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ABSTRACT 

The developed discrete finite element method is used here to analyze 

hybrid/coupled problems with continuum and discontinuum properties. 

Research in geomechanics usually focuses on the development of methods to 

capture deformation and failure behaviour of geotechnical structures. These 

methods analyze interactions between multiple deformable bodies discritized 

into a single element or numerous finite elements and are applied as such to 

geotechnical problems of soil and rock. When used to predict the behaviour of 

geo-mechanical materials, these methods require unrealistic idealizations; 

however, interest in the use and development of these techniques is increasing 

rapidly. 

The present research employs well-developed finite element formulations 

and incorporates techniques of the discrete element method and the elasto-

plastic constitutive relationship into the developed method. Theoretical aspects 

of the problem are considered and then the solutions for practical applications 

are obtained. 

Solutions for discrete finite element analysis are developed based on 

solutions for the equation of motion for finite element components. Solutions are 

obtained within the framework of existing theories and modified to fit the present 

approach. Existing finite element methods lead to excessive distortion of the 

elements; this limitation is overcome by splitting the elements and progressing 

into discrete element analysis. The present research uses two-dimensional 

quadrilateral discrete elements to generate finite element solutions. Individual 



deformable elements are constrained against nodal/contact movements. Two 

approaches related to displacement and velocity constraints are considered. The 

developed scheme generates solutions equivalent to a finite element continuum. 

Knowing the stress state of the elements, a transition from continua to 

discontinua is achieved through fracture and fragmentation processes by 

adopting suitable failure criteria. Realistic distributed contact models verified by 

other research programs were considered and a suitable contact model is applied. 

The movement and interaction of each discrete element captures the motion, 

while the finite element meshes employed capture the deformation and stress-

strain states. Examples of block toppling, bearing capacity, retaining wall earth 

pressures verify the schemes presented. 

In an analysis of the Carsington Dam failure, the developed technique 

produces a failure plane comparable to earlier research results. Failure 

progresses as the elements move and develop further contacts. The Carsington 

Dam failure involved many parameters and material variations; therefore, the 

success of the technique presented here in simulating the failure validates the 

developed methodology. The method proves to be effective in simulating the 

failure mechanism of various complex engineering structures, although 

conclusions are necessarily case dependent. 
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Chapter 1 

1 INTRODUCTION 

l . l GENERAL 

Discretizations of engineering systems, including geotechnical applications, are 

based on the idealization of continuity. The versatile and valuable finite element 

method and the finite difference method incorporate continuum constitutive 

models. Since the microstructure of geological materials is small, continuum 

approaches are successful. However, for simulating jointed rock problems, 

masonry, ice plates, and problems related to granular materials, continuum 

methods are severely limited. 

The discrete/particulate nature of granular materials makes it difficult to capture 

their behaviour with continuum models. During the last two decades, efforts have 

been made to model the behaviour of these materials under large deformations 

and to overcome the limitations of continuum methods in situations approaching 

failure. Discrete element methods simulate discrete body interactions, capturing 

motion and irrecoverable deformations. Attempts have been made to simulate 

discrete behaviour by introducing discontinuities into continuum methods and to 

model a discontinuum with continuum incorporated as a special case. 

In this thesis a hybrid technique is developed to deal with problems of excessive 

displacements in the field of geomechanics. Finite element and discrete element 

methods are coupled and the results are validated by applying the developed 

technique to few practical examples. A case history of the Carsington Dam failure 

is back-analyzed. 

1 



Chapter l 

1.2 OVERVIEW OF PREVIOUS STUDIES 

Geotechnical engineering analysis plays an important role in the design of many 

engineering structures. Various analyses of the mechanisms of soil-structure 

interactions and the stability of soil structures are carried out by using various 

available methods. For continuum solutions, empirical approaches, closed form 

solutions, the finite element method, and the finite difference method are 

applied. The concepts of the discrete element method are introduced based on an 

idealization of geological/geotechnical materials as comprising of individual 

discrete bodies. In order to capture the states of large displacements and 

deformations within the soil medium, the coupled approaches of discrete and 

finite element methods were developed. 

The finite element method has found applications in many fields of engineering 

and has been incorporated into geotechnical engineering, as reviewed by Potts [l] 

and Desai [2]. The constitutive models idealizing the behaviour of geotechnical 

materials are applied within the method and their limitations appreciated. Some 

software's based on this approach and used in geotechnical industry are SIGMA-

W, Phase2, etc. However, because of the nonlinearity involved in soil behaviour, 

these methods are numerical in nature. As computing costs decrease, the trend to 

apply these methods to analyses of geotechnical structures is likely to increase. 

Some of the other available software's, e.g., UDEC, PFC, are based on the discrete 

element method of analysis; that is, the generic behaviour of geological materials 

and earth structures are simulated using multiple interacting bodies and suitable 

constitutive relations to define the contacts formed. The conventional discrete 

element model (DEM) uses the process of dynamic relaxation by integrating 

Newton's law over time, Cundall [3]. Since, DEM simulations are computer 

resource intensive and involve numerous bodies and time steps, current research 

in this field is focused on the development of options for parallel processing and 

chaos management. Another limitation of DEM is the difficulty in determining 

the material properties of the soil models. 

2 



Chapter l 

As analysis methods evolved, researchers attempted to integrate the capabilities 

of the finite element method and the flexibility of the discrete element method to 

model interactions among multiple bodies. These approaches include the discrete 

finite element method (DFEM), discontinuous deformation analysis (DDA), 

material point method (MPM) and others, Munjiza [4], and have been applied to 

the problems of progressive fracturing and fragmentation and in the transient 

dynamics of systems involving large numbers of deformable bodies. DDA method 

based on decoupling constant deformation modes from rigid body modes led to 

computation of spurious stresses. Methods using joint elements were limited to 

small displacements and unchanging topology as they are not designed to handle 

large block movements. 

A literature review of the methods considered in this thesis is presented in 

chapter 2. 

1.3 OBJECTIVES AND SCOPE OF THE THESIS 

This study develops an approach to model the progression from a continuum 

state to a discontinuum state of geological materials under various loading and 

displacement conditions. The methodology is based on the finite element method 

for continuum analysis and the discrete element method for discontinuum 

analysis. These methods were selected because each has a unique capability to 

solve engineering problems. 

A numerical method is introduced to effectively simulate the computations of 

displacements, strains and stress states, splitting of the elements, and element 

mobility over time. The highlights of the research are described below: 

• A new strategy is presented to use independent discrete elements and 

apply displacement/velocity nodal constraints to obtain solutions 

equivalent to finite element solutions. 

3 



Chapter l 

• For contact detection and its subsequent force computations, physical and 

numerical issues are identified and discussed. 

• Specific material constitutive relation is applied and verified using 

conventional examples. 

• A case history of the failure of the Carsington Dam is analyzed. 

1.4 ORGANIZATION OF THE THESIS 

The thesis is organized into seven chapters. 

A review of literature is presented in Chapter 2. Well-established approaches to 

the finite element and discrete element methods are described. Similar coupled 

techniques based on these two basic approaches are also discussed eg 

discontinuous deformation analysis, the manifold method, material point method 

and the discrete finite element method. The strengths and deficiencies of each 

method are discussed and related applications are presented. 

The present investigation is divided into three parts, each one with specific 

objectives. In part one, presented in Chapter 3, a numerical procedure is 

developed by using individual discrete elements, each having independent 

degrees of freedom and solutions equivalent to those of the finite element method 

were obtained. The use of iso-parametric quadrilateral elements representing 

geological material is considered. Specific constraints are applied to the nodes in 

terms of either displacements or velocities to obtain the continuum solution. 

The results obtained for the finite element continuum are from the solution of the 

equation of motion, which is the basic equation for the discrete element 

procedures. This provides the foundation to generate solutions for the discrete 

element method in continuation of the finite element solutions. The discrete 

finite element method can thus analyze multiple deformable bodies and 

overcome the limitations of either of the methods. 

4 



Chapter 1 

In Chapter 4, techniques required for the development of discrete element 

analysis are reviewed and appropriate schemes are applied to the present 

research. This includes models that represent contacts among different 

interacting elements along with the associated contact detection procedures. To 

check the reliability of the computer code and the techniques applied, several 

simple examples involving the movement of discrete elements are solved and 

discussed. 

In the second part of the study presented in Chapter 5, a relevant constitutive 

relation representing the generic behaviour of the geological material is 

incorporated. The elasto-plastic Mohr-Coulomb relation with a non-associated 

flow rule is applied to the in-built constitutive behaviours of the contact models. 

Compatibility of the yield criteria with the dynamic time stepping solution 

scheme is recognized and checked. Two conventional examples of bearing 

capacity of a strip footing and earth pressures generated behind the retaining 

wall are solved in order to check the incorporation of the elasto-plastic 

constitutive relation incorporated into the developed discrete finite element 

scheme. 

In the third part of the thesis, a case history of the Carsington Dam failure is 

analyzed in Chapter 6. Previous work on this case history is described and 

parameters applied in the present analysis are reviewed and summarized. The 

advantage of using staged construction procedures to perform the analysis is 

discussed. Results obtained from previous analyses and from current simulations 

are amalgamated to define the problem up to the continuum part. The developed 

technique is useful in identifying the probable slip surface and the mobility of the 

failed mass to capture. 

In Chapter 7, conclusions and recommendations for further research are 

presented. 

5 



Chapter l 

BIBLIOGRAPHY 

Potts, D. M., and Zdravkovic, L., Finite element analysis in geo-technical 
engineering: Theory. 1999, London, U.K.: Thomas Telford Publishing. 
440. 
Desai, C. S., and Siriwardane, H. J., Constitutive laws for engineering 
materials. 1984: Prentice Hall Inc. 468. 
Cundall, P. A., and Hart, R. D., Numerical modeling of discontinua. 
Comprehensive Rock Engineering, Ed. Hudson, J. A., 1993. 2: p. 231-243. 
Munjiza, A., The combined finite-discrete element method. 2004, West 
Sussex: John Wiley & Sons Ltd. 333. 

6 



Chapter 2 

2 LITERATURE REVIEW 

It has long been recognized that geotechnical modeling problems 

are data limited. While it is not uncommon in the civil engineering environment 

to devote several percent of the project budget to soil mass characterization, in 

various situations this figure is normally several orders of magnitude smaller. 

According to Wiles [1], this necessitates a very different modeling approach 

from that developed in, e.g., civil (structural), electrical, or aerospace 

engineering. 

Nevertheless for a selected modeling approach, it is necessary to 

verify the reliability of model predictions if designs based on these are also to be 

reliable. Here, it is considered that back analysis is the basis of model 

calibration for reliable failure prediction. Although back analysis cannot 

guarantee unique solutions since different constitutive laws, numerical 

methods, and boundary conditions may reach the same result, prediction 

reliability can be established by comparing results based on back analysis of 

multiple predictions. Agreement in a few isolated cases is at best anecdotal. 

Reliability can be established only by using statistical techniques to compare the 

difference of many individual predictions with their average behaviour. Well 

clustered results under a wide range of conditions would indicate reliable 

modeling predictions. 
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2.1 INTRODUCTION 

Many disagreements and ambiguities arise in civil engineering due to the fact 

that soil is inelastic, anisotropic, and rarely homogeneous. Subjecting the soil 

medium to loading in the field gives rise to large deformations. Traditionally, 

geotechnical problems have been treated in terms of small-strain elasticity and 

limit analysis with variable results. 

Considerable effort has been expended on the numerical solution of problems 

involving large deformations or strains. Finite element formulations, discrete 

element modeling, discontinuous deformation analysis, discrete finite element 

methods, manifold method, material point method and other techniques have 

been employed for problems dealing with large deformations and are reviewed in 

this chapter. This thesis develops a hybrid approach to continuum and 

discontinuum analysis based on some of the reviewed methods. 

2.2 CONTINUUM BASED METHODS 

The ability to evaluate large deformations, displacement vectors, stresses, and 

strains enhances the potential to evaluate the effects of load and find solutions for 

problems involving failure and mobility of the soil mass. In engineering 

simulations of failure, the geometry of the geological model results in a 

continuously evolving nonlinear interaction of the discretized structure, Dufour 

[2]. 

The developed discrete finite element method models the continuum behaviour 

of a given soil profile under various loading conditions until failure and after 

failure the mobility of the disintegrated soil mass is analyzed by discrete or 

discontinuum methods. A review of continuum-based models provides insight 

into selection of computational procedures for the continuum part of the method 

developed in this thesis. 
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The finite difference method (FDM) — arguably the oldest numerical method of 

continuum analysis—replaces the partial derivatives of the field functions with 

differences defined over certain spatial intervals in the coordinate directions. The 

set of simultaneous algebraic equations and proper boundary constraints 

obtained are used to solve for the values of unknowns. 

The displacement of one node can be represented in terms of the neighboring 

nodes for an incompressible solid in 2-D by: 

i # = a ^ + a24^ + a3u^+1 + a4i4+1J 2.1 

up = &1uj-1J' + b2u j ' ' " 1 + 63u j J ' + 1 + M i + 1 J 2-2 

where ux and uy represents displacements in the x and y directions respectively 

for any node position (i,j) in terms of coefficients ai and bi, Figure 2.1(a). Finite 

difference methods can also be applied to time domains with properly chosen 

time steps, so the function values at time t can be inferred from the values at t-At. 

The finite difference method is applied to FLAC computer software developed by 

Itasca Engineering Consultants, Minneapolis, USA [3]. 

The grid system is used to generate the function values at sampling points; no 

local trial functions or interpolation functions are defined as in finite element 

method (FEM). The FDM suffers from shortcomings in dealing with complex 

boundary conditions, fracture, and material inhomogeneity. 

In contrast to the finite difference method, the finite element method discretizes 

the domain into a finite number of internal contiguous elements with fixed 

number of nodes and regular shapes. The unknown function is then 

approximated using trial functions of the nodal values, which form the basic 
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unknowns in the equations of the finite element method and must satisfy the 

governing equations and equilibrium. 

(a) (b) 

Figure 2.1: Domain discretization for (a) the finite difference method 

and (b) the boundary element method 

These trial functions for displacements u for any element e can be of the form: 

m 

where Nij are shape functions, i represents displacement index for either x or y 

direction and j represents number of total nodes of an element e. 

In most of the finite element formulations it is assumed that the displacements 

are infinitesimally small and the boundary conditions remain unchanged during 

the application of the loads on the assemblage of the elements. The assumption 

that the displacements are small goes into the formulation of the stiffness matrix 

for small deformation problems. The strain displacement matrix is assumed 

constant and independent of element displacements. For elastic solutions, 

linearity is maintained by the use of a constant stress strain matrix, with constant 

constraint relations being used, as the boundary conditions remain unchanged. 

However, if the displacement boundary conditions change during loading, the 

response becomes nonlinear, Bathe [4]. 
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For large deformation problems the Eulerian, total Lagrangian, updated 

Lagrangian, and arbitrary Lagrangian Eulerian formulations are the main 

approaches to continuum mechanics problems, Hu [5]. The softwares Sigma/W, 

Phase 2, ADINA, ABAQUS and many more developed with the finite element 

approach are available commercially. 

Another continuum approach, the boundary element method (BEM), seeks a 

weak solution for the global domain through a boundary integral statement. The 

main advantage of the boundary element method is a reduction in the 

computational model dimensions by one. In this method discretization is carried 

out over the boundary and not over the domain of the problem, and boundary 

elements are approximated as in the finite element method. For a linear elastic 

problem with domain Q (Figure 2.1 b), a boundary r of a unit normal vector ni, 

and a constant body forced, the integral is written as: 
* 

cyuj +fcujdr = fatjdr + l:^Lfjdr 2.4 

where UJ and tj are displacement and traction vectors on the boundary and u* and 

t* are displacement and traction kernels. The term dj is determined from the 

geometry of the system. 

Finite element and finite difference procedures are used in geomechanics to 

analyze slope stability problems, excavation sequences, bearing capacity, and for 

tunnel construction. The finite element method is an accurate and versatile 

alternative requiring fewer prior assumptions regarding failure mechanisms. The 

advantages of finite element methods include not having to make assumptions 

about the failure surface and inter-slice forces and the ability to monitor 

progressive failure, Griffiths [6]. 

As summed by Duncan [7] and reported by Benko [8], Brown [9], Chen [10], 

Hassan [11], Jeremic [12], Potts [13], Wong [14], Fairhurst [15], Snitbhan [16] 
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and many more researchers, the finite element method in the geotechnical field 

has been used to calculate movements (deformations), stresses, strains, and pore 

pressures in embankments and slopes. 

2.3 DISCRETE ELEMENT METHOD 

Development of the discrete element method (DEM) by Cundall [17] led to an 

upsurge of applications to the solution of load deformation problems. The basic 

difference between discrete element methods and continuum-based methods is 

that contact patterns between components of the system continuously change 

with the deformation for the DEM, whereas they remain fixed for the FEM. 

Cundall and Strack [18] employed idealized particles such as cylinders, spheres, 

and ellipsoids to study the constitutive behaviour of granular materials, Figure 

2.2. The method is based on the use of an explicit numerical scheme in which the 

interaction of the particles is monitored contact by contact and motion is 

modeled particle by particle. In this method, repeated solution of Newton's 

second law of motion and the force displacement law is processed over number of 

timesteps to simulate the interaction between particles. The cycle of the 

formulation involves the following steps: 

• Newton's second law of motion is applied to each particle and 

acceleration for each particle is computed. 

Ace. = F(x)i/m(x) 2.5 

• These accelerations are then integrated to obtain the velocities and 

displacements of the particles. 

• For the next timestep the values of the inter-particle contact forces are 

determined using the contact laws. 

AFn = kn v At 2.6 

where AFn is the incremental normal contact force, kn is normal 

stiffness, v is relative velocity and At is the timestep. 
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Locations of the particles are updated, formation of new contacts are 

determined, existing contacts are deleted, and the cycle is repeated 

until either equilibrium is obtained or to the point of interest. 

Discs 

Polygons 

Elite se 

Clusters 

Figure 2.2: Different shapes of particles used in DEM 

Timesteps for the above dynamic behaviour are chosen such that velocities and 

accelerations are assumed to be constant during each timestep. Chosen timesteps 

should be so small that during a single timestep disturbances cannot propagate 

from any disc further than its immediate neighbors, Cundall and Strack [18]. A 

Coulomb type friction law is incorporated such that when the magnitude of the 

shear force exceeds the maximum possible value, the shear force is assigned that 

value. Whenever the absolute value of the shear force is maximum, friction 

damping occurs either by local contact damping or global damping. Damping can 

be envisioned as normal or shear with the use of stiffness springs and dashpots as 

shown in Figure 2.3. 
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Ts =cs+Fntanip onnhD 

Figure 2.3: Nature of particle-particle contact in DEM, Cundall [27] 

The related damping forces in the normal and tangential direction are calculated 

respectively by the following set of equations: 

Dn = C„ n* Ds = Cs s* 2.7 

where Cn and Cs are damping coefficients and n* and s* are the normal and 

tangential components of the relative velocities. 

A central difference scheme is used to integrate equations whereby velocities are 

evaluated halfway through the timestep. The numerical scheme will be stable if 

the timestep At is taken as a fraction less than one of the critical timesteps. The 

instability is a result of the explicit nature of the model and to stabilize 

computations a mass damping is used to maintain the system of conditions close 

to static equilibrium. The critical timestep is estimated based on the single degree 

of freedom system of mass m connected to the ground by a spring of stiffness k, 

for which the critical timestep equals 2V(m/k). 
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Another important feature of discrete element analysis is contact detection. As 

reported by Williams [19], contact detection is done either by graph based or cell 

based decomposition models. A contact detection based on no binary search 

(NBS) is presented by Munjiza [20] with the detection time proportional to N, 

i.e., the number of contacting bodies, but with a limitation that this is only 

applicable to bodies of similar size. This approach is based on space 

decomposition with each disc and cell in the space being assigned an 

identification number and a linked list being continuously updated. As no loops 

over the cells are performed for any operation, the total CPU time needed to 

perform detection is considerably reduced. 

The contacts are based on either a soft contact approach or a hard contact 

approach. In the soft approach, a finite normal stiffness is taken to represent the 

measurable normal stiffness that exists at contacts, while for the hard contact, 

interpenetration is considered nonphysical and the computational schemes 

prevent overlaps or interpenetration. Cundall [21] suggests that choice of the 

contact assumption should be based on physics rather than on numerical 

convenience or mathematical elegance. Further, the material can be represented 

either as rigid or deformable. If, however, deformation of the solid material 

cannot be neglected, deformability can be incorporated either by subdividing the 

body into elements or by mode superposition schemes, Williams [22]. 

Once contacts are established, primarily four types of contact models have been 

used for normal and tangential stiffness by various researchers. The simplest of 

all is the linear contact law, Rothenburg [23], and at the extreme is Mindlin's 

complete solution for contacts. In Mindlin's solution, for identical elastic rough 

spheres of radius R and elastic constants Gs and vs and radius of contact a, the 

normal load displacement response is nonlinear elastic: 

Kn = 2Gsa/(i-vs) 2.8 
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The discrete element method finds application in analyzing slopes, underground 

excavations, surface mining of rocks having multiple joint sets, geologic materials 

having discrete nature (soils), and for intact rocks. A good database is yet to be 

generated where numbers of slopes or other structures have been simulated 

using distinct element techniques. 

The discrete element method has been applied in the field mainly for slope 

stability analysis and excavations, as presented by Williams [19], Hocking [24], 

Kishino [25], Coggan [26], Choi [27], Hamajima [28], Hsu [29], Potyondy [30], 

Wang [31], and others for geological material involving rocks. It is concluded that 

the use of discrete element analysis, UDEC, or PFC [3], eliminates the need for a 

constitutive material model for rock (intact or fissured) as is normally required 

for finite element analysis. In turn, PFC uses micro-parameters to create an 

assembly that exhibits the same deformational behavior as rock samples in 

laboratory tests. Thus, this excludes the inaccuracy of the stress-strain relation 

hypothesis. 

It is worth mentioning the remarks made by Peter Cundall about the future of the 

discrete element method: 

"The elimination of discrete element methods? If we could develop 

continuum formulations that successfully reproduce the effects of a 

discontinuurn (such as micro-rotation, interlocking, etc.), we could use more 

efficient continuum programs for modeling." 

2.4 COMBINED FINITE DISCRETE ELEMENT METHOD 

Incorporation of deformation kinematics into discrete element formulations has 

led to a combined finite/discrete element approach in which a problem is 
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analyzed by a combination of the two methods. This solution methodology is 

suited well to problems in which progressive fracturing takes place, Munjiza [32]. 

In considering fracturing media, starting from a continuum representation by 

finite elements of the solid domain, progressive fracturing is allowed to take place 

according to some fracturing criteria, thereby giving rise to a discontinuum, 

eventually leading to discrete elements that can be either rigid or deformable. Te 

main issues are, Bicanic [33]: 

• Finite element formulation capable of capturing the strain localization 

and eventually leading to fracturing; 

• Fracturing criteria and models; 

• Remeshing algorithm (applied locally) for fully fractured zones; 

• Contact detection procedures; and 

• Representation offrictional contact conditions. 

The complex geometrical changes that take place during the transition from finite 

elements to discrete elements can be better appreciated with the use of 

visualization techniques which facilitate the interpretation of results and help to 

validate the procedures for contact penetration conditions. 

2.4.1 Discrete Finite Element Method 

Barbosa [34] proposed a method to analyze deformable bodies, idealized as finite 

elements, using an explicit finite element formulation based on an updated 

Lagrangian approach. The equation of motion for the system of finite elements 

representing each deformable body is expressed as: 

MtU + aMtU= P'-J* 2.9 

The motion continues until the out of balance force OP - lI) tends to zero as the 

solutions are obtained using the explicit second central difference integration 

scheme over a number of time steps. The Cauchy stress tensor and the Almansi 
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strain tensor are updated after each time step by updating the 2nd Piola-Kirchoff 

stress tensor and Green's strain tensor, respectively. Motion of the deformable 

body is shown in Figure 2.4. 

0 t t+At 
-*-2> -*-2> Ji2 

t = a 

t + At 

X 1 , X j , 
t+At. 

Figure 2.4: Motion of a deformable body in a stationary Cartesian 

coordinate system, modified from Bathe [4] 

In his study based on a similar approach, Ghaboussi [35] assembles the discrete 

elements by enforcing the contact laws and the analysis is similar to the nonlinear 

finite element method. The nonlinearity in the contact law applied by Ghaboussi is 

due to the separation and sliding of the blocks, with material nonlinearity being 

the other source along with geometric nonlinearity. The contact stresses are 

transformed into energy equivalent nodal forces and the contact shear stresses are 

determined from a simple elastic, perfectly plastic material model. 

Barbosa [36], in the method DBLOCKS, uses only face-to-face contacts, and a 

simplified linear relation between contact stresses and contact deformations is 

assumed. Due to the nonlinearity, an explicit second central difference method is 

used which does not require formation of the tangent stiffness matrix. The 

DFEM as proposed for DBLOCKS is applied to the modeling of jointed rock, to 
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the analysis of slope stability in rock slopes, and to the bearing capacity analysis 

of the rock slope face. The vertical stress distribution as evaluated by this 

approach for the rock slope is shown in Figure 2.5. 

Figure 2.5: Distribution of vertical stress under an inclined load at the 

top of a slope, Barbosa [36] 

2.4.2 Hybrid DEM/FEM Methods 

Pan [37], Ishibashi [38], and Mohammadi [39] described a hybrid numerical 

method of modeling delamination and rock fracture, in which the DEM and FEM 

are coupled with distinct elements used in the part of the mesh where failure is 

likely and the remainder of the mesh is composed of finite elements. The hybrid 

analysis experiences relatively large deformations, including slips at the interface. 

The interface between the two domains includes points common to both regions 

and is modeled with seven noded iso-parametric elements. During the analysis, 

displacements from the FEM are fed into the DEM domain as displacement 

boundary conditions. The test program developed has been applied to tunnel roof 

problems and the excavation of a square tunnel through fractured rock. 

In a similar approach followed by Liao [40], the domain of the particles is defined 

by a suitable number of nodal points. This reduces the degrees of freedom of the 
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discrete system to the number of nodal points. This is achieved by using a 

continuum shape function <J> to represent the field of discrete kinematic variables. 

However, in this formulation particle displacement u and rotation w are 

considered independently, with the displacement of the contact point on the 

surface given by: 

{ uac} = { ua} + [Oac] {coa} 2.10 

The principle of virtual work is used to obtain a relationship between the forces 

and displacements at the nodal points. Mamaghani [41] uses the finite element 

method, incorporating concepts of discrete elements to model masonry 

structures. The difference is in the contact model which is based on a direct shear 

test and is represented as stress-strain type modeling (i.e., band type modeling), 

where contacts are considered as bands of finite thickness. The secant stiffness 

method together with an updated Lagrangian scheme is employed to deal with 

the nonlinear behavior. 

2.4.3 Combined Finite Discrete Element System 

Munjiza [42] uses the penalty function method for a combined finite-discrete 

element system in which the algorithm assumes discretization of individual 

elements into finite elements to deal with fracture and fragmentation. The 

penalty function method in its classical form assumes that two bodies in contact 

penetrate and this penetration results in contact force and it takes the form: 

Uc=jr-p(rt-rc)
T(rt-rc)dT 2 - n 

where p is the penalty term, n is the position vector for elements bounded by 

boundary T. The penetration of any elemental area dA of a contactor into the 

target results in an infinitesimal contact force given by: 
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df = \grad<pc (Pc) - grad(pt(Pt)] dA 2.12 

where q>i are the potential functions for contactor and target elements for 

overlapping points Pc and Pu With transient dynamics, during contact, kinetic 

energy is transformed into potential energy. Potential energy is transferred back 

into kinetic energy when contacts are released. 

Munjiza [32] demonstrates the dynamic domain decomposition (DDD) strategy 

for attaining the effective parallelism for the combined discrete/finite element 

method. The dynamically changing configuration associated with this method 

makes the parallelism more difficult and challenging. DDD is classified as either 

geometric or topological, where the geometric domain exploits the location of 

objects in the simulation and the topological domain deals with the connections 

of the interactions. 

2.4.4 Discontinuous Deformation Analysis 

Discontinuous deformation analysis (DDA), proposed by Shi and Goodman [43], 

is another member of the discrete finite element method family. DDA permits 

relatively large time steps and closed-form integrations for the stiffness matrices 

of the elements, two advantages of DDA over the DEM. It is also possible to 

transform the FEM code into a DDA code while keeping the advantageous 

features of FEM. 

DDA models discontinuum material as a system of individually deformable 

blocks that move independently without interpenetration. As originally proposed, 

this method was applied for back analysis, Shi [43], to determine the best fit for a 

deformed configuration of a block system from measured displacements and 

deformations. The approach followed did not make use of any material properties 

as input but was defined as an exercise of geometry, with the formulations based 

on six basic variables, i.e., three rigid body motions and six strain components. 

This method was later modified to perform complete deformation analysis, Shi 
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[44], in which the displacement field was represented as a complete first order 

approximation, Figure 2.6. The basic simultaneous equilibrium equations are 

formulated from the concepts of energy minimizations by setting the partial 

derivatives of the total potential energy equal to zero and the assemblage of the 

equations is the same as in the finite element method. The displacement field is 

represented as: 

W 
v^y 

'1 0 -(y-y0) (x-x0) 0 (y-y0)/2" 
0 1 (x-x0) 0 (y-y0) (x-* 0 ) /2 , 

u„ 
vn 

2.13 

and the minimization leads to an equations of form [K]{d} = {f}. The kinematic 

constraints on the system of blocks are imposed using the penalty method. These 

numerical penalties are analogous to stiff springs and are applied at the contacts 

to prevent interpenetration of the blocks. Tension and penetration at the contacts 

results in expansion or contraction of the springs; hence energy is added to the 

system, defying the concept of minimum energy. Thus, the minimum energy 

concept is one with no tension or penetration. 

(8) 

Contact Connectivity 

2,3 
2,6 
6,2 
5,8 

Element 
Connectivity 

(1),(2),P) 
(2),(4),(3) 
(5),(6),(9) 
«6).<B).«9) 
(6).(7).P) 
(10),(11),(14) 
(11),(12),(14) 
(12),(13),(14) 

(1)-Node number [1]-Block number 1-Element number 

Figure 2.6: Blocks and FEM discretizations by DDA—for three blocks 

Shi [44] 
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The strain energy of the spring with stiffness p based on displacement d used for 

contacts is: 

and the minimization of energy for the constraints will give the constraint sub-

matrix. Sitar [45] employed this technique to analyze the Vaoint landslide using 

2, 9, and 105 blocks. The analysis showed the concept of progressive failure with 

the upper portion of the slide creeping gradually on the lower portion and 

destabilizing the lower portion. The slide showed a very high rate of movement 

with the total mass moving over 400 m in 60 seconds. 

2.5 MANIFOLD METHOD 

In the current research, the manifold method was initially considered for the 

development of the coupled approach to model continuum and discontinuum 

behavior. The method is thus discussed in more detail in this section with 

highlights on the advantages and limitations of the approach from a discrete 

finite element point of view. 

The manifold method, proposed by Shi [46], is an approximate method for 

solving differential equations defined in a domain with arbitrary shapes. This 

method provides a unified framework for solving problems that deal with both 

continuum and jointed materials. The manifold method presented here departs 

from the traditional method in that the global functions defined for the 

differential manifold are highly differentiable. The presence of discontinuities in 

the physical domain makes the function discontinuous on the contact interfaces. 

2.5.1 Formulation of the Manifold Method 

The manifold method as presented by Shi [46, 47] has separate physical and 

mathematical meshes where the mathematical mesh defines an appropriate 
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function for the displacement field for fine or rough approximation and the 

physical mesh defines the domain of the entire material volume and is the 

integration fields for the mathematical covers. The mathematical cover is defined 

by the user and these covers are overlapped over the entire material volume such 

that the global behavior can be defined in terms of the local mathematical cover 

functions. These mathematical covers (described later) can be viewed similar to 

interpolation functions of the finite element method. Conventional meshes and 

regions, e.g., finite element meshes or regular grids can be used, with the mesh 

being chosen according to the geometry of the problem, the solution accuracy 

requirements, and the zoning of the physical layout. The physical domain 

includes the boundaries of the material volume, joints, blocks, interfaces of 

different material layers, and the variable waterfront. The schematic 

representation of the physical and the mathematical mesh is shown in Figure 2.7. 

To handle a complicated function f(x,y) as defined in field F of Figure 2.7, in the 

finite element method it is easier to divide the whole field into finite small regions 

defined as mathematical covers in the manifold method. These regions Ci(i = 

1,2,3....,n) c a n make use of simple local functions Ui(x, y) approximating the 

function f(x, y) in its small domain. 

/ - y\ 

J 
"W 

Figure 2.7: Three covers Ci, C2, and C3 have a common area E, Shi [47] 

These mathematical functions can be either constant, linear, or any other higher 

order polynomials. As compared with the finite element method in the manifold 

method, the mathematical covers can overlap each other and the common area 
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forms an element similar to a finite element in the finite element method, Chen 

[48]. The global displacement functions u(x, y) and v(x, y) over the whole 

physical domain and the cover system can be defined using the cover 

displacement functions as under: 

"(*. y)= £ wi (*. y) ui (*. y) 2 1 5 

1=1 

v(x,y) = 1ZWi(x,y)vi(x,y) 2.16 
i=1 

where Wi(x, y) is the weighting function and is defined as: 

Wi(x,y)>0 , (x,y)eU{ ; wt(x,y) = 0, (x,y)e U( 2.17 

with ^Wi(x,y)= 1 2.18 
(x,y)<=Ut 

The weighting function depends on the shape of the common area formed by the 

overlapping of the covers and the order of the displacement field. For triangular 

meshes as used by Chen [48] and Tsay [49], the three weighting functions are the 

same as the shape functions of the corresponding finite element triangular 

element. It is important to remember that a manifold cover can span or cover any 

form of discontinuity and can even be partially out of the physical domain. Thus 

the same size and shape of material cover can be used for any irregular boundary 

and complicated shape. The presence of joints inside the physical domain can 

divide the manifold cover into elements having completely independent nodes 

and physical cover numbers. Thus the elements move independently of each 

other and the movement of each separate element is traced as in the discrete 

element method, knowing the suitable contacts and their interactions. The 

formulation is based on forward time stepping sequences, and displacements, 

stresses, and strains are evaluated at the end of each time step, with updating of 

the possible contacts. 
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Chen [48] presents a higher order manifold method representing the 

displacement functions of the covers as: 

up(x,y) = Bp(x,y)Up where p = i , j , k..., 2.19 

where B p = ( i x y x2 y2 xn y n ) , i.e., the polynomial is of nth order and 

Up are the nodal displacements. 

For plane strain small deformation problems, the strain displacement function 

relation can be expressed similarly to the function defined in the finite element 

method. 

This elemental strain can be related to the nodal displacements as 

[s]=[Be(x,y)][De], and can be further related to the stress by the constitutive 

relation [O]=[E][S] . 

In the manifold method the elements are the integration zones which can be of 

any general shape, thus the integration becomes difficult. The FEM integrates the 

complex functions in simple domains using Gaussian integration, whereas the 

manifold method integrates simple functions in complex domains. As formulated 

by Shi [47], these integrations are reduced to integrations of the simplex, as 

presented in the U.S. Army report. 

2.5.2 Limitations of the Manifold Method 

The most important feature of the manifold method is that it incorporates the 

independent mathematical cover displacement functions and their contributions 

<3u(x,y)/3x 

dv(x,y)/dy 

d u(x, y)/5y + d v(x, y)/5x 

2.20 
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to the displacement functions by the applications of the weighted functions. 

Because of this, discontinuities present in the structure can be easily modeled. If 

the mathematical covers are partially out of the physical field (shown by shaded 

portions in Figure 2.9a), then the weight functions are defined to be effective only 

over the required physical field. 

Wi(x,y)>0 , (x,y)e n f ; wi(x,y) = 0,(x,y)eni 2.21 

The inside part O is the effective region of the mathematical cover Q and any 

mathematical cover can have only one effective region for a physical domain as 

shown in Figure 2.9(a). 

When the mathematical cover function is divided into two completely 

disconnected physical domains by a discontinuous boundary, then the 

overlapping mathematical cover cannot be used for both physical domains. In 

this case two different cover functions need to be defined for both the 

discontinuous domains at the same location such that the two disconnected parts 

can move independently. In this case two mathematical covers Ci and Cm are 

needed at the same position and of the same shape and size but with different 

effective regions for the physical domain. The mathematical cover function Ci will 

be effective for Oi and the mathematical cover function Cm is effective for the 

region Iim, as shown in Figure 2.9 (b, c). 

In general if the mathematical cover is to be divided into m completely 

disconnected physical domains by discontinuous boundaries then m completely 

independent mathematical covers with the same shape will be needed, which can 

be expensive on the computational time. Each of the mathematical covers will 

take one domain as its effective region. As is the case for crack growth prediction, 

shown in Figure 2.10(b), adaptive finite cover approximation schemes are used to 

construct the remeshing and the refinement is based on locally refined elements, 

Chiou [50]. As the crack grows to the new one then the previous mesh is 
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abandoned and new physical covers including revised equations are needed for 

the updated refined mesh. 

(a) (b) (c) 

Figure 2.8: Different covers of the manifold method of splitting 

elements 

2.5.3 Applications 

The manifold method has been applied to the analysis of block computations, 

slope stability, and failure of various structures such as arches and beams by Shi 

[46, 47]. Crack growth is captured by Tsay [49] by employing mesh refinement 

techniques and also in the analysis of shear walls, Chiou [50]. Crack growth 

prediction requires remeshing algorithms, which add further expense to 

computer time. Lin [51] applied the manifold approach to model discontinuities 

in tunnels and to explore the difficult issue of scales when modeling a jointed 

rock system. 

2.6 MATERIAL POINT METHOD 

In contrast to the conventional mesh based methods such as FEM. FDM and 

BEM, several meshless methods for spatial discretization have been proposed 

over the last few decades. Although these meshless methods have been shown to 

be robust for large deformation analysis, they have not found successful way into 

practical applications due to some unsolved problems of boundary treatments, 

large rotations and interactions among different material phases, Chen [52]. One 
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of the forms of spatial discretization, the material point method (MPM) is an 

extension to solid mechanics the concepts of hydrodynamics. 

The MPM method discretizes the domain into a set of finite points to track the 

deformation process. These material points provides the Lagrangian description 

of the model and have an associated mass, density, stress, strain and other 

related parameters attached to them. A computational mesh is used in the 

background and information is mapped to the mesh nodes from the material 

points over each time step. The background mesh comprises of four node cells for 

2D analysis and interpolation functions are defined to map the required 

information to the nodes. The description of the problem domain is similar to the 

Manifold method in which the physical domain is represented in terms of the 

background mathematical mesh. 

An explicit time integrator is used to solve for the nodal accelerations from 

equation of motion, over a timestep satisfying the stability criteria of the critical 

timestep for the smallest cell based on wave speed. The boundary conditions are 

enforced at the cell nodes. The material points are then updated based on the 

new computed nodal velocities. The strain increments are determined from the 

gradient of nodal basis function at respective material points and constitutive 

model is used to compute corresponding stress increments. After updating the 

material points, the existing mesh may be discarded and a new mesh defined for 

the next timestep. 

In the proposed method the problems dealing with large deformations and 

displacements are tackled in a different way as opposed to the various methods 

discussed above. 
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3 ANALYSIS FOR CONTINUUM 

SOLUTIONS 

The concept of mechanics developed in the eighteenth century was 

largely empirical. During the first half of the nineteenth century, continuum 

mechanics and theories of elasticity developed as a branch of mathematical 

physics. The mathematical analysis was built on the concept of continuous 

geometrical space, and the Newtonian theory recognized bodies as being 

composed of discrete media having individual particles connected by forces of 

attraction and repulsion. The debate of continuum and discontinuum 

approaches has its origin in the field of mechanics. 

There is a large difference between the mathematical analysis of a 

continuous material and analysis of a body comprising discrete bodies. This gap 

has been bridged by statistical applications. The scale effects play an important 

role in defining the type of behavior to be expected for site-specific conditions. 

Geomaterials are particulate on a micro-scale but may be regarded as a 

continuum on a much larger scale. Solutions for a continuum having 

discontinuum assemblies are presented in this chapter. The continuum 

approach can be derived from proven techniques of the finite element method 

and applied to discrete assemblies represented by quadrilateral elements. In a 

number of situations, the finite element description of a domain may not 

necessarily represent the most appropriate format; a framework allowing some 

level of discontinuity (strain or displacement) may be better suited to model 

particular phenomena, Bicanic [1]. 
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3.1 INTRODUCTION 

In an analysis of any engineering system, one needs to idealize the system into a 

discretized space, formulate governing equations for this system, define solution 

techniques for the governing equations, and interpret the attained results. The 

response of this finitely discretized space can be modeled and described by a 

finite number of state variables. In the standard finite element analysis of a 

continuous system, a formulation of the exact equilibrium equations is achieved 

by defining a set of differential equations that govern the response and then 

discretizing the domain, Bathe [2]. This approach treats the material as a 

continuum and the idealization of many engineering systems including geo-

mechanical materials is based on this universal assumption. However, the 

continuum approach for rock and soil may need complex constitutive models to 

represent the behavior. These complex constitutive models may sometimes 

contain dozens of parameters and internal variables for defining the yield 

surfaces of the geological materials, Cundall [3]. 

On the other hand over the past decade, research based on discrete elements for 

soils and rocks has shown that the complex behavior exhibited by these geological 

materials, such as continuous nonlinear stress/strain responses, dilation related 

to mean stress, transition from brittle to ductile, hysteresis, nonlinear strength 

envelopes, and many more can be implicitly modeled with the explicit discrete 

analysis approach. Furthermore, discrete elements naturally incorporate 

localization and banding in granular materials, qualities difficult to reproduce 

with a continuum mesh approach. 

Techniques such as the finite element method and the finite difference method 

can be applied to a variety of geotechnical problems with complex boundary 

conditions such as non-homogeneous inelastic materials which may undergo 

large deformations. But these applications are severely limited because granular 

media are discrete in nature (for instance, rock mass displays strong 
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discontinuities near the surface) and their complex behavior makes it difficult to 

represent them with continuum models. Analysis of systems exhibiting grossly 

discontinuous material and geometrical behavior can be effectively modeled 

using discrete element methods. 

The work in this thesis is guided by the discrete element method to capture 

mobility but uses the authenticated steps of the reliable finite element method for 

the deformations and the related stress-strain states. The geometry for any 

particular problem is modeled as an assemblage of elements having own eight 

degrees of freedom. Restraints in the form of similar displacements or velocities 

are imposed at the nodes sharing the same coordinates to ensure compatibility 

between the elements for continuum analysis. The proposed method of analysis is 

described in generic terms and examples for validation of this technique are 

presented. 

3.2 APPROACH OF THE PROPOSED METHOD 

Coupled approaches for the analysis of a geotechnical system such as a soil/rock 

mass requires knowledge of the stresses within particles and simultaneously 

capture the mobility. In order to model this discontinuum soil/rock system, 

available methods based on the finite element method and the use of joint 

elements are limited to small displacements and unaltered topology, Barbosa [4]. 

Further the use of only discrete element methods with constant strain modes or 

discontinuous deformation based on decoupling the deformation modes from the 

rigid body modes, sometimes leads to spurious stresses. The proposed method is 

based on the solution procedures of the finite element method and analyzes the 

stress states for any geotechnical system using individual elements. 

In this approach, the equation of motion is solved for each element sequentially 

and constraints on the nodal displacements or velocities are imposed to ensure 

continuity and inter-element compatibility. Even though for each element 
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separate degrees of freedom are defined, the explicit constraints allow the system 

solution to be computed as a continuum. No contacts with neighboring elements 

are allowed and the contact forces between elements are not computed for the 

continuum solution. These constraints will be retained until the individual 

elements based on any yield/fracture criteria are allowed to split and move 

independently to create a discontinuum, whereby picking up contact forces and 

contact stresses. 

The first stage of continuum analysis is described in this chapter and the further 

stages related to splitting of the elements and discrete finite element analysis are 

discussed in other chapters. 

3.3 METHOD OF ANALYSIS 

Similar to finite element analysis, the proposed method of analysis consists of 

idealizing the domain of the problem into a mesh comprising of quadrilateral 

elements. These elements possess independent degrees of freedom to start with 

so any interior node of a conventional finite element mesh is equivalent to four 

different nodes of four individual elements sharing the same nodal coordinates, 

Figure 3.1. Hence, rather than having two degrees of freedom at a single node, 

this method computes for eight degrees of freedom at the same location. 

a) There are two different ways to apply the nodal constraints. The first is 

by computing the displacements at the nodal coordinates for each 

element and then forcing these displacements as constraints on the 

neighboring elements sharing the same nodal position. The second way 

is to apply the constraints in the form of computed velocities at the 

nodes. Both of these techniques result in a solution suitable for a 

particular scenario. The displacement constraints scheme was found 

suitable for solving static problems while the velocity constraint 

scheme was suitable for solving static and dynamic problems. 
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A group of four elements sharing the same nodal coordinates for a particular 

node is shown in Figure 3.1. 

> u u 

Finite Element Mesh Mesh comprises of elements with 
separate degrees of freedom 

Figure 3.1: Independent degrees of freedom for each node sharing the 

same coordinates 

In order to apply the nodal constraints, a list of the neighboring elements for each 

element will be required. In the developed Visual C++ computer program, this 

list or array of elements was stored in a CONNECT matrix for each element. The 

CONNECT matrix for any element will include elements starting with the top left 

element, then other elements sequentially from left to right and then from top to 

bottom. For the present analysis only quadrilateral iso-parametric elements were 

considered. As the domain is discretized into iso-parametric quadrilateral 

elements, each element has a maximum of eight elements in its CONNECT list. If 

there is no neighboring element connected to a particular element at a node, that 

array location is given an index value of o; otherwise the identity number of the 

neighboring element is stored in the array. 

3.3.1 Displacement Constraints—Step by Step Procedure 

The computational procedure for this method is a dynamic time stepping 

incremental scheme. For each time step the following computational steps are 

followed: 
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(a) The solution scheme is based on the solution of the equation of motion 

till the external applied force balances the developed internal resisting 

force. The applied external force or self weight at any particular nodal 

coordinate is the sum of the nodal force components from all elements 

sharing the same coordinate. 

(b) The computational scheme progresses like a wave by transferring the 

displacements and related stress states to the other elements one by 

one. The computed displacements and internal resisting force vectors 

for an element during a particular timestep are applied on to the next 

element. 

(c) Starting in the assembly of elements with any element, say top left, the 

velocities and the corresponding displacements are computed by 

solving the basic equation of motion for each element individually (the 

details are described later). 

(d) Based on the computed displacements and the corresponding internal 

stress states, the internal resisting force vectors at the nodes of an 

element are calculated. This internal nodal resisting force vector will be 

used for the next time step to find the net external nodal force vector 

for the next element. During the current timestep, these internal nodal 

force vectors also contribute as internal force components of the 

adjoining element nodes. 

(e) The computational procedure proceeds to the next element in the 

specific order chosen. The net external force on the element is 

computed incorporating the internal force vectors from neighboring 

element as described in (d) and the equation of motion is solved to 

compute the displacements. 
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The term "specific order" refers to the sense in which the analysis is 

planned to be carried forward from one element to another and the 

order in which the element's equation of motion is to be sequentially 

solved. 

(f) The equation of motion is solved for all the elements for a particular 

time step. 

(g) After the calculations are completed for a time step for all the elements, 

the initial parameters for next time step—the nodal coordinates, the 

internal and external forces, displacements, and velocities—are 

updated at all nodes. 

This method proposed here differs from the finite element method and the 

method proposed by Ghaboussi [5] in that the global matrices for the elements 

are not assembled. Instead, the equation of motion is solved for each element in a 

chosen sequence and induced disturbances are updated in subordinate elements. 

So, for each time step the formulation can be considered to be divided into a 

number of additional steps, or sub-step for each element. A sub-step for the one 

element propagates the effects to the sub-step of the next element. 

Retaining the progression of the scheme for an element in sub-steps ensures 

compatibility and continuity of the stresses and strains between different 

elements. As is shown in Figure 3.2(a), under the application of an external load, 

element 1 deforms, i.e., displacements 8 occur at the nodes and result in strains, 

stresses, and internal resisting force vectors within element 1. These 

displacement disturbances of element 1 are carried forward into the next 

element(s) as history of this time substep. 

During the substeps of a time step the deformations can be viewed as shown in 

Figure 3.2. 
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Figure 3.2(a): Under the application of external loads element 1 

deforms 

ext ext 
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Figure 3.2(b): History from the substep of element 1 carried onto 

element 2. 

To begin with the displacements are computed for element 1 by solving the 

equation of motion, Figure 3.2(a). The displacements of element 1 are applied as 

such on the nodes of element 2 that shares the same coordinates. The internal 

resisting forces developed due to these imposed displacements 8 on the nodes of 

element 2, from all the neighboring elements solved earlier say element 1, are 

computed and are referred to as jIt+Atk where k refers to all the neighboring 

elements and index j is the element for which solutions are being computed for 

the current timestep, t+At. This force is used to calculate the net nodal force 

vectors in the solution of equation of motion for this element. The internal 

resisting forces of element 1 computed up to timestep t also contribute to the 
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internal stress state of element 2 and are thus applied as internal forces on the 

nodes of adjoining element 2, and are referred to as jPW as in Figure 3.2(b). This 

force vector is the result of disturbance in equilibrium of any element and is 

responsible for causing displacements on the internal nodes, and propagation of 

the loads from the external nodes to the internal nodes. The final equilibrium 

equation for the net unbalanced force is: 

Terms in the equation of motion are defined below: 

Pext - external force vector applied on the nodes including self-weight, 

jPlint - internal force vector acting on the shared nodes due to the 

displacements of the neighboring element, up to time step t, 

where J^M = E ( - /*> 3-2 

Subscript j represents the concerned element, k sums up over all the neighboring 

element that is causing this internal nodal force, and n is the total number of 

adjoining elements. This internal force is summed for all the previous time steps 

on this element. 

jFj = internal resisting force vector developed within the element up to the 

present time step t, 

jIt+Atk = incremental internal resisting force vector developed due to the 

nodal displacements of all the adjoining elements k applied on element j 

during the current time step. 

After one complete cycle in a time step, all the coordinates are updated along with 

internal and external forces, including forces from all neighboring elements. The 

above cycle then continues and the equation of motion, Equation 3.1, is solved 
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until the required solution is obtained or the required amount of 

convergence/precision is achieved or up to the point of interest. 

3.3.2 Velocity Constraint Formulation 

A simpler progression is followed for the formulation based on the velocity 

constraints, as explained below: 

a) During the first time step, the velocities of all the elements are computed 

using the current net nodal force components. 

b) The velocities calculated at various nodes of the elements are averaged 

such that the node at a particular location has a velocity similar to other 

nodes at that location. The velocity components to be averaged include the 

velocities of all the shared nodes in the list of neighboring elements, i.e., 

from the CONNECT array. 

c) The nodal displacements are computed from these averaged velocities. 

The strains, stresses, and internal resisting force vectors are then 

computed based on these displacements. 

d) The net nodal force components are updated, including the internal 

resisting force vectors from the element of concern and all the neighboring 

elements in the CONNECT list. The internal force vectors from the 

neighboring elements are applied in an opposite sense on to the element of 

concern and are treated as external forces. These are symbolized as jP*int 

and are a summation of all the neighboring nodal forces. 

e) The cycle is continued over the next time steps. 

f) The net unbalanced force for equilibrium of any element in this 

formulation will be: 
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P«t+ JPM -ZJI) =0 3-3 

The terms of equation 3.3 have been explained above and k is the index 

representing neighboring elements summed over the total elements, n. 

3«3«3 Computational Scheme 

The computational scheme proceeds by tracking the motion of individual nodes 

and elements and by looping over the steps of the formulation. The steps of 

formulation include solving the equation of motion and calculating the velocity, 

displacement, strain, stresses, and internal nodal force vectors. Subsequent 

calculations for each step involve updating the various parameters. The 

incremental velocity and displacements are obtained by integration of the 

equation of motion. For the solution of the equation of motion, a second order 

central difference integration scheme is applied as explained later. The equation 

of motion to be solved is: 

MU+CU+KU=P 3-4 

which includes inertial force, damping force, and elastic force components on the 

left hand side, and applied force components including self-weight on the right 

hand side. 

The term KU defines the amount of internal stress developed due to 

displacements and corresponding strains. This term, when taken on the right side 

of the equation of motion, results in a net unbalanced force on the element and 

causes further motion of the element assemblage. Eventually the equation takes 

the form in equation 3.6 from equation 3.5. 

MU + CU = P-KU 3-5 
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MU+CU=P-I 3-6 

Using the second order central difference scheme for the integration of equation 

3.6 the acceleration component is given as: 

lU = —[ A t 2 L 
t-toU-VU+'^U 3-7 

The error involved in expansion of the acceleration term in equation 3.7 is of the 

order of (At)2. With the same order of error, the velocity component can be 

defined as: 

tu =—(t-"u+t+"u). 
2Afv ; 

3-8 

By substituting these values in equation 3.6, a general formula for U can be 

defined: 

M 
U t 2 2Af + -

t+At U= fP K 2M^tu t_Atf M 

At2 J U r 2At. 
3-9 

The substitution of the values for acceleration velocity (into equation 3.6) leads to 

a formulation of the integration scheme for the displacement of the next time 

step. The damping coefficient C can be related to the nodal lumped mass matrix 

as aM, where a is the viscous damping proportionality factor and is based on 

the critical damping values chosen. Damping factors should be selected so that 

the assembly is neither over damped nor under damped. 

However, if the displacements are calculated from the velocity components first 

evaluated, then for the second order central difference scheme the acceleration is 

defined in terms of the velocity as: 
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#t_U 2 -U 2 

At 3-10 

The central difference velocity component is: 

tTt_U 2 +U 2 

311 

Putting these values in equation 3.6, the equation in incremental form for the 

next time step becomes: 

. t+-

U 2 
" f 2-a At 

2 +a At 
U 2 + 2A£ 

2 + aAt 
M-^R) 3.12 

The values of displacement in the next time step are given by: 

AU = At- U 2 
3-13 

A better convergence is achieved if the velocity components at the midpoint of 

two successive time steps are used to calculate the displacement during a time 

step. Note that lR in equation 3.12 is the unbalanced force we are minimizing 

over number of timesteps, modified from either equation 3.1 or equation 3.3: 

P a. P f j _ V pf+ A t V Tl Tt+At — f P 
rext + j-Mnt + Lu j-Mnt ~Lj1j~ j1k ~ *• 

3-14 

The incremental element strains are calculated from the incremental 

displacements shown above by using the element strain displacement matrix B. 
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As = B • MJ 3.15 

The incremental element strains are combined with the matrix of constitutive 

relations D to compute the incremental element stresses. 

A(j = D-As 3.16 

The element strain displacement matrix is evaluated at each Gauss point by using 

Gauss's integration scheme and correspondingly the stresses and the strains are 

found at these Gauss points. The internal resisting force vector I is computed 

based on the virtual work principle and is evaluated using Gaussian integration 

as indicated in equation 3.17. 

jlj-l.lv BT*dV 3.17 

where B is the element strain displacement matrix, a is the Cauchy element 

stress tensor (defined in vector form) and V is the element volume at any 

configuration. As this is based on the principle of virtual work, a consistent 

relation between the nodal loads and element stresses can be obtained. In this 

type of formulation, involving an incremental step by step solution, it is assumed 

that the solution at the next time step corresponding to t + At, where At is an 

appropriately selected small time step increment, is required and the solution 

corresponding to time t is known. 

This formulation is represented by the flow charts shown in Figure 3.3(a) for 

velocity constraints and in Figure 3.3(b) for displacement constraints. 
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ELSE 

START 

Input Parameters 
Geometry, forces, 
material parameters 

Compute Velocities for an element K 
over total number of elements NE 
by solving equation 3.12 

Calculate strains, stresses, internal 
force vector, update nodal forces and 
coordinates 

YES 

Figure 3.3(a): Flow chart for finite element solutions using velocity 

constraints 

48 



B 

Chapter 3 

START 

INPUT 
Extent of study i.e. X & Y limits, 
Forces, Constraints, Elastic prop. 
Material prop.,Time step increments,, 
Damping coeff. 

COMPUTE 
• Nodes, elements, lumped mass matrix 

[B], I J 

• U t+M 

\v\ 
WMMKJ 

UPDATE 
• X & Y coordinates. During the time step 

and after the time step. 
m P P' Pt+At J' Sr Tt+At 

rexternal' r\t& '" ' int f1 CCI 

YES 

STOP 

NO 

Figure 3 .3(b): Flow chart for finite e l ement so lut ions us ing 

displacement constraints 
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3.4 VALIDATION EXAMPLES 

The development of the proposed method started with the example given in 

section 3.4.1, so it is presented here as the basic validation example. The 

examples described in sections 3.4.1 and 3.4.2 validates the displacement 

constraint formulation while the examples in sections 3.4.3 and 3.4.4 validates 

the velocity constraint formulation. Each of the examples involves different 

checks on the procedure. 

3.4.1 Development of a Uniform Stress Field in a Body under UDL 

This example demonstrates the validity of the proposed scheme for finite element 

analysis of discrete elements through an explicit solution scheme for individual 

elements, hence verifying the continuum response. A case of uniform stress 

distribution is considered for the validation in which uniformly distributed load 

is applied on the ground surface. 
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|<N - 20 KN -20 KN . 10,KN 

(a) (b) 

Figure 3.4: Two-dimensional section of the ground and its 

discretization 

The self-weight of the elements is not considered and no switch-on-gravity 

condition is assumed. It is assumed that the displacements are infinitesimally 
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small and the material is linearly elastic. The boundary conditions are assumed to 

be unchanged during application of the load. A two dimensional section of 

ground is considered, 12 m by 12 m in X and Y directions as shown in Figure 

3.4(a). The uniformly distributed force is converted to equivalent nodal forces as 

shown in Figure 3.4(b). 

The standard formulation for the elements is used and a two by two-numerical 

integration scheme is applied. A uniformly distributed load of about 5 KN/m is 

assumed to be acting on the ground surface. 

INPUT PARAMETERS 

Element size 

Young's modulus 

Poisson's ratio 

Density of soil 

Damping coefficient, a 

Time steps, At 

Number of time steps 

VALUES 

4m x 4 m 

35,000 kN/sq. m 

0.3 

1650 kg/cu. M 

3.8 per second 

0.003 seconds 

4500 

Table 3.1: Input parameters 

To have a uniform stress distribution within the elements, the essential boundary 

conditions need to be satisfied. The parameters shown in Table 3.1 are used in the 

analysis. 

The results of this analysis are shown in Figure 3.5, for the stresses at Gauss point 

1 corresponding to (-0.577, -0.577) local coordinates, for elements 1, 5, and 9. The 

plots represent vertical stresses, horizontal stresses, and shearing stresses against 

time. 
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Stress XVs time steps Time Steps 

1000 1500 2000 2500 3000 3500 4000 4500 5*0 

. element 5 

element 1 

element 9 

Stress Y Vs Time Steps Time Steps 

1000 2000 3000 4000 5 * 0 

element 9 

element 1 

Shear Stress Vs Time Steps Time Steps 

1000 1500 2000 2500 3000 3500 4000 4500 5 * 0 

element 5 

element 1 

Figure 3.5: Horizontal, vertical, and shear stress convergence 
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The downward displacement of the nodes induces compressive incremental 

strain, leading to a compressive stress and an internal resisting force vector. 

When the wave reaches the bottom, it rebounds and the lower nodes start moving 

up. 

The cycle continues until the external nodal force vector is balanced with the 

internal resisting force vector and equilibrium or the required convergence is 

achieved. It can be inferred from the plots in Figure 3.5 that the required vertical 

stress approaches a constant uniform stress state of 5 kPa (Figure 3-503)), and 

stress in the horizontal direction along with the shear stress achieves a zero value 

(Figure 3.5 (a, c)). 

In this quasi-dynamic process requiring a static solution, the transition of a node 

to its final equilibrium position from the start point is through a more tortuous 

path, as shown for node 16 in Figure 3.6. 

„ „ Displacement trail of node 16 

5.0002 -r " 

5 

4.9998 

S 4.9996 -

=1 4.9994 

o 4.9992 -
o 

>- 4.999 -

4.9988 

4.9986 
4.9998 5 5.0002 5.0004 5.0006 5.0008 

X coordinate 

Figure 3.6: Displacement history of node 16 

Oscillations continue as in Figure 3.5 and 3.6 until equilibrium is reached, when 

displacements and oscillations die out completely. 
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3.4.2 Principal Stresses under a Foundation 

The second example is a simulation of the propagation of a stress wave in soil as 

it is subjected to loading of a superstructure. A finite section of the soil, 20 m 

deep and 20 m wide from the center of the footing, is analyzed. Only half the 

footing is considered so the analysis can be symmetric about the central axis of 

the footing. The size of the footing is 12 m and half of this width is considered for 

analysis. A uniformly distributed load of 100 kPa is applied to the top of the 

footing. The soil has a Young's modulus E = 10,000 kN/m2 and a Poisson's ratio v 

= 0.4. 

The mesh used in this linear elastic analysis is uniform and comprise of 4 noded 

quadrilateral elements, shown in Figure 3.7 with mesh origin at (1,1). It should be 

noted that the soil is discretized into quadrilateral finite elements. The 

foundation is represented by an appropriate boundary condition. 
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S 1D 15 20 
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Av = 0 

Figure 3.7: Discrete element mesh for a smooth flexible footing 

In this analysis, suitable natural and essential boundary conditions specific to the 

example requirements are applied. The boundary condition on the nodes just 
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below the footing depends on whether the footing is assumed to be rigid or 

flexible and smooth or rough. For smooth rigid or rough rigid footings a certain 

amount of displacement is normally specified, whereas for smooth flexible 

footing, force in the required direction is applied. In this analysis, the footing is 

assumed to be smooth and flexible, hence nodal forces proportional to the footing 

pressure of 100 kPa are applied. 

The elastic analysis carried out for the footing predicts a vertical settlement of 

about 0.101 m below the footing edge. The surface settlement profile predicted is 

shown in Figure 3.8 and has been normalized to the maximum settlement. 

Irregular settlement profile with a sharp drop can be observed under the footing 

due to the use of a coarser mesh for analysis. The mesh can be further refined to 

obtain a smooth settlement profile. 

Footing 
X - coordinate 

10 .^15" 

Figure 3.8: Ground surface settlement profile 

An advantage of this scheme is that as the computations progress over time steps, 

the propagation and development of the stresses under the imposed loading can 

be captured and viewed in real time. 
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In Figure 3.9, the displacement vectors and the vertical stress contours are shown 

at different time steps. The vectors indicate the transfer of displacement from the 

exterior disturbed nodes to the interior nodes. The stress contours fairly well 

represent the development of the pressure bulb under the imposed loading of the 

footing. The plots are shown at time steps of 1, 50, 500, 1000, 2000, and 5000, 

depicting the states at 0.001, 0.05, 0.5, 1, 2, and 5 seconds of real time. The 

progress of the stress wave can be seen at different time steps in Figure 3.9 and in 

movie format in the attached CD; Chapter 3/Example 2 Foundation Stress 

Distribution. 

3.4.3 Free Fall of a Group of 16 Elements 

As mentioned earlier in this chapter, the displacement-constrained formulation is 

unable to solve for the mobility of multiple elements. The velocity-constrained 

condition is verified with this example in which a group of sixteen elements is 

allowed to fall freely under gravity. These sixteen discrete elements are arranged 

in a 4 x 4 array to form a regular finite element grid, as shown in Figure 3.10. 
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Figure 3.10: Regular grid of elements in freefall, and self-weight 

contributions to the nodal force 
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The parameters assumed for this simulation are as follows: modulus of elasticity, 

65,000 kN/m2; Poisson's ratio, 0.3; density of material, 16.5 kN/m3; time step, 

0.0001 seconds; and damping coefficients, 0 and 3. 

The velocity profiles for velocities over time steps for elements 1, 6,11, and 16 for 

bottom left hand node 1 in the X and Y directions are shown in Figure 3.11 and 

3.12 respectively. As the group of elements is allowed to fall freely under gravity, 

the velocity in the horizontal direction at the nodes is at the zero mark. 
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Figure 3.11: Velocity X distribution over time steps for elements 1, 6, 

11, and 16 (node 1) 
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If no damping is applied, then due to the action of gravity g, the vertical velocity 

keeps on increasing with time. For a damping coefficient of 3 the vertical velocity 

equalizes to a constant velocity. The slope of the velocity profile with time steps 

for the elements at the nodes is 9.809 m/s2 with no damping, which is similar in 

value to the g value. The velocity profile plots for the other elements and nodes 

were similar in distribution and therefore have not been plotted. The formulation 

developed using velocity constraints results in similar movement of the elements 

in a group; this cannot be attained using displacement constraints. 
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Figure 3.12: Vertical velocity distribution over time steps 
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The net nodal forces acting on the nodes for elements 1, 6, 11, and 16 are plotted 

in Figure 3.13. The net total nodal Y forces on all the elements remain constant 

over time as under the action of gravity; no stresses develop within the elements. 

Since no horizontal force is applied, the net total horizontal nodal force is zero. 
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Figure 3.13: Net nodal Y force distribution over time steps for zero 

damping 

Following the sequence of node numbering adopted and as shown in Figure 3.13, 

the net nodal vertical force on nodes 1 and 3 of element 1 shows contributions 

from 2 nodes sharing the same coordinates. While for node 2 the contributions 
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are from four nodes and for node 4 the contribution is from one node. Similarly, 

all the nodes of interior elements 6 and 11 have the same nodal force components 

at the nodes. For element 16 the pattern of the nodal force distribution is similar 

to that of element 1. 

3.4.4 Stress Distribution for a Slope 

This example shows the condition of switch-on-gravity and verification of the 

developed stresses states within a slope. The formulation developed using the 

velocity constraints was used to calculate the stress states to validate the 

procedures for the stress analysis. A 10 m high, 30 degree slope was discretized 

using 400 iso-parametric quadrilateral elements. The contributions of the self-

weight of the elements on the nodes was computed and applied. 

A time step of 0.001 seconds was used in the analysis with a damping coefficient 

of 3 and the solution equilibrates to the static solution within about 5000 time 

steps. The stress distribution obtained under the slope due to the gravity or self-

weight is presented in Figure 3.14 after 0.009 seconds of simulation and is shown 

in Figure 3.15 after 5 seconds of simulation. The total run time for this simulation 

was approximately 5 minutes on a Pentium II processor with a RAM of 128 MB. 

3.5 PARAMETRIC STUDY FOR NUMERICAL STABILITY 

In order to study the effects of the variables involved in the formulations, each 

variable was varied sequentially and the effects were noted on the scheme applied 

to example 3.4.1; variable parameters were: time steps, damping coefficients 

(global), and the choice of using a lumped mass matrix or a consistent mass 

matrix. 
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Figure 3.14: Stress distribution within a slope at 0.009 seconds 
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3.5.1 Time Steps 

Time steps play an important role in this formulation, as the scheme is based on a 

second order central difference approach, the algorithm is conditionally stable, 

Bathe [2]. If larger than critical time steps are applied, errors induced by the 

numerical integration in each time step accumulate, leading to an incorrect 

solution. The selection of time step depends on the critical time step which is 

based on the single degree of freedom system of mass connected to the ground by 

a spring of stiffness k, for which the critical time step is 2^m/k. The time step 

selected for the analysis can be assumed a fraction less than the time step 

calculated from the formula for the critical time step. 

Regardless of the above, time step variations were studied from 0.02 to 0.0003 

seconds in example 3.4.1. The scheme was stable for time steps up to 0.01 

seconds and smaller, but becomes unstable for time steps larger than 0.01 

seconds. Figure 3.16(a) shows the convergence of stress in the Y direction in 

element 5 for a time step of 0.01 seconds, and the required result is obtained in 

only 400 time steps. For this case a global damping coefficient of 3.8 was used; 

all other parameters were the same as listed in Table 3.1. 

Figure 3.16(b) shows the incremental scheme for a larger time step of 0.02 

seconds for a global damping coefficient of 3.8, but for this the solution blows up. 

However, the scheme seems stable for a time step of 0.01 seconds; thus a smaller 

time step of 0.003 was used in the analysis to ensure stability; in this case more 

time steps were needed to converge to the required solution similar to what is 

observed in the conventional finite element analysis. 
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Figure 3.16: Convergence of Y-stress at time steps (a) At = 0.01, (b) At 

= 0.02 seconds 

The time steps were chosen on the basis of the velocity of wave propagation 

through a material medium having modulus of elasticity E and medium density 

p. The velocity is given by: 
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3.18 

For the selected parameters the velocity of wave propagation is 460 m/s. Thus it 

will take about 0.026 seconds for the effects to be transferred to the base of the 

section. Smaller time steps would be less likely to shock the system. 

3.5.2 Global Damping Effects 

Damping coefficients were varied from 0.01 to 20 per second to note their effects 

on the analysis scheme. Values close to 10 or more of damping coefficient a gave 

the system critical damping; lower values imparted more oscillations to the 

system and the assembly converged to the required solution more slowly. 

Based on the equations of damped harmonic motion the condition for critical 

damping for a single degree of freedom system is: 

c<2A/km 3.19 

At c = 2Vkm the angular frequency of the system is zero. 

With critical damping the displacement approaches zero exponentially with no 

oscillations. The value of C is equal to aM; based on this concept the required 

value of the damping proportionality coefficient can be decided. A damping 

coefficient of 20 sec-1 resulted in an over-damped system with stresses converging 

asymptotically to the required solution, as shown in Figure 3.17. The time step 

selected here is 0.003 seconds with all the other parameters as defined in Table 

3.1 for example 3.4.1. 

v = 
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Figure 3.17: Stress convergence with heavy damping, a = 20 sec 1 

A damping coefficient much lower than the critical damping value induces 

oscillations into the system and can destabilize the entire system as shown in 

Figure 3.18. This can result from the accumulation of errors and non-

convergence over the timesteps. 
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3«5-3 Comparison of Mass Matrices 

The solutions shown above were obtained using lumped mass matrices to 

integrate the equation of motion. If instead a consistent mass matrix is used, the 

solution converges to slightly different values of stresses at the Gauss points. 

Stress YVs Time Steps Time Steps 

2000 3000 4000 5000 

element 9 

element 5 

element 1 

Figure 3.19: Consistent mass matrix applied to the scheme 

The lumped mass matrix provided a better convergence than the consistent mass 

matrix to the exact solution as shown in Figure 3.5. For input parameters with a 

damping coefficient of 3.8 sec1 and a time step equal to 0.003 seconds, the 

analysis was performed with a consistent mass matrix and the results are shown 

in Figure 3.19. It can be observed that for elements 5 and 9 the stress states 

converge to a different solution. However, for element 1, the required solution 

was obtained and can be viewed as being outside the boundary effects. This may 

be due to the use of a coarse mesh for the code development. 

The difference in computed solutions between applications of consistent and 

lumped mass matrixes to the formulation can be explained by the following 

discussion. In the case of a lumped mass matrix, as the solution converges to 

equilibrium, the net nodal forces on the internal nodes of the elements tend 

toward zero. Net nodal forces acting on the boundary nodes are equivalent to the 

reactions at the supports or the boundary nodes. Based on the boundary 

conditions, these nodal forces would not be able to produce further 
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displacements on the boundary nodes, will not contribute to the disturbances of 

the other internal nodes and a final state of equilibrium would be obtained. In 

contrast, if a consistent mass matrix is used, the net nodal forces on the boundary 

nodes can result in displacements of the internal nodes because of the use of non­

zero diagonal terms. This may result in convergence of the stress states, strains, 

or displacements to slightly different values from those obtained using a lumped 

mass matrix. It is expected that this will be more prominent for elements closer 

to the boundary and required convergence will be obtained for all internal 

elements. A refined mesh can be applied to reduce the effects of convergence of a 

consistent mass matrix for the proposed method. 

More importantly as pointed out in Bathe [2], the diagonal mass matrices have 

been effective in analyses using central difference schemes, as the system of 

equations can be solved without factorizing. If a diagonal mass matrix is used, the 

number of operations for one time step is roughly 8n for the solution of the 

equation of motion, where n is the number of elements, while for a consistent 

mass matrix the number of operations is approximately 5i2n. If the equation is 

integrated over a number of time steps, the solution is less costly when the 

diagonal or lumped mass matrix is used. 

The lumped mass matrix was used in the present work to conserve computation 

time, as the formulation is analyzed by the discrete element method at a later 

stage. Discrete element computational procedures are themselves time 

consuming. 
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3.6 CONCLUDING REMARKS 

A computational scheme for the finite element analysis of discrete elements is 

developed. This can suitably incorporate the effects of discontinuities and will be 

extended to include deformability and subsequent breakage of the 

elements/blocks. This method incorporates the defined and tested capabilities of 

the finite element method and will be extended to include procedures of the 

discrete element method in order to model the failure of an earth mass and its 

subsequent movement. In this method the soil mass is idealized as discrete 

elements and a suitable scheme is used to restrain the movements of these blocks 

in relation to one another. As far as the assemblage scheme is concerned, this 

method is significantly different from the standard finite element method in that 

the matrices are not assembled. This procedure solves explicitly for each 

element and carries the history of previous time steps on to the next neighboring 

elements. An example is presented to validate the scheme and it is observed that 

the system converges to the required solution for stresses within the elements. 
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DISCRETE ELEMENT MODEL 

"Problems of discontinua" represent a class of problems or 

processes in computational mechanics that continuum based models cannot 

model reliably. Methods based on the finite element approach are usually 

limited to small displacements and unchanging topology. If these methods are 

used for contact problems, the contacts need to be defined a priori and remain 

unchanged throughout the analysis. 

Cundall and Strack [1] proposed a versatile numerical tool, the 

classical discrete element method (DEM), particularly suitable for the 

simulation of particulate and granular materials. The DEM needs few material 

properties in comparison to continuum methods, which require complex 

constitutive models containing dozens of parameters for yield surfaces, etc. 

Further, the DEM naturally exhibits localization and it is difficult to capture 

such localization in a continuum model that uses a mesh. 

However, many industrial and scientific problems are 

characterized by a transformation from a continuum to a discontinuum state. 

This situation can be governed by appropriate constitutive models that control 

the material separation and follow inter-particle interactions in the motion of 

the particles. 
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4.1 INTRODUCTION 

Discrete element computational procedures are important tools in the 

development of a coupled approach to discrete finite element analysis. The 

contact model involves explicit calculations of the motion of each element in an 

assembly of discrete finite elements as these elements interact with one another 

through contact forces, surface friction, cohesion, Walton [2]. As presented in 

Chapter 3, the finite element solution utilizing constrained individual elements is 

built upon usage of the explicit time integration scheme, which uses the basic 

discrete element equation and procedures for its numerical calculation scheme. 

The progression of the solution scheme from the finite element steps to the 

discrete element and finite element steps is straightforward. 

In this chapter the steps required in the development of discrete element 

procedures are reviewed. Two basic calculation schemes are required for an 

effective and robust code development. First it is vital to assimilate and 

incorporate routines for identifying the location of each discrete element; define, 

declare, and resolve contact information; and compute contact forces. The second 

step is to capture the motion of the discrete elements applying contact forces and 

other applied forces by integrating the equation of motion over time. 

The proposed method differs from conventional discrete element analysis in that 

under the applied forces the element deforms as well as translates and rotates. 

These translations and rotations result in rigid body motion of the elements and 

the deformations result in the development of stresses and strains within the 

elements. This combines the efficacy and accuracy of the finite element method 

to model deformable bodies with the flexibility of the discrete element method to 

measure interactions between elements under motion. Standard nonlinear finite 

element schemes are adopted for analysis and thus the technique neither relies 

on the decoupling of the deformation modes from the rigid body motion, Shi [3], 

nor is it based on any modal superposition analysis. 
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4.2 CONTACT DETECTION 

An effective solution of a discrete element problem depends on the 

computational algorithm used for contact detection and contact resolution. 

Numerous procedures have been reported in the literature for contact detection, 

the simplest being to choose any polygon from the flow and then search among 

all the remaining polygons for contact with the referenced polygon. This 

procedure is carried out for all the remaining polygons; thus for a system 

containing N polygons N2/2 searches are required. 

Munjiza [4] reported that contact detection takes a considerable proportion of 

the total CPU time (up to 60% in some cases) required to analyze discrete 

element problems. In order to reduce the amount of search, the search process 

for any selected polygon can be done within its immediate neighborhood. 

Hopkins [5] used a uniform square grid superimposed on the domain of the 

problem to define a neighborhood for a given polygon. In the present work the 

same technique is followed, that is, the grid cell size Lc is based on the largest 

dimension of the largest polygon. 

In order to specify the location of each element in a particular cell, the 

coordinates of the centroid of each element are calculated. These centroidal 

coordinates are then divided by the length of the cell Lc and the quotient is 

assigned as the I and J locations in the grid but in integer form for the element, 

say H. The variables gi and gj are used to compute these values and are then 

stored in arrays Invx[ ] and Invy[ ] to be recalled during contact processing. 
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Figure 4.1: Grid cell decompos i t ion of the domain , modif ied from 

Hopkins [5] 

Counts are made using the array Ngr id[ ][ ] to store the total number of 

elements present in each cell on the grid. A three dimensional array Grid[ ][ ][ ] 

is used to store the element IDs present in each cell. 

The structure of the Grid( ) function used in the computer algorithm developed 

for the current thesis is as follows: 

Grid( ) 

for (KD = 1; KD < = DE ; KD++ ) 

{ Ng = DElem[KD]; 

1 = 1 + (int) (XXAv[Ng] / Lc); 

J = 1 + (int) ( YYAv[Ng] / Lc ) ; 

Ngrid [I] [J] += 1; 

tempG = Ngrid [I] [J] ; 

Grid [I] [J] [tempG] = Ng ; 

Invx [Ng] = I ; 

Invy [Ng] = J ; 

} 
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An element from the list of discrete elements DElem[ ] is selected and Grid( ) is 

used to assign that element to a particular cell. 

During contact detection the search is made only in the surrounding eight cells of 

the cell in which the at hand discrete element is present, as shown in Figure 4.1. 

Each element present in the neighboring cells is then searched for contacts with 

the home element (H), the element of concern. An element will be given the 

status of near element (N) if any of the nodes of this element is located within the 

home element. 

H4| 

Xlimit2 

Y[2] 

/ 
/ 

Home 

' 

HI; 

Ylimit / 

N4 

'-.. 

Nl 

Y[l]'~ 

Near 

Xlimitl 

H2 

N3 

N2 

Figure 4.2: Detection of a contacting node N within the home element 

H 

The selection of a contacting node of the near element N with the home element 

is based on a simple logic. As shown in Figure 4.2, say node N4 is selected in 

order to check for its presence within the home element H. First it is verified that 

the X coordinate of node N4 lies within the limits of X coordinates (say Xlimit 1, 

Xlimit 2) of any two sides of the home element. Then, corresponding to the X 
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coordinate of N4, the Y coordinates on each of these two lines are computed and 

stored as Y[i] and Y[2]. This defines the values of Ylimit and if the Y coordinate 

of N4 is within this specified Ylimit then contact is declared and both the element 

ID N and node ID 4 are stored in the list of the neighbors of home H. 

4.3 CONTACT RESOLUTION 

After a search for the contacting elements is made for all the discrete elements, 

the next step is to find the points of intersection on the sides of the home element 

with the sides of the near element. During contact detection, the node forming 

the contact is stored and the intersection points are calculated using the two sides 

around point N4, i.e., the contacting node as shown in Figure 4.2. An algorithm 

to compute the intersection point of two straight lines is presented in Appendix A 

and the concepts adopted for the calculation of the respective area of overlap are 

presented in Appendix B. 

4.3.1 Normal Contact Force 

In the earlier approaches of Cundall [1] and Barbosa [6] the relative displacement 

increments are used along with the force-displacement law to calculate the 

increments in the normal contact forces. Available software packages UDEC and 

3DEC use the linear stress-displacement relation in the normal direction to 

describe the mechanical response at the interface. 

Issa [7] based the contact forces on Mindlin's nonlinear theory of frictional 

contact between elastic bodies. However, the contact forces were still calculated 

based on the relative motion; i.e., displacements of the centroids of the bodies in 

the normal direction. The normal force N at the contact point is given by the 

expression: 
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1/2 

AT = 
4R^R2 

,2 V 
^3/2 

4-1 

9;r' 
TtE 

(R,+R2) 

where, 

8N - relative motions of the centroids of the bodies, 

v, E - material constants, and 

Ri, R2 - local radii of curvature of the contacting bodies. 

Hopkins [5] implemented an elastic-viscous-plastic normal force contact model 

in his analysis for sea ice ridges. The elastic components in this model are 

proportional to the area of intersection and the viscous components are 

proportional to the rate of change of the area of intersection. A check is provided 

to ensure that the sum of the elastic and plastic components of the normal force 

is less than the compressive strength of the material. If the material fails 

plastically then the plastic components of the normal force will be irrecoverable. 

Using the soft-particle model and Kelvin-Voit element, Walton [8] calculated the 

normal contact force as the sum of the linear spring based on displacement and a 

linear velocity dependent term and expressed it as: 

N = -Kx-Dx 4.2 

where, 

K - spring stiffness, and D - damping coefficient. 

Ting et al. [9] also computed the contact forces during any given time step based 

on contact spring stiffness K and contact dashpot values D for an assembly of 

ellipse based discrete element models. It is pointed out that summing the 

incremental contact forces at each time step can result in significant accumulated 

error, so instead, the total normal overlap at each instant was computed to obtain 

the total normal contact force. 
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The relationship between the force F and overlap area A can be described using 

Hertz's law as implemented by Mirghasemi [10]: 

F = K A 4.3 

where, K is the contact stiffness with the dimensionality of Young's modulus and 

is given by 

* = -^ 4 
1-v2 4 

where, 

E = Young's modulus, and 

v = Poisson's ratio of the material. 

This nonlinear contact law has been modified and implemented in Mirghasemi 

[10] who defined the area of overlap by defining the area as a product of the 

depth of penetration 8 and a constant d which can be physically interpreted as a 

diameter of the contact area or as a contact length. Thus: 

A = d 8 4.5 

In the present work, the normal contact force between two interacting polygonal 

blocks is calculated from the area of overlap or area of intersection and acts at the 

centroid of this area. For non-triangular overlaps, the area of intersection is 

computed by dividing the overlap area into triangles. 

The quadrilateral elements used in the simulations are free to translate and 

rotate as their constraints are removed. During their interactions with one 

another they develop contact forces in normal and tangential directions with 

respect to the local coordinate framework. The local coordinate system is 

different for each contact and is based on the position of the intersection points 

formed. The tangential coordinate t is along the line joining the intersection 
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points and the normal direction n is normal to the tangential coordinate. The 

position of the intersection points varies with the position of the near element. 

The intersection points can be formed on one side of the home element or can be 

along adjacent sides of the home element when there are four or five intersection 

points. The choice of the local coordinate axis, however, remains independent of 

the location at which the contact is formed and will always be along the line 

joining the intersection points, as shown in Figure 4.3. It is oriented such that the 

positive normal local axis points away from the home polygon. 

For calculating the normal contact force an elastic normal force contact model is 

used. The elastic component of the normal force is proportional to the area of 

intersection. The normal contact force similar to equation 4.3 for the elastic 

components can be described as: 

Fn
n

e = kne* Arean
e 4.6 

where, 

F„e = elastic normal force acting on element n, 

kne = elastic normal stiffness, and 

Arean
e = area of overlap for element n. 

Figure 4.3: Definitions of the angles between the local and global 

coordinate systems used in the model 
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In conventional discrete element analysis, the contact forces whether normal or 

tangential, are applied at the center of the mass of the element along with the 

resultant moments. In the approach followed here, the normal contact forces 

developed on the boundary of each element are transformed to the interacting 

nodes of the elements. The components of the contact force are applied only on 

the nodes that are a part of the current interaction and not on all the nodes or 

centre of gravity of the interacting elements. 

The normal contact force, computed using the local coordinate system, is 

transformed to the global coordinate system using the appropriate angle in 

between the coordinate systems. The angle between the local coordinates and the 

global coordinates a is first computed based on the points of intersection 2 (or 4) 

and 3. The resultant angle y is further computed from a. Based on the direction of 

approach of the near element toward the home element there can be different 

combinations for finding the resultant angle y. These combinations are presented 

in Appendix C. 

The normal contact force is then resolved into horizontal and vertical 

components in the global coordinate directions. If there is only one node of the 

element involved in the interaction then the normal contact force is applied on 

that node. For a two-node interaction, the normal force is distributed 

proportionally onto the nodes on a weighted basis depending upon the location of 

the centroid of the area of intersection from each of the nodes of concern. The 

factors of proportionality are found using Lagrangian interpolation functions for 

one-dimension, or the interpolation can be based on the coordinates of the nodes 

and the centroid. 

4.3.2 Tangential Contact Model 

As reviewed in the literature, the tangential force component increases or 

decreases because of the incremental slip between elements/particles at the 

80 



Chapter 4 

contact surface in the tangential direction. These tangential components T based 

on normal contact force N can be described by Mindlin's theory as presented in 

Issa [7] and are computed by the expression: 

T = 

\T\=fN 

KfN 2/3 

3/2' 

fN for ( | T | < / i v ) 

r (\T\>/N) 

4-7 

where, 

K 
3(2-v) 

f 

v, u, E 

Ri/j 

16// 
dTt^ERiRj 

8(l>-v2lRi+R^ 

1/3 
4-8 

Friction coefficient between the contacting bodies, 

Material constants, and 

Average radius of the elements. 

Adopting the preferred approach, the tangential force components are based on 

the relative velocity between the contacting elements. The global velocities are 

first resolved along the tangential axis of the local coordinate system, then the 

contact force is computed from the computed relative velocities between home 

and near elements: 

Tf = kte * vx * At 4-9 

where, 

Tf - tangential force component, 

kte - tangential stiffness, 

vx - relative velocity between home and near elements, and 

At - time step. 
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For this tangential model, a check is kept on the magnitude of the tangential force 

which is not allowed to exceed the maximum developed friction, i.e.: 

where, 

Tf < juN 

\x - tancj), coefficient of friction, and 

N - normal contact force. 

4.10 

The tangential components are then resolved back into the global coordinate 

system and applied on the nodes of concern, with an opposite sense of home with 

respect to the near element. 

A representation of the tangential contact model adopted in this research is 

shown in Figure 4.4. 

Home 

Figure 4.4: Tangential force model 

It is very important to resolve the velocities properly along the local tangential 

axis. The angle y formed between the local n axis and the global Y axis is 

measured in a counter-clockwise direction. The velocities in the global X or Y 
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direction of the nodes forming the contacting sides are averaged. Then these 

velocity components are resolved along the f axis using the computed angle y. 

From the transformed tangential velocities of the near and the home elements, 

the relative velocity vx (equation 4.9) between these elements is computed and 

used to calculate the tangential contact force. 

4.4 STRESS CALCULATIONS WITHIN DISCRETE ELEMENTS 

In the past, the discrete element model granular materials have been represented 

by particles of different shapes and sizes. Generally, an explicit central difference 

scheme is applied to the discrete element method for integrating the equation of 

motion as opposed to the implicit schemes utilized in continuum mechanics, Jing 

[11]. The contact forces or stresses acting locally on the boundary or internally 

within the element are determined at each time step from the known variables on 

the boundaries of the element considered and its immediate neighbors. For rigid 

block assemblies of discrete elements, the average stress tensor is computed 

using an integral along the boundary of the domain, as contributions from 

contacts inside the domain cancel each other, Cundall [12]. The expression for 

the average stress tensor is: 

°ij=^YXiTj 4-11 

where, 

ay - average stress tensor, 

V - volume of the domain, 

B - integral boundary of the domain, 

x - position vector along the boundary, and 

T - force at contact. 

In comparison to deformable blocks Jing [11] defines the equations of motion for 

rigid blocks grid points based on the out-of-balance forces and internal stresses 

developed. 
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fi = fic + Z<?ij(nkj ASk) 4.12 
fc=i 

where, 

fi resultant out of balance force, 

ay internal stress state, 

nkj unit normal, 

ASk length of kth boundary element, and 

N number of different elements connected at a grid point. 

At each time step, the accelerations, velocities, and displacements are calculated 

first, followed by contact forces, stresses, and stresses based on constitutive 

relations of the contacts. 

For the deformable elements considered in this research, the contact forces 

computed are applied to the contacting node or to the nodes forming the 

contacting side. These contact forces, along with other external and internal 

forces, result in the deformation and mobility of the element. As explained in 

chapter 3, using the net nodal forces (which include self-weight, externally 

applied forces, the internal resisting force vector, and discrete element contact 

forces), the incremental displacement vectors are calculated for each 

node/element over a given time step. These incremental displacements are 

obtained by direct integration of the equation of motion using an explicit second 

central difference integration scheme. The incremental displacements and 

incremental strains are calculated using the element strain displacement matrix 

B. Incremental strains are combined with the constitutive matrix D defined for 

the material concerned to compute the incremental element stresses. However, in 

chapter 3 the mobility of the elements was not considered and together the 

quadrilateral elements formed a mesh for finite element analysis. 

After applying a suitable disassembly criterion, discussed later, the elements are 

allowed to move independently and thus can indulge in large rotations and 
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displacements. The definitions for the stresses and strains now need to be 

handled differently. As described in Bathe [13], for nonlinear analysis involving 

large displacements and large rotations, total Lagrangian or updated Lagrangian 

formulations can be adopted. Based on the selected formulation, the stress and 

strain tensors can be either the 2nd Piola-Kirchoff stress tensor and the Green-

Lagrangian strain tensor or the Cauchy stress tensor and the Almansi strain 

tensor, respectively. These stress and strain measures are energy conjugates of 

each other. The 2nd Piola-Kirchoff stress tensor is an objective stress tensor with 

little physical meaning; thus, in general, Cauchy stresses must be calculated. 

Importantly, the 2nd Piola-Kirchoff stress tensor is invariant under a rigid body 

rotation. 

- X 

Figure 4.5: Reference configurations representing the motion of a 

deformable body -within a stationary Cartesian coordinate system 

As shown in Figure 4.5, as the element displaces from configuration Ci to 

configuration C2, it may undergo displacements and rotations. Since the 

configuration of the element at the time corresponding to C2 is unknown, the 

strain, stresses, and forces are referred to the known configuration Ci. Bathe [13] 
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points out that due to a continuous change in the configuration of the element, 

the Cauchy stresses at time t + At cannot be obtained by simply adding the 

Cauchy stresses at time t. 

The Cauchy stress computed at t + At must take into account the rigid body 

rotation of the element as the components of Cauchy stress are not invariants 

when subjected to rigid body rotation. 

The updated Lagrangian method deals with this scenario in an elegant manner by 

using appropriate stress-strain measures and constitutive relations. This is 

different from the total Lagrangian method in that all the static and kinetic 

variables are referred to a known configuration at time t. Using an explicit 

integration scheme the internal resisting force vector can be written in terms of 

the element stresses as in Barbosa [14]: 

I <BT
k
 lak dVk = ( J 4.13 

v 

where, 
lB\ - strain-displacement nodal matrix at time t for element k, 

tok - Cauchy stress for element k at time t, and 

Vk - volume of element at deformed configuration. 

Equation 4.13 satisfies the principle of virtual work and provides a consistent 

relation between the nodal forces and the internal stress states. 

Once the deformation gradient is known, Cauchy stresses and 2nd Piola-Kirchoff 

stresses can be evaluated using simple kinematic transformations. The 

deformation gradient describing the transition from reference configuration Ci to 

the current configuration C2 is defined as: 

0
fZ = (0V f x r f 4.14 
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where, 

,V = 

8 

8 

8Xn 

and ^r=l'xi *x2\ 4-15 

The next step in computing the stress and strain measures corresponding to the 

current configuration C2 is obtained using the deformation gradient. The stress 

and strains at configuration C2 are a sum of the stress and strain values of the 

reference configuration Ci and the additional stress and strain produced during 

motion from Ci to C2. These stress and strain measures are represented as: 

<T 
C2' 

= a c\ + 
C2 
Cl ( 4.l6 

,C2' ,C1 
+ 

C2 

cv 4.17 

where, 

.C21 C21 
1 1 c 

crc\sc' 

Cl C2 
CI"' C1fc 

Stress and strain measure at configuration C2, 

Cauchy stress and strain measure at configuration Ci, and 

Incremental form of 2nd Piola-Kirchoff stress tensor and 

Green-Lagrangian strain tensor. 

The Cauchy stress and Almansi strain tensors at configuration C2 are calculated 

using the deformation gradient: 

aC2 = 1 2V X2 1 2VT 

Ji. 
4.18 
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sC2 = 
2x\ \x sC2^ 2xT 4.19 

where, 

<7C2, s C 2 = Cauchy stress and Almansi strain at the new configuration 

2X = \X~A 4.20 

Over time steps, the current configuration moves further away from the reference 

configuration. Then the current configuration is redefined as the reference 

configuration and the stress/strain tensors are updated as explained above. 

Based on the new geometric and material conditions, the strain displacement 

matrix is recomputed for the new reference configuration. The matrix considered 

here is the standard form used in linear, finite element analysis, as geometric 

nonlinearities are accounted for during updating of the configurations and no 

material nonlinearities are considered in this present work. 

The equation of motion for the updated Lagrangian formulation, Bathe [13], in 

terms of the 2nd Piola-Kirchoff stress tensor can be expressed as: 

jSy (S t+AtA£ij) *dA = t+AtR 4-21 

t 

where, 

Sy - 2nd Piola Kirchoff stress tensor, 

8y - Green-Lagrangian strain tensor, 

dA - integration over the area, and 

t+AtR _ resultant force vector at time t+At. 

4.5 DISASSEMBLY CRITERIA 

The proposed approach considers discrete elements restrained at nodes to solve 

for a finite element solution. Progressive fracturing can then be allowed based on 
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some fracturing criterion and the restrained discrete elements are allowed to 

translate and rotate freely from their specific positions. The motion and stress 

computations of these discrete elements will be carried out based on various 

measures as discussed in earlier sections. Remaining discrete elements which do 

not split from their restraints will continue to be a part of the finite element 

solution assembly, and further fracturing of this continuum will be carried out as 

and if required. The disassembly is allowed only along the interfaces and not 

through the elements. 

Munjiza [15] indicated that continuum based models are generalizations of strain 

rate dependent elasto-plastic models implementing various yield surfaces while 

keeping the geometry of the problem unchanged. In his work, the finite element 

model is valid until the load carrying capacity of the localization zone is reduced 

to zero. Then a crack is assumed to open along the line of localization. A 

remeshing of the finite elements within every discrete element is performed when 

the breakage occurs. 

The disassembly process adopted in this work is based on the Mohr-Coulomb 

shear strength yield criteria and the tensile criteria. A search process is carried 

over all the sides of the element having an interface with it. The internal stress 

state is transformed to each side, averaged for the neighboring Gauss points and 

checked for the adopted failure criterion. As presented in Mase [16], the stress 

tensor can be transformed into the stress vector by applying the following 

relation: 

t ? = <?ij Tlj 4-22 

or writing explicitly: 

$ t2" t3") = ("1 n2 n3> 
°"11 °"12 °"13 

<721 0"22 <T23 

°"31 CT32 °"33 

4.23 
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where, 

t" = a traction vector on the side having a normal vector nj to it, and 

o-y = a stress tensor for that element. 

At any point on the reference side, the stress vector can be resolved along normal 

and tangential orthogonal components and the magnitude of these components 

will be given by: 

aN = tf n( = o-y n{ rij 4-24 

CTs = ti U - aN 4.25 

If the normal stress vector on the side is less than the tensile strength of the 

material, the corresponding elements of that side are separated. The normal 

stress vector is used in the Mohr-Coulombs criteria to calculate the shear 

strength on that side of the elements. If the shear stress is greater than or equal to 

the shear strength acting on that side, a split is declared. 

r > Tf = c + (jN tan (/> 4.26 

Care is taken to remove the elements from each others' connectivity list, namely 

CONNECT[ ] , as described in chapter 3, or else they will still count in the finite 

element assembly. This can have effects on the displacement and velocity 

compatibility constraints of the finite elements assembly. These elements are now 

free to translate and rotate depending on their neighborhood environment. The 

contacting forces generated during the motion, including all other external-

internal forces, are used to calculate the deformations within these discrete 

elements and also for the elements in the finite element assembly. The 

disassembly is carried over along the sides of elements that are constrained only 

at the nodes. Each element has its own nodes and can thus translate from its 
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present position without the need for remeshing and redefining nodes and 

elements. The rest of the elements stay connected and follow the scheme for 

continuum analysis based on described velocity constraints. 

The introduction of the Mohr-Coulomb criterion in separating the elements is 

one of many choices in disassembling. Since there are many models for soil, the 

shearing or splitting of soils may not necessarily obey the Mohr-Coulomb criteria. 

Whatever criterion is adopted for element boundaries, it is good practice to be 

consistent with the continuum yielding models applied inside the element. As 

presented in chapter 5, the elasto-plastic constitutive relation based on Mohr-

Coulomb yield criteria is incorporated in the present research. Element 

boundaries are introduced mathematical artifacts, however, the soil is one 

undivided continuum until it starts to separate. 

4.6 REDEFINITION OF CONTACTS 

As the simulation progresses over time steps, the associations of discrete 

elements with their neighbors will change. Depending on the amount of 

translation, rotation, and the magnitude of the time steps, discrete elements can 

move away from other discrete elements, releasing contacts, and can establish 

contacts with other discrete elements. If time steps are small, contacts can be 

redefined after a number of time steps, increasing the computational efficiency. 

The length of the interval for calling the function NEIGHBOR ( ) in the code 

will depend upon the rate of deformation expected for a particular simulation and 

can be defined effectively after running some trial simulations. 

As discussed by Rothenburg [17], the computational effort required for the 

contact detection process is about half of the overall CPU time required to 

process a simulation. Thus computational effort can be reduced if the history of 

the contact position is tracked and continuously updated. Due to potential 

developments of new contacts and loss of existing contacts, updating schemes 

need to be carried out after a specific interval. Modifying the approach followed 
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by Cundall [1] of using a mesh overlay to update the contact list, Rothenburg [17] 

extends the search for potential contacts to second-shell neighbors. These are 

stored in a data array during the duration of the simulation in order to minimize 

contact list updating. 

4.7 NUMERICAL DAMPING 

As presented by Chan [18], global and local dampings are applied in the 

numerical procedures and implemented on the equation of motion and contact 

interfaces. Hart [19] discussed that mass-proportional and stiffness-proportional 

dampings are applied to lower frequency modes and higher frequency inter-block 

vibrations, respectively. Using both forms of damping in combination is termed 

Rayleigh damping. It has been pointed out that static solutions require more 

damping than dynamic solutions. In discontinuum (dynamic) analysis, due to 

natural energy dissipations such as inter-element sliding or friction, unbalanced 

vibrations are absorbed. 

The equation of motion used to find the velocity at the next time step using the 

second order central difference method is: 

fw_+S.)~u. •PJK-™\U-~JJ!T-S-) 4.27 
{At2 2At) { At2) {At2 2At) 

Equation 4.27 contains the mass-proportional damping a within the damping 

coefficient C as: 

C = a M 4-28 

As discussed in chapter 3, the selection of damping constants cannot be defined 

with certainty; damping constants must be chosen to provide a solution closer to 

the critical damping. An adaptive damping scheme that adjusts mass damping 

coefficients based on rates of energy change has been adopted in 3DEC and 
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UDEC software. This damping scheme responds like a servo-controlled 

mechanism. 

4.8 SOLUTION STABILITY 

Factors that affect the stability of the analysis are discussed in the following 

sections. 

4.8.1 Time Steps 

Numerical stability considerations is discussed in Bathe [13]. Explicit integration 

methods applied are conditionally stable, that is, they are stable if and only if the 

solution for an initial condition does not grow without bound for any time step 

and if the time step value is within the stability limits. System equilibrium 

equations have to be integrated accurately in order to predict the dynamic 

response of a structure. The time step thus required can be estimated 

proportionally to the smallest period of the assembly and can be estimated from 

the equation: 

Ar„ = 2 min 
"n 

'm^1/2 

V K J 
4.29 

where, 

m = mass of the associated element, and 

k = stiffness of the elements surrounding the node. 

The cost of integration analysis is directly proportional to the number of time 

steps required for the solution. The selection of time steps is important as a time 

step has to be small enough to obtain an accurate solution but not so small that 

analysis will be costly. 
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4.8.2 Contact Formation 

Hopkins [5] identified that unobserved contacts can occur if contact detection is 

not performed as often as required. As the search for contacts is called after a 

defined number of time steps or a defined interval, some of the contacts are likely 

to be declared after significant overlap. Due to the quantum nature of the contact 

detection process, a node can suddenly appear in the interior of another element, 

Williams [20]. The solution for this problem is to define a fuzzy boundary zone 

inside and outside the actual boundary. Fuzzy boundaries need to be sufficiently 

wide that the nodes cannot jump over the contact detection interval. The 

fuzziness and tolerance for element boundaries complicate the development of 

geometric rules for interactions. Penalty function schemes can be used to impose 

contact constraints as the node enters the boundary zone. When it is detected 

within the zone, the penetrating node is slowed down over some distance by the 

contact force. 

In the code developed here, as neighboring elements approach one another, the 

velocity of approach of each element is slowed by a small fraction. Based on the 

time step, if the velocity of approach is large, the overlap computed between 

elements can be large and can result in a large rebound. In the discrete element 

procedure damping can help to stabilize the dynamics caused by the delay in 

contact renewal. In the examples presented, a reduction value of 1% to 2% is 

applied to the approach velocities of the elements to control contact formation. 

The values of this fraction are based on the size of the time step increment. As 

observed during numerous trials conducted to obtain a stable solution, a 

reduction fraction of 2% or more was suitable for time steps of 0.001 seconds or 

larger. For smaller time steps, a fractional value of 2% or less was effective. A few 

iterations of the simulation are required to confirm the value of a reduction 

fraction. 
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4.8.3 Memory Allocations 

Pointers are used to access a variable in the code. A pointer is a variable that 

contains a memory address of another variable and points to the value of that 

variable. The size of a pointer variable is equivalent to that of an integer, i.e., 32 

bits. As discussed by Munjiza [21], pointer arithmetic computations are generally 

faster than those using simple integers. However, pointers may make the 

computer program difficult to understand. 

If computer memory (RAM) is limited, the use of pointers provides a reasonable 

way to define variables and to store the large quantities of data generated during 

a calculation cycle for use in the next time steps. The computer language C++ 

provides system level support for allocating and freeing memory, so it is not 

necessary to write specific routines for manipulating memory, Ting [22]. 

4.9 VALIDATION EXAMPLES FOR DISCRETE ANALYSIS 

The foregoing computational procedures developed for contact detection and 

contact force generation were verified by solving three example problems created 

to check the scheme. The examples presented are related to (1) contact 

formations, (2) effects of a discrete element contacting a finite element assembly, 

and (3) combined effects of discrete and finite elements for a multi-block 

toppling scenario. These examples helped in examining the different functions 

and models used in the code. The examples are based on the concepts of linear 

elasticity and no consideration is given to the yielding and development of plastic 

stress states within these elements. Concepts of elasto-plastic constitutive 

relations and their applications are presented in chapter 5. Input parameters 

involved in these examples are given in Table 4.1. 
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Example 

1 

2 

3 

Young's 

modulus, E 

kN/m2 

3 5 0 0 0 

5 0 0 0 0 

3 8 0 0 0 

Poisson's 

ratio, v 

0.3 

O.4 

0.35 

Damping 

coefficient, 

a 

3 

2.5 

3 

Unit 

weight, 

Y 
kN/ms 

16.50 

16.50 

Normal 

stiffness, 

k„ 

kN/m2 

2 0 0 0 

3 0 0 0 

7 0 0 0 

Tangential 

stiffness, 

ks 

kN/m 

500 

3 0 0 

700 

Friction 

a n g l e , <|> 

30 

30 

30 

Table 4.1: Input parameters used in the examples 

4.9.1 Validation of the Contact Model 

Example 1 is used to check the different functions developed for the discrete 

element analysis zone of the code. The effect of the drop of a quadrilateral 

element from a height onto two isolate discrete elements lying at the base is 

examined first, schematic as shown in figure 4.7(a). The elements are idealized as 

plane strain iso-parametric finite-discrete elements and have eight degrees of 

freedom as discussed in chapter 3. The standard formulation of finite element 

analysis is adopted and a two by two numerical integration scheme is used. This 

example demonstrates the handling of large translations and rotations of discrete 

elements, which will constitute the motion of discrete elements as these elements 

disassemble from the finite element assembly. 

Figure 4.6 shows the vertical stress distribution and its variations as the element 

falls under gravity, develops contacts, and loses contacts. As the element falls 

under gravity, the acceleration, velocity, and displacements at the nodes of the 

element are equal. Thus no strains and stresses are generated for the time steps 

from point A to point B. 
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Figure 4.6: Vertical stress distribution of a 2D iso-parametric element 

falling under gravity (example 1) 

As one node of the falling element comes in contact with the element at the base, 

stress changes takes place at various integration Gauss points, corresponding to 

point B. This is followed by rotation and translation of the element over the base 

element until at point C another node of the falling element comes in contact with 

the base element, making the stress states oscillate toward a different equilibrium 

state. After some time, contact with the base element is lost and the falling 

element begins to drop, toppling (at point D) and sliding over the base element. 

Another contact is formed with a second base element, corresponding to point E, 

and the stress states begin to fluctuate again. Equilibrium stresses are reached as 

the element settles down forming contacts with neighboring elements, 

corresponding to point F in Figure 4.6. Excerpts from the simulation related to 

points A to F are shown in Figure 4.7. 
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Figure 4.7(a): Simulations of an element falling on base elements at 

different equilibrium points (example 1, points A, B, C, D) 
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Figure 4.7(b): Simulations of an element falling on base elements at 

different equilibrium points (example 1, points E, F) 

Example 1 is presented in movie format in the attached CD in file Chapter 

4/Example 1 Single Block Drop.avi. The video shows the changes in stress 

contours for vertical stress states produced in the elements when contacts are 

established and lost. 

Example 1 demonstrates a scheme for contact detection and computation of 

stress states at the integration points of an element falling on other elements. 

More refined stress states can be achieved in a falling body if it is discretized into 

more elements. 

4.9.2 Discrete Contact Formation with a Finite Element Assembly 

The interactions between discrete and finite element assemblies need to be 

verified for the proper development of a coupled analysis. Example 2 shows the 

effects of dropping a single element block, carrying a concentrated load at its 
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upper two nodes, on a soil mass represented by an assembly of 100 discrete 

elements forming a finite element mesh. The results are demonstrated for the 

effects of concentrated loads only and gravity is turned off during this simulation. 
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Figure 4.8: Vertical stress developments as discrete-finite elements 

interact (example 2) 

At time 0.0 seconds, a single element block falls under the weight of concentrated 

loads. The finite element assembly is stress free at this time step. 

As contact is established between the dropping element and the element 

assembly below, stress is generated within the assembly of elements, as shown at 

time 0.26 seconds. The stress wave propagates and oscillates around equilibrium, 

through the assembly of elements as shown in simulation extracts at 0.52 and 

1.02 seconds. Finally the stress state settles down and attains a final equilibrium 

value equal to the stress from the element of about 200 kN/m2 at 2.0 seconds. 

The variation of the vertical stress with time steps within elements 5 and 6 at 

Gauss points 3 and 4, respectively, is shown in Figure 4.9. 

Slightly lower values of contact normal and tangential stiffness are applied in 

order to view the overlap of the contacting elements. Updating of the contacts is 

performed after a specified interval; the simulation movie shows how the 
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elements are affected after contact (see attached CD, file Chapter 4/Example 2 

Interaction FE-DE.avi). 

Example 2 demonstrates the effectiveness of applying proper values of stiffness 

and defines the time interval after which the contact list must be updated. 
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Figure 4.9: Vertical stress and time step plots for elements 5 and 6 in 

example 2 

Excess contact overlap or very high contact stiffness can result in explosion or the 

contacting element can be pushed too far. The simulation is provided in the 

attached CD in file Chapter 4/Example 2 Interaction FE-DE.avi. 

4.9.3 Toppling of a Block Assembly 

The combined usage of discrete and finite element formulations is verified in 

example 3. A vertical slope comprising 100 iso-parametric quadrilateral block 

elements is allowed to collapse under the effects of gravity. In the first phase, as 

the gravity is turned on, the finite element formulation computes the internal 
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principal stresses within the elements, Figure 4.10(a) and (b). Based on a specific 

split criterion discrete elements are formed. In example 3, a minor principal 

stress is a basis for split declaration and if its value is negative or equal to zero the 

split is defined between two neighboring elements. The material is treated as one 

possessing no tensile strength. These elements then become a part of the discrete 

element group or remain constrained with the finite element assembly. 

The discrete elements formed interact with each other and with other elements in 

the finite element mesh assembly. This results in disturbance of the equilibrium 

stress state as the stress wave propagates through all the elements. The stress 

states within the elements resonate and reach values larger or smaller than the 

equilibrium values. These internal stress states oscillate over the time steps and 

damp toward the equilibrium value. Figures 4.10(c) to (f) show the distribution of 

vertical stresses developed within each of the elements. It is observed that the 

stresses within individual elements are complex and can be captured even while 

using a single element to represent a section of the body. 

When equilibrium values are reached after the elements undergo translations 

and rotations, the vertical stress states developed within the elements are due to 

self-weight at the integration points. These stresses can be depicted as an overall 

mesh representing a refined geometry. The refinement and the cost of analysis 

are contingent upon one another, thus the mesh is refined based on the solution 

requirements. The run time for example 3 up to the point of interest was about 

1.5 hours on an IBM Think Pad with an Intel Pentium P II processor and 128 MB 

of memory (RAM). 
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Figure 4.10: Multi-block toppling for finite and discrete simulations 

(example 3) 
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The example 3 simulation is provided in movie format in the attached CD, in file 

Chapter 4/Example 3 Multi Block Toppling.avi. The simulation shows the elastic 

behavior of the elements as they translate, rotate, and interact. As no yield 

surface is specified for the elastic response, the stress states within the elements 

reach 10-15 times the equilibrium stresses before they oscillate to equilibrium. 

Elements subjected to the higher stresses within deform and later regain original 

shapes and sizes as they equilibrate. 

4.10 CONCLUDING REMARKS 

A relatively simple discrete element model to analyze the continuum state is 

presented in this chapter. Nonlinear finite element concepts were incorporated 

and discrete element formulations were embedded to simulate discontinuum 

element behavior. Stress-strain states can be determined within elements as they 

deform, interact, and displace. Each element may undergo large displacements, 

rotations, and strains. Contact forces are applied along with external and internal 

forces, and velocities and displacements at the nodes of the elements were 

obtained by integration of the equation of motion over time. Three validation 

examples are presented to demonstrate the capability of the proposed method. 
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ELASTO-PLASTIC 

CONSTITUTIVE MODEL 

Soil behaviour is complex and a single constitutive model capable 

of capturing the different behaviours of soil does not yet exist, Potts [1]. A 

constitutive model or a law delineating a mathematical form can describe one's 

views and ideas about the behaviour of a material. These models are important 

in providing good results for any solution procedure. The cognizance of the 

constitutive behaviour of materials devoid of the principles of physics and 

mathematics is not possible, Desai [2] as mathematics provides a succinct way 

for expressing physical phenomena. Various subdisciplines of mechanics such as 

theories of elasticity, hypo-elasticity, and plasticity can also be applied to 

understand soil behaviour. 

Real soils contain a range of particles and their behaviour is 

dictated by the composition of various fragments. A soil mass is considered 

failed if it reaches a stress level satisfying an adopted failure criterion. A Mohr-

Coulomb failure criterion is commonly used in soil mechanics. Ideally, any 

adopted constitutive model should be able to capture the behaviour of soil. A few 

advanced models are able to model soil behaviour, but they require input 

parameters not easily obtained from site investigations and laboratory tests. 

Compromise between simplicity and complicity is required in model selection to 

capture the dominant soil behaviour related to a particular problem, Potts[i]. 
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5.1 INTRODUCTION 

The finite and discrete element solution procedure developed in chapters 3 and 4 

assumed a linear elastic material model for computing stresses and an elasto-

plastic contact model for part of the discrete analysis. This simple constitutive 

law is applicable to only a limited class of problems as most materials exhibit 

nonlinear and more complex responses. If the real behaviour of soil is to be 

predicted, a more comprehensive constitutive (non-linear) model is required. 

Nonlinear analysis can be classified into material nonlinearity (associated with 

material properties, e.g., plasticity) and geometric nonlinearity (associated with 

changes occurring within the configuration, e.g., as in large movements and 

deflections), Cook [3]. This research deals with both types of nonlinearity. 

In this chapter, a finite element formulation incorporating an elastic, perfectly 

plastic Mohr-Coulomb model is presented. A brief discussion of the theory of 

plasticity is presented in this chapter and more details are given in Appendix D. 

Examples related to the estimation of the bearing capacity of cohesionless soil 

under a footing and development of active and passive states behind a retaining 

wall are presented as verification for the model. 

5.2 REVIEW OF APPLIED MODELS IN PREVIOUS ANALYSES 

In this section several constitutive models used in either discrete or finite 

element approaches are reviewed. Independent approaches to the finite element 

method and the discrete element method have been tested and refined over the 

years. A combined methodology of these two methods has been undergoing 

development and modification for the last two decades. 

The finite element method has found application in a wide range of engineering 

and medical problems. The theoretical solution obtained using the finite element 

method satisfies the conditions of equilibrium, compatibility, a material's 

constitutive behaviour, and the applied boundary conditions. Constitutive 
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behaviour provides appropriate stress-strain properties of the material and links 

equilibrium and compatibility conditions. It is not possible to obtain a closed 

form solution incorporating a realistic constitutive model of soil behaviour 

satisfying the above four conditions, Potts [1]. 

Various material models and yield criteria have been applied in geotechnical 

engineering applications within the finite element approach and are not 

restricted to the following: 

a) Drucker and Prager: 

/ = 4^2 -ali-k 5-1 

where a and k are positive material parameters, Ii is the first invariant of 

the stress tensor, and J2 is the second invariant of the deviatoric stress 

tensor. There is, however, one limitation to the Drucker and Prager model 

related to the incremental plastic volumetric strains, which are expressed 

by the equation: 

dsf{ = - 3 a X 5.2 

where X is the positive scalar factor of proportionality of the associated 

flow rule. As seen, this is a negative volumetric component indicating a 

volume increase or dilation at failure. However, for loose sands or 

normally consolidated clays only decreases in volume or compressive 

deformations occur during shear. This might indicate that normality might 

not be valid for this case and the model might not be applicable to these 

materials, Desai [2]. 

b) Mohr-Coulomb (can be improved to incorporate elastic strain hardening 

and softening models): 
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where c and (j) are material parameters and 0 is the lode angle. This model 

is applied to the examples studied and presented in this chapter and is 

explained in detail in Section 5.1. Christian [4] applied an elasto-plastic 

formulation derived from the Mohr-Coulomb law, with dilatancy removed 

and a strain hardening model with a capped yield criterion, to analyze 

problems related to passive earth pressure and the bearing capacity of 

cohesionless soils. 

c) Modified Cam Clay model based on the critical state concept: the yield 

locus for the modified Cam Clay model takes the form: 

f = M2p2-M2p0p +q2=0 5-4 

where, 

M = slope of critical state line in q-p stress space, 

P = normal stress/mean pressure = I1/3, 

Q = shear stress = •\]3J2D , and 

P0 = pressure corresponding to the intersection of the yield locus 

with the p-axis in a q-p stress space. 

As pointed out by Desai [2], the modified Cam Clay model and various cap 

models developed by the Cambridge group may be able to successfully 

simulate a limited number of stress paths for a given material. 

Numerous other yield criteria and constitutive relations have been applied for 

analyzing applications using the finite element method. The most generic for 

geotechnical engineering applications are discussed above. On the contrary, for 
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discrete element analysis the stress and strain computations are primarily based 

on the averaging of contact forces and displacements on a specific plane. 

The discrete element method as presented by Sawada [5], treats discrete 

elements as rigid bodies with springs at the contact points to transfer the inter-

particle forces. The displacements, rotations, and contact forces involved in 

discrete element analysis are calculated then converted into macro physical 

values of stresses and strains. 

The PFC2D [6] constitutive model consists of three separate parts: the stiffness 

model which provides a linear relation between contact force and relative 

displacement, a slip model which confines the shear force components within the 

limits of friction coefficients, and a contact-bond model which enforces the bond 

strength limits. As such, no constitutive relations directly assisting in the 

computational sequence for stresses and strains are incorporated. This PFC2D 

constitutive model has been applied to model rock behaviour and to capture the 

characteristic properties of the rock in terms of elasticity, prefailure micro-

cracking, peak strength computations, softening relations of stress-strain in the 

post peak region, and kinetic energy release from bond breakage, Potyondy [7]. 

Dorby [8] showed that increments of particle displacements and rotations due to 

unbalanced forces can be computed from the assembled stiffness matrix of the 

structure. Stead [9] reported that numerous hybrid methods, a limit equilibrium 

and finite element analysis, a boundary-finite element and boundary-distinct 

element method, a particle flow and finite difference, and a finite-distinct 

element method with adaptive remeshing are being developed to capture the 

formation of cracks and their propagation. 

While for discrete finite element formulations, primarily elastic constitutive laws 

have been applied, Munjiza [10] assumed a hyperelastic/plastic representation of 

the constitutive law. The deformation behaviour of the isotropic hyperelastic 

body was characterized by the strain energy per unit volume in the reference 

configuration. The constitutive equation for hyperelastic material follows: 
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where, 

S = the 1st Piola-Kirchhoff stress tensor, 

0 = a scalar function, and 

F = the deformation gradient. 

It is inferred from the work of Barbosa [11] on the discrete finite element method 

that the matrix of constitutive relations applied to compute the incremental 

stresses is based on the elasticity parameters of Young's modulus of elasticity E 

and Poisson's ratio v. The increment of the Green strain tensor, referring to the 

base configuration, is used to compute the increment in the symmetric Piola-

Kirchhoff stress tensor. 

5.3 ELASTO-PLASTIC MODEL 

The elasto-plastic model is based on the assumption that a material behaves 

elastically up to its yield limits or peak strengths and then deforms plastically, 

Chan [12]. A complete review of the theory of plasticity is available in numerous 

references. As classified in Desai [2], two categories applicable to the subject of 

plasticity are the physical theory and the mathematical theory. To understand 

why a material behaves plastically, the physical theory is studied at a microscopic 

level. A mathematical formulation of the behaviour is based on experimental 

observations at a macroscopic level. A brief discussion on the relevant and 

applied theory of plasticity follows. 

For basic plasticity involves four essential ingredients: coincident stress and 

strain axes, a yield function, a plastic potential function, and a 

hardening/softening rule, Potts [1]. The basic assumption is that the principal 

directions of the incremental stress and the incremental plastic strains coincide. 

The yield criterion can then be defined as a limit to the elastic deformations 
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accumulated and can thus be expressed in terms of the respective stress states. 

Based on the yield criterion, a yield function separating the purely elastic state 

from elastic-plastic state can be stated as a scalar function of the stress states. In 

order to specify the direction of the incremental plastic strain vector for every 

stress state, it is necessary to define a plastic potential function with an 

appropriate flow rule. The material is assumed to be a perfectly plastic material 

for the present research and no hardening or softening rules are applied. 

5.3.1 Mohr-Coulomb Yield Criteria 

As mentioned earlier, linear elastic-perfectly plastic Mohr-Coulomb yield criteria 

are incorporated in the present computer code for analysis. The yield surface for 

this type of material is fixed in the stress space and does not change under 

loading or unloading conditions. If the stress state is below the yield surface, the 

behaviour is completely elastic; when the stress state reaches the yield surface 

plastic straining occurs and a stress state beyond the yield surface is not possible. 

If the state of stress is maintained at the yield surface, then plastic straining of 

the material will continue to occur and will eventually lead to the failure of the 

material. In terms of the shear strength, the Mohr-Coulomb criteria on any 

failure plane can be represented by the expression: 

x = c + a tan(|) 5.6 

where x is the shear stress on the failure plane, c is the cohesion of the material of 

concern, a is the effective normal stress on the failure surface, and § is the angle 

of internal friction. The two parameters associated with the criterion can be 

determined by conducting experiments in the laboratory on the material up to 

the ultimate or the failure condition. 

In terms of the principal stresses, the yield criterion can be expressed by equation 

5.7 where the effects of the intermediate principal stress are ignored. 
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Thus the representation of the projection of the criterion in the stress space on 

the n-plane is an irregular hexagonal pyramid, Figure 5.1. The yield strength of 

the material in compression is higher than the strength in extension, making the 

hexagon irregular, and shows dependence on the third invariant. It can be 

expressed in an alternative form of stress invariants including the Lode angle 6, 

and the invariants of the deviatoric stresses, J2 and J3. 

F= ^/ j^sin 
3 

J 2 sin (j) cos n + 0 — sin^-ccos^ =0 5.8 

There are two drawbacks to the approach outlined above. First, the magnitude of 

the plastic volumetric strain, i.e., the dilation, is much larger than that observed 

for real soils; second, when yielding of the soil is initiated, it will continue to 

dilate forever. If a non-associated flow rule is adopted, the first drawback can be 

rectified, Potts [1]. 

Mohr Coulomb yield surface 

Figure 5.1: Mohr-Coulomb yield surface in principal stress space, 

Chan, [13] 
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5.3.2 Finite Element Formulation 

The initial steps for the computations of the nodal velocities, nodal 

displacements, and elemental strains at Gauss points are the same as explained 

in earlier chapters. The final equilibrium equation over number of timesteps n to 

be attained for a solution procedure utilizing the concepts of velocity constraint 

is: 

Pext+t jPm -tjl'j =0 5-9 
t=1 t=1 

where the net unbalanced force between the externally applied loads and the 

internal resisting force vectors developed tends to zero as equilibrium is attained. 

Knowing the nodal displacement values, the strains, stresses, and internal force 

resisting vectors developed at the Gauss points can be known in incremental 

form, as described in Appendix D. 

The expression for the elasto-plastic constitutive matrix [CEP] can be obtained 

using the following assumptions: 

1) If the present stress state is on the yield surface, then, 

v3 j 

(~ \ 
F=Jj^s\n— + d - J—sin^cos —+ <9 —-s in^ -ccos^ = 0 5.10 

3 3 v j
 J 

3 

The variations occurring for the yield function will also be zero, 

dF = 0 5.11 

The condition 

F ( ay , 4 ) > 0 5.12 
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is not permissible. This condition is referred to as a consistency condition, 

where loading from a plastic state will lead to another plastic state and the 

yield criterion will be satisfied as long as the material is in the plastic state. 

2) The computation progresses over many time steps. The check for plasticity 

cannot be performed at every time step as it will be too time consuming. 

The check for the yield surface is carried out when sufficient strain 

increment has developed, say, over 100 time steps. This continuance of the 

plastic calculations should be selected with care and after performing 

certain iterations, such that the strain increment values accumulated over 

these time steps are not too large as to result in erroneous states. 

The accumulated strain or the strain increment over the segment of 

selected time steps can be expressed in terms of the elastic and the plastic 

strain components: 

X r e c M = Erec M * + I r s c J ^ f 5-13 

where TSC is the number of time steps after which the check for plasticity 

is performed. 

In development of the computer code, three separate arrays of pointers are 

defined for storing the variables of the stress, namely, stress total (aT), stress 

average (aA), and stress incremental (a1)- Similar steps are followed for the strain 

values. 

Before performing the plasticity check, all stress increments over the specified 

number of time steps are stored commutatively in the stress incremental array. 

When the check for plasticity is done, the summed stress increments are added to 

the previous state of stress, stress average (which stores the total stress value 

after the previous check for plasticity was completed). 
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Figure 5.2: Flow chart showing the steps for elasto-plastic 

computations 

This total current stress state is checked for yielding. If the current stress state is 

still elastic, then the stress increments, stress incremental, are added directly to 
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the stress average value to obtain the total stress up to the current time step and 

are stored in the stress total array. If yielding occurs, the state of incremental 

stress needs to be divided into elastic and plastic components. Detailed 

derivations of the different matrices involved in the above computations are 

presented in Appendix D. The steps followed in the computation procedure are 

laid out in the flow chart shown in Figure 5.2. The first step in allocating the 

stresses into elastic and plastic components is to divide the strain in the elastic 

and plastic components. This is achieved by using the interval halving and the 

radial return techniques explained in Appendices E and F. 

5.3.3 Displacement Constraints 

When computing the elasto-plastic stress states within the elements, the prime 

concern is the development of excessive strains which could result in largely 

deformed elements, thus causing numerical instability. Deformed shapes, as 

shown in Figure 5.3, were observed if the aspect ratio of the elements was not 

preserved. Another form of instability was observed during the contact detection 

process of these deformed elements. This resulted from the sharp edges of one 

excessively deformed element missing contact formation with the sharp edges of 

another excessively deformed element. Sharp corners may prevent the elements 

from developing contact forces in the overlap sufficient to provide resistance to 

the mobility of the elements. 

Original Shape \ \ 

N̂  Deformed Shapes 

Figure 5.3: Comparison of element shapes 
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A routine based on the amount of cumulated strains within the elements was 

developed to control the deformations of the elements. The variable array 

ASPECTR[] was initialized to track these changes in the elements and list the 

deformed elements in the array. Nodal displacement constraints were applied on 

the elements stored in this array; element deformations were not applied to 

individual nodes, the average displacement of all the nodes was applied on the 

element as a whole. This was achieved and tested in two ways; first, by applying 

the average of the nodal displacements on each node, and second by the net 

nodal displacements. Satisfactory results were obtained from both approaches. 

5.3.4 Variable Stiffness 

In discrete element analysis, it is imperative to provide sufficient normal and 

tangential stiffness to the contacts developed. As discussed in chapter 4, the 

stiffness value depends on the time step used in the analysis. For most of the 

contacts formed between discrete elements, the specified values of normal and 

tangential stiffness were applied. A different format of applying the stiffness was 

tested in the developed method for certain types of contacts established during 

the application of concentrated loads. 

As presented in the example of shallow foundation, large concentrated loads may 

exist on element nodes and the applied values of normal and tangential stiffness 

may be unable to develop sufficient contact force with the elements in contact. 

This may lead to excess penetration of one element into another and result in 

completely losing the contact formed. A very high contact stiffness value would 

defy the discrete element method's rule to select values of contact stiffness based 

on the values of time steps; it therefore could not be provided. Applying a high 

value of contact stiffness also tends to cause numerical instability in terms of 

blowing up elements at other locations. 
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As contacts are established between elements below the elements carrying 

concentrated nodal forces, overlaps between elements increase in order to 

develop the required contact forces. If a fine mesh is employed to capture failure, 

then the amount of overlap might not be able to provide the required contact 

force. Thus values of normal and tangential stiffness need to be modified or 

amplified by a fraction, to provide the required amount of contact forces. 

Two different forms of amplification were tested. The first form of amplification 

of normal and tangential stiffness AFal was applied only to contacts developed 

with elements carrying concentrated forces. A different range of values from 10 to 

100 was applied and the most appropriate value was adopted for the solution 

based on the final configuration and overlaps achieved. The second form of 

amplification of normal and tangential stiffness AFa2 was applied to contacts for 

which the area of contact or overlap exceeded a minimum percentage of the area 

of either of the elements forming the contact. This value based on percentage of 

area overlap can be varied depending on the choice of application and the user. A 

range of values from 1 to 10 was applied and tested for AF,^ 

5.3.5 Time Steps 

The developed code allows the flexibility to define different values of time step to 

finite element and discrete element sections. Based on different approaches and 

analysis settings, finite and discrete element analyses may require different time 

steps. In most cases, the discrete element time step was either the same as the 

finite element time step or about 3 to 10 times greater or smaller. 

5.4 EXAMPLES 

The developed model was used to analyze the bearing capacity of a footing and a 

simple problem of a retaining wall under active and passive earth pressure 

conditions. 
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5.4.1 Bearing Capacity of a Footing 

Christian [4] points out that the bearing capacity formulae available in the 

literature are not exact analytical solutions. Numerous assumptions and 

simplifications are incorporated in their derivations and solutions are verified by 

small-scale model tests where the point of failure is difficult to identify. 

Approximate solutions can also be obtained by limit analysis. 

A bearing capacity problem described by Desai [2] of a circular footing having a 

width of 1.2 m is adopted and solved using the proposed discrete finite element 

approach incorporating the Mohr-Coulomb elasto-plastic constitutive relation. It 

is presented in two stages: first, the results of the continuum analysis are 

compared with the available solutions, second, the failure is permitted allowing 

the elements to split and move. For the first part, two separate meshes are used 

as shown in Figure 5.4; one is a fine mesh with 800 elements, the other is a less 

refined 100-element mesh. Different depth or Y range is selected for both cases, 

as for the discrete element simulation; the finer mesh captures the failure zone 

more effectively and is discussed later. 
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Figure 5.4: (a) 100 element mesh, (b) 800 element mesh 
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Figure 5.5: Load-Displacement curves for a circular footing 
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The pressure applied on the footing is converted to equivalent nodal forces. The 

footing pressures are varied and their corresponding displacements/settlements 

are plotted until an estimate can be made for the bearing capacity of the footing. 

The parameters used in the analysis are presented in Table 5.1. 

PARAMETER 

Cohesion (kPa) 

Angle of Internal Friction 

Normal Stiffness (kPa) 

Tangential Stiffness (kPa) 

Time Step (sec) 

Damping Coefficient (sec-1) 

VALUE 

69 

20 

8000 

8 0 0 

0.0001 

3 

Table 5.1: Parameters used in the analysis of the bearing capacity of a 

footing 

Figure 5.5 shows the predicted load-displacement curves corresponding to the 

associated Mohr-Coulomb plasticity model. Solution plots are as presented in 

Desai [2] using associated and non-associated Mohr-Coulomb criteria. The 

ultimate bearing capacities as estimated from the analytical formulas of Terzhagi, 

Meyerhoff, and Vesic are plotted with vertical lines. The computed collapse loads 

are within the range predicted using other methods. Based on the curves, the 

ultimate/collapse foundation bearing pressure is estimated to be about 1200 kPa. 

A bearing pressure of 1800 kPa, higher than the ultimate bearing capacity, was 

used for discrete element analysis and to induce failure. 

The displacements of surface nodes under different loading conditions are shown 

in Figure 5.6. As expected, certain amount of upheaval was obtained outside the 

limits of the foundation. 
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Figure 5.6: Surface displacements for different loading conditions 

Figure 5.7 shows the yield pattern and its progression under different loading 

conditions. Christian [4] showed that a large zone of yielded material occurred at 

the top of the soil; this was attributed to the analysis method which resulted in a 

development of tension within this zone. However, in this present analysis, 

yielding of material was observed near to the ground surface when the external 

applied foundation pressure was beyond the ultimate bearing capacity of about 

1200 kPa. 

(a) 400 kPa (b) 800 kPa 
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(c) 1200 kPa (d) 1500 kPa 

Figure 5.7: Spread of yielded zone under different loading conditions 

(RED—developed plastic zone; BLUE—no yielding within soil mass) 

Results for the second part of the analysis, i.e., the discrete element analysis, are 

shown in Figure 5.8. In this example, as previously mentioned, the first part of 

the finite element analysis was carried up to a total time of 2 seconds until 

equilibrium was obtained, i.e., 20,000 time steps. 
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(a) Finite element analysis, time 2.0 seconds 
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(b) Discrete element analysis; prior to unloading, time 4.5 seconds; failure and 
split within the elements on the top row can be viewed. 
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(c) Discrete element analysis after unloading, time 19.0 seconds 
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(d) Discrete element analysis, time 34.0 seconds 
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(e) Discrete element analysis, time 49.0 seconds 
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(f) Discrete element analysis, time 56.0 seconds 

Figure 5.8: Simulation extracts at different time steps 

Based on the failure criteria, the elements are allowed to split and form discrete 

elements. The mobility of the elements captured at time durations of 1.4, 3.0, 4.0, 

5.5, 8.0, 10.5, and 13.5 seconds is shown in Figure 5.8. The simulation movie of 

the foundation failure is presented in the attached CD in file Example 5.4.1 

Foundation Failure. The foundation loads are applied until the total displacement 

of 0.5 m (assumed) is obtained under the foundation. In real situations, it is 

expected that as one footing collapses, the structural loads will be distributed 

over neighboring columns and footings. Thus, in order to capture a realistic 

simulation, the foundation loads were removed. The analysis was carried out 

until the elements reached near-equilibrium or were close to stability. 
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Figure 5.9: Stress-strain variation within an element at the edge of a 

footing 

The computed stress states and their corresponding strain values are plotted in 

Figures 5.9 and 5.10 for two elements located at the edge of the footing and under 

the footing at 1.0 m depth, respectively. Curves for total stresses and plastic 

stresses developed within the elements are shown up to about 4 seconds of 

simulation. Since the plastic stress-strain curve is plotted on an abscissa of total 

strain, it is viewed at an offset of about 0.4 percent strain, to account for the 

initial elastic strain. 

Element 4 is located at the edge of the foundation where splitting of the elements 

loaded with foundation loads occurs and unloading follows. The developed 

stresses within element 4 dropped to lower values and equilibrated to a stress 

state of 2.88 kPa (not shown, as this state is reached later), equivalent to the self-

weight of the element. Element 77, at a depth of about 0.8 m below the footing, 
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did not feel the unloading instantly, as gradual unloading of the foundation load 

was applied over a number of time steps. As movement of the element continues, 

it is interpreted that tension might have developed (represented on the plot with 

stress values of zero), followed by development of contacts and stresses within 

the element before it tends to equilibrate toward a stress of about 52.5 kPa (not 

shown). It can be inferred from Figures 5.9 and 5.10 that for the element directly 

below the footing, the plastic stress component of the total stress was more than 

that for the element at the edge of the footing. 
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Figure 5.10: Stress-strain variation within an element at 0.8 m depth 

below a footing 

The setup of the computational scheme is such that plastic stresses and strains 

are computed only if yielding of the element occurs. The check for yielding was 

done after every 100 time steps and the output was generated. If the stress state 

is within the yield surface, the calculations would not be done for the plastic 

stress, thus its value would remain unchanged, and at any stage (as can be 
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inferred from the Figures 5.9 and 5.10), if complete elastic unloading occurs the 

computed plastic stresses would remain unchanged. 

5.4.2 Retaining Wall 

Further investigation of the elasto-plastic model was carried out by solving the 

example of a retaining wall under active and passive earth pressure states. A 520 

element mesh was used in the analysis (Figure 5.11). 

A 10 m high retaining wall supporting sand, a cohesionless material, as the 

backfill, is considered. The parameters adopted for the analysis are: modulus of 

elasticity, 70 MPa; Poisson's ratio, 0.35; unit weight, 16.5 kN/m3; angle of 

internal friction, 300; cohesion, o kPa; time step for finite element computation, 

0.001 seconds; and damping coefficient, 3 per second. 
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Figure 5.11: Mesh comprised of 520 elements used in retaining wall 

analysis 

Based on Rankine's theory, the active earth pressure coefficient was equal to 0.33 

for a 30° angle of internal friction. For a 10 m high retaining wall, the total active 

earth pressure was 275 kN while the passive earth pressure coefficient was 3, with 

a total passive earth pressure of 2475 kN acting behind the wall. 
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Parameters used for discrete element analysis of active and passive earth 

pressures examples are presented in Table 5.2. 

PARAMETER 

Normal Stiffness (kPa) 

Tangential Stiffness (kPa) 

Damping Coefficient, a (sec-1) 

Time step (sec) 

CASE 

ACTIVE EARTH 

PRESSURE 

3 0 0 0 

3 0 0 

3 

0 . 0 0 0 8 

PASSIVE EARTH 

PRESSURE 

3 0 0 0 

3 0 0 

5 

0 . 0 0 0 9 

Table 5.2: Parameters used for discrete element analysis of active and 

passive earth pressures 

The total earth pressures generated behind the retaining wall were computed 

using two different methods. In the first procedure the stress states of the 

elements immediately behind the wall were integrated over the height of the wall 

to obtain the total pressure on the wall. The second method used the element 

nodal forces to obtain the total pressure on the wall. In both procedures, for 

varying amounts of displacements, wall earth pressures were calculated and 

plotted to estimate active and the passive states. Figure 5.12 represents the 

different load displacement cases and convergence toward the values estimated 

from analytical formulas. 

The available literature on earth pressure theories indicates that for the active 

stress state, as the wall moves away from the backfill, a portion of the backfill 

located immediately behind the wall breaks away from the rest of the soil mass. 

This wedge moves downward and outward for active cases and upward and 

inward for passive cases. Under these conditions the lateral earth pressure 

exerted on the wall reaches minimum and maximum values, respectively. Soil 
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failure occurs due to a decrease in lateral stress for active cases and an increase in 

lateral stress for passive cases. The horizontal strain required to reach an active 

state of plastic equilibrium is very small. It is inferred based on tri-axial shear test 

results that a horizontal strain of about 0.5% is required for dense sands. 

However, a much larger horizontal strain of 5% is required to attain a maximum 

value of passive earth pressure and the magnitude of strains required in the field 

may be somewhat different. As presented in Figure 5.12, for the active state a 

horizontal strain of nearly 0.3% was required to develop the maximum amount of 

active earth pressure for a 10 m high retaining wall, and a horizontal strain of 1 to 

1.5% was required to develop the maximum amount of passive earth pressure for 

the same wall. 

2500 

2000 • 

n -

Movement mm 

" 

J 
9- - • * 

sawmH^™™™ 

> 

—#— Stress 

—*— Active 

— « — Passive 

«* 

-150 -100 -50 50 100 150 200 250 

Figure 5.12: Developed pressures for corresponding displacements 

computed from nodal forces and element stresses. 

These two conditions of failure are referred to as the extreme conditions of plastic 

equilibrium. In intermediate states when the soil is not at plastic equilibrium, it is 

said to be in elastic equilibrium. The developed lateral active and passive earth 

pressure coefficients are plotted against the corresponding wall translation in 
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Figure 5.13; the values converge toward the coefficients estimated by the 

conventional Rankine theory. 

The degree of convergence and the accuracy of the method can be judged from 

Figure 5.14 where the horizontal and the vertical stress states behind the 

retaining wall are plotted as displacements are applied to the wall. 

Figure 5.13: Translation of a wall and corresponding earth pressure 

coefficients 

The failure and mobility of elements versus the vertical stress states for different 

configurations for the active earth pressure case are presented in Figure 5.15. 

This figure shows that the distribution of stress states within soil (or among the 

elements) is quite complex. The approach developed here can be used to capture 

the behaviour of soil mobility. For the simulation, it was assumed that the 

retaining wall had collapsed; this allowed the elements behind the retaining wall 

to split and displace. As observed, failure occurred below the toe and extended 

into the base material. The total run time for this example was about 7 hours on 

an Intel Centrino processor at 1.88 GHz. 
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Figure 5.14: Degree of convergence in terms of horizontal and vertical 

stresses behind a retaining wall. 
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Figure 5.15: Failure for active condition—Simulation with 520 

elements 

The variation of total stresses and strains over different time steps for finite 

element analysis and discrete element analysis is shown in Figure 5.16. The plots 

140 



Chapter 5 

represent conditions for element 25 behind the retaining wall and for element 

248 at the ground surface elevation in front of the retaining wall. It can be 

inferred from these plots that elements 25 and 248 develop compressive stresses 

and lose and re-establish contacts. Element 248 shows a strain reversal wherein 

the element tends to deform along a different direction; this might have occurred 

during new contact formation. 

160 ^ ~ ~ ~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

0.00 2.00 4.00 6.00 8.00 10.00 12.00 

Strain Y ( % ) 

Figure 5.16: Stress-strain plots for elements 25 and 248 during 

continuum and discontinuum analyses for the active earth pressure 

case 

The same mesh comprising 520 elements was used for the passive earth pressure 

case. However, the simulation contained another 8 elements in the front acting as 

a retaining wall to which the prescribed displacement of about 0.3 m was applied 

to induce failure. These elements were not removed so that lateral strain to the 

elements representing the backfill is maintained. 

The elements that yielded in the active and passive earth pressure cases are 

shown in Figure 5.17. The computational scheme proceeded in two stages. In the 

first stage, gravity was switched on and deflections, yielded elements, and the 

plastic zone were reset to initial values. The prescribed displacements were then 
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applied to the nodes of the presumed retaining wall. The yielding of the elements 

is recalculated at each Gauss point and the values at the shared nodes are 

computed as a summation of the values from the neighboring Gauss point. The 

elements shown in red and yellow are in yielded states. 
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Figure 5.17: Developed plastic zones and yielded elements 

(RED-Yielded Elements) 
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Figure 5.18 shows the stress-strain plot in the vertical direction for elements 

behind the retaining wall. The computation is plotted only up to 5% strain to 

develop a sense of the variation of stress and strains within the elements. 

Element 33, just behind the wall, undergoes many loading and unloading phases 

during the initial state of analysis while element 105, far behind the wall, 

develops an initial smooth stress state variation. The loading and unloading of 

the elements occurs whenever new contacts are formed and old contacts are lost. 

The dynamic nature of the developed scheme causes oscillations in the stress-

strain values which are computed based on the rotations and translations 

generated. The principal stress and strain values may or may not be coincidental. 

The output presented was generated at an interval of 100 time steps and after the 

check for plasticity had been performed. Stress varies in the form of oscillations 

within the elements over the time steps; when the check for plasticity is 

performed at the chosen interval of time steps, the stress states are modified to 

satisfy the yield states. 

0.00 0.01 0.02 0.03 0.04 0.05 
Vertical Strain 

Figure 5.18: Stress-strain plots during finite and discrete analyses for 

elements 33 and 105 
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The objective of the simulations was to capture the development of stress and 

strain states as the elements split, mobilize, and establish contacts. The 

computational schemes were reliable and could be used for further analysis. 

The mobility of the elements and the vertical stress states are presented in Figure 

5.19. At the end of the finite element analysis, a time step increment of 0.0009 

seconds was used and the analysis was carried out for 800,000 time steps. The 

stress states show highly compressed zones behind the retaining wall close to the 

base. As the elements gather motion over time durations of 139 and 274 seconds, 

few elements appear to be in a state of upheaval. A portion of the soil mass can be 

viewed as falling over the retaining wall for the configuration at 405 seconds. 

This movement of discrete elements is anticipated to continue and cause further 

mobility of the elements. The assembly tends to reach toward a state of 

equilibrium at about 632 seconds in terms of the distribution and motion of 

elements and the variation of stress states. 
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(b) Discrete analysis, time 139 seconds 

(c) Time 274 seconds 
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Figure 5.19: Mobility of the elements; Passive earth pressure 

The total run time for the simulation was 8 hours using an Intel Centrino 1.88 

GHz Processor on a Hewlett Packard Pavilion laptop. 
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5.5 CONCLUDING REMARKS 

The general formulation and material model for the elasto-plastic analysis is 

introduced for the finite-discrete element analysis attempted in this research. A 

routine for the plasticity and yield criteria check is developed and presented for 

the dynamic analysis over numerous time steps. This technique was applied to 

conventional geotechnical applications of foundation bearing capacity and 

retaining wall earth pressure problems. The calculations and simulations were 

further carried out with discrete element analysis and it was shown that stress-

strain computations can be performed to acceptable levels of accuracy and 

convergence by this method. 
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6 CARSINGTON DAM-A CASE 
STUDY 

Lambe [l] in the thirteenth Rankine lecture, specified five different classes of 

prediction: A, B, Bi, C, and Ci. It was also indicated that most of the geotechnical 

literature contained cases and analyses related to Ci predictions and that grade C 

predictions were autopsies. These classes are shown below: 

Grade of 

Prediction 

A 

B 

Bl 

C 

Ci 

Time of Prediction 

Before event 

During event 

During event 

After event 

After event 

Results at Time of 

Prediction 

— 

Not known 

Known 

Not known 

Known 

A slightly different form of defining the gradation was presented by 

Kennard [2], so that various cases could fit perfectly and to avoid the connotation 

that a grade A prediction was perfect and accurate. The classes were in the 

following simpler form: 

Grade of Prediction 

I 

II 

III 

Time of Prediction 

Before the event 

Before the event, so that outcome is known 

After the event, using information made 

available after the event 

Published Carsington Dam predictions fall in the class Ci or grade III predictions. 
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6.1 INTRODUCTION 

Carsington Dam is situated on Scow Brook near the village of Hognaston in 

Derbyshire, England. The earth darn had a design height of 35 m, was 1200 m in 

length, and was comprised of about 2 Mm3 of clay and mudstone fill. The dam 

was managed by the British Regional Water Authority and constructed by 

Shephard Hill & Company Limited from 1981 to 1984, Kennard [2], to increase 

sources of potable water. Failure of the dam occurred on 05 June 1984 before the 

full dam height could be achieved, with a massive slide in the upstream direction. 

The slide was 30 m deep and 500 m long. All installed instruments were read up 

to the moment of collapse. 

The initial report of the investigation, studying the causes of failure, was issued 

by the Severn Trent Water Authority as "Carsington Dam—The Mechanism of 

Failure" [3]. It was concluded that the main cause of failure at the initial slip was 

the foundation yellow clay, which had been weakened by pre-existing shear 

surfaces. This was coupled with a small amount of progressive failure accounting 

for about a 10% reduction in the safety factor. Finite element analyses were 

carried out and documented in the report at two cross-sections to examine and 

quantify the role played by progressive failure in reducing the average 

operational strength below the peak strength of the outer yellow clay and Zone II 

fill. More investigations were later carried out by various authors: Potts [4], Rowe 

[5], Chen [6], and Skempton [7]. As reported by Rowe [5], failure on the north 

side commenced on May 21, 1984 and toe displacements and core strains led to 

the center. Shear planes were developed into the boot of the core and the 

foundation yellow clay reached a critical state, resulting in a failure of the 

upstream slope. 

The failure of Carsington Dam during construction is here analyzed using the 

discrete-finite element method presented in earlier chapters. First, the 

Carsington Dam structure, materials, and the geology of the site will be 
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introduced, followed by the results and discussions of the analysis and a 

comparison with the findings of previous studies. 

6.2 DETAILS OF CARSINGTON DAM 

6.2.1 Geology and Site Description 

As reported by Skempton [3], the Carsington Dam (Figure 6.1) was being 

constructed in a broad valley comprised primarily of mudstone belonging to the 

Namurian Series of the Upper Carboniferous age. The valley was enlarged prior 

to the last glaciation (Devensian) that had removed most of the glacial deposits 

present in the valley leaving weathered mudstone. The higher ground 

surrounding the site was thus covered with boulder clay and glacial gravel, 

remnants of the penultimate glaciation (Wolstonian). 

The mudstones were grey to dark grey or almost black in colour and were weakly 

calcareous and thinly bedded. Unweathered or slightly weathered mudstone was 

found in borings at depths greater than about 10 to 15 m below ground level. At 

shallower depths, the mudstone was brecciated and weathered. Based on the 

changes made to the fabric and constitution by the weathering, four different 

types of mudstone were identified: blocky mudstone, brecciated mudstone, dark 

grey clay, and yellow clay. The material most concerned at this dam site, yellow 

clay, was the end-product of a long weathering process occurring at depths of 

about 1 to 2 m below the ground surface. The clay had relatively high moisture 

content, a high plasticity index, a high clay fraction, and was yellow-brown to 

mottled grey in colour. 

The valley slopes were mantled by the 'head'—a yellow brown mottled clay and 

topsoil containing scattered angular sandstone fragments and rounded quartz 

pebbles. This solifluction deposit of clay moved downhill by the freeze-thaw 

process and created slopes stable for a temperate climate. 
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Figure 6.1: Location plans for the Carsington Dam, Skempton [3] 
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Two different layers were recognized to form within the 'head.' The upper soil 

was termed subsoil and was silty and had a lower plasticity index relative to the 

liquid limit. The lower soil was yellow brown and light grey mottled clay and 

slightly sandy. The Scow Brook flood plain deposit had a maximum thickness of 4 

m and consisted of brown-grey sandy clay with occasional gravel. 

Professor J. G. Anderson's overview included in the Severn Trent Water 

Authority report stated that the oxidation of sulphide bearing mudstones had 

caused weakening and continuous loss of volume. Based on a seismic event 50 

km S. E. of Carsington on May 30, 1984, he estimated that the Carsington Dam 

site lies close to the center of a historically seismic active region. 

6.2.2 Construction of the Carsington Dam 

The Carsington Dam was an earth embankment with a rolled clay core supported 

by shoulders of mudstone. The embankment extended for some 1200 meters and 

had a surface of 1 to 3 upstream and 1 to 2.5 downstream but with slopes 

modified adjacent to crest and landscaping areas. As reported by Skempton [3], 

the longitudinal profile of the dam is shown in Figure 6.2 and the longitudinal 

section of the dam is shown in Figure 6.3. 

The foundation of the dam was excavated shallowly with only the topsoil and 

softer clays being removed from the embankment area. Unfortunately, the yellow 

clay was not removed completely at the critical section corresponding to chainage 

(Ch.) 700 to 750 and constituted a weak layer with pre-sheared materials. At the 

section for the clay core extending upstream like an apron, a key trench was 

excavated 3 m lower than the level of the general foundation. The foundation 

below the key trench was stage grouted with the outer rows relatively shallower 

than the main curtain holes which were sunk up to the same depth as the 

reservoir. In order to control uplift pressures through the foundation, a series of 

relief wells set at 10 m to 30 m spacing and discharging into a toe drain were 

incorporated. 
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Figure 6.2: Plan of the Carsington Dam, Chen 
[8] 
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Figure 6.3: Longitudinal profile of the Carsington Dam, Chen [8] 

Locally available materials were used in the construction of the dam 

embankment. A mixture of yellow clay and dark grey clay was used to construct 

the core and stones greater than 100 mm were removed. The required shear 

strength of the recovered samples was within 50 to 130 kPa with 80% between 60 

to 120 kPa. This required shear strength could be achieved at 95% of Proctor 

optimum density. Mudstone was selected for the inner shell and was placed in 

300 mm thick compacted layers. Relatively unweathered mudstone excavated 

from deeper depths was used in the outer shell and compacted in 300 mm thick 

layers with 6 passes using a 7 tonne grid roller. Stones were imported for the 

construction of drainage layers, beaching, and riprap protection of the upstream 

face. 

After the tender was allocated in May 1981, the following work was completed: 

preliminary work, pressure grouting in the foundation below the key trench, 

driving a drainage tunnel, and excavating for an inlet/outlet tower. Diversion of 

Scow Brook through the diversion tunnel was achieved in July 1982, then 

embankment work continued through the remainder of 1982 up to Elevation 

(Elv.) 184 through Ch. 250 to Ch. 450 and up to Elv. 182 from Ch. 650 to Ch. 

1000. 
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1 

Figure 6.4: Typical cross-section of the Carsington Dam, Chen [8] 
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The construction work continued rapidly until in July 1983. At elevation 190 m 

the piezometer readings in the core fill material indicated values high enough to 

cause concern over the dam's stability. A berm 6 m high and around 240 m long 

was constructed to a maximum elevation of 175.6 m and the contractor was then 

allowed to continue with the embankment construction at a controlled rate. In 

September 1983 earthfill operations were ceased at approximate Elv. 197 m 

between Ch. 650 and Ch. 1150. Additional filling was allowed to continue to full 

height north of Ch. 650 to enable work on the crest. The work continued with the 

remaining earth fill in the center of the dam in early April 1984 at a controlled 

rise of 0.6 m per week. The final section of the Carsington Dam embankment is 

shown in Figure 6.4. 

6.2.3 Material Properties 

6.2.3.1 Yellow Clay 

As mentioned in Section 6.2.1, yellow clay is the end-product of a long weathering 

process occurring at depths of about 1 to 2 m below the ground surface. It is 

comprised of soft-to-firm yellow-brown and light grey mottled clay. Only a small 

difference between these two types of clay was found in a large number of tests. 

Mean values of the index properties reported by Skempton [3] for yellow clay are 

shown in Table 6.1 and are indicative of inorganic clay with a high plasticity and a 

moderate amount of kaolinite in the clay fraction. The shear strength parameters 

of intact yellow clay are shown in Table 6.2. 

Test results shown in Figure 6.5 and reported by Skempton [3], show no 

significant difference between types of test or size of samples. Shear box tests 

performed on yellow clay samples with a polished and stratified slip surface 

placed exactly in the separation plane. The relationship between the mobilized 

strain and the reduction strengths are not well defined for the soil and, as 

reported, the horizontal pre-existing shear surfaces develop peak strength at 
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about 40 to 50 mm displacements (4% to 5% shear strain) and subsequently fail 

to the residual after a small further displacement, as shown in Figure 6.6. 
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Material 

Subsoil 

Yellow Clay 

Dark Grey 

Clay 

Brecciated 

Mudstone 

Blocky 

Mudstone 

Core 

Zone II Fill 

Water 

Content 

W 

— 

4 0 

3 0 

2 0 

15 

33 

14 

Liquid 

Limit 

LL 

69 

75 

63 

43 

44 

69 

45 

Plastic 

Limit 

PL 

37 

3 2 

31 

2 2 

2 3 

31 

2 3 

Plasticity 

Index 

PI 

32 

43 

3 2 

21 

21 

38 

2 2 

Liquidity 

Index 

W-PL/PI 

0 .2 

- 0 . 0 5 

-0 .1 

-0.4 

0 . 0 5 

-0 -3 

Clay 

Fraction 

CF 

3 0 

6 2 

47 

3 2 

33 

56 

33 

Activity 

Ratio 

PI/CF 

1.1 

O.69 

0.68 

0.65 

0.64 

0.68 

0.66 

Specific 

Gravity 

Gs 

— 

2.67 

2.7O 

2-75 

2-75 

2.68 

2-75 

Table 6.1: Index properties of the materials at the Carsington Dam 

site 

6.2.3.2 Foundation 

The foundation was comprised of highly weathered to moderately weathered 

mudstone. No failure conditions were observed within the foundation; material 

parameters other than the deformation modulus are not required for analysis. In 

the finite element analyses carried out by Skempton [3], an equivalent nonlinear 

deformation modulus was adopted by fitting the observed settlements. 

6.2.3.3 Core Material 

The core and the boot were comprised of yellow clay and dark grey clay 

compacted at natural water content. The average values of the material as 

reported by Skempton [3] are presented in Table 6.1. 
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Figure 6.6: Stress-Displacement curves for yellow clay (Carsington 

Dam), Skempton [3] 

Numerous tests conducted during the construction seasons in 1982 and 1983 

showed that on average the material as placed had approximately 2% air voids. 

The end of construction values were controlled largely by the as placed water 

contents and little decrease occurred as a result of consolidation. Thus the results 

of the tests conducted in 1984 yielded air voids of 1% and a unit weight of 18.5 

kN/m3. The undrained shear strength measured on 100 mm undisturbed samples 
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by tri-axial shear tests had an average value of 65 kPa. The shear strength 

parameters of the clay core are given in Table 6.2 and are as shown in Figure 6.7. 

Material 

Yellow Clay 

Foundation 

Core 

Zone I Fill 

Zone II Fill 

Unit Weight 

y (kN/m3) 

2 0 

Peak Shear Strength 

Parameters 

c' (kPa) 

10 

•' 
2 0 

Residual Shear Strength 

Parameters 

cr' (kPa) 

0 

4 * ' 
12 

Strong Base 

2 0 

2 0 

21.5 

15 

10 

15 

21 

2 2 

27 

0 

— 

0 

13 

— 

14-5 

Table 6.2 : Strength properties of materials at the Carsington Dam 

site 

CT1-CT3 

a'„/x 

4 8 

Axial Strain, s„ % 

4 8 

Axial Strain, % 

Figure 6.7: Post peak behaviour of the core (Carsington Dam), 

Skempton [3] 

The 250 mm diameter samples recovered from the boreholes showed numerous 

rutting shears inclined at angles from o° to 6o° to the horizontal throughout the 

core. 
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6.2.3.4 Zone I Fill 

Zone I fill was constituted of mostly brecciated mudstone with some dark grey 

clay, compacted at natural water content. As reported by Skempton [3], only a 

few tests had been conducted on this material. The values of the material 

properties and strengths for this material determined by tri-axial tests on four 

100 mm diameter samples are given in Tables 6.1 and 6.2. As reported by Chen 

[8], the behaviour of Zone I fill is very similar to that of Zone II fill. 

6.2.3.5 Zone II Fill 

Zone II fill was also comprised of mudstone compacted at natural water content; 

the average index properties are presented in Table 6.1. The material consisted of 

lumps of softened mudstone and a matrix of fragments smaller than 5 mm in 

size. When immersed in water for 24 hours the lumps broke down to clay slurry. 

The fill had undergone some weakening compared with the fresh mudstone. This 

effect was partly due to chemical changes and partly to an increase in water 

content as discussed in section 6.2.3.6. 

In situ density tests, and shear box and tri-axial tests with large samples, showed 

that the fill above Elv. 170 had an average water content of 14%. Due to slight 

expansion because of stress relief, the unit weight was 21.5 kN/m3. Below Elv. 

170, three tri-axial samples were found to be fully water saturated and had unit 

weights of 21 kN/m3. Strength parameters from tests conducted on undisturbed 

samples recovered from above Elv. 170 are shown in Table 6.2. Values from tests 

conducted on recompacted fill in the laboratory were c' = 10 kPa and §' = 270 at 

an average initial water content of 17.3%. Zone II samples containing polished 

and stratified slip surfaces had a residual strength value of (j)r' = 14.50, as shown in 

Figure 6.8. 
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Figure 6.8: Zone II fill strength on slip surfaces (Carsington Dam), 

Skempton [3] 

Compaction surfaces were observed in the Zone II fill and extended for several 

meters and were nearly horizontal and planar. Small displacements over these 

surfaces were expected to reduce the strength of the material. 

6.2.3.6 Mudstone Deterioration 

As referred in Section 6.2.1, the Carsington Dam was built on a site primarily 

comprised of four types of mudstone. Exposure to the atmosphere caused the 

mudstone to soften. The reason was attributed to the absorption of water and 

chemical changes resulting in the release of sulphuric acid and the liberation of 

Fe, Ca, and other elements into solution. As a consequence, the mudstone used in 

Zone II fill not only had higher water content than the parent mudstone but may 

also have been chemically different. Observations made in the field—iron stained 

water in borrow pits, generation of COa gas from an acid reaction with the 

limestone drainage blanket, and iron staining at the outer margins of the 

blankets—lent support to this theory. 

Two sets of tests were conducted to verify the geotechnical consequences of the 

mudstone deterioration. The samples were compacted in the laboratory and 
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tested to find the peak parameters. When the plots were compared, the strength 

of the fresh mudstone from Zone I fill exceeded that of Zone II fill by about 1° in 

((>'. The second set of tests consisted of alternate leaching and compaction of the 

mudstone, and the results indicated that full leaching reduced the <()' by about i° 

below the value for the fill and thus about 2° below the value of fresh material. 

Although these tests were regarded as more exploratory than definitive, they led 

to the conclusion that the lowest limit for Zone II materials with water content 

about 20% can be assumed to be C = 15 kPa and </>' = 240. 

Meanwhile, the strength tests conducted on Zone II fill as sampled in July 1984 

were related to the time of failure and incorporated the effects of chemical 

alterations up to that time. 

6.2.4 Description of Failure of the Carsington Dam 

Construction of the 1200 m long earth embankment began in July 1982. The 

embankment was to be 37 m in height. By the end of May 1984, the placing of the 

fill material was almost complete but for the road construction activity which was 

still to be done. Instrument readings recorded a creep of the upstream peg of the 

order of 1.5 mm/day and the performance of the dam was observed to be normal. 

Heavy rainfall amounting to approximately 40 mm fell during the period from 

June 1 to June 3, 1984. This brought earthmoving to a standstill. The wet 

conditions did not allow work to commence until Monday June 4, 1984 when a 

longitudinal crack was reported on the dam crest at 7:30 hrs. The first report 

recorded that the crack in the crest was approximately 50 mm wide between Ch. 

675 and Ch. 740 and extended 50 m on each end but with diminishing width. 

Additional monitoring pegs were installed to measure the rate of widening of this 

crack. At this time, no noticeable differential vertical movement was apparent. 

Monitoring of existing survey pegs, piezometers, and other instruments was 
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intensified to obtain detailed information about the event particularly at the four-

instrumented sections in the dam. 

A sudden increase in movement was observed at the upstream peg, with a creep 

rate as high as about 30 mm/day. Piezometers in the upstream part of the core 

and foundation, between Ch. 600 and Ch. 800, showed marked increases in 

levels. It was clear that the movements were mainly representative of a horizontal 

translation of the core and the upstream shoulder in the upstream direction. An 

extension to the existing upstream berm between Ch. 650 and Ch. 950 

commenced at about 15.40 hours on June 4, along with the weather sealing of the 

crack on the dam crest, as in Figure 6.9. By Monday evening the crack width had 

reached 130 mm maximum but with little vertical differential movement 

Toe of 1984 Berm 

Figure 6.9: Plan of the Carsington Dam during failure, Skempton [3] 

By Tuesday, June 5, 1984, the crack width was increasing at a much greater rate 

(150 mm per hour) with an accompanying drop in level of the upstream side. A 

family of longitudinal cracks developed with intermittent droppings of wedges 
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into the openings. By late afternoon, the crevasse had extended from Ch. 590 to 

Ch. 1050 with a maximum drop of the upstream side in the order of 3 m between 

Ch. 650 m to Ch. 800 m. Cracks had opened up on the upstream slope allowing 

beaching to drop into the voids formed. A second crack 2 m downstream of the 

original crack opened rapidly and the wedge between these cracks collapsed. 

Work on the berm extension continued throughout the day. No instrument 

readings were taken overnight but the piezometers at Ch. 700 showed drops in 

levels whereas at Ch. 850 levels still increased. 

By the end of the day, the creep rate of upstream peg movement reached as high 

as 310 mm/day. A maximum total movement of 620 mm at the most critical 

section Ch. 725 was reported. The pore pressures dropped rapidly as shown in 

Figure 6.10 and as reported by Skempton [3]. 

15 May 10 j U n e 20 30 July 

Figure 6.10: Sudden reduction of pore pressure in the Carsington 

Dam after failure, Skempton [3] 
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Inspections done on Wednesday, June 6, 1984 revealed large movements 

overnight, with a drop of 10 m within the crest. The upstream toe moved 13 m 

laterally and at Ch. 725 a graben 8 m wide by 2 m wide had formed within the 

riprap surface protection. Although movement of the dam virtually stopped on 

June 6, 1984, berm construction continued for few days. A channel was formed 

through the berm to release water trapped in the upstream toe drain. Piezometer 

readings at sections within the core and upstream zones were recorded and 

showed a considerable fall in pressure by about 10 m. The upstream part of the 

dam before and after failure is illustrated in Figure 6.11 for Ch. 725 (Skempton 

[3]). 

Ch. 725 

c 
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Figure 6.11: Investigative section at Ch. 725 of the Carsington Dam, 

Skempton [3] 
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The position and nature of the slip surface were explored by means of trial pits, 

shafts excavated through the upstream shoulder of dam, and by large diameter 

borings through the core. Part of the main slip surface was highly polished and 

striated, passing through the yellow clay into the boot in the most critical section. 

6.2.5 Material Models 

The failure of the upstream side of the Carsington Dam in Derbyshire, England 

just prior to completion in 1984 was reviewed, analyzed, and examined by 

Skempton [3], Potts [4], Chen [6, 8], and Rowe [5]. Finite element analyses were 

performed to capture the progressive failure assuming strain-softening properties 

for non-uniformly loaded brittle soils. 

Skempton [3], used limit equilibrium analyses to calculate the factor of safety 

(FOS) against failure on a potential slip surface, as: 

In general, c' and <|>' were assigned parameters less than the peak strength of the 

intact material due to the presence of pre-existing shears and nonuniform strains 

acting on the strain softening materials. Three different types of FOS were 

computed based on intact peak strength, peak strength with pre-existing shears 

and with strength reduced by shears, and progressive failure. Analysis of the 

section at Ch. 725 yielded that the three FOS thus established were 1.41,1.21, and 

1.0, respectively, reflecting a reduction of 14% and 29% of the FOS. Thus, pre­

existing shears and progressive failure contribute in equal parts to the total 

reduction of 29%. 

Finite element analyses were carried out by Skempton [3] and Potts [4] to 

examine and quantify the role of progressive failure in reducing the average 
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operational strength below the peak strength of the outer part of the failure 

through the yellow clay and the Zone II fill. The failure surface passed through 

the core and the top of the core extension and through the yellow clay of the 

foundation to the toe. The Imperial College finite element program (ICFEP) was 

used by both authors. The program was developed at Imperial College for 

geotechnical analysis of soil structures and soil structure interactions. Skempton 

[3] used nonlinear elastic and strain hardening/softening Mohr-Coulomb models 

for analysis (Figure 6.12) while Potts [4] adopted an elasto-plastic soil model with 

pre-failure and unloading-reloading behaviour modeled by isotropic elastic 

theory, and failure and post-failure strain softening were modeled by plasticity 

using Mohr-Coulomb failure criteria (equation 6.2) as shown in Figure 6.12. 

F(cr) = J/(p' + a)G(9) - 1 6.2 

where, 

J2 = [a\ -a'2f +(<r'2 -a'3f +fa -a\f]/6 6.3 

p' = (cr\+<J2+Or'3)/3 6.4 

G(9) = sin </>' I (cos 9 + sin 9 sin f IS) 6.5 

9 = tan"1 [(2((a'2 -<T'Z)/(<T\ - ^ ) ) - l ) / V 3 J 6.6 

a = c'/sin^' 6.7 

The program SAGE developed at the University of Alberta was used by Chen [8], 

for two dimensional analysis of sections of the Carsington Dam. The linear elastic 

modulus before the peak and associated flow rules were adopted for all nonlinear 

models in trial analysis. Strength reduction due to the geological pre-shears and 

construction defects was taken into account in determining the strength 
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parameters. For the core material, the von-Mises yield criterion was adopted with 

a hyperbolic softening model, while for yellow clay and Zones I and II materials, a 

brittle elasto-plastic model with Mohr-Coulomb failure criteria and associated 

flow rules was employed. 

Figure 6.12: Yield criteria and definition of terms (Carsington Dam), 

Potts [4] 

The material model adopted in the present study is based on Mohr-Coulomb 

yield criteria with non-associated flow rule and has been discussed in chapter 5. 

The material parameters considered for the present analysis are summarized in 

Table 6.3 and are near the representative values adopted by Skempton [3] for 

analysis of failure modeling post peak loss of strength based on plastic undrained 

states. As specified by Skempton [3], no mathematical model for soil behaviour 

using a single set of deformation parameters can deal realistically with all types of 

loading. Parameters can be derived from tests or field observations which match 

as far as possible the type of loading being modeled. 

In the present work, an undrained total stress analysis was carried out and 

compared with the effective stress analysis presented in Skempton [3]. Since the 

core was partly saturated, it was expected there would be some undrained 
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contraction and gain in the undrained strength with increasing average stress. At 

the lower part of the core and boot, the average total stress would produce near 

saturation and <|> = o behaviour. Perfect plasticity was assumed at and after 

failure, with a zero dilation angle and associated flow rule for Mohr-Coulomb's 

criteria. This means that no volume change due to shear occurs after undrained 

failure. 

MATERIAL 

PROPERTY 

Cohesion 
(kPa) 

Angle of 
Internal 
Friction 
Young's 
Modulus 

(kPa) 
Poisson's 

Ratio 
Density 
(kN/ms) 

FOUNDATION 

STRONG 

BASE 

125,000 

0-35 

20 .00 

YELLOW 

CLAY 

15 

0 

3 ,000 

0.42 

19.50 

CORE 

52 

0 

2,500 

0-43 

18.50 

ZONE I 

13-5 

24 

6 0 , 0 0 0 

O.38 

21.00 

ZONE II 

13-5 

24 

6 0 , 0 0 0 

O.38 

21.00 

Table 6.3: Material parameters used in analysis of the Carsington 

Dam failure 

The real soil behaviour for conditions related to stress rotations during loading 

and stiff boundary conditions can be better predicted using soil models with 

plasticity. 

6.2.6 Mesh used in Analysis of the Carsington Dam Failure 

The mesh used in the present analysis is shown in Figure 6.13. The total number 

of elements in the mesh used was 1061, with 441 elements in the foundation, 101 

elements in Zone I, 319 elements in Zone II, 18 elements in the yellow clay, and 

182 elements in the clay core. A finer mesh was applied to the upstream Zone II 
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clay core and yellow clay layers. As discussed in chapter 3, the defined mesh has 

to be regular and symmetric. Each element should have four nodes; if an element 

is in the middle, each of the element's nodes should be connected to nodes of 

exactly three other elements; otherwise the mesh becomes irregular and the 

routines developed will result in incorrect displacements and velocity constraints. 

If refinement is carried out in one zone, a corresponding refinement is needed in 

other zones within the same range of coordinates. The drawback of this technique 

is that a refined mesh needs to be defined for areas where a coarser mesh would 

suffice. 

Figure 6.13: Mesh used in the analysis of the Carsington Dam failure, 

chainage 725. 

6.3 RESULTS AND DISCUSSION 

Results of the present analysis were compared in two parts to corresponding 

analyses in the available literature. In the first part outputs of finite element 

analysis are discussed; in the second part the discussion is extended to results 

obtained from the discrete finite element method developed in this research 

program. 
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As presented by Skempton and Vaughan [7], the initial slip occurred through the 

core which previously had contemporary shear surfaces due to rutting, and 

through the yellow clay which contained solifluction shears. During design, the 

factor of safety (FOS) was estimated at about 1.4 which was further reduced to 1.2 

to allow for shear. The presence of brittle materials and the development of 

progressive failure further reduced the FOS to 1.0. The contribution of 

progressive failure to a reduction in the FOS varied from 21% to 26%. Finite 

element analyses and limit equilibrium analyses have indicated that the FOS just 

before collapse was about 1.1. 

Previously reported analyses showed that failure occurred when the dam reached 

an elevation 0.5 m lower than the final height. The present analysis was carried 

out at the maximum design height of the Carsington Dam. The mesh used for the 

analysis is based on a section at chainage 725. The mesh is described in section 

6.2.6 and consisted of 4-node quadrilateral elements with independent nodes. 

6.3.1 Finite Element Analysis of the Carsington Dam 

6.3.1.1 Staged Construction 

An advantage of the developed dynamic solution scheme for finite element 

analysis is the ease with which elements can be added and removed. Analyses 

related to excavations and construction of embankments can be sequentially 

modeled and solved. This benefit can be achieved because each element of the 

mesh is prescribed independent matrices for various components in the 

computational cycles. The effects and interactions between elements as originally 

presented are based on the connectivity and restraints of one element with 

another. For example, the matrices of constitutive relations, displacement 

constraints, strains, and stresses are stored individually for each element and are 

at no point assembled as global matrices. 
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The Carsington Dam simulation was carried out in stages to simulate the staged 

construction of the dam. A total of six construction stages were used. For the first 

stage, the elements of the foundation were initialized, the gravity switched on, 

and the stress computations preformed until equilibrium was reached. The 

coordinates of the mesh were then reset to the initial coordinates. The 

computation for the first stage elements comprised 30,000 time steps of 0.0001 

seconds. For each subsequent stage, the simulation was carried out for about 

10,000 time steps and the equilibrium was checked within the duration of the 

time defined before elements for the next stage were added. 

The results of the vertical stresses developed after the first, third, and fifth stages 

are shown in Figure 6.14. Due to the intensity of the mesh used in the analysis, 

the mesh is not shown in the figures below. As reported by Chen [8], there is little 

difference between the results of the effective and total stress analyses because 

the vertical load is the same for both cases. 

400 

350 

300 

250 

200 

150 

I 
1 

: 

_ 

-

I»" ; 4* I M H W W . * A ^ V I W t . 

1 1 1 1 1 1 1 . 1 1 , 1 

l 

l 
i -

z 

StTCHY 

1TSD 

1SDD 

12SD 

1DDD 

ISO 

300 
am 
1SD 

• SO 

• 0 

1 i 

100 200 300 

(a) First stage, foundation elements 

Page 174 



Chapter 6 

430 

350 

300 

250 

200 

150 

--
• 

-
\ 
_ 
. 
-

i
l

l
!

. 

1 1 1 1 L-.—1 1 • • 1 1 L—.1 L 

m 
_ 
— 
~~ 
— 
_ 
_ i 

— 1 

S t K J j Y 

1TSD 

1SDD 

12SD 

ima 
ISO 

sm 
i m 

2W 

15D 

i m 

i • 

100 200 

X 
300 

(b) Third stage elements added 

400 

350 

300 

250 

200 

150 

. 
• 

. 
-

~ 
: 

~ - • • • • • * » • , . _ 

«*** •* * • « * « -

i i . . . i— J 1 1 1 i .j L i _i 1— i 

StEMY 

•>£ 

w> 

1TSD 

1SDD 

12SD 

UED 

TSD 

sm 
i m 
3m 
2m 
150 

i m 
1 so 
• D 

' ' * " * • * » 

1 • 

100 200 300 

(c) Fifth stage elements added 

Figure 6.14: Vertical stress contours as different stages of elements 

are added to the Carsington Dam 
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The computed stress states matches with the values computed and are 

presented for elevations of 160 and 190 m. In view of the results from various 

runs, it is concluded that reasonable values of parameters will yield similar 

distributions of vertical displacements and stresses. Variation of the stress 

states in the horizontal and the vertical directions at the end of the loading 

stage or when all the elements are considered is shown in Figure 6.15. 
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(c) Developed plastic zones within the Carsington Dam 

[RED—plastic zones; BLUE—elastic zones] 

Figure 6.15: Contour plots of the Carsington Dam at the end of 

construction 

The vertical stress plot at the end of the loading stage within the dam is shown in 

Figure 6.15(b). An arching action within Zone I and Zone II can be observed due 

to a higher elastic modulus. A similar observation was made by Chen [8] and the 

use of a nonlinear elastic modulus compatible with the observed settlements was 

recommended. In the current analysis even with the use of an elasto-plastic 

constitutive relation, similar behaviour was observed. Figure 6.15(c) shows the 

yielded elements when the last stage of elements was added. The elements in the 

vicinity of and in the boot of the clay core and all the elements comprising the 

yellow clay soil show yielding. At the top of the dam and along Zone I and Zone II 

side slopes, yielding or failure of the material can be seen. The top of the dam and 

elements closer to the surface might be developing tensile stresses or tension 
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cracks. In the present analysis the material in the model has been defined as a no-

tension material, and thus will tend to show yielding. 

6.3.1.2 Displacement Profiles 

Figure 6.16: Displacement vectors over the upstream slope 

(Carsington Dam) 

Rowe [5] reported that the first visual evidence of impending collapse was the 

formation of tension cracks at Ch. 707 m on June 4,1984; this was followed by a 

total collapse of the dam across the valley by June 6,1984. The toe displacements 

and core strains led to the center, dragging the side with extensive shear planes 

and with failure occurring within the boot and the foundation yellow clay. 

The vectors of total displacement just prior to failure are shown in Figure 6.16. As 

presented by Skempton [3] and also visualized in this figure, there is a significant 

component of settlement relative to the horizontal movement. The core shows 

slightly more settlement than the shoulders. The horizontal movement is slightly 

toward the upstream and a tilt was observed at the crest of the dam during the 

1983-84 winter season. 

As for the vertical displacement distribution within the main dam just before 

failure, the calculated values compare well with those computed by models 
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reported by Chen [8]. The vertical displacement profile is shown in Figure 6.17. 

Even with the use of models for the core and shell different from those applied by 

other authors, the foundation material seems to play a significant part in 

controlling the settlements as it tends to provide a vertical constraint to the dam 

materials. As shown in Table 6.3, a high elastic modulus of 125,000 kPa is used 

for the foundation material. 

200 

190 

180 

170 

160 

150 

Elevation (m) 

Section at Chainage 725 

Figure 6.17: Vertical displacements (in meters) (Carsington Dam) 

As there are no constraints on the horizontal directions, as discussed above for 

the vertical direction, the results of horizontal displacements just before dam 

failure show large differences among the various models studied so far. 
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Figure 6.18: Horizontal displacements (in meters) (Carsington Dam) 
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There are difficulties in predicting deformation quantities. As presented in Figure 

6.18, larger horizontal deformations are initiated along the yellow clay layer (not 

shown) which reflects a high shear deformation of this material. The observed 

horizontal deflections within the core at the base are in the range of 200 to 275 

mm. This analysis revealed horizontal deflections of about 150 mm up to the 

construction elevation of 198 m and within the range of 400 to 450 mm for the 

construction height of 200.5 rn. As reported by the analysis carried out by Chen 

[8], horizontal deflections were 100 to 150 mm. The horizontal displacement of 

node A in the core in comparison to the height of the construction of Carsington 

Dam is presented in Figure 6.19 and it is comparable with values reported by 

Chen [8] using coarse, dense, and very dense meshes. Distribution patterns 

revealed similar variations but the quantitative values were different. The 

different results can be attributed to differences in analysis types and models 

used for the materials. 
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Figure 6.20: Comparison of vertical strains in the core (Carsington 
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Figure 6.20 shows the vertical strains measured in the field at settlement gauge 

BSi and the strains predicted by various authors. Reasonable agreement is 

achieved between observed and predicted strains. The core settlements and the 

strains are primarily controlled by the strength of the core. The predicted values 

are higher than observed values indicating that the predicted spread of the core 

due to shear is more than what is observed. Thus, the vertical strain distribution 

is acceptable in the average sense of the analysis. 

As quoted by Chen [8], finite element analysis produces a relative error of at least 

50% to 100%, even in the average sense. Analytical predictions of horizontal and 

vertical deformations will improve with the advance of field investigations and 

laboratory techniques. Currently, the predicted deformation patterns reflect the 

field conditions with reasonable input information. This instills confidence in the 

use of these methods for back analyzing failure mechanisms. 

6.3.2 Discrete Finite Element Analysis of the Carsington Dam 

In his thesis, Chen [8] discussed the feasibility of formulating problems in 

plasticity and by use of shear band and localization. In dam engineering the main 

concern is with the working performance of the dam and predictions about the 

stability of the dam. Prior to the initiation of failure of the Carsington Dam, creep 

rates of less than 1.5 mm per day were observed resulting in quasi-static loading 

conditions. Thus, the process before failure can be formulated within the 

framework of plasticity with assumptions of small strain and small deformation. 

At critical state, significant increase in creep rates results in progressive failure 

due to disturbances in highly strained areas. The failure proceeds to a new 

equilibrium state that involves large deformations, a total break down of 

materials, and motion of separated wedges. The discussion in Chen [8] is 

extended by the present approach in which a post failure state is achieved, i.e., 

the post failure behaviour of the dam is modeled. 
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Discrete element analysis of the Carsington Dam failure was carried out with a 

time step of o.ooi seconds and a damping coefficient of 3. The simulation was 

computed up to 4.0 million time steps over 167 hours (~ 7 days). Failure was 

initiated or the elements were allowed to split up based on a specified strength 

criterion. As shown in Figure 6.21(a), failure begins at the top of the dam or 

within the yellow clay layer. The crack that develops on the top of the dam 

extends downward and causes the elements to further split and start displacing. 

Positions of the elements at time intervals of 500,1000,1500, 2000, 2500,3000, 

3500, and 4000 seconds, along with the vertical stress states are shown in Figure 

6.21. As represented by the white spaces in the figures, the cracks can be 

visualized as growing and causing failure of the upstream slope. 

In Figure 6.21(c) a large failure surface has developed along the interface of Zone 

I and the clay core. The break up of elements occurs and the slope failure takes 

place. This failure further progresses toward the downstream slope and compares 

reasonably well with the final attained configuration of the failed dam section in 

Figure 6.11. 

A simulation movie of the Carsington Dam failure is presented in the attached CD 

as Example 6.1 Carsington Dam.avi. 

One observes that the method of analysis developed in this thesis is capable of 

modelling the complex behaviour of a failed soil mass by coupling the two 

independent techniques of finite element and discrete element methods. 
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Figure 6.21: Stages of failure of the Carsington Dam 
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6.4 CONCLUDING REMARKS 

The computer model developed for analyzing the failure of soil mass was tested in 

this chapter by back analyzing the case history of the Carsington Dam failure. The 

method combines the capabilities of the versatile finite element method and the 

flexible discrete element method to model interactions among multiple bodies. 

Several authors have shown that the failure of the Carsington Dam was promoted 

by strain softening, starting within the highly strained boot. This behaviour is 

captured by allowing the elements to split based on a strength criterion, and 

displace, resulting in the development of failure surfaces. The pattern resulting 

from the present analysis can be considered a good approximation to that 

observed in the field. 
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CONCLUSIONS 

7.1 SUMMARY AND CONCLUDING REMARKS 

The objective of this research is to realistically model the behaviour of geological 

materials and their failure states. The work here couples the versatile finite 

element method with the discrete element method to model the hybrid 

continuum/discontinuum properties of geotechnical structures such as soil and 

rock in order to predict and control their behavior. Steps taken to develop a 

'discrete finite element method' were: (1) an equivalent finite element solution 

was generated using discrete individual elements with separate nodes, (2) 

appropriate time steps and damping criteria were selected, (3) suitable nodal 

restraints were determined, (4) different aspects of the discrete element 

formulation were modeled, and (5) an elasto-plastic constitutive model was 

validated. The developed method was tested for practical use by simulating a 

classic geo-engineering problem, the Carsington Dam failure. The conclusions 

and implications of this research are presented in this section. It is expected that 

the developed discrete finite element method will be useful in solving a broad 

range of geo-material problems. 

In Chapter 3, a two-dimensional new finite element method is proposed for 

analyzing geotechnical structure. In this method, the problem is represented by 

individual 2D quadrilateral discrete elements with eight independent degrees of 

freedom. Different types of restraints were explored to maintain effective 

coordination between the elements at shared nodes. The solution scheme 

developed is based on the solution of the equation of motion derived from 

Newton's second law. This solution scheme enabled the concepts of discrete 

element analysis to be incorporated at a later stage. Stress distributions within a 

uniformly loaded soil mass, a slope, and a foundation have been examined. The 
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analysis demonstrates the capability and effectiveness of the usage of restrained 

discrete elements in capturing the results for a continuum. 

The discrete element method is discussed in Chapter 4. After a review of available 

discrete element approaches, the relevant and most applicable concepts are 

included in the presently developed method. This includes the concept of using a 

grid for contact detection, computation of contact forces based on overlap areas, 

and the direction of application of these contact forces satisfying specified 

criteria. Models of these contacts are discussed and verified. New schemes for the 

creation of discrete elements from the finite element assembly are developed in 

order to create a discontinuum from a specified continuum. These are based on 

normal and tangential stress states that exist at the boundaries of the elements. 

Computational aspects of the method related to the numerical stability and data 

structure have been discussed. Simulations based on the proposed method 

predict real world behavior reasonably well. 

The proposed method combines the capabilities of the finite element method to 

model a continuum and the flexibility of the discrete element method to model 

interactions in an array of discrete elements which may undergo large 

displacements, rotations, and strains. Contact stresses between elements are 

transformed into equivalent nodal forces and are incorporated in the net force for 

each element. Suitable stress-strain measures are included to determine realistic 

stress and strain values. The model of deformable elements, the contact model, 

and the stress states were verified. Examples illustrating the application of the 

method for studying geotechnical problems related to large movements are 

presented. 

In Chapter 5, a suitable elasto-plastic constitutive relation representative of 

geotechnical behaviour was researched. An elastic perfectly-plastic Mohr-

Coulomb criterion based on a flow rule accounting for representative soil 

behaviour was selected. In accordance with the dynamic solution scheme, the 

duration/time intervals when yield criteria need to be checked were identified. A 
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subroutine was developed to identify the elements in the yielding state and to 

preserve the aspect ratio of each element for numerical stability, without 

interfering with the amount of deformation/strains accumulated. The developed 

method was applied to conventional geotechnical problems related to the 

estimation of bearing capacity of soil under a footing and the amount of earth 

pressure developed behind a retaining wall under active and passive states. The 

analyses were carried out beyond failure, further than many common solutions 

for these problems, to examine post failure behaviour. 

At the design stage, it is important that the conditions of small strain and 

deformation are satisfied. However, when failure occurs and the magnitude of the 

impact of the failure is to be identified, the method should present sufficient 

insight into the sequence of events occurring over time. Even with the use of a 

simple soil behavioural model, it was possible to get a preferred slip plane based 

on the splitting of the elements. However in order to capture the post failure 

plane, a suitably refined mesh needs to be applied and better element shapes 

need to be selected. 

A case history of the Carsington Dam failure that occurred in 1984 was back 

analyzed to capture the post failure deformations and the suitability of the 

developed method. 

The discrete finite element method developed here is robust in modeling post 

failure deformation, can use continuum material properties, and can incorporate 

realistic in situ stress conditions. It has the ability to calculate stresses and strains 

that are difficult to determine using discrete element techniques. 

7.2 SUGGESTIONS FOR FURTHER RESEARCH 

The computer code developed here is based on two-dimensional quadrilateral 

elements. The code could be modified to include a variety of element shapes, for 

instance, triangular elements or elements with more degrees of freedom. A mesh 
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with fewer numbers of elements would be suitable for the analysis of triangular 

elements or elements with higher degrees of freedom. The developed code could 

be further modified to a three dimensional state, but it is anticipated that due to 

the imbedded discrete element routines related to contact formations and 

detections, a realistic analysis would be very demanding on computer time and 

memory. 

Routines based on the presence and effects of groundwater can be included to 

perform effective stress analysis. The effects of groundwater would have to be 

modeled to capture the situation anticipated as failure occurs and the elements 

displace and produce corresponding changes to the hydrostatic stress states. It 

can be inferred from field observations that as failure occurs the hydrostatic 

levels in the soil tend to drop significantly. Is this the real condition for 

simulation? Or as elements collide are there local increases in pore pressures in 

individual elements? How should the corresponding values of stress states be 

determined? How would this affect the stability and the progression of stresses 

within the elements? These are some of the issues that will have to be addressed 

when water is included in the analysis. 

For each element in the presented model the computations are based on 

independent matrices for mass, constitutive relations, etc. The developed code 

can include different materials with variable properties. Problems related to soil 

structure and particle interactions could be modeled using transition zones for 

different properties in order to avoid numerical instability. Numerous 

applications related to the construction of pile walls, retaining walls, anchors, soil 

nails, reinforcements, and others can then be simulated with ease. 

In order to allow for the fragmentation through the elements, each element can 

be further divided into number of sub-elements. As the splitting occurs through 

the element, the number of elements and other related matrices of the elements 

can be updated. This would help in capturing more smooth failure planes for any 

geotechnical geometry and problem. 

Page 192 



Appendix A 

APPENDIX A 
INTERSECTION POINTS 

The steps involved in the calculations of intersection points are: 

i. The node forming the contact with the home element is recalled from the 

array it is stored in, i.e., CNODE [ ]. 

ii. The search for intersection points is carried out using the contacting node 

N4 and its two adjacent nodes, 

iii. The first intersection point is computed with the line joining the contact 

node N4 and one of its adjacent nodes, preferably the one in the 

counterclockwise direction, 

iv. A search is made for the intersection point between the contacting side 

and all the sides of the home element, moving in a counterclockwise 

direction and storing the intersection points calculated, 

v. The process is continued with the next adjacent node of the contacting 

node, the one in the clockwise direction. A search is made for an 

intersection with the line joining this adjacent node and a contacting node 

on all the sides of the home element in a counterclockwise direction, 

vi. If there is more than one contacting node of the near element, then the 

search process will comprise the second contacting node and the adjacent 

node in a clockwise direction, 

vii. All intersection points and contacting nodes are stored in an array IP [ ] to 

be recalled later to find the areas of overlap between the home and near 

elements. 

Intersection points are computed using the following algorithm adopted from the 

Internet site http://astronomy.swin.edu.au/~pbourke/geometry/iineline2d/. 

retrieved 15 March 2004: 
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Figure A-i: Illustration of the calculation of the intersection point 

between two lines 

A line can be described by equation A-i: 

Pa = />+«„(*>-/>) A i 

Pb = P3+ub(PA-P3) 

where, 

Pa = X (or Y) coordinate of line A, 

Pb = X (or Y) coordinate of line B, 

Pi = X (or Y) coordinate of any point i on line A or B, and 

ua or Ub = two unknowns for these equations. 

Solving for the intersection point where Pa = Pb, these two unknowns can be 

computed. 

Xt+UaiXz-Xj = X3+ub(X,-X3) A-2 

Yl+ua{Y2-Yx) = Y3+ub{Y4-Y3) A-3 

Solving simultaneous equations A-2 and A-3 for ua and Ub, gives: 

u _{XA-X3lY{-Y3)-{YA-Y3lXx-X3) 
a (74-F3XX2-X1)-(X4-X3Xr2-^) 
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u (x2-x1X^-r3)-(y2-^X^-^) A . 
b (74-73XX2-X1)-(X4-X3Xr2-i;) 

The values of ua and Ub obtained from equations A-4 and A-5 are used to find the 

coordinates of the intersection point: 

X = X1+ua{X2-Xl) A-6 

Y = Y1+ua(Y2-Y1) A-7 

Before calculating the intersection points using equations A-6 and A-7, the lines 

are checked to see whether they intersect, as these lines can be parallel or 

coincident. If the denominators for the expressions of uaand Ub are zero, the lines 

are parallel; if the numerator and the denominator of these expressions are both 

zero, the lines are coincident. 

Another check is made to find out whether the intersection point lies within the 

limit range of coordinates for these two lines. If the values of ua and Ub lie within 

o and 1, the lines intersect within the range of their respective coordinates; 

otherwise, the intersection point lies outside the limits of these lines. 

The coordinates of the intersection point are computed if all the above checks are 

satisfied. 

This is followed by contact resolution in which the overlapping areas are 

computed from the available intersection points. Corresponding normal contact 

forces are generated and applied on the elements' nodes along with already acting 

internal and external forces. 
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APPENDIX B 
AREAS OF OVERLAP 

The calculations for the normal force are done from the area of overlap or area of 

intersection between the home and the near polygons. In traditional discrete 

element analysis the contact forces are calculated from the depth of penetration 

of one element into another, Barbosa [1]. In Figure B-i it can be seen that for the 

same penetration, there can be different areas of overlap, thus one can have 

different normal contact forces for the same amount of penetration, Williams [2]. 

It was pointed out in Munjiza [3] that if the contact kinematics is based on depth 

of penetration, then energy imbalance can be produced. The node of the near 

element can enter from one side of the home element and exit at the other side of 

the home element. Depending on the amount of the depth of penetration relative 

to each side, spurious energy can develop. The potential energy possessed is 

proportional to: 

Potential Energy oc 82 B-i 

where 8 is the depth of penetration. This potential energy is in fact the kinetic 

energy that is transformed to potential energy on contact. Thus, as the node 

enters the home element from one side it has a penetration of 8a and the kinetic 

energy transformed to potential energy is proportional to: 

Kinetic Energy = Potential Energy oc 8a
2 B-2 

As the contact is lost through the other side of the home element, the total 

amount of kinetic energy recovered is proportional to: 

Kinetic Energy oc 8b2 B-3 

Page 196 



Appendix B 

which is greater than the initial total energy of the system, thus spurious energy is 

generated within the contact kinematics. Based on the area of overlap, the normal 

contact force will be able to overcome this problem. 

Figure B-i: Comparison of area of overlap and depth of penetration 

In this formulation the contact force calculations are based on the area of overlap 

between elements in contact. 

After computing the intersection points, the areas of overlap are calculated using 

three points at a time, i.e., by forming a triangle. If the area of overlap is in the 

shape of a polygon with more than three sides, it can be subdivided into triangles 

and the areas of individual triangles are added together to provide the cumulative 

area of the polygon. From the three intersection points for a given triangle, the 

area of overlap can be calculated using the equation: 

Area of Triangle = 0.5*(XlY2+X2Y3+X3Yl -X1Y3-X2Yl-X3Y2) B-4 
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APPENDIX C 
RESOLVING CONTACT FORCES IN THE GLOBAL 

COORDINATE SYSTEM 

The forces developed between elements forming contacts are initially computed 

in the local coordinate system. The local coordinate system is defined as shown in 

Figure C-i, with the local X axis t parallel to the line joining the intersection 

points (shown by crosses) and the local Y coordinate n perpendicular to the local 

X axis in a counter-clockwise direction pointing toward the near element. 

*». 

Home 

Near 

t 

(a) 3 Intersection Points (b) 4 Intersection Points 

Figure C-i: Definition of local coordinate system 

Based on directions of the contact between the home and near elements, the 

angles used to calculate the contact forces are computed as described below. The 

angles used in the computations are: 

a =angle between the local and global X axis, 

y = angle between the local and global Y axis, measured in a counter 
clockwise direction from the global Y axis. 
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CASE A; Contact with home element as near element penetrates from 
above. 

**X 

Home 

Figure C-2: Near element approaching from top right direction 

The value of angle a is calculated as the slope of the line joining intersection 

points 2 and 3 and will be negative for this case. The intersection points are 

calculated in a counter clockwise sense. 

a = tm~ 
YY[2] - YY[3] 

C-i 

The angle y will be given by (90 - a). Using the obtained value of y, the normal 

contact force acting between the home and near elements can be resolved into the 

global coordinate system. The resolved force components will be: 

Fr = Fnr C-2 

F = F n 
y n y 

C-3 

where nx = cos y and ny = sin y are the direction functions. However, for the near 

element the direction of the forces is reversed and applied at the respective 

node(s). 
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CASE B: Contact of home element with near element approaching 

from bottom. 

Home 

Near 

Figure C-3: Near element approaching from bottom left side 

The value of angle a is calculated as the slope of the line joining intersection 

points 2 and 3 and will be negative for this case. The angle y will be given by (270 

- a ) . 

CASE C; Contact with home element and near element from top but 

with home element on right. 

Figure C-4: Near element approaching from top left direction 
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The value of angle a is calculated as the slope of the line joining intersection 

points 2 and 3, with a being positive. The angle y is given by (90 - a) but the 

normal to the near element points at an angle of (270 - a). If the value is assigned 

as (90 - a), the direction of normal contact force on the home element remains 

the same; if (270 - a) is assigned, the direction for the home element needs to be 

reversed. In the Visual C++ code, keeping the logic based on the X coordinates of 

the intersection points, the angle is assigned a value of (90 - a). 

CASE D; Contact with home element and near element from bottom 

but with home element on left. 

The value of angle a is calculated as the slope of the line joining intersection 

points 2 and 3, with a being positive. The angle y will be given by (270 - a) but 

the normal to the near element points at an angle of (90 - a). If the value is 

assigned as (270 - a), the direction of normal contact force on the home element 

remains the same; if (90 - a) is assigned, the direction for the home element 

needs to be reversed. In the code, keeping the logic based on the X coordinates of 

the intersection points, the angle is assigned a value of (270 - a). 

Home 

Figure C-5: Near element approaching from bottom right direction 
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CASES E, F, G, H; Special cases for horizontal and vertical 

intersection planes. 

For special cases the definition of the angle y is slightly modified. It is computed 

and defined based on the direction of the normal contact force required to act on 

the home and near elements. For these cases the angle y is measured with respect 

to the positive global X axis in a counter clockwise direction. 

CASE: E (XI(2) > XI(3)) 

-£ \a 

" n 

CASE: F (XI(2) < XI(3)) 

*• n 

a = -90 
y=180 

a = -90 
y = 360 

CASE: G (YI(2) < YI(3)) CASE: H (YI(2) > YI(3)) 

Figure C-6: Special cases for the calculation of angle y 
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CASES I, J: Definitions for four intersection points. 

If there are 4 intersection points, the local axis will be defined along intersection 

point 2 and 4 (case I) and between intersection points 3 and 4 (case J). 

Home 

Case J: Local system 
defined by the line joining 
intersection points 3' & '4'. 
IfX[3]>X[4];y = 9 0 - a 
Else y = 270 - a 

Case I: Local system 
defined by the line joining 
intersection points '2' & '4' 
IfX[2]>X[4];y = 9 0 - a 
Else y = 270 - a 

Home 

f 
Y 

Figure C-7: Local coordinate system for 4 intersection points 

The resolution of the force components and the velocities follows the same 

pattern as defined above. 
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APPENDIX D 
MOHR-COULOMB ELASTO-PLASTIC MODEL 

Stress (a) 

Elastic Plastic 
* • 

Strain (s) 

Figure D-i: Elastic perfectly-plastic Mohr-Coulomb constitutive 

relationship 

The incremental strain can be divided into an elastic component and a plastic 

component. 

{ds}={dse}+{dsp}ov D-i 

{dee}={ds}-{dsp} D-2 

Only elastic strain increments dse will cause stress changes; as a result the stress 

increments can be written as: 

{da} = [Ce]{dse} or 

{da} = [Ce]{{ds}-{dep}) 

D-3 

D-4 
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The yield function F describes the locus of the yield point. When the stress state is 

on the plastic yield point, the consistency condition is met and no stress state is 

possible beyond the yielding limits. The consistency condition is: 

dF = l—\{da} = 0 D-5 

The plastic component of the strain is computed from: 

where G is a plastic potential function and A, is a plastic scaling factor. 

The plastic scaling factor X is derived from: 

».= .y.ai. . M D-7 

SMI} 
The incremental stress equation now becomes: 

{da}=[Ce]{de}-[Ce]A^ or D-8 

W}=([C.]-[c,]){«fe} D-9 

where, 
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L (£Mi) 
The next step is to choose any yield criteria and its corresponding yield function 

and the plastic potential function to find the matrix. The yield function of the 

Mohr-Coulomb yield criterion is defined as: 

F = ̂  2-SH10 ! L~CCOS0=O 
D-n 

An alternative form of the invariants can also be used to define failure and yield 

criteria. This alternative set of invariants includes Ix, I2, Ji, J2, and a quantity 6 

known as the lode angle. The yield function F can now be written as: 

•* 1 I " V * ^ ? 

F=—sin</) + -yJJ2 cosO—^^-^sin^sin^-ccos^ =0 D-12 
3 -y/3 

where, 

Ix = ax + ay + <J2 is the first strain invariant, D-13 

J2= ~ Wx ~ a v f + fay ~ az f + (CTz ~ °x )2 J+ Tly ^s t n e second deviatoric stress 
6 

invariant, D-14 

J3 =crd <rd ad
z -<jd r2

xy is the third deviatoric stress invariant, D-15 

0 = —sin 
3 

f ~ n: r \ 3V3 J 
2 J\2 j 

with — <6<— is the lode angle, D-16 
6 6 

where c is the cohesion and <j> is the angle of internal friction. 

Page 207 



Appendix D 

The value of the term within the arcsine of the lode angle has to be within the 

limits of - l and l, otherwise, arcsine calculations will give errors. When the value 

of the term comes close to - l or 1, it should be assigned a value slightly higher or 

lower, respectively, to avoid calculation errors. 

The deviatoric stress component aid in any direction can be defined as: 

where i can be x, y, or z. 

The plastic potential function G has the same form as the yield function F except 

the internal friction angle § is replaced by the dilation angle \\i. Thus the plastic 

potential function takes the form: 

G=—smif/ + -y]J2 cos(9———sin y sin # - c cosy =0 
3 V3 D_!8 

The derivatives of the yield function in terms of the stress invariants are 

computed using the chain rule of differentiation. 

Kdal dlx\d<7l dJ2\da/ dJ3\dtr / 

The derivatives of the Mohr-Coulomb yield function, with respect to the stress 

invariants, can be written as follows: 

dF sin^ ~ = z- D-20 
dL 3 
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Before doing the derivation of the yield function F with respect to J2 and J3, a 

small differential is done to ease the way for doing the differentiation. 

The derivative of 9 with respect to the any of the variables can be taken as: 

sin (39)= 
3V3 J, 

J 2 J 

X{say) D-21 

Note that: 

d 1 . _• 

dx -Jl-X2 dx 
D-22 

V l - X 2 ,/l-(sin(3^))2 Vl-sm2(3^) V ^ W c o s ( 3 ^ 
D-23 

Now the derivatives are continued from above: 

dF I 1 zi r r 5 

—==cos8 + JJ7 cost/ dJ 

sin^ 

VB 

sin# /—- d . . 
— P = + J J , sm6> 
2 ^ v a/2 

D-24 

-cos# = -sintf-
^ r ^ j W . f • ~r 

8Jn a/, 
1 • -1 
—sin 
3 V V 

2 J2
3/2

yy 27, 
sin# 

,cos 3^, 

3>/3 J , Y\ 

2 J2
3/2

yy 

D-25 

5 • a a d 

-sm6 = cos#-

''* f -3V3 J, 11 1 f-cosflf 3>/3 J, ^ 

a/, a/, 
-sin 

2 X 3/2 
2 y 2J, . cos30 , 2 J2

3/2
yy 

D-26 

dF 

a/, 
:COS0+-

( '•" f 3V3 J, ^ 

Z^J2 ^••\J J 1 

sin# 
. cos3^. 2 J, 3/2 

JJJ D-27 
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sin^ 

'IT 
sin 6 1 cos 0 

. cos36 y 

\\ 3V3 J , 

2 / 2
3 / 2 y y ; 

Let: 

• n 3V3 J3 sm/? = T7T-
2 J,3/2 

D 

then, 

dF _ cosfl r^ 

a/2 " iJT2 
1 + 

sin # sin/? 

cos 30 cos # + -
sin <fi ( sin /? sin # 

s cos 30 cos# 
D 

dF r— d 4^2 • , d • Q =JJi cosy—^S^sin® sint' 
dJ3

 y dJ2 S dJ3 

D 

-cost? = -sine/-
(« f 

a/, a/, 
-sin 

-1 - 3 ^ 3 J , ^ 

V" V 
2 J2

3/2
y 

V3sin0 

2cos36»J. 3/2 D 

5 • a a d 

-sine' = cos6'-dJt a/, 
1 • -1 
—sin 

V" V 
2 Jin 

V3 cos 0 

2cos30JiJ2 D 

Substituting the values of these derivatives : 

8F 43 sin 0 cos 0 43 sin# + cos# 
• + -

8J3 2J2 cos 30 2J2 cos3# 2J2 cos 3# 
D 

The derivatives of the stress invariants with respect to the stresses are: 

&U 1 1 1 0 ) D 
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\ da 
)=( ad ad (Td It ) 
' \ x y 2 xy j 

D-35 

The first component of the above matrix was obtained by: 

dJ2 1 

a<r 6 
= i [ 2 ( ^ > 2 ( < x z - a j ( - l ) ] D-36 

dJ2 2 1 1 
= ~(7x av Gz 

do„ 3 x 3 y 3 
D-37 

Adding and subtracting -<rx on the left hand side of equation D-37: 

a/, 
5cr 

CT^+CT^+CT, 

^ V 
= o, D-38 

a/, d 

dcrr da. 
D-39 

dJ3 d 

dar dc v 3 y v •* y V 3 , v j y D-40 

a^ 
a<x. 

fi-I] fo-I] _ r f 1 - _ r f -.d 
°z +0rx Gy 0 - -

v -v 
o - : 

v -v 
j y 

D-41 

OJ^ ^- ^d „d 1 d rf 1 rf d . 1 2 rf rf 1 d ^d 1 _ r f ^ r f 1 d d , 1 2 

=—cr„ cr7 — a r a7 — a r a v H—r = cr„ a' — a v a' — a r a, — a r av -\—r 
s\ *y y z ** x z ^ x y s* xy y z ^ y z ^ x z ^ x y ^ xy 

8J-3 „d d . W ^d d A rf ^d d , _ 2 \ 
— = <xv cr7 H — 1 - < T „ <Jz - c r cr - c r cr + r _ , I 

-3 y 2 *>\ y z x z x y xy j 

D-42 

D-43 
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a/3 •=°d, <*'. +l[-k -P\°, -p)-(<y,-p)(°. -P)-(°. -p)(°y-p)+<] 

D-44 

where p=—, and 
3 

a/3 
do-

= ^ » T W 2 ^ + 2 ^ + 2<7z)-oyrz - f f ^ - o ^ - 3 / + r j ] 

D-45 

Expanding for p and solving: 

• • • - -<7 a + -y z 3 d<7 T ( C ' +o-J +crz
2
 - G - , 0 - , ~ ^ 0 " z - 0 " x ^ J , / + T * > D-46 

^ 3 _ „ < / « . « * - 1 

= (7„CT H— 

6ar
 y z 3 

-(2crx
2 +2cry

2 +2o-z
2 -2cr^o-z - 2 ^ ^ -2<jxoy)+zl 

D-47 

Rearranging equation D-47 gives: 

^ 3 _ , « 1 

5<r. 
Hax-ayy+(*y-crJ+(*z-*xr)+rl D-48 

— - = o v o z +— 
da. ' z 3 

D-49 

Thus, differentiating J3 with all components of the stress states gives the matrix: 

£~L3 \ I „d d , J2 d _rf , J 2 „d„d , J 2 _ 2 <•>_</, . 

,da \ y 3 3 •" 3 ^ ^ 
D-50 
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The terms of the matrix are the derivatives of the yield function with respect to 

the stress states. The components of the matrix are: 

dF sin (j) 

dar 
+ 

cos 9 
1 + 

sin 9 sin /? 

cos 39 cos 9 + -
sin (j> ( sin /? sin 9 

cos 39 cos9 ^ 
a? + 

v3sin# + cos#Y d d J2 3J3 d 

A 3 2J2 J 2J2 cos39 
D-51 

dF sin (j> 

da. + 
cos 9 

1^1 J 2 

1 + 
sin # sin/? 

cos 39 cos 9 + -
sinfif sin/? sin# 

43 Vcos3# cos#. 

-J3sin9 + cos9\( d d J2 3J3 d 

3 2 / ' 2J2 cos39 
D-52 

dF sin <p 

da. + 
cos# 

1 + 
sin 9 sin/? 

cos 30 cos # + -
sin^f sin/? sin# 

V3sin# + cos6>Y d„*Ji •. 

A 2 2/ 2 cos 30 

V3 ^cos30 cos# 

3J 

ff5 + 

3 ( T 5 

D-53 

SF sin^ 

dr. + 
cos 9 

2 ^ 

\ ^ . x f ^ a ^ a \ ^ sin#sin/? j sin^f sin/? sm.9 

V3" sin 9 + cos 9 

2J2 cos 39 

cos 3^ cos ̂  

2cr
rfr - ^ 
z xy 

s cos 30 cos 9 
2r + 

J , ^ 
D-54 

In order to find the matrix containing the derivatives of the plastic potential 

function G with respect to the stresses, the angle of internal friction § is replaced 

with the dilation angle v|/ in the above equations. 
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The Mohr-Coulomb model can be reduced to Tresca yield criteria by making the 

angle of internal friction § equal to zero. This helps in checking the gradients of 

the yield function with respect to the stresses. 

Max\ 
1 1 — cr, — cr ,— kx, — <r,, —kr, — <r, 

2 l i 2 l ' 2 i 2 3 | ' 2 ' 3 " 
= * D-55 

When the shearing stresses are zero the values of the normal stresses in any 

direction are the same as the principal stress value. So the derivative of the 

Tresca yield criteria with respect to the stresses gives: 

d 
dcrl 

1 
F i _ c r 3 

^ 1 J 8 (1 
— ana — 

j 2 3<T3 \2 

Pi ~ CT3 2 
D-56 

This helps to check whether the calculations done for the above equations for 

derivatives of yield function F are correct. 

Once the gradients have been calculated, it is possible to find the elasto-plastic 

constitutive matrix, [Cep]. 
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APPENDIX E 
INTERVAL HALVING TECHNIQUE 

The interval halving technique is a simple and effective way to obtain a solution 

for any equation of the type: 

f(x) = 0 E-i 

The objective is to find a value of x = x0 such that the above equation is satisfied. 

In order to obtain a solution, the following conditions must be satisfied: 

• f(x) must be continuous in x, 

• extreme values of the function are known for which 

f(xi) < o andf(x2) > o. 

This function f(x) is the yield function and x is the value of a for which the yield 

criteria is always met. The value of a lies between o and l and can be determined 

from the following steps: 

l. Determine the mid-point xm between Xi and x2: 

x =— E-2 

2. Ifxm satisfies the function f(xm) - o within tolerable limits, assign x0 = xm; 

otherwise, proceed to the next step. 

3. Iff(xm) < o, assign xm to xi and repeat steps 1 and 2 until the criteria or 

the tolerance limits are met. Iff(xm) > o, assign xm to X2 and repeat steps 

1 and 2. 

The procedure is shown in Figure E-i. 
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f(x) 
• 

f(x2)--

f(xm) 

f(xi) 

Figure E-i: Solution procedure for interval halving technique, Chan 

[1] 

The convergence rate of this method is slower than other methods and the 

number of iterations required is given approximately by: 

«=log2(m + l) E-3 

where, 

n = the number of iterations required, and 

m = the number of significant digits of x. 

An advantage of this method is that it is not necessary to require the derivatives 

of f to be continuous; therefore, the yield surfaces with corners can be solved 

without difficulty. 

BIBLIOGRAPHY 

l. Chan, D. H., Finite element analysis of strain softening material. 1985, 
Ph.D. thesis, University of Alberta, Edmonton, AB. p. 345. 
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APPENDIX F 
RADIAL RETURN METHOD 

The iterative techniques of the Newton-Raphson method or the modified 

Newton-Raphson method are applied to find solutions for the behaviour of 

nonlinear material. As described in previous sections, the calculation algorithm 

revolves around the current estimation of the incremental displacements based 

on the resultant forces on the nodes of the elements. These displacements are 

further used to evaluate the incremental strains at each integration point. The 

integration of the constitutive model is then performed along the incremental 

strain path to estimate changes in the stress states, Potts [l]. These stress changes 

are incorporated into the stress states at the beginning of the increment and used 

to evaluate the net nodal equivalent forces. 

The constitutive model matrix for the elasto-plastic Mohr-Coulomb criteria is 

dependent on the current state of stress, thus, care must be taken when 

integrating the constitutive equation to obtain stress changes. The two methods 

primarily employed in the finite element method are the substepping algorithm 

and the radial return algorithm, both part of the stress point algorithms. In the 

substepping approach, the incremental strains are divided into a number of 

substeps wherein the strains are a proportion of the incremental strains. The 

constitutive equations are then integrated numerically over each substep using 

the Euler, the modified Euler, or the Runge-Kutta approach. The radial stress 

return algorithm (Chan, [2]) is incorporated into the developed method as 

explained below. 

The condition for an admissible stress state is: 

F(tr) < 0 F-i 

If the stress state lies on the yield surface, 
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F(<r*)=0 F-2 

t+At 

Figure F-2: Radial return for Mohr-Coulomb plasticity, two 

dimensional stress space 

dF = dcrn 

da„ p 
F-3 

dF 
where is the gradient of the yield surface. 

dcrp 

Let the stress change d<rp be perpendicular to the yield surface, and let: 

8F dcrn - A F-4 

where A, is a proportionality constant. 

F(a) + dF = F(cr*)=0 F-5 

Page 218 



Appendix F 

dcr„ 
F-6 

The value for dap is substituted from Equation F-4, 

dcTp dap 

F-7 

or 

Finally, 

A = 
•F(a) 

dF OF 
dap dap 

dcrp = Her) 
dF 8F 

dap dap j 

dF 

d<r„ 

F-8 

F-9 

Update the stresses and iterate until F(a*) = o or is within the defined tolerance 

criteria. 

BIBLIOGRAPHY 

Potts, D. M., and Zdravkovic, L., Finite element analysis in geo-technical 
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