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Abstract

This thesis examines relationships between various Folner-type conditions and amen

ability, with a focus on semidirect products.

Chapter two deals with semidirect products of locally compact groups. Two 

methods are developed for finding Folner nets for semidirect products based on 

Folner nets for the original groups.

Chapter three looks at Sorenson’s conjecture. Klawe provided a counterexam

ple to the conjecture that all left amenable right cancellative semigroups are left 

cancellative. Her example is shown to be weakly left cancellative. An example 

of a left amenable, right cancellative semigroup which is not weakly left cancella

tive is given. The final result is a necessary condition for a semidirect product of 

semigroups to be amenable.

The fourth chapter generalizes various concepts to left semigroup actions. A 

proof of Dixmier’s condition is given. Using this, a semigroup is shown to be 

amenable exactly when all left semigroup actions of the semigroup are also amen

able.
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Chapter 1 

Introduction and Background

1.1 Introduction

A semigroup is a set equipped with an associative multiplication. We call a semi

group, S, left amenable if there exists a left invariant mean on the space of bounded 

functions, £°°(S). A left invariant mean is a positive linear functional of norm 

one on f00(S') which provides ‘average values’ for bounded functions and is invari

ant under left translations. This definition was introduced by M. Day in [3], but 

the underlying concepts can be traced back to invariant measure theory studied by 

Lebesgue in the early 1900s. Results such as the famous Banach-Tarski paradox 

are related in large part to the study of amenability.

The body of this thesis contains three chapters. Each of these chapters deals with 

a different type of abstraction or example of left amenable semigroups. Firstly, in 

chapter two, the existence of inverses and an identity are imposed on the algebraic 

structure and a topology is introduced for discussion of amenability on a locally 

compact group, G. In chapter three, the results apply to all semigroups, but some 

remarks are made with special regard to cancellative semigroups. Finally, in chapter 

four, the concept of a left semigroup action on a set, X , is introduced and the 

definition of amenability is naturally extended to this generalization.

The definition of amenability involves properties of £°°(S) (or L°°(G) or £°°(X)) 

and finding a left invariant mean often involves nonconstructive methods such as 

the application of the Hahn-Banach theorem. In light of this, it is useful to consider

1
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properties of the internal structure of the semigroup itself which imply amenability, 

rather than rely on the structure of the more complicated £°°(S). Work in this area 

was done by Folner [6] when he showed that a discrete group is left amenable if and 

only if it satisfies the, so called, Folner condition. Namioka extended Folner’s work 

in [13] and came up with several related conditions. The key to showing that S  

satisfies one of these Folner-type conditions is to find a subset of S  which overlaps 

largely with translated copies of itself.

Determining the structure of S  and determining whether it satisfies any of the 

Folner-type conditions is generally not an easy task. This task is simplified if S  

is the semidirect product of simpler semigroups. This method of combining two 

semigroups to create another semigroup is useful for creating a semigroup with 

more complicated structure than either of the original two. In this thesis, several 

examples of of semidirect products are considered. We also show how amenability 

and Folner-type conditions can be extended to a semidirect product.

In chapter two, we develop two methods for finding Folner nets for a semidi

rect product of amenable locally compact groups. Both methods provide a Folner 

net for a semidirect product based upon Folner nets for the original two groups. 

The first method is a generalization of some recent results of Janzen [11]. This 

method provides a Folner net which is ‘rectangular’ in shape, making it easy to 

work with, but requires some additional conditions on the groups for the given con

struction to yield a Folner net. The second method is a more detailed examination 

of a method described briefly by Greenleaf in [8]. This method works for every 

semidirect product of locally compact amenable groups, but results in a Folner net 

with a ‘trapezoidal’, rather than rectangular, shape.

The third chapter deals with Folner-type conditions and related properties on 

semigroups, and provides some new insights on a conjecture of Sorenson. Sorenson 

conjectured that all right cancellative left amenable semigroups were left cancella

tive. Klawe disproved this conjecture by providing a counterexample in [12]. We 

show that Klawe’s counterexample is weakly left cancellative. We then consider a 

weaker version of Sorenson’s conjecture - that all right cancellative left amenable

2
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semigroups are weakly left cancellative - and disprove it. The final section of the 

chapter is dedicated to the proof of a necessary condition for a semidirect product of 

semigroups to be left amenable. This condition was inspired by a sufficient condi

tion given by Klawe, and the two conditions are equivalent if one of the semigroups 

is right cancellative.

The fourth chapter considers replacing the role of the semigroup multiplication 

by the action of a semigroup on a set X . Two of the results of Namioka presented 

in [13] are generalized. The chapter concludes by proving that a semigroup is left 

amenable if and only if all left semigroup actions involving that semigroup are 

amenable.

In the fifth, and final, chapter we give some suggestions for future work in this 

area. We also provide unanswered problems relating to the previous chapters.

1.2 Background

Definition 1.2.1. Let X  be a set. We use £°°{X) to denote the Banach space of 

real-valued bounded functions on X  with the standard supremum norm. Let y  be a 

closed subspace of £°°(X) which contains all the constant functions. A functional 

in the dual space of y , m  G y*, is called a mean on y  if

IH I = 1 =  m (xx)

where %x is the characteristic function for the whole set; in other words, x x  is the 

constant function which is defined to be 1 at every point in X .

Definition 1.2.2. A semigroup S  is left amenable if there exists a mean, m, on 

£°°(S) which is left invariant. A mean, m, is left invariant if for any /  G £°°(S) we 

have m (f)  =  m(lsf ) for any s G S, where lsf( t)  = f(st).

Remark 1.2.3. Let S  be a semigroup, A  C S  and s G S. We write s~xA to denote 

the set {x G S : sx G A}.

Remark 1.2.4. A mean m  G £°°(S)* is left invariant i f  and only i f  m(xs~1A) — 

m(xA) far any A  C S  and any s G S.

3

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Example 1.2.5. Let IN be the set o f natural numbers equipped with the standard 

addition. IN is a semigroup since addition is associative. However, IN is not a group 

since it does not contain the additive inverse o f any given element. It is well known 

that every abelian semigroup is left amenable (this is shown in 3.4.1), so IN is left 

amenable.

In fact, it is not necessary to use this result to see that IN is left amenable. To 

show left amenability consider a Banach limit on ^°°(IN). A Banach limit, LIM , is 

a bounded linear functional satisfying:

liminf(xn) < LIM ((xn)(f=l) < limsup(a;n)
Tl—>OQ n—►oo

and

LIM((xn)“  ,) =  L IM ((xn+1) Z i).

The existence o f such a functional is a straightforward consequence o f the Hahn- 

Banach Theorem. It is easy to see that a Banach limit is a left invariant mean.

Definition 1.2.6. A semigroup S  is said to satisfy the Folner condition if for any 

finite F  C S, and any e > 0 there exists a finite and non-empty A  C S  such that:

\sA\A\ < e\A\ Vs G F.

Definition 1.2.7. A semigroup S  is said to satisfy the strong Folner condition if for 

any finite F  C S', and any e > 0 there exists a finite and non-empty A  C S  such 

that:

\A\sA\ < e\A\ Vs e  F.

The following two results connect the Folner conditions and left amenability.

Theorem 1.2.8. Let S  be a left amenable semigroup. Then S satisfies the Folner 

condition.

Proof. See Theorem 3.5 in [13]. □

4
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Proposition 1.2.9. Let S  be a semigroup satisfying the strong Folner condition. 

Then S  is left amenable.

Proof. See Section 2 in [1]. □

Remark 1.2.10. I fS  is left cancellative (eg. i f  S  is a group), then the strong Folner 

and Folner conditions are equivalent because |A| =  |sj4|, hence:

\A\sA\ = \A\ - \ A n  sA\ = \sA\ - \ A n  sA\ = |sA\A|.

5
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Chapter 2

Folner Nets and Semidirect Products 
of Locally Compact Groups

2.1 Introduction

In this chapter we examine properties of semidirect products of amenable groups. In 

particular, we look at how the modular function of the semidirect product group de

pends on the modular functions of the groups which compose the semidirect prod

uct. We also examine the concept of Folner nets and look at the structure of products 

of Folner nets in a semidirect product group.

This chapter extends work done by Janzen, presented in [11]. Janzen examined 

the case where the groups are all unimodular. We look at non-unimodular groups.

2.2 Definitions and Background

In this section we provide the background and definitions necessary to examine 

the topics of this chapter. We review four main ideas relating to locally compact 

groups. The first of these is the left Haar measure for a locally compact group. 

The second is the concept of a Folner net, which is fundamentally the same as the 

Folner condition. The third is the definition of the modular function. This is a 

way of expressing how close the left Haar measure is to being right invariant. The 

final concept is that of semidirect products of groups. Once we have reviewed these 

concepts we will, in later sections, see how the modular function of a semidirect

6
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product relies on the modular functions of the subgroups, and how one might create 

a Folner net for a semidirect product using Folner nets for the subgroups.

Definition 2.2.1. A locally compact group, G, is a group equipped with a Hausdorff 

topology such that the maps:

G x G —► G : (x, y) i—»• xy

and

G —» G : x H-+ x~l

are continuous.

2.2.1 Left Haar Measure

Definition 2.2.2. A left Haar measure on G is a non-zero positive measure, Xq, on 

the a —algebra of Borel subsets of G, B(G), satisfying all of the following:

• outer regular on all Borel sets, ie, the measure of a Borel set can be approxi

mated from the outside by open sets;

• inner regular on all open sets, ie, the measure of an open set can be approxi

mated from the inside by compact sets;

• finite on all compact sets;

• invariant under left translation, ie, Ag(E) = Xq(xE) ME £ B(G),\/x £ G.

Example 2.2.3. For any discrete group, G, the counting measure is a left Haar 

measure.

Example 2.2.4. For the real numbers, E, the Lebesgue measure is a left Haar 

measure.

There are a few well known results regarding the existence and uniqueness of 

left Haar measures on locally compact groups. For a locally compact group G, we 

shall denote the left Haar measure of G by Xq, or if there is no confusion as to 

which group we are considering, A.

7
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Theorem 2.2.5. I f  G is a locally compact group, then there exists a left Haar mea

sure A on G. Furthermore, i f  /i is also a left Haar measure on G, then there exists 

a constant c E R+ such that A = cfi.

Proof See Theorem 15.5 [10]. □

Remark 2.2.6. We occasionally refer to the left Haar measure o f a locally compact 

group although uniqueness only holds up to a constant multiple.

Remark 2.2.7. The analog o f the above theorem is true for the existence and 

uniqueness o f a right Haar measure. However, we warn the reader that except 

in the case where G is abelian, discrete, or compact, it is unlikely that the left 

and right Haar measures are the same. For example, the left Haar measure o f the 

‘ax+b ’ group(as defined in Example 2.3.3) is  ̂ times the right Haar measure.

2.2.2 Felner Nets

Definition 2.2.8. A locally compact group, G, is (left) amenable if there exists a 

left invariant mean on L°°(G). Here, L°°(G) is the space of equivalence classes of 

Ac-measurable, essentially bounded functions.

Remark 2.2.9. Definition 2.2.8 is the topological version o f left amenability we saw 

earlier for semigroups. I f  G is discrete, then L°°(G) can be identified with £°°(G) 

and the definitions o f amenability agree.

Remark 2.2.10. We often omit the left in front o f the amenable when discussing 

groups. This is because a locally compact group is left amenable i f  and only i f  it is 

right amenablefsee Section 2.2 in [8])

Definition 2.2.11. A locally compact group, G, satisfies the topological version o f 

the Folner condition if for any compact F  C G and any e > 0, there exists an

A C G, 0 < Ag(A) < oo such that:

v* 6 f .Ag(^)
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Remark 2.2.12. Definition 2.2.11 o f the Folner condition for locally compact groups 

is very similar to Definition 1.2.6 o f the Folner condition for discrete semigroups. 

As we move from the realm o f discrete semigroups to the realm o f locally compact 

groups we replace finite subsets by, in one case, subsets o f finite measure, and in 

another case, by compact sets. In the case where the finite subset, A, is replaced by 

a set o f finite measure, Greenleaf([8], Section 3.6) points out that the regularity o f 

the Haar measure ensures that we can choose A to be compact. When we replace 

the finite subset, F, we need to restrict ourselves to compact sets since, as in Exam

ple 2.2.13, i f  we allow F  to be any subset offinite measure, we no longer have that 

left amenability implies that the Folner condition is satisfied.

Example 2.2.13. Let G — R2 with the usual topology. Then the Haar measure 

is the standard Lebesgue measure and G is amenable. Consider the set o f zero 

measure F  := {(.x,0) | x <E R} and e = \. Suppose that A is a subset o f G with 

non-zero finite measure. Since Xq is inner regular (the Lebesgue measure is inner 

regular on all Borel sets), we can find a compact K  C A such that Xq(A\K ) < 

|Ag(A). Since K  is bounded, we can take x G F such that INI > 2sup{||y|| : y G 

K}. Then we have:

Xg {x A \ A )  > Xg (x K \ A )

> \ g(xK \ K )  -  Xg(A\K)

>  Xg (x K )  — - A g ( A )

= \ 0 (K)  -  jA0 (A)

=  Ag(A) — Xg { A \ K )  -

> Xe(A) -  2±Aa (A)

So we get that:
Ag(xALV4) 1

>  -  =  £  .
Ag (̂ 4) 2

We now extend the concept of the Folner condition to the notion of a Folner 

net. Consider the directed set A, where each element of A is a pair consisting of
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a compact subset F C G, and an e > 0. The order we put on A is ^  where 

(Fi,£i) A (Fa, £2) if Fi c  F2 and £ 1  > £2 . With this order, A, we can find a net of 

measurable subsets of an amenable locally compact group, G, satisfying the Folner 

condition for the index values of F  and e. We do not need to consider A as our only 

index set, so we create the following definition.

Definition 2.2.14. Let G be a locally compact group. A net, (Aa), of measurable 

subsets of G such that 0 < Xc(Aa) < 00 is called a Folner net if for any £ > 0, 

and any compact F  C G, there exists (3 such that, for a > f3

AGw ^ f a) < e ^ x e F  A G{Aa)
This definition is equivalent to the definition given in [11], but is easier to work 

with. Janzen’s definition involved the symmetric difference of A  and xA  rather 

than xA \A , but since Xq is a left Haar measure, the only difference between the 

definitions is a factor of 2.

Example 2.2.15. Let R be the real numbers equipped with addition. Let An =

[—71, n\for n e  IN. Then (A n)^L1 is a Folner net for R.

2.2.3 Modular Function

We will now define the modular function, A c, of a locally compact group G. The 

modular function is a function which expresses how close Xq is to being right- 

invariant. If A q is the constant function equal to 1, then the left Haar measure of 

G is also invariant under right translation, hence is the right Haar measure of G. In 

this case we say that G is unimodular.

Definition 2.2.16. For x  e G consider the measure Ac,x defined via: Ag ,x ( E )  — 

A g { E x ) .  \g,x is a left Haar measure and hence is a scalar multiple of A a- The 

modular function of G, A c  is defined via:

A G,x — Ac(x)Xc-

10
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Remark 2.2.17. The modular function A q satisfies the following properties (see 

Section 2.4 in [5] or Theorem 15.11 in [10]):

• A G(xy) = A G{x)AG(y) V x , y £ G ;

• A G is continuous;

• A q takes on only positive values;

•  A g (x ) f  f (y)dy = f  f {yx~l)dy, V/ e  C00(G);

• i f  y c  is the right Haar measure o f G defined by Pg(E) =  Ac(£,_1), then

dp(x) =  Aa(x~1)d\(x).

Example 2.2.18. Let G be a locally compact abelian group. In this case, left mul

tiplication is the same as right multiplication so any left Haar measure o f G is also 

a right Haar measure. Hence G is unimodular.

Example 2.2.19. Let G be a compact group. Since A c is a continuous group 

homomorphism, Ac[G) is a compact subgroup o f (0, oo). Since the only compact 

subgroup of{0, oo) is {1}, A c  =  1. Thus G is unimodular.

2.2.4 Semidirect Products

The final definition of this section is that of a semidirect product. There are two 

methods for defining the semidirect product of groups. Definition 2.2.20 uses the 

external method for defining semidirect products.

Definition 2.2.20. Let N  and H  be locally compact groups. Let r  be a group 

homomorphism from H  to Aut(iV) such that (n, h) —> Th(n) is continuous in the 

product topology N  x H  where Aut(iV) is the group of continuous automorphisms 
o f  TV. We say that G := N  x T H  is the semidirect product o f  N  and H  with respect 

to r  if G is the group consisting of elements of the form (n. h) where n £ N  and 

h £ H  equipped with multiplication given by:

(ni, h ) ( n 2, h2) = (nirftl(n2), M 2)

11
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Note that if G is equipped with the product topology then G is locally compact.

The second method used to define a semidirect product is called the internal 

method. The internal method considers a group with two subgroups satisfying cer

tain conditions and uses conjugation by one of the subgroups on the other as the r  

given in 2.2.20. For this method, we begin with a group action which determines r  

rather than constructing the group action from an arbitrary t .

In this section we present two methods for finding Folner nets for semidirect prod

ucts. The first method extends the work of Janzen, presented in [11]. The second 

method extends a result of Greenleaf presented in [8]. We begin by reviewing some 

basic results regarding the semidirect product and the modular function. We then 

build upon these results and examine a few interesting examples.

The following lemma is useful for working with the Haar measure of a semi

direct product. The original proof of this lemma which uses Haar integrals can 

be found in [10] 15.29(a). We present an alternative proof using Haar measures 

rather than Haar integrals. Because of the way that multiplication is defined for a 

semidirect product of two locally compact groups, the right Haar measure of the 

semidirect product is the product of the right Haar measures of the two groups.

Lemma 2.3.1. Let and pu be right Haar measures for N  and H  respectively. 

Then /i/v x  pH is a right Haar measure for N  xiT H.

Proof By the definition of the product measure, as seen in Theorem B, Section 35

in [9] we have that for E  C N  xiT H,

2.3 Folner Net Construction

where E h = {x\(x, h) G E}.

12
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To see that x y H is a right invariant measure, consider (a, b) £ N  x T H.

Therefore /./,/v x  /j// is a right invariant measure for N  x T H.

The regularity requirements for x yn  to be a Haar measure follow from the 

fact that the topology on N  xir H  is the product topology. Also, compact subsets 

of N  x T H  are contained in ‘rectangles’. These rectangles have sides which are 

compact in N  or H. Hence compact subsets of N  x T H  have finite measure.

Therefore y 2w x y H is a right Haar measure for A  x T H. □

The next step is to compare the modular functions of N  and H  to the modular 

function of N  x T H. To do this we first define a function, 5, which expresses how 

close A,v is to being invariant under actions of elements of H.

Consider a semidirect product of locally compact groups N  x r  H. Let h £ H. 

Consider the measure, AN,h, on N  given by:

Then:

«,(£(«,& )) =  [  /<Jv ((£ M ))'‘)<W ft) (2.1)
JheH

=  f  »N({(x,y)(a,b)\(x,y)  G E }h)dfiH{h) (2.2)
JheH

=  S  VN( { { xTv ( a ) , y b ) \ ( x , y )  e  E})dfiH(h) (2.3)
JheH

= /  i iN ( { x T y ( a ) \ { x , y )  £ E ,h  = yb})dfj,H(h) (2.4)
JheH

j  h £  H/iN({xTh(a)\(x,h) £ E})d(iH(h) (2.5)

(2.6)

(2.7)

(2 .8)Hiv x  h h {E)

AN,h(E ) = A N(rh{E)) ,

for each measurable E  C N.  Notice that Ajv,/i is left invariant, since

AN,h (nE ) =  XN (Th(n)rh(E))  =  Aat(t/1(£J)).

13
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Since A#,/* is a left Haar measure, and hence a constant multiple of Ajy, the 

function 8 : H  —> R+ given by:

■5(h) =  P -*N,h

is well defined.

The definition of the 8 function is similar to that of the modular function and 

the functions have similar properties. We will see shortly how 8 relates the modular 

function of a semidirect product of two locally compact groups to the modular 

functions of those two groups.

Proposition 2.3.2. The function 8 as defined above has the following properties:

1. For any positive, nonzero f  G Cc(N) we have that:

In  f ( rh(n ) ) M n) .
JN f(n)dp(n)

2. 8(hihf) = 8(hi)8(li2);

3. 8(h) > 0;

4. 8 is continuous; and

5. A]\fxTH(n , h) = 8(h) A^ in)  Afiih) where A n *th denotes the modular func

tion for N  xi T H.

Proof The first 4 properties are straightforward and similar to the corresponding 

proofs for the modular function. For details, see 15.29(b) [10].

To prove the fifth property, observe that for E  C N  x T H, n G N, h G H  we 

have:

A (r, h) -  XNxTH(E(n,h))&NxirH{n, h) -  —  ------- — —  (2.9)
^Ny\TH\Cj)

hNyjTH((n, h ^ E -1)
PN'XtH(E~1)

P>n x  p H ( ( n , h ) ~ l E ~ l ) 

p N x Ph ( E ~ 1)
JyeH  h N ( ( ( n ,  h ) ~ l E ~ 1)v ) d p H (y)  

JycH  h N ( ( E - l ) y ) d p H (y)

14
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(2 .12)
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However,

and

Therefore

Aivx.

{{n,h)-lE~l)v =  {x\(x,y)  e  ( n . h ) ' ^ ' 1}

=  {x\ (n,h)(x,y)  e  E * 1}

= (®l(nrA(a:),/i2/) G £ -1}

=  {rfc-i(n- 1ar)|(ar,%) e  E1-1} 

=  rh- 1(rr1( £ - 1)*i'),

((_£■ =  e  E~x}

= {®|(®-1,% ) G £ -1}

=  € £}

Jyeff (n~1 (E~1)hy))dfj,H(y)

f y e H ^ N { { E - l ) y ) d ( i H {y)

JyeH

fyeH VN{{E-l)y)dyH{y) 

f y e H x N{Th- i { T h- i { r hy { E ) y ~ lh~1) n ) ) d ^ H {y)  

f y e H ^ N ( ( E ~ 1) y ) d y lH( y )

5(h) A N(n) f yeH Ajv(7>ty((^)y~lh~1))d/xg (y) 

f y e H ^ ^ E - ^ d f i ^ y )
5(h) A N(n) f yeH y,N( (E- l)hy)dy,H(y)

f y e H h N ( ( E ~ 1) y ) d ^ H ( y)

= 5(h)AN(n)AH(h).

15

(2.13)

(2.14)

(2.15)

(2.16) 

(2.17)

(2.18)

(2.19)

(2 .20) 

(2 .21)

(2 .22)

(2.23)

(2.24)

(2.25)

(2.26) 

(2.27)

□
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Example 2.3.3 (‘ax+b’ Group). Let E  be the real numbers equipped with addition, 

and R+ the positive reals with multiplication. Both groups are equipped with their 

respective standard topologies. Define r  via: ra(b) =  ab for a € R+, and b € E.

Then G =  E  xir R+ is the ‘ax + b’group.

The right Haar measures for E  and R+ are given by

dpn(b) = dm(b), and (2.28)

dp$L+(a) = -dm(a),  (2.29)
Cl

where m  is the standard Lebesgue measure.

So, for the 5 function, we get:

5(a) =  (2.30)
/%(tq([ 0,1]) 
m([Qi 1])
M M )  
i

(2.31)

(2.32)
a

The modular functions for both R, and R+ are 1 since E, and R+ are both 

abelian groups. Therefore

A g(M )  =  <5(a)AE.(&)A]8+(a) (2.33)
1
a

For the left Haar measure o f G, we have

(2.34)

d \ G(b,a) =  A G(b,a)dpG(b,a) (2.35)

=  - d p G{b,a) (2.36)
Cl

= - d p K(b)dpu+(a) (2.37)
Cl

-  dm(b)dm(a). (2.38)
Cl

Remark 2.3.4. The reason that this group is called the ‘ax+b’ group is that we can

express the element, (a, b), o f it as the 2 x 2  matrix o f the form

16
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a b 
0 1

Written in this way, the multiplication on the group is given by standard matrix 

multiplication. The name ‘ax+b’ group comes from considering the matrices o f this 

form as affine transformations o f the real line. By representing elements o f the real 

line as 2x1  vectors with a 1 in the second entry, the matrix above sends x to ax + b.

Example 2.3.5. Now we will look at an example ofa unimodular semidirect product 

with S f  1.

Let G and E  be as in Example 2.3.3. Define p via: P(b,a)(c) =  f  ^  ~  

E  xip G. Then S(b, a) =  a, and Ap(c, (b, a)) =  5(b, a)A]R,(c) Ag(6, a) = a^ = 1.

So F is unimodular, but the left Haar measure o f F  is not the direct product o f 

the left Haar measures o f G and E.

The following results are modifications to results from Janzen’s paper [11]. He 

proved them in the case where G is the unimodular semidirect product of two uni

modular groups. These results are interesting because in general it is not easy to 

find Folner nets for a particular group, but by using these results we find that we are 

sometimes able to construct product nets. In other words if the groups, nets, and 

semidirect product satisfy the conditions of Theorem 2.3.7 then the ‘rectangular’ 

net is a Folner net for the semidirect product. Janzen provides several examples in 

the unimodular case, and also points out that [8] has shown that a ‘rectangular’ net 

will never be a Folner net for the ‘ax+b’ group.

Proposition 2.3.6. I f  G =  N  xiT H is the semidirect product o f locally compact 
groups, then:

1. For every measurable A C N, y £ H, we get that:

a b 
0 1

ax + b 
1

A jv ( t„ (A ))  =  5(y 1)Xn (A)

17
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2. I f  (Aa) is a Folner net for N, then for any compact F  C  G, and e > 0, there 

exists o.q such that for a > a o

A N(x(ry(Aa))\Ty(Aa))
^ n (Ao)

< e V(x,y) G F

Proof Part 1 of this proposition follows immediately from the definition of the 5 

function. It is included here because in the case where G is the unimodular semi

direct product of unimodular groups, we get the result of [11] that Xn(tv(A)) = 

Xn (A).

For 2, let F  C G be compact, and let e > 0. Let F H = {y G H  | 3x G 

N  s.t. (x, y) G F}.  Then FH is compact in H.  Since 5 is continuous, it achieves 

its maximum and minimum values.

A N{x(Ty(Aa))\Ty(Aa)) =  XN(Ty((ry-i(x))Aa\ A a)) (2.39)

=  5(y~1)XN{{Tv-i(x))Aa\Aa)  (2.40)

Since {ry-i (x) | (x, y) G F}  is compact in N,  and Aa is a Folner net for N  we 

get a a0 such that, for a > a 0 and (x, y) G F:

XN{{Ty- f x ) ) A a\ A a) ________ £________
AN(Aa) ^  max{6(v - i : y e F*}  >

So now, for (x, y ) G F  and a  > a 0 we see that:

A j v ^ ^ ^ ) ) ^ ^ ) )  ^(y-1) Ajy((ry-i (a;)) Aq,\̂ 4q,)
XN(Aa) ~  A N(Aa)

< m axf^y-1) : y € F « ] Xn{{t\ '  (2.43)

< m ax{% ->): y € (2.44)

=  e (2.45)

□

We will use juxtaposition to denote the multiplication in N  and H  and the sym

bol * to denote multiplication in G.

18
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Theorem 2.3.7. Let G = N  x T H.for N  and H locally compact amenable groups. 

Let (Aa)a be a Folner net for N  and (Bf)p be a Folner net for H. I f  the following 

two conditions are met, then (Aa x By) is a Folner net for G.

1.
^N(j~y(Af)\ACt)

^ n (Ao)
uniformly in y on compact sets o f H.

fyBp\Bp

f B'  S(t)d\H(t) 

uniformly in y  on compact sets o f H.

0

0

Proof First, notice that for (x, y) G N  x r H, A  C N, and B  C H  we have that:

(x, y ) * ( A x  B) = (xry{A) x yB)

and so

({x, y ) * { A x  B )) \ (A x B )  = ({x, y ) * ( A x  B)) \ ( N  x B  n  A x H)  (2.46)

= ( ( ( x , y ) * ( A x B ) ) \ N x B )  (2.47)

U ( { ( x , y ) * ( A x B ) ) \ A x H )  (2.48)

=  {xTy(A) x  (y B \B )) U ((xry(A) \A) x yB)
(2.49)

Now let £ > 0 and F  C G be compact. Then FN := {x \ (x, y) G F}  is

compact in N,  and F H := {y \ (x, y G F}  is compact in H. So, since (Aa)a is a

Folner net for N,  by 2.3.6, there exists cto such that for a  > «o we have:

XN(xTyAa\TyAa) < ________ £________  y) £ F  (2.50)
Ajv(^4a) 3max{(5(h) | h. G FH} ’

similarly, by condition (1) of the theorem there exists such that for a  > a.\ 

we have:

XN{'Ty(Aa) \Aa) ________ £____________  H
AN(Aa) 3max{S(h) | h G F H} y K }
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and by condition (2) there exists (30 such that for f3> (3o we have:

< _________ £_________  \ / y e F H
I b 0 3max{<5(/i_1) | h G F H}

Now let
K _  XG{{x,y) * (Aa x Bp)\(Ag x Bp)) 

a'0 XG{Aa x Bp)
So for a > max{o:o, f*i} and (3 > [3Q we have:

K < Ag{[xryAa x (yBp\Bp)]) +  AG([(xTyAa\ A a) x yBp]) 
a'P ~  AG(4* x Bp)

I[xTyAa x (yB0 \B 0)\ A o(n, h)diiG{n, ft) 
lAaxB0 A G(n, h)dfxG{n,h)

h axBl3A G(n , hW G(n, h)

_  JxTy(Aa) Ivb3\b0 S(h)AN(n)AH{h)d^H(h)dfxN{n)
I  Ac Jb,  S(h)AN{n)AH(h)dnH{h)dnN{n)

fxTy(Aa)\Aa IyB0 S(h)AN{n)AH{h)dfxH{h)dnN(n) 
+ Sac Sbp S{h)AN(n)AH(h)dfiH(h)dfiN(n)

_ xN(xTy(Aa)) f yBAB05{h)d\H(h) 
xn(Ao) f B/3 S(h)d\H(h)

XffixTyiAa^Aa) f yBfj S(h)d\H(h)

An (Ao) f B08(h)d\H(h)
_8 ( y - i ) XN(Aa) f yBAB05(h)d\H(h)

XN(Aa) j B0 S(h)dXH(h)

XN(xTy(Ag)\Aa) 8(h)d\H(h)
XN(Aa) JB0 5(h)dXH(h)

^  Siv”1) JyB0\B0S(h)dXH{h)
JB0S(h)dXH(h)

. AjV ( x T y ( A a ) \ T y A a ) + \ p / ( T y ( A a ) \ A a ) - , .

5(t/-1)e 2er<5(?/)
<  3m ax {5(/i_1) | h G F H} 3m ax {5(h) | h G F ^ }
<  £

20

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60) 

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)
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So (Aa x Bp)atp is a Folner net for G. □

The final result of this chapter is a method for constructing a Folner net for any 

semidirect product N  x p H  given Folner nets for N  and H. Greenleaf gives the 

main idea of this proof in [8 ] by discussing the ‘ax+b’ group as an example. One 

drawback of this result is that the resulting Folner net is not rectangular as it is 

in the previous theorem, but rather trapezoidal. For example, a Folner net for the 

‘ax+b’ group is ({(ab,a) \ a G [^,n],b G [—n,n]})^=1. Another drawback to this 

construction is that we can only show that a subnet of the constructed net is a Folner 

net for the semidirect product rather than the entire net.

Theorem 2.3.8. Let G = N  ~a pH for N, H  locally compact amenable groups. Let 

(Aa)a be a Folner net for N, and (B p ) p  be a Folner net for H  such that each Bp 

is compact (See Remark 2.2.12). Then there is a subnet o f

({(Ph(n), h) \ n e A a,h e Bp})^p

which is a Folner net for G.

Proof. Consider A C N, B  C H, (n, h) G G. Then

(n, h) * B  * A = {(xphb(a), hb) \ a G A,b G B} (2.66)

=  {(a, b) | a G xpb(A), b G hB} (2.67)

and

((n, h ) * B * A ) \ ( B * A )  = ((n, h) * B * A) \(B*N)U((n, h) * B  * A) \(H *A). 

This yields:

((n, h) * B  * A ) \ ( B  * A) = {(a, b) \ a G xpb(A), b G h B \B }  (2.68)

U {(a , b) | a G xp~b( A ) \ p h(A), b G h B }  (2.69)

Now let e > 0 and F  C G be compact. Then F^ := {n \ (n, h) G F} is

compact in N, and F H •= [h \ (n, h) G F} is compact in H. So, since (Bp)p is a

Folner net for H  there exists ,dp£ such that for every h G F H :

21
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XH(hB0Fe\B 0Fe) < e
AH(B/3Fte) ~  2

Similarly, since {Aa)a is a Folner net for N, and B0Fe is compact, we can find 

an ap,£ such that for every n G FN, h G F H, and b G B0Fs :

A N(P(hb)-'(n){AgFiS) \ A ^F,e) ^  ^
Ajy(A*F,J ~ 2

Choose (n, h) G F. From now on, to decrease the amount of subscripts, we will 

replace AaFe by A, and B0Ff by B. Now, letting k = .

k  <  /{(a,fe)|aga:ps(A),b£fcB\B} A G ^ G  +  /{(q,fe)|qg^(A)\^(A),5gfeB} A G ^ G
\ g(B * A)

JkWAB /aenpj(A) d{b)AN(d)AH{b)dpN{d)dfxH{b)

f b € B  ^ H ( b ) d f i H ( b )

(2.71)
JfeeB f a e Ps(A) S(b)AH(b)AN(d)dpN(d)dp,H(b)

I b e h B  I a e n Pi ( A ) \ P i (A) W ) M d ) A H(b)dpN{d)dpH(b) 

IbeB faep-b(A) d(b)AH(b)AN(d)d^N(d)d^ff(b)

f b e h B \ B  6& (b)An (np-b(A))dpH(b)
(2.73)

J~b€B\N(Pb(AMb)AH(b)dnH(b)

fbehBS(b)&H{b) \N(pb((pb- i ( x ) ) A \ A ) ) d p H(b)

JbeBXN(pb(A m b )A H(b)dpH(b)
Ji€hBXB5(b)AH(b)S(b^)XN(A)dpH(b)

JbzB XN(A)S(b-i)8(b)AH(b)dpH(b)

/5efê (6)A H(6) (̂fe-1)AJv((pB-1(n))A\A)diUH(fe)
J t e M A ) 6 ( y ' ) 8 { b ) A H(b)dvLH(b)

f b e h B \ B  A n ( b ) d p B ( b )
(2.77)

+  &ehB AH(b)XN((pb-i (x))A\A)dpH(b)
IbeB XN(A)AH(b)dfj,H(b)

XH(h B \B ) $heBXN{A)ldXH{b)
~ M B )  /fceB XN(A)dXH(b) 1 '

< |  +  |  (2.80)
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So {Bj3F e * Aap E)p̂ £ is a Folner net for G.

23

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 3 

Discrete Semigroups

3.1 Introduction

In this chapter we will investigate various Folner type conditions as well as results 

on semidirect products of semigroups. We will summarize known relationships 

among the various conditions. We will examine Sorenson’s conjecture, including 

a weaker version than the original. We will develop further results on semidirect 

products of semigroups relating to the Folner conditions.

3.2 Felner Type Conditions and Related Definitions

This section consists of the definitions of additional Folner-type conditions beyond 

the Folner condition and strong Folner condition (See section 1.2). Other related 

definitions are also presented. In the following section we will see how they relate 

to each other.

Definition 3.2.1. A semigroup S  is said to satisfy the weakF0lner condition if there 

exists a real number k, 0 < k < 1, such that for any choice of Si, .s2, . . . ,  sn G S, 

not necessarily distinct, there exists an A  C S, finite and non-empty such that:

Definition 3.2.2. A semigroup S  is said to satisfy the strong Namioka-Folner con

dition if there exists a real number k, 0  < k < such that for any choice of
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.Si, s'2, . . . ,  sn G S  not necessarily distinct, there exists an A  C S  which is finite and 

non-empty such that:

Definition 3.2.3. A semigroup S  is said to satisfy the weak Namioka-Folner con

dition if there exists a real number r, 0  < r  < 1  such that for any choice of 

s i , . . . ,  sn, t i , . . . ,  tn 6  S  there exists an A  C S  which is finite and non-empty such 

that:

Definition 3.2.4. A semigroup S  is left measurable if it admits a left reversible 

invariant mean. That is, a m € £°°(S)* with ||m|| =  1 =  m (xs) such that 

m(XsA) = tn{Xa) for any A C S  and any s G S.

Remark 3.2.5. Compare the above to Remark 1.2.4 to see why this definition is 

made.

Definition 3.2.6. A semigroup S  is said to satisfy Dixmier’s condition if there are 

finitely many bounded functions u\, U2, • • •, un G £°°(S) and ti, t2, ■.. , tn ^ S  such 

that

Definition 3.2.7. Let S' be a semigroup and k > 0. We say S has property (Fk) if 

for any s i , . . . ,  sn G S (not necessarily distinct), there is a finite, nonempty A  c  S 

such that:

The Folner number of S is defined by

<p(S) = inf{k | 0  < k < 1  and S has property (Fk)}

This definition of Folner number was originally used by J.C.S. Wong and pub

lished by Yang in [15].
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Definition 3.2.8. Let S  be a semigroup. We say that S  is left [right] cancellative if, 

for each s, t, x E S  we have that:

xs = xt =>• s — t [sx = tx => s — t] .

Example 3.2.9. Let G bea group, and S  a subsemigroup o f G. Then S  is both left

and right cancellative.

Definition 3.2.10. Let S  be a semigroup. We say that S  is weakly left [right] 

cancellative if, for each s ,t E S  we have that

< oo [Its-1 ! <  oo]

Remark 3.2.11. Here it is important to recall that the notation s~H does not nec

essarily refer to the product o f the inverse o f s with t. I f  such an inverse exists, then 

the two notations agree, but i f  s does not have an inverse then s~1t refers to the 

set {x E S  : sx = t}. In a left cancellative semigroup, this set has either zero or 

one element. So a left [right] cancellative semigroup is automatically weakly left 

[right] cancellative.

Example 3.2.12. Let S  be a finite semigroup. Then for each s ,t  E S  s~1t is

contained in S, hence is finite. So S is weakly cancellative.

Definition 3.2.13. Let S' be a semigroup. We say that S  has the finite intersection 

property for right ideals if for each choice of finitely many right ideals 7i, I2, . . . ,  In 

of S, their intersection is nonempty. That is,
n

n  i i * ^
i— 1

Remark 3.2.14. To show that S  has the finite intersection property for right ideals, 

it is equivalent to show that for any a,b G S  aS C\bS 0.

Definition 3.2.15. Let S' be a semigroup having the finite intersection property for 

right ideals. We define an equivalence relation, ~ , on S  by

s ~  t <£=> Eta E S ,sx  = tx.
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Then S' := S /  ~  is a right cancellative semigroup, called the right cancellative 

quotient semigroup of S.

This definition does require some work to show that S' is indeed a semigroup. 

Full details can be found in [7].

3.3 Known Relations Between the Above Conditions

This table indicates what various Folner number values mean. The first result can 

be found in [15] (Proposition 2.1), the second and third are immediately clear from 

the definitions. Indeed the definitions of the strong Namioka-Folner condition and 

the weak Folner condition were likely the inspiration for the definition of the Folner 

number.

p(S)  =  0 SFC 
(p[s) < \  ^  SNFC
p{S) < 1 O  WFC

The following diagram indicates known implications for general semigroups. 

These results are all shown in [13] or are clear from the definitions:

SFC =» SNFC =* WNFC =* WFC
$
LA =► FC

For left cancellative semigroups, we know that the Folner condition is equiva

lent to the strong Folner condition(Remark 1.2.10), so we have:

SFC ^  SNFC WNFC <£> LA FC =» WFC .

For (2-sided) cancellative semigroups, Yang showed that the weak Folner con

dition implies the strong Folner condition ([15], Theorem 2.7); so we have:

SFC SNFC WNFC LA <̂ > FC WFC .

For finite semigroups, the Folner condition is always satisfied (take A  to be the 

whole semigroup), and Yang showed that left amenability implies the strong Folner
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conditional5], Theorem 2.3). So we have:

SFC SNFC WNFC LA => WFC .

Proposition 3.3.1. A semigroup, S, satisfies Dixmier’s condition i f  and only i f  S  is 

not left amenable. ([13], 2.3)

Proposition 3.3.2. I f  a semigroup, S, is left measurable then S  satisfies the strong 

Folner condition. ([12], 5.3)

Proposition 3.3.3. I fS  is a semigroup, and there is a homomorphism h : S  —> h(S ) 

where h(S ) is a finite semigroup, then p(S) > ip(h(S)). ([15], 2.6)

Proposition 3.3.4. Let S  be a semigroup with the finite intersection property for 

right ideals. Then p(S) < p(S'). ([15], 2.9)

3.4 Some Preliminaries

The following results are interesting in their own right, along with being particularly 

useful in identifying and creating examples of left amenable semigroups.

Proposition 3.4.1. Let S  be an abelian semigroup. Then S is left amenable.

Proof. It is shown in [1] that every abelian semigroup satisfies the strong Folner 

condition. Hence every abelian semigroup is left amenable. □

Proposition 3.4.2. Let S  be a left amenable semigroup. Then S  has the finite inter

section property for right ideals.

Proof. By noting that the intersection of two right ideals of a semigroup, is again 

a right ideal, it suffices to show that the intersection of two right ideals of a left 

amenable semigroup is nonempty.

Assume for contradiction that I  and J  are two nonempty right ideals of S  and 

that I  fl J  =  0. Now consider the characteristic functions on these two ideals Xu Xj
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and let s G I, t G J. Observe that these functions and elements show that S  

satisfies Dixmier’s condition since for all x G S :

X / M  -  X/O) +  X j ( ^ )  -  Xj(®) =  2 -  X i ( x )  -  (3-1)

Since I  fi J  = 0 the infimum of 3.1 must be 1. Since 1 > 0, we have that S  

satisfies Dixmier’s condition contradicting 3.3.1. □

Proposition 3.4.3. Let S  be a semigroup with a zero element. Let z  G S  such that 

for any x  G S, we have zx = z = xz. Then S  satisfies the strong Folner condition, 

and hence is left amenable.

Proof. Let A = {z} .  Then A  is a finite, non-empty subset of S  and for any s G S, 

e > 0  we have:

\A\sA\ = | ( 4 \ { 4 I  =  0 < £ -  e\A\

Hence S  satisfies the strong Folner condition. □

Remark 3.4.4. In the case where S  has a zero element, z, the left invariant mean 

on L°°(S) is just the point evaluation functional at z.

Proposition 3.4.5. Let S  be a semigroup which is both left amenable and left can

cellative. Then 8  is left measurable.

Proof. S  is left cancellative, so s- 1 (sA) =  A  for all s G S, A C S. Since S  is left 

amenable, there exists a left invariant mean m  G ioo(S)*. This tells us that

™(x a ) =  m(xa-HaA)) =  m(xsA)  Vs G S, A  C S.

□

3.5 Weakly Cancellative Semigroups

We have seen that all groups are cancellative semigroups and all [left, right] can

cellative semigroups are weakly [left, right] cancellative. It is natural to won

der what properties for groups or left cancellative semigroups can be extended to
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weakly left cancellative semigroups. We give some examples of weakly left can

cellative semigroups. We will see that even for a simple example of a weakly left 

cancellative semigroup, the Folner condition is not equivalent to the strong Folner 

condition. Analysis on the class of weakly cancellative semigroups has recently 

been studied extensively by Dales, Lau, and Strauss [2].

Consider the following examples.

Example 3.5.1. Let S  (IN, min) be the semigroup o f natural numbers with the 

semigroup action given by taking the minimum o f the two elements. (Here we use 

the standard order on IN,)

Then it is clear that n~ln =  { m  G IN : m  >  n}  so |n_1n| =  oo.

On the other hand, S  is clearly abelian, so S is left amenable.

Example 3.5.2. Now let S  be the semigroup o f only two elements with multiplica

tion given by:

aa = a, ab =  a, ba = b, bb = b.

Since S is finite it is weakly left cancellative and satisfies the Folner condition, 

but aS =  {a} and bS =  {b} so S  does not satisfy the finite intersection property 

for right ideals and hence is not left amenable. Thus S  does not satisfy the strong 

Folner condition.

Remark 3.5.3. To see how the Folner condition and strong Folner condition differ 

for weakly left cancellative semigroups, notice that we have the following equali

ties:

A \sA  

\A\sA\

and similarly

\sA\A\

So this tells us that

|A\sA| =  \A\ + |sA\A| -  \8A\ (3 .5 )
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When the semigroup is left cancellative, then \A\ = |s^4|, so that |A\sA| =  

|sA\A| and the Folner condition is equivalent to the strong Folner condition. How

ever, i f  the semigroup is merely weakly left cancellative, then for the Folner con

dition and strong Folner condition to be equivalent, we need to be able to make 

arbitrarily small.

3.6 Sorenson’s Conjecture

Sorenson stated that every right cancellative left amenable semigroup is left can

cellative. In [12], Klawe gave an example of a left amenable, right cancellative 

semi-group which is not left cancellative, disproving Sorenson’s conjecture. We 

show that her example is weakly left cancellative, demonstrating that there exists 

a left amenable, right cancellative, weakly left cancellative semigroup which is not 

left cancellative. It is then natural to consider the weakened version of Sorenson’s 

conjecture: ‘every right cancellative left amenable semigroup is weakly left can

cellative’. We then construct a left amenable, right cancellative semi-group which 

is not weakly left cancellative, disproving this weaker version of Sorenson’s con

jecture.

The examples that will be examined in this section are generated by taking semi

direct products of semigroups. The semidirect product of two semigroups is very 

similar to the semidirect product of two locally compact groups, with two notable 

differences. The first is that in this case we are dealing with discrete semigroups 

and so we do not require any continuity conditions. The second is that when we 

were dealing with groups, we were restricted to automorphisms. Since we are now 

dealing with semigroups, we can consider all endomorphisms (homomorphisms 

from a semigroup to itself). In light of this, we use the notations End(I7) to de
note the set o f  endomorphisms o f  a semigroup U, Suv(U ) to denote the suijective 

endomorphisms, and Inj(I7) to denote the injective endomorphisms.

Definition 3.6.1. Let U and T  be semigroups. Let p be a semigroup homomorphism 

from T  to End(U). We say that S  = U T  is the semidirect product of U and
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T  with respect to p if S  is the semigroup consisting of elements of the form (u, t) 

where u £ U and t e T  equipped with multiplication given by:

(uu t1)(u2, t2) = {uipti{u2)M h)

The following two results are proved in Klawe’s paper [12] as Lemma 3.2, and 

Proposition 3.4.

Lemma 3.6.2. I fU and T  are right cancellative semigroups with a homomorphism 

p :T  —> End([7), then S = U xip T  is right cancellative.

Proposition 3.6.3. IfU  and T  are left amenable semigroups with a homomorphism 

p :T  —> Sm(U), then S — U x pT  is left amenable.

Example 3.6.4. Klawe's counterexample to Sorenson’s conjecture is the semidirect 

product S  = U y\pT, where U is the free abelian semigroup generated by {ui \ i = 

0 ,1,2,3, . . .},  T  is the cyclic semigroup generated by {a} and p is given by:

pa(u0) = U q  (3.6)

P a ( u i )  = U i - i  for i >  1 (3.7)

By the above results, this S  is left amenable and right cancellative.

Notice that

(u0,a)(u0,a) = (uq, a2)

and

(«o,a)(ui,a) =  (uq, a2)

So S  is not left cancellative.

We will now show that this S  is weakly left cancellative.
Consider two arbitrary elements o f the semigroup x ,y  G S. We can write 

x — ( u f u f t i f  . . . ,  an), y =  (u ^u ^u l2 . . . ,  am). It is sufficient to show that the set 

x~ly is finite.
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By definition we have that:

,eo+E"=o 9i „ e \ + g \ +n e2+fl2+i

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
n

={(ug°ufu f  . . . , a l) \ f o  = eo + '^ 2 g i ,f i  = ei + gi+n, i > l , m  = n + l}

(3.13)
n

={(u90° u f u f  . . . , a l) \ l = m - n , J 2 g i  = f o - e o ,  9i + n  = f t - e t, i >  1}

(3.14)

Note that i f  f  < e% for any i > 0 or m < n then there is no way to satisfy the 

above conditions, so x~[y =  0 .

But, provided that f  > eifor i > 0 and m — n > 1 we can determine that the 

size o fx~ly is the number o f unique ways that the condition Y^=o 9i — fo ~  eo can 

be satisfied. In other words, we are looking for the number ofcompositions o f fo—eo 

into n + 1 parts allowing parts o f size zero. This is precisely [x^0_eo] (1 — x)~('n+1\  

the coefficient o f xf'}~ea in the formal power series (1 — :r)^n+1\  We can calculate 

this value using the negative binomial theorem. This gives:

In short, this value is finite; hence S  is weakly left cancellative.

We will now construct a semigroup which is left amenable and right cancella

tive, but not weakly left cancellative.

Example 3.6.5. Let U be the free abelian semigroup generated by {uij \ i — 

1,2,3 . . .  , j  — 1 ,2,3, . . .} with a two sided identity e. Let T  be the cyclic semi

group generated by {a}. Define p via:
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PaiP'ij') — ifi  1 ) 

PaiPl,j) =

Pa(e) = e.

(3.15)

(3.16)

(3.17)

U and T  are abelian, hence left amenable, and p(T) C Sur(f/). This implies 

that S  = U y\pT  is left amenable. Also, since U and T  are right cancellative, so is 

S. To see that S  is not weakly left cancellative, notice that:

Hence\(e,a) 1 (e,a2)| =  oo.

3.7 A Necessary Condition for Amenability of a Semi
direct Product

In this section, we examine the condition of proposition (3.6.3). Klawe showed that 

for the semidirect product of two left amenable semigroups to be left amenable, it 

is sufficient that p : T  —► Sur([7).

It would be nice if the condition in the above proposition were necessary as well 

as sufficient. However, as Klawe points out, if U, T  both have zeroes, and pt{u) =  0 

for any t € T,u  G U then S  has a zero as well and hence is left amenable. Instead 

we will look at the semidirect product of the right cancellative quotient semigroup 

U' and T.  This gives us the desired result in the case where U is right cancellative, 

namely that p :T  —> Sur(f/) is necessary and sufficient.

Definition 3.7.1. Let U, T  be semigroups. Let p be a semigroup homomorphism 

from T  to End(£/). We define p : T  —> End(C/') by setting pt(u) pt{u).

Lemma 3.7.2. p is well defined.

(e, a2) =  (e, a)(uij,  a) for any choice o f j  > 0
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Proof. Let u ,v e  U be in the same equivalence class. Then there exists an x G U 

such that ux =  vx. Since pt is a semigroup homomorphism,

pt (u)pt (x) =  Pt(ux) =  Pt (vx) =  pt (v)pt (x)

But this means that pt (u) is equivalent to pt(v) .  Hence pt (u) is well defined. □

Proposition 3.7.3. Let U, T  be semigroups and let p : T  —> End(£7) be a semigroup 

homomorphism. IfU  x PT  is left amenable, then p : T  —> Sur ([/').

Proof. We begin by noting that if U x p T  is left amenable, then so are U and T. 

Now since U is left amenable, it has the finite intersection property for right ideals, 

so U' exists and the notation in our proposition makes sense.

Suppose for contradiction that p does not send T  to Sur ([/'). Then there exist

a E T, and u 6  U such that

n ^ - Pa{U')

or, written slightly differently,

pa(U) n it =  0.

We will show that U y\pT  satisfies Dixmier’s condition which will contradict it 

being left amenable. To do this we will define the following functions and elements 

of the semigroup.

Now let / i ,  / 2  e £°°(U x p T ) be given by:

f i  =  Xuxt (3.18)

h  =  Xpa(u)xT  (3-19)

and let

si =  (u,a)  (3.20)

«2 =  (pa{u) ,a) .  (3.21)

Observe that for (v, b) G U x p T
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So that

and

fi{{u,a)(v,b)) = fi{upa{v),ab) (3.22)

=  1, (3.23)

(3.24)

h  M )  = ( „  V<V L , (3.25)
1 0  v <£ u

(3.26)

f 2((pa(u),a)(v,b)) =  f 2(pa(u)pa(v),ab) (3.27)

=  f 2{Pa{uv),ab) (3.28)

= 1, (3.29)

(3.30)

h { v ' b )  =  In  <3'31)[0 V &  pa(U)
(3.32)

sup fi(v, b) +  f 2(v, b) — 1 (3.33)
( v , b ) € U x pT

. i n f  rrf i ( s i ( v , b ) ) - f 1(v,b) + f 2(s2( v , b ) ) - f 2(v,b) = l > 0 .  (3.34)
( v , b ) e U x pT

Thus U y\p T  satisfies Dixmier’s condition, which is a contradiction. Hence if 

U xip T  then p must send T  to the surjective endomorphisms of ([/'). □
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Chapter 4 

Semigroup Actions

4.1 Introduction

The multiplication of a semigroup, S, is a mapping from S  x S  to S  which satisfies 

r(st) = (rs)t , Vr, s, t  € S. We can also consider mappings from S  x X  to X, 

(s, x) i—► s • x  for an arbitrary set X.  Then if s ■ (t ■ x) =  (st) ■ x, Vs, t e  S, x E X,  

we call this a left semigroup action. If we think of the multiplication of a semigroup 

as an action of the semigroup on itself, it is natural to consider the generalization of 

various concepts to semigroup actions on sets. This chapter examines how concepts 

such as amenability and Dixmier’s condition can be extended to left semigroup 

actions.

Definition 4.1.1. Let S' be a semigroup, X  a set. If we have an action:

• : S  x X  —> X,  (s, x) i—► s ■ x

such that we have s ■ (t • x) = (st) • x for every choice of s, t e  S, x  6  X,  then we 

call the triple (S, X,  •) a left semigroup action of S on X .

Definition 4.1.2. Let (S, X, •) be a left semigroup action. We say that (S, X , •) is 

amenable if there exists a mean, m, on £°°(X) such that for /  <G £°°(X), s G S, we 

have m(f )  =  m(lsf) .  Here we use the notation ls in the following fashion:

hf (x)  =  f ( s  ■ x).
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4.2 Dixmier’s Condition

Dixmier’s condition can be extended to a left semigroup action. All that needs to 

be changed is that the functions in ^ ( S )  are replaced by functions in £°°(X) and 

multiplication is replaced by the left action. The proof that a left semigroup action 

satisfies Dixmier’s condition if and only if it is not amenable is quite similar to 

that given by Namioka in [13](Remark 2.3). But since this a new extension going 

beyond semigroups, we will reproduce the proof here.

Definition 4.2.1. Let /  G £1{X). f  is called a finite mean if f (x)  > 0, Va: G X,  

the set { x G l |  f (x)  > 0} is finite, and ||/ ||i  =  J2xex f ( x ) = We denote 

the set of all finite means by <f>.

Remark 4.2.2. Note that the final condition above ensures that finite means are 

indeed means (when embedded into the second dual o f i>l(X)).

Given a left semigroup action, (S,X,-),  we can define a left semigroup action 

of S  on ^ ( X ) .  This action is similar to convolution when we are dealing with a 

semigroup acting on itself by multiplication. This action is given by:

(s ■ f ) ( x )  :=
yeX,s-y=x

If s • y =  x  has no solution, then (s ■ f)(x)  =  0. One can check that s ■ f  is indeed 

in £l (X)  and that t ■ (s • / )  =  (ts) • / .  Additionally, it is useful to notice that the 

dual of this action is the left shift ls : £°°(X) —> £°°(X).

Lemma 4.2.3. Let (S , X,  •) be a left semigroup action. (S, X , •) is amenable i f  and 

only i f  there exists a net offinite means, (f a)a C $  such that:

w— lim s • f a — f a — 0 Vs G S
a

Proof First we notice that the weak topology on £1{X) is the same as the relative 

topology induced by the weak-* topology on £°°(X)*. Throughout this proof we 

will refer to this topology as the r-topology
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=> Assume that (S, X , .) is amenable. Then there exists a 5-invariant mean, m

on £°°(X).

We will show that $  is r-dense in the set of all means of X.  Once we have this, 

we will be able to find a net of finite means, ( fa)a tending to m  with respect to r. 

Since l*m — m  =  0, we have that:

r  -  lim s. f a -  f a =  0a

To show that $  is r-dense, assume for contradiction that there exists a mean 

m W .  Then by a corollary to the Hahn-Banach theorem ([4], V.2.10) there exist 

6 > 0 and g G which is r-continuous such that:

{m, g) > S +  (/, g) (4.1)

for all finite means / .  But since g is T-continuous, g G £°°(X) and 4.1 yields:

m(g) > 8 +  g(x) (4.2)

for all x  G X.  But 4.2 clearly contradicts m  being a mean since it would imply

||m|| > 1.
4= Assume that (f a)a is a net of finite means which converge to left invariance 

with respect to r.

The set of all means of X  is a r-closed subset of the unit ball of £°°(X)*. Hence, 

by Alaoglu’s Theorem ([10], B 25) it is r-compact. This implies that (f a)a has a

subnet (/s)/? which converges to a mean m  with respect to r . But since this subnet

converges to left invariance, m  must be a left invariant mean. □

Theorem 4.2.4. Let (S , X,  •) be a left semigroup action. Then (5, X , •) is not amen

able i f  and only i f  there exist n G M , / i , . . . , / n G £°°(X) and s i , . . . ,  sn G S  such 

that: n

jnf ^ 2  fi(si • x) -  ft{x) > 0 (4.3)
X i = 1

Proof By the lemma, (S, X , •) is not amenable, if and only if there does not exist a 

net of finite means which tend to left invariance weakly.
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Let E  := (£l (X) ) s  be equipped with the product of the norm topologies. Now

define T  : f ( X )  —► E  by Tf{s)  = s - f - f .
So now we have that (S', X,  •) is not amenable if and only if

0  £ T ( $ ) r

30 G ((^ P O )5)*
such that i n f { |0 ( T / ) | : /  G $ }  >  0

^  3-0 G ((^(X))5)*
such that i n f { |0 ( T / ) | : /  G $ }  >  0

3ui , . . . , U n  G ^(X)*,  t i , . . . ,  t n G S
such that inf{ ^ ”= 1  : x  G X} > 0

<£> 3ui , . . . ,wn G ^ ( X ) * , t i , . . . , t n G S
such that i n f { ^ ”=1 Ui{U8x — Sx) : x G X }  >  0

3u1, . . . , u n e £ 1(X)* , t1, . . . , t n £  S
such that in f lX X ^  u i{U-x) — U i ( x ) : x  G X }  > 0.

□

4.3 Relation between Amenability of Left Semigroup 
Actions and Semigroup Left Amenability

Here we will present a result that shows if a semigroup is left amenable, then all 

left actions of that semigroup are amenable. The converse is also true, however 

there are semigroups which are not left amenable, but which have amenable left 

actions. Indeed, every semigroup has an amenable left action, namely the trivial 

action where s.x = x for each choice of s G S, x  G X.  We also give another, 

slightly more interesting example of a left semigroup action which is amenable for 

a semigroup which is not left amenable.

Theorem 4.3.1. Let S  be a semigroup. S  is left amenable i f  and only i f  every left 

action, (S, X , ■), o f S  on a set X  is amenable.

Proof. Simply take X  = S, and let • be the semigroup multiplication.
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=> Assume for contradiction that there exists a left action (S, X , •) which is not 

amenable. Then there are u \ , . . . ,  un G loo(X) and s i , . . . ,  sn G S  such that:

n

Fix xq G X ,  for i — 1 , . . . ,  n  let Ui G loo{S) be given by:

Ui(s) := u f s . x o)

Then for s G S

n  n

^ 2  Ui(sis) -  Ui(s) = ^  Ui(si(s.xo)) -  Uj(s.a:o) (4.4)
i= 1 i= 1

> m  (4.5)

So infs e 5  Y!i=i Ui(sis) -  Ui(s) > m > 0.

So S  is not left amenable. This is a contradiction proving the theorem. □

Example 4.3.2. Let be the free semigroup with two generators, a and b. It is 

well known that F2 is not amenable. Let A2 be the free abelian semigroup with two 

generators a and b. Let (F2, A 2, •) be the left action given by a ■ x  =  ax, b • x — bx 

for all x G A 2. Then (F2,A2, •) is amenable.

Proof. Assume for contradiction that (F2,A2, •) is not amenable. By Dixmier’s 

condition for left semigroup actions, theorem 4.2.4, there exist n  G IN, f i , . . . ,  f n G

£°°(A2) and s i , . . . ,  sn G F2 such that

n

N ow  consider . s ' , , s n  G A2 realized under the homomorphism from F2 to A2 

which sends a to a and b to b. Since A2 is abelian, it is also left amenable (Theorem 

3.4.1) but the existence of / i , . . . ,  f n and s i , . . . ,  s~n contradicts Dixmier’s condition 

for semigroups (Proposition 3.3.1) implying that (F2, A2, ■) is amenable. □
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Chapter 5 

Further Work

5.1 Introduction

This chapter is a collection of questions which arose during the creation of this 

thesis. Some are questions posed by other authors that are related to, but beyond 

the scope of this work. Others are natural continuations of some of the results 

presented herein.

5.2 Questions

Question 1. Can the 8 function which arose from semidirect products be defined in 

a more general sense? Are there applications for this 8 function beyond calculating 

the modular function o f a semidirect product?

All that is apparently needed to define the 8 function is a semigroup action on a 

measure space with a measure such that if the measure is composed with the action 

of an element of the semigroup, the resulting set function is a constant multiple of 

the original measure. For example, consider a semigroup (using matrix multiplica

tion) of 2 x 2 invertible matrices acting on the measure space R2. The 8 function in 

this case corresponds to the inverse of the absolute value of the determinant of the 

matrix.

Question 2. In the case o f a unimodular semidirect product o f unimodular groups, 

Janzen showed that the listed conditions o f Theorem 2.3.7 are both necessary and
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sufficient for the product o f two Folner nets to be a Folner net for the semidirect 

product (Condition 2 o f the theorem corresponds precisely to (Bp) being a Folner 

net for H). Can necessity be extended to the general case?

We know that the ‘ax+b’ group can not have a rectangular Folner net, but neither 

does it satisfy the conditions of the theorem. So, while it is far from providing 

conclusive evidence that this question can be answered positively, at least it does 

not provide a counterexample.

Question 3. Does there exist a left amenable semigroup with Folner number strictly 

between 0 and 1  ?

This question has been posed previously by Yang [15]. He showed that if such 

a semigroup exists, it cannot be finite, abelian, left cancellative, or a semidirect 

product of these. If it can be shown that no such semigroup exists, then the strong 

Folner condition is equivalent to the weak Folner condition plus left amenability. 

One step in this direction might be showing that this is true for weakly left cancella

tive semigroups. This particular subcollection of semigroups is interesting because 

it contains all finite and all left cancellative semigroups.

Question 4. Does there exist a semigroup, S, with the finite intersection property 

for right ideals satisfying:

4>(S) < 4>(S')1

By a theorem of Yang ([15], Theorem 2.9), we know that <f>(S) < <j>(S'). It is 

also known that S  is left amenable if and only if S' is ([14], Proposition 1.25). Given 

the above problem, any example of this will either answer the previous question, or

4(S) =  0 and <j>(S') =  1 .

Question 5. Can the condition o f proposition 3.7.3 be shown to be sufficient as well 

as necessary?

Proposition 3.7.3 tells us that p must map to the surjective endomorphisms of 

U' for a semidirect product of semigroups to be left amenable. Klawe showed that
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if p maps to the suijective endomorphisms of U this is sufficient for the semidirect 

product of left amenable semigroups to be left amenable. Certainly these conditions 

are equivalent if U is right cancellative, but this is not true in the general case.

Question 6 . We have generalized some results previously known for semigroups to 

semigroup actions. What other results can be generalized in this way?

In ([13] 4.1), Namioka proved that the weak Namioka-Folner condtion implies 

left amenability. His proof was adapted from a result of F0 lner([6 ] Section 3). If we 

try to extend this result to the semigroup action case, we find that a multiplication 

is required on X .
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