

- through it and yet be light enough to be rideable
- shown in Figure 1.

Material	Pros	Cons
Kevlar (K)	-Stronger relative to weight than CF -Lighter than M -Resists piercing forces	-Buckles under -Weakened by h temperatures
Carbon Fibre (CF)	-Stiffer relative to weight than K -Lighter than M -Can withstand high temperatures	-Less resistant t forces than K
Metals-Steel and Aluminum (M)	-Strong -Stiff	-Heavy

Objective

Methods

- wasting materials.
- the frame as if a rider was riding the bike.
- These forces are illustrated in Figures 5-9.

Lightning McQueen: The Legendary Composite Bike

Emily Harrison, Brianna Bruni-Bossio, Ahmed Ead, Jason Carey

Department of Mechanical Engineering, University of Alberta

Experimental Design

Test #	Material	Frame Size	Type of Bike
1	AL	SM	MTN
2	CF	SM	MTN
3	К	SM	MTN
4	AL	MED	MTN
5	CF	MED	MTN
6	К	MED	MTN
7	AL	LRG	MTN
8	CF	LRG	MTN
9	К	LRG	MTN
10	AL	SM	RD
11	CF	SM	RD
12	К	SM	RD
13	AL	MED	RD
14	CF	MED	RD
15	К	MED	RD
16	AL	LRG	RD
17	CF	LRG	RD
18	К	LRG	RD

Future Work

- - is set properly

Acknowledgements

The author would like to thank: - Brianna Bruni-Bossio

- Ahmed Ead
- Jason Carey
- Canada Summer Jobs

Supported by:

• An experiment was designed to provide parameters to test in the future. Experimental design is important because properly designing an experiment will allow for better execution of it.

Abbreviation	Meaning
AL	Aluminum
CF	Carbon
	Fibre
К	Braided
	Kevlar
SM	Small
MED	Medium
LRG	Large
MTN	Mountain
RD	Road

Figure 11: Key for Figure 10

 Testing would be performed using the parameters set above. • As carbon and aluminum are already in use for bike frames, they are controls to ensure the frame geometry

> • The application of Kevlar braids to a bike frame is untested. Future studies will show whether the application of Kevlar to a bike frame is feasible or not.

- University of Alberta Faculty of Engineering