
Investigating human brain function and human brain 

organization using functional Magnetic Resonance Imaging at 

4.7 T 

by 

Stanislau Hrybouski 

A thesis submitted in partial fulfillment of the requirements for 

Doctor of Philosophy 

Neuroscience 

University of Alberta

© Stanislau Hrybouski, 2020 



	 ii	

Abstract 

Understanding the brain-cognition association has been a major goal of neuroscientists for 

more than 50 years. The discovery of functional magnetic resonance imaging (fMRI) blood-

oxygen-level-dependent (BOLD) contrast by Ogawa and colleagues (1990, 1992) has 

fundamentally transformed the field of human neuroscience, allowing researchers to non-invasively 

measure function of the human brain. Since that initial discovery, imaging methodology has 

improved substantially, and new approaches for studying brain function are continuously 

developed. A recent shift towards high-field (> 3 T) scanners enabled researchers to probe brain 

structure and function with unmatched anatomical precision. However, the advantages of high-field 

fMRI datasets can be challenging to realize in practice, since greater spatial resolution comes at a 

cost: reduced contrast-to-noise ratio, increased vulnerability to head motion artifacts, and geometric 

distortions caused by longer readout times. High-field fMRI data are also more sensitive to cardiac 

and respiratory signals of no-interest, which can weaken or bias most statistical inferences, 

especially in resting-state functional connectivity work. Consequently, the primary objective of this 

thesis was to develop methodology that is capable of taking the full advantage of high-field fMRI to 

study brain function and brain organization. We accomplished this aim by combining precise 

anatomical localization on ultra-high-resolution structural MRI in native space, with an extensive 

set of fMRI denoising techniques as well as task-specific statistical models of each structure’s 

hemodynamic response. To test our approach for studying brain function using high field high-

resolution fMRI we investigated functional aspects of small medial temporal lobe (MTL) structures, 

which are notoriously difficult to study because of lower vascular density, susceptibility artifacts, 

and signal contamination from larger drainage veins.  

The first two experiments of this thesis examine functional properties of the amygdala 

subnuclei and hippocampal subfields. To activate the amygdala subnuclei we employed negative 
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emotional stimuli that have been shown to elicit amygdala response in other fMRI studies, and the 

hippocampus was engaged by a computerized adaptation of a standardized clinical memory battery, 

that is capable of testing neurobiological processes responsible for item, spatial, and associative 

memory. In the third experiment, we combined a 4.7 T acquisition with a data-driven network 

parcellation to study age differences in the brain’s functional architecture. We investigated network 

topography, network amplitude, and inter-network communication for the entire connectome. Inter-

network functional connectivity was estimated using a novel sparse graphical estimation procedure 

that aims to uncover true graph structure with edges representing direct connections only. 

Simulation work by Allen and colleagues (2012) suggests that fMRI data with greater BOLD 

contrast-to-noise ratio (e.g., > 4 T) should produce network parcellation that in less biased and more 

sensitive to differences when performing statistical comparisons between groups.  

In the MTL experiments, emotional stimuli elicited differential engagement of the amygdala 

subnuclei demonstrating the necessity of studying these small grey matter nuclei separately from 

each other. Similarly, our memory paradigm revealed a complex pattern of intra-hippocampal 

specialization within both the anterior and posterior hippocampal subfields in memory encoding and 

memory retrieval. Finally, our investigation into age effects on the brain’s functional architecture 

revealed widespread BOLD signal reduction among old adults, affecting every major brain system. 

Connectivity analyses, however, showed a high degree of age-invariance in the brain’s functional 

architecture with some subtle differences among age group. At 4.7 T, we were able to obtain a finer 

network splitting than is commonly reported in neuroimaging literature, highlighting the advantages 

of high-field acquisitions for studying the brain’s connectome using data-driven network detection 

techniques. Together, these results revealed clear advantages of high-field fMRI for studying the 

brain’s structure-function relationships and for investigating its network properties. 
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Chapter 1: Background Literature 
 
1.1 Measuring Brain Activity Using Functional MRI 
 

The human brain can be conceptualized as a collection of functionally distinct neuronal 

communities (Bullmore & Sporns, 2009; Fröhlich, 2016; Wig, 2017). At various time points, 

certain sub-networks are recruited to deal with salient information or to perform cognitive tasks. 

Understanding the precise neurobiological basis of human cognition and behavior has been a major 

goal of neuroscientists for over a century. Prior to the advent of modern imaging techniques, 

functional brain mapping was largely restricted to neurological populations, patients with surgical 

brain lesions, and experimental animal work.  

In the late 20th century, the field of human neuroscience was dramatically transformed by a 

new generation of functional imaging tools, enabling researchers for the first time, to study brain 

function with a high degree of anatomical specificity (Fröhlich, 2016; Heeger & Ress, 2002; 

Logothetis & Wandell, 2004). Crucial to this transformation was the advent of functional Magnetic 

Resonance Imaging (fMRI) methodology (Gagnon et al., 2015; Logothetis, 2008; Logothetis et al., 

2001; Ogawa et al., 1990; Uludağ & Blinder, 2018). Since its inception in 1990, fMRI has rapidly 

become a method of choice when studying human brain function in vivo. Compared to other non-

invasive imaging techniques, fMRI provides superior spatial resolution (Fröhlich, 2016; Kim & 

Ogawa, 2012; Logothetis, 2008). 

Functional MRI can be used to study both brain-cognition links and properties of the brain’s 

architecture as a connectome (Buckner et al., 2013; Fröhlich, 2016; Logothetis, 2008; Wig, 2017). 

Studies belonging to the former category typically employ highly controlled tasks (although 

naturalistic stimuli have also be used; e.g., Nishimoto & Gallant, 2011) to drive hypothesis-based 

changes in neuronal firing, while studies belonging to the latter category employ data-driven 

methods to compare functional architecture between study groups or cognitive states. The two 

approaches provide complementary information about the brain and how its function might be 

altered in various neurological or psychiatric disorders. Despite differences in their primary 

objectives and analytical tools, all fMRI experiments use the vascular hemodynamic response as a 

proxy for neuronal activity.  
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1.2 Biophysics of BOLD fMRI 
 

The human brain comprises 2% of the body’s mass but is responsible for 20% of the body’s 

energy use (Rolfe & Brown, 1997). The brain’s energy consumption is used to maintain membrane 

gradients and for neurotransmitter trafficking/recycling (Attwell et al., 2010; Attwell & Laughlin, 

2001). Synaptic and post-synaptic activity increases regional metabolic demands (i.e., O2 and 

glucose), and to deal with this greater demand for metabolic resources, the brain has evolved 

neurovascular-coupling mechanisms to deliver additional metabolic resources to active areas. 

Activated brain regions experience a transient increase in cerebral metabolic oxygen utilization 

(CMRO2). Regional cerebral vasculature responds to rising metabolic demands by dilating local 

blood vessels and increasing local cerebral blood flow (CBF) (Cohen et al., 2004; Kim, 2018; Kim 

& Ogawa, 2012; Uludağ & Blinder, 2018; Uludağ et al., 2009; Wright & Wise, 2018). Because the 

vascular response overcompensates O2 utilization, venous deoxyhaemoglobin ratio rises, which in 

turn weakens susceptibility effects on T2
*-sensitive MRI (Buckner et al., 2013; Fröhlich, 2016; 

Gagnon et al., 2015; Kim, 2018; Kim & Ogawa, 2012; Logothetis, 2008). 

Biophysical processes, linking the underlying neuronal activity with the blood oxygenation 

level-dependent (BOLD) fMRI, are complex and only partially understood (Attwell et al., 2010; 

Hillman, 2014; Kim, 2018). The human brain comprises 2% of the body’s mass but is responsible 

for 20% of the body’s energy use (Rolfe & Brown, 1997). The brain’s energy consumption is used 

to maintain membrane gradients and for neurotransmitter trafficking/recycling (Attwell et al., 2010; 

Attwell & Laughlin, 2001). Synaptic and postsynaptic activity increases regional metabolic 

demands (i.e., O2 and glucose), and to deal with this greater demand for metabolic resources the 

brain has evolved neurovascular-coupling mechanisms to deliver additional metabolic resources to 

active areas. Vessel dilation is likely initiated via glutamate-initiated nitric oxide (NO) release by 

postsynaptic neurons, although other molecules, including blood [CO2], may play additional roles 

(Attwell et al., 2010). The post-stimulus increase in CBF, and consequently, energy supply in 

response to sustained neuronal activity is 4+ times larger than increased metabolic demands by 

activated neurons (Lin et al., 2010). It is this differential in supply vs. demand on metabolic 

resources that is measured by BOLD fMRI (Attwell et al., 2010; Fröhlich, 2016; Gagnon et al., 

2015; Hillman, 2014; Kim, 2018; Kim & Ogawa, 2012; Logothetis, 2008; Uludağ & Blinder, 

2018). 
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1.3 BOLD Response Characteristics 
 

The classical BOLD response to a short burst (< 1 s) of neuronal activity is characterized by 

an initial post-stimulus dip, followed by a steep rise and activity peaking 5-6 s after neural activity 

began, followed by a steep decline with a moderate undershoot and a gradual return to the pre-

stimulus baseline. The initial post-stimulus BOLD dip is likely due to the mismatch between 

CMRO2 and CBF changes (Kim & Ogawa, 2012). However, because measuring such subtle 

changes in the fMRI time series requires both high spatial and high temporal resolution, the initial 

dip is rarely modeled with standard 1.5-3.0 s temporal resolution. A slow return of CMRO2 to pre-

activity levels is the most likely cause of post-stimulus undershoots, although cerebral blood 

volume (CBV) and CBF contributions have been reported as well (Kim & Ogawa, 2012). Similar to 

the initial dips, post-peak undershoots are rarely investigated because most event-related designs do 

not employ sufficiently long inter-stimulus intervals (ranging between 15 and 30 s) that are 

necessary for accurate comparisons of the undershoot properties. Instead, most task-based fMRI 

experiments employ short inter-stimulus intervals with variable length, allowing for a greater 

number of stimuli in an experiment and boosting the statistical power of main comparisons (Amaro 

& Barker, 2006; Heeger & Ress, 2002).  

Most fMRI experiments study peak BOLD amplitude, representing the greatest differential 

between CBF and CMRO2 effects in response to a stimulus when comparing brain activity among 

groups or trial types (Fig. 1.1). Two other features of task-evoked BOLD are sometimes also 

examined: response latency and response duration (Handwerker et al., 2004; Henson et al., 2002; 

Lindquist et al., 2009; Lindquist & Wager, 2007; West et al., 2019). The first can be described as 

the time it takes for the BOLD activity to reach its post-stimulus peak and the second is oftentimes 

measured as the BOLD response’s width at half maximum (Fig. 1.1). Because of analytical 

complexity, many event-related studies of brain function assume identical BOLD response shape in 

all task conditions and brain regions and simply convolve the expected duration of the underlying 

neuronal activity with a standard gamma or double-gamma response function (Heeger & Ress, 

2002; Lindquist et al., 2009; Pernet et al., 2014). In addition to anatomical invariance, this approach 

also assumes (1) simple summation of the recorded BOLD signal from temporally adjacent events, 

(2) constant as opposed to adaptable or transient neuronal response in activated brain regions, and 

(3) a linear relationship between blood flow and neuronal activity (Heeger & Ress, 2002). Evidence 
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for linear summation has been mixed with some studies supporting linear additive properties and 

others failing to demonstrate such effects (Hillman, 2014; Hirano et al., 2011; Martin et al., 2006; 

Yeşilyurt et al., 2008; Zhang et al., 2009), and other assumptions are not always met (Ekstrom, 

2010; Heeger & Ress, 2002; Hillman, 2014; Nauer et al., 2015). An alternative, although a more 

complex, approach is to estimate task-specific hemodynamic response function for brain areas of 

interest, allowing for more accurate BOLD response modeling, and an ability to compare multiple 

BOLD response characteristics among different populations or task conditions. Timing and duration 

properties can provide additional information about the underlying neuronal activity (Calhoun et al., 

2004; Formisano & Goebel, 2003; Henson et al., 2002; Lindquist et al., 2009; Logothetis & 

Wandell, 2004; Pernet, 2014; West et al., 2019). Furthermore, region-specific and task-specific 

BOLD models allow for greater statistical sensitivity, an advantage when working with high-field 

high-resolution data since fMRI contrast-to-noise ratio tends to decrease with increasing spatial 

resolution (De Martino et al., 2018; Kim, 2018; Kim & Ogawa, 2012; Uludağ & Blinder, 2018). 
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Fig. 1.1. Simulated double-gamma BOLD function is shown in red (a.u., arbitrary units). Estimates of 
response height, time-to-peak, and full-width at half-max are depicted in blue. 
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1.4 Functional MRI at High Field 

 
The goal of the current set of projects was to leverage the power of 4.7 T fMRI to advance 

our understanding of the relationship between small medial temporal lobe structures in human 

cognition and to provide a detailed depiction of system-level changes in brain’s functional 

organization caused by aging processes. If spatial resolution remains unchanged, moving from a 

lower (e.g., 1.5 T) to a higher (above 4 T) magnetic field strength results in increased MRI signal 

sensitivity (De Martino et al., 2018; Kim, 2018; Kim & Ogawa, 2012; Uludağ & Blinder, 2018; 

Vaughan et al., 2001), producing BOLD effects of greater magnitude (Sladky et al., 2013), and 

improving the statistical power of BOLD comparisons if physiological noise does not dominate the 

fMRI time series (Hutton et al., 2011; Triantafyllou et al., 2005; van der Zwaag et al., 2009). 

Functional MRI data acquired at high fields are more sensitive to BOLD contrast originating within 

grey matter microvasculature, as opposed to BOLD from larger drainage veins (De Martino et al., 

2018; Gagnon et al., 2015; Shmuel et al., 2007; Uludağ & Blinder, 2018), improving activity 

localization. Increased sensitivity to the BOLD signal that originates from small intra-cortical blood 

vessels in combination with improved SNR enables high-field scanners to achieve spatial resolution 

with voxel volume smaller than 8 mm3
 (Fig. 1.2), substantially reducing partial volume effects and 

signal contamination from neighbouring structures (De Martino et al., 2018; Pohmann et al., 2016; 

Shmuel et al., 2007; Ugurbil, 2016). The improved contrast-to-noise ratio (CNR) at high fields can 

also be used to obtain more accurate community mapping in functional connectivity studies since 

many algorithms produce more accurate network and sub-network estimates from data with greater 

temporal SNR (Allen et al., 2012; Ugurbil, 2016). 

 

 

 

 

 

 

 

 

 

	

	

Fig. 1.2. Statistical parametric maps for a  
4.7 T block-design finger tapping experiment 
[alternating 30 s tap/rest blocks]. Left panel: 
standard resolution acquisition [3 × 3 × 3 mm3] 
smoothed* with a 6-mm FWHM Gaussian 
kernel. Right panel: high-resolution acquisition 
[1.5 × 1.5 × 1.5 mm3] from the same 
participant with no spatial smoothing of any 
kind.  

*Standard-resolution images were smoothed for 
consistency with analysis pipelines commonly 
used in other human fMRI studies. 
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Unfortunately, high-field acquisitions are not only more sensitive to BOLD activations but 

are also more sensitive to non-neurovascular physiological signals, reducing many of the 

advantages of high-field datasets if such physiological noise sources are not minimized. As a 

consequence of reduced partial volume effects, physiological confounds are less pronounced in 

high-resolution (8-mm3 or less) images (Hutton et al., 2011; Triantafyllou et al., 2005; van der 

Zwaag et al., 2009), and one way to reduce the severity of physiological noise is to acquire fMRI 

data with greater spatial resolution (Hutton et al., 2011; Triantafyllou et al., 2005; van der Zwaag et 

al., 2009). Unfortunately, longer readout times in high-resolution acquisitions result in greater 

geometric distortions that may be difficult to correct (Hutton et al., 2011), reducing the anatomical 

accuracy of activity localizations using anatomical labels derived from structural MRI. 

Another approach is to optimize statistical modeling by employing a more accurate 

hemodynamic response model together with post-acquisition cleanup of the physiological noise. In 

fMRI datasets, the dominant sources of physiological noise are cardiac pulsatility, heart rate 

variability, cerebrospinal fluid (CSF) flow, respiration-induced magnetic field changes, and 

fluctuations in CO2 (a potent vasodilator; Cohen et al., 2004) concentration resulting from 

differences in breath depth and/or breath rate (Birn et al., 2006; Chang et al., 2009; Glover et al., 

2000; Hutton et al., 2011). Consequently, in order to take a full advantage of high-field fMRI 

acquisitions it is critical to reduce the effects of non-BOLD physiological signals on the data, 

especially at standard resolutions (i.e., 16-mm3 or more). Cardiac and breathing-related information 

can be removed by regressors that are derived from synchronized cardiac and respiratory 

waveforms (Birn et al., 2008; Chang et al., 2009; Glover et al., 2000). A subject’s cardiac 

waveforms are commonly recorded by a pulse photoplethysmograph, while breathing-related 

waveforms can be obtained by strapping a pneumatic belt around his or her abdomen. Substantial 

post-processing is then performed to convert these recordings to GLM-style (GLM, General Linear 

Model; Worsley & Friston, 1995) regressors capable of removing aliased physiological noise (Birn 

et al., 2008; Chang et al., 2009; Glover et al., 2000; see section, 5.2 for a more detailed 

methodological description on how to remove physiological noise using cardiac and respiratory 

waveforms).  

In addition to the supplemental cardiac and respiratory waveforms, some physiological noise 

sources can be removed from the fMRI data using post-processing techniques. One approach is to 

estimate the dominant sources of the time series variability in the CSF and cerebral white matter 
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(WM) and use this information for physiological noise cleanup (Behzadi et al., 2007; see sections 

3.2 and 4.2 for details). Another, and perhaps better, data-driven approach for the physiological 

noise removal is to perform a subject-level independent component analysis (ICA) decomposition 

that can remove not only physiological but many other noise sources, including head motion, from 

the fMRI data (Griffanti et al., 2017). With accurate BOLD modeling, such data cleaning 

procedures enable researchers to take full advantage of high-field MRI systems in task-based and 

resting-state work. In the ensuing set of experiments, we combined ultra-high-resolution structural 

MRI with high-resolution functional MRI  (3.375 mm3 voxels) to understand how small structures 

of the medial temporal, namely the amygdala subnuclei and hippocampal subfields, lobe contribute 

to processing of emotionally salient information and declarative memory. Understanding the 

functional properties of such small structures necessitates high-resolution acquisitions, an ideal 

application for high field MRI systems due to their improved BOLD contrast sensitivity. 

 

1.5 Amygdala Subnuclei 
 

The amygdala (AG) is an almond-shaped medial temporal lobe structure involved in the 

neural circuits of fear/reward learning, as well as aggressive, sexual, maternal, and feeding 

behaviors (Janak & Tye, 2015; LeDoux, 2012; LeDoux & Schiller, 2009). The AG interacts 

extensively with numerous cortical and subcortical regions and can modulate human attention and 

perception (Adolphs et al., 2005; Pitkänen et al., 2000; Sah et al., 2003). Of particular interest to our 

experiments is the AG's role in the processing of emotionally relevant stimuli and the creation of 

emotionally salient memories (Dolcos et al., 2004; Kensinger, 2009; LeDoux & Schiller, 2009; 

Murty et al., 2010; Sergerie et al., 2008; Shafer et al., 2012; Shafer & Dolcos, 2012).  

To gain a better understanding of the AG’s role in human cognition, it is vital to 

acknowledge that the AG is not a homogenous structure and instead represents a grey matter 

complex of a at least thirteen nuclei (Brabec et al., 2010; Janak & Tye, 2015; LeDoux, 2012; Sah et 

al., 2003; Whalen et al., 2009). These are generally grouped into two major subdivisions: 

basolateral and centrocorticomedial (Johnston, 1923; LeDoux & Schiller, 2009). The lateral (LA), 

basal (B), and accessory basal (AB) nuclei constitute the basolateral (BLA) complex, while the 

cortical (Co), medial (M), and central (Ce) nuclei belong to the centrocorticomedial group  

(Fig. 1.3a).  
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In rodents, the LA nucleus receives inputs from multiple sensory systems acts as the sensory 

interface of the AG complex (Phelps & LeDoux, 2005). The BA nucleus receives most of its inputs 

from two sources, the LA nucleus of the AG, and the orbitofrontal cortex, while its outputs mainly 

project to the Ce AG and striatum, where they provide context-dependent modulation of emotional 

processing (Freese & Amaral, 2009) and contribute to the regulation of instrumental behaviors 

(LeDoux & Schiller, 2009). Although direct inputs into the CeM group from the LA nucleus exist 

(Pitkänen et al. 1997), those are few in comparison to the indirect pathway through the B and AB 

nuclei (Duvarci & Paré, 2014; Freese & Amaral, 2009). The Ce nucleus, in turn, acts as the primary 

output of the AG circuitry (see Fig 1.3b for a schematic overview of intra-AG connectivity), 

projecting to the lateral and paraventricular hypothalamus, ventral tegmental area, locus coeruleus, 

and basal forebrain (Davis & Whalen, 2001; Kalin et al., 2004). It is because of these connections 

that AG circuitry can influence heart rate, blood pressure, corticosteroid release, skin conductance, 

arousal, and vigilance (Davis & Whalen, 2001), while Ce projections to the periaqueductal grey and 

cranial nerve nuclei are behind well-established freezing and escape behaviors in classical fear 

conditioning experiments (Davis & Whalen, 2001; LeDoux, 2012; Macedo et al., 2007; Phelps & 

LeDoux, 2005). The Co nucleus is oftentimes viewed as a secondary olfactory structure (Doty, 

a b 

Fig. 1.3. (a) Human amygdala subnuclei (L, lateral; B, basal; AB, accessory basal; C, central; M, medial; Co, 
cortial). Adapted from Brabec et al. (2010). (b) Schematic of intra-amygdala information flow in non-human 
primates. Adapted from Sah et al. (2003). 
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2012), involved in olfactory memory, feeding-associated behaviors, and pheromone-driven sexual 

response (Yilmazer-Hanke, 2012). 

Functional properties of the AG subnuclei are rarely studied in humans because standard 

fMRI acquisitions and analysis pipelines do not attain sufficient spatial resolution for reliable 

separation of the AG subnuclei from each other. According to post-mortem histological 

measurements, the centromedial (CeM) AG is smaller than 150 mm3 (Brabec et al., 2010; Garcia-

Amado & Prensa, 2012), translating to less than 9 voxels on fMRI with standard 16–64 mm3 

voxels. The resolution limitations are even more pronounced after applying spatial normalization 

since manipulating individual subjects’ MRIs into template space can introduce substantial 

distortions and inaccuracies during the deformation process (Yassa & Stark, 2009), errors which are 

oftentimes corrected by applying large spatial smoothing (6-10 mm FWHM) kernels. 

Unfortunately, smoothing further reduces the effective spatial resolution of the data, making it even 

more difficult to study the AG subnuclei function. Because of the aforementioned limitations, 

several authors have classified AG activations into coarse subdivisions, including dorsal vs. ventral 

AG (Kim et al., 2004; Morris et al., 2001; Whalen et al., 1998; Whalen et al., 2001), medial vs. 

lateral AG (Kim et al., 2003; Zald & Pardo, 2002), and anterior vs. posterior AG (Gottfried et al., 

2002; Morris et al., 2002; Wang et al., 2008). 

The potential value of studying the AG subnuclei function separately from each other is 

suggested by behavioural studies on patients suffering from a rare genetic condition called Urbach-

Wiethe disease (UWD), which can lead to a progressive calcification of the AG complex in 

otherwise cognitively and neurologically healthy adults. Patients with focal lesions of the BLA AG 

display reduced fear conditioning (Klumpers et al., 2014), fear hypervigilance (Terburg et al., 

2012), and extreme generosity (van Honk et al., 2013). Such behavioral/cognition effects are 

contrasted by observations in a UWD patient with bilateral calcification of the entire AG (Adolphs 

et al., 1994, 1995). This patient is incapable of recognizing fear in facial expressions, a pattern that 

is seemingly at odds with reports of hypervigilance in patients with BLA-specific calcifications. 

Although a few research groups acquired high-resolution (2-mm isotropic or smaller voxels) 

fMRI data to study the AG subnuclei activity in fear conditioning (Bach et al., 2011; Boll et al., 

2013), processing of emotional facial expressions (Boll et al., 2011; Gamer et al., 2010), appetitive 

conditioning (Prévost et al., 2013), instrumental learning (Prévost et al., 2012), reward-seeking 

(Prévost et al., 2011, 2013), and punishment avoidance (Prévost et al., 2011), little is known about 



	 	 10	 	
	 	

human AG subnuclei function in other contexts. Furthermore, no human imaging studies examined 

intra-AG functional connectivity patterns to determine whether intra-AG connectivity in humans is 

consistent with non-human studies. The basolateral AG is significantly larger in humans than in 

rodents, even though most knowledge of the AG circuitry arises from rodent studies. In rodents, the 

BLA complex represents 28% of the total AG volume, while that number rises to 69% in humans 

(Chareyron et al., 2011). The implications of this evolutionary BLA enlargement on AG function 

are poorly understood. 

In summary, novel approaches for studying the AG are required to understand this 

structure’s role in cognition. Consequently, the first aim of my thesis was to leverage the full power 

of high-resolution structural and functional imaging at 4.7 T to understand how human AG 

processes negative vs. neutral visual stimuli. Because of the AG involvement in depression, anxiety, 

schizophrenia, and autism (LeDoux, 2007; Otte et al., 2016), developing techniques for studying the 

AG subnuclei function in vivo is valuable not only for understanding AG function in healthy 

individuals but also for learning how various AG subnuclei relate to psychiatric disorders. 

 

1.6 Hippocampal Subfields and Subregions 
 

 The hippocampus (HC) is a seahorse-shaped medial temporal structure located immediately 

posterior to the AG (Fig. 1.4). Indeed hippocampus is a Latin word for seahorse. The structure has 

been a major source of scientific interest since the middle of the 20th century, beginning with the 

seminal publication by Scoville & Milner (1957), who reported severe memory deficits in patient 

HM following bilateral medial temporal lobectomy. Since then, many human and animal studies 

confirmed the HC role in episodic memory (for reviews, see Cohen et al., 1999; Lisman et al., 2017; 

Moscovitch et al., 2005, 2016; Squire et al., 2015). In human neuroimaging studies, HC activity was 

reported during both explicit and incidental learning (Azab et al., 2014; Bakker et al., 2008; Cohen 

et al., 1999; Lacy et al., 2011; Ranganath et al., 2004) with a wide variety of stimuli, covering a 

broad set of cognitive and perceptual domains: words, objects, tones, scenes, faces, and spatial 

routes and landmarks (for an overview, see Cohen et al., 1999; Lisman et al., 2017). 
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In their attempts to develop a more accurate understanding of the HC function, researchers 

are beginning to appreciate the complexities of its internal anatomy. From front to back, the HC can 

be subdivided into three anatomically defined anterior-posterior segments or subregions: head, 

body, and tail (Fig. 1.4) (Duvernoy, 2005; Malykhin et al., 2007; Rajah et al., 2010). A number of 

studies demonstrated that the posterior (body together with tail) HC is particularly active during 

spatial memory tasks, while the anterior (mostly head) HC is activated by memory tasks with an 

emotional component (Bannerman et al., 2004; Dolcos et al., 2004; Kensinger & Corkin, 2004; 

Kensinger, 2009; Strange et al., 2014; Poppenk & Moscovitch, 2011). It has also been suggested 

Fig. 1.4. (a) Human hippocampus is segmented in red on a T1-weighted anatomical scan. Abbreviations: HH, 
hippocampal head; HB, hippocampal body; HT, hippocampal tail. The magenta line demarcates the most anterior slice 
of the hippocampal body; cyan line demarcates the most anterior slice of the hippocampal tail. (b) Segmented 
hippocampal subfields on an ultra-high-resolution T2 MRI scan. A 3D model of the hippocampal formation and each 
of its subfields and subregions is shown on the right. Solid lines represent head/body and body/tail transition areas as 
in panel (a). 

HH      H
B       

HT 
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that the anterior HC is linked to coarse gist-like memory, while the posterior HC is critical for 

detailed episodic memory (Bonne et al., 2008; Hayes et al., 2011; Poppenk & Moscovitch, 2011; 

Poppenk et al., 2008, 2013), while others showed that the anterior HC is specialized for memory 

encoding, and the posterior HC is preferentially engaged during memory retrieval (Kim, 2015; 

Lepage et al., 1998; Schacter & Wagner, 1999; Spaniol et al., 2009; de Vanssay-Maigne et al., 

2011; Woollett & Maguire, 2012; Woollett et al., 2009). Although many fMRI studies split the HC 

into anterior and posterior segmenting, binary long-axis grouping might lead to oversimplified 

models of the HC function (Small, 2002; Strange et al., 2014): some recent structural and functional 

imaging studies indicate that each of the HC anterior-posterior subregions has distinct implications 

for memory (Chen et al., 2010; DeMaster et al., 2014; Evensmoen et al., 2013; Spalletta et al., 

2016; Travis et al., 2014; de Vanssay-Maigne et al., 2011). Consequently, separating the HC body 

from the HC tail may provide additional information about how each of those long-axis subregions 

contributes to memory. 

In addition to the anterior-posterior differences in HC function, recent advances in fMRI 

methodology made it possible to study functional features of the HC transverse axis, namely the 

Cornu Ammonis 1-3 (CA1-3), dentate gyrus (DG), and subiculum (Sub) subfields (Fig. 1.4b) (Aly 

& Turk-Browne, 2016; Azab et al., 2014; Bakker et al., 2008; Berron et al., 2016; Bonnici et al., 

2012; Copara et al., 2014; Duncan et al., 2012; Eldridge et al., 2005; Lacy et al., 2011; Reagh et al., 

2014; Stokes et al., 2015; Suthana et al., 2009, 2011, 2015; Tompary et al., 2016; Yassa & Stark, 

2011; Zeineh et al., 2003). Most models of the HC role in memory emphasize sequential encoding 

by the trisynaptic circuit: from the entorhinal cortex to the DG, then via the CA3 to the CA1, with 

final outputs to the Sub, entorhinal cortex (EC) and parahippocampal areas; however, new 

memories can also be encoded in the CA1 subfield through direct projections from the EC to the 

CA1, and CA2 subfields (Jones & McHugh, 2011). 

Both animal and computational literature (Hasselmo et al., 1995; Lisman & Grace, 2005; 

Meeter et al., 2004; Norman & O'Reilly, 2003; Vinogradova, 2001) suggest that the HC is a 

dynamic task-sensitive system, continuously switching between integration and discrimination 

states. Substantial efforts have been made at experimental validation of such models in human 

participants, mainly using pattern separation (encoding of novel memories) and pattern completion 

(retrieval of previously encoded stimuli from partial cues) tasks (Bakker et al., 2008; Duncan et al., 

2012; Lacy et al., 2011; Yassa & Stark, 2011). Patient studies and high-resolution fMRI 
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experiments support the DG (or DG/CA3) role in pattern separation and CA1 in pattern completion 

(Azab et al., 2014; Baker et al., 2016; Bakker et al., 2008; Berron et al., 2016; Duncan et al., 2012; 

Lacy et al., 2011). The main limitation of most pattern separation/completion studies is their 

reliance on incidental learning tasks that use varying amounts of stimulus similarity to bias the HC 

circuitry towards one state or another.  

Although some studies examined the HC subfields’ role in memory using explicit memory 

tasks (e.g., Chen et al., 2011; Eldridge et al., 2005; Suthana et al., 2009, 2011, 2015; Zeineh et al., 

2003), because of technical limitations at lower magnetic fields, many of those studies did not 

segment subfields within the entirety of the HC head (Chen et al., 2011; Eldridge et al., 2005; Nauer 

et al., 2015; Suthana et al., 2009, 2011; Zeineh et al., 2003) or tail (Chen et al., 2011; Eldridge et al., 

2005; Zeineh et al., 2003), producing activity measurements heavily dominated by the signal from 

the HC body. Consequently, how various subfields within each long-axis segment contribute to 

episodic memory is largely unexplored. 

Furthermore, there is a lack of consensus in the HC literature as to whether the HC is 

dedicated to the processing of spatial vs. non-spatial information in episodic memory (Eichenbaum, 

2017; Eichenbaum & Cohen, 2014; Kumaran & Maguire, 2005; Lisman et al., 2017; Nadel et al., 

2012), and whether the HC is involved in item-memory, not just relation-memory (Davachi et al., 

2003; Gold et al., 2006; Konkel et al., 2008). For example, Kumaran & Maguire (2005) reported 

that the HC BOLD activity was correlated with spatial-relational, but not social-relational memory. 

The authors also reported that neither spatial nor relational processing on its own was sufficient to 

activate the HC, and combining the two factors was vital for the HC engagement. Another research 

group (Ryan et al., 2010) differentiated spatial from non-spatial relations during memory retrieval. 

Retrieving spatial relations engaged the HC to a greater degree than retrieving non-spatial relations, 

while no voxels showed the opposite pattern (non-spatial > spatial). In contrast, a study by Konkel 

et al. (2008) demonstrated that amnesic patients, with HC-specific damage, were impaired not only 

on all tests of relational memory, including spatial, associative, and sequential but also on tests of 

item memory, although the performance on the former was more affected than the performance on 

the latter (Konkel et al., 2008). 

How different subfields within various long-axis segments contribute to memory formation 

and memory retrieval is largely unexplored. In a previous structural MRI study (Travis et al., 2014), 

we showed that performance on the ‘Designs’ subtest of the Wechsler Memory Scale (WMS-IV; 
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Pearson Education Inc., 2009) was correlated with volumes of the posterior CA1-3 and DG 

subfields. This particular subtest was designed to test the behavioral performance for item, spatial, 

and item-location associative memories. However, volumetric measurements are indirect links to 

brain function and thus cannot fully explain how processes underlying formation and retrieval of 

item, spatial, and associative memories (assessed by this task) relate to neuronal activity within 

various HC segments. For that, more direct measurements of metabolic demand are required. 

Consequently, the main goal of my second experiment was to determine whether the anterior and 

posterior HC subfields show differences in activation properties during the formation and retrieval 

of item, spatial, and associative memories. Similar to studying the AG subnuclei, high-resolution 

imaging is vital for answering this research question. Because the CA1-3 subfield within the HC 

body is 1.0 to 1.5 mm thick on most coronal slices (Malykhin et al., 2010), 1.5 × 1.5 × 1.5 mm3 or 

smaller voxels are required (as opposed to standard 2.5 × 2.5 × 2.5 or 3.0 × 3.0 × 3.0 mm3
 voxels) to 

probe task-evoked signal changes in the CA1-3 subfield without contamination concerns from the 

other subfields.  

 

1.7 Resting-State fMRI 
 

Lin et al. (2010) estimated that task-induced changes in neuronal spiking represent less than 

15% of the brain’s total energy consumption. Consequently, most of the brain’s metabolic demands 

are a consequence of the intrinsic or so-called resting-state activity (Buckner et al., 2013; Lin et al., 

2010; Raichle et al., 2001). Somewhere between 60% and 80% of energy consumption by the 

human brain supports communication between neurons, implicating substantial background 

functional activity that exists regardless of whether one is engaged in a cognitive task or not 

(Raichle & Mintun, 2006). Presumably, this intrinsic activity is integral to normal brain function 

and represents vital neurobiological processing as well as internally oriented thoughts (Andrews-

Hanna et al., 2014; Christoff et al., 2016; Raichle & Snyder, 2007; Raichle, 2015). Even though 

functional links between the brain’s baseline metabolic activity and cognition are not fully 

understood, resting-state fMRI data can be used to study functional features of various brain 

systems without a need for an explicit task (Buckner et al., 2013).  

The brain’s functional connectome can be inferred from spontaneous low-frequency (< 0.1 

Hz) BOLD signal fluctuations, recorded during a resting-state fMRI scan in which a subject 
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passively rests inside an MRI scanner with eyes either open or closed (Buckner et al., 2013; 

Craddock et al., 2013; Smith et al., 2011; Wig, 2017; Wig et al., 2014). Subsequently, data-driven 

analytic techniques (e.g., clustering, independent component analysis, boundary mapping) are used 

to reconstruct the brain’s functional architecture (Beckmann, et al., 2005; Calhoun et al., 2001; 

Power et al., 2011; Smith et al., 2011; Wig et al., 2014; Yeo et al., 2011).  

Most functional connectivity (FC) studies report 7 to 20 resting-state networks (RSNs) with 

network topography belonging to the visual, somatosensory, motor, or cognitive (i.e., spontaneous 

thought, memory, attention) regions of the brain (Allen et al., 2011; Andrews-Hanna, 2012; 

Christoff et al., 2016; Gordon et al., 2017; Laumann et al., 2015; Petersen & Posner, 2012; Power et 

al., 2011; Raichle & Snyder, 2007; Smith et al., 2009; Wig, 2017; Yeo et al., 2011, 2014; 

Zonneveld et al., 2019). It is thought that resting-state networks (RSNs) detected by FC-MRI (Fig. 

1.5) capture fundamental units of brain organization, which are recruited in various combinations to 

perform cognitive and sensorimotor functions (Buckner et al., 2013). Since stronger MRI field 

strength leads to improved BOLD response sensitivity (De Martino et al., 2018; Pohmann et al., 

2016; Ugurbil, 2016), simulations studies suggest greater accuracy/detail of network features on 

high-field data (Allen et al., 2012). 
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Fig. 1.5. (a) Functional connectivity studies investigate the BOLD time series synchronicity, largely using resting-state 
scans (figure adapted from van den Heuvel & Hulshoff Pol, 2010). (b) 7 commonly identified resting-state networks (figure 
adapted from Buckner, 2013). Peripheral maps represent patterns obtained using Pearson correlation coefficients: colored 
areas represent regions of the brain statistically associated with a seed (represented by a black circle) region. The central 
map depicts the brain’s community structure obtained using a winner-takes-all clustering algorithm (Yeo et al., 2011). 
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1.8 Aging Brain 
 

It is well established that human cognitive capacity declines in advanced age (Buckner, 

2004; Grady, 2008, 2012; Fabiani, 2012; Hedden & Gabrieli, 2004; Reuter-Lorenz & Cappell, 

2008; Schneider-Garces et al., 2010; Spreng et al., 2010). Fluid intelligence, working memory, 

selective attention, and processing speed progressively decline throughout the lifespan, starting in 

early adulthood (Salthouse, 2012; Hanna-Pladdy & Gajewski, 2012; Fabiani, 2012). Even face-

based recognition of such basic emotions as happiness, fear, surprise, and sadness is compromised 

in older individuals (Suzuki & Akiyama, 2012). Yet language proficiency and crystallized 

intelligence, which primarily rely on lifelong cultural awareness and knowledge, remain fairly intact 

and, in some cases, even improve with aging (Hafkemeijer et al., 2012). It is thought that by 

studying alterations in brain function, it will be possible to understand age effects on human 

cognition (Buckner, 2004; Grady, 2008, 2012; Li et al., 2015; Reuter-Lorenz & Cappell, 2008; 

Sala-Llonch et al., 2015; Sperling, 2007; Spreng et al., 2010; Sugiura, 2016; Wig, 2017). 

The brain undergoes numerous structural alterations as a part of the healthy aging process 

(Raz & Rodrigue, 2006). Studies in rats and monkeys report that old animals have 30-40% fewer 

dendritic spines compared to their younger counterparts (Duan et al., 2003; Page et al., 2002), while 

human post-mortem and in vivo imaging studies report that aging is associated with thinning of the 

cerebral cortex, a substantial increase in the CSF volume, and gradual sulcal expansion (Michielse 

et al., 2010; Lebel et al., 2012; Raz & Rodrigue, 2006). Most structural imaging studies showed that 

multimodal association cortices show the greatest cortical thinning, with frontal lobes being 

particularly vulnerable to age-related atrophy (Allen et al., 2005; Raz et al., 2005, 2010; Raz & 

Rodrigue, 2006; Resnick et al., 2003). Despite these large-scale effects, there is little, if any, 

neuronal loss occurring in older adults’ cerebral cortex (Peters et al., 1998; Morrison & Hof, 2007). 

Instead, both human and animal post-mortem studies suggest a loss of neuropil, including a loss of 

synapses and dendritic spines, as the cause of the apparent cortical thinning with age (for a detailed 

review see, Morrison & Baxter, 2012). Unlike frontal regions, the medial temporal structures 

display no volumetric differences between age groups until late middle adulthood 

(Aghamohammadi-Sereshki et al., 2019; Malykhin et al., 2017; Raz et al., 2010). This is in contrast 

to the dramatic HC atrophy in patients with Alzheimer’s disease (Buckner 2004; Jeon et al., 2012). 

From such studies, it is clear that age effects on the cortical and subcortical grey matter are not 
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uniform and that the rate of tissue atrophy is may increase with age. However, the full effects of 

these volumetric trends on cognitive capacity might be masked by neurobiological compensatory 

mechanisms (Fabiani, 2012; Reuter-Lorenz & Cappell, 2008), and only studies of brain function 

can detect those effects (Buckner et al., 2013; Grady, 2008, 2012; Fabiani, 2012; Reuter-Lorenz & 

Cappell, 2008). 

Most of the early fMRI studies on the relationship between brain function and age were 

task-based (Cabeza et al., 2002, 2004; Grady et al., 1994; D’Esposito et al., 1999; Fabiani et al., 

2014; Gutchess et al., 2005; Hesselmann et al., 2001; Hutchinson et al., 2002; Levine et al., 2000; 

Logan et al., 2002; Madden et al., 1996; Park et al., 2003, 2004; West et al., 2019). Early studies, 

which investigated the relationship between resting-state functional connectivity and age,  focused 

on intra-network communication within the default mode system (e.g., Andrews-Hanna et al., 2007; 

Damoiseaux et al., 2008; Grady et al., 2012; Hampson et al., 2012; Koch et al., 2010; Onoda et al., 

2012; Persson et al., 2014; Sambataro et al., 2010). Those studies revealed an age-related loss of 

functional integration between the medial frontal and the posterior cingulate/retrosplenial cortices 

(but see, Persson et al., 2014). More recent FC-MRI studies showed that in addition to the default 

mode network, age-related reduction in intra-network connectivity is also present in brain networks 

that are involved in attention, cognitive control, sensory processing, and motor function (Allen et 

al., 2011; Betzel et al., 2014; Grady et al., 2016; Ng et al., 2016; Song et al., 2014; Spreng et al., 

2016; Zonneveld et al., 2019). Research that employed graph theory to quantify age effects on FC 

showed that network community structure becomes less efficient and less segregated with age (Cao 

et al., 2014; Chan et al., 2014; Chong et al., 2019; Geerligs et al., 2015; Spreng et al., 2016), and it 

is thought that long-range FC is particularly vulnerable to aging (Tomasi & Volkow, 2012). 

Despite this progress, the number of studies that investigated age-related functional 

reorganization at the brain-wide level is still relatively small, and most defined their network 

sources based on probabilistic anatomical atlases or functional parcellations from unrepresentative 

samples of young adults (Betzel et al., 2014; Chan et al., 2014; Chong et al., 2019; Fjell et al., 2015; 

Geerligs et al., 2015; Meunier et al., 2009; Song et al., 2014; Wang et al., 2010). Employing ROIs 

from a predefined atlas may fail to capture individual variability in the functional organization since 

individual network architecture can deviate, sometimes substantially, from an average map (Gordon 

et al., 2017; Laumann et al., 2015; Mueller et al., 2013). Furthermore, most prior studies of age 

effects on FC used correlational methods to quantify age differences (Andrews-Hanna et al., 2007; 
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Betzel et al., 2014; Geerligs et al., 2015; Grady et al., 2016; Han et al., 2018; Meier et al., 2012; 

Rubinov & Sporns, 2010; Zonneveld et al., 2019). However, correlation is an ambiguous tool for 

quantifying network structure, since, in addition to BOLD signal coherence over time (a true 

measure of functional coupling), two other factors are responsible for correlations in all RS-fMRI 

data: network amplitude and magnitude of background noise (Duff et al., 2018). 

Consequently, the main focus of my third experiment was to investigate the relationship 

between age effects on every major RSN measure: network topography, network activation 

amplitude, and inter-network communication. Taken together, these measures can link previous 

task-based aging studies with resting-state work, providing a comprehensive overview of brain 

aging. Relative to 3 T fMRI, relying on 4.7 T acquisition enables more detailed network 

parcellations, primarily due to higher BOLD CNR. 
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Chapter 2: Obectives & Hypotheses 
Objectives 

1. Develop approaches for studying brain function on a 4.7 T MRI system. Apply those 

techniques to investigate the functional properties of the AG subnuclei in vivo. 

2. Develop an fMRI task and analysis methodology for studying functional specialization of 

the anterior and posterior HC subfields using 4.7 T MRI. 

3. Develop approaches for studying the brain’s functional architecture using 4.7 T scans. 

Apply those methods for studying age effects on brain organization. 

 

Experiments 

For Experiment 1, addressing Ojective 1, we made the following hypotheses: 

• We hypothesized that the nuclei of the dorsal AG would be more sensitive to aversive visual 

stimuli than to neutral visual stimuli because the CeM AG acts as the major control center of 

physiological and behavioural responses to information with emotional content. 

• We also hypothesized that CeM ↔ LA functional connectivity will be weaker than CeM ↔ 

BA or LA ↔ BA functional connectivity, consistent with non-human work on intra-AG 

connectivity. 

 

For Experiment 2, addressing Objective 2, we made the following hypotheses: 

• We hypothesized preferential engagement of the anterior/posterior HC during memory 

encoding/retrieval, respectively. 

• We expected to observe increasing activity along the longitudinal axis of the hippocampus 

from anterior to posterior during spatial memory performance, consistent with previous 

studies (Maguire et al., 2000, 2003; Woollett et al., 2009; Woollett & Maguire, 2011). 

• Based on our previous observation that volumes of the posterior DG and CA1-3 subfields of 

the HC were particularly strongly correlated to visual-spatial memory in the Designs subtest 

of the WMS-IV (Travis et al., 2014), we predicted greater functional engagement of the 

CA1-3 and DG, compared to the Sub, in an fMRI adaptation of the Designs task. 
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For Experiment 3, addressing Objective 3, we hypothesized the following: 

• Given previous reports of age-related reduction in fMRI signal amplitude during task-based 

neuroimaging studies, we expected to see a widespread reduction of BOLD amplitude 

throughout life. 

• Because gradient-based network parcellation schemes revealed age-invariance in brain 

network structure (Han et al., 2018), we expected to see small age differences in a functional 

organization, potentially restricted to the default mode network, which was shown to have 

weaker integration in old age (Andrews-Hanna et al., 2007). 

• Given structural aging patterns, which consistently show greater volumetric atrophy in 

frontal and parietal association cortices than in sensorimotor areas (Resnick et a., 2003; Raz 

et al., 2005, 2010), we predicted that brain networks localized to frontal and parietal 

association areas would be more vulnerable to aging than sensorimotor regions of the cortex. 
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Chapter 3: Amygdala Subnuclei Response and Connectivity 

During Emotional Processing. 

 
3.1. Introduction 

The amygdala (AG) is a fundamental structure involved in the neural circuits of fear and 

reward learning, as well as aggressive, sexual, maternal, and feeding behaviors (Janak & Tye, 2015; 

LeDoux, 2012; LeDoux & Schiller, 2009). Through extensive interactions with cortical and various 

subcortical areas, the AG also modulates attention and perception (Adolphs et al., 2005; Pitkänen et 

al., 2000; Sah et al., 2003). Of particular interest is the AG's involvement in processing of 

emotionally relevant stimuli and encoding of emotionally salient memories (Dolcos et al., 2004; 

Kensinger, 2009; LeDoux and Schiller, 2009; Murty et al., 2010; Sergerie et al., 2008; Shafer et al., 

2012; Shafer and Dolcos, 2012). 

To gain a better understanding of the functional role of the AG, it is important to 

acknowledge that the AG is not a homogenous structure and thus it is crucial to differentiate 

response properties of the AG subnuclei (LeDoux, 2000, 2012; Sah et al., 2003). Human and animal 

studies have demonstrated that the AG is a gray matter complex, composed of at least thirteen 

distinct nuclei (Brabec et al., 2010; Janak & Tye, 2015; LeDoux, 2012; Sah et al., 2003; Whalen et 

al., 2009). These are generally grouped into two major subdivisions: basolateral and 

centrocorticomedial (Johnston, 1923; LeDoux & Schiller, 2009). The lateral (LA), basal (B), and 

accessory basal (AB) nuclei constitute the basolateral (BLA) complex, while the cortical (Co), 

medial (M), and central (Ce) nuclei belong to the centrocorticomedial group. 

For over fifty years, the AG has been thought to be fundamental to processing of emotions 

(Weiskrantz, 1956), with much of the non-human research utilizing Pavlovian conditioning 

procedures, a form of emotional learning in which a biologically irrelevant stimulus starts to elicit 

defensive behaviors, and physiological responses when associated with an aversive or threatening 

event (Davis & Whalen, 2001; LeDoux, 2000, 2012; Phelps & LeDoux, 2005). Animal fear 

conditioning experiments demonstrated that the nuclei of the AG play unique roles in this form of 

learning (LeDoux, 2012; Macedo et al., 2007; Phelps & LeDoux, 2005). 

Human fMRI and patient studies proved that the human AG is also involved in fear 

conditioning (Bach et al., 2011; Büchel et al., 1998; Klumpers et al., 2014; LaBar et al., 1998; 
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Phelps et al., 2004). Furthermore, recent studies of patients with Urbach-Wiethe disease (UWD) 

support the notion of functional specialization of the AG subnuclei. For instance, focal lesions of 

the BLA AG result in reduced fear conditioning (Klumpers et al., 2014), unregulated fear 

hypervigilance (Terburg et al., 2012), and extreme generosity (van Honk et al., 2013). This is in 

contrast to studies of a UWD patient with bilateral loss of the entire AG, who is incapable of 

recognizing fear in facial expressions (Adolphs et al., 1994, 1995). Despite these advances in our 

understanding of the human AG, it is still poorly understood how various AG subnuclei contribute 

to processing of emotional information in a broader context. 

To understand functional significance of the AG subnuclei, it is crucial to understand how 

neurons within the AG subnuclei interact with each other. In rodent literature, there is a substantial 

debate between two potential mechanisms of intra-AG communication: validity of the classical 

serial model is questioned by the proponents of the parallel processing model. The serial model 

proposes that intra-AG information-processing stream occurs predominantly from the LA nucleus 

to the BA/AB nuclei, and from the BA/AB nuclei to the Ce nucleus (Duvarci & Paré, 2014; Freese 

& Amaral, 2009; Pitkänen et al., 1997). However, numerous animal reward learning studies re- 

vealed competing functions of the CeM and the BLA AG (for review see, Balleine & Killcross, 

2006). Although some attempts have been made to investigate the AG connectivity in humans using 

fMRI (Grant et al., 2015; Roy et al., 2009), these studies were limited by low spatial resolution in 

echo planar imaging. Consequently, little is known about how the human AG subnuclei interact 

with each other. 

Although most fMRI acquisition sequences do not provide sufficient spatial resolution to 

identify individual subnuclei of the AG, several authors have coarsely segregated AG activations 

into dorsal vs. ventral (Kim et al., 2004; Morris et al., 2001; Whalen et al., 1998; Whalen et al., 

2001), medial vs. lateral (Kim et al., 2003; Zald & Pardo, 2002), and anterior vs. posterior 

(Gottfried et al., 2002; Morris et al., 2002; Wang et al., 2008) subdivisions. More recent human 

fMRI studies, with coronal plane resolution of 4-mm2 or less, and a total voxel volume of 8-mm3 or 

less, attempted to localize intra-AG activations more precisely (see Table 3.1). Most of these studies 

employed image-processing pipelines, which relied on normalizing participants’ MR images to a 

common template space (i.e., MNI or Talairach). Unfortunately, recent evidence indicates that such 

procedures detect not only hemodynamic changes within the AG, but are also substantially 

influenced by activations in more distal brain regions (see Boubela et al., 2015). Furthermore, there 
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are substantial variations in methodology used to localize intra-AG activations. Generally, two main 

references have been used: Mai et al. (1997)/Mai et al. (2008) anatomical atlas (Bach et al., 2011; 

Boll et al., 2011, 2013; Gamer et al., 2010; Prévost et al., 2011, 2012, 2013) or Amunts et al. (2005) 

probabilistic atlas of the human AG subnuclei (Ball et al., 2007, 2009; Frühholz and Grandjean, 

2013; Grant et al., 2015; Roy et al., 2009; Styalidis et al., 2014). 

Because of substantial methodological differences between human and animal studies of the 

AG, there is a notable discrepancy between our knowledge of the AG subnuclei's functions in 

humans and animals. To bridge this gap, we defined human emotion as a psychological response 

driven by neurophysiological survival and reinforcement circuits (see LeDoux, 2012, 2014, for 

comprehensive reviews), and relied on the framework established by the core-affect model (Russell, 

1980, 2003) to elicit AG responses. The core affect theory proposes that, at a fundamental level, 

emotional information is interpreted as a blend of two independent dimensions — pleasantness and 

intensity (Bradley & Lang, 1994; Russell, 1980, 2003). These dimensions are consistent across 

cultures, and can be used to describe an individual's affective response to verbal and non-verbal 

stimuli, facial expressions, sounds, body postures, and odors (e.g., Bradley & Lang, 1994; Lang et 

al., 1998; Russell, 1980, 2003). In combination with other factors, such as context, cultural 

experience, and genetic makeup, arousal and valence dimensions contribute to the human 

experience of feelings (Barret, 2006; Russell, 2003). 

The primary goal of this study was to investigate sensitivity of the human AG subnuclei to 

high arousing negative emotion. Our secondary goal was to understand how the human AG 

subnuclei might function at the network level. To answer these questions we acquired high-

resolution structural and functional MRI data at a high field, and manually subdivided each 

participant's AG into 3 subnuclei groups. To improve accuracy and validity of our BOLD response 

measurements, we used a two-parameter hemodynamic response function in the fMRI analysis 

procedure, which allowed not only the response amplitude, but also the response timing (delay to 

peak) to explain the effects of emotional processing on the AG subnuclei groups. To answer our 

secondary research question, we examined intra-AG functional connectivity by assessing 

relationships between the subnuclei group time courses. 
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Study Resolution 
(mm3) 

Stimuli Other 
Methodological 

Details 

Summary of Results ROI vs. 
Localization 

Bach et al. 
(2011) 

1.5×1.5×1.5 electric shocks N/A BLA group and centrocortical AG have 
similar sensitivity profiles in fear conditioning 

ROI d 

Boll et al. 
(2011) 

1.5×1.5×1.5 angry and fearful 
faces 

Manipulated context 
as self vs. other as 
cause of facial 
expression 

AB nucleus responded to facial expression in 
general, regardless of the stimulus context; 
context-dependent threat evaluation was 
localized to the corticomedial AG 

Cluster a 

Boll et al. 
(2013) 

1.5×1.5×1.5 electric shocks Employed Pavlovian 
conditioning 
procedure with cue 
reversal 

Corticomedial activity was positively 
correlated with outcome uncertainty; BLA 
activity was correlated with outcome certainty 

Cluster b 

Gamer et al. 
(2010) 

2.0×2.0×2.0 happy, neutral, 
and fearful faces	

Administering 
oxytocin or placebo 

Oxytocin reduced sensitivity of dorsal and 
lateral AG to fearful faces, while enhancing 
sensitivity to happy faces 

Cluster a	

Frühholz and 
Grandjean 

(2013) 

1.5×1.5×2.4 nonwords spoken 
in angry or neutral 
tone 

N/A Superficial complex and the LB complex 
were sensitive to emotional tone; activity was 
modulated by attentional focus and proximal 
temporal context 

Cluster c	

Prévost et al. 
(2011) 

1.58×1.63×2.5 monetary 
outcomes	

Manipulated context 
as reward, 
punishment, or 
neutral in a choice 
task 

BLA showed greater activation for successful 
attainment of reward; CeM showed greater 
activation for successful avoidance of 
punishments 

Cluster within 
anatomically 

defined ROIs b 

Prévost et al. 
(2012) 

1.8×1.8×1.8 food images and 
rewards 

General vs. specific 
Pavlovian-to-
instrumental transfer 
(PIT) 

Activity in CeM correlated with general PIT 
across participants; BLA correlated with 
specific PIT 

Cluster within 
anatomically 

defined ROIs b 

Prévost et al. 
(2013) 

1.58×1.63×2.5 Pleasant, neutral, 
and unpleasant 
liquids 

Appetitive vs. 
aversive Pavlovian 
learning 

Investigated model-based learning in the 
amygdala: expected value signals in BLA 
correlated with in appetitive learning, while 
expected value signals in CeM activity 
correlated with aversive learning; precision 
signals in CeM correlated with precision 
signals in both types of learning 

Cluster within 
anatomically 

defined ROIs b 

	

a		Mai	et	al.	(1997)	atlas		 b		Mai	et	al.	(2008)	atlas		 c		Amunts	et	al.	(2005)	atlas	 				d		Data	driven	(structural	connectivity-based)	

Table 3.1  
Recent high-resolution fMRI studies of the amygdala subnuclei (AG, amygdala; CeM, centromedial group; BLA, basolateral 
group; LB, laterobasal group). 

	



	 	 26	 	
	 	

3.2. Materials and Methods 
Participants 

A total of 28 right-handed healthy volunteers were recruited through online, newspaper, and 

poster advertisements. Healthy volunteers had no lifetime psychiatric disorders and no reported 

psychosis or mood disorders in first-degree relatives, as assessed by the Anxiety Disorders 

Interview Schedule-IV (Brown et al., 2001; Di Nardo et al., 1994), which provides detailed 

assessment of several anxiety disorders, affective disorders, and substance use disorders. The 

project's participants had no history of medical, neurological disorders, and had no prior exposure to 

the stimuli used in the fMRI paradigm. Medical exclusion criteria were defined as those active and 

inactive medical conditions that may interfere with normal cognitive function: cerebrovascular 

pathology, all tumors or congenital malformations of the nervous system, diabetes, multiple 

sclerosis, Parkinson's disease, epilepsy, dementia, organic psychosis (other than dementia), 

schizophrenia, and stroke. Drugs that directly affect cognition, including alcohol, anti-cholinergic 

medications, benzodiazepines, antipsychotics, and antidepressants were also exclusionary. Written, 

informed consent was obtained from each participant. Imaging data from three participants was 

excluded from analyses due to excessive head motion, reducing the sample size to 25 individuals 

(12 females) with mean age of 27.6 years (19–46, SD = 6.2). This study was approved by the 

University of Alberta Health Research Ethics Board. 

Stimuli 

Pictures were selected from the International Affective Picture System (IAPS; Lang et al., 

2008) database based on normative ratings for valence and arousal and were supplemented with in-

house pictures used in prior studies (Singhal et al., 2012; Wang et al., 2005, 2008). All pictures 

contained a central biological presence (predominantly a head/face). The chosen pictures were 

grouped into four categories (15 pictures/category) based on IAPS normative scores and ratings 

scores from a preliminary rating study (N = 8). Mean valence/arousal scores (9-point scale, as 

described below) from the volunteers who participated in the fMRI experiment were as follows: 

Neutral (Neu: 5.8/1.6), Low Emotional (Low Emo: 3.6/3.3), Medium Emotional (Med Emo: 

2.3/5.8), and High Emotional (High Emo: 2.3/6.1). A repeated-measure ANOVA showed that 

valence ratings for each category were significantly different from each adjacent category except 

for Med and High Emo (i.e., Neu > Low Emo > Med Emo = High Emo, [F(3,72) = 132.97, p < 
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.001, η2 = .85]). A repeated-measure ANOVA of arousal ratings showed that each category was 

significantly different from each adjacent category such that, Neu < Low Emo < Medium Emo < 

High Emo [F(3,72) = 150.59, p < .001, η2 = .86]. Pair-wise comparisons were Holm–Bonferroni-

corrected. 

Experimental design 

 Pictures were partitioned across five experimental runs such that three pictures per category 

were presented in each run. To prevent fatigue, participants received a break between experimental 

runs. Each picture was presented only once for 2 s and was followed by a response screen for 2 s. 

The inter-trial interval was randomized on a negative exponential distribution with a median of 8 s, 

ranging from 6 to 14 s. To attenuate habituation, pictures were presented to participants in a semi-

random sequence, such that no more than two pictures of the same category were shown 

sequentially. As valence and arousal were correlated in our paradigm, participants were instructed 

to categorize their emotional reactions to each picture on a 4-point scale by pressing one of 4 MR-

compatible buttons (1 = ‘non-emotional’, 4 = ‘very emotional’). After the scanning session, 

participants rated the pictures viewed in the scanner on valence and arousal using the 9-point Self-

Assessment Manikin scale (Bradley & Lang, 1994). 

 

Data acquisition 

 All images were acquired on a 4.7 T Varian Inova MRI scanner at the Peter Allen MR 

Research Centre (University of Alberta, Edmonton, AB). 370 functional volumes were collected 

axially (in parallel to the AC–PC line) over 5 runs using a custom-written T2
*-sensitive Gradient 

Echo Planar Imaging (EPI) pulse sequence [repetition time (TR): 2000 ms; echo time (TE): 19 ms; 

flip angle: 90°; field of view (FOV): 168 × 210 mm2; voxel size: 1.5 × 1.5 × 1.4 mm3; interslice 

gap: 0.1 mm; 35 slices; GRAPPA parallel imaging with acceleration factor 2 (Griswold et al., 

2002)]. For the AG segmentation and subdivision, high-resolution coronal structural images were 

acquired perpendicular to the AC–PC orientation using a custom-written T2-weighted 2D Fast Spin 

Echo (FSE) sequence [TR: 1100 ms; TE: 39 ms; FOV: 200 × 200 mm2; voxel size: 0.52 × 0.68 × 

1.00 mm3; 90 slices]. To improve image registration accuracy between the anatomical scans and the 

functional data, axial high-resolution 2D FSE images were also acquired with coverage closely 

matching the functional data [TR: 7000 ms; TE: 38 ms; FOV: 210 × 200 mm2; voxel size: 0.52 × 

0.68 × 1.0 mm3; 45 slices]. A whole brain T1-weighted 3D Magnetization Prepared Rapid Gradient-
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Echo (MPRAGE) sequence [TR: 8.5 ms; TE: 4.5 ms; inversion time: 300 ms; flip angle: 10°; FOV: 

256 × 200 × 180 mm3; voxel size: 1 × 1 × 1 mm3] was used to acquire anatomical images for 

automatic tissue segmentation. Fig. 3.1 demonstrates orientation and brain tissue coverage for 

structural and functional data. 

 

 

 

 

 

 

 

 

 

 

 

Amygdala segmentation and subdivision 

 In agreement with some previous studies (Entis et al., 2012; Prévost et al., 2011), we found 

that the Amunts et al. (2005) AG map extends beyond the limits of the AG into the MTL white 

matter suggesting a mismatch between the anatomical location of the AG in our sample, and its 

location according to the Amunts et al. (2005) atlas. Because of this limitation, and because source 

localization using probabilistic maps necessitates manipulation of MRI data into standard space, a 

Fig. 3.1. Brain tissue covered by high-resolution anatomical and high-resolution functional scans. Single 
participant’s full-brain T1-weighted anatomical scan is shown in the background. Violet overlay represents 
coverage of ultra-high-resolution anatomical 2D FSE scan, which was used for manual amygdala 
segmentation. Red overlay represents areas captured by high-resolution fMRI EPI acquisition. Segmented 
amygdala is shown in green. 
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process that can produce inaccuracies due to the deformations required (Yassa & Stark, 2009), we 

used Mai et al. (2008) atlas to manually segment the AG and its subnuclei groups in native 

space.All AG ROIs were traced with a mouse-driven cursor using the interactive freely available 

software program Freeview v. 4 (MGH, Boston, MA). The AG was traced on each participant’s 

high-resolution structural scan by the developer of the protocol (NM), who has extensive experience 

with the method for which a comprehensive description has been previously published (Malykhin et 

al., 2007). Next, a single rater (AAS) subdivided each AG into three subnuclei groups: (1) the 

centromedial (CeM) group, consisting of the Ce and the M nuclei; (2) the basal (BA) group, 

consisting of the B, the AB, and the Co nuclei; and (3) the LA nucleus (Fig. 3.2a–h). Though our 

intention was to measure BOLD signal from all of the principle AG subnuclei, due to technical 

limitations of the fMRI acquisition we were able to delineate and measure BOLD signal only from 

three major subnuclei groups. Many previous studies combined the B, the AB, and the LA nuclei 

into a single functional unit, the BLA complex; however, Boll et al. (2011) provided evidence that 

in humans these nuclei might respond differently in certain tasks. Furthermore, animal experiments 

demonstrated that the LA nucleus and the B/AB nuclei display distinct neurophysiological and 

connectivity properties (Duvarci & Paré, 2014; Janak and Tye, 2015). For these reasons, we studied 

the nuclei of the BA group separately from the LA nucleus. 
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Fig. 3.2. Segmentation of the amygdala into its subnuclei groups is shown on high-resolution T2-weighted 
structural FSE images with inverted contrast. (a). Sagittal view of the amygdala with references to coronal slices. (b–
h). Coronal slices with segmentation protocol for the amygdala subnuclei groups. Panels are organized clockwise to 
follow the tracing protocol, and flow from the most posterior section of the amygdala (panel b) to the most anterior 
slice of the amygdala (panel h). Point A, point B, and white dashed lines were used as major landmarks, when 
delineating the subnuclei groups' boundaries (see text for details). 
	



	 	 31	 	
	 	

Since macroscopic delineation of the AG subnuclei requires histological staining, we 

divided the human AG into subregions corresponding to approximations of the CeM, BA, and LA 

subnuclei groups. First, we outlined global AG boundaries on sagittal, axial, and coronal planes as 

was previously described by Malykhin et al. (2007). Our measurements started from the most 

posterior slice of the AG (Fig. 3.2b), continued through slices where both the AG and the 

hippocampus were present, and ended at the level of the lateral sulcus closure. Once the total AG 

boundaries were outlined, only the coronal plane was used to subdivide the AG into subnuclei 

groups using a single internal landmark line, defined on each coronal slice where the AG is present. 

This landmark line allowed us to separate the AG into subnuclei groups, approximately matching 

the intra-AG anatomy described in the Mai et al. (2008) atlas, and a postmortem histological study 

by Brabec et al. (2010). 

First, we delineated the CeM group. Next, the LA nucleus was defined. Subsequently, the 

remaining AG tissue was assigned to the BA group. Our approach relied on one principle landmark 

line. Initially, this line is horizontal, and was drawn by connecting the most medial border of the 

AG with the most lateral border of the AG (Fig. 3.2c,d). As soon as the AG expanded in the 

inferior-lateral direction, the landmark line was drawn by connecting the most inferior medial 

border of the AG with the most medial inferior border of the AG (Fig. 3.2e–g). On each slice of the 

AG, we placed point A exactly in the middle of the landmark line (see Fig. 3.2c–g). On slices, 

where the hippocampus is present the landmark line was also split into the lateral 1/3 and the medial 

2/3 by point B, (see Fig. 3.2d,e). These two points were then used to define two secondary lines. 

The first line, subsequently called ‘line A,’ began on the AG border, directly above point A, and 

was drawn at a 45° angle (from the horizontal plane) towards the lateral border of the AG (Fig. 

3.2c–g). The second line, subsequently called ‘line B,’ began on the AG border, directly above 

point B, and was also drawn at a 45° angle (from the horizontal plane) towards the lateral border of 

the AG (Fig. 3.2d,e). 

Measurements of the CeM group started at the first coronal slice, when the AG appears as a 

small gray matter structure superior to the uncal recess (Malykhin et al., 2007; Fig. 3.2b). The CeM 

group occupies the entirety of the AG tissue until the AG extends (completely or partially) towards 

the ambient gyrus (Fig. 3.2b). In subsequent slices, the CeM group occupies only the superior 

portion of the AG, separated from the BA group by a horizontal line, drawn from the intersection of 

line A with the lateral border of the AG towards the medial border of the AG (Fig. 3.2c–f). This rule 
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was used to define the inferior border of the CeM group on all slices anterior to the AG extension 

towards the ambient gyrus. In general, the last slice of the CeM group was 3 mm (3 slices) anterior 

to the most anterior slice of the hippocampus (Mai et al., 2008; Fig. 3.2a,g). 

The LA nucleus usually starts 2 mm (2 slices) anterior to the AG extension towards the 

ambient gyrus (Mai et al., 2008; Fig. 3.2d). Since the LA nucleus occupies the inferior-lateral 

portion of the AG (Fig. 3.2d–g), our goal was to establish its superior-medial border, which 

separates the LA nucleus from the BA group. Prior to the disappearance of the hippocampus, this 

was accomplished using line B (Fig. 3.2d,e). When the hippocampus is no longer present, the LA 

nucleus extends medially and line A was used to define the superior-medial boundary of the LA 

nucleus. 

Once the CeM group and the LA nucleus were demarcated, the remaining AG tissue was 

assigned to the BA group (Fig. 3.2f). In the most anterior slices, where the CeM group is not 

present, the AG consists of the BA group and the LA nucleus only (Mai et al., 2008; Fig. 3.2a,g). In 

the last (i.e. most anterior) slice, all of the AG tissue was assigned to the LA nucleus (Fig. 3.2h). 

ITK-SNAP (v. 3.2.0; Yushkevich et al., 2006) was used to construct 3D models of these subnuclei 

groups (Fig. 3.3). 

The AG subnuclei group ROIs were resampled to fMRI resolution and manually inspected 

for overlap with major blood vessels and susceptibility artifacts. ROI voxels corresponding to blood 

vessels and signal dropouts were excluded from statistical analyses. Average final left/right ROI 

volumes (and SDs), not corrected for intracranial volumes, and measured in mm3, were 155.5 

(62.9)/125.4 (32.6) for the CeM group; 812.2 (168.2)/806.5 (151.7) for the BA group; 625.3 

(134.9)/573.4 (118.8) for the LA nucleus; and 1593.0 (269.0)/1505.3 (243.6) for the total AG. 

These total AG volumes are consistent with post-mortem histological studies (Brabec et al., 2010), 

and previously reported in vivo volumetric measurements using structural MRI (Malykhin et al., 

2007). Reliability for the total AG and its subnuclei measurements was assessed by retracing the 

AG from 5 participants (10 AG total) after a one-week delay. Inter/intra-rater reliability intra-class 

correlations coefficients (ICCs) for the AG subnuclei were 0.90/0.85 for the CeM group, 0.90/0.94 

for the LA nucleus, 0.98/0.96 for the BA group, and 0.97/0.95 for the total AG. 
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Image preprocessing 

Most of the image processing was performed in SPM8 (Wellcome Trust Centre for 

Neuroimaging, UCL, UK). Prior to registration, MPRAGE images underwent correction for 

intensity non-uniformity using N3 (McGill University, Montreal, QC). Due to differences in cover- 

age between three anatomical scans, anatomical images were cropped using ImageJ (NIH, 

Bethesda, MD) to isolate areas of overlapping coverage. Subsequently, overlapping portions of 

anatomical images were registered to each other using automated rigid-body transformations. 

Next, the first functional volume was registered to the axial FSE image using a combination 

of manual and automatic registration tools. Functional data was then realigned to the first volume 

and corrected for slice acquisition delay. Artifact Detection Tool (ART; http://www. 

nitrc.org/projects/artifact_detect/) was used to identify signal spikes and to account for spin-history-

related head-movement artifacts in the fMRI time series. The head-movement threshold was set at 

0.5 mm/TR, and signal intensity threshold was set at 3 SDs from the global signal mean. Volumes 

that exceeded these thresholds were excluded (5 volumes/run, on average). No spatial smoothing 

was applied to the functional data. 
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Fig. 3.3. Three-dimensional reconstruction of the amygdala subnuclei groups from a healthy volunteer. (a). 
Lateral view; (b). anterior view; (c). medial view; (d). superior view; (e). posterior view; (f). inferior view. 
Abbreviations: CeM, centromedial group; BA, basal group; LA, lateral nucleus. 
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White matter (WM) and cerebrospinal fluid (CSF) masks were thresholded at 0.90 tissue 

probability and resampled to functional volume coverage and resolution. Voxels classified as WM 

and CSF were used as signal sources of no interest. As our goal was to account for as much 

physiological noise as possible without substantially sacrificing statistical power, we extracted the 

first five principal eigenvariates from the raw WM signal and the first five principle eigenvariates 

from the raw CSF signal using REX toolbox (http://www.nitrc.org/projects/rex/). Effects of motion 

were co-varied out of WM and CSF time courses, and the filtered WM and CSF signal 

eigenvariates were used as regressors of no-interest together with 6 head motion parameters in the 

General Linear Model (GLM) analysis. In all GLM procedures low frequency signal drifts were 

removed with a high-pass filter (128 s), and AR1 correction for serial autocorrelation was applied. 

To ensure that BOLD sensitivity was consistent across all AG ROIs, we computed temporal 

signal-to-noise ratio (tSNR) for each AG subnuclei group, averaged across all voxels in each ROI. 

Left/right tSNR (and SD) for the CeM group were 14.9 (2.1)/16.4 (2.4); 13.7 (2.0)/15.2 (2.1) for the 

BA group; and 13.6 (1.8)/15.2 (1.7) for the LA nucleus. Thus, the signal profiles were similar for all 

of the AG subnuclei groups. 

 

General linear model and estimation of response amplitude and delay-to-peak 

The profile of the hemodynamic response function in the AG need not be the same as the 

standard double-gamma function often used to model cortical responses (Devonshire et al., 2012; 

Handwerker et al., 2004; Pernet, 2014). Extracting the raw percentage of signal change over points 

in time after stimulus onset without reference to a standard hemodynamic template often leads to 

more accurate BOLD signal measurements, as is done with a Finite Impulse Response (FIR) model. 

Unfortunately, this approach also reduces statistical power and can lead to overfitting of the data. 

Here, we used an approach that minimizes the hemodynamic response function (HRf) bias, without 

substantial loss of statistical power by determining the appropriate parameters for an optimized 

double-gamma function suitable for our AG data. 

First, the HRf was deconvolved using a FIR model as implemented in MarsBar (v. 0.43; 

http://marsbar.sourceforge.net) toolbox. Events for all picture categories were pooled together and 

the mean HRf was estimated for each hemisphere's AG, separately for each participant. The fitted 

HRf timecourses were then averaged across all participants and hemispheres. Next, we fit a double-

gamma function (as implemented in the spm_hrf function within SPM) to the mean fitted time 
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course using the SIMPLEX algorithm (Nelder & Mead, 1965). Five parameters (delay to response, 

delay of undershoot, dispersion of response, dispersion of undershoot, and ratio of response to 

undershoot) were optimized over 15,000 iterations to minimize the root-mean-squared-deviation 

(RMSD) between the double-gamma function and the FIR-fitted HRf time course (Fig. 3.4). The 

optimized double-gamma model, along with its first-order derivative, was used to estimate the 

BOLD response for each stimulus condition. MarsBar was used to extract HRf and time derivative 

betas for each event type from each ROI. In total, each condition was represented by 15 trials/HRfs. 
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Fig. 3.4. BOLD response in bilateral amygdala, averaged across participants and stimulus categories is 
shown in blue. A double-gamma function that was optimized to fit the amygdala BOLD response is shown 
in red (a.u., arbitrary units). Fitted parameters were 6.909 for delay of response, 9.525 for delay of 
undershoot, 0.9657 for dispersion of response, 3.740 for dispersion of undershoot, and 1.310 for ratio of 
response to undershoot. 
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The BOLD response amplitude at peak was estimated using a protocol proposed by Calhoun 

et al. (2004), which incorporates not only the HRf parameter beta, but also the derivative beta, when 

estimating the BOLD response amplitude. However, when the derivative component dominates the 

hemodynamic response estimate, this approach can produce ambiguous amplitude estimates. In 

such instances, whether the final model represents activation or deactivation can become unclear. 

Here we developed a method that utilizes group-level parameter estimates to resolve these 

ambiguous cases (see Appendix in section 3.6 for details). Final response amplitude estimates were 

rescaled to percent signal change units using MarsBar toolbox. BOLD response delay-to-peak was 

defined as post-stimulus time, where activation or deactivation is the strongest. 

To ensure that neither the BOLD response amplitude, nor the delay-to-peak information 

used in the analyses below is redundant, we conducted correlation analyses on the response 

amplitude and the delay-to-peak contrasts for total AG and each subnuclei group. None of the 

correlations reached statistical significance at a liberal p < .10 threshold: (1) total AG [r = −.29], (2) 

CeM group [r = −.14]; (3) BA group [r = −.38]; (4) LA group [r = −.24]. This suggests that our 

amplitude and delay-to-peak data accounted for unique aspects of hemodynamic response. 

 

Imaging analysis 

Behavioral data analysis was performed on the in-scanner rating task using a repeated-

measure ANOVA. This analysis showed a main effect of picture category [F(2,72) = 224.79,  

p < .001, η2 = .90] such that participants rated the Neu pictures as least emotional (M = 1.16,  

SE = 0.07) and the High Emo pictures as most emotional (M = 3.11, SE = 0.1). Holm–Bonferroni-

corrected pair-wise comparisons demonstrated that each picture type was significantly different 

from its adjacent picture type (i.e., Neu < Low Emo < Med Emo < High Emo). However, due to the 

lack of statistical separation in IAPS-based valence ratings between Med and High Emo pictures (as 

reported above) and because seven of our participants assigned less than 10 pictures as highly 

emotional, we collapsed the Med and High Emo picture categories into a single negative emotional 

category for fMRI analyses. This allowed for an increased number of trials in which participants 

were likely to have perceived the pictures as being “highly” or “moderately” emotional. Since our 

research interest was limited to detecting differences in sensitivity of the AG subnuclei groups to 

negative emotion, we did not analyze BOLD response estimates from the Low Emo category. To 

ensure that visual complexity of the High/Med Emo stimuli was similar to visual complexity of the 
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Neu stimuli, we compared spatial frequencies of these two stimuli groups using Image Statistics 

Toolbox for MATLAB (Bainbridge & Oliva, 2015; Torralba & Oliva, 2003). Spatial frequency 

analysis revealed that visual complexity of the stimuli in the combined High/Med Emo category 

was equal to visual complexity of the stimuli in the Neu category. SPSS (v. 21; IBM Inc., Armonk, 

NY) was used to perform random-effects analyses on the response amplitude and the delay-to-peak 

difference scores between the collapsed High/Med Emo category and Neu category (in the results 

section called simply negative minus neutral contrast). No correction for sphericity assumption 

violations was required, as our data did not violate these assumptions in any of the response 

amplitude or delay-to-peak tests. Post-hoc comparisons (6 for response amplitude, and 6 for 

response latency) employed Holm–Bonferroni correction to control for Type I error inflation. Only 

family-wise error (FWE) corrected p-values are reported. 

 
Classification analysis 

To determine whether BOLD response amplitude and BOLD response delay-to-peak data 

from the AG subnuclei groups can be used to predict emotionality of visual stimuli, we used a 

sequential minimal optimization algorithm, from the MATLAB Statistics Toolbox (The MathWorks 

Inc., Natick, MA) to train binary linear support-vector-machine (SVM) classifiers on standardized 

BOLD response amplitude and delay-to-peak parameters (25 for Neu stimuli, 25 High/Med Emo 

stimuli) from anatomically defined ROIs. A box constraint penalty parameter search was carried out 

on a base-10 logarithmic scale (C = 10–4.0, 10–3.9, ..., 102.4, 102.5) using an internal 9-fold cross-

validation loop to find the optimal penalty parameter without excessively over-fitting the model. 

Classifier performance was assessed using an external 10-fold cross-validation loop. To minimize 

classifier variability due to random partitioning of the data into train/test folds, the classifier was 

trained and assessed 200 times for each ROI. The average classification accuracy was computed for 

all ROIs and rounded to the nearest integer. Rather than make any assumptions about the null 

distributions of our classifiers, we chose to empirically estimate these null distributions using 

permutation tests. During this procedure the stimulus category label [‘neutral’, ‘negative’] was 

randomly shuffled 1500–5000 times (depending on the level of precision demanded by each 

hypothesis test), and the classification procedure was repeated each time. Subsequently, statistical 

tests were conducted to test against the null hypothesis that stimulus category labels have no 

meaning and observed classification accuracy could have resulted from random sampling only. To 
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account for null distribution differences between classifiers trained on data from different ROIs, we 

report classification accuracies above or below the median of the corresponding null distributions. 

Only Holm–Bonferroni-corrected p-values are reported for classifier performance comparisons (4 

tests for ROI comparison; 3 tests for CeM comparison). 

 

Intra-amygdala functional connectivity 

 For intra-AG functional connectivity analysis, EPI timecourses were preprocessed using 

CONN toolbox (v. 13.o; Whitfield-Gabrieli & Nieto-Castanon, 2012). After correcting for head 

motion, 5 principle eigenvariates from WM and 5 from CSF voxels were co-varied out of the 

realigned time courses. This procedure removes spurious autocorrelations from the data that are a 

byproduct of physiological noise. Subsequently, we regressed out task-induced signal changes 

evoked by each stimulus category. To model stimulus-evoked signal changes, we used a two-

parameter model of hemodynamic response, represented by the optimized double-gamma function 

(as previously estimated using the SIMPLEX algorithm) and its first-order derivative. Next, time 

points with excessive head motion and signal spikes (as previously identified by ART) were 

identified and removed from the data. Resulting time courses were band-pass filtered (Low =  

0.09 Hz, High = 0.008 Hz). Because serial autocorrelation (i.e. BOLD data in sequential TRs is 

correlated) violates assumptions of the least-squares algorithm, and results in biased correlation 

coefficients (Arbabshirani et al., 2014), we carried out a partial autocorrelation analysis to identify 

the most appropriate autoregressive (AR) model. This analysis revealed that, in most cases, lag 5 

was the last lag to produce a significant autocorrelation. Thus, the AR5 model sufficiently corrected 

for serial autocorrelations and was used for the reported results. For each pairing of the three 

subnuclei groups we performed a partial correlation analysis, controlling for the other ROI (e.g., 

correlation between the CeM group and the BA group, controlling for the LA nucleus), on the time 

courses. These correlation coefficients were then converted to Fisher’s Z-scores (Fisher, 1921). 

Each participant’s Z-transformed correlation values were averaged across all runs, and were carried 

over for the random-effects analysis, which was performed in SPSS. Where appropriate, Huynh–

Feldt correction for sphericity violation was applied. 

To ensure that direct comparison of connectivity measures was not biased by unequal 

variability in signal over time in each ROI, we computed the standard deviation (SD) of the time 
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courses that went into the final connectivity analysis, and compared them to each other by 

performing a two-factor [Hemisphere: Left, Right; ROI: CeM, BA, LA] repeated-measures 

ANOVA on SD measures from each ROI. The main effect of hemisphere was not significant 

[F(1,24) = 1.013, p = .324, η2 = .006], and neither was the two-way interaction [F(2,48) = 1.402,  

p = .256, η2 = .005], suggesting that SDs of fMRI time courses were similar for the two 

hemispheres. However, the main effect of ROI was significant [F(2,48) = 125.581, p < .001,  

η2 = .63]. To investigate the main effect of ROI further, we performed pairwise comparisons on SD 

data, averaged across hemispheres. Holm–Bonferroni correction for multiple hypothesis testing was 

applied. The signal from the CeM group had greater variation than the signal from the BA group 

[t(24) = 13.357, p < .0001, Cohen’s d = 2.67], and greater variation than the signal from the LA 

nucleus [t(24) = 13.751, p < .0001, d = 2.75]. However, the time course variability from the BA 

group was similar to the time course variability from the LA nucleus [t(24) = 0.455, p = .653,  

d = 0.09]. Because signal profiles for the CeM ↔ BA, and the CeM ↔ LA con- nectivity measures 

were similar to each other, while the BA ↔ LA con- nectivity was estimated from less noisy 

sources, we only compared the CeM ↔ BA and the CeM ↔ LA connectivity measures to each 

other. For simplicity of interpretation, group Z-score values were inverse-transformed into 

corresponding correlation coefficients. Post-hoc comparisons of intra-AG connectivity also 

employed Holm–Bonferroni correction for multiple comparisons (4 tests). Only FWE-corrected 

findings are reported. 

 

3.3. Results 

 

Total amygdala 

 First, we performed a paired-samples t-test to determine whether the left and the right total 

AG differed in their sensitivity to negative emotional stimuli. We observed no laterality effects 

[amplitude: t(24) = 1.45, p = .16, Cohen’s d = 0.29; delay to peak: t(24) = 1.16, p = .26, d = 0.23]. 

Therefore, data for each emotional condition of interest (i.e., negative and neutral) was averaged 

across the hemispheres. To examine differences in the total AG's response to negative versus 

neutral items, paired-samples t-tests were performed on the amplitude and the delay-to-peak data. 

Consistent with prior findings (Ball et al., 2009; Sergerie et al., 2008), analysis of the amplitude 

data showed increased sensitivity in bilateral AG to the negative stimuli [t(24) = 4.804, p < .0001,  
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d = 0.96, Mdiff = 0.16% signal change] (Figs. 3.5a, 3.6a). However, analysis of delay to peak showed 

only a trend with later time to peak in response to negative emotion [t(24) = 1.89, p = .071, d = 0.23, 

Mdiff = 0.36 s] (Figs. 3.5a, 3.6b). 

 

Amygdala subnuclei groups 

 
Amplitude of response 

To determine whether the AG subnuclei groups differentially respond to negative emotional 

stimuli we calculated difference scores by subtracting amplitude values in response to neutral 

stimuli from those in response to negative emotional stimuli. The resulting values indicated the 

degree of emotional sensitivity. A repeated-measures ANOVA with two factors [Hemisphere (left, 

right); Subnuclei Group (CeM, BA, LA)] revealed a significant main effect of Subnuclei Group 

[F(2,48) = 4.40, p = .018, η2 = .061], demonstrating that the AG subnuclei groups responded 

differently to the negative stimuli. Because neither the main effect of hemisphere was significant 

[F(2,48) = 1.63, p = .21, η2 = .014], nor the two-way interaction [F(2,48) = 0.90, p = .41, η2 = .014], we 

concluded that the effect of the negative emotional stimuli on the AG subnuclei groups was 

consistent across hemispheres. Therefore, we performed simple effects analyses on the difference 

scores averaged across the two hemispheres. 

To determine how the AG subnuclei groups differed in their sensitivity to emotion we first 

examined the difference scores for each subnuclei group separately. The CeM group responded 

significantly to the negative emotional stimuli [t(24) = 4.09, p = .003, d = 0.82, Mdiff = 0.28% signal 

change] (Figs. 3.5b, 3.6a), as did the BA group [t(24) = 3.24, p = .017, d = 0.64, Mdiff = 0.14% signal 

change] (Figs. 3.5c, 3.6a). The LA nucleus, however, did not differentially respond to the emotional 

stimuli [t(24) = 1.81, p = .17, d = 0.36] (Figs. 3.5d, 3.6a). Comparing the AG subnuclei to each other 

showed that the CeM group was more sensitive to the negative stimuli than the LA nucleus [t(24) = 

2.82, p = .038, d = 0.56, Mdiff = 0.21% signal change]. However, neither the CeM group nor the LA 

nucleus differed significantly from the BA group [t(24) = 1.84, p = .23, d = 0.37; t(24) = 1.02, p = .32, 

d = 0.20, respectively]. 
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Fig. 3.5. Reconstructed hemodynamic response function for negative (red) and neutral (blue) stimuli in the 
total amygdala and its subnuclei groups, averaged across hemispheres. Shaded areas represent the standard 
error of the mean, corrected for inter-individual differences. BOLD response amplitude and delay to peak are 
shown in brackets for each stimulus category. 
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Delay to peak BOLD response 

To determine whether the AG subnuclei groups display latency differences in hemodynamic 

response due to negative stimulus processing we calculated latency difference scores by subtracting 

delay-to-peak values in response to neutral stimuli from those in response to negative stimuli. A 

repeated-measures ANOVA with two factors [Hemisphere (left, right); Subnuclei Group (CeM, BA, 

LA)] was performed on these difference scores. The main effect of subnuclei group showed a trend 

towards significance [F(2,48) = 2.53, p = .090, η2 = .039] suggesting that subnuclei might differ in 

their peak latency in response to emotional relative to neutral stimuli. Neither the main effect of 

hemisphere [F(1,24) = 2.59, p = .12, η2 = .010] nor the two-way interaction [F(2,48) = 0.06, p = .98,  

η2 < .001] was significant, demonstrating that latency differences between emotional and neutral 

stimuli were consistent across hemispheres. Consequently, the delay-to-peak data was averaged 

across the two hemispheres. 

To determine which AG subnuclei group, if any, was driving the marginal main effect of the 

Subnuclei Group in the above analysis we examined the latency difference scores for each AG 

subnuclei group separately. The CeM group showed significantly later BOLD response peak for the 

negative emotional stimuli compared to the neutral stimuli [t(24) = 3.245, p = .021, d = 0.65,  

Mdiff = 0.83 s] (Figs. 3.5b, 3.6b). The LA nucleus and the BA group, however, did not show 

significant emotion-related differences in BOLD response latency [t(24) = 2.087, p = .19, d = 0.42, 

Mdiff = 0.46 s; t(24) = 1.005, p = .32, d = 0.20, Mdiff = 0.19 s, respectively] (Figs. 3.5c–d, 3.6b). 

Although, the CeM group had the largest difference in BOLD response latency due to negative 

stimulus processing, this difference was only marginally larger than the difference found in the BA 

group [t(24) = 2.51, p = .097, d = 0.50, Mdiff = 0.64 s], and no different from the latency difference in 

the LA nucleus [t(24) = 1.10, p = .84, d = 0.22]. The difference in the delay to peak to emotional 

relative to neutral stimuli did not differ between the LA nucleus and the BA group [t(24) = 1.04,  

p = 0.61, d = 0.21]. These results suggest that sensitivity to negative emotional stimuli, as measured 

by the delay-to-peak contrast, is likely different between the AG subnuclei groups. 
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Prediction of image emotional content based on BOLD response parameters 

To determine whether BOLD response parameters (response amplitude and delay to peak) 

from any of the AG subnuclei groups are better at predicting the emotional content of a stimulus 

than BOLD response parameters from the total AG we trained 4 linear Support Vector Machine 

(SVM) classifiers, one for the total AG and one for each AG subnuclei group, on 4 features from 

each participant [average left/right hemisphere amplitude of response, average left/right hemisphere 

delay to peak]. The classifier trained on the data from the total AG performed statistically no better 

than chance [59% accuracy (14% above median), p < 0.1]. The classifiers trained on the data from 

the BA group and the data from the LA nucleus were even less accurate at predicting the emotional 

content of the stimuli [52% accuracy (6% and 8% above median, respectively), p < 0.1]. The only 

classifier that succeeded at predicting the emotional category of a stimulus better than chance was 

the classifier trained on BOLD response parameters from the CeM group [71% accuracy (24% 

above median), p < 0.01]. This demonstrated that BOLD measures from the CeM group are better at 

predicting the emotional content of a stimulus than BOLD measures from the total AG or any other 

AG subregion (Fig. 3.7a). To ensure that neither the CeM BOLD response amplitude nor the CeM 

BOLD response delay to peak was redundant to the overall classification model, we trained two 

separate CeM classifiers, one only on the amplitude data, and the other only on the delay-to-peak 
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Fig. 3.6. Amplitude (a) and Latency (b) negative minus neutral contrasts for the total amygdala and each of its 
subnuclei groups (CeM, centromedial group; BA, basal group; LA, lateral nucleus).  
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data. While both of these classifiers performed better than chance [Amplitude accuracy = 62% 

(16% above median), p < 0.05; Latency accuracy = 70% (19% above median), p < 0.05], the CeM 

model trained on both parameters at the same time performed best (Fig. 3.7a,b). Holm–Bonferroni-

corrected pair-wise comparisons of classifier performances demonstrated that each classifier 

achieved classification accuracy that was significantly different from the other classifiers (all  

ps < .001). 

 

Intra-amygdala connectivity 

To examine potential pathways of information flow within the AG, we performed a 

functional connectivity analysis between the AG subnuclei groups. A repeated-measures ANOVA 

was performed on Fisher Z-transformed partial correlations between the AG subnuclei groups 

(called edges) with Hemisphere [left, right] and Edge [CeM ↔ BA, CeM ↔ LA, BA ↔ LA] as 

factors. We observed a significant main effect of Edge [F(2,48) = 17.69, p < .00001, η2 = .235], 

demonstrating that three edges representing intra-AG connectivity differed in the strength of their 

correlation. The main effect of hemisphere was not significant [F(1,24) = 3.38, p = .079, η2 = .012], 
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Fig. 3.7. (a) Classification accuracy above median of linear SVM classifiers trained on response amplitude and 
delay-to-peak data from the total amygdala and each of its subnuclei groups (CeM, centromedial group; BA, 
basal group; LA, lateral nucleus). (b). Classification accuracy above median achieved by linear SVM classifiers 
trained separately either on the CeM BOLD response amplitude or the CeM BOLD response latency. *FWE p < 
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and neither was the two way interaction [F(2,48) = 0.535, p = .54, η2 = .008], demonstrating that the 

pattern of intra-AG connectivity was consistent across hemispheres. 

Based on partial correlation analysis, statistically significant connectivity existed between 

all of the AG subnuclei groups (all ps < .01), suggesting that all subnuclei groups are functionally 

related to each other (Fig. 3.8). Furthermore, the CeM group was more connected to the nuclei of 

the BA group than to the LA nucleus [t(24) = 2.53, p = .018, d = 0.51, Mz_diff = 0.07]. 

 

 

 

 

 

 

 

 

 

 

3.4. Discussion 

 Using high-resolution fMRI we demonstrated for the first time that anatomically-defined 

subnuclei groups of the human AG respond differently to negative emotional stimuli, and that 

strength of functional connectivity between various AG subregions is not identical. Although most 

prior functional neuroimaging studies analyzed the AG as a single homogeneous structure, our 

findings provide strong evidence in support of functional specialization within the human AG. As 

measured by BOLD response amplitude, the CeM group was most sensitive to the negative 

emotional stimuli, followed by the BA group, while the LA nucleus was largely insensitive to 

negative emotions. The CeM AG also demonstrated clear latency differences in its hemodynamic 
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Fig. 3.8. Human intra-amygdala functional connectivity is represented by partial correlation coefficients (CeM, 
centromedial group; BA, basal group; LA, lateral nucleus). All subnuclei groups were connected to each other. 
For connectivity comparisons see the main text. 
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response to the negative emotional stimuli, while the BA group and the LA nucleus did not. 

Critically, only the activity in the CeM group was able to predict the emotional content of the 

stimuli based on BOLD response parameters in a classification analysis. Investigation of intra-AG 

functional connectivity demonstrated that all three AG subnuclei groups were functionally related to 

each other. Furthermore, the CeM group showed greater connectivity with the nuclei of the BA 

group than with the LA nucleus. 

Although, some previous studies attempted to elucidate functions of the AG subnuclei in 

negative stimulus processing, they were substantially limited by spatial resolution (e.g. Styalidis et 

al., 2014; Yoder et al., 2015). This limitation is most pronounced for the nuclei of the dorsal AG. 

Histological experiments revealed that the CeM AG is smaller than 150 mm3 (Brabec et al., 2010; 

Garcia-Amado & Prensa, 2012). Consequently, the CeM AG is only 2–9 voxels large on fMRI 

images with 16–64 mm3 voxels. Here, we optimized all our acquisitions to guarantee sufficient 

spatial resolution to study the effects of negative stimulus processing not only on the AG subnuclei 

groups from the ventral AG, but also from the dorsal AG. 

The overall efficacy of our experimental paradigm at eliciting AG activation and our 

analysis approach at detecting it was validated by our whole AG results, which demonstrated 

increased sensitivity to negative emotional stimuli in the bilateral AG. These results are in 

agreement with the extant fMRI literature (Sergerie et al., 2008), case studies of patients with the 

AG lesions (Adolphs et al., 1994, 1995; Broks et al., 1998), and non-human fear conditioning 

experiments (Davis, 1992; Kapp et al., 1994), providing further support to the body of literature on 

AG's involvement in processing of high arousing negative emotions. In agreement with similar 

fMRI studies as reported in a large meta-analysis of fMRI literature on the human AG by Sergerie 

et al. (2008), we observed no laterality effects in any measure of hemodynamic response in the total 

AG or any of its subnuclei. 

 

Differential engagement of the amygdala subnuclei groups in response to negative emotional 

stimuli 

 The main finding from the current study showed preferential sensitivity of the CeM AG to 

highly arousing negative emotional stimuli. The CeM group was sensitive to negative emotion in all 

of the analyses we performed. Its BOLD response to negative pictures was greater and peaked later, 

when compared to BOLD response to neutral pictures. 
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While we did not initially have any predictions about differences in delay-to-peak latency as 

a function of emotion, there are several lines of evidence that may help explain this finding. It is 

reasonable to expect that non-task-related differences across ROIs in the timing of the BOLD 

response may be due to vasculature, neuronal, or neurovascular coupling effects that are similar for 

one area of tissue but not another (Kim & Ogawa, 2012; Logothetis & Wandell, 2004). However, 

task-related differences in BOLD latency within the same ROI are likely reflective of differences in 

the underlying neuronal activity (Formisano & Goebel, 2003; Pernet et al., 2004). In this regard, the 

delay to peak for emotional relative to neutral stimuli in the CeM AG is likely due to emotion-

specific changes in neuronal activity. Animal work has shown that increasing stimulation frequency 

of somatosensory neurons produces higher and later hemodynamic response peaks (Martin et al., 

2006). Similarly, our CeM amplitude and latency findings might simply represent greater 

stimulation of the CeM neurons as a consequence of negative stimulus processing. It is also possible 

that emotion-related firing rates within the human AG are of different durations. Consequently, our 

CeM latency findings might represent longer lasting activation of the CeM group driven by negative 

stimulus processing. Although we did not directly test differences in the duration (i.e., dispersion) 

of the BOLD response, this explanation is supported by recent animal literature which demonstrated 

subnuclei-specific variations in neuronal firing durations during fear conditioning experiments 

(Duvarci & Paré, 2014). Additionally, the motivational processes evoked by the AG subnuclei may 

also be of relevance, e.g., if the AG activity corresponds to not only a response due to negative 

emotion, but also approach- vs. avoidance-related processes, which involve interactions with the 

prefrontal cortex and insula (Cardinal et al., 2002; Harmon-Jones et al., 2013; Madan, 2013). As our 

study was not designed to assess emotion-driven causes of hemodynamic latency differences, future 

research is needed determine the exact cause of these findings. 

To gain greater insight into biological significance of our results, we must turn to animal 

experiments. Non-human fear-conditioning experiments have shown that the Ce nucleus of the AG 

is the primary regulator of behavioral and autonomic responses. Through its connections with the 

lateral and paraventricular hypothalamus, Ce AG modulates heart rate, blood pressure, 

corticosteroid release, and skin conductance (Davis & Whalen, 2001). Ce projections to the ventral 

tegmental area, locus coeruleus, and basal forebrain modulate arousal, vigilance, and attention, 

while its projections to the periaqueductal gray and cranial nerve nuclei control freezing and escape 
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behaviors (Davis & Whalen, 2001). Recent primate work on functional role of the Ce AG arrived at 

similar conclusions (Kalin et al., 2004). 

Similarly, images of negative valence and high arousal have been found to elicit increased 

skin conductance response, decreased heart rate, and increased attention in humans (Lang et al., 

1998). Therefore, based on extant knowledge of processes underlying fear conditioning, and 

commonalities between different organisms’ physiological responses to unpleasant stimuli, we 

think that the CeM activation reported in the current study, is related to its involvement in 

regulation of autonomic, endocrine, and behavioral responses induced by negative stimulus 

processing. 

Our parametric response amplitude results also demonstrated some sensitivity of the BA 

group nuclei to negative emotion. Animal work has shown that the BA nucleus receives most of its 

inputs from two sources, the LA nucleus of the AG, and the orbitofrontal cortex, while its outputs 

mainly project to the Ce AG and the striatum, where they provide context-dependent modulation of 

emotional processing (Freese & Amaral, 2009), and contribute to regulation of instrumental 

behaviors (LeDoux & Schiller, 2009). 

Previous high-resolution fMRI studies on the AG subnuclei investigated the AG subnuclei 

function in fear conditioning (Bach et al., 2011; Boll et al., 2013), processing of emotional facial 

expressions (Boll et al., 2011; Gamer et al., 2010), appetitive conditioning (Prévost et al., 2013), 

instrumental learning (Prévost et al., 2012), reward seeking (Prévost et al., 2011, 2013), and 

punishment avoidance (Prévost et al., 2011). Although our paradigm employing complex visual 

stimuli covering broad emotional spectrum is quite different from the stimuli used in previous high-

resolution fMRI experiments of the AG, our findings are in general agreement with findings from 

other high-resolution fMRI experiments on the AG, suggesting that the CeM AG is particularly 

involved in processing of aversive and threatening stimuli or situations. For instance, Boll et al. 

(2011) demonstrated that activity in the corticomedial amygdala was positively correlated with 

outcome uncertainty; Prévost et al. (2013) demonstrated that the CeM AG activity correlated with 

expected value in aversive learning; furthermore, patients with focal lesions to the BLA AG, but no 

damage to the CeM AG, display hypervigilance (Terburg et al., 2012). Future studies will also need 

to investigate the role of the AG subnuclei in processing of positive emotions, as well as other 

functions that engage the AG, e.g. sexual behaviors, feeding, and risk-taking (LeDoux & Schiller, 

2009; van Honk et al., 2013). 
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Intra-amygdala connectivity 

In general, our connectivity results are in agreement with previous animal work. In rodents 

the LA nucleus acts as the sensory interface of the AG, and receives inputs from primary sensory 

systems (Phelps & LeDoux, 2005). However, activation of the Ce output neurons is necessary for 

physiological and behavioral changes that increase chances of effectively coping with a biologically 

relevant stimulus. Although, direct inputs into the CeM group from the LA nucleus exist (Pitkänen 

et al., 1997), those are few in comparison to the indirect pathway through the B and the AB nuclei 

(Duvarci & Paré, 2014; Freese & Amaral, 2009). Similarly, our results showed greater connectivity 

of the CeM AG with the nuclei of the BA group than the LA nucleus. Although this study was not 

designed to directly compare the two predominant models of emotional processing by the AG 

subnuclei (Balleine & Killcross, 2006; LeDoux, 2007), our findings provide some support for both. 

Our activation results suggest that the CeM AG functions independently of the BA group and the 

LA nucleus, when processing aversive visual stimuli. Our connectivity findings, on the other hand, 

support the traditional serial model. Additional work, employing a different paradigm and different 

data analysis approaches, is required to further elucidate the specific mechanisms of emotional 

processing by the subnuclei of the human AG. 

Even though our connectivity results are in agreement with animal literature, they are not 

consistent with another human functional connectivity study (Roy et al., 2009), which reported 

negative correlation patterns within the right AG, and observed no connectivity between the 

subnuclei of the left AG. These differences in connectivity measurements may have occurred 

because Roy et al. (2009) relied on Amunts et al. (2005) probabilistic atlas to define the AG 

subnuclei ROIs in MNI space, while we used Mai et al. (2008) atlas to manually segment the AG 

ROIs in native space. 

Although, our connectivity findings were very robust and reliable, they should still be 

interpreted with caution because our correlation coefficients are fairly small. It is currently 

unknown whether such low correlation coefficients are a byproduct of lower SNR produced by 

high-resolution acquisition or whether they represent weak intra-AG communication. Nonetheless, 

our findings conclusively demonstrated that the CeM AG interacts differently with the other two 

subnuclei groups. 
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Hemodynamic properties of the amygdala subnuclei groups 

 The current study demonstrated that time and amplitude domains of BOLD response are not 

necessarily correlated and can provide unique information about the hemodynamic response of a 

region. Many prior fMRI studies of the AG relied on the canonical hemodynamic response function 

to model BOLD response (e.g. Ball et al., 2007; Boll et al., 2011; Davis et al., 2010; Gamer et al., 

2010; Frühholz & Grandjean, 2013; Prévost et al., 2011). When constructing activation contrasts, 

this approach assumes that BOLD response across various conditions varies only in its amplitude. 

Friston et al. (1998) proposed the use of the temporal derivative to account for the delay-induced 

variations in hemodynamic response. Later, Calhoun et al. (2004) demonstrated that incorporating 

the derivative and non-derivative terms into response amplitude contrasts produces more accurate 

estimates of BOLD amplitude differences between various conditions. Furthermore, as was 

demonstrated by Henson et al. (2002), BOLD response timing effects may be condition-dependent. 

In our results, we demonstrated that hemodynamic response amplitude and latency parameters are, 

at times, independent of each other. Our parametric results showed that for some ROIs, there was 

difference in BOLD response amplitude between the two conditions (BA group), while other ROIs 

displayed differences in time and amplitude domains (CeM group). We also showed that 

multivariate methods might benefit from including both of these BOLD response parameters when 

training a model. For instance, our best CeM classification model was trained on both response 

amplitude and delay to peak. 

The current study also demonstrated that employing univariate hypothesis testing in 

conjunction with multivariate classification provides additional insight into properties of the fMRI 

data. In our univariate findings, both the CeM and the BA group were sensitive to negative emotion. 

However, when we used the same BOLD response parameters in a multivariate classification 

analysis, we discovered that only BOLD response from the CeM group could predict above chance 

which stimulus category these parameters represent. This suggests that while mean responsiveness 

to negative stimuli was higher in both subnuclei groups, BOLD response parameters for neutral and 

negative stimuli were clearly separable in the CeM group, but not in the BA group, suggesting that 

the nuclei of the CeM group process those stimuli differently than the nuclei of the BA group. 
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Limitations and future directions 

In the current study we relied on ROI analysis to study the AG subnuclei. While ROI 

techniques provide great anatomical accuracy and precision, they are largely insensitive to 

dispersed activation patterns. This important caveat likely accounts for the seeming discrepancy 

between the vital role that the LA nucleus plays in non-human conditioning experiments (Phelps & 

LeDoux, 2005) and our fMRI-based LA activation findings. There is evidence in animal literature 

that only 20% of cells in the LA nucleus show plasticity-dependent modulation of sensitivity in 

response to threat (Duvarci & Paré, 2014). If there are distributed emotion-sensitive neural 

populations in the human LA nucleus, future studies employing pattern recognition techniques 

might be able to identify them. Another caveat of our analysis procedure is reliance on 

mathematical interpolation to measure BOLD response timing. Our raw fMRI data was acquired 

with a 2-s TR, but we report sub-second differences in BOLD response delay to peak. Although 

future studies employing multi-band sequences with shorter TR are required to verify our latency 

findings, we do not consider our mathematical interpolation to be a major concern because we 

relied on previously researched properties of the hemodynamic response in our parameter 

estimation procedures (Devonshire et al., 2012; Kim and Ogawa, 2012; Logothetis et al., 2001; 

Logothetis & Wandell, 2004; Martin et al., 2006; Pernet, 2014). 

Furthermore, future fMRI studies of the AG subnuclei need to investigate the effects of 

emotional valence and gender. Although there is substantial evidence that positive emotions engage 

the AG (Ball et al., 2009; Sergerie et al., 2008), it is currently unclear how the AG subnuclei 

investigated here would respond to positive versus negative emotional stimuli. The need to 

investigate the responsiveness of the AG subnuclei to positive stimuli is supported by recent animal 

work, which suggests that positive and negative stimuli are processed by different pathways within 

the AG (Namburi et al., 2015). There is also some debate concerning the influence of gender on the 

AG function (Sergerie et al., 2008). Even though this study was not designed to address this 

question, in preliminary analyses, we included gender as a between subjects factor, but did not 

observe a main effect of gender, nor any interactions including it (all ps > .1). 

Because fMRI signal variability is a function of ROI volume, direct comparison of 

connectivity strength between structures that substantially differ in volumes is not straightforward. 

For this reason, it is currently unclear how the BA ↔ LA fMRI connectivity, as defined by the 

strength of the correlation coefficient, compares to the CeM ↔ BA connectivity, and to the CeM ↔ 
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LA connectivity. To address this issue, future fMRI studies will need to employ segmentation, and 

statistical methodology that can minimize such effects. 

3.5. Conclusions 

In the current study, we used anatomical landmarks to extract BOLD signal from distinct 

AG subnuclei groups, and directly compared their activations in response to negative emotional 

stimuli. Our results showed that the CeM AG is particularly responsive to negative emotions. We 

also demonstrated that human intra-AG functional connectivity is consistent with animal literature. 

Future high-field high-resolution fMRI studies of emotional processing will allow researchers to 

further understand the structure–function relationship of the human AG and its subnuclei, as well as 

the roles that the AG subnuclei play in neuropsychiatric disorders. 
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3.6. Appendix 

Computation of Response Amplitude and Delay to Peak Values 

In simplified form, a stimulus-induced BOLD signal can be estimated using Ordinary Least Squares 
(OLS) algorithm as a weighted sum of a double-gamma function, xt,  and its first-order derivative,
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where tε is the residual error term, 0β̂ is the intercept term, and t stands for poststimulus time. If 
conditions of generality and orthogonality for the normalized HRf and its temporal derivative are 
met (as outlined in Calhoun et al., 2004), the estimated amplitude of BOLD response at its peak is: 
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whereα represents response amplitude at the HRf peak. In most instances 
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)(sign α is ambiguous. To resolve such ambiguous cases we developed a data-driven approach 
based on group-level estimates of 1β̂ and .ˆ2β First, we computed group-level estimates of 1β̂ and 2β̂
for each stimulus category:  
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where N is the number of participants in the study. Consequently, group-level HRf function, zt, can 
be represented in equation form as:  
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Group-level estimate of response magnitude is a modification of equation (2): 
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The direction of group-level HRf signal change (i.e. positive for activation, and negative for 
deactivation) can determined by computing the definite integral of tz for t = 2–15   second post-
stimulus interval: 
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Equations 7 and 8 can be combined to represent the estimated group-level response amplitude for 
each stimulus category: 
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The group-level response amplitude was computed for each stimulus category (i.e. neutral, low 
emotional, and highly emotional) using equation 10. These were then used to construct 3 group-
level response amplitude ratios: 
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Group-level delay to peak for each stimulus category was computed as follows: 
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Similar to amplitude group-level ratios, we computed delay-to-peak group-level ratios: 
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Next, we computed all unambiguous subject-levelα values using equation (2) based on criteria in 
(4). For the ambiguousα instances, the entire potential solution space was generated as positive and 
negative .α Sign of ambiguousα cases at subject level was resolved using exhaustive enumeration 
algorithm that minimized the difference between group-level ratio estimates from mean beta values 
(Equations 11, 13) and group-level estimates computed from subject-levelα values. The algorithm 
assigned equal penalty values for amplitude and delay-to-peak errors when computing RMSD. To 
ensure that the algorithm performed as intended, we manually inspected the ambiguous instances 
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where sign of response amplitude of the canonical model differed from the sign of the amplitude of 
the canonical with the temporal derivative model. Once the sign of the ambiguous subject-level 
alpha instances was resolved, we were able to compute subject-level latency by finding the time-
point of either maximum activation or maximum deactivation: 
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List of Pictures from the IAPS Database that Were Used as Stimuli 

 

High Emo   Med Emo   Low Emo 
 

1050        3071       2110 
1525        3110       2120 
2811        3168       3280 
3000        3170       6244 
3060        3266       6312 
3063        6315       6314 
3068        6825       6821 
3069        6838       6830 
3150        9042       6834 
3500        9050       9041 
6212        9253 
6550        9429 
6560 
8480 
9410 
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Chapter 4: Involvement of Hippocampal Subfields and 

Anterior-Posterior Subregions in Encoding and Retrieval of 

Item, Spatial, and Associative Memories: Longitudinal vs. 

Transverse Axis. 
 

4.1. Introduction 

For over fifty years the hippocampus (HC) has been a major source of scientific interest 

because of its role in establishing and supporting episodic memories (Eichenbaum, 2001; Scoville 

& Milner, 1957; Squire & Dede, 2015; Squire & Wixted, 2011). Extensive research into HC 

function in both animals and humans confirmed the HC role in numerous components of episodic 

memory, including content, spatial, and temporal information (for reviews, see Cohen et al., 1999; 

Lisman et al., 2017; Moscovitch et al., 2005, 2016; Squire et al., 2015). 

 In humans, the HC activity was reported during both explicit and incidental learning (Azab 

et al., 2014; Bakker et al., 2008; Cohen et al., 1999; Lacy et al., 2011; Ranganath et al., 2004) with a 

wide variety of stimuli, covering a broad set of cognitive and perceptual domains: words, objects, 

tones, scenes, faces, and spatial routes and landmarks (for an overview, see Cohen et al., 1999; 

Lisman et al., 2017). From these studies, various hypotheses of HC function emerged: novelty 

detection, cognitive mapping, pattern separation/completion, and relational memory (Cohen et al., 

1999; Cohen & Eichenbaum, 1993; Lisman et al., 2017; Yassa & Stark, 2011). 

 To gain a more accurate understanding of the HC function, it is important to acknowledge 

its complex internal anatomy. The HC can be subdivided along the anterior-posterior axis into three 

major sections (sometimes called subregions): head, body, and tail (Duvernoy, 2005; Malykhin et 

al., 2007; Rajah et al., 2010). Although functional differences between the anterior (i.e., head) and 

posterior (i.e., body together with tail) HC have been discovered, the exact nature of these 

differences is still unknown (Poppenk et al., 2013; Small, 2002; Strange et al., 2014). For instance, 

a number of studies demonstrated that the posterior HC is active during spatial memory tasks, while 

the anterior HC is engaged if a memory task contains emotional information (Bannerman et al., 

2004; Dolcos et al., 2004; Kensinger & Corkin, 2004; Kensinger, 2009; Strange et al., 2014; 

Poppenk & Moscovitch, 2011). It has also been suggested that the anterior HC is related to coarse 
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gist-like memory, while the posterior HC is particularly involved in detailed episodic memory 

(Bonne et al., 2008; Hayes et al., 2011; Poppenk & Moscovitch, 2011; Poppenk et al., 2008, 2013). 

Yet other work has shown that the anterior HC is specialized for memory encoding, while the 

posterior HC is critical for memory retrieval (Kim, 2015; Lepage et al., 1998; Schacter & Wagner, 

1999; Spaniol et al., 2009; de Vanssay-Maigne et al., 2011; Woollett & Maguire, 2012; Woollett et 

al., 2009). However, encoding and retrieval processes were oftentimes studied separately, using 

memory paradigms unrelated to standardized neuropsychological batteries commonly used for 

memory assessment in clinical populations. Furthermore, most studies of the HC long-axis 

specialization did not separate the HC body from the HC tail, and as a consequence, it is currently 

unclear whether these two subregions perform similar functions (Poppenk et al., 2013; Small, 

2002). 

 Anatomical connectivity studies suggest that splitting the HC into just two (i.e., anterior and 

posterior) sections might lead to oversimplified models of its function (Small, 2002; Strange et al., 

2014). Due to differences in sensory input, it has been proposed that the anterior-posterior axis is 

organized along a gradient (Poppenk et al., 2013), with the intermediate HC serving as a key 

interface point between spatial encoding and behavioral control systems (Strange et al., 2014). 

Based on anatomical connectivity profiles of different HC segments, Small (2002) proposed three 

functionally distinct segments within the HC: anterior, middle, and posterior. Consistent with this 

notion, a series of volumetric and functional experiments revealed that the HC head, body, and tail 

might play unique roles in memory (Chen et al., 2010; DeMaster et al., 2014; Evensmoen et al., 

2013; Spalletta et al., 2016; Travis et al., 2014; de Vanssay-Maigne et al., 2011), while a growing 

body of clinical MRI literature suggests that different pathological processes sometimes affect the 

HC head, sometimes the HC body, and sometimes the HC tail (Bouchard et al., 2008; Elliott et al., 

2016; Frisoni et al., 2008; Huang et al., 2013; Lindberg et al., 2012; Maller et al., 2007, 2012; 

Malykhin et al., 2017; Spalletta et al., 2016; Vassilopoulou et al., 2013). 

 Aside from studying functional differences along the HC anterior-posterior axis, recent 

advances in functional Magnetic Resonance Imaging (fMRI) enabled researchers to study 

functional implications of its cross-sectional subfields (transverse axis): Cornu Ammonis 1-3  

(CA1-3), dentate gyrus (DG), and subiculum (Sub) (Aly & Turk-Browne, 2016; Azab et al., 2014; 

Bakker et al., 2008; Berron et al., 2016; Bonnici et al., 2012; Copara et al., 2014; Duncan et al., 

2012; Eldridge et al., 2005; Lacy et al., 2011; Reagh et al., 2014; Stokes et al., 2015; Suthana et al., 
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2009, 2011, 2015; Tompary et al., 2016; Yassa & Stark, 2011; Zeineh et al., 2003). Because of 

technical limitations, many of these studies did not segment subfields within the entirety of the HC 

head (Chen et al., 2011; Copara et al., 2014; Eldridge et al., 2005; Nauer et al., 2015; Stokes et al., 

2015; Suthana et al., 2009, 2011; Zeineh et al., 2003) or tail (Berron et al., 2016; Chen et al., 2011; 

Eldridge et al., 2005; Zeineh et al., 2003), producing activity estimates heavily dominated by the 

signal from the HC body. Furthermore, while many studies report sub-millimetre	 in-plane 

resolution for their subfield segmentations, these were oftentimes collected with relatively thick  

(i.e, >1.5 mm) slices (Copara et al., 2014; Eldridge et al., 2005; Suthana et al., 2009, 2011; 2015; 

Stokes et al., 2015; Zeineh et al., 2003). In general, sufficient contrast for subfield segmentation in 

the most anterior and posterior segments of the HC formation is obtained with slice thickness of  

1 mm or less (Bonnici et al., 2012; Malykhin et al., 2010, 2017; Winterburn et al. 2013; Wisse et 

al., 2012); however, several studies (e.g., La Joie et al., 2010; Yushkevich et al., 2015b) managed to 

segment subfields within the HC head and tail on T2-weighted MRI data with 2-mm thick slices. 

Finally, most of the aforementioned subfield studies relied on either some form of voxel-wise 

hypothesis testing (which can be vulnerable to Type-II error due to strict correction for multiple 

comparisons, further compounded by small sample sizes of 10–20 participants in most fMRI studies 

of the HC subfields) or performed region of interest (ROI) analyses on subfields, collapsed across 

the entire long-axis coverage, potentially oversimplifying the HC anatomy and its relationship to 

memory. It is currently unclear whether it is the longitudinal or the transverse axis or the interaction 

between the two that best explains the HC role in episodic memory. 

 In addition, there is a lack of consensus in the HC literature as to whether the HC formation 

is dedicated to processing of spatial vs. non-spatial components of episodic memory (Eichenbaum, 

2017; Eichenbaum & Cohen, 2014; Kumaran & Maguire, 2005; Lisman et al., 2017; Nadel et al., 

2012), and whether the HC is involved in item, not just relational memory (Davachi et al., 2003; 

Gold et al., 2006; Konkel et al., 2008). In our previous structural MRI study (Travis et al., 2014), 

we showed that performance on the ‘Designs’ subtest of the Wechsler Memory Scale (WMS-IV; 

Pearson Education Inc., 2009) was correlated with volumes of the posterior CA1-3 and DG 

subfields. This particular subtest was designed to test performance on item, spatial, and item-

location associative memories. Despite widespread clinical use of the WMS-IV since its inception 

in 2009, little research has been done on the ‘Designs’ subtest other than the initial validation study 

(Martin & Schroeder, 2014). Although our earlier structural work (Travis et al., 2014) provides 
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some insight into how the WMS-IV ‘Designs’ subtest relates to the HC neuroanatomy, volumetric 

measurements are crude proxies for brain function and cannot truly explain how processes 

underlying formation and retrieval of item, spatial, and associative memories (assessed by this task) 

relate to metabolic activity in various segments of the HC structure. Consequently, the main goal of 

this study was to investigate how activity in various HC subfields and long-axis subregions relates 

to both encoding and retrieval processes for item, spatial, and associative memories in a ‘Designs’-

like paradigm, within a single fMRI experiment. To answer these questions, we administered a 

computerized adaptation of the WMS-IV ‘Designs’ subtest and used high-resolution fMRI methods 

in conjunction with manual delineation of the HC subfields within the entire HC formation on ultra-

high-resolution structural MRI. 

 Since multiple theories of HC function (for an overview, see Poppenk et al., 2013) suggest 

that the posterior HC should be more active during retrieval of detailed memories, we expected to 

see greater involvement of the posterior HC in retrieval processes. Second, we expected preferential 

engagement of the posterior HC subfields on spatial memory trials, while item and associative 

memory trials would not show longitudinal differences in HC activity. Furthermore, we 

hypothesized that longitudinal differences are not a sharp dichotomy and are best represented by a 

linear head to tail gradient (Kim, 2015; Poppenk et al., 2013; Small, 2002; Strange et al., 2014). 

Lastly, based on our previous volumetric study (Travis et al., 2014) we predicted that the posterior 

DG and CA1-3 subfields play a critical role in the ‘Designs’ subtest. To additionally improve 

accuracy and validity of our HC blood oxygen-level dependent (BOLD) response measurements, 

we used a multi-parameter hemodynamic response deconvolution procedure, aimed at minimizing 

assumptions about neural and vascular responses during different phases of our memory task. 

 

4.2. Materials and Methods 

 

Participants 

Twenty-five healthy individuals (12 males, 13 females, mean age = 25.4 years, range 20–33, 

mainly graduate and undergraduate students attending the University of Alberta) were recruited 

through online and poster advertisements. All participants were right-handed with no reported 

personal history of psychiatric or neurological illness, and drug or alcohol abuse as assessed by a 

structured interview (Anxiety Disorders Interview Schedule-IV; Brown et al., 2001). The exclusion 
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criteria were (1) active and inactive medical conditions that may interfere with normal cognitive 

function and (2) use of medication and non-prescribed substances that could affect brain function. 

Written, informed consent was obtained from each participant. The study protocol was approved by 

the University of Alberta Health Research Ethics Board. 

 

Memory task 

Our memory task was based on the “Designs” subtest of the Wechsler Memory Scale 

(WMS-IV; Pearson Education Inc., 2009). The ‘Designs’ subtest is a highly flexible tool for 

assessing item, spatial, and item-location binding simultaneously. During the “Designs” test, an 

examiner shows the examinee a 4 × 4 grid containing 4–8 abstract symbols for 10 s. Episodic 

memory is tested after a brief (≈5 s) break in two different ways: the examinee (1) re-creates the 

grid by choosing the abstract symbols they remember and placing them in the corresponding 

locations, and (2) by performing spatial pattern recognition. 

 However, when administering the WMS-IV, each examinee is presented with only 4 grids, a 

number of trials that is insufficient for event-related fMRI. To increase the number of potential 

grids for our fMRI paradigm, we presented symbols not only from the “Designs,” but also from the 

“Symbol Span” subtest. Abstract symbols from the ‘Designs’ and ‘Symbol Span’ subtests were 

scanned from a paper version of the WMS-IV and resampled to a 700 × 500 pixel resolution. Next, 

a single rater (MM) generated 11 categories broadly summarizing symbols’ patterns and 

categorized each symbol accordingly (e.g., arrow-like, XX-shaped). Symbol classification was 

performed to ensure that all symbols within each fMRI trial were sufficiently distinct: only one 

symbol from a given category could appear on the same grid during encoding or retrieval. 

 

Experimental design 

 Similar to the “Designs” subtest of the WMS-IV, each trial in our paradigm consisted of one 

encoding and one retrieval phase. Between the encoding and retrieval trials, an odd/even judgment 

task (one judgment every 1.25 s) was performed in place of passive fixation. Performing odd/even 

judgments between the two task phases not only limits rote rehearsal but also produces more 

accurate estimates of memory-related BOLD activation, especially for the HC formation (Stark & 

Squire, 2001). All odd/even inter-stimulus-intervals (ISIs), which separated the encoding and 

retrieval phases from each other, were randomized on a negative exponential distribution with a 
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median of 12.5 s and lasted between 7.5 and 20.0 s. 

 During the encoding phase, participants studied 4 × 4 horizontal grids, each containing four 

abstract symbols randomly placed in 4 out of 16 possible cells. Each trial began with one of three 

cues: ‘S’ for Symbol, ‘L’ for location, and ‘B’ for both. The ‘S’ cue instructed participants to 

prioritize symbol learning, regardless of their positions inside the grid (see Fig. 4.1a). The ‘L’ cue 

instructed the participants to remember which cells in the grid contained a symbol, regardless of 

which symbols were present in those cells. The ‘B’ cue instructed the participants to learn symbol-

location associations. Recent work by Aly & Turk-Browne (2016) demonstrated that HC activity is 

modulated by attention and that this modulation is stable across various stimuli as long as attention 

is maintained on a particular type of information within a stimulus. Our design leveraged this 

finding: during encoding we manipulated attention, as opposed to the stimuli themselves, 

guaranteeing that any encoding-related activity differences within the HC, when comparing item, 

location, and associative memories to each other, would be unrelated to visual properties of the 

stimuli themselves. 

 Participants' memories were tested in accordance with the previous cue on 2 (out of 4) 

randomly chosen items. If ‘S’ was the encoding cue, participants completed symbol recognition: 

they saw four symbols on a screen for 5 s, only one of which was present in the previously studied 

grid (Fig. 4.1b). To decouple memory retrieval from motor planning, response cues (randomly 

placed numbers corresponding to MR-compatible button presses) were presented only for the last 3 

s of each recognition test. If ‘L’ served as the encoding cue, participants completed a location 

recognition task, during which they saw a blank 4 × 4 grid for 2 s. Subsequently, numbers 1 to 4 

(corresponding to MR button presses) appeared in 4 cells. Only one of those cells contained a 

symbol in the previously studied grid (Fig. 4.1c). Finally, if ‘B’ was the encoding cue, participants 

performed one of two versions of a cued recall task (Fig. 4.1d and e). In the first version, grid 

locations were used as cues, and participants were instructed to identify which symbol was shown 

in a cued location during the previous encoding phase (Fig. 4.1d). In the second version, symbols 

were used as cues, and participants were asked to identify in which location on the grid a cued 

symbol was initially placed (Fig. 4.1e). 
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Fig. 4.1. Computerized adaptation of the WMS-IV ‘Designs’ subtest that was used to study memory encoding 
(a) and memory retrieval (b–e) processes. Depending on encoding cue, memory was tested using one of the 
retrieval designs (b–e). An odd/even judgment task was used as a cognitive baseline and separated trials from 
each other. See main text for detailed task description. 
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To ensure that participants were familiar with the task and the button-press response system, 

they completed in-scanner button-press training, odd/even judgment training, and one practice run 

with immediate accuracy feedback while the scanner was undergoing calibration procedures. In 

total, there were 12 task runs, each lasting 155 s, with three trials in each run: one set of symbol, 

location, and both in randomized order. All encoding trials lasted 10 s, regardless of the encoding 

cue. The retrieval sessions for the symbol and location conditions lasted 10.5 s, and 14.5 s for the 

association condition. In addition, for the association condition, 6 trials tested memory by providing 

symbols as cues, and 6 trials tested memory by providing grid locations as cues, in a random order 

for each participant. To establish the fMRI baseline and to capture the hemodynamic response for 

the final memory trial, each run began with 6.25 s, and ended with 11.25 s, of the odd/even 

judgment task. Our task was programmed in Python-based software PsychoPy (Peirce, 2007, 2009), 

and was displayed inside the scanner through an MR-compatible 1080p 32” LCD panel (Cambridge 

Research Systems Ltd., Rochester, UK). 

 

Experimental design 

 All images were acquired on a 4.7 T Varian Inova MRI scanner at the Peter S. Allen MR 

Research Centre (University of Alberta, Edmonton, AB) using a single-transmit volume head coil 

(XL Resonance) with a 4-channel receiver coil (Pulseteq). 744 functional volumes were collected 

axially (in parallel to the AC–PC line) over 12 runs using a custom-written T2
*-sensitive Gradient 

Echo Planar Imaging (EPI) pulse sequence [repetition time (TR): 2500 ms; echo time (TE): 19 ms; 

flip angle: 75°; field of view (FOV): 168 × 210 mm2; voxel size: 1.5 × 1.5 × 1.4 mm3; inter-slice 

gap: 0.1 mm; 35 slices acquired sequentially; GRAPPA parallel imaging with in-plane acceleration 

factor 2 (Griswold et al., 2002)]. For the HC subfield and subregion segmentation, high-resolution 

coronal structural images were acquired perpendicular to the AC–PC orientation using a custom-

written T2-weighted 2D Fast Spin Echo (FSE) sequence [TR: 11000 ms; TE: 39 ms; FOV: 200 × 

200 mm2; voxel size: 0.52 × 0.68 × 1.0 mm3; 90 slices]. To improve image registration accuracy 

between anatomical and functional scans, axial high-resolution 2D FSE images were acquired with 

brain coverage approximate to that of the fMRI data [TR: 7000 ms; TE: 38 ms; FOV: 210 × 200 

mm2; voxel size: 0.52 × 0.68 × 1.0mm3; 45 slices]. A whole brain T1-weighted 3D Magnetization 

Prepared Rapid Gradient-Echo (MPRAGE) sequence [TR: 8.5 ms; TE: 4.5 ms; inversion time: 300 

ms; flip angle: 10°; FOV: 256 × 200 × 180 mm3; voxel size: 1 × 1 × 1 mm3] was used to acquire 
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anatomical images for automated tissue segmentation. Finally, to correct for inhomogeneity-related 

EPI distortions, we used a multi-echo 3D gradient echo sequence [TR: 577.8 ms; TE: 3.56, 6.71 ms; 

flip angle: 50°; FOV: 192 × 168 mm2; voxel size: 1.5 × 1.5 × 1.5 mm3; 35 slices] to calculate B0 

fieldmap for each participant. The entire image acquisition was spread over two separate sessions, 

at most two weeks apart. Coronal FSE images and whole-brain MPRAGE images were acquired 

during the first (1 h) visit, while the fMRI data, along with the Axial FSE, and the fieldmaps were 

collected during the second (1.5 h) visit. During our fMRI acquisitions, we also collected cardiac 

and respiration waveforms using an MP150 system with a pulse photoplethysmograph placed on the 

left ring finger and a pneumatic belt strapped around the upper abdomen, respectively (Biopac 

Systems Inc., Montreal, QC). Fig. 4.2 demonstrates orientation and brain tissue coverage of our 

structural and functional scans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Brain tissue covered by high-resolution anatomical and high-resolution functional scans. A 
single participant's full-brain T1-weighted anatomical scan is shown in the background. The violet 
overlay represents coverage of the ultra-high-resolution anatomical 2D FSE scan, which was used to 
manually segment the hippocampal subfields and subregions. The red overlay represents areas 
captured by the high-resolution fMRI EPI acquisition. A segmented hippocampus is shown in green. 
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Hippocampal segmentation 

 All HC ROIs were manually traced on the T2-weighted coronal FSE images with a mouse-

driven cursor using freely available FreeView v. 4.0 software (MGH, Boston, MA). ITK-SNAP (v. 

3.6.0; Yushkevich et al., 2006) was used to build 3D models of the HC ROIs for visualization 

purposes (see Fig. 4.3). Our subfield segmentation technique (Malykhin et al., 2010) was developed 

with the guidance from the Duvernoy (2005) atlas of the human HC and is based on structural 

connectivity, as opposed to cytoarchitectonic properties. 

 Here, we divided the HC into three subfield areas corresponding to our best approximation 

of the CA areas 1–3 (CA1-3), DG&CA4 (henceforth referred to as DG), and Sub within the HC 

head, body, and tail (Malykhin et al., 2007, 2010). In our parcellation method, the most posterior 

coronal slice of the HC head was the first slice where the uncal apex (uncus) was clearly present 

(Duvernoy, 2005). Consequently, the most anterior coronal slice of the HC body was the slice 

immediately posterior to uncus (Malykhin et al., 2007, 2010). The most anterior coronal slice of the 

HC tail was the first slice where the fornix was clearly seen in full profile or was separated from the 

wall of the ventricle, whichever came first (Malykhin et al., 2007, 2010). Similar definitions of the 

long-axis subregions have been used by other studies with MRI acquisitions perpendicular to the 

AC-PC axis (Boccardi et al., 2015; Malykhin et al., 2007, 2010; Pruessner et al., 2000), as well as 

by studies with MRI acquisitions perpendicular to the HC longitudinal axis (Daugherty et al., 2015; 

La Joie et al., 2010). Because a substantial portion of the CA3 subfield is encapsulated within the 

DG/CA4 on coronal slices (Adler et al., 2014; Ding & Van Hoesen, 2015), it is virtually impossible 

to separate the CA3 from the DG ROIs based on image contrast alone (Reagh et al., 2014). As a 

result, the CA3 subfield in our segmentations was almost evenly split between the DG and CA1-3 

ROIs (Malykhin et al., 2010), while the CA2 subfield was fully integrated into the CA1-3 ROI. 

Furthermore, our Sub volumes consisted predominantly of the Sub proper and excluded most of the 

presubiculum or parasubiculum. 

 All segmentations of the HC subregions (head, body & tail) and HC subfields (CA1-3, DG 

& Sub) were performed by a single highly experienced rater (YH), trained by the developer of the 

protocol (NM). Intra-rater and inter-rater reliabilities for the HC subfield/subregion volumes were 

assessed by retracing structural T2-weighted MRI images from 5 subjects (i.e., 10 HC total) at a 

one-week interval. Inter/intra-rater reliability intraclass correlation coefficients (ICCs) for the long-

axis subregions were as follows: 0.95/0.92 for the HC head, 0.83/0.93 for the HC body, and 
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0.95/0.88 for the HC tail. The corresponding inter/intra-rater Dice similarity coefficients (DSCs) 

were 0.89/0.90 for the HC head, 0.86/0.87 for the HC body, and 0.80/0.82 for the HC tail. For the 

cross-sectional subfields, the inter/intra-rater reliability ICCs were as follows: 0.92/0.92 for the 

CA1-3, 0.86/0.84 for the DG, and 0.87/0.95 for the Sub. Matching inter/intra-rater DSCs were 

0.73/0.75 for the CA1-3, 0.81/0.81 for the DG, and 0.74/0.74 for the Sub. For the total HC, 

inter/intra-rater ICCs were 0.95/0.97, and inter/intra-rater DSCs were 0.89/0.90. All ICCs were 

statistically significant at α = 0.001. 

 Following manual segmentation on structural MRI, the HC labels were down-sampled 

(using nearest neighbor interpolation) to match the resolution of fMRI acquisition. Next, a single 

rater (YH) manually adjusted all ROIs to ensure accurate overlap between the original labels and 

the downsampled ones and to remove all ROI voxels severely impacted by susceptibility artifacts. 

Since individual subfield volumes (particularly Sub) within the HC tail are very small when 

resampled to the fMRI resolution (see Table 4.1 for ROI volumes), we merged subfields from the 

HC body with those from the HC tail. This reduced volumetric discrepancies between subfield 

ROIs and improved the temporal signal-to-noise ratio (tSNR) in smaller subfields (see Table 4.2 for 

tSNR details). However, to verify that activity in the HC body was indeed similar to that in the HC 

tail, we also analyzed activity in each long-axis subregion separately. Fig. 4.3 demonstrates our 

segmentation methodology on structural and functional data. 

 

 

 

 

 

Table 4.1  
Number of voxels for each of the hippocampal subregion and/or subfield ROIs. Values are in raw fMRI voxel counts  
(1.5-mm isotropic), averaged across participants. 
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Table 4.2  
Effective temporal signal-to-noise (tSNR) ratios for each hippocampal ROI. All tSNR values were computed on 
preprocessed data (motion correction, despiking, and removal of non-BOLD cardiac- and pulmonary-related 
waveforms). The upper half of the table shows ROI-level tSNR, computed from voxel-averaged time series across the 
entire ROI. The bottom half of the table shows voxelwise tSNR. Here, tSNR was computed for each hippocampal voxel 
and the resulting tSNR values were averaged across voxels, which belong to a given subfield or subregion. 
 

 

Fig. 4.3. Three-dimensional reconstruction of the hippocampal subfields and anterior-posterior subregions from a 
healthy volunteer. Panels to the left of the 3D model show subfields and subregions on a high-resolution T2-
weighted structural scan. Panels to the right of the 3D reconstruction show subfield and subregion masks after they 
were registered to the fMRI data and downsampled to match the fMRI resolution. 



	 	 68	 	
	 	

Image preprocessing 

Most of the image processing was performed in SPM12 (Wellcome Trust Centre for 

Neuroimaging, UCL, UK). Prior to registration, MPRAGE images underwent correction for 

intensity non-uniformity using N3 program (Sled et al., 1998). Next, anatomical images were 

cropped using a custom-written MATLAB (The MathWorks Inc., Natick, MA) script in order to 

isolate areas of overlapping coverage. These overlapping portions of anatomical images were used 

to compute rigid-body transformation matrices to register all anatomical images to each other. 

The unified ‘realign & unwarp’ function in spm12 was used to correct geometric distortions 

in fMRI data caused by B0 inhomogeneity and to realign all fMRI volumes to the first functional 

volume (Andersson et al., 2001). Next, an average EPI was computed and was registered to the 

axial FSE image using a combination of manual and automatic registration tools. To ensure optimal 

registration for the HC formation, white matter (WM)/gray matter (GM) boundaries were (manually 

traced on three coronal, three axial, and three sagittal slices proximal to the HC) used to fine-tune 

image alignment. Automated rigid-body registration tools were then used to register all the 

remaining fMRI volumes to the manually registered average EPI volume. To identify signal spikes 

and to account for spin-history-related head-movement artifacts in the fMRI time series, we used 

the Artifact Detection Toolbox (ART; http://www.nitrc.org/projects/artifact_detect/) for MATLAB. 

All fMRI volumes with framewise displacement > 0.5 mm/TR were marked for scrubbing, as were 

all fMRI volumes with noticeable signal spikes (i.e., scan-to-scan differences in signal intensity > 3 

SDs above the run’s mean). Because we employed sequential slice acquisition, the most superior 

and the most inferior slices with the HC tissue were acquired less than 1.25 s apart in most 

participants. Rather than risk artifacts caused by slice timing correction, we ensured that all HRf-

related regressors during GLM parameter estimation were temporally aligned to the acquisition of 

the middle HC slice in each subject. Similarly, in order to preserve the spatial resolution, no spatial 

smoothing was applied to the fMRI data. 

Physiological noise correction was performed using custom-written MATLAB 

implementation of the RETROICOR (Glover et al., 2000) and RVTHR techniques (Birn et al., 

2006, 2008; Chang et al., 2009). From cardiac waveforms, we created 12 nuisance regressors to 

absorb signal changes due to blood flow pulsatility (RETROICOR 2nd-order Fourier basis, 

temporally aligned to the acquisition of the most superior, the middle HC, and the most inferior 

slices of each fMRI volume) and one regressor to absorb signal changes due to heart rate variability 
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(Chang et al., 2009; Glover et al., 2000). Each participant's respiratory wave-forms were used to 

generate 4 respiratory regressors (RETROICOR 2nd-order Fourier basis temporally aligned to the 

acquisition of the middle HC slice, tTR), accounting for respiration-induced magnetic field changes 

(Glover et al., 2000), as well as 3 time-lagged [tTR – 8 s, tTR – 2 s, tTR + 4 s] regressors representing 

respiratory volume per time (RVT) convolved with the respiratory response function (Birn et al., 

2008). Those three RVT-related regressors were used to absorb variability in the fMRI time series 

caused by fluctuations in CO2 concentration resulting from variation in breath depth and/or breath 

rate (Birn et al., 2006, 2008). Next, we generated a partially filtered fMRI dataset, from which 

motion, cardiac sources, respiratory-related signals and low-frequency drifts (128 s high-pass filter) 

were removed. From this dataset, the first three eigenvariate WM time courses and the first three 

eigenvariate CSF time courses were extracted using preprocessing functions implemented in the 

CONN toolbox for MATLAB (v. 16.a; Whitfield-Gabrieli & Nieto-Castanon, 2012). In total, for 

each fMRI run, there were 32 nuisance regressors (20 RETROICOR&RVTHR, 6 WM&CSF, and 6 

motion from realignment), plus one regressor for each fMRI volume marked for scrubbing based on 

movement and global signal intensity criteria described above. In all GLM procedures, low-

frequency signal drifts were removed with a 128 s high-pass filter, and the first-order autoregressive 

(AR1) correction for serial autocorrelation was applied. 

 

Estimation of hemodynamic response functions for encoding and retrieval 

The profile of the hemodynamic response function (HRf) in subcortical brain regions need 

not be the same as the standard double-gamma function often used to model cortical responses 

(Devonshire et al., 2012; Ekstrom, 2010; Handwerker et al., 2004; Hrybouski et al., 2016; Pernet, 

2014). Consequently, extracting raw signal change over points in time without reference to a 

standard hemodynamic template often leads to more accurate BOLD signal measurements. While it 

is well established that FIR-based approaches provide more accurate depictions of BOLD response 

(Glover, 1999; Lindquist et al., 2009) as they make no assumption about neural or vascular 

properties of a region (FIR basis set contains one free parameter for every time point in every trial 

type) FIR deconvolutions can produce noisy solutions in typical fMRI datasets (Goutte et al., 2000; 

Lindquist et al., 2009). Similar to our previous high-resolution fMRI work (Hrybouski et al., 2016), 

we incorporated methodology designed to minimize the HRf bias without substantial loss of 

statistical power by computing task- and region-specific double-gamma functions for our HC 
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activity analyses. 

First, the HC HRf was deconvolved using the FIR technique (8 TR bins). Events for all 

stimuli categories (‘S’, ‘L’, and ‘B’) were pooled together, regardless of subsequent memory 

performance, and the mean HRf was estimated for each HC, separately for encoding and retrieval 

phases. These FIR results revealed that the informed basis set (i.e., canonical HRf with time and 

dispersion derivatives) would be sufficient to estimate the HC HRf in our task. Consequently, we 

used the informed basis set model to deconvolve the HRf for each event for each condition 

separately (encoding ‘S’, encoding ‘L’, encoding ‘B’, retrieval ‘S’, retrieval ‘L’, and retrieval ‘B’). 

The HRf and derivative betas were used to reconstruct task-related signal change for each event. It 

is worth noting that this approach treats the derivative betas as BOLD response modulators rather 

than covariates (Calhoun et al., 2004; Henson et al., 2002; Hrybouski et al., 2016). Because the ISI 

between the retrieval tests was short (0.5 s), and did not vary from trial to trial, it was not feasible to 

deconvolve BOLD signal for individual retrieval tests. Instead, we restricted all activity analyses to 

trials for which participants obtained 2 out of 2 retrieval accuracy: 11.12 (SD = 0.97) trials for the 

symbol condition, 8.40 (SD 1 = 2.36) trials for the location condition, and 8.00 (SD = 2.06) trials 

for the association condition, on average. These numbers are substantially higher than what would 

be expected if subjects were randomly guessing on memory tests [sampling distribution for 2 out 2 

retrieval accuracy under the null hypothesis was estimated using 1,000,000 Monte Carlo 

simulations; mean = 0.75, standard error = 0.17]. By limiting our analyses to trials on which 

successful learning took place, we eliminated memory-related variability in BOLD signal onset 

during retrieval and ensured that our HC activity estimates during the preceding encoding phase 

were linked to successful formation of novel memories. The latter is particularly important as prior 

fMRI studies demonstrated differential encoding activity for remembered vs. forgotten stimuli 

(Chua et al., 2007; Gold et al., 2006; Ranganath et al., 2004). 

Subsequently, subject-specific encoding and retrieval HRf time courses were estimated for 

each left/right HC ROI (i.e., total HC, total head, total body, total tail, total CA1-3, total DG, total 

Sub, head CA1-3, head DG, etc.), separately for each memory condition (i.e., symbols, locations, 

both). Using this approach, we obtained 96 encoding and 96 retrieval HRfs from each subject. 

These HRfs were then rescaled to % signal change units and averaged across participants. Next, 

each of the 192 (96 encoding, 96 retrieval) subject-averaged HRf time courses was manually 

classified by a single observer (SH) as being (1) BOLD-like activations, (2) BOLD-like 
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deactivations, or (3) noise. The following rules, developed based on previously published 

neurovascular coupling literature (Glover, 1999; Goutte et al., 2000; Lindquist et al., 2009; 

Logothetis et al., 2001; Shmuel et al., 2006), were used to perform this HRf labeling: 

1. The reconstructed response must be non-linear with an initial increase (or decrease for 

deactivation) in signal, followed by a peak (or trough for deactivation) with a 

subsequent return to the baseline. The informed basis set, which was used to estimate 

HRfs in this study, enforces the zero baseline prior to the stimulus onset and ≈16 s after 

the stimulus onset. HRfs showing consistent increases or decreases in activity were 

classified as noise.  

2. At least one clear positive or negative peak is present. The time gap between the 

stimulus onset and the HRf peak (or trough) must be at least 3.5 s (≈2nd poststimulus TR 

in our study). Whether the HRf activity was sustained (i.e., a plateau) or peaked and 

quickly returned to the zero baseline was irrelevant for classification purposes. 

3. For BOLD classification, the absolute (relative to the zero baseline) value of the largest 

peak/trough is greater than the absolute (relative to the zero baseline) value of signal 

amplitude at the first poststimulus TR; noise classification otherwise.  

4. (a) If multiple peaks were present, (b) instances when all peaks & troughs were only 

positive or only negative were classified as BOLD activations or deactivations, 

respectively. (c) For ambiguous cases with two opposing peaks (i.e., one activation and 

one deactivation), only HRf cases when the absolute value (relative to the zero baseline) 

of the larger peak was twice as large as the absolute value (relative to the zero baseline) 

of the smaller peak were retained (i.e., noise otherwise, as a consequence of poor signal-

to-noise ratio), and activation/deactivation labels were assigned in accordance with the 

sign of the greatest (i.e., dominant) peak/trough.  

5. Classify BOLD-like (i.e., remaining) HRfs as activation or deactivation. For activation, 

the largest HRf peak must be above the HRf amplitude at the first poststimulus TR. For 

deactivation, the strongest BOLD deactivation must be below the HRf amplitude at the 

first poststimulus TR.  

An algorithmic diagram providing step-by-step instructions on how to classify HRfs using 

these rules, along with accompanying examples, is available in Fig. 4.4.  
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Fig. 4.4. Step-by-step algorithmic instructions on how to manually classify an ROI’s HRf as activation, deactivation, or 
noise. 
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 Intra-rater and inter-rater classification agreement was assessed by reclassifying 40 

randomly chosen HRfs into positive BOLD, negative BOLD, or noise at a one-week interval. Intra-

rater reclassification produced the same labels for all 40 HRfs, while inter-rater classification 

comparison resulted in 97.5% classification agreement between the two raters (SH and NM). Out of 

192 HRfs, approximately 15% were categorized as noise, 5% as BOLD deactivation, and the 

remaining 80% as BOLD activation. All negative BOLD responses were inverted in order to ensure 

that not only activations but also deactivations were considered when estimating the optimal overall 

BOLD response model for the HC formation. Finally, the overall encoding and retrieval HRfs were 

computed by collapsing positive and inverted negative BOLD responses across all HC ROIs and 

memory conditions (i.e., symbol, location, both). Averaging across task conditions reduces the risk 

of overfitting the data, especially when comparing HC activity among different memory trials. 

Similarly, averaging BOLD response across the HC ROIs reduces the risk of overfitting a BOLD 

response model in any particular HC segment, a problem when comparing activity among various 

HC ROIs. Because of differences in task timing, we did not collapse HRfs across the encoding and 

retrieval phases, and as a result, each phase of our memory task had its own empirically-derived 

HRf. Manual labeling of HRfs in our analysis pipeline took approximately 2 h to complete. 

 Next, the SIMPLEX algorithm (Nelder & Mead, 1965) was used to fit double-gamma 

functions (as implemented in the spm_hrf function within SPM12) to the average encoding and 

average retrieval HRfs. During each fitting procedure, six parameters (delay to response, delay of 

undershoot, dispersion of response, dispersion of undershoot, ratio of response to undershoot, and 

onset) were optimized over 20,000 iterations to minimize the root-mean-squared-deviation (RMSD) 

between the double-gamma function and each of the two HRf time courses. These optimized 

double-gamma functions (see Fig. 4.5) were used to model the expected BOLD response for every 

encoding and retrieval event with 2 out of 2 retrieval accuracy. Our data processing steps are 

summarized in flow-chart form in Fig. 4.6. 

Lastly, the MarsBar toolbox for SPM (v. 0.43; http://marsbar.sourceforge.net) was used to 

extract beta parameters for each event of interest and to rescale activity estimates to percent signal 

change units. MarsBar performs ROI-specific scaling, and all rescaled parameters represent signal 

change in relation to the baseline activity. Such scaling procedure is especially relevant to fMRI 

studies of the HC because, as Olman et al. (2009) showed, the anterior HC subfields are more 

vulnerable to susceptibility artifacts than their posterior counterparts. It is worth noting that in 
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addition to scaling, our acquisition parameters and preprocessing procedures were specifically 

designed to minimize susceptibility-related confounds when measuring the HC activity. 

Consequently, tSNR differences among various HC segments in our preprocessed fMRI data were 

less than 15% in most instances (see Table 4.2 for details). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. Fitted BOLD response functions for encoding and retrieval phases of our task, averaged across 
participants. Encoding and retrieval double-gamma functions were optimized to fit the hippocampal BOLD 
response, estimated using Finite Impulse Response and Informed Basis Set models (a.u., arbitrary units). Fitted 
encoding/retrieval parameters were 6.01/11.98 for delay of response, 16.23/12.08 for delay of undershoot, 
2.75/2.06 for dispersion of response, 1.35/2.06 for dispersion of undershoot, 2.19/1.01 for ratio of response to 
undershoot, and 0.69/-0.81 for onset. 
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Fig. 4.6. Schematic of the analysis pipeline. Green boxes represent raw data, and blue boxes represent final inputs into 
hippocampal ROI activity analyses. See methods section for a detailed description of each step. 
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Statistics 

All random-effects analyses were performed in SPSS (v. 22; IBM Inc., Armonk, NY). We 

statistically compared BOLD activity using four separate ANOVA designs: (1) a two-way repeated-

measures ANOVA on total HC activity with participants as a random factor, and Hemisphere (left, 

right) and Condition (symbol, location, both) as fixed factors; (2) a three- way repeated-measures 

ANOVA on total subfields’ activity estimates with participants as the random factor, and ROI 

(CA1-3, DG, Sub), Hemisphere (left, right), and Condition (symbol, location, both) as fixed factors; 

(3) a three-way repeated-measures ANOVA on total subregions’ activity estimates with Total 

Subregions (head, body, tail) as the ROI factor, and otherwise the same design as in (2); (4) four- 

and three-way repeated measures ANOVAs, aimed at comparing activities in the anterior (head) 

and posterior (body + tail) subfields to each other, with Subregion (anterior, posterior), Subfield 

(CA1-3, DG, Sub), Hemisphere (left, right), and Condition (symbol, location, both) as fixed factors, 

and participants as the random factor. ANOVAs were first conducted on the HC activity during 

memory encoding, followed by analyses of memory retrieval, and finally on encoding vs. retrieval 

differences. One-sample t-tests were used to compare the HC signal during memory-related 

processing to the baseline activity (i.e., HC activity while performing the odd/even judgment task). 

Holm–Bonferroni correction for multiple hypothesis testing was used for all post-hoc comparisons 

(whether follow-up ANOVAs or t-tests) and for all tests vs. the odd/even baseline. Only FWE-

corrected p-values are reported in the results section. All parametric results were subsequently 

verified using permutation tests (100,000 shuffles). Since statistical decisions from both approaches 

were identical, we report GLM-based inferences only. 

 

4.3. Results 

Behavior 

Behavioral results showed that participants performed best during the symbol condition  

[M = 95.5%; 95% bias-corrected and accelerated (BCa) bootstrap confidence interval (CI) = 

(93.0%, 97.5%)]. Performance on the more difficult location and association trial types was 79.5% 

[95% BCa bootstrap CI = (74.2%, 84.8%)] and 78.3% [95% BCa bootstrap CI = (73.3%, 83.5%)], 

respectively. We used a one-way repeated-measure ANOVA to compare accuracies across 

conditions, which revealed a significant main effect of Condition [F(2,48) = 28.18, p < .001,  

η2 = 0.540] where performance on the symbol condition was higher than on the location [t(24) = 
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6.05, p < .001, d = 1.21, Mdiff = 16.0%] and association [t(24) = 7.47, p < .001, d = 1.49, Mdiff = 

17.2%] conditions. There was no statistical difference in performance between the location and 

association conditions (p = .67). 

 

Functional MRI: total hippocampus 

During memory encoding, there were no differences in activity between conditions in either 

HC [two-way repeated-measures ANOVA; Condition, F(2,48) = 0.09, p = .91, partial η2 = 0.004; 

Condition × Hemisphere interaction, F(2,48) = 0.78, p = .47, partial η2 = 0.031]. After averaging 

across trial types, both HC showed increased activity (relative to the odd/even baseline) during 

memory encoding [Left: t(24) = 8.00, p < .001; Right: t(24) = 4.30, p < .001], although activity in the 

left HC was marginally greater than that in the right HC [F(1,24) = 3.88, p = .060] (see Fig. 4.7a, 

Table 4.3 for details). 

In contrast to the encoding trials, during memory retrieval, there were condition-related 

differences in HC activity [two-way repeated-measures ANOVA; Condition × Hemisphere 

interaction, F(2,48) = 9.26, p < .001, partial η2 = 0.278]. In the right HC, activity did not differ 

between conditions [F(2,48) = 2.64, p = .092, η2 = 0.099], and after averaging across all trial types, 

was marginally greater than during odd/even judgment making [t(24) = 1.98, p = .059]. However 

within the left HC, we observed condition-related differences in activity [F(2,48) = 5.63, p = .013,  

η2 = 0.190], with location trials showing statistically significant deactivation [t(24) = −3.22, p = 

.011], while activity during item and item-location association trials was not statistically different 

from the odd/even baseline (Table 4.3). Laterality effects were significant only for the Location 

condition [F(1,24) = 30.95, p < .001] (Fig. 4.7b). This Condition × Hemisphere interaction was 

statistically significant in all long-axis segments of the HC formation, and in every subfield  

(all ps < .050), demonstrating consistent preference of the right HC for spatial memory retrieval. 

Both HC were more active during memory encoding than during memory retrieval [left: t(24) 

= 6.52, p < .001; right: t(24) = 2.19, p = .039] (Table 4.3); however, encoding vs. retrieval 

differential in the HC activity was larger in the left hemisphere [t(24) = 2.58, p = .016]. None of the 

condition-related effects for the encoding vs. retrieval contrast reached statistical significance [two-

way repeated-measures ANOVA; Condition, F(2,48) = 0.85, p = .432; Condition × Hemisphere 

interaction, F(2,48) = 2.17, p = .134]. 
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Functional MRI: total hippocampal subfields 

Each of the three-way repeated-measures ANOVAs on the total subfield data revealed a 

significant main effect of Subfield [encoding: F(2,48) = 15.98, p < 10−5, partial η2 = 0.400; retrieval: 

F(2,48) = 13.54, p < .001, partial η2 = 0.361; encoding − retrieval: F(2,48) = 4.38, p = .018, partial  

η2 = 0.154], while all Subfield-related interactions were not statistically significant (all ps > .10). 

Consequently, we collapsed all encoding and all retrieval data across hemispheres and memory 

(item, spatial, associative) trial types. 

Although all HC subfields were active during the encoding trials (see Fig. 4.8a, Table 4.3), 

encoding activity in the DG was larger than in the other two subfields [DG vs. CA1-3: t(24) = 4.51,  

p < .001; DG vs. Sub: t(24) = 5.16, p < .001]. Similar to encoding, the DG was more active than the 

CA1-3 or Sub during memory retrieval [DG vs. CA1-3: t(24) = 5.75, p < .001; DG vs. Sub: t(24) = 

2.91, p = .031]. However, unlike during encoding, the DG was the only subfield to show an increase 

in BOLD activity during memory retrieval, when compared to the odd/even judgment task (see Fig. 

4.8b, Table 4.3). Comparing encoding and retrieval phases to each other revealed that the CA1-3 

and DG subfields were more active during memory formation than during memory retrieval  

[CA1-3: t(24) = 6.54, p < .001; DG: t(24) = 4.34, p < .001], while encoding and retrieval activities in 

the Sub did not differ from each other (p = .112). 

 

Fig. 4.7.  Activity in the total hippocampus during the encoding (a) and retrieval (b) phases of our memory task, 
separated by trial type and hemisphere. Error bars represent the standard error of the mean. *** FWE p < .001.	
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Fig. 4.8.  Activity in the total hippocampal subfields and anterior-posterior subregions during the encoding (a) 
and retrieval (b) phases, collapsed across symbol, location, and association trial types and both hemispheres. The 
bottom row (c) shows the encoding vs. retrieval BOLD activity differential. Abbreviations: CA1-3, Cornu 
Ammonis 1-3; DG, dentate gyrus; Sub, subiculum. Error bars represent the standard error of the mean. See main 
text for statistical comparisons vs. baseline. * FWE p < .05; ** FWE p < .01; *** FWE p < .001. 
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Functional MRI: total hippocampal subregions 

Performing three-way repeated-measures ANOVAs on encoding, retrieval, and encoding vs. 

retrieval data for the total subregions did not reveal any significant Subregion × Condition, 

Subregion × Hemisphere, or Subregion × Condition × Hemisphere interactions (all ps > .10). 

Consequently, as was the case with the total subfields, encoding and retrieval activity estimates for 

the longitudinal subregions were collapsed across both hemispheres and all (i.e., item, spatial, and 

associative memory) trial types. 

One sample t-tests showed that all three HC subregions were active during memory 

encoding [head: t(24) = 3.48, p = .002; body: t(24) = 7.72, p < .001; tail: t(24) = 8.04, p < .001] (see Fig. 

4.8a, Table 4.3). Although our omnibus ANOVA did not reveal any differences among the HC 

subregions during memory encoding [F(2,48) = 2.20, p = .122], prior studies suggest presence of an 

anterior to posterior activity gradient during spatial learning (Colombo et al., 1998; Ryan et al., 

 

 

 
encoding  retrieval                              encoding – retrieval 

   relative to zero             differences    relative to zero          differences    relative to zero          differences 
 

total hippocampus 
    left 
     

    right 

↑ 0.23% [d = 1.60] *** 

 

 

↑ 0.15% [d = 0.86] *** 

  left > right [d = 0.39] ~  ↓ 0.18% [d = 0.64] *  
(location trials only) 
 

↑ 0.05% [d = 0.40] ~ 
 (all trials) 

right > left 
0.25% [d = 1.11] ***  
on location trials only 

   0.26% [d = 1.20] *** 
 
 

  0.10% [d = 0.44] * 

 left > right [d = 0.52] * 

 

bilateral total subfields (transverse axis) 
    CA1-3 
    DG 
    Sub 

↑ 0.16% [d = 1.08] *** 

↑ 0.29% [d = 1.91] *** 
↑ 0.11% [d = 0.64] ** 

  DG > CA1-3 [d = 0.90] *** 
  DG > Sub [d = 1.03] *** 

 ↓ 0.06% [d = 0.47] ~ 
↑ 0.10% [d = 0.93] *** 
↑ 0.02% [d = 0.11], n.s. 

DG > CA1-3 [d = 1.15] *** 
DG > Sub [d = 0.58] * 

   0.22% [d = 1.31] *** 
  0.18% [d = 0.88] *** 
  0.09% [d = 0.40] ~ 

 CA1-3 > Sub [d = 0.55] * 
 DG > Sub [d = 0.55] ~ 

 

bilateral subregions (longitudinal axis) 
    head  
    body 
    tail 

↑ 0.16% [d = 0.70] ** 
↑ 0.21% [d = 1.54] *** 
↑ 0.26% [d = 1.61] *** 

  head < body < tail linear 
  gradient for location trials 
  only (p = .025); no other 
  differences 

 ↓ 0.12% [d = 0.86] *** 
↑ 0.11% [d = 0.78] *** 
↑ 0.18% [d = 1.09] *** 

head < body < tail linear 
gradient, regardless of 
memory type 

   0.27% [d = 1.24] *** 

 

  posterior (i.e. body + tail): 
  0.10% [d = 0.62] * 

 head > body [0.17%, d = 0.74] **  

 head > tail [0.20%, d = 0.54] * 

 

bilateral anterior (i.e., head) subfields 

   CA1-3 
   DG 
   Sub 

↑ 0.15% [d = 0.56] * 
↑ 0.19% [d = 0.69] ** 

↑ 0.15% [d = 0.56] * 

  none  ↓ 0.14% [d = 0.80] ** 
↓ 0.09% [d = 0.46] ~ 
↓ 0.06% [d = 0.32], n.s. 

none    0.29% [d = 1.10] *** 
  0.28% [d = 0.96] *** 

  0.21% [d = 0.66] ** 

 none 

 

bilateral posterior (i.e., body + tail) subfields 

    CA1-3 
    DG 
    Sub 

↑ 0.20% [d = 1.49] *** 
↑ 0.31% [d = 1.85] *** 

↑ 0.09% [d = 0.59] ** 

  DG > CA1-3 [d = 0.53] * 
  DG > Sub [d = 1.13] *** 

  CA1-3 > Sub [d = 0.51] * 

 ↑ 0.06% [d = 0.39] ~ 
↑ 0.18% [d = 1.51] *** 

↑ 0.09% [d = 0.56] * 

DG > CA1-3 [d = 0.76] ** 
DG > Sub [d = 0.54] * 

   0.14% [d = 0.75] ** 
  0.13% [d = 0.57] * 

  0.00% [d = 0.01], n.s. 

DG > Sub [d = 0.58] * 
CA1-3 > Sub [d = 0.52] * 

 

bilateral posterior – bilateral anterior subfields 

    CA1-3 
    DG 
    Sub 

   0.05% [d = 0.16], n.s. 
   0.12% [d = 0.35], n.s. 
– 0.06% [d = 0.18], n.s. 

  none  0.20% [d = 0.92] *** 

0.27% [d = 1.30] *** 
0.15% [d = 0.75] *** 

DG > Sub [d = 0.55] *   – 0.15% [d = 0.48] ~ 
 – 0.15% [d = 0.47] ~ 
 – 0.21% [d = 0.59] * 

none 

 
~  FEW p < .10          * FWE p < .05          ** FWE p < .01           *** FWE p < .001 

Table 4.3  
Summary of main results. 
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2010; Strange et al., 2014; Woollett & Maguire, 2012). To investigate whether our data supported 

presence of such a gradient, we performed a planned linear trend analysis, separately for each 

condition. Results from this analysis were statistically significant only for the location trials  

[F(1,24) = 5.68, p = .025, partial η2 = 0.191, Head < Body < Tail], confirming presence of the anterior 

to posterior gradient in HC activity during spatial learning. 

In contrast to encoding, during memory retrieval the HC activity rose gradually as a function 

of anatomical location along the anterior-posterior axis, regardless of the type of memory being 

retrieved [linear contrast for Symbols: F(1,24) = 18.08, p < .001; linear contrast for Locations:  

F(1,24) = 36.04, p < .001; linear contrast for Both: F(1,24) = 7.37, p = .012]. This pattern was driven by 

BOLD deactivation in the HC head [t(24) = −4.30, p < .001], and activation in the HC body and tail 

[body: t(24) = 3.91, p = .001; tail: t(24) = 5.45, p < .001] (Fig. 4.8b, Table 4.3). Furthermore, direct 

comparisons of subregions’ retrieval activity showed that both posterior subregions were more 

active than the HC head during the retrieval trials [body: t(24) = 7.85, p < 10−6; tail: t(24) = 6.12,  

p < 10−4], while retrieval activities in the body and tail did not differ statistically (p = .124). 

Additionally, encoding vs. retrieval activity differentials were greater in the HC head than in 

the HC body or tail [head vs. body: t(24) = 3.69, p = .005; head vs. tail: t(24) = 3.69, p = .026;  

body vs. tail, p = .737]. Comparing encoding and retrieval activities to each other showed that both 

anterior (i.e., head) and posterior (body together with tail) segments of the HC formation were more 

active during the encoding phase than during the retrieval phase [anterior: t(24) = 6.21, p < .001; 

posterior: t(24) = 3.09, p = .015].  

 

Functional MRI: anterior vs. posterior hippocampal subfields 

Finally, we examined the encoding activity in subfields within the anterior (head) and 

posterior (body together with tail) HC. The posterior HC subfields responded differently during 

memory encoding [F(2,48) = 14.16, p < .001, partial η2 = 0.371], which was not the case in the 

anterior HC (p = .697). Furthermore, all subfields within the posterior HC showed different levels 

of activity [DG vs. CA1-3: t(24) = 2.63, p = .030; DG vs. Sub: t(24) = 5.65, p < .001; CA1-3 vs. Sub: 

t(24) = 2.56, p = .017]. Activities in the anterior and posterior segments of each subfield did not 

differ statistically (all ps > .10), implying that the underlying activity patterns were similar in both 

the anterior and posterior HC, although differences in encoding activity were more pronounced in 

the posterior HC (Fig. 4.9a, Table 4.3). Finally, we compared each anterior/posterior subfield’s 
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encoding activity (collapsed across hemispheres and memory instructions) to the baseline task. 

These tests showed that every subfield in both the anterior and posterior HC was active during the 

encoding phase (all ps < .050) (see Fig. 4.9a, Table 4.3). Consistent with previously described 

results, we did not observe any activity differences related to the trial type (i.e., symbol, location, 

and both) in any of the anterior or posterior subfields (all ps > .10). 

During memory retrieval, all posterior subfields were more active than their anterior 

counterparts [CA1-3: t(24) = 4.62, p < .001; DG: t(24) = 6.49, p < .001; Sub: t(24) = 3.76, p = .003]. In 

congruence with the encoding results, all subfields responded similarly in the anterior (p = .222), 

but not in the posterior HC [F(2,24) = 5.87, p = .010, partial η2 = 0.197] (Fig. 4.9b, Table 4.3). Within 

the posterior HC, retrieval-related activity was statistically larger in the DG than in the CA1-3 or 

Sub [t(24) = 3.82, p = .004; t(24) = 2.72, p = .036, respectively]; however, the CA1-3 retrieval activity 

did not differ from the Sub activity [t(24) = 0.76, p = .456] (Fig. 4.9b, Table 4.3). Examining the 

posterior HC subfields separately revealed that all subfields were either activated or trended 

towards activation during memory retrieval [CA1-3: t(24) = 1.95, p = .062; DG: t(24) = 7.55, p < .001; 

Sub: t(24) = 2.80, p = .020]. This is in contrast to the anterior HC, which, as we described earlier, 

showed a statistically significant negative BOLD response during memory retrieval (Fig. 4.9b, 

Table 4.3).  

Comparing encoding and retrieval activities to each other (Fig. 4.9c, Table 4.3) showed that 

within the anterior HC, every subfield was more active during memory encoding than during 

memory retrieval [CA1-3: t(24) = 5.49, p < .001; DG: t(24) = 4.82, p < .001; Sub: t(24) = 3.30, p = 

.009]. Within the posterior HC, encoding vs. retrieval contrasts were significant for the CA1-3 [t(24) 

= 3.77, p = .004] and DG [t(24) = 2.86, p = .017], but not for the Sub (p = .969). Finally, for every 

subfield, encoding vs. retrieval activity differences were larger in the anterior HC than in the 

posterior HC [CA1-3: t(24) = 2.38, p = .050; DG: t(24) = 2.34, p = .028; Sub: t(24) = 2.94, p = .022], 

and these anterior-posterior differences in encoding vs. retrieval activity were similar in all 

subfields [p = .668] (Fig. 4.9c, Table 4.3).  
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Fig. 4.9.  Estimated BOLD activity in the anterior (i.e., head) and posterior (i.e., body + tail) hippocampal subfields 
during memory encoding (a) and retrieval (b), collapsed across symbol, location, and association trial types and both 
hemispheres. The bottom panel (c) shows the encoding vs. retrieval BOLD activity differential for the anterior and 
posterior sections of all hippocampal subfields (CA1-3, Cornu Ammonis 1-3; DG, dentate gyrus; Sub, subiculum). 
Error bars represent the standard error of the mean. Only comparisons among subfields within, but not across, the 
anterior and posterior HC segments are shown. See main text for statistical comparisons between the anterior and 
posterior segments of each subfield, and for statistical comparisons vs. baseline.  
* FWE p < .05; ** FWE p < .01; *** FWE p < .001. 
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4.4. Discussion 

To our knowledge, this is the first fMRI study to examine how anterior-posterior HC 

subregions and cross-sectional subfields are involved in the encoding and retrieval of item, spatial, 

and associative memories across the entire HC structure. Four major patterns emerged from our 

results. First, although all HC subregions and all subfields (in both the anterior and posterior HC) 

were active during memory encoding, during memory retrieval we observed an anterior-to-posterior 

gradient in HC activity that was independent of the type of memory being retrieved. This gradient 

was characterized by above-baseline activity in the posterior HC (HC body and tail) and below-

baseline activity in the anterior HC (HC head). Second, we observed larger activity in the DG 

subfield than in the CA1-3 or Sub during both encoding and retrieval. Third, although our paradigm 

employed an explicit set of instructions aimed at priming attention to specific aspects of a stimulus, 

those instructions had minimal effects on the HC activity during memory encoding. Fourth, 

encoding vs. retrieval activity differences were larger in the anterior HC for all subfields, suggesting 

that the aforementioned anterior-posterior differences in HC function are likely subfield-

independent. Finally, to our best knowledge, this is the first study to adapt the ‘Designs’ subtest 

from the WMS-IV to an fMRI paradigm, and our results provide insight into how the WMS-IV 

‘Designs’ subtest relates to HC function. 

Previous literature demonstrated that the HC formation plays a crucial role in item-location 

memory (Allen et al., 2014; Smith and Milner, 1981; Watson et al., 2013). However, whether 

different types of memory rely on the HC to a similar extent is still a matter of scientific debate. 

There is evidence from fMRI and patient studies showing that memory for relations can be 

distinguished from memory for spatial information (Eichenbaum, 2017; Eichenbaum & Cohen, 

2014; Kumaran & Maguire, 2005; Lisman et al., 2017; Nadel et al., 2012), and from memory for 

items themselves (Caplan & Madan, 2016; Konkel et al., 2008; Madan et al., 2017). Here, we 

employed an fMRI paradigm, based on the ‘Designs’ subtest from the WMS-IV, to perform direct 

comparisons of the HC activity during encoding and retrieval of item, spatial, and associative 

memories. 

Despite the widespread clinical use of the WMS-IV, little research has been done on the 

‘Designs’ subtest (Martin & Schroeder, 2014), and especially on how it relates to brain function. 

Studies have shown that this task assesses visual attention and visual memory, and shares common 

factor loadings with tests of visual reproduction (Hoelzle et al., 2011; Holdnack et al., 2011). The 
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‘Designs’ subtest itself is a modification of the ‘Memory for Designs’ subtest found in the 

Developmental Neuropsychological Assessment, second edition (NEPSY-II), a neuropsychological 

battery commonly used in pediatric studies (Brooks et al., 2009, 2010). Those studies have shown 

that performance on ‘Memory for Designs’ shares little variance with other NEPSY-II tests of 

visual memory, such as ‘Memory for Faces’ and ‘Memory for Names’ (Brooks et al., 2010), 

suggesting that at least in children this task relies on a different set of cognitive processes than face 

recognition or formation of visual-auditory associations. 

Although this is the first fMRI adaptation of the ‘Designs’ subtest, our paradigm has much 

in common with item-location memory tasks (Horecka et al., 2018; Kessels et al., 2002; Owen et 

al., 1996; Postma et al., 2008; Smith & Milner, 1981), except for one major difference: we used 

abstract images instead of pictures of everyday objects or faces. In general, abstract images are 

more suitable for studying item memory because participants are less able to use pre-existing 

semantic knowledge and associations to support the task-specific episodic memory, and thus, 

contaminate the test of item memory itself. Other researchers (e.g., Konkel et al., 2008) have also 

used highly abstract novel objects in their tests of item and relational memory for very similar 

reasons. 

Despite the fact that most fMRI studies focused on one type of information at a time, several 

fMRI and neuropsychological studies attempted to compare the HC role in processing of spatial vs. 

non-spatial memories (Horecka et al., 2018; Konkel et al., 2008; Kumaran & Maguire, 2005; Ryan 

et al., 2010). For example, Kumaran & Maguire (2005) reported that BOLD activity in the HC 

formation was correlated with spatial-relational, but not social-relational memory. The authors also 

reported that neither the spatial nor the relational processing alone was sufficient to activate the HC, 

but that the combination of those two factors was crucial for the HC engagement. Another research 

group (Ryan et al., 2010) used a within-subject design to separate spatial and non-spatial relations 

from episodic and semantic memory during memory retrieval. In agreement with the cognitive map 

theory (O'Keefe & Nadel, 1978), spatial relations (collapsed across episodic-spatial, semantic-

spatial-old and semantic-spatial-new) engaged the HC to a greater degree than non-spatial relations, 

while no voxels showed the opposite pattern (nonspatial > spatial). In contrast, a study by Konkel et 

al. (2008) demonstrated that amnesic patients, with HC-specific damage, were impaired not only on 

all tests of relational memory, including spatial, associative, and sequential, but also on tests of item 

memory, although the performance on the former was more affected than the performance on the 
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latter (Konkel et al., 2008). Our results also suggest the domain-agnostic nature of HC function, 

especially during memory encoding. 

Even though we did not detect any condition-related differences within any of our HC ROIs, 

we observed global laterality effects for the retrieval of spatial memories. These results are in 

agreement with studies of MTL patients, which showed that memories for spatial relationships are 

particularly susceptible to right, but not left, HC damage (Kessels et al., 2002; van Asselen et al., 

2008). Our work builds on those previous findings by demonstrating that left vs. right HC 

differences were present in all HC subfields, in both the anterior and posterior HC segments. 

However, our results showed that these hemispheric effects were present only during the retrieval 

phase, and only for spatial memory. This further extends our knowledge of encoding/retrieval 

differences in HC function, particularly as they related to spatial tasks. 

In addition to comparing different memory components, our design enabled us to examine 

both longitudinal and cross-sectional properties of the HC architecture. Anatomical connectivity 

studies showed that splitting the HC into just two (i.e., anterior and posterior sections) sections 

might lead to oversimplified models of its function (Small, 2002; Strange et al., 2014). Such 

anterior/posterior subdivisions often do not correspond to anatomical properties of the HC; instead, 

the HC (or the entire MTL) is split into two or three long-axis segments of approximately equal 

length (Ranganath & Ritchey, 2012; Small, 2002). In contrast, when the HC was subdivided in 

accordance with anatomical properties, all three subregions (i.e., head, body, and tail) showed 

different patterns of connectivity (Ranganath & Ritchey, 2012), different subfield compositions 

(Malykhin et al., 2010, 2017), and unique roles in episodic memory (Chen et al., 2010; DeMaster et 

al., 2014; Evensmoen et al., 2013; Spalletta et al., 2016; Travis et al., 2014; de Vanssay-Maigne et 

al., 2011). Our results showed that the level of activity in the HC body was somewhere between that 

of the head and that of the tail, suggesting that anterior-posterior differences might be organized 

along a gradient rather than being a simple dichotomy. These observations are consistent with a 

recent meta-analysis by Kim (2015) as well as theoretical framework outlined by Poppenk et al. 

(2013): both emphasize that the anterior versus posterior functional specialization is a relative 

difference, not a sharp dichotomy. 

It has been suggested that the anterior and posterior HC are specialized for encoding and 

retrieval, respectively (Kim, 2015; Lepage et al., 1998; Schacter & Wagner, 1999; Spaniol et al., 

2009); however, experiments by Greicius et al. (2003) and Schacter et al. (1999) reported encoding-
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related activity in both the anterior and posterior segments of the HC formation. One major 

limitation of most standard-resolution studies of HC function is a high degree of smoothness among 

activation clusters, which in the anterior HC can bleed into the amygdala nuclei, and in the posterior 

HC tend to overlap with the nearby MTL cortices. Since we did not smooth our data and used 

manual segmentation to define each anterior-posterior subregion in native space, we were able to 

isolate the HC formation from surrounding MTL structures. Our results agree with both of the 

aforementioned arguments because (1) all 3 HC subregions were active (relative to the odd/even 

baseline) during memory encoding, and (2) the encoding vs. retrieval activity differential was larger 

in the HC head than in the HC body or tail. However, it remains to be determined whether the HC 

subregions perform similar functions in memory encoding or whether they encode different aspects 

of a stimulus. The latter view is partially supported by our results from spatial trials, for which we 

observed an anterior to posterior gradient in BOLD activation. Similar anteroposterior differentials 

in HC activity for spatial memory have been reported in primates (Colombo et al., 1998), while 

human imaging studies reported (1) greater activity in the right posterior HC during tasks with a 

spatial memory component (Banks et al., 2012; Hoscheidt et al., 2010; Ryan et al., 2010), and (2) 

enlargement of the posterior HC in London taxi drivers with expert knowledge of the city (Maguire 

et al., 2000, 2003; Woollett et al., 2009; Woollett & Maguire, 2011). Interestingly, London taxi 

drivers eventually experience a loss of gray matter volume in the anterior HC, and as years on the 

road increase, become less proficient on memory tasks requiring formation of novel object-location 

associations (Woollett & Maguire, 2009, 2012). Presumably, this is a consequence of heavy 

reliance on memory retrieval processes during daily work-related activities. As demonstrated by our 

results, retrieval of all types of memories engages the posterior HC, while metabolic demands on 

the HC head during memory retrieval were less than those required to perform the baseline 

odd/even judgment task. 

In recent years interest has shifted towards studying the functional role of HC subfields in 

episodic memory (e.g., Azab et al., 2014; Bakker et al., 2008; Chen et al., 2011; Copara et al., 2014; 

Das et al., 2011; Eldridge et al., 2005; Preston et al., 2010; Reagh et al., 2014; Suthana et al., 2011, 

2015; Yassa et al., 2011; Zeineh et al., 2003) with much of this work aimed at elucidating neural 

correlates of pattern separation and pattern completion processes (Bakker et al., 2008; Duncan et al., 

2012; Lacy et al., 2011; Yassa & Stark, 2011). Both animal and computational literature (Hasselmo 

et al., 1995; Lisman & Grace, 2005; Meeter et al., 2004; Norman & O'Reilly, 2003; Vinogradova, 
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2001) suggest that the HC is a dynamic system, continuously shifting between integration and 

discriminations states in response to task demands. Recent high-resolution fMRI (Azab et al., 2014; 

Bakker et al., 2008; Berron et al., 2016; Duncan et al., 2012; Lacy et al., 2011) and patient work 

(Baker et al., 2016) confirmed the DG (or DG/CA3) role in pattern separation. However, unlike our 

task, most pattern separation/completion studies employed incidental (as opposed to explicit) 

encoding paradigms and studied HC processes responsible for laying down separate memory traces 

from similar perceptual inputs. Interestingly, these studies indicate that the DG/CA3 subfield acts as 

universal pattern separator (Azab et al., 2014; Bakker et al., 2008; Copara et al., 2014; Lacy et al., 

2011), meaning that its basic role of laying down distinct memory traces from overlapping 

information is similar for item, spatial, and temporal information. Although our task did not employ 

incidental learning and was not designed to study integration/discrimination states, we also 

observed similar activity for all types of learning in every subfield. 

In addition to pattern separation/completion studies, the DG/CA3 subfield demonstrated 

involvement in memory tasks with a spatial component: it showed robust activity to specific spatial 

cues in overlapping navigational environments (Brown et al., 2014), sensitivity to changes in 

spatial–contextual input (Stokes et al., 2015), and was activated during retrieval of both spatial and 

temporal information (Copara et al., 2014). In contrast, Zeidman & Maguire (2016) implicated the 

anterior presubiculum and parasubiculum in tasks involving the construction and recall of scenes. 

However, Kyle et al. (2015) found that retrieving information regarding spatial or temporal 

proximity of elements within spatial or temporal context resulted in similar patterns of activity 

spanning multiple HC subfields. 

From previous research on explicit associative memory a general pattern of subfield 

specialization emerges: preferential role of the DG/CA23 in encoding processes and subiculum in 

retrieval processes (Eldridge et al., 2005; Suthana et al., 2015; Zeineh et al., 2003). A similar 

pattern was also reported in a task employing spatial learning using navigation-like video clips 

(Suthana et al., 2011). However, no direct comparisons of the HC subfields’ activity during 

different types of learning were carried out since paradigms studying spatial and associative 

memories were acquired on different subjects, using different baseline tasks, and sometimes even 

different MRI systems. Furthermore, because of technical limitations, some of those studies did not 

segment the most anterior and the most posterior segments of the HC structure (e.g., Chen et al., 

2011; Eldridge et al., 2005; Suthana et al., 2011; Zeineh et al., 2003). Our results filled the gap in 
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this literature by: (1) showing that all three subfields were active during memory encoding, 

regardless of which memory domain was involved, and (2) further demonstrating that task-related 

signal changes in the CA1-3 and Sub were half the magnitude of those in the DG. Even during the 

retrieval phase, our results implicate greater involvement of the DG, as opposed to the CA1-3 or 

Sub. In contrast to the results reported by Eldridge et al. (2005), Suthana et al. (2015), and Zeineh et 

al. (2003), we did not observe total Sub activation during memory retrieval. Differences among 

studies of Sub function can be partially attributed to differences in subfield segmentation protocols 

used by different research groups (Malykhin et al., 2017; Yushkevich et al., 2015a). Studies, which 

reported increased Sub activity during memory retrieval, generally included the presubiculum and 

parasubiculum within their Sub ROIs, while our segmentation protocol was designed to isolate the 

Sub proper. Consequently, it is plausible that presubiculum and parasubiculum are more active than 

the Sub proper during memory retrieval. Lastly, our results showed that the encoding vs. retrieval 

activity differences were larger in the anterior HC in every subfield, suggesting that such anterior-

posterior differences in HC function are subfield-independent. Further work is needed to explain 

why this is the case. 

At the cellular level, encoding/retrieval differences in subfield function could be driven by 

their connectivity profiles. During encoding, most models emphasize sequential steps of 

information processing within the trisynaptic circuit: from the entorhinal cortex (EC) to the DG, 

then via the CA3 to the CA1, with final outputs to the Sub, EC and parahippocampal regions (Jones 

& McHugh, 2011). However, new memories can also be rapidly encoded in the CA1 subfield 

through direct projections from the EC to the CA1, and CA2 subfields (Jones & McHugh, 2011). In 

contrast, during memory retrieval information does not flow directly from the EC to the CA1-2, and 

instead passes through the DG or CA3 subfields first (Jones & McHugh, 2011). This emphasizes 

the importance of the DG and CA3 for both encoding and retrieval of episodic memories, whilst 

inputs to the CA1-2 vary between those two states. Despite the fact that both the CA1 and Sub serve 

as the major output regions of the HC (O'Mara, 2006), Sub involvement in encoding processes is 

less clear. 

To our best knowledge, there is only one study to date (Reagh et al., 2014), which clearly 

demonstrated subfield-specific long-axis differences in HC function in relationship to memory. In 

that study, the anterior (mostly head) DG/CA3 region displayed repetition suppression effects, 

while the posterior (mostly body and tail) DG/CA3 showed activity enhancement for previously 
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studied highly familiar scenes, such as Mona Lisa, Eiffel Tower, and Taj Mahal. Although no 

explicit memory tests were carried out, it is plausible that neural correlates of individual stimuli 

were reinstated in the posterior DG/CA3. Recent work by Tompary et al. (2016) suggests that 

successful memory retrieval is driven by the reinstatement of encoding-related activity within the 

CA1 subfield, although the CA23DG region showed a similar trend. Whether the anterior or 

posterior segments of the HC subfields are the main drivers of pattern reinstatement is largely 

unknown. Based on our results, we think that the posterior DG is particularly important for memory 

reinstatement, although we were not able to test this hypothesis directly due to the insufficient 

number of forgotten trials. Together with the work done by Reagh et al. (2014), our results 

demonstrate the importance of considering both the anterior-posterior and the transverse axis 

properties of the HC architecture, when carrying out studies of HC function. In light of recent 

evidence that the anterior, but not posterior, Sub plays an important role in basic scene 

discrimination (Hodgetts et al., 2017), it is advisable to account for the longitudinal differences in 

subfield function even in tasks other than memory. 

In addition to providing insight into how the HC anatomy relates to memory processes, our 

analysis methodology suggests that retrieval- and encoding-related changes in neural firing within 

the HC occur on a sub-TR scale. As seen in Fig. 4.5, encoding-related BOLD in the HC peaked  

4–5 s after trial onset (on average), and retrieval-related BOLD response peaked 6–7 s after the trial 

onset (on average), indicating relatively short-lasting changes in the HC activity evoked by memory 

processes. This further highlights the importance of estimating hemodynamic response in each brain 

region individually, separately for each task. Assuming constant increase/decrease in neural firing 

rate for the entire trial duration (e.g., for 10 s during encoding in our design) is likely to result in 

inaccurate assumptions about neural and vascular properties in different brain regions. Recent work 

by Nauer et al. (2015) pointed out similar pitfalls in assuming sustained HC firing, which produced 

surprisingly poor models of the HC BOLD response. 

 

Limitations and future directions 

Except for hemispheric differences during the retrieval phase, we did not find any statistical 

differences between item, spatial, and associative memories. Consistent with our observations, a 

number of other studies, comparing different memory domains, also reported a lack of difference in 

HC activity for different types of memory (Azab et al., 2014; Ekstrom et al., 2011) and similar 
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subfield activity patterns were reported in a variety of memory tasks (Suthana et al., 2009, 2011; 

Eldridge et al., 2005; Zeineh et al., 2003). However, it should be noted that whenever a study with a 

modest sample size fails to find statistical differences, the issue of statistical power comes to mind 

(Button et al., 2013). Although our study employed a larger sample size than many recent fMRI 

studies of the HC subfields (e.g., Aly & Turk-Browne, 2016; Azab et al., 2014; Copara et al., 2014; 

Duncan et al., 2012; Reagh et al., 2014; Suthana et al., 2015; Stokes et al., 2015; Tompary et al., 

2016; all with sample sizes in the range of 14–22 participants), it is plausible that a larger number of 

trials per condition and/or a larger number of subjects is required to detect relatively subtle 

differences in subfield activity, particularly when comparing HC activity during encoding/retrieval 

of different types of memory. Alternatively, multivoxel classification techniques might be able to 

detect differences in patterns of activity within subfields for different types of memory. However, 

this also requires a greater number of trials than were feasible in the current study. Furthermore, our 

study sample consisted primarily of younger adults (mostly undergraduate and graduate students, 

20–33 years of age) and future studies will need to investigate the extent to which our findings are 

relevant to individuals from different populations. For instance, in our recent aging study (Malykhin 

et al., 2017) we demonstrated that subfields within the HC body are particularly vulnerable to age-

related atrophy, while subfields within the HC head and tail showed minor if any, age-related 

effects. It is currently unclear whether those structural changes contribute to changes in BOLD 

activity within various HC subregions and subfields and if so, whether those functional changes can 

explain age effects on performance in visuospatial memory tasks. 

On the technical side, some limitations related to our data and segmentation protocol must 

be pointed out. Although there were no differences in head motion between symbol, location, and 

both trial types, our participants were more likely to move during memory encoding than during 

memory retrieval, regardless of memory condition. During the encoding phase, on average 1.8 out 

of 12 trials per condition were affected, while 1.1 out of 12 trials per condition were affected during 

the retrieval phase. However, considering strict scrubbing thresholds and extensive denoising 

procedures that we employed during our preprocessing, it is unlikely that these differences in head 

motion played a consequential role in our encoding vs. retrieval tests. 

Furthermore, because of methodological constraints, we were unable to study activity in the 

individual CA subfields. According to post-mortem work (Adler et al., 2014; Rössler et al., 2002; 

Simić et al., 1997), the CA23 segment takes up 6–10% of the total HC volume. Recent attempts at 
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segmenting the CA1, CA2, and CA3 on structural MRI reported similar proportions (Goubran et al., 

2013; Iglesias et al., 2015; Winterburn et al., 2013; Wisse et al., 2012; Yushkevich et al., 2015b), 

and a recent 7 T study by Suthana et al. (2015) attempted to compare encoding and retrieval 

activities in each individual CA subfield. Those results showed that the CA3 subfield is particularly 

important for memory encoding. Given spatial resolution limitations of our fMRI data (1.5-mm 

isotropic voxels), the combined CA23 volume is expected to consist of two to three voxels on each 

coronal slice of the HC body, with the CA3 and CA2 subfields being one voxel large on most slices. 

Because of the inherent spatial blur in all fMRI datasets (approximately 2 mm FWHM within the 

HC formation for our fMRI images), partial volume effects, geometric distortions caused by the B0 

inhomogeneities, and imperfections in motion correction by realignment techniques, the anatomical 

validity of one- or two-voxel activity localization would be tenuous at best. Furthermore, since the 

DG/CA3, CA3/CA2, CA2/CA1, and CA1/Sub tissue boundaries are not visible on in vivo ultra-

high-resolution T2-weighted structural MRI even at 7 T (Berron et al., 2016; Suthana et al., 2015; 

Yushkevich et al., 2015a), there are substantial disagreements between various research groups as to 

where those boundaries ought to be placed (see Yushkevich et al., 2015a for protocol comparisons). 

For instance, our CA1/Sub boundary is more lateral than that of some other studies of subfield 

function (Bonnici et al., 2012; Copara et al., 2014; Eldridge et al., 2005; Stokes et al., 2015; 

Suthana et al., 2009, 2011; 2015; Zeineh et al., 2003). Furthermore, some studies included the 

presubiculum and parasubiculum within their Sub ROIs (e.g., Copara et al., 2014; Eldridge et al., 

2005; Stokes et al., 2015; Suthana et al., 2009, 2011; 2015; Zeineh et al., 2003), while others (e.g., 

Bakker et al., 2008; Bonnici et al., 2012; Lacy et al., 2011; Tompary et al., 2016), including this 

study, excluded most of the presubiculum and parasubiculum from their Sub ROIs. As a result, it is 

best to exercise caution when relating results from various laboratories studying HC subfields since 

subfield ROIs, despite similar naming, might, in fact, represent different HC anatomy (Yushkevich 

et al., 2015a). Across 21 subfield segmentation protocols employed by various research groups, 

only the DG/CA4 region within the HC body showed a high degree of agreement. Fortunately, this 

is a well-known issue in the field and efforts at developing a harmonized subfield segmentation 

protocol are underway (Yushkevich et al., 2015a). 

In the present study, we employed a manual classification procedure during our HRf model-

building step. Manual classification and de-noising of fMRI signals following independent 

component analysis (ICA) decompositions is well-documented (Griffanti et al., 2017; Salimi-
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Khorshidi et al., 2014), and although a number of automated component classifiers have been 

developed, visual inspection of each ICA component by an expert rater is still the gold standard in 

the field against which automated techniques are evaluated (Bhaganagarapu et al., 2013; Perlbarg et 

al., 2007; Rummel et al., 2013; Salimi-Khorshidi et al., 2014; Storti et al., 2013; Tohka et al., 2008). 

Similarly, future studies might benefit from developing a fully automated procedure for classifying 

estimated HRfs as activation, deactivation, or noise based on previously established criteria by 

expert raters. However, the development and validation of automated HRf classification procedures 

was not within the primary scope of the current work. Similar to ICA-based techniques, any future 

automated HRf classification would need to be validated/tested against manual classification prior 

to being applied in fMRI research. 

Lastly, although the HC is crucial to memory processes, it is not the only brain structure 

needed for memory formation, maintenance, and retrieval. An extensive body of literature 

implicates the entorhinal, perirhinal, and parahippocampal cortices in memory (Kensinger, 2009; 

Moscovitch et al., 2016; Roy et al., 2017; Squire & Dede, 2015; Small, 2002; Spaniol et al., 2009; 

Tompary et al., 2016). Consequently, further work is needed to investigate the role that other brain 

regions perform in ‘Designs’-like tests of visuospatial memory. Furthermore, even though our 

current study focused on memory formation and retrieval, the HC performs important functions in 

stress response, contextual fear conditioning, decision making, imagination, and even perceptual 

discrimination (Bannerman et al., 2003, 2004; 2014; Lee et al., 2005; Murray et al., 2007; O'Neil et 

al., 2015; Pentkowski et al., 2006; Suzuki & Baxter, 2009; Zeidman & Maguire, 2016). How the 

HC subfields within particular longitudinal segments relate to cognitive processes other than 

episodic memory is largely unexplored (but see, Hodgetts et al., 2017; Leal et al., 2017; Zeidman et 

al., 2015 for recent attempts). 

 

4.5 Conclusion 

We used anatomical landmarks to extract BOLD activity from the HC transverse subfields 

and longitudinal subregions and examined the role that both axes play in memory formation and 

memory retrieval. Our results showed that all subfields in the anterior and posterior segments of the 

HC formation were active during the encoding phase, whilst during memory retrieval, we observed 

an anterior to posterior gradient in HC activity. Our findings also confirmed presence of an anterior 

to posterior gradient in HC activity during spatial learning. The DG was more active than the  
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CA1-3 or Sub during both encoding and recall. Furthermore, our results suggest that metabolic 

demands on the HC subfields and subregions are similar for item, spatial, and relational memories, 

especially during the encoding phase. Lastly, our results provide insight into how the WMS-IV 

‘Designs’ subtest relates to the HC function. Future high-field high-resolution fMRI studies of 

episodic memory will allow researchers to further understand the structure–function relationship of 

the human HC and its complex anatomy. 
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Chapter 5: Investigating Effecs of Healthy Cognitive Aging on 

Brain Functional Connectivity Using 4.7 T Resting-State fMRI 
 

5.1. Introduction 

Many cognitive functions decline with age (Buckner, 2004; Grady, 2008, 2012; Fabiani, 

2012; Hedden & Gabrieli, 2004; Reuter-Lorenz & Cappell, 2008; Schneider-Garces et al., 2010; 

Spreng et al., 2010). Although the cognitive neuroscience literature tends to emphasize aging effects 

on high-level cognition, especially memory, task switching, and selective attention (Fabiani, 2012; 

Li et al., 2015; Spreng et al., 2010), laboratory tests of visual perception, facial processing, and 

motor function also revealed a drop in performance with age (Grady et al., 1994; Houx & Jolles, 

1993; Kauranen & Vanharanta, 1996; Mattay et al., 2002). It has been hypothesized that brain 

physiology alterations are responsible for much of the age-related decline in cognitive capacity 

(Buckner, 2004; Grady, 2008, 2012; Reuter-Lorenz & Cappell, 2008; Sperling, 2007; Spreng et al., 

2010). 

 The human brain can be conceptualized as a highly structured network, sometimes termed as 

the connectome of dynamically interacting neuronal communities (Buckner et al., 2013; Power et 

al., 2011; Rubinov & Sporns, 2010; Wig, 2017; Yeo et al., 2011, 2014). The brain’s functional 

architecture is commonly estimated from spontaneous low-frequency blood-oxygen-level-

dependent (BOLD) signal fluctuations, measured during resting-state functional Magnetic 

Resonance Imaging (RS-fMRI) scans (Buckner et al., 2013; Craddock et al., 2013; Smith et al., 

2011; Wig, 2017; Wig et al., 2014). Functional connectivity (FC) studies report 7 to 20 major 

resting-state networks (RSNs) with network topography localized to visual, somatomotor, and 

cognitive regions of the brain (Allen et al., 2011; Christoff et al., 2016; Gordon et al., 2017; 

Laumann et al., 2015; Petersen & Posner, 2012; Power et al., 2011; Raichle & Snyder, 2007; Wig, 

2017; Yeo et al., 2011). Because spatial profiles of many RSNs resemble activation patterns from 

task-based fMRI studies, it has been hypothesized that RSNs represent fundamental units of brain 

organization, which are recruited in various combinations to perform specific tasks (Buckner et al., 

2013; Crossley et al., 2013; Deco & Corbetta, 2011; Smith et al., 2009; Spreng et al., 2010). 

Much of the early work on the relationship between resting-state FC and age was focused on 

intra-network communication in select RSNs, especially the default mode system (e.g., Andrews-
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Hanna et al., 2007; Damoiseaux et al., 2008; Grady et al., 2012; Hampson et al., 2012; Koch et al., 

2010; Onoda et al., 2012; Persson et al., 2014; Sambataro et al., 2010). Those studies revealed an 

age-related loss of functional interaction between the medial frontal and the posterior 

cingulate/retrosplenial cortices (but see, Persson et al., 2014). More recent RS-fMRI studies showed 

that in addition to the default mode network (DMN), age-related reduction in within-system FC is 

also present in brain networks involved in attention, cognitive control, sensory processing, and 

motor function (Allen et al., 2011; Betzel et al., 2014; Grady et al., 2016; Ng et al., 2016; Song et 

al., 2014; Spreng et al., 2016; Zonneveld et al., 2019). In addition, studies that employed graphical 

models to quantify age effects on FC showed that network community structure becomes less 

efficient and less segregated in old age (Cao et al., 2014; Chan et al., 2014; Chong et al., 2019; 

Geerligs et al., 2015; Spreng et al., 2016), with long-range FC being particularly vulnerable 

(Tomasi & Volkow, 2012). 

Despite these advances, the number of studies that examined age differences in functional 

architecture of the entire brain is still relatively small, with most relying on anatomical or functional 

atlases to define their networks (Betzel et al., 2014; Chan et al., 2014; Chong et al., 2019; Fjell et 

al., 2015; Geerligs et al., 2015; Meunier et al., 2009; Song et al., 2014; Wang et al., 2010). 

Unfortunately, it has been shown that connectivity estimates can vary substantially from one atlas to 

another, even when all image preprocessing and data analysis methods are controlled (Cao et al., 

2014). Employing ROIs from a predefined atlas may also fail to capture inter-individual variability 

in brain organization since individual network architecture can deviate, sometimes substantially, 

from an average map (Gordon et al., 2017; Laumann et al., 2015; Mueller et al., 2013). 

Furthermore, most connectomic studies of brain aging used mass univariate correlation methods to 

quantify age effects on the brain’s functional architecture (Andrews-Hanna et al., 2007; Betzel et 

al., 2014; Geerligs et al., 2015; Grady et al., 2016; Han et al., 2018; Meier et al., 2012; Rubinov & 

Sporns, 2010; Zonneveld et al., 2019). Although informative, correlation differences are 

challenging to interpret without additional information about the underlying BOLD signal 

properties (Duff et al., 2018). In addition to the time series coupling, two other factors are 

responsible for the correlation coefficient strength in all RS-fMRI connectivity comparisons: 

network amplitude and magnitude of background noise (Duff et al., 2018). For this reason, 

examining network amplitude adds another layer of valuable information about the underlying 

neurobiology of aging. It also provides insight into factors that may have caused the observed 
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increases/decreases in correlation-based FC. To date, research on the relationship between age and 

RSN amplitude has been limited. Most RS-fMRI studies of brain aging did not test for age 

differences in network amplitude (e.g., Betzel et al., 2014; Cao et al., 2014; Chan et al., 2014; 

Geerligs et al., 2015; Grady et al., 2016; Meunier et al., 2009; Spreng et al., 2016), while those that 

did focused either on early (up to middle adulthood) or late (50 years of age and older) aging only 

(Allen et al., 2011; Zonneveld et al., 2019). 

Since conclusions from prior RS-fMRI studies of brain aging were limited by correlation-

only methodology, our study’s main goal was to investigate age effects on every primary measure 

of RS-fMRI signal – i.e., network amplitude, network topography, and inter-network 

communication. To adress these research questions, we combined a high-field RS-fMRI acquisition, 

data-driven network decomposition, sparse graphical model estimation, and a sample representing 

the entire adult lifespan. In task-based fMRI experiments, the most prominent activity differences 

between young and old adults are often found in the prefrontal and parietal association cortices 

(Cabeza et al., 2002, 2004; Davis et al., 2008; Grady et al., 1994; Gutchess et al., 2005; Li et al., 

2015; Logan et al., 2002; Persson et al., 2014; Rypma & D’Esposito, 2000; Rajah & D’Esposito, 

2005; Schneider-Garces et al., 2010; Spreng et al., 2010; Sugiura, 2016). Consequently, we were 

also interested in determining whether RSNs mapping onto frontal and parietal association areas are 

more affected by aging than visual, auditory, and somatomotor RSNs.  

Because previous task-based and resting-state fMRI studies reported aging-related 

reductions of BOLD signal power in a variety of cortical areas (Allen et al., 2011; D’Esposito et al., 

1999; Handwerker et al., 2007; Hesselmann et al., 2001; Mehagnoul-Schipper et al., 2002; Riecker 

et al., 2006; Taoka et al., 1998; West et al., 2019; Zonneveld et al., 2019), we predicted a 

widespread decline of BOLD signal amplitude with age across RSNs. According to recent 

boundary-based FC work (Han et al., 2018), network structure does not change drastically with age. 

Consequently, we expected a large degree of architectural stability throughout the adult lifespan. 

Lastly, since previous structural and functional imaging work showed frontal and parietal 

association cortices to be particularly vulnerable to aging processes (Grady et al., 2016; 

Damoiseaux, 2017; Fabiani, 2012; Raz et al., 2005; Sugiura, 2016; Wig, 2017), we expected frontal 

and parietal association networks to display the largest age differences in FC and BOLD signal 

amplitude. 
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5.2. Material and Methods 

 

Participants 

 For this cross-sectional study, we recruited 105 healthy volunteers (45 men, 60 women) 

across the entire adult human lifespan (16 volunteers per decade of life, on average; age range: 18-

85; Table 5.1) through online, newspaper, and poster advertisements. Of those, 78 participants were 

Caucasian (74%), 17 Asian (16%), 7 Latin American (7%), 2 (2%) Persian and 1 Arab (1%) 

Canadians. According to the 20-item Edinburgh Handedness Inventory (Oldfield, 1971), 12 of the 

participants were left-handed [individuals with laterality quotient ≥ +80 were determined as right-

handed]. All participants had no lifetime psychiatric disorders and no reported psychosis or mood 

disorders in first-degree relatives, as assessed by the Anxiety Disorders Interview Schedule—IV 

(Brown et al., 2001; Di Nardo et al., 1994), which assesses for anxiety, affective, and substance use 

disorders. Medical exclusion criteria were defined as those active and inactive medical conditions 

 

   
     AGE GROUP 

Young (N = 43)  Middle (N = 31)  Old (N = 31) 

Age (years) 

     mean ± SD 

     range [min/max]     

 

Sex (males/females) 

Handedness (left/right) 

Smoking history (y/n) 

Elevated blood pressure (y/n) 

Family history of AD (y/n) 

 

Education (years) 

     mean ± SD 

     range [min/max] 

 

MOCA  

     mean ± SD 

     range [min/max]     

 

27.1 ± 5.4 

18/39 

 

18/25 

5/38 

2/41 

0/43 

7/36 

 

 

16.2 ± 1.8 

12/20 

 

 

28.1 ± 1.4 

26/30 

 

 

50.0 ± 5.6 

41/59 

 

13/18 

5/26 

1/30 

1/30 

4/27 

 

 

16.0 ± 2.5 

12/22 

 

 

27.5 ± 1.1 

26/30 

1 

 

70.3 ± 6.7 

61/85 

 

14/17 

2/29 

1/30 

12/19 

6/25 

 

 

15.7 ± 3.0 

11/23 

 

 

27.4 ± 1.3 

26/30 

 

Table 5.1.	
Age-specific demographic information of this study’s participants. Volunteers ≤ 39 years of age were 
classified as young adults; volunteers who were ≥ 60 years were classified as old adults, and those between 40 
and 59 years of age were classified as middle-aged adults. These age splits were consistent with our earlier 
volumetric work (Malykhin et al., 2017).	
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that may interfere with normal cognitive function: cerebrovascular pathology, all tumors or 

congenital malformations of the nervous system, diabetes, multiple sclerosis, Parkinson's disease, 

epilepsy, organic psychosis (other than dementia), schizophrenia, and stroke. Furthermore, 

medications that directly affect cognition, including benzodiazepines, antipsychotics, 

anticholinergic drugs, and antidepressants were also exclusionary. The participants’ demographic 

information is summarized in Table 5.1. 

An in-person interview was conducted to assess each participant’s cognitive abilities. Older 

subjects with mild cognitive impairment (MCI) and dementia were excluded from the study. MCI 

was defined by the presence of cognitive complaints (documented on the AD-8, Galvin et al., 2007) 

with documented impairment on the Montreal Cognitive Assessment (MOCA) test (Nasreddine et 

al., 2005). All of our participants attained MOCA scores between 26 and 30. Dementia was defined 

according to the DSM-IV criteria with Clinical Dementia Rating (CDR) as an additional screening 

tool in older (>50 years of age) participants (Hughes et al., 1982). CDR was used to assess 

functional performance in 6 key areas: memory, orientation, judgment and problem solving, 

community affairs, home and hobbies, and personal care. A composite score from 0 to 3 was 

calculated. All of our participants met the cutoff score of <0.5 for the total CDR score. To screen 

older volunteers for depression, the Geriatric Depression Scale was used (Yesavage et al., 1982). 

Designed to rate depression in the elderly, a score of >5 is suggestive of depression, and a score >10 

is indicative of depression. All of our elderly (>50 years of age) participants had a cutoff score of 4 

and below. Lastly, all older (>50 years of age) participants were assessed for vascular dementia 

with the Hachinski Ischemic Scale (HIS; Hachinski et al., 1975). A score above 7 out of 18 has 89% 

sensitivity. HIS scores of all elderly participants were 3 or lower. Written informed consent was 

obtained from each participant, and the study was approved by the University of Alberta Health 

Research Ethics Board. 

 

Data acquisition 

All images were acquired on a 4.7 T Varian Inova MRI scanner at the Peter S. Allen MR 

Research Centre (University of Alberta, Edmonton, AB) using a single-transmit volume head coil 

(XL Resonance) with a 4-channel receiver coil (Pulseteq). 200 functional volumes were collected 

axially (in parallel to the AC–PC line) using a custom-written T2*-sensitive Gradient Echo Planar 

Imaging (EPI) pulse sequence sensitive to blood oxygenation level-dependent (BOLD) contrast 
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[repetition time (TR): 3000 ms; echo time (TE): 19 ms; flip angle: 90°; field of view (FOV):  

216 × 204 mm2; voxel size: 3 × 3 × 3 mm3; 45 interleaved slices; phase encoding direction: anterior 

to posterior; GRAPPA parallel imaging with acceleration factor 2 (Griswold et al., 2002)]. For the 

resting-state portion of the scan, subjects were instructed to remain still, stay awake, and keep their 

eyes closed. To estimate B0 inhomogeneity, two gradient echo images with different echo times 

were acquired with coverage and resolution matching those of the functional MRI data  

[TR: 500 ms; TE1: 4.52 ms; TE2: 6.53 ms; flip angle: 50°; FOV: 216 × 204 mm2; voxel size:  

3 × 3 × 3 mm3; 45 interleaved slices]. A whole brain T1-weighted 3D Magnetization Prepared Rapid 

Gradient-Echo (MPRAGE) sequence [TR: 8.5 ms; TE: 4.5 ms; inversion time: 300 ms;  

flip angle: 10°; FOV: 256 × 200 × 180 mm3; voxel size: 1 × 1 × 1 mm3] was used to acquire 

anatomical images for tissue segmentation and registration to standard space. 

 

Image preprocessing 

Functional images were processed using SPM12 (Wellcome Trust Centre for Neuroimaging, 

UCL, UK), FSL (Jenkinson et al., 2002; Smith et al., 2004), and ANTS (Avants & Gee, 2004; 

Avants et al., 2008) software packages. Prior to registration, MPRAGE images underwent 

correction for intensity non-uniformity using N3 software (Sled et al., 1998) and SPM12 bias 

correction algorithm. Subsequently, each participant’s structural images were segmented into tissue 

probability maps using SPM12 unified segmentation. 

Functional data were preprocessed with a series of steps commonly used in the field (Fig. 

5.1a). The first four functional volumes of each dataset were discarded to ensure T1-equilibrium. 

SPM12 FieldMap toolbox was used to estimate B0 distortions and to generate voxel displacement 

maps caused by B0 inhomogeneity. The unified ‘realign & unwarp’ function in SPM12 was used to 

correct geometric distortions in fMRI data caused by B0 inhomogeneity and to realign all fMRI 

volumes to the first functional volume (SPM12; Andersson et al., 2001). Following the realignment 

procedure, fMRI images underwent correction for slice acquisition-dependent time shifts. To ensure 

optimal tissue alignment between the anatomical and functional data, fMRI datasets were registered 

to matching T1-weighted anatomical scans using boundary-based registration (FSL; Greve & Fischl, 

2009). To register RS-fMRI data to the MNI template, the SyN algorithm (ANTS; Avants et al., 

2008) was used to compute tissue deformation fields based on T1-weighted structural data. 
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Normalized fMRI datasets were resampled to a 2 × 2 × 2 mm3 voxel size and smoothed with a 6-

mm FWHM Gaussian kernel (SPM12; Wellcome Trust Center for Neuroimaging, UCL, UK). 

 

Manual labeling of subject-level independent components 

We employed Probabilistic Independent Component Analysis with an automated estimation 

of the number of independent components (FSL; Beckmann & Smith, 2004) to remove motion-

related, cardiovascular, and respiratory signals from our RS-fMRI data. ICA-based fMRI denoising 

strategies have two major advantages over scrubbing and spike regression approaches: (1) they 

preserve autocorrelation properties of the RS-fMRI signal, and (2) they are able to capture complex 

interactions between various noise sources (Pruim et al., 2015a). Since no other studies have 

performed noise component labeling on our 4.7 T Varian scanner, we performed manual 

identification of noise components in every subject. Building an automated classifier for ICA-based 

(e.g., FIX classifier; Salimi-Khorshidi et al., 2014) denoising using the current dataset was not 

feasible, as it would have necessitated removing subjects from our sample of 105 individuals to 

train a brand new classifier, reducing the study sample size. 

Consequently, a single rater (SH) labeled all components as (1) potential resting-state 

network or (2) noise based on the criteria outlined in Griffanti et al. (2017). As advised by Pruim et 

al. (2017), only unambiguous noise components were labeled for removal. To this end, spatial 

maps, time-courses, and power spectra of every component were manually inspected. First, eye 

ghosting, scanner noise, cardiovascular, and respiratory components were identified by manual 

inspection. Components labeled as scanner noise were identified by two criteria: (1) majority of 

spatial activation outside the gray matter, and (2) distinct power spectrum pattern, dominated by 

high-frequency spikes – generally above 0.11 Hz – with little to no power represented by lower 

frequencies (i.e., < 0.10 Hz). Cardiovascular and respiratory noise sources were identified based on 

Griffanti et al. (2017) guidelines, while head motion artefacts were identified using Griffanti et al. 

(2017) criteria with the aide of a fully automated head motion component classifier ICA-AROMA 

(Pruim et al., 2015a).  

Inter-rater and intra-rater reliabilities for component classification were performed on 100 

components, chosen semi-randomly from 16 subjects. This reliability set consisted of 50 ‘noise’ and 

50 ‘signal/unclear’ ICs, based on a prior (1 month earlier) classification by SH. The intra-rater 

reliability was assessed by SH, who classified those 100 ICs into ‘remove’/‘retain’ categories twice, 
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with a 2-week interval between each classification. The ‘remove’/‘retain’ inter-rater reliability was 

assessed by two independent analysts – SH and NVM. Intra-rater and inter-rater Dice Similarity 

Coefficients (DSCs) for ‘remove’/‘retain’ categories were 0.93/0.93 and 0.92/0.91, respectively. 

Thus, our manual component labelling showed a high degree of consistency, with more than 9 out 

of 10 ICs receiving identical labels in intra-observer and inter-observer evaluations. 

 

 

Fig. 5.1. Overview of image processing pipeline. (a) preprocessing of structural and functional data prior to group ICA 
decomposition; (b) fMRI decomposition into constituent signal sources using group ICA; (c) postprocessing of network 
time courses; (d) postprocessing of network spatial maps. Green, pipeline input; cyan, pipeline output. Outputs of panels 
(c) and (d) were used to study brain aging. 
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Eye ghosting and dominant head motion artefacts (e.g., global signal drifts with spatial maps 

localized exclusively to the skull) were removed using ‘aggressive’ option in fsl_regfilt, while all 

other artefacts were removed using ‘soft’ regression option in fsl_regfilt (Beckmann & Smith, 2004; 

Griffanti et al., 2014). Griffanti et al. (2014) demonstrated that ‘soft’ regression produces a good 

data cleanup without sacrificing network signals. Consequently, this was our primary approach for 

noise removal.  

Lastly, prior to running the group ICA decomposition, each subject’s denoised RS-fMRI 

dataset was intensity-normalized (Fig. 5.1a). Intensity normalization has been previously shown to 

improve the test-retest reliability of group-level ICA decompositions (Allen et al., 2010). It also 

ensures that resting-state BOLD signal fluctuations in every subject are scaled to % signal change 

units. 

 

Group independent component analysis 

Recent FC studies revealed that there are multiple regions in the human brain that participate 

in more than one RSN, primarily in the frontal and parietal association cortices  (Liao et al., 2017; 

Mueller et al., 2013; Yeo et al., 2014). Group ICA (GICA; Calhoun et al., 2001) with a newer 

generation of subject-level reconstruction techniques can capture many of these FC complexities 

(Allen et al., 2012; Du et al., 2017; Yeo et al., 2014), while also foregoing the need to make 

somewhat arbitrary choices about which seeds/atlases one ought to use in connectivity comparisons. 

Here, we used the GIFT toolbox for MATLAB to perform group-level data-driven network 

decomposition (Calhoun et al., 2001; http://icatb.sourceforge.net/groupica.htm). Below we outline 

detailed choices of the parameters we used in our decompositions (see Fig. 5.1b for flow-chart 

form). 

Because our data underwent substantial noise cleansing at the individual level, resulting in 

reduced source dimensionality, we chose not to set the ICA model order based on previously 

published literature. Instead, we estimated model order by running the Infomax ICA algorithm (Bell 

& Sejnowski, 1995) 200 times in ICASSO (http://www.cis.hut.fi/projects/ica/icasso). This approach 

renders Independent Component estimation insensitive to initial search parameters of the ICA 

algorithm, and directly estimates component reliability for each model order (Himberg et al., 2004). 

The ICASSO implementation in the GIFT toolbox provides quality estimates for all component 

clusters via the intra-cluster and extra-cluster similarity index, Iq. Our goal was to find the ICA 
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model order such that Iq for all component clusters was 0.80 or higher, which resulted in 49 

components. The initial subject-specific principal component analysis (PCA) retained 95 principal 

components (PCs) using standard decomposition. On average, 95 PCs explained 92.3% (range: 

87.7-99.7, SD = 1.99) of variance in each preprocessed subject-specific fMRI dataset, while 

providing some data compression to reduce the computational demands. We used group-

information guided ICA (GIG-ICA; Du & Fan, 2013), which uses group-level ICs to guide subject-

level ICA, for computing subject-level ICs and time courses (Fig. 5.1b). Inter-individual differences 

in network structure exist (Gordon et al., 2017; Laumann et al., 2015), and GIG-ICA is better 

positioned to capture those inter-individidual differences than back-reconstruction or dual 

regression (Du et al., 2016). 

Group-level RSN ICs were identified by two viewers (SH and NVM) who manually 

inspected the aggregate spatial maps and power spectra. Specifically, when evaluating the average 

power spectra, two well-established metrics were used: (1) dynamic range, and (2) low frequency to 

high-frequency power ratio [for details see, Allen et al. (2011) and Robinson et al. (2009)]. We 

employed a relatively conservative labelling scheme, whereby only components resembling 

previously-identified networks (Allen et al., 2011; Power et al., 2011; Yeo et al., 2011) were 

classified as RSNs. Given our set of criteria, we successfully identified 21 RSN ICs [subsequently 

termed (network) components or simply RSNs]. 

Subject-specific network time courses were detrended (involving removal of the mean, 

slope, and period π and 2π sines and cosines over each time course) using the multi-taper approach 

(Mitra & Bokil, 2008) with the time-bandwidth product set to 3 and the number of tapers set to 5 

(Fig. 5.1c). The RSN spatial maps were thresholded to ensure that our analyses were focused on the 

subset of voxels, which are most consistently associated with the network time courses across all 

subjects in our sample (Fig. 5.1d). Thresholding was based on the distribution of voxelwise t-scores 

using a model-based approach outlined in Allen et al. (2011). According to this model, the 

distribution of voxelwise t-statistic scores can be approximated by a linear combination of 1 normal 

and 2 gamma functions (Fig. 5.2). The normal distribution represents network-irrelevant voxels, 

while the two gamma functions represent positive and negative network sources (i.e., areas 

positively and negatively correlated with the network’s time course). Mathematically, this 

relationship is explained by equation 5.1. 
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! ≈ !!!! !!|!!,!! + !!!! !! − !!|!!!,!!! + 1− !!! − !!! ! −!! − !!|!!!,!!!        (5.1) 

 

Values of the six parameters (µc, σc, αc1, βc1, αc2, βc2) were estimated by minimizing the root-mean-

squared-deviation (RMSD) between the modeled and empirical t-statistic distributions using the 

SIMPLEX algorithm (Nelder & Mead, 1965). In order to ensure that the optimal global solution 

was obtained, the optimization algorithm was initiated 15,000 times, each time with a different set 

of randomly chosen values. The most relevant solutions for thresholding purposes are µc and σc 

parameters of the normal distribution, as the normal distribution represents network-irrelevant 

voxels. Here, we thresholded our spatial maps at t ≥ µc + 3σc. We found this threshold to be a good 

compromise between sensitivity and specificity: in all networks, t ≥ µc + 3σc threshold was stricter 

than False Discovery Rate (FDR) q < .05 and stricter than FDR q < .01 in 8 RSNs, while, on 

average, 56% of RSN-related voxels were retained. All subsequent mentions of component 

topography and intra-network connectivity refer to thresholded ICs. 



	 	 106	 	
	 	

 

Since Allen et al. (2012) demonstrated that in the presence of spatial variability, network 

amplitude is best captured as a product of time course standard deviation and peak spatial map 

intensity (here, the average intensity value of the top 1% of IC’s voxels), we used this measure as a 

proxy for RSN amplitude. Because of the pre-ICA intensity normalization, the resulting amplitude 

values were (approximately) in percent signal change units. To ensure that IC spatial maps 

represent only network topography, as opposed to topography + activation, we normalized all RSN 

spatial maps by network amplitude (Allen et al., 2011). Network components were visualized using 

open-source Visualization Toolkit software (VTK; Schroeder et al., 2006). 

 

 

 

Fig. 5.2.  Spatial map thresholding technique. The empirical t-statistic distribution (black) of a network 
component is relatively well described by a mixture of normal (magenta), positive gamma (cyan), and 
negative gamma (green) distributions. Cutoff score of µ + 3σ removes almost all of the noise voxels 
(represented by the normal component), while retaining a large number of positive network-related voxels 
(cyan gamma distribution). See equation 1 for mathematical details. 
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Modeling age relationships for network amplitude 

 To build models for each RSN’s amplitude’s relationship to age, we relied on the fractional 

polynomial [polynomial set: age−2, age−1, age−0.5, ln(age), age1, age2, age3] framework (Royston & 

Altman, 1994; Sauerbrei & Royston, 1999; Sauerbrei et al., 2006). The fractional polynomial (FP) 

technique controls for overfitting by restricting shape complexity if a model with k + 1 powers does 

not produce a statistically better fit than a model with k powers.  

Since the residual normality and residual homoscedasticity assumptions of the OLS 

estimator were violated in our RSN amplitude data (see Table 5.2), we used L1 (i.e., least absolute 

deviation), as opposed to L2 (i.e., least squares), regressions to estimate the aging trajectories. 

Unlike L2 models, which build trajectories to explain the population mean, L1 regressions produce 

fits explaining the population median, and are more robust to heteroscedastic, highly skewed data 

with severe outliers (Dielman, 2005; Lawrence & Shier, 1981; Wimble et al., 2016). Custom-

written MATLAB scripts employing the SIMPLEX algorithm (Nelder & Mead, 1965) were used to 

find optimal L1 solutions for all the least absolute deviation regressions. 

Statistical significance tests were performed sequentially: (1) best-fitting FP2 (i.e., fractional 

polynomial model with 2 age power terms) vs. best-fitting FP1, (2) best-fitting FP1 (i.e., fractional 

polynomial model with 1 non-linear age power term) vs. linear, (3) linear vs. constant. The test 

statistic (equation 5.2) that we used to evaluate all L1 regressions was: 

 

!!"# = ! SARreduced!SARfull
!                                                                                                         (5.2) 

 

where SARreduced and SARfull represent the sum of absolute values of the residuals for the reduced 

and full models, respectively. The denominator parameter τ is the L1 estimate of residual variability 

for the full model (for more details on L1 significance testing see Birkes & Dodge, 1993). To 

estimate FLAD distributions under each null hypothesis, we performed Monte Carlo simulations (Fig. 

5.3), using conceptual framework that is similar to Freedman & Lane’s (1983) permutation tests for 

L2 regressions. Consistent with the Freedman & Lane (1983) approach, we treated our sample’s L1 

regression coefficients as proxies of the true population-level relationship. For each significance 

test, we first estimated L1 residuals for the reduced model. However, rather than permuting those 

residuals (the assumption of residual exchangeability was severely violated in our data; see Table 

5.2), we first split the L1 residuals into 3 age groups: young adult [N = 43; age range: 18-39 years, 



	 	 108	 	
	 	

mean = 27.1 years], middle-aged [N = 31; age range: 41-59 years, mean = 50.0 years], and old adult 

[N = 31; age range: 61-85 years, mean = 70.3 years]. Each age group’s residuals were then used to 

estimate (using MATLAB’s ksdensity function) separate residual distributions for young, middle-

aged, and old adults (see Fig. 5.3 for examples). Those distributions were subsequently bias-

corrected to ensure that the average median of each distribution was centered at 0. In residual 

simulations, if an individual’s age was under 27 years of age, all residuals were randomly sampled 

from the ‘young’ distribution exclusively. Similarly, for every individual above 70 years of age, 

residuals were randomly sampled from the ‘old’ distribution exclusively. For individuals between 

27 and 70 years of age, sampling was performed probabilistically from the two distributions closest 

to a given subject’s age with weights varying as a linear function of age (e.g., residuals for a 60-

year-old had a 50/50 percent chance of being sampled from the ‘middle-aged’ or ‘old’ distribution; 

residuals for a 65-year-old had a 25/75 percent chance of being sampled from the ‘middle-

aged’/‘old’ distribution, respectively). Such probabilistic sampling smoothed out transitions 

between age groups by blending neighbouring residual distributions. Lastly, our simulated residuals 

were added to the previously-estimated null hypothesis (i.e., reduced) model, generating one null 

hypothesis dataset. Each of our FLAD distributions was constructed from 25,000 such simulations 

(see Fig. 5.3 for a flow-chart example of linear vs. FP1 model comparison). System-level Holm–

Bonferroni correction for multiple comparisons was applied for FP-selected vs. null (i.e., constant) 

model comparisons [3 comparisons for the somatomotor system, 4 comparisons for the visual 

system, 1 comparison for the auditory system, 6 comparisons for the default system, 1 comparison 

for the dorsal attention system, 2 comparisons for the executive control system, and 4 comparisons 

for the multi-system/mixed components]. 

 Because of sampling-related uncertainty, model choice in data-driven model selection can 

vary from one dataset to the next. To minimize the effects of model selection uncertainty, we 

performed weighted model averaging for all of our non-linear fits. Model averaging was performed 

on a subset of all plausible regression shapes, up to the last statistically significant FP order. Since 

our RSN amplitude datasets did not satisfy the criteria of theory-driven model averaging, we used 

bootstrap model selection frequencies as proxies for model selection uncertainty (for an overview of 

model averaging see Burnham & Anderson, 2002). Bootstrap model averaging was done iteratively. 

First, a crude model-averaged fit was estimated using paired bootstrap sampling (100 samples). For 

each paired bootstrap sample, the model with the smallest sum of absolute error terms was selected 
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using a repeated (50 times) 20-fold cross-validation. Next, estimates of model selection uncertainty 

were refined by bootstrapping that average fit’s residuals. In order to preserve age-specific residual 

properties (same issues as L1 hypothesis testing), all bootstrap samples of the residuals were 

performed in an age-restricted manner (SD = 3 years, relative to each subject’s age). During this 

refined estimation of model selection uncertainty, 500 bootstrap samples were taken, and the model 

with the smallest sum of absolute error terms was chosen as the best model for each bootstrap 

sample using a repeated (100 times) 20-fold cross-validation. These refined model selection 

frequencies were used to compute the final model averaged fits for all non-linear (i.e., FP1 and FP2) 

models. 

 To verify our L1 regression results, we also performed amplitude comparisons among the 

three major age groups [young: under 40 years (mean age = 27.1 years); middle: 40-59 years (mean 

age = 50.0 years); old: 60 years and older (mean age = 70.3 years)]. A bias-corrected bootstrap test 

for statistical significance (50,000 samples) on the difference of age group medians was used for 

statistical inference. Significance was declared when the FWE 95% bias-corrected accelerated 

(BCa) confidence interval (CI) excluded zero. System-specific (as above) Holm–Bonferroni 

correction for multiple comparisons were carried out sequentially. Initially, we tested the 

significance of group comparisons with the largest amplitude differentials (typically young vs. old) 

among all RSNs of a brain system (e.g., visual, default, somatomotor, etc.). If statistically 

significant, follow-up Holm–Bonferroni-corrected comparisons [3 tests: (1) young vs. middle, (2) 

middle vs. old, and (3) young vs. old] were performed to determine whether network amplitude 

differed in the other age group comparisons.   
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Modeling age relationships for spatial maps 

Permutation-based F-tests (50,000 permutations using FSL’s randomize function with 

threshold-free cluster enhancement option; Smith & Nichols, 2009) were used to test for the 

presence of linear or quadratic relationships to age in component topography. Clusters with 

statistically significant relationships to age were cleaned up by (1) removing all clusters with 

volume smaller than 80 mm3, representing 1-3 native-space voxels, (2) removing all clusters 

dominated (i.e., 50% or more) by white matter (WM) or cerebrospinal fluid (CSF) signal, and (3) 

removing clusters, in which grey matter contribution to the cluster peak (top 30% of voxels with the 

strongest association to age) was less than 50%. All age clusters that survived this cleanup 

procedure were followed up with parametric fractional polynomial regression (RA2 model 

selection; Ambler & Royston, 2001). Similar to RSN amplitude methodology, if non-linearity tests 

were significant, bootstrapping was used to account for model selection uncertainty by building 

model-averaged fits. 

 Finally, because it is well established that cortical grey matter (GM) volume is negatively 

correlated with age (Good et al., 2001; Fjell et al., 2009a; Raz et al. 1997, 2004, 2005), we 

examined whether adding a cluster’s GM volume would eliminate statistical association to age in 

spatial map regions showing age effects. To answer this question, we performed cluster-level 

regressions (i.e., RSN signal averaged across a cluster) with subject age and local GM density as the 

independent variables. Significant regression coefficients for age are indicative of age-related 

differences in network topography that cannot be fully accounted for by age-related changes in 

regional GM volume. Our GM density maps were estimated in native space using SPM12 

automated tissue segmentation pipeline, and were subsequently registered to the MNI template 

using the same transformation matrices that we used for normalizing our fMRI data.  

 

Between-system connectivity 

The most common approach to building graphical models of brain organization is to use 

time course correlation coefficients as proxies for connectivity (Craddock et al., 2013; Smith et al., 

2011). However, this approach suffers from two significant limitations: (1) a lack of control for 

communication via indirect paths, and (2) a reliance on somewhat arbitrary thresholding. To avoid 

these issues, we implemented a sparse precision matrix estimation procedure when reconstructing 

inter-IC connectivity graphs (Craddock et al., 2013; Epskamp & Fried, 2018; Rubinov & Sporns 
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2010; Smith et al., 2011; Zhu & Cribben, 2018). Instead of relying on arbitrary thresholds, sparse 

estimation methods shrink spurious or indirect connections to 0 by penalizing excessive model 

complexity (Smith et al., 2011; Zhu & Cribben, 2018). 

 Zhu & Cribben (2018) used simulations to show that sparse network structure is best 

recovered using the maximum likelihood estimation of the precision matrix with the smoothly 

clipped absolute deviation (SCAD) regularization term as a penalty for model complexity. This 

approach belongs to a family of graph estimation techniques building on the graphical lasso 

framework (Friedman et al., 2008). Similar to the graphical lasso, incorporating the SCAD 

regularization term during graph estimation allows for the optimal balance between network 

complexity and network likelihood; however, relative to the more common LASSO penalty term, 

using SCAD reduces bias without sacrificing model stability (Fan & Li, 2001; Zhu & Cribben, 

2018). The SCAD penalty relies on two tuning parameters, a and ρ. To minimize the Bayes risk, 

Fan & Li (2001) recommend a = 3.7, which was used in the current study. The second tuning 

parameter, ρ, was selected using Bayesian Information Criterion (BIC) from a set of ρi = i × 0.01, 

with i = 1, 2, 3 ...,100. The ρ with the lowest BIC value was used to build final graphs (Fan et al. 

2009; Zhu & Cribben, 2018). Because temporal autocorrelation in the fMRI time series can produce 

biased FC estimates (Arbabshirani et al., 2014; Zhu & Cribben, 2018), each component’s time 

course was whitened prior to graph estimation. Furthermore, since averaging across subjects 

improves the stability of edge detection when using sparse graphical methods, inter-component FC 

was estimated on group-averaged (i.e., young, middle-aged, and old adults) covariance matrices. 

For reasons detailed in Rubinov & Sporns (2010), edges representing anti-correlations were 

removed from the estimated graphs. All sparse graphs were estimated using custom-written R 

functions, and Gephi (v0.9.2; Bastian et al., 2009) was used for graph visualizations. Follow-up 

graph summary metrics were computed using freely available Brain Connectivity Toolbox for 

MATLAB (Rubinov & Sporns, 2010), 

Since our inter-component FC was estimated at the group level, we relied on group 

comparisons [Young vs. Old, Young vs. Middle, Middle vs. Old], rather than on correlation-based 

methods, to study age differences in inter-component connectivity. Edge weight comparisons and 

weighted graph summary metrics were used to study age effects on FC strength, while unweighted 

graph summary metrics were used to study age differences in graph architecture, independent of FC 
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strength. Mathematical definitions of all weighted and unweighted graph summary metrics that 

were used in this study are provided in the Appendix (sections 5.5-5.6). 

Statistical significance for each graph-based age comparison was assessed using permutation 

tests (10,000 permutations), and false discovery rate (FDR)-corrected results are reported, for q = 

.05 (Hochberg, 1988). Global graph summary metrics were corrected for 3 tests (i.e., Young vs. 

Old, Young vs. Middle, Middle vs. Old), node centrality metrics for 21 tests (i.e., 21 RSNs in each 

age comparison), and edge comparisons for 56-59 tests (depending on the number of non-zero 

edges in relevant age groups). Since this study was exploratory in nature, we also report edge 

weight differences that survived an uncorrected p <. 01 threshold. 

 

5.3. Results 

 

Resting-state brain networks and their functional connectivity profiles  

Following group-level spatial ICA decomposition, we identified 21 ICs representing RSN 

sources: 3 somatomotor [SM1, SM3, SM3], 4 visual [Vis1, Vis2, Vis3, Vis4], 1 auditory [Au], 6 

default mode [DM1, DM2, ..., DM6], 1 dorsal attention [DA], 2 executive control [EC1, EC2], and 

4 ICs with spatial maps covering multiple brain systems, according to the Yeo et al. (2011) 

functional parcellation of the cerebral cortex. Here, we termed those multi-system ICs as mixed 

RSNs (Mix1-Mix4). Figures 5.4-5.7 demonstrate the spatial topography of each RSN in our study. 

 Consistent with the underlying physiology, our somatomotor RSNs map onto face, hand, 

and leg areas of the primary somatosensory and primary motor cortices. Similarly, our visual ICs 

approximate central/peripheral and primary/secondary visual processing pathways, while the default 

system was split into the dorsal medial (DM3, DM6), medial temporal (DM2), and core (DM1, 

DM4, DM5) subsystems. Although 3 default mode subsystems are typically emphasized in the 

previously published literature (Andrews-Hanna et al., 2010, 2014; Christoff et al., 2016), using 4.7 

T data, we obtained a more refined splitting of the DMN into its sub-components. RSNs of other 

cognitive systems, namely the dorsal attention and executive control, were captured by relatively 

few ICs (Figs 5.4-5.7). 

Our SCAD-regularized functional connectivity graph, representing direct inter-component 

FC for the entire (i.e., age-averaged) sample, revealed a high degree of functional specialization in 

the somatomotor and visual areas with few direct connections to other functional systems (Fig. 5.8). 
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This is in contrast to the default, dorsal attention, and executive control RSNs, which demonstrated 

a high degree of interconnectedness with network components from other functional systems: DA, 

DM1, DM5, and EC2 RSNs each had 2 or more direct connections with systems other than their 

own. Most multi-system (i.e., mixed) network components served as bridge nodes connecting 

functionally segregated systems to each other (Fig. 5.8). 
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Fig. 5.4. Sensorimotor network components identified by group ICA. 
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Fig. 5.5. Default mode network components identified by group ICA. 
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Fig. 5.6. Attention-related network components identified by group ICA. 
	

Fig. 5.7. Network components with multi-system or mixed topography. 
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Network amplitude and age 
 

Our L1 regression analyses showed that signal amplitude in every RSN was negatively 

associated with age (all corrected ps < .05; Figs. 5.9-5.11). Non-linearity tests were statistically 

significant in only 4 out of 21 RSNs — SM2, SM3, Vis3, and DA — indicating that linear models 

provide a reasonable explanation of the association between age and BOLD signal amplitude in 

most brain areas. In a typical 75-year-old, the system-averaged (i.e., averaged across 6 default mode 

components, 4 visual components, 3 somatomotor components, etc.) BOLD signal amplitude was 

reduced by 61% in the somatomotor system, 63% in the visual system, 41% in the auditory system, 

37% in the default system, 53% in the dorsal attention system, and 38% in the executive control 

system, when compared to a typical 25-year-old (Figs. 5.9-5.11). The smallest (30% or less) age-

associated decline of BOLD amplitude was observed in the default mode and Mix4 ICs (Figs. 5.10-

5.11), while all of the somatomotor and visual ICs showed >50% BOLD amplitude reduction from 

young adulthood to old age (Fig. 5.9). 

Fig. 5.8.	 Graphical representation of the intrinsic inter-component functional connectivity. Only positive 
correlations are shown. Edge thickness represents the magnitude of SCAD-regularized partial correlation for 
RSN pairs. Node size represents the magnitude of unweighted eigenvector centrality. Coordinates depict the 
number of within-system (left number) and between-system (right number) connections. Node colors represent 
functional systems to which each network component belongs: SM, somatomotor (blue); V, visual (red); Au, 
auditory (green); DM, default mode (cyan); DA, dorsal attention (yellow); EC, executive control (magenta); 
Mix, mixed (black). See Figs. 5.4-5.7 for spatial topography of each node.	
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Fig. 5.9. L1 fractional polynomial regression plots showing relationships between age and RS-fMRI amplitude in 
all (a) somatomotor, (b) visual, and (c) auditory networks. Red arrows represent relative differences in resting-state 
fluctuation amplitude between a median 25-year-old and a median 75-year-old. 
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Fig. 5.10. L1 fractional polynomial regression plots showing relationships between age and RS-fMRI 
amplitude in all (a) default mode and (b) attention-related networks. Red arrows represent relative differences 
in resting-state fluctuation amplitude between a median 25-year-old and a median 75-year-old. 
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 To determine whether a common brain-wide process is responsible for the observed BOLD 

amplitude decline with age, we performed a principal component analysis (PCA) on the amplitude 

data from all network ICs. Only the first principal component, explaining 58% of the RSN 

amplitude variability, was statistically significant in this PCA decomposition. This principal 

component (Fig. 5.11b) was positively correlated with every RSN (correlation coefficients between 

.545 and .865) and negatively correlated with age (r = -.553, p < .001). 

 

 

 

 

Fig. 5.11.  L1 fractional polynomial regression plots showing relationships between age RS-fMRI amplitude in (a) 
all mixed networks; (b) principal component explaining 58% of variability in network amplitude across all 21 
networks. In panel (a) the relative difference in activity between an average 25-year old and an average 75-year old 
is shown in percentage units. Because aging trajectories for individuals RSNs were either linear or FP1 models, the 
age relationship trendline for the principal component in panel (b) represents a model-averaged fit of L1 linear and 
FP1 models. 
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Age group comparisons of the RSN amplitude and amplitude variability were statistically 

significant in most young vs. old tests, with some networks also showing statistically significant 

differences in young vs. middle and/or middle vs. old comparisons (Figs. 5.12-5.14). However, 

unlike the continuous models, which showed age-associated decline of BOLD amplitude in every 

RSN, group amplitude comparisons did not detect any age differences in the DM2 and Mix4 

network components. In all instances where young vs. old comparisons were statistically 

significant, median RSN amplitude was larger in young adults than in middle-aged and old adults, 

and larger in middle-aged adults than in old adults, suggesting a continuous and progressive 

reduction in RSN signal amplitude throughout life. Lastly, old adults had significantly lower inter-

individual BOLD amplitude variability in all sensorimotor (SM1-3, Vis1-4, and Au) ICs, two 

default mode ICs (DM2 and DM3), two attention (DA and EC1) ICs, and three mixed (Mix1-3) ICs 

 

 YOUNG   MIDDLE  OLD  STATISTICAL COHORT DIFFERENCES 

 

Sensorimotor        

     Somatomotor 1 
     Somatomotor 2 
     Somatomotor 3 

 0.191 
 0.226 
 0.245 

 
 0.121 
 0.199 
 0.316 

 
 0.088 
 0.092 
 0.059 

 
 Young > Old [p < .001]; Young > Middle [p < .05] 
 Young > Old [p < .001]; Middle > Old [p < .001] 
 Young > Old [p < .001]; Middle > Old [p < .001] 

     Visual 1 

     Visual 2 
     Visual 3 
     Visual 4 

 0.345 
 0.201 
 0.258 
 0.215 

 

 0.198 
 0.123 
 0.179 
 0.165 

 

 0.145 
 0.089 
 0.121 
 0.127 

 

 Young > Old [p < .001]; Young > Middle [p < .01] 
 Young > Middle > Old [all ps < .05] 
 Young > Middle > Old [all ps < .05] 
 Young > Old [p < .05] 

     Auditory  0.168   0.130   0.089   Young > Old [p < .01] 
 

Default Mode        

     Default Mode 1 

     Default Mode 2 
     Default Mode 3 
     Default Mode 4 
     Default Mode 5 
     Default Mode 6 

 0.154 
 0.141 
 0.148 
 0.081 
 0.128 
 0.118 

 

 0.105 
 0.115 
 0.105 
 0.077 
 0.140 
 0.095 

 

 0.105 
 0.084 
 0.091 
 0.086 
 0.087 
 0.080 

 

 None 
 Young > Old [p < .05] 
 Young > Old [p < .05] 
 None 
 None 
 None 

 

Attention 
       

     Dorsal Attention  0.198   0.201   0.102   Young > Old [p < .001]; Middle > Old [p < .01] 

     Executive Control 1 
     Executive Control 2 

 0.154 
 0.106   0.120 

 0.123 
 

 0.099 
 0.074   Young > Old [p < .05] 

 None 
 

Multi-System        

     Mix 1 
     Mix 2 
     Mix 3 
     Mix 4 

 0.179 
 0.127 
 0.161 
 0.073 

 

 0.110 
 0.105 
 0.131 
 0.074 

 

 0.095 
 0.073 
 0.092 
 0.063 

 

 Young > Old [p < .01]; Young > Middle [p < .05] 
 Young > Old [p < .01] 
 Young > Old [p < .01] 
 None 

 

Table 5.2  
L1 inter-individual variability of network amplitude for the young adult, middle age, and old adult groups. L1 variability 
was calculated for each RSN separately as an average of absolute deviations from each age group’s median amplitude. 
Measures are in % signal change units that represent relative magnitude of BOLD signal fluctuations around the intensity-
normalized baseline. 
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[all corrected ps < .05; Table 5.2]. Six network components – DM1, DM4-6, Mix4, and EC2 – 

showed no age differences in BOLD amplitude’s inter-individual variability (all ps > .1). 

 

 

Fig. 5.12.  Violin plots showing distribution of network amplitude for young (red), middle-aged (blue), and old 
(green) adults.  All measures of network amplitude are in % signal change units, representing relative magnitude of 
BOLD signal fluctuations around the intensity-normalized baseline. (a) somatomotor networks; (b) auditory 
network; (c) visual networks. Group medians are represented by dots at the center of each violin plot with the 
uncertainty intervals representing the 95% BCa bootstrap confidence interval around the group median. Bootstrap 
technique was used to evaluate the statistical significance of the difference between age group medians. Pairwise 
comparisons were declared significant if the BCa bootstrap confidence intervals of the difference between two group 
medians did not cross 0 at tested thresholds:  
~ 90%; * 95%; ** 99%; *** 99.9%. 
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Fig. 5.13. Violin plots showing distribution of network amplitude for young (red), middle-aged (blue), and 
old (green) adults for each of the default mode networks. All measures of network amplitude are in % signal 
change units, representing relative magnitude of BOLD signal fluctuations around the intensity-normalized 
baseline. Group medians are represented by a dot at the center of each violin plot with the uncertainty 
interval representing the 95% BCa bootstrap confidence interval around the group median. Bootstrap 
technique was used to evaluate the statistical significance of the difference between age group medians. 
Pairwise comparisons were declared significant if the BCa bootstrap confidence intervals of the difference 
between two group medians did not cross 0 at tested thresholds:   
~ 90%;  * 95%; ** 99%; *** 99.9%. 
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Fig. 5.14. Violin plots showing distribution of network amplitude for young (red), middle-aged (blue), and 
old (green) adults for each of the (a) attention, and (b) mixed networks. All measures of network amplitude 
are in % signal change units, representing relative magnitude of BOLD signal fluctuations around the 
intensity-normalized baseline. Group medians are represented by a dot at the center of each violin plot with 
the uncertainty interval representing the 95% BCa confidence interval around the group median. Bootstrap 
technique was used to evaluate the statistical significance of the difference between age group medians. 
Pairwise comparisons were declared significant if the BCa bootstrap confidence intervals of the difference 
between two group medians did not cross 0 at tested thresholds:  
~ 90%;  * 95%; ** 99%; *** 99.9%. 
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Network topography and age 

Across all network components, we identified 23 clusters with either linear or non-linear 

statistical relationship to age (Table 5.3; Figs. 5.15-5.18). Age relationship clusters were present in 

5 out of 8 sensorimotor ICs, 4 out of 6 default mode ICs, 2 out of 3 attention/control ICs, and 2 out 

of 4 mixed ICs, suggesting that age effect on RSNs’ spatial map profiles is not limited to one 

particular functional system. Most of those age relationship clusters (19 out of 23) represented 

reduced intra-component connectivity among the elderly; however, a small number (4 out of 23), 

restricted to the DM1 and DA RSNs, showed areas with stronger intra-component connectivity in 

old age. With the exception of a few clusters, age relationships were linear. 

The largest clusters, representing age differences in network topography, belonged to the 

Mix4 IC. Those two clusters (clusters V & W; Table 5.3) were located within the bilateral inferior 

frontal gyrus and bilateral orbitofrontal cortex [BA44-47], roughly corresponding to the Broca’s 

area and nearby cortices. Participation of these brain areas in Mix4 RSN declined from 

moderate/high in young adults (normalized activation of 0.4 and higher) to weak (normalized 

activation < 0.4) in old adults, which is indicative of BA44-47 areas becoming increasingly 

disconnected from the rest of the network with age. Two other large clusters (1) cluster K, 

belonging to the DM4 RSN, and (2) cluster F, belonging to the Vis4 RSN, also showed a reduction 

in intra-component connectivity with age. Four clusters with the strongest association to age (i.e., 

largest absolute correlation with age) were clusters F, W, V, and C, belonging to the Vis1, Vis4, and 

Mix4 RSNs (Table 5.3). All 4 clusters showed negative linear relationships to age with correlation 

coefficients ranging between -.54 and -.58. Cluster C was localized within the left lingual, 

intracalcarine, and precuneus cortices, while cluster F’s anatomy was restricted to the right fusiform 

gyrus (Table 5.3). Clusters V and W and their anatomical profiles were described above. 

GM volume was negatively associated with age in 21 out of 23 clusters. However, adding 

regional GM volume as an extra variable to cluster-level age regressions did not eliminate age 

effects in 21 out of 23 clusters (Table 5.3), demonstrating that age differences in component 

structure were not driven solely by age effects on cortical GM. Despite these overall trends, it is 

important to note that adding local GM volume as a regressor of no-interest, eliminated age effects 

in clusters A and L (SM1 and DM4 RSNs, respectively). Together, these observations indicate that 

age differences in component topography are partially driven by age differences in regional GM. 

Furthermore, since cluster GM volume and intra-component connectivity were statistically 
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associated in 17 clusters (assessed using distance correlation with 50,000 permutation tests for 

significance), causal study designs are needed for an accurate estimation of the extent to which 

structural and functional changes in the aging brain produce age differences in network topography. 

 

 

Fig. 5.15. Clusters with statistical relationships to age for sensorimotor ICs. Each cluster represents brain region(s) with 
age differences in network topography. Regression plots represent voxel-averaged fractional polynomial follow-ups. 
Because spatial maps were normalized by peak activation amplitude, values close to 1 represent network core, while those 
close to 0 represent network periphery. 



	 	 128	 	
	 	

 

Fig. 5.16. Clusters with statistical relationships to age for the default mode ICs. Blue clusters represent negative 
association to age; red clusters represent positive association to age. 
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Fig. 5.18. Clusters with statistical relationships to age for multi-system (i.e., ‘Mixed’) ICs. All statistically significant 
clusters in ‘Mixed’ ICs showed negative associations to age. 
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 cluster peak 
(MNI coordinate) anatomy 

 
cluster size 
(mm3) 

RSN cluster’s 
relationship to age 

 
cluster’s grey matter 
relationship to age  

semi-partial correlation 
between age and cluster, 
controlling the latter for 
grey matter volume 

 

Somatomotor 1 

    Cluster A −56, −6, 34 left precentral gyrus, 
left postcentral gyrus 
[BA3, BA4, BA6, BA2] 

 952 linear ↓ [R2 = .244]  linear ↓ [R2 = .671] n.s. 

    Cluster B   58, −2, 28 right precentral gyrus 
[BA6, BA4] 

 424 linear ↓ [R2 = .222]  linear ↓ [R2 = .577] r =  −.415 [p < .001] 

 

Visual 1 

    Cluster C    0, −66, 6 left lingual gyrus, 
left intracalcarine cortex, 
left precuneus cortex 
[BA30, BA18, BA19, BA23] 

 1,624 linear ↓ [R2 = .293]  linear ↓ [R2 = .559] r = −.328 [p < .001] 

 

Visual 2 

    Cluster D −12, −82, 50 left lateral occipital cortex 
[BA19, BA7] 

 280 linear ↓ [R2 = .182]  linear ↓ [R2 = .147] r = −.320 [p < .001] 

    Cluster E −14, −96, 24 left occipital pole 
[BA18] 

 280 linear ↓ [R2 = .189]  linear ↓ [R2 = .322] r = −.233 [p = .008] 

 

Visual 4 

    Cluster F 38, −68, −16 right occipital fusiform gyrus 
[BA19, BA18, BA37] 

 2,816 linear ↓ [R2 = .340]  linear ↓ [R2 = .287] r = −.544 [p < .001] 

 

Auditory 

    Cluster G −60, −12, 6 left planum temporale,  
left Heschl’s gyrus 
[BA41, BA42, BA22] 
 

 160 linear ↓ [R2 = .189]  linear ↓ [R2 = .470] r = −.233 [p = .010] 

Default Mode 1 

    Cluster H  54, −52, 36 right angular gyrus 
[BA40, BA39] 

 312 linear ↑ [R2 = .201]  linear ↓ [R2 = .084] r = .504 [p < .001]  

 

    Cluster I  56, −54, 12 right middle temporal gyrus, 
right angular gyrus 
[BA39, BA22] 

 176 linear ↑ [R2 = .211]  linear ↓ [R2 = .103] r = .450 [p < .001] 

Default Mode 2 

    Cluster J −8, −66, 16 left supracalcarine cortex, 
left precuneous cortex, 
left intracalcarine cortex 
[BA30, BA18, BA23, BA31] 

 1,328 nonlinear ↓ [R2 = .231]  linear ↓ [R2 = .436] r = −.446 [p < .001] 

Default Mode 4 

    Cluster K −4, 40, −2 left anterior cingulate gyrus, 
right anterior cingulate gyrus, 
left paracingulate gyrus, 
right paracingulate gyrus, 
left frontal pole 
[BA32, BA24, BA9, BA10] 

 3,392 linear ↓ [R2 = .182]  linear ↓ [R2 = .513] r = −.208 [p = .018] 

    Cluster L    2, 34, 20 left anterior cingulate gyrus, 
right anterior cingulate gyrus, 
left paracingulate gyrus, 
right paracingulate gyrus 
[BA32, BA24] 

 1,400 linear ↓ [R2 = .173]  linear ↓ [R2 = .646] n.s. 

    Cluster M −42, 14, −6 left insular cortex 
[BA13] 

 224 linear ↓ [R2 = .238]  linear ↓ [R2 = .437] r = −.420 [p < .001] 

Default Mode 6 

    Cluster N −52, −32, 2 left superior temporal gyrus 
[BA22, BA21] 

 1,448 linear ↓ [R2 = .253]  linear ↓ [R2 = .257] r = −.407 [p < .001] 

    Cluster O   52, −32, 2 right superior temporal gyrus 
[BA22, BA41] 

 840 linear ↓ [R2 = .230]  linear ↓ [R2 = .339] r = −.341 [p < .001] 

Dorsal Attention 

    Cluster P   44, −60, 46 right lateral occipital cortex, 
right angular gyrus, 
right supramarginal gyrus 
[BA39, BA40, BA7, BA19] 

 1,488 nonlinear ↑ [R2 = .278]  linear ↓ [R2 = .422] r = .536 [p < .001] 

    Cluster Q −48, −52, 48 left angular gyrus, 
left supramarginal gyrus 
[BA40] 

 144 linear ↑ [R2 = .207]  linear ↓ [R2 = .090] r = .447 [p < .001] 

	
	

Table 5.3.	
Topographical age differences in network component structure. This table complements Figs. 5.15-5.18. 	
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    Cluster R −8, −72, 60 left lateral occipital cortex 
[BA7] 

 112 linear ↓ [R2 = .193]  n.s. r = −.451 [p < .001] 

Executive Control 2 

    Cluster S   38, 58, 14 right frontal pole 
[BA10, BA9] 

 480 linear ↓ [R2 = .169]  n.s. r = −.408 [p < .001] 

Mixed 3 

    Cluster T   52, −58, 8 right middle temporal gyrus 
(temporooccipital part), 
right lateral occipital cortex 
(inferior division) 
[BA39, BA37] 

 352 linear ↓ [R2 = .203]  linear ↓ [R2 = .181] r = −.356 [p < .001] 

    Cluster U −50, −54, 12 left middle temporal gyrus 
(temporooccipital part), 
left angular gyrus 
[BA39] 

 104 linear ↓ [R2 = .160]  nonlinear ↓ [R2 = .077] r = −.354 [p < .001] 

Mixed 4 

    Cluster V −48, 16, −6 left inferior frontal gyrus 
(pars triangularis and  
pars opercularis), 
left orbitofrontal cortex, 
left frontal operculum 
[BA47, BA44, BA45, 
BA46, BA22, BA13] 

 7,192 linear ↓ [R2 = .295]  linear ↓ [R2 = .542] r = −.280 [p < .001] 

    Cluster W   50, 24, −4 right inferior frontal gyrus 
(pars triangularis and  
pars opercularis), 
right orbitofrontal cortex, 
right frontal operculum, 
right frontal pole 
[BA45, BA47, BA44,  
BA46, BA9, BA13] 

 6,464 linear ↓ [R2 = .322]  linear ↓ [R2 = .483] r = −.394 [p < .001] 

Abbreviations: BA, Brodmann Area; n.s., statistically not significant.	
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Inter-component functional connectivity and age  

Lastly, we examined the effects of age on inter-component FC. First, we built sparse 

graphical representations of inter-IC communication for the young, middle-aged, and old adult 

groups. Those graphs are visualized in Fig. 5.19. 

Descriptively, a core set of 31 connections was identified in every age group, suggesting that 

the overall pattern of the brain’s functional organization did not differ drastically among age groups 

(Fig. 5.20). Most unweighted graph summary metrics, computed from binarized graphs, support this 

conclusion: global efficiency, transitivity, density, radius, diameter, characteristic path length, and 

centralization did not show any age statistical differences [all qs > .10, see Table 5.4 for details; see 

Appendix in sections 5.5 for mathematical definitions]. The only unweighted summary metric that 

attained statistical significance in our age comparisons was the number of intra-system connections. 

Specifically, the young adult group had fewer intra-system connections (a total of 15 edges) than 

middle-aged or old adult groups (a total of 19 edges in each group) [both qs < .05]. Despite 

differences in the number of intra-system connections, age groups did not show any statistical 

differences in the number of inter-system connections [all uncorrected ps > .10, see Table 5.4 for 

details]. 

Fig.	5.19.	Graphical representation of direct between-component connectivity, separated by age group. Only positive 
correlations are shown. Edge thickness represents functional connectivity strength (i.e., magnitude of SCAD-
regularized partial correlations). Node size of each network component represents its unweighted eigenvector 
centrality. Coordinates depict the number of within-system (left number) and between-system (right number) 
connections. Node colors represent functional units (or systems) to which a given network component belongs. SM, 
somatomotor (blue); V, visual (red); Au, auditory (green); DM, default mode (cyan); DA, dorsal attention (yellow); 
EC, executive control (magenta); Mix, mixed (black). See Figs. 5.4-5.7 for anatomical profiles of each node/RSN. 
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Contrary to results from binarized graphs, we observed substantial age differences if 

weighted graphs were used to compute graph summary metrics (Table 5.4; see Appendix section 5.5 

for mathematical definitions of unweighted graph summary metrics and Appendix section 5.6 for 

mathematical definitions of weighted graph summary metrics). The average edge thickness of all 

non-zero positive edges was greater in the young adult group than in the old adult group [Mdiff = 

0.055, q < .010], and greater in the young adult group than in the middle-aged group [Mdiff = 

0.0424, q < .050]. However, the average edge thickness of the middle-aged group did not differ 

from that of the old adult group [uncorrected p > 0.10], suggesting that inter-IC partial correlation 

strength declines with age and that this decline is more pronounced in early aging. Furthermore, the 

aforementioned age differences in edge weight were driven by intra-system, not inter-system, 

connections (Table 5.4). Our age comparisons of weighted efficiency metrics – global efficiency, 

network radius, network diameter, and characteristic path length – revealed a gradual loss of 

connectivity efficiency with age [efficiencyyoung > efficiencymiddle > efficiencyold; for details, see 

Table 5.4]. 

 

 

 

Fig.	 5.20. A core set of inter-component 
connections that were present in every age group 
(i.e., young, middle-aged, old). Edge thickness 
represents connectivity strength, collapsed across 
age groups. SM, somatomotor (blue); V, visual 
(red); Au, auditory (green); DM, default mode 
(cyan); DA, dorsal attention (yellow); EC, executive 
control (magenta); Mix, mixed (black). 
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 Next, we investigated node centrality measures to determine whether there were any age 

differences in component importance to the rest of the connectome. Similar to the unweighted 

global metrics, the unweighted degree, closeness, and betweenness centralities did not show any 

statistically significant age differences [all qs > .10]. For the unweighted eigenvector centrality, we 

observed one statistically significant age difference in our Mix2 node: lower centrality in old 

relative to young adults [EigenCentralityyoung = 0.9705, EigenCentralityold = 0.405, q ≈ .050]. 

Weighted betweenness centrality also did not show any statistically significant age effects. 

However, unlike binary closeness centrality, weighted closeness centrality was reduced in old 

relative to young adults in all 21 RNS (Table 5.5). Age differences in weighted degree and/or 

eigenvector centrality were found in SM2, Vis1, Au, DM1, DM2, DM6, DA, EC2, Mix1, Mix2, and 

Mix4 RSNs (see Table 5.5 for details), further demonstrating that age effects are represented 

primarily by connectivity strength, not an outright presence or absence of functional connectivity. 

 
BINARIZED 

 

WEIGHTED 

young middle-aged old statistical 
differences young middle-aged old statistical 

differences 
 

density 0.2095 0.2476 0.2095 none  0.0443 0.0419 0.0328 young > old *** 
middle > old *** 

efficiency 
 

0.5413 0.5698 0.5290 none  0.1145 0.0975 0.0840 young > old *** 
young > middle *** 
middle > old * 

transitivity 0.2195 0.3974 0.3373 none  0.0365 0.0611 0.0489 none 

radius 3 2 3 none  12.7969 16.0334 18.3483 young < old ** 
young < middle * 

diameter 4 4 4 none  21.5832 25.7084 32.4533 young < old *** 
young < middle * 
middle < old * 

characteristic 
  path length 
 

2.0862 1.9864 2.1859 none  10.5684 12.3702 14.3148 young < old *** 
young < middle ** 
middle < old * 

average edge 
   weight 

N/A N/A N/A N/A  0.2117 0.1692 0.1565 young > old ** 
young > middle * 

intra-system 
   edge density 

 

0.6000 0.7600 0.7600 young < old ** 

young < middle * 
 0.1589 0.1522 0.1318 young > old ** 

middle > old * 

inter-system 
   edge density 

 

0.1568 0.1784 0.1351 none  0.0289 0.0270 0.0194 young > old ** 
middle > old ** 

average weight 
   of intra-system 
   connections 

N/A N/A N/A N/A  0.2648 0.2003 0.1734 young > old *** 
young > middle ** 
 

average weight 
   of inter-system 
   connections 

N/A N/A N/A N/A  0.1842 0.1513 0.1436 none 

centralization 
   degree 
 
   closeness 
 
   betweeness 

 
0.1553 
 
0.1673 
 
0.1249 

 
0.2237 
 
0.2977 
 
0.1424 

 
0.1553 
 
0.3070 
 
0.1566 

 
none 
 
young > old ~ 

young > middle ~ 
none 

  
N/A 
 
N/A 
 
N/A 

 
N/A 
 
N/A 
 
N/A 

 
N/A 
 
N/A 
 
N/A 

 
N/A 
 
N/A 
 
N/A 

                         
*** FDR < .001; ** FDR < .010; * FDR < .050; ~ FDR < .100. 

Table 5.4.	
Global graph summary metrics, separated by age group, for binary and weighted graphs represnting inter-component 
functional connectivity.	
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 To determine which edges were most responsible for the above age differences in weighted 

global summary metrics and weighted node centralities, we performed age comparisons of 

connectivity strength on each non-zero edge in our graphs. After correcting for multiple hypothesis 

testing (FDR < .05, 56-59 tests), age differences were found in young vs. old and young vs. middle-

aged, but not in middle-aged vs. old comparisons (Fig. 5.21, Table 5.6). These age effects were 

represented by 5 connectivity differences in the young vs. old comparison [SM2 ↔ Mix1, DM6 ↔ 

Mix4, Au ↔ Mix1, EC1 ↔ EC2, EC2 ↔ Mix4], and 3 connectivity differences in the young vs. 

middle-aged comparison [SM2 ↔ Mix1, EC2 ↔ Mix4, DM1 ↔ Mix3]. All but one (i.e., DM1 ↔ 

Mix3) differences in edge weight displayed a reduction in FC with age, and all but one (EC1 ↔ 

EC2) involved one of the transition multi-system ‘Mixed’ ICs. Because this study employed a novel 

graph estimation methodology and was exploratory in nature, we are also presenting age group 

differences in weight strength that survived uncorrected p < .01 statistical comparisons. Lowering 

the statistical threshold resulted in 8 additional edges showing age differences (Fig. 5.21, Table 

5.6). More than half of those additional edges were in the middle-aged vs. old adult comparison. 

RSN 
DEGREE 

 

CLOSENESS 

 

BETWEENNESS 

 

EIGENVECTOR 

Young/Middle/Old Statistical 
Differences Young/Middle/Old Statistical 

Differences Young/Middle/Old Statistical 
Differences Young/Middle/Old Statistical 

Differences 
 

SM1 0.584/0.633/0.514 none  1.752/1.415/1.086 ** Y > O, * Y > M  0.042/0.021/0.026 none  0.115/0.113/0.056 none 

SM2 1.248/1.196/0.667 ** Y > O, * M > O  2.153/1.784/1.364 ** Y > O, * Y > M  0.216/0.190/0.084 none  0.252/0.194/0.110 * Y > O 

SM3 0.317/0.566/0.454 none  1.647/1.483/1.213 ** Y > O  0.000/0.000/0.000 none  0.082/0.107/0.055 none 

Vis1 1.429/1.227/1.155 ** Y > O  2.135/1.912/1.796 * Y > O, * Y > M  0.205/0.258/0.305 none  0.311/0.273/0.336 none 

Vis2 0.754/0.709/0.665 none  1.839/1.542/1.434 ** Y > O, * Y > M  0.047/0.037/0.063 none  0.196/0.146/0.189 none 

Vis3 0.701/0.662/0.652 none  1.802/1.566/1.457 ** Y > O, * Y > M  0.000/0.000/0.000 none  0.177/0.144/0.193 none 

Vis4 0.911/0.847/0.663 none  1.748/1.545/1.314 * Y > O  0.058/0.032/0.011 none  0.172/0.142/0.141 none 

Au 0.940/0.749/0.475 ** Y > O  1.808/1.444/1.198 ** Y > O, * Y > M  0.053/0.042/0.047 none  0.147/0.115/0.083 none 

DM1 1.307/1.390/1.267 none  2.251/2.069/1.971 * Y > O  0.163/0.195/0.195 none  0.300/0.372/0.461 ** Y < O 

DM2 0.693/0.993/0.894 * Y < M  2.154/2.026/1.857 * Y > O  0.037/0.232/0.190 none  0.198/0.298/0.370 ** Y < O, * Y < M 

DM3 0.956/0.876/0.649 none  1.852/1.614/1.444 * Y > O  0.037/0.068/0.000 none  0.165/0.205/0.238 none 

DM4 0.514/0.385/0.265 none  1.617/1.221/1.224 * Y > O, * Y > M  0.005/0.000/0.000 none  0.110/0.111/0.115 none 

DM5 1.143/1.228/1.130 none  2.025/1.755/1.586 * Y > O  0.079/0.084/0.195 none  0.255/0.305/0.321 none 

DM6 0.837/0.580/0.409 * Y > O  1.771/1.490/1.301 ** Y > O  0.058/0.011/0.000 none  0.145/0.130/0.150 none 

DA 1.129/1.238/1.214 none  2.340/1.961/1.967 * Y > O, * Y > M  0.158/0.116/0.237 none  0.278/0.306/0.390 * Y < O 

EC1 0.875/0.885/0.611 none  1.793/1.609/1.400 * Y > O  0.011/0.047/0.042 none  0.209/0.253/0.215 none 

EC2 0.686/0.513/0.262 ** Y > O  1.657/1.483/1.302 * Y > O  0.016/0.016/0.000 none  0.158/0.164/0.105 none 

Mix1 1.076/0.864/0.579 ** Y > O  2.230/1.720/1.361 ** Y > O, * Y > M  0.153/0.084/0.068 none  0.262/0.184/0.109 * Y > O 

Mix2 1.071/0.779/0.471 ** Y > O  2.188/1.725/1.542 ** Y > O, * Y > M  0.105/0.032/0.026 none  0.261/0.210/0.175 none 

Mix3 0.705/0.793/0.550 none  2.000/1.807/1.379 ** Y > O  0.079/0.126/0.090 none  0.132/0.173/0.178 none 

Mix4 0.752/0.488/0.221 Y > O **  1.556/1.389/1.039 ** Y > O  0.005/0.000/0.000 none  0.132/0.111/0.069 none 
                         

** FDR < .010; * FDR < .050. 

 
 

Table 5.5. 
Age differences in node centrality for weighted between-network functional connectivity graphs. Abbreviations: 
SM, somatomotor; Vis, visual; Au, auditory; DM, default mode; DA, dorsal attention; EC, executive control. 
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 young (r) middle (r) old (r) young vs. middle 
(uncorrected p) 

middle vs. old 
(uncorrected p) 

young vs. old 
(uncorrected p) 

FDR-corrected  
age differences 

        

SM2 ↔ Mix1 0.460 0.243 0.107 p < .001 n.s. p < .001 young > old 
young > middle 

EC2 ↔ Mix4 0.147 0.000 0.000 p < .002 n.s. p < .001 young > old 
young > middle 

 

EC1 ↔ EC2 0.270 0.211 0.094 n.s. p < .040 p < .003 young > old 

 
Au ↔ Mix1 0.173 0.088 0.000 n.s. n.s. p < .003 young > old 

 
DM6 ↔ Mix4 0.205 0.094 0.000 n.s. n.s. p < .005 young > old 

 
DM1 ↔ Mix3 0.000 0.127 0.103 p < .002 n.s. p < .040 young < middle 

 
Vis1 ↔ Vis2 0.433 0.271 0.271 p ≈ .010 n.s. p < .007 none 

 
DM1 ↔ DM3 0.000 0.131 0.150 p < .006 n.s. p < .020 none 

 
DM5 ↔ EC1 0.311 0.349 0.192 n.s. p < .002 p < .020 none 

 
DM3 ↔ DM6 0.233 0.257 0.103 n.s. p < .003 p < .030 none 

 
DM5 ↔ DM6 0.174 0.144 0.306 n.s. p < .005 p < .020 none 

 
SM2 ↔ SM3 0.317 0.366 0.192 n.s. p < .009 n.s. none 

 
Mix3 ↔ Mix4 0.000 0.115 0.000 p < .020 p < .010 n.s. none 

 
	

Table 5.6. 
Age differences in edge connectivity strength for weighted between-IC functional connectivity graphs. Only 
edges that survived the uncorrected p < .01 threshold in at least one age comparison are shown.  Abbreviations: 
SM, somatomotor; Vis, visual; Au, auditory; DM, default mode; DA, dorsal attention; EC, executive control. 
This table accompanies Fig. 5.21. 

Fig.	 5.21.	Graphical representations of uncorrected (top) and FDR-corrected (bottom) age differences in 
inter-IC functional connectivity. Red edge color represents lower functional connectivity in the older group; 
blue edge color represents greater functional connectivity in the older group. Edge thickness represents the 
magnitude of functional connectivity differences in each age comparison. Abbreviations: SM, somatomotor; 
V, visual; Au, auditory; DM, default mode; DA, dorsal attention; EC, executive control. 
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5.4. Discussion 

In the current study, we investigated age differences for three primary features in ICA-based 

RSN decompositions: network amplitude, spatial topography of network sources, and inter-

component functional interactions. For RSN amplitude, our findings led to three main conclusions: 

(1) BOLD amplitude is negatively associated with age in all networks, and a single process might 

underly these global amplitude trends; (2) sensorimotor networks, and not frontal and parietal 

association networks, showed the steepest amplitude reduction with age; (3) compared to young 

adults, old adults showed reduced inter-individual variability in network amplitude.	 For 

RSN/component topography, age differences in network structure were modest, and except for a 

few clusters in the parietal association areas, represented reduced intra-network connectivity. 

Finally, our age comparisons of inter-component functional connectivity revealed a large degree of 

age invariance in inter-network interactions. Where present, age differences in inter-component FC 

were captured by weighted, as opposed to unweighted, graph summary metrics. Together, weighted 

graph summary metrics indicate weakened inter-system (e.g., visual ↔ default mode, somatomotor 

↔ attention) communication in old age, driven by age differences in functional communication via 

‘Mixed’ (or multi-system) network components. To our best knowledge, this is the first high-field 

RS-fMRI study to provide such a comprehensive overview of alterations in the human brain’s 

functional architecture for the entire adult lifespan. 

 

Network amplitude and age 

Our results showed that healthy cognitive aging was associated with a reduction of BOLD 

signal amplitude in every brain system. These findings are consistent with two previous studies that 

also used ICA to study age effects on FC (Allen et al., 2011; Zonneveld et al., 2019). In the first 

study, Allen et al. (2011) showed that aging was associated with a widespread reduction in low-

frequency BOLD signal power (< 0.15 Hz). However, Allen et al. (2011) focused predominantly on 

maturation and early aging, with 80% of their sample falling in the 13-30 age range, and only 7 

(~1.2%) subjects older than 50 at the time of data collection. In the second study, Zonneveld et al. 

(2019) found that advanced age was associated with lower mean signal amplitude in most RSNs; 

however, the authors did not study the entire adulthood and sampled older adults exclusively. 

In the current study, we demonstrated that the fMRI signal amplitude of most RSNs declines 

linearly throughout the entire adult lifespan. In networks with non-linear trajectories, we observed a 
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rapid reduction of BOLD amplitude in young adulthood, followed by a more gradual decline in 

middle and late adulthood. Furthermore, we demonstrated that a single source of variance could 

explain age differences in BOLD amplitude in most RSNs, suggesting that a common set of 

biological processes might be responsible for these BOLD amplitude effects. According to our 

results, the largest young vs. old amplitude differences were localized primarily within visual and 

somatomotor RSNs. Because previous structural imaging studies showed that GM in the primary 

sensorimotor regions is not as vulnerable to age-related atrophy as frontal GM (Fjell et al., 2009a, 

2009b; Leong et al., 2017; McDonald et al., 2009; Raz et al., 1997, 2004, 2005, 2010; Resnick et 

al., 2003), it is unlikely that cortical atrophy is the only cause of declining RSN amplitude in old 

age. Finally, we would like to point out that RSN amplitude among old adults was not only smaller 

but also had lower inter-individual variability. 

Most previous studies on the relationship between BOLD amplitude and age were task-

based, and not resting-state (Cabeza et al., 2002, 2004; Grady et al., 1994; D’Esposito et al., 1999; 

Fabiani et al., 2014; Gutchess et al., 2005; Hesselmann et al., 2001; Hutchinson et al., 2002; Levine 

et al., 2000; Logan et al., 2002; Madden et al., 1996; Park et al., 2003, 2004; West et al., 2019). 

Experiments that employed motor paradigms to investigate age effects on the sensorimotor cortex 

reported: (1) smaller activation clusters in old adults (D’Esposito et al., 1999, 2003; Handwerker et 

al., 2007; Hesselmann et al., 2001; Mehagnoul-Schipper et al., 2002; Riecker et al., 2006); (2) age 

differences in BOLD response timing and BOLD response shape (Handwerker et al., 2007; 

Stefanova et al., 2013; Taoka et al., 1998; West et al., 2019); and (3) elevated noise levels among 

the elderly, relative to task-evoked activity (D’Esposito et al., 1999; Kannurpatti et al., 2011). In the 

visual system, a wide variety of task-based neuroimaging experiments revealed reduced BOLD 

activation (Grady et al., 1994; Fabiani et al., 2014; Ross et al., 1997; West et al., 2019; Wright & 

Wise, 2018). These age effects were detected not only in fMRI experiments, but also in Positron 

Emission Tomography (PET) and functional Near-Infrared Spectroscopy (fNIRS) studies, which 

employed a wide variety of visual paradigms, ranging from pure perception to face matching, 

working/episodic memory, and visual attention (Ances et al., 2009; Buckner et al., 2000; Cabeza et 

al., 2004; Fabiani et al., 2014; Grady et al., 1994; Handwerker et al., 2007; Hutchison et al., 2013; 

Levine et al., 2000; Li et al., 2015; Madden et al., 1996; Park et al., 2003; Rieck et al., 2015; Ross et 

al., 1997; Spreng et al., 2010; Ward et al., 2015; West et al., 2019). Age differences in activation 

amplitude were also identified in brain regions belonging to the default system (Grady et al. 2006; 
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Lustig et al. 2003; Miller et al. 2008; Persson et al. 2007; Sambataro et al., 2010). However, the 

DMN’s activity differences during task-based studies were reported as reduced or failed 

deactivation in old adults since the default system is more active at rest than during cognitively 

demanding tasks (Park & Reuter-Lorenz, 2009; Persson et al., 2007, 2014; Raichle & Snyder, 

2007). The same biological changes might be responsible for amplitude differences in both resting-

state and task-based fMRI research. This idea is supported by evidence from Yan et al. (2011), who 

showed that – at least in the visual cortex – the magnitude of RS-fMRI fluctuations was predictive 

of task-induced activation. 

Each brain region’s BOLD signal time course represents a complex interplay of four 

dynamic factors: local blood volume, rate of local blood flow, local vascular reactivity, and local 

rate of cerebral metabolic oxygen utilization (CMRO2) (Cohen et al., 2004; Kim, 2018; Kim & 

Ogawa, 2012; Uludağ & Blinder, 2018; Uludağ et al., 2009; Wright & Wise, 2018). Reduced 

BOLD amplitude in old adults can be driven by lower cerebral blood flow (CBF), lower 

cerebrovascular reactivity (CVR), or higher CMRO2. It is well documented that aging causes 

substantial changes in the cerebral vasculature, including stiffening of the vessel walls, reduction of 

the capillary density, and thickening of the capillary basement membrane (for reviews see, 

D’Espotio et al., 2003; Farkas & Luiten, 2001; Wright & Wise, 2018). In vivo work using PET and 

Arterial Spin Labeling (ASL) methods showed that aging individuals display lower CBF and lower 

CVR, when compared to healthy young adults (Aanerud et al., 2012; Beason-Held et al., 2008; 

Bertsch et al., 2009; Chen et al., 2011; Galiano et al., 2019; Hutchison et al., 2013; Kety, 1956; Liu 

et al., 2013; Lu et al., 2011; Melamed et al., 1980; Peng et al., 2014; Wright & Wise, 2018; 

Yamaguchi et al., 1986). Consequently, age effects on RSN amplitude might be driven by 

cardiovascular risk factors (Aanerud et al., 2012; D’Esposito et al., 2003; Farkas & Luiten, 2001; 

Gagnon et al., 2015; Hillman, 2014; Kety et al., 1956; Liu, 2013; Melamed et al., 1980; Zonneveld 

et al., 2019). For instance, a recent whole-brain RS-fMRI study by Zonneveld et al. (2019) reported 

a positive relationship between RSN amplitude and systolic blood pressure. However, it is unlikely 

that age effects on RSN amplitude are driven exclusively by age differences in blood pressure. Only 

1 volunteer in our middle-aged cohort had a history of elevated blood pressure, while the other 30 

did not. Nonetheless, when compared to young adults, our middle-aged volunteers displayed lower 

group-level measures of RSN amplitude in multiple network components. Furthermore, a 

comparison of RSN amplitude between old adults with a history of high blood pressure to those 
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without did not reveal any amplitude differences in our RSN data (all uncorrected ps > .10). It is 

worth noting, however, that only individuals with no history of high blood pressure or those whose 

high blood pressure was controlled by medications or lifestyle adjustments were recruited for this 

study. To what extent our RSN amplitude results might generalize to a broader population with a 

more severe history of cardiovascular disease is a topic that merits further research. 

In addition to vascular factors, it is plausible that the aging process affects CMRO2, 

modulating the oxy-/deoxy-hemoglobin ratio in the regional cerebral vasculature, which in turn 

affects the fMRI-measured T2
* contrast. Unlike CBF and CVR, CMRO2 is a direct measure of 

neuronal metabolic demands (Cohen et al., 2004; D’Espotio et al., 2003; Kim, 2018; Kim & 

Ogawa, 2012; Uludağ & Blinder, 2018; Wright & Wise, 2018), and age differences in CMRO2 

likely represent differences in spiking rates and neurotransmitter trafficking (D’Espotio et al., 2003; 

Kim & Ogawa, 2012; Logothetis et al., 2001). Unfortunately, human imaging literature is 

inconclusive on the direction of CMRO2 changes in healthy aging: some studies (e.g., Aanerud et 

al., 2012) reported lower CMRO2 in old adults, while others reported the opposite pattern (e.g., Lu 

et al., 2011; Peng et al., 2014). Additional research, employing quantitative high-resolution (1.8-

mm isotropic or less) fMRI techniques, is needed to determine the exact cause of brain-wide age 

differences in RSN amplitude that were observed in this study. 

 

Functional connectivity and age 

By combining GIG-ICA with sparse graphical methods we demonstrated a substantial 

degree of age-invariance in network architecture, a result that is in agreement with recent non-ICA-

based RS-fMRI studies (e.g., Chan et al. 2017; Grady et al., 2016; Han et al., 2018). Specifically, 

almost half of our network components displayed no age differences in component structure, and 

among the ones that did, age effects were captured by small (2% of IC volume, on average) regional 

clusters. Similarly, age comparisons of various unweighted graph summary metrics in our inter-

component FC analyses revealed a relatively age-invariant graph structure. 

To our knowledge, only three other studies used GICA or similar techniques for 

investigating brain-wide age differences in network topography (Allen et al., 2011; Huang et al., 

2015; Vij et al., 2018). In the first such study, Allen et al. (2011) employed IC scaling methods 

similar to the ones used in our current work, and reported declining intra-network connectivity in 

every network that could not be fully accounted for by age-related volumetric differences in cortical 
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GM volume. This is similar to our observations: except for a few clusters, age effects on network 

topography could not be fully accounted for by age differences in regional GM volume, indicating 

that functional connectivity provides information about brain aging beyond what can be explained 

using cortical thickness/volume alone. In the second study, Huang et al. (2018) computed average 

intra-network connectivity metrics for the entire IC by collapsing spatial map intensity values 

across all voxels in a network. The authors reported negative associations between age and intra-IC 

connectivity in 5 RSNs: auditory, ventral default mode, right executive control, sensorimotor, and 

visual medial. No positive associations between age and spatial map intensity were detected.	
However, because the authors estimated age relationships for connectivity measures collapsed 

across all of IC’s voxels, it was not clear which of the IC’s regions were responsible for the 

aggregate age effects, and whether any of their network ICs disaplyed age-associated restructuring 

(i.e., some regions positively associated with age, and others negatively associated with age). In the 

third study, Vij et al. (2018) reported negative associations between RSN volume and age in most 

functional systems with sensorimotor (i.e., visual, somatomotor, auditory) networks being 

especially vulnerable to age-related decline. However, those negative associations between RSN 

volume and age were not limited to sensorimotor regions: executive, salience, and basal ganglia 

networks also displayed lower component volumes in aging adults. In addition, 2 network 

components — posterior default mode and central executive control — showed positive 

associations with age, indicating that at least in some cognitive regions of the brain there is a pattern 

of intra-network reorganization occurring throughout life, as opposed to an outright loss of network 

structure. Despite these insights, it should be noted that Vij et al. (2018) defined network volume as 

the number of voxels in a subject’s component map above a predifined z-statistic cut-off. 

Consequently, it was not clear whether age differences in RSN volumes were caused by age 

differences in network structure or age differences in network amplitude. 

Rather than z-scoring our IC spatial maps, we normalized our IC spatial maps by BOLD 

amplitude, which more accurately captures true group differences in spatial features (Allen et al., 

2011, 2012). We also performed voxel-based age comparisons, enabling us to detect both increases 

and decreases in intra-component FC. According to our age comparisons of IC topography, the 

three largest age-relationship clusters were localized within the frontal lobes, and all three showed 

negative linear relationships between the amplitude-normalized SM intensity and age. Two of those 

clusters belonged to the ‘Mixed 4’ network component and were located primarily within the 
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bilateral inferior frontal gyrus and bilateral orbitofrontal cortex. The third cluster represented 

bilateral anterior cingulate and bilateral paracingulate regions of the DMN’s frontal subsystem. In 

addition to frontal lobes we identified age relationship clusters in the parietal, visual, and temporal 

regions of the brain. Of these, parietal networks deserve special attention since only the parietal 

association cortex contained clusters representing both positive and negative correlations to age, 

indicating age-related network restructuring in those regions. A number of recent studies, 

employing different network estimation techniques, reported similar age effects on functional 

organization of the parietal association cortex (Grady et al., 2016; Meunier et al., 2009; Onoda & 

Yamaguchi, 2013; Park et al., 2010). 

Initial imaging evidence for altered network dynamics in old age was demonstrated in task-

based fMRI and PET experiments, which showed an over-recruitment of frontal and parietal 

association cortices in older cohorts in a wide variety of cognitive tasks (Cabeza et al., 2002, 2004; 

Davis et al., 2008; Grady et al., 1994; Gutchess et al., 2005; Li et al., 2015; Logan et al., 2002; 

Rypma & D’Esposito, 2000; Rajah & D’Esposito, 2005; Schneider-Garces et al., 2010; Spreng et 

al., 2010; Sugiura, 2016). Age effects on network dynamics were reported even in simple motor 

experiments, during which older adults showed greater activity in the ipsilateral somatomotor 

cortex, supplementary motor and premotor areas, basal ganglia, as well as association regions in the 

parietal cortex (Kim et al., 2010; Riecker et al., 2006; Tsvetanov et al., 2015). This additional 

activity seems to be compensatory in nature and plays a vital role in maintaining cognitive 

performance in old age (Fera et al., 2005; Park & Reuter-Lorenz, 2009; Rossi et al., 2004; Solé-

Padullés et al., 2006; Schneider-Garces et al., 2010). 

Recently, interest has grown in graph theory and its ability to summarize age effects on the 

brain’s functional architecture (Rubinov & Sporns, 2010; Damoiseaux, 2017; Wig, 2017). In 

general, brain aging studies that employed graphical models to study FC indicate functional 

dedifferentiation among old adults, typically manifesting as a less distinct or less stable grouping of 

certain brain areas into network communities (Chan et al., 2014; Chong et al., 2019; Geerligs et al., 

2015; Grady et al., 2016; Keller et al., 2015; Onoda & Yamaguchi, 2013; Spreng et al., 2016; Vij et 

al., 2018). However, since almost all previous connectivity studies that relied on graphical methods, 

estimated their graphs using bivariate, not partial correlations, their results may have been 

confounded by indirect connections (Epskamp & Fried, 2018; Smith et al., 2011). To our best 
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knowledge, this is the first study to combine sparse graphical estimation methods with ICA-based 

network extraction to investigate age effects on inter-component FC. 

Consistent with other graph-based FC studies of brain aging, our weighted efficiency-related 

graph summary metrics (i.e., global efficiency, characteristic path length, network diameter, 

network radius) suggest that functional communication in the human brain becomes increasingly 

inefficient with age [Efficiencyyoung > Efficiencymiddle-aged > Efficiencyold]. Furthermore, as 

evidenced by weighted closeness and betweenness centralities, age differences were primarily 

characterized by a widespread reduction in network integration in old relative to young adults – and 

not by any particular IC’s importance to the overall information flow in the brain. Despite this 

broad loss of network efficiency in old age, our unweighted graph summary metrics indicate that 

the fundamental network architecture is stable in young, middle, and late adulthood. We also want 

to point out that age differences in the overall edge weight were more pronounced in young vs. 

middle-aged comparisons than in middle-aged vs. old comparisons indicating relatively early aging 

effects on FC. In general, intra-system FC strength was more vulnerable to aging than inter-system 

FC strength; however, certain inter-system connections, especially those connected to the “Mixed” 

ICs, also showed age-associated FC decline that was evident by middle adulthood. 

Contrary to some previous research (e.g., Betzel et al., 2014; Chan et al., 2014; Geerligs et 

al., 2015; Spreng et al., 2016), we did not find substantial evidence for greater inter-system 

integration in old age: almost all edges with age differences in our FDR-corrected age comparisons 

represented connections between one of the clearly defined RSNs and one of the ‘Mixed’ (i.e., 

multi-system) RSNs. Because those ‘Mixed’ RSNs act as hubs that interconnect multiple functional 

systems with each other, declining FC between these multi-system RSNs and other systems, is also 

indicative of less efficient network architecture. Of particular note here is the loss of connectivity 

between the DM6 and Mix4 components with age. Structurally, the Mix4 IC showed the largest 

topographical age differences, especially in the bilateral inferior frontal gyrus. As these regions 

become increasingly disconnected from the rest of the component with age, the entire IC loses its 

connectivity to the DM6 network. With a less strict statistical threshold (uncorrected p < .010), we 

identified additional age differences in inter-component connectivity, primarily among various 

default mode sub-systems (Andrews-Hanna et al., 2014; Christoff et al., 2016). Early FC 

experiments showed that communication between distant areas of the DMN, especially between the 

medial frontal and posterior cingulate/retrosplenial hubs, declines with age (Andrews-Hanna et al., 
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2007; Damoiseaux et al. 2008; Wu et al., 2011). More recent work, employing not only cross-

sectional but also longitudinal designs, produced mixed results with some groups supporting the 

early findings (e.g., Geerligs et al., 2015; Grady et al., 2016; Ng et al., 2016) and others finding no 

age effects (Hirsiger et al., 2016; Persson et al. 2014). Our inter-component connectivity results 

demonstrated a relatively complex pattern of age-related network reorganization within this system. 

Age-related shifts in the DMN’s organization could represent age differences in spontaneous 

thought processes or changes in network architecture away from long-range communication to 

favour anatomically proximal short-range communication (as suggested by Tomasi & Volkow, 

2012). Even though our data suggest age differences in the architecture of the default mode system, 

these findings should be interpreted with caution since they did not survive the FDR correction for 

multiple hypothesis testing. 

 

Limitations 

In light of our results on network amplitude, caution should be exercised when interpreting 

such measures without additional knowledge of how non-BOLD contribution to the fMRI time 

series is affected in healthy aging. For similar reasons, findings from other studies on functional 

dedifferentiation with age should also be interpreted with caution, since age effects on BOLD 

amplitude (and consequently temporal SNR) might be responsible for lower correlation strength in 

old adults, which in turn would result in less stable estimates of network community structure. 

Because of technical and computational limitations, we relied on linear and quadratic regression 

models in our initial screening for topographical differences in component topograhy. We do not 

consider this to be a major issue in our study as most linear, curved, and u-shaped patterns can be 

detected using quadratic and linear fits.  To further mitigate the downsides of linear and quadratic 

fits (Aghamohammadi-Sereshki et al., 2019; Fjell et al., 2010), all clusters showing statistical age 

differences were followed-up with fractional polynomial modelling. 

It is important to keep in mind that head motion has been shown to modulate FC in multiple 

RSNs (Mowinckel et al., 2012; Power et al., 2012; Van Dijk et al., 2012). As is typically reported in 

the field (e.g., Madan, 2018), our older participants were not as still inside the scanner as younger 

ones. Since we employed some of the most rigorous techniques for removing head motion artifacts 

in our customized preprocessing pipeline, we believe that our findings on age differences in RSN 

structure represent true age differences in neurovascular coupling and functional connectomics 
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(Mowinckel et al., 2012; Power et al., 2012; Van Dijk et al., 2012). Additional research, employing 

physical restrains (Power et al., 2019), as opposed to post-acquisition clean-up techniques, is 

needed to eliminate any residual concerns about the effects of head motion on FC studies of brain 

aging. 

Lastly, we need to emphasize that our study was cross-sectional. A longitudinal sample is 

needed to confirm our results as true aging effects, rather than a byproduct of cohort differences. 

Future research would benefit from addressing the issue of sex differences in brain aging. Even 

though we did not attain sufficient statistical power to perform sex comparisons in our inter-

network connectivity graphs (< 15 males in middle-aged and old adult groups), we were able to test 

for male vs. female differences in network topography and BOLD amplitude. Those analyses did 

not reveal any statistically significant sex effects or interactions. However, in those tests too, 

potential consequences of limited statistical power come to mind: it is plausible that sex differences 

in brain aging are subtle, necessitating a larger sample size for sex effect detection using statistical 

testing. 
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5.5. Appendix A: Summary Metrics for Unweighted Graphs 

 
 
 

 

 

where !!"!,!∈!  represents the sum of all edges in a graph, n is the number of nodes in a 

graph, and N is the set of all nodes in a network. 

 

 
 
 
 
 
 

where dij represents shortest path length (distance) between nodes i and j, n is the number of 

nodes in a graph, and N is the set of all nodes in a network. 

 

 
 
 
 
 

 
where ti  is the number of triangles around node i, ki is the degree of node i, and N is the set 

of all nodes in a network. 
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where dij represents shortest path length between nodes i and j – elements of the set N 

containing all nodes in a network. 

 
 
 
 

 
where dij represents shortest path length between nodes i and j – elements of the set N 

containing all nodes in a network. 

 
 
 
 

 

where aij is the connection status (i.e., 0 or 1) between nodes i and j, and N is the set of all 

nodes in a network. 
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where Cmax is the degree of the node with the largest degree centrality, Ci is the degree of 

node i, and n is the number of nodes in a graph. 

 

 

 

 

 

where Cmax is the closeness centrality of the node with the largest closeness centrality 

values, Ci is the closeness centrality of node i, and n is the number of nodes in a graph. 

 

 

 

 

 

where Cmax is the betweenness centrality of the node with the largest betweenness centrality 

value, Ci is the betweenness centrality of node i, and n is the number of nodes in a graph. 
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5.6. Appendix B: Summary Metrics for Weighted Graphs 

 

 

 

 

where !!"!,!∈!  represents the sum of all edge weights (i.e., correlation strengths) 

between nodes in a graph, n is the number of nodes in a graph, and N is the set of all nodes 

in a network. 
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where !!"! is the shortest weighted path length between nodes i and j, computed from length 

(i.e., inverse of correlation strength) weights, and N is the set of all nodes in a network. 

 

 

 

 

where !!"! is the shortest weighted path length between nodes i and j, computed from length 

(i.e., inverse of correlation strength) weights, and N is the set of all nodes in a network. 
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where ρhj is the number of shortest paths between nodes h and j, and ρhj
(i) is the number of 

shortest paths between h and j that pass through node i, n is the number of nodes in a graph, 

and N is the set of all nodes in a network. This metric is identical to its unweighted 

counterpart, except that path lengths are computed on weighted (i.e., inverse of correlation 

strength) edges. 
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Chapter 6: General Discussion and Conclusions 
 

This thesis's work demonstrates the feasibility and advantages of high-field fMRI imaging, 

especially for high-resolution experiments (1.5-mm isotropic) of small MTL structures. Reasonable 

estimates of the AG and HC functional properties are possible with 10-15 trials per condition, and a 

sample of 25 healthy young adults. Because structures the MTL are notoriously difficult to study 

using fMRI, mainly due to dropouts, geometric distortions, signal contamination from large 

drainage veins, and less dense vasculature (Andersson et al., 2001; Boubela et al., 2015; Ekstrom, 

2010), the proposed high-resolution framework will be even more sensitive for cortical regions. 

Indeed, our own results from Chapter 5 indicate that BOLD signal power is the greatest in 

somatosensory, motor, and visual cortices, especially when studying brain activity in healthy young 

adults. However, the advantages of high-field data extend beyond high-resolution imaging. As 

demonstrated in Chapter 5, when working on the 3-mm isotropic 4.7 T data, our results attained a 

stable parcellation of the brain into 21 functional systems with 105 participants and 10-minute-long 

fMRI acquisitions. 

Chapter 3 showed not only the feasibility of studying functional properties of the human 

amygdala subnuclei in vivo but the necessity of doing so. Since various amygdala subnuclei 

responded differently to visual stimuli: the LA nucleus was largely unresponsive to both neutral and 

negative pictures, the BA group was activated by all pictures, regardless of emotional content, while 

the CeM group showed preferential sensitivity to negative pictures. Critically, because of its size 

(Brabec et al., 2010; Garcia-Amado & Prensa, 2012), function of the CeM amygdala can only be 

studied using high-resolution fMRI with no spatial smoothing during image post-processing. 

Similarly, the anterior and posterior hippocampal subfields showed differential activity profiles 

during memory retrieval (i.e., Chapter 4). Because of the subfields’ anatomical proximity (Adler et 

al., 2014; Duvernoy, 2005; Malykhin et al., 2010), any spatial smoothing with a kernel size > 2 mm 

FWHM would lead to signal averaging across the subfield boundaries, minimizing the advantages 

of high-resolution imaging. Functional MRI datasets with 2-mm isotropic (or larger) voxels would 

make it virtually impossible to study subfield activity in vivo. 

A key advantage of the methodology in Chapters 3 and 4 was the manual segmentation of 

the amygdala subnuclei and hippocampal subfields and subregions in native space on T2-weighted 

structural MRI with a sub-millimeter spatial resolution (Aghamohammadi-Sereshki et al., 2018; 
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Malykhin et al., 2010). Such T2-weighted FSE images allow for direct visualization of the intra-

hippocampal white matter, stratum lacunosum-moleculare, and provide additional contrast for 

segmenting the amygdala from nearby MTL structures (Aghamohammadi-Sereshki et al., 2018; 

Malykhin et al., 2010), ensuring the anatomical accuracy of all activity estimates. Registering each 

participant’s scan to a template brain can introduce anatomical errors due to the deformations 

required (Yassa & Stark, 2009). Subject-specific segmentation by an expert rater is the gold 

standard in structural brain imaging since it bypasses most of the issues arising during such 

complex transformations. Furthermore, analyzing activity in native space reduces data interpolation, 

as the only preprocessing steps that must be performed prior to activation analyses are correction of 

inhomogeneity-induced geometric distortions, realignment, de-spiking, motion scrubbing, and 

physiological noise removal. Head movement can be a serious problem for high-resolution fMRI 

studies as relatively minor rotations of 1-2° or displacement of 1-2 mm can pose a serious challenge 

for precise activity localization. Future high-resolution fMRI experiments may benefit from 

customized head molds as a preventive measure to additionally reduce the confounding effects of 

head motion (Power et al., 2019), especially in populations prone to greater head movement during 

the scanning procedure (for example in pediatric or elderly volunteers). 

Alternatively, as was done in Chapter 5, it is possible to use the ICA-based manual 

denoising technique with the guidance of an automated classifier of head motion signal sources 

(Griffanti et al., 2017; Pruim et al., 2015a). This approach worked well in a full-brain study with 

previously-described network/noise features (e.g., Griffanti et al., 2017), but would be less effective 

for high-resolution datasets with partial brain coverage since noise/signal sources of such 

acquisitions require further validation. Instead, physiological denoising derived from cardiac and 

respiratory waveforms (Chapter 4) is a more suitable method for high-resolution work (Glover et 

al., 2000; Birn et al., 2006, 2008; Chang et al., 2009). Alternatively, CompCor methodology 

(Behzadi et al., 2007) with strict CSF and WM masks can be used to account for some of the aliased 

physiological noise, as was done in Chapter 3. 

The necessity of building customized HRf models was evidenced most strongly in Chapter 4 

(i.e., Experiment 2). Even though we presented encoding grids for 10 seconds, the HC of our 

participants was not active for the entire duration that the stimulus was presented on the screen. 

Simply convolving the stimulus duration with the canonical HRf, as is frequently done in the field, 

would have resulted in a highly inaccurate model of regional BOLD activity. Poor BOLD models 
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not only weaken one’s ability to detect activity in the first place but may also produce biased or 

even incorrect estimates, especially when a region’s actual response deviates drastically from the 

expected model (Calhoun et al., 2004; Lindquist et al., 2009; Pernet et al., 2014). Even though it 

was not feasible to develop subfield/subnucleus-specific models at this time, mainly because there 

was a lack of prior knowledge about functional properties that individual subnuclei and 

anterior/posterior subfields play in our cognitive tasks, future high-resolution studies of the MTL 

would benefit from estimating HRfs not only for the total HC/AG, but also for their 

subfields/subnuclei. As the number of high-resolution fMRI studies grows, future studies will be 

able to administer cognitive tasks engaging specific subnuclei and subfields, which in turn will 

allow for even more accurate BOLD modeling within the MTL.  

The remaining section of this chapter will consider the field-specific implications of my 

work on our understanding of the human brain. For each of the experimental chapters, I first 

provide a brief overview of what was previously known about each research area and how my 

results advance that specific field. 

 

8.1 In vivo study of amygdala subnuclei function in humans 

 

Background and knowledge gaps 

Most previous studies of the human amygdala investigated its function either as a single 

unitary structure or investigated coarse and anatomically-unrepresentative dorsal/ventral (Kim et al., 

2004; Morris et al., 2001; Whalen et al., 1998; Whalen et al., 2001), medial/lateral (Kim et al., 

2003; Zald & Pardo, 2002), or anterior/posterior subdivisions (Gottfried et al., 2002; Morris et al., 

2002; Wang et al., 2008). Where subnuclei were studied separately, studies sometimes used sub-

optimal atlases with inaccurate subnuclei and amygdala boundaries (e.g., Ball et al., 2007, 2009; 

Frühholz & Grandjean, 2013; Grant et al., 2015; Roy et al., 2009; Styalidis et al., 2014). To my best 

knowledge, no earlier studies investigated intra-amygdala functional connectivity. 

 

Contributions 

This was the first study to combine ultra-high-resolution T2-weighted structural MRI with 

high-resolution functional MRI to study the amygdala subnuclei function in vivo and demonstrated 

for the first time that subnuclei of the human AG respond differently to emotional stimuli. Research 
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presented in Chapter 3 is also the first demonstration of intra-AG functional connectivity in 

humans.  

To perform the study, multiple innovative techniques were used. First, we employed 

histological references (Brabec et al., 2010; Mai et al., 2008) to subdivide the AG into 3 major 

subnuclei groups that closely approximate the subnuclei anatomy (Aghamohammadi-Sereshki et al., 

2018). Furthermore, we developed a customized BOLD response model for the AG and used this 

methodology to study not only response amplitude but also time-to-peak. Our methodology was 

designed as a compromise between model flexibility and statistical sensitivity. More flexible 

approaches, like the Finite Impulse Response (FIR) technique, estimate activity for each 

invidividual time point separately (Glover, 1999). As can be expected, doing so comes at the 

expense of reduced statistical power, no baseline enforcement, and no shape constraints. 

Consequently, FIR-based techniques are prone to overfitting, especially with a limited number of 

trials and subjects. Our BOLD analysis technique was able to capture not just amplitude, but also 

temporal differences in CeM activity following stimulation by emotionally-salient stimuli. 

 

8.2 In vivo study of the anterior and posterior hippocampal subfield function in humans 

Background and knowledge gaps 

The HC has been studied extensively in both human and animal literature (Cohen et al., 

1999; Eichenbaum, 2001; Lisman et al., 2017; Moscovitch et al., 2005, 2016; Scoville & Milner, 

1957; Squire & Dede, 2015, Squire & Wixted, 2011; Squire et al., 2015). Since the famous HM 

case (Scoville & Milner, 1957), those studies largely focused on the HC role in declarative, 

especially episodic, memory. However, most prior HC research focused either on its longitudinal or 

cross-sectional axis, but not both. This was partly due to methodological limitations of standard 

acquisition and analysis techniques. Thickness of the CA1-3 and Sub subfields is less than 2-mm on 

many coronal slices (Adler et al., 2014), requiring high-resolution imaging with customized 

analytical approches. Furthermore, many previous high-resolution fMRI studies of the HC subfield 

function were limited in their acquisitions or segmentation methodology and, as a result, did not 

study subfield function of the most anterior portions of the HC head (Chen et al., 2011; Copara et 

al., 2014; Eldridge et al., 2005; Nauer et al., 2015; Stokes et al., 2015; Suthana et al., 2009, 2011; 

Zeineh et al., 2003) or the most posterior HC segments, especially the HC tail (Berron et al., 2016; 

Chen et al., 2011; Eldridge et al., 2005; Zeineh et al., 2003). Consequently, one of the major 
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methodological goals in Chapter 4 was to come up with acquisition and analysis methodology that 

was capable of measuring activity in every part of the human HC without sacrificing 1.5-mm 

isotropic resolution. The second objective of my high-resolution HC study was to elucidate the 

relationship between different types of memory and the role that the HC plays in forming and 

retrieving them.  

In the current literature, there is limited consensus as to whether the HC is responsible for 

processing of spatial vs. non-spatial memory (Eichenbaum, 2017; Eichenbaum & Cohen, 2014; 

Kumaran & Maguire, 2005; Lisman et al., 2017; Nadel et al., 2012), and whether the HC is 

involved in item, not just relational memory (Davachi et al., 2003; Gold et al., 2006; Konkel et al., 

2008). Instead, a substantial segment of high-resolution fMRI literature on the role that the HC 

subfields play in episodic memory was attained using pattern separation/completion tasks (Bakker 

et al., 2008; Duncan et al., 2012; Lacy et al., 2011; Yassa & Stark, 2011). Whether the anterior or 

posterior HC subfields are specialized for one vs. another type of explicit memory has not been 

studied directly.  

 

Contributions 

To my best knowledge, Chapter 4 is the first study that investigated item, spatial, and 

associative memory during memory encoding and memory retrieval in each of the anterior and 

posterior hippocampal subfields. This chapter builds on high-resolution techniques that were 

introduced in Chapter 3. Because the HC is a much larger structure that the AG, and consequently 

more vulnerable to inhomogeneity-induced distortions, our preprocessing and activity detection 

methodology was optimized further. To deal with physiological noise sources, our research team 

recorded cardiac and respiratory waveforms during the fMRI scan (Glover et al., 2000; Birn et al., 

2006, 2008; Chang et al., 2009). To improve the structural-functional image alignment, fieldmap-

based correction for geometric distortions was added to the pipeline (Andersson et al., 2001), while 

correction for slice acquisition delay was removed to minimize data interpolation. Due to task 

complexity, two separate HC BOLD response models were created: one for the encoding phase and 

the other for the retrieval phase. The HRf-creation procedure incorporates a new HRf/noise 

classification scheme that takes into account subfield- and subregion-related differences in activity 

(e.g., activation/deactivation/noise). Similar to the AG study, Experiment 2 relied on manual 
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segmentation of the hippocampal subregions and subfields on ultra-high-resolution structural MRI 

(Malykhin et al., 2010). 

The results of this study filled a number of gaps in the field of human memory and HC 

function. First, Experiment 2 showed that the entire HC (i.e., both anterior and posterior subfields) 

was active during memory encoding. Second, there was an anterior to posterior gradient in HC 

activity during memory retrieval. This gradient was characterized by above-baseline activity in the 

posterior HC (HC body and tail) and below-baseline activity in the anterior HC (HC head). Third, 

the DG was more active than in the CA1-3 or Sub during both encoding and retrieval. Fourth, the 

type of memory process (i.e., item, spatial, associative) had marginal effects on HC activity during 

memory encoding; however, there was a global right-hemisphere preference for spatial trials during 

memory retrieval. Lastly, the results from Chapter 4 demonstrate the necessity of studying 

functional aspects of the anterior and posterior HC subfields separately, since our data showed 

differential functional responses of the anterior and posterior HC subfields during some types of 

memory processing. 

 

8.3 In vivo study of healthy brain aging using high-field resting-state fMRI 

Background and knowledge gaps 

Multiple fMRI studies of brain aging reported reduced BOLD activity during simple non-

cognitive tasks, like visual stimulation and finger tapping (D’Esposito et al., 1999, 2003; 

Handwerker et al., 2007; Hesselmann et al., 2001; Mehagnoul-Schipper et al., 2002; Riecker et al., 

2006; Ross et al., 1997; West et al., 2019). In tasks that place substantial loads on working memory 

and selective attention, fMRI experiments revealed more extensive frontal and parietal activation 

among old adults (Cabeza et al., 2002, 2004; Davis et al., 2008; Gutchess et al., 2005; Logan et al., 

2002; Rypma & D’Esposito, 2000; Rajah & D’Esposito, 2005; Spreng et al., 2010), suggesting 

either age effects on the underlying network architecture or additional engagement of brain reserves 

to compensate for declining information processing via conventional streams (Buckner, 2004; 

Cabeza, 2002; Fabiani, 2012; Grady, 2008). Old adults also show reduced deactivation of the 

default mode system during cognitive tasks (Park & Reuter-Lorenz, 2009; Persson et al., 2007, 

2014; Raichle & Snyder, 2007), suggesting either a reduction in fMRI signal power or a failure to 

disengage task un-related thoughts. 
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Resting-state functional connectivity studies, on the other hand, indicate functional de-

differentiation with age and a loss of long-range functional connectivity, especially in the default 

mode system (Andrews-Hanna et al., 2007; Damoiseaux, 2017; Tomasi & Volkow, 2012; Wu et al., 

2011; Wig, 2017). However, few resting-state fMRI experiments investigated how network 

amplitude is affected in aging (but see, Allen et al., 2011). Furthermore, most prior work on the 

relationship between age and functional connectivity used simple bivariate correlations as a proxy 

for age effects on functional coupling (e.g., Andrews-Hanna et al., 2007; Betzel et al., 2014; 

Geerligs et al., 2015; Grady et al., 2016; Zonneveld et al., 2019). Unfortunately, correlation is an 

ambiguous measure, and without broader understanding of how fMRI signal is affected by the 

aging processes, since correlation differences among age groups can be due to age differences in 

BOLD amplitude, background noise, or coupling (Duff et al., 2018). Furthermore, bivariate 

correlations require somewhat arbitrary thresholding and can detect false connections due to 

indirect network coupling (i.e., if A ↔ B, and B ↔ C connectivity exists, there is a high probability 

that A ↔ C will also be statistically associated under a typical bivariate correlation approach; Smith 

et al., 2011). 

  

Contributions 

To my best knowledge, Chapter 5 is the first example of a high-field resting-state fMRI 

study into neurobiological processes occurring as a part of healthy cognitive aging. It is also the 

first application of a SCAD-regularized sparse graphical methodology for studying age effects on 

the brain’s functional architecture. 

Chapter 5 showed that BOLD signal amplitude declines in every resting-state network with 

age, suggesting that a reduction in the BOLD signal itself might be responsible for the previously 

reported age effect on BOLD activity during task-based fMRI. Despite the regional variation, 

biological causes of these amplitude trends likely share a common origin, and could represent 

global vascular or neurobiological changes, and carry wide-ranging implications for most 

correlation-based functional connectivity studies of brain aging. Specifically, previously reported 

de-differentiation trends, typically measured as a reduction in network modularity, might represent 

a weakened BOLD contrast-to-noise ratio and not altered coupling per se. Binarized bivariate 

correlations with arbitrary cutoffs may introduce further confusion, as noise sources might appear as 
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true ‘connectivity’ if the correlation-based cutoffs for edge detection are set low enough (Power et 

al., 2012). 

Consistent with the hypothesis that many of the age differences in prior resting-state 

functional connectivity studies may have been driven by a reduction in network amplitude as 

opposed to direct differences in the functional coupling, the overall network architecture was 

similar in young, middle-aged, and old adults. Nonetheless, modest differences (mainly reduction) 

in intra-network connectivity were detected in most functional systems. Because age effects on 

network amplitude were removed from network maps, these small differences likely represent true 

functional rewiring, especially in brain regions where age-related GM atrophy cannot fully account 

for statistical associations between network maps and age. The 4.7 T MRI system enabled me to 

separate the default mode system into 6 main sub-systems, the relationship between which was 

evaluated using sparse graphical methods. Unlike previously studies by others (Andrews-Hanna et 

al., 2007; Damoiseaux et al. 2008; Wu et al., 2011), which reported a loss of functional connectivity 

between the medial frontal and medial parietal hubs in ageing individuals, the results of my work 

suggest an age-related functional reorganization within the default mode system, and not an outright 

breakdown in network structure in old age. Lastly, our graphical methods also suggest weakened 

inter-system (i.e., somatomotor ↔ attention, attention ↔ default, etc.) communication in old adults. 

In summary, because of improved sensitivity to BOLD contrast at 4.7 T, Chapter 5 provides a 

comprehensive overview of the relationship between age effects and resting-state fMRI with 

significant implications for previous task-based and functional connectivity literature. 
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