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Abstract

We study the Severi varieties of Atiyah ruled surfaces over generic elliptic

curves. In particular, we prove that general members of such varieties have at

worst ordinary triple points.
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Chapter 1

Introduction and Background

1.1 Introduction

Let X denote a smooth projective surface, and let L be a line bundle on X.

For a nonnegative integer h, we define VX,L,h as the Severi variety of integral

curves C ∈ |L| of geometric genus h. Originally introduced by Severi for the

case X = P2, he established that the open dense subset of V correspond-

ing to integral nodal curves is nonempty, smooth, and exhibits the expected

dimension. Although Severi provided a proof of irreducibility, it was later

corrected by Harris after six decades [4] . Subsequently, the Severi problem,

encompassing aspects such as nonemptiness, local geometry, and irreducibility,

was extended to other algebraic surfaces. On Hirzebruch surfaces, Tyomkin

demonstrated the irreducibility of Severi varieties [9]. Similarly, Testa estab-

lished the irreducibility of rational curves on Del Pezzo surfaces [8]. More

recently, Zahariuc investigated irreducibility for general abelian surfaces with

polarizations of primitive type [10].

Severi problem on K3 surfaces have garnered significant attention due to

their connections with modular and enumerative geometry. The nonemptiness

of Severi varieties of curves in the primitive class on generic K3 surfaces was

proved in [3], primarily by demonstrating that all rational curves in the prim-

itive class of a general K3 surface are nodal. This result relies on the study of

degenerations X → ∆ of K3 surfaces of genus n to Bryan-Leung K3 surfaces
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[1] with primitive class |C + nF |, where the BL-K3 surfaces are elliptic fibra-

tions over P1 with a unique section C. The Picard group Pic(X) is generated

by the unique section C and the fiber F , with the intersection matrix[
−2 1

1 0

]

An advantageous feature of working with these surfaces is that the linear

system |C + nF | decomposes into H0(C + nF ) = H0(C) ⊗ SymnH0(F ). A

curve D ∈ |C + nF | is the image of a stable rational map only if it can be

expressed as D = C ∪m1G1 ∪m2G2 ∪ · · · ∪m24G24, where G1, G2, . . . , G24 are

the 24 nodal fibers in |F |. It is evident that D is nodal if all mi ≤ 1. For

cases where some mi ≥ 2, we proceed by blowing up X along the fiber Gi and

analyze the curve in a rational ruled surface.

Following the same methodology, we can further investigate a geometric

genus g curve D ∈ |C + nF |. Similar to before, we can assume

D = C +m1F1 +m2F2 + · · ·+mg−1Fg−1 +mgFg

+ n1G1 + n2G2 + · · ·+ n24G24

(1.1)

where F1, F2, . . . , Fg are fibers of |F |, and Gi are the 24 nodal fibers in |F |. For
such a curve D, we have a family of stable maps of genus g: f : C /∆ → X/∆,

such that Ct is smooth and f∗C0 = D. Again, we need to blow up X along Fi

in case some mi ≥ 2. Finally, we arrive at a birational map: X̂ → X, such

that

• The total transform D̂ is reduced along a component B dominating Fi.

• B is an integral curve in |OR(miFi +Rp)| for R a ruled surface over Fi.

• B and D̂ − B meet transversely at a point p ∈ Fi.

By analyzing the total δ-invariant of f(Ct) along Fi, it only has unramified

singularities in an analytic open neighborhood of Fi for t ̸= 0. Thus, the type

of singularities of D is determined by those in B, which is an integral curve

on a ruled surface over an elliptic curve.
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On another front, in [6] they explore the Severi variety of (1, n)-polarized

abelian surfaces. They proved that for a genus g ≥ 5 curve on a general (1, n)-

polarized abelian surface, it can be deformed equigenerically to a nodal curve.

This result was obtained by degenerating to a (1, n)-polarized semi-abelian

surface (S0, L0), constructed by identifying two sections of a ruled surface R

over an elliptic curve E. Thus, we have a normalization π : R → S0, such

that π∗L0 = D + nF . Here D is the unique section of τ : R → E, and F is

the fiber. Employing the same methodology as before, we need to analyze the

singularities of curves on the ruled surface over an elliptic curve.

In this paper, we foucs on curves on a certain type of ruled surfaces over

elliptic curves, studied by M. Atiyah. Mainly we prove the following:

Theorem 1.1.1. Let E be a smooth elliptic curve, let E be a rank 2 vector

bundle on E given by a nonzero vector in Ext(OE,OE) and let R = PE . For

a line bundle L on R, let VR,L,g ⊂ |L| be the locus of integral curves C ∈ |L|
of geometric genus g. Then when E is general, L is ample and g ≥ 1, for a

general member [C] ∈ VR,L,g,

• if L.D ≥ 2, C is nodal, and

• if L.D = 1, C has only nodes and/or ordinary triple points as singular-

ities,

where D is the unique section of R over E with self intersection D2 = 0.

With the theorem above, we can improve the Theorem 1.5 in [6] by remov-

ing the assumption that genus is greater than 5.

1.2 Strategy and Organization

For the ruled surface PE over an elliptic curve E, the Picard group is generated

by D and π∗Pic(E), where π : R → E is the projection. For an integral curve

C ⊂ R of geometric genus g with normalization f : Ĉ → R, we know that [5,

Section B, pp. 108-111]
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• if

deg(c1(Nf ))− g + 1 = −KRC + g − 1 > 0

a general deformation of f is immersive;

• if f is immersive and Nf (−p1 − p2) = Nf ⊗OC(−p1 − p2) is base point

free for all p1 ̸= p2 ∈ C, then φ(Γ) is nodal for a general deformation

φ : Γ → R of f . This is guaranteed if deg(c1(Nf )) ≥ 2g + 2, i.e.,

−KRC ≥ 4 (1.1)

Thus, as long as we have (1.1), φ(Γ) is nodal for a general deformation φ :

Γ → R of f . As a consequence, Theorem 1.1.1 holds for every L = mD+π∗M

if m > 0 and degM ≥ 2. Therefore, the only remaining case for Theorem 1.1.1

is m > 0 and degM = 1. Furthermore, we will show that the case g ≥ 2 can

be reduced to g = 1 by a degeneration argument. That is, it suffices to prove

the theorem for L = mD + Rp and g = 1, where Rp = π∗p is the fiber of R

over a point p ∈ E. Indeed, we have a more precise statement for this case:

Theorem 1.2.1. Let E be a smooth elliptic curve, let E be a rank 2 vector

bundle on E given by a nonzero vector in Ext(OE,OE), and let R = PE .

When E is general, for L = mD +Rp and every [C] ∈ VR,L,1,

• if 4 ∤ m, C is nodal, and

• if 4 | m, C has only nodes and/or ordinary triple points as singularities,

where D is the unique section of R over E with self-intersection D2 = 0 and

Rp is the fiber of R over p ∈ E. Additionally, the triple points do appear as

the singularities of some [C] ∈ VR,L,1 if 4 | m.

In Chapter 2, we provide some basic facts about R = PE . It turns out that

every automorphism ϕ ∈ Aut(R)0 corresponds to a nonzero torsion point τ of

E and a meromorphic function bτ (z) on E with two poles. The behavior of the

singularity of curves C ∈ |mD + Rp| is highly related to those meromorphic

functions. Thus, we decompose Theorem 1.2.1 into two statements:
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• If τ is of order n ≥ 2, bτ (z) has no double points.

• If either τ1 or τ2 is of order greater than 2, we have

{bτ1(z) = 0} ∩ {bτ2(z) = 0} = ∅

We will prove the above two statements (with one exception for the second

statement) by letting E move in a family of elliptic curves X/B with a unique

section P . There are various choices. Here, we set X to be a BL-K3 surface

and B = P1.

In Chapter 3, we study the torsion points of a generic elliptic curve in

X/B. Let Σn be the set of n-torsion points when restricted on each fiber of

X/B. This is a multi-section of X/B. It is actually irreducible by studying

the monodromy action around the 24 nodal fibers of X/B. Note that there

is also a two-to-one finite map between zeros of bτ (z) and Σn when E varies.

Interesting things happen when Xb degenerates to a nodal fiber, and we will

prove the first statement above.

In Chapter 4, we prove the second statement about bτ (z). The idea is to

extend the monodromy action of Σn to triples (τ, q1, q2), where q1, q2 are two

zeros of bτ (z). Combining with results before, we prove Theorem 1.2.1. In

order to prove Theorem 1.1.1, we need to deal with the case g ≥ 2. This part

is given in Chapter 5.
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Chapter 2

Ruled Surface PE

2.1 Preliminary about Rule Surfaces

A ruled surface over a curve E is defined to be a projective bundle R = PE

over E for a rank 2 vector bundle E . Meanwhile, there exsits a surjective

morphism π : R → E, such that the fibers are P1 and it admits a section D.

The Picard group Pic(R) is generated by the section D and π∗Pic(E). We

choose D such that e = D2 = − deg∧2E . So the intersection matrix is given

by [
e 1

1 0

]
In particular, when E be an elliptic curve and E ̸= 0 ∈ Ext(OE,OE), we

have the following:

Proposition 2.1.1. Let E be a smooth elliptic curve, let E be a rank 2 vector

bundle on E given by a nonzero vector in Ext(OE,OE), let R = PE and let

D ⊂ R be the section of R/E with D2 = 0. Then

1. For every point p ∈ E, |D+Rp| is a pencil such that every curve C ̸= D∪
Rp ∈ |D+Rp| is a smooth elliptic curve and any pair C1 ̸= C2 ∈ |D+Rp|
of curves meet only at p with multiplicity 2, where Rp is the fiber of R

over p ∈ E.

2. For every point p ∈ E, R\(D ∪Rp) ∼= (E\{p})× A1.
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3. For every pair of points p ̸= q ∈ E, R\D is isomorphic to the gluing of

(E\{p})× A1 and (E\{q})× A1 via an automorphism

(E\{p, q})× A1 (E\{p, q})× A1η

given by

η(z, s) = (z, s+ h(z))

where h(z) is a meromorphic function on E with simple poles at p and

q.

4. There is an exact sequence of group schemes

0 Ga Aut(R)0 Aut(D)0 0

Aut(E)0

(2.1)

where Ga is the additive group of C, Aut(R)0 and Aut(E)0 are the con-

nected components of Aut(R) and Aut(E) containing the identity, re-

spectively. Every ϕ ∈ Aut(R)0 is given by

ϕ(z, s) = (z + τ, s+ b1(z)) on (E\{p, p− τ})× A1

ϕ(z, s) = (z + τ, s+ b2(z)) on (E\{q, q − τ})× A1
(2.2)

where τ ∈ Pic0(E) = J(E), p and q are two distinct points on E satisfy-

ing p− q ̸= ±τ , b1(z) is a meromorphic function on E with simple poles

at p and p− τ , b2(z) is a meromorphic function on F with simple poles

at q and q − τ , and b1(z) and b2(z) satisfy

b1(z) + h(z) = b2(z) + h(z + τ) (2.3)

on E\{p, p− τ, q, q − τ} with h(z) given in (3).

Proof. By the exact sequence

0 OE E OE 0

7



we obtain

h0(E ∨ ⊗OE(p)) = h0(OE(p)) + h0(OE(p)) = 2

and hence |D +Rp| is a pencil. Since

OR(D +Rp)
∣∣∣
D
= OE(p)

every C ∈ |D + Rp| passes through p. If C is reducible, C must contain a

section of R/E and hence it must contain D. Consequently, the only reducible

member of |D + Rp| is D ∪ Rp. Every other member of |D + Rp| is a section

of R/E. For C1 ̸= C2 ∈ |D + Rp|, one of C1 and C2 must be integral. Let us

assume that C1 is a section of R/E. Then

OC1(C2) = OC1(D +Rp) = OC1(2p).

We know that both C1 and C2 pass through p and they have intersection

number 2. So C1.C2 = p + p′. Then p + p′ ∼rat 2p on C1 and hence p′ = p.

That is, C1 and C2 meet at p with multiplicity 2 and they do not have any

other intersections. This proves (1).

Let αp : R 99K P1 be the rational map given by the pencil |D + Rp|. To

show the map

R\(D ∪Rp) (E\{p})× A1π×αp

∼=

is an isomorphism, we only need to show π × αp is bijective. The surjectivity

is obvious. Let us assume x1 ̸= x2 ∈ R\(D ∪Rp), such that

π × αp(x1) = π × αp(x2)

Then x1, x2 ∈ Rq for some q ̸= p. Meanwhile, C = α−1
p {s = a} is a divisor in

|D +Rp| for any a ∈ C. We have

C.Rq ≥ 2

as x1, x2 are two intersection points. This is a contradiction. Thus, π × αp is

a bijection. This proves (2).
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We have

R\D = (R\(D ∪Rp)) ∪ (R\(D ∪Rq))

with (R\(D∪Rp)) and (R\(D∪Rq)) isomorphic to (E\{p})×A1 and (E\{q})×
A1 via π×αp and π×αq, respectively. So R\D is the gluing of (E\{p})×A1

and (E\{q})× A1 via an automorphism η ∈ Aut(U × A1/U)

U × A1 U × A1η

for U = E\{p, q}. Such an automorphism is given by

η(z, s) = (z, h(z)s+ f(z))

where h(z) and f(z) are meromorphic functions on E such that they are holo-

morphic on U and h(z) ̸= 0 on U . So h(z) has zeros and poles only at p and

q and f(z) has poles only at p and q.

A member of the pencil |D +Rp| other than D ∪Rp is given by

(π × αp)
−1(E/{p} × {a})

for a ∈ C. Similarly, a member of the pencil |D + Rq| other than D ∪ Rq is

given by

(π × αq)
−1(E/{q} × {b})

for b ∈ C. These two curves meet at two points lying in R\(D ∪ Rp ∪ Rq).

Therefore,

{s = a} ∩ η−1{s = b}

has two intersections (counted with multiplicity) in U × A1 for all a, b ∈ C.
That is, the function

ah(z) + f(z)− b

has exactly two zeros over U for all a, b. It follows that h(z) is a nonzero

constant and f(z) has simple poles at p and q. We may choose h(z) ≡ 1. This

proves (3).

Clearly, every automorphism of R preserves the section D. Let ϕ : R → R
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be an automorphism of R in the kernel of Aut(R) → Aut(D) and let ϕ1 and

ϕ2 be the restriction of ϕ to (E\{p}) × A1 and (E\{q}) × A1, respectively.

Suppose that ϕ1 and ϕ2 are given by

ϕ1(z, s) = (z, a1(z)s+ b1(z))

ϕ2(z, s) = (z, a2(z)s+ b2(z))

where a1(z) and b1(z) are meromorphic functions on E with poles at p, a2(z)

and b2(z) are meromorphic functions on E with poles at q, a1(z) ̸= 0 on E\{p}
and a2(z) ̸= 0 on E\{q}. In addition, since ϕ1 ◦ η = η ◦ ϕ2, we have

a1(z)(s+ h(z)) + b1(z) = a2(z)s+ b2(z) + h(z)

on (E\{p, q})× A1. Obviously, a1(z) = a2(z) = a are constants and hence

b1(z)− b2(z) = (1− a)h(z).

Since h(z) has simple poles at p and q, b1(z) has a single pole at p and b2(z)

has a single pole at q, b1(z) and b2(z) must have simple poles at p and q,

respectively, and hence they must be constant. It follows that a = 1 and

b1(z) ≡ b2(z) ≡ b. This proves that

Ga = ker(Aut(R) → Aut(D)).

To complete the proof of (2.1), it remains to prove that the map

Aut(R)0 Aut(D)0

is surjective.

Every automorphism λ ∈ Aut(E)0 is given by a translation λ(p) = p + τ

for some τ ∈ Pic0(E) = J(E).

For a given τ ∈ J(E), if there exist a pair of meromorphic functions b1(z)

and b2(z) satisfying (2.3), then ϕ ∈ Aut(R)0 given by (2.2) maps to λ ∈
Aut(E)0 with λ(p) = p + τ . So it suffices to prove the existence of b1(z) and

b2(z) satisfying (2.3).
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If τ = 0, we can simply take b1(z) ≡ b2(z) ≡ b to be a constant.

Suppose that τ ̸= 0. We lift (2.3) from E ∼= C/Λ to C. Then b1(z), b2(z)

and h(z) are doubly periodic meromorphic functions on C. We choose b1(z)

such that

Resp b1(z) = −Resp h(z).

Since

Resp b1(z) + Resp−τ b1(z) = 0

we have

Resp−τ b1(z) = Resp h(z) = Resp−τ h(z + τ).

So b2(z) = b1(z) + h(z)− h(z + τ) is analytic at p and p− τ . This proves the

existence of b1(z) and b2(z) satisfying (2.3) and hence (4).

2.2 Singularities of Curves on Ruled Surfaces

Let C ∈ |mD + Rp| be a (possibly singular) elliptic curve on R and let ν :

C → R be the normalization of C. We let

S = C ×E R = P(π ◦ ν)∗E

via the maps π ◦ ν : C → E and π : R → E. Clearly, (π ◦ ν)∗E is a rank 2

vector bundle on C given by a nonzero vector in Ext(OC ,OC ).

The map g : S → R is induced by π ◦ ν : C → E and is hence étale. Let

us consider the preimage

g−1(C) = C ×E C

of C. It contains the curve G = {(s, ν(s)) : s ∈ C } ∼= C . It is not hard to see

that G ∈ |OS(D +Sq)|, where D = g∗D is the unique section of S/C with self

intersection 0, q ∈ (π ◦ ν)−1(p) and Sq is the fiber of S/C over q.

Since g : S → R is Galois,

g∗C =
∑

σ∈Aut(S/R)

σ(G).
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The map g : g∗C → C is étale. So C is nodal if and only if g∗C is, i.e., it has

normal crossings.

Since h = π◦ν : C → E is an isogeny, the dual isogeny h∨ : E → C has the

property that h∨◦h : C → C is a multiplication map given by x→ p+n(x−p)
for some integer n. So the Galois group Aut(C /E) is a subgroup of Aut(h∨◦h).
Hence Aut(C /E) is given by a finite subgroup of J(C ) = Pic0(C ). That is,

every σ ∈ Aut(C /E) is given by a translation σ(x) = x + τ for some torsion

τ ∈ J(C ).

To prove Theorem 1.2.1 , it suffices to prove the following:

Proposition 2.2.1. Let E be a smooth elliptic curve, let E be a rank 2 vector

bundle on E given by a nonzero vector in Ext(OE,OE), let R = PE , let D ⊂ R

be the section of R/E with D2 = 0 and let A ⊂ Aut(R)0 be a finite subgroup

of Aut(R)0 acting freely on R. Then when E is general, for every point p ∈ E

and every smooth curve G ∈ |D +Rp|,∑
σ∈A

σ(G)

has normal crossings if A does not contain the subgroup

J(E)2 =
{
τ ∈ J(E) : 2τ = 0

} ∼= Z/2Z× Z/2Z

and has only nodes and ordinary triple points as singularities otherwise.

When C ∈ |mD +Rp|, the Galois group Aut(C /E) has order m. If 4 ∤ m,

Aut(C /E) does not contain a subgroup of order 4 and hence C is nodal by

the above proposition.

Here we let

J(E)n =
{
τ ∈ J(E) : nτ = 0

} ∼= Z/nZ× Z/nZ and

J(E)tors =
∞⋃
n=1

J(E)n

be the torsion subgroups of J(E). For every τ ∈ J(E)tors, we define the order

ord(τ) of τ to be the smallest positive integer n such that nτ = 0 and let
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ord(τ) = ∞ if τ ̸∈ J(E)tors.

Let ϕ ∈ Aut(R)0 be an automorphism of order n. By (2.2), ϕ is given by a

meromorphic function b1(z) on E with simple poles at p and p− τ satisfying

b1(z) + b1(z + τ) + ...+ b1(z + (n− 1)τ) = 0 (2.1)

where τ ∈ J(E)tors has order ord(τ) = n.

To prove that G and ϕ(G) intersect transversely, it suffices to prove that

b1(z) does not have a zero of multiplicity 2, i.e.,

b1(p− η) ̸= 0 for τ = 2η (2.2)

when E is a general elliptic curve.

Let ϕ1 ̸= ϕ2 ∈ Aut(R)0 be two automorphisms of finite order. Similarly,

ϕ1 and ϕ2 are given by two meromorphic functions b1(z) and b2(z) on E with

simple poles at {p, p− τ1} and {p, p− τ2}, respectively, satisfying

bi(z) + bi(z + τi) + ...+ bi(z + (ni − 1)τi) = 0 (2.3)

for i = 1, 2, where τi ∈ J(E)tors has order ni and τ1 ̸= τ2. To show that

G, ϕ1(G) and ϕ2(G) do not meet at one point, it suffices to show that

{b1(z) = 0} ∩ {b2(z) = 0} = ∅ (2.4)

where E is a general elliptic curve. So it remains to prove (2.2) and (2.4).

Let us start with the observation that the meromorphic functions bi(z)

satisfying (2.3) are unique up to a scalar, depending only on p and τi.

Proposition 2.2.2. Let E be an elliptic curve and let p be a point of E. For

every τ ∈ J(E)tors of order n and every meromorphic function b(z) on E with

simple poles at p and p− τ and no other poles,

n−1∑
k=0

b(z + kτ)

is constant.
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In addition, there is a unique meromorphic function b(z) = bτ,p(z) on E,

up to a scalar, with simple poles at p and p− τ and no other poles such that

n−1∑
k=0

b(z + kτ) = 0. (2.5)

Furthermore, for all positive integers m with n | m and every meromorphic

function b(z) on E with simple poles at p and p− τ and no other poles,

∑
λ∈J(E)m

b(z + λ) =
m2

n

n−1∑
k=0

b(z + kτ). (2.6)

Consequently, (2.5) holds if and only if∑
λ∈J(E)m

b(z + λ) = 0 (2.7)

for some positive integer m with n | m.

Proof. Let ω ∈ H0(ΩE) be a nonzero holomorphic 1-form on E. Then b(z)ω

is a meromorphic 1-form on E with simple poles at p and p− τ . So

Resp b(z)ω +Resp−τ b(z)ω = 0.

It follows that
n−1∑
k=0

b(z + kτ)ω

is a holomorphic 1-form on E and hence

n−1∑
k=0

b(z + kτ)

is constant on E.

Let V = H0(OE(p1 + p2)) ∼= C2 be the vector space of meromorphic func-

tions on E with at worst simple poles at p1 = p and p2 = p − τ and let
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L : V → C be the map given by

L(b(z)) =
n−1∑
k=0

b(z + kτ).

Clearly, L is linear. When b(z) ≡ c is constant, L(b(z)) = nc and hence L is

surjective. Thus, ker(L) is a one-dimensional subspace of V . So there exists a

unique b(z) ∈ V , up to a scalar, such that

n−1∑
k=0

b(z + kτ) = 0.

Obviously, G = {kτ : k ∈ Z} is a subgroup of J(E)m for n | m. So

J(E)m =
d⊔

i=1

(λi +G)

for some λ1, λ2, ..., λd ∈ J(E)m and d = m2/n. Then

∑
λ∈J(E)m

b(z + λ) =
d∑

i=1

∑
λ∈G

b(z + λi + λ)

We have proved that ∑
λ∈G

b(z + λ)

is constant. Therefore,∑
λ∈G

b(z + λ) ≡
∑
λ∈G

b(z + λi + λ)

for all i and hence

∑
λ∈J(E)m

b(z + λ) =
d∑

i=1

∑
λ∈G

b(z + λi + λ) = d
∑
λ∈G

b(z + λ).

This proves (2.6).
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Thus, (2.2) becomes

Proposition 2.2.3. For a general elliptic curve E, every point p ∈ E, every

τ ∈ J(E)tors of order n ≥ 2 and every η ∈ J(E)tors satisfying 2η = τ , we have

bτ,p(p− η) ̸= 0

where bτ,p(z) is the meromorphic function on E given in Proposition 2.2.2.

Similarly, a more precise statement of (2.4) is

Proposition 2.2.4. Let E be an elliptic curve, let p ∈ E be a point on E

and let bτ,p be the meromorphic function on E given in Proposition 2.2.2 for

a nonzero torsion τ ∈ J(E)tors.

For E general and any two torsions τ1 ̸= τ2 ∈ J(E)tors of orders n1 ≥ 2

and n2 ≥ 2, respectively, one of the following holds:

{bτ1,p(z) = 0} ∩ {bτ2,p(z) = 0} = ∅ (2.8)

or

(n1, n2) = (2, 2) (2.9)

or

(n1, n2) = (6, 6), ⟨τ1, τ2⟩ = 3 in J(E)6 and ord(τ1 − τ2) = 6. (2.10)

In addition, when (n1, n2) = (2, 2),

{bτ1,p(z) = 0} ∩ {bτ2,p(z) = 0} = {p− τ3} (2.11)

where τ3 ∈ J(E)tors is a torsion of order 2 different from τ1 and τ2.

For E general and any three distinct nonzero torsions τ1, τ2, τ3 ∈ J(E)tors,

{bτ1,p(z) = 0} ∩ {bτ2,p(z) = 0} ∩ {bτ3,p(z) = 0} = ∅. (2.12)

The intersection pairing ⟨•, •⟩ on J(E)n will be defined later.
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Let us explain how Propositions 2.2.3 and 2.2.4 imply Proposition 2.2.1.

Proposition 2.2.3 implies that any pair curves among {σ(G) : σ ∈ A} meet

transversely and thus
∑
σ(G) has only ordinary singularities, i.e., singulari-

ties whose local branches are smooth and meet transversely pairwise. Then

Proposition 2.2.3 says that no three curves among {σ(G) : σ ∈ A} meet at

one point with the exceptions (2.9) and (2.10), in which cases no more than

three curves among {σ(G) : σ ∈ A} meet at one point by (2.12). In case (2.9),

τ1 and τ2 generate J(E)2 ⊂ A. In case (2.10), τ1 and τ2 generate a subgroup

of J(E)6 of order 12 contained in A; such a subgroup clearly contains J(E)2.
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Chapter 3

Torsions on Generic Elliptic

Curves

3.1 Monodromy of Torsion on BL-K3 surfaces

We will prove Proposition 2.2.3 and 2.2.4 by letting E vary in a complete family

of elliptic curves X/B with a unique section P . There are many choices of

such X. Let us choose X to be a K3 surface with Picard lattice[
−2 1

1 0

]

We call such X a Bryan-Leung K3 [2]. Such X admits an elliptic fiberation

π : X → B = P1. For X general, it has 24 nodal fibers over S ⊂ B. The

(−2)-curve P ⊂ X is the only section of π. For each positive integer n, let us

consider

Σn =
{
q ∈ Xb : b ̸∈ S, ord(p− q) = n for p = Pb = P ∩Xb

}
(3.1)

Clearly, Σn is a multi-section of X/B of degree

n2
∏

p prime
p|n

(
1− 1

p2

)
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We claim that Σn is irreducible. This is proved by studying the monodromy

action of π1(B\S) on Σn. Actually, the monodromy action of π1(B\S) on Σn

is induced by its action on H1(Xb,Z).

Fix a smooth fiber E = Xb of X over b ∈ B◦ = B\S and let us consider the

monodromy action of π1(B
◦) on J(E)tors and H

1(E,Z). From the exponential

sequence, we have the diagram

J(E)n

0 H1(E,Z) H1(OE) J(E) 0

0 H1(E,Z) H1(OE) J(E) 0

H1(E,Z)/nH1(E,Z)

×n ×n ×n

Thus, we have

J(E)n ∼= H1(E,Z)/nH1(E,Z)

and the action of π1(B
◦) on J(E)tors is induced by its action of H1(E,Z).

The action π1(B
◦) onH1(E,Z) preserves the intersection product ofH1(E,Z).

Thus, it is given by a group homomorphism

π1(B
◦) Aut(H1(E,Z)) ∼= SL2(Z)

where Aut(H1(E,Z)) is the automorphism of H1(E,Z) as a lattice. Thus, the

induced action of π1(B
◦) on Σn is given by the group homomorphism

π1(B
◦) SL2(Z)

SL2(Z/nZ)

Proposition 3.1.1. Let π : X → B = P1 be a Bryan-Leung K3 surface

with 24 nodal fibers. Then the monodromy action π1(B
◦) → SL2(Z/nZ) is
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surjective and Σn is irreducible for all n ∈ Z+ with Σn ⊂ X defined by (3.1).

The action of π1(B
◦) on H1(E,Z) is well understood. At each bi ∈

{b1, b2, ..., b24}, the loop around bi acts on H1(E,Z) by a Lefschetz-Picard

transform (cf. [7]):

Tδi(λ) = λ+ ⟨λ, δi⟩δi

where δi ∈ H1(E,Z) is called the vanishing cycle at the node of Xbi for i =

1, 2, ..., 24 and ⟨•, •⟩ is the intersection pairing on H1(E,Z). The monodromy

action of π1(B
◦) on H1(E,Z) is the subgroup of Aut(H1(E,Z)) generated by

Tδ1 , Tδ2 , ..., Tδ24 . Clearly, Tδi lift to actions on H1(E,Z)/nH1(E,Z). We start

with a simple observation:

Lemma 3.1.2. Let δ1, δ2, ..., δ24 ∈ H1(Xb,Z) be the vanishing cycles associated
to a Bryan-Leung K3 surface π : X → B = P1 with 24 nodal fibers. Then

1. δi are indivisible, i.e., there do not exist η ∈ H1(Xb,Z) and an integer

m ≥ 2 such that δi = mη;

2. for every indivisible λ ∈ H1(Xb,Z),

gcd(⟨λ, δ1⟩, ⟨λ, δ2⟩, ..., ⟨λ, δ24⟩) = 1.

Proof. It is well known that δi are indivisible (cf. [7, Example 6.6, p. 72]), as

a consequence of the smoothness of X. Here we gives another argument based

on torsion points.

Suppose that δ/m ∈ H1(E,Z) for some δ = δi and m ≥ 2. For simplicity,

let us assume that m is prime. Then H1(E,Z)/mH1(E,Z) is fixed by Tδ so

Σm is the union Q1 ∪ Q2 ∪ ... ∪ Qm2−1 of m2 − 1 local sections over a disk

U ⊂ B around the point s = bi ∈ S. Since X is smooth, each Qj meets Xs

at a point away from the node x of Xs. Let f : X 99K X be the rational map

given by f(q) = p+m(q − p) for q ∈ Xb, b ∈ B◦ and p = P ∩Xb. Then f can

be extended to a regular, quasi-finite and unramified morphism

X\{x1, x2, ..., x24} X
f
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where x1, x2, ..., x24 are the nodes of the 24 fibers XS = π−1(S). Then

XU ∩ f−1(P ) = P ∪Q1 ∪Q2 ∪ ... ∪Qm2−1

for XU = π−1(U). Since f is unramified, P,Q1, Q2, ..., Qm2−1 are disjoint.

Therefore, p = P ∩ Xs and qj = Qj ∩ Xs are m2 distinct points on Xs\{x}.
But there are only m distinct points q on Xs\{x} such that m(q − p) = 0 in

Pic0(Xs) ∼= C∗, which is a contradiction.

For (2), if

gcd(⟨λ, δ1⟩, ⟨λ, δ2⟩, ..., ⟨λ, δ24⟩) = m ≥ 2,

then λ ∈ H1(E,Z)/mH1(E,Z) is fixed by Tδi for all i. Therefore, Σm contains

a section. But P is the only section of X/B, which is a contradiction.

Proof of Proposition 3.1.1. If n = n1n2 for two coprime integers n1 and n2,

then the surjectivity of π1(B
◦) → SL2(Z/nZ) follows from those of π1(B

◦) →
SL2(Z/niZ) for i = 1, 2 via the group isomorphism

SL2(Z/nZ) SL2(Z/n1Z)× SL2(Z/n2Z)∼

So by induction on the number of prime divisors of n, it suffices to prove the

proposition for n = pe with p prime.

For simplicity, suppose that δ1 = e1, where {e1, e2} is the standard basis

of Z/nZ× Z/nZ. By Lemma 3.1.2,

gcd(⟨δ1, δ2⟩, ⟨δ1, δ3⟩, ..., ⟨δ1, δ24⟩) = 1

So there exists 2 ≤ i ≤ 24 such that p ∤ ⟨δ1, δi⟩. We may assume that p ∤
⟨δ1, δ2⟩. Assume that

δi =

[
ai

bi

]
.

The corresponding Picard-Lefschetz transformation is given by the following

Tδi

[
x

y

]
=

[
1− aibi a2i

−b2i 1 + aibi

][
x

y

]
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We have

Tδ1 =

[
1 1

0 1

]

Also for each Tδi , We notice that

T k
δi
=

[
1− kaibi ka2i

−kb2i 1 + kaibi

]

Since gcd(b2, p) = 1, we may find k, such that kb = 1+ an. Then we have the

following:

T k2

δ2
=

[
1− k2a2b2 k2a22

−k2b22 1 + k2a2b2

]

≡

[
1− ka2 k2a22

−1 1 + ka2

]
(mod n)

Let m = 1− ka2, we have

Tm
δ1

◦ T k2

δ2
≡

[
1 m

0 1

][
1− ka2 k2a22

−1 1 + ka2

]

≡

[
0 1

−1 1 + ka2

]
(mod n)

Again letting t = −(1 + ka2), we have[
0 1

−1 1 + ka2

][
1 t

0 1

]
≡

[
0 1

−1 0

]
(mod n)

It is well known that SL2(Z) is generated by two matrices:[
0 1

−1 0

]
,

[
1 1

0 1

]

and hence π1(B
◦) → SL2(Z/nZ) is surjective.
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Let us consider the degeneration of the function bτ,p(z) whenXt degenerates

to X0 for some 0 ∈ S.

Proposition 3.1.3. Let π : X → ∆ be a flat projective family of curves over

the unit disk ∆ such that X is smooth, Xt is a smooth elliptic curve for t ̸= 0

and X0 is a rational curve with a node, where Xt is the fiber of X over t ∈ ∆.

Let P and Q be two sections of X/∆ such that Pt − Qt is a torsion class in

J(Xt) of order n ≥ 2 for t ̸= 0. Then there exists an integral curve Z ⊂ X

flat of degree 2 over ∆ such that Z0 is supported on the node of X0 and

{
bτ,p(z) = 0

}
= Zt (3.2)

for t ̸= 0, where bτ,p(z) is the meromorphic function on Xt given in Proposition

2.2.2 with τ = Pt −Qt and p = Pt.

Proof. Since P and Q are sections of X/∆ and X is smooth, P and Q meet X0

at smooth points P0 and Q0 of X0. By the argument in the proof of Lemma

3.1.2, P0 −Q0 is a torsion class in Pic0(X0) ∼= C∗ of order n.

Let us consider π∗OX(P +Q). This is a rank 2 vector bundle over ∆ since

h0(OXt(P +Q)) = 2 for all t. Therefore,

H0(π∗OX(P +Q)) = H0(OX(P +Q))

is a rank 2 free module over C[[t]].
Let o be the node of X0. Then X0\{o} ∼= C∗. We may assume that P0 = 1

and Q0 = η = exp(2πi/n). Then H0(OX0(P0+Q0)) is spanned by the constant

function 1 and

s0(z) =
z

(z − 1)(z − η)

over C. We can choose s ∈ H0(OX(P + Q)) such that s0 is the restriction of

s to X0, i.e., s0(z) = s(0, z), where we consider s = s(t, z) as a meromorphic

function on X with simple poles along P and Q. Then H0(OX(P + Q)) is

generated by 1 and s over C[[t]].
Let ϕ : X\{o} → X\{o} be the automorphism given by ϕ(z) = z+ (p− q)
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for z ∈ Xt, p = Pt and q = Qt. Then

n−1∑
k=0

s(t, ϕk(z))

is constant for each fixed t ̸= 0 by Proposition 2.2.2. For t = 0, we have

n−1∑
k=0

s(0, ϕk(z)) =
n−1∑
k=0

ηkz

(ηkz − 1)(ηkz − η)
= 0.

Therefore,

f(t) =
n−1∑
k=0

s(t, ϕk(z))

for some f(t) ∈ C[[t]] with f(0) = 0. Then ns(t, z) − f(t) is a section of

OX(P +Q) whose restriction to Xt is exactly the function bτ,p(z).

Let

Z =
{
ns(t, z)− f(t) = 0

}
(3.3)

be the vanishing locus of ns(t, z)− f(t). Then (3.2) follows from our choice of

f(t). In addition, since ns(0, z) − f(0) = ns0(z) and s0 only vanishes at the

node o of X0, we see that Z0 is supported at o.

We know that Z is a closed subscheme of X of pure dimension one and flat

of degree 2 over ∆. So it must be one of the following:

• Z is supported on a section of X/∆ with multiplicity 2;

• Z is a union of two distinct sections of X/∆;

• Z is an irreducible multi-section of degree 2 over ∆.

Since Z0 is supported on the node o of X0 and X is smooth, Z cannot

contain any section of X/∆. Thus, Z must be an integral curve flat of degree

2 over ∆.

Proposition 2.2.3 follows immediately from the above proposition.
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Proof of Proposition 2.2.3. Suppose that bτ,p(p − η) = 0 on a general elliptic

curve E for some torsion class τ ∈ J(E) of order n ≥ 2 and 2η = τ . Then by

Proposition 3.1.1, this holds for every torsion class τ of order n.

Let π : X → B = P1 be a Bryan-Leung K3 surface with 24 nodal fibers

over S ⊂ B. We choose a point s ∈ S and let U ⊂ B be an open disk about

s. Then there exists a section Q of XU = π−1(U) over U such that Pt −Qt is

a torsion class of order n for all t ∈ U . It follows from Proposition 3.1.3 that

bτ,p(z) has two distinct zeros on Xt for τ = Pt − Qt and p = Pt, which is a

contradiction.
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Chapter 4

Type of Singularities on Curves

4.1 Proof of Proposition 2.2.4

In this section, we will prove Proposition 2.2.4. Combined with Proposition

2.2.3, we obtain Proposition 2.2.1. Then Theorem 1.2.1 follows.

We will prove the following two statements in sequence:

Proposition 4.1.1. For a general elliptic curve E, a point p ∈ E and a pair

τ1 ̸= τ2 ∈ J(E)tors of torsions of orders n1 ≥ 2 and n2 ≥ 2, respectively, if

{bτ1,p(z) = 0} ∩ {bτ2,p(z) = 0} ̸= ∅

then either

{p− q : bτi,p(q) = 0} ⊂ J(E)tors (4.1)

for i = 1, 2 or

n1 = n2 = 6, ⟨τ1, τ2⟩ = 3 in J(E)6 and ord(τ1 − τ2) = 6. (4.2)

Proposition 4.1.2. For a general elliptic curve E, a point p ∈ E and a pair

τ1 ̸= τ2 ∈ J(E)tors of nonzero torsions, if

{bτ1,p(z) = 0} ∩ {bτ2,p(z) = 0} ̸= ∅ and

{p− q : bτi,p(q) = 0} ⊂ J(E)tors for i = 1, 2,
(4.3)
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then ord(τ1) = ord(τ2) = 2.

Our main tool is the monodromy action of π1(B
◦) on J(E)tors. We fix a

Bryan-Leung K3 surface X → B = P1 with 24 nodal fibers over S ⊂ B and a

general fiber E = Xt of X/B. We extend the monodromy action on J(E)tors

to the triples (τ, q1, q2) with τ ∈ J(E)tors and {bτ,p(z) = 0} = {q1, q2}.
Let us consider the curve{
(τ, q1, q2) : τ ∈ J(Xt)n, t ∈ B\S, q1, q2 ∈ Xt, and

{bτ,p(z) = 0} = {q1, q2} for p = Pt

}
⊂ Pic0(X/B)×B X ×B X

(4.4)

By Proposition 2.2.3, for each fixed n ≥ 2, there exists a finite set Sn ⊂ B

such that for every t ̸∈ S ∪Sn, bτ,p(z) has no double zeros on Xt. So the curve

defined by (4.4) is unramified over B\(S ∪ Sn) and we have a well-defined

monodromy action of π1(B\(S ∪ Sn)) on such triples (τ, q1, q2) on a general

fiber E = Xt. Let us use the notation λ(τ) and λ(τ, q1, q2) to denote the action

of λ ∈ π1(B\(S ∪ Sn)) on τ ∈ J(E)tors and (τ, q1, q2).

We start with a few observations.

Lemma 4.1.3. Let X → B = P1 be a Bryan-Leung K3 surface with 24 nodal

fibers and let E = Xt be a general fiber of X/B. Let τ ∈ J(E)tors be a torsion

of order n ≥ 2 and let q1, q2 ∈ E be two points given by

{
bdτ,p(z) = 0

}
=

{
q1, q2

}
for some integer d with dτ ̸= 0. If λ ∈ π1(B\(S ∪ Sn)) acts on J(E)n by

λ(η) = η + ⟨η, τ⟩τ

for all η ∈ J(E)n, then

λ(dτ, q1, q2) = (dτ, q2, q1).

Proof. Fix a point 0 ∈ S and let δ be the vanishing cycle associated to the

nodal fiber X0. If τ = δ in J(E)n, then we must have λ = Tδ in SL2(Z/nZ),
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where Tδ is the Picard-Lefschetz transform associated to δ. Since

Tδ(dτ) = dτ,

there is a local section Q ⊂ XU = X ×B U over a simply connect open

neighborhood U of 0 such that Pt − Qt = dτ . Then the lemma follows from

Proposition 3.1.3.

More generally, by Proposition 3.1.1, there exists α ∈ π1(B\(S ∪Sn)) such

that α(δ) = τ . Then Tδ = α−1 ◦ λ ◦ α since

α−1 ◦ λ ◦ α(η) = α−1
(
α(η) + ⟨α(η), α(δ)⟩α(δ)

)
= α−1

(
α(η) + ⟨η, δ⟩α(δ)

)
= α−1 ◦ α(η + ⟨η, δ⟩δ) = Tδ(η).

Thus, the lemma follows.

Lemma 4.1.4. Let X → B = P1 be a Bryan-Leung K3 surface with 24 nodal

fibers and let E = Xt be a general fiber of X/B. Let τ1 and τ2 ∈ J(E)tors be

two torsions of the same order n ≥ 2 with m = ⟨τ1, τ2⟩ in J(E)n, let n1, n2 be

two integers such that n ∤ ni and let

{
bn1τ1,p(z) = 0

}
= {q1, q2}.

If bn2τ2,p(q1) = 0, then

bn2(τ2+kmτ1),p(q1) = 0 for 2 | k and

bn2(τ2+kmτ1),p(q2) = 0 for 2 ∤ k
(4.5)

If, in addition, (2 gcd(mn2, n)) ∤ n, then n1τ1 = n2τ2.

Proof. By Proposition 3.1.1, we can find λ ∈ π1(B\(S ∪ Sn)) such that

λ(α) = α + ⟨α, τ1⟩τ1
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for all α ∈ J(E)n. Then λ(τ1) = τ1. Hence

λk(n1τ1, q1, q2) = (n1τ1, q1, q2) for 2 | k and

λk(n1τ1, q1, q2) = (n1τ1, q2, q1) for 2 ∤ k
(4.6)

by Lemma 4.1.3. Obviously,

λk(τ2) = τ2 − kmτ1 (4.7)

for all integers k. Combining (4.6) and (4.7), we obtain (4.5).

If (2 gcd(mn2, n)) ∤ n, then k0 = n/ gcd(mn2, n) is odd. Setting k = k0 in

(4.5), we obtain

bn2τ2,p(q2) = bn2(τ2+k0mτ1),p(q2) = 0.

On the other hand, we assume that bn2τ2,p(q1) = 0. So

{
bniτi,p(z) = 0

}
= {q1, q2}

for i = 1, 2. This implies

n1τ1 = (p− q1) + (p− q2) = n2τ2.

Lemma 4.1.5. Let E be an elliptic curve, let p be a point on E and let

τ ∈ J(E)tors be a torsion of order 2. Then

{
bτ,p(z) = 0

}
=

{
q1, q2

}
such that τ , p− q1 and p− q2 are the three distinct 2-torsions.

Proof. Let τ , τ1 and τ2 be the three distinct 2-torsions. Clearly,

τ = τ1 + τ2.

So there exist a rational function b(z) on E with simple poles at p and p− τ

and simple zeros at p− τ1 and p− τ2. Note that b(z+ τ) also has simple poles
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at p and p− τ and simple zeros at p− τ1 and p− τ2. Therefore,

b(z + τ) ≡ cb(z)

for a constant c. And since b(z) + b(z + τ) is a constant by Proposition 2.2.2,

we must have c = −1 and

b(z) + b(z + τ) ≡ 0.

Therefore, bτ,p(z) ≡ λb(z) for a constant λ ̸= 0 by the uniqueness of bτ,p(z)

and the lemma follows.

Lemma 4.1.6. Let E be an elliptic curve, let p be a point on E and let

τ1 ̸= τ2 ∈ J(E)tors be two distinct nonzero torsions. If{
bτ1,p(z) = 0

}
=

{
q1, q2

}{
bτ2,p(z) = 0

}
=

{
q1, q3

}
then

bτ1−τ2,p(q2) = 0.

Proof. Note that

q2 = q3 − (τ1 − τ2)

since
τ1 = (p− q1) + (p− q2) and

τ2 = (p− q1) + (p− q3).

Let us consider the meromorphic function bτ2,p(z + (τ1 − τ2)). It has simple

poles at p− (τ1 − τ2) and (p− τ2)− (τ1 − τ2) = p− τ1 and a zero at

q3 − (τ1 − τ2) = q2.

Therefore,

b(z) = bτ1,p(z) + cbτ2,p(z + (τ1 − τ2))

has simple poles at p and p− (τ1− τ2) and a zero at q2 for the constant c given
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by

c = − Resp−τ1 bτ1,p(z)ω

Resp−τ1 bτ2,p(z + (τ1 − τ2))ω
.

where ω is a nonvanishing holomorphic 1-form on E.

Let n be a positive integer such that τ1, τ2 ∈ J(E)n. Then∑
λ∈J(E)n

b(z + λ) =
∑

λ∈J(E)n

bτ1,p(z + λ) + c
∑

λ∈J(E)n

bτ2,p(z + (τ1 − τ2) + λ)

=
∑

λ∈J(E)n

bτ1,p(z + λ) + c
∑

λ∈J(E)n

bτ2,p(z + λ) ≡ 0

by Proposition 2.2.2. Then by the uniqueness of bτ1−τ2,p(z), we must have

bτ1−τ2,p(z) ≡ ab(z) for some constant a ̸= 0 and the lemma follows.

Lemma 4.1.7. Let E be an elliptic curve, let n be a positive integer satisfying

4 | n and 8 ∤ n and let α1 ̸= α2 ∈ J(E)tors be two torsions of order n. If

⟨α1, α2⟩ =
n

2
in J(E)n and

4(d1α1 − d2α2) = 0

for some odd integers d1 and d2, then

ord(d1α1 − d2α2) = 2.

Proof. Let m = n/2. We may assume that

α1 =

[
1

0

]
and α2 =

[
a

m

]

in J(E)n ∼= Z/nZ× Z/nZ, where gcd(a,m) = 1 and hence a is odd. Then

d1α1 − d2α2 =

[
d1 − ad2

−d2m

]

and 2m | 4(d1 − ad2). And since d1 − ad2 is even and 4 ∤ m, we see that

2m | 2(d1 − ad2) and hence d1α1 − d2α2 has order 2.
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Now we are ready to prove Propositions 4.1.1 and 4.1.2.

Proof of Proposition 4.1.1. Suppose that E is a general fiber of a Bryan-Leung

K3 surface π : X → B = P1 with 24 nodal fibers. Let

n = lcm(n1, n2), d1 =
n

n1

and d2 =
n

n2

.

Suppose that

{
bτ1,p(z) = 0

}
=

{
q1, q2

}
and

{
bτ2,p(z) = 0

}
=

{
q1, q3

}
.

It suffices to prove that one of p− q1, p− q2 and p− q3 is torsion.

Since ord(τi) = ni, τi = diαi for i = 1, 2 and some αi ∈ J(E)tors of order n.

Let m = ⟨α1, α2⟩ ∈ Z/nZ.
By Lemma 4.1.4,

bτ2+kd2mα1,p(q1) = 0 for 2 | k and

bτ2+kd2mα1,p(q2) = 0 for 2 ∤ k

If k0 = n/ gcd(d2m,n) is odd, then τ1 = τ2 by Lemma 4.1.4, which is a

contradiction. Therefore, k0 and n are even. If k0 ̸= 2, we have two cases:

• Suppose that 4 | k0. We have

bτ2,p(q1) = bτ2+(k0/2)d2mα1,p(q1) = 0.

Let

τ ′1 = τ2 + (k0/2)d2mα1 and τ ′2 = τ2.

Suppose that {
bτ ′1,p(z) = 0

}
=

{
q1, q

′
2

}
and{

bτ ′2,p(z) = 0
}
=

{
q1, q

′
3

}
.

By Lemma 4.1.6,

bτ ′1−τ ′2,p
(q′2) = 0.

Obviously, ord(τ ′1 − τ ′2) = 2. Therefore, p − q′2 ∈ J(E)tors by Lemma
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4.1.5. It follows that p− q1 ∈ J(E)tors and we are done.

• Suppose that 4 ∤ k0 and k0 > 2. We have

bτ2,p(q1) = bτ2+2d2mα1,p(q1) = 0.

Let

τ ′1 = τ2 + 2d2mα1 and τ ′2 = τ2.

We see that τ ′1 ̸= τ ′2,

ord(τ ′1) | n2 = ord(τ ′2)

and

⟨τ ′1, τ ′2⟩ = m′ = 2(d2m)2

with n2/ gcd(m
′, n2) odd. Then τ ′1 = τ ′2 by Lemma 4.1.4, which is a

contradiction.

So we have k0 = 2. That is,

n = 2gcd(d2m,n).

Similarly, we have

n = 2gcd(d1m,n).

So we have

d2m ≡ d1m ≡ n

2
(mod n).

And since gcd(d1, d2) = 1, we conclude that

m ≡ n

2
(mod n)

and d1 and d2 are both odd. That is, we have reduced the proposition to the

case that

2 | n, 2 ∤ d1d2 and m =
n

2
. (4.8)

Note that under these assumptions,

mτj = dimαj = mαj
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for all i, j = 1, 2.

If one of τi is a 2-torsion, then it follows immediately from Lemma 4.1.5

that p − q1 ∈ J(E)tors and we are done. So we may assume that ni ≥ 3 for

i = 1, 2.

By Lemma 4.1.6,

bτ1−τ2,p(q2) = 0.

If τ1 − τ2 is a 2-torsion, then p− q2 ∈ J(E)tors by Lemma 4.1.5. We are again

done. So we may assume that none of τ1, τ2 and τ1 − τ2 are 2-torsions. That

is, we may assume that

n1 ≥ 3, n2 ≥ 3 and ord(τ1 − τ2) ≥ 3 (4.9)

in addition to (4.8).

Repeatedly applying Lemma 4.1.4, we obtain{
bτ1,p(z) = 0

}
=

{
q1, q2

}{
bτ2,p(z) = 0

}
=

{
q1, q3

}{
bτ2+mα1,p(z) = 0

}
=

{
q2, q4

}{
bτ1+mα2,p(z) = 0

}
=

{
q3, q5

}
Continuing this process, we obtain

bτ1+m(α2+mα1),p(q4) = 0.

Suppose that 4 | n, i.e., 2 | m. Then m(α2 +mα1) = mα2 and hence

bτ1+mα2,p(q4) = 0.

Since {bτ1+mα2,p(z) = 0} = {q3, q5}, we have either q3 = q4 or q4 = q5.

• If q3 = q4, then {
bτ1,p(z) = 0

}
=

{
q1, q2

}{
bτ2,p(z) = 0

}
=

{
q1, q3

}{
bτ2+mα1,p(z) = 0

}
=

{
q2, q3

}
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and hence
(p− q1) + (p− q2) = τ1 ∈ J(E)tors

(p− q1) + (p− q3) = τ2 ∈ J(E)tors

(p− q2) + (p− q3) = τ2 +mα1 ∈ J(E)tors

It follows that p− q1, p− q2, p− q3 ∈ J(E)tors. We are done.

• If q4 = q5, then {
bτ1,p(z) = 0

}
=

{
q1, q2

}{
bτ2,p(z) = 0

}
=

{
q1, q3

}{
bτ2+mα1,p(z) = 0

}
=

{
q2, q4

}{
bτ1+mα2,p(z) = 0

}
=

{
q3, q4

} (4.10)

and hence
(p− q1) + (p− q2) = τ1

(p− q1) + (p− q3) = τ2

(p− q2) + (p− q4) = τ2 +mα1 = τ2 +mτ1

(p− q3) + (p− q4) = τ1 +mα2 = τ1 +mτ2

It follows that

(m− 2)(τ1 − τ2) = 0 ⇒ gcd(m− 2, n)(τ1 − τ2) = 0.

Since gcd(m − 2, n) = gcd(m − 2, 2m) is either 2 or 4, the order of

τ1 − τ2 is either 2 or 4. By our hypothesis (4.9), ord(τ1 − τ2) ̸= 2. So

ord(τ1 − τ2) = 4. Then gcd(m− 2, 2m) = 4 and 4 ∤ m. This contradicts

Lemma 4.1.7.

So far we have proved the proposition when m is even. Suppose that 2 ∤ m.

Then m(α2 +mα1) = m(α1 + α2) and hence

bτ1+m(α1+α2),p(q4) = 0.
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Continuing applying Lemma 4.1.4, we obtain{
bτ1,p(z) = 0

}
=

{
q1, q2

}{
bτ2,p(z) = 0

}
=

{
q1, q3

}{
bτ2+mα1,p(z) = 0

}
=

{
q2, q4

}{
bτ1+mα2,p(z) = 0

}
=

{
q3, q5

}{
bτ1+m(α1+α2),p(z) = 0

}
=

{
q4, q6

}{
bτ2+m(α1+α2),p(z) = 0

}
=

{
q5, q7

}
Applying Lemma 4.1.4 to (τ1 +m(α1 + α2), τ2 +mα1), we obtain

bτ2+m(α1+α2),p(q6) = 0.

Similarly,

bτ1+m(α1+α2),p(q7) = 0.

That is, q6 ∈
{
q5, q7

}
and q7 ∈

{
q4, q6

}
. Since

{
q5, q7

}
̸=

{
q4, q6

}
, we must

have q6 = q7. Then from {
bτ1,p(z) = 0

}
=

{
q1, q2

}{
bτ2,p(z) = 0

}
=

{
q1, q3

}{
bτ2+mα1,p(z) = 0

}
=

{
q2, q4

}{
bτ1+mα2,p(z) = 0

}
=

{
q3, q5

}{
bτ1+m(α1+α2),p(z) = 0

}
=

{
q4, q6

}{
bτ2+m(α1+α2),p(z) = 0

}
=

{
q5, q6

}
(4.11)

we obtain

3(τ1 − τ2) = m(α1 − α2).

Hence τ1 − τ2 has order 2 or 6.

By our hypothesis (4.9), ord(τ1 − τ2) ̸= 2. So τ1 − τ2 has order 6. Hence

6 | n, 3 | m and 3 | n1n2.

Since d1 and d2 are odd, n1 = n/d1 and n2 = n/d2 are even. So at least

one of n1 and n2 is divisible by 6. Without the loss of generality, let us assume

36



that 6 | n1. Then

n1(τ1 − τ2) = 0 ⇒ n1τ2 = 0 ⇒ n2 | n1 ⇒ n = n1.

Let

τ ′1 = τ1 and τ ′2 = τ1 − τ2.

By Lemma 4.1.6,

bτ ′1,p(q2) = bτ ′2,p(q2) = 0.

Applying the whole argument to (τ ′1, τ
′
2), we again arrive at

ord(τ ′1 − τ ′2) = 6.

That is, n2 = ord(τ2) = 6. Then this implies that τ1 = τ2 + (τ1 − τ2) also has

order 6. So we have (4.2).

37



Chapter 5

Singularities on curves of g ≥ 2

5.1 Proof of Theorem 1.2.1 for g ≥ 2

It remains to prove Theorem 1.2.1 for g ≥ 2. As mentioned before, we will

reduce it to the case g = 1 by a degeneration argument.

Let E be a smooth elliptic curve. We first construct a smooth projective

family X of surfaces over ∆ = A1 such that X0
∼= E × P1 and Xt

∼= PE for

t ̸= 0, where E is the rank 2 vector bundle on E given by a nonzero vector in

Ext(OE,OE).

Let V be a rank 2 vector bundle over E ×∆ given by

t ∈ Ext(OE×∆,OE×∆) = H1(OE×∆) = C[t]

and let X = PV . Clearly, X is such a family.

There is an effective divisor D ⊂ X, flat over ∆, such that Dt is the section

of Xt/E with D2
t = 0. Fix a point p ∈ E and let L = mD + π∗p, where π is

the projection X → E.

For t ̸= 0, the Severi variety VXt,L,g has expected dimension g. If we fix g

general points on Xt, there exist finitely many [C] ∈ VXt,L,g such that C passes

through these points. Let us fix g general sections P1, P2, ..., Pg ⊂ X of X/∆.

Then after a base change, there exists a flat projective family C ⊂ X of curves

over ∆ such that Ct is an integral curve in |L| on Xt passing through Pi ∩Xt

for i = 1, 2, ..., g and t ̸= 0. Here we replace ∆ by an analytic disk or a smooth
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affine curve finite over A1.

Furthermore, we may choose the base change such that there exists a family

of stable maps φ : C → X over ∆ such that φ maps C birationally onto C.

On X0, the linear system |L| is completely reducible in the sense that

H0(OX0(L)) = SymmH0(OX0(D))⊗H0(OX0(π
∗p)).

Therefore,

C0 = m1D1 +m2D2 + ...+mgDg + F

where Di are the sections of X0/E passing through Pi ∩X0 for i = 1, 2, ..., g,

F is the fiber of π : X0 → E over p and mi are positive integers such that∑
mi = m.

Clearly, Ct has only singularities in open neighborhoods of Di. So it suffices

to show that Ct has only nodes and ordinary triple points as singularities in

an analytic neighborhood of each Di for i = 1, 2, ..., g, if E is general.

Since Ct is a smooth projective curve of genus g for t ̸= 0, there are exactly

g irreducible components Γ1,Γ2, ...,Γg of C0 such that each Γi is a smooth

elliptic curve dominating Di for i = 1, 2, ..., g.

Let us fix i. If mi = 1, there is nothing to do. Otherwise, Suppose that

mi ≥ 2. Let ψ : X̂ → X be the blowup of X along Di. Then the central fiber

X̂0 = S ∪ R is a union of two smooth projective surfaces S and R, where S

is the proper transform of X0, R is the exceptional divisor of ψ and S and R

meet transversely along a curve over Di, which we still denote by Di. Let Ĉ

be the proper transform of C under ψ.

The rational map ψ−1 ◦ φ : C 99K X̂ is regular at a general point of Γi.

We claim that

ψ−1 ◦ φ(Γi) ̸⊂ Di = S ∩R.

Otherwise, we choose a local section Q of C /∆ passing through a general point

of Γi. Then φ(Q) is a local section of X̂/∆ meeting Di = S ∩ R, which is

impossible since X̂ is smooth. So ψ−1 ◦ φ maps Γi to an irreducible curve on

R other than Di. That is, Ĉ0 does not contain Di.

We have either R ∼= PE or R ∼= E × P1.
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A. If R ∼= PE , then Ĉ ∩ R must be an integral curve in |miD̂ + π̂∗p| of
geometric genus 1, where D̂ is the proper transform of D and π̂ = π ◦ ψ
is the projection X̂ → E. Then by Theorem 1.2.1, Ĉ ∩R has only nodes

and ordinary triple points as singularities and the same holds for Ct in

an open neighborhood of Di.

B. If R ∼= E × P1, then Ĉ ∩ R = miD̂i + F̂ , where D̂i is the section R/E

passing through the point P̂i ∩ R with P̂i being the proper transform

of Pi under ψ and F̂ is the fiber of R over p ∈ E. So we continue to

blow up X̂ along D̂i. By embedded resolution of singularities, there

exists a sequence blowups over Di, say f : X ′ → X, such that the

proper transform C ′ of C is smooth over a general point of Di. Then by

Zariski’s main theorem, the map f−1 ◦ φ : C 99K X ′ has connected fiber

over f−1(Di). This means that C ′
0 is smooth over a general point of Di.

So we will eventually end up in case A after a sequence of blowups over

Di.
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