectively.

Further, q is the vector of the exoskeleton joint positions, τmot is the exoskeleton’s

motor torque, and τhum,p and τhum,a are the passive and active parts of the human

torque vector, respectively.

The ACPG was used to plan the exoskeleton joints’ motion in real-time during

walking [18–20]. Although it could refine gait trajectories based on pHRIs, the pa-

rameter values play an important role in the method’s effectiveness. Furthermore,

precise parameter identification in conjunction with minimum changes in the user’s

interaction behaviour is critically important for the ACPG’s performance. To address

these issues and provide personalized motion planning, we have integrated RL with

ACPGs and introduced iCPGs (see Fig. 5.1). The iCPG dynamics for encapsulating

variations of the overall locomotion frequency ω(t), oscillation amplitude ρ(t), and

phase variation of each joint ϕi(t) is
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ω̈(t) = γω

(︃
γω
4
(Ω + ψωEeff(t)− ω(t))− ω̇(t)

)︃
+ kωu(ω(t)− ωth+) log

(︃
ωmax − ω(t)
ωmax − ωth+

)︃
ρ̈(t) = γρ

(︂γρ
4
(Aρ + ψρEeff(t)− ρ(t))− ρ̇(t)

)︂
+ kρu(ρ(t)− ρth+) log

(︃
ρmax − ρ(t)
ρmax − ρth+

)︃
ϕ̇i(t) = ω(t) +

mi∑︂
j=1

ηij sin (ϕi(t)− ϕj(t)− ϕij)

(5.2)

where mi is the number of adjacent joints to the joint i, and ηij is the coupling

constant between the ith and jth adjacent joints. Ω and Aρ are the steady-state fre-

quency and amplitude for ω(t) and ρ(t), and γω and γρ are constant parameters. The

parameters ψω and ψρ are constant values for adjusting the effect of physical interac-

tion in iCPG dynamics. The thresholds ωth+ and ρth+ are the positive threshold of

ω(t) and ρ(t), respectively, that trigger the deceleration term with gains kω and kρ to

avoid reaching the maximum allowable frequency ωmax and amplitude ρmax. Further-

more, u(·) is a step function that activates the log functions when the aforementioned

thresholds are crossed. In real experiments with the able-bodied person wearing the

Indego exoskeleton, these values will be determined based on the users’ comfort.

Most notably, and the focus of this paper, is the effective pHRI energy, Eeff(t),

which is a function of the pHRI energy, and is determined via the TD3 algorithm,

which will be presented in Sec. 5.3.1 [43]. The pHRI energy of joint i, Ei(t), is

Ei(t) =

∫︂ t

0

τHRI,i(t)q̇i(t) dt (5.3)

where q̇i(t) is the velocity of the ith joint and τHRI,i(t) is the estimated human in-

teraction torque on the ith joint, which is estimated using a trained neural network

based on the method described in Sharifi et al. [18]. The total pHRI energy (E(t))

is the summation of the interaction energies of all joints.

Using a Fourier series expansion, the described iCPG outputs are transformed into

a reference locomotion trajectory, qi(t), for the ith joint of the exoskeleton:

qi(t) = ξi(t) + ρi(t)

Ni∑︂
k=1

(aik cos kϕi(t) + bik sin kϕi(t)) (5.4)
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where Ni is the number of terms in Fourier’s series and aik and bik are the coefficients

of that. The frequency ω(t), and amplitude ρi(t) of walking, and also phase ϕi(t)

of each joint’s oscillatory motion (see Eq. (5.2)) are modified in real-time via the

iCPG-based update rules in (5.2).

5.3 Implementation of an RL agent to adjust en-

ergy contributions for trajectory shaping

Deep reinforcement learning was used to modify pHRI energy (E(t)) and determine

effective energy values (Eeff) in (5.2) based on the physical interaction behaviour

of lower-limb exoskeleton users. The RL algorithm employed in this project and

the reward function used for determining the Eeff are introduced in the following

subsections.

5.3.1 Deep reinforcement learning

RL is a learning strategy that attempts to model an agent interacting with its envi-

ronment while learning reward-maximizing behaviour. At each time step t in a given

state s ∈ S, an RL agent selects an action a ∈ A with respect to a policy π : S → A,

and receives a reward rt and transitions to a new state s′ ∈ S in its environment.

The return, Rt, is defined as the discounted sum of rewards Rt =
∑︁T

k=t γ
k−tr(sk, ak),

where γ is a discount factor determining the relative importance of future rewards

and T is the end of an episode. The objective in reinforcement learning is to find the

optimal policy which maximizes the expected return. To this end, the agent learns

a value function Q, which maps the agent’s state and action to expected return,

Q(s, a) ∈ R, s ∈ S, a ∈ A [43].

A TD3 strategy was used to formulate the RL problem in this chapter. The

characteristics of the TD3 algorithm make it a good fit for the personalized trajectory

generation problem in this study. In particular, TD3 uses double critic networks to

approximate the reward from a given state and action using the Bellman equation in
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terms of the discounted sum of expected TD errors, δ [43]:

Qθ(s, a) = rt + γE[Qθ(st+1, at+1)]− δt

= rt + γE[rt+1 + γE[Qθ(st+2, at+2)]− δt

= Eτ∼πϕ

[︄
T∑︂
i=t

γi−t(ri − δi)

]︄ (5.5)

where
∑︁T

i=t γ
i−t(ri − δi) is the discounted sum of returns, Qθ(s, a) is the differen-

tiable function approximator with the parameter θ, and E[·] is the expectation from

a sequence of states and actions following the policy πϕ. During training, an actor

network and two critic networks are initialized with random parameters (ϕ, θ1, θ2).

To prevent divergence of agent behavior and ensure stability, target networks with

parameters (ϕ′, θ′1, θ
′
2) are initialized and periodically updated through soft target up-

dates. Additionally, a replay buffer B is initialized to record a subset of tuples of

the agent’s experiences (st, at, rt, st+1), which are later randomly sampled for train-

ing updates to break temporal correlations in the data. At each timestep, an action

is selected by the policy with added exploration noise to encourage exploration and

prevent overfitting [43]:

a ∼ πϕ(s) + ϵ, ϵ ∼ N (0, σ) (5.6)

where ϵ is the exploration noise sampled from a normal distribution with standard

deviation σ. The resulting transition tuple (st, at, rt, st+1) is then stored in the replay

buffer B. Next, an action is selected with target policy smoothing applied. The action

is clipped to the action space, and the noise is clipped between constants ±c to keep

the target close to the original action [43]:

ã← clip(πϕ′(s
′) + clip(ϵ,−c, c), alow, ahigh), ϵ ∼ N (0, σ̃) (5.7)

Using this estimate of ã, the target Q values from the double critic networks are

computed using the smaller value of the two networks to prevent maximization bias.

The loss function is then computed for the two critic networks by computing the
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mean squared error between each critic and the target Q value. The networks are

optimized using backpropagation [43]:

y ← r + γ min
i=1,2

Qθ′i
(s′, ã)

θi ← argminθiN
−1
∑︂

(y −Qθi(s, a))
2

(5.8)

The actor policy is optimized periodically when t mod d = 1, where d is the

number of steps before an update. The mean of the Q values from the critic networks

is used in the backpropagation of the actor networks [43]:

∇ϕJ(ϕ) = N−1
∑︂
∇aQθ1(s, a)|a = πϕ(s)∇ϕπϕ(s) (5.9)

where ∇ϕJ(ϕ) is the gradient of the expected return J(ϕ) following the target

policy πϕ. Finally, the target networks are updated using a soft update as follows

[43]:

θ′i ← τθi + (1− τ)θ′i

ϕ′ ← τϕ+ (1− τ)ϕ′
(5.10)

where τ is the soft update coefficient selected to provide stable updates in the policy

network.

5.3.2 Interaction energy modification via RL

The objective of the TD3 algorithm in our study was to control the effective pHRI

energy, Eeff(t), in (5.2) to facilitate reaching the user’s desired locomotion trajectory

via iCPGs. In particular, we designed a reward function, R, which the RL agent

attempted to maximize. In this section, we will first outline the reward function for

the TD3 algorithm and then discuss how the proposed reward function can address

challenges in different scenarios that the agent may face.

The state space for the RL agent is the pHRI energy (E(t)) in Eq. (5.3) and

its average (Eavg(t)); and frequency (ω) in Eq. (5.2) and its average (ωavg) which

represents RL estimation about user’s desired frequency. The action space is the

effective HRI energy (Eeff(t)) used in (5.2).
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The following reward function was used to identify the optimal value of effective

interaction energy for the user’s desired walking pattern via iCPGs:

R = −
(︃
KE[E(t)− Eavg(t)]

2 +Kω[ω(t)− ωavg(t)]
2 +Kω̈[ω̈(t)]2 +Rp +RE

)︃
(5.11)

where KE, Kω, and Kω̈ are constant values and RP and RE are defined as follows

Rp =

{︄
Pp, ω /∈ [ωmin, ωmax] or ρ /∈ [ρmin, ρmax]

0 otherwise
(5.12)

RE =

{︄
PE, (E(t)− E(t− τE) > ϵE

0, otherwise
(5.13)

where PP > 0 and PE > 0 are constant values and ωmax, ωmin, ρmax, and ρmin are

pre-defined safety thresholds to provide safe locomotion patterns. E(t) is the current

pHRI energy state, E(t − τE) is a delayed version of HRI energy and τE represents

the amount of delay. A step is detected if the difference E(t) − E(t − τE) is greater

than a threshold ϵE. Note that this threshold value will be determined by trial and

error in real experiments with the exoskeleton and able-bodied user.

RP is the safety term that encourages RL agent to avoid transitions to unsafe

states. The terms of difference between actual energy and frequency with their average

values (E(t)−Eavg(t) and ω(t)−ωavg(t)), and the acceleration of the frequency (ω̈(t)),

play an important role when the frequency is close to the user’s desired value and

system is almost in steady state. However, they can make the system less responsive

by introducing lower Eeff, which has been resolved by adding the term RE, which

penalizes based on the number of interactions that a user has applied.

5.4 Results and Discussion

The hyperparameters for the TD3 algorithm were set experimentally, and they in-

cluded a random seed of 10, starting exploration time steps of 64 on a random policy,

standard deviation of 0.1 from a Gaussian distribution for exploration noise, batch

size of 512, γ of 0.99, τ of 0.005, policy noise of 0.2 from a Gaussian distribution for

68



critic updates, and policy update frequency of 2. The averages were calculated with

a moving average with a window size of 10 s, and τE 0.05 s. The iCPG parameters

were all set based on Sharifi et al. [19], except ψω and ψρ were set 0.0072 and 0.0096,

respectively in simulations and ψω = 0.0007 and ψρ = 0.0009 in experiments.

5.4.1 Simulations

The simulation environment was created in MATLAB Simulink R2022a. The environ-

ment consisted of a frequency-dependent pHRI energy input in (5.3), which increases

or decreases in rectangular steps at fixed intervals. The desired frequency was manu-

ally set and hidden from the RL agent. If the current frequency was below the desired

frequency, the pHRI energy input increased until the desired frequency was obtained,

and vice versa. The pHRI energy input remained constant while the frequency is close

enough to the desired frequency. The RL agent receives the current state from the

environment and takes an action that modulates the pHRI energy (E) to determine

Eeff. Simulations were divided into a training and testing phase, where the RL agent

modulated the pHRI energy to meet the desired frequency. In both training and

testing, the desired frequency was changed every 10 s. The training phase involved

five episodes of training, with each episode lasting 30 s. Each episode consisted of 300

time steps corresponding to a sampling rate of 10Hz. The testing phase consisted of

30 trials with the trained model, again for 30 s.

In real applications were the iCPG was initialized using experimental user data,

and then the dynamics were updated when a new user interacted with the exoskele-

ton. Therefore there were two possible scenarios that need to be considered in the

simulations. Firstly, there was the case of a new user with weaker muscles generating

smaller interaction torques than the user with whom the initialization was performed.

This is the main scenario we are trying to address in this research, as people with

mobility impairments often have weaker muscles and are more easily fatigued by in-

teracting with the exoskeleton than neurologically-intact individuals. The second case
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Figure 5.2: Variation of pHRI energy and frequency of walking for the weak muscle
scenario without RL refinements.

was when a new user has stronger muscles than the person for whom the exoskeleton

was initialized.

1. Weak muscles (small stepwise τHRI): This scenario represents individuals with

weak muscles who apply rectangular pulses of τHRI insufficient alone to reach their de-

sired frequency. Note that the amplitude of walking is a function of the gait frequency.

A constant stepwise torque input is simulated using the rect function with a positive

unity gain for frequencies below the desired frequency and a positive unity gain for

those greater than the desired values. To aid the user, a penalty term, RE, is applied

for jumps in EHRI to incentivize the RL agent to choose actions which minimize the

number of jumps. This penalty plays the most critical role in cases where the user’s

muscles are weak, so the RL agent amplifies the interaction energy to reach the user’s

desired walking speed faster. Also, the other elements of the reward function improve

the agent’s behaviour when it is close to the desired values.

The results for weak muscle scenario in the absence of RL modifications show that

the user could not reach the desired frequency (1.8 rad/s) after 30 s (Fig. 5.2). How-

ever, the user reached the desired frequencies in less than five seconds by integrating

70



0 5 10 15 20 25

0

20

40

60

80

0 5 10 15 20 25

1.6

1.7

1.8

1.9

2

Figure 5.3: Variation of pHRI energy due to an RL agent selecting an effective energy
to modify the frequency of walking for the weak muscle scenario.

an RL agent introduced in the effective energy term in the iCPG structure. As seen

in Fig. 5.3, the RL agent amplified the user’s interaction energy, E(t) (brown dashed-

dot line), and suggested higher values for the effective energy, Eeff(t) (solid blue line).

This amplification rate is lower when the user is close to the steady-state behaviour

(7-10 s, 18-20 s, and 27-30 s). This is because of fewer jumps in this period (i.e., fewer

jump penalties, PE), which forces the agent to pay more attention to the other ele-

ments of the reward function. Note that the desired frequencies for the training phase

for the weak muscle case was 2 rad/s, 1.7 rad/s, and 2 rad/s in this order. The test-

ing phase had desired frequencies of 1.7 rad/s, 2 rad/s, and 1.8 rad/s, and acceptable

frequency range of ±0.05 rad/s around the desired frequency. The control case had

the same acceptable frequency range.

2. Strong muscles (large stepwise τHRI): This scenario represents users with strong

muscles who apply rectangular pulses of τHRI to reach their desired frequency. The

estimation of the desired values in RL were chosen as the average value over a con-

stant time window. Our approach for the reward function was to minimize the sum

of the mean squared error between the actual and desired EHRI and iCPG frequency,
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Figure 5.4: Variations of gait frequency in the absence and presence of RL modifica-
tion for the strong muscle scenario.

i.e., maximizing the reward function. For the strong muscle scenario, the desired fre-

quencies for the training phase were 2.2 rad/s, 1.7 rad/s, and 2.2 rad/s in this order.

The testing phase had desired frequencies of 1.8 rad/s, 2.3 rad/s, and 1.7 rad/s. An

acceptable frequency range of ±0.15 rad/s around the desired frequency was imple-

mented to prevent oscillations about the desired frequency. The control case had the

same acceptable frequency range. The results showed that the trained agent could

facilitate reaching desired frequency values by adjusting the effective energy over time

(see Fig. 5.4). As it can be seen in Fig. 5.4, the integral of error between the user’s

desired frequency and iCPGs output in the steady-state period (7-10 s, 18-20 s, and

27-30 s) was decreased by 65% for the case of using effective energy values which was

determined via RL. Note that the desired frequency is hidden from the RL agent.

5.4.2 Experimental evaluations

The experimental set-up in Fig. 5.6a was used to evaluate the effectiveness of our

proposed iCPG for lower-limb exoskeletons. A 29-year-old able-bodied user wore the

Indego lower-limb exoskeleton (Parker Hannifin Corporation, Macedonia, OH). The

user was asked to apply physical interactions to the exoskeleton joints to change the

walking frequency to the user’s desired values. The desired frequency was hidden from

the RL agent, and the agent used the average value of iCPGs frequency to estimate

the user’s desired frequencies. Three different experiments were performed. The first
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Figure 5.5: pHRI energy and walking frequency variations for a user interacting with
a lower-limb exoskeleton in the absence of RL modifications.

experiment was the control case, which used only ACPGs without an RL agent. The

second experiment trained the RL agent. In this experiment, the user interacted with

the exoskeleton for 150 s to reach different desired frequency values. In addition, the

actor-critic networks in the TD3 algorithm (see Sec. 5.3) were trained in this period

and used in the final experiments for tuning the effective energy values. Note that

the whole process for training RL can also be performed in our developed simulation

environment for safety reasons.

As shown in Fig. 5.5, the user reached their desired frequency of 1.5 rad/s after

about 150 s and increased the pHRI energy level to more than 1000 J by applying

continuous interaction energies. Continuous energy inputs were necessary because the

ACPG initialization was performed with a different user with much stronger muscles.

However, the RL agent and iCPGs resolved this issue by adjusting the pHRI energy

value and introducing effective energy in Fig. 5.7. As observed in Fig. 5.7, the

maximum pHRI energy applied by the user (brown dashed-dot line) was about 125 J.

However, the RL agent amplified that value (solid blue line) to about 1000 J, which

facilitated reaching the user’s desired frequency. The results for the frequency showed
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Figure 5.6: a) Experimental set-up: A 29-year-old neurologically-intact user wearing
the Indego lower-limb exoskeleton, b) Desired and actual trajectories generated via
iCPGs for the left hip and right knee joints.
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Figure 5.7: pHRI energy, effective energy, and walking frequency variations for a user
interacting with a lower-limb exoskeleton in the presence of RL modifications.

that users could reach their desired frequencies on average in 10 s with iCPGs, only

by modifying their effective energy. Furthermore, comparing the rate of amplification

of pHRI energy shows that the RL agent introduced a lower energy amplification rate

for the period that the user tended to walk at a constant frequency, which provided

a smoother walking experience for the user.

The amplitude, frequency, and phase values determined by iCPGs were translated

to the desired trajectories of joints via Fourier series in (5.4). Fig. 5.6b shows the

results for the desired and actual trajectories of joints for the first 60 s of walking.

The RL & iCPGs-based generated desired trajectories have been commanded to a

PD position control to be tracked. As depicted in Fig. 5.6b, the maximum error

between desired and actual trajectories was about 6◦ for the knee joint and 4◦ for the

hip joint, which shows an appropriate tracking performance.

5.5 Conclusion

This study introduced iCPGs, which combined reinforcement learning with ACPGs to

generate user-specific gait trajectories. The previously introduced ACPG algorithm
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could change gait trajectories in response to a user’s physical interaction. However,

the effectiveness of ACPGs was limited to precise parameter identification and a lack

of considerable change in the interaction behaviour of users. The proposed iCPGs

employed RL to learn a user’s interaction behaviour in real-time and adjusted the

pHRI energy to facilitate reaching a user’s desired gait pattern. The simulation re-

sults showed that the proposed RL agent could modify pHRI energy and introduce an

effective energy term to the iCPGs, removing the need for precise parameter identi-

fication and fixed interaction behaviour. Furthermore, the results provided evidence

for the effectiveness of the proposed iCPGs in scenarios of having weaker or stronger

muscles than the user that has been used for identifying the parameters. Finally, the

experimental results showed that the method could be used for personalized motion

planning of lower-limb exoskeletons.
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Chapter 6

Locomotion Planning for
Lower-Limb Exoskeletons via
Intelligent Central Pattern
Generators and Reinforcement
Learning

6.1 Introduction

Exoskeletons have emerged as promising tools in assisting individuals with neurolog-

ical impairments, providing them with increased mobility, independence, and quality

of life. These wearable devices can be used to assist patients experiencing neuro-

logical conditions such as stroke, spinal cord injuries, or multiple sclerosis. By aug-

menting or restoring impaired motor functions, exoskeletons assist users to augment

their control over their movements, enhancing their ability to walk, stand, and per-

form daily activities [13]. The integration of advanced sensor technology, real-time

feedback mechanisms, and adaptive algorithms in exoskeleton design allows for per-

sonalized and intuitive user interaction, promoting neuroplasticity and facilitating

rehabilitation [13]. Furthermore, exoskeletons enhance the autonomy of individuals

with functional impairments to participate more actively in social and occupational

settings, fostering inclusivity and empowerment within their communities [99].

In this chapter, we present a simulation environment designed to emulate human
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actions for generating physical interaction torques within the context of exoskele-

ton motion planning software. This innovative environment takes into account the

maximum achievable torque and replicates human behavior when engaging with an

exoskeleton, accounting for the applicable range of interactions and introducing an

element of randomness in the applied torque. The proposed simulation environment

can be used to train the RL agent before applying it to the real exoskeleton, which

can prevent most of the possible unsafe actions from the RL agent. In addition, by

combining the adaptability of RL with the rhythmic motion generation capabilities of

ACPGs, we propose a new iCPGs for personalized motion planning of exoskeletons.

Our iCPGs uses a ACPG-based motion planner to generate initial gait trajectories

and an RL agent to learn and adapt to the user’s target gait pattern. The iCPG

provides viability of walking and safety by generating predictable and synchronized

gait patterns, while the RL controller allows for adaptability and personalization by

learning from the user’s interactions. The iCPGs presented in this chapter extend

the framework introduced in Chapter 5, aiming for faster convergence and improved

performance, particularly in the context of the strong muscle scenario discussed in

Chapter 5. The ACPG structure and pHRI torque estimation method remain almost

identical to those in Chapter 5. However, the main distinction lies in the reinforce-

ment learning (RL) states and actions utilized. Furthermore, the simulation envi-

ronment proposed in this chapter enhances the previously introduced environment in

Chapter 5, aiming to achieve behavior more closely resembling human pHRI with an

exoskeleton. The summary of contributions of this study is as follows:

• For the first time, we introduce a simulation environment that imitates human

behavior in having physical interactions with exoskeletons. This can be used

for training RL algorithms or collecting data for training any kind of supervised

learning algorithm.

• A new reward function was designed and implemented, which can facilitate
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personalized locomotion planning for lower-limb exoskeletons. The new reward

function has better performance in learning a strong muscle scenario in compar-

ison with our previously developed algorithm [100]. The strong muscle scenario

refers to the case that the user’s interaction energy is larger than the energy

value required for reaching the desired frequency of locomotion. In other words,

the user will always oscillate around the desired value by applying physical in-

teractions.

• A new structure has been introduced for calculating the user/exoskeleton inter-

action energy, which has better stability in high frequencies of walking compared

to our past work in Sharifi et al. [18].

The rest of this chapter is organized as follows. The simulation environment is

introduced in Sec. 6.2. In Section 6.3, the proposed iCPGs and RL algorithms are

described. The simulation and experimental evaluations of the developed intelligent

motion planning scheme are presented and discussed in Sec. 6.4, and the concluding

remarks are provided in Sec. 6.5.

6.2 Simulation Environment

For user safety, the RL algorithm needs to be first trained in a simulation environment

rather than through actual experimentation on human users. For the first time, we

propose a simulation environment which can mimic human behavior in changing

an exoskeleton’s gait pattern via physical human-robot interaction. The proposed

simulation environment receives the body specification of the user whom training is

going to be done on and the desired gait pattern that the users will have in their

mind. Note that these desired values are all hidden from the RL algorithm during

the training process. The schematic of the proposed simulation environment is shown

in Fig. 6.1.

The simulation environment user is required to input desired gait parameters, the
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Figure 6.1: Schematic of the proposed simulation environment.

corresponding time periods for each desired value to be commanded to the physical

human-robot interaction (pHRI) generation section, and the maximum torque allowed

for each interaction in the simulator. The simulator can take either the amplitude

or the frequency of walking as the desired gait parameter, provided as a vector with

arbitrary length containing different values. Each value will be applied for the time

period that is defined as a input to the simulator.

To enhance the realism, the pHRI torque generated by the simulator varies and

is not consistently equal to the maximum input torque. Instead, the simulator cal-

culates the pHRI torque as 90% of the maximum torque, with an added random

number ranging from zero to 10%. Note that this level of randomness in pHRI gen-

eration can be tuned to any arbitrary value by the simulator user. This approach

introduces variations in torque generation similar to human behavior when interact-

ing with exoskeletons. Additionally, the simulator user must input the elements of

any reinforcement learning reward function that is being used in the simulator.

The pHRI generation section operates by taking in both the desired gait parame-

ters provided by the user and the simulated gait parameters obtained from the gait

simulator. By comparing these values, the simulator applies either positive or neg-

ative interaction torques to compensate for any differences between the actual and

desired parameters. Notably, torque exertion will cease when the error between the

actual and desired gait parameters falls within a predefined threshold window. This
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is the same behavior that exoskeleton users do in order to change the behavior of the

exoskeleton.

Moreover, in cases where the user has input multiple gait parameters within the

input vector, the simulator will modify the desired values under two specific condi-

tions. Firstly, if the elapsed time for a particular gait parameter value surpasses the

specified time interval. Secondly, if the error between the actual and desired gait

parameter value falls within the pre-defined threshold value. In essence, the simula-

tor will refrain from changing the desired gait parameter value when the actual gait

parameter fails to reach the desired value. This aspect is crucial in effectively training

RL algorithms, because it allows the agent to keep exploring until reaching specified

desired value.

The pHRI torque and gait parameters generated are employed as inputs for the

RL algorithm, enabling the creation of states and training the algorithm to generate

adjusted pHRI torque values. Notably, this particular section of the simulator is

implemented using Python code, and it communicates with the rest of the code via

UDP communication, with the remaining code developed in MATLAB/Simulink. The

decision to host the RL code within the Python environment streamlines the process

for users to deploy various algorithms with convenience.

After receiving the modified effective energy from the RL agent, the locomotion

planning algorithm proceeds to update the gait parameters. These newly adjusted

gait parameters are then inputted into the gait simulator, specifically employing

iCPGs in this research, which calculates the position and velocity for each joint.

The gait simulator utilizes multiple Fourier series, with each series responsible for

generating the trajectory of its corresponding joint.

The pHRI torque generation component operates by receiving the angular positions

of the joints and exerts interaction only when the joints are in a position capable of

exerting force. Put differently, the simulation environment refrains from applying

interaction torques in specific body configurations where it is impossible to create
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physical interactions in the real world, such as during the double stance phase. This

design ensures that the simulator’s physical interaction behavior closely resembles

human behavior.

6.3 Methodology

By combining RL and adaptable CPGs (ACPGs) [18], we introduce intelligent CPGs

(iCPGs) that aim to enhance motion planning capabilities, adapting to individual

users’ needs and interactions and offering more robust and efficient exoskeleton control

during walking activities.

6.3.1 Intelligent Central Pattern Generators

The dynamics of a lower-limb exoskeleton and a human user is:

Mq(q)q̈ + Cq(q)q̇ +Gq(q) = τmot + τhum,p + τhum,a (6.1)

where Mq(q), Cq(q), and Gq(q) respectively stand for the inertia matrix, the matrix

encompassing Coriolis, centrifugal, and damping terms, and the vector representing

gravitational torques. The vector q signifies the exoskeleton’s joint positions, while

τmot denotes the motor torque applied to the exoskeleton. Additionally, the terms

τhum,p and τhum,a correspond to the passive and active components of the human

torque vector, respectively.

In our previous work [18–20], the ACPG was introduced for real-time modification

of the exoskeleton joint trajectories during walking. While the ACPG could provide

adaptability for the gait trajectory of exoskeletons based on pHRIs, still the human

user needed to adapt to the ACPG dynamics. To address this challenge and en-

able personalized motion planning, we propose an innovative integration of RL with

ACPGs, resulting in a novel approach termed iCPGs (illustrated in Fig. 6.1). The

iCPG dynamics encompass the adaptation of overall locomotion frequency f(t), os-

cillation amplitude γ(t), and phase variation of each joint θi(t), and can be expressed
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as follows:

θ̇i(t) = f(t) +

mi∑︂
j=1

vij sin(θi(t)− θj(t)− ϕij)

f̈(t) =µf

(︄
µf
4

(︄
F + η

n∑︂
k=1

Emodk − f(t)

)︄
− ḟ(t)

)︄
− kf

DZ+(f(t)− fth)
(fmax − f(t))3

γ̈(t) =µγ

(︄
µγ
4

(︄
A+ η

n∑︂
k=1

Emodk − γ(t)

)︄
− γ̇(t)

)︄
− kγ(t)

DZ+(γ(t)− γth)
(γmax − γ(t))3

(6.2)

Here, n is the number of all joints and mi denotes the number of adjacent joints to

the joint i. fmax and γmax are the maximum frequency and amplitude values, taking

into consideration both the exoskeleton’s capabilities and user limitations. Passing

the threshold values (fth and γth) will trigger the dead-zone function (DZ+) and

that will prevent passing the maximum frequency and amplitude (see [20] for more

details). vij, µf and µγ are constant values that play a crucial role in fine-tuning the

system’s agility to reach new amplitude and frequency values.

A primary focus of this research is the concept of modified human-robot interac-

tion energy, denoted as Emod(t). This energy function is derived from three crucial

elements:

1. The time-varying gain (KRL) determined through the twin delayed DDPG

(TD3) algorithm (to be described in Section 6.3.2).

2. The pHRI torque (τpHRI), computed using a neural network-based method as

described by Sharifi et al. [18].

3. The sign of joint velocity (q̇i). Unlike what was repeated in our previous studies

[18–20, 100], the joint velocity was replaced with the sign of the joint velocity

in the calculation of the physical interaction energy. This aims to prevent

unintentional variations in gait parameters at higher walking speeds.

Emodi(t) = KRL
∫︂ t

0

τpHRI,i(t) sgn(q̇i(t)) dt (6.3)
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To transform the outputs of the described iCPG into a reference locomotion tra-

jectory, qi(t), for the ith joint of the exoskeleton, a Fourier series expansion was

employed:

qi(t) = ξi(t) + ρi(t)

Ni∑︂
k=1

(aik cos kϕi(t) + bik sin kϕi(t)) (6.4)

In this equation, Ni represents the number of terms in the Fourier series, and aik and

bik are the corresponding coefficients. The frequency f(t), amplitude γi(t) of walking,

and the phase θi(t) of each joint’s oscillatory motion (as shown in Eq. (6.2)).

6.3.2 Implementation of an RL agent to adjust energy con-
tributions for trajectory shaping

Deep RL was used to modify pHRI torque (τpHRI) and determine modified energy

values (Emod) in (6.3). The RL algorithm employed in this project and the reward

function used to determine the Emod are introduced in the following subsections.

Reinforcement learning

RL is an approach that seeks to emulate an agent’s interaction with its environment

as it learns to optimize reward-gaining actions. In a specific state s ∈ S at each

time step t, an RL agent chooses an action a ∈ A according to a policy π : S → A,

and obtains a reward r while transitioning to a new state s′ ∈ S. The return, Rt,

is characterized as the discounted accumulation of rewards Rt =
∑︁T

k=t γ
k−tr(sk, ak),

where γ is a discount factor that establishes the significance of future rewards and

T signifies the episode’s conclusion. The goal in RL is to identify the optimal policy

that maximizes the expected return following the policy. To this end the agent

learns a value function Q, which associates the agent’s state and action with expected

return, Q(s, a) ∈ R, s ∈ S, a ∈ A. In this study, we utilize deep RL to adjust pHRI

torque τpHRI and ascertain modified energy values Emod in (6.2) based on the physical

interaction patterns of lower-limb exoskeleton users. The TD3 algorithm which was
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Algorithm 1 TD3 [43]

Initialize critic networks Qθ1 , Qθ2 , and actor network πϕ with random parameters
θ1, θ2, ϕ
Initialize target networks θ′1 ← θ1, θ

′
2 ← θ2, ϕ

′ ← ϕ
Initialize replay buffer B
for t = 1 to T do
Select action with exploration noise a ∼ πϕ(s) + ϵ,
ϵ ∼ N (0, σ) and observe reward r and new state s′

Store transition tuple (s, a, r, s′) in B

Sample mini-batch of N transitions (s, a, r, s′) from B
Select action with target policy noise:
ã← πϕ′(s

′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
Use Clipped Double Q-learning target:
y ← r + γmini=1,2Qθ′i

(s′, ã)
Update θi to minimize N−1

∑︁
(y −Qθi(s, a))

2 {Qθi}2i=1

Update critics θi ← argminθiN
−1
∑︁

(y −Qθi(s, a))
2

if t mod d then
Update ϕ by the deterministic policy gradient:
∇ϕJ(ϕ) = N−1

∑︁
∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)

Update target networks:
θ′i ← τθi + (1− τ)θ′i
ϕ′ ← τϕ+ (1− τ)ϕ′

end if
end for

used to address the RL problem in this study is summarized in Algorithm 1 (for more

details refer to Mehr et al. [100]).

Reward function

The TD3 algorithm was used to modulate the pHRI torque, in (6.3) and generate

modified interaction energy, Emod to aid in achieving the user’s preferred locomotion

frequency and amplitude through iCPGs. We formulated a reward function, R, to

achieve this objective. The state space and action space for our RL agent are defined

as follows:

• State Space. Three states have been defined in this problem, including inter-

action indicator, frequency (f(t)) and average (favg(t)) values of that over a
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window of 200 sampling time.

• Action Space. The actions include the pHRI gain KRL defined in (5.3). The

raw action being generated with the RL agent is in the range of 0.01-10. In

order to do the exploration in uniform space, KRL is calculated based on the

raw action as follows

KRL =

{︄
0.2 ∗ actionraw, actionraw < 5

2 ∗ actionraw − 9, actionraw > 5
(6.5)

The following reward function was used to identify the optimal value of pHRI gain

and modified energy for the user’s desired walking pattern via iCPGs:

R = −(KiIntpen +Kf [f(t)− favg(t)]2 +KgGainpen +Rp) +KnNoIntrew (6.6)

where Ki, Kf , Kg, and Kn are constant values defining the weight of each element

inside the reward function. The variable Intpen represents the count of physical inter-

actions that occurred before reaching the desired value, and as a result, no interaction

torque is applied to the joints. This count is reset to zero if there were no interactions

in the last two consecutive steps. By using this term, the agent is incentivized to

minimize the number of physical interactions during its operations. The purpose of

the Gainpen value is to motivate the agent to employ the lowest achievable RL gain.

It is essential to be mindful that utilizing extreme maximum or minimum gain values,

although they may expedite reaching the desired values, can result in an overly agile

or sluggish system, which is not desirable for exoskeleton users. The mathematical

formulation of Gainpen value is:

Gainpen =

{︄
exp(0.5 ∗ (5− actionraw)), actionraw < 5

exp(0.5 ∗ (actionraw − 5)), actionraw > 5
(6.7)

RP is the safety term that encourages our RL agent to avoid transitions to unsafe

states and is mathematically defined as:

Rp =

{︄
Pp, f /∈ [fmin, fmax] or γ /∈ [γmin, γmax]

0 otherwise
(6.8)
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where PP > 0 is constant and ωmax, ωmin, ρmax, and ρmin are safety thresholds set

a priori to ensure patient safety with the exoskeleton. Despite all of the previously

introduced terms in the reward function, the term NoIntrew incentivizes the agent for

not having interaction. The mathematical formulation for calculating this term is:

NoIntrew = exp(0.1(t− T )) (6.9)

where t represents the current time, and T is the time that system has detected

no interactions in the previous two consecutive steps. The utilization of the exp(·)

function is motivated by the intention to mitigate the inadvertent reinforcement of

the system over an extended period when the user wishes to remain on their present

trajectory.

6.4 Results and discussion

The simulation environment described in section 6.2 was utilized for training the RL

agent under two distinct scenarios. The generated pHRI torque randomly varied

from 1.9 to 2 N.m. The initial scenario involved a weak muscle condition, where the

user’s muscles lacked the necessary strength to achieve the desired frequency within

a reasonable time frame. This is the most prevalent scenario for clinical exoskele-

tons, which have been designed for users with mobility impairments. In the second

scenario, the user’s muscles were stronger than those used to identify ACPG param-

eters. Consequently, a single physical interaction from the user led to a frequency

higher than their intended target frequency. To elaborate more on the performance of

the proposed algorithm, three able-bodeid users performed several empirical experi-

ments. Each user did four experiments including weak and strong muscle scenarios

in the absence and presense of RL modifications.
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iCPG param-
eters

vh−h = 0.0075, vh−k =
0.0075, vk−h = 0.0075,
µf = 10π, µγ = 10π, F =
π/2, A = 1, fth = 2.8,
fmax = 3, γth = 1.5, γmax =
1.6

RL parame-
ters

ki = 4, kf = 0.1, kg = 0.3,
kn = 150, Pp = 1000,

Table 6.1: Parameters of the proposed iCPGs and RL.

6.4.1 Simulation results

The iCPG and RL parameters employed in the simulation and experiment are summa-

rized in Table 6.1. Also, the coefficients of the Fourier series in (6.4) were calculated

based on the gait data of a neurologically intact person [18].

Weak muscle scenario

Figure 6.2 shows the results for training RL agent for 500 s in the weak muscle

scenario. Note that η in (6.2) was set to 0.003 to represent weak muscle behavior in

the simulation. For almost 300 s, the RL agent was exploring, and the introduced

actions (Fig. 6.2b) did not follow a specific pattern. The RL agent found the optimal

policy after 300 s as shown in Fig. 6.2b, suggesting a higher gain (KRL in (6.5)) during

physical interaction and a lower gain when there is no pHRI. The reason for this

behavior is the existence of the gainpen in the reward function, which encourages the

RL agent to use the minimum possible RL gain. This helps the system avoid drastic

changes in the gait pattern and provide higher comfort and safety. The commanded

actions by the RL agent (Fig. 6.2b) modified the pHRI torque (Fig. 6.2c) and

increased that to facilitate reaching the desired frequency. The modified pHRI torque

was used to calculate the modified interaction energy via Eq. (6.3) and update the

gait frequency via iCPGs as seen in Fig. 6.2a.
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Figure 6.2: (a) Frequency, (b) RL action, (c) pHRI torque, and (d) modified interac-
tion energy, for weak muscle scenario during the training process in the simulation.
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Strong muscle scenario

To represent the strong muscle scenario, η in (6.2) was set to 0.05. The outcomes

of training the strong muscle scenario in the proposed simulation environment are

illustrated in Fig. 6.3. During the initial 200 s, the agent explored the action space,

testing various gain values. After this period, it settled into a more optimal pattern

for modifying pHRI, as shown in Fig. 6.3b. The recommended modifications via RL

were then applied to pHRI, resulting in decreased user physical interactions (see Fig.

6.3c) and facilitating attainment of the desired frequency shown in Fig. 6.3a.

6.4.2 Empirical results

To evaluate the proposed intelligent personalized motion planning algorithm, three

neurologically intact users were involved in the experiments. The users wore the

Indego lower-limb exoskeleton (Parker Hannifin Corporation, Macedonia, OH) and

also used a custom-made walker for safety while walking. The experimental setup is

shown in Fig. 6.4. To run the iCPG code, a desktop real-time Simulink was used with

a sampling frequency of 1 kHz. For running the reinforcement learning algorithm, a

Python script was used with a sampling frequency of 100 Hz. To create both weak

and strong muscle scenarios, the η in (6.2) was set to be 0.003 and 0.05, respectively,

for all three users during the experiments.

First user

Four different experiments were conducted with this user in order to evaluate the

performance of the proposed iCPGs and RL in motion planning. The user’s pHRI

torque was within the range of 1.8 − 2.1 N.m. For the weak muscle scenario, the

average action suggested by the RL agent (KRL in (6.5)) was 4.12 for the time period

shown in Fig. 6.5a. This meant that the user’s applied pHRI was amplified by the

factor of 4.12. This amplification facilitated the transition between desired frequencies

of 1.5 and 2.2 rad/s. As shown in Fig. 6.5a, the transition between two desired
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Figure 6.3: (a) Frequency, (b) RL action, (c) pHRI torque, and (d) modified interac-
tion energy, for strong muscle scenario during the training process in the simulation.
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Figure 6.4: Experimental set-up used for empirical experiments with a) first, b)
second, and c) third users.

frequencies took a maximum of 13 s in the presence of RL modification. The same

transition took more than 30 s in the absence of the RL agent.

For the strong muscle scenario, the user’s applied interaction was decreased to

almost half of its actual value via RL modifications. As shown in Fig. 6.5b, the user

oscillated around the desired frequency and did not converge to that in the allocated

40 s. However, by adding the RL modification, the user could reach the desired value

in a maximum of 4 s (see Fig. 6.6a).

Second user

Similar to the first user, the second user performed four different experiments, includ-

ing weak and strong muscle scenarios in the presence and absence of the proposed

RL-based modifications. The pHRI torque applied by the user was within the range

1.6 − 1.9 N.m, and the desired frequencies were 1.3 and 2.1 rad/s. For the weak

muscle scenario, the average modification suggested by the RL agent was 3.81 around

the 40 s mark shown in Fig. 6.7a. In the absence of the RL modification, the user

could not reach the desired frequency in the 40 s allocated time as shown in Fig. 6.7b.

However, taking into account the RL modification in pHRI, the maximum elapsed
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Figure 6.5: Actual and desired frequency of the first participant in the a) presence
and b) absence of RL modification to the pHRI torque for weak muscle scenario.
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Figure 6.6: Actual and desired frequency of the first participant in the a) presence
and b) absence of RL modification to the pHRI torque for weak muscle scenario.
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Figure 6.7: Actual and desired frequency of the second participant in the a) presence
and b) absence of RL modification to the pHRI torque for weak muscle scenario.

time in reaching the desired frequency is 14 s as shown in 6.7a.

For the strong muscle scenario, the RL decreased the actual pHRI torque by a

factor of 0.35 on average. Due to these modifications, the user reached their desired

value in less than 4 s as shown in Fig. 6.8a. However, in the absence of the RL

modifications, the user oscillated around the desired value for 40 s and has never

reached the desired value.

Third user

The aforementioned four scenarios were also tested with the third user. While the

other two users displayed symmetric interaction behavior in both positive and nega-

tive directions, this user exhibited positive pHRI torque within the range of 1−1.5 N.m

and negative pHRI torque within the range of 2 − 2.2 N.m. In the weak mus-

cle scenario, the user’s physical interactions never reached the desired frequency of

1.35 rad/s, as illustrated in Fig. 6.9b. However, the user was able to transition
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Figure 6.8: Actual and desired frequency of the second participant in the a) presence
and b) absence of RL modification to the pHRI torque for weak muscle scenario.

between two desired values of 1.35 rad/s and 1.05 rad/s in under 15 s through am-

plification from the RL agent, with an average amplification factor of about 3.9, as

shown in Fig. 6.9a. It is important to note that smaller desired frequencies were

selected for this user in order to evaluate the performance of the proposed method

across various scenarios.

Within the context of the strong muscle scenario, the user’s applied pHRI torque

was, on average, reduced by a factor of 0.3. This modification significantly improved

the user’s ability to attain the desired frequencies, achieving them in under 10 s as

depicted in Fig. 6.10a. In contrast, without the RL modification, the user was unable

to make the same transition to the desired frequency, even though they physically

interacted with the exoskeleton, as evident in Fig. 6.10b.

Upon reviewing the outcomes for all users, we found that, despite minor variations

in the physical interaction behavior of individuals, our trained RL agent effectively
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Figure 6.9: Actual and desired frequency of the third participant in the a) presence
and b) absence of RL modification to the pHRI torque for weak muscle scenario.
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Figure 6.10: Actual and desired frequency of the third participant in the a) presence
and b) absence of RL modification to the pHRI torque for weak muscle scenario.
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facilitated the transition between different desired frequencies.

6.5 Conclusion

In this study, we introduced a novel approach that integrated RL with iCPGs to

develop personalized motion planning strategies for exoskeleton-assisted mobility. By

leveraging an ACPG algorithm, we addressed the challenge of precise parameter iden-

tification, significantly bolstering the method’s robustness. Furthermore, we refined

the RL reward function and concept of interaction energy, placing user safety and

responsiveness at the forefront of exoskeleton system design. The introduction of

a dedicated simulation environment for agent training, faithfully replicating user-

exoskeleton interactions, has marked a critical milestone in our research. In addition

to our own work, this environment can be used by other researchers for training any

RL-based or neural network-based algorithms. Extensive simulations and trials in-

volving neurologically intact participants have yielded remarkably promising results,

underscoring the potential of our approach.
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Chapter 7

Intelligent Locomotion Planning
with Enhanced Postural Stability
for Lower-Limb Exoskeletons

7.1 Introduction

Spinal cord injuries, stroke, and multiple sclerosis are some causes of neurological im-

pairments in the human gait. Millions of people affected by these conditions will be

able to handle their daily activities and enhance their physical abilities by taking ad-

vantage of assistive and rehabilitative wearable systems (e.g., exoskeleton) developed

in recent years [101]. The capabilities of exoskeletons in providing long-term repet-

itive movements, facilitating physical assistance and collecting users’ motion data

by their embedded sensory systems make them unique for lower-limb rehabilitation

purposes [102]. Despite all of the advantages of employing exoskeletons in medical

applications, providing adaptable trajectories and gait features that can be amended

by the wearer while preserving the postural stability autonomously still needs to be

addressed to provide compliant and safe human-robot interaction (HRI) [14].

In the present chapter, an intelligent control strategy was developed and tested

for lower-limb exoskeletons by introducing a new integration of DCM and ACPG

schemes to facilitate both postural stability and adaptive locomotion planning. The

DCM analysis, which was previously developed for bipedal locomotion of humanoid
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Figure 7.1: Structure of the proposed intelligent control strategy with combination
of DCM and ACPG schemes for upper body adjustment and trajectory shaping

robots, was extended and generalized for the human-exoskeleton system (HES) for

the first time. To this end, the LIPF model was replaced with a new 4-DOF body

(4DB) model to address the following issues: (a) In the LIPF model, the CoM of the

whole system is considered to be at the middle of the line that connects the right and

left hips. However, for the humans, the CoM is mostly higher than this level and can

be different for users based on their body characteristics. Taking 4DB model into

account, the CoM of combination HES can be at any point higher or lower than this

level. (b) Due to the attachment of exoskeleton to the human body, the mechanical

properties (e.g., moment of inertia and mass) for different segments of the HES can

be significantly different for various wearers. Using the proposed 4DB model, these

dynamic parameters can be personalized for each user to make the locomotion control

strategy case-specific.

Using the proposed DCM analysis, a hip joint correction was generated in real-time

to amend the trunk position and consequently adjust the DCM on its desired value at

the end of each step. ACPGs were defined to shape joint trajectories in response to

the human interaction torques by regulating the amplitude and frequency of walking.

In addition, the ACPG dynamics was designed to guarantee that gait frequency is less

than the maximum stable frequency of walking and the output trajectories are within

the feasible movement ranges of the exoskeleton joints. Accordingly, the set of com-
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mands generated by the DCM and ACPG schemes were combined to autonomously

facilitate locomotion trajectories that are compatible with the user’s intention (active

physical interaction) and also ensure the viability of walking through postural stabil-

ity. The NARX neural network was employed to learn the passive dynamics of the

HES in offline training sessions similar to method introuced in Chapter 4. Various

position and velocity trajectories (inputs), and associated joint torques (outputs) of

the multi-DOF exoskeleton were fed to this NN for training. The network was then

used to estimate the active portion of the human physical interaction torque online

and obtain pHRI energy for the ACPG-based trajectory shaping. The rest of the

chapter is organized as follows. The DCM and ACPG formulations for upper-body

and gait adjustments are described in Section 7.2. The experimental results of the

proposed strategy having an able-bodied wearer are demonstrated and discussed in

Section 7.3, and concluding remarks are mentioned in Section 7.4.

7.2 Methodology

In this section, the mathematical formulations and different components of the pro-

posed intelligent control strategy with their interconnections are explained. Using

this strategy, the exoskeleton’s wearer has the authority to adjust and personalize the

gait parameters by applying torques and ACPGs that translate this pHRI torque into

complaint locomotion trajectories. In order to guarantee the viability of walking, the

exoskeleton modifies the upper body position using a hip correction approach based

on a new DCM analysis. The structure of this control strategy with the combination

of DCM and ACPG schemes is shown in Fig. 7.1.

7.2.1 DCM Analysis with 4DB Model

The linear inverted pendulum flywheel model has been widely used to simulate and

analyze bipedal walking for humanoid robots. In this model, the center of mass is

considered to be exactly in the middle of the imaginary line that connects the right
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Figure 7.2: Schematic of the proposed 4-DOF body (4DB) model for DCM analysis

and left hip joints. Also, the mass-less inverted pendulum and flywheel represent

the legs and upper body, respectively, which are simplistic assumptions. To study

a collaborative human-exoskeleton walking, due to the human body characteristics,

the center of mass can be at any point (not necessarily the hip joint). In order to

address this issue, a new 4-DOF body (4DB) model was developed to represent the

bipedal locomotion of the HES. As demonstrated in Fig. 7.2, the first link represents

the stance leg, which is pivoted on the ground at the foot’s center of pressure (CoP).

The second segment in this model is the upper body, and the third and fourth links

are devoted to the thigh and shank of the swing leg. The center of mass (CoM) of the

HES is person-specific, which can be obtained based on the mechanical specifications

of the user and exoskeleton. Using the Euler-Lagrange equation, the motion dynamics

of the 4DB model was derived as
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M⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎣
M11 M12 M13 M14

M12 M22 M23 M24

M13 M23 M33 M34

M14 M24 M34 M44

⎤⎥⎥⎥⎥⎥⎥⎦

q̈⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎣
q̈1

q̈2

q̈3

q̈4

⎤⎥⎥⎥⎥⎥⎥⎦+

G⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎣
G11 G12 G13 G14

0 G22 G23 G24

0 0 G33 G34

0 0 0 G44

⎤⎥⎥⎥⎥⎥⎥⎦

p⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎣
cos(q1)

cos(q1 + q2)

cos(q1 + q2 + q3)

cos(q1 + q2 + q3 + q4)

⎤⎥⎥⎥⎥⎥⎥⎦ =

τ⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎣
0

τc

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

(7.1)

where the elements of the inertia (M) and gravity (G) matrices are defined in the

Appendix A. Note that in the derivation of the 4DB model, the segments were con-

sidered to be close to their vertical positions (q1 ≃ π
2
, q2, q3, q4 ≃ 0) in the upright

configuration of the body. Similar assumptions were considered in the previous mod-

els, e.g., LIP and LIPF [57], [56]. Given the 4DB model, the position and acceleration

of the Center of Mass (CoM) are

xCoM =

φ⏟ ⏞⏞ ⏟[︂
φ1 φ2 φ3 φ4

]︂ [︂
p
]︂

(7.2)

ẍCoM =

ψ⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎣
−φ1 − φ2 − φ3 − φ4

−φ1 − φ2 − φ3

−φ1 − φ2

−φ1

⎤⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎣
q̈1

q̈2

q̈3

q̈4

⎤⎥⎥⎥⎥⎥⎥⎦ (7.3)

in which φi for i = 1− 4 are defined as

φ1 =
m1lc1 +m2l1 +m3l1 +m4l1∑︁4

i=1mi

φ2 =
m2lc2∑︁4
i=1mi

φ3 =
m3lc3 +m4l3∑︁4

i=1mi

φ4 =
m4lc4∑︁4
i=1mi

(7.4)

Given (7.1), the joint acceleration vector can be summarized as

q̈ =M−1[τ −Gp] (7.5)
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Note that the inertia matrix M is positive definite and always invertible. Therefore,

substituting (7.5) into (7.3), the acceleration of CoM is obtained as

ẍCoM = ψM−1τ − ψM−1Gp (7.6)

Having (7.2), the acceleration of CoM can be rewritten as a function of the CoM

position (xCoM) and the torque applied to the trunk (τ) as

ẍCoM = αxCoM + βτ (7.7)

where α and β are

α = −ψHxCoM β = ψM−1 (7.8)

and H = M−1Gφ†, in which φ† is the right pseudo-inverse of φ, defined as φ† =

φT (φφT )−1.

Similar to the definition proposed in Jeong et al. [56], the extended DCM for the

new 4DB model is defined as (see Appendix A for detailed description)

ζ = x+
ẋ√
α

(7.9)

Substituting the CoM acceleration in the 4DB model (7.7) into the time derivative

of (7.9), the extended DCM dynamics is obtained as

ζ̇ =
√
α(ζ +

β

α
τ) (7.10)

In order to facilitate stable locomotion, the DCM value (ζ) at the end of each gait

cycle needs to be controlled [103]. To this end, an optimization problem was defined

to minimize the error between the actual and desired values of the DCM at the end

of each step by adjusting the correction torque applied to the upper body.

min
τc

w1||τc||22 + w2||ζT − ζTd||22 (7.11)

where ζT and ζTd are the actual and desired end-of-step values of the DCM, respec-

tively, and w1 and w2 are the optimization gains. Due to the attachment of the
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Figure 7.3: Demonstration of footprints and DCM trajectory and offset during loco-
motion

relative reference frame to the stance foot (shown Fig. 7.3), the desired DCM value

at the end of the step (ζTd) is equal to the desired DCM offset at that moment (bd),

which is defined in the next section.

7.2.2 DCM Offset for Viability of Walking

The DCM offset was defined as the difference between the landing location of the foot

at the end of its swing phase and the point that DCM arrives at the end of that step.

This offset is known as the key factor to address the most important characteristic of

the bipedal locomotion, which is postural stability ensuring the viability of walking

[104]. For instance, the higher gait velocities require larger DCM offset values and

vice versa [56]. Figure 7.3 depicts the schematic of footprints and DCM offset in one

stride.

The desired DCM offset for the 4DB model was determined based on the amplitude

and frequency characteristics of the walking as described by Jeong et al. [56], and

Khadiv et al. [105]

bd =
L

e
√
αT − 1

(7.12)

where L is the stride length and T is the step time. By reaching the desired offset

value at the end of the step, in the absence of any disturbance, the CoM will travel
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the desired distance during the next step [104]. Using the ACPG dynamics in the

proposed strategy, the user can modify the amplitude and frequency of locomotion

based on his/her desired gait pattern, by applying pHRI torque. Therefore, the

desired DCM offset will be affected by any change in the amplitude and frequency

of walking. Accordingly, the physical HRI can alter the desired DCM value/offset at

the end of each step.

Considering the kinematic and dynamic constraints of the human-exoskeleton sys-

tem, the maximum possible DCM offset is calculated as

bmax =
Lmax

e
√
αTmin − 1

(7.13)

where Lmax is the maximum feasible stride length and Tmin is the minimum step time.

7.2.3 ACPG Dynamics for Synchronized and Feasible Loco-
motion

ACPG dynamics was used for shaping stable gait parameters based on the pHRI

torque. In order to prevent the loss of postural stability during locomotion, threshold

terms were added to the ACPG dynamics to confine the amplitude and frequency

of walking to the kinematic limits of the human-exoskeleton system. Therefore, the

user has the authority to adjust the gait parameters over the stable limit by applying

the interaction torque. In order to determine the pHRI torque, an autoregressive

network with exogenous inputs (NARX) was used to learn the passive dynamics

of human limbs and exoskeleton. To collect motion and motor actuation data, a

neurologically intact user was asked to walk with an exoskeleton over the ground for

several trials. The data were classified for the stance phases of the right and left

legs based on heel strike moments from pressure sensors embedded in insoles. Also,

the user was asked to not apply any active interaction torque, so that the whole

system was actuated using the motor torque applied to the joints. The position,

velocity and torque values of the joints were collected for different frequency and

amplitude values to be used for training the NARX. For the training process, the
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position and velocity of the joints were considered as the inputs u(t), and the motor

toques of the joints as the output y(t). The trained NARX had the capability of

estimating the passive dynamics of the human limbs and exoskeleton (τpass) during

the online experimental process. Therefore, the interaction torque was determined as

the difference between the current joint torque of the joint (τi) and the passive joint

torque that was estimated by the NARX (τpass) as [37]

τHRIi = τi − τpass (7.14)

Given the pHRI torque, the pHRI energy for each joint i was determined by taking

the time integral of the multiplication of pHRI torque and velocity as

Ei(t) =

∫︂ t

0

τHRIi(t) q̇i(t) dt (7.15)

in which q̇i(t) is the velocity and τHRIi(t) is the estimated human torque of the joint

i = 1, ..., n. When the interaction torque had the same sign as velocity, the applied

torque accelerated and when they had opposite signs, this torque caused deceleration

of walking. The ACPG dynamics for the joint trajectory generation, considering

maximum gait frequency and amplitude, was defined as

θ̇i(t) = f(t) +

mi∑︂
j=1

vij sin(θi(t)− θj(t)− ϕij)

f̈(t) =µf (
µf
4
(F +

n∑︂
k=1

ηkEk − f(t))− ḟ(t))− kf
DZ+(f(t)− fth)
(fmax − f(t))3

γ̈(t) =µγ(
µγ
4
(A+

n∑︂
k=1

λkEk − γ(t))− γ̇(t))− kγ(t)
DZ+(γ(t)− γth)
(γmax − γ(t))3

(7.16)

where mi is the number of adjacent joints to the joint i, and n is the number of all

joints. fmax and γmax are the maximum frequency and amplitude values considered

based on the motion constraints of the exoskeleton and walking safety concerns. If

the frequency and amplitude exceed their threshold values fth and γth, the dead-zone

function DZ+ is triggered to control them below their maximum values. Note that

DZ+(x) = x for positive values of x and DZ+(x) = 0 for any non-positive x. The ηk
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and λk are constant gains for the effect of pHRI energy on the locomotion frequency

and amplitude, respectively. vij, µf and µγ are other constant parameters of the

dynamics. Using (7.16), the knee joint i’s desired trajectory was formulated as

qdi(t) = γ(t)(ai0 +

Ni∑︂
l=1

(ail cos(lθi(t)) + bil sin(lθi(t))) (7.17)

where ail and bil are the coefficients of the Fourier series (with Ni terms) to initially

coordinate the desired knee trajectory of the joint i with a typical one, as presented

in Fig. 7.1.

The correction trajectory for the hip joints is affected by the obtained torque from

the DCM adjustment strategy (see Eq. (7.11)).

τc = Jθ̈corr (7.18)

where J is the moment of inertia for the upper-body of HES. By integrating the DCM

torque in (7.18) over time, the trajectory correction for the hip joints (θcorr) was

determined. This time-varying correction adjusts the upper body position to reach

the desired DCM value at the end of each step. Therefore, the desired trajectories of

the stance and swing legs’ hip joints were defined in terms of variables in (7.16) and

(7.18) as

qdhST
(t) = γ(t)(ai0 +

Ni∑︂
l=1

(ail cos(lθi(t)) + bil sin(lθi(t))) + θcorr

qdhSW
(t) = γ(t)(ai0 +

Ni∑︂
l=1

(ail cos(lθi(t)) + bil sin(lθi(t)))− θcorr

(7.19)

where qdhST
and qdhSW

are the desired trajectories of stance and swing legs’ hip joints,

respectively.

Given all of the desired joint trajectories, which are generated in real-time from

the combination of DCM and ACPG schemes, a position tracking controller can be

employed to follow this comfortable and safe locomotion. Note that because of the

ACPG dynamics, the wearer has enough authority to adjust the gait parameters,
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but the intelligent controller of the exoskeleton limits the amplitude and frequency to

ensure the viability of walking. Figure 7.1 demonstrates the structure of the proposed

autonomous trajectory shaping and postural stability control.

7.3 Results & Discussion

In order to evaluate the effectiveness of the proposed autonomous trajectory shaping

strategy, experimental studies were conducted using the Indego lower-limb exoskele-

ton (Parker Hannifin Corporation) [7] and an able-bodied human subject (height:

173 cm; weight: 67 kg) shown in Fig. 7.4. Note that the body characteristics of

the exoskeleton wearer in (7.1) were estimated based on the provided formulations in

Winter [106] according to the height and weight of the subject. The subject is asked

to put a safety harness on, which is connected to an overhead lift to prevent injury

in the case of falling. Real-time Desktop Simulink was utilized as the control soft-

ware to implement the proposed intelligent control strategy (it received the sensory

data, processed them and commanded the motor torques) on the exoskeleton with

a sampling frequency of 100 Hz. For following the generated online trajectory, the

built-in proportional-derivative (PD) position controller of the Indego was employed

with appropriately adjusted gains. A pair of insole pressure sensors were embedded

inside the shoes for detecting heel strike and stance leg to switch the pivot point of

the 4DB model (Fig. 7.2) between the right and left legs. As soon as the switching

of the stance phase occurred from one leg to the other, all DCM calculations switch

correspondingly such that the pivot point, shifted to the new stance foot.

The experimental results are presented in two parts. In the first part, trunk position

adjustment using the proposed DCM analysis was evaluated for postural stability. In

the second section, the effect of human interaction torque on the ACPG-based shaping

of the gait characteristics (frequency and amplitude) and providing safe locomotion

trajectories was investigated. The parameters of the DCM dynamics (7.10) were

determined as α = 4.95 and β = 0.76 based on the mechanical properties identified
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Figure 7.4: Experimental set-up: Indego lower-limb exoskeleton in a user study (hav-
ing a safety harness) during over-ground walking

for the HES. The optimization gains were also specified as w1 = 10−7 and w2 = 1

using a trial-and-error method to have an appropriate trade-off between the obtained

torque (τc) for the trunk and the DCM error (ζT − ζTd) at the end of a step.

7.3.1 Trunk Adjustment Using DCM Analysis

The desired DCM offset value at the end of each step was a function of the step

length and total frequency of walking based on Eq. (7.12). Due to the variation of

landing positions, the optimization approach (Sec. 7.2.1) was utilized to obtain the

upper-body torque (τc) and determine the hip trajectory correction (Eq. 7.18) in

order to minimize the DCM error at the end of each step. The correction value of

the upper body position (θcorr) was added to the reference ACPG trajectory for the

hip joint of the stance leg. Note that, the negative value of the θcorr was added to

the reference CPG trajectory of the hip joint of the swing leg, in order to not affect

the swing trajectory of the walking.

The primary amplitudes of the hip and knee motions were considered 59 and 70

degrees, and the locomotion frequency was set to 2.6 rad/s based on typical gait

cycles. Figure 7.5 represents trajectories of the right and left hips with and without
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Figure 7.5: Right and left hip trajectories in the presence and absence of DCM
corrections

applying the DCM correction for them. This motion correction at the beginning of

the stance phase of each leg decreased the desired hip angle of that leg. As seen in Fig.

7.5, the desired trajectory of the swing leg’s hip was also increased in the opposite

direction to preserve the landing position of the next step (as described in Sec. 7.2.3).

The landing moments of the left and right feet are pointed out in Fig. 7.5, where the

acceleration of hip corrections was changed. This behavior is also illustrated in Fig.

7.6, where the modifications can be seen in the relative motion of the hips. From

the beginning of the stance phase, the synchronization of the right and left hip joints

became distorted as highlighted in Fig. 7.6.

In order to elaborate more on the trunk position correction obtained from the DCM

analysis, Fig. 7.7 depicts the DCM values for the stance phases of the right and left

legs. Note that in the calculation of DCM magnitude, the stance foot’s CoP was

considered as the Cartesian coordinates’ origin (shown in Fig. 7.3). As seen in Fig.

7.7, for the first four steps of walking (t = 0 − 5.17 s), the DCM has a disorganized

translation from the initial value to the end-of-step one due to the wearer’s interaction

with the exoskeleton. In order to minimize the DCM end-of-step error, the highest

position correction for upper body was suggested during this period in comparison

to the latest four steps as observed in Fig. 7.5. Similarly, in all of the other steps

of walking, the upper body’s position correction adjusted the hip joints’ trajectories
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Figure 7.6: Relative motion of the right and left hips with and without considering
DCM corrections

generated by ACPGs to reach the desired DCM value at the end of each step. In

order to evaluate how the end-of-step DCM error was affected by the upper body

adjustment, the result of DCM values in the absence of applying the proposed DCM

correction was investigated in another experiment. As demonstrated in Fig. 7.8,

the average end-of-step error without upper body adjustment was 0.05 m, which was

considerable and caused unstable walking that would raise the risk of falling down

without employing a safety harness. However, using the proposed DCM correction

strategy, this error was reduced to 0.002 m and the DCM trajectory experienced more

organized variations (Fig. 7.5).

The desired trajectories for the hip and knee joints, obtained from the combined

ACPG and DCM schemes, were commanded to a PD position controller to be tracked

by the exoskeleton. The performance of this controller in following the desired values

of the right hip and knee (with the maximum errors of 0.6 degree and 1.1 degrees,

respectively) are shown in Fig. 7.9.
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Figure 7.7: Actual and desired end-of-step values of DCM for right and left feet in
the presence of DCM correction
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Figure 7.8: End-of-step values of DCM in the absence of DCM correction
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Figure 7.9: Performance of the position controller in tracking the desired right hip
and knee trajectories
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7.3.2 Locomotion Shaping with MaximumWalking Frequency

The performance of the proposed ACPGs in online shaping of gait parameters was in-

vestigated while preserving the postural stability. During this experiment, the wearer

applied accelerating torques on different joints in order to speed up his walking.

Although he was able to increase the amplitude and frequency of locomotion, the

threshold and maximum values of these variables were set to be γth = 1.1, γmax = 1.2

and fth = 1.04π rad/s, fmax = 1.08π rad/s in (7.16) based on practical limitations of

the exoskeleton movement and the safety of the human user. As seen in Fig. 7.10a,

the total gait amplitude γ increased and reached its threshold value at t = 0.85 s.

After this time, the threshold regulation term in (7.16) was activated to detract the

increment rate of the amplitude and saturate it around 1.19 at t = 14.5 s. Similar

behavior can be seen in Fig. 7.10b for the total frequency of walking according to

(7.16), where its threshold regulation term was triggered at t = 2.15 s and then the

frequency is saturated below f1(t) = 3.39 rad/s until 18.5 s. Also, in order to fur-

ther evaluate the effectiveness of ACPG in facilitating the user’s intention, the wearer

could change the frequency of walking to a desired value less than the threshold in

another experiment. As seen in Fig. 7.10b, the total frequency of walking reached

the desired value of f2(t) = 2.4 rad/s at t = 7.5 s and the user retained this walking

frequency for the rest of his locomotion.

As discussed in Sec. 7.2.2, the DCM offset is a function of the walking frequency

and the step length. Given the maximum feasible amplitude and frequency of walking

as γmax = 1.2 and fmax = 1.08π rad/s, the maximum DCM offset was obtained as

bmax = 7.5 mm. As is observed in Fig. 7.11, after t = 2.17 s both amplitude and

frequency threshold terms were activated in (7.16), the variation rate of bd decreased

drastically and finally plateaued at t = 18.5 s around 6.6 mm which is less than the

maximum offset value (bmax = 7.5 mm).
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Figure 7.10: Control of (a) the amplitude and (b) the frequency of locomotion between
their threshold and maximum values using ACPG dynamics
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Figure 7.11: Variation of DCM offset below its maximum value
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7.4 Conclusions

In the present study, a novel intelligent control strategy was developed for the hu-

man exoskeleton system, which can revise the locomotion trajectories in real-time for

preserving postural stability. In the proposed shared autonomy between the human

and robot, the user has the authority of adjusting the amplitude and frequency of

walking, while the exoskeleton has enough autonomy to correct the trunk position to

guarantee the viability of walking and limit the gait amplitude and frequency within

their feasible ranges. For these purposes, the DCM analysis was extended by present-

ing a new 4-DOF body (4DB) model to be compatible with the human-exoskeleton

system’s dynamics. Taking the advantage of this 4DB model, the locomotion con-

trol was personalized by considering the dynamic parameters of the body segments

(moment of inertia, mass and CoM) for each user.

The pHRI torque was employed in the ACPG structure to update the locomo-

tion based on the user’s intention. Also, the desired DCM value at the end of each

step was calculated based on the user’s demanded amplitude and frequency, which is

facilitated by adjusting the upper body position using a hip correction strategy for

the exoskeleton. To this end, an optimization problem was defined to minimize the

DCM end-of-step error by determining the required upper body motion correction

that should be added to the desired gait trajectories. This revised trajectory gener-

ated by combination of DCM and ACPG schemes was tracked by the exoskeleton’s

motor controller. The proposed strategy was tested experimentally on the Indego

lower-limb exoskeleton, and the obtained results proved its effectiveness in provid-

ing postural stability and the adaptation of gait motion. Accordingly, this control

method enhanced the user’s safety and comfort in walking (as one of the most essen-

tial activities) using an assistive exoskeleton by offering a trade-off between the robot

autonomy and human authority. The upper-body position adjustment was designed

to provide postural stability with slight changes in the gait parameters (amplitude
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and frequency) in response to the active pHRI torque. However, for the case of

large disturbances, e.g., having a collision with the environment, an extended con-

trol approach with the ankle joint’s actuation will be required. This strategy can be

investigated in future studies using fully actuated exoskeletons.
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Chapter 8

Conclusions, Recommendations,
and Future Work

8.1 Conclusions

This dissertation centered on the development of advanced motion planning algo-

rithms with the aim of enhancing adaptability for lower-limb exoskeletons. The re-

search encompassed comparative studies of users’ gait patterns, revealing substantial

variations in locomotion among individuals. Furthermore, it was evident that an in-

dividual’s gait could be influenced by factors such as fatigue and aging, causing it to

evolve over time. Consequently, an effective exoskeleton should possess the capability

to adapt to its wearer’s walking pattern, a feature notably absent in the majority of

commercially available exoskeletons.

Chapters 1 and 2 were dedicated to presenting the project’s underlying motiva-

tions and a comprehensive review of prior research efforts that had addressed various

challenges. In both Chapter 3 and Chapter 4, the focal point was the introduction

of Adaptable Central Pattern Generators (ACPGs) designed to facilitate the genera-

tion of walking patterns. These ACPGs operated in synchronization across different

joints and were dynamically updated in response to the physical interactions of hu-

man users, with the primary aim of enhancing their walking comfort while utilizing

exoskeletons.

Within the framework of the proposed ACPGs, an overarching locomotion fre-
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quency was established to govern the motion of all joints, modulated in accordance

with the energy derived from physical human-robot interactions (pHRI). This sys-

tem allowed for real-time adjustments to the amplitude and equilibrium positions

of joint oscillations based on pHRI torque, all while incorporating safety measures

to prevent joint motions from exceeding predetermined safety limits. Furthermore,

a Proportional-Derivative (PD) low-level controller was employed to faithfully track

the high-level trajectories commanded by the ACPGs.

In the course of evaluating the effectiveness of this intelligent control strategy

through experimentation, a group of able-bodied individuals, wearing the Indego ex-

oskeleton, demonstrated the ability to significantly customize and personalize gait

characteristics within a brief time frame. This was achieved through the applica-

tion of active torques to various joints, underscoring the adaptability and real-time

responsiveness of the system.

Chapters 5 and 6 described the iCPGs which designed to chart personalized walk-

ing trajectories for lower-limb exoskeletons. This novel approach fused RL with the

previously established ACPGs, enabling a comprehensive understanding of a user’s

physical interaction behavior and the subsequent refinement of the exoskeleton’s walk-

ing trajectories. The ACPG method, deeply rooted in the incorporation of pHRI

within CPGs, facilitated real-time adaptability of gait trajectories. However, the pre-

cise identification and dynamic updating of ACPGs parameters remained a critical

prerequisite for the effective refinement of gait trajectories, especially in response to

pHRI.

Our proposed method harnessed RL to modulate pHRI energy based on a user’s

interaction behavior, culminating in the formulation of an effective energy value that

facilitated the realization of desired gait patterns through the dynamics of iCPGs.

This innovative approach showed great promise in resolving the previously mentioned

challenges associated with ACPGs and personalized trajectory generation. Notably,

the outcomes of both simulations and experiments served as tangible evidence of the
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method’s remarkable capacity to adapt effectively to a user’s behavior across various

walking scenarios involving the Indego lower-limb exoskeleton.

In Chapter 7, an integrated control strategy was meticulously developed to ele-

vate safety levels by addressing both locomotion trajectory planning and postural

stability, thereby fostering shared autonomy between the human operator and the

lower-limb exoskeleton. Previously, the regulation of the center of mass (CoM) posi-

tion for humanoid robots relied on Divergent Component of Motion (DCM) analysis

rooted in the Linear Inverted Pendulum Flywheel (LIPF) model. However, within

this chapter, a novel extended model was proposed for DCM analysis, supplanting the

earlier LIPF model, which was originally tailored for multi-degree-of-freedom (DOF)

exoskeletons. This novel model was intricately designed to be personalized for each

user, relinquishing the assumption that the total CoM resided solely at the hip joint,

as was presumed by the previous LIPF model.

As a result, the exoskeleton gained the authority to ensure postural stability and

maintain the viability of locomotion during physical human-robot interaction (pHRI)

by orchestrating upper body adjustments through a DCM-based hip correction strat-

egy. Additionally, through the integration of adaptable CPGs, users were empowered

to make real-time modifications to gait trajectories while adhering to the boundaries

defined by feasible amplitude and frequency ranges for walking. The efficacy of this

intelligent controller in promoting both safety and stability during locomotion was

investigated and verified through a series of experimental studies conducted with a

lower-limb exoskeleton.

Throughout the thesis and as demonstrated in the empirical results, the proposed

ACPGs, iCPGs, and DCM algorithms have shown significant potential in enhancing

the comfort and safety of motion planning for lower-limb exoskeletons. Both the

ACPGs and iCPGs introduce adaptivity to the motion planning process, allowing

users to customize the exoskeleton’s gait to suit their individual comfort preferences.

For instance, users can adjust walking velocity or the range of motion for specific
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joints to optimize comfort and accommodate personal preferences. This adaptability

empowers users to tailor their exoskeleton’s movements according to their unique

comfort requirements, ultimately enhancing the overall user experience and improving

adherence to exoskeleton-assisted mobility.

The integration of ACPGs, iCPGs, and DCM algorithms has significantly bolstered

the safety standards within the exoskeleton system. A key safety enhancement lies

in the ensured synchrony among different joints of the exoskeleton during motion

planning, facilitated by the ACPGs and iCPGs. This synchronization feature ensures

smooth and coordinated movements, thereby promoting safer locomotion. Moreover,

the inclusion of safety parameters within the ACPGs structure serves as an additional

safeguard by constraining exoskeleton trajectories to safe velocities, step lengths, and

ranges of motion. Beyond the ACPGs and iCPGs, the implementation of the DCM

algorithm further enhances postural stability, contributing to safer locomotion plan-

ning for exoskeleton users. By improving stability and balance, the DCM algorithm

helps mitigate the risk of falls or instability during walking, ultimately enhancing the

overall safety profile of the exoskeleton system.

Although the proposed algorithms have primarily been tested with able-bodied

individuals, they hold significant potential for individuals with neurological impair-

ments, particularly those with spinal cord injuries (SCI). In clinical rehabilitation

settings, therapists can leverage these algorithms by adjusting the exoskeleton set-

tings to lower velocities and step lengths, allowing users to actively participate in

modifying their walking patterns through applied force. Additionally, considering

the diverse nature of impairments and rehabilitation needs among individuals with

SCI, adaptive exoskeletons capable of dynamically adjusting gait trajectories offer

tailored solutions. This adaptability enables therapists to customize rehabilitation

programs to align with individualized goals and varying levels of impairment, fos-

tering personalized gait training programs that effectively address specific challenges

and facilitate optimal recovery.
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Beyond rehabilitation, adaptive exoskeletons also hold significant potential in the

realm of assistance. Currently, many commercially available exoskeletons are de-

signed to be controlled by therapists, limiting independent usage for individuals with

spinal cord injuries (SCI). Thus, adaptive exoskeletons emerge as crucial requirements

for enabling independent use of these devices in various settings. While the current

versions of the proposed algorithms may not be immediately applicable for such appli-

cations, the ongoing process of industrializing these algorithms holds promise for their

eventual integration into adaptive exoskeletons. Through this process, the potential

for individuals with SCI to use exoskeletons autonomously in diverse environments

becomes increasingly feasible.

Industrializing the proposed ACPGs, iCPGs, and DCM algorithms for motion

planning of exoskeletons for individuals with neurological impairments entails sev-

eral essential steps. Firstly, conducting comprehensive user studies with able-bodied

participants is imperative. This initial step allows for a thorough understanding of

the algorithm’s most sensitive aspects, facilitating their refinement to optimize per-

formance. With the improved algorithm and insights garnered from user studies,

the next critical phase involves defining the specific neurological impairments that

stand to benefit most from the algorithm’s application. Once the target population

is clearly identified, rigorous testing of the algorithm on individuals with neurologi-

cal impairments becomes paramount, accompanied by soliciting their feedback and

insights.

This iterative process of user study within the target population offers invaluable

insights into the algorithm’s efficacy and suitability for individuals with neurological

impairments. By gathering feedback directly from users, including their experiences,

challenges, and preferences, a comprehensive understanding of the algorithm’s poten-

tial success in addressing the needs of the target population is attained. These insights

guide further refinements and adjustments to the algorithm, ensuring its alignment

with the specific requirements and preferences of individuals with neurological im-
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pairments. Ultimately, this systematic approach to industrialization facilitates the

development of robust, user-centered algorithms tailored to enhance motion plan-

ning and optimize the functionality of exoskeletons for individuals with neurological

impairments.

8.2 Limitations of this research

Despite the successful outcomes detailed in the preceding sections, each of the pro-

posed algorithms exhibits certain limitations. For the proposed ACPGs (Chapters

3 and 4), the primary limitation lies in the necessity of applying interaction torque

to update the gait. In essence, this method is only applicable to individuals capable

of exerting voluntary interaction torques on the exoskeleton joints. Furthermore, the

performance of the ACPGs algorithm is heavily reliant on the accuracy of pHRI es-

timation methods. Inaccuracies in pHRI estimation may lead to deviations from the

desired gait pattern. Similarly, involuntary physical interactions with the exoskeleton,

stemming from factors such as muscle spasticity, collisions with obstacles, or changes

in motion direction, can also influence gait performance. However, despite these lim-

itations, the presence of embedded safety measures within the algorithm ensures that

these issues do not result in catastrophic events.

It’s worth noting that the proposed ACPGs offer potential benefits in addressing

specific scenarios involving involuntary interactions. Take, for instance, the case of

muscle spasticity, where involuntary interactions may restrict the range of motion and

walking velocity. In such instances, the ACPGs can dynamically adjust the exoskele-

ton trajectory to avoid positions and velocities that trigger these involuntary physical

interactions. By adaptively modifying the gait pattern, the system can mitigate the

impact of muscle spasticity, enhancing user comfort and safety during locomotion.

Moreover, in the event of a collision with an obstacle in the environment, the ACPGs

possess the capability to swiftly respond by either reducing the walking velocity or

halting the exoskeleton altogether. This proactive adjustment helps prevent further
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collisions and ensures the user’s well-being by promptly addressing potential hazards

in the surroundings.

The proposed iCPGs (introduced in Chapters 5 and 6) encounter comparable lim-

itations to those observed with the ACPGs. Challenges persist due to inaccuracies

in pHRI torque estimation and the occurrence of involuntary physical interactions,

both of which can impede the convergence of the RL agent, leading to suboptimal

outcomes. When pHRI torque estimation is inaccurate, the RL agent may base its

decisions on flawed information, potentially converging to local optima rather than

identifying globally optimal policies. Similarly, involuntary physical interactions, such

as those arising from muscle spasticity or collisions with obstacles, introduce uncer-

tainties into the system dynamics, complicating the learning process for the RL agent.

These uncertainties may disrupt the exploration-exploitation trade-off, hindering the

agent’s ability to discover and exploit effective locomotion strategies.

The primary constraint of the proposed DCM algorithm outlined in Chapter 7

is its limitation to adjusting the upper-body position exclusively. Many algorithms

addressing postural stability in bipedal robots typically incorporate adjustments to

the upper body, ankles, and foot landing positions to enhance stability. Consequently,

our proposed DCM algorithm is particularly effective in scenarios involving minor

variations in the gait cycle, such as changes in velocity or step length. However,

its applicability becomes restricted when confronted with more significant challenges,

such as ensuring postural stability on slippery surfaces. Moreover, the proposed DCM

algorithm is specifically designed for walking and may not extend its guarantee of

postural stability to diverse modes of motion, such as stair climbing or transitioning

from a seated to a standing position.

8.3 Future Work

This thesis has laid the foundation for enhancing the adaptive locmotion planning of

exoskeletons for the purpose of walking. While the results presented here showcase
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the potential of our approach, there are several promising avenues for future research

and development to further advance this field.

A primary and pivotal direction for future research entails the refinement of low-

level control strategies to ensure the seamless and natural locomotion of exoskeleton

users. While the present study predominantly emphasized high-level control aspects

in exoskeletons, there exists significant potential in leveraging advanced low-level con-

trol techniques to enhance the flexibility and performance of exoskeletal locomotion.

This optimization has the potential to deliver a more comfortable and user-friendly

walking experience for exoskeleton wearers, ultimately fostering a heightened level of

acceptance and integration of these groundbreaking devices into everyday life.

While this thesis primarily centered its attention on the optimization of walk-

ing gaits within the context of exoskeletons, it is imperative to recognize the vast

landscape of potential locomotion scenarios that warrant exploration. A promising

avenue for future research lies in the development of adaptive control algorithms that

encompass a broader spectrum of locomotion types. Specifically, we can embark on

investigations into the creation of control strategies for activities like sitting, stair

climbing, and even the execution of more intricate locomotion tasks, such as navigat-

ing rough terrains and surmounting obstacles while utilizing exoskeleton technology.

Furthermore, a crucial aspect deserving attention is the establishment of seamless

and efficient transitions between these diverse locomotion modes. Future studies can

thus delve into refining these transition mechanisms to further enhance the versatility

and adaptability of exoskeleton-assisted mobility.

Functional electrical stimulation (FES) is a technique that uses electrical impulses

to stimulate muscles and restore or enhance their function in individuals with neuro-

logical or muscular impairments.The integration of FES with motor actuation repre-

sents a promising avenue to enhance the capabilities of robotic locomotion. FES can

be employed to stimulate muscles directly, enabling more natural and energy-efficient

movements. Future work should explore the synergistic effects of combining FES with
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conventional motor actuation, thereby improving the efficiency and adaptability of

the locomotion system.

An essential yet unexplored aspect within this thesis pertains to the enhancement

of sensory feedback and perception systems, which play a pivotal role in achieving

superior control within real-world environments. To further elevate the practicality

and adaptability of robotic systems, future research should center its efforts on the

development of sensor fusion techniques. These techniques should seamlessly integrate

data from diverse sources, including vision, proprioception, and tactile sensors. The

creation of resilient perception models capable of dynamic adaptation to a wide array

of terrains and scenarios represents a significant stride forward in advancing the field

of robotics.
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Appendix A: DCM dynamics

A.1 Inertia matrix and gravity vector values:

The elements of inertia matrix M are

M11 =m1l
2
c1 +m2(l1 + lc2)

2 +m3(l1 + lc3)
2+

m4(l1 + l3 + lc4)
2 + I1 + I2 + I3 + I4

M12 =m2lc2(l1 + lc2) +m3lc3(l1 + lc3)+

m4(l3 + lc4)(l1 + l3 + lc4) + I2 + I3 + I4

M13 =m3lc3(l1 + lc3) +m4(l3 + lc4)(l1 + l3 + lc4)+

I3 + I4

M14 =m4lc4(l1 + l3 + lc4) + I4

M22 =m2l
2
c2m3l

2
c3 +m4(l3 + lc4)

2 + I2 + I3 + I4

M23 =m3l
2
c3 +m4(l3 + lc4)

2 + I3 + I4

M24 =m4lc4(l3 + lc4) + I4

M33 =m3l
2
c3 +m4(l3 + lc4)

2 + I3 + I4

M34 =m4lc4(l3 + lc4) + I4

M44 =m4l
2
c4 + I4

(A1)

and the elements of gravity matrix G are obtained as

G11 =3m1gl1 +m1glc1

G12 =G22 = m2glc2

G13 =G23 = G33 = −m3gl3 −m3glc3

G14 =G24 = G34 = G44 = −m4glc4

(A2)
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in which g is the gravitational acceleration.

A.2 DCM definition

The motion of HES center of mass can be divided into the convergent (C) and diver-

gent (D) components as

C =xCoM −
ẋCoM√
α

D =xCoM +
ẋCoM√
α

(A3)

where xCoM and ẋCoM denote the position and velocity of the center of mass and α is

a constant value defined in (8). Taking the time derivative of (A3) and substituting

(7) in the absence of control input (τ = 0), the time derivative of the divergent and

convergent parts are obtained as

Ċ =−
√
αC

Ḋ =
√
αD

(A4)

As seen, the convergent part of the motion (C) will converge to zero without any con-

trol effort. Therefore, controlling the divergent part of the motion (D) will guarantee

the convergence of xCoM to its corresponding desired value. Accordingly, the DCM

is defined as

ζ = xCoM +
ẋCoM√
α

(A5)

and the paper is focused on the control of the DCM by adjusting the control input

(τ in (7)).
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