
University of Alberta

S u b s t r i n g - B a s e d  T r a n s l i t e r a t i o n

by

/  \  s

Tarek Helmy Sherif

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta 
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-30022-0 
Our file Notre reference 
ISBN: 978-0-494-30022-0

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0
■ ( J l S C o  j^ s - 1 j t

May I change my place, please?

-  Iman Mersal, 
from Al-mashy Atwal Waqt Mumkin,

1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To my family fo r their everlasting love and support, 
and to Mourad and Yousef whose insanity kept me sane.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Transliteration is the task of converting words, usually based on phonetics, from 

one writing script to another. The need for transliteration generally arises when 

translating a person’s name, but can also occur when translating place names, orga­

nization names or borrowed words. Automating the process of transliteration is by 

no means a simple task, since there can be many ambiguities about the relationship 

between the spelling of a word and its pronunciation. Typically this task has been 

approached probabilistically, with probabilities assigned to different mappings be­

tween letters or phonemes, and the transliteration of a given word being selected 

on the basis of its likelihood. In this work, I present a novel data-driven approach 

to transliteration based on learning mappings between longer substrings of the two 

languages instead of individual letters. I show that substring-based transliteration 

models can outperform a state-of-the-art letter-based model.

Since the substring-based models are data-driven, I also explore means to ex­

tract training data from a bitext based on word similarity. I assess the performance 

of several word-similarity models on the task. I present my own method for boot­

strapping a stochastic transducer and show that it outperforms the other measures 

on a sentence-aligned corpus.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

1 Introduction 1
1.1 Arabic-English T ranslitera tion ................................................................  3
1.2 Machine Transliteration.............................................................................  4

2 Background 8
2.1 Dynamic Program m ing.............................................................................  9
2.2 Finite-State A utom ata................................................................................  11
2.3 Learning Probabilities................................................................................  14

2.3.1 The Forward-Backward A lgorithm ............................................  16
2.4 Using the M o d e ls .......................................................................................  18

3 Previous Work 21
3.1 Transliteration E xtraction..............................................................................21
3.2 Generating Transliterations...........................................................................24

4 Extracting Transliterations 28
4.1 Word S im ilarity .............................................................................................. 29

4.1.1 Levenshtein Edit D is ta n c e ..............................................................29
4.1.2 Arabic-English Fuzzy String M a tc h in g .......................................30
4.1.3 A L IN E ...............................................................................................32

4.2 Bootstrapping with a Stochastic T ran sd u ce r.............................................33
4.3 E valuation........................................................................................................ 34

4.3.1 D a ta .................................................................................................  34
4.3.2 Experiment 1: Sentence Aligned D a ta ..........................................35
4.3.3 Experiment 2: Non-translated Data ............................................. 38

4.4 Extracting the Training D a t a ........................................................................39
4.5 Conclusion .....................................................................................................40

5 Substring-Based Transliteration 41
5.1 The Noisy Channel M o d e l ...........................................................................42
5.2 Letter-based Transliteration.......................................................................... 44

5.2.1 A Many-to-Many Extension to the Forward-Backward Al­
gorithm ............................................................................................. 47

5.3 The Monotone Search A lgorithm .................................................................49
5.4 Substring-based Transliteration.................................................................... 50

5.4.1 Viterbi Substring D e c o d e r ..............................................................52
5.4.2 Substring-based T ra n sd u c e r ...........................................................53

5.5 Experim ents.....................................................................................................54
5.5.1 D a ta ................................................................................................  54
5.5.2 Evaluation M ethodology................................................................. 55
5.5.3 S e tu p ..............................................................................................  56
5.5.4 Results on the Test S e t .................................................................... 57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5.5 Computational C onsiderations...................................................... 59
5.5.6 Results on the Training S e t ............................................................. 60
5.5.7 Comparison to a Machine Translation S ystem ............................ 60

5.6 Conclusion ................................................................................................  62

6 Conclusion 63

A The Many-to-Many Forward-Backward Algorithm 69

Glossary 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

2.1 Dynamic programming table for the Levenshtein distance between
Samuel and Shimon...................................................................................... 10

2.2 Adjustment of mapping and alignment probabilities over EM itera­
tions................................................................................................................ 15

4.1 Arabic Romanization for Levenshtein distance............................................30
4.2 Letter equivalence classes for fuzzy string matching.................................. 30
4.3 Comparison of the word-similarity models...................................................34
4.4 A sample of the errors made by the word-similarity metrics.....................36
4.5 A sample of errors specific to each algorithm.............................................. 37
4.6 Precision of the various algorithms on the NER detection task. . . .  39
4.7 Results of bootstrapping data extraction from the remainder of the

news corpus................................................................................................... 39

5.1 Comparison of statistical transliteration models.......................................... 54
5.2 Exact match accuracy percentage on the test set for various methods. 57
5.3 Average Levenshtein distance on the test set for various methods. . . 57
5.4 A sample of the errors made by the letter-based (LBT) and substring-

based (SBT) transducers................................................................................. 58
5.5 Running times and transducer sizes for a typical input word.................... 59
5.6 Results for testing on the transliteration training set................................... 60
5.7 Comparison of substring transliterators to the Google translator in

terms of exact match........................................................................................60
5.8 Comparison of substring transliterators to the Google translator in

terms of average Levenshtein distance......................................................... 61
5.9 A sample of the errors made by the Google translator..............................61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

2.1 An alignment of two strings......................................................................  8
2.2 Levenshtein alignment of Samuel and Shimon....................................... 9
2.3 Alternate alignment of Samuel and Shimon............................................ 9
2.4 Finite-state acceptors..................................................................................  11
2.5 A finite-state transducer.............................................................................. 12
2.6 Transducer operations................................................................................. 13
2.7 A weighted finite-state transducer............................................................  13
2.8 Enumerated alignments for EM ................................................................ 15
2.9 The expectation-step function...................................................................  17
2.10 Dijkstra’s shortest path search................................................................... 19

4.1 Pseudocode for the vowel normalization procedure.................................. 31
4.2 Precision per number of words extracted for the various algorithms

from a sentence-aligned bitext.......................................................................35

5.1 Examples of valid (a) and invalid (b) phrase pairs.....................................41
5.2 A word unigram prefix tree for the names Najib, Nadia, Iman and

Iran.....................................................................................................................45
5.3 A memoriless transliteration transducer...................................................... 46
5.4 A transliteration transducer with separate mapping probabilities for

the beginning, middle and end of a word.....................................................46
5.5 Pseudocode for a many-to-many expectation algorithm...........................48
5.6 Pseudocode for a many-to-many expectation maximization algorithm. 48
5.7 High-probability (a) and low-probability (b) alignments of Helmy

and The Arabic is Romanized for clarity......................................... 51

5.8 Transducers without (1) and with (2) nulls allowed in the input word. 51
5.9 The Viterbi substring decoding algorithm...................................................52
5.10 A one-to-one alignment of Mourad and j!y>. For clarity the Arabic 

name is written left to right........................................................................  53

A.l Pseudocode for a general many-to-many expectation maximization
algorithm........................................................................................................... 70

A.2 Pseudocode for a general many-to-many expectation algorithm .. . .  70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1 

Introduction

In translating a text, one often comes across words that should not or can not be 

translated based on meaning. Most often this is because the word refers to a named 

entity and thus not to the dictionary defined concept. If the two languages use the 

same writing script then these untranslated words can simply be transferred verba­

tim over to the target language. If the writing scripts differ, however, then the word 

is transferred in a process called transliteration. Transliteration is the mapping of 

a word from one writing script to another, usually based on the phonetics of the 

original word. For the purpose of this work, I will differentiate between this pho­

netically motivated transliteration and Romanization, a term I will use to refer to 

an orthographic mapping from a non-Latin writing script into Latin letters. In other 

words, Romanization is a conversion between writing scripts based on how the orig­

inal word is spelled, while transliteration is a conversion based on how the original 

word sounds. To illustrate the difference between Romanization, translation and 

transliteration, consider the Arabic name .

•  Romanization: njyb mhfwz

•  Translation: noble preserved

•  Transliteration: Naguib Mahfouz

Transliteration can generally be conceived as occurring in one of two directions. 

Forward transliteration is the task of converting a word from its native script to a 

foreign one. Abu Nawas, for example, is a forward transliteration of to

English. Back transliteration, on the other hand, is the restoration of a previously

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



transliterated name from a foreign script. If one were given the Arabic string 

i t h e  back transliteration would be Vladimir Nabokov.

One of the major difficulties in transliteration, particularly in the backward di­

rection, is that transliteration is a lossy process. In other words, information is often 

lost about the original word when it is transliterated. There are several means by 

which information can be lost in transliteration.

• Phonetic Gaps: Different languages have different sets of available sounds. 

If all the sounds in a transliterated word exist in the target language, then 

the transliteration is a straightforward mapping from the phonemes in the 

source word to the letters of the target language. If, however, there are sounds 

missing in the target language, then these sounds must be approximated by 

phonemes that are available. For example, the English sound [p] does not 

exist in Arabic so Paris is transliterated as ^  j_ [baris].

• Pronunciation Ambiguities: Occasionally, there is some ambiguity about 

how certain letters or letter combinations are to be pronounced in a given lan­

guage. English, in particular, is notorious for the loose relationship between 

its spelling and pronunciation. The [k] sound, for example, is only repre­

sented by the letter .*) in Arabic, but in English, it can be represented by c, k, 

ch, ck and so on. Thus, if one were given the Arabic string JSCjL [masjkal] 

one could not depend on phonetics alone to obtain the correct transliteration 

Michael.

•  Deleted Letters: Related to the previous point is the fact that letter or letter 

combinations are occasionally deleted when transliterated. For example, the 

English name Knight is transliterated as OjU, with the silent letters simply 

removed.

In forward transliteration, the main objective is for the transliteration be recog­

nizable. Thus, the pronunciation of the original word should be followed as closely 

as possible. In general, any phonetically reasonable transliteration is considered 

correct, though occasionally there is a standard transliteration (e.g. Omar Sharif

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



or Kahlil Gibran). Back transliteration, however, represents the more challenging 

of the two tasks. Information has already been lost about the word in the original 

transliteration, and one requires some means of recovering it. The standard of cor­

rectness is much stricter because there is generally only one correct form for a name 

in its native script. Phonetically sound variations are not considered acceptable. For 

example, [mahmud darwij] can be acceptably transliterated as

Mahmoud Darwish, Mahmood Darwish and Mahmud Darwish, but Jayms Jois is 

not considered an acceptable back transliteration of the Irish author’s name.

1.1 Arabic-English Transliteration

As mentioned in the previous section, transliteration is a lossy process. The partic­

ular kind of loss that occurs depends on the pair of scripts one is dealing with. En­

glish and Arabic are a particularly interesting as languages for a study of transliter­

ation because of the fundamental differences between them. English is a Germanic 

language (from the larger Indo-European family), while Arabic is a Semitic lan­

guage. Both use alphabetic scripts, referring specifically to the fact that symbols 

in the two scripts are meant to represent phonemes. This differs them both from 

syllabic scripts such as Japanese katakana and logographic (morpheme-based) 

scripts such as Chinese hanzi. However, while English uses what is considered a 

true alphabet, meaning that both consonants and vowels are written as indepen­

dent letters, the Arabic alphabet is what is known as an abjad, meaning that vowels 

are often left unwritten. In transliterating from Arabic this is obviously an issue 

since these unwritten Arabic vowels must be accounted for so they can be written 

in English.

Another major issue in Arabic-English transliteration is the vastly different pho­

netic inventories in each alphabet. Arabic emphatic consonants ( ^ , ^ ,^ , - U ,  Js»,^,(3) 

are completely unavailable in English and thus must be approximated or even re­

moved. For example, the Arabic J:>U- [Taedil] is commonly transliterated as Adel. 

The letters ^  [x] and ^  [k] are uncommon in English and don’t generally have a 

standard spelling. In Arabic, glottal stops [?], represented by the e character, are

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



always written explicitly at the beginning of words that start with a vowel sound. 

English has no such restrictions on vowels written at the beginning of words. Thus,
f-

a name like Oliver will generally be transliterated as I with the glottal stop 

added explicitly to the beginning.

From the English side, the p  and v sounds do not exist in Arabic. Digraphs and 

silent letters are also quite common in English while they are essentially nonexistent 

in Arabic. The rules of pronunciation are also far more complex in English than 

they are in Arabic. Often, one cannot determine the pronunciation of English letters 

unless one is given some letter context, sometimes even requiring the entire word 

(e.g. the ch in Michael vs. Richard). This issue is compounded by the fact that 

pronunciation rules may differ depending on a name’s language of origin. Consider 

the different pronunciations of the same string Charles in Charles [Janl] Baudelaire 

and Charles [tfarlz] Dickens.

The fundamental differences between the Arabic and English alphabets present 

many interesting challenges in the task of transliteration in general, and thus provide 

an excellent test bed for attempts to automate the transliteration process.

1.2 Machine Transliteration

Machine transliteration is the task of automatically generating a transliteration 

for a given input word. Machine transliteration can be a useful tool for many tasks. 

Algorithms for machine translation and cross-language information retrieval often 

function by building large lexicons of translated word pairs. No matter how large 

these lexicons are, however, there will always be missing words. A large number 

of these words are generally named entities and thus candidates for transliteration. 

In the case o f machine translation, machine transliteration can be used directly to 

produce a transliteration for the output text. In cross-language information retrieval, 

a machine transliteration model could produce candidate transliterations of named 

entities in a query, and these candidates could be searched for in the target text. 

Obviously, transliteration models are not meant to replace translation lexicons, but 

could be used in conjunction with a lexicon to improve performance. A lookup in a

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



lexicon could be used as a first step, and if the lookup fails, or some other measure 

deems the word a candidate for transliteration, a transliteration model could be 

called upon to convert the word.

In most potential applications of machine transliteration, the focus is on translit­

erating named entities, since, as mentioned above, named entities tend to cause the 

most problems for traditional lexicons. Thus, in choosing data to train and test the 

transliteration models presented in this work, I focused primarily on transliterations 

of named entities. It should be noted, however, that the algorithms presented here 

are sufficiently general to be used for the transliteration of other words (e.g. lexical 

borrowings such as ,jy_jv&jltelevision).

Several different approaches have been proposed to modeling transliteration, 

and one of the key dimensions across which these approaches differ is in how they 

define a basic mapping unit in a transliteration. Phoneme-based transliteration 

considers phonemes the central unit in a transliteration and thus will map the letters 

in different writing scripts based on the phonemes they represent. Letter-based 

transliteration considers the letters themselves to be basic units of a transliteration 

and thus will learn relationships between letters in the two scripts explicitly. In this 

work, I present a new approach to transliteration, which I refer to as substring- 

based transliteration. This approach considers the basic unit of a transliteration 

to be arbitrarily long substrings of letters. This looser definition of a mapping unit 

means a substring-based model will be able to learn longer substring mappings, 

allowing it to use contextual information not available to the other models.

I explore two tasks related to machine transliteration. My primary focus will be 

on the task of generating transliterations using my substring-based approach. The 

key components to a machine transliteration model are that it be accurate and gen- 

eralizable. An accurate model should be able to generate desired transliterations, 

while a generalizable model should be able to transliterate a wide range of words. 

At one end of the spectrum between accuracy and generality would be a lookup ta­

ble that simply stores words and their transliterations, and given one would produce 

the other. This model would be extremely accurate (though not necessarily perfect 

due to spelling variations), but no matter how large the table is, there will always be

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



some words missing, and these words would simply generate nothing. On the other 

end of the spectrum would be a simple deterministic mapping algorithm that iter­

ates through the source string letter by letter and produces the most likely mapping 

for each one. This type of model would be able to generate a transliteration for any 

word, but it is unlikely that these transliterations would be accurate.

It is also desirable for a model to be language-independent. In other words, the 

model should be designed in such a way that it may be ported from one pair of 

languages to another with minimal modifications. For example, one could design 

a model for Arabic-English transliteration in which all the possible mappings be­

tween English and Arabic letters are manually encoded. Not only is this approach 

unattractive due to the prohibitively high number of possible mappings, but if one 

wanted to then port the model to Hindi-English transliteration, one would have to 

enumerate these mappings from scratch. Thus, state-of-the-art models of translit­

eration tend to be data-driven, meaning that the mappings are learned on the basis 

of examples, and the only requirement to transliterate between any given language 

pair is that transliteration examples for that pair be available.

Traditionally, data-driven transliteration models have centered on learning letter- 

to-phoneme (Knight and Graehl, 1997) or letter-to-letter (Al-Onaizan and Knight, 

2002) relationships on a smaller scale. The goal was mainly to learn relationships 

in units that would be intuitive to a human (e.g. s h /^  or J/jji). These models tended 

to borrow heavily from generative word-based models of statistical machine trans­

lation (Brown et al., 1993). Recently, the trend in machine translation has been 

towards phrase-based models of translation (Koehn et al., 2003), which is based on 

learning longer phrase mappings, rather than mappings between individual words. 

Keeping this in mind, I designed my substring-based transliteration approach as 

an adaptation of phrase-based translation models to the task of transliteration. My 

substring-based models are designed to learn mappings between longer word sub­

strings, rather than between individual letters or phonemes. I propose two models 

of substring-based transliteration. The first, the Viterbi substring decoder uses 

a dynamic programming approach to generate transliterations. The second, the 

substring-based transducer, encodes the substring mappings into a more flexible

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



finite-state transducer.

The data-driven nature of the models discussed herein requires a large set of 

example transliterations from which to learn the mappings. Thus the secondary 

task explored in this work is the detection and extraction of transliteration pairs 

from a translated corpus, or bitext. Using these methods, I can create a training set 

of suitable size to train the generation models. I assess the performance of several 

measures of word similarity on the task of transliteration extraction and propose 

my own method which learns a word-similarity metric iteratively from the bitext 

itself. The transliteration pairs extracted by this method can then be used to train 

the transliteration models.

The remainder of this work is organized as follows: Chapter 2 presents several 

key concepts necessary to understanding the models presented. Chapter 3 reviews 

previous approaches to both generating and detecting transliterations. Chapter 4 

discusses my experiments comparing different word-similarity models on the task 

of gathering training data for the generation models and presents my bootstrapping 

approach to training a stochastic transducer for the task. Chapter 5 discusses my 

substring-based transliteration approach in detail and presents experiments com­

paring it to a state-of-the-art letter-based model. Finally, Chapter 6 presents my 

conclusions and discusses some potential avenues for future work.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Background

In this chapter I will discuss some of the key concepts and algorithms that recur 

throughout this work. The algorithms presented here function on pairs of strings 

which I will refer to as the source and target strings. This nomenclature comes 

from generative models, in which one string is assumed to produce the other, but I 

will retain it whether the models are generative or not. In machine transliteration for 

example, the source word is the given word and the target word is the transliteration 

produced by a model. For a given string s, Si will represent the i th letter in the 

string, while s (  will represent the substring beginning at position i and ending at i' 

in the string.

An alignment of two strings is some linking of the letters in the source and 

target strings (e.g. Figure 2.1). The way in which letters are linked depends on 

the particular task. Linked letters are referred to as substitutions, and if a link is 

between a letter and itself it can also be referred to as an identity. Unlinked letters 

in the source string are referred to as deletions, while those in the target string are 

referred to as insertions.

C h a r l e s

T s  h a r I z
Figure 2.1: An alignment of two strings.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.2: Levenshtein alignment of Samuel and Shimon.

S a m u e

S h i m o n

Figure 2.3: Alternate alignment of Samuel and Shimon.

2.1 Dynamic Programming

Dynamic programming refers to a class of algorithms in which the solutions to 

subproblems are maintained in a table to be used in finding solutions to more com­

plex problems. As an example, consider Levenshtein edit distance (Levenshtein, 

1966). Levenshtein distance measures the difference between two strings as the 

minimum number of insertions, deletions and substitutions required to convert one 

string into another. For example, consider the strings Samuel and Shimon. The 

Levenshtein distance between them is 5, and beginning with Samuel, the conver­

sion could occur as follows:

1. Insert the h —> Shamuel.

2. Substitute i for a —> Shimuel.

3. Substitute o for u —> Shimoel.

4. Delete the e —>• Shimol.

5. Substitute n for / —> Shimon.

This process can be viewed as an alignment of the two words as shown in Fig­

ure 2.2. The dashed lines represent identities and are counted as 0 in terms of the 

distance calculation.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 6 5 5 5 5 5 5
e 5 4 4 4 4 4 4
u 4 3 3 3 3 3 4
m 3 2 2 2 2 3 4
a 2 1 1 2 3 4 5
S 1 0 1 2 3 4 5
# 0 1 2 3 4 5 6

# s h i m o n

Table 2.1: Dynamic programming table for the Levenshtein distance between 
Samuel and Shimon.

In automating the Levenshtein distance calculation, one could exhaustively search 

through all possible alignments of the two words, calculating the distance for each 

one, and returning the minimum distance found. This is an extremely unattractive 

approach, however, mainly because several alignments will share links. The cost 

for these links will remain the same, but will be recalculated for each alignment in 

which they appear. Consider the alignment in Figure 2.3. The first two links are the 

same as above, and thus will have the exact same cost. In this exhaustive search, 

their cost would nevertheless be recalculated as it would be for any other alignment 

that begins with the same two operations.

A dynamic programming approach would be to build a table with each entry in 

the table representing the minimum distance for alignments of prefixes of the two 

words. Each row represents a letter st in the source word, and each column, a letter 

tj in the target word. Each entry ( i . j )  in the table represents the minimum cost of 

converting the source prefix s\ into the target prefix t{. The table is filled according 

to the following recursion.

Lev( 0 ,0) =  0

Lev(i  — 1, j )  +  1

Le v ( i , j ) =  min < Lev( i , j  — 1) +  1 (2-1)

Lev(i  — 1, j  — 1) +  sub(si , t j )

The function sub(si , t j )  simply returns 0 for identities and returns 1 otherwise. 

The table for the Levenshtein distance calculation between Samuel and Shimon is 

shown in Table 2.1. The ‘# ’ symbol represents insertions or deletions occurring at

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1) 2)

ec
a

3)

£ b

Figure 2.4: Finite-state acceptors.

the beginning of a sequence of operations.

Dynamic programming is an efficient approach to solving many problems, but 

it makes certain assumptions that one must be aware of when applying it to a given 

task. The main assumption is that the global solution can be built up in a bottom-up 

fashion out of the solutions to the subproblems. In other words, the optimal path 

taken to reach some intermediate step on the way to the global solution must be part 

of the path to the optimal solution. In the example presented above, the assumption 

is that if one found the optimal series of operations to convert the string Samuel 

into the the intermediate string Shimoel (step 3) then these operations must be part 

of the series of operations to convert Samuel into Shimon. This is known as the 

dynamic programming invariant assumption. It seems quite intuitive, but as will 

be discussed later in this work, there are conditions under which it must be violated.

A finite-state automaton (FSA) is generally represented as a directed graph. It is 

comprised of a finite set of states (including a single start state and a set of final 

states) connected by directed arcs. The arcs are characterized by symbols rep­

resenting the conditions under which a transition can be made from one state to 

another.

FSAs can be used in many applications, but I will be focusing on two: word 

acceptors and transducers. In a finite state acceptor, the symbols on the arcs 

are letters in a given alphabet, and the graph represents the set of all valid words

2.2 Finite-State Automata

l i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.5: A finite-state transducer.

according to the acceptor. Given an input word the constraints in an acceptor are 

that transitions must begin at the start state, end at a final state, and proceed in the 

order that the letters occur in the word. Transitions can occur across arcs marked 

with the null (e) symbol without a corresponding move in the input string. Null 

symbols can be thought of as occurring in between the letters of the input string. 

In Figure 2.4, FSA 1 would only accept the string ab or the letter c, FSAs 2 and 3 

would accept any string composed only of as, and finally, FSA 4 would accept any 

string composed of a sequence of as followed by a sequence of bs.

A finite-state transducer (FST) is also an FSA, but differs from the acceptor in 

that instead of defining an acceptable set of strings, it defines a set of string pairs. 

The only difference in terms of the graph itself is that arcs are now defined by pairs 

of symbols. Although FSTs can be used as acceptors for pairs of strings, in this 

work I will be focusing on their function as a generators. In other words, an FST 

will be given one string as input (with symbols matching one side of the symbol 

pairs on the arcs) and will produce a corresponding output string. Transducers are 

built to function in both directions, so the input could be made to either the left or 

right set of symbols on the arcs, with the output corresponding to the opposite side. 

For example, the transducer in Figure 2.5 could take the string cat as input to the 

left side and would then generate the string dog.  It could analogously take the string 

dog as input to the right side, and would then generate cat.

Finite-state transducers are closed under the following three operations (mean­

ing that the result will still be an FST):

•  Inversion: a reversal of the left and right sides of the symbol pairs on the arcs. 

In other words, the input to the left of the inverted transducer will produce the 

same output as right input to the original transducer.

• Union: the union of two transducers can simply take all the same input as the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1)

inversfon(l): >(OJ

a:b
Union(1,2):

b:c

Composition(1,2): t̂art) a:<?>(Q)

Figure 2.6: Transducer operations.

a:b /0.6

Start

a:c /0.4 x:z /0.8

Figure 2.7: A weighted finite-state transducer.

original transducers and will produce the same output.

•  Composition: the output from one transducer is used as input to the next. 

More formally, if FST a maps input strings Ia to output strings Oa, and FST 

b maps from Ib to Ob, then the composition of a and b would map from Ia to

Ob.

Figure 2.6 presents examples of these operations.

The automata presented so far in this section show no preference to one string or 

pair of strings over another. Often, however, particularly in the case of transducers 

where a single input string can produce multiple output strings, it is desirable to rank 

paths through the automaton in some way. In a statistical approach, this is done by 

assigning probabilities to the arcs, and the probability of a given path through the 

automaton is simply the product of the probabilities of its individual arcs. This 

augmented automaton is referred to as a weighted finite-state automaton (WFSA). 

For example, if the string ax were input into the left side of weighted finite-state 

transducer (WFST) shown in Figure 2.7, there are four potential outputs: by with a

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



probability of 0.12, bz with a probability of 0.48, cy with a probability of 0.08 and 

cz with a probability of 0.32. Thus, the outputs can be ranked according to their 

probabilities, and depending on the task, a specific output can be selected.

2.3 Learning Probabilities

In designing a probabilistic model, one of the main issues that arises is how to assign 

probabilities to given events. In the case of transliteration, one would want to assign 

probabilities to individual mapping operations, such as d /x  One could attempt to 

assign these probabilities manually, based on intuitions about the languages being 

transliterated, but this approach is unattractive for two reasons. First of all, this 

would require enumerating all possible mappings by hand, which, as mentioned in 

the previous chapter, is tedious and generally unfeasible. The other drawback is 

that it would be difficult to ground these probabilities in anything concrete. Should 

the probability of a d h  mapping be 0.6 or 0.8 or 0.999? There is no concrete way 

to justify one probability over another.

Expectation maximization (EM) (Baum, 1972) is a statistical approach to 

learning these probabilities from a set of training examples. If the task were to 

learn the probabilities for letter mappings between words, an EM algorithm would 

begin with a random guess as to what the individual mapping probabilities are. It 

would then iteratively adjust the mapping probabilities based on how the mappings 

appear in the data. Given a set of example word pairs the process could be outlined 

as follows:

1. Assign an equal probability to all mapping operations.

2. Enumerate all possible alignments for each pair of words.

3. Calculate the probability of an alignment as the product of the probabilities 

of its individual mappings.

4. Normalize the alignment probabilities so that they sum to 1 for each pair of 

words.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Iteration Mappings

P(a,x) P(e,y) P(a,y) P(e,x) P(b,z)

Alignments 

P(la) P(lb) P(2)
1 0.2 0.2 0.2 0.2 0.2 0.5 0.5 1.0
2 0.38 0.13 0.13 0.13 0.25 0.75 0.25 1.0
3 0.44 0.19 0.06 0.06 0.25 0.96 0.04 1.0
4 0.49 0.24 0.01 0.01 0.25 0.999 0.001 1.0

Table 2.2: Adjustment of mapping and alignment probabilities over EM iterations.

x y  x z

a 
1b) \  

x y

Figure 2.8: Enumerated alignments for EM.

5. Collect partial counts for each mapping operation in each alignment. The 

partial count collected from a particular alignment is simply the count weighted 

by the probability of that alignment.

6. Normalize the mapping probabilities so that they sum to 1.

7. Repeat steps 3-6 until the probabilities cease to change.

For example, assume one is given two training examples: a/xy and ab/xz. For 

simplicity the alignments will be constrained so that each letter in the source string 

must be linked to exactly one letter in the target string, and each letter in the target 

string can link to at most one letter in the source string. The possible alignments 

are enumerated in Figure 2.8. Due to the aforementioned constraint there is no 

ambiguity about the alignment of the second pair (alignment 2), but the first pair 

can be aligned in two ways, and the algorithm must choose between them if it is to 

learn accurate mappings. Intuitively, alignment la  is more attractive since the alx 

link agrees with alignment 2. Table 2.2 shows how the probabilities of the mappings 

and alignments change over the course of EM iterations. The probabilities shown 

are as they would be after the normalization of the alignment probabilities (step 4

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



above). It is clear that as the iterations progress, the algorithm is leaning towards the 

more intuitively preferable alignments and is assigning the mapping probabilities 

accordingly.

2.3.1 The Forward-Backward Algorithm

In the EM example described above, the constraint on letter-to-letter mappings re­

stricted the number of alignments that had to be enumerated. In a real application, 

however, constraints are likely to be much looser. This would lead to a similar prob­

lems as with Levenshtein distance (Section 2.1) in that the probabilities for several 

subsections of the alignments have to be calculated repeatedly. The solution, once 

again, is to apply dynamic programming.

The forward-backward algorithm uses two tables to store probabilities for 

portions of an alignment and uses these values to calculate alignment probabilities 

and collect partial counts for the mapping operations. Ristad and Yianilos (1998) 

present a forward-backward algorithm for training a one-state weighted transducer.

The forward table F  is similar to the Levenshtein table described in Section 2.1 

in that each entry ( i , j )  represents alignments of s\ and t\ . The operations allowed 

are the same as before as well: insertions, deletions or substitutions. In this proba­

bilistic setting, however, the value stored in each entry is the sum of the probabilities 

of all possible alignments of and t\ . The backward table B  analogously stores, 

at each (i. j ) entry, the sum of the probabilities of all alignments of the suffixes sj+1 

and tj+l , where I  and J  represent the lengths of source string s and target string f, 

respectively. The tables are filled according to the following recursions.

F(0,0)

H h i ) P(s i , e)F( i  -  1 , j )  

+ P{ e , t j ) F{ i , j  -  1) 

+ P ( s i, t j )F(i  -  1 , j  -  1)

1

(2 .2)

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Algorithm expectation-step (s, t )

for i =  0 ...I
for j  = 0... J

if (i > 0)
C(si, e)+  =  F{i -  e )B( i , j ) ) /F( I ,  J)

if (j  > 0)
C(e, t j )+ = F(i, j  -  1 )P(e, t0) B ( i , j ) ) / F ( I , J )  

if (i > 0 A j  > 0)
C(si , t j )+ = F(i  — 1 , j -  l )P(si , t j )B(i ,  j ) ) / F ( I , J)

Once the F  and B  tables are filled, the expectation-step function (Figure 5.5) 

can be called to collect the partial counts which are stored in the C  table. Recall that 

F( i , j )  stores the probability of all possible alignments of s1, and t\, while B ( i , j ) 

contains the probabilities for all alignments of s(+l and t j+1. Thus, the substitution 

count C(si,  tj) collected at a particular i and j  will be for all alignments that link 

with tj. Counts for insertions and deletions are collected similarly. Once the counts 

are collected they can be normalized to create a probability distribution.

One can see that the above algorithm functions equivalently to the exhaustive 

EM approach described earlier in this section. The filling of the F  and B  tables 

carries out steps 2 and 3, while the division by F(I,  J)  in the expectation-step 

function performs step 4 (recall that F(I,  J) contains the sum of the probabilities 

of all alignments of the two words). Finally, step 5 is performed by the expectation- 

step function with the only difference being that counts are collected from several 

alignments simultaneously. All other steps are performed exactly as in the original 

approach.

Figure 2.9: The expectation-step function.

B( I , J )  

B ( i , j ) P{s i+1, e ) B ( i -f 1, j )  

+ P (e , t j+i ) B ( i , j  +  1) 

+P(s i+i , t j +i)B( i  +  1, j  +  1)

1

(2.3)

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4 Using the Models

Once the structure of a statistical model has been defined, and the probabilities have 

been learned, one needs a method to extract information from the model. This can 

be referred to as searching through or decoding a model. The type of decoding done 

depends on the information desired from the model. For example, if the desired 

information is a score for similarity between two strings, the forward algorithm 

(Equation 2.2) can be used. In this case the similarity score is defined as the sum of 

the probabilities of all paths through a transducer that correspond to the two words. 

After running the algorithm, this value would be stored in F(I,  J).

On the other hand, there are occasions when only the single most probable path 

is required, for example when creating an alignment between two strings. The for­

ward algorithm would be inappropriate in this case. This is because it considers all 

paths simultaneously, and at the same time is making the dynamic programming 

invariant assumption. Thus, it is impossible to extract a single path from the table. 

The Viterbi algorithm (Viterbi, 1967) is a dynamic programming method that dif­

fers from the forward algorithm in that it only considers the single most probable 

path through a model. For a source string s of length I  and target string t  of length 

J ,  a table V  is filled according to the following recursion:

E (0 ,0) =  1

( P ( Si, e ) V ( i - l , j )

=  m a x i  ~  1)

|  P(s i , t j )V( i  -  1 , j  -  1)

After running the algorithm, the probability of the most probable path through the 

model will be stored at V(I,  J).  If the alignment itself is desired, back pointers can 

be kept to maximizing arguments to recreate the path.

The dynamic programming implementation of the Viterbi algorithm makes cer­

tain assumptions about the state space it is searching through. The main assumption 

is that states are defined by a source-target letter pair (s*, tj). If a more flexible state 

space is being used, another option is Dijkstra’s shortest path search (Dijkstra, 

1959). The algorithm makes similar assumptions to dynamic programming algo-

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Algorithm Dijkstra-decode (W F S T , t, start, f i n a l )

foreach state q in W F S T  do
p(q) := 0 
previousq  := e 
known(q) := fa lse  

p(start)  := 1 
known(start) := true  
PQ.add(start)  
while . isEm ptyQ  do 

q := P Q .g e tM a x () 
if g =  goal [end loop]
A := AUq
foreach arc (g, g') outgoing from q do
'f  P(q)*t (q,q' )  >p{q' )  

p(q') :=p(q) *t(q ,q ')  
previous(q') := q 
if -i known(q')

PQ.add(q') 
known(q') := true

Figure 2.10: Dijkstra’s shortest path search.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rithms, but does not require that the state space be defined by letters in the source 

and target strings. The search essentially functions by always taking the shortest 

(most probable, in a statistical setting) arc outward from the periphery of the search 

and storing the shortest known path to any state seen thus far. A probabilistic ver­

sion of the algorithm for a weighted FST is outlined in Figure 2.10. PQ  is a priority 

queue that simply returns the state with the highest p(q) score. Note that the p(q) 

score is not the probability of state q or the transition leading to q but the probability 

of the entire path leading up to and including state q. The transition table t(q, q') 

simply stores the probabilities on the arcs between states.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 

Previous Work

Several approaches have been proposed for tasks related to transliteration. In this 

chapter, I will review some of the literature related to the two main tasks discussed 

in this work: extraction and generation of transliterations. In extracting translitera­

tions, one is given two words and must decide whether or not they are translitera­

tions of each other. Generating transliterations is a much more difficult task. One 

is simply given a word in one writing script and must produce the transliteration 

in another writing script. Since only one word is given, there is less information 

available than in the detection task.

3.1 Transliteration Extraction

Traditional approaches to building translation lexicons have been based on models 

of machine translation (Brown et al., 1993), with refinements such as those pre­

sented in (Melamed, 1996). These approaches tend to focus on finding words that 

occur with similar frequencies and tend to co-occur. Transliterated words, how­

ever, tend to occur infrequently in any given bitext, and thus it is hard to make any 

judgements about their co-occurrence using these traditional methods.

Collier et al. (1997) propose a method for detecting transliterations between 

English and Japanese katakana in a bitext. Their model first transcribes the katakana 

word as a single intermediate representation of all possible transliterations of the 

individual symbols. For example if katakana symbol x could be transliterated as 

bu or bo, and katakana symbol y  as ru, ro, lu or lou, the resulting representation

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of xy in English would be bourlou. A depth-first search is then used to count the 

number of matching letters between the intermediate representation and a candidate 

English transliteration. For each katakana sequence in a Japanese article, the metric 

was used to find a matching English proper noun in the article’s English translation.

Tsuji (2002) proposes a method for building transliteration rules manually be­

tween katakana and English. The katakana strings are split into their mora units, 

and the English mappings of each unit are then assessed manually from a given 

set of training pairs. Mapping rules for each mora unit are ranked according to 

their frequency. For each katakana string in a bitext, all possible transliterations 

are generated based on the mapping rules. These possible transliterations are then 

compared to all English words in the corresponding English translations (the bitext 

consisted of translated article titles and abstracts from journals in various fields). 

The transliteration candidates are ranked according to the Dice score which mea­

sures similarity by comparing the length of the longest subsequence shared by the 

two words to the lengths of the two words. This method is computationally expen­

sive, since all possible transliterations of the katakana word must be compared to 

all English words in the translations. To remedy this, a heuristic is suggested in 

which longer words are allowed less mapping rules per mora unit. In reducing the 

list of allowable mappings for a mora unit, selections are made according to the 

frequencies assessed from the training set.

Lee and Chang (2003) use a generative noisy channel transliteration model, 

similar to the transducer presented in (Knight and Graehl, 1997), to extract English- 

Chinese transliterations. EM is used to learn the mapping probabilities based on a 

many-to-many Viterbi alignment of English and Chinese symbols defined by the 

following recursion:

V  (0,0) =  1

V ( i , j )  =  max/^fc P {C 3-_k\E\_h)V(i — h , j  — k)P(h, k)  ̂ ^

P(h, k) represents the probability of a mapping occurring between an English se­

quence of length h and a Chinese sequence of length k. A key difference between 

the EM training proposed here and the one presented in (Knight and Graehl, 1997) 

is the fact that this algorithm only considers the single most probable alignment

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(and not all possible alignments) when calculating mapping probabilities. To ex­

tract Chinese transliterations, the English side of the bitext is first tagged with a 

named entity tagger. The model is then used to isolate the transliteration in the 

Chinese translation.

Klementiev and Roth (2006) propose a model to extract Russian transliterations 

of English named entities from comparable Russian-English news corpora. The 

term comparable corpora is used to describe pairs of Russian and English news ar­

ticles that can be considered loose translations of each other (e.g. describing the 

same event). They use a bootstrapping approach to train a perceptron as a discrim­

inative transliteration model, and employ Fourier analysis to compare distributions 

of words over time. The perceptron functions by splitting the English and Russian 

words into all their constituent n-grams. English-Russian n-gram pairs are then 

used as features for the perceptron. For example, if the n-grams were of size 2, 

and the strings being compared were abc and xyz, the features for the perceptron 

would be ((a, x), (ab, x), (ab, xy), ...(be, y z ), (c, yz),  (c, z)). When training begins, 

the perceptron is trained on a small seed set of known transliterations. The English 

side of the corpus is tagged by a named entity tagger, and the perceptron proposes 

transliterations for the named entities. The candidate transliteration pairs are then 

reranked according to the similarity of their distributions across dates, and candi­

dates scoring above a certain threshold are used to train the perceptron for the next 

iteration. These steps are repeated until the training set ceases to change, and then 

the top scoring candidate for each English named entity, according to the perceptron 

and the Fourier analysis, is selected.

Freeman et al. (2006) propose an Arabic-English fuzzy matching algorithm to 

extract transliterations from a bitext. The model is built with Levenshtein edit dis­

tance (Chapter 2) as its base, but with the additional encoding of a great deal of 

knowledge about the relationships between English and Arabic letters. Equivalence 

classes, which are given a substitution cost of 0, are created between English and 

Arabic letters. Several rule-based transformations are also performed on word pairs 

before they are compared. This model will be discussed in greater detail in Chap­

ter 4.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Generating Transliterations

Arbabi et al. (1994) propose to model forward transliteration through a combination 

of neural net and knowledge-based systems. They suggest that the main difficulty 

in transliterating Arabic names is that short vowels are rarely written in Arabic text, 

and thus their main task was to vowelize the Arabic names as a preprocessing step 

for transliteration. The knowledge-based system (KBS) is a set of prioritized IF- 

THEN rules. The majority of the rules are for vowelization based on patterns in 

the input word, but there are also rules to filter out corrupt data and to perform 

table lookups. The KBS’s first task is to filter out corrupt data from the input and 

to find names that can be vowelized using a simple lookup table. The remaining 

names are then passed to an artificial neural network (ANN). The ANN is trained 

on names from an Arabic phone-book and is meant to discriminate between reliable 

and unreliable names. The reliability of a name is defined on the basis of the KBS’s 

ability to vowelize it correctly. The reliable names are then passed back to the 

KBS to be vowelized based on the vowelization rules therein. There are two major 

concerns with this approach. The first is that it is Arabic-specific. Not only are the 

rules specific to Arabic-English transliteration, and thus would require a complete 

overhaul if they were to be used on other languages, but it deals with the very 

specific issue of vowelization which is not a concern for all language pairs. The 

second issue is that the requirement of reliability severely limits its applicability 

even for Arabic-English transliteration.

Knight and Graehl (1997) propose to statistically model the transliteration of 

Japanese syllabic katakana script into English. They use the noisy channel ap­

proach (Brown et al., 1990) to describe an English name being transformed into 

katakana according to the following generative process:

1. An English name E  is generated with probability P(E).

2. The English name E  is converted into phonetic sequence E' with probability

P(E'\E).

3. The English phonetic sequence E' is converted into a Japanese phonetic se-

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



quence J' with probability P{ J'\E').

4. The Japanese phonetic sequence J' is converted into a katakana string J  with 

probability P(J\ J').

5. Spelling errors are introduced into the katakana string J  with probability

P {0 \J ) .

P (E )  is learned based on counts from a large English corpus. P (E ’\E) is learned 

from the CMU pronunciation dictionary. P(J'\E')  is learned using the EM algo­

rithm which was discussed in detail in Chapter 2. P(J\J')  is defined manually. This 

is possible because katakana symbols tend to be very regular in their pronunciation. 

Finally, P (0 \J )  is learned by EM using examples of correctly spelled katakana 

names and the same names corrupted by an optical character recognizer.

Once the probabilities are learned, the task can be defined as follows. Given a 

(possibly misspelled) katakana string O, one wishes to find an English name E  that 

maximizes the product of the above probabilities. More formally, we want E  where

E  =  arg m & xP (0\J)P (J \J ')P (J '\E ')P (E '\E )P (E )
E

To do so, each of the probabilities are encoded as a separate weighted finite-state 

transducer, and the sequence of transducers is composed. Since, as discussed in 

Chapter 2, WFSTs can take input from either side, the fact that the transliteration 

is being modeled from English to katakana is inconsequential. The katakana string 

can simply be input to the katakana side, with the resulting output being the translit­

eration proposed by the transducer. Stalls and Knight (1998) adapt this approach 

to Arabic, with the modification that the English phonemes are mapped directly 

to Arabic letters. This was due to the fact that Arabic symbols are not as regu­

lar in their pronunciation as katakana symbols and that pronunciation dictionaries 

for Arabic are uncommon. Al-Onaizan and Knight (2002) find that a transducer 

mapping directly from English to Arabic letters outperforms the phoneme-to-letter 

model. Further discussion of these transducer-based approaches can be found in 

Chapter 5.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AbdulJaleel and Larkey (2003) propose a model for forward transliteration from 

Arabic to English that also uses the noisy channel approach. Given an Arabic word 

A, they wish to find the English word E  such that

E  =  axgmax.P{A\E)P(E)
E

Note that the probability P {A \E ) indicates mapping probabilities are learned be­

tween Arabic and English strings directly, without any phonetic conversion. Instead 

of using EM directly to learn the mapping probabilities, they use a statistical word 

alignment model, GIZA++ (Och and Ney, 2000), to align the letters in English- 

Arabic word pairs. This was done by simply splitting the words into individual 

letters and considering the letters as words in the alignment model. The alignment 

model is used in two stages. First, an alignment is found between the individual 

letters in each word pair. This alignment is used to extract English n-grams, based 

on cases where the alignment links more than one English letter to one Arabic let­

ter. The top 50 most frequent n-grams are considered single symbols for the second 

stage of alignment. In the second stage, the English words are resegmented to in­

clude the n-grams as individual symbols and the words are realigned. Counts are 

collected for the individual mappings in each alignment and these counts are used 

to create a conditional probability distribution for Arabic symbols given English 

symbols. P (E )  is defined as letter-bigram model. Thus, the two probabilities in the 

equation described above can be defined as

P(A\E) =  ] J P ( A l \Ei)
i

and

P (E )  =
i

Li et al. (2004) argue that traditional generative approaches to machine translit­

eration do not encode enough contextual information, and that this contextual in­

formation is necessary for Chinese-English transliteration. They propose to model 

transliteration as joint process. In other words, instead of assuming that one word 

generates the other (P(E\C)),  the two words are assumed to be generated simul­

taneously (P ( E , C))  by some underlying hidden process. Their model defines this

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



joint process as n-grams of mapping units. Thus, a transliteration pair (E, C) is 

broken down into mapping units (<  E j , C\ > , <  E2,C 2 where Et and C\

can consist of one or more characters in their respective languages. N-grams can 

then be learned over these mapping units. For example, in the case of a bigram 

model, the model would define the probability of a transliteration pair as

P (E ,C )  =  J j p ( <  Ei,Ci >  | <  E i- i ,C i - i  >)
i

The model learns the n-gram probabilities according to the following EM algorithm:

1. Create initial random alignment.

2. Update n-gram statistics (of mapping units) to estimate probability distribu­

tion.

3. Apply new n-gram probability model to obtain new alignment.

4. Repeat steps 2-3 until alignment converges.

5. Derive a list of potential transliteration units from the final alignment.

Once these probabilities are learned, the task is to find, given a Chinese word C, an 

English word E  such that

E  =  arg max P (E ,C )
E

Ekbal et al. (2006) adapt this model to the transliteration of names from Bengali 

to English, with the modification that mapping units are not discovered through an 

alignment process. Knowledge about the units that tend to be transliterated from 

Bengali to English is encoded into regular expressions which are used to extract the 

mapping units.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 

Extracting Transliterations

The generation models that will be presented in Chapter 5 are data-driven and thus 

require a reasonable number of sample transliterations to learn from. These exam­

ples could, of course, be acquired manually, but this would be an extremely tedious 

task. Thus, I was led to explore means to extracting sample transliterations auto­

matically from a bitext. Many of the difficulties involved in transliteration detection 

are general issues related to the task of transliteration itself (deletions, pronuncia­

tion ambiguities, etc. see Chapter 1). There are some problems, however, that are 

unique to detection. In general, since one is simply given a translated corpus, there 

is no guarantee that either of the words being compared is meant to be transliterated. 

This poses a problem in particular with names that also have a meaning as words 

in a given language. For example, the word Brown could refer to a person’s name 

or the colour, and the word could be a transliteration of the name Kent or it 

could mean “7 was!' A related problem is that of names being matched to unrelated 

words in the translated text. For example, the English Mars (the planet) could, by 

many measures of similarity, be mistaken for a transliteration of the Arabic 

[maerasa] (meaning “he practiced”). If the two happened to appear in a translated 

sentence pair, they could be incorrectly marked as transliterations.

In this chapter, I will be exploring the use of several word-similarity metrics to 

discover transliterations in a bitext. A word-similarity metric is any measure of the 

similarity between two strings. Levenshtein edit distance, presented in Chapter 2, 

is an example of such a metric. In general, word-similarity metrics depend on the 

strings being written in the same script. Levenshtein distance, for example, must

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



find identities to be able to give a meaningful measure. Since Arabic and English 

use different writing scripts, one must determine how the letters in each language 

relate to each other. One option is to map the strings to some common script, be 

it orthographic or phonetic. Another is to manually identify the similarity between 

the letters of the two scripts.

An issue with the solutions presented above is that they depend, to greater or 

lesser degrees, on knowledge of the languages being compared. With this in mind,

I present a bootstrapping approach to training a weighted transducer. Bootstrapping 

refers to training methods that begin with a small set of labeled training examples 

(in this case, known transliterations) and uses models trained on these to label un­

known examples and incorporate them into the training set iteratively. This method 

can function on any pair of writing scripts without any required preprocessing.

4.1 Word Similarity

In this section, I present three models of word similarity. A key dimension across 

which these algorithms differ is their specificity to any particular language. Language- 

specific models are designed for a particular language or pair of languages and are 

not easily ported to others, while language-independent models are designed with­

out this limitation. As some of them require that the word pairs being evaluated be 

written in the same alphabet, there is also a difference in the amount of preprocess­

ing required before evaluation. All three models use hard-coded values, meaning 

that the values of individual mapping units used in the comparison are determined 

a priori.

4.1.1 Levenshtein Edit Distance

As a baseline for my experiments, I used Levenshtein edit distance, which was 

discussed in Chapter 2. The algorithm simply counts the minimum number of 

insertions, deletions and substitutions required to convert one string into another. 

Levenshtein distance is essentially language-independent, but since the measure de­

pends on finding identical letters, both words must use the same alphabet. Prior to

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



S-
1 , 1 , 5 , 1 , *  - >  a b o , L >  —► t v 2 ; , 5 , J s >  —> th

£ ,o -^ h kh

J ~ * r j ^ Z J - ^ s h

I - * ’ i ^ g
J  -w j* —> m j  —> n

j  — » w

Table 4.1: Arabic Romanization for Levenshtein distance.

1, <->• a,e,i,o,u b,p,v 0 ,-W ,^  +-> t ^ J ^ h g
£,o  h ^  k 3 ,^ ,5  <-> d J ^ r

U"*->s>c d,z
£,* «-> ',c,a,e,i,o,u ^  g i_3 <-»/v J  q,g,k

£  k,c,s J  <-► /  ̂ m

w,u,o y,i,e,j o a,e

Table 4.2: Letter equivalence classes for fuzzy string matching.

comparison, the Arabic words are Romanized based on intuitive mappings for each 

letter (Table 4.1). The distances are also normalized by the length of the longer of 

the two words to avoid excessively penalizing longer words.

4.1.2 Arabic-English Fuzzy String Matching

The fuzzy string matching algorithm proposed in (Freeman et al., 2006) uses Lev­

enshtein distance as its base, but with the addition of a great deal of knowledge 

about the relationships between English and Arabic letters. The first addition is that 

of equivalence classes between English and Arabic letters (Table 4.2), meaning that 

certain Arabic and English letters can be matched to each other with 0 cost. For ex­

ample, the Arabic i_J can match b o th / and v in English with no cost. Another major 

modification is the normalization of the candidate word pair in two ways. The first 

is to perform a rule-based letter normalization of both words. Some examples of 

normalization include:

• English double letter collapse: e.g. Miller—>Miler.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Algorithm VowelNorm (E s tr in g , Astring)

for each i := 0 to m in(\E string \,  \ A s tr in g \) 
for each j  := 0 to m in(\E string \, \Astring\)  

if Astringi = E str ing j
Outstring. = E  stringj]i  +  +; j  +  +; 

if vowel(Astringi)  A vowel(E string j)  
Outstring. = E s tr ing j; i  + +; j  + +; 

if -i vow el (Astringi)  A vowel(E stringj)
j  +  +;
if j  < \Estringj\

Outstring.  =  E str ingy ,i  +  +; j  +  +;
else

Outstring. = E s tr in g j; i + +; j  +  +; 
while j  <  \Estring\ 

if -'vowel (E s tr in g j)
Outstring. = Estringj;

j  +  +;
return Outstring;

Figure 4.1: Pseudocode for the vowel normalization procedure.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  Arabic hamza collapse: e.g. i_J>j i \ — j t L

•  Individual letter normalizations: e.g. Hendrix^Hendriks or —

The second is to iterate through both words and remove any vowels in the En­

glish word for which there is no similarly positioned vowel in the Arabic word. 

The pseudocode for my implementation of this vowel normalization is presented 

in Figure 4.1. Freeman et al. (2006) also proposed two modifications for special 

cases, stemming affixed Arabic prepositions and a second pass to handle the am­

biguous English ch, but they reported that these modifications had a minimal effect 

on performance. Thus, the equivalence classes and normalizations are the only 

modifications I reproduce for my experiments here.

After letter and vowel normalization, the standard Levenshtein algorithm is run 

using the letter equivalences as matches instead of identities. The distance is nor­

malized by the sum of the lengths of both words. Unlike the other metrics presented 

in this section, this algorithm can only function on Arabic and English.

4.1.3 ALINE

The ALINE algorithm (Kondrak, 2000) differs from the other algorithms presented 

here, mainly in that it functions on phonetic transcriptions of the words being com­

pared, instead of the orthographic forms. It was originally designed to identify 

cognates in related languages, but as long as the word pairs are transcribed using 

phonemes available to the algorithm, it can be used to compare any pair of words.

Individual phonemes input to the algorithm are expressed as around a dozen 

phonetic features, such as Place, Manner and Voice. Each feature is given a value 

between 0 and 1, and each is weighted according to its relative importance. The 

values of each feature represent the distance between vocal organs during speech 

production.

The core function in ALINE compares a pair of phonemes and assigns a score 

based on the similarity as assessed by a comparison of the individual features. An 

optimal alignment of the two words is computed with a dynamic programming 

algorithm (Wagner and Fischer, 1974), and the overall score is the sum of the scores

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of all links in the alignment. Insertion and deletion penalties are constant, and vowel 

matches are assigned less weight in the scoring than are consonant matches.

In my experiments, the Arabic and English words are converted into phonetic 

transcriptions using a deterministic rule-based transformation. English vowels are 

not converted as their conversion is not trivial, and Arabic emphatic consonants are 

depharyngealized. After comparison, the score for a pair of words is normalized by 

the length of the longer of the two words.

4.2 Bootstrapping with a Stochastic Transducer

The probabilistic model for string similarity outlined in (Ristad and Yianilos, 1998) 

was discussed in Chapter 2. EM training is used to learn probabilities for a memo- 

riless transducer, which is then used to assign probabilities to pairs of words based 

on their similarity.

The forward algorithm, which is part of the forward-backward algorithm used 

to train the model, can also be used to score a pair of words. It is reprinted here for 

convenience.
F( 0,0) =  1

F( i , j )  =  P ( s i , e ) F ( i - l , j )

+ P ( e , t j ) F( i , j  -  1) (4.1)

+P( s i , t j ) F( i  -  l , j  -  1)

Once the algorithm is run, the value stored at F(I,  J ) is the sum of the probabil­

ities of all paths through the transducer that correspond to the two words being 

compared.

The major issue in porting the memoriless transducer over to the task of translit­

eration detection is that the training, as outlined in (Ristad and Yianilos, 1998), is 

supervised. In other words, it would require a relatively large set of known translit­

erations for training, and this is exactly what I am looking to use the model to 

acquire. To overcome this problem, I look to the bootstrapping method outlined 

in (Yarowsky, 1995). Yarowsky trained a rule-based classifier for word sense dis­

ambiguation by starting with a small set of seed examples for which the sense was

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Levenshtein Fuzzy Match ALINE Bootstrap
Lang.-specific No Yes No No
Preprocessing Romanization None Phon. Conversion None
Learned No No No Yes

Table 4.3: Comparison of the word-similarity models.

known. The trained classifier was then used to label examples for which the sense 

was unknown, and these newly labeled examples were then used to retrain the clas­

sifier. These steps were repeated until convergence.

My method uses a similar approach to train a stochastic transducer. The algo­

rithm proceeds as follows:

1. Add seed pairs to the training set.

2. Train the transducer using the forward-backward algorithm on the current 

training set.

3. Calculate the forward score for all word pairs under consideration.

4. If the forward score for a pair of words is above a predetermined threshold, 

add the pair to the training set.

5. Repeat steps 2-4 until the training set ceases to grow.

Once training stops, the transducer can be used to score pairs of words not in the 

training set. For my experiments, the scores were normalized by the average of the 

lengths of the two words. A comparison of the four models discussed is presented 

in Table 4.3.

4.3 Evaluation

4.3.1 Data

The two bitexts used for this task were the Arabic Treebank Part l-10k word En­

glish Translation corpus and the Arabic English Parallel News Part 1 corpus (ap­

prox. 2.5M words). Both bitexts contain Arabic news articles and their English

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100 *

c0
W
1k.a.

— Levenshtein 
- *  • Fuzzy Match 
- A- ALINE 
—* — Bootstrap

80 —

o 100 200 300 400 500

Words Extracted

Figure 4.2: Precision per number of words extracted for the various algorithms from 
a sentence-aligned bitext.

translations aligned at the sentence level and both are available from the Linguistic 

Data Consortium. The Treebank data was used as a development set, and testing 

was done on the first 20k lines (approx. 50k words) of the parallel news data.

The data was preprocessed in the following ways:

• The English corpus was tokenized using a modified1 version of Word Split­

ter2.

• All uncapitalized English words were removed.

• Stop words were removed from both corpora (mainly prepositions and auxil­

iary verbs).

• Any English words of length less than 4 and Arabic words of length less than 

3 were removed.

4.3.2 Experiment 1: Sentence Aligned Data

The first task I used to test the models was to compare and score the words remain­

ing in each sentence pair after the preprocessing described above. Each algorithm

'the way the program handles apostrophes(’) had to be modified since they are sometimes used 
to represent glottal stops in transliterations o f  Arabic words, e.g. qala’a.

Available at http://12r.cs.uiuc.edu/ cogcomp/tools.php.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://12r.cs.uiuc.edu/


Arabic Romanization English
1 mark Marks
2 rwsywn Russian
3 istratyjya strategic
4 j fmk French

Table 4.4: A sample of the errors made by the word-similarity metrics.

finds the top match for each English word and the top match for each Arabic word. 

If two words mark each other as their top scorer, then the pair is marked as a translit­

eration pair. This one-to-one constraint is meant to boost precision, though it will 

also lower recall. This is because for many of the tasks in which transliteration 

extraction would be useful (such as building a lexicon), precision is deemed more 

important. Transliteration pairs are then sorted according to their scores.

The results for the sentence-aligned extraction task are presented in Figure 4.2. 

Since the number of actual transliterations in the data was unknown, there was no 

way to compute recall. The measure used here is the precision for each 100 words 

extracted up to 500.

The baseline, Levenshtein, performs reasonably well. Fuzzy matching is slightly 

better for the first few hundred words pulled, but quickly drops thereafter. The 

bootstrapping method is equal to or outperforms the other methods at all levels, in­

cluding the fuzzy match algorithm which was designed specifically for Arabic. It is 

particularly impressive that it does not seem to have trouble with digraphs, which 

I expected would be problematic because of the one-to-one nature of the charac­

ter operations. Word pairs with two-to-one mappings such as sh/^f or x /^ ^ te n d  

to score lower than their counterparts composed of only one-to-one mappings, but 

nevertheless tend to score highly.

A sample of general errors made by all the algorithms is presented in Table 4.4. 

The most common error was related to inflection (error 1). The words are essen­

tially transliterations of each other, but one or the other of the two words takes 

a plural or some other inflectional ending that corrupts the phonetic match. The 

transliterations pairs extracted with these methods are meant to be used as training

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Metric Arabic Romanization English
1 Bootstrap alakhyryn Algerian
2 Bootstrap h i wslm Islam
3 Fuzzy Match & lkl Alkella
4 Fuzzy Match d * ’man common
5 ALINE skr sugar
6 ALINE arad Arab
7 Levenshtein wahd Wahi

8 Levenshtein asab Arab

Table 4.5: A sample of errors specific to each algorithm.

data for other models, and since these endings could potentially cause problems in 

generation, I considered them errors. Error 2 represents the common problem of 

incidental letter similarity. The English -ian ending used for nationalities is very 

similar to the Arabic , j ^  [ijun] and J h  [ijin] endings which are used for the same 

purpose. They are similar phonetically and, since they are functionally similar, will 

tend to co-occur. Since neither can be said to be derived from the other, however, 

they cannot be considered transliterations. Error 3 is a case of two words being of 

common origin but having been modified beyond what would be considered accept­

able for a transliteration. Finally, error 4 shows a mapping that would be correct 

in many transliterations being applied incorrectly. The ^/c mapping is supported 

by many words (including some that would have a £lch mapping), but leads to an 

incorrect match in this case.

Algorithm-specific errors indicative of the weaknesses of each metric are pre­

sented in Table 4.5. The bootstrapping method encounters problems when erro­

neous pairs become part of the training data, causing the errors to become rein­

forced. The only problematic mapping in Error 1 is the £ /g mapping, and thus the 

pair has little trouble getting into the training data. Once the pair is part of train­

ing data, the algorithm learns that the mapping is acceptable and uses it to acquire 

other training pairs that contain the same erroneous mapping. The problem with the 

fuzzy matching algorithm seems to be that it creates too large a class of equivalent 

words. Both errors 3 and 4 are given an edit cost of 0. In the case of error 3 this

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is due to the letter and vowel normalizations. After letter normalization, the Fs are 

collapsed, leaving alkela, then after vowel normalization, it becomes Ikl, an exact 

match. Error 4 is due to some of the unusual choices made for letter equivalences. 

In this case, it is due to the English c being considered equivalent to the Arabic 

ALINE’s errors tend to occur when it links two letters, based on phonetic similarity, 

that are never linked because they each have a more direct equivalent in the other 

language (errors 5 and 6). For example, in error 5, although the Arabic i) [k] is 

phonetically similar to the English g, they would never be mapped to each other 

since English has several ways of representing an actual [k] sound. Errors made by 

Levenshtein distance (errors 7 and 8) are simply due to the fact that it considers all 

non-identity mappings to be equivalent.

4.3.3 Experiment 2: Non-translated Data

The second experiment is meant provide information about how the algorithms 

would perform on tasks where translations are not available, but the two parts of 

the bilingual corpus are known to be related. It is meant to loosely mimic the task 

presented in (Klementiev and Roth, 2006) where the corpora were not necessarily 

direct translations of each other, but merely comparable (i.e. news articles that de­

scribe the same event). The task itself is structured as cross-language named entity 

recognition (NER). Named entities in the English corpus are tagged using ffeely 

available named entity recognition software, and the transliterations of the named 

entities are searched for in the Arabic translation.

Alternating sentences in the Arabic and English texts were removed, meaning 

that the texts were no longer direct translations of each other. The English side of 

the bitext was tagged with Named Entity Tagger3, which labels named entities as 

person, location, organization or miscellaneous. The words labeled as person are 

extracted. Person names are almost always transliterated, while for the other cate­

gories this is far less certain. The list is then hand-checked to ensure that all names 

are words that are usually transliterated. This left 314 names, though some may not 

actually appear in the Arabic text due to the sentence removals. The restrictions on 

Available at http://l2r.cs.uiuc.edu/ cogcomp/tools.php.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://l2r.cs.uiuc.edu/


Method Precision
Levenshtein 42.4
Fuzzy Match 49.0

ALINE 55.3
Bootstrapping 39.5

Table 4.6: Precision of the various algorithms on the NER detection task.

Number of Words Precision

500 0.996

1000 0.996

1500 0.993

2000 0.974

2500 0.962

3000 0.948

Average 0.978

Table 4.7: Results of bootstrapping data extraction from the remainder of the news 
corpus.

word length and stop words are the same as before, but in this task each of the En­

glish person names is compared to all valid words in the Arabic side of the corpus, 

and the top scorer for each English word is returned.

The results for the NER task are presented in Table 4.6. Obviously, the boot­

strapping algorithm performs much more poorly here. It would appear that the 

algorithm requires some reasonable proportion of the candidates to be potential 

training examples. Otherwise, it has too many opportunities to corrupt its train­

ing data. It is interesting here, however, that ALINE greatly outperforms the fuzzy 

matching algorithm. It may be that fuzzy matching shares similar requirements to 

the bootstrapping algorithm due to the large number of word equivalences. Many 

of the errors it makes are given an edit cost of 0.

4.4 Extracting the Training Data

For the generation task to be presented in Chapter 5 ,1 needed data to train the mod­

els, and decided that around 3000 words would be sufficient. Since the bootstrap-

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ping method performed best on the sentence-aligned data, I ran it on the remainder 

of the parallel news bitext to extract the training data. The results of this extraction 

are presented in Table 4.7.

4.5 Conclusion

In this chapter, I discussed several metrics of word similarity and evaluated their 

performance on the task of transliteration extraction. I presented a bootstrapping 

approach to training a memoriless transducer that learns these values automatically 

from a bitext. This differs from the other metrics presented which all have the 

values associated with mapping operations determined a priori. This bootstrapping 

method is completely language-independent and was shown to outperform the other 

metrics on a sentence-aligned bitext.

The bootstrapping approach was used to extract the transliteration pairs that will 

be used to train the generation models to be presented in the following chapter.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 

Substring-Based Transliteration

O f the two tasks presented in this work, the actual transliteration of an input word is 

clearly the more difficult. While in the extraction task, one is given a second word 

to guide the search for a solution, in generating a transliteration, this information is 

not available. Thus, the ambiguity issues discussed in Chapter 1 become even more 

pronounced. One must find some way of resolving these ambiguities without the 

information provided by a second word.

A fundamental question I will be addressing here is how to break the translit­

eration task down into its basic units. Traditionally, the focus has been to learn 

to transliterate in units that would be intuitive to a human, be they in terms of 

phonemes or individual letters. For example, learning mappings such as sh/^Ji or 

J/^ji was considered more important than learning longer unintuitive mappings such 

as dal/ Jta. This approach is analogous to traditional word-based approaches to sta­

tistical machine translation (SMT) (Brown et al., 1993), adapted to the setting 

of transliteration. In recent years, a new approach to SMT, phrase-based trans­

lation (Koehn et al., 2003), has been found to offer significant improvements over 

word-based translation models. The phrase-based approach is designed to over-

I think\therefore I am. I think therefore I am.

Je pense done je suis. Je pense done je suis.

Figure 5.1: Examples of valid (a) and invalid (b) phrase pairs.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



come the restrictions on many-to-many mappings in word-based translation mod­

els. This approach is based on learning correspondences between phrases, rather 

than words. Phrases are generated on the basis of a word-to-word alignment, with 

the constraint that no words within the phrase pair are linked to words outside the 

phrase pair (Figure 5.1).

I will be looking to apply the phrase-based methodology of machine transla­

tion to the domain of transliteration. Section 5.1 presents the noisy channel model, 

a statistical approach to machine transliteration. Section 5.2 presents my imple­

mentation of the letter-based model for Arabic-English transliteration outlined in 

(Al-Onaizan and Knight, 2002), and also presents a novel many-to-many forward- 

backward algorithm I designed to train the model. Section 5.3 introduces the mono­

tone search algorithm (Zens and Ney, 2004), a linear-time decoding algorithm for 

phrase-based translation. Section 5.4 presents the substring-based transliteration 

approach, my adaptation of phrase-based translation methods to machine translit­

eration. Two models for substring-based transliteration are proposed. The Viterbi 

substring decoder is a direct adaptation of the monotone search algorithm to translit­

eration, while the substring-based transducer encodes the substring mapping prob­

abilities into a more flexible finite-state transducer. Section 5.5 presents the ex­

periments performed to test the substring-based models. Comparisons are made to 

other transliteration methods as well as to a machine translation system (the Google 

Arabic-English translation Beta).

5.1 The Noisy Channel Model

In a statistical approach to machine transliteration, given a foreign word F, one 

is interested in finding the English word E  that maximizes P(E \F ).  Modeling 

P( E\ F)  is difficult, however, so the task must be broken down into parts that are 

simpler to model. Using Bayes’ rule, and keeping in mind that F  is constant, one 

can formulate the task as follows:

P( F\ E) P( E)  
e  =  p fF )-----

=  a rg m a x P (F |i? )P (£ ')
E

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This is known as the noisy channel approach to machine transliteration, which is 

based on similar models of machine translation (Brown et al., 1990). The noisy 

channel approach models transliteration generatively in two steps. The English 

word E is produced with probability P(E) ,  and then is transformed (across the 

“noisy channel” as it were) into the foreign word F with probability P(F \E ).  Given 

a foreign word F, the task now is to reverse this process to recover the original 

English word. The advantage of breaking the task down in this way is that the 

two probabilities, P( E)  and P(F\ E) ,  are much easier to model directly than the 

original P(E\ F) .

A language model is the part of a noisy channel model that provides an esti­

mate of the probability P{E) ,  and it is meant to provide a means for rating strings 

in terms of how likely they are to be English words. In a comparison to the ex­

traction task, the language model can generally be viewed as attempting to provide 

information lost by the absence of a second word. The transliteration model pro­

vides an estimate of the probability P(F\ E) ,  and it is meant to rate strings in terms 

of how likely they are to be the origin of a transliteration F. The transliteration 

model is conceptually similar to the word similarity models discussed in the previ­

ous chapter. The probabilities assigned by the transliteration and language models 

counterbalance each other. For example, simply concatenating the most common 

mapping for each letter in the Arabic string JsL>L, produces the string maykl, which 

is barely pronounceable. To generate the correct Michael, a model would need to 

know the relatively rare letter relationships chh) and aete, and to balance their un­

likelihood against an assessment that the correct transliteration is a more probable 

English name. In terms of the noisy channel model, one hopes a higher P( E)  for 

Michael would outweigh its lower P( F\ E)  enough for it to be selected over maykl, 

despite the latter’s higher P(F\E) .

The search for the optimal English transliteration E  for a given foreign name 

F,  denoted by the argm ax in the above equation, is referred to as decoding. Many 

decoding algorithms make assumptions about the search space they are exploring, 

and these assumptions can have a great impact on the optimality of the search, 

depending on how the search space is defined. A common assumption in many

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



algorithms is the dynamic programming invariant assumption which states that if 

the optimal path through a graph happens to go through state q, then this optimal 

path must include the best path up to and including q. Thus, once the optimal path 

to q is known, all other paths to q can be eliminated from the search. The validity 

of this assumption for a given model depends on how one defines a state q. In a 

dynamic programming approach to transliteration, for example, a state would gen­

erally be based on positions in the word being transliterated and its transliteration. 

If one were transliterating the name j£L>L into Michael, the path could be defined 

as going through states <^,m>, < L̂ l,i>, <A,ch>, and so on. This can be prob­

lematic, however. Suppose a dynamic programming model were given the Arabic 

string ^ J f ,  and there are two valid English names in the language model, Karim 

(the correct transliteration of the input) and Kristine (the Arabic transliteration of 

which would be The optimal path up to the second letter might go through

<A,k>, < j ,r> .  At this point, it is transliterating into the name Kristine, but as soon 

as it hits the third letter (^), it is clear that this is the incorrect choice. To recover 

from the error, the search would have to backtrack to the beginning and return to 

state < j , r >  from a different path, but this is an impossibility since all other paths 

to that state have been eliminated from the search. Thus it is necessary to define 

the search space in such a way that the assumptions being made do not hinder the 

search for an optimal solution.

5.2 Letter-based Transliteration

Stalls and Knight (1998) model transliteration from Arabic to English as a sequence 

of three finite state transducers. The language model P(E) is implemented as a 

weighted finite state acceptor with probabilities based on word unigram counts 

from a list of English names. The transliteration model P(A\ E)  is split into two 

parts: P(E'\E),  the probability of phonetic sequence E' being the pronunciation of 

English name E, and P(A\E'),  the probability of Arabic word A being a translit­

eration of E'. The P(E'\E)  probabilities are learned from the CMU pronunciation 

dictionary, while the P(A\E')  probabilities are learned using the EM algorithm.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.2: A word unigram prefix tree for the names Najib, Nadia, Iman and Iran.

Mapping the English word to its phonetic representation seems intuitive at first, 

since names are generally transliterated based on how they sound, not how they 

look, but there are problems with this approach. The letter-phoneme conversion 

itself is not a trivial task. Many transliterated words are proper names, whose pro­

nunciation rules may vary depending on the language of origin (Li et al., 2004). 

For example, ch is generally pronounced as either [tf] or [k] in English names, but 

as [J] in French names. The use of word unigram probabilities as a language model 

is also problematic because it prevents the model from generating any names that 

were not seen in the training data.

Al-Onaizan and Knight (2002) address these issues by proposing several mod­

ifications to the original model. The transliteration model is implemented as a sin­

gle transducer that maps directly from English letters to Arabic letters, without the 

intermediate phonetic conversion. The language model is augmented by adding a 

letter trigram model to the original word unigram model, allowing for unseen words 

to be generated.

The word unigram transducer is implemented as a prefix tree (Figure 5.2) just 

as was proposed in (Knight and Graehl, 1997). However, the details of its augmen­

tation with the letter trigram model in (Al-Onaizan and Knight, 2002) are not made 

clear, so in my implementation I take its union with the word unigram transducer 

to create the final language FSA. This model can be seen as taking the max of the 

word unigram and the letter trigram probabilities to model a given word.

The transliteration transducer presented in (Knight and Graehl, 1997) is a single-

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.3: A memoriless transliteration transducer.

ad /0.8

a:' /0.3

Start Middle End

a:» /0.5 a;l /0.6

Figure 5.4: A transliteration transducer with separate mapping probabilities for the 
beginning, middle and end of a word.

state transducer similar to the one presented in Figure 5.3 This structure assumes 

complete independence of the mapping operations, as it has no means of retaining 

information about the path taken through it. Stalls and Knight (1998) noted that 

this independence assumption did not hold, however, as many mappings can be de­

pendent on the positions of letters in the words. For example, the deletion of the 

e in the transliteration of Joseph to would never occur at the beginning of

a word. They proposed to have different symbols to represent English phonemes 

that occur at the beginning, middle or end of a word. This allowed the EM algo­

rithm to learn different mapping probabilities for each part of a word. Al-Onaizan 

and Knight (2002) found, however, that although the probabilities are learned sep­

arately for initial, medial and final phonemes, at generation time, when the input 

word is Arabic, nothing prevents the model from producing phonemes out of po­

sition (e.g. generating an initial phoneme in the middle of a word). They thus 

proposed to encode the positional dependence into the model by splitting it into 

three states, as shown in Figure 5.4. The first mapping operation performed in the 

transliteration takes an arc from the start state to the middle state, which then loops

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



back to itself for all medial operations, and final operations occur on arcs to the end 

state.

5.2.1 A Many-to-Many Extension to the Forward-Backward Al­
gorithm

The models presented in (Knight and Graehl, 1997) and (Stalls and Knight, 1998) 

are trained with the following EM algorithm:

1. For each pair of words in the training set, assign uniform probability to each 

possible alignment of the symbols.

2. For each English phoneme, compute the probability of each symbol it maps 

to by weighting the mapping counts by the probability of the alignments in 

which they appear, and then normalizing.

3. For each pair of words, compute the probability of each alignment as the 

product of the probabilities of the mappings it contains, and normalize the 

alignment probabilities for each pair of words.

4. Repeat steps 2-3 until convergence.

Al-Onaizan and Knight (2002) use the same algorithm with two modifications. 

The first is that mappings are learned between English and Arabic letters directly. 

This is trivial to implement since the algorithm can learn mappings between any two 

symbol sets. The second is that while the original algorithm learned one-to-many 

mappings, the modified version can learn many-to-many mappings. To enable it 

to handle English digraphs and trigraphs, and the occasional diphone, the model 

learns mappings between 1-3 English letters and 0-2 Arabic letters. This poses a 

much greater problem in implementation, and it is not made clear how these many- 

to-many alignments were enumerated for steps 1 and 3 in the above algorithm.

Knight (1999) shows that naive EM algorithms, such as the one presented above, 

can be implemented as more efficient forward-backward algorithms that perform 

calculations for several alignments simultaneously. I take this approach to solve the 

many-to-many mapping problem for transliteration, by adapting the algorithm used

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Algorithm Expectation-many2many (s, t) 
for i =  0 ...I 

for j  =  0... J 
if (i >  0)

for x  =  1...3 st i — x  > 0
A a.  — FTi-xj ) p (As\-x+i)B{i,j)

\  i —x + l>  /  ' F(I,J)
if (* >  0 A j  >  0)

for x  =  1...3 st i — x  > 0 
for y  =  1...2 st j  — y > 0

C ( Sj - x + l ) ^ - y + l ) +  =  F( I , J )

Figure 5.5: Pseudocode for a many-to-many expectation algorithm. 

Algorithm EM-many2many

for all mapping operations (a, b)
C{a,b) := 0  

for each sequence pair (s ,t)
Expectation-many2many(s, t)

Maximization-Step (C )

Figure 5.6: Pseudocode for a many-to-many expectation maximization algorithm.

to train a one-to-one stochastic transducer in (Ristad and Yianilos, 1998) (Chap­

ter 2) to a many-to-many framework.

Partial counts for each mapping operation are collected in the C  table. For 

each English-Arabic training pair (s, t) the EM-many2many function (Figure 5.6) 

calls the Expectation-many2many function (Figure 5.5) to collect partial counts. 

/  and J  are the lengths of English name s and Arabic name t, respectively. The 

Maximization-step function simply normalizes the partial counts to create a condi­

tional probability distribution.

The Forward-many2many function (Equation 5.1) fills in the table F, with each 

entry F ( i , j ) being the sum of the probabilities all possible alignments of the prefix 

pair (sj, t\). Analogously, the Backward-many2many function (Equation 5.2) fills 

in table B, with each entry B (i , j )  being the sum of all paths through the transducer 

that generate the suffix pair (sf+1, tJ-+x).

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F ( 0 ,0 )  =  1

F (h j)  =  Ei<*<3, P (e\sii-x+ i)F (i - x , j )  +  P (tjj _y+1\ s i - x + i ) F ( i - x , j - y )
l< y<2

(5.1)

B (I ,J )  =  1

P (e \s i£ )B (i +  x , j )  +  +  x , j  +  y)
l< ! /< 2

(5.2)

Expectation-many2many uses the probabilities in the F  and D tables to calculate 

partial counts for every possible mapping in the pair of names. The partial count 

collected at positions i and j  in the sequence pair is sum of all paths that generate 

the sequence pair and go through (i, j ), divided by the sum of all paths that generate 

the entire sequence pair (F (I , J)).

The modifications to the one-to-one forward-backward algorithm presented in 

Chapter 2 should be readily apparent. The many-to-many extension lies in the for  

loops that iterate over x and y. These allow the algorithm to consider several com­

binations of letters from the source and target words when calculating probabilities 

or collecting counts. Some parameters are specified to match those proposed in 

in Al-Onaizan and Knight (2002). A general version of the algorithm is presented 

in Appendix A.

5.3 The Monotone Search Algorithm

Zens and Ney (2004) propose a linear-time decoding algorithm for phrase-based 

machine translation. The algorithm requires that the translation of phrases be se­

quential, disallowing any phrase reordering in the translation.

Starting from a word-based alignment for each pair of sentences, the training for 

the algorithm accepts all contiguous bilingual phrase pairs (up to a predetermined 

maximum length) whose words are only aligned with each other (Koehn et al., 

2003). The probabilities P ( f  \e) for each foreign phrase /  and English phrase e are 

calculated on the basis of counts gleaned from a bitext. Since the counting process is 

much simpler than trying to learn the phrases with EM, the maximum phrase length 

can be made arbitrarily long with minimal jumps in complexity. This allows the

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



model to actually encode contextual information into the translation model instead 

of leaving it completely to the language model. There are no null (e) phrases so 

the model does not handle insertions or deletions explicitly. They can be handled 

implicitly, however, by including inserted or deleted words as members of a larger 

phrase.

Decoding in the monotone search algorithm is performed with a Viterbi dy­

namic programming approach. For a foreign sentence of length J  and a phrase 

length maximum of M , a table is filled with a row j  for each position in the input 

foreign sentence, representing a translation sequence ending at that foreign word, 

and each column e represents possible final English words for that translation se­

quence. Each entry in the table Q  is filled according to the following recursion:

<9(0, $) =  1

Q (j,e )  =  max P (a\e)P (e\e')Q (j', e )
e ,e,a

Q (J +  1, S) =  max.Q(J,e')P($\e')
e '

where /  is a foreign phrase ending at j  and consisting of up to M  words. The ‘$ ’ 

symbol is the sentence boundary marker.

In the above recursion, the language model is represented as P(e\e'), the prob­

ability of the English phrase given the previous English word. Because of data 

sparseness issues in the context of word phrases, the actual implementation approx­

imates this probability using word n-grams.

5.4 Substring-based Transliteration

I propose to adapt phrase-based models of statistical machine translation to the task 

of machine transliteration by transliterating on the basis of substrings rather than 

individual letters. There are several apparent advantages to this approach over the 

letter-based approach described in Section 5.2.

•  The longer substrings in the mapping operations allow for some modeling of 

contextual dependencies to be encoded into the transliteration model. Fur-

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a) /// b) /f \
H e  m y

H I m y H I m y

Figure 5.7: High-probability (a) and low-probability (b) alignments of Helmy and 
The Arabic is Romanized for clarity.

Figure 5.8: Transducers without (1) and with (2) nulls allowed in the input word.

thermore, since the longer English substrings are known to have been seen in 

the data, they can be assumed to be well-formed.

• The letter-based EM training considers all possible alignments of a given 

training pair, even those that are extremely unlikely (Figure 5.7). This means 

that the model will end up encoding many low-probability mappings. This 

has implications in terms of the size of the transducers created as well as 

on the quality of transliterations, depending on how these low-probability 

mappings interact with the language model.

•  In terms of complexity, the absence of explicit nulls on the input side has 

major implications on the complexity of the transducers created. For exam­

ple, if transducer 1 in Figure 5.8 were given the string aab, the only possible 

output would be aab. On the other hand, if the same string were input into 

transducer 2, the output could be aab, eaab, aeab, eeaeabe, and so on. The 

number of potential output strings is, in fact, infinite. In the case of translit­

eration, where this transducer must be composed with a language transducer, 

the problem becomes especially pronounced. The composition must be done 

in such a way that there is a valid path through the full transducer for any 

potential string that could be output by the transliteration transducer and has

b:b b:b

e:e

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Algorithm VS-Decode (A, m a x )

<5(0, S) :=  1
for i :=  1 to length(A) do 

for j  :=  1 to m ax  do
seg . j
for all e' st Q(i — j  — I, e') >  0 do 

for all e st P(seg\e) >  0 do
^  • ^length(e)
if P(seg\e)P{e\e’)Q(i -  j  -  1, e') > Q(i, e)

[<5(z,e) :=  P(seg\e)P(e\e')Q (i — j  -  l,e ')]

for all e' st Q (length(A ), e!) >  0 do
if P($\e')Q (length(A), e') >  Q(length(A) +  1,$)

[Q(length(A) +  1,$) :=  P($\e')Q (length(A), e')\

Figure 5.9: The Viterbi substring decoding algorithm.

a positive probability in the language transducer. This leads to prohibitively 

large transducers. The substring-based models handle nulls implicitly (e.g. 

the mapping ke:A implicitly represents e:e after a k), so the model itself is not 

required to deal with them.

With these issues in mind, I propose to model substring-based transliteration 

in two ways. The first, the Viterbi substring decoder, is a direct adaptation of the 

monotone search algorithm, described in Section 5.3, to the domain of translit­

eration. The second, the substring-based transducer, encodes the substring-based 

transliteration model as a transducer and composes it with the word unigram/letter 

trigram language model described in Section 5.2.

5.4.1 Viterbi Substring Decoder

The Viterbi substring decoder is a straightforward adaptation of the monotone search 

algorithm to the domain of transliteration, in which letters and word substrings are 

substituted for the words and phrases of the original model. Pseudocode for the 

algorithm is presented in Figure 5.9. There are, in fact, strong indications that the 

monotone search algorithm is better suited to transliteration than it is to translation.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M o u r a d
\ / / y

f  j  ' j

Figure 5.10: A one-to-one alignment of Mourad and y>. For clarity the Arabic 
name is written left to right.

Unlike machine translation, where the constraint on reordering required by mono­

tone search is frequently violated, transliteration is an inherently sequential process. 

Also, the sparsity issue in training the language model is much less pronounced, al­

lowing P(e\e') to be modeled directly.

In order to train the model, I extract the one-to-one Viterbi alignment of a train­

ing pair from a stochastic transducer as discussed in Chapter 2. Substrings are then 

generated by iteratively appending adjacent links or unlinked letters to the one-to- 

one links of the alignment. For example, assuming a maximum substring length of 

2, the < r, j  >  link in the alignment presented in Figure 5.10 would participate in 

the following substring pairs: <r, j  > , Cur, j  > , and e ra ,  \j >.

5.4.2 Substring-based Transducer

One major advantage the letter-based transducer presented in Section 5.2 has over 

the Viterbi substring decoder is its word unigram language model. This type of lan­

guage model cannot be added to the Viterbi substring decoder, because of the way 

states are defined in its search (Q (i, e) in Figure 5.9), and the dynamic program­

ming invariant assumption made by the Viterbi algorithm. On the other hand, the 

Viterbi substring decoder is able to encode contextual information in the transliter­

ation model because of its ability to consider larger many-to-many mappings. In a 

novel approach presented here, I propose a substring-based transducer that draws 

on both advantages. The substring transliteration model learned for the Viterbi sub­

string decoder is encoded as a transducer, whose state-space is defined in a more 

flexible way than that of the Viterbi substring decoder. FSTs (e.g. Figures 5.2, 5.3 

and 5.4), are clearly not required to define states based on letters in the input or 

output. Thus, the backtracking problem in the Karim!Kristine example mentioned

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Letter Transducer Viterbi Substring Substring Transducer
Model Type Transducer Dynamic Prog. Transducer
Trans. Model Letter Substring Substring
Lang. Model Word/Letter Substring/Letter Word/Letter
Null Symbols Yes No No
Alignments All Most Probable Most Probable

Table 5.1: Comparison of statistical transliteration models.

earlier can be avoided, even if the same search assumptions are made.

Compared to the letter-based transducer, the more structured approach to learn­

ing mapping operations should lead to higher quality transliterations, while the ab­

sence of explicit nulls should have a major impact on efficiency. The substring- 

based transducer should also have an advantage over the Viterbi substring decoder 

because of its stronger word unigram language model. An overview of the three 

statistical transliteration models discussed in this chapter is presented in Figure 5.1.

5.5 Experiments

In this section, I describe the evaluation of my models on the task of Arabic-to- 

English transliteration.

5.5.1 Data

For my experiments, I required bilingual name pairs for testing and development 

data, as well as for the training of the transliteration models. To train the language 

models, I simply needed a list of English names. Bilingual data was extracted ac­

cording to methods described in Chapter 4. After extraction, the bilingual training 

data was reviewed by hand to remove any non-transliterations. The English name 

list for the language model training was extracted from the English-Arabic Tree- 

bank vl.O (approx. 52k words), available from the Linguistic Data Consortium. 

Despite the name, this corpus contains only English data. The language model 

training set consisted of all words labeled as proper names in this corpus along with 

all the English names in the transliteration training set. Any names in any of the

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



data sets that consisted of multiple words (e.g. first name/last name pairs) were split 

and considered individually.

Training data for the transliteration model consisted of 2844 English-Arabic 

pairs. The language model was trained on a separate set of 10991 (4494 unique) En­

glish names. The final test set of 300 English-Arabic transliteration pairs contained 

no overlap with the set that was used to induce the transliteration models. With 

respect to the language model, the English side of the test set contained 146 seen 

and 154 unseen names. I report results separately for each category. The unseen 

names were mostly of Arabic origin, while seen names tended to be non-Arabic.

5.5.2 Evaluation Methodology

The Arabic names in the test set served as input to the models, while the English 

names in the set were considered gold standard transliterations for the purpose of 

evaluation. The transliterated output was compared to the gold standard according 

to two metrics. The first metric was the exact match accuracy with respect to the 

gold standard. This is an extremely strict measure of correctness, particularly in 

the case of forward transliteration. There are often several correct English spelling 

variations of Arabic names, but only one will match the gold standard. The second 

metric, average Levenshtein distance, is a softer standard of correctness and gives 

a sense of how far off the mark the incorrect transliterations actually are. It is com­

puted as the minimum number of insertions, deletions and substitutions between a 

proposed transliteration and the gold standard, averaged over all pairs in the test set. 

It should be noted that Levenshtein distance as metric may still not be fine-grained 

enough in some cases. For example, if the gold standard transliteration were Mah­

mud, its Levenshtein distance from Mahmood and Mahfuz is exactly the same. The 

problem is that vowel substitutions, which are generally insignificant in terms of 

correctness, are considered equivalent to consonant substitutions, which usually are 

significant. This problem could be alleviated by manually assigning lower costs 

to certain substitutions in the distance calculation, but this would involve making 

fairly arbitrary decisions about the costs. In general, I wished to avoid these types 

of decisions in evaluating the transliteration models.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I performed a second test with the statistical transliteration models on words that 

appeared in both the transliteration and language model training data. This test was 

not indicative of the overall strength of the models but was meant to give a sense 

of how much each model depends on its language model versus its transliteration 

model.

Finally, I performed a third test to give a sense of how the substring-based mod­

els would affect a machine translation system. The test words from the first exper­

iment were input into the Google Arabic to English translator Beta1. The words 

were input in two ways. The first was to input bare words, just as was done for 

the transliterations models, and the second was to input the names as part of a tem­

plate sentence to provide the translations system with some context. It was found, 

however, that the performance on bare words was slightly better, since the transla­

tion system occasionally combined context words with the word to be transliterated 

when making the translation. Thus the results presented will be for bare word input.

5.5.3 Setup

Five approaches were evaluated on the Arabic-English transliteration task.

• Baseline: As a baseline for my experiments, I used a simple deterministic 

mapping algorithm which maps Arabic letters to the most likely correspond­

ing letter or sequence of letters in English.

• Letter-based Transducer: The letter-based transducer is the model pre­

sented in Section 5.2. The transducer was implemented in Carmel2.

• Viterbi Substring Decoder: The Viterbi substring decoder is the model pre­

sented in Section 5.4.1. I tested maximum substring lengths between 3 and 

10 and found that a maximum length of 6 was optimal on the development 

data.

'http://www.google.ca/language_tools?hl=en
2Carmel is a finite-state transducer package written by Jonathan Graehl. It is available at 

http://www.isi.edu/licensed-sw/carmel/.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.google.ca/language_tools?hl=en
http://www.isi.edu/licensed-sw/carmel/


Method Seen Unseen
Baseline 0.7 3.9
Letter transducer 57.5 2.6
Viterbi substring 27.4 9.7
Substring transducer 75.3 3.9
Human 44.5 29.2

Table 5.2: Exact match accuracy percentage on the test set for various methods.

Method Seen Unseen
Baseline 2.77 2.42
Letter transducer 1.30 2.49
Viterbi substring 1.52 1.79
Substring transducer 0.66 2.03
Human 1.30 1.35

Table 5.3: Average Levenshtein distance on the test set for various methods.

• Substring-based Transducer: I implemented the substring-based transducer 

by encoding the substring-based transliteration model into a transducer as 

outlined in Section 5.4.2, and composing it with the language transducer used 

in the letter-based transducer. The substring-based transducer was also im­

plemented in Carmel. I found that this model worked best with a maximum 

substring length of 4.

• H um an: For the purpose of comparison, I allowed an independent human 

subject (fluent in Arabic, but a native speaker of English) to perform the same 

task. The subject was asked to transliterate the Arabic words in the test set 

without any additional context. No additional resources or collaboration were 

allowed.

5.5.4 Results on the Test Set

Table 5.2 presents the word accuracy performance of each transliterator in terms 

of exact matches. Table 5.3 shows the average Levenshtein distance results. The 

results of the human subject show that this task is not trivial, even for humans,

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Arabic LBT SBT Correct
1 ,jUi& Uthman Uthman Othman
2 Asharf Asharf Ashraf
3 Rafeet Arafat Refaat
4 4-oLfc**! Istamaday Asuma Usama
5 o ld Erdman Aliman Iman
6 Wortch Watch Watch
7 Mellis Mills Mills
8 February Firari Ferrari

Table 5.4: A sample of the errors made by the letter-based (LBT) and substring- 
based (SBT) transducers.

and thus give a reasonable expectation of performance given the standards used for 

testing here. Obviously, the seen/unseen distinction is only relevant for models that 

employ a language model. The human subject and the baseline do not get to see any 

data, so the test data is all the same with respect to them, but their performance on 

each subset give some standards for comparison and indicate that obtaining exact 

matches is more difficult on words in the unseen category.

Overall, the substring-based transducer that I propose clearly outperforms the 

letter-based transducer. Its accuracy is better in both categories, but its advan­

tage is particularly pronounced on words it has seen in the training data for the 

language model (the task for which the letter-based transducer was originally de­

signed). Since both transducers use exactly the same language model, the fact 

that the substring-based transducer outperforms the letter-based transducer indi­

cates that it learns a stronger transliteration model.

The word unigram language model used in the letter- and substring-based trans­

ducers greatly boosts performance for the seen words. The differences in perfor­

mance between the Viterbi substring decoder and the substring-based transducer 

suggest that the substring-based language model used by the former is fairly weak 

when it comes to recreating words it has seen before, though it is stronger than the 

letter trigram model for unseen words.

A sample of the errors made by the letter- and substring-based transducers is

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Method Time Size (states/arcs)
Letter transducer 5h52min 84490/538834
Substring transducer 11 sec 735/2094

Table 5.5: Running times and transducer sizes for a typical input word.

presented in Table 5.4. In general, when both models err, the substring-based trans­

ducer tends toward more phonetically reasonable choices. The most common type 

of error is simply correct alternate English spellings of an Arabic name (error 1), 

since they do not match the gold standard. Error 2 is an example of a learned map­

ping being misplaced (the deleted a), though the letter-based transducer is able to 

avoid this at the beginning or end of a word because of its three-state translitera­

tion transducer (error 3). Errors 6 and 7 are names that actually appear in the word 

unigram model but were missed by the letter-based transducer, while error 8 is an 

example of the letter-based transducer incorrectly choosing a name from the word 

unigram model. As discussed in Section 5.4, this is likely due to mappings learned 

from low-probability alignments.

5.5.5 Computational Considerations

Another point of comparison between the statistical transliteration models is com­

plexity. The running times and transducer sizes for both transducer-based ap­

proaches are presented in Table 5.5. The running time for the Viterbi substring 

decoder was 3 sec. Tests were performed on an AMD Athlon 64 3500+ machine 

with 2GB of memory running Red Hat Enterprise Linux release 4. Running times 

are for the 300 word test set. The sizes presented are for composition with a sam­

ple name from the test set, Lf<4o- (Helmy). The letter-based transducer encodes 

56144 mappings while the substring-based transducer encodes 13948, but the size 

difference between the transducers created is clearly not proportional to this. As 

discussed in Section 5.4, the reason for the size explosion factor in the letter-based 

transducer is the possibility of null characters in the input word.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Method Exact match Average Levenshtein
Letter transducer 81.2 0.46
Viterbi substring 83.2 0.24
Substring transducer 94.4 0.09

Table 5.6: Results for testing on the transliteration training set.

Method Seen Unseen
Viterbi substring 27.4 9.7
Substring transducer 75.3 3.9
Google 58.2 33.8

Table 5.7: Comparison of substring transliterators to the Google translator in terms 
of exact match.

5.5.6 Results on the Training Set

The substring-based approaches encode a great deal of contextual information into 

the transliteration model. In order to assess how much the performance of each 

approach depends on its language model versus its transliteration model, I tested the 

three statistical models on the set of 2844 names seen in both the transliteration and 

language model training. The results of this experiment are presented in Table 5.6. 

The Viterbi substring decoder receives the biggest boost, outperforming the letter- 

based transducer, which indicates that its strength lies mainly in its transliteration 

modeling as opposed to its language modeling. The substring-based transducer, 

however, still outperforms it by a large margin, achieving near-perfect results. Most 

of the remaining errors can be attributed to names with alternate correct spellings 

in English.

5.5.7 Comparison to a Machine Translation System

The results for the comparison with the Google translator are shown in Figures 5.7 

and 5.8. It is difficult to draw concrete conlusions since the translator is performing 

a different task. It should also be noted that the underlying methods and algorithms 

used by Google, as well as its training data, are unknown. However, simply com­

paring the numbers, one can see, first of all, that the substring-based transducer

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Method Seen Unseen
Viterbi substring 1.52 1.79
Substring transducer 0.66 2.03
Google 1.08 3.24

Table 5.8: Comparison of substring transliterators to the Google translator in terms 
of average Levenshtein distance.

Arabic Google SBT Correct
1 1 Mr. Alsaid AlSayed
2 Open Fatah Fatah

3 Full Kamal Kamel
4 Forouhar Fruhar Fruhar
5 Tltscui Taltskawy Teletskoye

6 - Kimirovo Kimirovo
7 London:Macmillan. Pavis Puffs
8 The Palestinian Territories, headed Khadwari Khadori

Table 5.9: A sample of the errors made by the Google translator.

outperforms the translator on words seen in the transducer’s language training. An­

other point of interest is that on the unseen words (with respect to the substring- 

based models), despite the fact that the translator performs better in terms of exact 

matches, it performs much worse in terms of average Levenshtein distance. This 

means that although the translator is achieving more exact matches, when it does 

err, it errs quite badly. This is clearly due to the systems’s tendency to translate 

instead of transliterate, since many Arabic names also have meanings as common 

nouns.

A sample of the errors made by the Google translator is shown in Table 5.9. 

Errors 1-3 show the basic error made by the translator of translating a word instead 

of transliterating it. Errors 4 and 5 suggest that there is some type of translitera­

tion being done by the system, since the outputs are non-words that resemble the 

input. However, error 6 shows a case where the translator was unable to produce 

any output, despite the fact that there are no uncommon mappings in the transliter­

ation. Errors 7 and 8 show exceptional cases where the error cannot be explained

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



by transliteration or translation errors. The output does not resemble the input in 

any way. These may simply be the result of anomolous mappings learned in the 

system’s training, though it is impossible to be certain.

5.6 Conclusion

My substring-based approach to machine transliteration borrows concepts from 

phrase-based models of translation and applies them to the task of transliteration. 

In this chapter, I presented two models to implement this approach. The Viterbi 

substring decoder uses dynamic programming to find the optimal transliteration for 

a given Arabic word. It is a direct adaptation of the monotone search algorithm 

for translation to the domain of transliteration. The substring-based transducer uses 

the same transliteration model as the Viterbi substring decoder, but encodes it as a 

transducer. This allows for a more flexible choice in terms of the language models 

it can use.

The main point of comparison for these new models was the letter-based trans­

ducer presented in (Al-Onaizan and Knight, 2002). I proposed a novel many-to- 

many extension to the forward-backward algorithm presented in (Ristad and Yiani- 

los, 1998), and used this many-to-many algorithm to train the letter-based model.

I showed that the substring-based approach is able to significantly outperform 

the letter-based transducer, and at the same time be orders of magnitude less com­

plex. When errors were made by both the letter-based and substring-based models, 

the substring-based model tended towards more phonetically reasonable errors. If 

the model were being used in a system to produce transliterations that could be 

checked by a human, this would obviously make it more useful than the letter- 

based approach. I presented several advantages to this approach over traditional 

letter-based or phoneme-based models of transliteration. The ability to commit to a 

simple high-probability alignment makes training less complex, and also prevents it 

from learning low-probability mappings that lead to errors in the letter-based model. 

The exclusion of explicit null characters in the model leads directly to significant 

gains in computational efficiency.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 

Conclusion

The main contribution of this work was the introduction of a new framework for 

generating transliterations, the substring-based approach. Substring-based models 

learn mappings between word substrings, rather than individual letters or phonemes, 

in an approach analogous to phrase-based models o f machine translation. I pre­

sented two models of substring-based transliteration. The Viterbi substring decoder 

is a dynamic programming approach, and the substring-based transducer models 

transliteration as a series of transducers. I also presented a many-to-many extension 

to the forward-backward algorithm and used it to train a letter-based transducer for 

the purpose of comparison. The substring-based models were shown to outperform 

the letter-based model and at the same time offer substantial savings in computa­

tional complexity.

Since my approach is data-driven, I required examples of transliteration, and 

this led me to explore avenues for extracting these examples automatically from a 

bitext. I presented a bootstrapping approach to training a memoriless transducer 

for the task. This method learned the relationships between letters automatically 

from the bitext, and thus required no a priori language knowledge to perform its 

evaluations. It was found to outperform traditional models of word similarity on a 

sentence-aligned bitext and was used to gather training and testing data required for 

the statistical transliteration models.

Though the generation and extraction tasks differ in many significant ways, I 

approached both with certain common goals in mind. Besides the obvious goal 

of strong performance, I also wished to design my models to be as language-

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



independent as possible so that they might be ported to other language pairs with 

minimal retooling. The models presented in this work were tested on Arabic- 

English transliteration but could easily be ported to other language pairs. Since tests 

on other languages have not yet been run, however, I can only claim that the pro­

posed models could be applied to other languages, but not that they would perform 

as strongly. The substring-based models should not have much trouble in transliter­

ating between other language pairs, even those in non-alphabetic scripts, since they 

can handle many-to-many relationships of arbitrary length. On the other hand, the 

one-to-one nature of the bootstrapped transducer may make its application to lan­

guage pairs with more complex many-to-many relationships more difficult. Thus, 

one of the key areas for future work would be to test the proposed models on other 

language pairs.

One of the more promising avenues for future work in the generation of translit­

erations would be the use of methods such as discriminative reranking (Och 

and Ney, 2002) to improve transliteration accuracy. Discriminative reranking is 

a method used in machine translation. Features are extracted from an n-best list of 

translation candidates proposed by some translation model for a given input sen­

tence. Based on these features, candidates are reranked, and the new top-ranked 

candidate is selected as the translation. The transducers presented in Chapter 5 are 

easily able to produce an n-best list of transliteration candidates so the application 

of discriminative reranking should be straightforward.

I also plan to assess how well the substring-based approach applies to other 

generative tasks. Some preliminary tests have been made on applying it to letter- 

to-phoneme conversion, and I would also like explore other areas such as spelling 

correction.

The question of how to evaluate generated transliterations also remains open. 

Since the concept of a “correct” transliteration remains ill-defined, it is difficult to 

devise a completely empirical measure by which to evaluate proposed translitera­

tions. As mentioned in Chapter 5, even Levenshtein distance, as a metric, is not 

nuanced enough to capture what a human might consider correct. One approach 

might be to modify the Levenshtein distance metric, perhaps along the lines of the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fuzzy matching algorithm presented in Chapter 4, in order to draw the line between 

correct and incorrect more clearly. Another possibility would be to simply allow 

human judges to make the distinction. Since both measures would involve sub­

jective decisions, however, there may be some question as to whether they can be 

considered empirical.

In detecting transliterations, the main area open to future research would be the 

use of additional information from the bitext to improve precision. Since one of 

my main goals was to make the model as language independent as possible, the 

addition of any language knowledge is an unattractive option. Information such as 

word frequency or distribution in the bitext could certainly be incorporated into my 

model to improve performance.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

N. AbdulJaleel and L. S. Larkey. Statistical transliteration for English-Arabic cross 
language information retrieval. In Proceedings of the twelfth international con­
ference on Information and knowledge management, pages 139-146, New York, 
NY, USA, 2003. ACM Press.

Y. Al-Onaizan and K. Knight. Machine transliteration of names in Arabic text. 
In Proceedings of the ACL Workshop on Computational Approaches to Semitic 
Languages, 2002.

M. Arbabi, S.M. Fischthal, V.C. Cheng, and E. Bart. Algorithmns for Arabic name 
transliteration. IBM Journal of Research and Development, 38(2), 1994.

L. E. Baum. An inequality and associated maximization technique in statistical 
estimation for probabilistic functions of markov processes. Inequalities, 3:1-8, 
1972.

P. F. Brown, J. Cocke, S. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, 
R. L. Mercer, and P. S. Roossin. A statistical approach to machine translation. 
Computational Linguistics, 16(2):79—85, 1990.

P. F. Brown, V. J. Della Pietra, S. A. Della Pietra, and R. L. Mercer. The mathe­
matics of statistical machine translation: parameter estimation. Computational 
Linguistics, 19(2):263-311, 1993.

N. Collier, A. Kumano, and H. Hirakawa. Acquisition of English-Japanese proper 
nouns from noisy-parallel newswire articles using Katakana matching. In Natural 
Language Pacific Rim Symposium (NLPRS’97), Phuket, Thailand, pages 309- 
314, December 2^4 1997.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische 
Mathematik, 1:269-271, 1959.

A. Ekbal, S. K. Naskar, and S. Bandyopadhyay. A modified joint source-channel 
model for transliteration. In Proceedings o f the COLING/ACL 2006 Main Con­
ference Poster Sessions, pages 191-198, Sydney, Australia, July 2006. Associa­
tion for Computational Linguistics.

A. Freeman, S. Condon, and C. Ackerman. Cross linguistic name matching in 
English and Arabic. In Proceedings of the Human Language Technology Con­
ference of the NAACL, Main Conference, pages 471^478, New York City, USA, 
June 2006. Association for Computational Linguistics.

A. Klementiev and D. Roth. Named entity transliteration and discovery from multi­
lingual comparable corpora. In Proceedings of the Human Language Technology 
Conference of the NAACL, Main Conference, pages 82-88, New York City, USA, 
June 2006. Association for Computational Linguistics.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



K. Knight and J. Graehl. Machine transliteration. In Proceedings o f the Thirty-Fifth 
Annual Meeting o f the Association for Computational Linguistics and Eighth 
Conference o f the European Chapter of the Association for Computational Lin­
guistics, pages 128-135, Somerset, New Jersey, 1997. Association for Computa­
tional Linguistics.

K. Knight. Decoding complexity in word-replacement translation models. Compu­
tational Linguistics, 25(4):607-615, 1999.

P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based translation. In Proceed­
ings of the 2003 Conference o f the North American Chapter of the Association 
for Computational Linguistics on Human Language Technology, pages 48-54, 
Morristown, NJ, USA, 2003. Association for Computational Linguistics.

G. Kondrak. A new algorithm for the alignment of phonetic sequences. In Proceed­
ings ofNAACL 2000, pages 288-295, 2000.

C. Lee and J. S. Chang. Acquisition of English-Chinese transliterated word pairs 
from parallel-aligned texts using a statistical machine transliteration model. In 
Proceedings of the HLT-NAACL 2003 Workshop on Building and using parallel 
texts, pages 96-103, Morristown, NJ, USA, 2003. Association for Computational 
Linguistics.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and 
reversals. Soviet Physics Doklady, 10(8):707-710, February 1966.

H. Li, M. Zhang, and J. Su. A joint source-channel model for machine translit­
eration. In Proceedings of the 42nd Meeting of the Association for Computa­
tional Linguistics (ACL’04), Main Volume, pages 159-166, Barcelona, Spain, 
July 2004.

I. D. Melamed. Automatic construction of clean broad-coverage translation lexi­
cons. In Second Conference of the Association for Machine Translation in the 
Americas, pages 125-134, 1996.

F. J. Och and H. Ney. Improved statistical alignment models. In ACL ’00: Pro­
ceedings o f the 38th Annual Meeting on Association for Computational Linguis­
tics, pages 440-447, Morristown, NJ, USA, 2000. Association for Computational 
Linguistics.

F. J. Och and H. Ney. Discriminative training and maximum entropy models for 
statistical machine translation. In Proceedings of the 40th Annual Meeting on As­
sociation for Computational Linguistics, pages 295-302, Morristown, NJ, USA, 
2002. Association for Computational Linguistics.

E. S. Ristad and P. N. Yianilos. Learning string-edit distance. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 20(5):522-532, 1998.

B. Stalls and K. Knight. Translating names and technical terms in Arabic text. In 
Proceedings o f the COLING/ACL Workshop on Computational Approaches to 
Semitic Languages, 1998.

K. Tsuji. Automatic extraction of translational Japanese-katakana and English word 
pairs. International Journal of Computer Processing of Oriental Languages, 
15(3):261—279, 2002.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum 
decoding algorithm. IEEE Transactions on Information Theory, IT-13:260-269, 
1967.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal 
of the ACM, 21(1): 168—173, 1974.

D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised meth­
ods. In Meeting o f the Association for Computational Linguistics, pages 189— 
196,1995.

R. Zens and H. Ney. Improvements in phrase-based statistical machine translation. 
In Proceedings of the Human Language Technology Conference (HLT-NAACL), 
pages 257-264, Boston, MA, May 2004.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A 

The Many-to-Many 
Forward-Backward Algorithm

The following is a general version of the many-to-many forward-backward algo­

rithm presented in Chapter 5. The algorithm presented in Chapter 5 specified 

parameters to match the training parameters outlined in (Al-Onaizan and Knight, 

2002). The algorithm here differs in the following ways:

•  Insertions are allowed.

•  The size of substrings involved in mapping operations can be of any size. 

The sm ax  and tm ax  variables represent the maximum substring sizes for the 

source and target words respectively.

• The conditional probability P(tj \si)  has been replaced by the function S(si, tj), 

which could represent either a joint or conditional distribution, depending on 

how the Maximization-Step function is defined.

The algorithm can also be compared to the one-to-one forward-backward al­

gorithm presented in Chapter 2. The core of the extension lies in the for  loops 

iterating over x and y, which allow the algorithm to consider various combinations 

of substrings when building up the F  and B  tables.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Algorithm EM-many2many (s m a x , tm a x )

for all mapping operations (a, b)
C(a,b)  :=  0 

for each string pair (s, t)
Expectation-many2many(s, t, sm ax, tm ax ) 

Maximization-Step (C )

Figure A .l: Pseudocode for a general many-to-many expectation maximization al­
gorithm.

Algorithm Expectation-many2many (s ,  t, smax, tm ax)  
for i =  0 ...I 

for j  =  0... J
if (i > 0)

for x =  1 ...smax  st i — x  > 0
n(J.  , _  F(i- a;d)«(Sj_x+i>t)B(id)
u l6i-x+i> -  F(TT)

if (J >  0)
for y =  l...tm ax  st i — x >  0

5(£;
C(e, f j _y+1) +  =

if (i >  0 A j  >  0)
for x =  l...sm ax  st i — x >  0 

for y  =  l...tm ax  st j  — y >  0
r (  i . j  \_i_ _  F(i~x , j -y )6(s \ _x+1, i j_u+1)B(i,j)
°  V * i- x + l>  Li - y + l m  F(I.J)

Figure A.2: Pseudocode for a general many-to-many expectation algorithm.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F(0,0)  = 

F( i , j )  =

S(sl_x+1,e)F(i  ~ x ,  j )

 ̂  ̂  ̂ J  T/"f" 1 ) F ( i , j  — y) (A .l)
1 <y<tmax  I .
+  5{s\_x+l,t]_y+l) F { i - x , j - y )

=  1

5 ( s ^ , e ) B ( z  + x , j )

= El<x<smax, <! +  + y )  (A.2)

X- y - < m a X  '  +  S i s t S ^ B i i  + z J  + y)

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Glossary

abjad Alphabet in which most vowels are left unwritten.

alignment A linking of characters between two strings.

ALINE An algorithm for calculating the similarity and producing an alignment 

between two phonetic strings.

alphabetic script Script which uses symbols to represent phonemes in a given lan­

guage.

back transliteration The recovery of a previously transliterated name to its native 

writing script.

bootstrapping A weakly supervised approach to training a model in which a small 

set of labeled seed examples is used to learn initial parameters. The initial 

parameters are then used to extend the training set by labeling unlabeled ex­

amples. This process is repeated and the training set is extended iteratively 

until some stopping condition has been satisfied.

composition An operation on a set of finite-state transducers in which the output 

from one transducer is used as input for the next.

data-driven Class of algorithms which learn to function based on examples of the 

task to be performed.

decoding The extraction of information from a model based the model parameters 

and the input.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



deletion Edit operation in which a character or group of characters in the source 

string are not mapped to anything in the target string.

Dijkstra’s algorithm A search algorithm based on maintaining the shortest path 

to any state visited so far and always taking the shortest arc outward from the 

periphery of the search.

discriminative reranking An approach used in machine translation in which a pri­

mary translation model produces a list of candidates for the translation of an 

input sentence, and the candidates are reranked based on features that are 

suggested to mark a “good” translation.

dynamic programming Class of table based algorithms that function by building 

global solutions in a bottom-up fashion from solutions to subproblems.

dynamic programming invariant The assumption, in a search, that if the optimal 

path through a graph happens to go through state q, then this optimal path 

must include the optimal path up to and including q.

expectation maximization (EM) Method for learning the parameters of model by 

attempting to maximize the probability of a set of training examples.

final state A state at which a finite-state automaton can legally conclude the pro­

cessing of input.

finite-state acceptor A finite-state automaton in which the symbols on the arcs are 

letters in an alphabet and the automaton itself represents a set of legal strings.

finite-state automaton (FSA) A model, generally represented as a directed graph, 

made up of a finite number of states with arcs representing the transitions 

between states. Symbols on the arcs represent the conditions that must be 

met to transition between states.

finite-state transducer A finite-state automaton in which the symbols on the arcs 

are pairs of letters and the automaton itself represents a set of legal string 

pairs.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



forward algorithm A dynamic programming algorithm which calculates the the 

sum of the probabilities of all paths through a statistical model that corre­

spond to the input.

forward transliteration The transliteration of word from its native writing script 

to a foreign one.

forward-backward algorithm A dynamic programming approach to implement­

ing EM learning. Stores the probabilities for alignments of prefixes and suf­

fixes of a word pair and uses these probabilities to collect partial counts.

fuzzy string matching Similarity metric based on creating equivalence classes be­

tween letters in a pair of words.

identity Edit operation in which a character or group of characters in the source 

string maps to the same character or group of characters in the target string.

insertion Edit operation in which a character or group of characters in the target 

string are not mapped to anything in the source string.

inversion An operation on a finite-state transducer in which the left and right sides 

of the symbol pairs on the arcs are reversed.

language model The part of a noisy channel model that defines P{E) .  Used to 

rate words on how well-formed they are.

letter-based transliteration Machine transliteration paradigm in which the basic 

unit of transliteration is the letter.

Levenshtein edit distance A similarity measure between two words. The distance 

is the count of insertions, deletions and substitutions required to convert the 

source string into the target string. Identities are not counted towards the 

distance score.

logographic script Script which uses symbols to represent morphemes in a given 

language.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



lossy Refers to processes in which information is lost.

machine transliteration The task of automating the transliteration of words from 

one writing script to another.

monotone search algorithm A linear time decoding algorithm for phrase-based 

translation which assumes that the translation of phrases occurs sequentially.

noisy channel model Statistical approach to transliteration which uses Bayes’ rule 

to split the probability P(E\ F)  into P(E)  (the language model) and P(F\E)  

(the transliteration model).

null symbol Represents an “empty” string or character. For example, a deletion 

can be described as mapping a letter in the source string to null.

partial counts Counts of mapping operations in training data weighted by the 

probabilities of the alignments in which they appear.

phoneme-based transliteration Machine transliteration paradigm in which the ba­

sic unit of transliteration is the phoneme.

phrase-based translation A framework for machine translation based on learn­

ing mappings between phrases in different languages rather than individual 

words.

Romanization An orthographic mapping from a word in a non-Latin writing script 

into Latin letters. Based on the spelling of the original word, rather than its 

pronunciation.

shortest path search see Dijkstra’s algorithm.

source string In generative processes, the string that generates the target string. 

In joint processes, the term is simply used to differentiate it from the target 

string.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



start state The state in which a finite-state automaton begins when processing in­

put.

statistical machine translation (SMT) An approach to machine translation which 

models translation probabilistically.

substitution Edit operation in which a character or group of characters in the 

source string map to a character or group of characters in the target string.

substring-based transducer Substring-based transliteration model which encodes 

the transliteration process as the composition of two transducers: one to 

model mappings and the other to model language.

substring-based transliteration Machine transliteration paradigm in which the 

basic unit of transliteration is the word substring.

syllabic script Script which uses symbols to represent syllables in a given lan­

guage.

target string In generative processes, the string that is being generated by the 

source string. In joint processes, the term is simply used to differentiate it 

from the source string.

transliteration The process of converting a word from one writing script to an­

other, usually based on the phonetics of the original word. Transliteration 

is most often used for named entities, but is occasionally used for borrowed 

words as well.

transliteration model The part of a noisy channel model that defines P(F\E) .  

Used to rate pairs of strings based on how well they map to each other.

true alphabet Alphabet in which vowels and consonants are written as indepen­

dent letters.

union An operation on a set of finite-state transducers which results in an FST that 

can accept all the same input as the original transducers and will produce all 

the same output.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Viterbi algorithm A dynamic programming decoding algorithm for finding the 

single most probable path through a model.

Viterbi substring decoder Substring-based transliteration model which uses dy­

namic programming to decode. Based on the monotone search algorithm for 

machine translation.

weighted finite-state automaton (WFSA) A finite-state automaton with weights 

on the arcs representing the probability of making a particular transition.

weighted finite-state transducer (WFST) A finite-state transducer with weights 

on the arcs representing the probability of making a particular transition.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


