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Reactivity, Attenuation, and Transients in Metapopulations*
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Abstract. Transient dynamics often differ drastically from the asymptotic dynamics of systems. In this paper
we analyze transient dynamics in birth-jump metapopulations where dispersal occurs immediately
after birth (e.g., via larval dispersal). We address the choice of appropriate norms as well as the
effect of stage structure on transient dynamics. We advocate the use of the /1 norm, because
of its biological interpretation, and extend the transient metrics of reactivity and attenuation to
birth-jump metapopulations in this norm. By way of examples we compare this norm to the more
commonly used ¢2 norm. Our focus is the case where transient dynamics are very different than
asymptotic dynamics. We provide simple examples of metapopulations where this is the case and
also show how increasing the number of habitat patches can increase this difference. We then connect
the reactivity and attenuation of metapopulations to the source-sink classification of habitat patches
and demonstrate how to meaningfully measure reactivity when metapopulations are stage-structured,
with a focus on marine metapopulations. Our paper makes three primary contributions. First, it
provides guidance to readers as to the appropriate norm and scalings for studying transients in birth-
jump metapopulations. Second, it provides three examples of transient behavior in metapopulations
involving slow-fast systems, crawl-bys, and high dimensionality. Third, it connects the concepts of
reactivity and attenuation to the source-sink classification of habitat patches more commonly found
in marine metapopulations.
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1. Introduction. Transient dynamics, those that occur over short timescales, can often be
vastly different from the asymptotic or long-term dynamics of ecological systems. However,
throughout the history of mathematical biology much of the work has focused on determining
the asymptotic dynamics of biological systems. While the study of long-term dynamics has
given ecologists many tools to analyze the behavior of populations, these tools are often not
the same as those required to understand transient dynamics. Recently Hastings et al. [21]
have shown that transient dynamics are much more ubiquitous than previously assumed and
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long transients occur in many different ecological systems, from plankton and coral to voles
and grouse. Studying the transient dynamics of an ecological system can give useful insight
into the different processes that may occur after a disturbance, change in environmental
conditions, or change in human intervention to a system. In some marine systems that are
driven by environmental fluctuations, such as the Dungeness crab, transient dynamics may in
fact be key to understanding how these systems behave [23].

There has also been a recent push to characterize the different types of systems that
display long transient dynamics that differ significantly from their asymptotic dynamics [36,
21, 20, 19]. Hastings et al. [21] have loosely categorized four different drivers of long transient
dynamics in ecological systems: ghost attractors and crawl-bys, slow-fast dynamics, high
dimensionality, and stochastic noise. These categories are not always distinct and certain
systems may indeed fall into multiple categories. For example, a predator prey system may
have a crawl-by past a saddle that drives the transient dynamics in this system, but this could
also be thought of as a difference in timescales of the predators decline due to lack of prey.
For metapopulations the main driver of transient dynamics is often the high dimensionality
arising due to spatial structure, though these transient dynamics may be exacerbated by the
other drivers as well.

Some of the earliest studies of systems that could generate long transients were systems
with spatial structure [22, 31]. It seems intuitive that spatial structure or spatial heterogeneity
can drive some sort of transient dynamics in a system. If individuals start in one location in
a habitat, especially a poor habitat, then it will take time before they can spread over the
entire habitat and the long-term population dynamics begin to emerge. What is surprising is
that spatial structure can also give rise to so called long-lived transients, where the transient
dynamics are extensive enough that they continue on timescales past which we typically
measure biological populations [22].

One method of adding spatial structure to a population is to formulate it as a metapop-
ulation, where distinct populations live on habitat patches that are connected via dispersal
or migration. Metapopulation models were originally proposed by Levins [30] to model patch
occupancy in habitats consisting of isolated habitat patches, but these early models used space
implicitly rather than explicitly. Later metapopulation models have included space explicitly
by allowing for differing habitat quality on patches or differing dispersal between patches
[17, 16], though often these models are focused on the proportion of occupied patches rather
than the population size on each patch. However, many marine metapopulation models as well
as epidemiological metapopulation models explicitly track the number of individuals on each
patch as well as movement or dispersal between patches [31, 2, 14, 3]. In this paper we model
the metapopulation structure following this spatially explicit framework where individuals are
tracked rather than the proportion of occupied patches.

Another benefit of the metapopulation framework is that habitat patches can be classified
into source patches and sink patches. This classification can occur in many different ways [14,
43, 29], but commonly a source is a productive habitat patch and a sink is a poor habitat patch.
Early measures of sources and sinks were mainly focused on connectivity between patches, but
more recently it has been understood that it is the interplay between patch connectivity and
local patch productivity that characterizes patches as sources or sinks, especially in marine
metapopulations. One of the new and easily tractable metrics that embodies this relationship
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comes from the theory of next-generation matrices and the basic reproduction number, Ry.
This framework, originally developed in epidemiology, has been used to characterize sources
and sinks in populations of mussels, salmon, and sea lice on salmon farms [29, 26, 18].

While metapopulation theory has previously been used to classify patches as sources and
sinks, other metrics have been used to characterize the transient dynamics of systems. Reac-
tivity was initially introduced by Neubert and Caswell [39] to measure the maximum initial
growth rate of a system over all possible perturbations from an equilibrium. If the maximum
initial growth rate is positive, then the system is reactive. Complementing reactivity is the
amplification envelope, which is a measure of how large solutions can grow over time after
initial perturbations. Later, Townley and Hodgson [53] introduced attenuation as the opposite
metric to measure initial decline of populations; a system attenuates if the minimum possi-
ble growth rate declines following a perturbation. Reactivity and attenuation are then most
interesting when they are different from the stability of the equilibrium of a system—when a
system attenuates but is unstable, or is reactive but stable—and it is on these situations that
we focus this paper. Biologically these are populations that begin by declining but eventually
increase, or begin by increasing but eventually decline.

It should be noted that reactivity, attenuation, and the amplification envelope are all
defined from the linearization of a nonlinear system about an equilibrium. These measures
are therefore most useful around hyperbolic equilibria, where the dynamics of the nonlinear
system can be well approximated by the dynamics of the linear system. If an equilibrium is
not hyperbolic, then the trajectories in the nonlinear system may no longer be similar to the
linearization by which reactivity, attenuation, and the amplification envelope are defined. Even
around a hyperbolic equilibrium the trajectories of the nonlinear and linearized systems may
diverge as they move away from the equilibrium. Here we use the technique of linearization
to determine reactivity and attenuation as others have before us, but want to emphasize these
caveats as they are often brushed over in the transient literature.

In this paper we apply these transient measures of growth to a class of biological meta-
population models where there is no migration between population patches, only birth on new
patches. These are a subset of birth-jump processes [24] and include models for marine mero-
planktonic species, where larvae can travel through the ocean between population patches but
adults remain confined to a habitat patch. Specific species that exhibit this structure include
sea lice [1], corals and coral reef fish [10, 28], barnacles [44], Dungeness crabs [6], sea urchins
[6], and many other benthic marine species [11]. This type of system also encompasses many
plant species where seeds are carried between suitable habitat patches [27], and depending
on the census timing could also include insect species where there is one large dispersal event
between habitat patches, such as the spruce budworm [32, 37, 57] and mountain pine beetle
[45]. Last this class of models also includes multipatch or multicity epidemiological metapop-
ulation models where infections can spread between patches, for example, infected residents
of a city may travel and infect residents of other cities before returning home [2]. We focus
on the transient dynamics that can occur around the extinction state of these systems.

The aims of this paper are threefold. The first is of a technical nature: if we want to
study reactivity and attenuation, what norm should we use and how do we calculate these
quantities from the dynamical system? In section 2 we demonstrate how to calculate reactivity
and attenuation using the biologically intuitive £; norm in birth-jump metapopulations, and in
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section 6 we show how to add a weighting to this norm to calculate reactivity and attenuation
if the metapopulation is stage-structured. The second aim of this paper is pedagogical, to
provide simple examples of metapopulations that exhibit interesting transient behavior that
is different from their asymptotic behavior as well as transient behavior that is different
depending on the norm. In section 2 we provide examples that illuminate the difference
between reactivity and attenuation in the ¢; and £5 norms, in section 3 we provide examples
that illustrate the potential difference between the transient and asymptotic dynamics of
metapopulations, and in section 4 we provide an example of how increasing the number of
habitat patches can accentuate this difference. The last aim of this paper, and the focus of
section 5, is to connect reactivity and attenuation to the source-sink classification of habitat
patches, of which there exists a large body of literature in marine metapopulations, thus
relating these instantaneous and generational transient measures of growth and decay.

Chronologically the paper is structured as follows. In section 2 we use the £; norm as a
biologically intuitive measure of reactivity and attenuation in birth-jump metapopulations and
provide examples to demonstrate how measurement in this norm differs from the commonly
used f9 norm. In section 3 we use simple two-patch metapopulation examples to demonstrate
that the transient dynamics of these systems can be vastly different from their asymptotic
dynamics, and in section 4 we provide an example of how increasing the number of habitat
patches in a metapopulation can enhance this difference. In section 5 we show how to connect
the reactivity and attenuation of a metapopulation to the source-sink classification of habitat
patches, and in section 6 we show how to appropriately measure the reactivity and attenuation
of a metapopulation when the population is stage structured using a weighted ¢; norm.

2. Extending the general theory of transients to metapopulations. In this section we
apply the metrics of reactivity [39] and attenuation [53] to the zero equilibrium of general
systems of single-species metapopulations and thus focus on the transient dynamics that can
occur around the extinction state of these systems. In order to present our work in a general
form, we model the dynamics of a metapopulation of a single species on n patches around the
zero equilibrium with the system:

(2.1) 7' (t) = Ax(t), z(0) = o,

where A = [a;j] is a real irreducible Metzler matrix (a;; > 0 for all i # j) of order n, z(t)
is a population vector containing the population of the species on each patch, and the initial
condition zg is a small perturbation of the zero equilibrium. This most often represents
the linearization of a nonlinear system, which more completely captures the dynamics of the
population, but could also represent the full dynamics of a linear system if density dependence
was not important to the population dynamics.

For the analyses in this paper we focus on biologically realistic single-species metapopu-
lations where the entries of x(t) are nonnegative when beginning with a nonnegative initial
perturbation, xg. This condition is equivalent to requiring that A be an essentially nonneg-
ative (Metzler) matrix, such that all the off-diagonal entries of A are nonnegative (Theorem
2.4 in [51]). Biologically this means that the presence of individuals on one patch cannot
contribute to the decline of a population on another patch and that the population on each
patch will not become negative.
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2.1. Reactivity and attenuation using the £; norm. To analyze the transient dynamics
of this metapopulation we begin by introducing some definitions from Neubert and Caswell
[39]. An equilibrium is reactive if there is an initial perturbation xo such that the initial
growth rate of the total population is positive. The mathematical definition of reactivity from
Neubert and Caswell [39], using notation from Lutscher and Wang [33], is

|\
t=0

where z(t) is a solution to (2.1) and w specifies the norm to be used to calculate reactivity;
if the ¢1 norm is used, then w = 1, and if the ¢5 norm is used, then w = 2. If 5, > 0, then
the equilibrium is reactive, and if 7,, < 0, then the equilibrium is not reactive. Neubert and
Caswell [39] use the ¢2 norm to measure the population size and show that g2 is the maximum
eigenvalue of (A + AT)/2. However, the f5 norm lacks a reasonable biological interpretation,
and so others have instead used the ¢; norm to define reactivity [26, 52, 48]. Biologically, the
/1 norm,

L dffz(®)]l

2.2 0, = max
(2.2) o e~ de

(2.3) e[y =) lil,
i=1

can be interpreted as the total population on all patches of a metapopulation whereas the /5
norm,

(2.4)

is the Euclidean distance of the total population away from the origin. We show in this work
that the £ norm is convenient to determine reactivity from the population matrix A in single
species metapopulations.

In contrast, an equilibrium attenuates if there is an initial perturbation xy for which the
initial growth rate of the total population declines [53]. This is formally defined as

o

If g, < 0, then the equilibrium attenuates, and if g, > 0, then the equilibrium does not
attenuate.

Comparing the definitions of attenuation and reactivity we can see that it is possible for an
equilibrium to be both reactive and to attenuate if there are certain initial perturbations for
which &, > 0 is achieved and others such that o, < 0. In relation to the stability of an equi-
librium, all stable equilibria attenuate and all unstable equilibria are reactive (Theorem 2.3).
Reactivity and attenuation are then most interesting when they are different from the stability
of the equilibrium: when an equilibrium is reactive but stable, so that the total population
initially grows but eventually declines, or when an equilibrium attenuates but is unstable, so
that the total population declines but eventually grows. It should also be noted that the only

s — min L dl|z(t)|]w
T Jwollez0 []x(t)]|lw  dt

(2.5)
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systems that are not reactive and do not attenuate are those in which the total population
size remains constant for all times. In this paper we sometimes refer to the reactivity and
attenuation of a system, rather than an equilibrium, and in this case we are referring to the
reactivity and attenuation of the zero equilibrium, around which we have linearized a system.

The last measures that we define here to use in some later sections are the amplification
envelope and the maximum amplification. The amplification envelope is the maximum possible
deviation of a solution away from the steady state at time ¢ after any initial perturbation xg,
which Neubert and Caswell [39] define mathematically as

— e 1EO
(2.6) plt) = llzoll0 ||zol]

The maximum amplification is simply the maximum of the amplification envelope over all

times:
_ _ [z (@)]]
(2.7) pmax—rgl;gp(t) = mex e
[|zo[[£0

We do not use w to differentiate between norms here as we only use the amplification envelope
and maximum amplification with the £; norm in subsection 3.1 and section 4. The amplifica-
tion envelope need not be achieved by a single perturbation that produces a maximal solution
for all times; rather different perturbations may produce the maximal deviation for different
times. While reactivity and attenuation quantify the short time response to a perturbation,
the amplification envelope and maximum amplification quantify how large a perturbation can
become and how long growth can last. It is for these purposes that we use the amplification
envelope and maximum amplification in subsection 3.1 and section 4.

Now before quantifying the reactivity and attenuation of the entire metapopulation, let
us first determine the initial growth rate of the population if we begin with one individual on
patch j. We call this initial growth rate A;, and mathematically we define

A=) x(0)
=1

with zg = e;, where e; is the vector of length n with 1 in the jth entry and Os elsewhere. In
terms of system (2.1) this simplifies to the jth column sum of A,

n
)\j: E aij.
=1

The initial growth rate for a given patch j, );, can also be calculated from the lifecycle
digraph as the sum of all the outgoing birth rates from a patch minus the death rate on that
patch, where any paths describing movement of individuals between patches are ignored. See
Figures 3, 5, 7, and 8 for examples of lifecyle graphs and Caswell [8] for further reference.
We can then connect this patch specific initial growth rate with the total growth rate, or
reactivity, using the following lemma.
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Lemma 2.1. Reactivity under the ¢1 norm in (2.2) is equal to the maximum column sum
of A in system (2.1),
= max \; = ma
7= A = e ) oy

Proof. Since z; > 0 for all j, the absolute value signs in (2.2) can be dropped and so
d n
g1 = max = max |[— Yy I;
Jlzolli=1 [ dt tzo] Jlzolli=1 [dt Z; Z t:J

; = max |172/ } ,
|va0||1 1 LZ: dt . t—O] llzoll1=1 [ t=0

where 17" is a row vector where every entry is equal to 1. Substituting 2’ = Az from system
(2.1) gives

_ dffz[[s

01 = max [1TAx0] = max Z (Zaw> x0j

llzoll1=1 lleolli=1 5= \i=
Now let k be such that Y ;" | ajx = maxi<j<n D iy @i;. Then, with ||zo|]; =1,
n n n n n
Jj=1 \i=1 i=1 j=1 i=1

1, j=k,
0, j#k.

n
01 = max g a;; | = max Aj.
1<j<n —y 1<j<n
1=

With a similar proof we can connect the patch specific initial growth rate to attenuation
via the following lemma.

with equality when x¢; = { Therefore,

Lemma 2.2. Attenuation under the {1 norm in (2.5) is equal to the minimum column sum

of A in system (2.1),
= )\ =
21= B A = i D ai
It should be noted, as can be seen in the proof of Lemma 2.1, that the maximum possible
growth rate occurs if the initial population is all on the patch with the maximum J\;, and
the minimum possible growth rate occurs if the initial population is all on the patch with the
minimum A;.

2.2. Comparing reactivity in the £; and £2 norms. Here we present some examples of
systems that are reactive in £; but not in £» and vice versa to illuminate the difference between
measuring reactivity in the two norms. It has previously been noted that reactivity depends on
the norm and scaling [39, 33] and the following examples help clarify the underlying biological
and mathematical meaning of the two norms.
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-1 0

Figure 1. The phase plane for system (2.1) with A = [ 1, which is reactive in f2 but not in £1. The
line 1 + 22 = 1 and the circle 23 + 3 = 1 geometrically depict ||x|| = 1 in the £1 and L2 norms, respectively.
The derivative vectors for the phase plane are shown in red and two different initial trajectories are shown in
green and blue. The green trajectory is an example that is reactive in €2 but not in £1, and the blue trajectory
is another example that is not reactive in £1.

Example 1. First, we present an example that is reactive in ¢ but not in ¢1. Reactivity
in f5, 75 can be calculated as the maximum eigenvalue of (4 4 AT)/2 [39]. Take system (2.1)

with
-1 0
A= .

This system simply redistributes individuals from patch 1 to patch 2, and the phase plane is
shown in Figure 1. It is not reactive in the ¢; norm (1 < 0) because the total population size
is not increasing, but it is reactive in ¢ (g2 > 0). This highlights how measuring reactivity in
the ¢5 norm can at times defy our biological expectation of what reactivity should mean—the
growth of a population—and reinforces our rationale for using the #; norm to measure reac-
tivity in metapopulations. While the matrix A is reducible and this system is only semistable,
and thus may be considered a borderline example, if a9s is replaced by a small negative num-

ber, —e, and a2 is replaced by a small positive number, €/2, then for sufficiently small ¢, A will
be irreducible and the system will now be stable, but will still be reactive in ¢ and not in ¢;.

Example 2. The second example, which is reactive in #; but not in ¢, is system (2.1)

with
(-1 3/2
A=l 1)
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157 = ~ -

1.5

Figure 2. The phase plane for system (2.1) with A = [17/2 3‘_/12}, which is reactive in £1 but not in £2. The
line 1 + 2o = 1 and the circle 23 + 23 = 1 geometrically depict ||x|| = 1 in the £1 and £2 norms, respectively.

The derivative vectors for the phase plane are shown in red and two different initial trajectories are shown in
green and blue. The green trajectory is an example that is reactive in €1, but not in b2, and the blue trajectory
is another example that is not reactive in fo.

where the phase plane is shown in Figure 2. Now the system is reactive in ¢; (1 > 0) because
if we start with one individual on the second patch (the dynamics governed by the second row
of A), the total population grows, but in such a way that it will not be reactive in ¢y (g2 < 0).
This example demonstrates that again reactivity in £ can defy our biological expectation of
reactivity, but now in the opposite way. Here the total population grows, yet the system is
not reactive in f5. Note that this system is equivalent to system (3.2) with € = 3.

Together, the two examples highlight the differences that can occur when measuring re-
activity in different norms and the caution that should be taken when interpreting reactivity
in the /5 norm biologically. Here we only present examples that are reactive in £ but not in
¢1 and vice versa but it is also possible to find examples of systems that attenuate in o but
not in /1.

2.3. The relationship between stability and reactivity/attenuation. Now that we have
presented two examples that demonstrate the difference between reactivity in the ¢; and £
norms, we show that in any norm if an equilibrium is asymptotically stable, it attenuates, and
if an equilibrium is unstable, it is reactive.

Theorem 2.3. If the x = 0 equilibrium for x'(t) = Ax(t) is asymptotically stable and A is
a Metzler matriz, then the system attenuates in any norm. Likewise if the x = 0 equilibrium
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is unstable, then the system is reactive in any norm.

Proof. Let p(A) be the eigenvalue of A with the largest real part. The matrix A is Metzler
and so p(A) is a real eigenvalue of A with an associated nonnegative eigenvector v (Theorem
A.43 in [50]). The system with initial condition #(0) = v then has a solution of the form
z(t) = e*Wty. Due to the absolute homogeneity property of all norms, ||z(t)|| = ||eDtv]| =
|t ||v|| = e#(A?|v||. Therefore, differentiating and setting ¢t = 0 yields

L dl=z@)l|

O d |y~ M4

Now if the x = 0 equilibrium is asymptotically stable, then u(A) < 0 and therefore the
minimum in the definition of ¢, (2.5) is negative so the system attenuates. If the x = 0
equilibrium is unstable, then p(A) > 0 and therefore the maximum in the definition of &,
(2.2) is positive so the system is reactive. [ ]

In this section we have shown how to calculate reactivity and attenuation using the ¢;
norm in metapopulations, proven that if the equilibrium of a system is unstable/stable, then
the system must be reactive/attenuate in any norm, and demonstrated the difference between
reactivity in the ¢ and ¢ norms using two salient examples. We now return to the motivating
feature of this paper—systems that are reactive and stable or attenuate and are unstable—and
in the following section we provide examples of long lived transients in these systems.

3. Metapopulations with arbitrarily large transient growth or decay. Here we exam-
ine two different metapopulations, one of which is reactive and can exhibit arbitrarily large
transient growth, and the other that attenuates and can decline to arbitrarily small levels.
In each case this transient growth differs from the system’s long-term growth trajectory: the
metapopulation that exhibits large growth eventually declines, and the system that declines
eventually grows. Both of these example metapopulations are linear systems, and therefore
the addition of nonlinearities to construct more realistic models could further exacerbate the
length of the transient period. These examples are not meant to imply that there are realis-
tic biological metapopulations that can grow arbitrarily large before decaying, but rather to
emphasize that the difference between transient dynamics and asymptotic dynamics can be
quite stark even in linear systems.

3.1. Arbitrarily large transient growth. First we present a reactive metapopulation that
can exhibit arbitrarily large transient growth, but eventually declines. In this metapopula-
tion individuals can either give birth to new individuals on the same patch or give birth to
individuals on the other patch, but there is no migration of individuals between patches. As
mentioned in the introduction, this type of model is applicable to many marine metapopula-
tions where adults are sedentary but larvae can disperse, to plant populations where seeds can
be carried between habitat patches, or other populations governed by birth-jump processes.
Let the metapopulation be described by

(3.1) ' =rx + biay,
y' = bz +ry,
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so that 7 is the on patch birth rate minus the death rate, bio is the birth rate of individuals on
patch 2 producing new individuals on patch 1, and bo; is the birth rate of individuals on patch
1 producing new individuals on patch 2. The system is linear, so assuming that r2 # bygby;
the only steady state is x = y = 0.

For the metapopulation to eventually decline, both eigenvalues need to be negative. For
system (3.1) the eigenvalues are r + \/b12b21 and r — \/b12be; and thus we require that r < 0
and 72 > biabo1. Now in order for the metapopulation to be reactive in the ¢; norm we need
either b1s > —r or by > —r. Here we choose by > —r, so that if we start with one individual
on patch 1, i.e., 2(0) = 1, y(0) = 0, the metapopulation initially grows.

To prove that the metapopulation can grow arbitrarily large, we show that the limit
as some parameter approaches 0 of max;(z(t) + y(t)) is unbounded. Along with the initial
condition x(0) = 1, y(0) = 0, this is equivalent to showing that the limit of the maximum
amplification in the £ norm, pmax, becomes unbounded. This equivalence is because the initial
growth rate for patch 1, Aq, is greater than the initial growth rate for patch 2, Ao, and thus
by Lemma 2.1 and the linearity of the system, the maximum amplification will be achieved
by the unit perturbation x(0) = 1, y(0) = 0. To take the limit, we must first reduce the
parameters in our system until we are left with a single parameter that we can let approach
0, while still maintaining the inequalities above that govern the stability and reactivity of the
system. Let r = —1, bia = €/2, and bo; = 1/¢, where € is a small positive parameter that
approaches 0. Our reduced system can now be written as

€
(3.2) r=—z+ SV
, 1
Yy =-Tr—UY,
€

z(0) =1, y(0) = 0.

This system is stable and the digraph for this system is shown in Figure 3. This system is
reactive in ¢ and /o for small € and the solution is

1/ (-1 (1+L
(3.3) a(t) =5 (¢ AR
1 —(1-Ly  —(1+-L)t
- vt vz
(3.4) ut) = - (e Dt _ U+ )

For each fixed ¢, lim._,oy(t) = oo, and thus the metapopulation can grow arbitrarily large.
For further details, see Appendix B.

Therefore, even in a two-patch metapopulation that is asymptotically stable, there is
always a parameter combination for which the total population, and thus also the maximum
amplification in the 1 norm, pmax, can initially grow arbitrarily large before they decay.
This is not meant to imply that there are realistic biological metapopulations that can grow
arbitrarily large before decaying, but to emphasize how different the transient and asymptotic
dynamics of a system can be.

3.2. Transient decay to arbitrarily small levels. We now present an example of a meta-
population that attenuates and can decay to an arbitrarily small population size before even-
tually growing. We again use a metapopulation where individuals can either give birth to new
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a21

a12
Figure 3. General life cycle digraph for a two-patch model, [z]/ = [on el [y]- The directed edges
represent the birth rate of individuals on the outgoing patch producing new individuals on the incoming patch.
The self loops are the birth rate minus the death rate on a patch. In system (3.2), a1 = —1, a12 = €/2,
a1 = €, and azz = —1. In system (3.5) a11 = —1, a12 = €, az1 = €, and aze = €. In system (5.1) if 11 = x

and T2 =Y, then allr = b11 — dl, a2 = b12, a1 = b21, and az2 = b22 — dz.

individuals on their patch or on the other patch, but cannot migrate between patches. The
difference between this metapopulation and the example used in the previous section is that
now the on patch birth and death rates differ between patches, but the between patch birth
rates are the same. Let the metapopulation be described by

¥ =rz+ ey,

y = ex + oy,

where r; is the birth rate minus the death rate on patch 1, 5 is the birth rate minus the death
rate on patch 2, and € is the interpatch birth rate for both patches.

In order for the metapopulation to eventually grow, we assume that the birth rate is
greater than the death rate on one of the patches. We choose this to be patch 2, and thus
we require r2 > 0. We also want our population to initially decline when starting on patch
1; for this to occur we assume 1 + € < 0. To prove that the metapopulation can decay to an
arbitrarily small population size we reduce the system to have a single parameter and then
show that the limit as the parameter approaches 0 of min,(z(t) + y(¢)) = 0. Let r; = —1 and
ro = €, and then our system can be written in terms of a single positive parameter, €, as

(3.5) ¥ = -z + ey,
Yy = ex+ ey,
d0)=1,  y(0)=0.

This system is unstable and the corresponding digraph is shown in Figure 3. It attenuates in
both the ¢; and ¢ norms for small e.

It is possible to show that the minimum population size can grow arbitrarily small in a
manner similar to the previous section, though the calculations are somewhat more com-
plicated. Instead in this section, we perform an asymptotic expansion in terms of € to
demonstrate the limiting behavior of system (3.5). Let x(t) = xo(t) + ex1(t) + O(¢?) and
y(t) = yo(t) + ey (t) + O(€?). Then the zero order system is

zo(t) = —wo(t),
Yo(t) =0,
z0(0) =1,  o(0) =0,
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which has the solution zg(t) = e~ and yp = 0. We can proceed in a similar manner to solve
the first order terms, and then our solution up to order € is given by

z(t) = et + O(?),
y(t) = e(1 — e ) + O(?).

This solution is valid for small ¢ and is therefore our inner approximation. To find our
outer approximation for large ¢, we rescale t = 7 /€ and arrive at the system:

eX' =X + €Y,
€Y' = eX + €Y.

We can again solve the zero order and first order equations and arrive at the following
solution with two undetermined coefficients:

X(1) = eCe™ + O(é?),
Y (1) = Ce™ + €(Cre™ 4 (C + K)eT) 4+ O(€%).

To solve our undetermined coefficients we require that limy_,. x(t) = lim;,0 X (7) and
limy 00 y(t) = lim,—0 Y (7). From z(co) = X(07), we find C = 0. Substituting C = 0
into y(oo) = Y(0") to solve for K we find K = 1. Adding our inner and outer solutions
together and subtracting the overlap (z(oo) = X (0%) = 0 and y(oo) = Y(01) = €) we find

and thus our total population size behaves as
(3.6) z(t) +yt) = et +e(e — e + O(2).

We can see from (3.6) and Figure 4 that for very small €, the total population size behaves
similarly to e~! before eventually growing. Thus for a minimum population threshold, we
can always find an e small enough, such that the solution crosses the threshold before the
population grows. Alternatively, this can be proved by solving the full system and taking the
minimum.

In this example the zero equilibrium is a saddle and as € becomes arbitrarily small the
initial condition becomes arbitrarily close to the stable manifold of the saddle. Therefore,
the trajectory remains close to the stable manifold for a long time before heading toward
the unstable manifold. The construction and dynamics of this example are thus qualitatively
different from the previous example, where the zero equilibrium is stable and there is no
unstable manifold present.

Here we have shown that there are metapopulations for which the transient population
can grow arbitrarily large or small, no matter the asymptotic stability of the system. In the
next section we demonstrate how increasing the patch number can increase transient growth
in certain metapopulations.
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Figure 4. Asymptotic approzimation of the total population size (red) compared to the true total population
size (blue) for system (3.5), with € = 0.01. The asymptotic approzimation is given by (3.6).

4. Increasing patch number increases transient timescale. In this section we show how
in certain scenarios increasing the number of habitat patches in birth-jump metapopulations
can prolong the transient growth away from a stable equilibrium. In aquatic systems, habitat
patches may be quite productive, but strong drift downstream can sweep most larvae to the
next patch, leading to large transient growth on downstream patches before the population
eventually disappears from the last patch. This phenomenon can occur in metapopulations
situated in rivers, ocean channels, or reef systems where reefs are arranged along a coastline
with a directional current. Here we explore how advection, or drift, can cause large transient
growth in these metapopulations.

Consider a metapopulation on n patches where the dynamics are described by the following
system of equations:

(4.1) 7 = Az, z(0) = o,
[r € 0 0]
by r €

. ‘. ‘. . €
L 0o ... 0 b2 7‘_
where r is the birth rate minus the death rate on each patch, bs is the birth rate of patch j—1
on patch j, € is the birth rate from patch j + 1 to patch j, and x¢ is the initial population.
The parameters by and € are positive and r is negative. The digraph for this system is shown
in Figure 5.
The instantaneous measures of growth, \;, and reactivity in the ¢; norm, 71, are therefore
AM=r+by, Aj=r+byteforj=2,....n—1, N\, =r+¢€and gy =r+by+e. Let r+€e <0
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b2 bz b2 bg b2 bg
-2 = A - .-
OBOENOWNNEIC)
€ € € € € €
r T r r

Figure 5. Digraph for system (4.1). The directed edges represent the birth rate of individuals on the
outgoing patch producing new individuals on the incoming patch. The self loops are the birth rate minus the
death rate on a patch.

and 7 4 by > 0, then the system is reactive (67 > 0), and this maximum initial growth rate
is achieved if the initial population is all on any patch except for patch 1 or n, though if the
initial population starts on patch 1 the initial growth rate is still positive. In system (4.1) A
is a tridiagonal Toeplitz matrix, so it has eigenvalues [42]

h
)\h—r—|—2\/bgecos< ﬁ), h=1,...,n,

n+1

and corresponding right eigenvectors, vy, where the kth entry is given by

. hkm
Up k= (bg/e)k/Qsm <n+1>’ k=1,....n;h=1,...,n.

The solution to system (4.1), with initial condition 2o = e1, where e; is a vector with 1 in
the first entry and Os elsewhere, can therefore be written as

z(t) = Weltw ey,

where W is a matrix containing the eigenvectors, vy, and J is a diagonal matrix with the
eigenvalues, Ap, on the diagonal. For all but very small ¢ the solution z(t) is approximately
equal to the amplification envelope in the ¢; norm, p(t), defined by (2.6). Through examination
of the eigenvalues, this system is stable if € is small enough such that r+2v/bye < 0. Parameters
that satisfy the inequalities that determine stability and reactivity in the £; norm can be found
in the caption of Figure 6. In this case the maximum total population size, and also maximum
amplification, are given by

Tmax = Pmax = Max lTW€JtW_161,
>0
with the corresponding time tp,.x, which is the value of ¢ for which the maximum occurs.
The last measure of transience that is useful in this system is the total transient time, tyotal,

which we define as the time it takes for the population size to decline below one, after initially
starting with one individual, or

trotal = min{t > 0: 1T We tW e, < 1}.

So how does the number of patches affect the magnitude and length of transients? In
Figure 6, which compares a 5 and 15 patch system, we can see that increasing the patch
number increases both the magnitude of growth and the duration.
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Log of population size (log(x;))
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Figure 6. The population sizes on each patch for the advective system (4.1) with the initial condition
Zo = e1, so that one individual is initially on patch 1. In (a) the population sizes are shown on a log scale for
a metapopulation of 5 patches, and in (b) and (c) the population sizes are shown for a metapopulation of 5
and 15 patches, respectively. On the untransformed scale only the population size on the last patch can be seen
as it is far larger than on any of the other patches, whereas on the log scale the population sizes of all patches
can be seen. Parameters for this simulation are r = —0.00345, ¢ = 0.000001, and bs = 2, chosen so that system
(4.1) is reactive but stable.

Here it can be difficult to see the duration of transience exhibited by all patches on a
regular scale, but on the log scale we can see that all patches except for patch 1 experience a
large period of transient growth, before they decay below 1 individual (Figure 6, dashed line).
Patch 1 does not experience a large period of growth because the internal growth rate, r, is
negative and the birth rate from patch 2 to patch 1, €, is too small to overcome this negative
internal growth rate.
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What cannot be seen from Figure 6 is the dependence of transient growth on system
parameters. We find that decreasing by in system (4.1) results in a large decrease in the
maximum population size (and maximum amplification), Zmax (Pmaz), and the total transient
time, tiotal, but only a small decrease in the time at which the maximum population size is
achieved, tpax. Decreasing r, however, results in a large decrease in Zmax (Pmax)s tmax, and
Ltotal-

The relationship between increased transient time and number of patches can also be found
for a linear metapopulation where all patches have negative initial growth rates, \;, except
for the last patch, which has a positive initial growth rate. In this case the total population
size decays for a long time before it eventually grows, and the time that it decays depends on
the number of patches.

We can see then that for a linear metapopulation, the length of the linear array can
accentuate the transient growth that is possible in the system and that this is especially true
for advective systems where there is some sort of directed birth in one direction in the array.
Systems with this type of advective flow include marine metapopulations located in channels
near the mouth of rivers or long coral reefs that are captured inside of a dominant coastal
current flow. To the best of our knowledge, this form of advection-driven transient has not
been previously reported in the literature. However, related literature (e.g., [7]) models the
effect of advection on population persistence and range shifts.

Having presented some illuminating metapopulation examples that demonstrate the mag-
nitude that transient dynamics can differ from asymptotic dynamics, we now turn back to the
general theory of transients in metapopulations and connect it to the source-sink classification
of habitat patches.

5. Connecting the source-sink dynamics to the transient dynamics. In this section
we demonstrate how to connect the transient measures of initial population growth to the
source-sink classification of habitat patches in the metapopulation, with a focus on marine
metapopulations. There are several marine metapopulations for which habitat patches have
been classified as sources or sinks [5, 49, 13] as defining the contribution of a habitat patch and
the classification of habitat patches as sources or sinks is an important aspect in the design
of marine reserves [14]. Here we connect the source-sink classification of a habitat patch to
the transient dynamics that may occur if metapopulations are perturbed at low densities.

For the transient measure of the patch specific contribution to the initial growth of the total
population we use A;, previously defined in section 2. To classify habitat patches as sources or
sinks we use the next-generation matrix, K. Next-generation operators have previously been
used to classify source and sink regions in heterogenous environments [29, 35, 25, 18]. In order
to calculate the next-generation matrix for system (2.1) we decompose A = F' — V| where F'
is a nonnegative matrix with positive entries that describe the birth of new individuals in the
metapopulation, and V' is a nonsingular M matrix [4] with entries that describe the transfer
of individuals between compartments or in this case habitat patches, and also includes the
death of individuals [54]. Examples 3, 4, and 5 illustrate the decomposition of A into F' and
V. Because V is a nonsingular M matrix, V! is nonnegative. The next-generation matrix,
K = [kij], can then be calculated as K = FV~! [54]. This next-generation matrix is then
commonly used to calculate the basic reproduction number Ry, which is the average number
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of new individuals produced by one initial individual, and is defined as the spectral radius of
K. However, we can also define R; as the number of new individuals produced on all patches
from one initial individual starting on patch j, which can then be calculated as

Rj=> k.
=1

We classify patch j as a source if R; > 1, as then one individual on patch j would produce
more than one individual in the total metapopulation. Likewise we classify patch j as a sink
if R; < 1, because in this case an individual cannot replace itself in the metapopulation. In
the following sections we often refer to RR; as the source-sink classification of a habitat patch
because while R; is a number it can also be used to classify habitat patches as sources (R; > 1)
or sinks (R; < 1).

5.1. Expressing Rg as a weighted sum of R;. Before examining the connection between
R; and the initial growth \;, we first highlight a connection between R; and Ry. It turns out,
as shown in the following lemma, that Ry can be calculated as a weighted sum of each R;, and
surprisingly this relationship between the spectral radius and the column sums of a matrix
does not require any further assumptions on the matrix structure, though if the matrix is not
nonnegative, the components of the right eigenvector need not be real. Here 17 is the row
vector with each entry equal to 1, and e; is the vector with the only nonzero entry being 1 in
the jth row.

Theorem 5.1. Let v = [v;] be the right eigenvector associated with the dominant eigenvalue
of the next-generation matriz, Ro, normalized so Y |-, vi = 1. Then the basic reproduction

number Ro = Y1 <<, Rjvj, where Ry =17 Kej = Y71 kij.
Proof. First, we can rewrite Rg as

Ro = RolTv = 1TRyv,

because the eigenvector has been normalized to sum to 1. Then, as Ry is the eigenvalue of K
associated with v and the column sums of K are R;,

Ro=1"Row=1"Kv=[Ri Ry ... R,Jv=) Rju;
j=1 [ |

The entries v; of the right eigenvector can be interpreted as the probability that a new
individual begins on patch j [12]. Therefore, Ry can be interpreted as the sum over all
patches, of the probability that an individual is born on patch j, multiplied by the number of
new individuals it will produce on all other patches over its lifetime.

Similarly, if we define Ay to be the dominant eigenvalue of A, with the associated normal-
ized eigenvector u, then

)\0 = 1TAU = i i aijuj = i )\juj,
j=1

j=1 i=1

where it should be noted that A; is the jth column sum of A, rather than an eigenvalue of A.
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5.2. Connecting the source-sink classification, RR;, to the initial growth rate, ;. Now
that we have decomposed the dominant eigenvalues, Ry and Ao, into weighted sums of the
columns of K and A, respectively, we proceed to connect the source-sink classification of a
particular patch, R;, to the initial growth from an individual on that patch, A;. To do so
there are some restrictions that we need to impose on our metapopulation system and this
is where we limit our study to marine or birth-jump metapopulation models where juveniles
or seeds can disperse between patches while adults remain confined to habitat patches. The
mathematical restriction defined by this class of models comes from the decomposition of A
into ' — V. Here V contains all entries that describe the transfer of individuals between
compartments or patches. For the results presented in this section, we require that V' has the
following reducible form:

[z 3

Vor D

where V17 is k x k, D = diag(dg41, .. .,d,) with dgi1,...,d, all positive, 0 < k <n — 1, and
V is a nonsingular M matrix.

With this structure, individuals on patches j = k + 1,...,n cannot migrate between
patches, but can still give birth to new individuals on any patch. Under this structure, we
first present proofs connecting our instantaneous and generational growth measures, A\; and
R;, before presenting a two-patch example. If V' is completely diagonal, then there is no
migration between any patches, only birth on other patches. This is the case for models of
plants with seed dispersal, or simplified marine metapopulation models if the juvenile stage
is not explicitly modelled.

Theorem 5.2. Let A = F — V' for system (2.1), where F is nonnegative, and V is a
nonsingular M matriz with the following form:

Vin 0
V_[Vm D]’

where V11 is k x k, D = diag(dg41, .. .,dn) with dgi1,...,dy all positive, and 0 < k <n — 1.
For k41 < j < n, \j is positive if and only if R; > 1.

Proof. First, we can write \; as
n
)‘j = Zaij = 1TA€j.

i=1

Then decomposing A into F' — V, and inserting V=1V,
N =11(F = V)e; = 1T(F = V)V We; = 11(FV™ = T)Ve;.
For k +1 < j <mn, V is diagonal, so Ve; = dj;e;. Therefore,
>\j == 1T(FV_1 - I)djej == (R] - ].)dj

Now d; > 0, and thus A; > 0 if and only if R; > 1. |
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Corollary 5.3. In the notation of Theorem 5.2, if V' is diagonal, then A\; > 0 if and only if
R;j>1forj=1,...,n.

Corollary 5.4. Under the same conditions as Theorem 5.2, 61 > 0 if maxg1<j<n Rj > 1,
and o; <0 if mink+1§i§n R; < 1.

Proof. Under the conditions in Theorem 5.2, we know that R; — 1 has the same sign as
Aj for k+1 < j < n. Therefore, if maxy1<j<n R; > 1, then 67 = maxi<j<, Aj > 0, ie.,
the system is reactive. Similarly if ming1<j<, RB; < 1, then oy = minj<j<, A; <0, i.e., the
population attenuates. |

Corollary 5.5. Under the same conditions of Theorem 5.2, only with V diagonal, then 61 >
0 if and only if maxi<j<, R; > 1 and o < 0 if and only if minj<;<, R; < 1.

Proof. From Corollary 5.3, A\; > 0 if and only if R; > 1 for each patch j. Therefore, if
01 = maxi<;<n Aj > 0, then maxi<;<, R; > 1, and likewise if maxi<j<, R; > 1, then o1 > 0.
The same argument holds for min;<;<, A; and mini<;<, R;. n

Now that we have presented theory connecting the initial growth rate, A;, to the source-
sink classification of patch, R;, we present an example to illustrate how to calculate these
growth rate and source-sink measures and how Theorem 5.2 and Corollaries 5.3 and 5.5 can
be used to connect them.

Example 3. Here we present an example of a metapopulation consisting of two habitat
patches, patch 1 and patch 2. New individuals can be born on either patch, but no individuals
can migrate between patches. This system represents a simplification of the adult dynamics
of many marine meroplanktonic metapopulations, where dispersal between patches occurs at
the larval stage, rather than the sedentary adult stage. This system could also represent plant
metapopulations that spread through seed dispersal, if the habitat landscape is patchy. The
metapopulation dynamics can be represented with the following set of ODEs:

(5.1) xy = biwy 4 biaxe — diy,

/
Ty = ba1x1 + bogwa — doxa,

where b;; is the birth rate for births from patch j to patch ¢, and d; is the death rate on patch
i. The lifecycle graph for this system is shown in Figure 3.
We then decompose A = F — V and construct the next-generation matrix, K = FV !

b1 — dq b12 bi1 bi2 di 0
A = 5 F — 9 V - bl
[ ba1 bao — dJ [521 b22] [0 dz]
_ bi1/dy blz/dz]
K=Fvl= .
[521/611 bao/ds

For an initial individual starting on patch 1, the expected lifetime is 1/d;, and the rate
that the individual is producing new individuals on both patches is b11 + bg1. Therefore,
Ry = (b11 + ba1)/dy is the total number of individuals born onto both patch 1 and patch 2
over one generation. It is clear that Ay = b1 +bs1 —d; > 0 if and only if R; = Zl—ll + bd2—11 > 1,in
accordance with Corollary 5.3. Similarly Ao = bio+boo—ds > 0if and only if Ry = 13—22—1—%2 > 1.
The system is therefore reactive if max(R;, Re) > 1 (Corollary 5.5).
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At first glance it seems obvious that if an individual starts on a source patch the population
should have a positive initial growth rate or if the population starts on a sink patch it should
have a negative initial growth rate, and we have shown from Corollary 5.3 and Example 3 that
this is indeed the case for marine metapopulations. What is perhaps surprising is that this is
not the case for general metapopulations when adults can migrate between habitat patches,
and thus when the conditions of Theorem 5.2 and Corollary 5.3 are not met. In the general
case it is possible to start with an individual on a source patch, but for the population to
initially decline, and likewise to start on a sink patch, but for the population to initially grow.
An example of such a metapopulation is shown in Appendix A.

Here in this section we have shown that for marine metapopulations and other metapopula-
tions where the population dynamics are defined by birth-jump processes, there is a one-to-one
relationship between the source-sink classification of a patch and the initial growth rate when
starting with one adult on a patch. That is, the initial population growth rate is positive if we
start with one adult on patch j if and only if patch j is a source, and the initial growth rate is
negative if and only if patch j is a sink. This is a useful relationship biologically as there are
several marine metapopulations where patches have already been classified into sources and
sinks, and thus the transient dynamics for these systems can now be better understood.

6. Stage structure. In this section we add stage structure to demonstrate some of the
nuances in analyzing transients in stage structured metapopulation models. The main issue
with analyzing reactivity and attenuation in models with stage structure is due to the fact
that adults often give birth to many more juveniles than will survive to become adults, and
that juveniles cannot normally give birth to new juveniles. This presents a few complications.

The first complication is the fact that if we want to analyze the initial growth or decay
of a population, starting with an individual in a patch, it now depends if the individual is a
juvenile or an adult. If we start with a juvenile, then there is no way that the total population,
or even the patch population, can grow, given that the juvenile has to first survive to the adult
stage to give birth to new juveniles. Thus we want to start with one adult on a patch.

However, if we start with an adult in a patch, and it gives birth to new juveniles, how
do we count these new juveniles? If we are considering a marine metapopulation do we
count every larvae as a new individual? If so, every marine metapopulation would exhibit
transience, as each adult often produces thousands of larvae. This then begs the following
question: in a stage structured metapopulation, can we scale the juvenile population so that
transient measures of population growth, such as reactivity and attenuation, are useful for
stage structured models and measure the biologically relevant quantities?

To motivate the necessity of an honest scaling we highlight a discrete time example of
transients in Dungeness crabs from Caswell and Neubert [9]. Dungeness crabs give birth to
an enormous number of larvae, many of which do not survive to settle and become juveniles
after one year. In this case the discrete time model requires a census time to measure new crabs
after one year. If the census is taken prebreeding, then the system exhibits little reactivity, as
many of the larvae that were initially born have not survived to become one-year-old juveniles.
However, if the census is taken postbreeding, then all of the eggs or larvae are counted and the
initial amplification is increased by 10°. The models considered in this paper are continuous
time and do not face this exact problem, but it is easy to see that the addition of a larvae
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stage in a marine stage structured metapopulation has large effects on the reactivity of the
System.

Returning then to our stage structured model with only juvenile and adult stages, how
should the juvenile stage be scaled so that an initial growth in juveniles also corresponds in
some sense to growth in the total population? Ideally, we would scale the juvenile population
so that each juvenile is scaled by the probability that it will become an adult. If we scale our
population in this way then the measures of reactivity and attenuation regain their original
meaning. If the maximum initial growth rate of our population, now scaled to be in terms
of adults, is positive, then our system is reactive, and if the minimum is negative, then it
attenuates.

A biologically relevant measure of reactivity in a stage structured model must then be
focused on the initial growth rate of the population, calculated so that the growth rates of
juveniles are scaled by their contribution to the adult population. Under this scaling if any
adult on any habitat patch produces many juveniles, but less than one become viable adults,
then such a metapopulation is not reactive. Whereas if there is a patch such that one adult
produces many juveniles and more than one survive to adulthood, then the metapopulation
is reactive, because the stage structured population, where juveniles are scaled according to
their contribution to the adult population, is growing.

In the following sections we formally define such a scaling using a weighted ¢; norm and
contrast it with the unweighted /1 norm that we have previously been using to calculated
reactivity in metapopulations without stage structure.

6.1. Unweighted ¢'. We want to measure reactivity and attenuation as the total initial
growth rate of the population, measured using either the weighted or unweighted norm, when
we start with one adult on a patch. We first present the unweighted ¢! measure of the initial
growth rate to demonstrate the mathematical framework that we use to examine reactivity
in a stage-structured population with juveniles and adults.

Consider a population with juvenile and adult stages on n patches. Let the population
dynamics be described by

(6.1) /(1) = Ax(t),

where A is a 2n x 2n matrix, arranged so that all ODEs describing the change in the adult
populations are in rows n + 1 to 2n. Decompose A into A = F' — V', where F is nonnegative
with positive entries that describe the birth of new individuals in the metapopulation, and
V is a nonsingular M matrix [4] (V! is nonnegative) with entries that describe the transfer
of individuals between compartments or in this case habitat patches, and also includes the
death of individuals [54]. We are interested in metapopulations where adults can give birth
to juveniles, but juveniles cannot give birth to new juveniles, so F' and V can be written in
block form as follows:

|0 Fig _Vir 0
" S ]

With this decomposition Fio contains all the new juvenile births from each adult patch, Vi1
is a diagonal matrix that contains the rates of juvenile mortality on each patch as well as the
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maturation from juveniles to adults, Vag is a diagonal matrix that contains the rates of adult
mortality on each patch, and V51 contains the negative of the rates of maturation/migration
from juveniles to adults.

We define :\j to be the initial population growth rate, starting with one adult on patch j,
measured using the £; norm. This can be defined mathematically for 1 < j < n as

n 2n

Xj=Y i (0)+ > xi(0), x(0) = ejin.
i=1 i=n-+1
juvenile adult

In terms of FF and V

n n
Aj = Z J12ij — Z'U2Zij7
i=1 i=1
where fi2;; and vag;; are the (7, 7) entries of Fo and Vag, respectively.

We use the tilde to differentiate the initial growth rate in the stage structured population,
where we specifically begin with one adult on a patch, from the initial growth rate in a
population without stage structure, where there is no difference in the type of individual
that we start with. Having presented the mathematical framework that we use to measure
reactivity in a stage structured population using the unweighted ¢; norm, we now use a
weighted /1 norm that better captures the biological meaning of reactivity.

6.2. Weighted ¢! for each patch. In order to measure reactivity in a biologically mean-
ingful fashion, we introduce a new measure of the initial population growth rate, 56;’ . This
initial population growth rate is calculated using a weighted ¢; norm so that the adult popu-
lation is still measured using the regular ¢; norm, but the juvenile population on each patch is
scaled by the probability that the juveniles survive to adulthood; the patch specific nature of
the weighing is why we denote the initial growth rate 5\2; . In this fashion 5\1]0 measures the ini-
tial growth rate of the total population if every member of the metapopulation was weighted
according to how much they will contribute to the adult population. Adults are therefore not
weighted, and juveniles are weighted by the probability that they survive to adulthood. This
weighting recaptures the biological meaning of reactivity, where a system will only be reactive
if the adult population will grow, and a system will not be reactive if there is only an initial
spike in the juvenile population.

We use the same framework as in the previous section to mathematically calculate Xf ,
where we decompose A = F' —V and F and V are shown in block form in (6.2). Then we
weight the juvenile population growth on each patch ¢ by a factor s;, where s; is the probability
that a juvenile from patch i eventually becomes an adult. From the block form V', s; can be
calculated as

n

(6.3) 8; = Z(—vaﬁl)ki-

k=1

To see how this corresponds to the probability of survival of a juvenile on patch ¢, consider
the different block components of F and V. The matrix V]L_l1 is diagonal, with the (j, 7) entry
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representing the average residence time of a juvenile born onto patch j. The matrix —Va
contains the rates of maturation/migration of juveniles becoming adults on different patches,
so the (7,7) entry is the rate of maturation/migration of a juvenile on patch j becoming an
adult on patch ¢. This means that when we multiply —Va; by Vﬁl we are multiplying each
of these rates by the residence times of the juveniles in the appropriate patches. In this way,
the (i,7) entry of —Va; Vﬁl is then the probability that a juvenile leaving patch j arrives on
patch ¢. Therefore, the jth column sum of —VglVﬁl is the probability that a juvenile starting
on patch j becomes an adult on any other patch.

The initial growth rate using the weighted norm, S\f , can then be calculated as the sum
of the juvenile growth rates, each multiplied by the patch specific survival s;, and the adult
growth rates. Mathematically, this is defined as

n 2n
=Y a0+ Y 0, 2(0) = e
i—1 i=n+1
juvg;lile adult
n n
= sifizij — > v22ij-
i=1 i=1

In order to demonstrate that the initial growth rate calculated using the weighted ¢;
norm, A? , indeed measures the growth rate of the population if all individuals are weighted

according to their contribution to the adult population, we show that 5\? is equivalent to
scaling the juvenile population on each patch by the probability of survival to adulthood, and
then measuring the initial growth rate using the unweighted ¢; norm, defined previously as
A

Theorem 6.1. If each juvenile population in system (6.1) is rescaled by the patch specific
survival probability, s; = g (— Vzl‘/ﬁ ki, then the initial growth rate using the unweighted
' norm, )\J, is equal to the patch specific weighted initial growth rate, )\ , for the unscaled
system.

Proof. Rescale the juvenile population on patch ¢ by the patch specific survival probability

s; given in (6.3). In terms of system (6.1) this means that z} = s;x; fori=1,...,n, 27 = x;
fori=n+1,...,2n. Rewrite the system of equations
*/ — A*LL’*
* ok * x 0 SFip * Vi 0
AT=F v F_[O 0 :|7 V_|:V215_1 Voo
where S = diag(sy,...,sn). The unweighted initial growth rate for the scaled system is then
5 n
Aj Z SFIQ Z V2245 = Z 31f121] Z V2245 = )\

i=1 i=1

Thus the unweighted initial growth rate for the scaled system is equal to the patch-weighted
initial growth rate of the unscaled system, A? . |

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/06/22 to 129.128.216.34 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TRANSIENTS IN METAPOPULATIONS 1311

We believe that it is more intuitive to measure reactivity in a stage-structured system
using a weighted norm, rather than scaling the juvenile population and using the unweighted
¢1 norm, but for other systems this may not be the case. Recently Mari et al. [34] have
developed a new measure of reactivity called generalized reactivity, or g-reactivity, so that
the reactivity of any specific combination of state variables in a system can be measured, and
we demonstrate how to place our work in this context. The general framework of g-reactivity
allows the reactivity of only the predator to be measured in a predator-prey system, or a
single patch in a metapopulation model. Moreover, in a stage-structured model, g-reactivity
can be used to allow for a differential contribution of the juvenile and adult populations to
the reactivity of the system, and so we can compare the calculation of g-reactivity to our
calculation using the weighted ¢; norm. To calculate the g-reactivity of a system 2/ = Az, a
linear transformation is introduced, y = Cz, where C' is a matrix that defines the required
contribution of each of the state variables, and then reactivity is calculated for y using equation
(2.2). For system (6.1), if C' is a 2n x 2n identity matrix, but with the first n diagonal entries
replaced with si,...,s,, then g-reactivity is the fo norm equivalent of reactivity under our
weighted ¢ norm, max; 5\5 )

Returning to our measure of initial growth rate using a patch weighted norm, we present
two examples below to illustrate the calculation of X? in different systems.

Example 4. Consider a two-patch system where juveniles are born onto all patches but
only mature into adults on the patch where they were born:

(6.4) J1 = bray + bizaz — majy — djij,
g4 = baray + bagas — majs — djajo,
al = myj1 — dgan,

/ .
ay = Maja — dgaz.

Here j; is the number of juveniles on patch ¢, a; is the number of adults on patch i, b; is
the birth rate of juveniles on patch i from adults on patch k, m; is the maturation rate of
juveniles on patch 7 into adults on patch ¢, dj; is the death rate of juveniles on patch 4, and
dg is the death rate of adults, which is the same on both patches. The lifecycle graph for this
system is shown in Figure 7.

Figure 7. Digraph for system (6.4). Here by, is the birth rate of juveniles on patch i from adults on patch
k, m; is the maturation rate of juveniles on patch i to adults on patch i, dj; is the death rate of juveniles on
patch i, and d, is the death rate of adults.
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In this case

Fip = [bll blﬂ , Vi = [ml djn 0 ] , Vo1 = [_ml 0 } ;

ba1  bao 0 ma + djo 0 —mo
dy 0 _ ——p
V22 - |:0a d :| ) ‘/21‘/111 - ml—é_djl mo )
a mao+dj2

5\[1) = 51011 + s2ba1 — da, Ay = s1b12 + s9b22 — d,
mq ma

$1=———, S9g= —"—,
my + dj1 ma + dj2

If we look at 5\’17, we see that s is the probability that a juvenile born onto patch 1 survives
to become an adult and it is multiplying b;1, the birth rate of juveniles onto patch 1 from
adults on patch 1. Therefore, the first component of S\If represents the rate of birth of new
juveniles onto patch 1 from one adult on patch 1, but scaled by the probability that these
juveniles survive to become adults. Likewise the second component, s9bo1, is the rate of birth
of new juveniles onto patch 2 from one adult on patch 1, scaled by the probability that those
juveniles also become adults. Thus 5\’1) is the initial growth rate of the total population, scaled
in terms of the contribution to the adult population, when the population begins with one
adult on patch 1.

Example 5. We also consider a system in which juveniles are born onto the same patch as
adults, but can then migrate between patches as they mature into adults (shown in Figure 8),

(6.5) J1 = biiar — mirji — marj1 — dji,
Joy = bagas — magja — migjo — dj2ja,
al = mi1j1 + migje — dgar,

/ . .
as = maaja + maiji1 — dqaz,

from which we calculate

o bip 0O Vi, - |t mar dj1 0 Voo — |71 —maz
12 = ool V11 = gl Y= ;
0 boo 0 mig + Mmoo + djo —Mma1  —Ma2
de 0 1 FrmarTd Tt
a — m m j m m 1
Vag = |:0 p :| 7 —V21V11 _ 11 m2211 i1 12 m2222 i |
@ miitmei+dji miztmaztd;e

\P \P _
Al = s1b11 —da, Xy = s2b22 — dg,
m11 + ma mi2 + maoa
’ S2 = .
mi1 + ma1 + dj1 mi2 + Mmoo + djo

S1 =

Now if we examine the first component of 5\713, s1 = (mi1+ma1)/(mi1 +mo1 +dj1), we can
see that because juveniles from patch 1 can now migrate (as they mature) to both patches,
s1 is the probability that juveniles from patch 1 become adults on either patch. Likewise so
is the probability that juveniles from patch 2 become adults on either patch. Biologically we
are scaling the birth rate on a patch by the probability that a juvenile survives to adulthood
on any patch.
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Figure 8. Digraph for system (6.5). Here b; is the birth rate of juveniles on patch i from adults on patch
i, Mk s the maturation rate of juveniles on patch k to adults on patch i, dj; is the death rate of juveniles on
patch i, and d, is the death rate of adults.

Here we have shown that if we use a weighted #; norm to scale the initial growth rate so
that the juvenile population is scaled by the patch specific probability that juveniles become
adults, then our scaled initial growth rate, 5\5’ , matches the biological intuition that we would
like when measuring initial growth of the population. It is positive if the population, scaled
so that every individual is measured by its contribution to the adult population, is growing,
and negative if the population is decreasing. Measures of reactivity and attenuation then also
represent their intuitive biological properties, and we are no longer in the situation (as if the
initial growth rate was unscaled) that most marine metapopulations are reactive.

It is also possible to create a weighted norm where the juvenile populations on each patch
are weighted by the same probability of survival, rather than by patch-specific probabilities
s;- In some cases it may be useful to scale all patches by the same survival probability, though
under this weighted norm reactivity no longer corresponds exactly to the intuitive biological
meaning mentioned previously.

7. Discussion. Transient dynamics often differ drastically from the asymptotic dynamics
of a system and require different analytical tools. In this paper we have presented a framework
for analyzing transient dynamics in birth-jump metapopulations, from the choice of norms to
the incorporation of stage structure. We began by using the ¢; norm to define reactivity and
attenuation in single species metapopulations and used examples to compare reactivity in the
£1 norm with reactivity in the more commonly used ¢ norm. We presented two models that
gave rise to long transients: one stable system that exhibits a long period of growth before
eventual decay and one unstable system that exhibits a long period of decay before growth.
In birth-jump metapopulations, where patches are connected via larval dispersal, we showed
how strong advective flow, coupled with a large number of patches, can lead to large transient
growth. We believe that this could be a key new mechanism giving rise to transient dynamics
in marine metapopulations where habitat patches are found in a linear array, such as salmon
farms along a fjord (see, for example, [18]). We then connected the initial growth rate of the
metapopulation to the source-sink classification of patches, and last we demonstrated how to
measure reactivity meaningfully in stage-structured marine metapopulations.

We are by no means the first to analyze the transient dynamics of systems, and in fact
there has been an increase in the study of transient dynamics over the last few decades. In a
pair of recent papers, several authors have identified mechanisms as the main causes of long
transients in ecological systems [21, 36]. These identified mechanisms that cause the long
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transients present in the examples in this paper are slow-fast systems, crawl-bys, and high
dimensionality. Slow-fast systems cause long transients when the system rapidly converges
to a slow manifold, then moves slowly toward or away from an equilibrium, depending on
the stability of the system. This occurs in both examples in section 3. The second example
in section 3 is also an instance of a crawl-by where the initial perturbation is near a saddle
equilibrium but the movement away from the equilibrium occurs over a long timescale. Last, in
section 4 we explicitly demonstrated how increasing the dimension of a system, by increasing
the patch number in a linear metapopulation, leads to longer transients.

Our work also reinforces the fact that reactivity is a property specific to the norm under
which it is measured. This has been mentioned in the first paper on reactivity by Neubert
and Caswell [39], who also recognize that it is always possible to find a norm such that a
stable system is never reactive. It has also been noted by Lutscher and Wang [33], who
mention that reactivity must be analyzed in the dimensional version of a system rather than
the nondimensionalized version. The reactivity may be different between the two systems but
the dimensional system is where the measure of reactivity is biologically meaningful. When
analyzing reactivity in metapopulations this fact is significant in two ways: first by using
the ¢; norm rather than the /> norm to measure reactivity we can explicitly measure the
growth rate of a population, and second by using a weighted ¢; norm we prevent the juvenile
population from disproportionately affecting the reactivity of the system.

Differentially weighting certain classes of a population to calculate reactivity has been
mentioned in passing by Verdy and Caswell [55], and more extensively by Mari et al. [34],
who developed a new measure of reactivity called general reactivity, or g-reactivity. This
is a method of only measuring the reactivity of the components of interest in a population,
e.g., predators in a predator-prey model, and can also be used more generally to scale the
contribution of different components of the population. Our method of using a weighted
£1 norm for stage-structured models has an equivalent formulation using g-reactivity that is
discussed in subsection 6.2, though Mari et al. [34] use the ¢ norm to measure reactivity,
rather than the 1 norm, and are thus using a different measure of population growth.

While we believe the £; norm is the most biologically relevant norm to measure reactivity,
we are among the first to use it to analyze reactivity in continuous time models. Townley et al.
[52] show how to calculate reactivity for stage-structured models in continuous time using the
£1 norm, but in following papers proceed to analyze reactivity in the ¢; norm only in discrete
time systems [53, 47, 48]. Most authors measure reactivity with the ¢5 norm, presumably
due to the nice mathematical property that reactivity in the £» norm is given simply as the
maximum eigenvalue of (A + AT)/2 [39, 9, 40, 41, 55, 33, 46]. But while mathematically
tractable, the biological meaning of Euclidean distance (¢2) is less clear than population size
(¢1) and as shown in subsection 2.2, there are times when reactivity in ¢ does not correspond
to an increase in population size.

The reactivity of an equilibrium can also be understood geometrically, as shown in Fig-
ures 1 and 2. Under the ¢1 norm the zero equilibrium of a single species metapopulation (2.1) is
reactive if the dot product of the derivative vector of any initial perturbation and the outward
normal vector of the plane x1 + 22 + ...z, = 1 is positive. This geometric interpretation is
applicable when the matrix A describing the dynamics of the linearized system, x'(t) = Ax(t),
is Metzler. If instead we want to examine the reactivity of a positive steady state of a meta-
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population, z*, where the dynamics are given by (z(t) —2*)" = A(z(t) —2*) and A is no longer
Metzler, then we need to extend our geometric interpretation of the ¢; norm. In this case an
equilibrium is reactive if the dot product of the derivative vector of any initial perturbation
and the outward normal vector to the hypercube |x; — 27| + |22 — 23| + ... |z, — 2| = 1 is
positive. We could no longer use max; > ; a;; > 0 to calculate reactivity, because z(t) — *
need not remain in the nonnegative cone. Thus an interesting area for future work would
be to mathematically formulate reactivity in terms of the matrix A for positive equilibria of
metapopulations.

No matter the norm in which reactivity and attenuation are measured, they are defined
in terms of the linearization of a nonlinear system around an equilibrium. As mentioned
in the introduction, reactivity and attenuation are therefore most relevant around hyperbolic
equilibria, where the dynamics of the nonlinear system are well approximated by the linearized
system. In section 3 we have shown that even in the linearized system it is possible for the
population size to grow arbitrarily large before decaying or decay arbitrarily small before
growing. In the latter case the zero equilibrium is unstable mathematically, but biologically the
metapopulation could first go extinct if the total population size decays below one individual
before it eventually increases.

It is also possible for an equilibrium of a nonlinear system to not be reactive, but for a
perturbation of the nonlinear system to still cause a large excursion away from the stable
equilibrium before eventually returning. Excitable systems, such as the FitzHugh—Nagumo
system, have stable equilibria with attracting regions, but small perturbations still trigger
large excitations [15, 38]. These systems may not be reactive from the linearized definition of
reactivity, but can still exhibit similar behavior to reactivity in the nonlinear system, given a
sufficient perturbation.

In this paper we use systems of differential equations to study reactivity, attenuation,
and transients in birth-jump metapopulations. It may also be possible to study transients in
metapopulations using methods by Wang, Efendiev, and Lutscher [56] for reaction-diffusion
equations, where the spread of individuals between patches can be modelled mechanistically.

The final extension that we would like to highlight is the relationship between reactivity of
continuous time models and reactivity of their discrete counterparts. Many marine metapop-
ulations are modelled in discrete time due to yearly breeding cycles, but some are modelled
in discrete time due to ease of simulation. For these models, where the time step is on the
order of hours or days, we can connect the reactivity of the continuous time system with the
discrete time system using a Taylor expansion. The continuous time system, ' = Ax, has the
solution z(t) = e?*xq that could be sampled at discrete time steps 7 to create the discrete
time system z(t + 7) = Bx(t), where B = 7.

The continuous time system 2z’ = Az is reactive in ¢; if A has a positive column sum
(Lemma 2.1). In discrete time the system z(t+ 7) = Bx(t) is reactive in ¢; if B has a column
sum that is greater than 1 [52]. Assuming 7 is a small time step, then we can approximate
B = A7 = I+ A7 +O(7?). Thus we can see that if the system is reactive in continuous time,
i.e., there is a positive column sum of A, then we can find a sufficiently short time step 7 such
that the discrete time system is also reactive, i.e., there is a column sum of B greater than
1. However, for a predetermined time step 7, there are continuous time systems 2’ = Ax that
are reactive but for which their discrete counterparts z(t +7) = e7x(t) are not reactive. One
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ma1

mi2

Figure 9. Digraph for system (A.1). The directed edges represent the movement of individuals from the
outgoing patch to the incoming patch. The self loops are the birth rate minus the death rate on a patch.

such example is system (3.2) with e = 0.9 and 7 = 1.

Last, we hope our work can be used to better understand the transient dynamics in marine
metapopulations for which habitat patches have already been classified as sources and sinks.
For these systems the transient dynamics that may occur following a disturbance depend
directly on the new distribution of the population. If the remaining population is distributed
among sink patches, then it initially declines, even if it eventually recovers. Likewise if the
population is distributed among source patches, then it initially grows, though this growth
may not necessarily occur on the source patch itself. In addition, the relationship between
transient dynamics and sources and sinks in marine metapopulations may also be useful when
examining the dynamics that can occur following the protection of new marine environments,
such as newly implemented Marine Protected Areas.

Appendix A. Two-patch example with migration. Here we present an example of a
two-patch metapopulation where individuals are born only onto their patch, but can now also
migrate between patches. This is the case for many terrestrial species that live on patchy
landscapes, where individuals can migrate between habitat patches. We present this example
to demonstrate how Theorem 5.2 breaks down when V is not of the correct form. The
dynamics of this metapopulation are described by the following set of ODEs:

(A.l) afll = bix1 — mo1x1 + misxe — dix1,

rh = bz — my2Ta + mo1x1 — dawa,
where b; is the birth rate on patch i, m;; is the migration rate from patch j to patch i, and
d; is the death rate on patch i. The lifecycle graph for this system is shown in Figure 9.

We again decompose A = F' — V and construct our next-generation matrix, K = FV 1,
though now V is not diagonal nor in the same form as required for Theorem 5.2.

A by —moy — dy mio
i Moy by —miz —da]’
F— -bl 0
0 by’
v — di+moa1  —mi2
—mo1  da +mi2
b1 (d2+mi2) bimio
_ —1 _ | dida+dimia+damar  dida+dimiz+dama;
K=FV— = bamai b2(d1+m21§
Ldide+dimiz+deme;  dida+dimiz+dama;

The entries of K may seem counterintuitive, but they represent the infinite sum of a
geometric series. Consider the first entry, ki;. If we are tracking the total number of new
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individuals produced by one individual starting on patch 1, then this individual can either
produce new offspring in patch 1 immediately, or it can migrate to patch 2, then back to
patch 1 and produce offspring, or migrate again and produce more offspring. The entry k11
is then the birth rate in patch 1 multiplied by the residence time in patch 1, multiplied by a
geometric series where the ratio is the probability of surviving the migration from patch 1 to
patch 2 and then back to patch 1. Mathematically,

0 7
Z ( mai mia )
may1 + di mi2 + da

Now consider A; and Rj, the measures of transient growth for patch 1:

A1 =b1 —dy,
R bids + bymia + bamay
Y7 dydy + dimag + dymar
We can see that )
li -1
dzl—r>noo I d1 + mo

Therefore, even if Ay > 0, and so by > dy, as mo; becomes large, Ry < 1.
In the other direction, if d; = 2b1, then
by

lim Ry = 2.
b1H—I>lO i d2

Therefore, even if Ry > 1, we can still have \y = by — d; < 0. We present this example
to demonstrate that if the assumptions of Theorem 5.1 are not met, there is no longer a
one-to-one relationship between \; and R;.

Now we might also consider moving the off diagonal entries of V' into F' so that V' becomes
diagonal. This is similar to considering migrating individuals as new individuals entering a
patch. In this case

r_ [ by le} 7
mo1 b

V= [dy + moy 0
0 d2+m12 ’

[ b mio
K:FV_lz di+ma1 d2+b;n12 .

Ldi+me1  d2+mi2

Here Ay = by — d; > 0 is equivalent to b; > di, which is then equivalent to Ry =
(b1 + mo1)/(d1 + mo1) > 1. However, in this case Ry no longer tracks the total number of
new individuals produced on all patches over one generation. This new R; could perhaps be
interpreted as the total number of new individuals produced on patch 1 by a single individual
on patch 1 before that individual dies or migrates, plus the probability that the individual
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migrates to patch 2 before it dies. However, this will no longer be a biologically useful measure
of a source or a sink.

Appendix B. Details for proof in subsection 3.1. Here we provide further details for the

proof at the end of subsection 3.1 that follow after system (3.4). We want to show that

lim max (z(t) 4+ y(t)) = lim ppax = o0.

e—0 t e—0
Normally to calculate the maximum we would take the derivative of (z(t) 4+ y(t)), set it equal
to 0, solve for ¢, and then evaluate (z(t) + y(t)) at this value of ¢. However, it turns out this
is rather complicated, so we will simplify this process by first noting that z(t) > 0 for all ¢.
Therefore,

max (x(t) +y(t)) > mtaxy(t).

Now we only have to perform the above process on y(t), rather than (x(t) + y(¢)).
Setting /() = 0 and solving for ¢, we find that the time that the maximum of y(t) is
achieved, tyax, along with the corresponding maximum in y, y(tmax), are

o=
V2
V2

€

log(1 + v/2) — log(—1 + x/§)) ,

1

(1+v2) ") (-1 4 v2) 3™

D=

y(tmax) — )

We can clearly see that lim¢_,¢ (tmax) = oo and thus also lime_,o max; x(¢)+y(t) = limc_0 pPmax
= 00.
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