
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

S im u l a t io n o f F e m t o s e c o n d L a s e r A b l a t io n o f S il ic o n

by

Roman Holenstein

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the

requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta

Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ONK1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de ('edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-08079-5

Your file Votre reference
ISBN:
Our file Notre reference
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L’auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n’y aura aucun contenu manquant

I t !

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f A lberta

L ibrary Release Form

N am e of A uthor. Roman Holenstein

Title o f Thesis: Simulation o f Femtosecond Laser Ablation of Silicon

Degree: Master o f Science

Year this Degree G ranted : 2005

Permission is hereby granted to the University o f Alberta Library to reproduce single copies o f this

thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the

thesis, and except as hereinbefore provided, neither the thesis nor any substantial portion thereof

may be printed or otherwise reproduced in any material form whatever without the author’s prior

written permission.

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Alright brain, you don’t like me, and I don’t like you. But let’s

just do this, and I can get back to killing you with beer.”

Homer Simpson

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Femtosecond laser ablation is an important process in the micromachining and nanomachining of

microelectronic, optoelectronic, biophotonic and MEMS components. The process of laser ablation

of silicon is being studied on an atomic level using molecular dynamics (MD) simulations. We

investigate ablation thresholds for Gaussian laser pulses of 800 nm wavelength, in the range of a few

hundred femtoseconds in duration. Absorption occurs into a hot electron bath which then transfers

energy into the crystal lattice. The simulation box is a narrow column 5.4 nmx5.4 nmx81 nm with

periodic boundaries in the x and y transverse directions and a 1-D heat flow model at the bottom

coupled to a heat bath to simulate an infinite bulk medium corresponding to the solid bulk material.

A modified Stillinger-Weber potential is used to model the silicon atoms. The calculated ablation

thresholds of silicon are compared to values reported in experimental and theoretical studies. We

obtain reasonable agreement with experiment for pulse lengths of 100 fs and 200 fs (1/e) giving

thresholds of 0.13 J/cm2 and 0.19 J/cm2, respectively. The ablation threshold is found to have a

square-root dependence on the pulse length.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank my supervisors Dr. Robert Fedosejevs and Dr. Ying Y. Tsui for the opportunity

to pursue my M.Sc. at the University of Alberta. I am very grateful for your support and guidance.

This has been a valuable learning experience for me.

I wish to express my gratitude to my fellow graduate students, colleagues, and friends. Special

thanks go to Michael Argument, Michael Cummings, Sean Kirkwood, Matthew Reid, and Michael

Taschuk, you have been an invaluable source of expertise.

I would also like to thank Dr. Eleanor E.B. Campbell for providing an initial version of a molec

ular dynamics code which was used as a starting basis for this work.

I would like to acknowledge financial support from the Natural Sciences and Engineering Re

search Council of Canada (NSERC), the Informatics Circle of Research Excellence (iCore), and the

Canadian Institute for Photonic Innovations (CIPI). And I would like to express my appreciation to

the WestGrid project for providing computational support.

And I would like to especially thank my parents, my brothers and my sister for all their love

and continuous support, for their constant encouragement and for always being there for me. Thank

you!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

1.1 Micro-/nano-machining... 3

1.2 Femtosecond laser ablation.. 3

1.3 Laser ablation parameters.. 4

1.3.1 Pulse w id th ... 4

1.3.2 Wavelength... 5

1.3.3 Number of s h o ts ... 5

1.4 Simulation m o d e ls ... 6

1.4.1 Heat diffusion m odel... 6

1.4.2 Hydrodynamic model... 7

1.4.3 Particle m odels.. 7

1.5 State of the a r t ... 8

1.5.1 Interaction potentials... 9

1.5.2 Silicon threshold studies... 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.6 Layout of the thesis.. 13

2 Heat-Flow Model 15

2.1 Heat-flow equations.. 16

2.2 Electron g a s .. 18

2.2.1 Thermally excited electrons... 18

2.2.2 Laser absorption.. 19

2.2.3 Heat capacity.. 21

2.2.4 Thermal conductivity.. 22

2.3 Numerical solution.. 22

2.3.1 Discrete formulation.. 22

2.3.2 Explicit scheme... 24

2.3.3 Implicit scheme... 25

2.3.4 Optimization... 28

3 Molecular dynamics 30

3.1 Basic model equations and assumptions... 31

3.1.1 Newtonian m echanics... 31

3.1.2 Hard and soft spheres.. 32

3.1.3 Lennard-Jones potential.. 32

3.1.4 Stillinger-Weber potential... 33

3.1.5 Coulomb potential... 34

3.1.6 Lattice construction... 35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.7 Limitations... 36

3.2 Numerical method .. 37

3.2.1 Verlet’s algorithm.. 38

3.2.2 Gear’s algorithm.. 39

3.2.3 Interaction computations.. 42

3.3 Simulation configuration.. 44

3.3.1 Periodic boundaries... 44

3.4 Extraction of thermodynamic properties... 46

3.4.1 Pressure.. 46

3.4.2 Heat capacity.. 47

3.4.3 Thermal conductivity.. 50

3.5 Optimization: Lookup table for SW potential and fo rc e .. 54

3.5.1 Nearest neighbour interpolation... 55

3.5.2 Linear interpolation... 56

3.5.3 R esu lts .. 57

3.6 Optimization: Parallelization.. 58

4 Heat Bath and Coupling between HF and MD model 60

4.1 Langevin damping .. 60

4.2 HF boundary condition... 62

4.2.1 Derivation of Langevin damping... 63

4.3 Coupling ... 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Testing.. 65

5 Laser Absorption 69

5.1 Plane wave propagation.. 69

5.2 Absorption coefficient... 70

5.2.1 Implementation.. 71

5.3 Excitation and ion iza tion .. 73

5.4 Relaxation p ro c e sse s ... 75

6 Results and Discussion on Thresholds 76

6.1 M e lt in g .. 79

6.2 A blation.. 84

6.2.1 T h resh o ld s .. 87

6.2.2 Comparison with previously reported r e s u l t s 93

7 Conclusions 103

Bibliography 106

A Stillinger-Weber Force Calculation 114

B Thermal Conductivity from MD Simulation 120

C Figures 124

C.l Removed particles over t i m e ...124

C.2 Ablation sequences .. 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code 141

D.l Parameter F ile .. 141

D.2 Compiling the program.. 143

D.2.1 The M akefile... 144

D.3 Running the program ... 148

D.4 File listing.. 148

D.4.1 Main L o o p .. 152

D.4.2 Integrator... 172

D.4.3 Force Calculation... 175

D.4.4 Heat Flow... 191

D.4.5 Laser Absorption.. 212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Reflectivity and linear absorption coefficient of silicon [A S83].................. 6

1.2 Simulation setup of the initial (left) and current (right) code......................... 14

2.1 Band structure of silicon at 300 K [Iof]... 19

2.2 Layout of heat flow m o d e l... 24

3.1 Stillinger-Weber potential for two-particle system. Shown is the reduced pair po

tential as a function of particle separation. The energy is given in multiples of E and

the distance in multiples of a .. 35

3.2 SW potential energy in the [100] plane of a diamond lattice. The equilibrium posi

tion is at coordinate (0,0) and the nearest neighbour distance is 2.35A......... 36

3.3 Diamond crystal structure.. 38

3.4 FCC la t tic e .. 39

3.5 Pseudocode of velocity Verlet algorithm.. 40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 RMS of global error as a function of time step. Gear’s algorithm (5th order) out

performs Verlet’s algorithm in accuracy based on energy conservation. The lines

are least-squares fit with slopes of 2.04 and 2.97 for Verlet’s and Gear’s method,

respectively. Values are in reduced units. The time is given in multiples of x =

1 /(Gyjm/z), and the energy is in terms of £ [Hai97] .. 43

3.7 Illustrated are possible algorithms for the interaction computations: (a) all pairs, (b)

cell subdivision, (c) neighbour list [Rap95].. 44

3.8 Periodic boundary conditions. Shown is a 2D representation of the system. If a

particle leaves the simulation volume (cell), it automatically reenters the cell from

the opposite side... 45

3.9 Average energy density vs. temperature. The system of 1000 atoms was system

atically heated from case to case (with equilibration). Our measurements are com

pared to Stillinger and Weber’s data [SW85] and to the empirical scaling law given

in eqn. 3.30 (integrated starting from our first data point) [NC92]............................ 48

3.10 Isometric heat capacity versus temperature. Our measurements are compared to

Stillinger and Weber’s data [SW85] and to the empirical scaling law given in eqn. 3.30

[NC92]. The noise in the heat capacity increases as the temperature gets closer to

the melting point and the system approaches a phase transition................................ 50

3.11 Isobaric heat capacity at 1 atm. pressure as given by Noya et al. [NHR96]. The

results from simulations using the SW potential (open circles) are compared to ex

perimental results (solid line)... 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.12 (a) Temperature profile after 1.5 ps with sinusoidal fit. (b) Temperature of sine

fit at z = TJ2 as a function of time and fitted to exponential. The exponent is

—2.836 x 10-5 which corresponds to a conductivity of K = 0.139 W/(cmK) (cy =

0.90J/(gK),p = 2.32g/cm3)... 53

3.13 Thermal conductivity from MD simulations using Green-Kubo auto-correlation by

Volz et al. and experimental data from natural and isotopically enriched silicon

[VC00]... 54

3.14 Geometry of interacting particles using SW potential... 55

3.15 Coordinates for linear interpolation.. 56

3.16 Layout of nodes and communication in parallel simulation...................................... 58

3.17 Speed-up of simulation with number of processors. The simulation was run on an

SGI Origin 2400... 59

4.1 Molecular Dynamics-Heat Flow hybrid model: layout of interfacing....................... 65

4.2 Evolution of temperature profile under continuous heating of the surface. The hor

izontal black line indicates the boundary between the MD system (above) and the

HF system (below).. 66

4.3 Evolution of temperature profile for (a) without and (b) with a heat flow model

connected at the bottom of the MD system... 67

4.4 Temperature profile of figure at t = 14.5 ps... 68

6.1 Temperature at various depths for pulse length Zi = lOOfs (X = 800nm). (a) Fat* =

0.10 J/cm2, (b) Fabs = 0.16 J/cm2... 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Pressure wave due to laser pulse (X = 800nm) below the ablation threshold. The

wave front moves at a velocity of « 7.8km/s. (a) F&s — 0.06J/cm2, — 50fs (b)

Fabs = 0.30J/cm2, = 800fs.. 80

6.3 Evolution of temperature (a) and pressure (b) for a 400 fs pulse of 0.3 J/cm2 and

wavelength X = 800nm. The vertical axis is the position (z) in the material, mea

sured from the MD-HF interface and in the normal direction to the surface. The

horizontal axis is the time from the start of the simulation. The laser pulse starts at

/ = 1 ps and reaches peak intensity at t = 1.4 p s .. 82

6.4 Pair-correlation function for Si in the crystalline phase (T = 2015 K, slightly below

melting point) [SW85]... 83

6.5 Coordination number (a) and temperature (b) forFabs = 0.10 J/cm2 and Zl = 50 fs. 85

6.6 Ablation sequence for 400 fs laser pulse (1/e) with a fluence of 0.30 J/cm2 (X =

800 nm). Shown is the top portion of the MD system. The laser pulse starts at

/ = 1 ps and reaches peak intensity at t = 1. 4 p s .. 86

6.7 Ablation sequence for 100 fs laser pulse (1/e) with a fluence of 0.16 J/cm2 (X =

800nm). The laser pulse starts at t= lps with peak intensity at t= 1.1 p s 88

6.8 Count of ablated atoms (a) and electrons (b), i.e. particles that have reached the top

of the simulation volume and have been subsequently removed from the simulation.

The pulse length is 100 fs (1/e). The inset in figure (a) shows the count for Fabs =

0.10J/cm2 and Fabs = 0.13 J/cm2, where only a few atoms get removed (evaporated). 90

6.9 Melting and ablation thresholds at different pulse lengths (FWHM)......................... 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.10 Diffusion length (from eqn. 6.4) and absorption depth (from eqn. 6.3) vs. pulse

length. The diffusion length is given for both the literature value of the diffusivity

(D = 0.8cm2/s) and estimated value from thermal properties measured in section

3.4 (D = 0.063 cm2/s)..

6.11 Single shot ablation thresholds (absorbed fluence) at different pulse lengths (FWHM)

by Pronko et al. [PDS+95, PVS+96, PVH+98]. Measurements were done by ex

amining the area of damage and extrapolating to zero, as well as using atomic force

microscopy (AFM) to examine damage due to vaporisation and a photomultiplier

to detect onset of plasma emission. Also shown are results from a 2-temperature

heat flow model (CODE) that was tit to the data points from the AFM and PM

measurements..

6.12 Single shot ablation thresholds at different pulse lengths (FWHM) compared to lit

erature values, (a) over the pulsewidth range of 1 fs to 10 ns and (b) over the range

of 20 fs to 700 fs. The solid (filled) symbols represent experimental values and the

open ones are theoretical values...

C.1 Count of ablated atoms and electrons (inset) for 50 fs laser pulse (1/e) with a fluence

of 0.10 J/cm2 (X = 800nm). The laser pulse starts at t = 1 ps with peak intensity at

t = 1.05ps..

C.2 Count of ablated atoms and electrons (inset) for 100 fs laser pulse (1/e) with a

fluence of 0.16 J/cm2 (X — 800nm). The laser pulse starts at t = 1 ps with peak

intensity at t = 1.1 p s ...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.3 Count of ablated atoms and electrons (inset) for 200 fs laser pulse (1/e) with a

fluence of 0.24 J/cm2 (X = 800 nm). The laser pulse starts at t = lp s with peak

intensity at t = 1.2 p s ... 127

C.4 Count of ablated atoms and electrons (inset) for 400 fs laser pulse (1/e) with a

fluence of 0.30 J/cm2 (X = 800 nm). The laser pulse starts at t = 1 ps with peak

intensity at t = 1.4 p s ... 128

C.5 Ablation sequence for 50 fs laser pulse (1/e) with a fluence of 0.08 J/cm2 (X =

800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1.05p s 130

C.6 Ablation sequence for 50 fs laser pulse (1/e) with a fluence of 0.10 J/cm2 (X =

800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1.05p s131

C.7 Ablation sequence for 100 fs laser pulse (1/e) with a fluence of 0.13 J/cm2 (X =

800nm). The laser pulse starts at t = lp s with peak intensity at t = 1.1 p s 132

C.8 Ablation sequence for 100 fs laser pulse (1/e) with a fluence of 0.16 J/cm2 (X =

800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1.1 p s 133

C.9 Ablation sequence for 200 fs laser pulse (1/e) with a fluence of 0.20 J/cm2 (X =

800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1.2p s 134

C.10 Ablation sequence for 200 fs laser pulse (1/e) with a fluence of 0.24 J/cm2 (X =

800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1 . 2 p s135

C.11 Ablation sequence for 400 fs laser pulse (1/e) with a fluence of 0.22 J/cm2 (X =

800nm). The laser pulse starts at t — 1 ps with peak intensity at t = 1.4p s 136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.12 Ablation sequence for 400 fs laser pulse (1/e) with a fluence of 0.26 J/cm2 (A. =

800nm). The laser pulse starts at t = 1 ps with peak intensity at r = 1 .4 p s 137

C.13 Ablation sequence for 400 fs laser pulse (1/e) with a fluence of 0.30 J/cm2 (A. =

800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1. 4 p s 138

C.14 Ablation sequence for 800 fs laser pulse (1/e) with a fluence of 0.36 J/cm2 (X =

800nm). The laser pulse starts at t = lps with peak intensity at t= 1.8p s 139

C.15 Ablation sequence for 800 fs laser pulse (1/e) with a fluence of 0.50 J/cm2 (X =

800nm). The laser pulse starts at r = 1 ps with peak intensity at t = 1 .8 p s140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Thermodynamic coefficients for ciystalline (c-Si) and amorphous (a-Si) silicon at

300 K ([BauOO], pg. 697).. 17

3.1 Parameters for the Stillinger-Weber potential.. 37

3.2 Parameters for the correction terms in Gear’s algorithm for predictions of various

orders q.. 42

3.3 Isometric heat capacities determined from energy-temperature graph (fig. 3.9) . . . 49

3.4 Specific heat capacities (cy) for silicon obtained from reduced residual heat capaci

ties (CyR) given by Stillinger and Weber [SW85]. The low temperature crystal value

is obtained from the equipartition theorem. (Equation 3.31 was used to compute the

real v a lu e s) .. 51

6.1 Threshold absorbed fiuences for melting (Fâ) and ablation (F ^) . Some of the

thresholds have not been established yet and further simulations are required. . . . 87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Single shot ablation thresholds from theoretical studies. is the laser pulse length

(FWHM), X is the wavelength, R is the reflectivity (as reported by Aspnes and

Studna [AS83], see fig. 1.1), a and 3 are the linear and two-photon absorption

coefficients, respectively, and is the ablation threshold fluence as reported by

the authors. is the absorbed fluence (i.e. taking reflection into account) 96

6.3 Single shot ablation thresholds from experimental studies, t i is the laser pulse

length (FWHM), X is the wavelength, R is the reflectivity (as reported by Aspnes and

Studna [AS83], see fig. 1.1), and fH is the ablation threshold fluence as reported

by the authors. fJ^ is the absorbed fluence (i.e. taking reflection into account). . . 100

6.4 Number of removed atoms by the end of a 30 ps simulation versus fluence for dif

ferent pulse lengths.. 102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nomenclature

r a vector

| r | length of vector?

rtj a vector from particle i to particle j: 7ij = rj — r,-

r-,j distance between particle i and particle j: r-,j =| |

Fabs absorbed fluence

Fine incident fluence

X wavelength

xl laser pulse length

c speed of light

e Coulomb constant

Eg band gap energy

h, h Planck’s constant (h = h/2%)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

kg Boltzmann’s constant

msi mass of silicon atom

mei mass of electron

nth mass of hole

Tei electron temperature

Tph lattice (phonon) temperature

a-Si amorphous silicon

AFM atomic force microscopy

BASH Boume-Again SHell

c-Si crystalline silicon

CN coordination number

density functional theory

EAM embedded-atom method

HF heat flow

MD molecular dynamics

MEMS microelectromechanical systems

MPI Message Passing Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PA plasma annealing

PBC periodic boundary condition

PM photomultiplier

QMS quadrupole mass spectrometer

Si silicon

SW Stillinger-Weber (interaction potential)

UV ultraviolet (tight)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Computer simulations have become a vital part in research. The use of computers has allowed us to

solve problems that were previously too complex to do. In many cases, a lot of assumptions and ap

proximations were necessary in order to solve any real world problem. Now many problems can be

solved numerically. Computer simulations are not only used to solve a particular problem, but also

to test theoretical models. These models are implemented in a computer simulation, and the results

from it can then be compared to results obtained from an equivalent physical experiment Since

the first implementation of a computer only five decades ago, the computer speeds and memory

capacities have increased at an exponential rate, however, there are still limitations. Many complex

or computationally intensive problems may now be solved in a reasonable amount of time. But

efficient algorithms are still required in order to tackle such problems, particularly using realistic

parameters.

There are various types of computer simulations; the one that has been developed in this thesis

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction

is based on molecular dynamics (MD). Other related examples include Monte Carlo simulation and

molecular mechanics. In MD, a system of particles is studied by computing the interactions between

the particles and integrating their paths based on Newtonian mechanics.

Molecular dynamics has found many applications. It was first employed by 8 J . Alder and T.E.

Wainwright to study liquids (using hard spheres) [AW57]. Defects in crystals have also been studied

using MD simulations (MB91, MB93, KUOOO]. Further examples of where MD simulations have

been applied include studies in fracturing, surface physics, friction, clustering, biomolecules, and

electronic and dynamical properties of materials [LLR+88, AB87, MB92, MB93, IMM+98, Lee98,

ZGB99, VCOO, RKL+02, NBG+03, HMM04].

Silicon is an important material in industry. Many devices are fabricated from Si, such as micro

chips or MEMS devices for example. Ultrafast laser are often used in the production of these

devices. The purpose of this project was to implement a molecular dynamics simulation of silicon

(Si) to simulate the process of laser ablation. In laser micromachining ultrafast laser pulses, pico-

to femto-seconds in duration, are used to remove small amounts of material from a substrate, for

example to create holes or micro-structures. An understanding of the mechanism underlying the

ablation process is important in order to improve the micromachining quality. Molecular dynamics

is a convenient tool to study this process, as it provides a microscopic view of the material, which

would be very difficult if not impossible to obtain experimentally. Also, it allows for the isolation

of subsystem processes so they can be studied independently and their contribution to the overall

process assessed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.1 Micro-Znano-machining

1.1 Micro-/nano-machining

Laser ablation is the physical process exploited in laser micromachining. The various applica

tions of this include fabrication and repair of MEMS (nucroelectromechanical systems) devices and

optical devices, and in creating via holes, cutting electrical paths, isolating features for electrical

microchips, and direct writing of microfluidic systems.

MEMS devices consist of micron-sized movable parts. In the standard fabrication of these

devices some leftover material may remain on the device, preventing proper operation. This excess

material can be removed using laser ablation.

Laser ablation can also be employed in the fabrication of microfluidic devices. These devices

are used for example in DNA and protein analysis and microchemical analysis. Generating these

devices may require vertical micron sized holes to be drilled into the substrate (generally some type

of glass). This can be accomplished using ultrafast laser ablation. Currently the challenge is in

avoiding cracks and inhomogeneities surrounding the hole. A better understanding of the ablation

process, in particular for femto-second pulses, may help to improve the drilling techniques.

1.2 Femtosecond laser ablation

In femtosecond laser ablation multiphoton absorption plays an important role. Through multiphoton

absorption it is possible to excite electrons even if the bandgap is larger than the energy of a single

photon. The combined energy of two photons may allow a transition to take place in that case. The

excess energy (if any) will add to the kinetic energy of the excited electron.

The excited electrons are susceptible to the electric field of the incident laser pulse, gaining

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.3 Laser ablation parameters

kinetic energy in the process (inverse Bremsstrahlung). These highly energetic carriers then knock

out electrons from neighbouring atoms and excite them to the conduction band (impact ionization).

13 Laser ablation parameters

Material is removed from a substrate by ablating it using one or more laser pulses. The ablation

process, and thus the features created, depends on the properties of the laser pulse(s) and the material

used. The following subsections will briefly outline the dependence of the ablation process on the

laser pulse width, wavelength, and material, as well as some of the physical processes involved in

laser ablation.

1.3.1 Pulse width

The features created in the target material significantly depend on the length of the laser pulse

incident on the target material. As the laser pulse irradiates the material, it deposits energy at the

focal spot This creates a temperature gradient and the heat diffuses to a length scale L given below,

resulting in surface cracks and other unwanted damage to the target material. The diffusion length

is given by

L = 2-y/xD (1.1)

where x is the pulse length and D is the thermal diffusivity of the target material. For example

Silicon has a thermal diffusivity of 0.8cm2/s, thus using a 1 ns pulse the diffusion length is 566nm,

while for a lfs pulse the diffusion length is only 0.57 nm. Thus one expects much cleaner holes

to be created using a femtosecond laser pulse compared to a much longer nanosecond pulse. This

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.3 Laser ablation parameters

has been confirmed in experiment. The threshold fiuence is also dependent on the pulse length

[BBK+02].

1.3.2 Wavelength

Different wavelengths get absorbed differently in a particular material. Thus the ablation process

will be affected by the choice of wavelength. For example in most materials ultraviolet (UV) light

is generally more strongly absorbed than light at longer wavelengths. Thus the skin depth for UV

is very short, allowing ablation at low energies. The reflectivity also depends on the wavelength,

and for silicon is higher in the UV and drops to about 30% in the near-IR. Figure 1.1 shows the

dependence of the absorption coefficient and the reflectivity on the wavelength. Further, the focal

spot size depends on the wavelength used - the shorter the wavelength, the smaller the focal spot

that can be achieved, allowing for smaller features to be created.

1 3 3 Num ber o f shots

Experiments have indicated that incubation effects have significant impact in multishot laser ab

lation, especially in the femtosecond regime. It has been seen that in irradiating with several laser

pulses, each being below the single shot threshold for ablation, at the substrate, that after a few shots

ablation does take place, even though the individual pulses do not have sufficient energy to ablate

the material in a single pulse [BBK+02].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.4 Simulation models

1.0 1e+07
— Reflectivity
■— Absorption Coefficient0.9

0.8 1e+06

0.7

1e+05•■§ 0.6

1
® 0.5 1e+04

0.4
1e+03

0.3 1e+02
200 300 400 500 600 700 800 900

Eo.
c
o
Q.
O
CO

-Q

COa>
c

Wavelength [nm]

Figure 1.1: Reflectivity and linear absorption coefficient of silicon [AS83]

1.4 Simulation models

In the next few sections we will briefly introduce some of the models that have been used in simu

lating laser ablation.

1.4.1 H eat diffusion model

For the study of laser ablation, the heat diffusion model offers a simple approach. The energy of

the laser added to the system and the heat is diffused into the bulk according to the temperature

gradient driven heat flow (HF). Generally this model has validity when using longer pulse lengths

(ns time scale). This is due to the fact that recombination of excited electrons with the ions in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.4 Simulation models

lattice occurs on a much shorter time scale and equilibrium (or at least quasi-equilibrium) can be

assumed in this case. However, a recent study has employed this technique to investigate ultrafast

laser ablation of metals, dielectrics and semiconductors [BSR+04] and obtained reasonable agree

ment with experimental results. In our project we use a heat flow model at the bottom of the MD

simulation volume to simulate an infinite bulk medium. Chapter 2 gives a detailed overview of the

heat diffusion model.

1.4.2 Hydrodynamic model

The hydrodynamic model simulates the system as a fluid (or gas). This is particularly useful in

studying laser interaction with plasmas. Since no distinct particles are considered, this model is in

dependent of scale and the computational effort mainly depends on the desired accuracy. Therefore

this approach is very efficient and allows for the study of various phenomena from laser-plasma

interactions to modelling of plasma in the earths magnetosphere. In covalent materials (e.g. Si,

glass,...), the particles are very close together and tightly bound (significant interaction between the

atoms), therefore the system cannot be treated as a gas or fluid and thus this model is not appropri

ate for this project However, this approach has been used in modelling of laser ablation of metals

[ACD+01, TLFCOO].

1.43 Particle models

There are various techniques that can be employed to model an N-body system. Among them are

Monte Carlo (MC), particle-in-cell (PIC), and molecular dynamics (MD). In PIC, the potential sur

face is computed on a grid and the forces acting on the particles are interpolated from the grid points.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.5 State of the art

This method is particularly useful in modelling fluids or gases of chaiged particles in electromag

netic fields [Wei77]. In MD the forces on the particles are calculated direcdy for each particle.

While PIC and MD are deterministic models, MC employs statistics and random sampling to obtain

the state of system for the next time step.

1.5 State of the art

There has been a significant amount of research done in the modelling of laser ablation for pulse

lengths of millisecond to nanosecond in duration [ZhaOl, LLW+97, PMK94, BauOO]. Laser interac

tion and ablation using longer pulses, particularly for metals, can be reasonably well described using

heat flow models, since the interaction is dominated by thermal processes [BauOO]. With recent ad

vances in ultrafast laser ablation a lot of effort has been put towards modelling and understanding

the ablation process in the short-pulse regime.

In ultrafast laser ablation, the dominant processes underlying the removal of matter are different

than for short pulses. The pulse length in fs-ablation is on the same order of magnitude or shorter

than the time it takes for the electrons to thermalize (10_,4s) and to reach equilibrium with the lattice

(10-12s) [Aga84]. This requires at least a two-temperature model, i.e. separate electron system from

lattice, and at high fluences a kinetic model. Most simulations of femtosecond and picosecond laser

ablation of silicon (and other semiconductors) employ molecular dynamics [HGC98, WIOMOO,

LLM01], and some use MD in conjunction with Monte Carlo techniques [ZGZ02, LLM03]. A few

have used a two-temperature heat diffusion model to study the ultrafast laser interaction with silicon

[PDDS95, BSR+04],

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.5 State o f the art

1.5.1 Interaction potentials

Various groups developed models to describe the interaction between the particles in solid silicon

[SW85, Ter88, DC98, BH85]. Balamane et al. have compared several empirical interaction po

tentials for silicon [BHT92] and concluded that none of the six potentials stands out as superior.

They all have their strengths and limitations. E.R. Cowley [Cow88] arrived at a similar conclusion

by calculating the elastic constants and selected normal-mode frequencies for the Stillinger-Weber

(SW) [SW85], Tersoff [Ter88], and Biswas-Hamann [BH85] potentials and comparing the results

with experiments, but found that overall the SW potential gives the best description of the lattice

dynamics. For the study of laser ablation the Stillinger-Weber potential is predominantly used (see

section 3.1.4). The embedded-atom method (EAM) [Bas87, BNW89, Bas92] has also been used to

study silicon, for example in modelling of crack propagation [SBN89]. A German group has also

used ab initio MD [CP85, AKPF94] to look at laser melting of Si [SAPF96, SAPF97].

There are also several interaction models available for the study of glass, in particular for fused

silica [TMTM88, vBKvS90]. The one most often used in modelling glass is the BKS potential,

developed by Beest, Kramer and Santen [vBKvS90]. The BKS potential was developed from ab

initio calculations on small clusters and experimental data.

Zhigilei et al. have concentrated on simulating laser ablation of organic solids. Also using

molecular dynamics, they employ a so-called “breathing sphere” model, which allows them to

model an entire molecule as a single particle, where the particle properties are dependent on its

internal structure. In this way it is possible to speed up the simulation and allows examination of

larger volumes of the solid [ZKG97]

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.5 State o f the an

1.5.2 Silicon threshold studies

There are a few groups studying the ablation process by pico- and femtosecond laser pulses for

silicon. Following we will briefly present some of the key contributions that are relevant to this

project.

A group in Montreal (Canada), headed by Michel Meunier, has studied the mechanisms involved

in the ablation of Si for picosecond pulses in the near UV [LLMOOa, LLMOOb, LLM01, LLM03].

They employ a MD thermal annealing model in which the relaxation of the carriers occurs by

transfer of kinetic energy to the lattice by spontaneous emission of optical phonons. This model

applies for carrier densities below the critical value of nc « lO^cm-3 for silicon and pulse lengths

down to about 10 ps. The atomic interactions are modelled using the SW potential. They deduce

that in this regime one-photon interband transition is the dominant laser absorption mechanism and

ignore multi-photon and free-carrier absorption. Following the absorption an electron-hole (e-h)

pair is generated and the valence counter of the exited atom decremented by one. The relaxation

mechanisms taken into account in their model are carrier-phonon scattering and carrier diffusion.

In their latest work, which considers pulse durations down to zL = 500fs, they have added a Monte-

Carlo model to account for relaxation of hot electrons and holes through a cascade of scattering

events. By following the thermodynamic trajectory of the system in the temperature-density plane,

they identified phase explosion as the primary ablation mechanism under near-adiabatic cooling

conditions near the threshold for shorter pulses (< lOps) [LLM03]. For longer pulses or under non-

adiabatic cooling conditions it was found that fragmentation due to pressure buildup was the only

relevant ablation mechanism [PL02, LLM03]. At X = 266nm they obtained ablation thresholds

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.5 State of the art

(incident fluence) of 0.35 J/cm2 (ti = 500fs) and 0.54 J/cm2 fa = 50 ps), and 0.30 J/cm2 f a =

lOps) for a wavelength of X = 308 nm.

While most simulations of this type use periodic boundary conditions (PBC) in the transverse

direction to the incident laser pulse, Herrmann et al. used a different approach [HGC97, HGC98]:

a cylindrical rim surrounds the system and acts as a heat bath, i.e. the particles in that shell of

a few Angstrom in thickness are damped to account for the heat dissipation into the bulk. To

make this setup computationally feasible the laser spot size was shrunk to 25 A in diameter and the

absorption coefficient increased by a factor of 2000. The SW potential is used to model the atomic

interaction. Upon absorption of a photon by an atom, it is marked as excited. The resulting change

in the potential was implemented by randomly breaking a number of bonds matching the degree

of excitation. For picosecond and femtosecond pulses they observe that the main material removal

occurs within a few picoseconds. The ablation thresholds obtained are between 3 J/cm2 and 8 J/cm2

for pulse lengths in the range of 10 fs up to 5 ps (threshold increasing with pulse length). This is

much higher than the experimental values reported [CSTB+99], probably due to excessive cooling

by the boundary “wall” (cylindrical rim) since the system size is relatively small (only 100A in

diameter).

Ohmura et al. have also investigated laser ablation of silicon using MD and the SW potential.

They found that a S i(lll) surface more easily evaporates than a Si(100) under laser irradiation

f a ~ 200fs, X — 266) and obtained qualitative agreement with experiment [IWF+98). The effective

surface bond density (in thermal equilibrium) for S i(lll) is larger than for Si(100) and therefore

more energy is absorbed near the surface of S i(lll) as compared to Si(100). The shock wave

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.5 State o f the art

velocity was measured for both crystal orientations and good agreement with elastic theory was

obtained, showing that the shock wave propagates faster in the Si[l 11] direction (9.36km/s) than in

the Si[100] direction (8.44km/s) [WIOMOO].

Using ab initio molecular dynamics based on density functional theory (DFT)in lieu of the com

monly used SW potential, Alavi, Parrinello, and Frenkel have investigated laser heating of silicon

[SAPF96]. As suggested in the “plasma annealing” (PA) model [VTSH79, VTS79], under intense

laser irradiation (short pulses on order of 100 fs) the semiconductor material can be rapidly driven

into a disordered state (melting). This has also been shown in experiment [SYH83b, SYH83a]. Ac

cording to the PA, a high level of electronic excitation can lead to a weakening of the bonds. Alavi’s

ab initio model was developed to describe this situation [AKPF94, SAPF96]. Their simulations

were able to reproduce the fast melting. However, the ions did not remain cool as the PA model

predicts and instead reach temperatures at around the melting point of Si (Tm = 1680K). The liquid

formed in this process had different properties than for normal liquid Si, such as higher coordination

number (11-13) and a high diffusion coefficient.

Jeschke et al. employ MD simulations based on an electronic tight-binding Hamiltonian [JGL+02].

The model takes into account the nonequilibrium created in the electronic system due to irradiation

with an intense laser pulse. Using periodic boundary conditions in all three dimensions of the MD

supercell containing 64 atoms, and applying a constant external pressure (10s Pa), the melting and

ablation process was studied for pulse durations of 20 fs and 500 fs (Gaussian). It was found that

the increase in ablation threshold from Xt = 20fs to %l = 500fs was 67%, which agrees with the

trend found by Bonse et al. [JGL+02].

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.6 Layout o f the thesis

In order to reduce the computational cost and thus allowing larger systems and longer time

frames to be considered, Zhigilei et al. developed a breathing-sphere model which is used to study

organic solids [ZG99b, ZKG97, ZG99c, ZG99a]. In this model, a group of atoms (e.g. a molecule)

is represented by a single particle, the size of which changes according to the internal degree of

freedom. The internal dynamics of such a particle is approximated with an appropriate potential.

Their model has shown that ejection due to phase explosion and the relaxation of laser induced

pressure are the primary ablation mechanisms [ZGOO].

1.6 Layout of the thesis

A simulation code has been developed to model the process of laser ablation. E.B. Campbell pro

vided the initial version of the code [HGC98]. We have made some modifications in an effort

to improve the simulation and results. In the initial code the Si bulk had dimensions 100A(x) x

100 A(y) x 50 A (z), with the laser incident from the top (+z). The particles were surrounded by a

cylindrical rim of 6 A thickness containing atoms that were thermally coupled to a heat reservoir

(see fig. 1.2). The system layout has been modified to periodic boundary conditions in the transverse

direction to the laser pulse, and a heat flow model has been added at the bottom of the MD system to

provide a more realistic coupling to the heat bath. Melting and ablation thresholds for pulses in the

range of a few hundred femtosecond in duration have been obtained. The results are in reasonable

agreement with experiment, particularly for 100 fs and 200 fs (width at 1/e). This is a significant

improvement over the initial code, which gave thresholds that were one order of magnitude too high.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction 1.6 Layout o f the thesis

Laser

Laser A
damped

MD MD

HF

Heat Bath—

Figure 1.2: Simulation setup of the initial (left) and current (right) code.

Chapter 2 gives a detailed description of the heat diffusion model used to simulate the semi

infinite bulk. Chapter 3 describes the molecular dynamics technique and the interatomic forces

describing the material. It also presents some computational optimizations that were implemented

in an effort to speed up the simulations. The coupling between the molecular dynamics and heat

flow system is outlined in chapter 4. The laser absorption process is presented in chapter 5. The

results and discussions are given in chapter 6 and conclusions and future directions are outlined in

chapter 7.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Heat-Flow Model

We employ both a heat flow (HF) and a molecular dynamics (MD) model to simulate the laser-matter

interaction and ablation process of silicon. In the near-infrared the linear absorption length (skin

depth) is on the order of a few microns, which is very large for a molecular dynamics simulation and

computationally expensive. In order to cut this cost we attach a one-dimensional (1-D) HF model

to the bottom of the MD system. With this hybrid system we can simulate the ablation process in

the MD region while coupling the energy to the Si bulk through the HF region. The MD system can

then be reduced to less than one micron and the simulation is extended far enough (few times the

absorption length) with the less cosdy HF model.

This chapter will oudine the heat flow model. Both one-temperature (1-T) and two-temperature

(2-T) models have been used in the simulations. The description below will focus on the 2-T model.

The 1-T model is then simply obtained by removing the electron system and absorbing the energy

from the laser directiy in die lattice.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model 2.1 Heat-flow equations

2.1 Heat-flow equations

In a solid, heat is transfered by conduction. The energy flux depends on the temperature gradient and

some material specific coefficient (thermal conductivity), as given by the Fourier heat conduction

law [Bai99]:

(net energy flux) = - k VT (2.1)

where k is the thermal conductivity and T is the temperature. Now consider a small volume Vsmaii-

The change in temperature can be expressed in terms of its heat capacity and the net energy flux

out of that volume. Equating the increase in energy in the volume with the energy flowing into the

volume gives:
7VT t

CP1- = - / (-K VT)-dA (2.2)
Ot J surface overVioun

where dA is a vector denoting a small surface area and normal to the surface pointing outward,

and Cp is the heat capacity of that volume. Dividing by Vsimii we get the time-dependent Fourier

equation:

ĉ = V(kVT) (2.3)

cp is the specific heat capacity per unit volume. This equation assumes that the heat flow is over

length scales much longer than the mean free path of the particles. For a crystalline solid the mean

free path is on the order of the atomic spacing. The nearest neighbour distance for Si at room

temperature is 2.3S A, so for the Fourier equation to hold we must have length scales much larger

than that.

We can now express heat flow in the lattice and electron system using equation 2.3 and couple

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model 2.1 Heat-flow equations

them by adding an energy transfer term [BauOO]:

C'id-fr = V(keiVTel) - g (T et- T ph) + Q

cph ^ = V{KphVTph)+g(Tel- T ph)
(2.4)

where the subscripts ph and el denote the lattice (phonon) and electron gas, respectively, cph and

cei are the specific heat capacities (per unit volume), T is the temperature, Q is the energy entering

the system (laser), and the function g is the energy transfer coefficient For crystalline silicon, the

thermodynamic properties are given in table 2.1.

symbol crystalline amorphous
density [g/cm3] P 132 2.32
heat capacity [J/(gK)] Cp 0.71 0.8
thermal conductivity [W/(cmK)] K 1.5 0.018

Table 2.1: Thermodynamic coefficients for crystalline (c-Si) and amorphous (a-Si) silicon at 300 K
([BauOO], pg. 697).

Further silicon parameters are summarized in [PDDS95] and [BHT92]. Narayan et al. give a

scaling law for the thermal conductivity: k (T) = 1585 /T i:m W/{cmK) for 300AT < T < 137OK

[NC92]. The coupling factor g is taken to be [Aga84]

(2.5)

where t c is the energy relaxation time and nei is the number density of the carriers [Aga84, FP96].

t c = 1 ps was used to match the MD system (see section 5.4).

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model 2.2 Electron gas

2.2 Electron gas

The electron system in a semiconductor has to be modelled differently than for metals. The den

sity of electrons in the conduction band changes significantly at different temperatures. Also, the

absorption of laser energy will promote electrons into the conduction band. Following we will first

look at the density due to thermally exited electrons and then look at the “creation” of conduction

band electrons due to laser absorption (sec. 2.2.2).

2.2.1 Thermally excited electrons

To get the concentration of intrinsic carriers, we follow the approach given by Kittel [Kit96] (pg.

216). Assuming simple parabolic band edges, the Fermi-Dirac distribution gives the following

electron concentration in the conduction band:

where mei and m* are the electron and hole mass, respectively, and Eg is the band gap energy, as

indicated in figure 2.1. For crystalline silicon, the band gap energy is Eg — 1.17eV at 0 K and

Eg = l .lle V at 300 K.

/2™ p (! £ r -)_ 2jt/i J kaTph J (2.6)

with the chemical potential ft given by ([Kit96], pg. 220, eqn. 47):

(2.7)

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flov) Model 2.2 Electron gas

Energy

Figure 2.1: Band structure of silicon at 300 K [Iof].

Now, (for simplicity) assuming that mt\ = m*. and substituting equation 2.7 into eqn. 2.6, we get:

very small fraction of the valence electrons (» 2x lO^cm-3).

2.2.2 Laser absorption

The photons can be absorbed by the electrons in two ways: photo-excitation of electrons and inverse

bremsstrahlung. Since the density of thermally excited electrons is much smaller than the density

of valence electrons, photo-excitation is the dominant process. Given a photon energy of Ep = hc/X

and bandgap of£s = l .lle V at a lattice temperature of300 K, the kinetic energy of the photoexcited

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2.8)

At a lattice temperature of 300 K, the concentration is on the order of 1010cm 3, which is only a

19

2 Heat-Flow Model 2.2 Electron gas

electron is Ek — Ep — Eg. This gives an electron temperature of

T = * * = —
e 3 kB 3kB (2.9)

For simplicity we assume no dependence of Eg on the ̂ -vector, which allows us to avoid phonon

absorption in the excitation of the electron to the conduction band. For photons at a wavelength of

760 nm we get an electron temperature of approximately 4000 K.

Exciting electrons into the conduction band of course increases the electron density. Thus the

newly gained electrons must be added to the electron model and the temperatures equilibrated (lo

cally). Considering only one-photon absorption, the increase of electron density is equal to the

photon density, thus

where ei is the locally deposited laser energy density given by the laser fluence and Beer’s law:

where A t is the integration time step, 4 is the laser intensity on entering the system (at z = 0), a is

the linear absorption coefficient.

In a short pulse, we can assume that no or few of the photo-excited electrons will return to the

valence band before the end of the laser pulse. Thus the peak density of photo-excited electrons is:

(2.10)

eL = /SiILae~°z (2.11)

(2.12)

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model 2.2 Electron gas

where F is the laser fluence. Thus, for a fluence of 0.5 J/cm2 we expect an electron density of

R^xlO^cm-3 at z = 0, which is about 1% of the valence electrons available.

2.2.3 Heat capacity

The specific heat capacity of the electron gas is given by [Kit96] (pg. 155), which was obtained

from a free electron gas model in three dimensions:

where 7> is the Fermi temperature, which is directly proportional to the Fermi energy and is given

However, equation 2.13 is only valid for a cold electron gas, i.e. for temperatures T •< 7>. At

densities on the order of lO^cm-3 the Fermi temperature is about 3000 Kelvin, which is of the same

order of magnitude as the expected temperature of the photo-excited electrons. Thus, we cannot use

equation 2.13.

At low densities and high temperatures (on the order of 7> or greater), we may assume little

interaction between the electrons and treat them as free particles. Thus the heat capacity is [Kit96]

(2.13)

by TF = eF/kB:

(2-14)

Cel = (2.15)

This is the electron heat capacity used in our simulations.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model 2.3 Numerical solution

2.2.4 Thermal conductivity

The thermal conductivity coefficient K is defined with respect to the steady-state flow of heat along

a temperature gradient [Kit96]:

dT
ju = - k — (2.16)

We can approximate the thermal conductivity coefficient for electrons (k^) from the one for the

lattice and scale it according to the temperature as follows ([BauOO] p. 271):

The lattice heat conductivity (k^) is given in table 2.1.

2.3 Numerical solution

23.1 Discrete formulation

In the following we will lay out the discretized system of equation. Each of the two one-dimensional

sub-systems (lattice and electrons) is subdivided into N + 2 cells, as shown in figure 2.2, where the

first and last cell serve to implement the boundary conditions. The time increments A t = r'+1 —t‘

are assumed to be constant and sufficiently small such that the energy fluxes (in particular the

energy transfer between cells) are approximately constant and arbitrarily close to their values at any

intermediate time r'+e in that interval [r',r'+1], with

r‘+e = r' + 0 A r = (1 - 0) / ' + 0 r‘+1, O < 0 < 1 (2.18)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flaw Model 2.3 Numerical solution

The isometric, specific heat coefficient (cj) is assumed to be constant, while the heat conduc

tivity (k) may vary with temperature. The density may also change from one time step to the next

(generation of free electrons and subsequent recombination). The heat transfer for each of the two

sub-systems can be expressed in the following discrete problem [AS92]. The subscripts denote

spatial position (cell index) and superscripts denote time:

initial values:

boundary condition at top:

boundary condition at bottom:

interior values:

7? = !» (* ,) , n = (2.19a)

E °= E (T °) ,n = l,...,N (2.19b)

7*/+0__7*i+0 i a 7

^ = ° ff+e1 w i t h = J p (2.19c)

T ’i + 0 j 'i+ 6 1 a .

J + 0 _ N w i th I?*"*"® __ 2 ^ ^ (7 i q j \
*N+lk ~ pi+e ’ Wlth n +'/2 - TTfe (2.19d)

k n +1/ i Nv

 N f tl9 e)

where E is the thermal energy, T is the temperature, k is the heat conductivity, c$ is the specific heat

coefficient (for solid), and R is the thermal resistivity, q denotes the energy flux between the cells

and is given by

;+e .. ith Di+e _ A z / j _ , J _ \ -
n~'h n- 1/2 2 ^ < +_et Ki+0J ’

N (2.19f)

and the temperature is (assuming a weak dependence of the specific heat on temperature):

(2.19g)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model 2.3 Numerical solution

zMax Az zMin

cell 0 cell 1 cell 2 cell 3
~ !

zo
!

Zl Z2 Z3

cellN cell N+l

ZN ZN+ 1

Figure 2.2: Layout of heat flow model

2.3.2 Explicit scheme

Choosing 0 = 0 in (2.19), the fluxes are evaluated at the old time step and the new energies and tem

perature can be evaluated directly. This is the so-called explicit scheme. The numerical integration

algorithm is given as follows [vAB95] (pg. 173):

W+1 _ | A/
z ? {«&. (41 - 'l') - >4S, (i t *-- tS)}+

• i * 1 = (r » _ ^ (t-w _ j + ,

(2.20)

with the conductivity between cells n and n + l given by

Syi+l
-1

(2-21)

Wrte,l and denote the electron energy density and temperature, and W^h1 and denote the

lattice energy density and temperature, respectively, i is the current time step and n is the cell

index, Ar is the time interval and A z = Zn+i— Zn is the cell size. The heat entering or exiting the

system (to/from lattice or electron gas) is contained in gif*'1 and Qn^' for lattice and electron gas,

respectively.

The change in energy gives rise to a temperature change. Since the density may also change,

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model 2.3 Numerical solution

the new temperature must be scaled accordingly and is given by:

(2.22)

where cp is the specific heat capacity for the lattice or electron gas.

Since the system is integrated discretely, there is an inherent error introduced into the simulation.

If this error grows too fast, the simulation becomes unstable and the results unphysical. This error

grows with time step size. Of course if the time steps are too small then rounding errors become

significant and may also make the results invalid. We can get an estimate for a good time step size

using the stability condition (Courant-Friedrich-Lewy), which is given by [CFL67]:

2 3 3 Implicit scheme

Instead of setting 0 = 0, we choose 0 < 0 < 1 with #i+0 = 0#'+1 + (1 — 0)^*. This results in a system

of equations for the temperatures

(2.23)

(2.24)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model 2.3 Numerical solution

Now substituting (2.24) into (2.19e) gives:

c i+ l 6 A t
n ~ "ST

1 'T'X+1 _ / 1 t 1 \ 'TX+l i I 'W+l
w r zn+i i ^TT n_1n+'fo \ «+V2 *“ h* n~ h.

I *rx _ / 1 » I 1 7*x j_ 1 T<*+1/2 7n+1 U+>/2 + *B-./2 J n + K - V 2 n - \

(2.25)

(2.26)

The right-hand side of (2.26) contains only known values (i.e. all quantities are evaluated at the old

time step tl). For convenience, we shall denote it by b‘„:

K=K+
(l-e)A r

Az
1 Tj (1

pi n+l 1 pi
,R n+>/2 V "+‘/2

1

n - ‘/2

(2.27)

Due to the non-linearity in the system (the thermal resistivity depends on temperature), one cannot

solve (2.26) directly (e.g. Gauss elimination), but must be solved using an iterative method. We shall

employ a very simple and convenient algorithm, namely the Gauss-Seidel iteration, to determine the

energies and temperatures for the next time step. The idea is to solve the n-th equation for the n-th

unknown using the latest values of all other variables.

The iteration starts with an initial “guess” for the temperatures and energies, which is set to the

values at the old time step (r‘). In order to formulate the algorithm, we shall use a superscript (p) to

denote the p-th iteration. We now need to solve the following equation for and

-07+1) 0 Af
En + AF

I
yip)

1

_ r>+lh n~lk .
Tn - b n + ^

1
fip) n+1

L>+’/2

•rip) L ^ t ’O’+ I)
" -1

n-V2
(2.28)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model 2.3 Numerical solution

where £nP+1̂ and 7^p+1̂ are connected by

r i p+1)= r / +
E ^ l)- E (n

p fo
(2.29)

Note that due to excitation of electrons from laser light absorption the density may change in time.

In order to accommodate for this, we change the density and scale the temperature accordingly at

the beginning of the time step. This is directly followed by adding or removing energy coming in

or going out of the system by means other than heat conduction (e.g. due to laser absorption or

coupling between lattice and electron system) and then adjusting the temperature again accordingly.

The primed superscript (£') denotes the parameter values after this adjustment has taken place, but

before the heat conduction has been calculated.

Now, to solve (2.28), we shall simplify the equation by making the following substitutions:

„(p)_ 6Az
* A2

1
- + ■

I
,(p)

I n+l/2 Kn - 'k

_7*(p) i .
•*n+l +O’)J?L n + ‘/2

?(P)
n-V2

7*(P+1)
’ n - 1

(2.30)

(2.31)

Then we can write (2.28) as

£ ^ 1)+ ^ V i p+1) = n = l,. . . ,N (2.32)

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model 2.3 Numerical solution

Now substituting (2.29) into (2.32) and solving for gives

Now that we have E ^+1̂ we can compute the temperature from (2.29).

2 3 .4 Optimization

Since the electrons diffuse heat much quicker than the lattice, the number of cells for each of the

two subsystems differ. For simplicity an integral number of lattice cells , typically about 2-3, are

used per electron cell, which generally are a few nanometers in size. Additionally, smaller time

steps are used for the electron system than for the lattice. For each lattice time step there are on the

order of 100 time steps for the electron system. The heat transfered from the lattice to the electrons

is added to a buffer and then gradually added to the electron system at each time step. Similarly for

the reverse process.

To further reduce the computation time, an energy buffer can also be put in place of the electrons

system, which will absorb the laser energy and transfer it to the lattice on (approximately) the same

time scale as the electron system would (same g-parameter). This is identical to having no heat

diffusion in the electron system, but it does account for the time delayed heating of the lattice to

match the molecular-dynamics system. The system is thereby simulated as a 1-temperature system.

This is sufficient for our purposes as the HF model is primarily used as an extension of the MD

system and accounts for the rising temperature at the bottom MD-boundary and the for the energy

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Heat-Flow Model

penetrating the long absorption skin depth.

2.3 Numerical solution

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Molecular dynamics

Molecular dynamics is a widely used technique in computational physics to simulate molecular-

scale models of matter. It was first developed in the 1950s and started gaining widespread attention

in the mid-1970s, when computers became powerful and affordable.

Essentially molecular dynamics numerically solves an N-body problem. The trajectories of each

particle are computed using Newtonian physics. Knowing the position and velocity of a particle at

a given time (and at previous time steps for increased accuracy), as well as the net force acting on

the particle, it is possible to compute the position and velocity for the next time step.

Molecular dynamics is a very convenient technique for modelling atomic systems, since it relies

only on the underlying interactions between the particles. The difficulty, of course, lies in knowing

precisely what the interactions are.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.1 Basic model equations and assumptions

3.1 Basic model equations and assumptions

As with other types of simulations, MD is built on a model. This model describes the movements

and interactions between the particles in the simulation. In molecular dynamics simulations, the

interaction between particles are described by potentials. Two possible candidates for a potential

are described in sections 3.1.3 and 3.1.4. The movement of the particles in response to the given

potential(s) are described in the following section.

3.1.1 Newtonian mechanics

Molecular dynamics uses classical, or Newtonian, physics to describe the equations of motion for

the particles in the system. Newton’s second law provides the acceleration of a particle for a given

force acting on it:

min = fi (3.1)

where mi is the mass, r, is the acceleration, i.e. the second derivative with respect to time of the

spatial location, and fi is the force acting on the ith particle. The force can be obtained from the

overall potential energy

fi = >?2, -,r„) (3.2)

where V?. denotes the gradient operator with respect to the location of particle i.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.1 Basic model equations and assumptions

3.1.2 Hard and soft spheres

There are two broad classes of molecular dynamics simulations: soft spheres and hard spheres

[Rap95, Hai97]. In the case of hard spheres the interaction potential is a simple step function of the

following form:

where r,y is the distance between particles i and j , and R is the radius of the particles. This is for

the case of all particles having the same size. In modelling hard spheres, it is more convenient to

use kinematics of collisions, rather than employing equation 3.2 using the step function given above

(equation 3.3). In collision kinematics conservation of momentum and kinetic energy is used to

provide the phase-space trajectories. A detailed description of this is given in chapter 3 of [Hai97].

In the case of soft spheres, the potentials are smooth (at least up to a certain cutoff radius, see

section 3.2.3). This was the case for the molecular dynamics simulation of this project, thus a soft

sphere model was used. The potentials implemented in the simulation code are the well known

Lennard-Jones potential and the Stillinger-Weber potential. These are described in the following

sections.

3.13 Lennard-Jones potential

The Lennard-Jones (LJ) potential is a widely used potential used to describe the interactions between

particles in liquids and gases. It consists of an attractive and a repulsive part At short distances,

the repulsive part dominates, whereas at long ranges the attractive part of the potential is dominant

°°j n j < 2R
(3.3)

0, r,j > 2R

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.1 Basic model equations and assumptions

The potential is given by [Hai97, Rap95]

u u (n j)= 4e (3.4)

where e and a are the energy and length parameters, respectively, specific to the interacting particles

in the system. The potential has a minimum at « 1.122a. The shapes of the potential and

resulting force obtained from equations 3.2 and 3.4, are shown in figure 3.1. The force due to the

U potential is given by

with 7ij = rj — 7i, rij = |r,j| and rtj = rj and 7j denote the atomic positions of the interacting

particles.

3.1.4 Stillinger-Weber potential

The Stillinger-Weber (SW) potential describes the interactions between Silicon particles and was

first proposed by Frank H. Stillinger and Thomas A. Weber in 1985 [SW85] and has since been

used in many studies, including the modelling of laser ablation [HGC97, WIOMOO, LLM01].

(3.5)

4> = S V2 {n j)+ X V3(7i,7j,7k) (3.6)
i< j i<j<k

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.1 Basic model equations and assumptions

where r[;- is the distance between two atoms of index £ and j , and n,r/,r* are the positions of atoms

i, j , and k, respectively.

where Qjn is the angle between the vectors r,—r; and The function h is given as follows:

Note that cos(109.47°) = —1/3, thus h sees a minimum at Qjit = 109.47°. Figure 3.1 shows the

pairwise potential energy of the Stillinger-Weber potential in reduced units (i.e. in terms of £ for

energy and a for distance). The general shape is similar to the Lennard-Jones potential. Note that

in this figure no three-body interactions are present, i.e. only V2(r) is shown. Figure 3.2 shows the

SW potential in the [100] plane as seen by a particle in a diamond crystal lattice. The values of the

constants introduced above are given in table 3.1. Details on the force calculation are provided in

appendix A.

3.1.5 Coulomb potential

The interaction between charged particles is governed by the Coulomb potential. Unlike the U or

SW potential, it is either only attractive or repulsive, depending on two interacting particles. It is

Vi(r) =
{Air~P-A2r q) e x p [^] , r < a

(3.7)

0, r> a

Vl{ri,rj,rk) = ^ (^ ,^ ,0 ^) +h(rji,rJk,eijk) +h{rki,rkj,Qikj) (3.8)

COS0;i* +
\ rij — aJ \ r i k - a j \

(3-9)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.1 Basic model equations and assumptions

Interaction Potentials
3

U potential —
U force —

SW potential —
SW force —2

1

0

u.
■1a

■2

-3
1 1.5 2

Distance between atom s [reduced units]
2.5

Figure 3.1: Stillinger-Weber potential for two-particle system. Shown is the reduced pair poten
tial as a function of particle separation. The energy is given in multiples of s and the distance in
multiples of a .

also long-ranged compared to the other two, which adds to the computational cost. The Coulomb

potential is given by [Gri99]:

1 0:0:
(3.10), , _ l qiqj

47tSo rij

where rtj is the separation distance between particles i and j , qi and q j are the charges of particles,

and 8o is the permitivity of free space. The force acting on particle i due to particle j is

, , 1 qiq
fd r i j) ~

1 M J * — — r,j (3.11)

3.1.6 Lattice construction

Crystalline silicon has a diamond structure. A diamond lattice (fig. 3.3) consists of two face centered

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.1 Basic model equations and assumptions

SW Potential Energy Surface for Panicle in Diamond cluster

Energy [eV|

X 3 . 5

1.5 y [Angstrom]■ 1 .5 1 -05 jp
x [Angstrom] 0 . 5

1 . 5

Rgure 3.2: SW potential energy in the [100] plane of a diamond lattice. The equilibrium position
is at coordinate (0,0) and the nearest neighbour distance is 2.3SA.

cubic (FCC) structures, which are offset by ai/3/4, where a is the length of the unit cell. Rgure 3.4

shows the structure of an FCC lattice. Thus to construct a diamond lattice, one can simply construct

two FCC lattices and offset them by r = a/4\x+ y+z]. As illustrated on the right-hand side of figure

3.4, an FCC lattice can be constructed by placing four atoms in a unit cell and then filling the lattice

volume with these unit cells.

3.1.7 Limitations

Molecular dynamics simulations deal with atomic scale particles. How can we then justify using

classical physics to describe motions of the particles? Is not the physics at this scale governed by

quantum mechanics and would require us to use Schrodinger’s equation? In order to test the validity

of using classical approximations, we can look at the de Broglie thermal wavelength, which is given

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.2 Numerical method

Stillinger and Weber [SW85] Balamane et al. [BHT92]
Ai [eVA4] 177.29442232 189.360881
A2 [eV] 15.27991263 16.31972277
X [eV] 45.512028 48.61499998
a [A] 3.77118 3.77118
a [A] 2.0951 2.0951
P 4 4
q 0 0
Y 1.20 1.20

Table 3.1: Parameters for the Stillinger-Weber potential

as follows:

I 2lth2
A = \ l m j r (3'12)

As long as A a, where a is the mean nearest neighbour distance, then the classical approximation

is valid. In liquids, the ratio A/a is approximately 0.1 for Lithium and Argon and on the order of 0.2

for Silicon, and the ratio decreases for heavier particles. For very light elements such as Hydrogen,

Helium, or Neon, the classical approximation is no longer valid and quantum mechanics must be

used.

3.2 Numerical method

This section will outline the numerical methods used for the path integration of the particles. There

are various algorithms for this, two classes are leap-frog type methods and predictor-corrector meth

ods. Verlet’s algorithm falls into the first category, and Gear’s algorithm is of the latter type.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.2 Numerical method.

Figure 3.3: Diamond crystal structure

3.2.1 Verlet’s algorithm

Verlet’s algorithm is based on the Taylor expansion of the coordinate variable r.

r(r +A r) = r{t) + 7(r) A r+ ^r(r) Ar2 + (r) Ar3 + 0(Ar4) (3.13)
2 6

r(t — Ar) = r(r)-7(r)A r + ^?(r)Ar2- 2 ?(r)Ar3 + 0(Ar4) (3.14)

where Ar is a small time step. Adding and subtracting the above equations yields:

r(r + Ar) = 2r(r) — r(t - Ar) + r(r)Ar2 + 0(Ar4) (3.15)

Hr) = + + 0 (Ar2) (3.16)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.2 Numerical method

■I h —/2-*|

Rgure 3.4: FCC lattice

This version of Verlet’s algorithm depends on two previous time steps, and is thus not self-starting.

Also note that the position does not explicitly depend on the velocity.

The above can be rewritten to obtain the more commonly used version of Verlet’s method, the

so-called “velocity Verlet” algorithm:

?(r + Ar) = r(t) + r(r) A r+ f(t)A t2/2 (3.17)

?(f + Ar) = 7(t) + [7(f) +?(r + At)] Ar/2 (3.18)

In order to conserve space, the velocity calculation is split into two parts, so that the acceleration is

only stored for one time. The algorithm is shown in figure 3.5.

3.2.2 Gear’s algorithm

Gear’s algorithm belongs to the category of predictor-corrector methods. First the new values for

the position and its derivatives are estimated. Then the forces are computed at the new locations,

which allows for corrections to be computed by comparing the calculated with the predicted forces.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.2 Numerical method

1. Initialize positions and velocities
2. Compute forces and energies

3. Loop:
(a) Advance position using:

r(t + A t) = r(t) - r(t) A / 4- r(t) A t2/2

(b) Integrate velocity for half a time step:

r(t + Ar/2) = r(f) + r(f)A t/2

(c) Compute forces and energies
(d) Advance velocity for another half time step:

r(r+ Ar) = 7(t+ Ar/2) + r(t + Ar) Ar/2

Rgure 3.5: Pseudocode of velocity Verlet algorithm.

The predictions are made using Taylor expansions [Hai97]:

r(r +A r) = r(r)+ ?(r) A r+ ?(r) ̂ 7™ (r) A l + (r)

7(t + Ar) = r(t)+ F(r) Ar + (r) (r) + rM (r) ̂

?(r +A r) = 7{t)+ 7 ^ (r) Ar + (r) + r « (r)
(3.19)

r ^ (r + Ar) = 7 ^ (r) + (r) Ar + r<v> (r) ̂

^ (r + Ar) = rW(r) + 7W(r)Ar

7<v>(r + Ar) = fM(t)

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.2 Numerical method

Then the force is computed using these predicted values. Now the difference between the predicted

value and computed value is determined:

A f= r (t+ A t) - 7 p(t + A t) (3.20)

The superscript P denotes the predicted value. This now allows us to compute corrections terms, so

that we get the following for the corrected values of the positions and their derivatives:

r = rp +otoAR2

rA t = + a i AR2

= ^ # + a 2AR2

y(m) = p(m)P A fi + a 3 A ^ 2

yW Af = r t W ^ + anAKZ

= ^ p^ + a sAR2

(3.21)

where AR2 is defined as

- A r A t 2
AR2 = —2j— (3-22)

The values for a,- are given in table 3.2 [Hai97].

Figure 3.6 shows how Verlet’s and Gear’s methods compare in accuracy [Hai97]. Plotted are

the root-mean-square (RMS) of the global error of the total energy as a function of time increments

Ar. Gear’s algorithm is clearly more accurate than Verlet’s method. Typical time steps for our

simulations are on the order of 0.5 fs, which in reduced units corresponds to 6.5 x 10-3. At this step

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.2 Numerical method

a i <7 = 3 <7 = 4 II

a o
i
6

1 9

1 2 0

3

1 6

a i 5

6
3

4
2 5 1

3 6 0

a 2 1 1 1

C C 3
I
3

1

2

1 1

1 8

(X4 — 1

1 2

1

6

a s — — 1

6 0

Table 3.2: Parameters for the correction terms in Gear’s algorithm for predictions of various orders
<7-

size the error is about one order of magnitude less for Gear’s 5th order method than for Verlet’s.

3 .23 Interaction computations

A significant part of the simulation time is spent on computing the forces acting the particles. Thus

it is of interest to find ways to minimize the amount of interaction computations. As given by

the potentials defined in sections 3.1.3 and 3.1.4, the net force acting on a particle depends on the

location of all other particles in the system. In the simplest version (brute force), all particles are

used to compute the forces, which for a two-body potential takes 0(N2) time, where N is the number

of particles in the system. If we note that the forces decrease with increasing distance between the

particles and virtually go to zero after only a few a, we can make a reasonable approximation of the

net force by only considering the particles within a certain cutoff radius rc. Two possible algorithms

for this are cell-subdivision and neighbour-list, illustrated in figure 3.7.

In the neighbour-list algorithm, each atom carries a list of its neighbours. A particle is consid-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.2 Numerical method

Veriet •
Goar O

0.01

*
I 10-06
ui(0
i 10-08
O

0.0010.0001 0.01 0.1
tiim-step

Figure 3.6: RMS of global error as a function of time step. Gear’s algorithm (5th order) outperforms
Verlet’s algorithm in accuracy based on energy conservation. The lines are least-squares fit with
slopes of 2.04 and 2.97 for Verlet’s and Gear’s method, respectively. Values are in reduced units.
The time is given in multiples of T = 1 /(c^/m /e), and the energy is in terms of e [Hai97]

ered a neighbour if it lies within a radius r„, where of course r„ > rc. This list of neighbouring

atoms must be updated frequently, since particles move around and may change their neighbour

status with respect to other particles. In order to decide when a neighbour list update is necessary,

the maximum possible distance dmax travelled by any particle in the system is kept track of. When

dmax exceeds r„ - rc then the neighbour lists need to be refreshed.

In cell-subdivision, the simulation volume is divided into a number of cells. Each of the particles

is labeled according to which cell it is located in. If a particle moves from one cell to another,

its label changes accordingly. In the force computations, only particles from the own cell and

neighbouring cells are considered and included in the force computation only if they are within a

cutoff radius. This is the algorithm employed in our simulation code.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.3 Simulation configuration

(a)

▼

(c)

Figure 3.7: Illustrated are possible algorithms for the interaction computations: (a) all pairs, (b) cell
subdivision, (c) neighbour list [Rap95].

In order for these two algorithms to be effective, the simulation volume must be several times

larger than the interaction volume (4izr*/3) specified by the cutoff radius rc (for SW potential rc = a

as given in table 3.1).

3.3 Simulation configuration

33.1 Periodic boundaries

Due to restricted computing power, a molecular dynamics simulation can only contain a limited

number of particles. Our simulations typically contain several tens of thousand up to a few hundred

thousand particles. While this may seem like a large number, it is still very small compared to the

number of particles in a physical system (Avogardo’s number is Afo « 6 x 1023). For a simulation

with this few particles, a considerable fraction of them will be near the surface. The behaviour of the

system would then be dominated by surface effects, which may not be desirable. This can be avoided

by applying periodic boundary conditions, which eliminates the surfaces and makes the simulation

volume virtually infinite. In order to obtain good statistics, one would still like to have as many

particles as possible. A few hundred particles can be sufficient, depending on the problem and the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.3 Simulation configuration

accuracy required in the study. For our problem, we simulate a small portion inside the laser focal

spot region. Figure 3.8 illustrates the layout of the system when periodic boundary conditions are

O O °
O o

o O 0
O 0 °

o ° °
o o

o O 0
o o °

O o O
0 o

o o o
0 o °

O O 0
O 0

o O 0 *
o o °

m ® ®
® ®

® ® ® * "

® ® ®

o o °
0 o

© o o
0 o °

O o O
O 0

° o o
o o °

o O o
O o

o O 0
o o °

O o °
0 o

° 0 o
0 o °

Figure 3.8: Periodic boundary conditions. Shown is a 2D representation of the system. If a particle
leaves the simulation volume (cell), it automatically reenters the cell from the opposite side.

applied. Shown is a two-dimensional representation of the three-dimensional simulation. Whenever

a particle leaves the simulation volume (cell) it automatically reenters it from the opposite side. At

each step of the path integration the coordinates of each particle are checked to make sure it is still

in bounds. If one is found to be out of bounds, then its coordinates must be adjusted.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.4 Extraction o f thermodynamic properties

3.4 Extraction of thermodynamic properties

3.4.1 Pressure

The pressure can be calculated in terms of the virial expression [Rap95]:

PV = NkBT + ^ {W) (3.23)

where D is the dimensionality, (W) is the virial and is given by:

= (3.24)

In the case where the system’s center of mass is not stationary, the virial needs to be adjusted as

follows:

W = (3.25)

where Feu is the net force acting on the system of particles.

Since in our simulations we use periodic boundary conditions, we cannot use eqn. 3.25 in the

given form, but must express the virial in terms of relative positions:

= (3.26)

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.4 Extraction o f thermodynamic properties

3.4.2 H eat capacity

The heat capacity describes how a system’s temperature varies upon heating. It is defined as the the

ratio of internal energy change (or external energy added to the system by heating) and resulting

change in temperature:

C* =

(\
heat capacity

y under condition X j

Often X denotes constant volume or constant pressure.

We can estimate the isometric heat capacity for a crystalline solid using the equipartition theo

rem: With each atom there are three degrees of freedom associated for both the kinetic and potential

energy:

<£idn(f)) = (£pot(0) = \ N k BT (3.28)

Where (£pot(r)) and (£jdn(0) 818 * e average potential and kinetic energy of the solid, respectively,

T is the temperature, and N is the number of particles. Thus the heat capacity of a solid is

Cv =3Nks (3.29)

figure 3.9 shows the average energy per Si atom (potential + kinetic) versus the temperature

of the system. The data points in the figure were obtained from molecular-dynamics runs in which

the total energy was monotonically increased. The energy was added by applying small random

forces to the particles using the Langevin damping technique (see sec. 4.1) for 500 time steps (1

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.4 Extraction o f thermodynamic properties

Energy vs. Temperature
•9500

•10000

•10500 •

•11000

•11500

s
s

-12000

g -12500 -in
-13000 -

-13500

-14000

Holenstein O
Stillinger and Weber •scaling law ——-

-15000 0 500 1000 1500 2500 3000 35002000 4000 4500
Temperature (K)

Figure 3.9: Average eneigy density vs. temperature. The system of 1000 atoms was systematically
heated from case to case (with equilibration). Our measurements are compared to Stillinger and
Weber’s data [SW85] and to the empirical scaling law given in eqn. 3.30 (integrated starting from
our first data point) [NC92].

fs each), followed by an equilibration period of 500 time steps. The energy and temperature was

then averaged over 1000 steps. For these simulations we used the same parameters as Stillinger and

Weber (see table 3.1. Two independent data sets were produced. A difference between the two sets

is visible in the transition region (1900-2500 Kelvin), where a phase transformation from solid to

liquid takes place. In one of the two simulations the system remains solid slightly longer than in

the other simulation. The solid circles are the results obtained by Stillinger and Weber (fig. 3 of

[SW85]). Our data agrees with Stillinger and Weber’s for the solid branch, but deviates after the

phase transition. However, for both phases the slopes are close to the same for both models. The

solid lines are linear fits (least squares) for the solid and liquid branches of the data sets. The heat

capacities obtained from the slopes of these lines are given in table 3.3. They are in good agreement

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.4 Extraction o f thermodynamic properties

Heat Capacity [J/g-K]
solid liquid

Stillinger and Weber 0.968 0.872
Holenstein 0.951 0.885

Table 3.3: Isometric heat capacities determined from energy-temperature graph (fig. 3.9)

with Stillinger’s data as obtained from the graph. The dashed line represents an empirical scaling

law for the heat capacity as a function of temperature. It is the integral of eqn 3.30 [NC92] with the

starting point set to match the first data point of our data se t

n' = (1-978^) + (2-54xl0‘ 4d p) 7' - (3'68xI°4̂) 7" 2' » *< > •< « « “
(3.30)

Figure 3.10 shows the heat capacity with respect to temperature. This was obtained from the

derivative of the solid branch in figure 3.9.

Stillinger and Weber quote values for the residual heat capacity (i.e. the heat capacity with the

contribution from kinetic energy removed1) in reduced units [SW85]. The reduced residual heat

capacity is defined as 2

0 3 1)

where N = 216 is the number of atoms in the system and kg is Boltzmann's constant.

Noya et al. [NHR96] have also computed the heat capacity, among other properties, of silicon

'Expressing the heat capacity in the form of residual heat capacity emphasizes the contribution from the particle
interactions.

2The paper [SW85] defines the heat capacity as CyR = However, the units don’t work out and the e appears to
be a typographical error.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.4 Extraction o f thermodynamic properties

Specific Heat Capacity vs. Temperature
1,3

12

<3
2

0 8

0.7
Hoterstein O

Stiffing and Weber •
scalinptaw — ■

0.6
200 400 600 600 1000 1200 1400 1600 1800 2000 2200

Temperature (IQ

Figure 3.10: Isometric heat capacity versus temperature. Our measurements are compared to Still
inger and Weber’s data [SW85] and to the empirical scaling law given in eqn. 3.30 [NC92]. The
noise in the heat capacity increases as the temperature gets closer to the melting point and the system
approaches a phase transition.

using the SW potential. They use path-integral Monte Carlo simulations in an isothermal-isobaric

ensemble. The reported values for the isobaric heat capacity cp are in reasonable agreement with

experimental values, as shown in figure 3.11

3.43 Thermal conductivity

In order to determine the thermal conductivity of our system, we use the following approach: The

silicon bulk is coupled to a heat bath at the top and bottom, with periodic boundaries in the horizontal

(x-y) directions. A sinusoidal temperature profile is used as the initial condition:

T(z,0) = T0 + A T sin (3.32)

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.4 Extraction o f thermodynamic properties

[SW85] (&)
low temperature crystal 1.5 0.888
crystal at melting temperature 2.0 1.036
liquid at melting temperature 1.6 0.918

Table 3.4: Specific heat capacities (cy) for silicon obtained from reduced residual heat capacities
(Cy1) given by Stillinger and Weber [SW85]. The low temperature crystal value is obtained from
the equipartition theorem. (Equation 3.31 was used to compute the real values)

where L is the height (or length) of the system and A T is the initial temperature difference between

the heat bath and the center of the volume (i.e. A T = T(L/2,0) — T(0,0)). Solving the heat flow

equation (eqn. 2.3) for these initial conditions and assuming that the thermal conductivity (k) and

heat capacity (cy) are (approximately) constant over the temperature range [To, 7o + AT], we get

(see appendix B):

where p is the density. We see that the peak temperature (at the center of the simulation volume)

shows an exponential decrease over time and asymptotically approaches To. By measuring the de

cay lifetime and heat capacity (section 3.4.2), we can calculate the thermal conductivity. Figure

3.12a shows a sinusoidal least-squares fit to the temperature profile. The boundary condition was

set to To = 300 K and AT = 100K. There is some significant noise in the data, which is due to the

limited number of particles (per cross-sectional area) used in the simulation. The peak values (at

z = L/2) of such fitted curves is plotted in figure 3.12b and fitted to an exponential. Using a value

of cy = 0.90 J/(gK) for the heat capacity, we obtain k = 0.139W/(cmK) from the exponent of the

fitted exponential. This value is lower than that reported for crystalline silicon (1.5 W/(cmK)) by

T(x,t) = Tq + AT sin (3.33)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.4 Extraction of thermodynamic properties

Isobaric H ea t C apacity v s. T em peratu re

0.9

0.8

0.7
1.5o 0.6

0.5
5o
E.
0.o

0.4

0.3

0.5 0.2

0.1O Sim ulation (SW)
Experim ent

0 100 200 300 400 500 600 700 800 900 1000
T em p era tu re [K]

Figure 3.11: Isobaric heat capacity at 1 atm. pressure as given by Noya et al. [NHR96]. The results
from simulations using the SW potential (open circles) are compared to experimental results (solid
line).

about a factor of ten, but higher than amorphous silicon (0.018 W/(cmK)) by an order of magni

tude [BauOO]. The system is far below the meldng point, and was initialized as a crystal, thus the

thermal conductivity should be ~1.5W/(cmK). Clearly the SW potential strongly underestimates

the thermal conductivity. This, at least at low temperatures, has implications for the energy trans

port in from the laser heated region into the silicon bulk. While this may not be a major factor for

ultra-short pulses, it likely affects the results for longer pulses, where heat transport plays a stronger

role. Thus we would expect the threshold fiuence for melting or ablation of c-Si to be lower than in

experiment, and higher for a-Si. However, the author has not found any reports on this.

The thermal conductivity can also be obtained from equilibrium simulations. One such approach

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.4 Extraction of thermodynamic properties

400 360

280

3
2 330

I* 320

310

£ 340

350

o
260 300

0 100 200 300 400 500
z [Angstrom]

0 20 40 60 80
timelps]

(a) (b)

Figure 3.12: (a) Temperature profile after 1.5 ps with sinusoidal fit. (b) Temperature of sine fit
at z = r /2 as a function of time and fitted to exponential. The exponent is -2.836 x 10-5 which
corresponds to a conductivity of K = 0.139 W/(cmK) (cy = 0.90J/(gK), p = 2.32g/cm3).

is based on the Green-Kubo formulation [Kub57] and has been utilized in several studies [Zwa65,

PB94, VC00]. The spectral thermal conductivity is given as [VC00]:

where qo is the equilibrium heat flux, and k and © are the wave vector and frequency of the exter

nal (thermal) perturbation exerted on the system. Volz and Chen have computed the conductivity

for the SW potential using the spectral Green-Kubo formalism in combination with their own cor

rection terms to eliminate size effects and artifacts due to periodic boundary conditions (PBC). In

MD simulations with PBC only phonons with a wavelength shorter than the simulation volume size

are are allowed to exist, cutting off low-frequency phonons. Further, the PBC introduce an artifi

cial autocorrelation, which is not present in real systems. This results in a low value for the heat

conductivity. After correcting for this, Volz and Chen have found their values to agree well with

(3.34)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.5 Optimization: Lookup table for SW potential and force

isotopically enriched ̂ S i, but are found to be higher than the heat conductivity measured in natural

silicon. Their results are summarized in figure 3.13 [VCOO]. Our result is in agreement with theirs

0.15
2.5

Eo
0.1

3
.S'
.2
o3

300 400 500 600
1.5■oc

oO
as

 " S i fisotopically enriched)
1— ■— i MD R esu lts [static G reen-K ubo)
i—O —< MD R esu lts (corrected G reen-K ubo)
■■■" 0 1 MD (Holenstein)

0.5

250 300 350 400 450 550500 600
T em peratu re [K]

Figure 3.13: Thermal conductivity from MD simulations using Green-Kubo auto-correlation by
Volz et al. and experimental data from natural and isotopically enriched silicon [VC00].

for the static Green-Kubo (non-corrected) formulation.

3.5 Optimization: Lookup table for SW potential and force

In an effort to speed up the computation, a lookup table has been implemented. The SW potential

and force are precomputed for radii up to the SW cutoff and for bond angles 0 —tl For the two-body

interaction, the lookup table was indexed by the distance between the particle and its interacting

neighbour. The three-body interaction had three coordinate indices (r,j, r^, cos a) and returned five

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.5 Optimization: Lookup table fo r SW potential and force

values: the potential energy <t> and the forces acting on the neighbouring particles in terms of the

vector components along riy- and % , i.e. fa = f f ^ r , j + f f ^ i k and similar for fa.

lookup(ry, rit, cos Bjik) -» { / f] , j f] A } (3.35)

The force on particle i (see fig. 3.14) is simply fa = —(fa + fa)

Figure 3.14: Geometry of interacting particles using SW potential.

3.5.1 Nearest neighbour interpolation

In nearest neighbour interpolation, the data values at the nearest grid point are returned. This means

that the force and potential are effectively represented as step functions. In order to compensate for

this, a higher resolution in the lookup table is required than for higher order interpolation. However,

only one lookup and less computation is needed, thus making this method much faster.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.5 Optimization: Lookup table forSW potential and force

3.5.2 Linear interpolation

For the linear interpolation approach the data values need to be looked up for eight different coor

dinates. Let Cxxx = (ot, r\ , rz) be the coordinate for which the data values are to be interpolated. The

three symbols in the subscript represent the coordinates a, n , and rz, respectively. An x denotes

interpolated coordinate, a 0 and 1 denote grid points (in the lookup table) just below and above the

interpolated coordinate, respectively, as illustrated in figure 3.15. The data values at coordinate

cioo

a

cooo

cool"

Figure 3.15: Coordinates for linear interpolation.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.5 Optimization: Lookup table fo r SW potential and force

represented as d ^ , are obtained as follows:

dm = d m + (dm - dboo)?̂

do\x = doio + (don -doio)^

doxx = doox + (doix - doox)qn

d m = dioo + (dioi - dioo)qr2 (3.36)

diix = duo + (d iu —dno)qr2

d\xx = d\ox + (d \\x — d\QX)qn

dxxx = doxx + (d\xx ~ doxx)qa

where qn , qn , and qa are given by

_ Q-rj10001
ôoiT P̂oooT

qn = (3.37)

qa =

^ioTToooT
2 2

q-ctfroool
ctkiool-rf0001

The superscripts denote the value of the coordinate at the given point, e.g. r[C001̂ is the value of

coordinate r\ at point cooi-

3.53 Results

Comparing the performance of the lookup table with the dynamical force calculation revealed that

the lookup table is at least six to seven times slower for both the linear and nearest neighbour

interpolation. The limiting factor is the memory access time. For sufficient accuracy, the size of

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.6 Optimization: Parallelization

the lookup table for the 3-body potential was on the order of 140 MB (double precision) with a

resolution of 200 data points for the radial indices and 180 point for the angular index. Two tables

were used, the second one for the case of broken bonds. Given the disappointing performance, the

lookup tables were not used for the simulations.

3.6 Optimization: Parallelization

Figure 3.16: Layout of nodes and communication in parallel simulation.

In order to speed up the computation, the code was parallelized using MPI (Message Passing

Interface). The simulation volume was split up along the z-direction, as shown in figure 3.16. At

each time step the updated positions of the particles near the node boundaries are passed to the

neighbouring node. Since the interaction range is not the same for all particle species (i.e. the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Molecular dynamics 3.6 Optimization: Parallelization

Coulomb potential extends farther than the SW potential) the the size of the extended node differs

depending on particle type. The overlapping region is taken to be a multiple of the cell size used

for the interaction computation (see section 3.2.3). The parallel code scales well with number of

Processing Speed vs. Number of Processors
30

speed-up (10 time steps)

25

20

15

10

5

0
0 5 10 15 20 25 30

Number of Processors

Figure 3.17: Speed-up of simulation with number of processors. The simulation was run on an SGI
Origin 2400.

processors. Figure 3.17 shows the speed-up as a function of processors used. The measured wall

time3 is over 10 time steps. It does not include the time spent initializing and writing results to file,

which are negligible over long runs. The simulations involved 172800 atoms and the bulk had a

height to width ratio of 12.5. Using a single processor the wall time for one time step was about

800 seconds.

3Wall time: The real running time of a program, as measured by a clock on the wall, as opposed to the number of
ticks or CPU time required to execute it.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Heat Bath and Coupling between HF

and MD model

The heat dissipation in and out of the MD system is implemented using Langevin dynamics, as

described in the following section. A similar approach is taken for thermally coupling the MD

model with the heat flow model when it is added at the bottom of the simulation. This is described

in section 4.2.

4.1 Langevin damping

The equation of motion for the atoms in the boundary region is governed by the Langevin equa

tion [AD76, HIM95]. The random force and the friction coefficient are given by the fluctuation-

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Heat Bath and Coupling between HF and MD model 4.1 Langevin damping

dissipation theorem [Kub66]:

mkrk = Fk(ru ...,rN,)~ mkykrk + Rk (4.1)

where

Y* = |o)D (4.2)

and Rk are random white noise forces given by:

Rk = fi* (4.3)

fit are vectors of Gaussian random numbers centered at zero with

(< n « « m (0 % - = s (» - 0 M w (4.4)

Note that rfo has units of s~^2, since the definition of the Dirac delta function requires that the

product 5(t)dt is dimensionless. The Debye frequency is given by (On = /:s0o/h. The Debye

temperature Bn can be obtained experimentally and for silicon is found to be Qn = 645K. In the

MD simulation this is implemented as:

A rk - - y krk (4.5)

A 7k = I , (4.6)
V m k

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Heat Bath and Coupling between HF and MD model 4.2 HF boundary condition

The vector components are Gaussian random numbers. T is the environment temperature. When

using the heat flow (HF) model, the temperature T is obtained from the HF system.

4.2 HF boundary condition

The energy transfer from the MD system to the HF system in the overlapping region is obtained

by considering the average kinetic (thermal) energy gained due to thermal fluctuations in the envi

ronment, which in this case is the MD system. Let vR be the velocity gain due to random forces R

acting on the particle over a time interval At. Given that the particle had an initial velocity of v, the

energy gain after during A t is then

(A E) = ^ o t ((| v + v « |2) - | v | 2) (4.7)

Since |v r | -C |v| we may assume that

(|v+v*|2) - |v | 2 «(|v /r|2) (4.8)

Since the vector components of R (and vR) of are not correlated, we find that

<|v/e|2> = 3<|v|f) (4.9)

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Heat Bath and Coupling between HF and MD model 4.2 HF boundary condition

Averaging the square of the random force over one timestep:

(R2) = R(t)2 dt = ± I ' " ' 2ykkBTMDm5t dt = 2y* ^ mdW (4 .i0)

Now integrating the random force over time At gives

< 4 1 1 >

So the energy gain due to heat flowing from MD to HF system is:

(A£jn) = (|v*|2) = 3y**b7md A t (4.12)

Similarly for the heat transfer out of the HF system, thus the net energy gain (per atom) in the HF

system is

(AE) ~ 3Ykh (? m d — ? h f) A t (4.13)

4.2.1 Derivation of Langevin damping

Let W(uo,t0;u,t) be the transition probability for a particle having velocity «o at time ro to a veloc

ity u at time t. The transition probability is a fundamental solution of the Fokker-Plank equation

[Kub6 6]:

w ~ h { D,h + w ,) w <4-14)

W(uo,t0;u,to) = 8 (h - h o) (4.15)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Heat Bath and Coupling between HF and MD model 4.3 Coupling

where Du is the diffusion constant in the velocity space and is given by the random force:

= (R(to)R(to+ t)) dt (4.16)

At equilibrium, the velocity distribution must coincide with the Maxwellian distribution, i.e.

As t goes to infinity, the left hand side of equation 4.14 goes to zero and we get:

0 - &{s(as +w,M (4I8)
0 = T u {D‘ l + * '‘) c ‘ ~i * (419)

0 (0 1 m? 1 mu~ \0 = ^ fD „ ^ e _nr+Y tK e_n r j (4.20)

f „ m \ 0 / 1

0 = (“ - ^ n O s r ’^) (421>

D. = —kT (4-22)
T f l

4 3 Coupling

In order to connect the molecular dynamics simulation with the heat diffusion model, we use the

following scheme, as illustrated in figure 4.1: A section at the bottom of the MD simulation overlaps

with the top portion of the heat flow model. The particles at the bottom of the MD simulation are

damped using Langevin dynamics (see section 4.1) and the temperature obtained from the heat

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Heat Bath and Coupling between HF and MD model 4.4 Testing

flow model. The average temperature of the particles contained in the damped region of the MD

simulation (overlapping with HF model) is used to couple energy into the heat flow model. Refer to

section 4.1 for details.

' 'g e t te m p e ra tu re from
MD sim ulation and
couple to la ttice in

_ : HF m odel

u se te m p e ra tu re from
h e a t flow m odel to dam p
a to m s in MD sim ulation

Figure 4.1: Molecular Dynamics-Heat Flow hybrid model: layout of interfacing.

4.4 Testing

In order to test the coupling between the HF and MD system, a simulation was done in which the

surface atoms were continually heated by “damping” them to 1200 Kelvin. The evolution of the

temperature profile is shown in figure 4.2. The heat is conducted into the HF system. A small

“kink” in the isotherms is visible, which is due to a small mismatch in the heat capacity and conduc

tivity. Figures 4.3 and 4.4 compare the temperature evolution upon absorption of a laser pulse with

and without having a heat flow model connected to the bottom of the MD simulation. There is a

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Heat Bath and Coupling between HF and MD model 4.4 Testing

clear improvement in the temperature profile when the HF model is included Overall the coupling

performs well and is adequate.

Temp.
(Kelvin)

* r 600

50 1023 1906 2968 3842 4915 5888 6861 7834 8807 9780

time(fs)

Figure 4.2: Evolution of temperature profile under continuous heating of the surface. The horizontal
black line indicates the boundary between the MD system (above) and the HF system (below).

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Heat Bath and Coupling between HF and MD model 4.4 Testing

(a)

Temp.
(KaMn)

ao i 1833 3088 4498 5931 7383 8798 10238 11861 13093

ftn t(ta>

(b)

Tamp.
(KaMn)

200 1830 3080 4490 5920 7350 8780 10210 11640 13070 14800

Figure 4.3: Evolution of temperature profile for (a) without and (b) with a heat flow model connected
at the bottom of the MD system.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Heat Bath and Coupling between HF and MD model 4.4 Testing

Temperature Profile att=14.5ps
1200

with HF —
without HF, —

1000

800
<D
3
2 600
®
CL
E
CD
H

400

200

-50 0 50 100 150 200 250 300
2 [A]

Figure 4.4: Temperature profile of figure at / = 14.5 ps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Laser Absorption

5.1 Plane wave propagation

The electric field of a wave propagating in a uniform, non-absoibing medium is given by

E(z,t) = E o e > ^ - ^ (5.1)

where t is the time and z is the spatial coordinate along the wave’s direction of propagation. The

wavelength depends on the index of refraction n:

X = (5.2)
71 V 71 ©

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Laser Absorption 5.2 Absorption coefficient

In an absorbent medium, the index of refraction has a complex component:

n = ni + in2 (5.3)

Thus the wave equation can be written as:

E(z,t) = E o e ^ * - '*) e"*?* (5.4)

The second exponential indicates an exponential decay in the electric field, and thus in the intensity:

(5.5)

5.2 Absorption coefficient

The absorption coefficient a is given by [vAB95]

a = - I £ = 2 ^ (5.6)
I dz c

We can generally express the absorption coefficient as follows [Tsu02]:

a = ao + aNi+aD (Nf) + a?L (5.7)

(Xo is the linear absorption coefficient and depends on the microstructure of the material (e.g. crys

talline, amorphous, etc.), the wavelength, and the temperature. For metals and insulators (Xo is not

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Laser Absorption 5.2 Absorption coefficient

very sensitive to temperature. For semiconductors, ao is the sum of the interband absorption coef

ficient a,/ and the free carrier absorption coefficient etc = <JaNc, where Nc is the free carrier number

density and aa is the absorption cross-section. The temperature dependence arises mostly from the

carrier density NC(T).

The second term in equation 5.7 is the absorption due to impurities or dopants of number density

Ni with an absorption cross-section ct.

<Xd (N [) expresses the change in absorption resulting from radiation-induced defects, i.e. incu

bation effects, and depends on the laser intensity and number of laser pulses Afy.

Finally, the last term in eqn. 5.7 reflects multiphoton absorption processes, a?1 depends on the

photon energy and laser intensity. The linear and two-photon absorption coefficients at «700 nm

for Si are 3500 cm" 1 and 55 cm/GW [HGC98, STBv95].

5.2.1 Implementation

As the laser energy is absorbed, the material will expand and thus the density and surface posi

tion do not remain constant. It is therefore not feasible to simply add the laser energy according

to equation 5.5 (especially if one was to consider multiple laser pulses). Instead, we use a proba

bilistic approach: at each time step, the number of photons entering the system is computed. These

photons then traverse the simulation volume, starting at the top and moving down in small steps

(<fz). The probability of linear and two photon absorption is calculated according to the local inten

sity. The number of photons absorbed by each of the atoms in that interval (layer) is determined

and subtracted from the remaining number of photons. The step size is equal to the size of the

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Laser Absorption 5.2 Absorption coefficient

cells used for the interaction calculation, as outlined in section 3.2.3. The local intensity is simply

l(z) = Np(z) Zp/Afy, where Np(z) is the number of photons (per time step At), t p is the energy of a

single photon, and A<j, is the cross-sectional area. The absorption probabilities for the linear (P\) and

two photon (P2) absorption per atom per photon is:

' • " <58)

f t = (5.9)
\ P0A4, J

The derivation for this is as follows: Let T = Ta be the probability of transmission, i.e. the proba

bility of a photon not being absorbed by an atom, for absorption coefficient oc. Then the probability

P(z) of a given photon reaching depth z is

P (2) = (5.10)

where NA(z) = PoA^z/m^ is the number of atoms encountered up to that depth. The total number

of photons reaching depth z is N(z) = NqP(z) and relating this to Beer’s law:

N(z) = N0Tn*M = Noe-02 (5.11)

We can now solve for the transmission probability T and obtain:

r=r“=“p(-^) =“p(~;S) (512)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Laser Absorption 5.3 Excitation and ionization

And the absorption probabilities are simply P\ = l - T a<> and Pz = 1 — 7p/(z), as given above.

5.3 Excitation and ionization

In a semiconductor, the absorption of a photon with energy larger than the band gap (1.12 eV for Si

at 300 K) can occur by three possible mechanisms [LLMOOb]:

• single photon absorption by a valence electron, followed by an interband transition promoting

it to the conduction band,

• multi-photon absorption by a valance electron, followed by an interband transition to the

conduction band and possible emission of a photon.

• absorption by conduction band electron (inverse bremsstrahlung)

Free carrier absorption has been shown to be negligible for photons at energies well above the band

gap. For our simulations, only single and 2-photon absorption are considered. This is implemented

as follows: Upon absorption of a photon, the excitation level of the atom is incremented (electron

is promoted to the conduction band, leaving a hole behind). The generated electron-hole plasma

affects the potential, as suggested by Stampfli [SB94], causing an instability in the lattice. This

is implemented by randomly breaking a number of bonds matching the excitation level [HGC97,

HGC98]. Since Si has four valence electrons, an atom at 4th excitation is considered unbound. A

broken bond was implemented by removing the attractive part of the 2-body potential and discarding

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Laser Absorption 5.3 Excitation and ionization

the 3-body part of the SW potential.

original SW potential, % > exitation level
<t>;= < (5.13)

modified SW potential, otherwise

where <t>; is the potential energy of particle i and is a random number (0 < % < 4, uniform distri

bution).

If the total energy absorbed by an atom exceeds the work function (4.85 eV for Si) it becomes

ionized, i.e. at the 4th excitation for Xl = 800 nm. The particle is then marked accordingly and its

excitation level reset to zero. An electron is added at a distance of 1.17 A from the ejecting atom in

a random direction initialized to be moving away from the ion. In addition to the SW potential the

Coulomb potential is added.

It has been shown that avalanche ionisation will also play an important role in the heating and

ablation of silicon surfaces [PVH+98]. It is expected that this will be important for longer pulse

durations of several hundred femtoseconds leading to increased heating and absorption as com

pared with the current model simulation presented here. Niemz has presented a model to estimate

the threshold for optical breakdown, taking into account avalanche ionization in combination with

electron-ion recombination and electron diffusion [Nie95]. The threshold energy was found to have

a square-root dependence on the pulse length in the picosecond and nanosecond range, where ther

mal diffusion dominates. Avalanche ionization is not included in the simulations presented in this

thesis and is investigated in a future study.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Laser Absorption 5.4 Relaxation processes

5.4 Relaxation processes

There are several mechanisms that allow the system to restore equilibrium: carrier-phonon scatter

ing, carrier diffusion, and Auger recombination. As a consequence of the Beer-Lambert law there

will be a carrier density gradient, resulting in the carriers diffusing into the bulk. The dominant

recombination mechanism in silicon is Auger, with a characteristic recombination time greater than

6 ps at high carrier densities [LLM01]. This is too long to consider in ultrafast ablation, since in

that time the electron-hole pairs will have left the simulation area due to the carrier density gradient.

This leaves carrier-phonon scattering, in which the carriers relax by transferring their kinetic en

ergy to the lattice by phonon emission. The characteristic lifetime for emitting optical and acoustic

phonons is t lo = lps and Xja = 10 ps, respectively [HGC98, LLMOOb]. In the simulation this is

implemented by randomly transferring the electron energy to a atom within a radius of 3.8 A, by

which some delocalization is accounted for.

An ion and electron can recombine if they pass within 1 A of each other. Considering conduc

tion electrons supplied from the bulk, an ion-lifetime of 500 fs was assumed for the simulations

[HGC98].

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Results and Discussion on Thresholds

Simulations have been done for various pulse lengths and fluences. In the following we will present

the result and discuss the observations. All simulations were carried out for a single laser pulse

at a wavelength of X = 800nm. The pulse length was varied from 50 fs to 400 fs (pulse width at

1/e). The initial bulk height was 81.5 nm and 1.06 pm for the MD and HF system, respectively.

The lattice cell size in the HF system was 5 nm. The MD system contained 120000 atoms. The

simulation volume was 5.4 nm wide (x,y direction) and extended 37 nm above the surface of the

bulk. A step size of A r = 0.5 fs was used for both MD and HF. The lattice was set to a temperature

of To — 300K by initialising the atomic velocities to a Maxwell-Boltzmann distribution, followed

by a 200 fs (400 time steps) of Langevin damping to To and an 800 fs relaxation period. The laser

pulse is started at to = 1 ps with the peak intensity at time r = to+Zi- Fluences are given as absorbed

fluence, unless noted otherwise.

Figure 6.1 shows the lattice temperature at different positions (z) for a pulse length of 100 fs.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds

The surface is at z = 81.5nm, the MD-HF interface is at z = Onm. In 6.1a the fluence is slightly

below the ablation threshold (7 ^ = 0.13 J//cm 2), and in (b) it is just above. The lattice peak surface

temperature in the latter case is about 8500 Kelvin and is reached 4 ps after the start of the pulse

(t = 5 ps). Cavalleri et at. observed surface temperatures of 2000-3000 K for fluences between the

melting and ablation thresholds and 3000-4000 K at the threshold1 for ablation for both Si[100]

and Si[l 11] surfaces f a = lOOfs, X = 620nm) [CSTB+99]. This agrees with our result below the

threshold (6.1a), but is lower than what we observe for a fluence just above threshold. The surface

temperature in fig. 6.1b drops to 3000-4000 K within 10 ps and then falls below the melt temperature

at t « 2 0 ps.

Figure 6.2 shows the pressure evolution in the MD system below the ablation threshold. The

shock wave moves at a speed of about 7.8 km/s and is reflected at the MD-HF interface. Cox-

Smith et al. measured the sound velocity to be 7.9 km/s in c-Si and 6.3 km/s in a-Si [CSLD85].

Harada et al. have studied the generation of acoustic pulses produced by picosecond laser pulses of

fluence just below the threshold for ablation. They measured the velocity of acoustic pulses to be

8.5 km/s, which is close to their observed sound velocity of 8.43 km/s for Si(100) [HKT+89]. Hao

et al. report a sound velocity of 8.48 km/s, in agreement with Harada et al. This is in reasonable

agreement with our observation. The reflection of the shock wave off the interface is not ideal, and

a non-reflecting boundary should be implemented for future investigations. Such a shock-absorbing

boundary condition has been developed by Zhigilei et al. [ZG99d, SZG99, SUZG02].

Above the ablation threshold, shortly after the pulse energy is deposited in the system, there is

’The threshold was defined as the minimum fluence required for visible crater formation, i.e. by means of plotting the
area of the crater vs. fluence and extrapolating to zero.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds

(a)

2500 ■

2000
id>■■■«
<D
3
2<D
CL
E
.o

(b)

z = 75 nm
z = 60 nm
z = 20 nm •••••—■•••
z = -48 nm

z = -195 nm

10 15 20
Time [ps]

z = 75 nm
z = 60 nm
z = 20 nm
z = -48 nm

z = -196 nm

10 15 20 25 30
Time [ps]

Figure 6.1: Temperature at various depths for pulse length %j_ = lOOfs (A, = 800nm). (a) Fa&
0 .1 0J/cm2, (b) Fabs = 0.16J/cm2.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.1 Melting

a sharp rise in pressure (figure 6.3). The fast heating of the system does not allow the system to

thermally expand quickly enough, resulting in high (compressive) pressures of up to 10 GPa. The

relaxation of the pressure results in the expansion of the system. We observe very high tensile (neg

ative) pressures of up to -80 GPa. In comparison, Lorazo et al. report peak pressures of ~10 GPa2

before expansion of the volume, followed by a relaxation and sign-reversal of the pressure (for

xl = 10ps and X = 308nm) [LLMOOa]. This agrees with our results. The compressive pressure

reaches a maximum about t ~ 1 .8 ps (0 .6 ps after the peak of the laser pulse), and then becomes

tensile (negative) at about t « 2.7ps. Lorazo used a much longer pulse of 10 ps and observes a

peak compressive pressure at about 8.5 ps after the start of the pulse (3.5 ps after peak of pulse),

and a sign-reversal of the pressure 6.5 ps later. Given the longer pulse length used by Lorazo, it

is expected that the peak compressive pressure is reached later than in our simulation. The faster

relaxation of the pressure in our simulation is due to the “bond breaking" mechanism as described

in sec 5.3, which allows the material to melt (non-thermally) and expand quicker.

6.1 Melting

The pair-correlation function g(r) provides a way to analyze the structure of the lattice. It is defined

to be proportional to the number of particles separated by distance r, averaged over all directions.

The Fourier transform of g(r) gives the experimentally measurable structure factor [Rap95, SW85].

2Reported as negative pressure, in opposite sign of our definition (sec. 3.4.1)

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.1 Melting

Ec .
N

5 10
time [ps]

15 20

«
Q_
(5
<D
3
CO
CO
CD

Figure 6.2: Pressure wave due to laser pulse (A. = 800nm) below the ablation threshold. The wave
front moves at a velocity of ~ 7.8km/s. (a) Fat* = 0.06J/cm 2, Zc = 50fs (b) F ^ = 0.30J/cm2,
Tx. = 800fs.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.1 Melting

Radial integration over g(r) yields the coordination number (CN) :

r

n(r) = Anp J s1g(s)ds (6 .1)
o

where p is the density. Evaluating n(r) at the first minimum past the first peak in g(r) (see Fig. 6.4)

gives the number of nearest neighbours [SW85].

The coordination number (number of nearest neighbours) for liquid silicon is ~ 6 [WS75,

GS79], which is higher than for solid phase (CN=4). Thus by measuring the coordination num

ber we can get an indication of the phase. Figure 6.5a shows the coordination number as a function

of position in the bulk (z) and time. The interface between the solid and liquid phase is at z « 55 nm,

which gives a melt depth of 25 nm. The temperature at this depth is 2600-2750 K, which is just

above the melting threshold (see fig 3.9). The final melt depth is reached at ~10 ps. The average

velocity of the melt front up to that time is estimated at ~2500 m/s. This is a rather crude estimate,

since during the first 5-7 ps after the pulse the melt front is not well defined (e.g. see fig. 6.7). The

threshold fluence for melting can be estimated from the melt depth (extrapolation to zero depth) or

the minimum fluence required to bring the surface temperature above the melting temperature. Table

6.1 gives the estimated melt thresholds. The values were obtained by observing both the melt depth

(from coordination numbers) and the surface temperature. Both methods were in agreement within

the errors. Borowiec et al., Bonse et al., and Cavalleri et al. present melting thresholds that are

approximately half of the ablation threshold (absorbed fluence) [BMWH03, BKWB04, CSTB+99].

Our results do not agree with that ratio, but are closer to 75% of the ablation threshold. The rel-

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.1 Melting

(a)

(b)

8000 g
6000 |
4000 2
2000 |
n <D

5 10 15 20
tim e [ps]

v • •• ;.i . .-<* *-'VV>r••• V- fv. £■b

£ . 60

o £
-20 2 .
-40 I
-60 §

10 15 20
time [ps]

Figure 6.3: Evolution of temperature (a) and pressure (b) for a 400 fs pulse of 0.3 J/cm 2 and wave
length X = 800nm. The vertical axis is the position (z) in the material, measured from the MD-HF
interface and in the normal direction to the surface. The horizontal axis is the time from the start of
the simulation. The laser pulse starts at t = 1 ps and reaches peak intensity at t = 1.4ps

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.1 Melting

4

3.5

3

2.5

S 205

1.5

1

0.5

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

r[nm]

Figure 6.4: Pair-correlation function for Si in the crystalline phase (T = 2015 K, slightly below
melting point) [SW85].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

atively low thermal conductivity for silicon in our simulation compared to the true experimental

thermal conductivity values may explain some of this discrepancy.

6.2 Ablation

Snapshots in time of the top region of the simulation volume during a typical ablation process are

shown in figures 6 .6 and 6.7 for a fluence just above the ablation threshold for 400 fs and 100 fs

pulses, respectively. The light coloured atoms denote atoms in the ground state, i.e. ones that have

not absorbed any photons. The darker particles are excited (absorbed at least one photon) atoms

and ions (absorbed energy in excess of 4.85 eV). As outlined in section 5.3, the excited atoms have

broken bonds and are therefore less tightly bound. In addition, as the energy is transfered from

the electronic system to the lattice by decay of excited states, the lattice heats up. This creates

strong pressures in the lattice as outlined above (see figure 6.3). As the system expands and the

pressure relaxes, high tensile pressures develop, which lead to nucleation of bubbles (fig. 6 .6) and

eventually ejection of particles, i.e. ablation. This is consistent with simulation results by Lorazo

et al. [LLM03]. The ablation mechanism observed here is termed phase explosion: The material

heats up and melts isometrically, i.e. on a time scale shorter than the system can expand, giving

rise to high pressures. The pressures then relax by mechanical expansion and the system cools

adiabatically, as this occurs faster than the time required for significant thermal diffusion. This

gives rise to nucleation of gas bubbles in the hot liquid, resulting in a mixture of liquid and gas.

Figure 6 .8 shows the number of particles removed. A particle is removed from the simulation

if it reaches the top of the simulation volume, which is 37 nm above the initial surface of the bulk.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

(a)

c. 60

10 15
time [ps]

20 25

a>
JO
E3
Z
Co
asc
■Eo o
O

(b)

CDw3
2
CDa.
E
CD
H

z= 78 nm
z = 70 nm
z= 60 nm

„

1000 •

Time [ps]

Figure 6.5: Coordination number (a) and temperature (b) for Fa* = 0.10J/cm 2 and Tl = 50fs.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

Electron

Atom

Figure 6 .6 : Ablation sequence for 400 fs laser pulse (1/e) with a fluence of 0.30 J/cm2 (X = 800nm).
Shown is the top portion of the MD system. The laser pulse starts at t = lps and reaches peak
intensity at r = 1.4ps

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

The electrons are ejected from the bulk very quickly. At fluences of F ^ = 0.16J/cm2 or higher,

we observe significant particle ejection starting at about 4 ps after the pulse and reaching a peak

removal rate at about 12-13 ps after the pulse. There is a small peak visible at t = 4ps, which

corresponds to excited atoms and ions.

6.2.1 Thresholds

The threshold for ablation has been obtained for several pulse lengths. The thresholds were obtained

by varying the fluence and visually examine the evolution of the system as well as counting the

number of atoms removed. The threshold value was taken as the median between highest fluence

resulting in no ablation (Fâ) and the lowest fluence giving clearly visible ablation (F^), i.e. about

1 atom/A2. The fluence increments used for determining the thresholds were 0.01 -0 .02 J/cm2,

and with these stepsizes ablation would set in suddenly and clearly. If the increments were reduced

(more simulation runs would be required), a better definition for the threshold may be required.

For now the current one is sufficient The results are plotted in figure 6.9. The error bars indicate

xt (1/e) Xt (FWHM)
LfA

e-N
abs

[s?]

c-Wabs
[s?]

50 42 0.07±0.01 0.09±0.01
100 83 0 .10± 0 .0 2 0.13±0.02
2 0 0 167 0.16±0.02 0.19±0.02
400 333 0.24±0.02 0.26±0.03
800 6 6 6 0.39±0.03 -

Table 6.1: Threshold absorbed fluences for melting (F.[^) and ablation (Fjj^). Some of the thresh
olds have not been established yet and further simulations are required.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

Figure 6.7: Ablation sequence for 100 fs laser pulse (1/e) with a fluence of 0.16 J/cm2 (X = 800 nm).
The laser pulse starts at t = 1 ps with peak intensity at t = 1.1 ps

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

the range between the fluences âbs and F£.. We observe a strong pulse length dependence. This

is mainly due to the varying skin depth. For wavelengths in the near-IR and intensities greater

than 10l2Watt/cm2 (e.g. as 0.1 J/cm2 and Ti as 100 fs), the light absorption is dominated by

non-linear multiphoton absorption. Thus the skin depth depends on the intensity, which in turn is

proportional to the pulse length for a given fluence. Assuming that the ablation threshold fluence is

proportional to a threshold energy density (at/near the surface), then the threshold fluence should be

proportional to the square-root of the pulse length. The argument is as follows:

c6-2)

where is the minimum absorbed energy per unit volume required for abladon and d is the

absorption skin depth. For this estimate we assume that the heat diffusion is negligible (i.e. d !3>

diffusion length). Using the non-linear absorption coefficient, we can estimate the skin depth as

follows:

75rr
d « (a-I-(Mpeak)-1 « 2 p ~ , (assuming: a < P/peak) (6.3)

a is the linear absorption coefficient, p is the two-photon absorption coefficient, Ipeak is the peak

laser intensity, Fabs is the absorbed laser fluence, and t i is the duration of the Gaussian laser pulse.

For comparison, the diffusion length is

L = 2\fx[D (6.4)

where 1l is the laser pulse length, and D is the thermal diffusivity (D = 0.8cm2/s for Si) [BauOO].

We can express the diffusivity asD = \ f (pcp), where K is the thermal conductivity, p is the density

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

(a)
180

F=0.10 J/cm;
F=0.13J/cm!
F=0.16 J/cm'

160

140

120

100c3oo 80 ■

10 20 300 5 15 25
Time [ps]

(b)

F=0.10 J/cmj
F=0.13 J/cm;
F=0.16 J/cm'

c3Oo

30 ■

1.05 1.1 1.15 1.2 1.25 1.3 1.351
Time [ps]

Figure 6 .8 : Count of ablated atoms (a) and electrons (b), i.e. particles that have reached the top of
the simulation volume and have been subsequently removed from the simulation. The pulse length
is 100 fs (1/e). The inset in figure (a) shows the count for = 0.10J/cm2 and = 0.13 J/cm2,
where only a few atoms get removed (evaporated).

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

and cp is the heat capacity [BauOO]. Using values determined in section 3.4 for the SW silicon

(K = 0.139W/(cmK), « cy = 0.951J/(gK)), p = 2.329g/cm3, we obtain D = 0.063cm2/s. The

diffusion lengths and absorption depths (at threshold fluence for ablation, using values given in

fig. 6.9) for different pulse lengths are plotted in figure 6.10. It shows that our assumption of d » L

is reasonable, particularly when considering the diffusivity obtained for the SW potential.

Substituting eqn. 6.3 into eqn. 6.2 and solving for the fluence gives:

As we can seen in figure 6.9 the threshold values follow the square-root dependence on the pulse

length very well. We can fit the absorption threshold to

This is consistent with the fact that the heat diffusion length is much shorter than the the absorption

length for the ablation regimes investigated. As the pulse length increases to picoseconds and longer,

the threshold is expected to deviate from the square-root dependence. Both the absorption length (at

threshold fluence) and the diffusion length increase as the square-root of the pulse length (eqn. 6.3

and 6.4), until linear absorption becomes more dominant and heat diffusion starts to play a more

important role. Currently, the simulations do not include avalanche ionisation, which may be a

significant factor in the absorption of the laser pulse and consequently in the process of laser ablation

[PVH+98]. We should note that the error bars in figure 6.9 are quite large and further simulations

(6.5)

(6-6)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

E.o
~ 3 .

Ooc
©3
u.
•o
©JD
o
CO

JD<

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Ablation Thresholds
 fit: F=0.0143 x sqrt(xL)
J i iu iQ ih m E Melting Thresholds

10
r i

Hi

100
Pulse Length [fs]

1000

figure 6.9: Melting and ablation thresholds at different pulse lengths (FWHM).

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

are necessary to reduce these and to verify the square-root scaling.

At the lower temperatures, the heat capacity is significantly higher for the SW material than

for real Si, as noted in section 3.4.2. Thus we would expect our threshold values to slightly over

estimate the melting and ablation threshold. With the heat Sow model the temperature at the bottom

of the MD system is raised, which reduces the temperature gradient and artificial outflow of energy.

Without the HF system and the bottom boundary clamped at room temperature the threshold fluence

would be slightly higher than what shown in figure 6.9.

6.2.2 Comparison with previously reported results

The ablation thresholds for Si and ultrafast laser pulses are summarised in table 6.2 for theoreti

cal studies, and table 6.3 for experimental values. The column F^l gives the threshold values as

reported in the respective reference. are the absorbed fluence, taking into account reflectivity.

The reflectivity of silicon and linear absorption coefficient are plotted as a function of wavelength

in fig. 1.1. Figure 6.12 shows a plot of the threshold values (F ^) . We can see that even for the

experimental values the various groups report different ablation thresholds. For single-pulse thresh

olds, the ambient environment plays an important role. If the experiments are done in air then the Si

surface will have an oxide layer, which will affect the measured threshold. For multi-shot ablation

this would be less of a concern since the oxygen will be removed after the first few shots and the

later pulses will see a clean silicon surface. Bonse et al. [BBK+02, BKWB04] report having a 3 nm

oxide layer on top of the c-Si [111] surface. Cavalleri et al. [CSTB+99] placed the Si sample in an

ultra-high vacuum (10_ 10torr) for their ablation experiments. Borowiec et al. use a slight vacuum

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

of ~ 0.1 mbar. They report an uncertainty of 50% in the fluence measurements.

There is a large variation in reported threshold fluences, due to different experimental conditions

and different techniques used to define the threshold of ablation. In particular, most groups report

threshold for only one pulse length, thus one should be cautious in deducing pulse-length scaling.

Only Jeschke et al. [JGL+02] and Pronko et al. [PDS+95, PVS+96, PVH+98] provide thresholds

at different pulse lengths. For Jeschke, results are reported for pulse lengths of 20 fs and 500 fs

with absolute values that are within 30% of ours. However, their experimental thresholds scale

much less with pulse length. Our interpretation of their MD results (as given in table 6.2) show

an approximate square-root scaling, however, when estimating the fluences using linear absorption3

for the skin-depth gives much less scaling (see below for details on fluence estimation). Pronko et

al. [PVH+98] give results for pulse lengths from 8 6 fs to 7 ns (see figures 6.11 and 6.12). As noted

before there is significant variation in the measured thresholds reported in literature, and this is also

evident in Pronko’s results. While our results are within the range of their measured thresholds,

we show much stronger pulse length scaling. According to Pronko et al. the dominant absorption

mechanism is avalanche ionisation [PVS+96, PVH+98]. Since there the longer pulses can interact

via increasing the electron number density through a collisional or avalanche ionisation process, the

effective absorption coefficient has much less dependence on the pulse length (or intensity) than in

non-linear, two-photon absorption. The next version of our code will include avalanche ionisation

and we will investigate its contribution to the ablation process.

Jeschke [JGL+02] provides the ablation threshold in terms of absorbed energy per atom E ,^ .

3Jeschke used the Drude formula (i.e. assuming linear absorption) in another paper to estimate a threshold fluence
from his results [JGB01].

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

1e-05

©— Absorption Depth
 Diffusion Length (with D=0.8 cm2/s)
 Diffusion Length (with D=0.063 cm2/s)Eo

1e-06

1e-07
50 100 150 200 250 300 350 400

Pulse Length [fs]

Figure 6.10: Diffusion length (from eqn. 6.4) and absorption depth (from eqn. 6.3) vs. pulse length.
The diffusion length is given for both the literature value of the diffusivity (D = 0.8cm2/s) and
estimated value from thermal properties measured in section 3.4 (D — 0.063 cm2/s).

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

Group XL X
nm

R a

r ± i
3

m

fW

t a k] absf e k]
Ohmura, Watan- 1 0 0 fs 266 0.474 < 0 .0 1 < 0 .0 1

abe [WIOMOO,
IWF+98, OM98]
Meunier, Lorazo 500 fs 266 0.733 2.09x10* 40 0.35 0.093
[LLM01, LLMOOb, 1 0 ps 308 0.591 1.5 xlO 6 40 0.25-0.30 0 .10 -0 .1 2

LLM03] 50 ps 266 0.733 2 .09xl06 40 0.45 0 .1 2

Singh, Pronko 2.5 fs 308 0.591 1.5x10* 0.28 0.115
[PDDS95] 1 0 fs 0.27 0 .1 1 0

1 0 0 fs 0.23 0.094
1.5 ps 0.16 0.066
lOOps 0 .2 1 0.086

2 ns 0.78 0.320
[PDDS95] 1 0 0 fs 800 0.329 1014 0.24 0.16

300 fs 0.25 0.17
1.5 ps 0.32 0 .2 2

6 ps 0.42 0.28
2 0 ps 0.67 0.45
7 ns 2.29 1.54

Campbell, 1 0 fs ~700 0.338 3500 55 3±1 3±1
Herrmann 50 fs 4±2 4±2
[HGC97, HGC98] 2 0 0 fs 6 ± 2 6 ± 2

1 ps ** 6 ± 2 6 ± 2

5 ps 8 ± 2 8 ± 2

Jeschke, Bonse 2 0 fs 780 0.33 3.7±0.3 ‘Vat. 0 .1
[JGL+02] 500 fs 6.2±0.3 eV/aL 0 .6

Table 6.2: Single shot ablation thresholds from theoretical studies. x*, is the laser pulse length
(FWHM), X is the wavelength, R is the reflectivity (as reported by Aspnes and Studna [AS83], see
fig. 1.1), a and (3 are the linear and two-photon absorption coefficients, respectively, and F ^ is
the ablation threshold fluence as reported by the authors. F ^ is the absorbed fluence (i.e. taking
reflection into account).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

In another paper [JGB01] Jeschke provides a fluence estimate from this type of result. We now use

the same scheme to estimate the ablation threshold in this case:

where Eo is the absorbed energy, e is the Coulomb constant, na = 5.0x 1022at./cm3 is the atomic

number density, d is the penetration depth, R = 0.33 [AS83] is the reflectivity, and T is the trans

mission. d is given by d = X/(4rat), assuming one-photon absorption, where k = 0.008 [AS83] is

the extinction coefficient This gives ablation thresholds of 34 J/cm2 and 57 J/cm2 for pulse length

of 20 fs and 500 fs, respectively. If instead we estimate the skin depth as given in eqn. 6.3, we get:

The threshold values obtained this way are given in table 6.3. The experiment by Cavalleri et al.

[CSTB+99] was performed using a p-polarised beam illuminating the sample at an incident angle

of 45 degrees. This was taken into account for the calculation of the absorbed fluence presented in

table 6.3: From the Fresnel equation we get:

where 0i = 45° is the incident angle and 02 = arcsin [(ni/«2) sin0j]. nj and n-i are the refractive

indices of the two media (vacuum and air). The cosine term at the end takes into account the

stretching of the focal spot.

Cavalleri et al. show in fig. 3 of [CSTB+99] that atoms are removed and observed experi-

tan2(0 j + 0 2)
(6-9)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

mentally, using a quadrupole mass spectrometer (QMS), well below the ablation threshold down

to about 60% of the ablation threshold. The particle removal below the threshold is attributed to

desorption (evaporation and sublimation). Thus the ablation threshold cannot be arbitrarily defined

by the start of removal of atoms, but must be quantified by the number of atoms removed. We have

in our study used a value of 1 atom/A2, which corresponds to removal of a surface layer about 2

nm thick.

The total number of removed atoms at the end of a 30 ps simulation is given in table 6.4 for

different fluences and pulse lengths. In comparing the thresholds with experimental results, the

detection limit of the technique and apparatus is of importance. The observable resolution in the

number of removed particles affects the measured threshold value. By plotting the number of re

moved particles in the simulation as a function of fluence it can potentially allow for more realistic

comparison with experimental results. Further simulations would be required for this.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

10

E
•Si
2 . 1
<Doc<D3

0.1

1e-14

♦

Theoretical:
Holenstein 2004: MD
Pronko 1996 (MRSSP): CODE

- Pronko 1996 (MRSSP): CODE fit
Experimental: ^

Pronko 1998 (PRB): damage 786nm
Pronko 1996 (MRSSP): AFM
Pronko 1996 (MRSSP): PM
Pronko 1995 (OC): measured

?

1e-13 1e-12 1e-11 1e-10
Pulse Length [s]

1e-09 1e-08

Figure 6.11: Single shot ablation thresholds (absorbed fluence) at different pulse lengths (FWHM)
by Pronko et al. [PDS+95> PVS+96, PVH+98]. Measurements were done by examining the area
of damage and extrapolating to zero, as well as using atomic force microscopy (AFM) to examine
damage due to vaporisation and a photomultiplier to detect onset of plasma emission. Also shown
are results from a 2-temperature heat flow model (CODE) that was fit to the data points from the
AFM and PM measurements.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and. Discussion on Thresholds 6.2 Ablation

Group X
nm

R /r[a]

fe&r]

F wabs
[iff]

Bonse [BBK+02] 5 fs 780 0.330 0.20±0.05 0.13
[JGL+02] (25±5) fs 780 0.330 0.17±0.015 0.114
[BKWB04] 130 fs 800 0.329 0.520 0.349
[JGL+02] (400±30) fs 780 0.330 0.28±0.03 0.188
Borowiec [BMWH03] 130 fs 800 0.329 0.30 0 .2 0

Cavalleri, von der Linde [CSTB+99] 1 1 0 fs 620 0.351 0.300 0.164
Coyne [CMM+04] 150 fs 775 0.331 0.45 0.30
Pronko [PDDS95] 150 fs 800 0.329 0.38 0.25

580 fs 0.37 0.25
1 ps 0.46 0.31
5ps 0.44 0.29

280 ps 4.35 2.92
6 .6 ns 5.46 3.66

[PVS+96] (AFM) 80 fs 800 0.329 0.14 0.096
1 ps 0.36 0.24
6 ps 0.34 0.23

2 0 0 ps 0.91 0.61
[PVS+96] (PM) 2 0 0 fs 800 0.329 0.24 0.16

650 fs 0.27 0.18
980 fs 0.34 0.23
7 ns 9.46 6.35

[PVH+98] 85 fs 0.16 0 .1 1

2 0 0 fs 0.24 0.16
650 fs 0.24 0.16

1 ps 0.36 0.23
5 ps 0.29 0.19

250 ps 3.21 2.15
7 ns 5.96 4.00

Table 6.3: Single shot ablation thresholds from experimental studies, t l is the laser pulse length
(FWHM), X is the wavelength, R is the reflectivity (as reported by Aspnes and Studna [AS83], see
fig. 1.1), and is the ablation threshold fluence as reported by the authors. fJ^ is the absorbed
fluence (i.e. taking reflection into account).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

(a)
I Hotenstein: 800 nm (MD) 2004

Lorazo « al., S P E V4276 p57,308 nm (MD) 2001
Lorazo at ah, PRLv91 p225502-1.266 nm (MD) 2003
Pronto et al.. JAP v78 p6233:308 nm (1T-HF) 1995
Jeschke et al., ASS v197-198 p839:780 nm (M0,64 a t) 2002

-< Jeschke et al., ASS v197*198 p839:780 nm (exp) 2002
Bonse et aL, ASS v221 p215:800 nm (exp) 2004
Cavalleri et al., JAP v85 p3301: 620 nm (exp) 1999
Coyne etal., ASS v229 p148:775 nm (exp) 2004
Borowiec et al., APAv76 p201:775 nm (aip) 2003

Melting Threshol

B B B r i

1000 10000
Pulse Length [fs]

1e+06 le+07

(b)
0.6 T t

0.5

i 0.4
a

0.3 -

02

0.1

-< Jeschke ASS 2002:780 nm (exp)
Bonse ASS 2004: 800 nm (exp)
CavaBeit JAP 1999:620 nm (exp)

' Coyne ASS 2004:775 nm (exp)
Borowiec APA 2003:775 nm (exp)
Pronto PRB1998:786nm (exp. damage)
Pronto MRSSP1996:800nm (exp,AFM)
Pronto MRSSP1996:800nm (exp.PM)
Pronto O C 1995:800 nm (exp)

G
❖
□
A
O

Hoten$ein 2004:800 nm (jMD)
Lorazd PRL2003^266 nm(MO)
Pronkd JAP 1995^308 nmj(1T«HF)
Pronto MRSSP 1996:800jnm (2T-HF)
Jeschto ASS 2002:780 nm <MC* 64 k)

Melons Threshold

60 70 80 90100
Pulse Length [fs]

200 300 400 500 600700

Figure 6.12: Single shot ablation thresholds at different pulse lengths (FWHM) compared to litera
ture values, (a) over the pulsewidth range of 1 fs to 10 ns and (b) over the range of 20 fs to 700 fs.
The solid (filled) symbols represent experimental values and the open ones are theoretical values.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Results and Discussion on Thresholds 6.2 Ablation

T i(l/e)
[A]

•̂ abs
[m?]

of atoms
removed

50 0.06 0
50 0.08 4
50 0.10 52
100 0.10 2
100 0.13 22
100 0.16 3608
200 0.18 7
200 0.20 9
200 0.24 10030
400 0.22 0
400 0.26 0
400 0.30 22

Table 6.4: Number of removed atoms by the end of a 30 ps simulation versus fluence for different
pulse lengths.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

A simulation code has been developed to model ultrafast laser ablation of silicon. The molecular

dynamics technique was employed for the top portion of the simulation volume and a heat flow

model used to couple the MD system to an infinite bulk medium. The ablation thresholds were

determined for pulse lengths between 50 fs and 400 fs.

By modelling only the central part of the laser spot and using periodic boundary conditions in

the transverse direction to the incident laser pulse, we were able to simulate a surface layer of up to

~0.1 micron with MD and several microns with HF. The change of boundary condition from a heat

bath in the sides, which was used in the initial code, to periodic boundaries improved the threshold

results by an order of magnitude. The use of a heat flow model to extend the simulation volume, at

little additional computational cost, provided a more realistic model. This improved the temperature

gradient and removed artificial cooling effects that would result from coupling to the MD system

directly to the heat bath at room temperature. Such excessive cooling result in higher thresholds for

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Conclusions

melting and ablation.

In order to speed up the simulations the code has been parallelized using MPI. An attempt to

further improve the simulation speed a lookup table for the Stillinger-Weber force and potential was

implemented. This scheme turned out to be several times slower than dynamically calculating the

force and potential.

An algorithm has been developed to thermally couple the MD system with the HF system. The

particles at the bottom of the molecular dynamics system are damped to the temperature at the top

of the HF system using Langevin dynamics. Similarly, the heat transfer from the MD system to the

HF system is computed from the Langevin equations.

As the laser light is absorbed in the bulk, the temperature rises. This happens very fast, within

a few picoseconds, and the system does not have time to expand quickly enough, resulting in large

compressive pressure on the order of 10 GPa. Upon relaxation of the pressure by the system expand

ing, the pressure becomes strongly negative (tensile). These large tensile pressures are the driving

force in the ablation process.

It was found that the ablation threshold varies significantly with pulse length. A square-root

scaling is observed. In the near-IR and for pulse intensities in the regime we investigated, the two-

photon absorption skin depth is large and non-linear absorption is dominant The results suggest

that the heat diffusion length is significantly less than the absorption length.

The calculated ablation threshold, = 0.13 J/cm2, at 100 fs is in approximate agreement with

experimental values for pulse lengths on the order of 1 0 0 fs, but the square root pulse length scaling

and values at longer pulse lengths start to deviate from the experimental results.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Conclusions

However, the effects of avalanche ionization have not been included in the present code and

could have significant effect for longer pulses where there is sufficient time for the electron density

to grow and effect the absorption. Such an avalanche ionization mechanism should be added to the

code.

A significant spread in the experimental results is observed. This is due to different experimental

conditions and techniques used. Particularly the detection limit of the technique and apparatus

is of importance, as the number of removed particles that can be observed affects the definition

for ablation. Plotting the number of removed particles as a function of fluence potentially allows

for realistic comparison with experiment, accounting for varying detection limits in experimental

techniques.

Further investigations are required to test the observed threshold scaling over a wider range

of pulse length. A shock absorbing boundary condition should be implemented in order to avoid

reflection of the shock wave at the MD-HF interface. It has not yet been determined to what extend

this reflection affects the threshold values, though it is reasonable to assume that with a shock

absorbing boundary the threshold would be slightly higher.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[AB87]

[ACD+01]

[AD76]

[Aga84]

[AKPF94]

[AS83]

[AS92]

[AW57]

[Bai99]

[Bas87]

[Bas92]

[BauOO]

P.B. Allen and J.Q. Broughton, Electrical conductivity and electronic properties o f
liquid silicon, J. Phys. Chem. 91 (1987), 4964.

Yu.V. Afanasiev, B.N. Chichkov, N.N. Demchenko, V. A. Isakov, and I.N. Za-
vestovskaya, Ablation o f metals by ultrashort laser pulses: theoretical modeling and
computer simulation, EPS Conf. on Contr. Fusion and Plasma Phys. ECA, vol. 25A,
2 0 0 1 , p. 2 0 2 1 .

S.A. Adelman and J.K. Doll, Generalized langevin equation approach for atom/solid-
surface scattering: General formulation fo r classical scattering off harmonic solids,
J. Chem Phys. 64 (1976), 2375.

Agassi, Phenomenological model for picosecond-pulse laser annealing o f smiconduc-
tors, J. Appl. Phys. 55 (1984), 4376.

A. Alavi, J. Kohanofff, M. Parrinello, and D. Frenkel, Ab initio molecular dynamics
with excited electrons, Phys. Rev. Lett. 73 (1994), 2599.

D.E. Aspnes and A.A. Studna, Dielectric functions and optical parameters o f Si, Ge,
GaP, GaAs, GaSb, InP, InAs, and InSbfrom 1.5 to 6 ev, Phys. Rev. B 27 (1983), 985.

Vasilios Alexiades and Alan D. Solomon, Mathematical modeling o f melting andfreez
ing processes. Hemisphere Publishing Corporation, Washington, 1992.

B J . Alder and T.E. Wainwright, Phase transition for a hard sphere system, J. Chem.
Phys. 27 (1957), 1208.

R. Baierlein, Thermal physics, Cambridge University Press, Cambridge, 1999.

M.I. Baskes, Application o f the embedded-atom method to covalent materials: A
semiempirical potential for silicon, Phys. Rev. Lett. 59 (1987), 2666.

 Modified embedded-atom potentials for cubic materials and impurities, Phys.
Rev. B 46 (1992), 2727.

D. Bauerle, Laser processing and chemistry, 3rd ed., Springer-Verlag, Berlin, 2000.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[BBK+02] J. Bonse, S. Budach, J. Kruger, W. Kautek, and M. Lenzer, Femtosecond laser ablation
o f silicon - modification thresholds and morphology, Appl. Phys. A 74 (2002), 19.

[BD97] William E. Boyce and Richard C. DiPrima, Elementary differential equations and
boundary value problems, 6 th ed., John Wiley & Sons, Inc., New York, 1997.

[BH85] R. Biswas and D.R. Hamann, Interatomic potentials fo r silicon structural energies,
Phys. Rev. Lett. 55 (1985), 2001.

[BHT92] H. Balamane, T. Halicioglu, and W.A. Tiller, Comparative study o f silicon empirical
interatomic potentials, Phys. Rev. B 46 (1992), 2250.

[BKWB04] J. Bonse and A J. Meixner K.-W. Brzezinka, Modifying single-crystalline silicon by
fem tosecond laser pulses: an analysis by micro roman spectroscopy, scanning laser
microscopy and atomic force microscopy, Appl. Surf. Sci. 221 (2004), 215.

[BMWH03] A. Borowiec, M. MacKenzie, G.C. Weatherly, and H.K. Haugen, Transmission and
scanning electron microscopy studies o f single femtosecond-laser-pulse ablation o f
silicon, Appl. Phys. A 76 (2003), 201.

[BNW89] M.I. Baskes, J.S. Nelson, and A.F. Wright, Semiempirical modified embedded-atom
potentials fo r silicon and germanium, Phys. Rev. B 40 (1989), 6085.

[BSR+04] N M . Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, and EJE.B. Campbell, Electronic
transport and consequences fo r material removal in ultrafast pulsed laser ablation o f
materials, Phys. Rev. B 69 (2004), 054102.

[CFL67] R. Courant, K. Friedrich, and H. Lewy, On partial difference equations o f mathemati
cal physics, IBM J. of Res. and Devel. 11 (1967), 215.

[CMM+04] E. Coyne, J.P. Magee, P. Mannion, G.M. O’Connor, and T J. Glynn, Characteriza
tion o f laser ablation o f silicon using a gaussian wavefront and computer generated
wavefront reconstruction, Appl. Surf. Sci. 229 (2004), 148-160.

[Cow8 8] E.R. Cowley, Lattice dynamics o f silicon with empirical many-body potentials, Phys.
Rev. Lett. 60 (1988), 2379-2381.

[CP85] R. Car and M. Parrinello, Unified approach fo r molecular dynamics and density-
functional theory, Phys. Rev. Lett. 55 (1985), 2471.

[CSLD85] I.R. Cox-Smith, H.C. Liang, and R.O. Dillon, Sound velocity in amorphous film s o f
germanium and silicon, J. Vac. Sci. Tech. A 3 (1985), 674.

[CSTB+99] A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der
Linde, Femtosecond melting and ablation o f semiconductors studied with time o f flight
mass spectroscopy, J. Appl. Phys. 85 (1999), 3301.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[DC98]

[FP96]

[Gri99]

[GS79]

[Hai97]

[HGC97]

[HGC98]

[HIM95]

[HKT+89]

[HMM04]

[IMM+98]

[Iof]

[IWF+98]

[JGB01]

D.W. Dean and J.R. Chelikowsky, First principles calculation o f the thermodynamic
properties o f silicon clusters, Theor. Chem. Acc. 99 (1998), 18.

K. Fushinobu and L.M. Phinney, Ultraskort-pulse laser heating o f silicon to reduce
microstructure adhesion, Int. J. Heat Mass Transfer 39 (1996), 3181.

D J . Griffiths, Introduction to electrodynamics, 3rd ed., Prentice-Hall, Inc., New Jer
sey, 1999.

J.P. Gabathuler and S. Steeb, Uber die Struktur von Si-, Ge-, Sn- und Pb-Schmelzen,
Z. Naturforsch. A 34 (1979), 1314.

J.M. Haile, Molecular dynamics simulation: Elementary methods, John Wiley & Sons,
Inc., New York, 1997.

R.F.W. Herrmann, J. Gerlach, and E.E.B. Campbell, Molecular dynamics simulation
o f laser ablation o f silicon, Nucl. Instr. & Meth. in Phys. Res. B, vol. 122,1997, p. 401.

 Ultrashort pulse laser ablation o f silicon: an MD simulation study, Appl.
Phys. A 6 6 (1998), 35.

H. Haberland, Z. Insepov, and M. Moseler, Molecular-dynamics simulation ofthin-film
growth by energetic cluster impact, Phys. Rev. B 51 (1995), 11061.

Y. Harada, Y. Kanemitsu, Y. Tanaka, N. Nakano, H. Kuroda, and K. Yamanaka, Pi
cosecond laser generation o f ultrashort acoustic pulses in silicon, J. Phys. D 22 (1989),
569.

D. Hamelberg, J. Mongan, and J.A. McCammon, Accelerated molecular dynamics:
A promising and efficient simulation method for biomolecules, J. Chem. Phys. 120
(2004), 11919.

M. Ishimaru, S. Munetoh, T. Motooka, K. Moriguchi, and A. Shintani, Molecular-
dynamics studies on defect-formation processes during crystal growth o f silicon from
melt, Phys. Rev. B 58 (1998), 12583.

New semiconductor materials: Characteristics and properties. Online, Retrieved July
5,2004, from http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/bandstr.html.

Y. Ishizaka, K. Watanabe, I. Fukumoto, E. Ohmura, and I. Miyamoto, Three-
dimensional molecular dynamics simulation on laser materials processing o f silicon,
Proc. of Laser Materials Processing - ICALEO, vol. 1,1998, p. A55.

H.O. Jeschke, M.E. Garcia, and K.H. Bennemann, Theory fo r the ultrafast ablation o f
graphite films, Phys. Rev. Lett. 87 (2001), 015003.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/bandstr.html

BIBLIOGRAPHY

[JGL+02]

[Kit96]

[Kub57]

[Kub6 6]

[KUOOO]

[Lee98]

[LLMOOa]

[LLMOOb]

[LLMOl]

[LLM03]

[LLR+8 8]

[LLW+97]

[MB91]

[MB92]

[MB93]

H.O. Jeschke, M.E. Garcia, M. Lenzner, J. Bonse, J. Kruger, and W. Kautek, Laser
ablation thresholds o f silicon fo r different pulse durations: theory and experiment,
Appl. Surf. Sci. 197-198 (2002), 839-844.

Charles Kittel, Introduction to solid state physics, 7th ed., John Wiley & Sons, Inc.,
Toronto, 1996.

R. Kubo, Statistical-mechanical theory o f irreversible processes: 1. general theory
and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12
(1957), 570.

 , The fluctuation-dissipation theorem, Rep. Prog. Phys. 29 (1966), 255.

K. Kakimoto, T. Umehara, and H. Ozoe, M olecular dynamics analysis on diffusion o f
point defects, J. of Crystal Growth 210 (2000), 54.

Y.H. Lee, Silicon di-interstitial in ion-implanted silicon, Appl. Phys. Lett. 73 (1998),
1119.

P. Lorazo, L J . Lewis, and M. Meunier, Molecular-dynamics simulations o f picosecond
pulsed laser ablation and desorption o f silicon, Proc. SPEE, vol. 3935,2000, p. 6 6 .

 , Picosecond pulsed laser ablation o f silicon: a molecular-dynamics study,
Appl. Surf. Sci. 168 (2000), 276.

 , Simulation o f picosecond pulsed laser ablation o f silicon: the molecular-
dynamics themud-annealing model, Proceedings of SPIE 4276 (2001), 57.

 Short-pulse laser ablation o f solids: From phase explosion to fragmentation,
Phys. Rev. Lett. 91 (2003), 225502.

W.D. Luedtke, U. Landman, M.W. Ribarsky, R.N. Barnett, and C.L. Cleveland,
Molecular-dynamics simulations o f epitaxial crystal growth from the melt. II. S i(I l 1),
Phys. Rev. B 37 (1988), 4647.

C.L. Liu, J.N. Leboeuf, R.F. Wood, D.B. Geobegan, J.M. Donato, K R . Chen, and
A A . Puretzky, Computational modeling o f physical processes during laser ablation,
Mater. Sci. Eng. B 47 (1997), 70.

D. Maroudas and R A . Brown, Analysis o f point-defect diffusion and drift in cubic-type
lattices: Constitutive modeling, Phys. Rev. B 44 44 (1991), 2567.

 , Atomistic calculation o f the self-interstitial diffusivity in silicon, Phys. Rev.
Lett. 62 (1992), 172.

 , Calculation o f thermodynamic and transport properties o f intrinsic point de
fects in silicon, Phys. Rev. B 47 (1993), 15562.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[NBG+03]

[NC92]

[NHR96]

[Nie95]

[OM98]

[PB94]

[PDDS95]

[PDS+95]

[PL02]

[PMK94]

[PVH+98]

[PVS+96]

[Rap95]

[RKL+02]

G.S. Nolas, M. Beekman, J. Gryko, Jr. G.A. Lamberton, T.M. Tritt, and P.F. McMillan,
Thermal conductivity o f elemental crystalline silicon clathrate Sii3 6 , Appl. Phys. Lett.
82 (2003), 910.

J. Narayan and X. Chen, Laser patterning o f diamond film s, J. of Appl. Phys. 71
(1992), 3795-3801.

Jos6 C. Noya, Carlos P. Herrero, and Rafael Ramires, Thermodynamic properties o f c-
Si derived by quantum path-integral monte carlo simulations, Phys. Rev. B 53 (1996),
9869.

M.H. Niemz, Threshold dependence o f laser-induced optical breakdown on pulse du
ration, Appl. Phys. Lett. 6 6 (1995), 1181.

E. Ohmura and I. Miyamoto, Molecular dynamics simulation o f laser ablation phe
nomena, Rev. of Laser Eng. 26 (1998), 800.

R.H. Poetzsch and H. Boettger, Interplay o f disorder and anharmonicity in heat con
duction: Molecular-dynamics study, Phys. Rev. B 50 (1994), 15757.

P.P. Pronko, S.K. Dutta, D. Du, and R.K. Singh, Thermophysical effects in laser pro
cessing o f materials with picosecond andfemtosecond pulses, J. Appl. Phys 78 (1995),
6233.

P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, and G. Mourou, Machining o f
sub-micron holes using a femtosecond laser at 800 nm, Opt. Comm. 114 (1995), 106.

D. Perez and L J . Lewis, Ablation o f solids underfemtosecond laser pulses, Phys. Rev.
Lett. 89 (2002), 255504.

A. Peterlongo, A. Miotello, and R. Kelly, Laser-pulse sputtering o f aluminum: Va
porization, boiling, superheating, and gas-dynamic effects, Phys. Rev. E 50 (1994),
4716.

RP. Pronko, P.A. VanRompay, C. Horvth, E Loesel, T. Juhasz, X. Liu, and G. Mourou,
Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,
Phys. Rev. B 58 (1998), 2387.

RP. Pronko, P.A. VanRompay, R.K. Singh, F. Qian, D. Du, and X. Liu, Laser induced
avalanche ionization and electron-lattice heating o f silicon with intense near IR fem
tosecond pulses, M at Res. Soc. Symp. Proc., vol. 397,1996, p. 45.

D.C. Rapaport, The art o f molecular dynamics simulation, Cambridge University
Press, Cambridge, 1995.

C.L. Rountree, R.K. Kalia, E. Lidorikis, A. Nakano, L. Van Brutzel, and P. Vashishta,
Atomistic aspects o f crack propagation in brittle materials: Multimillion atom molec
ular dynamics simulations, Annu. Rev. Mater. Res. 32 (2002), 377.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[SAPF96]

[SAPF97]

[SB94]

[SBN89]

[STBv95]

[SUZG02]

[SW85]

[SYH83a]

[SYH83b]

[SZG99]

[Ter88]

[TLFCOO]

[TMTM8 8]

[Tsu02]

[vAB95]

RL. Silvistrelli, A. Alavi, M. Parrinello, and D. Frenkel, Ab initio molecular dynamics
simulation o f laser melting o f silicon, Phys. Rev. Lett. 77 (1996), 3149.

 , Structured, dynamical, electronic, and bonding properties o f laser-heated sil
icon: An ab initio molecular dynamics study, Phys. Rev. B 56 (1997), 3806.

P. Stampfli and K.H. Bennemann, Tune dependence o f the laser-induced femtosecond
lattice instability o f Si and GaAs: Role o f longitudinal optical distortions, Phys. Rev.
B 49 (1994), 7299.

J.G. Swadener, M.I. Baskes, and M. Nastasi, Molecular dynamics simulation o f brittle
fracture in silicon, Phys. Rev. B 40 (1989), 6085.

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, Ultrafast laser-induced
order-disorder transitions in semiconductors, Phys. Rev. B 51 (1995), 14186.

C. Schafer, H.M. Urbassek, L.V. Zhigilei, and BJ. Garrison, Pressure-transmitting
boundary conditions for molecular-dynamics simulations, Comp. Mat. Sci. 24 (2002),
421.

F.H. Stillinger and T.A. Weber, Computer simulation o f local order in condensed
phases o f silicon, Phys. Rev. B 31 (1985), 5262.

C.V. Shank, R. Yen, and C. Hirlimann, Femtosecond-time-resolved surface structural
dynamics o f optically excited silicon, Phys. Rev. Lett. 51 (1983), 900.

 Time-resolved reflectivity measurements o f femlosecond-optical-pulse-
induced phase transitions in silicon, Phys. Rev. Lett. 50 (1983), 454.

Julia A. Smirnova, L.V. Zhigilei, and B J . Garrison, A combined molecular dynamics
and finite element method technique applied to laser induced pressure wave propaga
tion, Comp. Phys. Comm. 118 (1999), 11.

J. Tersoff, New empirical approach fo r the structure and energy o f covalent systems,
Phys. Rev. B 37 (1988), 6991.

Y.Y. Tsui, C. Li, R. Fedosejevs, and C.E. Capjack, Interaction o f femtosecond laser
pulses with metals, Proc. SPIE, vol. 4087,2000, p. 1201.

S. Tsuneyuki, H. Akoi M. Tsukada, and Y. Matsui, First-principles interatomic poten
tial o f silica applied to molecular dynamics, Phys. Rev. Lett. 61 (1988), 869.

Ying Y. Tsui, EE 645 - laser matter interaction: Class notes, Edmonton, 2002.

M. von Allmen and A. Blatter, Laser-beam interactions with materials: Physical prin
ciples and applications, 2nd ed., Springer-Verlag, Berlin, 1995.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[vBKvS90]

[VCOO]

[VTS79]

[VTSH79]

[Wei77]

[WIOMOO]

[WS75]

[ZG99a]

[ZG99b]

[ZG99c]

[ZG99d]

[ZGOO]

[ZGB99]

[ZGZ02]

B.W.H. van Beest, GJ. Kramer, and R.A. van Santen, Force fields for silicas and
aluminophosphates based on ab initio calculations, Phys. Rev. Lett. 64 (1990), 1955.

S.G. Volz and G. Chen, Molecular-dynamics simulation o f thermal conductivity of
silicon crystals, Phys. Rev. B 61 (2000), 2651.

J.A. Van Vechten, R. Tsu, and F.W. Saris, Nonthermal pulsed laser annealing o f Si;
plasma annealing, Physics Letters A 74 (1979), 422.

J.A. Van Vechten, R, Tsu, F.W. Saris, and D. Hoonhout, Reasons to believe pulsed
laser annealing o f Si does not involve simple thermal melting, Physics Letters A 74
(1979), 417.

T. Weiland, A discretization method fo r the solution o f maxwell’s equations for six-
component fields. Arch, fur Elektron. und Obertrag.tech. 31 (1977), 116.

K. Watanabe, Y. Ishizaka, E. Ohmura, and I. Miyamoto, Analysis o f laser ablation
process in semiconductor due to ultrashort pulsed laser with molecular dynamics sim
ulation, Proc. SPIE - Laser Applications in Microelectronic and Optoelectronic Man
ufacturing V, vol. 3933,2000, p. 46.

Y. Waseda and K. Suzuki, Structure o f molten silicon and germanium by x-ray diffrac
tion (and calculation o f resistivity and thermoelectric power), Z. Phys. B 20 (1975),
339.

L.V. Zhigilei and B J . Garrison, Mechanisms o f laser ablation from molecular dynam
ics simulations: dependence on the initial temperature and pulse duration, Appl. Phys.
A 69 (1999), S75.

 , Mesoscopic breathing sphere modelfor computer simulation o f laser ablation
and damage, Int. Conf. on Modeling and Sim. of Microsys., 1999, p. 138.

 Molecular dynamics simulation study o f the jluence dependence o f particle
yield and plume composition in laser desorption and ablation o f organic solids, Appl.
Phys. Lett 74 (1999), 1341.

 , Pressure waves in microscopic simulations o f laser ablation, Mat Res. Soc.
Proc., vol. 538,1999, p. 491.

 , Microscopic mechanisms o f laser ablation o f organic solids in the thermal
stress confinement irradiation regimes, J. of Appl. Phys. 8 8 (2000), 1281.

K. Zickfeld, M.E. Garcia, and K.H. Bennemann, Theoretical study o f the laser-induced
femtosecond dynamics o f small Si„ clusters, Phys. Rev. B 59 (1999), 13422.

M.I. Zeifman, BJ. Garrison, and Leonid V. Zhigilei, Combined molecular dynamics:
Direct simulation monte carlo computational study o f laser ablation plume evolution,
J. of Appl. Phys. 92 (2002), 2181.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[ZhaOl] Z. Zhang, Numerical simulation o f short-pulsed laser processing o f materials, Numer.
Heat Transf. A 40 (2001), 497.

[ZKG97] L.V. Zhigilei, P.B.S. Kodali, and B J . Garrison, Molecular dynamics model fo r laser
ablation and desorption o f organic solids, J. Phys. Chem. B 101 (1997), 2028.

[Zwa65] R. Zwanzig, Time-correlation functions and transport coefficients in statistical me
chanics, Annu. Rev. Phys. Chem. 16 (1965), 67.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Stillinger-Weber Force Calculation

In this section we present the detailed calculation of the force due to the Stillinger-Weber potential.

The force Fj acting on particle i due to the interaction with all other atoms is given by

2 vi(ru) + 2 hf a 7h 7k)
j< k

U&& 0
= 2 {-ViVi(ru)} + £ { -V M r h rj,rk)}

j j< k

= 2 4 ' + S Fijk
j j< k

OVO (jfrjci&i)

(A.1)

(A-2)

(A-3)

(A.4)

where rtj = |r,y| and

?... _ j?(0 4. S(*) 4 . j?(0r ,jk — r ijk -t- r jik -t- r Uj (A.5)

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Stillinger-Weber Force Calculation

is the force acting on particle n due to the interaction of particle i with its neighbouring particles

j and k.

For r-,j < a, the 2-body part of the force is:

Fii = -V,V2(/7;)

ra

| (Air"4-^ 2)

■|(A ir-4 -A 2)

(Air 4 - A 2)

+ ^ (A i r - 4 _ A 2) < , (, ! „) J f..
(r _a)2 e^ \ + [(-4Air_5)] nj

(£)*(r—a)2
+4Air'

(A.6)

(A.7)

(A.8)

(A.9)

(A. 10)

(A.ll)

The force acting on particle i due its neighbours j and k is given as follows:

B(0 _
t i jk ~ -V,ft(r;,ry,ri)

■v,{x“p(^)“p(^) K(cos0«+I)2}
- X V; {ujj U& CD?*}

- X {ViUij uik cofjk + uu V/Hjfc ©?•* + uu Uik Vfco?*}

(A-12)

(A.13)

(A. 14)

(A.15)

(A.16)

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Stillinger-Weber Force Calculation

with

uu = “<?«)=“pĜ y
Uik = u(?ik) — exp (—— j

\ r i k - a j

. „ 1 * . 1
(0 ijk — ® {.r ijir ik) — C O SVjik ^ — r[j • T[k “f" j

The gradient of Uij can be calculated as follows:

V;Uij =

Since

Y<y

(r , j - a) 2 U ijr i j

v t (|o - ' v | - a) = * fa ~ xi)2+ iy j - y i)2+ (zy - a)2+

y (■Xj-Xi)2 + iyj -y ,)2 + (z,- -z /)2 +

*<)2 + fry - ?i)2 + (z/ - Zi)2

= -2(xj- - Xj) x - 2{yj - y,) y - 2(z; - z,) j
2y/ {x j -x i)1 + (yj -y ;)2 + (z j - Z i)2

(A.17)

(A. 18)

(A. 19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A25)

(A.26)

(A.27)

(A.28)

776

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Stillinger-Weber Force Calculation

Similar for V,«^. For the gradient of the angular part we have:

v k w = ▼ , (* . * + !) - v ((3 t £)

= 2 [V < (^ ‘ F^) rU r* ~ V i(rU r *) (7t i ■

V .-far*) = (Virij)rik + r ij(V irik) = - r ikrij - r ij r ik

V tfij-? *) = ViixijXik+yijyuc+ZijZik)

= ^ :tv o o 'i t)y + ^ (2 0 ^)2

= (— - X i j) x + (- y u c - y u) y + { - Z i k - Z i j) z

= -nj-rm

Now substituting equations A.31 and A.36 into equation A.30 we get:

1

{ n j r i k f
1

(njrik)2
1

[(- r i j - rue) n j rue - (- rik r , j - r-tj ?&) (n j ■ rtt)]

rij -r^ r ik ^ _ ■ rtj r,y _
—------------------ + ------- — r fr - r x

L H jr ik n j rik n j m

7ik+
(njrikY

Now we can insert equations A. 17, A. 18, A.23, and A.39 into equation A. 15

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Stillinger-Weber Force Calculation

The force acting on particles j and k due to this interaction is given as follows:

Fijk = +v ih(7iJj,rk) (A.40)
\

= X { V / t ty UUc (0jJk + Uij Uik 2(S>ijk V y f f iy * } (A .4 1)

The gradient of the angular component is obtained in a similar fashion as before, except now r/* is

held constant:

- v#(v * + i) - v #(5c5t)

= (r^rik)2 F v f c ' 7*) rijruc ~ r* & j-7*)]
1

rij rtk .
1

-rik + - p ^ r ij(rij - r ik)
rijrik

r i j r ik

rij'Tik^ _
- J 2— n j- r *

(A.42)

(A.43)

(A.44)

(A.45)

Inserting eqn. A.45 into A.41 we get:

pU)
ijk “ I
?(*) _

' i j k = X

(V/tty) Uik ®ijk +

| t t y (V / t t a) c o ^ +

2 , 2 (tijjk U ij Ujk

rijTik

2(0ijk U jj Ujk

r^rik

r i j - r tk _ _
y rU rik

rij-rik-. -
_2 rik rU
Hk J

(A.46)

(A.47)

We can perform a simple check to see that we didn’t make a mistake: We know that the forces must

add up to zero, so

F u l + F $ + F H k = 0 (A .4 8)

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Stillinger-Weber Force Calculation

and indeed we find that this is the case.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Thermal Conductivity from MD

Simulation

The heat flow equation for a 1-D system (or a 3-D system that is infinite in two dimensions) is:

3T 3 (*T \
= <BJ)

where p is the density, cy is the specific heat (at constant volume), K is the thermal conductivity, and

T = T(z,t) is the temperature, z and t are the independent variables in space and time, respectively.

Let us have constant boundary conditions:

T(0,t) = To

T{L,t) = T0 (B-2)

r(x,0) = To+f(x)

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B Thermal Conductivity from MD Simulation

To simplify the following derivation, we shall choose 7o = 0. Later it will be trivial to set To to an

arbitrary value and adjust the solution accordingly. If the heat conductivity is constant in space (and

time), we can write:

4 ? = 5 <N»a 2 dt dz2

where the quantity a 2 is the thermal diffusivity and is defined by:

, Ka 2 = ----- (B.4)
P cv

Assuming that the temperature can be written as a product of a function of z only and a function of

t only, we write:

T(z,t) = Tz(z)T,(t) (B.5)

substituting this into equation B.3 we get:

T/f | *TV
■=r = -T ■=■ = - c (B.6)Tx a2 T,

where the primes indicate ordinary differentiation with respect to the independent variable (x or r).

Since equation B.6 must be valid for 0 < x < L and t > 0, a is a constant (it turns out that, given the

boundary conditions, a > 0 [BD97]). Thus we can separate equation B.6 into a system of equations

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B Thermal Conductivity from MD Simulation

as follows:

r " + csTx = 0 (B.7)

r / + a 2CT7J = 0 (B.8)

The general solution to eq. B.7 and B.8 are

Tx(x) = £1 cos (a2ox) + i^sin (a2or) (B.9)

T,{t) = C exp (-a 2or) (B.10)

Where k\, ki, and Ct are constants. Substituting the boundary conditions, we find that

i f c i = 0 (B.ll)

a = (mt/L)2, 71 = 1,2,3,... (B.12)

Now multiplying equations B.9 and B.10 gives:

T„(x,t) = C„sin e x p ^ -” ^ ^ (B.13)

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B Thermal Conductivity from MD Simulation

The differential equation B.3 and the boundary conditions (eqns. B.2) are linear and homogeneous,

thus by the principle of superposition, we find that:

T(x,t) = T0 + J) T„(x,t) = T0 + 2 Ci sin (B.14)

The coefficients C„ are determined from the boundary conditions.

Now we shall choose a convenient initial temperature profile to determine the thermal conduc

tivity K. For this we use

T(jc,0) = A T s i n (^) (B.15)

such that the coefficients C„ are zero for all n with the exception of Ci, which is non-zero and

denoted as A T . The temporal evolution of the profile is then given by:

T{x,t) = T0 + A T sin exP (- ^ £ 2) (B’16^

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Figures

C.1 Removed particles over time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.1 Removed particles over time

12

■ 60
40

•20

10

8

6

4

2

0
0 5 1510 20 25 30

Time [ps]

Figure C.1: Count of ablated atoms and electrons (inset) for 50 fs laser pulse (1/e) with a fluence of
0.10 J/cm2 (X = 800nm). The laser pulse starts at / = 1 ps with peak intensity at t = 1.05ps

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.l Removed particles over time

450
100

400

350

300

250
1.2 1.4

200

150

1 0 0

50

0
0 5 10 15 20 25 30

Time [ps]

figure C.2: Count of ablated atoms and electrons (inset) for 100 fs laser pulse (1/e) with a fluence
of 0.16 J/cm2 (X = 800 nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1.1 ps

726

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.1 Removed particles over time

1400 80
60
40
20

1200

1000

800c
3oo 600

400

200

0 5 10 15 20 25 30
Time [ps]

Figure C.3: Count of ablated atoms and electrons (inset) for 200 fs laser pulse (1/e) with a fluence
of 0.24 J/cm2 (X = 800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1.2ps

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C. 1 Removed panicles over time

3

2.5

2

1.5

1
5 10 15 20 25 30

Time [ps]

Figure C.4: Count of ablated atoms and electrons (inset) for 400 fs laser pulse (1/e) with a fluence
of 0.30 J/cm2 (X = 800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1 .4ps

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures _ C.2 Ablation sequences

C.2 Ablation sequences

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

Figure C.5: Ablation sequence for 50 fs laser pulse (1/e) with a fluence of 0.08 J/cm2 (X = 800nm).
The laser pulse starts at t = 1 ps with peak intensity at t = 1.05 ps

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

5 .0 i

U 2 .5

£5 nm

0 .8 0 ps 2 .2 0 ps 4 .0 0 ps 6 .8 0 ps 10 .40 ps 14 .80 ps 2 0 .0 0 ps
zesssssssa asaBBgggga waggaBBai mmmm asssssaaa xaeaoooco* mowomw

Figure C.6 : Ablation sequence for 50 fs laser pulse (1/e) with a fluence of 0.10 J/cm2 (A. = 800nm).
The laser pulse starts at t = 1 ps with peak intensity at t = 1.05 ps

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

6.5 _

!_ 6.0
V

-9 5 .5
t ^
3 5 .0
Z
C 4 .5
O

4-.0
(0
£ 3 .5

O 3 .0
O
U 2 .5

2.0

| 5 nm

0 .6 0 ps 2 .00 ps 3 .6 0 ps 6 .00 ps 9 .00 ps 12.40 ps 16.80 ps
■ooooooaooa ^miwwan OOQCPQoaBq

Figure C.7: Ablation sequence for 100 fs laser pulse (1/e) with a fluence of 0.13 J/cm2 (A. = 800nm).
The laser pulse starts at t = 1 ps with peak intensity at t = 1.1 ps

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

iii fS
H ™ ** •

6 .

1. 5.
a>
t 5 '
3 5.
Z
C 4.
O
4-1 4 .
(O
£ 3 .

1 * .

8 2 .

2 .

5 .

0

5

0

5

0

5

0

5

0

| nm

3 .8 0 ps 5 .8 0 ps 9 .6 0 ps 15.20 ps 19.00 ps 22 .80 ps 28.40 ps

Figure C.8: Ablation sequence for 100 fs laser pulse (1/e) with a fluence of 0.16 J/cm2 (A. = 800 nm).
The laser pulse starts at t — 1 ps with peak intensity at t = 1.1 ps

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

Figure C.9: Ablation sequence for 200 fs laser pulse (1/e) with a fluence of 0.20 J/cm2 (X = 800 nm).
The laser pulse starts at t = 1 ps with peak intensity at t = 1.2ps

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

Figure C.10: Ablation sequence for 200 fs laser pulse (1/e) with a fluence of 0.24 J/cm2 (X =
800nm). The laser pulse starts at / = 1 ps with peak intensity at t = 1.2ps

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

6.5 _

u. 5.0 L
® .

-Q 5 .5
E &
3 5 .0
Z
C 4 .5
O
j-> 4 .0
(0
£ 5 .5 XJ
o 3 .0
o
u 2 .5

2.0

0 .8 0 ps 2 .6 0 ps 5 .0 0 ps 8 .60 ps 13.40 ps 19.20 ps 26.40 ps
agmaaa ssssseassa wm bw mmuumaxi waesem

| nm

Figure C .l l : Ablation sequence for 400 fs laser pulse (1/e) with a fluence of 022 J/cm2 (X ;
800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1.4ps

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

6.5

5.0

■Q 5 .5

3 5 .0
Z
C 4 .5
O
.u 4 .0
<0
£ 5 .5

o 3 .0

U 2 .5

2.0

0 .60 ps 1.40 ps 2 .40 ps 3 .6 0 ps 5 .4 0 ps 7 .0 0 ps 9 .2 0 ps
sssssssssst sggaaaasa ssssssssm ssssssessa xsssaaaasa assassessa fsassusost

j s n m

Figure C.12: Ablation sequence for 400 fs laser pulse (1/e) with a fluence of 0.26 J/cm2 (X :
800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1.4ps

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

Figure C.13: Ablation sequence for 400 fs laser pulse (1/e) with a fluence of 0.30 J/cm2 (X =
800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1.4ps

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

6 . 0 i

0 .8 0 ps 2 .0 0 ps 3 .8 0 ps 6 .40 ps 9 .60 ps 13.80 ps 18.60 ps----------------------------------- lag---------- -----------

Figure C.14: Ablation sequence for 800 fs laser pulse (1/e) with a fluence of 0.36 J/cm2 (X :
800nm). The laser pulse starts at t = 1 ps with peak intensity at t = 1.8ps

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Figures C.2 Ablation sequences

Figure C.15: Ablation sequence for 800 fs laser pulse (1/e) with a fluence of 0.50 J/cm2 (X =
800nm). The laser pulse starts a t / = lp s with peak intensity at t = 1.8ps

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Simulation Code

D .l Parameter File

The parameters for a given simulation run are specified in a file. The syntax is “ (variable) =

(value)”, with at most one such definition per line. The order of the variables is not important

The pound sign (#) is used for comments, the remainder of the line following a pound sign is ig

nored.

-- parameters---
1 #
2 # S im ulation Parameters
3 #

4 # *** general sim u lation param eters ****
S TEMPERATURE = 300 # s ta r t in g bulk tem perature (K)
6 TIMESTEP = 1 # leng th of time s te p (fs)
7 TOTALTIME = 5000 # maximum time (fs)
8 lastEquilibTim e = 0 # no e q u ilib ra tio n a f t e r th is tim e (fs)
9 XSTP = 0.3 # atoms: maximum change in p o s it io n p er s te p (A)

10 EXSTP = 1 # e le c tro n s : maximum change in p o s it io n p e r s te p (A)
11 speedup_l_t = 20001 # t : change tim estep to d t a t tim e t
12 speedup_l_dt = 2 # d t: change tim estep to d t a t tim e t
13 speedup_2_t = 22000 # t : change tim estep to d t a t tim e t
14 speedup_2_dt = 3 # d t: change tim estep to d t a t tim e t

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D .l Parameter File

15 VARIABLEJTIMESTEP = 0 # l=dynamically a d ju s t tim esteps, 0=const d t

16 # *** la s e r param eters ***
17 LWAVLEN =760 # Laser wavelength (nm)
18 LPULSLEN = 200 # pulse leng th (1/e) (fs)
19 LEngDen = 0 .1 0 # la s e r pu lse energy d en s ity (J/cm2)
20 LSSHAPE = 0 # s p a t ia l shape (0=uniform, l=gaussian)
21 LFOCUSDIA = 25 # la s e r focus diam eter (1 /e Gauss) (A)
22 LAS_0N = 100 # la s e r on a f te r t (fs)

23 # *** S ilic o n param eters ***
24 MASS = 28.0855 # mass (amu)
25 SPACE = 5.43095 f leng th o f u n it c e l l a t OK (a t 300K: 5.430949) (A)
26 LATTICE_TYPE = DIA100 # l a t t i c e s tru c tu re (dial00=diamond w ith 100 surface)
27 LATTICE_FILE = atompos.xyz # l a t t i c e s tru c tu re (dial00=diamond w ith 100 surface)
28 DEBYE = 645 # debye tem perature (K)
29 OVERJUEIGH = 1 # a d ju s t absorp tion to s iz e of ta rg e t
30 NUMXYM = 5 # number o f atom lay ers in X and Y d ire c tio n
31 NDMZM = 50 # number of atom lay ers in Z d ire c tio n
32 FIXED_GROUND = 0 # 0 = no; 1 = yes
33 DIST_FIX = 0 # bottom la y e r in which atoms a re f ix ed (A)
34 DISTJ3MP = 50 # th ickness of upper rim where atoms a re damped (A)
35 INCL_HF = 1 # couple to 1-D heatflow model (req u ires DISTJDMP>0)
36 SiLIFET = 1000 # life t im e of exc ited ’s ta te * (1/e) (fs)
37 SilONPOT = 4 .8 5 # work function fo r s i l ic o n (eV)
38 IONRECOM = 500 # Ion recombination time (1/e) (fs)
39 ABS_COEF = 3500 # l in e a r absorp tion c o e f f ic ie n t (1/cm)
40 ABS_COEFtwo = 55 1 two-photon absorp tion c o e f f ic ie n t (cm/GW)
41 T_ELEC = 6000 # average e lec tro n temp. (Kelvin)
42 EL_STEP = 50 # number o f e lec tro n -tim estep s p er atam -tim estep
43 INIT_SPEED_ELEC = 2 5 # i n i t i a l speed of e le c tro n s (A/fs)

44 # *** P o te n tia l param eters ***
45 CLRC = 20 # cu t o ff length (A) fo r Coulomb p o te n tia l
46 incl_Coulamb = 0 # include Coulomb p o te n tia l (l=yes,0=no)
47 incl_SW = 1 # include S tillinger-W eber p o te n tia l (l=yes,0=no)
48 SW_inclBreakBonds = 0 # include breaking bonds (l=yes, 0=no)
49 incl_LJ = 0 # include Lennard-Jones p o te n t ia l (l=yes,0=no)
50 LJcutoff = 10 # c u t-o f f leng th (A) fo r Lennard-Jones p o t.
51 in c lE lec tro n s = 0 # gen. e lec tro n from io n iz a tio n process (l=yes,0=no)

52 # * * * co n tro l param eters ***
53 SAVE_AT = 5 f frequency a t which to save sim (fs)
54 SAVE_SCALE_AT = 200000 # sc a le save frequency a t th is time (fs)
55 SAVE_SCALE_BY = 2 # s c a le save frequency by th is amount
56 STATS_START_AT = 0 # (fs)
57 STATS_SAVE_AT = 10 # in te rv a l o f saving s t a t s (fs)
58 STATS_COLLECT_TIME = 10 f tim e over which to c o l le c t s t a t s (fs)
59 PRT_INFO = 1 # p r in t in fo to f i l e s lo c a t.a tm & im port.cnst
60 track_atom = -1 # ID o f p a r t ic le to tra c k (neg = none)
61 LOAD_BALANCE_FREQ = 0 # load-balancing in te rv a ls (0=no load balancing)
62 SW_LOOKUP_TABLE = 0 # use lookup ta b le fo r SW p o te n tia l (l=yes,0=no)

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.2 Compiling the program

a LOAD_SIM = 0 # 0=new sim, l=continue, 2=use save.n as s ta r t
6* # in order to continue a run,
65 # the old "simt“ and "save.n" must ex ist!

D.2 Compiling the program

The compilation process is fairly straight forward. A Makefile1 is provided, which depending on

the target architecture may need to be modified to accommodate the specific compiler. A directory

called “Config” contains the architecture specific instructions for the building process. Currently

various unix-type platforms are supported (e.g. Linux/1386, SGI Irix/Origin, Sun Solaris/Sparc,

etc...). The name of the compiler and the compiler options/flags are given in these target spe

cific configuration files. Before compiling the code, some environment variables must be set to

tell ’make’ which compiler settings to use. For compiling on a Linux/i366 system, the following

commands can be used to set the environment (in BASH2):

MACHTYPE=i3 86
VENDOR=intel
OSTYPE=linux
export MACHTYPE VENDOR OSTYPE

For convenience, these commands should be added to the ~/ .bashrc file, make will then look

for a file . /Config/$MACHTYPE-$VENDOR-$OSTYPE. c f After setting the environment variables and

editing the platform specific configuration file (if necessary), the simulation program can be built as

follows:

1 Makefile: A script which tells the Unix program “make” how to build a particular computer program.
2BASH (Boume-Again SHell) is a popular command language interpreter

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.2 Compiling the program

make d is tc le a n
make depend
make

The first command (make d is tc le a n) will remove all object files to provide a clean start for the

compilation process, make depend builds the dependency structure. The last one, make compiles

the source and builds the simulation program. If changes are made to the code, only the last com

mand needs to be re-executed.

In order to run the program on muliple processors, using MPI, the specify “yes” on line 26

of the M akefile (see below). This requires an MPI compiler to be installed on the target system.

The file . /Conf ig/M akef i l e .mpi may need to be modified to specify the desired compiler. A

free MPI implementation (MPICH) for Microsoft Windows or Unix-type systems is available from

http:/Avww-unix.mcs.anLgov/mpi/mpich/.

D.2.1 The Makefile
Makefile

t #
2 #
3 #

$Id: M akefile, v 1.105 2004/08/26 22:02:59 roman Exp $

4 #

5 #
« #
7 *
s #
9 #

0 »

Where i s our p ro je c t s itu a te d ?
I f you copy th e whole source tr e e $PWD seems
to be a good id e a . However, sometimes a f ix
path i s a lso good.

TOP
CONFDIR

$(PWD)
$(TOP)/Config

#
#
#
Answer the follow ing w ith "yes* o r "no".

17 # Note th a t th e answers a re n o t independent from
it # each o th e r, s ince e .g . some systems do not
19 # allow o tim izing and debugging a t the same time!
20 # BE CAREFUL WITH EXTRA SPACE AT "yes" OR "no"!

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.2 Compiling the program

21 #
22 WARN_MODE := yes
23 OPTIMIZE_MODE := yes
24 DEBUG J10DE := no
25 PROFILE_MODE := no

26 MPIJ40DE := no

27 #

28 #

29 #

30 # Now comes what we want to build.
31 #
32 SRCS = input.cc laser.cc laser_on.cc silicon.cc potentl.ccN
33 o u tp u t.cc ca lc_ p ar.cc g e t_ p ar.c c e le c tro n .c c \
3« i n i t . c c diamond.cc fc c .c c b cc .c c s c .c c L a t t ic e .c c \
35 load _ d at.cc e le c _ fc t .c c \
36 k ic k .c c b a th .c c fo rc e s .c c p r t_ r s l t . c c g e a r .c c t r a c k .c c \
37 main.cc utility.cc\
38 S ta te .c c Boxes.cc C o lo rs.cc DataG rid.cc S ta t i s t i c s .c c T ra n sp o rt.c c \
39 KeatFlow.cc Random.cc\
40 ForceTable.cc ForceTableSW.cc StopWatch.cc
41 SRCS_MPI = Communicator.cc P acket.cc PacketForce.cc

42 OBJS = input.o laser.o laser_on.o silicon.o potentl.o\
43 ou tp u t.o ca lc_par.o g e t_par.o e le c tro n .o \
44 i n i t . o diamond.o fc c .o bcc .o s c .o L a t t ic e .o \
45 loaeLdat.o elec_fct.o\
46 kick.o bath.o forces.o prt_rslt.o gear.o track.o\
47 main.o u t i l i t y . o \
48 S ta te .o Boxes.o C olors.o D ataG rid.o S ta t i s t i c s .o T ran sp o rt.o \
49 HeatFlow.o Random.o\
so ForceTable.o ForceTableSW.o Stopwatch.o
si OBJS_NPI = Communicator.o Packet.o PacketForce.o

52 PROG = sim

53 #DEPENDINCLODE = -I/u s r/in c lu d e /g + + -v 3 /

54 #

55 #

56 #

57 # Now we a re determ ining our "platform *.
58 # For th is we use th e environment v a r ia b le s MACHTYPE,
59 # VENDOR, and OSTYPE. These v a r ia b le s a re p redefined
60 # the tc sh . I f you do not have the tc sh you should s e t
61 # these environment v a r ia b le s by hand.
62 #

63 # Each "platform " (i . e . = $ (MACHTYPE)- $ (VENDOR)-$ (OSTYPE))
64 # may o f fe r se v e ra l com pilers. I f you do n o t spec ify

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.2 Compiling the program

63 # the V ariab le CS ("com pilation system") a d e fa u lt
66 # value i s s e t .
67 #

68 cs : =

69 #

70 #

71 include $ (C0NFDIR)/ $ (MACHTYPE)- $ (VENDOR)- $ (OSTYPE).cf
72 i fe q ($ (MPI_MODE),y e s)
73 inc lude $(C0NFDIR)/Makefile.mpi
74 - in c lu d e $ (C0NFDIR)/ $ (MACHTYPE)- $ (VENDOR)-$ (OSTYPE)- $ (CS)
75 e lse
76 inc lude $ (C0NFDIR)/ $ (MACHTYPE)- $ (VENDOR)- $ (OSTYPE)
77 ex traF lags := $(CXXFLAGS)
78 CPPFLAGS += $ (ex traF lags)
79 #CPPFLAGS += $ (CXXFLAGS)
80 CXXFLAGS =
81 end if

82 i f e q ($ (MPI_M0DE),no)
83 CPPFLAGS += -DSIM_WITH_MPI=0
84 end if

85 i f e q ($ (MPI_M0DE) , y e s)
86 SRCS += $(SRCS_MPI)
87 OBJS += $(0BJS_MPI)
88 endif

89 #LDOPTIONS += -v

90 #

92 #
93 # Here are the rules. Do not edit!
94 #
93 ##

96 all: $(PR0G)

97 $(PR0G): $ (OBJS)
98 $(RH) $@
99 $(LD) $(LD0PTI0NS) -o $0 ${0BJS) $(LDLIBS)
too @echo *"
101 eecho "$(WARNINGS)"
102 @echo *"

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.2 Compiling the program

103 depend:
104 $ (DEPEND) $ (DEPENDINCLUDE) $ (DEPENDSTRING) $(DEPENDFLAGS) — $(SRCS)

105 doc:
106 doxygen doxygen.config

107 in fo :
108 ©echo "some info"
109 ©echo •MACHTYPE = $ (MACHTYPE)"
no 8 echo •VENDOR = $ (VENDOR)"
111 ©echo "OSTYPE = $ (OSTYPE)"
112 ©echo "CS = $(CS)"
113 ©echo "CC = $(CC)"
114 8 echo "CPP = $(CPP)"
115 8 echo "CXX = $(CXX)"
116 8echo "DEPEND = $ (DEPEND)"
117 8echo ■DEPENDSTRING = $ (DEPENDSTRING)*
118 8echo * DEPENDINCLUDE = $ (DEPENDINCLDDE)
119 ©echo "DEPENDFLAGS = $(DEPENDFLAGS)"
120 8 echo "CPPFLAGS = $ (CPPFLAGS)"
121 8echo ■CXXFLAGS = $ (CXXFLAGS)"
122 8echo "CCFLAGS = $(CCFLAGS)"
123 ©echo "CFLAGS = $(CFLAGS)"
124 6echo "LDOPTIONS = $(LD0PTI0NS)*
125 ©echo "LDLIBS = $(LDLIBS)"
126 ©echo "LDFLAGS = $(LDFLAGS)"
127 ©echo " th a t 's a l l fo lks!"

128 ###
129 # D efault ru le s fo r each M akefile
130 #
131 c le a n : :
132 $ (RM)
133 $ (RM)

134 d is tc le a n : clean
135 $ (RM)

136 again : c lean a l l

137 ###

138 # DO NOT DELETE THIS LINE — makedepend depends on i t .

* -o core
- r i i _ f i l e s

$(PR0G)

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.3 Running the program

D.3 Running the program

After (successful) compilation, there will be a file called sim in the source directory. Simply ex

ecute that executable to run the simulation. The run can be stopped or paused by editing the file

BREAK.prg. The simulation checks this file on every loop, if the first character is an “n”, then the

program is continued. To stop the program, set the first character in this file to “y”. The simulation

can be paused by changing the first character to “s”, followed by a number specifying the time to

sleep before rechecking the file. These tasks are automated with by the executable scripts stop ,

pause, and resume.

To run the program in MPI-mode, the executable sim, the parameter file, and the file BREAK. inp

need to be available on each node (or accessable via a networked filesystem). Create a file named

machines listing the host names of the nodes, one per line (not necessary on the supercomputer3).

Then the simulation is started with the command

| mpirun -np <NumProc> -m ach in efile machines sim

where <NumProc> is an integer specifying the number of processors (nodes) to be used. More

detailed information can be found on the MPICH website or the mpi help file (invoked by the

command man mpi on Unix-type systems).

D.4 File listing

3The simulations were mainly run on SGI Origin machines provided by WestGrid
(http://viMw.ualberta.ca/CNS/RESEARCH/WestGrid/)

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://viMw.ualberta.ca/CNS/RESEARCH/WestGrid/

D Simulation Code D.4 File listing

File Description

Boxes.cc, Boxes.h data structure for cell subdivision (sec 3.2.3)

Colors.cc, Colors.h defines some colors for debugging MPI output (different

color for different processes)

Communicator.cc, Communi-

cator.h

MPI Interprocess communication

DataGrid.cc, DataGrid-h data structure for storing 1-D, 2-D, or 3-D data

ForceTable.cc, ForceTable.h lookup table for particle interaction force and potential

ForceTableSW.cc, ForceTa-

bleSW.h

lookup table for Stillinger-Weber force and potential

HeatFlow.cc, HeatFlow.h 1-D heat flow model (with and without electrons or energy

buffer)

Lattice.cc, Lattice.h subroutines to arrange particles into a lattice (e.g. SC, BCC,

FCC, diamond)

Packetcc, Packet.h data structure for sending particle information between pro

cesses (MPI)

PacketForce.cc, Packet- data structure for sending particle information between pro

Force.h cesses (MPI). This packs just the forces acting across the

node boundaries.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

File Description

Random.cc, Random.h A random number generator (uniform or gaussian distribu

tions)

State.cc, State.h data structure that holds the particles

Statistics.cc, Statistics.h data structure and subroutines for averaging temperature

and pressure over given periods of (simulation) time

StopWatch.cc, StopWatch.h a utility to measure time for benchmarking (only wall time

for now)

Transport.cc, TransporLh subroutines to measure transport coefficients

bath.cc, bath.h subroutines for damping particles (sec. 4.1)

bcc.cc, bcc.h subroutines for making BCC lattices

calc_par.cc, calc_par.h calculate further parameters from input parameters

diamond.cc, diamond.h subroutines for making diamond lattices

elec_fct.cc, elec_fct.h subroutines for handling electrons: ionization, recombina

tion

electron.cc, electron.h global variables (constants) related to electrons

fcc.cc, fcc.h subroutines for making FCC lattices

forces.cc, forces.h subroutines for interparticle force and potential computation

gear.cc, gearJi integration routine: Gear’s predictor-corrector method

(sec. 3.2.2)

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

File Description

get_par.cc, get_par.h subroutines for reading parameters from file

init.cc, init.h initialization routines: position, velocity (temperature)

input.cc, input.h definition o f input variables

kick.cc, kick.h subroutines for giving energy to atom after decay or neu

tralization

laser.cc, laser.h definition of laser related variables

laser.on.cc, laser.on.h subroutines for simulating the laser pulse (sec. 5.2.1)

load_dat.cc, loadLdath subroutine for loading simulation from file (after saving at

check-points)

main.cc contains the main simulation loop and subroutines for set

ting up the simulation

output.cc, outputh definition of variables related to saving o f simulation data:

file names, intervals, etc.

potentl.cc, potentl.h definition of Stillinger-Weber potential parameters

prt_rslt.cc, prt_rslt.h subroutines for printing simulation results and check-points

(full state of simulation) to files (and terminal).

sc.cc, sc.h subroutines for making SC lattices

silicon.cc, silicon.h variable definitions of silicon parameters

track.cc, track.h subroutines for tracking information on specified particle

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

File Description

utility.cc, utility.h miscellaneous utility subroutines

Array2D.h data structure for 2-D data

Params.h data structure for storing simulation parameters

Vector3D.h data structure for storing and manipulating 3-D vector data

arch.h architecture specific preprocessor commands

consch global constants and preprocessor definitions

mympi.h simply includes the system’s mpi++ header (had to hack the

system file on the SGI machine to get my code to compile

properly, this is no longer necessary)

physics.h defines physical constants and conversion factors

The following sections present parts of the simulation code. Some of the “uninteresting” portions

of the code have been removed (e.g. file I/O, debugging code, etc.).

D.4.1 Main Loop
---main.cc---

1 /** \ f i l e main.c
2 \author R.Hermann R.Holenstein
3 Vdate March 1995 - August 1996, 2002-2004

4 Vbrief Simulation of Ablation of Silicon
s * /

6 ((include "const.h"

7 ((include <stdio.h>
8 ((include <math.h>
9 ((include <stdlib.h>

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

10 ((include <sys/types.h>
11 #include <unistd.h>
12 ((include <time.h>
13 #include <string.h>
14 ft include <iostream>
15 #include <iomanip>
16 #include <sstream>
17 ((include <cassert>

18 ff include *Boxes.h"
19 #include "State.h"
20 ((include "Params.h"
21 ((include *calc_par.h"
22 ((include "electron.h"
23 ((include "elec_fct.h*
24 ((include "forces.h"
25 ((include "gear.h*
26 ((include "get_par.h"
27 ((include "in it.h*
28 ((include •input.h"
29 ((include "kick.h*
30 ((include "bath.h"
31 ((include ’ la se r , h"
32 ((include *laser_on.h"
33 ^include "loacLdat.h"
34 ((include ’output.h*
35 ((include "potentl.h*
36 ((include •p rt_ rs lt.h "
37 #include •silicon .h"
38 #include ■ track.h*
39 ((include "S ta tis tic s .h "
40 ((include "HeatFlow.h"
41 ((include "Random.h"
42 #include "u tility .h "
43 ((include "ForceTableSW.h"

44 using namespace std ;

45 ((define MINI_SIM 0

46 f i f SIM_WITH_MPI
47 # include "Communicator.h"
48 (t include ’Packet.h"
49 (tendif

50 const double Math::PI = 4*atan(1.0)

51 # if WITH_COLORS
52 #include •Colors.h"
53 lendif

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

54 v o i d printTime(tirae_t start_time, time_t finish_time);
55 int initialize_atoms Idoubles time_start, Boxess pBoxes);
56 int check_break();
57 int startSimO;
58 void checkTimeSteps(double aStepSq, double eStepSg);
5» int testRandomO;

60 char firstarg[100] ;
61 void showHelpO
62 {
6j cout « “Osage: * « firstarg
64 « “ [-h]"
65 « * [-seed myseed)"
66 « ’ [-seed2 myseed2]“
67 « " [-testHF]"
68 « ’ [-testRand]’
69 « * [-testDamp]*
70 « * [-testsw table] “
71 « “ [-genSWtable]"
72 « “ [-getLattEng]"
73 « * [-restart]’
74 « “ [-thermal]"
75 « ■ [-dmpTop]"
76 « " [-fixTop]"
77 « " [-fixPressure]’
78 « endl;
79 }

so # if sm_WITH_MPI
si Communicator* comPtr;
82 #endif

83 HeatFlow* hfP tr = 0;

84 bool testLaser = fa lse ;
85 bool testHeatFlow = fa lse ;
86 bool testRand = fa lse ;
87 bool testDamp = fa lse ;
88 bool te s t ln t = fa lse ;
89 bool testsw table = fa lse ;
90 bool genSWtable = fa lse ;
91 bool restartSim = false ;
92 bool getHeatCap = false ;
93 bool getHeatCond = fa lse ;
94 bool getLattEng = fa lse ;
95 bool fixTop = fa lse ;
96 bool dmpTop = fa lse ;
97 bool fixPressure = fa lse ;
98 bool mapPotSurf = fa lse ;
99 in t potSurfMapResX = 20;

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

100 int potSurfMapResY = 20;
101 int potSurfMapResZ = 1;

102 void printProglnfo!)
10} (
10» cout « *=== HMDS LA 2 ===* « endl;
105 cout « * compiled: " « _DATE__
106 # ifdef GCC_VERSION
107 « " (gcc * « GCC_VERSION « ■) *
los # endif
109 « endl;
110 cout « " binary representation: " « BINARY_REPRESENTATI0N « endl;
in cout « endl « endl;
112 }

U3 int maintint argc, char** argv)
114 {
115 int code;
U6 time_t start_time, finish_time;

117 # if SIM_WITH_MPI
us Communicator com(argc, argv);
119 comPtr = Scorn;
120 # if WITH_C0L0RS
121 MY_COLOR = Colors::color[com.getId()%(Colors::numColors-2)+2];
122 # endif

123 if (com.getldO == 0)
124 printProglnfo ();

125 cout « SET_COLOR « "process * « com.getldO
126 « ’ on " « com.getProcessorNameO
127 « ’ started* « RESET_COLOR « endl;
128 # else
129 printProglnfo () ;
130 # endif

131 start_time = time(0);

132 { // write process id to file
133 pid_t procID = getpidO;
134 of stream f out (’ pid*);
135 fout « procID « " * « argvtO] « " started at * « start_time « endl;
136 }

137 int seedl = 17;
138 int seed2 = 1000;

139 // parse command line arguments
140 stmcpy(firstarg, argv[0], 100);
141 for (int i = 1; i < argc; ++i I {
142 if (argv[i] = 0) continue;

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

143 //cout « "arg[" « i « *] = * « argvfi] « endl;
144 if (0 == strcmpt argvfi], '-h') ||
14$ 0 == strcmpt argvfi], '-help*) ||
146 0 == strcmpt argvfi], '— help*)) { showHelpt); return 0; }
147 else if (0 == strcmpt argv[i], '-seed')) sscanf(argv[++i],"%d',&seedl);
148 else if (0 == strcmpt argvfi], '-seed2*)) sscanf(argv[++i],"%d",&seed2);
149 else if (0 == strcmpt argv[i], '-testHF')) testHeatFlow = true;
iso else if (0 == strcmpt argvfi], '-testLaser*)) testLaser = true;
i$i else if (0 == strcmpt argvfi], '-testRand')) testRand = true;
152 else if t 0 == strcmpt argvfi], '-testDamp' }) testDamp = true;
153 else if (0 == strcmpt argv[i], '-testlnt")) testlnt = true;
154 e lse i f (0 == strcm pt a rg v f i] , '- te s ts w ta b le ')) te s tsw ta b le = tru e ;
155 else if (0 == strcmpt argvfi], '-genSWtable')) genSWtable = true;
156 else if (0 == strcmpt argv[i], "-getLattEng")) getLattEng = true;
157 else if (0 == strcmpt argvfi], "-restart")) restartSim = true;
158 else if (0 == strcmpt argvfi], '-heatCap")) getHeatCap = true;
159 else if t 0 == strcmpt argv[i], '-heatCond')) getHeatCond = true;
160 else if (0 == strcmpt argv[i], '-dmpTop")) dmpTop = true;
■61 else if (0 == strcmpt argv[i], '-fixTop')) fixTop = true;
162 else if (0 == strcmpt argvfi], '-fixPressure')) fixPressure = true;
163 else if (0 == strcmpt argvfi], '-mapPotSurf')) mapPotSurf = true;
164 else if (0 == strcmpt argvfi], '-potSurfRes')) {
16$ mapPotSurf = true;
166 sscanf targv[++i], "%d,%d,%d",
167 &potSurfMapResX,SpotSurfMapResY,&potSurfMapResZ);
168 }
169 else (
no //printft "no arguments provided, using defaults\n");
171 }
172 }

173 # if SIM_WITH_MPI

174 bool mpiStatus = true;
17$ mpiStatus &= ! MPI.Bcast (&seedl, 1, MPI_INT, 0, MPI_C0MM_W0RLD);
176 mpiStatus &= ! MPI_Bcast (&seed2, 1, MPI_INT, 0, MPI_COMM_WORLD);

177 char arg;

178 arg = (char) testLaser ;
179 mpiStatus &= ! MPI_Bcast (&arg, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
iso testLaser = (bool) arg;

181 arg = (char) testHeatFlow;
182 mpiStatus &= ! MPI_Bcast (iarg, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
183 testHeatFlow = (bool)arg;

184 arg = (char) testRand ;
185 mpiStatus &= ! MPI_Bcast (&arg, 1, MPI_CHAR, 0, MPI_COMH_WORLD);
186 testRand = (bool) arg;

187 a rg = (char) testDamp;

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code DA File listing

188 m piStatus &= ! HPI.Bcast (&arg, 1, MPI_CHAR, 0, MPI_C0MM_W0RLD);
189 testDamp = (bool)arg ;

190 a rg = (c h a r) te s t ln t ;
191 m piStatus &= ! MPI_Bcast (&arg, 1. MPI_CHAR, 0, MPI_C0MM_W0RLD);
192 t e s t l n t = (bool)arg ;

193 a rg = (ch a r) te s tsw tab le ;
194 m piStatus &= ! MPI_Bcast (&arg, 1, MPI_CHAR, 0, MPI_C0MM_W0RLD);
195 te s tsw ta b le = (bool)arg ;

196 a rg = (char)genSWtable;
197 m piStatus &= ! MPI_Bcast (&arg, 1, MPIJCHAR, 0. MPI_COMH_WORLD) ;
198 genSWtable = (bool)arg ;

199 a rg = (char)getLattEng;
200 m piStatus &= ! MPI_Bcast (&arg, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
201 getLattEng = (boo l)arg ;

202 a rg = (char)getHeatCap;
203 m piStatus &= ! MPI_Bcast (&arg, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
204 getHeatCap = (bool)arg ;

205 a rg = (char)getHeatCond;
206 m piStatus &= ! MPI_Bcast (&arg, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
207 getHeatCond = (boo l)arg ;

208 a rg = (char)dmpTop;
209 m piStatus &= ! MPI_Bcast (&arg, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
210 dmpTop = (bool)arg ;

211 a rg = (char)fixTop;
212 m piStatus &= ! MPI_Bcast (&arg, 1, MPI_CHAR, 0, MPI_COKM_WORLD) ;
213 fixTop = (bool)arg ;

214 a rg = (ch a r)fix P ressu re ;
215 m piStatus &= ! HPI_Bcast (&arg, 1, MPI_CHAR, 0, MPI_C0MM_W0RLD);
216 fix P ressu re = (bool)arg ;

217 a rg = (char)mapPotSurf;
218 m piStatus &= ! MPI_Bcast (&arg, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
219 mapPotSurf = (bool)arg ;

220 i f (!m piStatus) {
221 com .exitM essage("fa i le d to d is t r ib u te command-line arguments’) ;
222 re tu rn 1;
223 }
224 # endif

225 /* i n i t i a l i z e random function generator */
226 i f (seed l < 0) seed l = time(O);

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

zz> if (seed2 < 0) seed2 = time(O);
228 # if Sm_WITH_MPX
229 cout « setw(3) « com.getldO « *: • « flush;
2» # endif
231 cout « "seedl = * « setw(4) « seedl « " — '
232 « *seed2 = " « setw(4) « seed2 « endl;
233 myRandom.initialize(seedl , 69069);
234 srand (s e e d2);

235 I* run simulation */
236 code = startSimO;

237 /* print how long the simulation run took to finish */
238 finish_time = time(0);
23» printTime (start_time, f inish_time) ;

240 printf ("— info: [main.c: main ()] — end — An’);

241 return code;
242 }

243 int startSimO
244 {

245 # if Sm_WITHJCI
246 Communicators com = *comPtr;
247 # endif

248 /* Initialization */
249 int dum_las , error , far_elec, far_atom;
250 double tf , time_start , atom_time ;
251 char timechk ,-
252 bool type_of_iter ; // atoms = false, electrons = true
253 # if SH(_WITHJ!PI
254 bool prev_type_of_iter ; I I atoms = false, electrons = true
255 # endif
256 bool next_type_of_iter ; // atoms = false, electrons = true
257 long cntl ,-
258 double maxStepSizeElSq = 0 ;

259 int stopCode = -1;

260 ft if SIM_WITH_MPI
261 COUt « SET_COLOR
262 « com.getProcessorNameO « « com.getldO
263 « ": MPI communicator initialized*
264 « RESET_C0L0R
265 « endl;

266 fileNameAttach = generateFileNameAttach(com.getldO);
267 saveStateFileName 4= fileNameAttach;

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

268 locatAtomFileName += fileNameAttach;

269 string paramsInfoFile = "params-info";
270 paramsInfoFile += fileNameAttach;
271 ofstream infoOut(paramsInfoFile.c_str());

272 # else
273 ostreams infoOut = cout;
274 # endif

275 first = 1;
276 atoms_gone [0] = 0;
277 atoms_gone [1] = 0;
278 electrons_gone [0] = 0;
279 electrons_gone [1] = 0;

280 dum_las = 0;

281 error = 0;
282 string paramFile = "parameters’;
283 if { ! loadParamFile(paramFile)) {
284 cout « "could not load file " « paramFile « ", *
285 « "trying old-style PARAM.inp" « endl;
286 error = get_param () ;
287 }
288 if (error == 1) {
289 cerr « "could not load parameter file’ « endl;
290 return 1;
291 }
292 # if SIM_WITH_MPI
293 if (com.getldO == 0)
294 # endif
295 {
296 if (restartSim) {
297 //paramFile += ".sav";
298 int cont_prg_ = cont_prg;
299 cont_prg = 1;
300 cout « "saving parameters to file '" « paramFile « * « flush;
301 saveParamFile(paramFile) ;
302 cout « "done." « endl;
303 cont_prg = cont_prg_;
304 }

305 }

306 {
307 string pfile = paramFile;
308 # if SIM_WITH_MPI
309 pfile += "." + paddedInt(com.getId() ,2,'0');
310 # endif
311 pfile += ".sav";
312 saveParamFile (pfile) ;
313 }

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

314 bool withDamping = (DIST_DKP>0.0);
315 bool withHeatFlow = (INCL_HF && withDamping);

3i« # i f sm_wrrn_MPi
317 withHeatFlow = withHeatFlow && com.getldO == 0;
318 # endif

319 fflush (stdout) ;

320 realtime = 0.;
321 stats_init () ;
322 fflush (stdout);

323 if (aton_track >= 0)
324 (

325 string trackAtomFileName = “track.atom" + fileNameAttach;
326 open_track_file(trackAtomFileName) ;
327 }

328 # if SIH.WXTHJIPI
329 { / / boxAll only needs to live for a little while
330 Boxes boxAll("boxAll");
331 error = calc_param (params,boxAll) ;

332 if { error != 0) {
333 com.exitMessagef"*** calc_param() returned with error ****,cerr);
334 return 1 ;
335

336

337

338
339

340
341

II make sure parallelization is possible:
if (boxAll.numBoxZ <= boxAll.numBoxShare * com.getNumProcessorsO) {
if (com.getldO == 0)
com.exitMessage(’*** not enough boxes (in z-air) per process ***“,cerr);

return 1;

342 if (com.getldO == 0) {

345

343
344

cout « SET_C0L0R « "boxAll:" « RESET_COLOR « endl;
boxAll.printlnfo();

}

346

347
if (! boxes.init(com.getId(), com.getNumProcessorsO, params))
return 1;

348 if (cont_prg ==0) { // start from scratch (fresh cluster)

349
350

351
352

if (com.getldO == 0)
error = initialize_atoms(time_start, boxAll);

else
error = initialize_atoms(time_start, boxes);

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

353 if (com.getldO == 0) {
3» cout « SET_COLOR « "filling boxAll with particles: "
355 « R£SET_C0L0R « endl;
356 boxAll.fill(state,false); // false=both electrons and atoms
357 bool status = distributeParticles(com, state, boxAll,params);
358 if (! com.checkStatus(status)) {
359 cerr « "*** particle distribution failed ***' « endl;
360 return 1;
361 }
362 }
363 else {
36* bool status = receiveParticles(com, state, boxes, 0);
365 if (! com.checkStatuslstatus))
366 return 1;
367 }

368 boxes. fill (state, false) ;
369 }
370 else { // load data from save.n.??
371 error = initialize_atams(time_start, boxes);
372 }
373 }

37* (telse // not SIM_with_MPI
375 error = calc_param (params,boxes) ;
376 if (error 1 = 0) return error;
377 cout « endl « •==== finished calc_param() ====• « endl « endl;
378 cout « "volwidth = " « params.volwidth « endl;
379 cout « "volHeight = " « params.volHeight « endl;
380 error = initialize_atoms(time_start, boxes);
381 cout « endl « •==== finished initialize_atoms() ====• « endl « endl;
382 if (error != 0) return error;
383 # if MINI_SIM
38* removeAtoms (4);
385 # endif
386 boxes.fill (state, false) ;
387 ftendif I I SIM_WITH_MPI

388 // attach marker to output file name (time stamp, process id)
389 removedAtomFileName += fileNameAttach;

390 state. printlnfo () ;
391 boxes .printlnf o () ;

392 # if SIM_WITH_MPI
393 cout « SET_C0L0R « "proc ' « com.getldO «
39* « boxes.countParticles(boxes.ziMin, boxes.ziMax) « * particles"
395 « • (• « boxes.countParticles() « *)"
396 « RESET_C0L0R « endl;

397 c o m . s y n c () ;

398 cout « SET_C0L0R « "proc " « com.getldO

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

399 « *: now in sync with other processes" « RESET_COLOR « endl;
4oa com.syncO;
401 # e n d i f

402 pr int_inputs (inf oOut);
403 infoOut « endl « "params info:* « endl; params.print(infoOut);
404 infoOut « endl « "boxes info: * « endl; boxes.printlnfo(infoOut);

405 Heatnum = 0;

406 if (error == 1)
407 time_start = TOTTIM + 1.;
408 tim_inc = 1;
409 t i m e c h k = 0 ;

410 fflush (stdout);

4it far_elec = 0;
412 atom_time = time_start - time_st [1] / 2.0;

413 Statistics stats;
414 HeatFlow* heatFlow = 0;
415 if (hfPtr == 0) {
416 if (withHeatFlow) heatFlow = new HeatFlow;
417 hfPtr = heatFlow;
418 }
419 else {
420 withHeatFlow = true;
421 heatFlow = hfPtr;
422 heatFlow->printInfo () ;
423 }
424 double endTimeComputeStats = startSaveStats;
425 double startTimeComputeStats = endTimeConputeStats - statsCollectTime;

426 if (getLattEng) {
427 t if Sm_WITH_MPI
428 cout « ’ (" « FILE « ":" « L I N E _ « ") "
429 « "this does not work in MPI mode* « endl;
430 re tu rn 0 ;
431 # e n d i f

432 return getLatticeEnergies (state,boxes,params) ;
433 }

434 if (mapPotSurf) (
435 # if SIM_WITH_MPI
436 cout « " (" « FILE « ": * « LINE « ") "
437 « "this does not work in MPI mode* « endl;
438 return 0;
439 # e n d i f

440 return mapPotentialSurface (state,boxes, params,
441 potSurfMapResX, potSurfMapResY, potSurfMapResZ);
442 }

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

443 ForceTableSW forceTableSW;
444 ForceTableSW forceTableSWbroken;
4»s if (genSWtable) {
446 t if SH(_WITH_HPI
447 if (com.getldO > 0)
448 return 0;
449 # e n d i f

4so cout « "generating SW force table" « endl;
451 bool status =
452 generateSWtable(forceTableSW,forceTableSWbroken);
453 cout « "saving tables to files •
454 « •{" « forceTableSWlfile « ", ■ « forceTableSWlfile « ")"
455 « endl;
456 status &=
457 forceTableSW. save (forceTableSWlfile) &&
458 forceTableSW.save(forceTableSW2file);
459 cout « "done generating force table and saving to file "
460 « (status?"(successful)*:"(failed)’) « endl;
461 return status;
462 }

463 if (useForceTable 11 testswtable) {
464 cout « "loading SW force table from files ■
465 « "(* « forceTableSWlfile « ", " « forceTableSWlfile « *)•
466 « e n d l ;

467 if (!forceTableSW.load(forceTableSWlfile) ||
468 !forceTableSWbroken.load(forceTableSW2file)) (
469 cout « "unable to load tables from files, "
470 « "generating tables instead*
471 « e n d l;
472 if (!generateSWtable(forceTableSW, forceTableSWbroken)) {
473 cerr « "could not load or generate force table" « endl;
474 return 1;
475)

476 }
477 cout « "force tables enabled" « endl;
478 forceTableSW.printlnfol) ;
479 }

480 # if SIM_WITH_HPI
481 // keep track of load (use wall time as measure)
482 com.stopWatch.reset!) ;
483 com. stopwatch. start () ;
484 # endif

485 if (testswtable) (
486 # if SHLWIT!Un>I

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

4*7 if (com.getldO > 0)
488 return 0 ;
489 # endif
490 return testForceTableSWIforceTableSW, forceTableSWbroken);
491 }

492 if (testRand I {
493 # if SIM_WITH_MPI
494 if (com.getldO > 0)
493 return 0;
49« # endif
497 return testRandom{) ;
498 }

499 if (testDamp) {
300 # if SIM_WITH_MPI
301 if (com.getldO > 0)
302 return 0;
303 # e n d i f

504 return testDampingO
505 }

306 if (testlnt) {
507 # if SIM_WITH_MPI
308 if (com.getldO > 0)
309 return 0 ;
510 # endif
5U return testIntegration(state,boxes);
512 }

513 // test/debug heat-flow model
514 if (testHeatFlow) {
515 # if SIM_WITH_MP1
516 if (com.getldO > 0)
517 return 0 ;
518 # endif
519 return HeatFlow:: test () ;
520 }

521 if (testLaser) {
522 return test_laser () ;
523 }

524 if (cont_prg != 1) {
525 I I only compute forces if not continuing run
526 if (useForceTable)
527 stopCode
528 else
529 stopCode
530 }

164

+= fo rces(forceTableSW, forceTableSWbroken, 0),-

+= forces (0); / / compute forces in c l. SW po ten tia l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

531 stats. computeStats () ;
532 prt_results (false) ;

533 « i f SIH _W ITH _M PI

534 com.syncO;
535 # e n d i f

536 / / --
537 //======================== START OF MAIN LOOP ========================
538 //---

539 printf (*=== info: [main.c: main ()] =================*);
540 printf ("========= starting main loop ===\n*) ;

541 if (withHeatFlow]
542 hf Ptr->setTime (time_start) ;
543 type_of_iter = false;
544 int itime = 0;
545 for (realtime = time_start ; realtime <= TOTTIM ; realtime += time_st (1)) {
546 # if SIM_WITH_MPI
547 prev_type_of_iter = type_of_iter;
548 # endif
549 // iteration types:
550 // type_of_iter = true for electrons
551 // type_of_iter = false for atoms
552 type_of_iter = true;
553 next_type_of_iter = true;
554 if (realtime >= atom_time)
555
556

557
558

559

560

561
562

else if (realtime+time_st [1] >= atom_time) {
next_type_of_iter = false;

type_of_iter = false;
atom_time += TIMEST;
++itime;

563 if (!type_of_iter)
564

565

566
567

// check if time steps are adequate
if (VARIABLE_TIMESTEP)

checkTimeSteps(maxStepSizeSq, maxStepSizeElSq);

568 if (timechk == 0)

570
571

572

573
574

569 if (realtime >= SPEEDJJP1)
{
TIMEST = Speed_incl ;
calc_param2 (false);
timechk = 1;

}

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

575 if (timechk == 1)
576 if (realtime >= SPEEDJJP2)
577 {
578 TIMEST = Speed_inc2 ;
579 calc_param2 (false);
580 timechk = 2;
581 }

582 maxStepSizeElSq = 0;
583 }

584 maxStepSizeSq = maxStepSizeElSq;
585 if (Num_el) {
586 far_elec = 0;
587 for (cntl = NAT + 1 ; cntl <= NAT + elmax ; cntl ++)
588 (
589 if (state, ion [cntl] < 0)
590 continue;

591 if (state.z[cntl] < boxes.zMinCell || boxes.zMaxCell <= state.z[cntl])
592 continue;

593 // predictor step for electrons
594 U
595 far_elec += predict_gear(cntl, 1);
596 }
597 if (far_elec > 0)
598 cerr « "*** error: [main.c: main ()] * « far_elec
599 « " electron-steps too wide ***" « endl;
600 }

601 maxStepSizeElSq = maxStepSizeSq;

602 if (! type_of_iter)
603 {

604 maxStepSizeSq = 0.0;
605 far_atom = 0;
606 for (cntl = Mvnat ; cntl <= NAT ; cntl ++)
607 (

608 # if ATOM_TRACK_BEFORE_PREDICT
609 track_particle (cntl , "[main.c: main ()]",
610 "before predictor step (atom)");
611 # endif

612 if (state.ion [cntl] < 0)
613 continue;

614 if (state.z[cntl] < boxes.zMinCell || boxes.zMaxCell <= state.z[cntl])
6is continue;

616 // predictor step for atoms
617 / /

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 FUe listing

618 far_atom = predict_gear (cntl , 0);
619 }
620 Numphot = 0;
621 if (far_atom > 0)
622 cerr « "*** error: [main.c: main ()] * « far_elec
623 « " e-steps too wide **** « endl;
624 }

625 # if SIM_WITH_MPI
626 if (! type_of_iter) {
627 cout « SET_C0L0R « com.getProcessorNamel) « « com.getldO
628 « * - count> *
629 « setw(8) « realtime « ': * « particleCount
630 « R£SET_COLOR « endl;

631 if (realtime == time_start) {
632 infoOut « endl « endl;
633 infoOut « setw(8) « "time";
634 particleCount. printHeader (infoOut) ;
635 infoOut « endl;
636 }
637 infoOut « setw(8) « realtime;
638 particleCount .print (infoOut) ;
639 infoOut « endl;

640 particleCount. clear () ;
641 }
642 # endif

643 # if SIM_WITH_MPI
644 com.stopW atch.stopO ;
645 communicate(com,state,boxes, type_of_iter && prev_type_of_iter);

646 if (doLoadBalancing && !type_of_iter && itime % loadBalanceFreq == 0) {
647 loadBalancing(com, state,boxes);
648 }

649 save_state_backup () ;
650 com.stopwatch.start!);
6si # endif

652 // if neither current nor next iteration is for atoms,
653 // then fill boxes with electrons only
654 // otherwise fill with all particles (atoms and electrons)
655 boxes.fill (state, type_of_iter && next_type_of_iter) ;

656 // check for laser
657 //
658 if (! type_of_iter)
659 {
660 if ((dum_las == 0) && (realtime > LAS_0N)) {
661 dum_las = 1;

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

662 }
663 else if ((dum_las == 1) && (realtime > Las_Off)! {
664 dum_las = 2;
663 }

666 if (dum_las == 1)
667 laser_on (realtime) ;

668 for (cntl = Mvnat ; cntl <= NAT ; cntl ++)
669 {
670 if (state.ion[cntl] < 0 || state.exc[cntl] < 0) continue;

671 if (state.z[cntl] < boxes.zMinCell || boxes.zMaxCell <= state.zlcntl])
672 continue;

673 if (state.exc[cntl] >= 1)
674 {
675 stopCode += decay_atom (cntl);
676 }
677 if (state.ion [cntl] > 0)
678 {
679 tf = exp (- TIMEST / IONRECOM) ;
680 if (myRandom.randU > tf)
681 {
682 state.ion [cntl] — ;
683 state.exc [cntl] = Ionnumphot - 1;
684 }
683 }
686 }
687 }

688 EKIN_prev = state.kinE;
689 EP0T_prev = state.potE;

690 if (useForceTable)
691 forces! forceTableSW, forceTableSWbroken, type_of_iter);
692 else
693 forces (type_of_iter); // compute forces incl. SW potential

694 # if SIM_WITH_MPI
695 if (incl_StiWeb && ! type_of_iter) {
696 com. stopwatch. stop ();
697 communicate_forces (com, state,boxes) ;
698 com.stopwatch.startO ;
699 }
700 # endif

701 /* reset counters */
702 Num_el = 0;

703 for (cntl = NAT + 1; cntl <= NAT + el max; cntl ++)
704 {

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

70s if (state, ion (cntl] < 0)
706 continue;

707 if (state.z(cntl] < boxes.zMinCell || boxes.zMaxCell <= state.z[cntl])
708 continue;

70» if (state.ion [cntl] > 0)
710 Nua_el ++;

711 if (!Num_el)
712 continue;

713 // corrector step for electrons
714 //
715 correct_gear (cntl , 1);
716 }

717 if (! type_of_iter) (
718 if (equilibrate && realtime < lastEquilibTime) {
7» cout « ’=== equilibration: damping particles to ■
720 « TEMP « "K ===* « endl;
721 for (int pid = Mvnat ; pid <= NAT ; pid ++) (
722 if (state, ion [pid] < 0) continue;
723 dampParticle_force(state, pid, TEMP);
724 }
725 }

726 Numexc = Q;
727 Numion = 0;
728 Numabl = 0;
729 int pCnt = 0;
730 for (cntl = Mvnat ; cntl <= NAT ; cntl ++)
731 {
732 if (state.ion [cntl 1 < 0)
733 {
734 Numabl ++;
735 continue;
736)

737 if (state.z[cntl] < boxes.zMinCell || boxes.zMaxCell <= state.z[cntl])
738 continue;

739 if (state.ion [cntl] > 0)
740 Numion ++;

741 if (state.exc [cntl] > 0)
742 Numexc ++;

743 if (withDamping && cntl < Mvnat_nd) /* Langevin damping */
744 {
745 if (withHeatFlow)

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

746 heatFlow->dampParticle(state, cntl);
747 else
74* dampParticlelstate, cntl, TEMP);
749 }

750 11 corrector step for atoms
751 / /

752 correct_gear (cntl , 0);

753 // — kinetic energy —
754 state.kinE += state.vx[cntl] * state.vx[cntl];
755 state.kinE += state.vy[cntl] * state.vy[cntl];
756 state.kinE += state.vz[cntl] * state.vz[cntl],-
757 ++pCnt;

758 # if ATOM_TRACK_AFTER_CORRECT
759 if (atom_track >= 0)
760 track_particle (cntl , "[main.c: main ()]",
761 "after corrector step (atom)");
762 # endif

763 }
764 if (atom_track >= 0)
765 fflush (ftrack);

766 // kinetic energy transformed from Ang”2 into eV
767 state.kinE *= 0.5 * state.massAt;
76* RMvnat = pCnt;

769 if (withHeatFlow) {
770 if (boxes, fir stNonDamped >= 0) {
771 if (equilibrate && realtime < lastEquilibTime) {
772 heatFlow->setTemperatureTop(TEMP, time_st[0]);
773 }

774 else {
775 int numLayers = HF_COtJPLE_NUMLAYERS_TEM?_AVE;
776 int zistart = boxes. firstNonDamped;
777 int ziEnd = zistart + numLayers - 1;
77* double temp = state.getTemperature(boxes, zistart, ziEnd);
779 heatFlow->setTemperatureTop(temp, time_st[0]);
7*0 # endif
7*1 }

7*2 if (! heatFlow->step()) {
7*3 stopCode = 1;
7*4 # i f S m _ W I T H J ! P I

7*5 com.exitMessage(*9eat flow model aborted",true);
7*6 # endif
7*7 }

78* }

7*9 }

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

790 if (realtime >= startTimeComputeStats) {
791 if (realtime >= endTimeComputeStats) {
792 stats.computeStats(true)// finalize stats
793 stats.saveO ;
794 print_heatflow (heatFlow) ;
793 endTimeComputeStats = realtime + saveStatsInterval - time_st [1];
796 startTimeComputeStats = endTimeComputeStats - statsCollectTime;
797 }
796 else
799 stats. computeStats I)
800 }
801 }

802 i if SrM_WITH_MPI
803 if (! type_of_iter &&
804 ((realtime >= cnt_save) || (realtime >= TOTTIM) || (first ==1)))
sas particlelnventorylcom, particleCount, boxes);
806 # endif

807 prt_results (type_of_iter);
808 fflush (stdout);

809 if (stopCode == -1)
810 stopCode = check_break ()

811 # if SIM_WITH_MPI
812 stopCode = (com. checkStatus (stopCode == -1) ? -1 : 1) ;
813 # endif

814 if (stopCode != -1) {
SIS # if SmjNITHJKPI
816 if (com.getldO == 0)
817 # endif
sis cout « endl « endl « ■ (• « FILE « ':" « LINE « ") *
819 « "*** aborting program (• « stopCode « ’) ****
820 « endl « endl « endl;
821 return stopCode;
822 }

823 # if ! Sm_WITH_JffI
824 // can't take this shortcut anymore in MPI_M0DE
825 if ([Num_el <= 0) && (type_of_iter == false))
826 realtime += time_st [0] - time_st [11;
827 # endif
828 }

829 f inal_output () ;

830 return 0; /* main should return something */
831 }

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

D.4.2 Integrator
-- gear.cc

1 / * *

z \b r ie f do p re d ic to r s te p fo r a p a r t ic le
3 \param p id : number of p a r t i c l e
4 \param d e l ta : 0 = atoms, 1 = e lec tro n s
j \ r e tu rn e r r o r code (1 = e le c tro n s te p too fa r)
6 */
7
o

in t p red ic t_ g ea r (long p id , i n t d e l ta)
/5

9 / / G ear's 5 th o rd er p re d ic to r

10 in t e r ro r = 0 ;i

11 const double tim eStep = tim e_st [de lta] ;

12 / / p re d ic t lo c a tio n of p a r t i c l e

13 s ta te .v x lp id] *= tim eStep;
14 s ta te .v y [p id] *= tim eStep;
15 s ta te . vz[pid3 *= tim eStep;

16 double tdb lx = s ta te .v x lp id] + s ta te .a x [p id] + s ta te .b x tp id] +
17 s ta te .c x [p id] + s ta te .d x [p id] ;
18 double td b ly = s ta te .v y lp id] + s ta te .a y [p id] + s ta te .b y [p id] +
19 s ta te .c y tp id] + s ta te .d y [p id] ;
20 double td b lz = s ta te .v z [p id] + s ta te .a z [p id] + s ta te .b z [p id] +
21 s t a t e . c z [pid] + s ta te .d z [p id] ;

22 s ta te .x [p id] ■i-= td b lx ;
23 s ta te .y [pid] ■r= td b ly ;
24 s ta te .z [p id] -*■= td b lz ;

25 s ta te .v x lp id] += 2 * s ta te .a x [p id] + 3*sta te .b x [p id] +
26 4 * s ta te .c x [p id] + 5 * s ta te .d x [p id] ;
27 s ta te , vy [pid] += 2 * s ta te .a y [p id] + 3*sta te .b y [p id] +
28 4 * s ta te .c y tp id] + 5 * s ta te .d y [p id] ;
29 s ta te , vz [pid] += 2 * s ta te .a z [p id] + 3 * sta te .b z [p id] +
30 4 * s ta te .c z [p id] + 5 * s ta te .d z [p id] ;

31 s ta te .a x [pid] += 3 * sta te .b x [p id] + 6 * s ta te .cx [p id] + 1 0 * sta te .d x [p id]
32 s ta te .a y [p id] += 3 * sta te .b y [p id] + 6 * s ta te .c y tp id] + 1 0 * sta te .d y [p id]
33 s ta te .a z [pid] += 3 * s ta te .b z [p id] + 6 * s ta te .c z [p id] + 1 0 * s ta te .d z [p id]

34 s ta te .b x [p id] += 4 * sta te .cx [p id] + 1 0 * sta te .d x [p id]
35 s ta te .b y [p id] += 4 * sta te .cy [p id] + 1 0 * sta te .d y [p id]
36 s ta te .b z [pid] += 4 * sta te .cz [p id] + 1 0 * s ta te .d z [p id]

37 s ta te , cx [pid] += 5 * sta te .d x [p id]
38 s ta te .c y [pid] += 5 * sta te .d y [p id]
39 s ta te .c z [pid] += 5 * sta te .d z [p id]

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

40 state.vx(pid) /= timeStep;
41 state.vy[pid] /= timeStep;
42 state.vz[pid] /= timeStep;

43 // keep track o£ the maximum step size
44 if (VARIABLEJTIMESTEP) {
45 double distSq = tdblx*tdblx + tdbly*tdbly + tdblz*tdblz;
4« if (distSq > maxStepSizeSq)
47 maxStepSizeSq = distSq;
48 }

49 // check change in location

so if (pid < state.firstEHndex)
s i {
52 if ((tdblx > XSTP) I I (tdblx < -XSTP) ||
53 (tdbly > XSTP) I| (tdbly < -XSTP) ||
54 (tdblz > XSTP) jj (tdblz < -XSTP)) {
55 8 if VERBOSE_PREDICT_GEAR
56 cerr « realtime « *: atom step size too large (* « pid « *): ■
57 « sqrtttdblx*tdblx + tdbly*tdbly + tdblz*tdblz)
58 « endl;
59 8 endif
60 ++error;
61 }
62 }
63 else {
64 if ((tdblx > EXSTP) 11 (tdblx < -EXSTP) 11
65 (tdbly > EXSTP) j| (tdbly < -EXSTP) j|
66 (tdblz > EXSTP) |j (tdblz < -EXSTP)) {
67 8 if VERBOSE_PREDICT_GEAR
68 cerr « realtime « *: electron step size too large (* « pid « *): *
69 « sqrtttdblx*tdblx + tdbly*tdbly + tdblz*tdblz)
70 « endl;
71 8 endif
72 ++error;
73 }
74 }

75 // check if particle is still close to bulk
76 checkPosition(pid);

77 return (error) ;
78)

79 /**
80 * \brief do corrector step for a particle
si * \param pid number of particle
82 * \param delta 0 use parameters [0] (atoms).
83 * 1 use parameters [1] (electrons)

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

84 * /

85 v o id c o r r e c t _ g e a r (lo n g p i d , i n t d e l t a)
86 {
87 / / G e a r 's 5 t h o r d e r c o r r e c t o r
88 s t a t i c c o n s t d o u b le AO = 3 . 0 / 2 0 .0 ;
89 s t a t i c c o n s t d o u b le A1 = 2 5 1 .0 /3 6 0 .0 ;
90 s t a t i c c o n s t d o u b le A3 = 1 1 . 0 / 1 8 .0 ;
9t s t a t i c c o n s t d o u b le A4 = 1 . 0 / 6 . 0 ;
92 s t a t i c c o n s t d o u b le A5 = 1 . 0 / 6 0 .0 ;

93 c o n s t d o u b le t im e S te p = t i m e _ s t [d e l t a] ;
94 c o n s t d o u b le s t e p = 0 .5 * t im e S te p * t im e S te p ;

95 state.vx[pid] *= timeStep;
96 state.vy[pid] *= timeStep;
97 state.vztpid] *= timeStep;

98 double ax = step * state.fx[pid] * irnass[delta]
99 d o u b le a y = s t e p * s t a t e . f y [p i d] * i m a s s [d e l t a]

100 d o u b le a z = s t e p * s t a t e . f z [p i d] * i m a s s [d e l t a]

101 d o u b le d a x = a x - s t a t e , a x [p id] ;
102 d o u b le d a y = a y - s t a t e . a y [p i d] ;
103 d o u b le d a z = a z - s t a t e . a z [p i d] ;

104 s t a t e . x [p i d] += A 0*dax ;
105 s t a t e . y [p i d] += A 0*day ;
ios s t a t e . z [p i d] += AQ*daz;

107 state.vx[pid] += Al'dax
108 state.vy[pid] += Al*day
109 state.vz[pid] += Al*daz

110 state.ax[pid] = ax;
111 state.ay[pid] = ay;
112 state.az[pid] = az;

113 state.bx[pid] += A3*dax
114 state.by[pid] += A3*day
115 state.bz[pid] += A3*daz

116 state.cx[pid] += A4*dax
117 state.cy[pid] += A4*day
118 state.cz[pid] += A4*daz

119 state.dx[pid] += A5*dax
120 state.dy[pid] += A5*day
121 state.dz[pid] += A5*daz

122 state.vx[pid] /= timeStep;
123 state.vy[pid] /= timeStep;

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

124 state.vz[pid] /= timeStep;

125 checkPosition(pid);
126 }

D.43 Force Calculation
-- forces.cc

1 / * *

2 \ b r i e f c a l c u l a t e TWO BODY POTENTIAL OF SYSTEM
3 \ p a r a m x i j x - c o m p o n e n t o f v e c t o r b e tw e e n a to m 1 a n d 2

4 \ p a r a m y i j y - c o m p o n e n t o f v e c t o r b e tw e e n a to m 1 a n d 2

5 \ p a r a m z i j z - c o m p o n e n t o f v e c t o r b e tw e e n a to m 1 a n d 2

6 \ p a r a m c n t l n u m b e r o f f i r s t a to m

7 \p a r a m c n t 2 n u m b e r o f s e c o n d a to m

8 * /
9 s t a t i c

to v o i d tw o _ p o t (d o u b l e x i j , d o u b l e y i j , d o u b l e z i j , l o n g c n t l , l o n g c n t 2)

u {
12 / / r e t u r n ; a s s e r t (f a l s e) ;

13 d o u b l e p o t v , s q _ d i s t , d i s t , f c , f e d , r , p o t v d , t f l t ;

14 p o t v = 0 . ;

is s q _ d i s t = x i j * x i j + y i j * y i j + z i j * z i j ;

16 d i s t = s q r t (s q _ d i s t) ;
17 r = d i s t - R_CUTOFF ;

18 f c = e x p (D_COTOFF / r) ;

19 f e d = - D_CUTOFF * f c / (r * r * d i s t) ;

20 p o t v = A1 / (s q _ d i s t * s q _ d i s t) ;

21 / / i s b o n d b r o k e n ? ?

22 t f l t = (d o u b le) s t a t e . e x e [c n t l] ;
23 i f (! i n c l j b r k b n d | | m y R a n d o m .ra n d O >= t f l t / 4 .)
24 p o t v - = A 2;

25 / / e l s e c o u t « “b r o k e n b o n d : * « c n t l « e n d l ;

26 p o t v d = - 4 . 0 * A1 / (s q _ d i s t * s a d i s t * s q _ d i s t) ;

27 / / 0 . 5 f r o m i < j & i > j

28 d o u b l e f = - 0 . 5 * (f e d * p o t v + f c * p o t v d) ;

29 d o u b l e f x = f * x i j ;

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

30 double fy = f * yij;
31 double fz = f * zij;

32 state. fx[cntl] += fx;
33 state. fy(cntl] += fy;
34 state.fz[cntl] += fz;

35 state.fx[cnt2] -= fx;
36 state.fy[cnt2] -= fy;
37 state.fz[cnt2] -= fz;

38 double vir = f * sq_dist;

39 if ((cntl == atom_track) || (cnt2 == atom_track))
40 printf ("state.fx [%ld] = %f, state.fx [%ld] = %f \n", cntl , state.fx (cntl],
41 cnt2 , state.fx [cnt2]);

42 potv *= fc * 0.5;
43 state. potE += potv;
44 state.virS += vir;

45 p o t v *= 0.5;
46 s t a t e . p o t [c n t l] += p o t v ;
47 s t a t e . p o t [c n t 2] += p o t v ;

48 v i r *= 0.5;
49 s t a t e . v i r i a l [c n t l] += v i r ;
so s t a t e . v i r i a l [c n t 2] += v i r ;

51 # i f MEASURE_C0ND0CTIVITY

52 d o u b l e f v l = f x * s t a t e . v x [c n t l] + f y * s t a t e . v y [c n t l] + f z * s t a t e . v z [c n t l] ;
53 s t a t e . r f v [c n t l] . x += (- x i j) * f v l ;

54 s t a t e . r f v [c n t l] . y += (- y i j) * f v l ;

55 s t a t e , r f v [c n t l] . z += (- z i j) * f v l ;

56 d o u b l e f v 2 = (- f x) * s t a t e . v x [c n t 2] + (- f y) * s t a t e . v y [c n t 2] + (- f z) * s t a t e . v z [c n t 2] ;
57 s t a t e . r f v [c n t 2] . x += x i j * f v 2 ;

58 s t a t e . r f v [c n t 2] . y += y i j * f v 2 ;

59 s t a t e . r f v [c n t 2] . z += z i j * f v 2 ;
60 # e n d i f

61 re tu rn ;
62 }

63 Jhit
64 \b r ie f c a lc u la te THREE BODY POTENTIAL OF SYSTEM
65 \param x i j x-component o f v ec to r between atom 1 and 2
66 \param y i j y-component o f v ec to r between atom 1 and 2
67 \param z i j z-component of v ec to r between atom 1 and 2
68 \param i number o f f i r s t atom

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

6» \param j number o f second atom
70 */
71 s t a t i c
72 void th ree_po t (const double x i j , const double y i j , const double z i j ,
73 const long i , const long j)
74 {
75 / / r e tu r n ; a s s e r t (fa lse) ;
76 double sq _ d is tl2 , d i s t l2 , sq _ d is tl3 , d is t l3 ;
77 double r jk c2 ;
78 double po tv , v irS , tp o t , t v i r ;
79 double x ik , y ik , z ik , r q i jk ;
so double wd_xj, wd_yj, wd_zj, wd_xk, wd_yk, wd_zk;
81 double u, ud, v , vd, w, wq, rj_R , rk_R;
82 double udvwq, uvdwq, uv;
83 double fx j , fy j , f z j ;
84 double fxk, fyk, fzk ;

85 in t cn tx3, cnty3, cntz3 , cntc3;
86 in t cn tx 3 i, cn ty 3 i, c n tz3 i;

87 long cnt3 ;

88 t i f MEASURE_CONDOCTIVITY
89 double fv ;
90 # endif

91 potv = 0 . ;
92 v irS = 0 .;

93 sq _ d is tl2 = x i j * x i j + y i j * y i j + z i j * z i j ;
94 d is t l2 = s q r t (sq _ d is tl2) ;

95 rj_R = d is t l2 - R_COTOFF ;
96 u = exp (ALPHA * D_CUTOFF / r j_R);
97 ud = u * D_COTOFF * ALPHA / (rj_R * rj_R * d is t l2) ;

98 /* 3rd loop */
99 fo r (cn tx3 i = x 3 s ta r t ; cn tx3i <= x3stop; cntx3i++) {
100 cntx3 = cn tx3 i;
101 # i f PERIODIC_BOUNDARIES_X
102 i f (cntx3 < 0) cntx3 += boxes.numBoxXY;
103 e ls e i f (cntx3 >= boxes.numBoxXY) cntx3 -= boxes.numBoxXY;
104 # endif
105 fo r (cn ty3 i = y 3 s ta r t ; cn ty3 i <= y3stop; cnty3i++) {
106 cnty3 = cn ty 3 i;
107 # i f PERI0DIC_B0UNDARIES_Y
108 i f (cnty3 < 0) cnty3 += boxes.numBoxXY;
109 e l s e i f (cnty3 >= boxes.numBoxXY) cnty3 -= boxes.numBoxXY;
no # en d if
in fo r (cn tz3 i = z 3 s ta r t ; cn tz3 i <= z3stop; cntz3i++) {
112 cntz3 = c n tz 3 i;
113 # i f PERIODIC_BOnNDARIES_Z

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

114 i f (cntz3 < 0) cntz3 += boxes.numBoxZ;
115 e ls e i f (cntz3 >= boxes.numBoxZ) cntz3 -= boxes.numBoxZ;
116 * en d if
117 fo r (cntc3 = 0; cntc3 < boxes. count[cntx3] [cnty3] [cn tz3]; cntc3++)
118 {
119 cnt3 = boxes.box[cntx3] [cnty3] [cntz3] [cntc3];

120 i f (cnt3 <= j)
121 continue;
122 i f (s ta te . io n [cnt3] < 0)
123 continue;
124 i f (cnt3 > NAT)
125 continue;
126 i f ((s ta te . io n [cnt3]) && (s ta te . io n [j]))
127 continue;
128 i f ((s ta te . io n [cnt3]) && (s ta te . io n [i]))
129 continue;

130 i f {(cnt3 != i) && (cnt3 != j))
131 {
132 x ik = s t a t e .x [i] - s ta te .x [c n t3];
133 y ik = s t a t e .y [i] - s ta te .y [c n t3];
134 z ik = s t a t e . z [i] - s ta te .z [c n t3];
135 # i f PERIODIC_BOUNDARIES_X
136 w hile (x ik > params.volHalfWidth) x ik -= params.volwidth;
137 w hile (x ik < -params.volHalfW idth) x ik += param s.volwidth;
138 # end if
139 # i f PERIODIC_BOUNDARIES_Y
140 w hile (y ik > params.volHalfWidth) y ik -= param s.volwidth;
141 w hile (y ik < -params.volHalfW idth) y ik += params.volwidth;
142 # endif
143 # i f PERIODIC_BOUNDARIES_Z
144 w hile (z ik > params.volHalfHeight) z ik -= params.volHeight;
145 w hile (z ik < -param s.volHalfHeight) z ik += params.volHeight;
146 # endif

147 sq _ d is tl3 = x ik * x ik + y ik * y ik + z ik * z ik ;
148 i f (sq_d istl3 < RCSQ)
149 {
150 d is t l3 = s q r t (sq_d istl3);

151 /* c a lc u la te cos th e ta */
152 r q i jk = x i j * x ik + y i j * y ik + z i j * zik;
153 rjkc2 = 2.0 / (d is tl2 * d is t l3) ; / / *2.0 s .b .

154 w = rq i jk / d is t l3 / d is t l2 - coste tan ;
155 wq = w * w; / / wq = w quadrat = w squared

156 rjkc2 *= w ; / / *w s .b .

157 wd_xj = rjkc2 * (rq ijk / sq _ d is tl2 * x i j - x ik) ;
158 wd_yj = rjkc2 * (rq ijk / sq _ d is tl2 * y i j - y ik) ;

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

159 wd_zj = rjkc2 * (rqijk / sq_distl2 * zij - zik) ;

160 wd_xk = rjkc2 * (rqijk / sq_distl3 * xik - xij) ;
161 wd_yk = rjkc2 * (rqijk / sq_distl3 * yik - yij) ;
162 wd_zk = rjkc2 * (rqijk / sq_distl3 * zik - zij) ;

163 rk_R = distl3 - R_CTJT0FF ;
164 v = exp (ALPHA * D_CtJT0FF / rk_R);
165 vd = V * D_C0T0FF * ALPHA / (rk_R * rk_R * dist!3);

166 UV = ZETT * U * V ;
167 udvwq = ZETT * ud * v * wq;
168 uvdwq = ZETT * u * vd * wq;

169 tpot = uv * wq;

170 fxj = (uv * wd_xj + udvwq * xij);
171 fyj = (uv * wd_yj + udvwq * yij);
172 fzj = (uv * wd_zj + udvwq * zij);

173 fxk = (uv * wd_xk + uvdwq * xik);
174 fyk = (uv * wd_yk + uvdwq * yik);
175 fzk = (uv * wd_zk + uvdwq * zik);

176 state.fx [i] += (fxj + fxk);
177 state.fy [i] += (fyj + fyk);
178 state.fz [i] += (fzj + fzk);

179 state.fx [j] -= fxj;
180 state.fy [j] -= fyj;
181 state.fz [j] -= fzj;

182 state.fx [cnt3] -= fxk;
183 state.fy [cnt3] -= fyk;
184 state.fz [cnt3] -= fzk;

us s ta te .p o t [i] += tpot;
186 potv += tpot;

iS7 / / double negative because x ij i s ac tua lly x ji
188 / / (i .e . sum adds negative)
i8» tv i r = (£xj*xij + fyj*yij + fz j* z ij) ;
190 virS += tv ir ;
191 tv i r *= 0.5;
192 s ta te .v i r ia l l i] += tv ir ;
193 s ta te .v ir ia l[j] += tv ir ;

194 tv i r = - (fxk*xik + fyk*yik + fzk*zik);
195 virS += tv ir ;
196 tv i r *= 0.5;
197 s ta te .v ir ia l[i] += tv ir ;
198 s ta te .v ir ia l[c n t3] += tv ir ;

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

199 # if MEASURE_COMDUCTIVITY
200 fv = (fxj) * state.vx[i]
201 + (fyj) * state.vyti]
202 + (fzj) * state.vz(i);
20} state.rfv[i] .x += (-xij)*fv;
20« state.rfv(i].y += (-yij)*fv;
2os state.rfv(i).z += <-zij)*fv;

206 fv = (fxk) * state.vx[i]
20? + (fyk) * state.vy[i]
208 + (fzk) * state.vz[i);
209 state.rfv[i] . x += (-xik)*fv;
210 state.rfv[i].y += (-yik)*fv;
211 state.rfv[i] .z += (-zik)*fv;

212 fv = (-fxj) * state.vx(j)
213 + (-fyj) * state.vy(j)
214 + (-fzj) * state.vz(j);
2U state.rfv[j].x += (xij)*fv;
216 state.rfv(j) .y += (yij)*fv;
217 state.rfv[j] .z += (zij)*fv;

218 fv = (-fxk) * state.vx(cnt3]
219 + (-fyk) * state.vy[cnt3]
220 + (-fzk) * state.vz[cnt3] ;
221 state.rfv[cnt3].x += (xik!*fv;
222 state.rfv[cnt3] .y += (yik)*fv;
223 state.rfv[cnt3] .z += (zik)*fv;
224 # endif

225 # if 0
226 cout « ■ distl2=* « distl2
227 « ’ distl3=" « distl3
228 « ■ rj_R=" « rj_R
229 « ■ rk_R=’ « rk_R
230 « ■ ALPHA=" « ALPHA
231 « * D_CUTOFF=” « D_CUTOFF
232 « * R_CtJT0FF=* « R_COTOFF
233 « * ZETT=" « ZETT
234 « endl;
235 # endif

236 if {(i == aton_track) || (j == atom_track) || (cnt3 == atom_track))
237 printf Cfx[%ld] = %f, fx[%ld] = %f, fx[%ld] = %f \n*,
238 i , state.fx [i], j , state.fx [j], cnt3 , state.fx [cnt3]);

239 //cout « •+’ « flush;
240 }
241 }

242 }

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

243 }

244 }

245 }

246 s ta te .p o tE += potv;
247 s t a te . v irS += v irS ;
248 }

249 int coulombtint cntl, int boxX, int boxY, int boxZ, vector<int>& coulombNeighbours)
250 {
251 double rdsg;
252 double xij, yij, zij;
253 double fx, fy, fz;
254 double fcoul, rdsr;
255 double pot,vir,-
256 int cntx2, cnty2, cntz2, cntc2 ;
257 int cntx2i, cnty2i, cntz2i;
258 long cnt2;
259 long ltintl = 0;
260 long ltint2 = 0;
261 int error = 0;
262 # if MEASURE_CONDOCTIVITY
263 double fv;
264 # endif

265 x2start = boxX - boxes.nunBoxShare;
266 x2stop = boxX + boxes. nunBoxShare;
267 y2start = boxY - boxes.numBoxShare;
268 y2stop = boxY + boxes. nunBoxShare ;
269 z2start = boxZ - boxes.nunBoxShare;
270 z2stop = boxZ + boxes. nunBoxShare ;

271 # if ! PERIODIC_BOONDARIES_X
272 if (x2start < 0) x2start = 0;
273 if (x2stop >= boxes.numBoxXY) x2stop = boxes.numBoxXY - 1;
274 # endif
275 # if ! PERIODIC_BOUNDARIES_Y
276 if (y2start < 0) y2start = 0;
277 if (y2stop >= boxes .numBoxXY) y2stop = boxes.numBoxXY - 1;
278 # endif
279 # if ! PERIODIC_BOONDARIES_Z
280 if (z2start < 0) z2start = 0;
281 if (z2stop >= boxes.numBoxZ) z2stop = boxes.numBoxZ - 1;
282 # endif

283 / / 2nd loop Coulomb
284 fo r (cntx2i = x 2 s ta r t ; cn tx2i <= x2stop; cntx2i++) {
285 cntx2 = cn tx2 i;
286 # i f PERIODIC BOUNDARIES_X

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

287 i f (cntx2 < 0) cntx2 += boxes.numBoxXY;
28< else i f (cntx2 >= boxes.numBoxXY) cntx2 -= boxes.numBoxXY;
289 # e n d i f

290 fo r {cnty2i = y2sta rt; cnty2i <= y2stop; cnty2i++) {
291 cnty2 = cnty2i;
292 # if PERIODIC_BOONDARIES_Y
293 i f (cnty2 < 0) cnty2 += boxes.numBoxXY;
294 e lse i f (cnty2 >= boxes.numBoxXY) cnty2 -= boxes.numBoxXY;
293 # e n d i f

296 for (cntz2i = 22s ta r t ; cntz2i <= z2stop; cntz2i++) {
297 cntz2 = cntz2i;
298 # if PERIODIC_BOONDftRIES_Z
299 i f (cntz2 < 0) cntz2 += boxes.numBoxZ;
300 else i f (cntz2 >= boxes.numBoxZ) cntz2 -= boxes.numBoxZ;
301 # endif

302 for (cntc2 = 0; cntc2 < boxes.count[cntx2] [cnty2] [cntz2]; cntc2++) {
303 1*1*1
304 cnt2 = boxes.box[cntx2] [cnty2] [cntz2] [cntc2];

305 if (state, ion [cnt2] < 0)
306 continue;

307 if (cntl == cnt2)
308 continue;

309 // Coulomb potential
310 / /

311 if (state.ion [cntl] > 0)
312 if (state.ion [cnt2) > 0) {
313 /*4*/
314 xij = state.x[cntl] - state.x[cnt2];
315 yij = state.y[cntl] - state.y[cnt21;
316 zij = state.z[cntl] - state.z[cnt2];

317 # if PHRI0DIC_B00NDARIES_X
318 if (xij > params.volHalfWidth) xij -= params.volWidth;
319 else if (xij < -params.volHalfWidth) xij += params.volwidth;
320 # endif
321 # if PERI0DIC_B0UNDARIES_Y
322 if (yij > params.volHalfWidth) yij -= params.volwidth;
323 else if (yij < -params.volHalfWidth) yij += params.volwidth;
324 # endif
325 # if PERIODIC_BOUNDARIES_Z
326 if (zij > params.volHalfHeight) zij -= params.volHeight;
327 else if (zij < -params.volHalfHeight) zij += params.volHeight;
328 # endif

329 rdsq = xij * xij + yij * yij + zij * zij;

330 if (rdsq >= CLRCSQ)

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

331 continue;

332 fCOUl = 1.0;
333 if (cntl > NAT)
334 {
335 fCOUl *= -1.;
336 ltint2 = cntl ;
337 ltintl = cnt2 ;
338 }
339 if (cnt2 > NAT)
340 {
341 fcoul *= -1.;
342 ltintl = cntl ;
343 ltint2 = cnt2 ;
344 }

345 rdsr = sqrt (rdsq);
346 pot = fcoul * 0.14399762e2 * state.ion [cntl] * state.ion [cnt2] / rdsr;
347 fcoul *= pot / rdsq;

348 if (fcoul < 0.0 && rdsq < recombine_radiusq) // minimum radius for e-i+
349 error += recombine (ltintl , ltint2);
350 e l s e

351 state.pot [cntl] += pot;

352 // 0.5 for i<j and i>j (not efficient, i know, just keeping it the way it was)
353 fx = 0.5 * (xij * fcoul);
354 fy = 0.5 * (yij * fcoul);
355 fz = 0.5 * (zij * fcoul);

356 state.fx [cntl] += fx;
357 state.fy [cntl] += fy;
358 state.fz [cntl] += fz;

359 state.fx [cnt2] -= fx;
360 state.fy [cnt2] -= fy;
361 state.fz [cnt2] -= fz;

362 vir = -fcoul * rdsq;
363 state. virS += vir;
364 vir *= 0.5;
365 state, virial [cntl] += vir;
366 state, virial [cnt2] += vir;

367 # if MEAStJRE_CONDUCTIVITY
368 fv = fx * state.vx[cntl]
369 + fy * state.vy[cntl]
370 + fz * state.vz[cntl] ;
371 state.rfvlcntl] .x += (-xij)*fv;
372 state.rfv[cntl] .y += (-yij)*fv;
373 state.rfv[cntl] .z += (-zij)*fv;

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

374
375
376
377
37*
379
380 #

381 /*4*/
382

383
384 /*3*/
385
386
387)
388 }
3» return error;
390 }

391 /* *

392 \brief calculate Forces according to TERSOFF and Coulomb potential
393 \param sti_web if = 1 no Stillinger Weber potential added
394 */
395 int forces (int stijweb)
396 {

397 # if BENCHMARK_FORCES
398 Stopwatch clock;
399 clock.reset();
400 clock.start!) ;
401 # endif

402 if (incl_StiWeb == 0)
403 s t i _ w e b = 1 ;

404 // test_twoPot () ;

405 double xij, yij, zij;
406 double fcoul, rdsr, vir;

407 int cntc, cntx, cnty, cntz ;
408 int cntx2, cnty2, cntz2, cntc2 ;
409 int cntx2i, cnty2i, cntz2i;
410 double rdsq , tflt, pot ,-
411 long cntl , cnt2;
412 long ltintl = 0;
413 long l t i n t2 = 0;
414 int error = 0;
415 # if MEASURE_CONDOCTIVITY

fv = (-fx) * state.vx[cnt2]
+ (-fy) * state.vy[cnt2]
+ (-fz) * sta te .vz[cn t2];

s ta te .rfv [cn t2].x += xij*fv;
s ta te .rfv [cn t2].y += yij*fv;
s ta te .rfv (cn t2].z += zij*fv;
endif

coulombNeighbours.push_back(cnt2);

}
}

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

416 double fv;
417 # endif

418 for (cntl = Mvnat; cntl <= NAT + elmax; cntl++) {
4» state.fx [cntl] = 0.;
420 state.fy [cntl] = 0.;
421 state.fz [cntl] = 0.;
422 sta te .p ot [cntl] = 0 .;
423 state.virial [cntl] = 0.;
424 # if MEAStJRE_CONDUCTIVITY
425 s t a t e .r f v [cn tl] = 0 .;
426 # endif
427 }
428 state.kinE = 0 . 0 ;

429 state. potE = 0.0;
430 state.virS = 0.0;

431 for (cntx = 0; cntx < boxes.numBoxXY; cntx++)
432 for (cnty = 0; cnty < boxes.numBoxXY; cnty++)
433 for (cntz = boxes.ziMin; cntz <= boxes.ziMax; cntz++)
434 for (cntc = 0; cntc < boxes.count[cntx] [cnty] [cntz]; cntc++) {
435 cntl = boxes.box[cntx] [cnty] [cntzl [cntc];

436 if (cntl < Mvnat)
437 continue;

438 if (state.ion [cntl] < 0)
439 continue ;

440 double prevPotE = state.potE;
441 vector<int> coulombNeighbours;
442 vector<int> swNeighbours;

443 if (incl_Coulomb) [
444 // prep, for Coulomb loop
445 if (Num_el + Numion > 1) {

446 x3 start = cntx - 1;
447 x3stop = cntx + 1;
448 y3 start = cnty - 1;
449 y3stop = cnty + 1;
4so z3start = cntz - 1;
451 z3stop = cntz + 1;

452 # if ! PERIODIC_BOUNDARIES_X
453 if (x2start < 0) x2start = 0;
454 if (x2stop >= boxes.numBoxXY) x2stop = boxes.numBoxXY - 1;
455 # endif
456 # if ! PERIODIC_BOUNDARXES_Y
457 if (y2start < 0) y2start = 0;

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

458 i f (y2stop >= boxes.numBoxXY) y2stop = boxes.numBoxXY - 1;
459 # endif
4«0 # i f ! PERIODIC_BOONDARIES_Z
461 i f (z2start < 0) z2start = 0;
462 i f (z2stop >= boxes.numBoxZ) z2stop = boxes.numBoxZ - 1;
463 # endif

464 / / 2nd loop Coulomb
465 fo r (cntx2i = x 2 sta rt; cntx2i <= x2stop; cntx2i++) {
466 cntx2 = cntx2i;
467 # i f PERIODIC_BOUNDARIES_X
468 i f (cntx2 < 0) cntx2 += boxes.numBoxXY;
469 e lse i f (cntx2 >= boxes.numBoxXY) cntx2 -= boxes.numBoxXY;
470 # endif
471 for (cnty2i = y2sta rt; cnty2i <= y2stop; cnty2i++) {
472 cnty2 = cnty2i;
473 # i f PERIODIC_BOONDARIES_Y
474 i f (cnty2 < 0) cnty2 += boxes.numBoxXY;
475 else i f (cnty2 >= boxes.numBoxXY) cnty2 -= boxes.numBoxXY;
476 # endif
477 for (cntz2i = z2start; cntz2i <= z2stop; cntz2i++) {
478 cntz2 = cntz2i;
479 # i f PERIODIC_BODNDARIES_Z
480 i f (cntz2 < 0) cntz2 += boxes.numBoxZ;
481 e lse i f (cntz2 >= boxes.numBox2) cntz2 -= boxes.numBoxZ;
482 # endif
483 for (cntc2 = 0; cntc2 < boxes.count[cntx2] [cnty2] lcntz2); cntc2++) {
484 cnt2 = boxes.box[cntx2J [cnty2] [cntz2] [cntc2J;

485 i f (s ta te .io n [cnt2] < 0)
486 continue;

487 i f (cntl == cnt2)
488 continue;

489 / / Coulomb potential
490 / /
491 i f (s ta te .io n [cntl] > 0)
492 i f (state.ion [cnt2] > 0) {

493 x ij = sta te .x [cn tl] - s ta te .x [cn t2];
494 y ij = sta te .y [cn tl] - sta te .y[cn t2] ;
495 z ij = s ta te .z [c n tl] - sta te .z[cn t2] ;

496 # i f PERIODIC_BOCNDARISS_X
497 i f (x ij > params.volHalfWidth) x ij -= params.volwidth;
498 e lse i f (x ij < -params.volHalfWidth) x i j += params.volwidth;
499 * e n d i f

500 # i f PERIODIC_BOUNDARIES_Y
soi i f (y ij > params.volHalfWidth) y ij -= params.volwidth;

186

with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

502 else if (yij < -params.volHalfWidth) yij += params.volwidth;
sro # endif
504 # if PERIODIC_BOONDARIES_Z
505 if (zij > params.volHalfHeight) zij -= params.volHeight;
506 else if (zij < -params.volHalfHeight) zij += params.volHeight;
507 # endif

508 rdsq = xij * xij + yij * yij + zij * zij;

5» if (rdsq >= CLRCSQ)
510 continue;

511 fcoul = 1.0; // if attractive then fcoul negative
512 if (cntl > NAT) {
513 fcoul *= -1.;
514 ltint2 = cntl ;
sis ltintl = cnt2 ;
516 }
517 if (cnt2 > NAT) {
518 fcoul *= -1.;
519 ltintl = cntl ;
520 ltint2 = cnt2 ;
521 }

522 rdsr = sqrt (rdsq);
523 pot = fcoul * 0.14399762e2 * state.ion [cntl] * state.ion Icnt2] / rdsr
524 f c o u l * = p o t / r d s q ;

525 if (fcoul < 0.0 && rdsq < recombine_radiusq) // minimum radius for e-i+
526 error += recombine (ltintl , ltint2) ;
527 else
528 state.pot (cntl] += pot;

529 state.fx [cntl] += xij * fcoul;
530 state.fy [cntl] += yij * fcoul;
531 state.fz [cntl] += zij * fcoul;

532 vir = -fcoul * rdsq;
533 state. virS += vir;
5 3 4 v i r * = 0 . 5 ;

535 state, virial [cntl] += vir;
536 state, virial [cnt2] += vir;
537 # if MEASURE_CONDOCTIVITY
538 fv = (xij * fcoul) * state.vx[cntl]
539 + (yij * fcoul) * state.vy[cntl]
540 + (zij * fcoul) * state.vz[cntl] ;
541 state.rfvfcntl] .x += (-xij)*fv;
542 state, rfv [cntl] .y += (-yij)*fv;
543 state.rfv[cntl] .z += (-zij)*fv;
544 # endif
545 }

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

546 coulombNeighbours.push_back(cnt2);
547 }
548 }
549 }
550 }
551 }
552 } // end of Coulomb potential

553 if (!sti_web) {
554 // sw interaction range is only one box length
555 x2start = cntx - 1;
556 x2stop = cntx + 1;
557 y2start = cnty - 1;
558 y2stop = cnty + 1;
559 z2start = cntz - 1;
560 z2stop = cntz + 1;

561 # if ! PERI0DIC_B00NDARIES_X
5«2 if (x2start < 0) x2start = 0;
563 if (x2stop >= boxes.numBoxXY) x2stop = boxes.numBoxXY - 1;
564 # e n d i f
565 # if ! PERIODIC_BOONDARIES_Y
566 if (y2start < 0) y2start = 0;
567 if (y2stop >= boxes.numBoxXY) y2stop = boxes.numBoxXY - 1;
568 # endif
569 # if ! PERIODIC_BOUNDARIES_Z
570 if (z2start < 0) z2start = 0;
571 if (z2stop >= boxes.numBoxZ) z2stop = boxes.numBoxZ - 1;
572 # endif

573 for (cntx2i = x2start; cntx2i <= x2stop; cntx2i++) {
574 cntx2 = cntx2i;
575 # if PERIODIC_BODNDARIES_X
576 if (cntx2 < 0) cntx2 += boxes.numBoxXY;
577 else if (cntx2 >= boxes.numBoxXY) cntx2 -= boxes.numBoxXY;
578 # endif
579 for (cnty2i = y2start; cnty2i <= y2stop; cnty2i++) {
580 cnty2 = cnty2i;
581 # if PERIODIC_BOUNDARIES_Y
582 if (cnty2 < 0) cnty2 += boxes.numBoxXY;
583 else if (cnty2 >= boxes.numBoxXY) cnty2 -= boxes.numBoxXY;
584 # e n d i f

585 for (cntz2i = z2start; cntz2i <= z2stop; cntz2i++) {
586 cntz2 = cntz2i;
587 # if PERIODIC_BODNDRRIES_Z
588 if (cntz2 < 0) cntz2 += boxes.numBoxZ;
589 else if (cntz2 >= boxes.numBoxZ) cntz2 -= boxes.numBoxZ;
590 ft e n d i f

591 for (cntc2 = 0; cntc2 < boxes.count [cntx2] [cnty2] [cntz2]; cntc2++) {

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

592 cnt2 = boxes.box[cntx2] [cnty2] [cntz2] [cntc2];

593 i f (s ta te .ion [cnt2] < 0)
594 continue;

595 i f (cntl == cnt2)
596 continue;

597 i f (cntl > NAT)
598 continue;
599 i f (cnt2 > NAT)
600 continue;
601 i f ((s ta te .io n (cntl] > 0) && (sta te .ion [cnt2] > 0))
602 continue;

603 x ij = s ta te .x lc n tl] state .x[cnt2];
604 y ij = s ta te .y lc n tl] state .y[cnt2];
60S z i j = s ta te .z [c n tl] sta te .z[cn t2];

606 # i f PERI0DIC_B00NDARIES_X
607 i f (x ij > params.volHalfWidth) x i j -= params.volwidth;
608 else i f (x ij < -params.volHalfWidth) x ij += params.volwidth;
609 # endif
610 # i f PERI0DIC_B0UNDARIES_Y
611 i f (y ij > params.volHalfWidth) y ij -= params.volwidth;
612 else i f (y ij < -params.volHalfWidth) y i j += params.volwidth;
613 # endif
614 « i f PERIODIC_BOBNDARIES_Z
615 i f (z ij > params.volHalfHeight) z i j -= params.volHeight
616 else i f (z ij < -params.volHalfHeight) z i j += params.volHeight
617 # endif

618 rdsq = x ij * x ij + y ij * y ij + z i j * z i j ;

619 i f (rdsq < RCSQ) {
620 / / t w o body POTENTIAL
621 / / i f (true) cerr « "warning: removed 2-body p o ten tia l’ «
622 two_pot (xij , y ij z ij , cn tl , cnt2);

623 / / i s bond broken ?? THREE BODY POTENTIAL
624 t f l t = (double) s ta te .exc [cntl];
625 i f (! incl_brkbnd | | nyRandom.rand0 >= t f l t / 4.) {

626 x3start = cntx - 1
627 x3stop = cntx + 1
628 y3start = cnty - 1
629 y3stop = cnty + 1
630 z3start = cntz - 1
631 z3stop = cntz + 1

632 # i f ! PERI0DIC_B00NDARIES_X
633 i f (x3start < 0) x3start = 0;

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

63« if (x3stop >= boxes.numBoxXY) x3stop = boxes.numBoxXY - 1;
635 # endif
636 # if ! PERIODIC_BOUNDARIES_Y
637 if (y3start < 0) y3start = 0;
63* if (y3stop >= boxes.numBoxXY) y3stop = boxes.numBoxXY - 1;
639 # endif
640 # if ! PERIODIC_BOUNDARIES_Z
641 if (z3start < 0) z3start = 0;
642 if (z3stop >= boxes.numBoxZ) z3stop = boxes.numBoxZ - 1;
643 # endif

644 //if (cntl==l)
645 three_pot (xij, yij, zij, cntl, cnt2);

646 }
647 //else cout « "broken bond: * « cntl « endl;

64* swNeighbours. push_back (cnt2);
649 }
650 }

651 }
652)
653 }
654 }

655 i f (fabs(state.potE-prevPotE) > 100.0) {
656 p r i n t f (" w a r n i n g : h i g h - e n e r g y p a r t i c l e %51d, box(%2d,%2d,%2d), ",
657 cntl, cntx, cnty, cntz);
65* p r i n t f (" p o s (% 5 . 2 f , % 5 . 2 f , % 5 . 2 f) , p o t E = % .2 f \ n " ,

659 state.x[cntl],state.y[cntl] .state.z[cntl], state.potE-prevPotE) ,-
660 }
661 /*1*/
662 }

663 if (sti_web && incl_LJ) // only use LJ-pot if no SW-pot
664 e r r o r + = p o t L J (s t a t e , b o x e s) ;

665 # i f BENCHMRRK_FORCES
666 clock.stop!);
667 # if 0
668 cout « "forces step took " « clock.elapsed() « ’ seconds* « endl;
669 # e l s e

670 const char* filename_benchmark = "comptime_forces.dat";
671 static of stream fout; //(filename_benchmark);
672 if (! (fout.is_open()) || ! (fout.good!))) {
673 e x t e r n i n t c o n t _ p r g ;

674 i f (c o n t _ p r g == 1 && f i l e E x i s t s (f i l e n a m e J b e n c h m a r k)) (
675 fout.open(filename_benchmark,ios: :app) ;
676 }
677 else {
678 fout.open(filenamejoenchmark);

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

679 f o u t « ’ # i n c l . e l . \ t s i m . t i m e \ t c p u . t i m e [s] " « e n d l ;

680 }

681 }
682 f o u t « s t i _ w e b « ’ \ t " « r e a l t i m e « * \ t " « c l o c k . e l a p s e d () « e n d l ;
683 # e n d i f

684 # e n d i f

685 r e t u r n e r r o r ;

686 }

D.4.4 Heat Flow
--- HeatFlow.h

1 ttifndef _HeatFlow_Ji_
2 #define _HeatFlow_h_

3 # i n c lu d e " c o n s t . h "

4 #include <iostream>
s Sinclude <fstream>
6 ((in c lu d e < s t r i n g >
7 ((include <vector>

8 ((include "physics.h*
9 ((include *input .h’

10 #define HF_WITH_ELECTR0NS 1
11 ((define HF_WITH_ENERGY_BOFFER 0

12 #if HF_WITH_ELECTRONS
13 #undef HF_WITH_ENERGY_BDFFER
14 #define HF_WITH_ENERGY_BUFFER 0
15 #elif ! HF_WITH_ENERGY_BOFFER
16 #undef HF_WITH_ELECTRONS
17 frdefine HF_WITH_ELECTRONS 1
is ftendif

19 using namespace std;

20 class State;
21 class HeatFlow;

22 class HeatFlowSystem {
23 public:

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

24 HeatFlowSystemlconst strings desc = "no-name");
25 virtual ~HeatFlowSystem() {)

25 void initO; // initializes the system
27 bool step(double pi, double p2); // integrates system to given time

2* double getTemperature(double z) const; H returns the temperature
29 void setTemperature(double temperature, int cell, double time); // sets temperature
30 double getTimeO const; // return current time
31 void setTime(double t); // set current time
32 double sumEnergyt) const; // return system energy in eV/A2
33 void setDensity(double d); // sets the system to the given mass density

34 void printlnfo(ostreamS out) const;
35 void printxemperature(const strings filename = ” , bool append=false),-
36 void printEnergytconst strings filename = bool append=false);

37 inline double getEnergyOutO const { return energyOut; }
33 inline double getCellSize() const { return dz; }

39 virtual void save(ostreams out) const;
40 virtual void load(istreamS in);

41 typedef vector<double> ArraylD; // the data structure to use

42 protected:

43 ArraylD density; // mass density
44 ArraylD ten?); // temerature
45 ArraylD energy; // energy density
46 ArraylD extEnergy; I I external energy influx
47 ArraylD extDensity; // external density influx
48 ArraylD gTrans; // energy transfer between systems (el-ph)
49 ArraylD cond; // heat conductivity
50 double dt; // time steps (femtoseconds)
si double dz; // cell length (Angstrom)
52 int numCells; // number of cells
53 double zMax; // z-coordinate of interface between MD and this model

54 double time; // current time
55 double energyOut; // energy flowing out of the system
56 double sumExtE; // sum up all energy collected from external sources
57 double densitylnit; // initial mass density
58 double energyInit; // initial energy density

59 // boundary conditions:
to double templnf; // temperature at infinity

61 / / lim it in g cond itions
62 double maxTemp; // simulation potentially unstable if ten?), larger than this
63 double maxD; I I max. heat diffusivity

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

64 // file output streams
65 ofstream outTemp;
66 ofstream outEnergy;

67 string description; // a name to identify the system (electron or lattice)

68 virtual double heatCapacity(double temperature) const = 0;
69 void setNumCells(int nuin, bool initialize = true);
70 void setCellSize(double deltaZ, double timeStep);

71 friend class HeatFlow;
72 }?

73 class HeatFlowSystemPh : public HeatFlowSystem {
74 public:

75 HeatFlowSystemPh(const strings desc = "no-name");
76 virtual 'HeatFlowSystemPh!) { }

77 void printlnfofostreamS out) const;

78 virtual void save(ostreamS out) const;
79 virtual void loadfistreamS in);

so protected:

81 virtual inline double heatCapacityldouble temperature) const {
82 return HF_HEATCAP * PhysConv::Joules_to_eV / PhysConv: :g_to_mu;
83 }

m double meltTemp; // melting temperature (lattice)

85 friend class HeatFlow;
86);

87 #if HF_W1TH_ELECTR0NS

88 class HeatFlowSystemEl : public HeatFlowSystem {
89 public:

90 HeatFlowSystemEl(const strings desc = "no-name");
91 virtual 'HeatFlowSystemEl() {)

92 // void initO; // initializes the system
93 void print!n£o(ostreamS out) const;

94 virtual void save(ostreamS out) const;
95 virtual void load(istreamS in);

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

96 protected:

97 virtual inline double heatCapacity(double temperature) const {
98 //return factorHeatCap * temperature;
99 r e t u r n 1 . 5 * P h y s C o n s t R U : :K / P h y s C o n s t R U : : m a s s _ e l ;

too }

101 double factorHeatCap; // scaling factor for computing heat cap.
102 friend class HeatFlow;
103 };

tot fendif

105 class HeatFlow {
106 public:

107 HeatFlow(bool verbose=true);

108 void printInfo(ostream& out = cout) const; // prints some information about the setup
109 void init(bool verbose=true); // initializes the system
no bool step(double destTime);
in bool stepO; // integrates system by one time step
112 void laserldouble laserlntensity, double duration); // intensity is in eV/(fs*A'2)
U3 void setTemperatureTop(double temperature, double time); // sets boundary temperature (at top)

114 double getLaserEnergyO const; // returns input laser energy density in eV/A3
lis double getLaserFluenceO const; // returns input laser fluence in J7cm2
U6 double getTimeO const; // return current time
in void setTime(double t); // set current time
u s d o u b l e s u m E n e r g y O c o n s t ; / / r e t u r n s y s t e m e n e r g y i n e V

119 double getMaxZ () const; // return the z-coordinate at top of model
12* double getMinZO const; // return the z-coordinate at bottom of model
121 double getTimeStep() const; // return length of time step (in fs)
122 inline double getEnergyOut () const;

123 void dampParticle(States state, long pid) const;

124 void save(ostream& out) const;
125 void load {istream& in) ,-

126 static int testt); // runs heat-flow simulation for testing/debugging

127 HeatFlowSystemPh phSystem;
128 # if HF_WI XH_ELECTRONS
129 HeatFlowSystemEl elSystem;
130 # elif HF_WITH_ENERGY_BUFFER
131 HeatFlowSystem::ArraylD laserEnergy;
132 double gParam; // coupling parameter
133 double minTransE; // min. unit of energy transfer (to avoid rounding errors)
134 0 e n d i f

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

135 private:

136 double dt; I I tine steps of HD sinulation (femtoseconds)
137 double time; // current time
138 double zMax; // z-coordinate of interface between MD and this model

139 // physical properties of lattice and electron gas:
140 double absCoeff; I I absorption coefficient (1/A)

141 # if HF_WITH_ELECTRONS
142 double gParam; // coupling parameter 'G'
143 double Eg; // band gap energy
144 « endif

145 // some other parameters or variables
146 double phK300; I I lattice heat capacity at T=300 [eV/(fs A K)
147 double gamma; I I factor for Langeving damping

148 double totalLaserFluence; // sums up laser fluence collected
149 double totalLaserEnergy; // sums up laser energy (density) collected

ISO ♦ if PRINTJvBS.PROFILE
151 ofstream foutAP;
152 # endif
153 >;

154 #endif

HeatFlow.cc

i ♦include *const.h"
2 ((include "HeatFlow.h1

3 #include <iostream>
4 #include <fstream>
S #include <sstream>
6 ((include <iomanip>
7 ((include <exception>
8 #include <string>
9 #include <algorithm>
10 ♦include <cassert>
11 ♦include <cmath>

12 ((include "physics.h"
13 ♦include "State.h"
14 ♦include •Boxes.h*
15 ♦include "Random.h"
16 ♦include "bath.h"
17 ♦include "utility.h*

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

18 Sdefine DEBUG_HEATFLOW 0
» Ddefine USE_EXPLICIT 1

20 extern double TEMP;
21 extern double DEBYE;

22 HeatFlow::HeatFlow(bool verbose)
23 : phSystemf lattice”)
24 # if HF_WITH_ELECTRONS
25 ,elSystem("electrons”)
26 # endif
27 t
28 double templnf = TEMP;

29 extern double DIST_DMP;
30 int numLayers = (int)(DlST_OMP/boxes.boxLength);
31 int ziStart = boxes.firstNonDamped;
32 int ziEnd = ziStart + numLayers;
33 int boxlndex = boxes.boxMinZ + ziEnd - boxes.ziMin;
34 zMax = boxes.lowZ + boxlndex * boxes.boxLength;

35 phSystem.templnf = templnf;
36 phSystem. zMax = zMax;

37 # if HF_WITH_ELECTRONS
38 elSystem.templnf = templnf;
39 elSystem. zMax = zMax;
40 # endif

41 init (verbose);
42 if (verbose)
43 printlnfoO;
44 }

45 extern double SPACE;
46 extern double ABS_C0EF;
47 extern double ABS_C0EF2;
48 extern double OVERJWEIGH;
49 extern double LEngDen;
so extern double time_st[2J;
51 extern double LPhotEng;
52 extern double D1STJ3KP;
53 extern double LIntensity;
54 extern double SiLIFET;

55 void HeatFlow::init(bool verbose)
56 {
57 time = 0;

58 phSystem. init ();
59 phSystem. time = time;

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

6 0 # i f H F _ W I T H _ E L E C T R O N S

61 e lS y s te m .in itO ;
62 elSystem. t in e = t in e ;
63 # end if

64 / /c o u t « "H e a tF lo w ::in it() : time step* « endl;
65 d t = tim e_st£0J; / / t in e s te p (atoms)
66 i f (verbose)
«7 cout « " t in e s te p = " « d t « ’ fs" « endl;

68 / / Diamond l a t t i c e : 8 atoms p e r u n it c e l l
69 phS ystem .density ln it = 8*state.m assA t / (SPACE*SPACE*SPACE); / / eV*fs“2/A“5

70 # i f HF_WITH_ELECTRONS
71 E g = 1 . 1 1 ; / / e V , f o r S i l i c o n a t 3 0 0 K (K i t t e l , p g 2 0 1)

72 d o u b l e p h T e m p = p h S y s t e m . t e m p l n f ;

73 / / d o u b l e p h T e m p = 1 0 0 0 ;

74 double elNDensity =
7 5 2 * pow(state.nassEl * PhysConstRU:: K * phTemp
7 6 / (2 * M a t h : : P I * P h y s C o n s t R U : : h b a r * P h y s C o n s t R U : : h b a r) , 1 . 5)

7 7 * e x p (- E g / (2 * P h y s C o n s t R U : : K * p h T e m p)) ; / / i n A " - 3

78 / / e l N D e n s i t y = 1 . 0 2 7 5 e + 2 8 * (P h y s C o n v : : A _ t o _ j n * P h y s C o n v : : A _ t o _ m * P h y s C o n v : : A _ t o _ m) ;

79 e l S y s t e m . d e n s i t y l n i t = e l N D e n s i t y * s t a t e . m a s s E l ; / / m a s s d e n s i t y

s o / / e l S y s t e m . d e n s i t y l n i t = 4 * p h S y s t e m . d e n s i t y I n i t / s t a t e . m a s s A t * s t a t e . n a s s E l ;

s i # i f 1

82 c o n s t d o u b l e h b a r 2 R U = P h y s C o n s t R U : : h b a r * P h y s C o n s t R U : : h b a r ;

83 c o n s t d o u b l e P I 2 = M a t h : : P I * M a t h : : P I ;

8 4 d o u b l e f e r m i E = h b a r 2 R U / (2 ‘ s t a t e . m a s s E l) * p o w (3 * P I 2 * e l N D e n s i t y , 2 . 0 / 3 . 0) ;

85 double fermiT = fermiE / PhysConstRU::K;
8 6 d o u b l e e l C = 0 . 5 * P I 2 * P h y s C o n s t R U : : K / (f e r m i T * s t a t e . m a s s E l) ;

87 i f (v e r b o s e) {

88 cout « "elNDensity
8 9 c o u t « " f e r m i e n e r g y

90 c o u t « " f e r m i t e m p e r a t u r e

91 c o u t « " C _ e l - f a c t o r

92 c o u t « " C _ e l (a t 3 0 0 K)

93 }
94 # e n d i f

95 e l S y s t e m . f a c t o r H e a t C a p =

96 (P h y s C o n s t R U : : K * P h y s C o n s t R U : : K) / (P h y s C o n s t R U : : h b a r * P h y s C o n s t R U : : h b a r)

97 * s t a t e . n a s s E l * p o w (e l N D e n s i t y * M a t h : : P I * M a t h : : P I / 9 , 1 . 0 / 3 . 0)

98 / (P h y s C o n s t R U : : m a s s _ e l * e l N D e n s i t y) ;

99 / / e l S y s t e m . f a c t o r H e a t C a p = 0 . 0 ;

= * « e l N D e n s i t y « " 1 / A 3 " « e n d l ;

= " « f e r m i E « ■ e V * « e n d l ;

= " « f e r m i T « • K " « e n d l ;

= " « e l C « " e V / (r m u * T 2) " « e n d l ;

= " « e l C * 3 0 0 « " e V / (r m u * T) ’ « e n d l ;

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

100 # endif

101 i f (verbose) { / / debugging
102 double phHeatCap = phSystem.heatCapacity(phSystem.templnf);
103 cout « " la t t ic e K/(eV/A3): " « 1 . 0 / (phHeatCap*phSystem.densitylnit) « endl;
104 # i f HF_WITH_ELECTRONS
105 double elHeatCap = elSystem.heatCapacity(elSystem.templnf);
106 cout « "e l.-gas K/(eV/A3): " « 1 . 0/(elHeatCap*elSystem .densitylnit) « endl;
107 # endif
108 }

109 # if 0
110 double conv_A3_to_cm3 = PhysConv::A.-to..cm * PhysConv: :A_to_cm * PhysConv: :A_to_cm;
111 cout « "PhysConv::eV_to_Joules _ * « PhysConv::eV_to_Joules « endl;
112 cout « "PhysConv::amu_to_rmu _ N « PhysConv: :amu_to_rmu « endl;
113 COUt « "Math::PI — * « Math::PI « endl;
114 cout « "PhysConst::hbar » « PhysConst: :hbar « endl;
115 cout « "PhysConst::K = *' « PhysConst: :K « endl;
116 # if HF_WITH_ELECTRONS
117 cout « "elDensity _ ■ « elSystem.Density « " eV*fs"2/A"5’' « endl;
118 cout « "el. #Density • ■ « elNDensity « " A"-3" « endl;
119 cout « "el. #Density _ • « elNDensity / conv_A3_to_cm3 « ■ cm"-3" « endl;
120 cout « "state.massEl _ • « state.massEl « " eV*fs"2/A"2,t « endl;
121 cout « "Eg _ ■ « Eg « " eV" « endl;
122 # endif
123 cout « "phTempInf _ a « phSystem.tenplnf « " K" « endl;
124 cout « "PhysConstRU::K _ • « PhysConstRU: : K « endl;
125 cout « "PhysConstRU::hbar _ a « PhysConstRU: :hbar « endl;
126 # endif

127 double absC oeffl = ABS_C0EF*PhysConv: :A_to_cm * OVER_WEIGH;
128 d o u b l e a b s C o e f f 2 = A B S _ C 0 E F 2 * l e - 9 * L I n t e n s i t y * P h y s C o n v : : A _ t o _ c m * O V E R J W E I G H ;

129 absCoeff = absC oeffl + absCoeff2;

130 double skinDepthLin = 1. / absCoeff;
131 double simHeight = 5 . * skinDepthLin; / / d e s ire d h e ig h t of s im ulation volume

132 / / e s tim a te maximum tem perature
133 phSystem.meltTemp = 1687; / / melt temperature fo r s ilic o n (Kelvin)

134 //doub le laserEnergyD ensity = LEngDen *
135 I I PhysConv:: Joules_to_eV* (PhysConv: : A_to_cm* PhysConv:: A_to_cm);
136 //elSystem.maxTemp = sqrt(elSystem .tem plnf*elSystem .tem plnf +
137 / / 2 "absCoeff* laserEnergyD ensity
138 / / / (elSystem .factorHeatCap * e lS y stem .d en sity ln it));
139 # i f HF_WITH_ELECTRONS
1 4 0 e l S y s t e m . m a x T e m p = 2 . 0 / (3 * P h y s C o n s t R U : :K) * (L P h o t E n g - E g) * 5 . 0 ;

141 # endif
142 phSystem. maxTemp = 5 *phSy s t em. me 1 tTemp ;

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

143 { // computing max. heat diffusivity

144 // for silicon: maxD = 0.85 cm2/s (Bauerle, pg.697)
145 double phCond = 1.5; // W/(cm K), conductivity for Si at T=300K
146 phCond *= (PhysConv::Joules_to_eV/PhysConv::s_to_fs) / PhysConv::cm_to_A; // eV/(fs A K)

147 // computing max. heat diffusivity for lattice
148 double minHeatCapPh = phSystem.heatCapacity(phSystem.templnf);
149 double maxCondPh = phCond * phSystem.maxTemp / phSystem.templnf;
iso phSystem.maxD = maxCondPh / (phSystem.densityInit*minHeatCapPh);

151 # if HF_WITH_ELECTRONS
152 // confuting max. heat diffusivity for electrons
153 double laserFluence = LEngDen; // J/cm2
154 laserFluence *= PhysConv::Joules_to_eV*PhysConv::A_to_cm*PhysConv::A_to_cm; // eV/A“2
155 double maxDensityEl = laserFluence * absCoeff;
156 double maxCondlEl = phCond * elSystem.maxTemp / phSystem.templnf;
157 double maxCond2El = phCond * elSystem.templnf / phSystem.templnf;

158 double dl = maxCondlEl / (maxDensityEl * elSystem.heatCapacity(elSystem.maxTemp));
159 double d2 = maxCond2El J (elSystem.densitylnit * elSystem.heatCapacity(elSystem.templnf)) ;

160 //cout « "maxD (1) = * « dl « endl;
161 //cout « "maxD (2) = " « d2 « endl;

162 elSystem.maxD = m£ix{ dl, d2);
163 //elSystem. maxD = dl;

164 double physMaxD = PhysConst::c*PhysConv: :m_to_A*PhysConv::fs_to_s * 0.1;
165 physMaxD *= physMaxD;
166 if (elSystem.maxD > physMaxD)
167 elSystem. maxD = physMaxD;
168 # endif
169 }

170 //phSystem.setCellSize(100., dt);
ni phSystem.setCellSize(DIST_DMP, dt);
172 # if HF_WITH_ELECTRONS
173 elSystem.setCellSize(2.0 * phSystem.dz, phSystem.dt);
174 # end if

175 {
176 // compute initial energy density:
177 const int n = 200;

ra const double dTPh = phSystem.templnf / n;
179 double tPh = 0.5 * dTPh;

180 # i f HF_WITH_ELECTRONS

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

181 c o n s t d o u b le dT E l = p h S y s te m . te m p ln f / n ;
182 d o u b le t E l = 0 . 5 * d T E l;
183 # endif

184 d o u b le sumPh = 0 . 0 ;
185 # i f HF_WITH_ELECTRONS
186 d o u b le sum E l = e lN D e n s i ty * Eg;
187 # endif
188 f o r (i n t i = 0 ; i < n ; + + i) {
189 sum Ph += p h S y s t e m .d e n s i t y l n i t * p h S y s te m .h e a tC a p a c i ty (tP h) * dTPh;
iso tP h += dTPh;
191 # i f HF_WITH_ELECTRONS
192 sum E l += e l S y s t e m . d e n s i t y l n i t * e lS y s t e m .h e a tC a p a c i ty (tE l) * d T E l;
193 t E l += d T E l;
194 # e n d i f

195 }
196 p h S y s t e m .e n e r g y ln i t = sum Ph;
197 # i f HF_WITH_ELECTRONS
198 e l S y s t e m .e n e r g y l n i t = sum E l;
199 # endif
200 }

201 / / c r e a t e r e q u i r e d num ber o f c e l l s
202 / / c o u t « " H e a tF lo w :: i n i t () : c r e a t e r e q u i r e d num ber o f c e l l s " « e n d l ;
203 # i f HF_WITH_ELECTRQNS
204 i n t n u m E lC e lls = (i n t) c e i l [s i m H e i g h t / e lS y s t e m .d z) ;
205 i f (n u m E lC e lls < 1 0) n u m E lC e lls = 1 0 ;
206 e lS y s te m .s e tN u m C e l ls (n u m E lC e l ls) ;
207 s im H e ig h t = (e lS y s te m .n u m C e l ls - 2) * e lS y s te m .d z ;
208 p h S y s te m .s e tN u m C e l ls ((i n t) (s im H e ig h t/p h S y s te m .d z + 0 . 5)) ;
209 # e l s e
210 i n t n u m P h C e lls = (i n t) c e i l (s i m H e i g h t / p h S y s te m .d z) ;
211 p h S y s te m .s e tN u m C e lls (n u m P h C e lls) ;
212 s im H e ig h t = (p h S y s te m .n u m C e lls - 2) * p h S y s te m .d z ;
213 # e n d i f

214 p h S y s t e m .s e tD e n s i ty (p h S y s t e m .d e n s i t y l n i t) ; / / e V * fs " 2 /A “ 5
215 * i f HF_WITH_ELECTRONS
216 e l S y s t e m .s e t D e n s i t y l e l S y s t e m . d e n s i t y l n i t) ; / / m ass d e n s i t y
217 # e n d i f

218 t o t a l L a s e r F l u e n c e = 0 . 0 ;
219 to t a l L a s e r E n e r g y = 0 . 0 ;

220 # i f HF_WITH_ELECTRONS
221 / /g P a r a m = l e l 6 ; / / W /(m '3 *K) - N o r r i s e t a l . , R S I, v o l . 7 4 , p g . 4 0 0 (2 0 0 3) - M e ta l
222 g P a ra m = 0 . 4 e l 7 ; / / W /(m*3 *K) - a ssu m e s n _ e l ' l e 2 1 c m '(- 3)
223 g P aram *= P h y sC o n v : :J o u le s_ to _ e V * P h y s C o n v : : f s _ t o _ s
224 * P hysC onv : :A _ to jn * P h y sC o n v : :A _to_m *PhysC onv: :A _to_m ;
225 # e n d i f

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

m / / gamma = p i/6 * (debye frequency)
227 / / (debye frequency) = wD = kB/hbar * (debye temperature)
228 / / see K itte l, Intro to Solid S tate Physics, 7th ed., pg. 122
229 / / and Haberland e t . a l, PRB, y r. 1995, vol. 51, pg. 11061
230 gamma = - Math::PI/6.0*PhysConstR(J::K/PhysConstRU::hbar*DEBYE; / / [1/fs]
231 if (gamma < -1.)
232 gamma = -1.0;

233 # if HF_WITH_ENERGY_BUFFER
234 gParam = l.O-expl-phSystem.dt/SiLIFET);
233 minTransE = 1.0e-4 * phSystem.energylnit;
236 laserEnergy.resize(phSystem.energy.sized);
237 for (unsigned in t i = 0; i < laserE nergy .sized ; ++i)
238 laserEnergy [i] = 0.0;
239 # endif
240) / / end of HeatFlow: :in i t()

241 / / adds la se r energy to the electron gas. in tensity is in eV/(fs*A"2)
242 void HeatFlow::laser(double la serln tensity , double duration)
243 {
244 # i f HF_WITH_ELECTRONS
243 HeatFlowSystemSc hfSystem = elSystem;
246 # else
247 HeatFlowSystem& hfSystem = phSystem;
248 # endif

249 //cou t « " laserln tensity = " « laserln tensity « endl;

230 double absCoeffl = ABS_COEF*PhysConv::A_to_cm * OVER_WEIGH;
231 double absCoeff2 = ABS_C0EF2*lel4' PhysConv: : eV_to_Joules * la se rln ten sity * OVERJWEIGH;
232 abscoeff = absCoef f 1+absCoef f 2 ;

253 double factor = duration * la serln tensity * absCoeff;
254 double sumEnergy = 0.0;

233 # i f PRUJT_ABS_PROFILE
256 vector<double> nPhotAbs(hfSystem.numCells-2);
257 for (unsigned in t i i = 0; i i < nPhotAbs.sized; ++ii)
258 nPhotAbs(ii) = 0;
239 const double dz = hfSystem.dz;
260 const double dA = params.volWidth*params.volWidth;
261 const double dv = dz*dA;
262 # endif

263 for (in t i = 1; i < hfSystem.numCells-1; ++i) {
264 double z = (i-0.5)*hfSystem.dz;
265 double energy = factor * exp(-absCoeff * z);

266 double nPhotons = energy / LPhotEng;

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

267 « i f HF_WITH_ELECTRONS
268 double incDensity = nPhotons * state.m assEl; / / increase in electron density
269 double incEnergy = nPhotons * (LPhotEng - Eg);
270 # else
271 double incEnergy = nPhotons * (LPhotEng);
272 # endif

273 # i f PRINT_ABS_PROFILE
274 nPhotAbs[i-l] = nPhotons * dV;
275 * endif

276 # i f 0
277 i f ! i % 1000 == 1)
278 cout « ”energy(z=" « setw(8) « z A A >

279 « ■ = * « energy « ■ eV/A3’ « endl;
280 # endif

281 # i f HF_WITH_ENERGY_BCFFER
282 laserEnergy[i] += incEnergy;
283 * else
284 hfSystem.extEnergyti] += incEnergy;
285 # i f HF_W1TH_ELECTR0NS
286 hfSystem.extDensityfi] += incDensity;
287 # endif
288 « endif

289 # i f 0
290 t
291 double temp = incEnergy / (incDensity * hfSystem.heatCapacitylhfSystem.
292 cout « "laser-generated electron gas: c e ll * « setw(3) « i « • : *
293 « *t=" « temp « "K, "
294 « "E=" « incEnergy « "eV/A3, "
295 # i f HF_WITH_ELECTRONS
296 « "D=" « incDensity « "1/A3*
297 # endif
298 « endl;
299

300 # endif

301 sumEnergy += incEnergy;
302 }
303 totalLaserEnergy += sumEnergy;
304 totalLaserFluence += sumEnergy * hfSystem.dz;

305 # i f PRINT_ABS_PR0FILE
306 extern double LAS_ON;
307 extern double TIHEST;
308 //ex tem double LPULSLEN;
309 extern double realtim e;

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

310
311
312
313
314
315
316
317

i f (!foutAP | | LAS_0N-T1MEST <= re a ltim e && rea ltim e <= LAS_0N+TIMEST) {
if (foutAP.is_open())

318
319
320
321
322

fo u tA P .c lo se t);
o stringstream fname;
ex tern in t pulseCount;
ex tern double LWAVLEN;
fname « *la se r .a b sp ro file _ " « pulseCount « ".h f" « f lu sh ;
cout « "p rin tin g absorp tion p r o f i le to « fnam e.str() « * " « endl;
foutAP. open(fname. s t r () . c _ s t r ()) ;
foutAP « "# dz = " « dz « " A" « endl

« "# dA = * « dA « * A'2" « endl
« ’ # photonEnergy = " « LPhotEng « " eV’ « endl
« *# wavelength = " « LWAVLEN « " nm" « endl;

323 }
324 foutAP « rea ltim e ;
325 fo r (unsigned in t i i = n P h o tA b s.s ize ()-l; i i > 0; —i i) {
326 foutAP « " \ t" « nPhotA bs[ii] ;
327)
328 foutAP « endl;
329 # end if

330 # i f 0
331 using namespace PhysConv;
332 cout « " in te n s i ty : " « la s e r ln te n s i ty « * eV/(fs*A '2) = ■
333 « la s e r ln te n s i ty * eV_to_Joules*cm_to_A*cm_to_A*s_to_fs « " W/an2 — ’
334 « " la s e r fluence : ’ « to ta lL aserF luence « • eV/A2 = ■
335 « to ta lL aserF luence * eV_to_Joules*cm_to_A*cm_to_A
336 « " J/cm2"
337 « ’ — peak energy added = ’ « du ra tion * la s e r ln te n s i ty * abscoeff « " eV/A3"
338 « " -> dT(el) = ’
339 « (du ra tion * la s e r ln te n s i ty * absCoeff /
340 (elSystem .density*elSystem .factorH eatC ap*elSystem .tem pInf)) « " K’
341 « end l;
342 # end if
343)

344 bool HeatFlow:: s te p ()
345 {
346 / /c o u t « "HeatFlow: : s t e p () : begin" « endl;

347 s t a t i c long iterationN um = 0;

348 bool ok = tru e ;
349 const double errorToleranceTim e = le -6 ;

350 in t nPhSteps = (in t)c e il(d t/p h S y s te m .d t) ;
351 a s s e r t(fabs(nPhSteps*phSystem .dt-dt) < errorToleranceTime) ;

352 # i f HF_WITH_ELECTR0NS
353 a s s e r t (phSystem.numCells >= elSystem.numCells);

354 double nElStepsD = phSystem .dt/elSystem .dt;

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

355 assert (nElStepsD < INT_MAX/2) ;
356 int nElSteps = (int)ceil(nElStepsD);

357 assert(fabs(nElSteps*elSystem.dt-phSystem.dt) < errorToleranceTime);

358 int totalElSteps = nElSteps’nPhSteps;
359 int nPhpEl = (phSystem.numCells-2)/(elSystem.numCells-2); // # of ph-cells per el-cell

360 int elCnt = totalElSteps ;
361 # endif

362 int phCnt = nPhSteps;

363 for (int tiPh = nPhSteps; tiPh > 0; — tiPh) {
362 ++iterationNum;

365 # if HF_WITH_ELECTRONS
366 // e-h recombination:
367 for (int i = 1; i < elSystem.numCells-1; ++i) {
368 double dD = (elSystem.densityInit-elSystem.density[i]) ’phSystem.dt/SiLIFET;
369 double dE = -(dD/state.massEl)*Eg/nPhpEl;
370 for (int j = (i-l)*nPhpEl+l; j <= i’nPhpEl; ++j)
371 phSystem.gTranstj] += dE;
372 elSystem.density[i] += dD;
373 }
374 # endif

375 # if HF_WITH_ENERGY_BUFFER
376 for (int i = 1; i < phSystem.numCells-1; ++i) {
377 i f (laserEnergyli] > minTransE) {
378 double dE = gParam * laserEnergyli];
379 phSystem.gTrans[i] += dE;
380 laserEnergyli] -= dE;
381 }
382 else {
383 phSystem.gTransli] += laserEnergyli];
384 laserEnergyli] = 0.0;
385 }
386 }
387 # e n d i f

388 double phK300 = 1.5; // W/(cm K), at T=300K
389 phK300 *= (PhysConv::Joules_to_eV*PhysConv::fs_to_s) / PhysConv::on_to_A; // eV/(fs A K)

390 // initializing lattice heat conductivity
391 //cout « ’HeatFlow::step(); initializing lattice heat conductivity" « endl;
392 for (int i = 1; i < phSystem.numCells-1 && ok; ++i) { // will later be temperature dependent
393 phSystem.cond[i] = phK300;

394 # if HF_WITH_ELECTRONS

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

395 int iPh = i;
396 int iEl = (i-l)/nPhpEl+l;

397 # if 1
398 double n = elSystem.density[iEl]/PhysConstRU::mass_el;
399 gParam = 3*n*PhysConstRU::K / SiLIFET;
400 double dTelph = elSystem.temp[iEl] - phSystem.tempfiPh] ;
401 double g = gParam * dTelph * phSystem.dt;
402 # else
403 double phTO = phSystem.tempIiPh];
404 double phC = phSystem.density[iPh] * phSystem.heatCapacity(phTO);

405 double elTO = elSystem.temp[iEl],-
406 double elC = elSystem.densityliEl] * elSystem.heatCapacity(elTO);

407 double Tf = (elC*elT0 + phC*phT0) / (elC+phC) ;
408 double beta = gParam * (1.0/elC + 1.0/phC);
409 double gPh = phC * (Tf-phTO) * (l-exp(-beta*phSystem.dt));
410 double gEl = - elC * (Tf-elTO) * (l-exp(-beta*phSystem.dt));
411 assert! fabs(gPh-gEl) < le-6);
412 double g = gEl;
413 # e n d i f

414 elSystem.gTrans[iEl] -= g;
415 phSystem.gTrans[iPh] += g;

416 * if 0
417 cout « time « *fs — " « iterationNum « " « iPh « */• « iEl « *: "
418 « *Tf=" « Tf « transfering • « g « * eV/A3 "
419 « "from electrons (" « elTO « *K, " « elC « "eV/A3KJ *
420 « "to lattice (" « phTO « ", " « phC « ’eV/A3K)"
421 « e n d l ;

422 # endif

423 # endif
424 }

425 # if HF_WITH_ELECTRONS

426 for (int iEl = nElSteps; iEl > 0 St ok; — iEl) {

427 // initializing electron heat conductivity
42a //cout « "HeatFlow::step(): initializing electron heat conductivity" « endl;

429 elSystem.cond. front!) =
430 phSystem.cond.front!) * elSystem.temp.frontO/phSystem.temp.front!);
431 elSystem.cond.back!) =
432 phSystem.cond.back!) * elSystem.temp.back!)/phSystem.temp.backO;
433 for (int i = 1; i < elSystem. numCells-1; ++i) {

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

434 double sumlnvCond = 0 .0 ;
435 fo r (i n t j = (i-l)*nP hpE l+ l; j <= i*nPhpEl; ++j)
436 sumlnvCond += phSystem .tem p[i]/ (elSystem .tem p[i]*phSystem .cond[i]);
437 elSystem . cond[i] = nPhpEl/sumlnvCond;
438 }

439 ok = ok && e lS y stem .step (1 .0 /e lC n t, 1 .0 /iE l) ;
440 —elC nt;

441 # i f 0
442 i f (iEl%100 == 0) {
443 double sumE = 0 .0 ;
444 fo r (in t i = 1; i < elSystem.numCells-1; ++i) sumE+=elSystem.energy[i];
445 cout « " t = " « setw(10) « elSystem .tim e
446 « “ T = " « setw(10) « elSystem.temp[0]
447 « ■ E = * « setw(10) « sumE * elSystem .dz « " eV/A2*
448 « ■ extE = " « setw(10) « elSystem.sumExtE * elSystem .dz « ’ eV/A2"
449 « * = " « setw(10) « (elSystem.sumExtE*elSystem.dz*
450 PhysConv: :eV_to_Joules*lel6) « * J/cm2*
451 « e n d l ;

452 }
453 # end if

454 }

455 # e n d if / / end of e le c tro n s tep s

456 ok = ok && phSystem .step(1.0/phC nt, 1 .0 /tiP h) ;
457 —phCnt;
458 }

459 time += d t;

460 i f (! ok) re tu rn ok;

461 / /c o u t « "H eatF low ::step (): consistency check" « endl;
462 a s s e r t (fabs(tim e-phSystem .tim e) < errorToleranceTime) ;
463 a s s e r t (phCnt = = 0) ;
464 « i f HF_WITH_ELECTRONS
465 a s s e r t! fabs(tim e-elSystem .tim e) < errorToleranceTime) ;
466 a s s e r t (elC nt = = 0) ;
467 # end if
468 / /c o u t « "HeatFlow: : s t e p () : end" « endl;

469 re tu rn tru e ;
470 }

471 # if USE_EXPLICIT

472 bool HeatFlowSystem:: s te p (double p i , double p2)
473 {
474 time += d t;

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

475 double dz2 = dz*dz;

476 Array ID dE(numCells) ;
477 Array ID dD(numCells);

478 for (in t i = 1; i < numCells-1; + + i) {

47» / / Enthalpy Equation: compute change in energy for each ce ll
480 double condP = 2.0 / (1.0/cond[i+l] + 1.0 /cond[i]);
481 double condM = 2.0 / (1.0/cond[i] + 1 .0 /cond [i-l]);
482 double dTp = temp[i+l] - templi];
483 double dim = tempii] - tem p[i-l];
484 double gTransE = p2*gTrans[i];
485 double extE = pl*extEnergy[i];
486 double extD = pl*extD ensity[i];

487 gTrans[i] -= gTransE;.
488 extEnergyli] -= extE;
489 extDensityli] -= extD;

490 sumExtE += extE;

491 dD[i] = extD;

492 dE[i] = dt/dz2 * (condPMTp - condM*dTm);
493 dE[i] += extE;
494 dE[i] += gTransE;

495 i f { i == numCells-2) {
496 energyOut += -dt/dz2 * condP*dTp;
497 }
498 }

499 for (in t i = 1; i < numCells-1; ++i) {
500 double heatcap = heatcapacityltem pli]) ;

501 / / update energies
502 energyli] += dE[i] ;

503 / / Temperature eqn T=T(H)
504 templi] += dE[i]/(density[i]*heatCap) ;
sos templi] *= density ti] / (density[i]+dD[il);

506 11 update density
507 density I i] += dD[i];

sos i f (templi] > maxTemp) {
509 using namespace PhysConv;
sio cerr « "HeatFlow::step(): " « description « ’ temperature (" « templi] « * k) *
su « "has exceeded max. temperature (* « maxTemp « ’ K) ’

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

512 « * — cell# * « i « * a t depth * « (i-0.5)*dz « * A"
513 « endl;
514 return fa lse ;
515 }
516 e lse i f (temp[i] <= 0) {
517 using namespace PhysConv;
sis cerr « "HeatFlow; :s te p () : * « description « " temperature (* « temp[i] « " K) •
si» « * i s out o f bounds’
520 « " — ce ll# ’ « i « * a t depth " « [i-0.5)*dz « " A"
521 « endl;
522 return fa lse ;
523 }
524 }

525 / / insulating boundary condition (heat transfer between HD and th is model
526 / / i s done using phExtEnergy and elExtEnergy)
527 temp[0] = temp[l];
528 temp.backO = templnf;
529 energy[0] = energy [1];
530 energy.backO = energylnit;

531 //cou t « "HeatFlow::step(): t=" « time « " fs ’
532 / / « ’ [" « description « *] T(top) = ■ « temp[0] « ■ K" « endl;

533 / /printTemperature () ;
534 / /p r intEnergy () ;
535 return true;
536 }

537 #else // USE implicit

538 bool HeatFlowSystem::step(double pi, double p2)
539 {

540 const double theta = 0.5;

541 time += dt;

542 const double dtdz = dt/dz;
543 const double tdtdz = theta * dtdz;
544 const double mtdtdz = (1-theta) * dtdz;

545 ArraylD origE(numCells);
546 ArraylD origT(numCells) ;
547 ArraylD invHeatCap(numCells); // inverse of heat capacity for each cell
548 ArraylD invResist(numCells-l); // inverse of thermal resistivity between cells i and i+1
549 vector<bool> thermalize(numCells) ;

5so double diffuseError = false;

551 for (int i = 0; i < numCells-1; ++i) {

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

552 i f (tem p[i] > maxTemp) {
553 u s in g namespace PhysConv;
554 c e r r « "HeatFlow: : s t e p () : * « d e s c r ip t io n « " tem p era tu re (’ « tem p li] « " K) "
555 « "has exceeded max. tem p era tu re {" « maxTemp « " K)"
55« « " — c e l l# " « i « " a t dep th " « (i -0 .5)* d z « ■ A"
557 « en d l;
55* p rin tT e m p e ra tu re O ;
559 p rin tE n e rg y () ;
550 r e tu r n f a l s e ;
551 }
552 e ls e i f (tem p[i] <= 0) {
553 u sin g namespace PhysConv;
554 c e r r « "HeatFlow: : s t e p () : " « d e s c r ip t io n « " tem p era tu re (" « tem p li] « " K) "
555 « " i s o u t o f bounds"
556 « " — c e l l# * « i « * a t dep th * « (i -0 .5)* d z « * A’
567 « e n d l;
568 r e tu rn f a l s e ;
559 }

570 double gTransE = p 2 * g T ra n s[i] ;
571 double ex tE = p l* e x tE n e rg y [i] ;
572 double extD = p l* e x tD e n s i ty [i] ;

573 gTrans [i] -= gTransE;
574 ex tE n erg y [i] -= ex tE ;
575 e x tD e n s i ty l i] -= extD;

576 o r ig T [i] = tem p li] * d e n s i ty l i] / (d e n s ity l i]+ e x tD);
577 d e n s i ty l i] += extD ;
578 invH eatC apfi] = 1 . 0 / (d e n s i ty l i] * h e a tC a p a c ity) te m p ii])) ; / / assume slo w ly v a ry in g h e a t c a p a c ity
579 o r ig E f i] = e n e rg y li] + extE + gTransE;
580 o r ig T [i] += (o r ig E [i] - e n e rg y [i]) * invH eatC apfi];

581 e n e rg y li] = o r ig E [i] ;
582 tem pli] = o r ig T [i] ;

583 in v R e s is t l i] = 1 .0 / (0 .5 * dz * (1 .0 /c o n d [i+ l] + 1 .0 /c o n d [i])) ;

584 th e rm a l iz e l i] = (cond [i]* invH eatC ap [i] > maxD) ;
585 d if fu s e E r ro r = d if fu s e E r ro r | | th e r m a l iz e l i] ;
586 }

587 invH eatC ap.backt) = 1 .0 /(d e n s ity .b a c k () * h ea tC ap ac ity (tem p .b ack O) I ;

588 / / a d ju s t boundary c o n d itio n (energy from HD i s coup led in to c e l l 1)
589 energy[0] = e n e rg y l i] ;
590 tempfO] = tem p li] ;

591 o rigE 10] = e n e rg y [0] ;

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

SK origE .backd = energy .b ack ();

593 origTIO] = temp[0];
594 origT .backl) = temp.backO;

595 in v R esist[0] = 1 .0 / (0 .5 * dz * (1 .0 /c o n d [l]));
596 invR esist[num C ells-2] = 1 .0 / (0 .5 * dz * (1.0/cond[num C ells-2]));

597 / / therm alize reg ions where d i f f u s iv i t y i s above threshold
598 i f (d iffuseE rror) {
599 / /c e r r « " d if fu s iv ity too large" « endl;

600 in t begin = -1 ;
601 in t end = begin;
602 w h ile (begin < t in t) th e r m a liz e .s iz e () - l) {
603 thermal i z e . back {) = true;
604 w hile (! therm alize [++begin]);
60s end = b eg in -1;
606 therm alize.back!) = fa ls e ;
607 w hile (thermalize[++end]);

60s i f (begin < end) {
609 in t s = (beg in> 0?beg in -l:0);
610 in t e = (e n d < (in t)th e rm a lize .s iz eO ? e n d + l:tb e rm a lize .s iz ed);
6ti double sumHeat = 0 .0 ;
612 double sumHeatCap = 0 .0;
613 for (in t i = s ; i < e; ++i) {
614 i f (invHeatCap[i] <= 0 .0)
615 cerr « " invH eatC ap[*«i«"] = * « invHeatCap[i] « endl;

616 double he = 1 .0/invH eatC ap[i);
617 sumHeatCap += he;
618 sumHeat += tem p[i]*hc;
619 }
620 double newT = sumHeat/sumHeatCap;
621 fo r (in t i = s ; i < e; ++i) {
622 en erg y li] += (newT-tem p[i])/invH eatCap[i];
623 tempfi] = newT;
624 }
625 }

626 begin = end;
627 }
628 }

629 ArraylD b(num C ells-l) ;
630 ArraylD x i (numCells-1) ;
631 for (in t i = 1; i < numCells-1; ++i) {
632 b [i] = en erg y li] + mtdtdz *
633 (o r ig T [i+ l] * in v R e s is t[i]
634 - (in v R e s is t [i]+ in v R e s is t [i- l]) * origT [i]
635 + o r ig T [i- l]* in v R e s is t [i - l]);

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

636 xi[i] = tdtdz * (invResist[i] + invResist[i-1]) ;
637 }

638 const double tolerance = le-6;
639 double temperatureError = 2'tolerance;
640 int numlter = 0;
641 bool converged = false;

6« ArraylD prevTemperature(numCells);
643 for (int i = 0; i < numCells; ++i)
644 prevTemperature[i] = templi] ;

645 while (!converged && temperatureError > tolerance) {
646 ++numlter;

647 if (numlter % 10000 == 0) cout « "time=" « time « ", iteration ’ « numlter « endl;

648 tempera tur eError = 0.0;
649 converged = true;
650 for (int i = 1; i < numCells-1; ++i) {
651 double currTemp = templi];
652 double phi = b[i] + tdtdz * (temp[i+l]*invResist[i] + temp[i-l]'invResist[i-1]);
653 energyli] = (phi + xi[i]»(origE[i]*invHeatCap[i] - origT[i])) / (1.0+xi[i]*invHeatCap[i]);
654 templi] = origT[i) + (energyli]-origE[i])*invHeatCap[i];

655 double currError = fabs((temp[i]-currTemp)/currTemp);
656 temperatureError = max(temperatureError, currError);

657 double dl = currTemp - prevTemperature[i] ;
658 double d2 = temp[i] - currTemp;
659 converged = converged && (currError <= tolerance) && (fabs(d2)<=fabs(dl));

660 prevTemperature[i] = currTemp;

661 if (temp[i] > maxTemp 11 tenpti] < -maxTemp) {
662 temperatureError = 0;
663 break;
664 }
665 }

666 energyfO] = energy (1] ;
667 temp[0] = tem p(l];

668 / /printTemperature () ;
669 / /pr intEnergy () ;
670 }

671 // insulating boundary condition (heat transfer between HD and this model
672 //is done using phExtEnergy and elExtEnergy)
673 templO] = temp(l];

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

674 energy[0] = energy [1] ;

675 temp.backO = templnf;
676 energy, back () = energylnit;

677 //printTemperature () ;
67« / r p r intEnergy ();

6?9 return true;
680 }

681 (tendif

682 v o i d H e a t F l o w : : d a m p P a r t i c l e (S t a t e d s t a t e , l o n g p i d) c o n s t

683 {
684 d o u b l e z = s t a t e . z [p i d] ;
685 i f (s t a t e . z [p i d] > zM ax) z = zM ax ; // a v o i d t h e w a r n i n g m e s s a g e
686 d o u b l e t e m p e r a t u r e = p h S y s t e m . g e t T e m p e r a t u r e (z) ;

687 : ' . d a m p P a r t i c l e (s t a t e , p i d , t e m p e r a t u r e) ;
688 }

D.4.5 Laser Absorption
---laserj>n.cc

1 /** \ f i l e laser_on .c
2 \au tho r R.Herrmann, J.G erlach, R.Holenstein
3 Sdate 7.10.96

4 \b r ie f subroutines for la se r sim ulation

5 */

6 #include "const.h"

7 ((include "laser_on.l
8 ((include "laser.h "

9 ((include <math.h>
10 ((include <stdio.h>
11 ((include <iostream>
12 Sinclude <fstream>
13 ((include <sstream>
14 ((include AfX•Ho•HV

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

15 using namespace s td ;

1« #inc lude "Random.h*
17 #include *Boxes.h"
18 #include "S ta te .h"
19 ♦include “inpu t.h"
20 ♦include "s ilico n .h *
21 ♦include “in i t .h "
22 ♦include "output.h"
23 ♦include "e lec_ fc t.h "
24 ♦include *calc_par.h*
25 ♦include " u t i l i ty .h "
26 ♦include "Array2D.h"
27 ♦include "HeatFlow.h"

28 ♦ if SIM_WITH_MPI
29 ♦include *Communicator.h*
30 ex tern Communicator* comPtr;
31 ♦endif

32 ex tern HeatFlow* h fP tr ;

33 / / no tes:
34 / / -------
35 / / p o ss ib le op tim iza tion :
36 / / use photonCount from previous tim e s te p fo r cu rren t in order
37 I I fo r th i s function to p roperly p a r a l le l iz e (cu rre n tly th i s function
38 / / i s e f f e c tiv e ly executed in s e r ie s , as each node has to w a it fo r th e
39 / / l e f t over photons to be passed on from node above (except fo r top node
40 / / of course)
41 / /

42 in t pulseCount = 0;

43 /**
44 \b r ie f check i f atom g e ts ex c ited during la s e r ra d ia tio n
45 \param rea l_ tim e tim estep
46 */
47 void laser_on (double rea l_ tim e)
48 {
49 s t a t i c double totalLaserEnergy = 0 .0 ;
50 s t a t i c double totalAbsorbedEnergy = 0 .0 ;
51 s t a t i c ofstream fo u t;
52 ♦ i f PRINT_ABS_PROFILE
S3 s t a t i c ofstream foutAP;
54 ♦ endif

55 const double in te n s ity _ u n it =
56 LPhotEng / (TIMEST*boxes.boxLength*boxes.boxLength); ;

57 bool f i r s tC a l l = f a ls e ;
58 bool la s tC a ll = f a ls e ;

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

59 s t r i n g p ro c ld = "";
60 # i f SIM_WITH_MPI
61 i n t id = c o m P tr-> g e tId () ;
62 bool isT o p C ell = (id == com Ptr->getN um Processors() -1) ;
63 boo l isB o ttom C ell = (id == 0);
64 {
65 o s tr in g s tre a m s o u t;
66 so u t « com Ptr->getProcessorN am e() « *:*
67 « co m P tr-> g e tId () « "> * « f lu sh ;
68 p ro c ld = s o u t . s t r O ;
69 }
70 # e n d if

71 i f (VARIABLE_TIMESTEP) {
72 / / a b s o r p t i o n p r o b a b i l i t y

73 double t f l t = 1 . - Abs_prob / 100 .0 ;
74 t f l t = pow (t f l t , TIMEST);
75 abs_prob = 1 . - t f l t ;

76 LEngUnit = L p u ls in t * TIMEST * boxes.boxL ength * boxes.boxL ength ;
77 }

78 /* G aussian tim e shape * /
79 c o n s t doub le r e l_ t im e = re a l_ tim e - LAS_0N - LPULSLEN ;
so co n st doub le gauss_exp = re l_ tim e * 2 .0 / LPULSLEN;
81 c o n s t doub le p u ls_ tim e = ex p (- gauss_exp * gauss_exp) ;

82 i f (LAS_ON-TIMEST <= re a l_ tim e && re a l_ tim e <= LAS_ON+TIMEST) {
83 co u t « SET_COLOR « p ro c ld
84 « " s ta r t in g l a s e r p u ls e (t=* « re a l t im e « ")"
85 « RESET_COLOR « en d l;
86 f i r s t C a l l = t r u e ;
87 ++pulseC ount;
88 }
89 i f (LAS_ON+2*LPULSLEN-TIMEST <= re a l_ tim e &&
90 re a l_ tim e <= LAS_0N+2*LPULSLEN+TIMEST) {
91 co u t « SET_COLOR « p ro c ld
92 « " s to p p in g l a s e r p u ls e (t=" « r e a l t im e « ’)"
93 « RESET_C0L0R « e n d l;
94 la s tC a l l = t r u e ;
95 }

96 c o n s t d o ub le lo c_ en e rg y _ t = p u ls_ tim e * LEngUnit;
97 c o n s t doub le lo c _ in te n s i ty _ t = p u ls_ tim e * L p u ls in t;

98 i n t n o t_ ab so rb ed = 0;
99 one_phot_abs = 0;

100 tw o_phot_abs = 0;
101 Numphot = 0;

102 i n t b eg in = 0;

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

103 i n t e n d = b o x e s . numBoxXY ;

104 s w i t c h (LSSHAPE) {
10s c a s e L a s e r : : UNIFORM:
106 b e g in = 0 ;
107 e n d = boxes.num B oxX Y ;
108 b r e a k ;
109 c a s e L aser::G A U SSIA N :
110 b e g in = 1 ;
i n e n d = boxes.num B oxX Y -1 ;
112 b r e a k ;
113 d e f a u l t :
114 c e r r « " (" « F IL E « * :* « LINE « *) *

115 « **** u n d e f in e d l a s e r s p o t s h a p e * * * ’ « e n d l
116 « * — > a b o r t i n g . . . " « e n d l ;
117 e x i t (l) ;
118 }

no c o n s t i n t n u m S id e = e n d - b e g in ;

120 s t a t i c A r r a y 2 D < in t> p h o to n C o u n t(n u m S id e ,n u m S id e) ;
121 # i f S U L W IT H J IP I
122 i f < ! i s T o p C e l l) {
123 r e c e i v e F r o m (p h o t o n C o u n t , n u m S id e , n u m S id e , c o m P t r - > g e t I d () + l) ;

124 A rra y 2 D < in t> tm p (3 , 1) ;
125 r e c e iv e F r o m ltm p , 3 , 1 , c o m P t r - > g e t I d () + l) ,-
126 o n e _ p h o t_ a b s = t m p . a t (0 , Q) ;
127 tw o _ p h o t_ a b s = t m p . a t (l , 0) ;
128 Numphot = t m p . a t (2 , 0) ;
129 }
iso # e n d i f

131 c o n s t i n t z iM inB ox = max (b o x e s . z iM in , b o x e s . f ir s tN o n D a m p e d) ;
132 c o n s t i n t ziM axB ox = b o x e s .z iM a x ;
133 # i f PR IN T _A B S_PR 0FILE
134 v e c t o r < i n t > n P h o tA b s (z iM ax B o x -z iM in B o x + l) ;
135 f o r (u n s ig n e d i n t i i = 0 ; i i < n P h o t A b s . s i z e d ; + + i i)
136 n P h o tA b s [i i] = 0 ;
137 # e n d i f

138 f o r (i n t c n t x = b e g in ; c n t x < e n d ; c n t x ++)
139 f o r (i n t c n t y = b e g i n ; c n t y < e n d ; c n t y ++) {

140 d o u b le l o c _ e n e r g y _ t l , l o c _ i n t e n s i t y _ t l ;
u i s w i t c h (LSSHAPE) {
142 c a s e L a s e r : :UNIF0 RM: {
143 l o c _ e n e r g y _ t l = l o c _ e n e r g y _ t ;
144 l o c _ i n t e n s i t y _ t l = l o c _ i n t e n s i t y _ t ;
145 b r e a k ;
146 }

275

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

147 case Laser::GAUSSIAN: {
148 double distq;
149 double nStepX = cntx ;
iso double nStepY = cnty ;
151 nStepX += 0.5;
152 nStepY += 0.5;
153 distq = (Center - nStepX * boxes.boxLength)
154 * (Center - nStepX * boxes.boxLength);
155 distq += (Center - nStepY * boxes.boxLength)
156 * (Center - nStepY * boxes.boxLength);
157 const double factor = exp (- distq / Lfocusradq);
158 loc_energy_tl = loc_energy_t * factor;
159 loc_intensity_tl = loc_intensity_t * factor;
160 break;
161 }
162 default:
163 cerr « * (" « FILE « *: " « LINE_ « “) "
164 « "*** undefined laser spot shape ***’ « endl
165 « ’ — > aborting...* « endl;
166 exit(l);
167 };
168 totalLaserEnergy += loc_energy_tl;

169 int photons ;
170 # if SIMJBITHJIPI
171 if (iisTopCell) (
m photons = photonCount.at(cntx,cnty);
173)
174 else
175 # endif
176 {
177 double tflt = loc_energy_tl / LPhotEng;
m photons = (int) tflt; // number of photons

179 { // correct for lost energy due to rounding
iso double tfl = tflt - (double) photons;
181 double tf2 = tfl * tfl;
182 if (myRandom.randO < tf2) // check for two photon absorption
183 photons += 2;
184 else if (myRandom.randO < tfl)
185 photons += 1;
186 }

187 Numphot += photons ;
188 }

189 abs_probi = Absjprobi * loc_intensity_tl ;
190 double abs_prob_ion = 1. - exp (absjprobi);

191 int remEhot = photons; I I remaining photons
192 # if PRINTJiBS_PROFILE
193 int prevRemPhot = remPhot;

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

m # e n d i f

195 for (int cntz = ziMaxBox; cntz >= ziMinBox; cntz —)
196 {
197 double loc_intensity = remPhot * intensity_unit;
198 abs_probi = Abs_probi * loc_intensity;
199 abs_prob_ion = 1. - exp (absjprobi);

200 for (int cntw = 0; cntw < boxes.count[cntx][cnty][cntz]; cntw ++)
201 {
202 long ltint = boxes.box[cntx][cnty][cntz][cntw];
203 if (ltint > NAT) /* check for electrons */
20* continue;

20$ f o r (i n t c n t p = 0 ; c n t p < r e m P h o t ; c n t p ++)

206 (

207 if ((cntp < remPhot - 1) && (myRandom.randO < abs_prob_ion))
208 (

209 s t a t e . e x c [l t i n t] += 2 ;
210 remPhot -= 2;
211 t w o j p h o t _ a b s + + ;
212 }
213 else if ((cntp < remPhot) && (my Random. rand () < abs_prob))
21* {
215 ++state. exc [ltint] ;
216 — remPhot;
217 + + o n e _ p h o t_ a b s ;
218 }

219 }

220 if (state.exc [ltint] >= Ionnumphot)
221 C

222 state.exc[ltint] -= Ionnumphot;
223 ++state. ion [ltint] ;
22* i o n i z e (l t i n t) ;
225 }
226 }

227 }
228 photonCount .at(cntx, cnty) = remPhot;
229 not_absorbed += remPhot;
230 }

231 # i f Sm_W ITH_JG>I

232 if (SisBottomCell) {
233 sendTo(photonCount, comPtr->getId()-l) ;

23* Array2D<int> tmp (3,1);
235 t m p . a t (0 , 0) = o n e _ p h o t _ a b s ;
236 tmp.at(l,0) = two_phot_abs;
237 tmp.at(2,0) = Numphot;

238 sendToftmp, comPtr->getId()-l) ;

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Simulation Code D.4 File listing

239 }
240 # endif

241 # i f SIM_WITH_MPI
242 i f (isBottomCell)
243 # endif
244 {

245 if { hfPtr != 0)
24« hfPtr->laser(not_absorbed*intensity_unit/sqr(boxes.numBoxXY), TIMEST);

247 double energyJ = totalLaserEnergy * 1.6e-19;
24* double area = sqr(boxes.numBoxXY*boxes.boxLength * 1.0e-8); // cm2
249 double percentAbs = Numphot<=0 ? 0.0 :
250 ((double)(one_phot_abs+2*two_phot_abs))/((doubleJNumphot);
251 double energyAbs =
252 percentAbs * Numphot * (LPhotEng*PhysConv::eV_to_Joules) / area;
253 totalAbsorbedEnergy += energyAbs;
254 }

255)

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

